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Introduction

Welcome to the SIGDIAL 2013 Conference, the 14th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. The conference is held in Metz, France, August 22-24, 2013, and is

co-located with the 14th Annual Conference of the International Speech Communication Association
(INTERSPEECH).

We received a record 115 submissions. Submissions were received from 24 different countries around
the world, including countries in Asia (24 submissions), Australia/New Zealand (2), Europe (49), North
America (37), and South America (3). Of the 115 submissions, 63 were long paper submissions, 35 short
paper submissions, and 17 demonstration submissions.

All papers received 3 reviews, and demonstrations 2 reviews. The members of the Program Committee
did a superb job in reviewing the submitted papers. We thank them for their advice in selecting the
accepted papers and for helping to maintain the high quality of the program. In line with the SIGDIAL
tradition, our aim has been to create a balanced program that could accommodate as many favorably
rated papers as possible. Of the 63 long paper submissions, 40 were accepted: 26 were accepted as long
papers for oral presentation, 5 were accepted as long papers for poster presentation, and 9 were accepted
as short papers for poster presentation. Of the 35 short paper submissions, 17 were accepted for poster
presentation, for a total of 31 posters. Of the 17 demonstration submissions, 14 were accepted. In light
of the record number of papers and demonstrations, this year SIGDIAL runs 2.5 days, rather than 2 days
as had been the convention for the past few meetings.

SIGDIAL continues to serve as a publication venue for research that spans many aspects of discourse and
dialogue. This year, the program contained oral presentation sessions and poster papers on discourse,
semantics, generation, situated and multi-modal dialogue, dialogue system control and evaluation,
models of dialogue and spoken discourse, speech processing technology in dialogue, and dialogue state
tracking, as well as on the SIGDIAL 2013 special theme on “Discourse and Dialogue in Social Media”.
SIGDIAL 2013 also hosted results from the “Dialogue State Tracking Challenge”, organized by Jason
D. Williams, Antoine Raux, Deepak Ramachandran, and Alan Black. Papers related to this challenge
were submitted and reviewed as normal SIGDIAL papers, with 9 being accepted.

We particularly thank the two keynote speakers for their contributions to research on discourse and dialog
systems: Bonnie Webber (University of Edinburgh) and Jerome Bellegarda (Apple Inc).

We thank Kallirroi Georgila, Mentoring Chair for SIGDIAL 2013. The goal of mentoring is to assist
authors of papers that contain innovative ideas to improve their quality regarding English language usage
or paper organization. This year, 7 of the accepted papers were mentored. We thank the Program
Committee members who volunteered to serve as mentors: Ron Artstein, Heriberto Cuayahuitl, Kallirroi
Georgila, Andrei Popescu-Belis, Matthew Purver, Carolyn Penstein Rosé, and Amanda Stent.

We extend special thanks to Olivier Pietquin, the local arrangements chair, and his local arrangements
team of Calogero Bomba, Dani¢le Cebe, Jérémy Fix, Thérese Fressengeas, Matthieu Geist, Sébastien
Van Luchene, Claudine Mercier, Nathalie Ruch, and Chantal Sabbagh. SIGDIAL 2013 would not
have been possible without Olivier, who worked tirelessly to handle a seemingly unending stream of
details for the local arrangements, from organizing the venue, handling registration, arranging student
accommodation, planning video recording, helping individual participants navigate public transport
in France, and more. We also thank the student volunteers for on-site assistance. Thanks to Casey
Kennington for preparing the USB drives with the proceedings.

We thank Amanda Stent, Sponsorships Chair, for recruiting and liaising with our conference sponsors.
The sponsorship program enables valuable aspects of the program, such as the invited speakers,
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conference reception and dinner, and best paper awards. We gratefully acknowledge the support of our
sponsors, including Amazon, Apple, AT&T, Heidelberg Institute for Theoretical Studies (HITS), Honda
Research Institute (HRI), La Région Lorraine, Microsoft, Nuance, Samsung, and SUPELEC. We also
thank Priscilla Rasmussen at the ACL for handling the financial aspects of sponsorship for SIGDIAL
2013.

We gratefully acknowledge SoftConf for use of the START conference management system.

We also thank the SIGdial board, especially officers Tim Paek, Amanda Stent, and Kristiina Jokinen, for
their advice and support. In particular we thank Amanda Stent for providing continuity, as a program
chair for SIGDIAL 2012.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Maxine Eskenazi and Michael Strube
General Co-Chairs

Barbara Di Eugenio and Jason D. Williams
Technical Program Co-Chairs
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Surface Text based Dialogue Models for Virtual Humans
Sudeep Gandhe and David Traum

Speech Reduction, Intensity, and FO Shape are Cues to Turn-Taking
Oliver Niebuhr, Karin G6rs and Evelin Graupe
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14:30

14:55

Poster and demonstration session
Poster “madness” (short presentations of each poster)
Poster session (with coffee)

Gesture Semantics Reconstruction Based on Motion Capturing and Complex Event Pro-
cessing: a Circular Shape Example
Thies Pfeiffer, Florian Hofmann, Florian Hahn, Hannes Rieser and Insa Ropke

Open-ended, Extensible System Utterances Are Preferred, Even If They Require Filled
Pauses
Timo Baumann and David Schlangen

A Four-Participant Group Facilitation Framework for Conversational Robots
Yoichi Matsuyama, Iwao Akiba, Akihiro Saito and Tetsunori Kobayashi

Tacit Social Contracts for Wheelchairs
Daniel Couto Vale and Vivien Mast

Laugher and Topic Transition in Multiparty Conversation
Emer Gilmartin, Francesca Bonin, Carl Vogel and Nick Campbell

IMHO: An Exploratory Study of Hedging in Web Forums
Liliana Mamani Sanchez and Carl Vogel

Impact of ASR N-Best Information on Bayesian Dialogue Act Recognition
Heriberto Cuaydhuitl, Nina Dethlefs, Helen Hastie and Oliver Lemon

Investigating speaker gaze and pointing behaviour in human-computer interaction with
the mint.tools collection
Spyros Kousidis, Casey Kennington and David Schlangen

In-Context Evaluation of Unsupervised Dialogue Act Models for Tutorial Dialogue
Aysu Ezen-Can and Kristy Boyer

Spoken Dialog Systems for Automated Survey Interviewing

Michael Johnston, Patrick Ehlen, Frederick G. Conrad, Michael F. Schober, Christopher
Antoun, Stefanie Fail, Andrew Hupp, Lucas Vickers, Huiying Yan and Chan Zhang
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Open-domain Utterance Generation for Conversational Dialogue Systems using Web-
scale Dependency Structures
Hiroaki Sugiyama, Toyomi Meguro, Ryuichiro Higashinaka and Yasuhiro Minami

Evaluating State Representations for Reinforcement Learning of Turn-Taking Policies in
Tutorial Dialogue
Christopher Mitchell, Kristy Boyer and James Lester

A Semi-supervised Approach for Natural Language Call Routing
Tatiana Gasanova, Eugene Zhukov, Roman Sergienko, Eugene Semenkin and Wolfgang
Minker

Counseling Dialog System with SWIH Extraction
Sangdo Han, Kyusong Lee, Donghyeon Lee and Gary Geunbae Lee

Integration and test environment for an in-vehicle dialogue system in the SIMSI project
Staffan Larsson, Sebastian Berlin, Anders Eliasson and Fredrik Kronlid

Weakly and Strongly Constrained Dialogues for Language Learning
Claire Gardent, Alejandra Lorenzo, Laura Perez-Beltrachini and Lina Rojas-Barahona

Open-Domain Information Access with Talking Robots
Kristiina Jokinen and Graham Wilcock

Demonstration of the EmoteWizard of Oz Interface for Empathic Robotic Tutors
Shweta Bhargava, Srinivasan Janarthanam, Helen Hastie, Amol Deshmukh, Ruth Aylett,
Lee Corrigan and Ginevra Castellano

The Map Task Dialogue System: A Test-bed for Modelling Human-Like Dialogue
Raveesh Meena, Gabriel Skantze and Joakim Gustafson

A Robotic Agent in a Virtual Environment that Performs Situated Incremental Understand-
ing of Navigational Utterances
Takashi Yamauchi, Mikio Nakano and Kotaro Funakoshi

Roundtable: An Online Framework for Building Web-based Conversational Agents

Eric Forbell, Nicolai Kalisch, Fabrizio Morbini, Kelly Christoffersen, Kenji Sagae, David
Traum and Albert A. Rizzo
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16:55

17:15

17:35

17:55

Oral session: Speech processing technology in dialog

A Data-driven Model for Timing Feedback in a Map Task Dialogue System
Raveesh Meena, Gabriel Skantze and Joakim Gustafson

Continuously Predicting and Processing Barge-in During a Live Spoken Dialogue Task
Ethan Selfridge, Iker Arizmendi, Peter Heeman and Jason Williams

Which ASR should I choose for my dialogue system?
Fabrizio Morbini, Kartik Audhkhasi, Kenji Sagae, Ron Artstein, Dogan Can, Panayiotis
Georgiou, Shri Narayanan, Anton Leuski and David Traum

Day 2 conclusion

Informational announcements
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9:00

9:05

9:25

9:40

9:55

10:10

10:25

10:35

11:50

12:05

12:20

Oral session: Dialog state tracking
Session introduction

The Dialog State Tracking Challenge
Jason Williams, Antoine Raux, Deepak Ramachandran and Alan Black

Recipe For Building Robust Spoken Dialog State Trackers: Dialog State Tracking Chal-
lenge System Description

Sungjin Lee and Maxine Eskenazi

A Simple and Generic Belief Tracking Mechanism for the Dialog State Tracking Chal-
lenge: On the believability of observed information

Zhuoran Wang and Oliver Lemon

Multi-domain learning and generalization in dialog state tracking
Jason Williams

Structured Discriminative Model For Dialog State Tracking
Sungjin Lee

Poster session: Dialog state tracking

Poster “madness” (short presentations of each poster)

Poster session (with coffee)

Comparison of Bayesian Discriminative and Generative Models for Dialogue State Track-
ing

Lukas Zilka, David Marek, Mat&j Korvas and Filip Jur&i¢ek

Dialog State Tracking using Conditional Random Fields
Hang Ren, Weiqun Xu, Yan Zhang and Yonghong Yan

Engineering Statistical Dialog State Trackers: A Case Study on DSTC
Daejoong Kim, Jaedeug Choi Choi, Kee-Eung Kim, Jungsu Lee and Jinho Sohn

Deep Neural Network Approach for the Dialog State Tracking Challenge
Matthew Henderson, Blaise Thomson and Steve Young

Future challenge task information sessions
Dialog state tracking challenge 2

The REAL dialog challenge

Conference closing

Best paper award ceremony and closing
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Discourse Relations, Discourse Structure,
Discourse Semantics

Bonnie Webber

Institute for Language, Cognition and Computation
School of Informatics, University of Edinburgh

10 Crichton Street, Edinburgh EH8 9AB, Scotland, UK
bonnie@inf.ed.ac.uk

It is generally accepted that a discourse connective expresses a semantic
and /or pragmatic relation between its matrix sentence or clause and some-
thing in the previous discourse. Usually the sense of this relation is expressed
as a label, often within a hierarchy of sense labels. But the meaning of these
labels may vary from system to system, and the same connective may be as-
signed different labels in different systems. Given this, we might learn more
and make better predictions if (i) sense labels were associated with (some
of) their entailments and (ii) connectives were characterized in terms of both
their formal properties and their use conditions. I'll give examples of both.

The above-mentioned predictions tie in with an interesting property of
Penn Discourse TreeBank annotation. Annotators were allowed to assign
multiple sense labels to a single connective, to imply that all the senses held
simultaneously. For those cases where adjacent sentences lacked an inter-
vening connective, annotators were instructed to try to insert one or more
connectives that (together) expressed the relation(s) between the sentences.
Here too, in many cases, annotators inserted a single connective to which
they assigned multiple meanings, Other times they inserted multiple connec-
tives to convey the relation(s) they took as being expressed. Some of this
will be shown to make more sense in terms of the entailments and formal
properties of the connectives than in terms of any sense labels.

I’ll close by trying to distinguish discourse connectives that are associated
with coordinating or subordinating relations between sentences or clauses,
which is an feature of discourse structure, from those connectives that simply
convey additional relevant semantic or pragmatic content.
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Expressivity and comparison of models of discourse structure

Antoine Venant' Nicholas Asher’? Philippe Muller! Pascal Denis® Stergos Afantenos'
(1) IRIT, Toulouse University, France, (2) IRIT, CNRS, France (3) Mostrare, INRIA, France *

Abstract

Several discourse annotated corpora now ex-
ist for NLP. But they use different, not eas-
ily comparable annotation schemes: are the
structures these schemes describe incompati-
ble, incomparable, or do they share interpre-
tations? In this paper, we relate three types
of discourse annotation used in corpora or dis-
course parsing: (i) RST, (ii) SDRT, and (iii)
dependency tree structures. We offer a com-
mon language in which their structures can be
defined and furnished a range of interpreta-
tions. We define translations between RST and
DT preserving these interpretations, and intro-
duce a similarity measure for discourse repre-
sentations in these frameworks. This will en-
able researchers to exploit different types of
discourse annotated data for automated tasks.

1 Introduction

Computer scientists and linguists now largely agree
that representing discourse structure as a hierarchical
relational structure over discourse units linked by dis-
course relations is appropriate to account for a variety
of interpretative tasks. There is also some agreement
over the taxonomy of discourse relations —almost all
current theories include expressions that refer to rela-
tions like Elaboration, Explanation, Result, Narration,
Contrast, Attribution. Sanders, Spooren, and Noord-
man 1992; Bateman and Rondhuis 1997 discuss corre-
spondences between different taxonomies.

Different theories, however, assume different sets of
constraints that govern these representations; some ad-
vocate trees: RST Mann and Thompson 1987, DLTAG
Webber et al. 1999; others, graphs of different sorts:
SDRT Asher and Lascarides 2003, Graphbank Wolf
and Gibson 2005. Consider:

@)) [“he was a very aggressive firefighter.]c, [he
loved the work he was in,”]¢, [said acting fire
chief Lary Garcia.]c,. ["He couldn’t be bested
in terms of his willingness and his ability to do
something to help you survive.”]¢, (from Egg

and Redeker 2010)

Using RST, Egg and Redeker 2010 provide the tree an-
notated with nuclearity features for this example (given
by the linear encoding in (s;)), while SDRT provides

This research was supported by ERC grant 269427.
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a different kind of structure (s,). Dependency trees
(DTs), similar to syntactic dependency trees and used
in Muller et al. 2012 for automated parsing, give yet an-
other representation (s3). Elab stands for elaboration,
Attr for attribution, and Cont for continuation.

Elab(Attr(Elaby(Cyy, Cas)n, Cas)n, Cas) (s1)
Attr(r, C3) A m:Elab(Cy, ) Amp:Cont(Cy, Cy)  (52)
Elab((Cy, Cy) A Attr(Cy, C3) A Elab(Cq, Cy) (s3)

Several corpora now exist annotated with such struc-
tures: RSTTB Carlson, Marcu, and Okurowski 2002,
Discor Baldridge, Asher, and Hunter 2007, Graph-
Bank'. But how exactly do these annotations compare?
In the illustrative example chosen and for the relation
types they agree on (Elaboration and Attribution), dif-
ferent annotation models and theoretical frameworks
invoke different numbers of instances of these relations
and assign the instances different arguments or differ-
ent scopes, at least on the surface. In this paper we de-
velop a method of comparing the scopes of relations in
different types of structures by developing a notion of
interpretation shared between different structures. This
interpretation specifies the set of possible scopes of re-
lations compatible with a given structure. This theoret-
ical work is important for furthering empirical research
on discourse. Discourse annotations are expensive. It
behooves researchers to use as much data as they can,
annotated in several formalisms, while pursuing pre-
diction or evaluation in their chosen theory. This paper
provides a theoretical basis to do this.

What a given structure expresses exactly is often not
clear; some discourse theories are not completely for-
malized or lack a worked out semantics. Neverthe-
less, in all of them rhetorical relations have semantic
consequences bearing on tasks like text summarization,
textual entailment, anaphora resolution, as well as the
temporal, spatial and thematic organization of a text
Hobbs, Stickel, and Martin 1993; Kehler 2002; Asher
1993; Lascarides and Asher 1993; Hobbs, Stickel, and
Martin 1993; Hitzeman, Moens, and Grover 1995, inter
alia. Theories like SDRT or Polanyi et al. 2004 adopt a
conception of discourse structure as logical form. Dis-
course structures are like logical formulae and relations

'The Penn Discourse Treebank Prasad et al. 2008 could
also be considered as a corpus with partial dependency struc-
tures.
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function like logical operators on the meaning of their
arguments. Hence their exact scope has great semantic
impact on the phenomena we have mentioned, in ex-
actly the way the relative scope of quantifiers make a
great semantic difference in first order logic. By con-
centrating on exact meaning representations, however,
the syntax-semantics interface becomes quite complex:
as happens with quantifiers at the intra sentential level,
discourse relations might semantically require a scope
that is, at least a priori, not determined by syntactic
considerations alone and violates surface order (see s,).

Other theories like Polanyi’s Linguistic Discourse
Model (LDM) of Polanyi 1985; Polanyi and Scha 1984,
and DLTAG Webber et al. 1999 explicitly adopt a
syntactic point of view, and RST with strongly con-
strained (tree-shaped) structures is subject to parsing
approaches duVerle and Prendinger 2009; Sagae 20009;
Subba and Di Eugenio 2009 that adhere to the syntac-
tic approach in adopting decoding strategies of syntac-
tic parsing. In such theories, discourse structure repre-
sentations, subject to syntactic constraints (e.g. domi-
nance of spans of text one over another) respect surface
order but do not always and unproblematically yield a
semantic interpretation that fits intuitions. According
to Marcu 1996, an RST tree is not by itself sufficient to
generate desired predictions; he employs the nuclearity
principle, NP, as an additional interpretation principle
on scopes of relations.

We focus on two theories: RST, which offers the
model for the annotations of the RST treebank Carl-
son, Marcu, and Okurowski 2002 and the Potsdam
commentary corpus Stede 2004, and on SDRT, which
counts several small corpora annotated with semantic
scopes, Discor Baldridge, Asher, and Hunter 2007 and
Annodis Afantenos et al. 2012. We describe these the-
ories in section 2. We will also compare these two the-
ories to dependency tree representations of discourse
Muller et al. 2012. Section 3 introduces a language for
describing semantics scopes of relations that is power-
ful enough to: i) compare the expressiveness (in terms
of what different scopes can be expressed) of the dif-
ferent formalisms considered; ii) give a formal target
language that will provide comparable interpretations
of the different structures at stake. Section 4 discusses
Marcu’s nuclearity principle and proposes an alterna-
tive way to interpret an RST tree as a set of different
possible scopes expressed in our language. Section 5
provides intertranslability results between the different
formalisms. Section 6 defines a measure of similarity
over discourse structures in different formalisms.

2 Discourse formalisms

These formalisms we introduce here all require the in-
put text to be segmented into elementary units (EDUs).
The definition of what an EDU is varies slightly with
the formalism, but roughly corresponds to the clause
level in RST, SDRT and other theories. We assume a
segmentation common to the different formalisms and

use examples with a non controversial and intuitive
segmentation.

Rhetorical Structure Theory (RST), the theory un-
derlying the RST-Treebank is the most used corpus for
discourse parsing, cf. duVerle and Prendinger 2009,
Subba and Di Eugenio 2009, inter alia.

In its Mann and Thompson 1987 formulation, RST
builds a descriptive tree for the discourse by the recur-
sive application of schemata in a bottom-up procedure.
Each schema application ideally reflects the most plau-
sible relation the writer intended between two contigu-
ous spans of text, as well as hierarchical information
about the arguments of the relation, distinguishing be-
tween nuclei as essential arguments of a relation and
satellites as more contingent parts. The set of RS Trees
is inductively defined as follows:

1- An EDU is a RS Tree.

2- if R is a nucleus-statellite relation symbol, s; and
sy are both RS Trees with contiguous spans (the left-
most leaf in s; is textually located right after the right-
most one in s7), and {(a;,az) € {{N,S);{(S,N)} then
R(t,_ay, t;_a») is an RS Tree.

3- if R is a multinuclear relation symbol and
(s1,...,5,) are n RS Trees with contiguous spans then
R(si_N,...,s,_N)is an RS Tree.

Following Mann and Thompson 1987 a complete RS
tree makes explicit the content the author intended to
communicate. RS Trees are graphically represented
Marcu 1996 with intermediate nodes labelled with re-
lation names, leaves with symbols referring to EDUs,
and edges with nucleus/satellite distinctions.

Segmented Discourse Representation Theory
(SDRT), our second case-study theory, inherits a
framework from dynamic semantics and enriches
it with rhetorical relations. The set of SDRSs is
inductively defined as follows:

Assume a set of rhetorical relations R, distinguished
between coordinating and subordinating relations.

- Any EDU is an SDRS.

- Any Complex Discourse Unit (CDU) is a SDRS.

- a CDU is an acyclic labelled graph (A, E) where
every node is a discourse unit (DU) or SDRS and each
labelled edge is a discourse relation such that:

(i) every node is connected to some other node;

(i1) no two nodes are linked by subordinating and co-
ordinating relations,

(iii) given EDUs ay,...,a,4; in their textual order
that yield a CDU (A, E) = G, eachEDU aj,; j < nis
linked either: (a) to nodes on the right frontier of the
CDU G+ a subgraph of G constructed from ay, ..., a;;
or (b) to one or more nodes in G’ = (A’, G’), a subgraph
of G, which linked to one or more nodes on the right
frontier of the graph Gx*, and where G’ is constructed
from a subset of a5, ... a,.

The right frontier of a graph G consists of the nodes
a that are not the left arguments to any coordinating
relation and for which if any node b is linked to some
node dominating a, then there is a path of subordinating



relations from b to a.

A Segmented Discourse Representation Structure
(SDRS), is assigned a recursively computed meaning
in terms of context-change potential (relation between
pairs of ( world, assignation function )) in the tradi-
tion of dynamic semantics. The semantics of a complex
constituent is compositionally defined from the seman-
tics of rhetorical relations and the interpretation of its
subconstituents. In the base case of an EDU, the se-
mantics is given in dynamic semantics.

We also consider dependency trees (DTs). Muller
et al. 2012 derive DTs from the SDRSs of the ANN-
ODIS corpus to get a reduced search space, simplify-
ing automated discourse parsing. A DT is an SDRS
in which there are no CDUs and there is a unique arc
between any two nodes. Muller et al. 2012 provide
a procedure from SDRSs to DTs, which we slightly
modify to respect the Frontier Contraint that they use.
{ works in a bottom-up fashion replacing every CDU
X that is an argument of a rhetorical relation in y by
their top-most immediate sub-constituent which do not
appear on the right of any relation in X, or distributing
the top relation when necessary to preserve projectivity.
To give a simple example: {(R([R'(a, [R” (b, c)])],d)) =
{(R([R'(a,b) A R"(b,0)],d)) = R(a,d) A R'(a,b) A
R’ (b, c). (1) provides a more complicated example we
discuss in Section 6).

3 Describing the scope of relations

We provide here a language expressive and general
enough to express the structures of the 3 theories. All
our case-study theories involve structures described by
a list of rhetorical relations and their arguments. Two
things may vary: first, the nature of the arguments.
SDRT for instance, introduces complex constituents
T Rsubord(bv C) )

Rsubord(a» 71')
which finds a counterpart within RS Trees, where a

relation may directly appear as argument of another
(R(ay, R(by, cs)s)) but not within dependency trees.
Second, the set of constraints that restrict the possi-
ble lists of such relations can vary across theories (e.g.
right frontier, or requirement for a tree structure).

