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Introduction

Welcome to the SIGDIAL 2013 Conference, the 14th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. The conference is held in Metz, France, August 22-24, 2013, and is
co-located with the 14th Annual Conference of the International Speech Communication Association
(INTERSPEECH).

We received a record 115 submissions. Submissions were received from 24 different countries around
the world, including countries in Asia (24 submissions), Australia/New Zealand (2), Europe (49), North
America (37), and South America (3). Of the 115 submissions, 63 were long paper submissions, 35 short
paper submissions, and 17 demonstration submissions.

All papers received 3 reviews, and demonstrations 2 reviews. The members of the Program Committee
did a superb job in reviewing the submitted papers. We thank them for their advice in selecting the
accepted papers and for helping to maintain the high quality of the program. In line with the SIGDIAL
tradition, our aim has been to create a balanced program that could accommodate as many favorably
rated papers as possible. Of the 63 long paper submissions, 40 were accepted: 26 were accepted as long
papers for oral presentation, 5 were accepted as long papers for poster presentation, and 9 were accepted
as short papers for poster presentation. Of the 35 short paper submissions, 17 were accepted for poster
presentation, for a total of 31 posters. Of the 17 demonstration submissions, 14 were accepted. In light
of the record number of papers and demonstrations, this year SIGDIAL runs 2.5 days, rather than 2 days
as had been the convention for the past few meetings.

SIGDIAL continues to serve as a publication venue for research that spans many aspects of discourse and
dialogue. This year, the program contained oral presentation sessions and poster papers on discourse,
semantics, generation, situated and multi-modal dialogue, dialogue system control and evaluation,
models of dialogue and spoken discourse, speech processing technology in dialogue, and dialogue state
tracking, as well as on the SIGDIAL 2013 special theme on “Discourse and Dialogue in Social Media”.
SIGDIAL 2013 also hosted results from the “Dialogue State Tracking Challenge”, organized by Jason
D. Williams, Antoine Raux, Deepak Ramachandran, and Alan Black. Papers related to this challenge
were submitted and reviewed as normal SIGDIAL papers, with 9 being accepted.

We particularly thank the two keynote speakers for their contributions to research on discourse and dialog
systems: Bonnie Webber (University of Edinburgh) and Jerome Bellegarda (Apple Inc).

We thank Kallirroi Georgila, Mentoring Chair for SIGDIAL 2013. The goal of mentoring is to assist
authors of papers that contain innovative ideas to improve their quality regarding English language usage
or paper organization. This year, 7 of the accepted papers were mentored. We thank the Program
Committee members who volunteered to serve as mentors: Ron Artstein, Heriberto Cuayáhuitl, Kallirroi
Georgila, Andrei Popescu-Belis, Matthew Purver, Carolyn Penstein Rosé, and Amanda Stent.

We extend special thanks to Olivier Pietquin, the local arrangements chair, and his local arrangements
team of Calogero Bomba, Danièle Cebe, Jérémy Fix, Thérèse Fressengeas, Matthieu Geist, Sébastien
Van Luchène, Claudine Mercier, Nathalie Ruch, and Chantal Sabbagh. SIGDIAL 2013 would not
have been possible without Olivier, who worked tirelessly to handle a seemingly unending stream of
details for the local arrangements, from organizing the venue, handling registration, arranging student
accommodation, planning video recording, helping individual participants navigate public transport
in France, and more. We also thank the student volunteers for on-site assistance. Thanks to Casey
Kennington for preparing the USB drives with the proceedings.

We thank Amanda Stent, Sponsorships Chair, for recruiting and liaising with our conference sponsors.
The sponsorship program enables valuable aspects of the program, such as the invited speakers,
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conference reception and dinner, and best paper awards. We gratefully acknowledge the support of our
sponsors, including Amazon, Apple, AT&T, Heidelberg Institute for Theoretical Studies (HITS), Honda
Research Institute (HRI), La Région Lorraine, Microsoft, Nuance, Samsung, and SUPELEC. We also
thank Priscilla Rasmussen at the ACL for handling the financial aspects of sponsorship for SIGDIAL
2013.

We gratefully acknowledge SoftConf for use of the START conference management system.

We also thank the SIGdial board, especially officers Tim Paek, Amanda Stent, and Kristiina Jokinen, for
their advice and support. In particular we thank Amanda Stent for providing continuity, as a program
chair for SIGDIAL 2012.

Finally, we thank all the authors of the papers in this volume, and all the conference participants for
making this event such a great opportunity for new research in dialogue and discourse.

Maxine Eskenazi and Michael Strube
General Co-Chairs

Barbara Di Eugenio and Jason D. Williams
Technical Program Co-Chairs
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Open-ended, Extensible System Utterances Are Preferred, Even If They Require Filled Pauses
Timo Baumann and David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

A Four-Participant Group Facilitation Framework for Conversational Robots
Yoichi Matsuyama, Iwao Akiba, Akihiro Saito and Tetsunori Kobayashi . . . . . . . . . . . . . . . . . . . . 284

Tacit Social Contracts for Wheelchairs
Daniel Couto Vale and Vivien Mast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

Laugher and Topic Transition in Multiparty Conversation
Emer Gilmartin, Francesca Bonin, Carl Vogel and Nick Campbell . . . . . . . . . . . . . . . . . . . . . . . . . . 304

IMHO: An Exploratory Study of Hedging in Web Forums
Liliana Mamani Sanchez and Carl Vogel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Impact of ASR N-Best Information on Bayesian Dialogue Act Recognition
Heriberto Cuayáhuitl, Nina Dethlefs, Helen Hastie and Oliver Lemon . . . . . . . . . . . . . . . . . . . . . . . 314

Investigating speaker gaze and pointing behaviour in human-computer interaction with the mint.tools
collection

Spyros Kousidis, Casey Kennington and David Schlangen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

In-Context Evaluation of Unsupervised Dialogue Act Models for Tutorial Dialogue
Aysu Ezen-Can and Kristy Boyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Spoken Dialog Systems for Automated Survey Interviewing
Michael Johnston, Patrick Ehlen, Frederick G. Conrad, Michael F. Schober, Christopher Antoun,

Stefanie Fail, Andrew Hupp, Lucas Vickers, Huiying Yan and Chan Zhang . . . . . . . . . . . . . . . . . . . . . . . 329

xiii



Open-domain Utterance Generation for Conversational Dialogue Systems using Web-scale Dependency
Structures

Hiroaki Sugiyama, Toyomi Meguro, Ryuichiro Higashinaka and Yasuhiro Minami . . . . . . . . . . . 334

Evaluating State Representations for Reinforcement Learning of Turn-Taking Policies in Tutorial Dia-
logue

Christopher Mitchell, Kristy Boyer and James Lester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

A Semi-supervised Approach for Natural Language Call Routing
Tatiana Gasanova, Eugene Zhukov, Roman Sergienko, Eugene Semenkin and Wolfgang Minker344

Counseling Dialog System with 5W1H Extraction
Sangdo Han, Kyusong Lee, Donghyeon Lee and Gary Geunbae Lee . . . . . . . . . . . . . . . . . . . . . . . . 349

Integration and test environment for an in-vehicle dialogue system in the SIMSI project
Staffan Larsson, Sebastian Berlin, Anders Eliasson and Fredrik Kronlid . . . . . . . . . . . . . . . . . . . . . 354

Weakly and Strongly Constrained Dialogues for Language Learning
Claire Gardent, Alejandra Lorenzo, Laura Perez-Beltrachini and Lina Rojas-Barahona . . . . . . . 357

Open-Domain Information Access with Talking Robots
Kristiina Jokinen and Graham Wilcock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Demonstration of the EmoteWizard of Oz Interface for Empathic Robotic Tutors
Shweta Bhargava, Srinivasan Janarthanam, Helen Hastie, Amol Deshmukh, Ruth Aylett, Lee Cor-

rigan and Ginevra Castellano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

The Map Task Dialogue System: A Test-bed for Modelling Human-Like Dialogue
Raveesh Meena, Gabriel Skantze and Joakim Gustafson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

A Robotic Agent in a Virtual Environment that Performs Situated Incremental Understanding of Naviga-
tional Utterances

Takashi Yamauchi, Mikio Nakano and Kotaro Funakoshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Roundtable: An Online Framework for Building Web-based Conversational Agents
Eric Forbell, Nicolai Kalisch, Fabrizio Morbini, Kelly Christoffersen, Kenji Sagae, David Traum

and Albert A. Rizzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

A Data-driven Model for Timing Feedback in a Map Task Dialogue System
Raveesh Meena, Gabriel Skantze and Joakim Gustafson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Continuously Predicting and Processing Barge-in During a Live Spoken Dialogue Task
Ethan Selfridge, Iker Arizmendi, Peter Heeman and Jason Williams . . . . . . . . . . . . . . . . . . . . . . . . 384

Which ASR should I choose for my dialogue system?
Fabrizio Morbini, Kartik Audhkhasi, Kenji Sagae, Ron Artstein, Dogan Can, Panayiotis Georgiou,

Shri Narayanan, Anton Leuski and David Traum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

The Dialog State Tracking Challenge
Jason Williams, Antoine Raux, Deepak Ramachandran and Alan Black . . . . . . . . . . . . . . . . . . . . . 404

Recipe For Building Robust Spoken Dialog State Trackers: Dialog State Tracking Challenge System
Description

Sungjin Lee and Maxine Eskenazi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

xiv



A Simple and Generic Belief Tracking Mechanism for the Dialog State Tracking Challenge: On the
believability of observed information

Zhuoran Wang and Oliver Lemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Multi-domain learning and generalization in dialog state tracking
Jason Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Structured Discriminative Model For Dialog State Tracking
Sungjin Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Comparison of Bayesian Discriminative and Generative Models for Dialogue State Tracking
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It is generally accepted that a discourse connective expresses a semantic
and/or pragmatic relation between its matrix sentence or clause and some-
thing in the previous discourse. Usually the sense of this relation is expressed
as a label, often within a hierarchy of sense labels. But the meaning of these
labels may vary from system to system, and the same connective may be as-
signed different labels in different systems. Given this, we might learn more
and make better predictions if (i) sense labels were associated with (some
of) their entailments and (ii) connectives were characterized in terms of both
their formal properties and their use conditions. I’ll give examples of both.

The above-mentioned predictions tie in with an interesting property of
Penn Discourse TreeBank annotation. Annotators were allowed to assign
multiple sense labels to a single connective, to imply that all the senses held
simultaneously. For those cases where adjacent sentences lacked an inter-
vening connective, annotators were instructed to try to insert one or more
connectives that (together) expressed the relation(s) between the sentences.
Here too, in many cases, annotators inserted a single connective to which
they assigned multiple meanings, Other times they inserted multiple connec-
tives to convey the relation(s) they took as being expressed. Some of this
will be shown to make more sense in terms of the entailments and formal
properties of the connectives than in terms of any sense labels.

I’ll close by trying to distinguish discourse connectives that are associated
with coordinating or subordinating relations between sentences or clauses,
which is an feature of discourse structure, from those connectives that simply
convey additional relevant semantic or pragmatic content.
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Abstract

Several discourse annotated corpora now ex-
ist for NLP. But they use different, not eas-
ily comparable annotation schemes: are the
structures these schemes describe incompati-
ble, incomparable, or do they share interpre-
tations? In this paper, we relate three types
of discourse annotation used in corpora or dis-
course parsing: (i) RST, (ii) SDRT, and (iii)
dependency tree structures. We offer a com-
mon language in which their structures can be
defined and furnished a range of interpreta-
tions. We define translations between RST and
DT preserving these interpretations, and intro-
duce a similarity measure for discourse repre-
sentations in these frameworks. This will en-
able researchers to exploit different types of
discourse annotated data for automated tasks.

1 Introduction
Computer scientists and linguists now largely agree
that representing discourse structure as a hierarchical
relational structure over discourse units linked by dis-
course relations is appropriate to account for a variety
of interpretative tasks. There is also some agreement
over the taxonomy of discourse relations —almost all
current theories include expressions that refer to rela-
tions like Elaboration, Explanation, Result, Narration,
Contrast, Attribution. Sanders, Spooren, and Noord-
man 1992; Bateman and Rondhuis 1997 discuss corre-
spondences between different taxonomies.

Different theories, however, assume different sets of
constraints that govern these representations; some ad-
vocate trees: RST Mann and Thompson 1987, DLTAG
Webber et al. 1999; others, graphs of different sorts:
SDRT Asher and Lascarides 2003, Graphbank Wolf
and Gibson 2005. Consider:

(1) [“he was a very aggressive firefighter.]C1 [he
loved the work he was in,”]C2 [said acting fire
chief Lary Garcia.]C3 . [”He couldn’t be bested
in terms of his willingness and his ability to do
something to help you survive.”]C4 (from Egg
and Redeker 2010)

Using RST, Egg and Redeker 2010 provide the tree an-
notated with nuclearity features for this example (given
by the linear encoding in (s1)), while SDRT provides

∗This research was supported by ERC grant 269427.

a different kind of structure (s2). Dependency trees
(DTs), similar to syntactic dependency trees and used
in Muller et al. 2012 for automated parsing, give yet an-
other representation (s3). Elab stands for elaboration,
Attr for attribution, and Cont for continuation.

Elab1(Attr(Elab2(C1N ,C2S )N ,C3S )N ,C4S ) (s1)

Attr(π,C3) ∧ π :Elab(C1, π1) ∧ π1 :Cont(C2,C4) (s2)
Elab1(C1,C2) ∧ Attr(C1,C3) ∧ Elab(C1,C4) (s3)

Several corpora now exist annotated with such struc-
tures: RSTTB Carlson, Marcu, and Okurowski 2002,
Discor Baldridge, Asher, and Hunter 2007, Graph-
Bank1. But how exactly do these annotations compare?
In the illustrative example chosen and for the relation
types they agree on (Elaboration and Attribution), dif-
ferent annotation models and theoretical frameworks
invoke different numbers of instances of these relations
and assign the instances different arguments or differ-
ent scopes, at least on the surface. In this paper we de-
velop a method of comparing the scopes of relations in
different types of structures by developing a notion of
interpretation shared between different structures. This
interpretation specifies the set of possible scopes of re-
lations compatible with a given structure. This theoret-
ical work is important for furthering empirical research
on discourse. Discourse annotations are expensive. It
behooves researchers to use as much data as they can,
annotated in several formalisms, while pursuing pre-
diction or evaluation in their chosen theory. This paper
provides a theoretical basis to do this.

What a given structure expresses exactly is often not
clear; some discourse theories are not completely for-
malized or lack a worked out semantics. Neverthe-
less, in all of them rhetorical relations have semantic
consequences bearing on tasks like text summarization,
textual entailment, anaphora resolution, as well as the
temporal, spatial and thematic organization of a text
Hobbs, Stickel, and Martin 1993; Kehler 2002; Asher
1993; Lascarides and Asher 1993; Hobbs, Stickel, and
Martin 1993; Hitzeman, Moens, and Grover 1995, inter
alia. Theories like SDRT or Polanyi et al. 2004 adopt a
conception of discourse structure as logical form. Dis-
course structures are like logical formulae and relations

1The Penn Discourse Treebank Prasad et al. 2008 could
also be considered as a corpus with partial dependency struc-
tures.
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function like logical operators on the meaning of their
arguments. Hence their exact scope has great semantic
impact on the phenomena we have mentioned, in ex-
actly the way the relative scope of quantifiers make a
great semantic difference in first order logic. By con-
centrating on exact meaning representations, however,
the syntax-semantics interface becomes quite complex:
as happens with quantifiers at the intra sentential level,
discourse relations might semantically require a scope
that is, at least a priori, not determined by syntactic
considerations alone and violates surface order (see s2).

Other theories like Polanyi’s Linguistic Discourse
Model (LDM) of Polanyi 1985; Polanyi and Scha 1984,
and DLTAG Webber et al. 1999 explicitly adopt a
syntactic point of view, and RST with strongly con-
strained (tree-shaped) structures is subject to parsing
approaches duVerle and Prendinger 2009; Sagae 2009;
Subba and Di Eugenio 2009 that adhere to the syntac-
tic approach in adopting decoding strategies of syntac-
tic parsing. In such theories, discourse structure repre-
sentations, subject to syntactic constraints (e.g. domi-
nance of spans of text one over another) respect surface
order but do not always and unproblematically yield a
semantic interpretation that fits intuitions. According
to Marcu 1996, an RST tree is not by itself sufficient to
generate desired predictions; he employs the nuclearity
principle, NP, as an additional interpretation principle
on scopes of relations.

We focus on two theories: RST, which offers the
model for the annotations of the RST treebank Carl-
son, Marcu, and Okurowski 2002 and the Potsdam
commentary corpus Stede 2004, and on SDRT, which
counts several small corpora annotated with semantic
scopes, Discor Baldridge, Asher, and Hunter 2007 and
Annodis Afantenos et al. 2012. We describe these the-
ories in section 2. We will also compare these two the-
ories to dependency tree representations of discourse
Muller et al. 2012. Section 3 introduces a language for
describing semantics scopes of relations that is power-
ful enough to: i) compare the expressiveness (in terms
of what different scopes can be expressed) of the dif-
ferent formalisms considered; ii) give a formal target
language that will provide comparable interpretations
of the different structures at stake. Section 4 discusses
Marcu’s nuclearity principle and proposes an alterna-
tive way to interpret an RST tree as a set of different
possible scopes expressed in our language. Section 5
provides intertranslability results between the different
formalisms. Section 6 defines a measure of similarity
over discourse structures in different formalisms.

2 Discourse formalisms
These formalisms we introduce here all require the in-
put text to be segmented into elementary units (EDUs).
The definition of what an EDU is varies slightly with
the formalism, but roughly corresponds to the clause
level in RST, SDRT and other theories. We assume a
segmentation common to the different formalisms and

use examples with a non controversial and intuitive
segmentation.

Rhetorical Structure Theory (RST), the theory un-
derlying the RST-Treebank is the most used corpus for
discourse parsing, cf. duVerle and Prendinger 2009,
Subba and Di Eugenio 2009, inter alia.

In its Mann and Thompson 1987 formulation, RST
builds a descriptive tree for the discourse by the recur-
sive application of schemata in a bottom-up procedure.
Each schema application ideally reflects the most plau-
sible relation the writer intended between two contigu-
ous spans of text, as well as hierarchical information
about the arguments of the relation, distinguishing be-
tween nuclei as essential arguments of a relation and
satellites as more contingent parts. The set of RS Trees
is inductively defined as follows:

1- An EDU is a RS Tree.
2- if R is a nucleus-statellite relation symbol, s1 and

s2 are both RS Trees with contiguous spans (the left-
most leaf in s2 is textually located right after the right-
most one in s1), and 〈a1, a2〉 ∈ {〈N, S 〉; 〈S ,N〉} then
R(t1 a1, t2 a2) is an RS Tree.

3- if R is a multinuclear relation symbol and
〈s1, . . . , sn〉 are n RS Trees with contiguous spans then
R(s1 N, . . . , sn N) is an RS Tree.

Following Mann and Thompson 1987 a complete RS
tree makes explicit the content the author intended to
communicate. RS Trees are graphically represented
Marcu 1996 with intermediate nodes labelled with re-
lation names, leaves with symbols referring to EDUs,
and edges with nucleus/satellite distinctions.

Segmented Discourse Representation Theory
(SDRT), our second case-study theory, inherits a
framework from dynamic semantics and enriches
it with rhetorical relations. The set of SDRSs is
inductively defined as follows:

Assume a set of rhetorical relations R, distinguished
between coordinating and subordinating relations.

- Any EDU is an SDRS.
- Any Complex Discourse Unit (CDU) is a SDRS.
- a CDU is an acyclic labelled graph (A, E) where

every node is a discourse unit (DU) or SDRS and each
labelled edge is a discourse relation such that:

(i) every node is connected to some other node;
(ii) no two nodes are linked by subordinating and co-

ordinating relations,
(iii) given EDUs a1, . . . , an+1 in their textual order

that yield a CDU (A, E) = G, each EDU a j+1 j < n is
linked either: (a) to nodes on the right frontier of the
CDU G∗ a subgraph of G constructed from a1, . . . , a j;
or (b) to one or more nodes in G′ = (A′,G′), a subgraph
of G, which linked to one or more nodes on the right
frontier of the graph G∗, and where G′ is constructed
from a subset of a j+2, . . . an.

The right frontier of a graph G consists of the nodes
a that are not the left arguments to any coordinating
relation and for which if any node b is linked to some
node dominating a, then there is a path of subordinating
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relations from b to a.
A Segmented Discourse Representation Structure

(SDRS), is assigned a recursively computed meaning
in terms of context-change potential (relation between
pairs of 〈 world, assignation function 〉) in the tradi-
tion of dynamic semantics. The semantics of a complex
constituent is compositionally defined from the seman-
tics of rhetorical relations and the interpretation of its
subconstituents. In the base case of an EDU, the se-
mantics is given in dynamic semantics.

We also consider dependency trees (DTs). Muller
et al. 2012 derive DTs from the SDRSs of the ANN-
ODIS corpus to get a reduced search space, simplify-
ing automated discourse parsing. A DT is an SDRS
in which there are no CDUs and there is a unique arc
between any two nodes. Muller et al. 2012 provide
a procedure from SDRSs to DTs, which we slightly
modify to respect the Frontier Contraint that they use.
ζ works in a bottom-up fashion replacing every CDU
X that is an argument of a rhetorical relation in γ by
their top-most immediate sub-constituent which do not
appear on the right of any relation in X, or distributing
the top relation when necessary to preserve projectivity.
To give a simple example: ζ(R([R′(a, [R′′(b, c)])], d)) =

ζ(R([R′(a, b) ∧ R′′(b, c)], d)) = R(a, d) ∧ R′(a, b) ∧
R′′(b, c). (1) provides a more complicated example we
discuss in Section 6).

3 Describing the scope of relations
We provide here a language expressive and general
enough to express the structures of the 3 theories. All
our case-study theories involve structures described by
a list of rhetorical relations and their arguments. Two
things may vary: first, the nature of the arguments.
SDRT for instance, introduces complex constituents

as arguments of relations (e.g.
{
π : Rsubord(b, c)
Rsubord(a, π) ),

which finds a counterpart within RS Trees, where a
relation may directly appear as argument of another
(R(aN ,R(bN , cS )S )) but not within dependency trees.
Second, the set of constraints that restrict the possi-
ble lists of such relations can vary across theories (e.g.
right frontier, or requirement for a tree structure).

To deal with the first point above, we remark that
it suffices to list, for each instance of a discourse rela-
tion, the set of elementary constituents that belong to its
left and right scope in order to express the three kinds
of structures. We do this in a way that an isomorphic
structure can always be recovered. Models of our com-
mon language will be a list of relation instances and el-
ementary constituents, together with a set of predicates
stating what is in the scope of what. As for the second
point, we axiomatize each constraint in our common
language, thereby describing each of the 3 types of dis-
course structures as a theory in our language.

Our language contains only binary relations. Among
discourse formalisms, only RST makes serious (and
empirical) use of n−ary discourse relations. Neverthe-

less, such RST structures are expressible in our frame-
work, if we assume certain semantic equivalences.
RST allows for two cases of non-binary trees: (i) nu-
cleus with n satellites, each one linked to the nucleus
by some relation Rn. Such a structure is semantically
equivalent to the conjunction of n-binary relations Rn

between the nucleus and the nth satellite, which is ex-
pressible in our framework. (ii) RST also allows for n-
ary multinuclear relations such as List and Sequence. In
our understanding, multinuclear relations R(a1, . . . an),
essentially serve a purpose of expressiveness, and such
an n-ary tree is an equivalent to the split non-tree
shaped structure R(a1, a2) ∧ R(a2, a3) . . .R(a(n−1), an).
This seems clear for the Sequence relation, which
states that a1 . . . an are in temporal sequence and can
be equivalently formulated as “each ai precedes ai+1”.
This might appear less obvious for the List relation.
The semantics (as it appears on the RST website http:
//www.sfu.ca/rst/) of this relation requires the ai to
be ”comparable”, and as far as this is a transitive prop-
erty, we can split the relation into a set of binary ones.

Formally, our scope language Lscopes is a fragment of
that of monadic second order logic with two sorts of in-
dividuals: relation instances (i), and elementary consti-
tuants (l). Below, we assume R is the set of all relation
names (elaboration, narration, justification, . . . ).

Definition 1 (Scoping language). Let S be the set {i, l}.
The set of primitive, disjoint types of Lscopes consists of
i, l and t (type of formulae). For each of the types in
S , we have a countable set of variable symbols Vi (Vl).
Two additional countable sets of variable symbols V〈i,t〉
and V〈l,t〉 range over sets of individuals. These four sets
of variable symbols are pairwise disjoint.

The alphabet of our language is constituted by Vi, Vs,
a set of predicates, equality, connector and quantifier
symbols. The set of predicate symbols is as follows:

1) For each relation symbol r in R, LR is a unary
predicate of type 〈i, t〉—i.e., LR : 〈i, t〉 .

2) unary predicates, sub, coord and sub−1 : 〈i, t〉.
3) binary predicates ∈l and ∈r : 〈i, l, t〉.
4) two equality relations, =s : 〈s, s, t〉 for s ∈ {i, l}.
Logical connectors, and quantifiers are as usual.

The sets of terms Γi,Γl and Γt are recursively defined:
1. Vi ⊆ Γi, Varl ⊆ Γl. 2. For v ∈ Vs,t, v : 〈s, t〉. 3. For
each symbol σ of type 〈u1, . . . , un〉 in the alphabet, for
all (t1, . . . , tn−1) ∈ Γu1×· · ·×Γun−1, σ[t1, . . . , tn−1] ∈ Γun .
Γt is the set of well formed formulae of the scope lan-
guage.

The predicates ∈l and ∈r take a relation instance r of
type i and a elementary constituent x of type l as argu-
ments. Intuitively, they mean that x has to be included
in the left (for ∈l) or right (for ∈r) scope of r. For each
relation symbol R such as justification or elaboration,
the predicate LR takes a relation instance r has argu-
ment and states that r is an instance of the rhetorical re-
lation R. Predicates sub, coord and sub−1 apply to a re-
lation instance r, respectively specifying that r’s left ar-
gument hierarchically dominate its right argument, that
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both are of equal hierarchical importance, or that the
left one is subordinate to the right one.

Definition 2 (Scope structure and Interpretation).
A scope structure is an Lscopes-structure M =

〈Di,Dl, |.|
M〉. Di and Dl are disjoint sets of individu-

als for the sorts i and l respectively, and |.|M assigns to
each predicate symbol P of type 〈u1, . . . , un, t〉 a func-
tion |.|P : Du1×· · ·×Dun 7→ {0, 1}. Variables of type 〈i, t〉
are assigned subsets of Di and similarly for variables of
type 〈l, t〉, The predicates =i and =s are interpreted as
equality over Di and Dl respectively.

The interpretation ~·�Mv of a formula φ ∈ ΦS is the
standard interpretation of a monadic second order for-
mula w.r.t to a model and a valuation (interpretation of
first order quantifiers and connectors is as usual, quan-
tification over sets is over all sets of individuals). Va-
lidity |= also follows the standard definition.

These scope structures offer a common framework
for different discourse formalisms. Given one of the
three formalisms, we say that two structures S 1 and S 2
are equivalent iff there is an encoding from one struc-
ture into a scoped structure or set of scoped structures
and a decoding back from the scoped structure or set of
scoped structures into S 2

Fact 1. One can define two algorithms I and E such
that:

• from a given structure s which is a RS Tree, a
SDRS or a DT, I computes a scope structure I(s).

• given such a computed structure, E allow to re-
trieve the original structure s (E(I(s)) = s).

RST Encoding and Decoding To flesh out I and E
for RST, we need to define dominance. Set lArgs(r) =

{e ∈ Dl | (r, e) ∈ |∈l|
M}; rArgs(r) is defined analogously

(where ∈r replaces ∈l). The left and right dominance
relations vl and vr are defined as follows: r vl r′ iff
(Args(r) ⊆ lArgs(r′)).
- r vl r′ ↔ ∀z : l((z ∈l r)∨ z ∈r r))→ z ∈l r′) with r vr r′

defined analogously.
Dominance v is: v=vl ∪ vr.
- lArgs(r, X)↔∀z : l(z ∈l r) ↔ z ∈ X), with rArgs(r, X)
similar and
-Args(r, X)↔ ∀z : l((z ∈l r) ∨ z ∈r r))↔ z ∈ X).