To deal with the first point above, we remark that
it suffices to list, for each instance of a discourse rela-
tion, the set of elementary constituents that belong to its
left and right scope in order to express the three kinds
of structures. We do this in a way that an isomorphic
structure can always be recovered. Models of our com-
mon language will be a list of relation instances and el-
ementary constituents, together with a set of predicates
stating what is in the scope of what. As for the second
point, we axiomatize each constraint in our common
language, thereby describing each of the 3 types of dis-
course structures as a theory in our language.

Our language contains only binary relations. Among
discourse formalisms, only RST makes serious (and
empirical) use of n—ary discourse relations. Neverthe-

as arguments of relations (e.g. {

less, such RST structures are expressible in our frame-
work, if we assume certain semantic equivalences.
RST allows for two cases of non-binary trees: (i) nu-
cleus with n satellites, each one linked to the nucleus
by some relation R,. Such a structure is semantically
equivalent to the conjunction of n-binary relations R,
between the nucleus and the nth satellite, which is ex-
pressible in our framework. (ii) RST also allows for n-
ary multinuclear relations such as List and Sequence. In
our understanding, multinuclear relations R(ay, .. .a,),
essentially serve a purpose of expressiveness, and such
an n-ary tree is an equivalent to the split non-tree
shaped structure R(ai,az) A R(az,as3)...R(ap-1), an).
This seems clear for the Sequence relation, which
states that a; ...a, are in temporal sequence and can
be equivalently formulated as “each a; precedes a;,;”.
This might appear less obvious for the List relation.
The semantics (as it appears on the RST website http:
//www.sfu.ca/rst/) of this relation requires the g; to
be “comparable”, and as far as this is a transitive prop-
erty, we can split the relation into a set of binary ones.
Formally, our scope language Ly, e is a fragment of
that of monadic second order logic with two sorts of in-
dividuals: relation instances (i), and elementary consti-
tuants (/). Below, we assume R is the set of all relation
names (elaboration, narration, justification, ...).

Definition 1 (Scoping language). Let S be the set {i, [}.
The set of primitive, disjoint types of L, s consists of
i, [ and ¢ (type of formulae). For each of the types in
S, we have a countable set of variable symbols V; (V)).
Two additional countable sets of variable symbols V; s
and V; ,, range over sets of individuals. These four sets
of variable symbols are pairwise disjoint.

The alphabet of our language is constituted by V;, Vi,
a set of predicates, equality, connector and quantifier
symbols. The set of predicate symbols is as follows:

1) For each relation symbol r in R, Lg is a unary
predicate of type (i, t)—i.e., Lg: (i, 1) .

2) unary predicates, sub, coord and sub™! (i, ).

3) binary predicates €; and €,: (i, [, #).

4) two equality relations, =,:(s, s, ) for s € {i, [}.

Logical connectors, and quantifiers are as usual.
The sets of terms I';,I; and I'; are recursively defined:
1.V; €Ty, Var; € Ty. 2. Forv € Vg, v :(s,t). 3. For
each symbol o of type (uy,...,u,) in the alphabet, for
all (t1,...,1,-1) € Ful X XUy, oty .o th1] € Fun'
I'; is the set of well formed formulae of the scope lan-
guage.

The predicates €; and €, take a relation instance r of
type i and a elementary constituent x of type [ as argu-
ments. Intuitively, they mean that x has to be included
in the left (for €;) or right (for €,) scope of r. For each
relation symbol R such as justification or elaboration,
the predicate Ly takes a relation instance r has argu-
ment and states that r is an instance of the rhetorical re-
lation R. Predicates sub, coord and sub™" apply to a re-
lation instance r, respectively specifying that r’s left ar-
gument hierarchically dominate its right argument, that



both are of equal hierarchical importance, or that the
left one is subordinate to the right one.

Definition 2 (Scope structure and Interpretation).
A scope structure iS an Lgpes-structure M =
(D;, Dy, |.PM. D; and Dy are disjoint sets of individu-
als for the sorts i and [ respectively, and |.|M assigns to
each predicate symbol P of type (uy,...,u,,t) a func-
tion |.|F : D, x---xD,, + {0, 1}. Variables of type (i, t)
are assigned subsets of D; and similarly for variables of
type (/, 1), The predicates =; and =, are interpreted as
equality over D; and D; respectively.

The interpretation [[-]]ﬁ” of a formula ¢ € @y is the
standard interpretation of a monadic second order for-
mula w.r.t to a model and a valuation (interpretation of
first order quantifiers and connectors is as usual, quan-
tification over sets is over all sets of individuals). Va-
lidity = also follows the standard definition.

These scope structures offer a common framework
for different discourse formalisms. Given one of the
three formalisms, we say that two structures S| and S,
are equivalent iff there is an encoding from one struc-
ture into a scoped structure or set of scoped structures
and a decoding back from the scoped structure or set of
scoped structures into S,

Fact 1. One can define two algorithms / and E such
that:

e from a given structure s which is a RS Tree, a
SDRS or a DT, I computes a scope structure /().

e given such a computed structure, E allow to re-
trieve the original structure s (E(I(s)) = s).

RST Encoding and Decoding To flesh out / and E
for RST, we need to define dominance. Set [Args(r) =
{e € D' | (r,e) € |&™}; rArgs(r) is defined analogously
(where €, replaces €;). The left and right dominance
relations C; and C, are defined as follows: r C; r iff
(Args(r) C lArgs(r')).

-rC ¥ o Vz:I((zer)VzEe, r) - zg ) withr T, v/
defined analogously.

Dominance C is: £=C; U C,.

-lArgs(r,X) o Vz:l(z g r) <z € X), with rArgs(r, X)
similar and

-Args(r,X) o Vz:l((zg r)Vze 1) & z€ X).

The NS, NN and NS schemes of RST will be re-
spectively encoded by the predicates sub, coord and
sub™'. We proceed recursively. If ¢ is an EDU e, re-
tarn M, = (D; = 0,D; = {e}, €) where € is the inter-
pretation that assigns the empty set to each predicate
symbol. If the root of 7 is a binary node instantiating
a relation R(t1,,,tq,), let T, € {sub,coord, sub™'} be
the predicate that encodes the schema aja,, let M, =
(D}, D},||'y and M,, = (D?, D?,|.]*). The algorithm re-
turns M, = (D} U D? U {r}, D] U D%,|.|[M) where r is a
’fresh’ relation instance variable not in Di1 or Diz, and
.|/ is updated in the appropriate fashion to reflect the
left and right arguments of r. Finally, if the root of ¢ is
an n-ary node, split it into a sequence of binary relation

Ri(t1,12), Ry(t2,13), . . ., proceed to recursively compute
the scope-structures M; for each of the relations using
2 (take care to introduce a ’fresh’ relation instance in-
dividual for each relation of the sequence), then return
the union of the models M;.

RST Decoding Given a finite scope structure M =
(D', D', |1y, for each relation instance r compute the
left arguments of r and its right arguments. We then
identify L(r), the unique relation symbol R such that
r € |Lgl™. If that fails, the algorithm fails. Similarly
retrieve the right nuclearity schema from the adequate
predicate that applies to ». Then compute the domi-
nance relations for r. If the input structure M = I(¢)
for some RS Tree ¢ then there is at least one maximal
relation instance for the dominance relation. If ¢ the
root node of ¢ is a binary relation, there is exactly one
maximal element in the dominance relation. If there
is none, then we return fail. If there is exactly one,
recursively compute the two RS Trees obtained from
the models computed from the left and right arguments
and descendants of r. If there is more than one, the root
node of the encoded RS Tree was a n-ary relation and
one has to reconstruct the n-ary node if that is possi-
ble; if not the algorithm fails (but that means the input
structure was not obtained from a valid RS Tree).

SDRT Encoding and Decoding: This is similar to
the RST encoding and decoding; for the encoding al-
gorithm, we proceed recursively top down. A SDRS
s is a complex constituent that contents a graph g =
(V, E) whose edges are relations holding between sub-
constituents, simple or complex as well. First come
up with an encoding of the set E of all edges that
hold between two sub-constituents of s, i.e. a struc-
ture M = <D, = Ei,D[ = V,{LR}, EZ,€r>, Where, for
each edge e € E;, Ly encodes its relation type, and
€' and €,! consists of all the pairs (x,e) of left and
right nodes x of the edges e € E. Finally, for each
complex immediate sub-constituent of s in D;, update
M as follows: for ¢ such a subconsituent, recursively
compute its encoding M., then add everything of M,
to M, finally remove ¢ from M but add instead for
each relation r scoping over c¢ to the right (left), all
the pairs {(r, x) | x is a constituent in M“}. The decod-
ing works again similarly to the one for RST, top-down
once again: one recursively retrieves immediate con-
tent of the current complex constituent at each level
then moves to inner constituents.

DT: Dependency trees are syntactically a special case
of SDRSs; there is only one CDU whose domain is
only EDUs.

The scope language allows us to axiomatize three
classes of scope structures corresponding to RS Trees,
SDRSs and DTs. Not every scope structure will yield
a RS Tree when fed to the RST decoding algorithm,
only those obtainable from encoding an RS tree. As not
all scope structures obey these axioms, our language is



strictly more expressive than any of these discourse for-
malisms.

As an example of an axiom, the following formula
expresses that a relation cannot have both left and right
scope over the same elementary constituent:

Strong Irreflexivity:

Vr:iV¥x:l=(x€r N x€.r)) (Ag)

Strong irreflexivity entails irreflexivity; a given relation
instance cannot have the same (complete) left and right
scopes. All discourse theories validate Ag.

In the Appendix, we define left and right strong dom-
inance relations Ty, as well as n-ary RS trees and
CDUs of SDRT. We exploit these facts in the Appendix
to express axioms (A1-A9) that axiomatize the struc-
tures corresponding to RST, SDRT and DTs. Axiom
A| says that every discourse unit is linked via some dis-
course relation instance. Axiom A, insures that all our
relation instances have the right number of arguments;
Axioms A3z and A4 ensure acyclicity and no crossing
dependencies. Asa and Asb restrict structures to a tree-
like dominance relation with a maximal dominating el-
ement, while Ag defines the Right Frontier constraint
for SDRT, and A, fixes the domain for SDRT con-
straints on CDUs. Ag ensures that no coordinating and
subordinating relations have the same left and right ar-
guments, while Ay provide the restrictions needed to
define the set of DTs. We use the encoding and decod-
ing maps to show:

Fact 2.

1. The theory TrsT={Ag, A1, A2, A3, A4, Asa, Asb, Ag)
characterizes RST structures in the sense that:

- E applied to any structure M such that M |= Tgsr
yield an RST Tree.

- for any RST Tree ¢, I(t) = Tgst-

2. The theory Tsprr={Ao,A1,A2,A3,Aq, A7, Ag}
similarly characterizes SDRSs.

3. The theory Tpr=Tsprr U {Aga,Agb} similarly
characterizes Dependency Trees structures.

4 Different Interpretations of Scope

The previous section defined the set of scope structures
as well as the means to import, and then retrieve, RS
trees, DTs, or SDRs into, and from, this set. Some of
these scope structures export both into RST and SDRT,
yielding a 1 — 1 correspondence between a subset of
SDRT and RST structures. But what does this corre-
spondence actually tell us about these two structures?
In mathematics, the existence of an isomorphism relies
on a bijection that preserves structure. Our correspon-
dence preserves the immediate interpretation of the se-
mantic scopes of relations.

Immediate Interpretation Consider a scope struc-
ture M (validating Ay, A;, A>). The predicates [Args(r)
and rArgs(r) are the sets of all units in the left or right
scope of a relation instance . Whether r, labelled by
relation name R holds of two discourse units or not
in M, depends on the semantic content of its left and
right arguments, recursively described by [Args(r) and
all relations r’ such that v’ C; r, and rArgs(r) and all
relations r’ such that ' C, r. Algorithm / computes
what we call the immediate interpretation of an input
structure. Intuitively, in this interpretation the semantic
scope of relations is directly read from the structures
themselves; a node R(#;,1,) in a RS Tree expresses that
R holds between contents expressed by the whole sub-
structures #; and #,. Similarly, for SDRT and DTs, im-
mediate interpretation of an edge m; —x m; is that R
holds between the whole content of 7r; and .

While this immediate interpretation is standard in
SDRT, it is not in RST. Consider again (1) from the
introduction or:

2) [In 1988, Kidder eked out a $ 46 mil-
lion profit,]3; [mainly because of severe cost
cutting.]3 [Its 1,400-member brokerage oper-
ation reported an estimated $ 5 million loss last
year, ]33 [although Kidder expects to turn a profit
this year]s4 (RST Treebank, wsj_0604).

3) [Suzanne Sequin passed away Saturday at the
communal hospital of Bar-le-Duc,]; [where she
had been admitted a month ago.]4 [...] [Her fu-
neral will be held today at 10h30 at the church
of Saint-Etienne of Bar-le-Duc.]s (annodis cor-
pus).

These examples involve what are called long distance
attachments. (2) involves a relation of contrast, or com-
parison between 31 and 33, but which does not involve
the contribution of 32 (the costs cutting of 1988). (3)
displays something comparable. A causal relation like
result, or at least a temporal narration holds between
3 and 5, but it should not scope over 4 if one does
not wish to make Sequin’s admission to the hospital
a month ago a consequence of her death last Saturday.
Finally in (1) C4 elaborates on Cy, but not on the fact
that C is attributed to chief Garcia, so the correspond-
ing elaboration relation should not scope over Cs.

It is impossible however, to account for long distance
attachment using the immediate interpretation of RST
trees. (2), for instance, also involves an explanation
relation between 31 and 32, which should include none
of 33 or 34 in its scope. Since 31 is in the scope of both
the explanation and the contrast relation, Axiom Asa of
the previous section entails than an RST tree involving
the two relations has to make one of the two relations
dominates the other.

Marcu’s Nuclearity Principle (NP) Marcu 1996 pro-
vides an alternative to the immediate interpretation and
captures some long distance attachments Danlos 2008;
Egg and Redeker 2010. According to the NP, a rela-



tion between two spans of text, expressed at a node of
a RS Tree should hold between the most salient parts
of these spans. Most salient part is recursively defined:
the most salient part of an elementary constituent is it-
self, for a multinuclear relation R(¢y, . . ., fxy) its most
salient part is the union of the most salient parts of the
ti%. Following Egg and Redeker 2010, the NP, or weak
NP is a constraint on which RST trees may correctly
characterize an input text; it is not a mechanism for
computing scopes. Given their analysis of (1) given in
the introduction, NP entails that Elab; holds between
C; and C4, accounting for the long distance attach-
ment, and that Attribution holds between C; and C,
which meets intuition in this case. There is however no
requirement that Attribution do not hold between the
wider span [C, C,] and C3, as there is no requirement
that Elab, does not hold between [C;, C,, C3] and Cjy.
In order to accurately account for (1), the former must
be true and the latter false.

However, this interpretation of NP together with an
RST tree does not determine the semantic scope of all
relations. Danlos 2008 reformulates NP as a Mixed
Nuclearity Principle (MNP) that outputs determinate
scopes for a given structure. The MNP requires for a
given node, that the most salient parts of his daughters
furnish the exact semantic scope for the relation at that
node. The MNP transforms an RST tree ¢ into a scope
structure M,, which validates Ag — A3 but also Ag.3, A7
and Ag. Hence M could be exported back to SDRT and
the MNP would yield a translation from RST-trees to
SDRSs.

But when applied to the RST Treebank, the MNP
yields wrong, or at least incomplete, semantic scopes
for intuitively correct RS Trees. The mixed principle
applied to the tree of s; gives the Attribution scope
over C| only, but not C,, which is incorrect. Focus-
ing on the attribution relation which is the second most
frequent in the RST Treebank, we find out that, regard-
less of whether we assign Attribution’s arguments S
and N or N and S, this principle makes wrong predic-
tions 86% of the time in a random sampling of 50 cases
in which we have attributions with multi-clause second
argument spans. Consider the following example from
the RST Treebank:

4) [Interprovincial Pipe Line Co. said]; [it will de-
lay a proposed two-step, 830 million Canadian-
dollar [(US$705.6 million)]; expansion of its
system], [because Canada’s output of crude oil
is shrinking.]4

Applied to the annotated RS Tree for this example (fig-

2Except for Sequence which only retains the most salient
part of #;

3That Ay is valid in the resulting model is not immediate.
Assume a multinuclear (coordinating) relation instance r has
scope over x, and x,.; later in the textual order. Then it is
impossible to attach with 7’ a later found constituent x,,,4; to
x, alone, for it would require that x,.; escapes the scope of r’
from the MNP which it will not do by multinuclearity of r.

attribution

Figure 1: Annotated RST Tree for example (4).

ure 1), the MNP yields an incorrect scope of the attribu-
tion relation over 2 only, regardless of whether the at-
tribution is annotated N-S or S-N. The idea behind the
weak NP provides a better fit with intuitions. The prin-
ciple gives minimal semantic requirements for scoping
relations; everything beyond those requirements is left
underspecified. We formalize this as the relaxed Nu-
clearity Principle (RNP), which does not compute one
structure where each relation is given its exact scope,
but a set of such structures.

The target structures are not trees any more, but we
want them to still reflect the dominance information
present in the RS Tree. We therefore define a notion
of weak dominance over structures of the scoping lan-
guage: for two sets of constituents, X < Y iff X C Y or
there is a subordinating relation whose left argument is
X and right one Y. Weak dominance is given by tran-
sitive closure <* of <. For two relations, r < r’ iff the
left argument of » weakly dominates both arguments
of ¥'. <} is symmetrically defined. Finally, structures
computed by the RNP have to validate the weakened
version of As: if two relations scope over the same el-
ementary constituent one has to weakly dominates the
other. Let A;’V denote this axiom.

Definition 3 (Relaxed Nuclearity Principle). One can
assign to an RS Tree ¢ a formula of the scoping lan-
guage ¢, = dxdry, U I such that:

1- ¢, is a formula specifying that all individuals
quantified in X and 7 are pairwise distinct, and that there
is no other individuals that the ones just mentioned. ¥,
also specifies for each intermediate node » that the cor-
responding relation instance r, is labelled with the ad-
equate relation symbol R and relation type (subordinat-
ing if N-S ...).

2- T, encodes the nuclearity principle applied to t:
for all intermediate nodes n; and n; in ¢ such that n; is
the left (resp. right) daughter of n;, I'; specifies that n;
must scope to the left (resp. right) over the nucleus of
n j-

The interpretation [[7] is defined as the set of struc-
tures M that validate ¢, and Ag, A, A2, A3, AY (they all
have [7| individuals, as fixed by ;). Moreover, it can
be shown that each model of this set validates Tspgr;
so we have a interpretation of an RS-Tree into a set of
SDRS:s.

5 Intertranslability between RST/DTs

DTs are a restriction of SDRSs to structures without
complex constituents. So the { function of section 2



can transform distinct SDRSs transform into the same
DT with a consequent loss of information.

a—g T
mib—pg, c

la—n bor el TR
Each of the SDRSs above yields the same DT after sim-
plification, namely the second one a —g, b =, c.
The natural interpretation of a DT g describes the
set of fully scoped SDRS structures that are compat-
ible with these minimal requirements, i.e that would
yield g by simplification. To get this set, every edge
r(x,y) in g, r, must be assigned left scope among the
descendants of x in g (and right scope among those of
y); this is a consequence of 1) x and y being heads of the
left and right arguments of r and ii) the SDRSs that are
compatible with g do not admit relations with a right
argument in one constituent and a left one outside of it.

Definition 4. Assume that we map each node* x of g
into a unique variable v, € V; and each edge e into a
unique variable symbol r, € V;. Define ¥ and 7 in an
analogous way as in definition 3.

For a given dependency tree g, we compute a for-
mula ¢, = Ix37 J, U T, such that

e i/, is defined analogously as in definition 3, defin-
ing the set of relation instances and EDUs.

e I, is the formula stating the minimal scopes for
each relation instance: for all edge in e = R(x,y)
in g, I', entails i) r, has v, in its left scope and
vy in its right scope and ii) let Des(x) be the set
of variable symbols for all the descendants of x in
8, I', entails that if r, has left scope over some v,
then v, is in Des(x) (symmetrically for y and right
scope).

The interpretation [g]] of a DT is: {M | M E
¢g,A0-A3,A6,A7}. The DT a —g, b —p, ¢ for in-
stance, is interpreted as a set of three structures iso-
morphic to the ones in (1) above.

We now relate DTs to RS Trees interpreted with the
RNP. To this aim, we focus on a restricted class of DT,
those who involve i) coordinating chains of 3 edus or
more only if they involve a single coordinating relation:
X1 =R, X2 DR, "+ —r,, X, may appear only for n >
2 if all the R; are the same coordinating relation, and
ii) subordinating nests of 3 edus or more only if they
involve a single subordinating relation:

X is allowed for n > 1 only if all R;
RI/ J \Rn are labelled with the same subor-

Vi vy,  dinating relation.

This restricted class of DTs corresponds exactly with
the set of RS-Trees interpreted with the RNP, provided
that we restrict the interpretation of a DT in the fol-
lowing way: a principle called Continuing Discourse
Pattern, CDP Asher and Lascarides 2003 must apply,

“4Recall that unlike RS Trees, DTs have EDUs as nodes
and relations as edges.

who states that whenever a sequence of coordinating
relation R’ originates as a node which appear to be
also in the right scope of a subordinating relation Rj,
R, must totally include all the R! in its right scope. A
second principle is required, who states that whenever
two subordinating relations RO, and R/ originate at the
same node in the DT, and the right argument of R’ is
located after the right argument of R;, any structure in
the interpretation of the DT must verify R, <; R;. The
translation needs these requirements to work, because:
i) with the NP a relation scoping over a multinuclear
one must includes all the nucleus in RST, and ii)a node
in a RS Tree cannot scope over something that is not its
descendant). Let CDP* denote these requirements.
Using the restricted interpretation of a DT g;
[g1PP = {M | M k& Ap-A3, As, A7, CDP"}, we trans-
form an RS Tree ¢ into a dependency graph G(¢) such
that [7] = [G(H]P":
Definition 5 (RS Trees to dependency graphs). The
translation G takes a RS Tree ¢ as input and outputs
a pair (G, n), where G = (Nodes, Edges) is the corre-
sponding dependency graph, and » an attachment point
used along the recursive definition of G.

e Iftis an EDU x then (G)(1) = (({x}, {}), x).

o If 1 = R(t1y, 1) then let (Gi,n1) = G(y) and
(G2, mp) = G(1).

G = (G UG U{Rgpora(ni, n2))}sny)

o If 1 = R(115, 12y) then G(t) = G(R(t2y, 115))

o Ifr = R(t1y,...,ty) (multinuclear), let (G;, n;) =
G(t;), let G be the result of adding a chain

Nl =R """ —Rena Mk to the union of the G;,

G =(G:ny)

e If ¢ is a nuclear satellite relation with several satel-
lites R(tg, ... tins-- - tks), compute the G; has in
the previous case, then add to the union of the G;
the nest of k — 1 subordinating relations R linking
nj to each of the n;, i # j.

Recall RS Tree (s1). Applying G to this tree yields
the dependency tree (s3): Elab(C1, Co)AAttr(Cy, C3)A
Elab,(Cy, Cy). [[s3] supports any reading of (s;) pro-
vided by RNP, but also an additional one where Artr
scopes over [Cy,Cy,C4]. This is however forbidden
by CDP+ for Cy4 is after C3 in the textual order but
Elab(Cy, Cy) £; Attr(Cy, C3).

6 Similarities and distances

The framework we have presented yields a notion of
similarity that applies to structures of different for-
malisms. To motivate our idea, recall example (1);
the structure in (s3) in which Attribution just scopes
over C; differs from the intuitively correct interpreta-
tion only in that Attribution should also scope over C;



as in (s,), while a structure that does this but in which
C3 is in the scope of the Elaboration relation is intu-
itively further away from the correct interpretation.

Our similarity measure Sim over structures M; and
M, assumes a common set of elementary constituents
and a correspondence between relation types in the
structures. We measure similarity in terms of the
scopes given to the relations. The intuition, is that given
a map f from elements of relation instances in M; re-
lation instances in M,, we achieve a similarity score
by counting for each relation instance » the number of
EDUs that are both in the left scope of one element of
r and in f(r), then divide this number by the total num-
ber of diffrents constituents in the left scope of r; and
r», and do the same for right scopes as well. The global
similarity is given by the correspondence which yields
the best score.

Given a relation r; € M, and a relation rneM,, let
5(r1.ry) = { 1if ry anq r, have the same label ' De-
0 otherwise
fine C(ri, ) = {(x: L IMiExgri AMy E x€ R,
the number of constituents over which r; and r, scope
and Dy(ry,r) = {x: L IMi ExernVvM, E xenl.
Define C, and D, analogously and assume that M, has
less relation instances than M. Let Inj(Dil, Diz) be the
set of injections of relations instances of M, to those
of Mz.

1
2Max(MiT M)
Cir. ()
Di(r. f(r)

Sim(Mi, Mb) =

L G f()
D, (r, f(r))

M o(r,
ax )Z (r, £(r) X (

(Dl D2
[felnj(D; ,D;

If M, has more relation instances, Invert arguments
and use the definition above. If they have same number
of instances, both directions coincide.

dMi, My)=1 = Sim(M;, M)

For a discourse structure M, Sim(M, M) = 1; Sim
ranges between 1 and 0. d is a Jaccard-like met-
ric obeying symmetry, d(x,x) = 0 d(x,y) # O for
x # y, and the triangle equality. One can further define
the maximal or average similarity between any pair of
structures of two sets S| and S,. This gives an idea
of the similarity between two underspecified interpre-
tations, such as the ones provided by RNP of section 4.
For example, the maximal similarity between (s;) in-
terpreted as itself (immediate interpretation) and a pos-
sible scope structure for the DT (s3), interpreted with
the underspecified [] of section 5, is 7/12. It is pro-
vided by the interpretation of (s3) where Attr is given
left scope over Cy, Cy, Cy4, Elab; holds between C; and
C,, and the second Elab fails to match the continua-
tion of (s3). sim([s2], [£(s2]) = 7/12 also, because
¢ must distribute [2,4] in s, to avoid crossing depen-
dencies; so [£(s2)] = [s3]. The maximal similarity
between the RS tree in (s1) with RNP (or equivalently,
(3) with []¢PP*) and (s,) is 19/36, achieved when both

C; and C; are left argument of Attr (though not Cy).
With MNP, the similarity is 17/36.
Given our results in sections 4 and 5, we have:

Fact 3. (i) For any DT g without a > 3 length flat se-
quence and interpreted using CDP+, there an RS tree
t interpreted with RNP such that Sim(g,r) = 1. (ii)
For any RS tree with RNP there is a DT g such that
Sim(t,g) = 1.

To prove (i) construct a model using Definition 4 and
then use RST decoding. To prove (ii) construct a model
given Definition 3 and use DT encoding. Our similarity
measure provides general results for SDRSs and DTTs
(and a fortiori SDRSs and RS trees) (See Appendix).

7 Related Work

Our work shares a motivation with Blackburn, Gardent,
and Meyer-Viol 1993: Blackburn, Gardent, and Meyer-
Viol 1993 provides a modal logic framework for for-
malizing syntactic structures; we have used MSO and
our scope language to formalize discourse structures.
While many concepts of discourse structure admit of
a modal formalization, the fact that discourse relations
can have scope over multiple elementary nodes either
in their first or second argument makes an MSO treat-
ment more natural. Danlos 2008 compares RST, SDRT
and Directed Acyclic Graphs (DAGS) in terms of their
strong generative capacity in a study of structures and
examples involving 3 EDUS. We do not consider gen-
erative capacity, but we have given a generic and gen-
eral axiomatization of RST, SDRT and DT in a formal
interpreted language. We can translate any structure of
these theories into this language, independent of their
linguistic realization. We agree with Danlos that the
NP does not yield an accurate semantic representation
of some discourses. We agree with Egg and Redeker
2010 that the NP is rather a constraint on structures, and
we formalize this with the relaxed principle and show
how it furnishes a translation from RS trees to sets of
scoped structures. Danlos’s interesting correspondence
between restricted sets of RST trees, SDRSs and DAGs
assumes an already fixed scope-interpretation for each
kind of structure: SDRSs and DAGs are naturally in-
terpreted as themselves, and RS Trees are interpreted
with the mixed NP Our formalism allows us both to
describe the structures themselves and various ways of
computing alternate scopes for relations.

With regard to the discussion in Egg and Redeker
2008; Wolf and Gibson 2005 of tree vs. graph struc-
tures, we show exactly how tree based structures
like RST with or without the NP compare to graph
based formalisms like SDRT. We have not investigated
Graphbank here, but the scope language can axioma-
tize Graphbank (with Ag-A3, Asg).

8 Conclusions

We have investigated how to determine the semantic
scopes of discourse relations in various formalisms by



developing a canonical formalism that encodes scopes
of relations regardless of particular assumptions about
discourse structure. This provides a lingua franca for
comparing discourse formalisms and a way to measure
similarity between structures, which can help to com-
pare different annotations of a same text.
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Appendix

In what follows, let C denotes the irreflexive part of
C We assume that we have access to the textual order



of EDUs as a function f:EDUs — N with an associ-
ated strict linear ordering < over EDUs. We also ap-
peal to the notion of a chain over EDUs {xi, x2, ... x,}
with a set of relation instances ry, ..., r,} all of which
are instances of an n-ary relation type, of the form
x; =" x, - ... =" x, which can be defined in
MSO. To handle RST relations with multiple satellites,
we define a nest: Nest(X, R) iff all r € R have the same
left argument in X but take different right arguments in
X. Finally, we define CDUs:

cdu(X,R) & ArArgs(r, X)A
V¥’ Vxx€ 1 - xeX)—r eR

Axiomatization

Vx:[3dr:i (x€r)V(xeg r)

(A1:Weak Connectedness)
Vrax,y(x €, r) Ay e r))
(A, :Properness of the relation)
VX:(LLH(X#0—- dyeXVn-yegn
(A3 :Acyclicity or Well Foundedness)

No crossing dependencies using the textual order < of
EDUs:

Yx,y,z,w(x <y <z<w) —
VYm,n-(x € nAzen

(Ag)
AYE mMAWE, m))

Tree Structures. Define scopes(r,x) :=x€;rV x€, r.

Yr, ' (=(3AX,R 1,7’ € R A chain(X, R) A nest(X, R))
A (Ax scopes(r, x) A scopes(r’, x)))
> @FCrvVvrCr)
(Asa)

YR:(i,n)A!r:iVr' eR ¥ Cr (Asb)

Right Frontier:

¥n, Xns xn+1vr ((xn+1 €r r) - (xn € r) 4 (_'xn &r
— X, R(chain(X,R) AV’ (r' € R — sub(r'))
A Ay € XAz3dk Am, j € R (scopes(j,y) A acc(z,y)

A scopes(m, x,) ANz €1k ANk < %x,11)))) (Ag)
(The definition of SDRS accessibility acc is easy)
CDUs or EDUs and no overlapping CDUs:

Alx:1v AX, R cdu(X, R)A
VX,Y,R,R" (cdu(X,R) A cdu(Y,R") — (A7)

(RNR"#+0—>(RCR VR CR))

The same arguments cannot be linked by subordinating
and coordinating relations. The formal axiom is evi-
dent.

Finally, two axioms for restricting SDRSs to depen-
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dency trees:

Yrvx,y((xe r) Ayegr))
V(XEFAYET)) > x=Y

(Aga : NoCDUs.)
VYV VX, Y(IArgs(r,X) A rArgs(r,Y)
NIArgs(r',X) A rArgs(r’,Y))
->r=r
(Agb :unique arc)

We note that as a consequence of Asa and Asb we have
no danglers or contiguous spans:

VYx,y,n(xenAyEnAx+y)
- -dmdz(xemAzE m
A=(z€ nV zE€, n))

We also note that Asa and Asb entail A7, Ag and Agb,
though not vice-versa.

Fact 4. Where y is any SDRS and {:SDRS — DT as
in section 2, set Ry = {r:i : [{x: M, Fx& n} > 1},
Ry ={r:i : {x:M, F x€,n}j| > 1}, and
Ry ={rlAr cilx € ¥ Ay €, Ar' # r}. Assume the
immediate interpretation of y and {(y):

. 2|I| - |(Rl U RZ) U LJ):,yED,2 X[x,y]l
Sim(y,{(y))=

20
1 1
LN S
2 My e D)
1
+EF€R2

My Exe D

Explanation: We suppose that I is the number of re-
lation instances in the SDRS. ¢ removes CDUs in an
SDRS and attaches all incoming arcs to the CDUs to
the head of the CDU. It also removes multiple arcs
into any given node. So for any node m such that
{r:mé€, r}| = a > 1, then the information contained
in the a — 1 arcs will be lost. In addition £ will restrict
that one incoming arc that in the SDRS has in its scope
all the elements in the CDU to just the head. So the
scope information concerning all the other elements in
the CDU will be lost.
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Abstract

This work proposes a generative model
to infer latent semantic structures on top
of manual speech transcriptions in a spo-
ken dialog reservation task. The proposed
model is akin to a standard semantic role
labeling system, except that it is unsuper-
vised, it does not rely on any syntactic in-
formation and it exploits concepts derived
from a domain-specific ontology. The
semantic structure is obtained with un-
supervised Bayesian inference, using the
Metropolis-Hastings sampling algorithm.
It is evaluated both in terms of attachment
accuracy and purity-collocation for clus-
tering, and compared with strong baselines
on the French MEDIA spoken-dialog cor-
pus.

1 Introduction

Many concrete applications that involve human-
machine spoken dialogues exploit some hand-
crafted ontology that defines and relates the con-
cepts that are useful for the application. The main
challenge for the dialog manager used in the appli-
cation is then to interpret the user’s spoken input
in order to correctly answer the user’s expectations
and conduct a dialogue that shall be satisfactory
for the user. This whole process may be decom-
posed into the following stages:

e Automatic speech recognition, to transform
the acoustic signal into a sequence of words
(or sequences of word hypotheses);

e Spoken language understanding, to segment
and map these sequences of words into con-
cepts of the ontology;

e Semantic analysis, to relate these concepts
together and interpret the semantic of the user

Lina M. Rojas-Barahona
LORIA, UMR 7503
Nancy, France

lina.rojas@loria.fr

Christophe Cerisara
LORIA, UMR 7503
Nancy, France

cerisara@loria.fr

input at the level of the utterance, or of the
speaker turn;

e Dialogue act recognition
e Dialogue planning

o Text generation

Note that the process sketched here often further
involves several other important steps that are used
internally within one or several of these broad
stages, for instance named entity recognition, co-
reference resolution, syntactic parsing, marcov de-
cision process, reinforcement learning, etc.

This work focuses mainly on the second and
third stages, since we assume that segmentation
is given and we want to discover the underly-
ing concepts and relations in the data. The third
stage is very important because it exhibits the la-
tent semantic structure hidden in the user utter-
ance: what is the object affected by a given pred-
icate 7 What are the modifiers that may alter the
meaning of a predicate ? Without such a structure,
the system can hardly push understanding beyond
lexical semantics and reach fine-grained seman-
tic representations, which are thus often limited
to well-formed inputs and cannot handle sponta-
neous speech as considered here. But still, despite
its importance, most spoken dialog systems do not
make use of such structure.

We propose an approach here to address this
issue by directly inferring the semantic structure
from the flat sequence of concepts using the un-
supervised Bayesian learning framework. Hence,
the proposed model does not rely on any prede-
fined corpus annotated with semantic structure,
which makes it much more robust to spoken inputs
and adaptable to new domains than traditional su-
pervised approaches.

Proceedings of the SIGDIAL 2013 Conference, pages 12-20,
Metz, France, 22-24 August 2013. (©2013 Association for Computational Linguistics



2 Related work

In recent years, an increasing number of works
have addressed robustness and adaptability issues
in most of standard Natural Language Processing
tasks with unsupervised or semi-supervised ma-
chine learning approaches. Unsupervised learn-
ing attempts to induce the annotations from large
amounts of unlabeled data. Several approaches
have recently been proposed in this context for the
semantic role labeling task. (Swier and Stevenson,
2004) were the first to introduce an unsupervised
semantic parser, followed by (Grenager and Man-
ning, 2006), (Lang and Lapata, 2010), (Lang and
Lapata, 2011b) and (Lang and Lapata, 2011a). Fi-
nally, (Titov and Klementiev, 2012), introduced
two new Bayesian models that achieve the best
current state-of-the-art results. However, all these
works use some kind of supervision (namely a
verb lexicon or a supervised syntactic system,
which is the case in most of the approaches).
(Abend et al., 2009) proposed an unsupervised
algorithm for argument identification that uses
a fully unsupervised syntactic parser and where
the only supervised annotation is part-of-speech
(POS) tagging.

Semi-supervised learning attempts to improve
the performance of unsupervised algorithms by
using both labeled and unlabeled data for train-
ing, where typically the amount of labeled data is
smaller. A variety of algorithms have been pro-
posed for semi-supervised learning!. In the con-
text of semantic role labeling, (He and Gildea,
2006) and (Lee et al., 2007) hence tested self-
training and co-training, while (Fiirstenau and La-
pata, 2009) used a graph-alignment method to
semantic role labeling (SRL). Finally, in (De-
schacht and Moens, 2009) the authors present a
semi-supervised Latent Words Language Model,
which outperforms a state-of-the-art supervised
baseline. Although semi-supervised learning ap-
proaches minimize the manual effort involved,
they still require some amount of annotation. This
annotation is not always available, sometimes ex-
pensive to create and often domain specific. More-
over, these systems assume a specific role labeling
(e.g. PropBank, FrameNet or VerbNet) and are not
generally portable from one framework to another.

A number of works related to semantic infer-
ence have already been realized on the French

"We refer the reader to (Zhu, 2005) or (Pise and Kulkarni,
2008) for an overview on semi-supervised learning methods.
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MEDIA corpus. Hence, dynamic Bayesian net-
works were proposed for semantic composition
in (Meurs et al., 2009), however their model re-
lies on manual semantic annotation (i.e. concept-
value pairs) and supervised training through the
definition of 70 rules. In (Huet and Lefevre, 2011;
Camelin et al., 2011) unsupervised models were
proposed that use stochastic alignment and Latent
Dirichlet Allocation respectively, but these mod-
els infer a flat concept-value semantic representa-
tion. Compared to these works, we rather propose
a purely unsupervised approach for structured se-
mantic Metropolis-Hastings inference with a gen-
erative model specifically designed for this task.

3 Proposed model
3.1 Principle

We consider a human-machine dialog, with the ob-
jective of automatically building a semantic struc-
ture on top of the user’s spoken utterances that
shall help the dialog system to interpret the user
inputs. This work focuses on inferring the seman-
tic structure, and it assumes that a segmentation of
users’ utterances into concepts is given. More pre-
cisely, we exploit as input a manual segmentation
of each utterance into word segments, where each
segment represents a single concept that belongs
to MEDIA ontology (Denis et al., 2006) (see Fig-
ure 1).

Figure 1: Excerpt of MEDIA ontology

This ontology identifies the concepts that can
have arguments, and we thus use this informa-
tion to further distinguish between head segments
that can have arguments (noted W32 in Figure 3)
and argument segments that cannot govern another
concept (noted W,). From these two classes of

W}, actually represents one word in a segment composed
of N}, words, but by extension, we implicitly refer here to the
full segment.



segments and the words’ inflected forms that com-
pose each segment we infer:

e A semantic structure composed of triplets
(Wq, Wh, A) where A is the type of argu-
ment, or, in other words, the type of semantic
relation between both segments;

e A semantic class C for the head segment

An example of the target structure we want to ob-
tain is shown in Figure 2.

Inference of these structure and classes is real-
ized with an unsupervised Bayesian model, i.e.,
without training the model on any corpus anno-
tated with such relations. Instead, the model is
trained on an unlabeled dialog corpus composed
of raw manual speech transcriptions, which have
also been manually segmented into utterances and
words’ segments as described above. Training is
actually realized on this corpus using an approxi-
mate Bayesian inference algorithm that computes
the posterior distribution of the model’s param-
eters given the dataset. We have used for this
purpose the Metropolis-Hastings Markov Chain
Monte Carlo algorithm.

3.2 Bayesian model

Figure 3 shows the plate diagram of the proposed
model. The plate N, (respectively N,,) that sur-
rounds a shaded node represents a single words’
segment of length N} (respectively N,,). The
outer plate IV, indicates that the graphical model
shall be repeated for each of the IV, utterances in
the corpus.

Variable | Description

Cy latent semantic type assigned to predicate ¢

Wh observed words in each head segment.
P(W4|C') encodes lexical preferences for the
semantic inference

A; latent semantic type assigned to the i argu-
ment of predicate ¢

Rp; latent relative position assigned to the i*" argu-
ment of predicate ¢

Wa observed words in each argument segment.

P(Wq|A;) encodes lexical preferences for the
semantic inference

Table 1: Variables of the model

Each head word segment has a latent semantic
type Ct, and governs NN, arguments. Each argu-
ment is represented by an argument words’ seg-
ment, which has a latent semantic type A. Each ar-
gument is further characterized by its relative po-
sition Rp with respect to its head segment. Rp

Nq

Nu

Figure 3: Plate diagram of the proposed model.
N, represents the number of utterances; Ny, the
number of words in a head segment; V,,, the num-
ber of words in an argument segment; and N, the
number of arguments assigned to predicate ¢.

can have 4 values, depending on whether the argu-
ment is linked to the closest (1) or another (2) ver-
bal® head, or the closest (3) or another (4) nominal
head. Rp is derived from the argument-to-head
assignment, which is latent. So, Rp is also latent.
The sequence of N, head segments in utterance u
is captured by the HMM shown on top of the plate
diagram, which models the temporal dependency
between successive “semantic actions” of the user.

The variables of the model are explained in Ta-
ble 1.

The most important property of this model is
that the number of arguments N, is not known be-
forehand. In fact, every argument segment can be
governed by any of the N, head segments in the
utterance, and it is the role of the inference pro-
cess to actually decide with which head it should
be linked. This is why the model performs struc-
tured inference.

Concretely, at any time during training, every
argument is governed by a single head. Then, in-
ference explores a new possible head attachment
for an argument W,, which impacts the model as
follows:

o The number of arguments NV, of the previous
head is decreased by one;

e The number of arguments N, of the new head
is increased by one;

3Morphosyntactic classes are obtained with the Treetag-
ger



Prlce

Agem
voudrals le pr1x en fait
I ’d like the price well in fact
Reserve

Figure 2: Example of inferred semantic structure for a sentence in the MEDIA corpus.

(Booked object} object

I

je euh |une chambre} {pas chére]
uh a room  not expensive
Room

Traditional

dependency notations are used: the head segment points to the argument segment, where segments are
shown with boxes (arrows link segments, not words !). The semantic class assigned to each head segment

1s shown in bold below the translated text.

e The relative position Rp of the argument is
recomputed based on its new head position;

e The argument type A is also re sampled given
the new head type Cy.

This reassignment process, which is at the heart of
our inference algorithm, is illustrated in Figure 4.

3.3 Metropolis inference

Bayesian inference aims at computing the poste-
rior distribution of the model’s parameters, given
the observed data. We assume that all distributions
in our model are multinomial with uniform priors.
The parameters are thus:

Distribution of the
words for a given
head semantic class

P(Wh|Ct) ~ M(0F,)

Transition  prob-
abilities  between
semantic classes

Distribution of the
words for a given
argument type

P(W,|A) ~ M(0Y)

Distrib. of the rel-
ative position of a
given argument to
its head given the
argument type

P(Rp|A) ~ M(0F)

Distrib. of the ar-
gument types given
a head semantic
class

P(A|Cy) ~ M(0¢,)

3.3.1 Inference algorithm

To perform inference, we have chosen a Markov
Chain Monte Carlo algorithm. As our model is
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finite, parametric and identifiable, Doob’s theo-
rem guarantees the consistency of its posterior,
and thus the convergence of MCMC algorithms
towards the true posterior. Because changing the
head of one argument affects several variables si-
multaneously in the model, it is problematic to
use the basic Gibbs sampling algorithm. A block-
Gibbs sampling would have been possible, but this
would have increased the computational complex-
ity and we also wanted to keep as much flexibility
as possible in the jumps that could be realized in
the search space, in order to prevent slow-mixing
and avoid (nearly) non-ergodic Markov chains,
which are likely to occur in such structured infer-
ence problems.

We have thus chosen a Metropolis-Hastings
sampling algorithm, which allows us to design an
efficient proposal distribution that is adapted to our
task. The algorithm proceeds by first initializing
the variables with a random assignment of argu-
ments to one of the heads in the utterance, and a
uniform sampling of the class variables. Then, it
iterates through the following steps:

1. Sample uniformly one utterance u

2. Sample one jump following the proposal dis-

tribution detailed in Section 3.3.2.

. Because the proposal is uniform, compute the
acceptance ratio between the model’s joint
probability at the proposed (noted with a ')
and current states:

P(C" W] , W ,Rp', A"
P(C, Wy, W,, Rp, A)

rT =

. Accept the new sample with probability
min(1, r); while the sample is not accepted,
iterate from step 2.



Booked object

Wf‘ﬂ

[voudrais} [le prix} en fait je euh |une chambre pas chere
I ’dlike the price well infact 1 room  not expensive
Prlce
Price
(Booked object)

Booked object

Figure 4: Illustration of the reassignment process following the expample presented in Figure 2. This
example illustrates the third Metropolis proposed move, which changes the head of argument “le prix”:
arcs above the text represent the initial state, while arcs below the text represent the new proposed state.

5. When the sample is accepted, update the
multinomials accordingly and iterate from
step 1 until convergence.

This process is actually repeated for 2,000,000
iterations, and the sample that gives the largest
joint probability is chosen.

3.3.2 Metropolis proposal distribution

The proposal distribution is used to explore the
search space in an efficient way for the target
application. Each state in the search space is
uniquely defined by a value assignment to every
variable in the model, for every utterance in the
corpus. It corresponds to one possible sample of
all variables, or in other words, to the choice of
one possible semantic structure and class assign-
ment to all utterances in the corpus.

Given a current state in this search space, the
proposal distribution “proposes” to jump to a
new state, which will then be evaluated by the
Metropolis algorithm. Our proposal samples a
new state in the following successive steps:

1. Sample uniformly one of the three possible
moves:

Movel:
Move2:

Change the semantic class of a head,;

Change the argument type of an argu-
ment segment;

Move3: Change the assignment of an argument

to a new head;

2. If Movel is chosen, sample uniformly one
head segment and one target semantic class;
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3. If Move2 is chosen, sample uniformly one
argument segment and one target argument

type;

If Move3 is chosen, sample uniformly one
argument segment W, and “detach” it from
its current head. Then, sample uniformly one
target head segment W}, and reattach W, to
its new head W} . Because the distribution of
argument types differ from one head class to
another, it would be interesting at this stage
to resample the argument type of W, from
the new head class distribution. But in this
work, we resample the argument type from
the uniform distribution.

This proposal distribution Q(x — z’) is re-
versible, i.e., Q(x — ') > 0= Q' — x) > 0.
We can show that it is further symmetric, i.e.,
Qz — ) Q(«' — z), because the same
move is sampled to jump from z to 2’ than to jump
from 2’ to , and because the proposal distribution
within each move is uniform.

4 Experimental validation

4.1 Experimental setup

The French MEDIA corpus collects about 70
hours of spontaneous speech (1258 dialogues,
46k utterances, 494.048 words and 4068 dis-
tinct words) for the task of hotel reservation
and tourist information (Bonneau-Maynard et al.,
2005). Calls from 250 speakers to a simulated
reservation system (i.e. the Wizard-of-Oz) were
recorded and transcribed. Dialogues are full of
disfluencies, hesitations, false starts, truncations or
fillers words (e.g., euh or ben).