The NS, NN and NS schemes of RST will be re-
spectively encoded by the predicates sub, coord and
sub−1. We proceed recursively. If t is an EDU e, re-
turn Mt = 〈Di = ∅,Dl = {e}, ε〉 where ε is the inter-
pretation that assigns the empty set to each predicate
symbol. If the root of t is a binary node instantiating
a relation R(t1a1 , t2a2 ), let Tr ∈ {sub, coord, sub−1} be
the predicate that encodes the schema a1a2, let Mt1 =

〈D1
i ,D

1
l , |.|

1〉 and Mt2 = 〈D2
i ,D

2
l , |.|

2〉. The algorithm re-
turns Mt = 〈D1

i ∪ D2
i ∪ {r},D

1
l ∪ D2

l , |.|
Mt 〉 where r is a

’fresh’ relation instance variable not in D1
i or D2

i , and
|.|Mt is updated in the appropriate fashion to reflect the
left and right arguments of r. Finally, if the root of t is
an n-ary node, split it into a sequence of binary relation

R1(t1, t2),R2(t2, t3), . . . , proceed to recursively compute
the scope-structures Mi for each of the relations using
2 (take care to introduce a ’fresh’ relation instance in-
dividual for each relation of the sequence), then return
the union of the models Mi.

RST Decoding Given a finite scope structure M =

〈Di,Dl, |.|M〉, for each relation instance r compute the
left arguments of r and its right arguments. We then
identify L(r), the unique relation symbol R such that
r ∈ |LR|

M. If that fails, the algorithm fails. Similarly
retrieve the right nuclearity schema from the adequate
predicate that applies to r. Then compute the domi-
nance relations for r. If the input structure M = I(t)
for some RS Tree t then there is at least one maximal
relation instance for the dominance relation. If t the
root node of t is a binary relation, there is exactly one
maximal element in the dominance relation. If there
is none, then we return fail. If there is exactly one,
recursively compute the two RS Trees obtained from
the models computed from the left and right arguments
and descendants of r. If there is more than one, the root
node of the encoded RS Tree was a n-ary relation and
one has to reconstruct the n-ary node if that is possi-
ble; if not the algorithm fails (but that means the input
structure was not obtained from a valid RS Tree).

SDRT Encoding and Decoding: This is similar to
the RST encoding and decoding; for the encoding al-
gorithm, we proceed recursively top down. A SDRS
s is a complex constituent that contents a graph g =

〈V, E〉 whose edges are relations holding between sub-
constituents, simple or complex as well. First come
up with an encoding of the set E of all edges that
hold between two sub-constituents of s, i.e. a struc-
ture M = 〈Di = Ei,Dl = V, {LR}, ∈l, ∈r〉, where, for
each edge e ∈ Ei, LR encodes its relation type, and
∈l

1 and ∈r
1 consists of all the pairs (x, e) of left and

right nodes x of the edges e ∈ E. Finally, for each
complex immediate sub-constituent of s in Dl, update
M as follows: for c such a subconsituent, recursively
compute its encoding Mc, then add everything of Mc

to M, finally remove c from M but add instead for
each relation r scoping over c to the right (left), all
the pairs {(r, x) | x is a constituent in Mc}. The decod-
ing works again similarly to the one for RST, top-down
once again: one recursively retrieves immediate con-
tent of the current complex constituent at each level
then moves to inner constituents.

DT: Dependency trees are syntactically a special case
of SDRSs; there is only one CDU whose domain is
only EDUs.

The scope language allows us to axiomatize three
classes of scope structures corresponding to RS Trees,
SDRSs and DTs. Not every scope structure will yield
a RS Tree when fed to the RST decoding algorithm,
only those obtainable from encoding an RS tree. As not
all scope structures obey these axioms, our language is
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strictly more expressive than any of these discourse for-
malisms.

As an example of an axiom, the following formula
expresses that a relation cannot have both left and right
scope over the same elementary constituent:

Strong Irreflexivity:

∀r : i∀x : l¬(x ∈l r ∧ x ∈r r)) (A0)

Strong irreflexivity entails irreflexivity; a given relation
instance cannot have the same (complete) left and right
scopes. All discourse theories validate A0.

In the Appendix, we define left and right strong dom-
inance relations vl(r) as well as n-ary RS trees and
CDUs of SDRT. We exploit these facts in the Appendix
to express axioms (A1-A9) that axiomatize the struc-
tures corresponding to RST, SDRT and DTs. Axiom
A1 says that every discourse unit is linked via some dis-
course relation instance. Axiom A2 insures that all our
relation instances have the right number of arguments;
Axioms A3 and A4 ensure acyclicity and no crossing
dependencies. A5a and A5b restrict structures to a tree-
like dominance relation with a maximal dominating el-
ement, while A6 defines the Right Frontier constraint
for SDRT, and A7 fixes the domain for SDRT con-
straints on CDUs. A8 ensures that no coordinating and
subordinating relations have the same left and right ar-
guments, while A9 provide the restrictions needed to
define the set of DTs. We use the encoding and decod-
ing maps to show:

Fact 2.

1. The theory TRS T ={A0, A1, A2, A3, A4, A5a, A5b, A8}

characterizes RST structures in the sense that:

- E applied to any structure M such that M |= TRS T

yield an RST Tree.

- for any RST Tree t, I(t) |= TRS T .

2. The theory TS DRT ={A0, A1, A2, A3, A6, A7, A8}

similarly characterizes SDRSs.

3. The theory TDT =TS DRT ∪ {A9a, A9b} similarly
characterizes Dependency Trees structures.

4 Different Interpretations of Scope
The previous section defined the set of scope structures
as well as the means to import, and then retrieve, RS
trees, DTs, or SDRs into, and from, this set. Some of
these scope structures export both into RST and SDRT,
yielding a 1 − 1 correspondence between a subset of
SDRT and RST structures. But what does this corre-
spondence actually tell us about these two structures?
In mathematics, the existence of an isomorphism relies
on a bijection that preserves structure. Our correspon-
dence preserves the immediate interpretation of the se-
mantic scopes of relations.

Immediate Interpretation Consider a scope struc-
tureM (validating A0, A1, A2). The predicates lArgs(r)
and rArgs(r) are the sets of all units in the left or right
scope of a relation instance r. Whether r, labelled by
relation name R holds of two discourse units or not
in M, depends on the semantic content of its left and
right arguments, recursively described by lArgs(r) and
all relations r′ such that r′ @l r, and rArgs(r) and all
relations r′ such that r′ @r r. Algorithm I computes
what we call the immediate interpretation of an input
structure. Intuitively, in this interpretation the semantic
scope of relations is directly read from the structures
themselves; a node R(t1, t2) in a RS Tree expresses that
R holds between contents expressed by the whole sub-
structures t1 and t2. Similarly, for SDRT and DTs, im-
mediate interpretation of an edge π1 →R π2 is that R
holds between the whole content of π1 and π2.

While this immediate interpretation is standard in
SDRT, it is not in RST. Consider again (1) from the
introduction or:

(2) [In 1988, Kidder eked out a $ 46 mil-
lion profit,]31 [mainly because of severe cost
cutting.]32 [Its 1,400-member brokerage oper-
ation reported an estimated $ 5 million loss last
year,]33 [although Kidder expects to turn a profit
this year]34 (RST Treebank, wsj 0604).

(3) [Suzanne Sequin passed away Saturday at the
communal hospital of Bar-le-Duc,]3 [where she
had been admitted a month ago.]4 [. . . ] [Her fu-
neral will be held today at 10h30 at the church
of Saint-Etienne of Bar-le-Duc.]5 (annodis cor-
pus).

These examples involve what are called long distance
attachments. (2) involves a relation of contrast, or com-
parison between 31 and 33, but which does not involve
the contribution of 32 (the costs cutting of 1988). (3)
displays something comparable. A causal relation like
result, or at least a temporal narration holds between
3 and 5, but it should not scope over 4 if one does
not wish to make Sequin’s admission to the hospital
a month ago a consequence of her death last Saturday.
Finally in (1) C4 elaborates on C1, but not on the fact
that C1 is attributed to chief Garcia, so the correspond-
ing elaboration relation should not scope over C3.

It is impossible however, to account for long distance
attachment using the immediate interpretation of RST
trees. (2), for instance, also involves an explanation
relation between 31 and 32, which should include none
of 33 or 34 in its scope. Since 31 is in the scope of both
the explanation and the contrast relation, Axiom A5a of
the previous section entails than an RST tree involving
the two relations has to make one of the two relations
dominates the other.

Marcu’s Nuclearity Principle (NP) Marcu 1996 pro-
vides an alternative to the immediate interpretation and
captures some long distance attachments Danlos 2008;
Egg and Redeker 2010. According to the NP, a rela-
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tion between two spans of text, expressed at a node of
a RS Tree should hold between the most salient parts
of these spans. Most salient part is recursively defined:
the most salient part of an elementary constituent is it-
self, for a multinuclear relation R(t1N , . . . , tkN) its most
salient part is the union of the most salient parts of the
ti2. Following Egg and Redeker 2010, the NP, or weak
NP is a constraint on which RST trees may correctly
characterize an input text; it is not a mechanism for
computing scopes. Given their analysis of (1) given in
the introduction, NP entails that Elab1 holds between
C1 and C4, accounting for the long distance attach-
ment, and that Attribution holds between C1 and C4
which meets intuition in this case. There is however no
requirement that Attribution do not hold between the
wider span [C1,C2] and C3, as there is no requirement
that Elab1 does not hold between [C1,C2,C3] and C4.
In order to accurately account for (1), the former must
be true and the latter false.

However, this interpretation of NP together with an
RST tree does not determine the semantic scope of all
relations. Danlos 2008 reformulates NP as a Mixed
Nuclearity Principle (MNP) that outputs determinate
scopes for a given structure. The MNP requires for a
given node, that the most salient parts of his daughters
furnish the exact semantic scope for the relation at that
node. The MNP transforms an RST tree t into a scope
structureMt, which validates A0 − A3 but also A6.

3, A7
and A8. HenceM could be exported back to SDRT and
the MNP would yield a translation from RST-trees to
SDRSs.

But when applied to the RST Treebank, the MNP
yields wrong, or at least incomplete, semantic scopes
for intuitively correct RS Trees. The mixed principle
applied to the tree of s1 gives the Attribution scope
over C1 only, but not C2, which is incorrect. Focus-
ing on the attribution relation which is the second most
frequent in the RST Treebank, we find out that, regard-
less of whether we assign Attribution’s arguments S
and N or N and S, this principle makes wrong predic-
tions 86% of the time in a random sampling of 50 cases
in which we have attributions with multi-clause second
argument spans. Consider the following example from
the RST Treebank:

(4) [Interprovincial Pipe Line Co. said]1 [it will de-
lay a proposed two-step, 830 million Canadian-
dollar [(US$705.6 million)]3 expansion of its
system]2 [because Canada’s output of crude oil
is shrinking.]4

Applied to the annotated RS Tree for this example (fig-

2Except for Sequence which only retains the most salient
part of tk

3That A6 is valid in the resulting model is not immediate.
Assume a multinuclear (coordinating) relation instance r has
scope over xn and xn+k later in the textual order. Then it is
impossible to attach with r′ a later found constituent xn+k+l to
xn alone, for it would require that xn+1 escapes the scope of r′
from the MNP which it will not do by multinuclearity of r.

attribution

1
S

reason

restatement

2
N

3SN

5S

N

Figure 1: Annotated RST Tree for example (4).

ure 1), the MNP yields an incorrect scope of the attribu-
tion relation over 2 only, regardless of whether the at-
tribution is annotated N-S or S -N. The idea behind the
weak NP provides a better fit with intuitions. The prin-
ciple gives minimal semantic requirements for scoping
relations; everything beyond those requirements is left
underspecified. We formalize this as the relaxed Nu-
clearity Principle (RNP), which does not compute one
structure where each relation is given its exact scope,
but a set of such structures.

The target structures are not trees any more, but we
want them to still reflect the dominance information
present in the RS Tree. We therefore define a notion
of weak dominance over structures of the scoping lan-
guage: for two sets of constituents, X � Y iff X ⊆ Y or
there is a subordinating relation whose left argument is
X and right one Y . Weak dominance is given by tran-
sitive closure �∗ of �. For two relations, r �∗l r′ iff the
left argument of r weakly dominates both arguments
of r′. �∗r is symmetrically defined. Finally, structures
computed by the RNP have to validate the weakened
version of A5: if two relations scope over the same el-
ementary constituent one has to weakly dominates the
other. Let AW

5 denote this axiom.

Definition 3 (Relaxed Nuclearity Principle). One can
assign to an RS Tree t a formula of the scoping lan-
guage φt = ∃x̄∃r̄ψt ∪ Γt such that:

1– ψt is a formula specifying that all individuals
quantified in x̄ and r̄ are pairwise distinct, and that there
is no other individuals that the ones just mentioned. ψt

also specifies for each intermediate node n that the cor-
responding relation instance rn is labelled with the ad-
equate relation symbol R and relation type (subordinat-
ing if N-S . . . ).

2– Γt encodes the nuclearity principle applied to t:
for all intermediate nodes ni and n j in t such that nl is
the left (resp. right) daughter of ni, Γt specifies that ni

must scope to the left (resp. right) over the nucleus of
n j.

The interpretation ~t� is defined as the set of struc-
turesM that validate φt and A0, A1, A2, A3, AW

5 (they all
have |t| individuals, as fixed by ψt). Moreover, it can
be shown that each model of this set validates TS DRT ;
so we have a interpretation of an RS-Tree into a set of
SDRSs.

5 Intertranslability between RST/DTs
DTs are a restriction of SDRSs to structures without
complex constituents. So the ζ function of section 2
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can transform distinct SDRSs transform into the same
DT with a consequent loss of information.

a→R1 π
π : b→R2 c | a→R1 b→R2 c |

π→R2 b
π : a→R1 b (1)

Each of the SDRSs above yields the same DT after sim-
plification, namely the second one a→R1 b→R2 c.

The natural interpretation of a DT g describes the
set of fully scoped SDRS structures that are compat-
ible with these minimal requirements, i.e that would
yield g by simplification. To get this set, every edge
r(x, y) in g, r, must be assigned left scope among the
descendants of x in g (and right scope among those of
y); this is a consequence of i) x and y being heads of the
left and right arguments of r and ii) the SDRSs that are
compatible with g do not admit relations with a right
argument in one constituent and a left one outside of it.

Definition 4. Assume that we map each node4 x of g
into a unique variable vx ∈ Vl and each edge e into a
unique variable symbol re ∈ Vi. Define x̄ and r̄ in an
analogous way as in definition 3.

For a given dependency tree g, we compute a for-
mula φg = ∃x̄∃r̄ ψg ∪ Γg such that

• ψg is defined analogously as in definition 3, defin-
ing the set of relation instances and EDUs.

• Γg is the formula stating the minimal scopes for
each relation instance: for all edge in e = R(x, y)
in g, Γg entails i) re has vx in its left scope and
vy in its right scope and ii) let Des(x) be the set
of variable symbols for all the descendants of x in
g, Γg entails that if re has left scope over some vz

then vz is in Des(x) (symmetrically for y and right
scope).

The interpretation ~g� of a DT is: {M | M |=

φg, A0-A3, A6, A7}. The DT a →R1 b →R2 c for in-
stance, is interpreted as a set of three structures iso-
morphic to the ones in (1) above.

We now relate DTs to RS Trees interpreted with the
RNP. To this aim, we focus on a restricted class of DTs,
those who involve i) coordinating chains of 3 edus or
more only if they involve a single coordinating relation:
x1 →R1 x2 →R2 · · · →Rn−1 xn may appear only for n >
2 if all the Ri are the same coordinating relation, and
ii) subordinating nests of 3 edus or more only if they
involve a single subordinating relation:

x

y1

R1

. . . yn

Rn

is allowed for n > 1 only if all Ri

are labelled with the same subor-
dinating relation.

This restricted class of DTs corresponds exactly with
the set of RS-Trees interpreted with the RNP, provided
that we restrict the interpretation of a DT in the fol-
lowing way: a principle called Continuing Discourse
Pattern, CDP Asher and Lascarides 2003 must apply,

4Recall that unlike RS Trees, DTs have EDUs as nodes
and relations as edges.

who states that whenever a sequence of coordinating
relation Ri

c originates as a node which appear to be
also in the right scope of a subordinating relation Rs,
Rs must totally include all the Ri

c in its right scope. A
second principle is required, who states that whenever
two subordinating relations R0s and R′s originate at the
same node in the DT, and the right argument of R′s is
located after the right argument of Rs, any structure in
the interpretation of the DT must verify R′s �l Rs. The
translation needs these requirements to work, because:
i) with the NP a relation scoping over a multinuclear
one must includes all the nucleus in RST, and ii)a node
in a RS Tree cannot scope over something that is not its
descendant). Let CDP+ denote these requirements.

Using the restricted interpretation of a DT g;
~g�CDP = {M | M |= A0-A3, A6, A7,CDP+}, we trans-
form an RS Tree t into a dependency graph G(t) such
that ~t� = ~G(t)�CDP:

Definition 5 (RS Trees to dependency graphs). The
translation G takes a RS Tree t as input and outputs
a pair 〈G, n〉, where G = 〈Nodes, Edges〉 is the corre-
sponding dependency graph, and n an attachment point
used along the recursive definition of G.

• If t is an EDU x then (G)(t) = 〈({x}, {}), x〉.

• If t = R(t1N , t2S ) then let 〈G1, n1〉 = G(t1) and
〈G2, n2〉 = G(t2).

G(t) = 〈(G1 ∪G2 ∪ {Rsubord(n1, n2))}; n1〉

• If t = R(t1S , t2N) then G(t) = G(R(t2N , t1S ))

• If t = R(t1N , . . . , tkN) (multinuclear), let 〈Gi, ni〉 =

G(ti), let G be the result of adding a chain
n1 →Rcoord · · · →Rcoord nk to the union of the Gi,

G(t) = 〈G; n1〉

• If t is a nuclear satellite relation with several satel-
lites R(t1S , . . . t jN , . . . tkS ), compute the Gi has in
the previous case, then add to the union of the Gi

the nest of k − 1 subordinating relations R linking
n j to each of the ni, i , j.

Recall RS Tree (s1). Applying G to this tree yields
the dependency tree (s3): Elab1(C1,C2)∧Attr(C1,C3)∧
Elab2(C1,C4). ~s3� supports any reading of (s1) pro-
vided by RNP, but also an additional one where Attr
scopes over [C1,C2,C4]. This is however forbidden
by CDP+ for C4 is after C3 in the textual order but
Elab(C1,C4) �l Attr(C1,C3).

6 Similarities and distances
The framework we have presented yields a notion of
similarity that applies to structures of different for-
malisms. To motivate our idea, recall example (1);
the structure in (s3) in which Attribution just scopes
over C1 differs from the intuitively correct interpreta-
tion only in that Attribution should also scope over C2
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as in (s2), while a structure that does this but in which
C3 is in the scope of the Elaboration relation is intu-
itively further away from the correct interpretation.

Our similarity measure Sim over structures M1 and
M2 assumes a common set of elementary constituents
and a correspondence between relation types in the
structures. We measure similarity in terms of the
scopes given to the relations. The intuition, is that given
a map f from elements of relation instances inM1 re-
lation instances in M2, we achieve a similarity score
by counting for each relation instance r the number of
EDUs that are both in the left scope of one element of
r and in f (r), then divide this number by the total num-
ber of diffrents constituents in the left scope of r1 and
r2, and do the same for right scopes as well. The global
similarity is given by the correspondence which yields
the best score.

Given a relation r1 ∈ M1 and a relation r2∈M2, let

δ(r1, r2) =

{
1 if r1 and r2 have the same label
0 otherwise . De-

fine Cl(r1, r2) = |{x : l | M1 |= x ∈l r1 ∧M2 |= x ∈l r2}|,
the number of constituents over which r1 and r2 scope
and Dl(r1, r2) = |{x : l |M1 |= x ∈l r1∨M2 |= x ∈l r2}|.
Define Cr and Dr analogously and assume thatM1 has
less relation instances thanM2. Let Inj(D1

i ,D
2
i ) be the

set of injections of relations instances of M1 to those
ofM2.

S im(M1,M2) =
1

2Max(|M1|, |M2|)
×

Max
f∈Inj(D1

i ,D
2
i )

∑
r:i

δ(r, f (r)) × (
Cl(r, f (r))
Dl(r, f (r))

+
Cr(r, f (r))
Dr(r, f (r))

)

If M2 has more relation instances, Invert arguments
and use the definition above. If they have same number
of instances, both directions coincide.

d(M1,M2)=1 − S im(M1,M2)

For a discourse structureM, S im(M,M) = 1; Sim
ranges between 1 and 0. d is a Jaccard-like met-
ric obeying symmetry, d(x, x) = 0 d(x, y) , 0 for
x , y, and the triangle equality. One can further define
the maximal or average similarity between any pair of
structures of two sets S 1 and S 2. This gives an idea
of the similarity between two underspecified interpre-
tations, such as the ones provided by RNP of section 4.
For example, the maximal similarity between (s2) in-
terpreted as itself (immediate interpretation) and a pos-
sible scope structure for the DT (s3), interpreted with
the underspecified ~� of section 5, is 7/12. It is pro-
vided by the interpretation of (s3) where Attr is given
left scope over C1,C2,C4, Elab1 holds between C1 and
C2, and the second Elab fails to match the continua-
tion of (s3). sim(~s2�, ~ζ(s2�) = 7/12 also, because
ζ must distribute [2, 4] in s2 to avoid crossing depen-
dencies; so ~ζ(s2)� � ~s3�. The maximal similarity
between the RS tree in (s1) with RNP (or equivalently,
(3) with ~�CDP+) and (s2) is 19/36, achieved when both

C1 and C2 are left argument of Attr (though not C4).
With MNP, the similarity is 17/36.

Given our results in sections 4 and 5, we have:

Fact 3. (i) For any DT g without a > 3 length flat se-
quence and interpreted using CDP+, there an RS tree
t interpreted with RNP such that S im(g, t) = 1. (ii)
For any RS tree with RNP there is a DT g such that
S im(t, g) = 1.

To prove (i) construct a model using Definition 4 and
then use RST decoding. To prove (ii) construct a model
given Definition 3 and use DT encoding. Our similarity
measure provides general results for SDRSs and DTTs
(and a fortiori SDRSs and RS trees) (See Appendix).

7 Related Work
Our work shares a motivation with Blackburn, Gardent,
and Meyer-Viol 1993: Blackburn, Gardent, and Meyer-
Viol 1993 provides a modal logic framework for for-
malizing syntactic structures; we have used MSO and
our scope language to formalize discourse structures.
While many concepts of discourse structure admit of
a modal formalization, the fact that discourse relations
can have scope over multiple elementary nodes either
in their first or second argument makes an MSO treat-
ment more natural. Danlos 2008 compares RST, SDRT
and Directed Acyclic Graphs (DAGs) in terms of their
strong generative capacity in a study of structures and
examples involving 3 EDUS. We do not consider gen-
erative capacity, but we have given a generic and gen-
eral axiomatization of RST, SDRT and DT in a formal
interpreted language. We can translate any structure of
these theories into this language, independent of their
linguistic realization. We agree with Danlos that the
NP does not yield an accurate semantic representation
of some discourses. We agree with Egg and Redeker
2010 that the NP is rather a constraint on structures, and
we formalize this with the relaxed principle and show
how it furnishes a translation from RS trees to sets of
scoped structures. Danlos’s interesting correspondence
between restricted sets of RST trees, SDRSs and DAGs
assumes an already fixed scope-interpretation for each
kind of structure: SDRSs and DAGs are naturally in-
terpreted as themselves, and RS Trees are interpreted
with the mixed NP Our formalism allows us both to
describe the structures themselves and various ways of
computing alternate scopes for relations.

With regard to the discussion in Egg and Redeker
2008; Wolf and Gibson 2005 of tree vs. graph struc-
tures, we show exactly how tree based structures
like RST with or without the NP compare to graph
based formalisms like SDRT. We have not investigated
Graphbank here, but the scope language can axioma-
tize Graphbank (with A0-A3, A8).

8 Conclusions
We have investigated how to determine the semantic
scopes of discourse relations in various formalisms by
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developing a canonical formalism that encodes scopes
of relations regardless of particular assumptions about
discourse structure. This provides a lingua franca for
comparing discourse formalisms and a way to measure
similarity between structures, which can help to com-
pare different annotations of a same text.
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Appendix
In what follows, let @ denotes the irreflexive part of
v We assume that we have access to the textual order
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of EDUs as a function f : EDUs → N with an associ-
ated strict linear ordering < over EDUs. We also ap-
peal to the notion of a chain over EDUs {x1, x2, . . . xn}

with a set of relation instances r1, . . . , rn} all of which
are instances of an n-ary relation type, of the form
x1 →

r1 x2 →
r2 . . . →rn xn which can be defined in

MSO. To handle RST relations with multiple satellites,
we define a nest: Nest(X,R) iff all r ∈ R have the same
left argument in X but take different right arguments in
X. Finally, we define CDUs:

cdu(X,R)↔ ∃rArgs(r, X)∧
∀r′ (∀x x ∈r r′ → x ∈ X)→ r′ ∈ R

Axiomatization

∀x : l ∃r : i (x ∈l r) ∨ (x ∈r r)
(A1:Weak Connectedness)

∀r∃x, y(x ∈r r) ∧ y ∈l r))
(A2 :Properness of the relation)

∀X : (l, t)(X , 0→ ∃y∈X ∀n¬y ∈l n
(A3 :Acyclicity or Well Foundedness)

No crossing dependencies using the textual order < of
EDUs:

∀x, y, z,w((x < y < z < w) →

∀m, n¬(x ∈l n ∧ z ∈r n

∧ y ∈l m ∧ w ∈r m))
(A4)

Tree Structures. Define scopes(r, x) := x ∈l r ∨ x ∈r r.

∀r, r′ ((¬(∃X,R r, r′ ∈ R ∧ chain(X,R) ∧ nest(X,R))
∧ (∃x scopes(r, x) ∧ scopes(r′, x)))
→ (r v r′ ∨ r′ v r))

(A5a)

∀R : (i, t)∃!r : i ∀r′ ∈ R r′ v r (A5b)

Right Frontier:
∀n, xn, xn+1∀r ((xn+1 ∈r r)→ (xn ∈l r) ∨ (¬xn ∈l r
→ ∃X,R(chain(X,R) ∧ ∀r′(r′ ∈ R→ sub(r′))
∧ ∃y ∈ X∃z∃k ∃m, j ∈ R (scopes( j, y) ∧ acc(z, y)
∧ scopes(m, xn) ∧ z ∈l k ∧ k ≺ ∗xn+1)))) (A6)

(The definition of SDRS accessibility acc is easy)
CDUs or EDUs and no overlapping CDUs:

∃!x : l ∨ ∃X,R cdu(X,R)∧
∀X,Y,R,R′ (cdu(X,R) ∧ cdu(Y,R′)→
(R ∩ R′ , 0→ (R ⊆ R′ ∨ R′ ⊆ R))

(A7)

The same arguments cannot be linked by subordinating
and coordinating relations. The formal axiom is evi-
dent.

Finally, two axioms for restricting SDRSs to depen-

dency trees:

∀r∀x, y((x ∈l r) ∧ y ∈l r))
∨ (x ∈r r) ∧ y ∈r r)))→ x = y

(A9a : NoCDUs.)

∀r∀r′∀X,Y(lArgs(r, X) ∧ rArgs(r,Y)
∧ lArgs(r′, X) ∧ rArgs(r′,Y))

→ r = r′

(A9b :unique arc)

We note that as a consequence of A5a and A5b we have
no danglers or contiguous spans:

∀x, y, n (x ∈l n ∧ y ∈l n ∧ x , y)
→ ¬∃m∃z (x ∈l m ∧ z ∈r m

∧ ¬(z ∈l n ∨ z ∈r n))

We also note that A5a and A5b entail A7, A8 and A9b,
though not vice-versa.