Gold Standard Annotation
Semantic Relation | Frequency
Agent 320
Booked object 298
Location 285
Time 209
Coordination 134
Beneficiary 117
Price 108
Reference Location | 66

Table 2: Most frequent semantic relations in the
gold annotation.

This corpus has been semantically annotated
as part of the French ANR project PORT-
MEDIA (Rojas-Barahona et al., 2011). We are
using a set of 330 utterances manually annotated
with gold semantic relations (i.e. High-Level Se-
mantics). This gold corpus gathers 653 head seg-
ments and 1555 argument segments, from which
around 20% are both arguments and heads, such
as une chambre in Figure 4. Table 2 shows the
semantic relations frequencies in the gold annota-
tion. 12 head segment types and 19 different argu-
ment segment types are defined in the gold anno-
tations. In the evaluation, we assume the number
of both classes is given. A possible extension of
the approach to automatically infer the number of
classes would be to use a non-parametric model,
but this is left for future work.

4.2 Evaluation metrics

The proposed method infers three types of seman-
tic information:

e The semantic relation between an argument
and its head;

e The argument type A
e The semantic class of the head C;.
The three outcomes are evaluated as follows.

e The output structure is a forest of trees that
is similar to a partial syntactic dependency
structure. We thus use a classical unsuper-
vised dependency parsing metric, the Un-
labeled Attachment Score (UAS), which is
simply the accuracy of argument attachment:
an argument is correctly attached if and only
if its inferred head matches the gold head.

e Both argument and head classes correspond
to the outcome of a clustering process into
semantic classes, akin to the semantic classes
obtained in unsupervised semantic role la-
beling tasks. We then evaluate them with a
classical metric used to evaluate these classes
in unsupervised SRL (as done for instance
in (Lang and Lapata, 2011a) and (Titov and
Klementiev, 2012)): purity and collocation.

Purity measures the degree to which each clus-
ter contains instances that share the same gold
class, while collocation measures the degree to
which instances with the same gold class are as-
signed to a single cluster.

More formally, the purity of argument seg-
ments’ (head segment’) clusters for the whole cor-
pus is computed as follows:

1
PU = NijaX\G]ﬂCﬂ

where Cj is the set of argument (head) segments
in the i’ cluster found, G is the set of argument
(head) segments in the j** gold class, and N is
the number of gold argument (head) segment in-
stances. In a similar way, the collocation of argu-
ment segments’ (head segment’) clusters is com-
puted as follows:

1
CO = sz?xyaj ale]
J

Finally the F1 measure is the harmonic mean of
the purity and collocation:

2xCO *x PU
Fl= CO + PU

4.3 Experimental results

We compare the proposed approach against two
baselines:

e An argument-head ‘“attachment” baseline,
which attaches each argument to the closest
head segment.

e A strong clustering baseline, which respec-
tively clusters the head and argument seg-
ments using a very effective topic model:
the Latent Dirichlet Allocation (LDA) ap-
proach (Blei et al., 2003).



Table 3 shows the UAS obtained for the pro-
posed model on the MEDIA corpus, while Table 4
shows the obtained Purity, Collocation and F1-
measure. In both cases, we compare the perfor-
mances of the proposed model with the respective
baseline. Our system outperforms both baselines
by a large margin.

System | UAS |

Closest attachment | 68%
(£2%)

Proposed - UAS 74 %
(£2%)

Table 3: Experimental results for UAS on the ME-
DIA database. The statistical confidence interval
at 95% with Gaussian approximation is reported.

System ‘ Purity ‘ Col. ‘ F-mes ‘
LDA - Heads 51.7% | 25.5% | 34.2%
LDA - Args 31.7% | 22.2% | 26.1%
Proposed - Heads | 78.7% | 50.8% | 61.8%
Proposed - Args | 61.8% | 53.3% | 59.3%

Table 4: Experimental results on the MEDIA
database for purity, collocation and F1-measure.

4.3.1 Qualitative Evaluation

We further carried out a qualitative evaluation,
where we inspected the inferred clusters and com-
pared them with the baseline. Figures 7 and 8
show, for every head class C} in each stacked col-
umn, the distribution of instances from all gold
clusters. Each column can also be viewed as a
graphical representation of the intersection of one
inferred class with all gold clusters. Figure 7 illus-
trates this for our model, and Figure 8 for LDA.
The same comparison for the argument types is
shown, respectively, in Figure 5 and Figure 6.

For head segment clusters, we can observe that
most inferred clusters contain many instances of
the Reservation type (in dark blue), both in the
LDA baseline and in the proposed system. The
main reason for that is that the corpus is very un-
balanced in favor of the Reservation class, while
we do not assume any prior knowledge about the
data and thus use a uniform prior. Still, every other
gold type that occurs with a reasonnably high
enough frequency, apart from two special types
that are discussed next, is well captured by one of
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Figure 5: Distribution of the gold types (one per
color) into the clusters inferred by our system
(shown on the X-axis) for argument segments.

our inferred class: this is the case for "Room” that
mainly intersects with our class 1, “Place” with
our class 2 and “Hotel” with our class 9.

Some examples of instances for each case are:

o«

“voudrais réserver”, “aimerais
“voudrais une reservation une
réservation”, ‘prends”,  “recherche”
“*désire désire”, “il me faudrait”, “opte”,
“aimerais s’ il vous plait si ¢’ est possible
avoir prendre”.

e Reservation:
partir’”,

Room:
avec trois enfants avec bon standing”,

“deux chambres pour un coup(le)
”» g b
trois

singles”, “deux chambres de bon standing
a peu pres niveau trois étoiles”, “trois dou-
bles”.

e Place: “Paris”, “a Saintes”, “a
Charleville”, “dans le dix huitieme ar-
rondissement de Paris”.

e Hotel: “un hotel deux étoiles”, “dans un

» o«

un hotel formule un”,
“I” hot(el) le I’ hotel”, “un autre hotel dans
les mémes conditions”, “le Beaugency”, “I’
autre au Novotel”, “le premier”.

hétel beau standing”,

» G

Two “special” head segment types that are nei-
ther nicely captured by our system nor LDA are
Coordination and Inform, which are instead as-
signed to the clusters corresponding to the gold
segments that they coordinate or inform about.

For argument segments we also observed that
the inferred clusters are semantically related to the
gold types. We found, for instance, four clusters



100%
90%
80%
0%
60%
50%
40%
30%
20%
10%

0%

B Event
Service

1 Attribute
Beneficiary

B Coord. Ent
Referred Location

B Price

B Time
Place

B Agent

W Target

012345678 9101112131415

Clusters

Figure 6: Distribution of the gold types (one per
color) into the clusters inferred by the LDA base-
line (shown on the X-axis) for argument segments.
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Figure 7: Distribution of the gold types (one per
color) into the clusters inferred by our system
(shown on the X-axis) for head segments.

(2, 5, 12 and 15) containing mainly “Time” ar-
guments (“du premier au trois Novembre”, “dix
nuit”, “le festival du film”, “au seize Novembre”,
etc.), two (3 and 14) dedicated to “Location” argu-
ments (“a Menton”, “au festival lyrique de belle
euh Belle lle En mer”, “bastille”, “sur le ville de
Paris”, “parking privé”), one (10) for “Price” ar-
guments (“pas plus de cent euros par personne”,
“un tarif inférieur a quatre vingts euros”, “pas
trop chere”, “a cent vingt euros”, “moins de cent*
cent euros’) etc.

» o«

Finally, as noted for the head segments, we can
observe that the most frequent gold types largely
intersect with several inferred clusters, for the
same reason: data is very unbalanced and we do
not assume any prior knowledge about the data
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Figure 8: Distribution of the gold types (one per
color) into the clusters inferred by the LDA base-
line (shown on the X-axis) for head segments.

Clusters

and thus use an uniform prior. Nevertheless, sev-
eral other important classes such as Event, Price
and Agent are well captured by our system.

5 Conclusions

This work proposes an unsupervised generative
model to infer latent semantic structures on top
of user spontaneous utterances. It relies on the
Metropolis-Hastings sampling algorithm to jointly
infer both the structure and semantic classes. It
is evaluated in the context of the French MEDIA
corpus for the hotel reservation task. Although the
system proposed in this work is evaluated on a spe-
cific spoken dialog reservation task, it actually re-
lies on a generic unsupervised structured inference
model and can thus be applied to many other struc-
tured inference tasks, as long as observed word
segments are given.

An interesting future direction of research
would be to modify this model so that it jointly
infers both the latent syntactic and semantic struc-
tures, which are known to be closely related but
still carry complementary information. We of
course also plan to evaluate the proposed model
with automatic speech transcriptions and concepts
decoding. Another advantage of the proposed
model is the possibility to build better Metropolis-
Hastings proposals, which may greatly improve
the convergence rate of the algorithm. In partic-
ular, we would like to investigate the use of some
non-uniform proposal distributions when reattach-
ing an argument to a new head, which shall im-
prove mixing.
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Abstract

The identification of causal relations be-
tween verbal events is important for
achieving natural language understanding.
However, the problem has proven notori-
ously difficult since it is not clear which
types of knowledge are necessary to solve
this challenging problem close to human
level performance. Instead of employing a
large set of features proved useful in other
NLP tasks, we split the problem in smaller
sub problems. Since verbs play a very im-
portant role in causal relations, in this pa-
per we harness, explore, and evaluate the
predictive power of causal associations of
verb-verb pairs. More specifically, we pro-
pose a set of knowledge-rich metrics to
learn the likelihood of causal relations be-
tween verbs. Employing these metrics, we
automatically generate a knowledge base
(K B.) which identifies three categories
of verb pairs: Strongly Causal, Ambigu-
ous, and Strongly Non-causal. The knowl-
edge base is evaluated empirically. The re-
sults show that our metrics perform signif-
icantly better than the state-of-the-art on
the task of detecting causal verbal events.

1 Introduction

The identification of semantic relations between
events is a mandatory component of natural lan-
guage understanding. In this paper, we focus
on the identification of causal relations between
events represented by verbs. Following Riaz and
Girju (2010), we define a verbal event e, as
“[subject,, ] v; [object,,]”, where the subject and
object of the verb may or may not be explicitly
present in an instance. Consider the following ex-
amples:

1. Yoga builds stamina because you maintain your poses

for a certain period of time. (CAUSE (€maintain, €build))
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. The monster storm Katrina raged ashore along the
Gulf Coast Monday morning. There were early re-
ports of buildings collapsing along the coast. (CAUSE
(erage, €collapse))
In example 1, the two bold events are causally
connected by an explicit and unambiguous dis-
course marker (because). However, in English,
not all discourse markers unambiguously iden-
tify causality (Prasad et al., 2008) - for exam-
ple, Bethard and Martin (2008) proposed a cor-
pus of 1000 causal and non-causal event pairs con-
joined by the marker and. Even more, causal re-
lations can be encoded by implicit contexts - i.e.,
those where no discourse marker is present (ex-
ample 2). Despite the recent achievements ob-
tained in discourse processing, it is still unclear
what types of knowledge can contribute most to-
wards detecting causality in both explicit and im-
plicit contexts (Sporleder and Lascarides, 2008).
The complexity of the task of detecting causality
between events stems from the fact that there are
many factors involved, such as contextual features
of an instance (e.g., lexical items, tenses of verbs,
arguments of verbs, etc.), semantic and pragmatic
features of events, background knowledge, world
knowledge, common sense, etc. Prior approaches
have employed contextual features of an instance
to identify causality between events or discourse
segments (Bethard and Martin, 2008; Pitler and
Nenkova, 2009; Pitler et al., 2009). Although
contextual features provide important knowledge
about sentence(s) in which events appear, humans
also make use of other information such as back-
ground knowledge to comprehend causality. For
instance, in example 2 we use knowledge about
the causal association between verbal entities rage
and collapse to label it with causality.

This research is motivated by the need to extract
and analyze other type of knowledge necessary for
the identification of causal relations between ver-
bal events. We start from the fact that verbs are the
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main components of language to express events
and semantic relations between events. Thus, in
order to identify and extract causal relations be-
tween events (denoted by (e, €y; )), it is critical
for a model to employ knowledge about the ten-
dency of a verb pair (v;,v;) to encode causation.
For example, the pair (kill, arrest) has a high ten-
dency to encode a cause relation irrespective of the
context in which it is used, thereby a good indica-
tor of causality. The state-of-the-art resources on
verb semantics, such as WordNet, VerbNet, Prop-
Bank, FrameNet, etc. (Miller, 1990; Kipper et al.,
2000; Kingsbury et al., 2002; Baker et al., 1998),
provide information about the semantic classes,
thematic roles and selectional restrictions of verbs.
Among these, WordNet is the only resource which
provides information about the cause relation be-
tween verbs, but it has very limited coverage.
For VErBOcEaN, a semi-automatically generated
resource, Chklovski and Pantel (2004) have used
explicit lexical patterns (e.g., “verb * by verb”) as
means of mining enablement (cause-effect) rela-
tions between verbs. Such approaches help detect-
ing causality with high precision but suffer from
limited coverage due to the highly implicit na-
ture of language. Moreover, such resources do
not provide any information about the likelihood
of a causal relation in verb pairs - e.g., (kill, ar-
rest) has a high tendency to encode cause rela-
tion as compared with the pair (build, maintain).
The pair (build, maintain) seems ambiguous be-
cause it can encode both cause and non-cause re-
lations depending on the context, as shown by ex-
amples 1 and 3. Thus, causality detection models
should employ knowledge about which verb pairs
are strongly causal (non-causal) in nature and for
which pairs the context plays an important role to
signal causality.

3. Republicans had not cut the funds for maintaining the
levee and building up the ecological protections. (NON-
CAUSE)

We propose a fully automated procedure to learn
the likelihood of causal relations in verb pairs. In
this process, we create three categories of verb
pairs: Strongly Causal (S.), Ambiguous (A.) and
Strongly Non-causal (S-.). The result is a knowl-
edge base (K B.) of causal associations of verbs.
In K B,, the category S, (S-.) contains the verb
pairs which have the greatest (least) likelihood to
encode a causal relation, respectively. However,
the category A. contains ambiguous verb pairs
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which have the likelihood to encode both causal
and non-causal relations. The information about
such causal associations provides a rich knowl-
edge source to causality detection models.

The main contributions of our research are as
follows:

e We propose a set of novel metrics (i.e., Explicit
Causal Association (ECA), Implicit Causal As-
sociation (ICA) and Boosted Causal Associa-
tion (BCA)) to identify the likelihood of verb
pairs to encode causality. Our metrics exploit
the information available from a large number
of unlabeled explicit and implicit instances of
verb pairs for this purpose.

We introduce an automated procedure to build
a training corpus of causal and non-causal
event pairs. This prevents us from the trou-
ble of annotating a large number of event pairs
for cause and non-cause relations. Our metrics
make use of supervision from the training cor-
pus to identify causality in verb pairs. We also
provide a mechanism to determine causal verb
pairs which remain undiscovered due to the is-
sue of training data sparseness.

We revisit recent approaches employing distri-
butional similarity methods to predict causal-
ity between events (Riaz and Girju, 2010;
Do et al.,, 2011). The state-of-the-art met-
ric Cause-Effect Association (CEA) (Do et
al., 2011) identifies causality mainly based on
probabilities of verb-verb, verb-argument, and
argument-argument pairs. In comparison with
CEA, our metrics perform significantly better
by improving the prior knowledge about the
causal associations from CEA’s components.

After a brief review of related work in next sec-
tion, we describe our approach for acquisition of
training corpus in section 3. The model for the ex-
traction of causal associations is presented in sec-
tion 4, followed by the evaluation and discussion
in section 5 and conclusion in section 6.

2 Related Work

Causality has long been studied from various
perspectives by philosophers, data-mining re-
searchers and computer scientists (Menzies, 2008;
Woodward, 2008; Suppes, 1970; Silverstein et al.,
2000; Pearl, 2000).

In NLP, the problem of detecting causality be-
tween events is a very challenging but less re-
searched topic. Previously, researchers have stud-



ied this task by focusing on supervised classifi-
cation models for both verbal and nominal events
(Girju, 2003; Bethard and Martin, 2008). Bethard
and Martin (2008), for example, have focused
mainly on the contextual features available in test
instances of verbal event pairs to predict causality.
They have relied on a small scale dataset of 1000
instances (697 training and 303 test) for this task.
Unlike above models, recently some researchers
have employed unsupervised causality detection
metrics and minimal supervision for this task. For
example, Riaz and Girju (2010) have proposed an
unsupervised metric Effect-Control Dependency
(ECD) to determine causality between events in
news scenarios. Following their model, Do et al.
(2011) introduced an improved metric CEA which
uses PMI and some components of ECD to pre-
dict the causal relation in verbal and nominal event
pairs in a text document. They also proposed a
minimally supervised method using explicit dis-
course markers. For example, they used ILP
framework to assign a non-causal relation to all the
event pairs appearing in two discourse segments
connected by a non-causal marker. They evalu-
ated their model on a set of 20 documents, a highly
skewed evaluation set with around 2-3% causal
instances and 58% human inter-annotator agree-
ment on cause-effect relations. On verbal events,
they reported 38.3% F-score with CEA and 1-2%
improvement using minimally supervised method.
As compared with above mentioned metrics, we
introduce knowledge rich association measures
which employ supervision from the automatically
generated training corpus to learn causality.

Several other NLP researchers have studied
related topics e.g., identifying events, building
of temporal chain of events sharing a common
protagonist (participant), predicting future events
and identifying hidden links in news articles to
build a coherent chain (Chambers and Jurafsky,
2008; Chambers and Jurafsky, 2009; Radinsky
and Horvitz, 2013; Shahaf and Guestrin, 2010).
Unlike these tasks, our focus is on identifying
causality between events.

3 Acquisition of Training Corpus

In this section, we propose a fully automated pro-
cedure to build a training corpus of event pairs
which encode cause and non-cause relations. This
training corpus is used in our model to identify the
likelihood of cause relations in verb pairs. As dis-
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cussed earlier, previous researchers have worked
with a small scale dataset of annotated event pairs.
The current task requires us to use a large train-
ing corpus to learn the pervasive relation of causal-
ity and the manual generation of such corpus is a
laborious task. Therefore, we decided to depend
on the unambiguous discourse markers because
and but to automatically collect training instances
of cause and non-cause event pairs, respectively.
For example, the marker because in the instance
1 of section 1 encodes a cause relation between
the events epy;1q and €maintain. SOme researchers
have utilized unambiguous discourse markers to
acquire training instances of semantic relations be-
tween discourse segments (Marcu and Echihabi,
2001; Sporleder and Lascarides, 2008). However,
the process is not simple for the current problem
since it is not always clear how to create a causal
instance of an event pair. Consider the following
meta instance I:

I :<s>my...v ... Uk ... because ...

oy Upy oo M2l </$>.

vy ... Vk+1

. Uk42, .-

It is composed of main verbs (vy, vo, ...,
v,), discourse markers (my, ms), and sentence
boundaries (<s>, </s>). Here, we assume that
the discourse markers or the sentence boundaries
whichever appear first in I represent the bound-
aries of discourse segments for the marker because
(appendix A contains a table of notations used in
this paper). In I, there are k£ and r — k main verbs
appearing before and after because, respectively.
The problem here is to determine the event pair en-
coding causality out of k£ x (r — k) choices. Here,
we consider that the most dependent pair among
all choices in I is the best candidate to encode
causality.

In this work, we propose the following function
f(I) to pick the most dependent pair:

f(I)= 1

arg max

(vi<mc avj>mc)

CD(v,v5) x PSt(vi,vj)

Here, 7 (j) refers to all verbs that appear be-
fore (after) the causal marker (i.e., m.) because in
1. CD (equation 2) is a component of predicate-
predicate association of CEA (Do et al., 2011)
to determine causal dependency of a pair (v;, v;).
Do et al. (2011) used the score CD to determine
causality in an unsupervised fashion but here we
employ this to build a training corpus of causal
event pairs.

CD(vi,vj) = PMI(v;,v5) x maz(vg,vj) x IDF(vs,v;5) (2)



The functions PMI, max and IDF depend on co-
occurrence probabilities and idf scores to deter-
mine causal dependency. Due to space limitations,
for details we refer the reader to Do et al. (2011).

Next, we define a novel penalization factor PSy
for the verbs of a pair appearing at greater distance
from the causal marker because. For example, this
assumes the verbs in the pair (v, vi42) are less
likely to be in a cause relation as compared with
(vk, Vk+1) in I. We came up with this idea because
our initial experiments revealed that the causal in-
stances obtained by penalizing CD with PS; pro-
vide better training for our model as compared to
using only CD for this purpose. The similar be-
havior of reduction in the likelihood of causality
with respect to increase in distance between two
events was observed by Riaz and Girju (2010).

P8y (vi,v;) = — log L)+ Pos(vr)

%20 (Clup) +Cwg)

Here, C(vp) (C(vg)) is the count of the main
verbs appearing before (after) because, respec-
tively. The distance of the verb is measured in
terms of its position (i.e., pos(v;)) with respect to
because. The position is 1 for the verb closest to
because and 2 for the verb next to the closest verb.
PS; has maximum value for (vg, vi41) and it re-
duces for other pairs with verbs at greater distance
from because in instance I.

In order to extract non-causal event pairs, we
utilized instances with two discourse segments
conjoined by the marker but which represents
comparison (non-causal) relation. Any event pair
collected from the two discourse segments in non-
causal relation encodes non-causality. Therefore,
we depend on selecting the closest verb pair from
the instances of form I with marker but instead of
because.

In this paper, we present the results produced
using a training corpus of 240K instances (50%
for each class) from the English Gigaword Cor-
pus. In order to prepare this corpus, we identified
discourse markers (i.e., mi, mo), if available, be-
fore and after because/but in each instance I and
assumed that only those markers which have dis-
course usage in I define boundaries of discourse
segments of because/but. We used the list of 100
explicit discourse markers provided by Prasad et
al. (2008) and the supervised approach of Pitler
and Nenkova (2009) to detect markers and the dis-
course versus non-discourse usage of these mark-
ers. We use this training corpus to identify cau-
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sation for both explicit and implicit instances of
event pairs. Using this training corpus, a model
tends to give higher causal weights to those in-
stances in which events are connected by the ex-
plicit causal marker because as compared to im-
plicit instances of causation. Thus, to provide fair
supervision to both explicit and implicit instances
of event pairs, we remove the cue words because
and but which were used to automatically label the
training instances.

4 Causal Associations of Verb Pairs

In this section, we explain our approach to learn
the likelihood of causal relations in verb pairs by
exploiting information available from both explicit
and implicit instances of these pairs. We extracted
around 12,000 documents from the English Gi-
gaword corpus to collect instances of verb pairs
from single sentences (intra-sentential) and adja-
cent sentences (inter-sentential) of text. In this set,
we added instances from 3,000 articles on news
stories “Hurricane Katrina” and the “Iraq war”.
These articles were collected and used to iden-
tify causal relations in news scenarios by Riaz and
Girju (2010). We used these collections because
natural disaster and war-related news articles are
rich in causal events and chains of such events.
In order to identify the causal associations with
high confidence, we decided to apply our model on
those verb pairs which have at least 30 instances
in the above mentioned documents. We acquired
10, 455 such verb pairs. The set of intra- and inter-
sentential instances of these verb pairs is referred
to as the development set for our model.