Fact 4. Where γ is any SDRS and ζ : S DRS → DT as
in section 2, set R1 = {r : i : |{x : Mγ |= x ∈l r)}| > 1},
R2 = {r : i : |{x : Mγ |= x ∈r r)}| > 1}, and
R{x,y} = {r|∃r′ : i(x ∈l r′ ∧ y ∈r r′ ∧ r′ , r}. Assume the
immediate interpretation of γ and ζ(γ):

S im(γ, ζ(γ))=
2|I| − |(R1 ∪ R2) ∪

⋃
x,y∈D2

l
X{x,y}|

2|I|

+
1

2|I|
{Σr∈R1

1
|x : Mγ |= x ∈l r)}|

+Σr∈R2

1
|x : Mγ |= x ∈r r)}|

}

Explanation: We suppose that I is the number of re-
lation instances in the SDRS. ζ removes CDUs in an
SDRS and attaches all incoming arcs to the CDUs to
the head of the CDU. It also removes multiple arcs
into any given node. So for any node m such that
|{r : m ∈r r}| = a > 1, then the information contained
in the a − 1 arcs will be lost. In addition ζ will restrict
that one incoming arc that in the SDRS has in its scope
all the elements in the CDU to just the head. So the
scope information concerning all the other elements in
the CDU will be lost.
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Abstract

This work proposes a generative model
to infer latent semantic structures on top
of manual speech transcriptions in a spo-
ken dialog reservation task. The proposed
model is akin to a standard semantic role
labeling system, except that it is unsuper-
vised, it does not rely on any syntactic in-
formation and it exploits concepts derived
from a domain-specific ontology. The
semantic structure is obtained with un-
supervised Bayesian inference, using the
Metropolis-Hastings sampling algorithm.
It is evaluated both in terms of attachment
accuracy and purity-collocation for clus-
tering, and compared with strong baselines
on the French MEDIA spoken-dialog cor-
pus.

1 Introduction

Many concrete applications that involve human-
machine spoken dialogues exploit some hand-
crafted ontology that defines and relates the con-
cepts that are useful for the application. The main
challenge for the dialog manager used in the appli-
cation is then to interpret the user’s spoken input
in order to correctly answer the user’s expectations
and conduct a dialogue that shall be satisfactory
for the user. This whole process may be decom-
posed into the following stages:

• Automatic speech recognition, to transform
the acoustic signal into a sequence of words
(or sequences of word hypotheses);

• Spoken language understanding, to segment
and map these sequences of words into con-
cepts of the ontology;

• Semantic analysis, to relate these concepts
together and interpret the semantic of the user

input at the level of the utterance, or of the
speaker turn;

• Dialogue act recognition

• Dialogue planning

• Text generation

• ...

Note that the process sketched here often further
involves several other important steps that are used
internally within one or several of these broad
stages, for instance named entity recognition, co-
reference resolution, syntactic parsing, marcov de-
cision process, reinforcement learning, etc.

This work focuses mainly on the second and
third stages, since we assume that segmentation
is given and we want to discover the underly-
ing concepts and relations in the data. The third
stage is very important because it exhibits the la-
tent semantic structure hidden in the user utter-
ance: what is the object affected by a given pred-
icate ? What are the modifiers that may alter the
meaning of a predicate ? Without such a structure,
the system can hardly push understanding beyond
lexical semantics and reach fine-grained seman-
tic representations, which are thus often limited
to well-formed inputs and cannot handle sponta-
neous speech as considered here. But still, despite
its importance, most spoken dialog systems do not
make use of such structure.

We propose an approach here to address this
issue by directly inferring the semantic structure
from the flat sequence of concepts using the un-
supervised Bayesian learning framework. Hence,
the proposed model does not rely on any prede-
fined corpus annotated with semantic structure,
which makes it much more robust to spoken inputs
and adaptable to new domains than traditional su-
pervised approaches.
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2 Related work

In recent years, an increasing number of works
have addressed robustness and adaptability issues
in most of standard Natural Language Processing
tasks with unsupervised or semi-supervised ma-
chine learning approaches. Unsupervised learn-
ing attempts to induce the annotations from large
amounts of unlabeled data. Several approaches
have recently been proposed in this context for the
semantic role labeling task. (Swier and Stevenson,
2004) were the first to introduce an unsupervised
semantic parser, followed by (Grenager and Man-
ning, 2006), (Lang and Lapata, 2010), (Lang and
Lapata, 2011b) and (Lang and Lapata, 2011a). Fi-
nally, (Titov and Klementiev, 2012), introduced
two new Bayesian models that achieve the best
current state-of-the-art results. However, all these
works use some kind of supervision (namely a
verb lexicon or a supervised syntactic system,
which is the case in most of the approaches).
(Abend et al., 2009) proposed an unsupervised
algorithm for argument identification that uses
a fully unsupervised syntactic parser and where
the only supervised annotation is part-of-speech
(POS) tagging.

Semi-supervised learning attempts to improve
the performance of unsupervised algorithms by
using both labeled and unlabeled data for train-
ing, where typically the amount of labeled data is
smaller. A variety of algorithms have been pro-
posed for semi-supervised learning1. In the con-
text of semantic role labeling, (He and Gildea,
2006) and (Lee et al., 2007) hence tested self-
training and co-training, while (Fürstenau and La-
pata, 2009) used a graph-alignment method to
semantic role labeling (SRL). Finally, in (De-
schacht and Moens, 2009) the authors present a
semi-supervised Latent Words Language Model,
which outperforms a state-of-the-art supervised
baseline. Although semi-supervised learning ap-
proaches minimize the manual effort involved,
they still require some amount of annotation. This
annotation is not always available, sometimes ex-
pensive to create and often domain specific. More-
over, these systems assume a specific role labeling
(e.g. PropBank, FrameNet or VerbNet) and are not
generally portable from one framework to another.

A number of works related to semantic infer-
ence have already been realized on the French

1We refer the reader to (Zhu, 2005) or (Pise and Kulkarni,
2008) for an overview on semi-supervised learning methods.

MEDIA corpus. Hence, dynamic Bayesian net-
works were proposed for semantic composition
in (Meurs et al., 2009), however their model re-
lies on manual semantic annotation (i.e. concept-
value pairs) and supervised training through the
definition of 70 rules. In (Huet and Lefèvre, 2011;
Camelin et al., 2011) unsupervised models were
proposed that use stochastic alignment and Latent
Dirichlet Allocation respectively, but these mod-
els infer a flat concept-value semantic representa-
tion. Compared to these works, we rather propose
a purely unsupervised approach for structured se-
mantic Metropolis-Hastings inference with a gen-
erative model specifically designed for this task.

3 Proposed model

3.1 Principle

We consider a human-machine dialog, with the ob-
jective of automatically building a semantic struc-
ture on top of the user’s spoken utterances that
shall help the dialog system to interpret the user
inputs. This work focuses on inferring the seman-
tic structure, and it assumes that a segmentation of
users’ utterances into concepts is given. More pre-
cisely, we exploit as input a manual segmentation
of each utterance into word segments, where each
segment represents a single concept that belongs
to MEDIA ontology (Denis et al., 2006) (see Fig-
ure 1).

Attributes

Price General

Park

Relative

Near

Restaurant

Location Person Time

Hotel Room

Object

Thing

Figure 1: Excerpt of MEDIA ontology

This ontology identifies the concepts that can
have arguments, and we thus use this informa-
tion to further distinguish between head segments
that can have arguments (noted Wh

2 in Figure 3)
and argument segments that cannot govern another
concept (noted Wa). From these two classes of

2Wh actually represents one word in a segment composed
of Nh words, but by extension, we implicitly refer here to the
full segment.
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segments and the words’ inflected forms that com-
pose each segment we infer:

• A semantic structure composed of triplets
(Wa,Wh, A) where A is the type of argu-
ment, or, in other words, the type of semantic
relation between both segments;

• A semantic class Ct for the head segment

An example of the target structure we want to ob-
tain is shown in Figure 2.

Inference of these structure and classes is real-
ized with an unsupervised Bayesian model, i.e.,
without training the model on any corpus anno-
tated with such relations. Instead, the model is
trained on an unlabeled dialog corpus composed
of raw manual speech transcriptions, which have
also been manually segmented into utterances and
words’ segments as described above. Training is
actually realized on this corpus using an approxi-
mate Bayesian inference algorithm that computes
the posterior distribution of the model’s param-
eters given the dataset. We have used for this
purpose the Metropolis-Hastings Markov Chain
Monte Carlo algorithm.

3.2 Bayesian model
Figure 3 shows the plate diagram of the proposed
model. The plate Nh (respectively Nw) that sur-
rounds a shaded node represents a single words’
segment of length Nh (respectively Nw). The
outer plate Nu indicates that the graphical model
shall be repeated for each of the Nu utterances in
the corpus.

Variable Description
Ct latent semantic type assigned to predicate t
Wh observed words in each head segment.

P (Wh|Ct) encodes lexical preferences for the
semantic inference

Ai latent semantic type assigned to the ith argu-
ment of predicate t

Rpi latent relative position assigned to the ith argu-
ment of predicate t

Wa observed words in each argument segment.
P (Wa|Ai) encodes lexical preferences for the
semantic inference

Table 1: Variables of the model

Each head word segment has a latent semantic
type Ct, and governs Na arguments. Each argu-
ment is represented by an argument words’ seg-
ment, which has a latent semantic typeA. Each ar-
gument is further characterized by its relative po-
sition Rp with respect to its head segment. Rp

C1 · · · Ct−1 Ct Ct+1 · · · CNc

Wh

Nh

A

Wa

Nw

Rp

Na

Nu

Figure 3: Plate diagram of the proposed model.
Nu represents the number of utterances; Nh, the
number of words in a head segment; Nw, the num-
ber of words in an argument segment; and Na the
number of arguments assigned to predicate t.

can have 4 values, depending on whether the argu-
ment is linked to the closest (1) or another (2) ver-
bal3 head, or the closest (3) or another (4) nominal
head. Rp is derived from the argument-to-head
assignment, which is latent. So, Rp is also latent.
The sequence of Nc head segments in utterance u
is captured by the HMM shown on top of the plate
diagram, which models the temporal dependency
between successive “semantic actions” of the user.

The variables of the model are explained in Ta-
ble 1.

The most important property of this model is
that the number of arguments Na is not known be-
forehand. In fact, every argument segment can be
governed by any of the Nc head segments in the
utterance, and it is the role of the inference pro-
cess to actually decide with which head it should
be linked. This is why the model performs struc-
tured inference.

Concretely, at any time during training, every
argument is governed by a single head. Then, in-
ference explores a new possible head attachment
for an argument Wa, which impacts the model as
follows:

• The number of arguments Na of the previous
head is decreased by one;

• The number of argumentsNa of the new head
is increased by one;

3Morphosyntactic classes are obtained with the Treetag-
ger
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Je voudrais le prix en fait je euh une chambre pas chère
I ’d like the price well in fact I uh a room not expensive

Reserve Room

Agent

Price Price

Booked object

Figure 2: Example of inferred semantic structure for a sentence in the MEDIA corpus. Traditional
dependency notations are used: the head segment points to the argument segment, where segments are
shown with boxes (arrows link segments, not words !). The semantic class assigned to each head segment
is shown in bold below the translated text.

• The relative position Rp of the argument is
recomputed based on its new head position;

• The argument typeA is also re sampled given
the new head type Ct.

This reassignment process, which is at the heart of
our inference algorithm, is illustrated in Figure 4.

3.3 Metropolis inference
Bayesian inference aims at computing the poste-
rior distribution of the model’s parameters, given
the observed data. We assume that all distributions
in our model are multinomial with uniform priors.
The parameters are thus:

P (Wh|Ct) ∼M(θHCt
)

Distribution of the
words for a given
head semantic class

P (Ct|Ct−1) ∼M(θCCt−1
)

Transition prob-
abilities between
semantic classes

P (Wa|A) ∼M(θWA )
Distribution of the
words for a given
argument type

P (Rp|A) ∼M(θRA)

Distrib. of the rel-
ative position of a
given argument to
its head given the
argument type

P (A|Ct) ∼M(θACt
)

Distrib. of the ar-
gument types given
a head semantic
class

3.3.1 Inference algorithm
To perform inference, we have chosen a Markov
Chain Monte Carlo algorithm. As our model is

finite, parametric and identifiable, Doob’s theo-
rem guarantees the consistency of its posterior,
and thus the convergence of MCMC algorithms
towards the true posterior. Because changing the
head of one argument affects several variables si-
multaneously in the model, it is problematic to
use the basic Gibbs sampling algorithm. A block-
Gibbs sampling would have been possible, but this
would have increased the computational complex-
ity and we also wanted to keep as much flexibility
as possible in the jumps that could be realized in
the search space, in order to prevent slow-mixing
and avoid (nearly) non-ergodic Markov chains,
which are likely to occur in such structured infer-
ence problems.

We have thus chosen a Metropolis-Hastings
sampling algorithm, which allows us to design an
efficient proposal distribution that is adapted to our
task. The algorithm proceeds by first initializing
the variables with a random assignment of argu-
ments to one of the heads in the utterance, and a
uniform sampling of the class variables. Then, it
iterates through the following steps:

1. Sample uniformly one utterance u

2. Sample one jump following the proposal dis-
tribution detailed in Section 3.3.2.

3. Because the proposal is uniform, compute the
acceptance ratio between the model’s joint
probability at the proposed (noted with a ′)
and current states:

r =
P (C ′,W ′h,W

′
a, Rp

′, A′)
P (C,Wh,Wa, Rp,A)

4. Accept the new sample with probability
min(1, r); while the sample is not accepted,
iterate from step 2.
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Je voudrais le prix en fait je euh une chambre pas chère
I ’d like the price well in fact I uh a room not expensive

Agent

Price Price

Booked object

Agent

Price

Booked object

Price

Figure 4: Illustration of the reassignment process following the expample presented in Figure 2. This
example illustrates the third Metropolis proposed move, which changes the head of argument “le prix”:
arcs above the text represent the initial state, while arcs below the text represent the new proposed state.

5. When the sample is accepted, update the
multinomials accordingly and iterate from
step 1 until convergence.

This process is actually repeated for 2,000,000
iterations, and the sample that gives the largest
joint probability is chosen.

3.3.2 Metropolis proposal distribution

The proposal distribution is used to explore the
search space in an efficient way for the target
application. Each state in the search space is
uniquely defined by a value assignment to every
variable in the model, for every utterance in the
corpus. It corresponds to one possible sample of
all variables, or in other words, to the choice of
one possible semantic structure and class assign-
ment to all utterances in the corpus.

Given a current state in this search space, the
proposal distribution “proposes” to jump to a
new state, which will then be evaluated by the
Metropolis algorithm. Our proposal samples a
new state in the following successive steps:

1. Sample uniformly one of the three possible
moves:

Move1: Change the semantic class of a head;

Move2: Change the argument type of an argu-
ment segment;

Move3: Change the assignment of an argument
to a new head;

2. If Move1 is chosen, sample uniformly one
head segment and one target semantic class;

3. If Move2 is chosen, sample uniformly one
argument segment and one target argument
type;

4. If Move3 is chosen, sample uniformly one
argument segment Wa and “detach” it from
its current head. Then, sample uniformly one
target head segment W ′h, and reattach Wa to
its new head W ′h. Because the distribution of
argument types differ from one head class to
another, it would be interesting at this stage
to resample the argument type of Wa from
the new head class distribution. But in this
work, we resample the argument type from
the uniform distribution.

This proposal distribution Q(x → x′) is re-
versible, i.e., Q(x→ x′) > 0⇒ Q(x′ → x) > 0.
We can show that it is further symmetric, i.e.,
Q(x → x′) = Q(x′ → x), because the same
move is sampled to jump from x to x′ than to jump
from x′ to x, and because the proposal distribution
within each move is uniform.

4 Experimental validation

4.1 Experimental setup
The French MEDIA corpus collects about 70
hours of spontaneous speech (1258 dialogues,
46k utterances, 494.048 words and 4068 dis-
tinct words) for the task of hotel reservation
and tourist information (Bonneau-Maynard et al.,
2005). Calls from 250 speakers to a simulated
reservation system (i.e. the Wizard-of-Oz) were
recorded and transcribed. Dialogues are full of
disfluencies, hesitations, false starts, truncations or
fillers words (e.g., euh or ben).
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Gold Standard Annotation
Semantic Relation Frequency
Agent 320
Booked object 298
Location 285
Time 209
Coordination 134
Beneficiary 117
Price 108
Reference Location 66

Table 2: Most frequent semantic relations in the
gold annotation.

This corpus has been semantically annotated
as part of the French ANR project PORT-
MEDIA (Rojas-Barahona et al., 2011). We are
using a set of 330 utterances manually annotated
with gold semantic relations (i.e. High-Level Se-
mantics). This gold corpus gathers 653 head seg-
ments and 1555 argument segments, from which
around 20% are both arguments and heads, such
as une chambre in Figure 4. Table 2 shows the
semantic relations frequencies in the gold annota-
tion. 12 head segment types and 19 different argu-
ment segment types are defined in the gold anno-
tations. In the evaluation, we assume the number
of both classes is given. A possible extension of
the approach to automatically infer the number of
classes would be to use a non-parametric model,
but this is left for future work.

4.2 Evaluation metrics
The proposed method infers three types of seman-
tic information:

• The semantic relation between an argument
and its head;

• The argument type A

• The semantic class of the head Ct.

The three outcomes are evaluated as follows.

• The output structure is a forest of trees that
is similar to a partial syntactic dependency
structure. We thus use a classical unsuper-
vised dependency parsing metric, the Un-
labeled Attachment Score (UAS), which is
simply the accuracy of argument attachment:
an argument is correctly attached if and only
if its inferred head matches the gold head.

• Both argument and head classes correspond
to the outcome of a clustering process into
semantic classes, akin to the semantic classes
obtained in unsupervised semantic role la-
beling tasks. We then evaluate them with a
classical metric used to evaluate these classes
in unsupervised SRL (as done for instance
in (Lang and Lapata, 2011a) and (Titov and
Klementiev, 2012)): purity and collocation.

Purity measures the degree to which each clus-
ter contains instances that share the same gold
class, while collocation measures the degree to
which instances with the same gold class are as-
signed to a single cluster.

More formally, the purity of argument seg-
ments’ (head segment’) clusters for the whole cor-
pus is computed as follows:

PU =
1

N

∑

i

max
j
|Gj ∩ Ci|

whereCi is the set of argument (head) segments
in the ith cluster found, Gj is the set of argument
(head) segments in the jth gold class, and N is
the number of gold argument (head) segment in-
stances. In a similar way, the collocation of argu-
ment segments’ (head segment’) clusters is com-
puted as follows:

CO =
1

N

∑

j

max
i
|Gj ∩ Ci|

Finally the F1 measure is the harmonic mean of
the purity and collocation:

F1 =
2 ∗ CO ∗ PU
CO + PU

4.3 Experimental results

We compare the proposed approach against two
baselines:

• An argument-head “attachment” baseline,
which attaches each argument to the closest
head segment.

• A strong clustering baseline, which respec-
tively clusters the head and argument seg-
ments using a very effective topic model:
the Latent Dirichlet Allocation (LDA) ap-
proach (Blei et al., 2003).
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Table 3 shows the UAS obtained for the pro-
posed model on the MEDIA corpus, while Table 4
shows the obtained Purity, Collocation and F1-
measure. In both cases, we compare the perfor-
mances of the proposed model with the respective
baseline. Our system outperforms both baselines
by a large margin.

System UAS
Closest attachment 68%

(±2%)

Proposed - UAS 74%
(±2%)

Table 3: Experimental results for UAS on the ME-
DIA database. The statistical confidence interval
at 95% with Gaussian approximation is reported.

System Purity Col. F-mes
LDA - Heads 51.7% 25.5% 34.2%
LDA - Args 31.7% 22.2% 26.1%
Proposed - Heads 78.7% 50.8% 61.8%
Proposed - Args 61.8% 53.3% 59.3%

Table 4: Experimental results on the MEDIA
database for purity, collocation and F1-measure.

4.3.1 Qualitative Evaluation
We further carried out a qualitative evaluation,
where we inspected the inferred clusters and com-
pared them with the baseline. Figures 7 and 8
show, for every head class Ct in each stacked col-
umn, the distribution of instances from all gold
clusters. Each column can also be viewed as a
graphical representation of the intersection of one
inferred class with all gold clusters. Figure 7 illus-
trates this for our model, and Figure 8 for LDA.
The same comparison for the argument types is
shown, respectively, in Figure 5 and Figure 6.

For head segment clusters, we can observe that
most inferred clusters contain many instances of
the Reservation type (in dark blue), both in the
LDA baseline and in the proposed system. The
main reason for that is that the corpus is very un-
balanced in favor of the Reservation class, while
we do not assume any prior knowledge about the
data and thus use a uniform prior. Still, every other
gold type that occurs with a reasonnably high
enough frequency, apart from two special types
that are discussed next, is well captured by one of

Figure 5: Distribution of the gold types (one per
color) into the clusters inferred by our system
(shown on the X-axis) for argument segments.

our inferred class: this is the case for ”Room” that
mainly intersects with our class 1, ”Place” with
our class 2 and ”Hotel” with our class 9.

Some examples of instances for each case are:

• Reservation: “voudrais réserver”, “aimerais
partir”, “voudrais une *réservation une
réservation”, “prends”, “recherche” ,
“*désire désire”, “il me faudrait”, “opte”,
“aimerais s’ il vous plaı̂t si c’ est possible
avoir prendre”.

• Room: “deux chambres pour un coup(le)
avec trois enfants avec bon standing”, “trois
singles”, “deux chambres de bon standing
à peu près niveau trois étoiles”, “trois dou-
bles”.

• Place: “Paris”, “à Saintes”, “à
Charleville”, “dans le dix huitième ar-
rondissement de Paris”.

• Hotel: “un hôtel deux étoiles”, “dans un
hôtel beau standing”, “un hôtel formule un”,
“l’ hôt(el) le l’ hôtel”, “un autre hôtel dans
les mêmes conditions”, “le Beaugency”, “l’
autre”, “au Novotel”, “le premier”.

Two “special” head segment types that are nei-
ther nicely captured by our system nor LDA are
Coordination and Inform, which are instead as-
signed to the clusters corresponding to the gold
segments that they coordinate or inform about.

For argument segments we also observed that
the inferred clusters are semantically related to the
gold types. We found, for instance, four clusters
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Figure 6: Distribution of the gold types (one per
color) into the clusters inferred by the LDA base-
line (shown on the X-axis) for argument segments.

Figure 7: Distribution of the gold types (one per
color) into the clusters inferred by our system
(shown on the X-axis) for head segments.

(2, 5, 12 and 15) containing mainly “Time” ar-
guments (“du premier au trois Novembre”, “dix
nuit”, “le festival du film”, “au seize Novembre”,
etc.), two (3 and 14) dedicated to “Location” argu-
ments (“à Menton”, “au festival lyrique de belle
euh Belle Ile En mer”, “bastille”, “sur le ville de
Paris”, “parking privé”), one (10) for “Price” ar-
guments (“pas plus de cent euros par personne”,
“un tarif inférieur à quatre vingts euros”, “pas
trop chère”, “à cent vingt euros”, “moins de cent*
cent euros”) etc.

Finally, as noted for the head segments, we can
observe that the most frequent gold types largely
intersect with several inferred clusters, for the
same reason: data is very unbalanced and we do
not assume any prior knowledge about the data

Figure 8: Distribution of the gold types (one per
color) into the clusters inferred by the LDA base-
line (shown on the X-axis) for head segments.

and thus use an uniform prior. Nevertheless, sev-
eral other important classes such as Event, Price
and Agent are well captured by our system.

5 Conclusions

This work proposes an unsupervised generative
model to infer latent semantic structures on top
of user spontaneous utterances. It relies on the
Metropolis-Hastings sampling algorithm to jointly
infer both the structure and semantic classes. It
is evaluated in the context of the French MEDIA
corpus for the hotel reservation task. Although the
system proposed in this work is evaluated on a spe-
cific spoken dialog reservation task, it actually re-
lies on a generic unsupervised structured inference
model and can thus be applied to many other struc-
tured inference tasks, as long as observed word
segments are given.

An interesting future direction of research
would be to modify this model so that it jointly
infers both the latent syntactic and semantic struc-
tures, which are known to be closely related but
still carry complementary information. We of
course also plan to evaluate the proposed model
with automatic speech transcriptions and concepts
decoding. Another advantage of the proposed
model is the possibility to build better Metropolis-
Hastings proposals, which may greatly improve
the convergence rate of the algorithm. In partic-
ular, we would like to investigate the use of some
non-uniform proposal distributions when reattach-
ing an argument to a new head, which shall im-
prove mixing.
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Abstract
The identification of causal relations be-
tween verbal events is important for
achieving natural language understanding.
However, the problem has proven notori-
ously difficult since it is not clear which
types of knowledge are necessary to solve
this challenging problem close to human
level performance. Instead of employing a
large set of features proved useful in other
NLP tasks, we split the problem in smaller
sub problems. Since verbs play a very im-
portant role in causal relations, in this pa-
per we harness, explore, and evaluate the
predictive power of causal associations of
verb-verb pairs. More specifically, we pro-
pose a set of knowledge-rich metrics to
learn the likelihood of causal relations be-
tween verbs. Employing these metrics, we
automatically generate a knowledge base
(KBc) which identifies three categories
of verb pairs: Strongly Causal, Ambigu-
ous, and Strongly Non-causal. The knowl-
edge base is evaluated empirically. The re-
sults show that our metrics perform signif-
icantly better than the state-of-the-art on
the task of detecting causal verbal events.

1 Introduction

The identification of semantic relations between
events is a mandatory component of natural lan-
guage understanding. In this paper, we focus
on the identification of causal relations between
events represented by verbs. Following Riaz and
Girju (2010), we define a verbal event evi as
“[subjectvi] vi [objectvi]”, where the subject and
object of the verb may or may not be explicitly
present in an instance. Consider the following ex-
amples:
1. Yoga builds stamina because you maintain your poses

for a certain period of time. (CAUSE (emaintain, ebuild))

2. The monster storm Katrina raged ashore along the

Gulf Coast Monday morning. There were early re-

ports of buildings collapsing along the coast. (CAUSE

(erage, ecollapse))

In example 1, the two bold events are causally
connected by an explicit and unambiguous dis-
course marker (because). However, in English,
not all discourse markers unambiguously iden-
tify causality (Prasad et al., 2008) - for exam-
ple, Bethard and Martin (2008) proposed a cor-
pus of 1000 causal and non-causal event pairs con-
joined by the marker and. Even more, causal re-
lations can be encoded by implicit contexts - i.e.,
those where no discourse marker is present (ex-
ample 2). Despite the recent achievements ob-
tained in discourse processing, it is still unclear
what types of knowledge can contribute most to-
wards detecting causality in both explicit and im-
plicit contexts (Sporleder and Lascarides, 2008).
The complexity of the task of detecting causality
between events stems from the fact that there are
many factors involved, such as contextual features
of an instance (e.g., lexical items, tenses of verbs,
arguments of verbs, etc.), semantic and pragmatic
features of events, background knowledge, world
knowledge, common sense, etc. Prior approaches
have employed contextual features of an instance
to identify causality between events or discourse
segments (Bethard and Martin, 2008; Pitler and
Nenkova, 2009; Pitler et al., 2009). Although
contextual features provide important knowledge
about sentence(s) in which events appear, humans
also make use of other information such as back-
ground knowledge to comprehend causality. For
instance, in example 2 we use knowledge about
the causal association between verbal entities rage
and collapse to label it with causality.

This research is motivated by the need to extract
and analyze other type of knowledge necessary for
the identification of causal relations between ver-
bal events. We start from the fact that verbs are the
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main components of language to express events
and semantic relations between events. Thus, in
order to identify and extract causal relations be-
tween events (denoted by (evi , evj )), it is critical
for a model to employ knowledge about the ten-
dency of a verb pair (vi, vj) to encode causation.
For example, the pair (kill, arrest) has a high ten-
dency to encode a cause relation irrespective of the
context in which it is used, thereby a good indica-
tor of causality. The state-of-the-art resources on
verb semantics, such as WordNet, VerbNet, Prop-
Bank, FrameNet, etc. (Miller, 1990; Kipper et al.,
2000; Kingsbury et al., 2002; Baker et al., 1998),
provide information about the semantic classes,
thematic roles and selectional restrictions of verbs.
Among these, WordNet is the only resource which
provides information about the cause relation be-
tween verbs, but it has very limited coverage.
For VERBOCEAN, a semi-automatically generated
resource, Chklovski and Pantel (2004) have used
explicit lexical patterns (e.g., “verb * by verb”) as
means of mining enablement (cause-effect) rela-
tions between verbs. Such approaches help detect-
ing causality with high precision but suffer from
limited coverage due to the highly implicit na-
ture of language. Moreover, such resources do
not provide any information about the likelihood
of a causal relation in verb pairs - e.g., (kill, ar-
rest) has a high tendency to encode cause rela-
tion as compared with the pair (build, maintain).
The pair (build, maintain) seems ambiguous be-
cause it can encode both cause and non-cause re-
lations depending on the context, as shown by ex-
amples 1 and 3. Thus, causality detection models
should employ knowledge about which verb pairs
are strongly causal (non-causal) in nature and for
which pairs the context plays an important role to
signal causality.

3. Republicans had not cut the funds for maintaining the

levee and building up the ecological protections. (NON-

CAUSE)

We propose a fully automated procedure to learn
the likelihood of causal relations in verb pairs. In
this process, we create three categories of verb
pairs: Strongly Causal (Sc), Ambiguous (Ac) and
Strongly Non-causal (S¬c). The result is a knowl-
edge base (KBc) of causal associations of verbs.
In KBc, the category Sc (S¬c) contains the verb
pairs which have the greatest (least) likelihood to
encode a causal relation, respectively. However,
the category Ac contains ambiguous verb pairs

which have the likelihood to encode both causal
and non-causal relations. The information about
such causal associations provides a rich knowl-
edge source to causality detection models.

The main contributions of our research are as
follows:
• We propose a set of novel metrics (i.e., Explicit

Causal Association (ECA), Implicit Causal As-
sociation (ICA) and Boosted Causal Associa-
tion (BCA)) to identify the likelihood of verb
pairs to encode causality. Our metrics exploit
the information available from a large number
of unlabeled explicit and implicit instances of
verb pairs for this purpose.
• We introduce an automated procedure to build

a training corpus of causal and non-causal
event pairs. This prevents us from the trou-
ble of annotating a large number of event pairs
for cause and non-cause relations. Our metrics
make use of supervision from the training cor-
pus to identify causality in verb pairs. We also
provide a mechanism to determine causal verb
pairs which remain undiscovered due to the is-
sue of training data sparseness.
• We revisit recent approaches employing distri-

butional similarity methods to predict causal-
ity between events (Riaz and Girju, 2010;
Do et al., 2011). The state-of-the-art met-
ric Cause-Effect Association (CEA) (Do et
al., 2011) identifies causality mainly based on
probabilities of verb-verb, verb-argument, and
argument-argument pairs. In comparison with
CEA, our metrics perform significantly better
by improving the prior knowledge about the
causal associations from CEA’s components.

After a brief review of related work in next sec-
tion, we describe our approach for acquisition of
training corpus in section 3. The model for the ex-
traction of causal associations is presented in sec-
tion 4, followed by the evaluation and discussion
in section 5 and conclusion in section 6.

2 Related Work

Causality has long been studied from various
perspectives by philosophers, data-mining re-
searchers and computer scientists (Menzies, 2008;
Woodward, 2008; Suppes, 1970; Silverstein et al.,
2000; Pearl, 2000).

In NLP, the problem of detecting causality be-
tween events is a very challenging but less re-
searched topic. Previously, researchers have stud-
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ied this task by focusing on supervised classifi-
cation models for both verbal and nominal events
(Girju, 2003; Bethard and Martin, 2008). Bethard
and Martin (2008), for example, have focused
mainly on the contextual features available in test
instances of verbal event pairs to predict causality.
They have relied on a small scale dataset of 1000
instances (697 training and 303 test) for this task.
Unlike above models, recently some researchers
have employed unsupervised causality detection
metrics and minimal supervision for this task. For
example, Riaz and Girju (2010) have proposed an
unsupervised metric Effect-Control Dependency
(ECD) to determine causality between events in
news scenarios. Following their model, Do et al.
(2011) introduced an improved metric CEA which
uses PMI and some components of ECD to pre-
dict the causal relation in verbal and nominal event
pairs in a text document. They also proposed a
minimally supervised method using explicit dis-
course markers. For example, they used ILP
framework to assign a non-causal relation to all the
event pairs appearing in two discourse segments
connected by a non-causal marker. They evalu-
ated their model on a set of 20 documents, a highly
skewed evaluation set with around 2-3% causal
instances and 58% human inter-annotator agree-
ment on cause-effect relations. On verbal events,
they reported 38.3% F-score with CEA and 1-2%
improvement using minimally supervised method.
As compared with above mentioned metrics, we
introduce knowledge rich association measures
which employ supervision from the automatically
generated training corpus to learn causality.

Several other NLP researchers have studied
related topics e.g., identifying events, building
of temporal chain of events sharing a common
protagonist (participant), predicting future events
and identifying hidden links in news articles to
build a coherent chain (Chambers and Jurafsky,
2008; Chambers and Jurafsky, 2009; Radinsky
and Horvitz, 2013; Shahaf and Guestrin, 2010).
Unlike these tasks, our focus is on identifying
causality between events.

3 Acquisition of Training Corpus

In this section, we propose a fully automated pro-
cedure to build a training corpus of event pairs
which encode cause and non-cause relations. This
training corpus is used in our model to identify the
likelihood of cause relations in verb pairs. As dis-

cussed earlier, previous researchers have worked
with a small scale dataset of annotated event pairs.
The current task requires us to use a large train-
ing corpus to learn the pervasive relation of causal-
ity and the manual generation of such corpus is a
laborious task. Therefore, we decided to depend
on the unambiguous discourse markers because
and but to automatically collect training instances
of cause and non-cause event pairs, respectively.
For example, the marker because in the instance
1 of section 1 encodes a cause relation between
the events ebuild and emaintain. Some researchers
have utilized unambiguous discourse markers to
acquire training instances of semantic relations be-
tween discourse segments (Marcu and Echihabi,
2001; Sporleder and Lascarides, 2008). However,
the process is not simple for the current problem
since it is not always clear how to create a causal
instance of an event pair. Consider the following
meta instance I:

I : <s>/m1 . . . v1 . . . v2 . . . vk . . . because . . . vk+1

. . . vk+2, . . ., vr, . . .m2/</s>.

It is composed of main verbs (v1, v2, . . .,
vr), discourse markers (m1, m2), and sentence
boundaries (<s>, </s>). Here, we assume that
the discourse markers or the sentence boundaries
whichever appear first in I represent the bound-
aries of discourse segments for the marker because
(appendix A contains a table of notations used in
this paper). In I , there are k and r − k main verbs
appearing before and after because, respectively.
The problem here is to determine the event pair en-
coding causality out of k× (r− k) choices. Here,
we consider that the most dependent pair among
all choices in I is the best candidate to encode
causality.

In this work, we propose the following function
f(I) to pick the most dependent pair:

f(I) = argmax
(vi≺mc ,vj�mc )

CD(vi, vj)× PSI(vi, vj) (1)

Here, i (j) refers to all verbs that appear be-
fore (after) the causal marker (i.e., mc) because in
I . CD (equation 2) is a component of predicate-
predicate association of CEA (Do et al., 2011)
to determine causal dependency of a pair (vi, vj).
Do et al. (2011) used the score CD to determine
causality in an unsupervised fashion but here we
employ this to build a training corpus of causal
event pairs.

CD(vi, vj) = PMI(vi, vj)×max(vi, vj)× IDF (vi, vj) (2)
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The functions PMI, max and IDF depend on co-
occurrence probabilities and idf scores to deter-
mine causal dependency. Due to space limitations,
for details we refer the reader to Do et al. (2011).

Next, we define a novel penalization factor PSI

for the verbs of a pair appearing at greater distance
from the causal marker because. For example, this
assumes the verbs in the pair (v2, vk+2) are less
likely to be in a cause relation as compared with
(vk, vk+1) in I . We came up with this idea because
our initial experiments revealed that the causal in-
stances obtained by penalizing CD with PSI pro-
vide better training for our model as compared to
using only CD for this purpose. The similar be-
havior of reduction in the likelihood of causality
with respect to increase in distance between two
events was observed by Riaz and Girju (2010).

PSI(vi, vj) = − log
pos(vi) + pos(vj)

2.0× (C(vp) + C(vq))
(3)

Here, C(vp) (C(vq)) is the count of the main
verbs appearing before (after) because, respec-
tively. The distance of the verb is measured in
terms of its position (i.e., pos(vi)) with respect to
because. The position is 1 for the verb closest to
because and 2 for the verb next to the closest verb.
PSI has maximum value for (vk, vk+1) and it re-
duces for other pairs with verbs at greater distance
from because in instance I .

In order to extract non-causal event pairs, we
utilized instances with two discourse segments
conjoined by the marker but which represents
comparison (non-causal) relation. Any event pair
collected from the two discourse segments in non-
causal relation encodes non-causality. Therefore,
we depend on selecting the closest verb pair from
the instances of form I with marker but instead of
because.

In this paper, we present the results produced
using a training corpus of 240K instances (50%
for each class) from the English Gigaword Cor-
pus. In order to prepare this corpus, we identified
discourse markers (i.e., m1, m2), if available, be-
fore and after because/but in each instance I and
assumed that only those markers which have dis-
course usage in I define boundaries of discourse
segments of because/but. We used the list of 100
explicit discourse markers provided by Prasad et
al. (2008) and the supervised approach of Pitler
and Nenkova (2009) to detect markers and the dis-
course versus non-discourse usage of these mark-
ers. We use this training corpus to identify cau-

sation for both explicit and implicit instances of
event pairs. Using this training corpus, a model
tends to give higher causal weights to those in-
stances in which events are connected by the ex-
plicit causal marker because as compared to im-
plicit instances of causation. Thus, to provide fair
supervision to both explicit and implicit instances
of event pairs, we remove the cue words because
and but which were used to automatically label the
training instances.

4 Causal Associations of Verb Pairs

In this section, we explain our approach to learn
the likelihood of causal relations in verb pairs by
exploiting information available from both explicit
and implicit instances of these pairs. We extracted
around 12, 000 documents from the English Gi-
gaword corpus to collect instances of verb pairs
from single sentences (intra-sentential) and adja-
cent sentences (inter-sentential) of text. In this set,
we added instances from 3, 000 articles on news
stories “Hurricane Katrina” and the “Iraq war”.
These articles were collected and used to iden-
tify causal relations in news scenarios by Riaz and
Girju (2010). We used these collections because
natural disaster and war-related news articles are
rich in causal events and chains of such events.
In order to identify the causal associations with
high confidence, we decided to apply our model on
those verb pairs which have at least 30 instances
in the above mentioned documents. We acquired
10, 455 such verb pairs. The set of intra- and inter-
sentential instances of these verb pairs is referred
to as the development set for our model.

4.1 Explicit Causal Association (ECA)
In order to find the likelihood of a verb pair to en-
code causal relations, we define our novel metric
Explicit Causal Association (ECA) as follows:

ECA(vi, vj) =
1

| V P |
∑

I(vi,vj)
∈V P

(CD(vi, vj)× CI) (4)

where V P is the set of intra- and inter-sentential
instances (denoted by I(vi, vj)) of the verb pair
(vi, vj), CD determines the causal dependency of
the verb pair in unsupervised fashion (equation 2),
and CI finds the tendency of instance I of (vi, vj)
to belong to the cause class as compared to the
non-cause class using training corpus of event
pairs. The goal of ECA is to combine the unsu-
pervised causal dependency (i.e., CD) with the su-
pervised score of instance I of belonging to cause
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class than the non-cause one (i.e., CI ). Here, CD
represents the prior knowledge about the causal
association based on co-occurrence probabilities
and idf scores (equation 2). It can discover lots
of false positives because the co-occurrence prob-
abilities can fail to differentiate causality from any
other type of correlation. Therefore, we improve
this prior knowledge with the help of supervision
from the training corpus containing instances of
both cause and non-cause relations. The global
decision of the causal association is made by tak-
ing the average of scores on all the instances con-
taining that verb pair. Notice that CD can also be
moved out from the summation function in equa-
tion 4.

We define the function CI as follows:

CI =
n∑

k=1

log(
P (fk | c)
P (fk | ¬c)

) (5)

Here, the notations c and ¬ c represent cause
and non-cause class, respectively. The notation
fk represents the feature of an instance I . In this
work, we use some language features of events
and context of an instance I which are defined
later in this section. P(fk | c) and P(fk | ¬c) are
the smoothed probabilities of feature fk given the
cause and non-cause training instances. The value
of CI is positive only when the instance I has more
tendency to encode a cause relation than a non-
cause one. To avoid negative values, we map CI

scores to the range [0, 1] using CI−Cmin
Cmax−Cmin

where
Cmin (Cmax) is the minimum (maximum) value of
CI obtained on our development set, respectively.
Also, we add a small value ε to CI to avoid 0 value.
Similarly, to avoid negative scores of PMI in equa-
tion 2 we can map it to the range [0,1].

We present below the features for the calcula-
tion of CI . We use lexical, syntatic and semantic
features on verbs and verb phrases of both events
of a pair. These features include words, lemmas,
part-of-speech tags, all senses from WordNet for
the verbs and the lexical items of verb phrases.
These features were introduced by Bethard and
Martin (2008) (for an in-depth description of these
features see Bethard and Martin (2008)). Next, we
describe the set of features which are the contribu-
tions of this research.
1. Verbs Arguments: Words, lemma, part-of-

speech tags and all senses from WordNet for
subject and object of verbs of both events.

2. Verbs and Arguments Pairs: For this fea-

ture, we take the cross product of both
events of a pair (evi ,evj ) where evi =
[subjectvi] vi [objectvi] and evj = [subjectvj ]
vj [objectvj ]. Some examples of this fea-
ture are (subjectvi ,subjectvj ), (subjectvi ,vj),
(subjectvi ,objectvj ), etc. In this work, we use
unordered pairs as features (i.e., (vi,vj)) is
same as (vj ,vi)) because the temporal order of
events is unknown for the unlabeled develop-
ment set instances. In future, this feature can
be improved by adding temporal information.

The next three features are taken from the min-
imum relevant context (mincontext) of a verb
pair which we define as follows. mincontext of
a pair (vi, vj) in an intra-sentential instance is
<s>/m1 . . . vi . . . vj . . .m2/</s> – i.e., words be-
tween the discourse markers (i.e., m1, m2) or sen-
tence boundaries (i.e., <s>, </s>) whichever ap-
pear first in the sentence. The mincontext for the
pair (vi, vj) in an inter-sentential is given below:

<s> / m1 . . . vi . . .m2 / </s>
<s> / m1 . . . vj . . .m2 / </s>

3. Context Words: Lemmas of all words from
mincontext. This feature captures words other
than two events.

4. Context Main Verbs: All main verbs and their
lemmas from mincontext. It collects informa-
tion about all verbs that appear with the causal
and non-causal event pair.

5. Context Main Verb Pairs: The pairs of main
verbs from mincontext. The lemmas are taken
from the feature “Context Main Verbs” and
then the pairs on these lemmas are used as this
feature. For example, for lemmas of verbs (i.e.,
v1, v2, . . . , vk), pairs (i.e., (v1, v2), (v1, vk),
etc.) are used for this feature. This feature
is used to get information about the interest-
ing causal chains of verbs that may appear in
causal instances.

We propose next a novel metric ICA to avoid
the problem of training data sparsity.

4.2 Implicit Causal Association (ICA)

In order to determine the causal associations us-
ing ECA, we depend on explicit cause and non-
cause training instances for supervision. However,
it is possible that some strongly causal verb pairs
may frequently appear in implicit causal contexts.
Therefore, the causality of such pairs can remain
uncaptured by ECA which merely relies on ex-
plicit training instances. For example, a pair (fall,

25



break) seems strongly causal, but it does not ap-
pear often in our explicit training corpus due to
training data sparsity. Thus, in order to handle
this problem, we propose a new metric called ICA.
This metric makes use of functions for the identi-
fication of roles of events in a cause relation. After
briefly describing the roles of events in causal re-
lations below, we continue with the description of
ICA.

4.2.1 Roles of Events in Cause Relation
Each of the two events in a cause relation can be
assigned either cause or effect role. For example
for the following training instance, the verb ap-
pearing after because represents cause event and
the verb before because represents effect event.
1. Yoga builds stamina because you maintain your poses

for a certain period of time. (Role: rC )

2. Yoga builds stamina because you maintain your poses for

a certain period of time. (Role: rE)

The notation rC and rE represents the classes of
cause and effect role of events, respectively. We
use core features of events to determine the like-
lihood of their roles in causation. These features
include lemma, part-of-speech tag, all senses from
WordNet of both verbs and their arguments (i.e.,
subject and object). Next, we use these features to
handle training data sparseness.

4.2.2 Handling of Training Data Sparsity
To deal with the problem of training data sparsity,
we define the metric ICA as follows:

ICA(vi, vj) =
1

| V P |
∑

I(vi,vj)
∈V P

(CD(vi, vj)× CI

×ERM(evi ,evj )
) (6)

where CD and CI are defined earlier and ERM
determines the likelihood of roles of the events in
the cause relation. We remind the reader that CD
is the unsupervised causal dependency of verb pair
and CI is the likelihood of instance I of the verb
pair to belong to the cause class than the non-cause
one using full set of features from section 4.1.

Events Roles Matching (ERM(evi ,evj )
) (equa-

tions 7 and 8) is the negative log-likelihood of
events evi and evj appearing as cause or effect role
determined using the explicit causal instances of
the training corpus and the core features of events
defined in section 4.2.1.
ERM(evi ,evj )

= −1.0×max(S(evi , rC) + S(evj , rE),

S(evi , rE) + S(evj , rC)) (7)

S(evi , rC) =

n∑

k=1

log(P (fk | rC)) (8)

S(evj , rE) =

n∑

k=1

log(P (fk | rE))

Here, S(evi , rC) is the score of evi being the
cause event and S(evj , rE) is the score of evj be-
ing the effect event. These scores are computed
using smoothed probabilities – i.e., P(fk | rC) and
P(fk | rE). Similarly, S(evi , rE) and S(evj , rC)
are calculated and max is taken. The high value
of ERM represents low matching of an event pair
(verbs and their arguments) in the explicit causal
instances of the training corpus. The high value
of ERM of an event pair can have one of the fol-
lowing two interpretations: (A) it is a non-causal
event pair, or (B) it is a causal event pair but this
pair and the pairs which are semantically closer to
it hardly appear in explicit causal contexts. In the
metric ICA, CI× CD(vi, vj) is used as a guiding
score to interpret ERM as follows:
1. If CI× CD(vi, vj) has high score then the value

of ERM is not penalized by this guiding score
because ERM’s value can be interpreted using
(B) above.

2. If CI× CD(vi, vj) has low score then the value
of ERM is penalized by this guiding score be-
cause (evi , evj ) can be a non-causal pair ac-
cording to the interpretation (A) above.

ICA is a boosting factor to determine causal
verb pairs which remain undiscovered because of
training data sparseness. We also define a Boosted
Causal Association (BCA) metric by adding ICA
to original ECA metric as follows:

BCA(vi, vj) =
1

| V P |
∑

I(vi,vj)
∈V P

(CD(vi, vj)× CI +

CD(vi, vj)× CI × ERM(evi ,evj )
) (9)

To build the knowledge base of causal asso-
ciations (KBc), we generate a ranked list of all
verb pairs based on the likelihood of causality en-
coded by these pairs. Here, we assume that verb
pairs are uniformally distributed across three cat-
egories - i.e., top one-third and bottom one-third
ranked verb pairs belong to Strongly Causal (Sc)
and Strongly Non-Causal (S¬c) categories and rest
of the pairs are considered Ambiguous (Ac). Fol-
lowing our assumption, we evaluate this catego-
rization in next section, but in future researchers
can perform empirical study of how to automat-
ically cluster verb pairs into three or more cate-
gories with respect to causation.
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5 Evaluation and Discussion

In this section, we present our evaluation of
knowledge base to identify causality between ver-
bal events. Specifically we performed experiments
to evaluate (1) the ranking of verb pairs based on
their likelihood of encoding causality, and (2) the
quality of the three categories of verb pairs inKBc

(i.e., Sc, Ac and S¬c). For this purpose, we col-
lected two test sets. For each test set, we randomly
selected 50 verb pairs from the list of 10, 455 verb
pairs in KBc. For each verb pair, we selected
randomly 3 intra- and 3 inter-sentential instances
from the English Gigaword corpus and the “Hur-
ricane Katrina” and “Iraq war” articles. In order
to keep the development set different from the test
sets, we automatically traversed the development
set to determine if any test instance is available in
it. In case of finding any such test instance, we
removed it from the development set to perform
evaluation on unseen test instances. Two annota-
tors were asked to provide Cause or Non-Cause
labels for each instance. They were provided with
annotation guidelines from the manipulation the-
ory of causality (Woodward, 2008). Given these
guidelines have been successfully used by Riaz
and Girju (2010), we use them here as well. For
ease of annotation, we randomly selected inter-
sentential instances such that the length of each
sentence is at most 40 words.

The human inter-annotator agreement achieved
on Test-set1 (Test-set2) is 90% (88.3%) and the
agreement on the cause class is 70% (62.7%), re-
spectively. The kappa score on Test-set1 (Test-
set2) is 0.75 (0.69), respectively. The Test-set1
(Test-set2) contains 25% (22%) causal instances,
respectively.

We employed Spearman’s rank correlation co-
efficient (equation 10) to compare the ranked list
of verb pairs based on the scores of our metrics
and the rank given by the human annotators. The
score P ranges from +1 to −1 where +1 and −1
show strong and negative correlation, respectively.

P =
n(

∑
xiyi)− (

∑
xi)(

∑
yi)√

n(
∑

x2
i )− (

∑
xi)2

√
n(

∑
y2i )− (

∑
yi)2

(10)

Here, n is the total number of verb pairs in the
test set, xi is the human annotation rank and yi is
the metric’s rank of verb pair i of the test set. The
values of xi and yi are determined as follows. For
each verb pair, Ch is calculated which is the num-
ber of cause labels given by both human annota-

Metric CEA ECA ICA BCA
Test-set1 -0.077 0.144 0.427 0.435
Test-set2 0.167 0.217 0.353 0.338

Table 1: The Spearman’s rank correlation coeffi-
cient for the metrics CEA, ECA, ICA and BCA.

Figure 1: The percentage of causal (%c) and non-
causal (%¬c) test instances in Sc,Ac and S¬c gen-
erated by the metrics CEA, ECA, ICA and BCA.

tors out of 6 instances of a verb pair. The pairs are
ranked in descending order according to the score
Ch s.t. the top scored pair(s) gets rank 50 and the
next to the top pair(s) gets rank 49 and so on. Sim-
ilarly, ranks are given to the verb pairs according
to the metric’s scores. This way of evaluation was
also used by Beamer and Girju (2009) for tempo-
rally ordered adjacent verb pairs. But here, we are
working with verb pairs appearing in any temporal
order in both intra- and inter-sentential instances.

We used ECA, ICA and BCA scores to gener-
ate the ranked list of all verb pairs. In this work,
we also used the state-of-the-art causality iden-
tifier CEA (Do et al., 2011) as baseline metric.
For each verb pair, we computed the likelihood of
causality by taking the average of CEA scores on
all instances of that pair in the development set.

The results with Spearman’s rank correlation
coefficient in Table 1 show that CEA is not very
capable of matching the human ranked list of pairs
as compared with our metrics (i.e., ECA, ICA and
BCA). Specifically, the difference is significant
for Test-set1 where the correlation coefficient with
CEA goes below 0. This behavior of CEA makes
sense because it is unsupervised and requires more
knowledge to perform well. As compared with
ECA, both ICA and BCA perform significantly
better to match human ranking. The Spearman’s
score gain by BCA on Test-set1 is of about 30
(52) points over ECA (CEA) and the gain by ICA
on Test-set2 is of about 13 (18) points over ECA
(CEA), respectively.

In order to explain the behavior of our metrics
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more clearly, we performed an evaluation of three
categories of verb pairs as follows. We generated
three categories of verb pairs using our metrics and
CEA. We combined two test sets to show the per-
centage of total causal and non-causal instances of
verb pairs that lie in Sc, Ac and S¬c using follow-
ing procedure. If a verb pair belongs to Sc and has
3 causal and 2 non-causal instances after human
agreement, then these 5 instances are considered
members of Sc. This step is performed for all verb
pairs in the test set. After this the percentage of
total causal and non-causal test instances are cal-
culated for each category (see Figure 1).

Figure 1 reveals that ICA, BCA and CEA are
successful in pulling more causal instances in Sc
as compared to ECA. But, CEA has a hard time
distinguishing cause from non-cause instances be-
cause it also brings the highest percentage of non-
causal instances in Sc. The reason is the depen-
dence of CEA on PMI scores of pairs of verbs and
arguments to make decision for causality where
PMI is not good enough to distinguish a simple
correlation from an asymmetric relation of causal-
ity. However, ICA and BCA work better by plac-
ing less non-causal instances in Sc as compared
with CEA. ICA and BCA also work better be-
cause by pulling more causal instances in Sc and
Ac, these metrics are keeping least percentage of
causal instances in S¬c. Also, ICA and BCA
bring more causal instances in Sc as compared
with ECA by handling training data sparseness.

Another important line of research is the con-
struction of a classifier on top of the component
of knowledge base for the classes of cause and
non-cause relations. This allows us to evaluate our
model in terms of standard evaluation measures -
i.e., precision, recall and F-score. These measures
can also be used to compare our model with su-
pervised classifier depending merely on shallow
contextual features with no information from the
knowledge base. Due to space limitations, we plan
to present such classifiers and evaluation in the fu-
ture.

5.1 Analysis

In this work, we have focused on determining the
predictive power of knowledge of causal associ-
ations of verb pairs to identify causality between
events. Our results reveal that our best metrics
(i.e., ICA and BCA) bring desired behavior of
keeping least percentage of total causal instances

in category S¬c. However, there is need to build a
classifier on top of knowledge base which can help
detection of non-causal instances for verb pairs lie
in Sc and Ac. Here, we state some brief details
of our test set which can help building such clas-
sifier in future. An important aspect to consider
is the highly skewed nature of real distribution of
test set. There are only 23.69% causal instances
in the test set and majority of these instances (i.e.,
56.7%) are intra-sentential instances. Therefore, a
classifier should have mechanism to decide why
inter-sentential instances of event pair are non-
causal most of the time. For example, some inter-
sentential events may not even be directly relevant
at first place because they appear in different sen-
tences. Another critical point to consider is the en-
coding of non-causal instances by strongly causal
verb pairs. For example, we asked one of the an-
notators to identify strongly causal verb pairs out
of 100 verb pairs of the test set. There are 22
such verb pairs determined by our annotator and
each of these pairs contain 43% causal instances
on the average. There are many factors (e.g., tem-
poral information, arguments of verbs) which can
make an instance of strongly causal verb pair non-
causal. For example, (call, respond) may encode
causality only if ecall temporally precedes erespond
as demonstrated by the following instances.
1. Deputies spotted the truck parked at the home of the sus-

pect’s father and called for assistance. The Border Patrol

agents and others responded. (CAUSE)

2. Prime Minister of Israel promptly responded to the

widespread unrest in the West Bank and Gaza, saying that

he would call a timeout to rethink Israel’s commitment to

peace talks. (NON-CAUSE)

In future, the above issues need to be addressed
to improve performance for the current task.

6 Conclusion

In this research, we have developed a knowledge
base (KBc

1) of causal associations of verb pairs
to detect causality. This resource provides the
causal associations in terms of three categories of
verb pairs (i.e., Strongly Causal, Ambiguous and
Strongly Non-Causal). We have proposed a set of
knowledge rich metrics to learn these associations.
Our analysis of results reveals the biases of differ-
ent metrics and brings important insights into the
future research directions to address the challenge
of detecting causality between verbal events.

1We will make the resource available.
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Appendix A. Notations

This appendix presents the details of important notations used in this paper.

Notation Equation(s) Explanation
evi 6, 7, 8, 9 Verbal event represented by the verb vi

KBc – Knowledge base of causal associations of verb pairs

Sc – Strongly Causal category of verb pairs

Ac – Ambiguous category of verb pairs

S¬c – Strongly Non-Causal category of verb pairs

mi – Discourse marker

mc 1 Causal marker (e.g., because)

f(I) 1 Function to select the most dependent pair from two dis-
course segments conjoined with causal marker

CD(vi, vj) 1, 2, 4, 6, 9 Causal dependency of the verb pair (vi, vj)

PSI(vi, vj) 1, 3 Penalization factor for the verbs of the pair (vi, vj) with
respect to their distance from the causal marker

pos(vi) 3 Distance of verb in terms of its position with respect to
causal marker

C(vp) 3 Count of main verbs appearing before causal marker

C(vq) 3 Count of main verbs appearing after causal marker

ECA(vi, vj) 4 Explicit Causal Association of the verb pair (vi, vj)

V P 4, 6, 9 Set of intra- and inter-sentential instances of a verb pair

I(vi, vj) 4, 6, 9 Instance of the verb pair (vi, vj)

CI 4, 5, 6, 9 Tendency of the instance I to belong to cause class than
the non-cause one

c 5 Cause class

¬c 5 Non-cause class

Cmin – Minimum value of CI obtained on the development set

Cmax – Maximum value of CI obtained on the development set

rC 7, 8 Class of cause role

rE 7, 8 Class of effect role

ICA(vi, vj) 6 Implicit Causal Association of the verb pair (vi, vj)

ERM(evi , evj ) 6, 7 Events Roles Matching (ERM) determines the negative
log-likelihood of events to belong to class of cause or
effect role

S(evi , rC) 8 Score of evi to belong to the class of cause role

S(evj , rE) 8 Score of evj to belong to the class of effect role

P (fk|.) 5, 8 Probability of feature fk given some class

BCA(vi, vj) 9 Boosted Causal Association of the verb pair (vi, vj)

Table 2: Details of notations.
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Abstract

An appealing methodology for natural lan-
guage generation in dialogue systems is to
train the system to match a target corpus.
We show how users can provide such a
corpus as a natural side effect of interact-
ing with a prototype system, when the sys-
tem uses mixed-initiative interaction and a
reversible architecture to cover a domain
familiar to users. We experiment with
integrated problems of sentence planning
and realization in a referential communi-
cation task. Our model learns general and
context-sensitive patterns to choose de-
scriptive content, vocabulary, syntax and
function words, and improves string match
with user utterances to 85.8% from a hand-
crafted baseline of 54.4%.