4.1 Explicit Causal Association (ECA)

In order to find the likelihood of a verb pair to en-
code causal relations, we define our novel metric
Explicit Causal Association (ECA) as follows:

1
| VP | 2

Iv; ) EVP

ECA(v;,vj) = (CD(vs,v5) x Cr)  (4)

where V' P is the set of intra- and inter-sentential
instances (denoted by I(v;,v;)) of the verb pair
(vi, vj), CD determines the causal dependency of
the verb pair in unsupervised fashion (equation 2),
and C; finds the tendency of instance I of (v;, v;)
to belong to the cause class as compared to the
non-cause class using training corpus of event
pairs. The goal of ECA is to combine the unsu-
pervised causal dependency (i.e., CD) with the su-
pervised score of instance I of belonging to cause



class than the non-cause one (i.e., C;). Here, CD
represents the prior knowledge about the causal
association based on co-occurrence probabilities
and idf scores (equation 2). It can discover lots
of false positives because the co-occurrence prob-
abilities can fail to differentiate causality from any
other type of correlation. Therefore, we improve
this prior knowledge with the help of supervision
from the training corpus containing instances of
both cause and non-cause relations. The global
decision of the causal association is made by tak-
ing the average of scores on all the instances con-
taining that verb pair. Notice that CD can also be
moved out from the summation function in equa-
tion 4.
We define the function C; as follows:

n

P(fx | )
=P o)

Cr

Here, the notations ¢ and — c represent cause
and non-cause class, respectively. The notation
fi represents the feature of an instance /. In this
work, we use some language features of events
and context of an instance I which are defined
later in this section. P(fy | ¢) and P(fy | —c) are
the smoothed probabilities of feature f; given the
cause and non-cause training instances. The value
of Cy is positive only when the instance I has more
tendency to encode a cause relation than a non-
cause one. To avoid negative values, we map Cy
scores to the range [0, 1] using og]a;i% where
Crin (Chiae) 1s the minimum (maximum) value of
C; obtained on our development set, respectively.
Also, we add a small value ¢ to C; to avoid O value.
Similarly, to avoid negative scores of PMI in equa-
tion 2 we can map it to the range [0,1].

We present below the features for the calcula-
tion of C';7 . We use lexical, syntatic and semantic
features on verbs and verb phrases of both events
of a pair. These features include words, lemmas,
part-of-speech tags, all senses from WordNet for
the verbs and the lexical items of verb phrases.
These features were introduced by Bethard and
Martin (2008) (for an in-depth description of these
features see Bethard and Martin (2008)). Next, we
describe the set of features which are the contribu-
tions of this research.

1. Verbs Arguments: Words, lemma, part-of-
speech tags and all senses from WordNet for
subject and object of verbs of both events.

Verbs and Arguments Pairs: For this fea-
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ture, we take the cross product of both
events of a pair (evi,evj) where e, =
[subject,,] v; [object,,] and €y; = [subjectvj]
vj [objectvj]. Some examples of this fea-
ture are (subject,,,subject,;), (subject,,;,v;),
(subject,, ,objectvj ), etc. In this work, we use
unordered pairs as features (i.e., (v;,v;)) is
same as (v,v;)) because the temporal order of
events is unknown for the unlabeled develop-
ment set instances. In future, this feature can
be improved by adding temporal information.

The next three features are taken from the min-
imum relevant context (MiNcontezt) Of a verb
pair which we define as follows. Mminconteqt Of
a pair (v;, vj) in an intra-sentential instance is
<s>/my...v;...vj...mo/</s>—i.e., words be-
tween the discourse markers (i.e., m1, mo) or sen-
tence boundaries (i.e., <s>, </s>) whichever ap-
pear first in the sentence. The min ongeqt for the
pair (v;, v;) in an inter-sentential is given below:

<8> /ma ..
<S>/m1..

AUi...’rTL2/</S>
SVj ..y [ <[s>

. Context Words: Lemmas of all words from
MiNcontext- This feature captures words other
than two events.

. Context Main Verbs: All main verbs and their
lemmas from mincontest. 1t collects informa-
tion about all verbs that appear with the causal
and non-causal event pair.

. Context Main Verb Pairs: The pairs of main
verbs from mincontest. The lemmas are taken
from the feature “Context Main Verbs” and
then the pairs on these lemmas are used as this
feature. For example, for lemmas of verbs (i.e.,
V1,02, ... ,’Uk;), pairs (i.e., (Ul, UQ), (’Ul, ’Uk;),
etc.) are used for this feature. This feature
is used to get information about the interest-
ing causal chains of verbs that may appear in
causal instances.

We propose next a novel metric ICA to avoid
the problem of training data sparsity.

4.2 Implicit Causal Association (ICA)

In order to determine the causal associations us-
ing ECA, we depend on explicit cause and non-
cause training instances for supervision. However,
it is possible that some strongly causal verb pairs
may frequently appear in implicit causal contexts.
Therefore, the causality of such pairs can remain
uncaptured by ECA which merely relies on ex-
plicit training instances. For example, a pair (fall,



break) seems strongly causal, but it does not ap-
pear often in our explicit training corpus due to
training data sparsity. Thus, in order to handle
this problem, we propose a new metric called ICA.
This metric makes use of functions for the identi-
fication of roles of events in a cause relation. After
briefly describing the roles of events in causal re-
lations below, we continue with the description of
ICA.

4.2.1 Roles of Events in Cause Relation

Each of the two events in a cause relation can be
assigned either cause or effect role. For example
for the following training instance, the verb ap-
pearing after because represents cause event and
the verb before because represents effect event.

1. Yoga builds stamina because you maintain your poses
for a certain period of time. (Role: r¢)

Yoga builds stamina because you maintain your poses for
a certain period of time. (Role: rg)

The notation r¢ and rg represents the classes of
cause and effect role of events, respectively. We
use core features of events to determine the like-
lihood of their roles in causation. These features
include lemma, part-of-speech tag, all senses from
WordNet of both verbs and their arguments (i.e.,
subject and object). Next, we use these features to
handle training data sparseness.

4.2.2 Handling of Training Data Sparsity

To deal with the problem of training data sparsity,
we define the metric ICA as follows:

1
[ VP 2

I(w; ;) EVP

ICA(’UZ',’U]') (CD(’Ui,’Uj) XC[

XxERM(c, e, )) (6)

where CD and Cj are defined earlier and ERM
determines the likelihood of roles of the events in
the cause relation. We remind the reader that CD
is the unsupervised causal dependency of verb pair
and Cj is the likelihood of instance I of the verb
pair to belong to the cause class than the non-cause
one using full set of features from section 4.1.

Events Roles Matching (ERM(evwevj)) (equa-
tions 7 and 8) is the negative log-likelihood of
events e,, and e,; appearing as cause or effect role
determined using the explicit causal instances of
the training corpus and the core features of events
defined in section 4.2.1.

—1.0 x maX(S(evi,’/‘C) + S(e1fj7TE)7
S(ev;,rE) + S(ev; o)) @)

ERM(e'Ui v )
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S(ew; re) = > log(P(fr | 7¢)) ®)

k=1
S(ev;,rE) =Y log(P(fi | 7E))
k=1

Here, S(ey,,rc) is the score of e, being the
cause event and S(e,,, 7g) is the score of e, be-
ing the effect event. These scores are computed
using smoothed probabilities —i.e., P(fx | 7¢) and
P(fy | rg). Similarly, S(e,,,r) and S(e,;,rc)
are calculated and max is taken. The high value
of ERM represents low matching of an event pair
(verbs and their arguments) in the explicit causal
instances of the training corpus. The high value
of ERM of an event pair can have one of the fol-
lowing two interpretations: (A) it is a non-causal
event pair, or (B) it is a causal event pair but this
pair and the pairs which are semantically closer to
it hardly appear in explicit causal contexts. In the
metric ICA, Cyx CD(v;, v;) is used as a guiding
score to interpret ERM as follows:

1. If C; x CD(v;, v;) has high score then the value
of ERM is not penalized by this guiding score
because ERM’s value can be interpreted using
(B) above.

If C;x CD(v;,v;) has low score then the value
of ERM is penalized by this guiding score be-
cause (ey,, evj) can be a non-causal pair ac-
cording to the interpretation (A) above.

ICA is a boosting factor to determine causal
verb pairs which remain undiscovered because of
training data sparseness. We also define a Boosted
Causal Association (BCA) metric by adding ICA
to original ECA metric as follows:

1
VP I(W,,ﬁz)evp

CD(vi,vj) X Cr x ERM(¢, e, y) (9
(AN

BCA(v;,vj)

(CD(’UZ',’U]') x Cr +

To build the knowledge base of causal asso-
ciations (K B.), we generate a ranked list of all
verb pairs based on the likelihood of causality en-
coded by these pairs. Here, we assume that verb
pairs are uniformally distributed across three cat-
egories - i.e., top one-third and bottom one-third
ranked verb pairs belong to Strongly Causal (S.)
and Strongly Non-Causal (S-.) categories and rest
of the pairs are considered Ambiguous (A.). Fol-
lowing our assumption, we evaluate this catego-
rization in next section, but in future researchers
can perform empirical study of how to automat-
ically cluster verb pairs into three or more cate-
gories with respect to causation.



5 Evaluation and Discussion

In this section, we present our evaluation of
knowledge base to identify causality between ver-
bal events. Specifically we performed experiments
to evaluate (1) the ranking of verb pairs based on
their likelihood of encoding causality, and (2) the
quality of the three categories of verb pairs in K B,
(i.e., S¢, A and S-.). For this purpose, we col-
lected two test sets. For each test set, we randomly
selected 50 verb pairs from the list of 10, 455 verb
pairs in K B.. For each verb pair, we selected
randomly 3 intra- and 3 inter-sentential instances
from the English Gigaword corpus and the “Hur-
ricane Katrina” and “Iraq war” articles. In order
to keep the development set different from the test
sets, we automatically traversed the development
set to determine if any test instance is available in
it. In case of finding any such test instance, we
removed it from the development set to perform
evaluation on unseen test instances. Two annota-
tors were asked to provide Cause or Non-Cause
labels for each instance. They were provided with
annotation guidelines from the manipulation the-
ory of causality (Woodward, 2008). Given these
guidelines have been successfully used by Riaz
and Girju (2010), we use them here as well. For
ease of annotation, we randomly selected inter-
sentential instances such that the length of each
sentence is at most 40 words.

The human inter-annotator agreement achieved
on Test-set; (Test-sety) is 90% (88.3%) and the
agreement on the cause class is 70% (62.7%), re-
spectively. The kappa score on Test-set; (Test-
sety) is 0.75 (0.69), respectively. The Test-set;
(Test-sety) contains 25% (22%) causal instances,
respectively.

We employed Spearman’s rank correlation co-
efficient (equation 10) to compare the ranked list
of verb pairs based on the scores of our metrics
and the rank given by the human annotators. The
score P ranges from +1 to —1 where +1 and —1
show strong and negative correlation, respectively.

(S ziy) = (D) (D)
VP a?) - (S22 /(S 2) - (Dvi)?

Here, n is the total number of verb pairs in the
test set, z; is the human annotation rank and y; is
the metric’s rank of verb pair ¢ of the test set. The
values of x; and y; are determined as follows. For
each verb pair, Cy, is calculated which is the num-
ber of cause labels given by both human annota-

P = (10)
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Metric CEA ECA ICA BCA
Test-set; -0.077 0.144 0427 0.435
Test-setz  0.167 0217 0.353 0.338

Table 1: The Spearman’s rank correlation coeffi-
cient for the metrics CEA, ECA, ICA and BCA.
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Figure 1: The percentage of causal (%c) and non-
causal (%—c) test instances in S., A. and S-. gen-
erated by the metrics CEA, ECA, ICA and BCA.

tors out of 6 instances of a verb pair. The pairs are
ranked in descending order according to the score
Cy, s.t. the top scored pair(s) gets rank 50 and the
next to the top pair(s) gets rank 49 and so on. Sim-
ilarly, ranks are given to the verb pairs according
to the metric’s scores. This way of evaluation was
also used by Beamer and Girju (2009) for tempo-
rally ordered adjacent verb pairs. But here, we are
working with verb pairs appearing in any temporal
order in both intra- and inter-sentential instances.

We used ECA, ICA and BCA scores to gener-
ate the ranked list of all verb pairs. In this work,
we also used the state-of-the-art causality iden-
tifier CEA (Do et al., 2011) as baseline metric.
For each verb pair, we computed the likelihood of
causality by taking the average of CEA scores on
all instances of that pair in the development set.

The results with Spearman’s rank correlation
coefficient in Table 1 show that CEA is not very
capable of matching the human ranked list of pairs
as compared with our metrics (i.e., ECA, ICA and
BCA). Specifically, the difference is significant
for Test-set; where the correlation coefficient with
CEA goes below 0. This behavior of CEA makes
sense because it is unsupervised and requires more
knowledge to perform well. As compared with
ECA, both ICA and BCA perform significantly
better to match human ranking. The Spearman’s
score gain by BCA on Test-set; is of about 30
(52) points over ECA (CEA) and the gain by ICA
on Test-sety is of about 13 (18) points over ECA
(CEA), respectively.

In order to explain the behavior of our metrics



more clearly, we performed an evaluation of three
categories of verb pairs as follows. We generated
three categories of verb pairs using our metrics and
CEA. We combined two test sets to show the per-
centage of total causal and non-causal instances of
verb pairs that lie in S., A, and S-. using follow-
ing procedure. If a verb pair belongs to S, and has
3 causal and 2 non-causal instances after human
agreement, then these 5 instances are considered
members of S.. This step is performed for all verb
pairs in the test set. After this the percentage of
total causal and non-causal test instances are cal-
culated for each category (see Figure 1).

Figure 1 reveals that ICA, BCA and CEA are
successful in pulling more causal instances in S,
as compared to ECA. But, CEA has a hard time
distinguishing cause from non-cause instances be-
cause it also brings the highest percentage of non-
causal instances in S.. The reason is the depen-
dence of CEA on PMI scores of pairs of verbs and
arguments to make decision for causality where
PMI is not good enough to distinguish a simple
correlation from an asymmetric relation of causal-
ity. However, ICA and BCA work better by plac-
ing less non-causal instances in S, as compared
with CEA. ICA and BCA also work better be-
cause by pulling more causal instances in .S, and
A, these metrics are keeping least percentage of
causal instances in S—_.. Also, ICA and BCA
bring more causal instances in S. as compared
with ECA by handling training data sparseness.

Another important line of research is the con-
struction of a classifier on top of the component
of knowledge base for the classes of cause and
non-cause relations. This allows us to evaluate our
model in terms of standard evaluation measures -
i.e., precision, recall and F-score. These measures
can also be used to compare our model with su-
pervised classifier depending merely on shallow
contextual features with no information from the
knowledge base. Due to space limitations, we plan
to present such classifiers and evaluation in the fu-
ture.

5.1 Analysis

In this work, we have focused on determining the
predictive power of knowledge of causal associ-
ations of verb pairs to identify causality between
events. Our results reveal that our best metrics
(i.e., ICA and BCA) bring desired behavior of
keeping least percentage of total causal instances
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in category S—.. However, there is need to build a
classifier on top of knowledge base which can help
detection of non-causal instances for verb pairs lie
in S, and A.. Here, we state some brief details
of our test set which can help building such clas-
sifier in future. An important aspect to consider
is the highly skewed nature of real distribution of
test set. There are only 23.69% causal instances
in the test set and majority of these instances (i.e.,
56.7%) are intra-sentential instances. Therefore, a
classifier should have mechanism to decide why
inter-sentential instances of event pair are non-
causal most of the time. For example, some inter-
sentential events may not even be directly relevant
at first place because they appear in different sen-
tences. Another critical point to consider is the en-
coding of non-causal instances by strongly causal
verb pairs. For example, we asked one of the an-
notators to identify strongly causal verb pairs out
of 100 verb pairs of the test set. There are 22
such verb pairs determined by our annotator and
each of these pairs contain 43% causal instances
on the average. There are many factors (e.g., tem-
poral information, arguments of verbs) which can
make an instance of strongly causal verb pair non-
causal. For example, (call, respond) may encode
causality only if e.q temporally precedes €,¢spond
as demonstrated by the following instances.

1. Deputies spotted the truck parked at the home of the sus-
pect’s father and called for assistance. The Border Patrol
agents and others responded. (CAUSE)

Prime Minister of Israel promptly responded to the
widespread unrest in the West Bank and Gaza, saying that
he would call a timeout to rethink Israel’s commitment to
peace talks. (NON-CAUSE)

In future, the above issues need to be addressed
to improve performance for the current task.

6 Conclusion

In this research, we have developed a knowledge
base (K B.!) of causal associations of verb pairs
to detect causality. This resource provides the
causal associations in terms of three categories of
verb pairs (i.e., Strongly Causal, Ambiguous and
Strongly Non-Causal). We have proposed a set of
knowledge rich metrics to learn these associations.
Our analysis of results reveals the biases of differ-
ent metrics and brings important insights into the
future research directions to address the challenge
of detecting causality between verbal events.

"We will make the resource available.
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Appendix A. Notations

This appendix presents the details of important notations used in this paper.

Notation Equation(s) Explanation
€, 6,7,8,9 Verbal event represented by the verb v;
KB. - Knowledge base of causal associations of verb pairs
. - Strongly Causal category of verb pairs
A, - Ambiguous category of verb pairs
—c - Strongly Non-Causal category of verb pairs
m; — Discourse marker
Me 1 Causal marker (e.g., because)
f() 1 Function to select the most dependent pair from two dis-
course segments conjoined with causal marker
CD(vi,v;) 1,2,4,6,9 Causal dependency of the verb pair (v;, v;)
PSi(vi,v;) 1,3 Penalization factor for the verbs of the pair (v;, v;) with
respect to their distance from the causal marker
pos(v;) 3 Distance of verb in terms of its position with respect to
causal marker
C(vp) 3 Count of main verbs appearing before causal marker
C(vgq) 3 Count of main verbs appearing after causal marker
ECA(vs,v5) 4 Explicit Causal Association of the verb pair (v, v;)
VP 4,6,9 Set of intra- and inter-sentential instances of a verb pair
I(vi, v5) 4,6,9 Instance of the verb pair (v;, v;)
Cr 4,5,6,9 Tendency of the instance I to belong to cause class than
the non-cause one
c 5 Cause class
—c 5 Non-cause class
Chnin - Minimum value of C obtained on the development set
'maz - Maximum value of C'; obtained on the development set
re 7,8 Class of cause role
TE 7,8 Class of effect role
ICA(vi,vy) 6 Implicit Causal Association of the verb pair (v;, v;)
ERM (e, €v;) 6,7 Events Roles Matching (ERM) determines the negative
log-likelihood of events to belong to class of cause or
effect role
S(ev;,rc) 8 Score of e, to belong to the class of cause role
S(ev;,TE) 8 Score of e, to belong to the class of effect role
P(fl.) 58 Probability of feature f;, given some class
BCA(v;, vy) 9 Boosted Causal Association of the verb pair (v;, v;)

Table 2: Details of notations.
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Abstract

An appealing methodology for natural lan-
guage generation in dialogue systems is to
train the system to match a target corpus.
We show how users can provide such a
corpus as a natural side effect of interact-
ing with a prototype system, when the sys-
tem uses mixed-initiative interaction and a
reversible architecture to cover a domain
familiar to users. We experiment with
integrated problems of sentence planning
and realization in a referential communi-
cation task. Our model learns general and
context-sensitive patterns to choose de-
scriptive content, vocabulary, syntax and
function words, and improves string match
with user utterances to 85.8% from a hand-
crafted baseline of 54.4%.

1 Introduction

Natural language generation (NLG) in dialogue
involves a complex array of choices. It’s appeal-
ing to scale up NLG by training systems to make
these choices with models derived from empirical
data. Sometimes, these choices have a measurable
effect on the flow of the interaction. Systems can
plan such choices with a model of dialogue dy-
namics that predicts which utterances will fulfill
communicative goals successfully and efficiently
(Lemon, 2011; Janarthanam et al., 2011; Garoufi
and Koller, 2011).

Other times, a wide variety of utterances work
well (Belz and Gatt, 2008). In these cases, systems
can instead be designed simply to choose those ut-
terances that most closely resemble specified tar-
get behavior. This paper describes and evaluates
a new data-driven methodology for training sen-
tence planning and realization in interactive dia-
logue systems this way. Our work is particularly
inspired by Walker et al. (2002), who train a di-
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alogue sentence planner by annotating its possi-
ble outputs for quality; and Jordan and Walker
(2005), who train a referring expression generator
to match annotated human—human dialogue.

In text generation, researchers have been able
to exploit automatic analysis of existing resources
on such tasks as ordering words more naturally
(Langkilde and Knight, 1998) and identifying
named entities in line with attested mentions (Sid-
dharthan and Copestake, 2004). However, previ-
ous work on training dialogue generation has in-
volved the acquisition or annotation of relevant
data ad hoc, for example by collecting human—
human dialogue, running Wizard of Oz experi-
ments, or rating system outputs. Our work is dif-
ferent: we use a bootstrapping approach that auto-
matically mines interactions with a running proto-
type to adapt NLG to match users.

As described in Section 2, our work builds on
the COREEF system of DeVault and Stone (2009).
COREF and its users chat together to identify
simple objects in a visual scene. COREF is de-
signed with reversible models of language and
dialogue—it tracks users’ utterances and its own
utterances with the same data structures and rep-
resents them as updating the conversational state
in parallel ways. Because of this symmetry,
COREF’s understanding of each user utterance
determines an input—output pair that the system
could take as a target for NLG. We explain the sig-
nificance of learning from such data in Section 3.
However, we argue in Sections 4 and 5 that this
learning will yield significant results only if sys-
tem and user do in fact turn out to make similar
contributions to dialogue.

Our main experiment therefore uses data col-
lected with a new version of COREF with more
flexible strategies for taking initiative, as described
in Section 6. We use the system’s understand-
ing of user utterances in the experiment, along
with its productive capacity to generate alterna-

Proceedings of the SIGDIAL 2013 Conference, pages 31-40,
Metz, France, 22-24 August 2013. (©2013 Association for Computational Linguistics



tive paraphrases of those utterances, to build an
automatically labeled training set of good and bad
NLG examples. We learn a model of the differ-
ence and evaluate its use in choosing novel utter-
ances. As documented in Section 7, the learned
model leads to improvements in naturalness over
COREF’s handcrafted baseline generator; our ex-
periments document these improvements qualita-
tively and quantitatively.

Our work suggests new ways to design dialogue
systems to adhere to formal models with guaran-
teed behavior (Paek and Pieraccini, 2008) while
reaping the benefits of data-driven approaches
(Rieser and Lemon, 2011) by improving them-
selves through ongoing interactions with users.
Our experiments suggest that engaging with user
expertise is a key factor in enabling such new de-
sign strategies. Our technique crucially exploits
synergies in our domain between the architecture
of the dialogue system, the specific dialogue pol-
icy that the system implements, and users’ abilities
to contribute to domain problem solving.

2 Background

COREEF, short for “collaborative reference”, com-
municates with users through a text-chat window
for human—computer dialogue. A graphical inter-
face provides task context and realizes domain ac-
tions; it orchestrates a basic referential communi-
cation task like those studied by Clark and Wilkes-
Gibbs (1986) or Brennan and Clark (1996). In
each round of interaction, the participants in the
conversation are presented with a set of simple
geometric shapes that they must talk about; the
shapes are displayed on screen to human users
and described as a knowledge base to the COREF
agent. As the dialogue proceeds, one participant,
assigned to work as the director, gets an indication
of which object to describe next. The other partic-
ipant, assigned to work as the matcher, must move
this target object to its final disposition. Figure 1
is a snapshot of the interface in a session where the
user works as matcher. Experimental sessions nor-
mally involve multiple rounds where participants
alternate serving as director and as matcher.
COREF’s architecture factors its reasoning into
three integrative problem-solving modules, as
shown in Figure 2. The modules use different
algorithms and control flow, but are linked to-
gether by common representations and knowledge
bases. One shared resource is COREF’s prob-
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Figure 1: User’s view of the chat interface in an
interaction with COREEF acting as director.

abilistic context model, which tracks the likely
state of ongoing activity, maintains a linguistic
context describing what has probably been said
and what should be salient as a result, and repre-
sents the information available through the inter-
face as grounded in interlocutors’ perception. An-
other shared resource is COREF’s tree-adjoining
grammar (TAG; Joshi and Schabes (1997)), which
assigns syntactic structures and semantic repre-
sentations to utterances, and predicts what utter-
ances will refer to in context and what dialogue
moves they will contribute. Finally, both under-
standing and generation use a common represen-
tation of the interpretation of utterances, utterance
plans, which associate specific strings of words
with the updates that they are predicted to achieve
via grammar and context.