1 Introduction

Natural language generation (NLG) in dialogue
involves a complex array of choices. It’s appeal-
ing to scale up NLG by training systems to make
these choices with models derived from empirical
data. Sometimes, these choices have a measurable
effect on the flow of the interaction. Systems can
plan such choices with a model of dialogue dy-
namics that predicts which utterances will fulfill
communicative goals successfully and efficiently
(Lemon, 2011; Janarthanam et al., 2011; Garoufi
and Koller, 2011).

Other times, a wide variety of utterances work
well (Belz and Gatt, 2008). In these cases, systems
can instead be designed simply to choose those ut-
terances that most closely resemble specified tar-
get behavior. This paper describes and evaluates
a new data-driven methodology for training sen-
tence planning and realization in interactive dia-
logue systems this way. Our work is particularly
inspired by Walker et al. (2002), who train a di-

alogue sentence planner by annotating its possi-
ble outputs for quality; and Jordan and Walker
(2005), who train a referring expression generator
to match annotated human–human dialogue.

In text generation, researchers have been able
to exploit automatic analysis of existing resources
on such tasks as ordering words more naturally
(Langkilde and Knight, 1998) and identifying
named entities in line with attested mentions (Sid-
dharthan and Copestake, 2004). However, previ-
ous work on training dialogue generation has in-
volved the acquisition or annotation of relevant
data ad hoc, for example by collecting human–
human dialogue, running Wizard of Oz experi-
ments, or rating system outputs. Our work is dif-
ferent: we use a bootstrapping approach that auto-
matically mines interactions with a running proto-
type to adapt NLG to match users.

As described in Section 2, our work builds on
the COREF system of DeVault and Stone (2009).
COREF and its users chat together to identify
simple objects in a visual scene. COREF is de-
signed with reversible models of language and
dialogue—it tracks users’ utterances and its own
utterances with the same data structures and rep-
resents them as updating the conversational state
in parallel ways. Because of this symmetry,
COREF’s understanding of each user utterance
determines an input–output pair that the system
could take as a target for NLG. We explain the sig-
nificance of learning from such data in Section 3.
However, we argue in Sections 4 and 5 that this
learning will yield significant results only if sys-
tem and user do in fact turn out to make similar
contributions to dialogue.

Our main experiment therefore uses data col-
lected with a new version of COREF with more
flexible strategies for taking initiative, as described
in Section 6. We use the system’s understand-
ing of user utterances in the experiment, along
with its productive capacity to generate alterna-
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tive paraphrases of those utterances, to build an
automatically labeled training set of good and bad
NLG examples. We learn a model of the differ-
ence and evaluate its use in choosing novel utter-
ances. As documented in Section 7, the learned
model leads to improvements in naturalness over
COREF’s handcrafted baseline generator; our ex-
periments document these improvements qualita-
tively and quantitatively.

Our work suggests new ways to design dialogue
systems to adhere to formal models with guaran-
teed behavior (Paek and Pieraccini, 2008) while
reaping the benefits of data-driven approaches
(Rieser and Lemon, 2011) by improving them-
selves through ongoing interactions with users.
Our experiments suggest that engaging with user
expertise is a key factor in enabling such new de-
sign strategies. Our technique crucially exploits
synergies in our domain between the architecture
of the dialogue system, the specific dialogue pol-
icy that the system implements, and users’ abilities
to contribute to domain problem solving.

2 Background

COREF, short for “collaborative reference”, com-
municates with users through a text-chat window
for human–computer dialogue. A graphical inter-
face provides task context and realizes domain ac-
tions; it orchestrates a basic referential communi-
cation task like those studied by Clark and Wilkes-
Gibbs (1986) or Brennan and Clark (1996). In
each round of interaction, the participants in the
conversation are presented with a set of simple
geometric shapes that they must talk about; the
shapes are displayed on screen to human users
and described as a knowledge base to the COREF
agent. As the dialogue proceeds, one participant,
assigned to work as the director, gets an indication
of which object to describe next. The other partic-
ipant, assigned to work as the matcher, must move
this target object to its final disposition. Figure 1
is a snapshot of the interface in a session where the
user works as matcher. Experimental sessions nor-
mally involve multiple rounds where participants
alternate serving as director and as matcher.

COREF’s architecture factors its reasoning into
three integrative problem-solving modules, as
shown in Figure 2. The modules use different
algorithms and control flow, but are linked to-
gether by common representations and knowledge
bases. One shared resource is COREF’s prob-

Figure 1: User’s view of the chat interface in an
interaction with COREF acting as director.

abilistic context model, which tracks the likely
state of ongoing activity, maintains a linguistic
context describing what has probably been said
and what should be salient as a result, and repre-
sents the information available through the inter-
face as grounded in interlocutors’ perception. An-
other shared resource is COREF’s tree-adjoining
grammar (TAG; Joshi and Schabes (1997)), which
assigns syntactic structures and semantic repre-
sentations to utterances, and predicts what utter-
ances will refer to in context and what dialogue
moves they will contribute. Finally, both under-
standing and generation use a common represen-
tation of the interpretation of utterances, utterance
plans, which associate specific strings of words
with the updates that they are predicted to achieve
via grammar and context.

The dialogue manager handles interaction with
the user, coordinates understanding and genera-
tion, tracks updates to the context, and selects up-
dates that COREF should contribute to the conver-
sation. In case of ambiguity, the dialogue man-
ager propagates uncertainty forward in time and
works to resolve it through interaction. (COREF
has general mechanisms for engaging in clarifica-
tion subdialogues.) In fact, by the time each ob-
ject has been identified, COREF has committed
retrospectively, in light of what has happened, to
a single most likely interpretation for everything
the user has said about it. COREF has evidence
that other interpretations it originally entertained
were not what the user intended. This links each
user utterance with a corresponding utterance plan
that can be used for subsequent learning (DeVault
and Stone, 2009).

The understanding module parses utterances us-
ing the grammar and resolves them using the con-
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Figure 2: COREF system architecture, showing representations and knowledge shared across modules:
utterance plans show how each agent’s contributions follow from the system’s representations of gram-
mar and context; update rules map out consistent contextual effects for each agent’s contributions.

text model to recognize the possible utterance
plans behind them. The generator, meanwhile,
uses the grammar and the context model to syn-
thesize an utterance plan for a grammatical expres-
sion that is predicted to achieve some desired up-
dates unambiguously, as in SPUD (Stone et al.,
2003). A range of choices are folded together
by this integrated problem-solving process. For
example, the grammar specifies alternative real-
izations involving different syntactic frames and
functional items, as in the paraphrases ‘the target
is a square’, ‘a square’ and ‘square’. The gram-
mar also specifies lexical paraphrases, as in the
equivalents ‘dark blue’ and ‘navy blue’ or ‘beige’
and ‘tan’. SPUD’s problem solving also creates
choices about how much descriptive content to in-
clude in a reference, as ‘the square’ versus ‘the
blue square’, and what kind of descriptive content
to include, as in ‘the blue square’ versus ‘the solid
square’. Full utterances involve all these choices,
potentially in overlapping combinations, as in ‘the
target is the light brown object’ versus ‘the solid
square’. See the Appendix for examples of NLG
search, and DeVault (2008) for full details about
COREF’s design and implementation.

COREF’s handcrafted NLG search heuristics
draw on ideas from Stone et al. (2003) and Dale
and Reiter (1995) to prioritize efficient, specific ut-
terances which use preferred descriptive attributes
and respect built-in preferences for certain words
and constructions. When we implemented these
heuristics, we had no intention of revising the
model using learning. However, COREF’s strat-
egy never generates human-like overspecification,
its lexical and syntactic choices are determined
by hand-coded logical constraints, and it offers
few tools to discriminate among comparable para-

phrases. In principle, a system like COREF ought
to be able to find out how people tend to make such
choices in interacting with it, and learn to speak
the same way. This is the central problem we ad-
dress in this paper.

3 Related Work

Our key contribution is demonstrating that a di-
alogue system can bootstrap an integrated NLG
strategy from interactions with a prototype system
by training a model to imitate user utterances. This
complements DeVault and Stone (2009), who train
an interpretation model in a similar way. Boot-
strapping NLG for dialogue requires new insights,
and require us to synthesize of a number of trends
in dialogue, in NLG and in social learning.

A number of researchers have trained genera-
tors for dialogue based on human specifications of
desired output. For example, Walker et al. (2002)
and Stent et al. (2004) optimize sentence plans
based on expert ratings of candidate output utter-
ances. Jordan and Walker (2005) learn rules for
predicting the content of referring expressions to
match patterns found in corpora of human descrip-
tions in context. Garoufi and Koller (2011) tune
the referential strategies of a general-purpose sen-
tence planner based on metrics of utterance effec-
tiveness mined from human–human interactions.
Our work involves a new domain and for the first
time involves integrated training of all these di-
mensions of NLG, but we draw closely on the ar-
chitectures, features and learning techniques de-
veloped by these researchers. The key difference
that they use data collected, and to some degree
hand-annotated, specifically to train NLG.

At the same time, a range of research has
explored the way existing data sets can im-
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prove NLG results. For example, Langkilde and
Knight (1998) n-gram statistics to bias a non-
deterministic realization system towards frequent
utterances. Siddharthan and Copestake (2004) use
references in corpora to bootstrap a generator for
named entities in text. Such methods, however,
have generally focused on offline text generation
applications. Our research shows that specific in-
frastructure must be in place to tune NLG to a di-
alogue system’s own experience.

In addition, our work finds echoes in work
across AI on learning by imitation. Interactive
robots can learn in new ways by modeling their
behavior on competent humans (Breazeal et al.,
2005). Other domains require agents to develop
cooperative relationships and elicit meaningful be-
havior from one another before they can learn to
act effectively together (Zinkevich et al., 2011).
Our work helps to establish the connections of
these ideas to dialogue.

Finally, we note that our work is orthogonal to
a range of other research that aims to extend and
improve NLG in dialogue through learning. Given
specified target utterances, knowledge acquisition
techniques can be used to induce new resources
that describe those utterances for NLG as well as
to optimize the use of those resources to match the
corpus (Higashinaka et al., 2006; DeVault et al.,
2008). Moreover, given a model of the differen-
tial effects of utterances on the conversation, rein-
forcement learning can be used to identify utter-
ances with the best outcomes (Lemon, 2011; Ja-
narthanam et al., 2011). We see no reason not to
combine these techniques with imitation learning
in the development of future systems.

4 Training COREF

Our method for mining COREF’s dialogue experi-
ence involves three steps. First, we compile train-
ing data: positive instances are derived from user
utterances and negative instances are derived from
the generator’s alternative realizations of commu-
nicative goals inferred from user utterances. Next,
we build a machine learning model to distinguish
positive from negative instances, using features
describing the utterance itself, the current state of
the conversation and relevant facts from the dia-
logue history. Finally, we apply the learned model
on new NLG problems by collecting candidate
paraphrases and finding the one rated most likely
to be natural by the learned model.

4.1 Data Analysis
Each user utterance in COREF’s interaction logs
is associated with a particular state of the dialogue
and with the utterance plan ultimately identified
as its best interpretation. Our method extracts the
task moves in the utterance plan as candidate com-
municative goals for the utterance. It swaps the
role of the user and the system, so as to realize
an NLG problem instance to plan a contribution
with the utterance’s inferred communicative goals,
given the user’s role in the dialogue and their re-
constructed dialogue state. It then calls a revised
version of the generator that’s non-deterministic
and accumulates a range of plausible solutions.1

This process automatically creates a representa-
tion of the NLG problem faced by the user and the
set of possible solutions to that problem implic-
itly determined by COREF’s models of language
in context. Our method partitions the training in-
stances based on how the user chose to solve the
NLG problem. If the NLG output string matches
what the user actually said here, it becomes a pos-
itive training example. If it differs from what the
user actually said, it becomes a negative one.

4.2 Machine Learning
We can now build a machine learning model of
this data set. Given an unlabeled candidate solu-
tion to an NLG problem, we want to build a model
of the probability that the solution is representa-
tive of human behavior in our transcripts. We train
a maximum entropy model (Berger et al., 1996) to
make the prediction, using the MALLET software
package (McCallum, 2002). Given that the gener-
ator ultimately wants to choose the best utterance,
we could explore approaches to learn rankings di-
rectly, such as RankBoost (Freund et al., 2003).

Formally, the machine learning model charac-
terizes an input–output pair for NLG with a set of
features that would be available to a generator in
assessing a candidate output. Each training exam-
ple pairs an inventory of features with an observed
value indicating whether the instance does or does
not match the utterance produced by the human
user. Given a training set, MALLET selects a set

1Our specific approach was to capture all the successful
utterances that differ from the preferred NLG path by any
three derivation steps of the lexicalized generation grammar.
This heuristic was easy to implement with COREF’s existing
infrastructure for look-ahead search, and we found empiri-
cally that more comprehensive search was expensive to carry
out and tended primarily to add unnaturally verbose and re-
dundant utterances. See the Appendix for examples.
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of features to use and fits numerical weights for
the features for logistic regression by maximum
entropy. That is, the features determine the pre-
dicted probability that candidate output j for prob-
lem t (utterance ut, j) is good (a match with a hy-
pothetical user utterance), as a logistic function
of the sum of the feature weights describing the
instance—formally,

P(ut, j = Good | features(ut, j)) =
1/(1+ exp(−w0−∑i features(ut, j)i ∗wi))

This model can then be applied to unlabeled in-
stances with features derived from novel NLG
problem instances and candidate outputs.

The features we use in our experiments are de-
scribed in full in Tables 4 and 5 in the Appendix.
Most are from DeVault and Stone (2009). We have
features describing the form of the output utter-
ance: what phrase structure it has and what lexical
items are used. We have features describing what
task moves are achieved by the utterance and what
links the utterance has to context. For complete-
ness, we also add DeVault and Stone’s features
describing the context itself, including the conver-
sational tasks underway, the facts on the conversa-
tional record, and the properties relevant to ongo-
ing problem solving.2

In designing features for learning, we also draw
on the experience of Jordan and Walker (2005)
in predicting the form of referring expressions.
Many of their features closely align with those
we inherit from DeVault and Stone (2009). One
kind that doesn’t is Jordan and Walker’s concep-
tual pacts feature set. These features are de-
signed to capture utterance choices that are con-
tingent on other participants’ previous choices
in interaction—entrainment (Brennan and Clark,
1996). We make it possible for the learner to de-
tect entrainment by introducing a new set of his-
tory features, which list the presuppositions of re-
cent utterances.

We do not need Jordan and Walker’s distrac-
tor features, however. Unlike them, we do not try
to learn the difference between distinguishing de-
scriptions and ambiguous ones. Our architecture,

2If these context features were shared across all outputs
for a given input, they would not affect what option for NLG
was best. But this is not always the case in COREF, because
contexts can be uncertain and because COREF can trigger ac-
commodation that changes the context as part of NLG. More-
over, including these features might allow us to capture pos-
sible variability in NLG, since the model can then predict that
otherwise marked utterances work naturally in some contexts.

like that of Garoufi and Koller (2011), doesn’t
even consider a candidate utterance unless it’s un-
ambiguous on a standard reference model (Dale
and Reiter, 1995). Garoufi and Koller (2011) pro-
vide evidence for the effectiveness of this kind of
factorization of modeling and learning.

4.3 Assessing the Model

To use the trained model, we start from the NLG
problem of generating an utterance to achieve
specified communicative goals in context. Our
NLG model constructs its space of candidate ut-
terances. Each candidate input–output pair is ana-
lyzed in terms of its features, and then the learned
model assigns it a probability score. We pick our
output via the candidate with the highest score.

In evaluating how well this works, we are in-
terested in how well the learned model predicts
the utterances of new subjects given data from
other subjects. We assess this by reporting cross-
validation results, predicting the choices of one,
held-out subject given a model trained on the data
from all other users in an experiment. We report
an exact match error measure. In a more complex
generation task, we could measure error based on
edit distance to give partial credit to NLG results
that are closer to user utterances. As a baseline, we
report comparable measures for COREF’s original
NLG implementation.

5 Pilot: The Need for Reciprocity

We applied our NLG training methodology to the
data set reported by DeVault and Stone (2009)
with 20 subjects interacting with COREF. The re-
sults were not compelling.

Analysis of this data set transforms human sub-
jects’ utterances into 889 problem instances for
NLG. In 247 of these instances, the user’s utter-
ance is not in the NLG search space, usually be-
cause it is interpreted by robust methods rather
than COREF’s grammar. Of the remaining 642 ut-
terances, our baseline generator already matches
the user utterance 308 times (48%); it differs on
the other 334 instances (52%). After learning,
a model-based generator trained on the other 19
users’ data now matches the utterance of a held-
out user on 546 instances (85%) across cross-
validation runs. This sounds promising, but in fact
almost all of the model successes (534 instances)
are due to just five utterance types that fulfill sim-
ple dialogue-management functions: ‘yes’, ‘no’,

35



‘click continue’, ‘done’ and ‘ok’.
There is in fact quite little evidence in this data

about how COREF should make its typical genera-
tion decisions. Looking under the hood, the prob-
lem is that COREF’s dialogue management pol-
icy did not exploit the symmetry and reciprocity
of its dialogue models and NL representations.
COREF took the initiative in object-identification
dialogues when it was the director, offering de-
scriptions of the target object, but it also took the
initiative when it was the matcher, asking the user
to confirm or reject its suggestions about the iden-
tity and properties of the target objects.

System builders often make such design choices
to foster task success. Giving the system the ini-
tiative generally means that user utterances are un-
derstood more reliably, which helps keep the di-
alogue on track. However, in settings where the
system can potentially improve its behavior, we
may have to design the system to take more risks
so it can acquire the data it needs; we may even
want to sacrifice short-term task success to enable
long-term improvement. Such trade-offs of explo-
ration and exploitation are endemic in reinforce-
ment learning, but learning by imitation gives the
problem a distinctively social dimension: getting
the right data may mean not only trying new ac-
tions in new situations, but actively creating the
right relationship with the user.

6 Collecting Mixed-initiative Data

We revised COREF’s dialogue strategy to better
reflect users’ interactive competence using sim-
ple statistics about dialogue outcomes. For each
class of dialogue move by the agent in DeVault
and Stone’s evaluation data, we tabulated the num-
ber of subsequent utterances required to identify
the object. These measures give COREF’s planned
utterance an empirical score quantifying its antic-
ipated effect in dialogue. For example, after ask-
ing if a particular object was the target, the sub-
dialogue finished in 6.0 more turns on average.
Analogous measures give a comparable score to
the most effective kind of contribution that’s po-
tentially available to the user at each point in the
dialogue. For example, after saying that a particu-
lar object was the target, the subdialogue finished
in 3.2 more turns on average. Our new dialogue
policy compares COREF’s planned move with the
user’s best option. COREF proceeds with its ut-
terance if its score is better but waits for the user

if its score is worse. This analysis gives our re-
vised version of COREF an empirical threshold
for taking initiative in the dialogue based on the
strengths of the contributions COREF and the user
could make next in context. In practice, the re-
vised strategy lets user directors drive the dialogue
much more often than DeVault and Stone’s origi-
nal handcrafted policy. For example, COREF now
waits for the user to propose a description rather
than asking about a candidate object.

We had 42 subjects interact with the revised
COREF in a protocol of 29 object identification
tasks, grouped in blocks of 4, 9 and 16 as in De-
Vault and Stone (2009). Subjects were recruited
by advertisement and word of mouth from our in-
stitution and were paid for their participation. The
data was collected as part of an independently-
motivated assessment of COREF’s trade-offs be-
tween asking for clarification and proceeding un-
der uncertainty with its best interpretation, so
COREF varied these choices across the dialogues.

Analysis of our new data set induces 2006 NLG
problem instances corresponding to human utter-
ances, including 1382 cases where the user’s ut-
terance is (1) completely described by COREF’s
grammar, (2) found in the NLG search space, and
(3) represented as unambiguous by the underly-
ing NLG model. To confirm the diversity of utter-
ances in this set, we automatically partitioned the
utterances into four classes based on surface form
and communicative goals achieved: acknowledg-
ments that coordinate on the current state of the
dialogue (569 instances), task instructions (23 in-
stances), yes/no answers (434 instances) and other
dialogue contributions with explicit descriptive
content (356 instances). Thus, this data set con-
tains substantial evidence about human strategies
in COREF’s domain. We continue to perform
analyses of utterances by category to document the
results of our learning experiment.

7 Results

Table 1 compares the aggregate performance
of the learned NLG module in comparison to
COREF’s baseline generator across all cross-
validation runs (training on 41 users and testing on
data from one held-out user). Except in the small
category of task instructions, where the baseline is
already good, the learned model offers a substan-
tial improvement in rate of exact match to user ut-
terance across all categories. These differences in
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Table 1: Comparison of learned model and baseline generator.

System Descriptive Acknowledgments Yes/No Instructions Total

Baseline
170
356

= 47.8%
349
569

= 61.3%
210
434

= 48.4%
23
23

= 100%
752
1382

= 54.4%

Model
259
356

= 72.8%
477
569

= 83.8%
427
434

= 98.4%
23
23

= 100%
1186
1382

= 85.8%

Evaluation of exact match to user utterances across hold-one-user-out cross-validation runs. We report
number of matching instances out of number of instances with the user utterance in the NLG search
space, along with percentage match, broken down by form and communicative goal of the utterance.

Table 2: Comparison of accuracy by item.

Baseline

Model
Match Mismatch

Match 720 466
Mismatch 32 164

(a) Counts of NLG problem instances of all types,
comparing matches in the baseline generator
against matches in the learned model.

Baseline

Model
Match Mismatch

Match 152 107
Mismatch 18 79

(b) Counts of NLG problem instances with sub-
stantive contributions and explicit descriptive ma-
terial, comparing matches in the baseline genera-
tor against matches in the learned model.

rates are all statistically significant (p < .005 by
Fisher’s exact test).

Table 2 breaks down overall results (Table 2a)
and results on descriptive utterances (Table 2b), to
explore associations between the performance of
the baseline generator and the performance of the
learned model on individual items. We find a clear
link between the two methods: when the model
gets an utterance wrong, the baseline method is
much more likely to have gotten the utterance
wrong as well (p < .001 by Fisher’s exact test).
We conclude that the model is not just improv-
ing on the baseline generator in aggregate, but has
learned to correct specific choices in the baseline
system that are not representative of user behavior.

The breakdown in Table 1 gives a sense of the
range of cases covered by the learned model. The

‘yes/no’ cases mostly involve training COREF to
say ‘yes’ rather than ‘yeah’. The acknowledg-
ment cases involve understanding the subtle ways
that people trade off alternatives such as ‘ok’,
‘done’ and ‘I added it’—a difficult problem but
one where we have little choice but to trust ma-
chine learning results.

Descriptive utterances are more substantial. To
understand these cases better, we built an overall
model with data from all 42 users and looked at the
features selected by MALLET and the weights fit
for them in the maximum entropy model. Table 3
shows a sample of the MALLET output. We think
of these features as establishing a network of prior-
itized defaults; lower-weighted features must con-
spire together to override higher-weighted ones.
Syntax is the strongest effect; for example, the
contrast between [S DET N] and [S NP IS DET N]
gives a preference of 1.27 to the simpler struc-
ture. Lexical features encode more natural items
(‘brown’ versus ‘beige’) but also implicitly en-
code natural descriptive patterns (as with the color
modifier ‘light’). Presupposition features, mean-
while, help ensure that words have their most natu-
ral meanings. On this analysis, the model contents
corroborate our hypothesis that user data gives ev-
idence to refine a wide variety of NLG choices.

8 Discussion

In this paper, we show how users’ utterances can
give a dialogue system consistent and reliable in-
dicators not only of how to solve its NLU prob-
lems, as in DeVault and Stone (2009), but also
how to solve its NLG problems. Thus, we can
now design dialogue systems to learn to imitate
their human users in certain cases. To do so, the
system needs to work in a domain where users are
prepared to offer the same kind of contributions
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Table 3: Sample features used to identify user tu-
ples and their weights in an overall model.
Syntax Features:

Fits [S DET N] 2.29
Fits [S COLOR N] 2.09
Fits [S DET COLOR N] 1.86
Fits [S NP IS DET N] 1.12

Lexical Features:
Includes word light 0.87
Includes word dark 0.60
Includes word brown 0.22
Includes word beige 0.005

Presupposition Features:
Uses square for square object 2.05
Uses diamond for rhombus 2.09
Uses pink for pale red-purple 1.70
Describes light blue as light 0.92

as the system, the system needs to represent those
contributions symmetrically, and the system needs
to be able to actually elicit, analyze and learn from
relevant user utterances.

Our approach, like that of Garoufi and Koller
(2011), is to combine a symbolic account of ut-
terance interpretation with a learned model of ut-
terance quality. Thus, on our approach, system
utterances always come with formal guarantees
that they fulfill specified communicative goals and
have a unique interpretation in context. That may
help underwrite the guarantees that Paek and Pier-
accini (2008) emphasize, that data-driven systems
must respect the coherence of dialogue and must
continue to do so even as they learn to improve
dialogue efficiency and naturalness.

Our work suggests some natural followups. It
would be interesting to refine the NLG model
based on the disambiguation strategy learned in
DeVault and Stone (2009). If the system discov-
ers that utterances are not as ambiguous as the ini-
tial model suggests, it opens up new possibilities
for tuning NLG to match what users say. Scal-
ing up the ideas, meanwhile, invites us to build
factored models that describe NLG decisions in a
more compositional way, as well as finding more
powerful and generalizable features.

Further work is also required to use these tech-
niques in a broader range of settings. Our tech-
nique requires the system to give users the op-
portunity to say the same kinds of things it says,
so it is most appropriate for collaborative prob-

lem solving. Further research is required to use
the methodology for asymmetric situations such
as information seeking. Use in spoken dialogue
systems, meanwhile, would challenge the limits
of mixed-initiative interaction and would require
techniques to discount users’ errors and disfluen-
cies. Although these limitations make our tech-
niques difficult to use in many current applica-
tions, we are optimistic that our methods will
apply quite naturally to emerging open-domain
settings such as human–robot interaction, where
users and systems meet on a more equal footing.
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Appendix: NLG Search and Features

User utterance pink square
Goal(s) found 1. Target is pink

2. Target is square, or
3. Target is both pink and square

Baseline 1. the target is pink
2. the target is square
3. pink square

Model 1. pink square
2. square
3. pink square

Candidates a box, a fuschia box, a fuschia
fuschia box, a fuschia fuschia
square, a fuschia pink box,
a fuschia pink square, a fuschia
purple box, a fuschia purple
square, a fuschia square, a like
fuschia box, a like fuschia square,
a like pink box, a like pink
square, a like purple box, a like
purple square, a pink box, a pink
fuschia box, a pink fuschia
square, a pink pink box, a pink
pink square, a pink purple box,
a pink purple square, a pink
square, a purple box, a purple
fuschia box, a purple fuschia
square, a purple pink box,
a purple pink square, a purple
purple box, a purple purple
square, a purple square, a square,
box, fuschia box, fuschia square,
pink box, pink square, purple
box, purple square, square, the
target is fuschia, the target is
pink, the target is purple, the
target is square

Model confirms baseline vocabulary, learns to
overspecify color goal (1) for more natural syn-
tax. COREF can’t spell ‘fuchsia’.
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Table 4: Features derived from the current state of the dialogue (st).
feature set description
NumTasksUnderway The number of tasks underway in the state st .

TasksUnderway
For any task that is underway in state st , a feature includes its
name, its depth on the task stack, and its current status in its
formal task network.

NumRemainingReferents The number of targets that remain to be identified in state st .

TabulatedFacts
For any fact on the conversational record at state st there is a
corresponding string feature—a formula with any unique ref-
erence symbols anonymized (e.g. X34 becomes some-object).

CurrentTargetConstraints
For any positive or negative constraint on the current target in
state st , there is a corresponding string feature.

UsefulProperties
For any property instantiated in the display in state st there is a
corresponding feature.

History
Each assertion and presupposition on the conversational record
in state st is represented as a string feature.

Table 5: Features derived from the proposed utterance (ut, j).
feature set description

Presuppositions

Each of the atomic presuppositions of the utterance ut, j is rep-
resented as a string feature. The string captures predicate–
argument structure but anonymizes references to individuals
(e.g. target12 becomes sometarget).

Assertions
Each of the dialogue moves that the utterance contributes cor-
responds to a feature. This string also captures predicate–
argument structure but anonymizes references to individuals.

Syntax
A string representation of the bracketed phrase structure, in-
cluding non-terminal categories, of the utterance.

Words
We represent each word that occurs in the utterance as a fea-
ture.

User utterance the light blue diamond
Goal(s) found Target is specified object
Baseline the blue object
Model the light blue diamond
Candidates the blue blue diamond,

the blue blue object, the blue
blue rhombus, the blue
diamond, the blue diamond
outline, the blue object,
the blue object outline,
the blue rhombus, the blue
rhombus outline, the empty
blue diamond, the empty blue
object, the empty blue
rhombus, the hollow blue
diamond, the hollow blue
object, the hollow blue
rhombus, (continued)

Candidates the light blue diamond,
the light blue object, the light
blue rhombus, the lighter blue
diamond, the lighter blue
object, the lighter blue
rhombus, the like blue
diamond, the like blue object,
the like blue rhombus,
the outline blue diamond,
the outline blue object,
the outline blue rhombus,
the sky blue diamond, the sky
blue object, the sky blue
rhombus

Model confirms baseline pattern of color and type
reference but learns to overspecify color as light
blue and to use basic type diamond.
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Abstract

Research on the structure of dialogue has
been hampered for years because large di-
alogue corpora have not been available.
This has impacted the dialogue research
community’s ability to develop better the-
ories, as well as good off-the-shelf tools
for dialogue processing. Happily, an in-
creasing amount of information and opin-
ion exchange occur in natural dialogue in
online forums, where people share their
opinions about a vast range of topics. In
particular we are interested in rejection
in dialogue, also called disagreement and
denial, where the size of available dia-
logue corpora, for the first time, offers
an opportunity to empirically test theo-
retical accounts of the expression and in-
ference of rejection in dialogue. In this
paper, we test whether topic-independent
features motivated by theoretical predic-
tions can be used to recognize rejection in
online forums in a topic-independent way.
Our results show that our theoretically mo-
tivated features achieve 66% accuracy, an
improvement over a unigram baseline of
an absolute 6%.

1 Introduction

Research on the structure of dialogue has been
hampered for years because large dialogue corpora
have not been publicly available. This has im-
pacted the dialogue research community’s ability
to develop better theories, as well as good off-the-
shelf tools for dialogue processing that account for
the richness of human dialogue. Happily, an in-
creasing amount of information and opinion ex-
change occurs in natural dialogue in online fo-
rums, where people can express their opinion on
a vast range of topics from Should there be more
stringent gun laws? to Are school uniforms a good
idea? (Walker et al., 2012a). For example, con-
sider the dialogic exchange in Fig. 1.

Post P, Response R
P1: Can the government force abortion clinics to carry
anti-abortion articles and papers? Or maybe force them
provide a sonogram? Force them to have a psychologist
on staff? Force them to have 3x3 foot posters of aborted
babies on the wall? Seems like it makes more sense for a
state to restrict something from the people rather than force
the people to have something. No?
R1: I don’t see why this matters. Could you please elab-
orate a little more, and in that elaboration, could you ad-
dress why the government may require a private company
to provide this commonly recommended medical remedy
(plan b) when it does not do so with countless other com-
mon medically recommended remedies?

Figure 1: Disagreement from 4forums.com. Pos-
sible features in bold.

In particular we are interested in the phe-
nomenon of REJECTION in dialogue (Horn, 1989;
Walker, 1996a), also called disagreement and de-
nial. Our data show that the amount of disagree-
ment in online ideological dialogues ranges from
80% to 90% across topic. Such data provides a
rich resource for testing theoretical accounts of re-
jection, as well as for developing computational
models of how to recognize rejection in dialogue.
To date, rejection has received relatively little at-
tention in computational models of discourse be-
cause of its rareness in task-oriented, tutorial or
SwitchBoard style dialogue. Computational mod-
els of argumentative discourse do not typically at-
tempt to account for rejection in dialogue, focus-
ing instead on monologic sources displaying legal
reasoning, logical accounts of rejection, or how to
produce good arguments using natural language
generation (Zukerman et al., 2000; Carenini and
Moore, 2000; Wiley, 2005; Sadock, 1977).

Moreover, the theoretical literature strongly
suggests that there should be topic-independent in-
dicators of rejection. In work on politeness the-
ory, rejection is a dispreferred response, predict-
ing that rejection should be associated with mark-
ers of dispreferred responses such as disfluencies
and hedging (Brown and Levinson, 1987). Work
on negation specifies markers of negation and con-
trast such as but or only for different types of re-
jection, and work on discourse relations and their
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Type Context Rejection
DENIAL Pigs can fly. No, you idiot, pigs can’t fly! (Horn’s 29)
LOGICAL CONTRADICTION Kim and Lee have been partners since

1989.
But Lee said they met in 1990.

IMPLICIT DENIAL Julia’s daughter is a genius. Julia doesn’t have any children.
REFUSAL Come and play ball with me. No, I don’t want to. (Horn’s 33)
IMPLICATURE REJECTION There’s a man in the garage. There’s something in the garage. (Walker’s 6)
DENYING BELIEF TRANSFER B: Well ah he uh ... he belongs to a

money market fund now and uh they
will do that for him. H: The money
market fund will invest it in govern-
ment securities as part of their individ-
ual retirement account – is that what
you’re saying? B: Right.

H: I’m not so sure of that. (Walker’s 31)

INCONSISTENT PAST BELIEF H: Then they are remiss in not sending
it to you because that money is taxable
sir.

M: I know it’s taxable, but I thought they
would wait until the end of the 30 months.

CITING CONTRADICTORY
AUTHORITY

H: No sir.... R: That’s what they told me.

Figure 2: Classification and Examples of the Types of Rejections.

markers suggests that DENIAL is a type of COM-
PARISON relation (Horn, 1989; Groen et al., 2010;
Webber and Prasad, 2008). These observations,
among others, suggest a range of theoretically mo-
tivated features for the classification of rejection in
online dialogue, e.g. phrases such as I think, but, I
don’t see, and Can you. See Fig. 1.

Our aim is to test whether theoretical predic-
tions and topic-independent features motivated by
them can be used to recognize rejection in online
forums. We generalize our topic independent fea-
tures using a development set on the topic Evolu-
tion. We then test a rejection (disagreement) clas-
sifier trained on Evolution on 1757 posts covering
a collection of other topics, and compare our re-
sults to a ngram model trained on Evolution and
tested on the same test set. See Table 1.

We first describe our corpus in Sec. 2, and then
review previous work characterizing the theoreti-
cal basis of rejection in dialogue in Sec. 3. Sec. 4
describes our method for classifying rejections
and Sec. 5 presents our results, showing that our
theoretically motivated rejection cues are reliable
across topic. We show that cue words, polarity,
punctuation, denial and claim features motivated
by the theoretical literature provide a significant
improvement over a 50% baseline, and that all
of the theoretically motivated features combined
achieve 66% accuracy as compared to a unigram
accuracy of 60%. We delay reviewing previous
computational work rejection to Sec. 6 when we
can compare it with our own work.

2 Corpus

We utilize the publicly available Internet Ar-
gument Corpus (IAC), an annotated collec-

Topic Agr DisAgr Total
Evolution 460 460 920
Abortion 250 280 530
Climate Change 17 10 27
Communism vs. Capitalism 10 13 23
Death Penalty 15 19 34
Existence Of God 53 48 101
Gay Marriage 173 134 307
Gun Control 334 331 665
HealthCare 21 37 58
Marijuana Legalization 6 6 12
All Topics (test set) 879 878 1757

Table 1: Distribution of (Dis)Agreement by Topic.
The Evolution topic is for development and train-
ing. The test set of other topics is balanced overall,
but not by topic.

tion of 109,553 forum posts (11,216 discussion
threads)(Walker et al., 2012a). We use the
portion of the IAC containing dialogues from
http://4forums.com. On 4forums, a person
starts a discussion by posting a topic or a question
in a particular category, such as society, politics,
or religion. Forum participants can then post their
opinions, choosing whether to respond directly to
a previous post or to the top level topic (start a
new thread). Conversants may simply agree or dis-
agree with a previous post or they may provide a
reasoned argument.

The corpus contains posts on topics such as
Abortion, Evolution, Existence of God, Gay Mar-
riage and Gun control along with a range of use-
ful annotations. First, there are annotations that
collapse different discussions into a single topic
for 14 topics. For example, the Evolution and
Gun Control topics include discussions initiated
with the range of titles in Table 2, which guaran-
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First Post (P), Response (R)
Disagreements
P1: No I didn’t miss it, I was hoping you’d actually put forward an argument against what I said, not what you think I
said. See what I actually said was the tautology. Then make your argument. Note Post 30 He said evolution is a tautology.
I said that Darwin preferred a tautology to “Natural Selection” You may have mixed up who it is you’re arguing against.
R1: I’m wondering. What do we call someone who debates feverishly on scientific theories, yet admittedly does not
understand the concepts they are arguing against? Is it productive to debate something that you don’t understand
the concepts of when it’s a fairly involved theory based on scientific evidence? What if you convinced someone NOT
to believe in it, but you did so using falsifiable reasons, since you aren’t an expert and might not know any better?
Irresponsible, is one such word, that comes to mind.
P2: What in Vishnu’s name does this have ANYTHING to do with evolution vs creation???
R2: Well, many have argued that if you don’t except a literal Genesis, you’re damned. Perhaps not in this particular
thread, but the arguments are essentially the same. I believe that the theological implications of that position are fair
game for discussing the validity of creationism.
P4: You have this backwards. The word theory was originally a scientific word, and then it was adapted into common
speech to mean a range of things not originally designated to that word. Words like evolve, gravity and congruent have
different meanings within the realm of science than they have outside. If you can’t appreciate the difference between
the definition of a word in the context of science as opposed to the context of common speech, then maybe you have no
business in science.
R4: When it comes to all the examples that Behe had provided in both his first book, and his second book , it has been
shown to be able to evolve naturally. That means, in principle, IC systems can evolve. If you don’t believe so, bring forth
the I.C. system of your choice. To say ‘you don’t know all the answers’ is just the logical fallacy known as ’argument
from ignorance’. Behe brings a system up that he claims is IC. the pathway for evolution is discovered, and Behe trys
another one. How dishonest can you get? The concept is falsified.
P5: Well, Genesis has God making all the animals “and their kind”, and then when he’s done with that he makes humans.
So I would assume that humans don’t fit into the “kind” schema, or perhaps are a kind unto themselves........
R5: : So we can’t base our definition of “kind” on mere appearances? I mean if we are going to put things into
categories and call the category “kind”, we should do this by common appearances. A penguin is in the same kind as a
hummingbird, but is a lobster in the same kind as an oyster? ........
Agreements
P6: I think its nonsense interpretation developed by people who were afraid that if they fought for guns as valiantly as
they did for free speech, they wouldn’t receive any donations.
R6: I think you are entirely correct. From the page VOR linked: There is no evidence ANYWHERE that the second
amendment is a collective right. We have been over this multiple times, and the evidence simply does not exist, and an
organization like the ACLU should be well aware of this.
P7: Correction: If one isn’t a fundementalist, literal christian, jew or muslim, then marc considers them a atheist. He’s
never going to deal with the fact that he’s quite wrong on that subject. It’s obvious to everyone that he’s constantly
avoiding it even when asked point blank several times. A sign of argumental failure is constant avoidance of a simple
question.
R7: Quite right. My mistake. Once again, quite right...
P8: thats pretty neat. Did they finish up the feeder?
R8: yeah, this is clearly the best thread on these forums in probably the past year....give us some more pics length)
P9: This is probably the most rational site in all of the creationist’s online arguments. Arguments we think creationists
should NOT use
R9: Thanks, DuoMax, for this link. How delightful to see here mention of this solid gesture, on the part of a major
creationist organization, in the direction of intellectual integrity..... ....Each time a Christian stands in the pulpit and pours
out poor argument, s/he loses ground for the faith. Thanks again.

Figure 3: Disagreements and Agreements from 4forums.com. Theoretically motivated features are in
bold.

Evolution Evolution in school, Dinosaurs and Hu-
man Footprints, Can Evolution & Reli-
gion Coexist, Did Charles Darwin Re-
cant, Shrinking Sun, Bombardier beetle,
Moon Dust, Second Law of Thermody-
namics, Magnetic Field, Nebraska Man

Gun Control Gun Control, Trigger Locks, Guns in the
Home, Right to Carry, Assault Weapons,
One gun a month, Gun Buy Back, Gun-
Seizure Laws, Plastic Guns, Does gun
ownership deter crime, Second Amend-
ment, Enforced Gun Control Laws?,
Gun Registration, Armor piercing bul-
lets, Background Checks at Gun Shows

Table 2: Discussions Mapped to the Evolution and
Gun Control Topics.

tees variation in the focus of the discussion even
within topic. The topics we use are in Table 1.
Each discussion is threaded so that we can iden-
tify direct responses. Discussions may have a tree-
like structure, so a post may have multiple di-
rect responses. In addition to the adjacency pairs
yielded by threading, 4forums also provides a
quote/response Q/R mechanism where a post may
include a quote of part or all of a previous post.
We do not use the Q/R pairs here.

The IAC also includes annotations collected via
Mechanical Turk on these dialogue pairs. There
are 20,000 pairs from threads of 3 posts P1,P2,P3
with annotations for (dis)agreement for pairs (P1,
P2) and (P2, P3). Agreement was a scalar judg-
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ment on an 11 point scale [-5,5] implemented with
a slider. The annotators were also able to signal
uncertainty with a CAN’T TELL option. Each of
the pairs was annotated by 5-7 annotators, in re-
sponse to the annotation question Does the respon-
dent agree or disagree with the prior post?. Anno-
tators achieved high agreement on dis(agreement)
annotation with an α of 0.62. We used thresholds
of 1 and -1 on the mean agreement judgment to de-
termine agreement and disagreement respectively.
We omitted dialogue adjacency pairs with mean
annotator judgment in the (-1,1) range. Table 1
provides the distribution of topics for the 1757
posts in the test set.

3 Theories of Rejection in Dialogue

A common view of dialogue is that the conversa-
tional record is part of the COMMON GROUND of
the conversants. As conversants A and B partici-
pate in a dialogue, A and B communicate through
dialogue speech acts such as PROPOSALS, ASSER-
TIONS, ACCEPTANCES and REJECTIONS. If A
asserts a proposition φ and B accepts A’s asser-
tion, the φ becomes a mutual belief in the com-
mon ground. If B rejects A’s assertion or proposal,
the common ground remains as it was (Stalnaker,
1978). For conversants to remain coordinated
(Thomason, 1990), they must monitor whether
their utterances are accepted or rejected by their
conversational partners.

Computational models of dialogue also must
track what is in the common ground (Traum, 1994;
Stent, 2002). This would be simple if conversants
always explicitly indicated rejection with forms
such as I reject your assertion. However recog-
nizing rejection typically relies on making infer-
ences. Horn categorizes rejections into: DENIAL
a straightforward negation of the other’s assertion;
LOGICAL CONTRADICTION following from logi-
cal inference; IMPLICIT DENIAL where B denies
a presupposition of A’s; and REFUSAL, also called
REJECTION where B refuses an offer or proposal
of A’s (Horn, 1989). See Fig. 2. All of Horn’s
forms can be identified as rejections by recogniz-
ing logical inconsistency either directly from what
was said, or via an inferential chain.

However subsequent work by Walker on the
Harry Gross Corpus (henceforth HGC) of advice-
giving dialogues (Pollack et al., 1982) demon-
strated that REJECTION IMPLICATURES as seen in
the 5th row of Fig. 2, are common in natural di-
alogue (Walker, 1996a). A number of similar ex-
amples can also be found in (Hirschberg, 1985).
Here, the proposition realized by the response fol-

lows from the original assertion as an entailment
via existential generalization. Thus the REJEC-
TION IMPLICATURE is logically consistent with
the original assertion.

Walker argues that the fact that an implicature
can function as a rejection clearly indicates that
inference rules about what gets added to the com-
mon ground must have the same logical status as
implicatures, i.e. they must be default rules of
inference that can be defeated by context. She
then goes on to identify additional types of rejec-
tions in HGC that rely on detecting conflicts in
the default inferences triggered by the epistemic
inference rules used in speech act theory. Walker
uses a compressed version of rules from (Perrault,
1990; Appelt and Konolige, 1988), assuming that
conflicting defaults can arise between these in-
ferences and implicature inferences (Hirschberg,
1985). The first rule is given in 1:

(1) BELIEF TRANSFER RULE:
Say(A,B,p)→ Bel (B,p)

The Belief Transfer Rule states that if one agent
A makes an assertion that p then by default another
agent B will come to believe that p. The second
rule is in 2:

(2) BELIEF PERSISTENCE RULE:
Bel (B,p,t0)→ Bel (B,p,t1)

The Belief Persistence Rule states that if an
agent B believes p at time t0 then by default agent
B still believes p at a later time t1. These rules pro-
vide the basis for inferring three additional types
of rejections:

• DENYING BELIEF TRANSFER: Agent B can
deny the consequent of the Belief Transfer
Rule by negatively evaluating A’s assertion or
expressing doubt as to its truth.
• INCONSISTENT PAST BELIEF: Inferring that

B’s expression of an inconsistent past belief
is a type of rejection relies on detecting con-
flicting defaults with the Belief Transfer Rule
and the Belief Persistence Rule. The two be-
liefs may directly conflict, or the conflict may
arise via an inferential chain.
• CITING CONTRADICTORY AUTHORITY: In-

ferring that citing a contradictory authority
is a type of rejection relies on recognizing
two inconsistent instantiations of the Belief
Transfer rule. For example, agent A1 as-
serted p and agent A2 asserted ¬p, leaving
B in an inconsistent belief state caused by the
conflicting defaults generated by the alternate
instantiations of the Belief Transfer Rule.
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Fig. 2 provides Walker’s examples of these
new types of rejection and Fig. 3 illustrates dis-
agreements and agreements in the IAC corpus.1

While we see many instances of the rejection
types in Fig. 2 in IAC, especially CITING CON-
TRADICTORY AUTHORITY and DENYING BELIEF
TRANSFER, we also find new types such as ad-
hominem attacks on the other speaker as the
source of particular propositions (e.g. R1 in Fig. 3,
which would not have occurred in HGC talk show
context. Other cases that we have noted are a
different type of DENYING BELIEF TRANSFER,
which occurs when a previous speaker’s asserted
proposition is marked by the hearer as hypotheti-
cal using a conditional, e.g. If capital punishment
is a deterrent, then ..... In future work we aim to
expand the taxonomy of rejections using IAC.

4 Empirical Method
Our primary hypothesis is that certain expres-
sions and phrases are reliable cues to the auto-
matic identification of the speech acts of REJEC-
TION and ACCEPTANCE, i.e. (dis)agreement, in-
dependently of the topic. We assume that it will
not always be possible to get annotated data for a
particular topic, given the ever-burgeoning range
of topics discussed online. We use the Evolu-
tion topic as our development set, and ask: given
(dis)agreement annotations for only one topic, is it
possible to develop features that perform well on
another arbitrary topic?

There is limited previous research on disagree-
ment, thus it is an open issue what types of fea-
tures might be useful. One line of previous work
suggests that various pragmatic features might
help (Galley et al., 2004). Another line suggests
that disagreement is subtype of the COMPARISON
(CONTRAST) discourse relation, in the Penn Dis-
course TreeBank taxonomy, suggesting that fea-
tures for identifying COMPARISON, such as polar-
ity and discourse cues might also be useful (Hahn
et al., 2006; Prasad et al., 2010; Louis et al., 2010).

We began by selecting and manually inspecting
460 agreements and 460 disagreements from the
Evolution topic, and extracting their most frequent
unigrams, bigrams and trigrams. This showed that
features suggested by theoretical work on rejec-
tion were indeed highly frequent: our aim was
to generalize what we observed in the Evolution
dataset and then test whether the generalized fea-
tures can distinguish agreements from disagree-
ments. We first observed that very few unigrams

1Since participants are not generally making plans to-
gether in these dialogues, we leave aside Walker’s classifi-
cation of rejections of proposals.

were useful for disagreements, e.g. liar, no, don’t,
while bigrams such as I don’t, How can, If I, how
could, show me seemed to be better indicators.
Furthermore, trigrams such as I don’t agree, how
can you, point is that, and I do not understand
are even stronger indicators of disagreement, but
of course these higher order ngrams are less fre-
quent and are more likely to contain topic-specific
words. In order to provide better generalization,
we generalized the ngrams that we observed, e.g.
an instance such as how can you would also result
in how can we and how can they being added to the
same feature set. We also generalized over hedges
and other categories of features on the basis of the
theoretical literature. The total set of features we
developed are grouped into the sets in Table 3 dis-
cussed in detail below.

Feature Description Examples
Agreement Ngrams in-

dicative of
accepting
others claim.

right, yes, yeah, correct,
accepted, thanks, good,
agree, acknowledge

Cue Words Cues as Ngrams
and their LIWC
CogMech gen-
eralizations

oh, so, uh, yes, no, dont,
cogmech, claim, i, yeah,
because, well, just, and,
you, you mean, i see, i
COGMECH

Denial Ngrams indica-
tive of denying
another’s claim

You don’t know, That
does not, I don’t think,
what is, This has noth-
ing, I don’t see, You
do not, do you mean,
I don’t know, we don’t
have, Problem with
that, I do not, Does not,
why do, But I don’t,
how can

Hedges Unigrams,
bigrams, and
trigrams that
include hedge
terms.

Im wondering, I am
wondering, whatever,
somewhat, may be,
possibly, anyway, it
seems to me, my view,
actually, my opinion,
essentially, somewhat,
my perspective, rather,
although, really, I
suppose, perhaps

Duration Sentence, word and post lengths
Polarity Means of positive and negative polarity

terms.
Punctuation Counts of question marks and exclamation

points.

Table 3: Feature Sets, Descriptions, and Exam-
ples. The unigrams features are our baseline case;
these features are not theoretically motivated.

Unigrams. Results of previous work on stance
identification in argumentative discourse suggest
that a unigram baseline can be difficult to beat
(Thomas et al., 2006; Somasundaran and Wiebe,
2010). Thus we test our theoretically moti-
vated features against unfiltered unigrams and un-
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igrams+bigrams as baselines.
Agreement and Denial. As described above we
used Evolution to manually develop generaliza-
tions of the observed unigrams, bigrams and tri-
grams that were consistent with theoretical pre-
dictions. We split the indicator features into two
categories Agreement and Denial. See Table 3.
Our manual analysis suggested that agreements
have few topic independent markers. Unigrams
such as agree correct and right were also present
in disagreements, and trigrams such as I agree
but, You may be correct however I do not agree,
I don’t agree were better indicators of disagree-
ment. Our agreement markers are thus a small
category where we check that the keywords agree,
correct and right are not preceded by a negation
marker and not followed by discourse markers
such as but, yet, or however. However, the denial
category at present has more than 300 ngrams ex-
tracted and generalized from the Evolution topic.
Pitler et al, (2009) also used ngrams consisting of
the first and last three words for recognition of the
PDTB COMPARISON relation. Other work on the
PDTB also suggests that DENIAL can be indicated
by contrast (Webber and Prasad, 2008).
Cue Words. Both psychological research on dis-
course processes (Fox Tree and Schrock, 1999;
Groen et al., 2010) and computational work on
agreement and discourse markers (Galley et al.,
2004; Louis et al., 2010) indicate that discourse
markers are strongly associated with particular
pragmatic functions such as stating a personal
opinion (Asher et al., 2008; Webber and Prasad,
2008). Based on manual inspection of the Evo-
lution devset we selected 18 items for the CUE
WORDS feature set, as in Table 3. Examples are
well in R2 and so and but in R5.
Durational Features. Brown and Levinson’s the-
ory of politeness would suggest that disagree-
ments are dispreferred responses and thus that the
length of the post could indicate disagreement; it
predicts that people will elaborate more and pro-
vide reasons and justifications for disagreement
(Brown and Levinson, 1987). Our durational fea-
tures measure the length of the utterance in terms
of characters, words and sentences.
Hedges. In Brown and Levinson’s theory of po-
liteness, hedges are one of many possible strate-
gies for mitigating a face-threatening act (Brown
and Levinson, 1987; Lakoff, 1973). Hedges can be
used to be deliberately vague or simply to soften
a claim. We see many examples of hedges in on-
line dialogue, e.g. the speaker of R2 in Fig. 3 uses
the hedges Perhaps and essentially, and I mean in
R5. Thus hedges are hypothesized to be useful

feature for distinguishing (dis)agreement, yielding
the hedge features in Table 3.
Polarity. Work on discourse relations in the PDTB
also suggests that differences in polarity across
adjacent utterances might be an indicator of the
COMPARISON relation. In addition, Horn’s classes
of REJECTIONS shown in Fig. 2 all include mark-
ers of negation. Thus to capture the overall senti-
ment of the post we used the MPQA subjectivity
lexicon (Wiebe et al., 2003; Wilson et al., 2005).
Each word is POS tagged and then categorized as
strongly or weakly subjective. The positive po-
larity feature is the sum of the strongly subjective
words of positive polarity, and the negative polar-
ity feature represents the sum of strongly subjec-
tive words of negative polarity.
Punctuation. Another indication of DENYING
BELIEF TRANSFER rejections are the question
marks and exclamation marks that conversants fre-
quently use to express their disbelief and doubt
about another conversant’s claim. For example,
R1 and R5 in Fig. 3 have a high frequency of ques-
tion marks.

5 Results

Our aim was to test how well we can distinguish
agreements and disagreements in IAC using clas-
sifiers trained with theoretically motivated fea-
tures. As described above, we developed our fea-
tures by manual inspection of (dis)agreements in
920 posts on the topic Evolution. We do not train
on a mixture of topics for any feature set, includ-
ing unigrams, because we assume that in general,
new topics are always arising so there will not be
annotated data for every topic. We evaluate the
performance of all types of features on classify-
ing (dis)agreements on other topics combined. We
do not report per-topic results because our test set
baseline accuracies vary a great deal by topic as do
the size of the topic sets. See Table 1.

Features Random Forest J 48
ALL-TM 63.1 66.0
Unigram 56.6 59.8

Bigram 59.3 60.1

Table 4: Accuracies for Theoretically Motivated
Features (ALL-TM), Unigrams and Bigrams with
Random Forest and J48 Trees over a 50% base-
line. No interesting differences observed in preci-
sion and recall.

Table 3 summarizes our theoretically-motivaed
topic-independent features, and Table 4 compares
the accuracies of classifiers using these features to
unigrams and bigrams when we train on Evolu-
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tion and then test on our mixed-topic test set, using
the Weka learners for Random forest and J48 Tree.
Although unigrams and unigram+bigram achieves
approximately 60% accuracy over a 50% baseline,
paired t-tests on the result vectors show that the
differences in accuracies are statistically signifi-
cant when we compare ALL-TM features with un-
igrams and unigram+bigrams: Random Forest (p
= .004) and J48 Trees (p < .0001).

Ngram N
Feats

Acc Feats Selected

Uni 2K 62.5 understand, fail, never,
nothing, catholic, gene,
irrelevant, acceptable, show,
didn’t, geologist, creationist

Bigram 4k 62.7 ? you, do we, understand
that, ? just, really?, is based,
well said, ? did, can the, the
nature, the church, failed to,
then what

Table 5: Accuracy when fitting to test set for num-
ber of features selected for ngrams, with sample
features.

Moreover even if we optimize on the test set
by examining the variations in performance as a
function of the number of features selected, ALL-
TM still beats both unigram and unigram+bigram,
when features are selected according to ranking by
Gain Ratio. ALL-TM is significantly more accu-
rate when compared to unigrams (p = .003) best
accuracy of 62.5 with 2000 features, and better
than unigram+bigram best accuracy of 62.7 for
4000 features (p = .007). See Table 5.