The dialogue manager handles interaction with
the user, coordinates understanding and genera-
tion, tracks updates to the context, and selects up-
dates that COREF should contribute to the conver-
sation. In case of ambiguity, the dialogue man-
ager propagates uncertainty forward in time and
works to resolve it through interaction. (COREF
has general mechanisms for engaging in clarifica-
tion subdialogues.) In fact, by the time each ob-
ject has been identified, COREF has committed
retrospectively, in light of what has happened, to
a single most likely interpretation for everything
the user has said about it. COREF has evidence
that other interpretations it originally entertained
were not what the user intended. This links each
user utterance with a corresponding utterance plan
that can be used for subsequent learning (DeVault
and Stone, 2009).

The understanding module parses utterances us-
ing the grammar and resolves them using the con-
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Figure 2: COREEF system architecture, showing representations and knowledge shared across modules:
utterance plans show how each agent’s contributions follow from the system’s representations of gram-
mar and context; update rules map out consistent contextual effects for each agent’s contributions.

text model to recognize the possible utterance
plans behind them. The generator, meanwhile,
uses the grammar and the context model to syn-
thesize an utterance plan for a grammatical expres-
sion that is predicted to achieve some desired up-
dates unambiguously, as in SPUD (Stone et al.,
2003). A range of choices are folded together
by this integrated problem-solving process. For
example, the grammar specifies alternative real-
izations involving different syntactic frames and
functional items, as in the paraphrases ‘the target
is a square’, ‘a square’ and ‘square’. The gram-
mar also specifies lexical paraphrases, as in the
equivalents ‘dark blue’ and ‘navy blue’ or ‘beige’
and ‘tan’. SPUD’s problem solving also creates
choices about how much descriptive content to in-
clude in a reference, as ‘the square’ versus ‘the
blue square’, and what kind of descriptive content
to include, as in ‘the blue square’ versus ‘the solid
square’. Full utterances involve all these choices,
potentially in overlapping combinations, as in ‘the
target is the light brown object’ versus ‘the solid
square’. See the Appendix for examples of NLG
search, and DeVault (2008) for full details about
COREF’s design and implementation.

COREF’s handcrafted NLG search heuristics
draw on ideas from Stone et al. (2003) and Dale
and Reiter (1995) to prioritize efficient, specific ut-
terances which use preferred descriptive attributes
and respect built-in preferences for certain words
and constructions. When we implemented these
heuristics, we had no intention of revising the
model using learning. However, COREF’s strat-
egy never generates human-like overspecification,
its lexical and syntactic choices are determined
by hand-coded logical constraints, and it offers
few tools to discriminate among comparable para-
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phrases. In principle, a system like COREF ought
to be able to find out how people tend to make such
choices in interacting with it, and learn to speak
the same way. This is the central problem we ad-
dress in this paper.

3 Related Work

Our key contribution is demonstrating that a di-
alogue system can bootstrap an integrated NLG
strategy from interactions with a prototype system
by training a model to imitate user utterances. This
complements DeVault and Stone (2009), who train
an interpretation model in a similar way. Boot-
strapping NLG for dialogue requires new insights,
and require us to synthesize of a number of trends
in dialogue, in NLG and in social learning.

A number of researchers have trained genera-
tors for dialogue based on human specifications of
desired output. For example, Walker et al. (2002)
and Stent et al. (2004) optimize sentence plans
based on expert ratings of candidate output utter-
ances. Jordan and Walker (2005) learn rules for
predicting the content of referring expressions to
match patterns found in corpora of human descrip-
tions in context. Garoufi and Koller (2011) tune
the referential strategies of a general-purpose sen-
tence planner based on metrics of utterance effec-
tiveness mined from human-human interactions.
Our work involves a new domain and for the first
time involves integrated training of all these di-
mensions of NLG, but we draw closely on the ar-
chitectures, features and learning techniques de-
veloped by these researchers. The key difference
that they use data collected, and to some degree
hand-annotated, specifically to train NLG.

At the same time, a range of research has
explored the way existing data sets can im-



prove NLG results. For example, Langkilde and
Knight (1998) n-gram statistics to bias a non-
deterministic realization system towards frequent
utterances. Siddharthan and Copestake (2004) use
references in corpora to bootstrap a generator for
named entities in text. Such methods, however,
have generally focused on offline text generation
applications. Our research shows that specific in-
frastructure must be in place to tune NLG to a di-
alogue system’s own experience.

In addition, our work finds echoes in work
across Al on learning by imitation. Interactive
robots can learn in new ways by modeling their
behavior on competent humans (Breazeal et al.,
2005). Other domains require agents to develop
cooperative relationships and elicit meaningful be-
havior from one another before they can learn to
act effectively together (Zinkevich et al., 2011).
Our work helps to establish the connections of
these ideas to dialogue.

Finally, we note that our work is orthogonal to
a range of other research that aims to extend and
improve NLG in dialogue through learning. Given
specified target utterances, knowledge acquisition
techniques can be used to induce new resources
that describe those utterances for NLG as well as
to optimize the use of those resources to match the
corpus (Higashinaka et al., 2006; DeVault et al.,
2008). Moreover, given a model of the differen-
tial effects of utterances on the conversation, rein-
forcement learning can be used to identify utter-
ances with the best outcomes (Lemon, 2011; Ja-
narthanam et al., 2011). We see no reason not to
combine these techniques with imitation learning
in the development of future systems.

4 Training COREF

Our method for mining COREF’s dialogue experi-
ence involves three steps. First, we compile train-
ing data: positive instances are derived from user
utterances and negative instances are derived from
the generator’s alternative realizations of commu-
nicative goals inferred from user utterances. Next,
we build a machine learning model to distinguish
positive from negative instances, using features
describing the utterance itself, the current state of
the conversation and relevant facts from the dia-
logue history. Finally, we apply the learned model
on new NLG problems by collecting candidate
paraphrases and finding the one rated most likely
to be natural by the learned model.
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4.1 Data Analysis

Each user utterance in COREF’s interaction logs
is associated with a particular state of the dialogue
and with the utterance plan ultimately identified
as its best interpretation. Our method extracts the
task moves in the utterance plan as candidate com-
municative goals for the utterance. It swaps the
role of the user and the system, so as to realize
an NLG problem instance to plan a contribution
with the utterance’s inferred communicative goals,
given the user’s role in the dialogue and their re-
constructed dialogue state. It then calls a revised
version of the generator that’s non-deterministic
and accumulates a range of plausible solutions. '

This process automatically creates a representa-
tion of the NLG problem faced by the user and the
set of possible solutions to that problem implic-
itly determined by COREF’s models of language
in context. Our method partitions the training in-
stances based on how the user chose to solve the
NLG problem. If the NLG output string matches
what the user actually said here, it becomes a pos-
itive training example. If it differs from what the
user actually said, it becomes a negative one.

4.2 Machine Learning

We can now build a machine learning model of
this data set. Given an unlabeled candidate solu-
tion to an NLG problem, we want to build a model
of the probability that the solution is representa-
tive of human behavior in our transcripts. We train
a maximum entropy model (Berger et al., 1996) to
make the prediction, using the MALLET software
package (McCallum, 2002). Given that the gener-
ator ultimately wants to choose the best utterance,
we could explore approaches to learn rankings di-
rectly, such as RankBoost (Freund et al., 2003).
Formally, the machine learning model charac-
terizes an input—output pair for NLG with a set of
features that would be available to a generator in
assessing a candidate output. Each training exam-
ple pairs an inventory of features with an observed
value indicating whether the instance does or does
not match the utterance produced by the human
user. Given a training set, MALLET selects a set

'Our specific approach was to capture all the successful
utterances that differ from the preferred NLG path by any
three derivation steps of the lexicalized generation grammar.
This heuristic was easy to implement with COREF’s existing
infrastructure for look-ahead search, and we found empiri-
cally that more comprehensive search was expensive to carry
out and tended primarily to add unnaturally verbose and re-
dundant utterances. See the Appendix for examples.



of features to use and fits numerical weights for
the features for logistic regression by maximum
entropy. That is, the features determine the pre-
dicted probability that candidate output j for prob-
lem ¢ (utterance u; ;) is good (a match with a hy-
pothetical user utterance), as a logistic function
of the sum of the feature weights describing the
instance—formally,

P(u; j = Good | features(u; ) =
1/(1+exp(—wo — X features(uy ;)i * w;))

This model can then be applied to unlabeled in-
stances with features derived from novel NLG
problem instances and candidate outputs.

The features we use in our experiments are de-
scribed in full in Tables 4 and 5 in the Appendix.
Most are from DeVault and Stone (2009). We have
features describing the form of the output utter-
ance: what phrase structure it has and what lexical
items are used. We have features describing what
task moves are achieved by the utterance and what
links the utterance has to context. For complete-
ness, we also add DeVault and Stone’s features
describing the context itself, including the conver-
sational tasks underway, the facts on the conversa-
tional record, and the properties relevant to ongo-
ing problem solving.?

In designing features for learning, we also draw
on the experience of Jordan and Walker (2005)
in predicting the form of referring expressions.
Many of their features closely align with those
we inherit from DeVault and Stone (2009). One
kind that doesn’t is Jordan and Walker’s concep-
tual pacts feature set. These features are de-
signed to capture utterance choices that are con-
tingent on other participants’ previous choices
in interaction—entrainment (Brennan and Clark,
1996). We make it possible for the learner to de-
tect entrainment by introducing a new set of his-
tory features, which list the presuppositions of re-
cent utterances.

We do not need Jordan and Walker’s distrac-
tor features, however. Unlike them, we do not try
to learn the difference between distinguishing de-
scriptions and ambiguous ones. Our architecture,

2If these context features were shared across all outputs
for a given input, they would not affect what option for NLG
was best. But this is not always the case in COREEF, because
contexts can be uncertain and because COREF can trigger ac-
commodation that changes the context as part of NLG. More-
over, including these features might allow us to capture pos-
sible variability in NLG, since the model can then predict that
otherwise marked utterances work naturally in some contexts.
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like that of Garoufi and Koller (2011), doesn’t
even consider a candidate utterance unless it’s un-
ambiguous on a standard reference model (Dale
and Reiter, 1995). Garoufi and Koller (2011) pro-
vide evidence for the effectiveness of this kind of
factorization of modeling and learning.

4.3 Assessing the Model

To use the trained model, we start from the NLG
problem of generating an utterance to achieve
specified communicative goals in context. Our
NLG model constructs its space of candidate ut-
terances. Each candidate input—output pair is ana-
lyzed in terms of its features, and then the learned
model assigns it a probability score. We pick our
output via the candidate with the highest score.

In evaluating how well this works, we are in-
terested in how well the learned model predicts
the utterances of new subjects given data from
other subjects. We assess this by reporting cross-
validation results, predicting the choices of one,
held-out subject given a model trained on the data
from all other users in an experiment. We report
an exact match error measure. In a more complex
generation task, we could measure error based on
edit distance to give partial credit to NLG results
that are closer to user utterances. As a baseline, we
report comparable measures for COREF’s original
NLG implementation.

5 Pilot: The Need for Reciprocity

We applied our NLG training methodology to the
data set reported by DeVault and Stone (2009)
with 20 subjects interacting with COREF. The re-
sults were not compelling.

Analysis of this data set transforms human sub-
jects’ utterances into 889 problem instances for
NLG. In 247 of these instances, the user’s utter-
ance is not in the NLG search space, usually be-
cause it is interpreted by robust methods rather
than COREF’s grammar. Of the remaining 642 ut-
terances, our baseline generator already matches
the user utterance 308 times (48%); it differs on
the other 334 instances (52%). After learning,
a model-based generator trained on the other 19
users’ data now matches the utterance of a held-
out user on 546 instances (85%) across cross-
validation runs. This sounds promising, but in fact
almost all of the model successes (534 instances)
are due to just five utterance types that fulfill sim-

ple dialogue-management functions: ‘yes’, ‘no’,



‘click continue’, ‘done’ and ‘ok’.

There is in fact quite little evidence in this data
about how COREF should make its typical genera-
tion decisions. Looking under the hood, the prob-
lem is that COREF’s dialogue management pol-
icy did not exploit the symmetry and reciprocity
of its dialogue models and NL representations.
COREF took the initiative in object-identification
dialogues when it was the director, offering de-
scriptions of the target object, but it also took the
initiative when it was the matcher, asking the user
to confirm or reject its suggestions about the iden-
tity and properties of the target objects.

System builders often make such design choices
to foster task success. Giving the system the ini-
tiative generally means that user utterances are un-
derstood more reliably, which helps keep the di-
alogue on track. However, in settings where the
system can potentially improve its behavior, we
may have to design the system to take more risks
so it can acquire the data it needs; we may even
want to sacrifice short-term task success to enable
long-term improvement. Such trade-offs of explo-
ration and exploitation are endemic in reinforce-
ment learning, but learning by imitation gives the
problem a distinctively social dimension: getting
the right data may mean not only trying new ac-
tions in new situations, but actively creating the
right relationship with the user.

6 Collecting Mixed-initiative Data

We revised COREF’s dialogue strategy to better
reflect users’ interactive competence using sim-
ple statistics about dialogue outcomes. For each
class of dialogue move by the agent in DeVault
and Stone’s evaluation data, we tabulated the num-
ber of subsequent utterances required to identify
the object. These measures give COREF’s planned
utterance an empirical score quantifying its antic-
ipated effect in dialogue. For example, after ask-
ing if a particular object was the target, the sub-
dialogue finished in 6.0 more turns on average.
Analogous measures give a comparable score to
the most effective kind of contribution that’s po-
tentially available to the user at each point in the
dialogue. For example, after saying that a particu-
lar object was the target, the subdialogue finished
in 3.2 more turns on average. Our new dialogue
policy compares COREF’s planned move with the
user’s best option. COREF proceeds with its ut-
terance if its score is better but waits for the user
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if its score is worse. This analysis gives our re-
vised version of COREF an empirical threshold
for taking initiative in the dialogue based on the
strengths of the contributions COREF and the user
could make next in context. In practice, the re-
vised strategy lets user directors drive the dialogue
much more often than DeVault and Stone’s origi-
nal handcrafted policy. For example, COREF now
waits for the user to propose a description rather
than asking about a candidate object.

We had 42 subjects interact with the revised
COREF in a protocol of 29 object identification
tasks, grouped in blocks of 4, 9 and 16 as in De-
Vault and Stone (2009). Subjects were recruited
by advertisement and word of mouth from our in-
stitution and were paid for their participation. The
data was collected as part of an independently-
motivated assessment of COREF’s trade-offs be-
tween asking for clarification and proceeding un-
der uncertainty with its best interpretation, so
COREF varied these choices across the dialogues.

Analysis of our new data set induces 2006 NLG
problem instances corresponding to human utter-
ances, including 1382 cases where the user’s ut-
terance is (1) completely described by COREF’s
grammar, (2) found in the NLG search space, and
(3) represented as unambiguous by the underly-
ing NLG model. To confirm the diversity of utter-
ances in this set, we automatically partitioned the
utterances into four classes based on surface form
and communicative goals achieved: acknowledg-
ments that coordinate on the current state of the
dialogue (569 instances), task instructions (23 in-
stances), yes/no answers (434 instances) and other
dialogue contributions with explicit descriptive
content (356 instances). Thus, this data set con-
tains substantial evidence about human strategies
in COREF’s domain. We continue to perform
analyses of utterances by category to document the
results of our learning experiment.

7 Results

Table 1 compares the aggregate performance
of the learned NLG module in comparison to
COREF’s baseline generator across all cross-
validation runs (training on 41 users and testing on
data from one held-out user). Except in the small
category of task instructions, where the baseline is
already good, the learned model offers a substan-
tial improvement in rate of exact match to user ut-
terance across all categories. These differences in



Table 1: Comparison of learned model and baseline generator.

System | Descriptive Acknowledgments | Yes/No Instructions | Total
. 170 349 210 23 752
259 477 427 23 1186
Model — =T72. — =83. — =984 — =1 —— =85.
ode 356 72.8% 569 83.8% 134 98.4% 3 00% 382 85.8%

Evaluation of exact match to user utterances across hold-one-user-out cross-validation runs. We report
number of matching instances out of number of instances with the user utterance in the NLG search
space, along with percentage match, broken down by form and communicative goal of the utterance.

Table 2: Comparison of accuracy by item.

Baseline
Match | Mismatch
Model = Match 720 466
Mismatch 32 164

(a) Counts of NLG problem instances of all types,
comparing matches in the baseline generator
against matches in the learned model.

Baseline
Match | Mismatch
Model = Match 152 107
Mismatch 18 79

(b) Counts of NLG problem instances with sub-
stantive contributions and explicit descriptive ma-
terial, comparing matches in the baseline genera-
tor against matches in the learned model.

rates are all statistically significant (p < .005 by
Fisher’s exact test).

Table 2 breaks down overall results (Table 2a)
and results on descriptive utterances (Table 2b), to
explore associations between the performance of
the baseline generator and the performance of the
learned model on individual items. We find a clear
link between the two methods: when the model
gets an utterance wrong, the baseline method is
much more likely to have gotten the utterance
wrong as well (p < .001 by Fisher’s exact test).
We conclude that the model is not just improv-
ing on the baseline generator in aggregate, but has
learned to correct specific choices in the baseline
system that are not representative of user behavior.

The breakdown in Table 1 gives a sense of the
range of cases covered by the learned model. The
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‘yes/no’ cases mostly involve training COREF to
say ‘yes’ rather than ‘yeah’. The acknowledg-
ment cases involve understanding the subtle ways
that people trade off alternatives such as ‘ok’,
‘done’ and ‘I added it’—a difficult problem but
one where we have little choice but to trust ma-
chine learning results.

Descriptive utterances are more substantial. To
understand these cases better, we built an overall
model with data from all 42 users and looked at the
features selected by MALLET and the weights fit
for them in the maximum entropy model. Table 3
shows a sample of the MALLET output. We think
of these features as establishing a network of prior-
itized defaults; lower-weighted features must con-
spire together to override higher-weighted ones.
Syntax is the strongest effect; for example, the
contrast between [¢ DET N| and [g NP IS DET N|
gives a preference of 1.27 to the simpler struc-
ture. Lexical features encode more natural items
(‘brown’ versus ‘beige’) but also implicitly en-
code natural descriptive patterns (as with the color
modifier ‘light’). Presupposition features, mean-
while, help ensure that words have their most natu-
ral meanings. On this analysis, the model contents
corroborate our hypothesis that user data gives ev-
idence to refine a wide variety of NLG choices.

8 Discussion

In this paper, we show how users’ utterances can
give a dialogue system consistent and reliable in-
dicators not only of how to solve its NLU prob-
lems, as in DeVault and Stone (2009), but also
how to solve its NLG problems. Thus, we can
now design dialogue systems to learn to imitate
their human users in certain cases. To do so, the
system needs to work in a domain where users are
prepared to offer the same kind of contributions



Table 3: Sample features used to identify user tu-
ples and their weights in an overall model.
Syntax Features:

Fits [s DET N] 2.29
Fits [ COLOR N] 2.09
Fits [s DET COLOR N] 1.86
Fits [s NP IS DET N] 1.12
Lexical Features:
Includes word light 0.87
Includes word dark 0.60
Includes word brown 0.22
Includes word beige 0.005
Presupposition Features:
Uses square for square object 2.05
Uses diamond for rhombus 2.09
Uses pink for pale red-purple 1.70
Describes light blue as light 0.92

as the system, the system needs to represent those
contributions symmetrically, and the system needs
to be able to actually elicit, analyze and learn from
relevant user utterances.

Our approach, like that of Garoufi and Koller
(2011), is to combine a symbolic account of ut-
terance interpretation with a learned model of ut-
terance quality. Thus, on our approach, system
utterances always come with formal guarantees
that they fulfill specified communicative goals and
have a unique interpretation in context. That may
help underwrite the guarantees that Paek and Pier-
accini (2008) emphasize, that data-driven systems
must respect the coherence of dialogue and must
continue to do so even as they learn to improve
dialogue efficiency and naturalness.

Our work suggests some natural followups. It
would be interesting to refine the NLG model
based on the disambiguation strategy learned in
DeVault and Stone (2009). If the system discov-
ers that utterances are not as ambiguous as the ini-
tial model suggests, it opens up new possibilities
for tuning NLG to match what users say. Scal-
ing up the ideas, meanwhile, invites us to build
factored models that describe NLG decisions in a
more compositional way, as well as finding more
powerful and generalizable features.

Further work is also required to use these tech-
niques in a broader range of settings. Our tech-
nique requires the system to give users the op-
portunity to say the same kinds of things it says,
so it is most appropriate for collaborative prob-

38

lem solving. Further research is required to use
the methodology for asymmetric situations such
as information seeking. Use in spoken dialogue
systems, meanwhile, would challenge the limits
of mixed-initiative interaction and would require
techniques to discount users’ errors and disfluen-
cies. Although these limitations make our tech-
niques difficult to use in many current applica-
tions, we are optimistic that our methods will
apply quite naturally to emerging open-domain
settings such as human-robot interaction, where
users and systems meet on a more equal footing.
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Appendix: NLG Search and Features

User utterance pink square
Goal(s) found 1. Target is pink

2. Target is square, or
. Target is both pink and square
. the target is pink
. the target is square
. pink square
. pink square
. square
3. pink square
a box, a fuschia box, a fuschia
fuschia box, a fuschia fuschia
square, a fuschia pink box,
a fuschia pink square, a fuschia
purple box, a fuschia purple
square, a fuschia square, a like
fuschia box, a like fuschia square,
a like pink box, a like pink
square, a like purple box, a like
purple square, a pink box, a pink
fuschia box, a pink fuschia
square, a pink pink box, a pink
pink square, a pink purple box,
a pink purple square, a pink
square, a purple box, a purple
fuschia box, a purple fuschia
square, a purple pink box,
a purple pink square, a purple
purple box, a purple purple
square, a purple square, a square,
box, fuschia box, fuschia square,
pink box, pink square, purple
box, purple square, square, the
target is fuschia, the target is
pink, the target is purple, the
target is square
Model confirms baseline vocabulary, learns to
overspecify color goal (1) for more natural syn-
tax. COREF can’t spell ‘“fuchsia’.

Baseline

Model

N — W N = W

Candidates



Table 4: Features derived from the current state of the dialogue (s;).

feature set

description

NumTasksUnderway The number of tasks underway in the state s;.
For any task that is underway in state s;, a feature includes its
TasksUnderway name, its depth on the task stack, and its current status in its

formal task network.

NumRemainingReferents

The number of targets that remain to be identified in state s;.

TabulatedFacts

For any fact on the conversational record at state s; there is a
corresponding string feature—a formula with any unique ref-
erence symbols anonymized (e.g. X34 becomes some-object).

CurrentTargetConstraints

For any positive or negative constraint on the current target in
state s;, there is a corresponding string feature.

UsefulProperties

For any property instantiated in the display in state s; there is a
corresponding feature.

History

Each assertion and presupposition on the conversational record
in state s; is represented as a string feature.

Table 5: Features derived from the proposed utterance (u;,;).

feature set

description

Each of the atomic presuppositions of the utterance u, ; is rep-
resented as a string feature. The string captures predicate—

Presuppositions argument structure but anonymizes references to individuals
(e.g. targetl2 becomes sometarget).
Each of the dialogue moves that the utterance contributes cor-
Assertions responds to a feature. This string also captures predicate—
argument structure but anonymizes references to individuals.
Syntax A string representation of the bracketed phrase structure, in-
cluding non-terminal categories, of the utterance.
Words We represent each word that occurs in the utterance as a fea-

ture.