More interestingly though, if we look at what
features get selected ( Table 5), we see many fea-
tures reminiscent of our theoretically motivated
features. Features highly ranked by the Gain Ra-
tio were topic-independent cues for disagreement
such as understand, fail, nothing, never and Bi-
grams such as ? how, perhaps you, would you,
never said. However there were few high ranked
unigrams and bigrams for agreement. Also note
that topic specific cues such as gene, catholic, cre-
ationist, geologist and the church are selected over
any topic-independent cues for agreement. This
corroborates our manual construction of a com-
bined denial category with more than 300 words
and a very limited agreement category.

To test which features make the most difference,
we also conducted ablation experiments (Table 6),
as well as tests with individual features (Table 7).
Table 6 shows that the CUE WORDS (p = .0008)
and PUNCTUATION features (p = .01) have the
biggest impact on performance. The decrease in
performance when ablating agreement features is

Ablated Feature Random Forest J 48
No Agreement 62.2 65.0
No Cue Words 59.1 62.1
No Denial 63.3 66.0
No Duration 63.6 66.3
No Hedges 64.2 66.5
No Polarity 64.4 66.8
No Punctuation 60.3 61.6

Table 6: Accuracy when Ablating each Theoreti-
cally Motivated Feature with Random Forest and
J48 Trees over a 50% baseline .

not statistically significant (p = .20).

Feature Acc Prec Recall
Agreement 54.4 .55 .54
Cue words 62.5 .63 .62
Denial 52.0 .54 .52
Duration 53.6 .54 .53
Hedges 50.4 .51 .50
Polarity 53.4 .53 .53
Punctuation 65.3 .65 .65

Table 7: Results for Individual Features for J48
Trees over a 50% baseline .

Since the J48 learner performs consistently bet-
ter, we restrict our comparison of individual fea-
tures in Table 7 to that learner. Table 7 shows
that PUNCTUATION and CUE WORDS features by
themselves provide significant performance im-
provements over the unigram baseline, and that
the POLARITY, AGREEMENT, DENIAL and DU-
RATION feature sets provide significant improve-
ments on their own over the majority class base-
line of 50%. A paired t-test shows these differ-
ences are significant at p =.02. To our surprise,
the HEDGE feature was not effective, and we plan
further refinements of it. These results support the
hypothesis that there are clearly markers for agree-
ment and disagreement that are suggested by the
theoretical literature and which are not topic spe-
cific.

6 Discussion and Future Work

We develop topic-independent features for classi-
fying (dis)agreement in online dialogue, and show
that we can beat an unfiltered unigram baseline
by 6%, and even beat the best feature-selection
ngram-based classifers fitted to the test set.

Features we didn’t use from previous work in-
clude word pairs as introduced by (Marcu and
Echihabi, 2002), and used subsequently by (Pitler
et al., 2009) and (Biran and Rambow, 2011). The
issue of whether word pairs are topic-dependent
has never been addressed, but the examples given
in previous work suggest that they may indicate
topic-specific comparisons. Previous work also
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suggests that context might be helpful in recog-
nizing disagreement (Walker et al., 2012b), but we
did not test the effect of context.

The most similar work to our own trains a dis-
agreement classifier for Q/R response pairs in on-
line forums (Abbott et al., 2011). Their work used
ngrams, MPQA opinion words (Stoyanov et al.,
2005), LIWC (Pennebaker et al., 2001), and a dif-
ferent dataset (Q/R instead of P1,P2 datasets), and
does not aim to develop a classifier that works
well independently of topic. Their best accuracy
is about 68% for a feature set called BothLocal
for the JRip classifier using χ2 feature selection.
BothLocal includes unigrams, bigrams, trigrams,
LIWC, punctuation, cue words, dependency fea-
tures, generalized dependency features and utter-
ance length measures, and it is unclear whether
these features are specific to topic. It is also dif-
ficult to directly compare the results because they
do not report accuracies for individual feature sets
or ablated feature experiments. For example, their
unigram accuracy of 63% includes cue words, and
is reported for training and testing on a mixture of
topics without any held-out topics.

Other work on disagreement recognition in-
cludes that of (Wang et al., 2011) who de-
scribe conditional random field model for detect-
ing (dis)agreement between speakers in English
broadcast conversations. They use sampling and
prosodic features such as pause, duration and
speech rate on an unbalanced dataset. They re-
port an increase in F-measure of 4.5% for agree-
ment and 4.7% for disagreement over a baseline of
lexical, structural, and durational features. (Hahn
et al., 2006) show that a contrast classifier im-
proves the accuracy of dis(agreement) classifica-
tion in the ICSI meetings corpus, and that their re-
sults are less affected by imbalanced data. They
improve the F-measure to .755 over a baseline
SVM with F-measure .726. (Yin et al., 2012)
use sentiment, emotion and durational features for
(dis)agreement classification in online forums, and
they show that aggregating local positions over
posts yields 3 to 4% better performance than non-
aggregating baselines.

While recognizing (dis)agreement can be use-
ful in its own right, it has also been shown to
be useful for the identification of stance (Gawron
et al., 2012; Hassan et al., 2010; Thomas et al.,
2006; Bansal et al., 2008; Murakami and Ray-
mond, 2010; Agrawal et al., 2003). Work that
focuses on the social network structure of on-
line forums as a way to improve stance classifi-
cation has either assumed that adjacent posts al-
ways disagree, or used simple rules for identify-

ing agreement based on patterns in the reply post
(Murakami and Raymond, 2010; Agrawal et al.,
2003). Previous work by Somasundaran & Wiebe
(2009, 2010) develops positive and negative argu-
ing features for the classification of stance, that
at least in motivation, resemble our denial fea-
tures . They show that arguing features are help-
ful in stance classification. Work by (Galley et
al., 2004) on detecting disagreement in meetings
corpora similarly shows that pragmatic features
are useful for detecting disagreement using mod-
els based on Bayesian Networks. (Walker et al.,
2012b) use a number of linguistic features such as
unigrams, bigrams, and repeated punctuation and
proposed a supervised model for stance classifica-
tion in online debates. Related work by (Hassan et
al., 2010) focuses on identifying the attitude of the
participants towards one another in online debates.
They relate the polarity of words to the second per-
son pronoun for classification, while related work
by (Abu-Jbara et al., 2012) uses the polarity of
expressions and named entity recognition to iden-
tify a subgroup of participants, where participants
within a subgroup are inclined to agree with one
another. Methods for stance classification in con-
gressional debates do not separately evaluate the
accuracy of (dis)agreement classification (Thomas
et al., 2006; Bansal et al., 2008; Awadallah et al.,
2010; Burfoot, 2008).

In future work, we plan to develop more de-
tailed patterns based on LIWC categories and syn-
tactic parses (Thelen and Riloff, 2002). For ex-
ample, an error analysis suggests that sometimes
two people mutually reject the proposal or claim
of a third person, e.g. How can they say that....
In such cases our classifier finds the disagreement
marker how can and classifies it as disagreement.
More detailed syntactic processing would allow us
to refine our patterns to identify particular classes
of targets such as third person vs. first person.
Similarly, here we extended patterns by hand, e.g.
generalizations over pronouns such as I can’t, we
can’t, can you, can we. In future we aim to gen-
eralize such patterns automatically using tagsets.
We expect that more general patterns should im-
prove the accuracy of the topic-independent fea-
ture sets. We also plan to carry out further annota-
tion of the IAC corpus using the classes of rejec-
tions summarized in Fig. 2 to determine whether
there are forms for indicating each type that are
not represented by our features, and to determine
the frequency across a sample of our corpus of the
different types.
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Abstract 

In this paper we focus on modeling 
friendships between humans as a way of 
working towards technology that can initiate 
and sustain a lifelong relationship with users. 
We do this by predicting friendship status in a 
dyad using a set of automatically harvested 
verbal and nonverbal features from videos of 
the interaction of students in a peer tutoring 
study. We propose a new computational 
model used to model friendship status in our 
data, based on a group sparse model (GSM) 
with L2,1 norm which is designed to 
accommodate the sparse and noisy properties 
of the multi-channel features. Our GSM model 
achieved the best overall performance 
compared to a non-sparse linear model (NLM) 
and a regular sparse linear model (SLM), as 
well as outperforming human raters. Dyadic 
features, such as number and length of 
conversational turns and mutual gaze, in 
addition to low level features such as F0 and 
gaze at task, were found to be good predictors 
of friendship status. 

1 Introduction and Related Work 

While significant advances have been made in 
detecting the speech and nonverbal social signals 
emitted by individuals (see Vinciarelli, Pantic & 
Bourlard, 2009, for a review), and research has 
addressed the social roles and states of 
individuals in groups (see Gatica-Perez, 2009, 
for a review), considerably less computational 
work has focused on the automatic detection of 
speech or nonverbal correlates of specifically 
dyadic states, such as rapport. And yet rapport 
has been shown to have important effects on 
interactions as diverse as survey interviewing 
(Berg, 1989), sales (Brooks, 1989), and health 
(Harrigan et al., 1985).  If we are to build 
interactive systems that are successful, then, we 
believe that the ability to build rapport with a 
human user will be essential. 

Rapport can be instantaneous and can also 
build over time. Granovetter (1973) describes the 
strength of an interpersonal “tie” as a function of 
the time, emotional intensity, and reciprocity that 
accumulates between people. These ties mediate 
effects in myriad domains such as learning 
(Azmitia & Montgomery, 1993) and healthcare 
(Harrigan & Rosenthal, 1983).  

Accordingly, analysis of initial exchanges and 
those after many years of interaction suggests 
that the behavioral signals that indicate rapport 
change over time. For example, in Tickle-
Degnen and Rosenthal’s highly cited model 
(1990), rapport consists of mutual attention, 
positivity, and coordination. High levels of 
positivity between conversational partners are 
common in the initial phases of a relationship, 
but positivity has been shown to decline, without 
a loss in rapport, as the number of interactions 
increases. In fact, Ogan et al. (2012) gave 
evidence that the use of playful rudeness 
between friends during peer tutoring correlates to 
greater learning. This leads to an associated 
challenge of spoken dialogue system 
development: creating systems that can develop 
social ties, and increase rapport with the user 
over repeated interactions to maximize beneficial 
outcomes. 

While little work has addressed automatic 
detection, some prior work has addressed the 
problem of emitting signals to build rapport in 
dialogue and agent systems (Stronks et al., 2002; 
Bickmore & Picard, 2005; Gratch et al., 2006; 
Cassell et al., 2007; Bickmore et al., 2011), and 
we turn to this research for what cues might be 
important in rapport. The majority of this prior 
work, however, has addressed harmony – or 
instant rapport – rather than rapport over time. 
For those systems that have addressed friendship 
or the growth of rapport, most commonly the 
number of interactions has been used as a meter 
of relationship progression, instigating changes 
in the dialogue system as the social odometer 
scrolls onward (Cassell & Bickmore, 2003; 
Vardoulakis et al., 2012). Counting the times a 
dyad has interacted is a crude approximation of a 
relationship state, however; being able to detect 
the behavioral signals that people actually use to 
indicate relationship status would be superior. 

In our own prior work (Cassell et al.,2007) we 
looked at particular hand-annotated nonverbal 
signals (such as nodding and mutual gaze) as 
operationalizations of rapport, and found that 
friends and non-friends indeed show differing 
distributions of each signal as a function of 
relationship state. In the current study, we move 
to the next step and automatically harvest a set of 
multimodal dyadic and time contingent features 
to identify those features that play a significant 
role in predicting friendship state. A major 
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challenge for predicting relational states such as 
these is to construct a compact feature space that 
captures only reliable rapport signals and also 
generalizes across different users. To provide 
strength to our model (as well as to fit the 
multimodal nature of embodied conversational 
agents), we look at both acoustic and visual 
features. Such an approach takes advantage of 
the fact that multimodal aspects of 
communication are not redundant, but often 
complementary (Cassell, 2000).  
    However, dyadic behaviors such as 
conversational turns, mutual/non-mutual smile, 
mutual/non-mutual gaze, and mutual/non-mutual 
lean forward provide an additional challenge in 
modeling; no matter how important, they appear 
relatively rarely in conversational data. Thus 
standard non-sparse linear models, normally 
trained on high frequency factors, might assign 
too much weight to low frequency (i.e., sparse) 
features. In order to address issues of this sort 
Yuan and Lin (2007) introduced the group 
lasso.   To address the sparse nature of our 
features in real-world data and the noise that 
occurs from different production sources, we 
propose an extension to this genre of technique 
in the form of a Group Sparse Model (GSM) 
which enforces sparsity with a L2,1 norm instead 
of the group lasso penalty (Chen, et  al., 2011), 
due to the relatively efficient optimization 
process of L2,1 norms (Liu, et al., 2009). Unlike 
a straightforward sparse linear model (SLM) 
(Yang et al., 2010), which treats each feature 
independently, GSMs group features which share 
the same production source in the optimization 
process. In the GSM linear model, the removal of 
the assumption of independence between 
features means that the penalty is on group rather 
than individual features. Thus the model has 
general robustness to noise, since grouping 
features from the same production source can 
increase the overall confidence of the feature 
group. 

Our contributions in this work, then, are three-
fold: we (1) designed and implemented a method 
for automatic dyadic feature extraction which is 
based on low level features, and which yields 
strong predictive power of friendship status, (2) 
propose a new Group Sparse Model (GSM) with 
L2,1 norm, that deals with the noisy and sparse 
nature of the feature sets, and (3) illuminate, 
from this model, the nature of verbal and 
nonverbal behavior between friends and non-
friends in a peer tutoring setting. 

The remainder of the paper is organized as 
follows. We first describe the data set and 
introduce the features used in our experiments. 
We then describe the performance of the three 

computational models we evaluated. Finally, we 
discuss the contributions of different features to 
friendship prediction and provide an error 
analysis of our proposed model.  

2 The Data Set 

 
 

Figure 1: Camera View 1 and Camera View 2 

We collected data from dyads of students 
engaged in a reciprocal peer tutoring task. We 
chose peer tutoring as it is a domain in which 
friendship has been shown to have a positive 
effect on student learning (see e.g. Ogan et al, 
2012). In addition, tutoring systems that rely on 
dialogue are common, and peer tutoring dialogue 
systems are increasingly common. Thus, being 
able to assess friendship state in this domain is a 
useful step on the path to creating a peer tutoring 
agent that can use rapport to increase learning 
gains.  
    Each dyad consisted of two American English 
speakers with a mean age of 13.3 years (range = 
12 – 15). We collected data from 12 dyads, of 
which 6 dyads were already friends. Dyads were 
either both girls or both boys, and each condition 
contained 3 boy dyads and 3 girl dyads.  

Each dyad came to the lab for 3 sessions, with 
an average interval between visits of 4.6 days 
(SD = 3.1), totaling 36 sessions across all dyads. 
Each session consisted of about 90 minutes of 
interaction recorded from three camera views (a 
frontal view of each participant and a side view 
of the two participants). With close talk 
microphones, we also recorded the participants’ 
speech in separate audio channels for the purpose 
of automatic dyadic acoustic feature extraction. 
The setting is shown in Figure 1. 

Each session began with a short period of time 
for participants to become acquainted. After that, 
using a standard reciprocal tutoring procedure 
(see Fantuzzo et al., 1989), participants tutored 
each other on procedural and conceptual aspects 
of an algebra topic in which both participants 
were relatively novice. Order of seating and 
assignment of tutoring roles (tutor or tutee) was 
determined in the first session by alphabetical 
order of participant name. Tutoring roles 
alternated from that point on, such that both 
participants had the opportunity to take on the 
role of “expert” during each session. After a 
period of individual study time to familiarize 
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themselves with the material, the first tutoring 
period began and lasted approximately 25 
minutes. This was followed by a 5 minute break, 
after which students’ tutoring roles were reversed 
for a second tutoring period of 25 minutes. 
Finally, each student answered a survey about 
the interaction.  

The current study examines only the tutoring 
sections of each session, which were divided into 
30-second clips or “thin slices” (Ambady et al., 
2006). In total, the data points used for modeling 
comprise 2259 clips from the 12 dyads. 

3 Multimodal Information  

In our analyses, low-level audio and visual 
features were automatically extracted using three 
off-the-shelf toolkits. Dyadic features, which are 
a second order derivative of the low level 
features, and which capture the interaction of two 
participants, are also automatically produced. 
Taken together, analysis of these features allows 
us to determine if the verbal and nonverbal 
behaviors of the participants index their 
friendship status in any significant way.  

3.1 Low Level Audio Features (LA)  

Type # of Features 

Prosodic Features 

  F0 72 

  Energy 38 

  Duration 154 

Voice Quality Features 

  Jitter 68 

  Shimmer 34 

  Voicing 38 

Spectral Features 

  MFCC 570 

Total 974 
 

Table 1: Acoustic Feature Groups 
 

For acoustic feature extraction, a large set of 
acoustic low-level descriptors (LLD) and 
derivatives of LLDs combined with appropriate 
statistical functionals, i.e., maxPos (the absolute 
position of the maximum value in frames), 
minPos (the absolute position of the minimum 
value in frames), amean (The arithmetic mean of 
the contour), etc., were extracted for each of the 
split channel recordings. The “INTERSPEECH 
2010 Paralinguistic Challenge Feature Set” in the 
openSMILE toolkit (Schuller et al., 2012) was 
used as our basic acoustic feature set. For 
spectral features, Mel Spectrum and LSP were 
excluded due to the possible overlap with 

MFCC. The set contained 974 features which 
resulted from a base of 32 low-level descriptors 
(LLD) with 32 corresponding delta coefficients, 
and 21 functionals applied to each of these 68 
LLD contours. In addition, 19 functionals were 
applied to the 4 pitch-based LLD and their four 
delta coefficient contours. Finally the number of 
pitch onsets (pseudo syllables) and the total 
duration of the input were included. The 
dimension of each feature group is shown in 
Table 1. 

3.2 Low Level Vision Features (LV) 

Type # of Features 

Face Position Feature 10 

38 Face Interest Points 114 

Gaze Features 3 

Face Direction  Features 4 

Mouth and Eye Openness 6 

Smile Intensity 1 

Discretized Smile 1 

Total 139 
 

Table 2: Vision Feature Groups 
 

Since participants were facing the camera 
directly most of the time, as seen in Fig 1, 
current technology for facial tracking can 
efficiently be applied to our dataset. OMRON’s 
OKAO Vision System was used in face 
detection, facial feature extraction, and basic face 
related features extrapolation. For each frame, 
the vision software returns a smile intensity (0-
100) and the gaze direction, using both 
horizontal and vertical angles expressed in 
degrees. Apart from gaze direction, the software 
also provides information about head orientation: 
horizontal, vertical, and roll (in or out). 38 
additional face interest points, position and 
confidence, were also extracted. These were 
normalized to pixel coordinates, which turned 
out to lead to quite noisy data, and hence to 
diminished utility of these 38 points (in the 
future we will consider normalizing to face 
coordinates). We also calculated the openness of 
the left eye, right eye, mouth, and the location of 
the face. Details are shown in Table 2. Similar to 
our audio feature extraction method, one static 
feature vector per 30 second video clip was 
produced. All the features were computed at the 
same rate as the original videos: 30 Hz. 
Altogether, 139 dimensions were extracted in 
each frame from each camera view. 

3.3 Dyadic Features (DF) 

All of the features discussed above are low-level 
acoustic and visual features, extracted with 
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respect to individual participants. While 
individual behavior may index friendship state, 
we posit that patterns of interaction will be more 
effective. For example, prior research (Baker et 
al., 2008) suggests that the number and length of 
conversational turns (Cassell et al., 2007), 
presence of mutual smiles and non-mutual smiles 
(Prepin et al., 2012), mutual gaze and non-
mutual gaze (Nakano et al., 2010), as well as 
posture shifting (Cassell, et al., 2001; Tickle-
Degnen & Rosenthal, 1990), are important 
features to investigate in dyadic data. While 
other features such as gestures and mutual pitch 
shift may also play a role in indexing relationship 
state, these are not yet a part of the dyadic 
features we address here.  

3.3.1 Number and Average Length of 
Conversational Turns   

We recorded individual audio channels for each 
participant, which makes the automatic 
extraction of conversational turns possible. First, 
we extracted intervals of silence with toolbox 
SoX which produced speech chunks, and then 
identified the speaker by comparing the speech 
energy (loudness) in each audio channel, as 
speech from each speaker is carried by the 
other’s microphone. After that we combined the 
speech chunks and speaker ID to approximate 
conversational turns. The approximation quality 
is not perfect, given the variability of the audio 
recording, but noise can be mediated during 
model building. 

3.3.2 Mutual Smile and Non Mutual Smile  

Prepin et al. (2012) describe the role of mutual 
smiles (smiles that occur during the same time 
period) in “stance alignment” and make the point 
that interactional alignment of this behavior 
reflects synchronization of internal states. Such 
synchrony predicts mutual understanding and 
increased quality of interaction, and as such is a 
fundamental quality in the formation of 
adolescent friendships (Youniss, 1982). Cappella 
& Pelachaud (2002) likewise describe 
“mutuality” as the precondition for how smiles 
function in contingent ways in a dyad. Smiles are 
clearly therefore important to assess in data such 
as ours. We defined a maximum window of 500 
milliseconds between the end of one participant’s 
smile and the beginning of the next for smiles to 
be considered mutual.  

3.3.3 Mutual Gaze and Non-mutual Gaze 

Nakano & Ishii (2010) describe eye gaze as a 
clue to engagement, and integrate mutual gaze 
into their conversational agents. There is no 
feature for direct gaze at partner provided in the 

OKAO vision toolkit. Mutual gaze was therefore 
approximated by annotating a gaze “in front,” 
achieved by combining the information from 
three directions of gaze: vertical, horizontal, and 
depth. Gaze “in front”, or at the partner, was 
recorded only if the participant gaze had less 
than a 15 degree angle from straight forward in 
all of these three directions. A maximum window 
of 500 milliseconds for gaze to be considered 
mutual was also employed here.  

3.3.4 Mutual Lean Forward and Non-Mutual 
Lean Forward 

Forward leaning has been shown to be a 
significant predictor of the ability to establish 
rapport in a dyad (Harrigan et al., 1985). In fact, 
friends who lean in are seen as more socially 
competent, while strangers are seen as less 
socially competent when they lean in (Burgoon 
& Hale, 1988). For our study, lean forward was 
approximated by detecting the smooth trend of 
face enlargement within the video frame. In 
order to improve precision of the feature, the 
segments with high confidence in face detection 
were processed. Furthermore, posture shifting, 
i.e., forward leaning, is not as quickly executed 
as changes in gaze or smile. We therefore used a 
1 second sample window for lean forward, rather 
than a 500 millisecond window.  

3.3.5 Mutual Gaze followed by Mutual Smile 

Mutual gaze followed by mutual smile is also 
approximated using a similar approach as above. 
It is a relatively dense feature compared to all the 
other possible combinations of nonverbal 
behaviors, thus it is the only combination that is 
included in the feature set in this paper. The 
window within which mutual gaze is considered 
to be followed by mutual smile is set to be within 
2 seconds. 

4 Computational Model  

We formulate friendship prediction as a set of 
binary classifications. In order to have the least 
variance and make sure no participant appeared 
in both the training and testing set, a leave-one-
out cross-validation setting was adopted in all of 
our experiments. Each session had approximately 
180 30-second video clips, totaling 2259 data 
points. Z-score normalization by dyad was used 
to scale all the features into the same range. 
Early fusion, which is simple concatenation of 
feature vectors, was adopted throughout our 
experiments to combine different features. We 
evaluated our group sparse model (GSM), along 
with a non-sparse linear model (NLM) and 
sparse linear model (SLM). 
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4.1 Non-sparse Linear Model (NLM) 

We began with a standard non-sparse linear 
model (NLM), which is a Support Vector 
Machine (SVM) (Cortes & Vapnik, 1995) with a 
linear kernel. The libsvm (Fan et al., 2008) 
package was used in our experiment, and the 
parameter, the slack value of SVM that controls 
the scale of the soft margin, was obtained by 
cross validation.  

4.2 Sparse Linear Model (SLM)  

In order to prevent over-fitting on rare dyadic 
features, a sparse sensitive model SLM was 
introduced. As well as preventing over-fitting, 
through weight shrinkage the sparse model can 
also exclude redundant features. In our 
experiment, an L2,1 norm sparse model with 
linear kernel (Yang et al., 2012) was selected as 
our baseline sparse model. 

4.3 Group Sparse Model (GSM) 

Based on the SLM, we propose a group-sparse 
model (GSM) with the novel use of an L2,1 
norm. Instead of assuming every feature is 
uncorrelated to other features, the GSM groups 
some of the features together and utilizes their 
correlated information to mediate the noise of the 
data. For an arbitrary matrix        , its 
          is defined as  

         ∑ √∑    
  

   
 
     

Suppose that we have n training data indicated 
by            and sampled from c classes. In 
our setting, c = 2, friends or non-friends.     
{   }          is the corresponding label. 
The total scatter matrix    and between class 
scatter matrix    are defined as follows.  

         ∑                   
     

         ∑                        
     

where µ is the mean of all samples,    is the 
mean of samples in the i-th class.    is the 
number of samples in the i-th class,   
            . 

                         

G is the scaled label matrix. A well-known 
method to utilize discriminate information is to 
find a low dimensional subspace in which     is 
maximized while    is minimized (Fukunaga et 
al., 1990). So the object function could be easily 
written as follows  

    (  (    
  ) )             

           

The optimization of the above object function 
was introduced in Yang et al. (2012). It is an 
adaptation of iterative singular value 
decomposition. In GSM, a block-wise constraint 
is imposed on the diagonal matrix (D) which is 
the intermediate result of the iterative single 
value decomposition. 

      (
 

       
     

 

       
  ) 

W in the equation is the weight function,    is 
the i

th
 feature group in W, and there are a total 

number of G sub diagonal matrices 
corresponding to G groups of features. 
     For acoustic features, Steidl et al., (2012) 
designed a grouping schema which consists of 
Prosodic Features, Voice Quality Features and 
Spectral features which we adopted. For visual 
features, based on our observation of the highly 
unstable performance of the 38 feature points of 
the face, we introduced group bondage for the 
entire group to prevent single face features over-
fitting the classifier. Detailed group information 
is shown in Table 1 and Table 2. 

5 Human Baseline 

 
Figure 2: Boxplot of human rating accuracy with 

respect to gender. 

In order to establish a baseline of the difficulty 
of predicting friendship, we conducted an 
experiment with humans, rating whether two 
people in a video were friends or not, after 
watching a 30-second video/audio clip taken 
from the first session of tutoring (in which the 
behaviors of strangers are most likely to be 
distinct from friends). We recruited 14 people 
and screened out participants with prior 
theoretical knowledge of nonverbal behavior, 
gesture, friendship, and rapport, or who rated all 
12 clips in under 8 minutes, leaving 10 
participants, half male, with an average age of 23 
(SD 4.8). Each participant was asked to watch 
one 30-second clip per dyad, taken from 3 
minutes after tutoring began. The mean accuracy 
of their friendship prediction was 0.717 (SD 
0.119), which is significantly lower than our best 
GSM model (trained on all three sessions) 
applied to those same 12 clips, with a 
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performance of 0.837 (t(11) = -2.1381 p.<.05). 
When we split the ratings by gender, we found 
females on average were more accurate than 
males (see Figure 2). According to Hall et al., 
(1979) females are generally better decoders of 
nonverbal behaviors, which may lead to better 
judgment of friendship. 

6 Results: Models  

 
 Human NLM SLM GSM 

LV  0.743 0.768 0.792* 

LA  0.674 0.664 0.682* 

LV+DF  0.752 0.769 0.801* 

LA+DF  0.679 0.681 0.683 

LV+LA  0.744 0.780 0.803* 

LV+LA+DF  0.717 0.749 0.782 0.814# 
 

Table 3: The classification accuracy of the three 
algorithms on different features sets. Feature sets 
were combined with early fusion (+). Values marked 
* are significantly better (p<.05, pairwise t-test) than 
other results in the same row. Values marked # are 
significantly better (p<.001, pairwise t-test) than other 
results in the same column. 