User utterance the light blue diamond
Goal(s) found Target is specified object

Baseline
Model
Candidates

the blue object

the light blue diamond

the blue blue diamond,

the blue blue object, the blue
blue rhombus, the blue
diamond, the blue diamond
outline, the blue object,

the blue object outline,

the blue rhombus, the blue
rhombus outline, the empty
blue diamond, the empty blue
object, the empty blue
rhombus, the hollow blue
diamond, the hollow blue
object, the hollow blue
rhombus, (continued)

Candidates the light blue diamond,

the light blue object, the light
blue rhombus, the lighter blue
diamond, the lighter blue
object, the lighter blue
rhombus, the like blue
diamond, the like blue object,
the like blue rhombus,

the outline blue diamond,

the outline blue object,

the outline blue rhombus,

the sky blue diamond, the sky
blue object, the sky blue
rhombus

Model confirms baseline pattern of color and type
reference but learns to overspecify color as light
blue and to use basic type diamond.
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Abstract

Research on the structure of dialogue has
been hampered for years because large di-
alogue corpora have not been available.
This has impacted the dialogue research
community’s ability to develop better the-
ories, as well as good off-the-shelf tools
for dialogue processing. Happily, an in-
creasing amount of information and opin-
ion exchange occur in natural dialogue in
online forums, where people share their
opinions about a vast range of topics. In
particular we are interested in rejection
in dialogue, also called disagreement and
denial, where the size of available dia-
logue corpora, for the first time, offers
an opportunity to empirically test theo-
retical accounts of the expression and in-
ference of rejection in dialogue. In this
paper, we test whether topic-independent
features motivated by theoretical predic-
tions can be used to recognize rejection in
online forums in a topic-independent way.
Our results show that our theoretically mo-
tivated features achieve 66% accuracy, an
improvement over a unigram baseline of
an absolute 6%.

1 Introduction

Research on the structure of dialogue has been
hampered for years because large dialogue corpora
have not been publicly available. This has im-
pacted the dialogue research community’s ability
to develop better theories, as well as good off-the-
shelf tools for dialogue processing that account for
the richness of human dialogue. Happily, an in-
creasing amount of information and opinion ex-
change occurs in natural dialogue in online fo-
rums, where people can express their opinion on
a vast range of topics from Should there be more
stringent gun laws? to Are school uniforms a good
idea? (Walker et al., 2012a). For example, con-
sider the dialogic exchange in Fig. 1.
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Post P, Response R

P1: Can the government force abortion clinics to carry
anti-abortion articles and papers? Or maybe force them
provide a sonogram? Force them to have a psychologist
on staff? Force them to have 3x3 foot posters of aborted
babies on the wall? Seems like it makes more sense for a
state to restrict something from the people rather than force
the people to have something. No?

R1: I don’t see why this matters. Could you please elab-
orate a little more, and in that elaboration, could you ad-
dress why the government may require a private company
to provide this commonly recommended medical remedy
(plan b) when it does not do so with countless other com-
mon medically recommended remedies?

Figure 1: Disagreement from 4forums.com. Pos-
sible features in bold.

In particular we are interested in the phe-
nomenon of REJECTION in dialogue (Horn, 1989;
Walker, 1996a), also called disagreement and de-
nial. Our data show that the amount of disagree-
ment in online ideological dialogues ranges from
80% to 90% across topic. Such data provides a
rich resource for testing theoretical accounts of re-
jection, as well as for developing computational
models of how to recognize rejection in dialogue.
To date, rejection has received relatively little at-
tention in computational models of discourse be-
cause of its rareness in task-oriented, tutorial or
SwitchBoard style dialogue. Computational mod-
els of argumentative discourse do not typically at-
tempt to account for rejection in dialogue, focus-
ing instead on monologic sources displaying legal
reasoning, logical accounts of rejection, or how to
produce good arguments using natural language
generation (Zukerman et al., 2000; Carenini and
Moore, 2000; Wiley, 2005; Sadock, 1977).

Moreover, the theoretical literature strongly
suggests that there should be topic-independent in-
dicators of rejection. In work on politeness the-
ory, rejection is a dispreferred response, predict-
ing that rejection should be associated with mark-
ers of dispreferred responses such as disfluencies
and hedging (Brown and Levinson, 1987). Work
on negation specifies markers of negation and con-
trast such as but or only for different types of re-
jection, and work on discourse relations and their
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[ Type

| Context

Rejection

DENIAL

Pigs can fly.

No, you idiot, pigs can’t fly! (Horn’s 29)

LOGICAL CONTRADICTION

Kim and Lee have been partners since
1989.

But Lee said they met in 1990.

IMPLICIT DENIAL

Julia’s daughter is a genius.

Julia doesn’t have any children.

REFUSAL

Come and play ball with me.

No, I don’t want to. (Horn’s 33)

IMPLICATURE REJECTION

There’s a man in the garage.

There’s something in the garage. (Walker’s 6)

DENYING BELIEF TRANSFER

B: Well ah he uh ... he belongs to a
money market fund now and uh they
will do that for him. H: The money
market fund will invest it in govern-
ment securities as part of their individ-
ual retirement account — is that what
you’re saying? B: Right.

H: I’m not so sure of that. (Walker’s 31)

INCONSISTENT PAST BELIEF

H: Then they are remiss in not sending
it to you because that money is taxable

M: I know it’s taxable, but I thought they
would wait until the end of the 30 months.

Sir.

CITING CONTRADICTORY | H: No sir....

AUTHORITY

R: That’s what they told me.

Figure 2: Classification and Examples of the Types of Rejections.

markers suggests that DENIAL is a type of COM-
PARISON relation (Horn, 1989; Groen et al., 2010;
Webber and Prasad, 2008). These observations,
among others, suggest a range of theoretically mo-
tivated features for the classification of rejection in
online dialogue, e.g. phrases such as I think, but, I
don’t see, and Can you. See Fig. 1.

Our aim is to test whether theoretical predic-
tions and topic-independent features motivated by
them can be used to recognize rejection in online
forums. We generalize our topic independent fea-
tures using a development set on the topic Evolu-
tion. We then test a rejection (disagreement) clas-
sifier trained on Evolution on 1757 posts covering
a collection of other topics, and compare our re-
sults to a ngram model trained on Evolution and
tested on the same test set. See Table 1.

We first describe our corpus in Sec. 2, and then
review previous work characterizing the theoreti-
cal basis of rejection in dialogue in Sec. 3. Sec. 4
describes our method for classifying rejections
and Sec. 5 presents our results, showing that our
theoretically motivated rejection cues are reliable
across topic. We show that cue words, polarity,
punctuation, denial and claim features motivated
by the theoretical literature provide a significant
improvement over a 50% baseline, and that all
of the theoretically motivated features combined
achieve 66% accuracy as compared to a unigram
accuracy of 60%. We delay reviewing previous
computational work rejection to Sec. 6 when we
can compare it with our own work.

2 Corpus

We utilize the publicly available Internet Ar-
gument Corpus (IAC), an annotated collec-
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[ Topic [ Agr [ DisAgr [ Total |
[ Evolution [ 460 ] 460 [ 920 |
Abortion 250 280 530
Climate Change 17 10 27
Communism vs. Capitalism 10 13 23
Death Penalty 15 19 34
Existence Of God 53 48 101
Gay Marriage 173 134 307
Gun Control 334 331 665
HealthCare 21 37 58
Marijuana Legalization 6 6 12
[ All Topics (test set) [ 879 ] 878 [ 1757 |

Table 1: Distribution of (Dis)Agreement by Topic.
The Evolution topic is for development and train-
ing. The test set of other topics is balanced overall,
but not by topic.

tion of 109,553 forum posts (11,216 discussion
threads)(Walker et al.,, 2012a). We use the
portion of the IAC containing dialogues from
On 4forums, a person
starts a discussion by posting a topic or a question
in a particular category, such as society, politics,
or religion. Forum participants can then post their
opinions, choosing whether to respond directly to
a previous post or to the top level topic (start a
new thread). Conversants may simply agree or dis-
agree with a previous post or they may provide a
reasoned argument.

http://4forums.com.

The corpus contains posts on topics such as
Abortion, Evolution, Existence of God, Gay Mar-
riage and Gun control along with a range of use-
ful annotations. First, there are annotations that
collapse different discussions into a single topic
for 14 topics. For example, the Evolution and
Gun Control topics include discussions initiated
with the range of titles in Table 2, which guaran-



First Post (P), Response (R)

l

Disagreements

l

Irresponsible, is one such word, that comes to mind.

P1: No I didn’t miss it, I was hoping you’d actually put forward an argument against what I said, not what you think I
said. See what I actually said was the tautology. Then make your argument. Note Post 30 He said evolution is a tautology.
I said that Darwin preferred a tautology to “Natural Selection” You may have mixed up who it is you're arguing against.
R1: I’m wondering. What do we call someone who debates feverishly on scientific theories, yet admittedly does not
understand the concepts they are arguing against? Is it productive to debate something that you don’t understand
the concepts of when it’s a fairly involved theory based on scientific evidence? What if you convinced someone NOT
to believe in it, but you did so using falsifiable reasons, since you aren’t an expert and might not know any better?

game for discussing the validity of creationism.

P2: What in Vishnu’s name does this have ANYTHING to do with evolution vs creation???
R2: Well, many have argued that if you don’t except a literal Genesis, you're damned. Perhaps not in this particular
thread, but the arguments are essentially the same. I believe that the theological implications of that position are fair

business in science.

P4: You have this backwards. The word theory was originally a scientific word, and then it was adapted into common
speech to mean a range of things not originally designated to that word. Words like evolve, gravity and congruent have
different meanings within the realm of science than they have outside. If you can’t appreciate the difference between
the definition of a word in the context of science as opposed to the context of common speech, then maybe you have no

R4: When it comes to all the examples that Behe had provided in both his first book, and his second book , it has been
shown to be able to evolve naturally. That means, in principle, IC systems can evolve. If you don’t believe so, bring forth
the I.C. system of your choice. To say ‘you don’t know all the answers’ is just the logical fallacy known as ’argument
from ignorance’. Behe brings a system up that he claims is IC. the pathway for evolution is discovered, and Behe trys
another one. How dishonest can you get? The concept is falsified.

PS: Well, Genesis has God making all the animals “and their kind”, and then when he’s done with that he makes humans.
So I would assume that humans don’t fit into the “kind” schema, or perhaps are a kind unto themselves........

RS5: : So we can’t base our definition of “kind” on mere appearances? I mean if we are going to put things into
categories and call the category “kind”, we should do this by common appearances. A penguin is in the same kind as a
hummingbird, but is a lobster in the same kind as an oyster? ........

Agreements

organization like the ACLU should be well aware of this.

P6: 1 think its nonsense interpretation developed by people who were afraid that if they fought for guns as valiantly as
they did for free speech, they wouldn’t receive any donations.
R6: I think you are entirely correct. From the page VOR linked: There is no evidence ANYWHERE that the second
amendment is a collective right. We have been over this multiple times, and the evidence simply does not exist, and an

question.
R7: Quite right. My mistake. Once again, quite right...

P7: Correction: If one isn’t a fundementalist, literal christian, jew or muslim, then marc considers them a atheist. He’s
never going to deal with the fact that he’s quite wrong on that subject. It’s obvious to everyone that he’s constantly
avoiding it even when asked point blank several times. A sign of argumental failure is constant avoidance of a simple

P8: thats pretty neat. Did they finish up the feeder?

R8: yeah, this is clearly the best thread on these forums in probably the past year....give us some more pics length)

should NOT use

P9: This is probably the most rational site in all of the creationist’s online arguments. Arguments we think creationists

R9: Thanks, DuoMax, for this link. How delightful to see here mention of this solid gesture, on the part of a major
creationist organization, in the direction of intellectual integrity..... .... Each time a Christian stands in the pulpit and pours
out poor argument, s/he loses ground for the faith. Thanks again.

Figure 3: Disagreements and Agreements from 4 forums . com. Theoretically motivated features are in

bold.

Evolution in school, Dinosaurs and Hu-
man Footprints, Can Evolution & Reli-
gion Coexist, Did Charles Darwin Re-
cant, Shrinking Sun, Bombardier beetle,
Moon Dust, Second Law of Thermody-
namics, Magnetic Field, Nebraska Man
Gun Control, Trigger Locks, Guns in the
Home, Right to Carry, Assault Weapons,
One gun a month, Gun Buy Back, Gun-
Seizure Laws, Plastic Guns, Does gun
ownership deter crime, Second Amend-
ment, Enforced Gun Control Laws?,
Gun Registration, Armor piercing bul-
lets, Background Checks at Gun Shows

Table 2: Discussions Mapped to the Evolution and
Gun Control Topics.

Evolution

Gun Control
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tees variation in the focus of the discussion even
within topic. The topics we use are in Table 1.
Each discussion is threaded so that we can iden-
tify direct responses. Discussions may have a tree-
like structure, so a post may have multiple di-
rect responses. In addition to the adjacency pairs
yielded by threading, 4forums also provides a
quote/response Q/R mechanism where a post may
include a quote of part or all of a previous post.
We do not use the Q/R pairs here.

The IAC also includes annotations collected via
Mechanical Turk on these dialogue pairs. There
are 20,000 pairs from threads of 3 posts P1,P2,P3
with annotations for (dis)agreement for pairs (P1,
P2) and (P2, P3). Agreement was a scalar judg-



ment on an 11 point scale [-5,5] implemented with
a slider. The annotators were also able to signal
uncertainty with a CAN’T TELL option. Each of
the pairs was annotated by 5-7 annotators, in re-
sponse to the annotation question Does the respon-
dent agree or disagree with the prior post?. Anno-
tators achieved high agreement on dis(agreement)
annotation with an « of 0.62. We used thresholds
of 1 and -1 on the mean agreement judgment to de-
termine agreement and disagreement respectively.
We omitted dialogue adjacency pairs with mean
annotator judgment in the (-1,1) range. Table 1
provides the distribution of topics for the 1757
posts in the test set.

3 Theories of Rejection in Dialogue

A common view of dialogue is that the conversa-
tional record is part of the COMMON GROUND of
the conversants. As conversants A and B partici-
pate in a dialogue, A and B communicate through
dialogue speech acts such as PROPOSALS, ASSER-
TIONS, ACCEPTANCES and REJECTIONS. If A
asserts a proposition ¢ and B accepts A’s asser-
tion, the ¢ becomes a mutual belief in the com-
mon ground. If B rejects A’s assertion or proposal,
the common ground remains as it was (Stalnaker,
1978). For conversants to remain coordinated
(Thomason, 1990), they must monitor whether
their utterances are accepted or rejected by their
conversational partners.

Computational models of dialogue also must
track what is in the common ground (Traum, 1994;
Stent, 2002). This would be simple if conversants
always explicitly indicated rejection with forms
such as [ reject your assertion. However recog-
nizing rejection typically relies on making infer-
ences. Horn categorizes rejections into: DENIAL
a straightforward negation of the other’s assertion;
LOGICAL CONTRADICTION following from logi-
cal inference; IMPLICIT DENIAL where B denies
a presupposition of A’s; and REFUSAL, also called
REJECTION where B refuses an offer or proposal
of A’s (Horn, 1989). See Fig. 2. All of Horn’s
forms can be identified as rejections by recogniz-
ing logical inconsistency either directly from what
was said, or via an inferential chain.

However subsequent work by Walker on the
Harry Gross Corpus (henceforth HGC) of advice-
giving dialogues (Pollack et al., 1982) demon-
strated that REJECTION IMPLICATURES as seen in
the 5th row of Fig. 2, are common in natural di-
alogue (Walker, 1996a). A number of similar ex-
amples can also be found in (Hirschberg, 1985).
Here, the proposition realized by the response fol-
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lows from the original assertion as an entailment
via existential generalization. Thus the REJEC-
TION IMPLICATURE is logically consistent with
the original assertion.

Walker argues that the fact that an implicature
can function as a rejection clearly indicates that
inference rules about what gets added to the com-
mon ground must have the same logical status as
implicatures, i.e. they must be default rules of
inference that can be defeated by context. She
then goes on to identify additional types of rejec-
tions in HGC that rely on detecting conflicts in
the default inferences triggered by the epistemic
inference rules used in speech act theory. Walker
uses a compressed version of rules from (Perrault,
1990; Appelt and Konolige, 1988), assuming that
conflicting defaults can arise between these in-
ferences and implicature inferences (Hirschberg,
1985). The first rule is given in 1:

(1) BELIEF TRANSFER RULE:
Say(A,B,p) — Bel (B,p)

The Belief Transfer Rule states that if one agent
A makes an assertion that p then by default another
agent B will come to believe that p. The second
rule is in 2:

(2) BELIEF PERSISTENCE RULE:
Bel (B,p,ty) — Bel (B,p,t1)

The Belief Persistence Rule states that if an
agent B believes p at time ty then by default agent
B still believes p at a later time t;. These rules pro-
vide the basis for inferring three additional types
of rejections:

e DENYING BELIEF TRANSFER: Agent B can
deny the consequent of the Belief Transfer
Rule by negatively evaluating A’s assertion or
expressing doubt as to its truth.
INCONSISTENT PAST BELIEF: Inferring that
B’s expression of an inconsistent past belief
is a type of rejection relies on detecting con-
flicting defaults with the Belief Transfer Rule
and the Belief Persistence Rule. The two be-
liefs may directly conflict, or the conflict may
arise via an inferential chain.

CITING CONTRADICTORY AUTHORITY: In-
ferring that citing a contradictory authority
is a type of rejection relies on recognizing
two inconsistent instantiations of the Belief
Transfer rule. For example, agent Al as-
serted p and agent A2 asserted —p, leaving
B in an inconsistent belief state caused by the
conflicting defaults generated by the alternate
instantiations of the Belief Transfer Rule.



Fig. 2 provides Walker’s examples of these
new types of rejection and Fig. 3 illustrates dis-
agreements and agreements in the IAC corpus.!
While we see many instances of the rejection
types in Fig. 2 in IAC, especially CITING CON-
TRADICTORY AUTHORITY and DENYING BELIEF
TRANSFER, we also find new types such as ad-
hominem attacks on the other speaker as the
source of particular propositions (e.g. R1in Fig. 3,
which would not have occurred in HGC talk show
context. Other cases that we have noted are a
different type of DENYING BELIEF TRANSFER,
which occurs when a previous speaker’s asserted
proposition is marked by the hearer as hypotheti-
cal using a conditional, e.g. If capital punishment
is a deterrent, then In future work we aim to
expand the taxonomy of rejections using IAC.

4 Empirical Method

Our primary hypothesis is that certain expres-
sions and phrases are reliable cues to the auto-
matic identification of the speech acts of REJEC-
TION and ACCEPTANCE, i.e. (dis)agreement, in-
dependently of the topic. We assume that it will
not always be possible to get annotated data for a
particular topic, given the ever-burgeoning range
of topics discussed online. We use the Evolu-
tion topic as our development set, and ask: given
(dis)agreement annotations for only one topic, is it
possible to develop features that perform well on
another arbitrary topic?

There is limited previous research on disagree-
ment, thus it is an open issue what types of fea-
tures might be useful. One line of previous work
suggests that various pragmatic features might
help (Galley et al., 2004). Another line suggests
that disagreement is subtype of the COMPARISON
(CONTRAST) discourse relation, in the Penn Dis-
course TreeBank taxonomy, suggesting that fea-
tures for identifying COMPARISON, such as polar-
ity and discourse cues might also be useful (Hahn
et al., 2006; Prasad et al., 2010; Louis et al., 2010).

We began by selecting and manually inspecting
460 agreements and 460 disagreements from the
Evolution topic, and extracting their most frequent
unigrams, bigrams and trigrams. This showed that
features suggested by theoretical work on rejec-
tion were indeed highly frequent: our aim was
to generalize what we observed in the Evolution
dataset and then test whether the generalized fea-
tures can distinguish agreements from disagree-
ments. We first observed that very few unigrams

'Since participants are not generally making plans to-
gether in these dialogues, we leave aside Walker’s classifi-
cation of rejections of proposals.
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were useful for disagreements, e.g. liar, no, don't,
while bigrams such as I don’t, How can, If I, how
could, show me seemed to be better indicators.
Furthermore, trigrams such as I don’t agree, how
can you, point is that, and I do not understand
are even stronger indicators of disagreement, but
of course these higher order ngrams are less fre-
quent and are more likely to contain topic-specific
words. In order to provide better generalization,
we generalized the ngrams that we observed, e.g.
an instance such as how can you would also result
in how can we and how can they being added to the
same feature set. We also generalized over hedges
and other categories of features on the basis of the
theoretical literature. The total set of features we
developed are grouped into the sets in Table 3 dis-
cussed in detail below.

Feature Description Examples
Agreement | Ngrams in- | right, yes, yeah, correct,
dicative of | accepted, thanks, good,
accepting agree, acknowledge
others claim.
Cue Words | Cues as Ngrams | oh, so, uh, yes, no, dont,
and their LIWC | cogmech, claim, i, yeah,
CogMech gen- | because, well, just, and,
eralizations you, you mean, i see, i
COGMECH
Denial Ngrams indica- | You don’t know, That
tive of denying | does not, I don’t think,
another’s claim | what is, This has noth-
ing, I don’t see, You
do not, do you mean,
I don’t know, we don’t
have, Problem with
that, I do not, Does not,
why do, But I don't,
how can
Hedges Unigrams, Im wondering, I am
bigrams, and | wondering, whatever,
trigrams  that | somewhat, may be,
include hedge | possibly, anyway, it
terms. seems to me, my view,
actually, my opinion,
essentially, somewhat,
my perspective, rather,
although,  really, 1
suppose, perhaps
Duration Sentence, word and post lengths
Polarity Means of positive and negative polarity
terms.
Punctuation | Counts of question marks and exclamation
points.

Table 3: Feature Sets, Descriptions, and Exam-
ples. The unigrams features are our baseline case;
these features are not theoretically motivated.

Unigrams. Results of previous work on stance
identification in argumentative discourse suggest
that a unigram baseline can be difficult to beat
(Thomas et al., 2006; Somasundaran and Wiebe,
2010). Thus we test our theoretically moti-
vated features against unfiltered unigrams and un-




igrams+bigrams as baselines.

Agreement and Denial. As described above we
used Evolution to manually develop generaliza-
tions of the observed unigrams, bigrams and tri-
grams that were consistent with theoretical pre-
dictions. We split the indicator features into two
categories Agreement and Denial. See Table 3.
Our manual analysis suggested that agreements
have few topic independent markers. Unigrams
such as agree correct and right were also present
in disagreements, and trigrams such as I agree
but, You may be correct however I do not agree,
I don’t agree were better indicators of disagree-
ment. Our agreement markers are thus a small
category where we check that the keywords agree,
correct and right are not preceded by a negation
marker and not followed by discourse markers
such as but, yet, or however. However, the denial
category at present has more than 300 ngrams ex-
tracted and generalized from the Evolution topic.
Pitler et al, (2009) also used ngrams consisting of
the first and last three words for recognition of the
PDTB COMPARISON relation. Other work on the
PDTB also suggests that DENIAL can be indicated
by contrast (Webber and Prasad, 2008).

Cue Words. Both psychological research on dis-
course processes (Fox Tree and Schrock, 1999;
Groen et al., 2010) and computational work on
agreement and discourse markers (Galley et al.,
2004; Louis et al., 2010) indicate that discourse
markers are strongly associated with particular
pragmatic functions such as stating a personal
opinion (Asher et al., 2008; Webber and Prasad,
2008). Based on manual inspection of the Evo-
lution devset we selected 18 items for the CUE
WORDS feature set, as in Table 3. Examples are
well in R2 and so and but in RS.

Durational Features. Brown and Levinson’s the-
ory of politeness would suggest that disagree-
ments are dispreferred responses and thus that the
length of the post could indicate disagreement; it
predicts that people will elaborate more and pro-
vide reasons and justifications for disagreement
(Brown and Levinson, 1987). Our durational fea-
tures measure the length of the utterance in terms
of characters, words and sentences.

Hedges. In Brown and Levinson’s theory of po-
liteness, hedges are one of many possible strate-
gies for mitigating a face-threatening act (Brown
and Levinson, 1987; Lakoff, 1973). Hedges can be
used to be deliberately vague or simply to soften
a claim. We see many examples of hedges in on-
line dialogue, e.g. the speaker of R2 in Fig. 3 uses
the hedges Perhaps and essentially, and I mean in
RS. Thus hedges are hypothesized to be useful
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feature for distinguishing (dis)agreement, yielding
the hedge features in Table 3.

Polarity. Work on discourse relations in the PDTB
also suggests that differences in polarity across
adjacent utterances might be an indicator of the
COMPARISON relation. In addition, Horn’s classes
of REJECTIONS shown in Fig. 2 all include mark-
ers of negation. Thus to capture the overall senti-
ment of the post we used the MPQA subjectivity
lexicon (Wiebe et al., 2003; Wilson et al., 2005).
Each word is POS tagged and then categorized as
strongly or weakly subjective. The positive po-
larity feature is the sum of the strongly subjective
words of positive polarity, and the negative polar-
ity feature represents the sum of strongly subjec-
tive words of negative polarity.

Punctuation. Another indication of DENYING
BELIEF TRANSFER rejections are the question
marks and exclamation marks that conversants fre-
quently use to express their disbelief and doubt
about another conversant’s claim. For example,
R1 and RS in Fig. 3 have a high frequency of ques-
tion marks.

5 Results

Our aim was to test how well we can distinguish
agreements and disagreements in IAC using clas-
sifiers trained with theoretically motivated fea-
tures. As described above, we developed our fea-
tures by manual inspection of (dis)agreements in
920 posts on the topic Evolution. We do not train
on a mixture of topics for any feature set, includ-
ing unigrams, because we assume that in general,
new topics are always arising so there will not be
annotated data for every topic. We evaluate the
performance of all types of features on classify-
ing (dis)agreements on other topics combined. We
do not report per-topic results because our test set
baseline accuracies vary a great deal by topic as do
the size of the topic sets. See Table 1.

[ Features | Random Forest | J48 |
ALL-TM 63.1 | 66.0
Unigram 56.6 | 59.8
Bigram 59.3 | 60.1

Table 4: Accuracies for Theoretically Motivated
Features (ALL-TM), Unigrams and Bigrams with
Random Forest and J48 Trees over a 50% base-
line. No interesting differences observed in preci-
sion and recall.

Table 3 summarizes our theoretically-motivaed
topic-independent features, and Table 4 compares
the accuracies of classifiers using these features to
unigrams and bigrams when we train on Evolu-



tion and then test on our mixed-topic test set, using
the Weka learners for Random forest and J48 Tree.
Although unigrams and unigram-+bigram achieves
approximately 60% accuracy over a 50% baseline,
paired t-tests on the result vectors show that the
differences in accuracies are statistically signifi-
cant when we compare ALL-TM features with un-
igrams and unigram-+bigrams: Random Forest (p
= .004) and J48 Trees (p < .0001).

N
Feats

Ngram Acc | Feats Selected

Uni 2K 62.5 | understand,  fail,  never,
nothing,  catholic, gene,
irrelevant, acceptable, show,

didn’t, geologist, creationist

Bigram|| 4k 62.7 ? you, do we, understand
that, ? just, really?, is based,
well said, ? did, can the, the
nature, the church, failed to,

then what

Table 5: Accuracy when fitting to test set for num-
ber of features selected for ngrams, with sample
features.

Moreover even if we optimize on the test set
by examining the variations in performance as a
function of the number of features selected, ALL-
TM still beats both unigram and unigram-+bigram,
when features are selected according to ranking by
Gain Ratio. ALL-TM is significantly more accu-
rate when compared to unigrams (p = .003) best
accuracy of 62.5 with 2000 features, and better
than unigram+bigram best accuracy of 62.7 for
4000 features (p = .007). See Table 5.

More interestingly though, if we look at what
features get selected ( Table 5), we see many fea-
tures reminiscent of our theoretically motivated
features. Features highly ranked by the Gain Ra-
tio were topic-independent cues for disagreement
such as understand, fail, nothing, never and Bi-
grams such as ? how, perhaps you, would you,
never said. However there were few high ranked
unigrams and bigrams for agreement. Also note
that topic specific cues such as gene, catholic, cre-
ationist, geologist and the church are selected over
any topic-independent cues for agreement. This
corroborates our manual construction of a com-
bined denial category with more than 300 words
and a very limited agreement category.

To test which features make the most difference,
we also conducted ablation experiments (Table 6),
as well as tests with individual features (Table 7).
Table 6 shows that the CUE WORDS (p = .0008)
and PUNCTUATION features (p = .01) have the
biggest impact on performance. The decrease in
performance when ablating agreement features is
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[ Ablated Feature [| Random Forest [ J48 |

No Agreement 62.2 | 65.0
No Cue Words 59.1 | 62.1
No Denial 63.3 | 66.0
No Duration 63.6 | 66.3
No Hedges 64.2 | 66.5
No Polarity 64.4 | 66.8
No Punctuation 60.3 | 61.6

Table 6: Accuracy when Ablating each Theoreti-
cally Motivated Feature with Random Forest and
J48 Trees over a 50% baseline .

not statistically significant (p = .20).

[ Feature [[ Acc | Prec [ Recall |
Agreement 54.4 .55 .54
Cue words 62.5 .63 .62
Denial 52.0 .54 .52
Duration 53.6 .54 .53
Hedges 50.4 Sl .50
Polarity 53.4 .53 .53
Punctuation 65.3 .65 .65

Table 7: Results for Individual Features for J48

Trees over a 50% baseline .

Since the J48 learner performs consistently bet-
ter, we restrict our comparison of individual fea-
tures in Table 7 to that learner. Table 7 shows
that PUNCTUATION and CUE WORDS features by
themselves provide significant performance im-
provements over the unigram baseline, and that
the POLARITY, AGREEMENT, DENIAL and DU-
RATION feature sets provide significant improve-
ments on their own over the majority class base-
line of 50%. A paired t-test shows these differ-
ences are significant at p =.02. To our surprise,
the HEDGE feature was not effective, and we plan
further refinements of it. These results support the
hypothesis that there are clearly markers for agree-
ment and disagreement that are suggested by the
theoretical literature and which are not topic spe-
cific.

6 Discussion and Future Work

We develop topic-independent features for classi-
fying (dis)agreement in online dialogue, and show
that we can beat an unfiltered unigram baseline
by 6%, and even beat the best feature-selection
ngram-based classifers fitted to the test set.
Features we didn’t use from previous work in-
clude word pairs as introduced by (Marcu and
Echihabi, 2002), and used subsequently by (Pitler
et al., 2009) and (Biran and Rambow, 2011). The
issue of whether word pairs are topic-dependent
has never been addressed, but the examples given
in previous work suggest that they may indicate
topic-specific comparisons. Previous work also



suggests that context might be helpful in recog-
nizing disagreement (Walker et al., 2012b), but we
did not test the effect of context.

The most similar work to our own trains a dis-
agreement classifier for Q/R response pairs in on-
line forums (Abbott et al., 2011). Their work used
ngrams, MPQA opinion words (Stoyanov et al.,
2005), LIWC (Pennebaker et al., 2001), and a dif-
ferent dataset (Q/R instead of P1,P2 datasets), and
does not aim to develop a classifier that works
well independently of topic. Their best accuracy
is about 68% for a feature set called BothLocal
for the JRip classifier using y? feature selection.
BothLocal includes unigrams, bigrams, trigrams,
LIWC, punctuation, cue words, dependency fea-
tures, generalized dependency features and utter-
ance length measures, and it is unclear whether
these features are specific to topic. It is also dif-
ficult to directly compare the results because they
do not report accuracies for individual feature sets
or ablated feature experiments. For example, their
unigram accuracy of 63% includes cue words, and
is reported for training and testing on a mixture of
topics without any held-out topics.

Other work on disagreement recognition in-
cludes that of (Wang et al., 2011) who de-
scribe conditional random field model for detect-
ing (dis)agreement between speakers in English
broadcast conversations. They use sampling and
prosodic features such as pause, duration and
speech rate on an unbalanced dataset. They re-
port an increase in F-measure of 4.5% for agree-
ment and 4.7% for disagreement over a baseline of
lexical, structural, and durational features. (Hahn
et al.,, 2006) show that a contrast classifier im-
proves the accuracy of dis(agreement) classifica-
tion in the ICSI meetings corpus, and that their re-
sults are less affected by imbalanced data. They
improve the F-measure to .755 over a baseline
SVM with F-measure .726. (Yin et al., 2012)
use sentiment, emotion and durational features for
(dis)agreement classification in online forums, and
they show that aggregating local positions over
posts yields 3 to 4% better performance than non-
aggregating baselines.

While recognizing (dis)agreement can be use-
ful in its own right, it has also been shown to
be useful for the identification of stance (Gawron
et al., 2012; Hassan et al., 2010; Thomas et al.,
2006; Bansal et al., 2008; Murakami and Ray-
mond, 2010; Agrawal et al.,, 2003). Work that
focuses on the social network structure of on-
line forums as a way to improve stance classifi-
cation has either assumed that adjacent posts al-
ways disagree, or used simple rules for identify-
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ing agreement based on patterns in the reply post
(Murakami and Raymond, 2010; Agrawal et al.,
2003). Previous work by Somasundaran & Wiebe
(2009, 2010) develops positive and negative argu-
ing features for the classification of stance, that
at least in motivation, resemble our denial fea-
tures . They show that arguing features are help-
ful in stance classification. Work by (Galley et
al., 2004) on detecting disagreement in meetings
corpora similarly shows that pragmatic features
are useful for detecting disagreement using mod-
els based on Bayesian Networks. (Walker et al.,
2012b) use a number of linguistic features such as
unigrams, bigrams, and repeated punctuation and
proposed a supervised model for stance classifica-
tion in online debates. Related work by (Hassan et
al., 2010) focuses on identifying the attitude of the
participants towards one another in online debates.
They relate the polarity of words to the second per-
son pronoun for classification, while related work
by (Abu-Jbara et al., 2012) uses the polarity of
expressions and named entity recognition to iden-
tify a subgroup of participants, where participants
within a subgroup are inclined to agree with one
another. Methods for stance classification in con-
gressional debates do not separately evaluate the
accuracy of (dis)agreement classification (Thomas
et al., 2006; Bansal et al., 2008; Awadallah et al.,
2010; Burfoot, 2008).

In future work, we plan to develop more de-
tailed patterns based on LIWC categories and syn-
tactic parses (Thelen and Riloff, 2002). For ex-
ample, an error analysis suggests that sometimes
two people mutually reject the proposal or claim
of a third person, e.g. How can they say that....
In such cases our classifier finds the disagreement
marker how can and classifies it as disagreement.
More detailed syntactic processing would allow us
to refine our patterns to identify particular classes
of targets such as third person vs. first person.
Similarly, here we extended patterns by hand, e.g.
generalizations over pronouns such as [ can’t, we
can’t, can you, can we. In future we aim to gen-
eralize such patterns automatically using tagsets.
We expect that more general patterns should im-
prove the accuracy of the topic-independent fea-
ture sets. We also plan to carry out further annota-
tion of the IAC corpus using the classes of rejec-
tions summarized in Fig. 2 to determine whether
there are forms for indicating each type that are
not represented by our features, and to determine
the frequency across a sample of our corpus of the
different types.
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Abstract

In this paper we focus on modeling
friendships between humans as a way of
working towards technology that can initiate
and sustain a lifelong relationship with users.
We do this by predicting friendship status in a
dyad using a set of automatically harvested
verbal and nonverbal features from videos of
the interaction of students in a peer tutoring
study. We propose a new computational
model used to model friendship status in our
data, based on a group sparse model (GSM)
with L2,1 norm which is designed to
accommodate the sparse and noisy properties
of the multi-channel features. Our GSM model
achieved the best owverall performance
compared to a non-sparse linear model (NLM)
and a regular sparse linear model (SLM), as
well as outperforming human raters. Dyadic
features, such as number and length of
conversational turns and mutual gaze, in
addition to low level features such as FO and
gaze at task, were found to be good predictors
of friendship status.

1

While significant advances have been made in
detecting the speech and nonverbal social signals
emitted by individuals (see Vinciarelli, Pantic &
Bourlard, 2009, for a review), and research has
addressed the social roles and states of
individuals in groups (see Gatica-Perez, 2009,
for a review), considerably less computational
work has focused on the automatic detection of
speech or nonverbal correlates of specifically
dyadic states, such as rapport. And yet rapport
has been shown to have important effects on
interactions as diverse as survey interviewing
(Berg, 1989), sales (Brooks, 1989), and health
(Harrigan et al., 1985). If we are to build
interactive systems that are successful, then, we
believe that the ability to build rapport with a
human user will be essential.

Rapport can be instantaneous and can also
build over time. Granovetter (1973) describes the
strength of an interpersonal “tie” as a function of
the time, emotional intensity, and reciprocity that
accumulates between people. These ties mediate
effects in myriad domains such as learning
(Azmitia & Montgomery, 1993) and healthcare
(Harrigan & Rosenthal, 1983).

Introduction and Related Work
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Accordingly, analysis of initial exchanges and
those after many years of interaction suggests
that the behavioral signals that indicate rapport
change over time. For example, in Tickle-
Degnen and Rosenthal’s highly cited model
(1990), rapport consists of mutual attention,
positivity, and coordination. High levels of
positivity between conversational partners are
common in the initial phases of a relationship,
but positivity has been shown to decline, without
a loss in rapport, as the number of interactions
increases. In fact, Ogan et al. (2012) gave
evidence that the use of playful rudeness
between friends during peer tutoring correlates to
greater learning. This leads to an associated
challenge of spoken dialogue system
development: creating systems that can develop
social ties, and increase rapport with the user
over repeated interactions to maximize beneficial
outcomes.

While little work has addressed automatic
detection, some prior work has addressed the
problem of emitting signals to build rapport in
dialogue and agent systems (Stronks et al., 2002;
Bickmore & Picard, 2005; Gratch et al., 2006;
Cassell et al., 2007; Bickmore et al., 2011), and
we turn to this research for what cues might be
important in rapport. The majority of this prior
work, however, has addressed harmony — or
instant rapport — rather than rapport over time.
For those systems that have addressed friendship
or the growth of rapport, most commonly the
number of interactions has been used as a meter
of relationship progression, instigating changes
in the dialogue system as the social odometer
scrolls onward (Cassell & Bickmore, 2003;
Vardoulakis et al., 2012). Counting the times a
dyad has interacted is a crude approximation of a
relationship state, however; being able to detect
the behavioral signals that people actually use to
indicate relationship status would be superior.

In our own prior work (Cassell et al.,2007) we
looked at particular hand-annotated nonverbal
signals (such as nodding and mutual gaze) as
operationalizations of rapport, and found that
friends and non-friends indeed show differing
distributions of each signal as a function of
relationship state. In the current study, we move
to the next step and automatically harvest a set of
multimodal dyadic and time contingent features
to identify those features that play a significant
role in predicting friendship state. A major
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challenge for predicting relational states such as
these is to construct a compact feature space that
captures only reliable rapport signals and also
generalizes across different users. To provide
strength to our model (as well as to fit the
multimodal nature of embodied conversational
agents), we look at both acoustic and visual
features. Such an approach takes advantage of

the fact that multimodal aspects of
communication are not redundant, but often
complementary (Cassell, 2000).

However, dyadic behaviors such as

conversational turns, mutual/non-mutual smile,
mutual/non-mutual gaze, and mutual/non-mutual
lean forward provide an additional challenge in
modeling; no matter how important, they appear
relatively rarely in conversational data. Thus
standard non-sparse linear models, normally
trained on high frequency factors, might assign
too much weight to low frequency (i.e., sparse)
features. In order to address issues of this sort
Yuan and Lin (2007) introduced the group
lasso. To address the sparse nature of our
features in real-world data and the noise that
occurs from different production sources, we
propose an extension to this genre of technique
in the form of a Group Sparse Model (GSM)
which enforces sparsity with a L2,1 norm instead
of the group lasso penalty (Chen, et al., 2011),
due to the relatively efficient optimization
process of L2,1 norms (Liu, et al., 2009). Unlike
a straightforward sparse linear model (SLM)
(Yang et al., 2010), which treats each feature
independently, GSMs group features which share
the same production source in the optimization
process. In the GSM linear model, the removal of
the assumption of independence between
features means that the penalty is on group rather
than individual features. Thus the model has
general robustness to noise, since grouping
features from the same production source can
increase the overall confidence of the feature
group.

Our contributions in this work, then, are three-
fold: we (1) designed and implemented a method
for automatic dyadic feature extraction which is
based on low level features, and which yields
strong predictive power of friendship status, (2)
propose a new Group Sparse Model (GSM) with
L2,1 norm, that deals with the noisy and sparse
nature of the feature sets, and (3) illuminate,
from this model, the nature of verbal and
nonverbal behavior between friends and non-
friends in a peer tutoring setting.

The remainder of the paper is organized as
follows. We first describe the data set and
introduce the features used in our experiments.
We then describe the performance of the three
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computational models we evaluated. Finally, we
discuss the contributions of different features to
friendship prediction and provide an error
analysis of our proposed model.

2 The Data Set

Figure 1: Camera View 1 and Camera View 2

We collected data from dyads of students
engaged in a reciprocal peer tutoring task. We
chose peer tutoring as it is a domain in which
friendship has been shown to have a positive
effect on student learning (see e.g. Ogan et al,
2012). In addition, tutoring systems that rely on
dialogue are common, and peer tutoring dialogue
systems are increasingly common. Thus, being
able to assess friendship state in this domain is a
useful step on the path to creating a peer tutoring
agent that can use rapport to increase learning
gains.

Each dyad consisted of two American English
speakers with a mean age of 13.3 years (range =
12 — 15). We collected data from 12 dyads, of
which 6 dyads were already friends. Dyads were
either both girls or both boys, and each condition
contained 3 boy dyads and 3 girl dyads.

Each dyad came to the lab for 3 sessions, with
an average interval between visits of 4.6 days
(SD = 3.1), totaling 36 sessions across all dyads.
Each session consisted of about 90 minutes of
interaction recorded from three camera views (a
frontal view of each participant and a side view
of the two participants). With close talk
microphones, we also recorded the participants’
speech in separate audio channels for the purpose
of automatic dyadic acoustic feature extraction.
The setting is shown in Figure 1.

Each session began with a short period of time
for participants to become acquainted. After that,
using a standard reciprocal tutoring procedure
(see Fantuzzo et al., 1989), participants tutored
each other on procedural and conceptual aspects
of an algebra topic in which both participants
were relatively novice. Order of seating and
assignment of tutoring roles (tutor or tutee) was
determined in the first session by alphabetical
order of participant name. Tutoring roles
alternated from that point on, such that both
participants had the opportunity to take on the
role of “expert” during each session. After a
period of individual study time to familiarize



themselves with the material, the first tutoring
period began and lasted approximately 25
minutes. This was followed by a 5 minute break,
after which students’ tutoring roles were reversed
for a second tutoring period of 25 minutes.
Finally, each student answered a survey about
the interaction.

The current study examines only the tutoring
sections of each session, which were divided into
30-second clips or “thin slices” (Ambady et al.,
2006). In total, the data points used for modeling
comprise 2259 clips from the 12 dyads.

3

In our analyses, low-level audio and visual
features were automatically extracted using three
off-the-shelf toolkits. Dyadic features, which are
a second order derivative of the low level
features, and which capture the interaction of two
participants, are also automatically produced.
Taken together, analysis of these features allows
us to determine if the verbal and nonverbal
behaviors of the participants index their
friendship status in any significant way.

Multimodal Information

3.1 Low Level Audio Features (LA)
Type # of Features
Prosodic Features

FO 72

Energy 38

Duration 154
Voice Quality Features

Jitter 68

Shimmer 34

Voicing 38
Spectral Features

MFCC 570
Total 974

Table 1: Acoustic Feature Groups

For acoustic feature extraction, a large set of
acoustic low-level descriptors (LLD) and
derivatives of LLDs combined with appropriate
statistical functionals, i.e., maxPos (the absolute
position of the maximum value in frames),
minPos (the absolute position of the minimum
value in frames), amean (The arithmetic mean of
the contour), etc., were extracted for each of the
split channel recordings. The “INTERSPEECH
2010 Paralinguistic Challenge Feature Set” in the
openSMILE toolkit (Schuller et al., 2012) was
used as our basic acoustic feature set. For
spectral features, Mel Spectrum and LSP were
excluded due to the possible overlap with
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MFCC. The set contained 974 features which
resulted from a base of 32 low-level descriptors
(LLD) with 32 corresponding delta coefficients,
and 21 functionals applied to each of these 68
LLD contours. In addition, 19 functionals were
applied to the 4 pitch-based LLD and their four
delta coefficient contours. Finally the number of
pitch onsets (pseudo syllables) and the total
duration of the input were included. The
dimension of each feature group is shown in
Table 1.

3.2 Low Level Vision Features (LV)
Type # of Features
Face Position Feature 10
38 Face Interest Points 114
Gaze Features 3
Face Direction Features 4
Mouth and Eye Openness 6
Smile Intensity 1
Discretized Smile 1
Total 139

Table 2: Vision Feature Groups

Since participants were facing the camera
directly most of the time, as seen in Fig 1,
current technology for facial tracking can
efficiently be applied to our dataset. OMRON’s
OKAO Vision System was used in face
detection, facial feature extraction, and basic face
related features extrapolation. For each frame,
the vision software returns a smile intensity (0-
100) and the gaze direction, using both
horizontal and vertical angles expressed in
degrees. Apart from gaze direction, the software
also provides information about head orientation:
horizontal, vertical, and roll (in or out). 38
additional face interest points, position and
confidence, were also extracted. These were
normalized to pixel coordinates, which turned
out to lead to quite noisy data, and hence to
diminished utility of these 38 points (in the
future we will consider normalizing to face
coordinates). We also calculated the openness of
the left eye, right eye, mouth, and the location of
the face. Details are shown in Table 2. Similar to
our audio feature extraction method, one static
feature vector per 30 second video clip was
produced. All the features were computed at the
same rate as the original videos: 30 Hz.
Altogether, 139 dimensions were extracted in
each frame from each camera view.

3.3 Dyadic Features (DF)

All of the features discussed above are low-level
acoustic and visual features, extracted with



respect to individual participants. While
individual behavior may index friendship state,
we posit that patterns of interaction will be more
effective. For example, prior research (Baker et
al., 2008) suggests that the number and length of
conversational turns (Cassell et al., 2007),
presence of mutual smiles and non-mutual smiles
(Prepin et al., 2012), mutual gaze and non-
mutual gaze (Nakano et al., 2010), as well as
posture shifting (Cassell, et al., 2001; Tickle-
Degnen & Rosenthal, 1990), are important
features to investigate in dyadic data. While
other features such as gestures and mutual pitch
shift may also play a role in indexing relationship
state, these are not yet a part of the dyadic
features we address here.

3.3.1 Number and Average
Conversational Turns

Length of

We recorded individual audio channels for each
participant, which makes the automatic
extraction of conversational turns possible. First,
we extracted intervals of silence with toolbox
SoX which produced speech chunks, and then
identified the speaker by comparing the speech
energy (loudness) in each audio channel, as
speech from each speaker is carried by the
other’s microphone. After that we combined the
speech chunks and speaker ID to approximate
conversational turns. The approximation quality
is not perfect, given the variability of the audio
recording, but noise can be mediated during
model building.

3.3.2 Mutual Smile and Non Mutual Smile

Prepin et al. (2012) describe the role of mutual
smiles (smiles that occur during the same time
period) in “stance alignment” and make the point
that interactional alignment of this behavior
reflects synchronization of internal states. Such
synchrony predicts mutual understanding and
increased quality of intera