Our group sparse model (GSM) along with the 
non-sparse linear model (NLM) and sparse linear 
model (SLM) were evaluated on different 
combinations of three sets of features: low-level 
vision features (LV), low-level audio features 
(LA) and dyadic features (DF), and their 
performance is presented in Table 3. We did not 
evaluate dyadic features (DF) alone due to their 
sparse nature. 
     In particular, we found that adding the 
automatically extracted DF to LV and LA with 
early fusion improved the performance (t(2258)= 
-3.12,p<.001) of the GSM model. When using 
fewer modalities, our newly proposed GSM 
outperformed NLM and SLM (t(2258)=-1.65, 
p<0.05). However, when the number of feature 
sets increased, there was no statistical difference 
in performance between GSM and the other two 
models. We suspect that when features are 
abundant, the information that the features 
provide reaches a ceiling. The advantage of the 
GSM was gained by mediating the noise and 
sparseness of the data, which resulted in better 
weight assignment for each feature. Alternatively, 
when features are abundant, even NLM can have 
a comparative weight assignment by performing 
a greedy high dimensional feature space search. 
Thus there is limited room for further 
improvement by better weight assignment among 
the group features which GSM assumes. 
    When we looked at the top features selected 
by NLM using the vision modality alone, two 
(out of 38) face features, which had an unstable 
nature, appeared high in rank, which suggests the 

possibility of NLM over-fitting the noise of these 
features. Surprisingly, when more modalities are 
added, NLM stops picking single face features as 
top informative features. In GSM, none of the 38 
face features are listed in the top ranked features 
for any of the modalities, which demonstrates its 
ability in noise mediation. 

In real world applications, data sets which 
produce ideal, abundant, and accurate features 
are rarely encountered. We often end up with 
data that are poor in video quality, e.g. with no 
split channels for each participant or no frontal 
face view. Our newly proposed GSM may 
therefore be more robust when features are noisy 
or certain modalities are not available.  

7 Results: Contributions of Features 

Feature Name Weight 

Number of Conversational Turns & 

Average Length of Turns 
0.041 

Gaze Down -0.036 

Mutual Gaze 0.014 

F0 0.013 

Non-mutual Gaze -0.013 

Voicing 0.014 

MFCC -0.007 

Non-mutual Smile 0.004 

Non-mutual Lean Forward 0.004 

Mutual Gaze followed by Mutual 

Smile 
0.001 

 
Table 4:  The top 10 informative features and their 
weights as trained by GSM. Positive weight is 
associated with friends while negative weight is 
associated with non-friends. 

After building the model and ranking the 
features, we looked into the weights learned for 
each feature. This weight comprises not only the 
magnitude, which tells us if the feature is 
important, but also the polarity. A detailed list of 
the most informative features and their weights is 
shown in Table 4.  

The strongest feature is number and length of 
conversational turns which is grouped in the 
table and should be interpreted as meaning that 
friends have more and shorter conversational 
turns. This is consistent with previous research 
on direction giving (Cassell et al., 2007), and 
mirrors the fact that friends are more likely to 
interrupt one another. 

We expected that unfamiliar participants, 
seated about two feet across from one another, 
would maintain a low level of eye contact 
(Argyle & Dean, 1965). In fact we found that 
non-friends tend to gaze down more often. In 
this context, non-friends spend more time 
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looking down at their study materials. In turn, 
mutual gaze is higher among friends. 

Among the audio features, F0, which captures 
pitch related information such as range and 
mean, has been shown to differ between 
conversational and non-conversational speech 
(Bolinger, 1986). Here, friends show that more 
conversational style in their speech, despite the 
tutoring nature of the interaction.  

In order to further examine the lessons to be 
learned from this GSM model about verbal and 
nonverbal behavior in friends and strangers, we 
also ran a repeated measures ANOVA, including 
both gender and friendship status as factors. 
There were no significant effects for gender, 
however, and so that factor was collapsed for 
further analysis. The four features described 
above were all significantly different between 
friends and strangers (although gaze down was 
simply a trend, at p<.08). 

The following features were also important to 
the model, but did not show significance in the 
ANOVA, perhaps because of their sparse nature 
in our data. MFCC (Mel-Frequency Cepstral 
Coefficients) was associated with strangers and 
the similar audio feature of voicing was 
associated with friends. Both of these features 
have been described as approximating speech 
style – voicing, for example, may indicate more 
backchannels, such as “uh huh” and “hmm” 
(Ward, 2006). 
     In Nakano et al. (2003), listener gaze at the 
speaker is interpreted as evidence of non-
understanding. We found similar results whereby 
non-friends were more likely to engage in non-
mutual gaze – looking at one another when the 
other person was not looking back.  Mutual smile 
did not distinguish between friends and non-
friends, while non-mutual smile, on the other 
hand, provided indicative strength, in spite of its 
sparse nature, for friendship. This may relate to 
our prior work (Ogan et al., 2012) which found 
significant teasing and other behavior whereby 
friends appear comfortable enjoying themselves 
at the expense of the other.  
    Mutual lean forward lacked predictive power 
in our model, while non-mutual lean forward 
was more salient between friends. We often 
found, for example, that friends maintained very 
different postures, with a tutor leaning back 
much of the time, leaning forward only to answer 
a direct question from the tutee. Non-friends, on 
the other hand, tended to remain fixed on the 
study material. This may have been a display of 
formality, where a casual attitude would have 
been perceived as either impolite or 
inappropriate. In either relationship state, the 
tutee tended to sit hunched over the worksheet, 

and since we did not enter tutor state into the 
model, this may have washed out some tutor-
specific results.  
     For the time contingent feature, mutual gaze 
followed by mutual smile is informative and 
predictive of friends. 

8 Error Analysis and Discussion 

Dyad  

ID 
LA+DF LV+DF LA+LV+DF 

     1 0.732 0.809 0.819 

     2* 0.703 0.793 0.804 

     3* 0.574 0.771 0.778 

     4* 0.713 0.708 0.762 

     5 0.653 0.879 0.880 

     6 0.728 0.827 0.835 

     7 0.624 0.873 0.882 

     8* 0.712 0.861 0.852 

     9* 0.698 0.820 0.830 

    10 0.606 0.834 0.854 

    11* 0.700 0.682 0.743 

    12 0.749 0.780 0.785 
 
Table 5: The average accuracy of classification in 
each dyad using the group sparse model (GSM) with 
different combination of feature sets. Dyads marked 
with * are friends 

We performed an error analysis to understand the 
contexts under which our model failed to 
accurately predict friendship states, and here we 
discuss the implications of these examples for 
our work. Table 5 shows the average accuracy of 
each dyad using audio, visual, and dyadic 
features to predict friendship. Dyads 2, 3, 4, 8, 9 
and 11 are friend dyads, and the rest are 
strangers.  

Dyad 3 (friends) showed very low accuracy in 
audio and dyadic features alone, which might be 
explained by the fact that in one early session for 
this dyad, most of the 30-second clips contain 
very sparse numbers of low-level audio features 
(LA). An examination of the audio recording 
reveals that one of the participants was more 
aggressive than in the other sessions. The student 
told his friend, “Just be quiet—I am trying to 
work,” and “Shh, you don’t understand, so I 
basically have to teach you how to work that, but 
I'm trying to work.” At this point in the 
interaction, his partner stopped participating in 
the task and said virtually nothing for the rest of 
the session. This lack of speech led to a lower 
number of turns – a pattern with a closer 
resemblance to strangers than friends. 

It seems that such rude behavior would be 
more likely between friends than strangers, 
meaning that ultimately our model will need to 
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be sensitive to this kind of variance. With more 
pairs of friends, different styles of friendship can 
be further distinguished. However, this specific 
phenomenon signals that in the future, lexical 
information which could be obtained by 
automatic speech recognition could further 
improve performance. 

Dyad 11 also showed low relative accuracy in 
predication, particularly when the model used 
vision features. We found that one of the 
participants often tilted her head, which partially 
blocked the frontal camera view of the other 
participant, thus resulting in less confidence in 
automatically extracted visual features. In the 
future we will set our cameras in a better position 
in order to reach higher feature extraction 
accuracy.  

When we combined all our features, the 
prediction accuracy of Dyad 3 and 11 improved, 
further demonstrating that multimodal 
information improves friendship modeling. 

9 Conclusion and Future Work 

As a first step towards predicting the state of 
friendship between two interlocutors, we 
analyzed a set of automatically harvested low-
level and dyadic features from dialogues in a 
peer-tutoring task. Both low level features and 
dyadic features were shown to be useful in 
discriminating between those who are friends 
and those who are not.  
     To perform the analysis, we introduced a new 
computational group sparse model (GSM) in 
order to accommodate the sparse and noisy 
properties of multi-channel features. GSM 
outperformed a baseline of human raters who 
make these types of social judgments in 
everyday interactions. GSM also statistically 
outperformed a non-sparse linear model (NLM) 
and a sparse linear model (SLM) when the 
analysis used only a single set of low level 
features or single set of low level features 
combined with dyadic features. When all 
features were used, the distinctions between 
models decreased, since in a huge multimodal 
feature space, even a naïve model could greedy 
search for a good weight assignment. Thus our 
newly proposed model did not significantly 
outperform the others in this scenario. And in 
general, more features produced more accurate 
prediction. 
    Based on the outcomes of the GSM model, we 
investigated differences between verbal and 
nonverbal behavior cues as a function of 
different friendship states. While much research 
on rapport detection and building in ECAs has 
focused on low level features, we found that 
dyadic features provided some of the most 

distinguishing differences between friends and 
non-friends. For example, mutual gaze and non-
mutual gaze were both indicative, as friends are 
comfortable looking directly at one another while 
non-friends may have used direct gaze only to 
signal non-understanding. This comfort between 
friends was also notable in other salient dyadic 
features; i.e., while non-friends often work in 
concert looking down at the task, friends were 
relaxed such that one partner could lean back, 
interrupt to take more conversational turns, and 
smile at the other without needing to reciprocate 
the smile each time. 

In future work we will look at temporal 
contingency more closely, examining whether 
participants’ actions are contingent on the 
behavior of their partner. We will also examine 
whether the behavior of friends and strangers 
changes over multiple sessions. In this context, 
we include one suggestive graph, which shows 
that strangers increase their mutual gaze over 
sessions but friends decrease it. We are currently 
collecting further sessions for each dyad so as to 
be able to further analyze the nature of these 
relationships over time. 

 
Figure 3: Weight of the mutual gaze in each 

session, by friendship status 

 
To date we have found that the inclusion of 

automatically extracted dyadic features can lead 
to better prediction of friendship state. Both 
verbal and nonverbal behaviors were discovered 
that distinguish between different friendship 
status and that suggest how to design embodied 
dialogue systems that intend to spend a lifetime 
on the job. 
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Abstract

Online debate forums provide a rich col-
lection of differing opinions on vari-
ous topics. In dual-sided debates, users
present their opinions or judge other’s
opinions to support their stance. In this
paper, we examine the use of users’ inten-
tions and debate structure for stance clas-
sification of the debate posts. We propose
a domain independent approach to capture
users’ intent at sentence level using its de-
pendency parse and sentiWordNet and to
build the intention structure of the post to
identify its stance. To aid the task of clas-
sification, we define the health of the de-
bate structure and show that maximizing
its value leads to better stance classifica-
tion accuracies.

1 Introduction

Online debate forums provide Internet users a plat-
form to discuss popular ideological debates. De-
bate in essence is a method of interactive and rep-
resentational arguments. In an online debate, users
make assertions with superior content to support
their stance. Factual accuracy and emotional ap-
peal are important features used to persuade the
readers. It is easy to observe that personal opin-
ions are important in ideological stance taking
(Somasundaran and Wiebe, 2009). Because of the
availability of Internet resources and time, people
intelligently use the factual data to support their
opinions.

Online debates differ from public debates in
terms of logical consistency. In online debates,
users assert their opinion towards either side,
sometimes ignoring discourse coherence required
for logical soundness of the post. Generally they
use strong degree of sentiment words including in-
sulting or sarcastic remarks for greater emphasis

of their point. Apart from supporting/opposing a
side, users make factual statements such as “Stan
lee once said Superman is superior than batman in
all areas.” to strengthen their stance.

We collected debate posts from an online site
called ‘convinceme.net’ which allows users to in-
stantiate debates on questions of their choice. The
debates are held between two topics. To gener-
alize the debate scenarios, we refer to these top-
ics as Topic A and B. When users participate
in the debate, they support their stance by post-
ing on the appropriate side, thus self-labeling their
stance. Users’ stance is determined by the debate
topic they are supporting and we refer to each in-
stance of users’ opinion as a post. Each post can
have multiple utterances which are the smallest
discourse units. This site has an option to rebut
another post, thus enabling users to comment on
others’ opinion.

A post with most of its utterances supporting a
debate topic most likely supports that topic. This
shows that users’ intentions play an important role
in supporting their stance. In this paper, we em-
ploy topic directed sentiment analysis based ap-
proach to capture utterance level intentions. We
have designed debate specific utterance level in-
tentions which denote users’ attitude of support-
ing/opposing a specific debate topic or stating a
known fact.

Message level intention is denoted by the stance
users are taking in the debate. We build posts’ in-
tention structure and calculate posts’ debate topics
related sentiment scores to classify their stance in
ideological debates. Intuitively, posts by same au-
thor support same stance and rebutting posts have
opposite stances. This inter-post information pre-
sented by debates’ structure is also used to revise
posts’ stance. As mentioned earlier, we use the de-
bate data collected from ‘convinceme.net’ to eval-
uate our approach on stance classification task and
it beats baseline systems and a previous approach
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by significant margin and achieves overall accu-
racy of 74.4%.

The rest of the paper is organized as follows:
Section 2 presents previous approaches to stance
classification and sentiment analysis. Section 3
highlights the importance of users’ intentions in
ideological debates and presents our algorithm to
capture utterance intentions using topic directed
sentiment analysis. In Section 4, we describe the
use the utterance level intentions to capture inten-
tion of the entire post. We explain our stance clas-
sification method using post content features and
post intention structure in this section. Section 5
describes the use of the dialogue structure of the
debate and presents a gradient ascent method for
re-evaluating posts’ stance. We present experi-
ments and results on capturing users’ intentions
and stance classification in Section 6. This is fol-
lowed by conclusions in Section 7.

2 Related Work

To classify posts’ stance in dual-sided debates,
previous approaches have used probabilistic (So-
masundaran and Wiebe, 2009) as well as machine
learning techniques (Anand et al., 2011; Somasun-
daran and Wiebe, 2010). Some approaches exten-
sively used the dialogue structure to identify posts’
stance (Walker et al., 2012) whereas others consid-
ered opinion expressions and their targets essen-
tial to capture sentiment in the posts towards de-
bate topics (Somasundaran and Wiebe, 2009; So-
masundaran and Wiebe, 2010).

Pure machine learning approaches (Anand et
al., 2011) have extracted lexical and contextual
features of debate posts to classify their stance.
Walker et al. (2012) partitioned the debate posts
based on the dialogue structure of the debate and
assigned stance to a partition using lexical features
of candidate posts. This approach has a disadvan-
tage that it loses post’s individuality because it as-
signs stance based on the entire partitions whereas
our approach treats each post individually.

To extract opinion expressions, Somasundaran
and Wiebe (2009) used the Subjectivity lexicon
and Somasundaran and Wiebe (2010) used the
MPQA opinion corpus (Wiebe et al., 2005). These
opinion expressions were attached to the target
words using different techniques. Somasundaran
and Wiebe (2009) attached opinion expressions to
all plausible sentence words whereas Somasun-
daran and Wiebe (2010) attached opinion expres-

sions to the debate topic closest to them. Proba-
bilistic association learning of target-opinion pair
and the debate topic was used by Somasundaran
and Wiebe (2010) as an integer linear program-
ming problem to classify posts’ stance. Even
though opinions might not be directed towards de-
bate topics, these approaches attach the opinions
to debate topics based only on their context co-
occurrence. Our approach finds the target word
for an opinion expression by analyzing the full de-
pendency parse of the utterance.

There has also been a lot of work done in social
media on target directed sentiment analysis (Agar-
wal et al., 2011; O’Hare et al., 2009; Mukher-
jee and Bhattacharyya, 2012) which we incorpo-
rate for capturing users’ intentions. Agarwal et
al. (2011) used syntactic features as target de-
pendent features to differentiate sentiment’s ef-
fect on different targets in a tweet. O’Hare et al.
(2009) employed a word-based approach to deter-
mine sentiments directed towards companies and
their stocks from financial blogs. Mukherjee and
Bhattacharyya (2012) applied clustering to extract
feature specific opinions and calculated the overall
feature sentiment using subjectivity lexicon.

Discourse markers cues were used by Sood
(2013) to prioritize the conversational sentences
and by Yelati and Sangal (2011) to identify users’
intentions in help desk emails. Most of the dis-
course analysis theories defined their own dis-
course segment tagging schema to understand
the meaning of each utterance. Yelati and San-
gal (2011) devised a help desk specific tagging
schema to capture the queries and build email
structure in help desk emails. Lampert et al.
(2006) used verbal response modes to understand
the client/therapist conversations. We incorporate
target directed sentiment analysis to capture utter-
ance level intentions using a sentiment lexicon and
dependency parses as described in the following
section.

3 Capturing User Intentions

Users’ intention at the utterance level plays a vital
role in overall stance taking. We define a set of
intentions each utterance can hold. The proposed
topic directed sentiment analysis based approach
will automatically identify users’ intention behind
each utterance.

Because of the unstructured and noisy nature of
social media, we need to pre-process the debate
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data before analyzing it further for users’ inten-
tions.

3.1 Preprocessing

The posts data is split into utterances, i.e. smallest
discourse units, based on sentence ending mark-
ers and a few specific Penn Discourse Tree Bank
(PDTB) (Prasad et al., 2008) discourse markers
listed in Table 2. Merged words like ‘mindbog-
gling’, ‘super-awesome’, etc. are split based on
the default Unix dictionary and special charac-
ter delimiters. Once the debate posts are broken
into utterances, we identify the intention behind
each utterance in the post to compute entire post’s
stance.

Table 1 presents the statistics of the debate data
collected from ‘convinceme.net’.

Debates Posts Author P/A Utterances
28 2040 1333 1.53 12438

Table 1: Debate Data Statistics

3.2 Debate Intention Tagging Schema

Based on the intent each utterance can have, we
have devised a debate specific intention tagging
schema. In debates, users either express their
opinion or state a known fact.

For a dual-sided debate between topic A and
topic B, our tagging schema includes the follow-
ing intention tags:

1. A+ and B+ : These tags capture users’ in-
tent to support topic A or B. For example,
in utterance “Superman is very nearly inde-
structible.” the user is supporting Superman’s
indestructibility in the debate between Super-
man and Batman.

2. A− and B− : These tags capture users’ in-
tent to oppose topic A or B. For example,
“Superman is a stupid person who has an ob-
vious weakness, like cyclops.” the user is op-
posing Superman by pointing out his weak-
ness.

3. NI: This category includes utterances which
hold no sentiment towards the debate topics
or can utter about non-debate topic entities,
In utterance “We are voting for who will win
in a battle between these two.” is neither
praising nor opposing either of the sides.

Type Discourse Connectives
Contrast but, by comparison, by con-

trast, conversely, even though,
in contrast, in fact, instead, nev-
ertheless, on the contrary, on
the other hand, rather, whereas,
even if, however, because, as

Reason because, as
Result as a result, so, thus, therefore,

thereby
Elaboration for instance, in particular, in-

deed
Conjunction and, also, further, furthermore,

in addition, in fact, similarly,
indeed, meanwhile, more ever,
while

Table 2: PDTB Discourse Markers List

Evaluation data was created by five linguists
who were provided with a complete set of instruc-
tions along with the sample annotated data. Each
utterance was annotated with its intention tag by 2
linguists and the inter-annotator agreement for the
evaluation data was 81.4%.

Table 3 gives a quantitative overview of the an-
notations in the corpus. There are total 12438 ut-
terances spread over 2420 debate posts.

Tag A+ A− B+ B− NI

Corpus% 20.8 18.4 16.7 21.8 22.3

Table 3: Utterance Annotation Statistics

3.3 Topic Directed Sentiment Analysis
To identify intetion behind each utterance, we cal-
culate debate topic directed sentiment. In topic di-
rected sentiment analysis, the sentiment score is
calculated using dependency parses of utterances
and the sentiment lexicon sentiWordNet (Bac-
cianella et al., 2010). sentiWordNet is a lexical
corpus used for opinion mining. It stores positive
and negative sentiment scores for every sense of
the word present in the wordNet (Fellbaum, 2010).

First, pronoun referencing is resolved using the
Stanford co-reference resolution system (Lee et
al., 2011). Using the Stanford dependency parser
(De Marneffe et al., 2006), utterances are repre-
sented in a tree format where each node represents
an utterance word storing its sentiment score and
the edges represents dependency relations. Each
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parentScore = sign(parentScore)× (|parentScore|+ updateScore(childScore)) (1)

utterance word is looked in the sentiWordNet and
the sentiment score calculated using Algorithm
1 is stored in the word’s tree node. For words
missing from sentiWordNet, average of sentiment
scores of its synset member words is stored in the
word’s tree node, otherwise a zero sentiment score
is stored. If words are modified by negation words
like {’never’,’not’,’nonetheless’,etc.}, their senti-
ment scores are negated.

Algorithm 1 Word Sentiment Score
1: S ← Senses of word W
2: wordScore← 0
3: for all s ∈ S do
4: sscore = sposScore − snegscore
5: wordScore = wordScore+ sscore
6: end for
7: wordScore = wordScore

|S|

In noun phrases such as ‘great warrior’, ‘cruel
person’, etc., the first word being the adjective of
the latter, it influences its sentiment score. Thus,
based on the semantic significance of the depen-
dency relation each edge holds, sentiment score of
parent nodes are updated with that of child nodes
using Equation 1. Tree structure and recursive na-
ture of Equation 1 ensures that sentiment scores
of child nodes are updated before updating their
parents’ sentiment scores. Table 4 lists the seman-
tically significant dependency relations used to up-
date parent node scores.

Type Dependency Relations
Noun Modifying nn, amod, appos, abbrev,

infmod, poss, rcmod, rel,
prep

Verb Modifying advmod, acomp, ad-
vcl, ccomp, prt, purpcl,
xcomp, parataxis, prep

Table 4: List of Dependency Relations

In a sentence, “Batman killed a bad guy.”, sen-
timent score of word ‘Batman’ is affected by ac-
tion ‘kill’ and thus for verb-predicate relations
like ‘nsubj’,‘dobj’,‘cobj’,‘iobj’,etc., predicate sen-
timent scores are updated with that of verb scores
using Equation 1.

Extended targets (extendedTargets) are the en-
tities closely related to debate topics. For exam-
ple, ‘Joker’,‘Clarke Kent’ are related to ‘Batman’
and ‘Darth Vader’, ‘Yoda’ to ‘Star Wars’. To ex-
tract the extended targets, we capture named enti-
ties (NE) from the Wikipedia page of the debate
topic (fetched using jsoup java library) using the
Stanford Named Entity Recognizer (Finkel et al.,
2005) and sort them based on their page occur-
rence count. Out of top-k (k = 20) NEs, some can
belong to both of the debate topics. For example,
‘DC Comics’ is common between ‘Superman’ and
‘Batman’. We remove these NEs from individual
lists and the remaining NEs are treated as extended
targets (extendedTargets) of the debate topics.

Debate topic directed sentiment scores are cal-
culated by adding the sentiment scores of the utter-
ance words which belong to the extended targets
list of each debate topic. We refer to these scores
as AScore and BScore representing scores directed
towards topics A and B. We also count the oc-
currences of each debate topic in the utterance by
checking word with topics’ extended targets.

We use these topic sentiment scores along with
utterance lexical features mentioned in Table 5 to
classify utterance intentions into one of the pro-
posed 5 intention tags.

Set Description/Example
Unigrams,
Bigrams

Word and word pair frequen-
cies

Cue Words Sentece beginning unigrams
and bigrams

Verb Frame Opinion, action or statement
verb

Sentiment
Count

count of subjective adjectives
and adverbs

topic Count count of words representing
debate topics

Table 5: Lexical Features for Intention Capturing

We analyze the experiments and results on cap-
turing user intention in Subsection 6.1. User inten-
tions are used in building the intention structure,
thus to calculate the sentiment score of the entire
post.
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Post Sentiment Score =
∑

A

(A Score) where A ∈ Argument Structure (2)

4 Argument Structure and Post
Sentiment Score

Arguments are the basis of persuasive communi-
cation. An argument is a set of statements of
which one (conclusion) is supported by others
(premises). In our debate data, the implicit con-
clusion is to support/oppose the debate topics and
premises are users’ opinion/knowledge about the
topics. Thus, neighboring utterances with same in-
tentions are merged into single argument forming
the argument structure for debate posts. Argument
structure, also referred to as ‘Intention Structure’,
may contain multiple arguments with different in-
tentions. But to identify the intention behind the
entire post, we need to consider sentiment strength
and correlation of each argument.

Sentiment Strength: Sentiment strength of ar-
guments with different intentions are compared to
compute intention behind entire post. Algorithm
2 the computes sentiment strength of an argument
from its constituent utterances.

Algorithm 2 Argument Sentiment Score
1: U ← Argument Utterances
2: for all u ∈ U do
3: uscore = uAScore − uBscore
4: end for
5: Argument Score =

∑
u ∈ U (uscore)

First example in Table 6 shows two utterances
one of which praising ‘Superman’ and other prais-
ing ‘Batman’. Our argument structure has two ar-
guments containing an utterance each. Comparing
the sentiment strength of the 2 arguments, we can
conclude that author supports ‘Batman’ in this ex-
ample.

Debate Post Score
A1 Superman is a good person. 0.34
A2 Batman is the best hero ever. 0.62

A1 Superman has high speed,
agility and awesome strength.

1.23

A2 But, Batman is a better hero. 0.42

Table 6: Argument Structure Examples

Correlation Between Arguments: The Second
example in Table 6 shows that though the first ar-
gument has a higher sentiment strength, the con-
trasting discourse marker ‘but’ nullifies it, result-
ing in an overall stance supporting ‘Batman’. Dis-
course markers listed in the first row of Table 2 are
used to identify ‘contrast’ between two utterances
out of which sentiment strength of the former ut-
terance is nullified.

Algorithm 3 Utterance Level Sentiment Score
1: U ← Post Utterances
2: postScore← 0
3: for u ∈ U do
4: uscore = uAScore − uBscore
5: uweight = | |U |2 − uposition |
6: postScore = postScore+uscore∗uweight
7: end for

4.1 Calculating Post Sentiment Score
To calculate sentiment score of the entire post,
three different approaches mentioned below are
tried out:

1. uttrScore (Utterance Level): Given two utter-
ances connected by a contrasting discourse
markers from Table 2, sentiment score of
the former is nullified. The posts’ sentiment
scores are calculated using Algorithm 3. In
this algorithm, the utterance score is multi-
plied by function of its position (line 5) which
gives more importance to the initial and end-
ing utterances than to those in the middle.

2. argScore (Argument Level): First, the sen-
timent score of each argument is calculated
using Algorithm 2. As in the above method,
sentiment score of the former argument con-
nected with contrast discourse marker is nul-
lified and then posts’ sentiment scores are
calculated using Equation 2.

3. argSpanScore (Argument Level with Span):
For each argument in the posts, argument
score is multiplied by its span i.e., the number
of utterances in an argument. We use Equa-
tion 2 to calculate posts’ sentiment score.
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Count of each debate topic entities in the posts
and of each intention type are used as post features
along with the posts’ sentiment scores to classify
their stance, the results of which are discussed in
Subsection 6.2.

5 Gradient Ascent Method

In the previous section, sentiment score and inten-
tion of the utterances were used to calculate the
posts’ sentiment scores. In this section, we focus
on the use of the dialogue structure of the debate
to improve stance classification. convinceme.net
stores user information for posts and also provides
an option to rebut another posts. Intuitively, the
rebutting posts should have opposite stances and
same author posts should support the same stance.
Walker et al. (2012) uses the same intuition to split
the debate posts in two partitions using a max-cut
algorithm. This approach loses the post’s indi-
viduality because it assigns the same stance to all
posts belonging to a partition. Our approach de-
scribed below uses the debate structure to refine
posts sentiment scores, calculated in the previous
section, thus maintaining post individuality.

If two posts by same author P1 and P2 have
sentiment scores −0.1 and 0.7, the previous ap-
proach would classify post P1 as supporting topic
B and P2 as supporting A, even if they are by
same author and supporting the same stance. What
if an error crept in while calculating post senti-
ment or utterance sentiment score? Can we use the
debate structure to refine posts’ sentiment scores
such that same author posts support same stance
and rebuttal author posts support opposite stance?
We use a gradient ascent method to accomplish
this task.

Gradient ascent is a greedy, hill-climbing ap-
proach used to find the local maxima of a function.
It maximizes a health/cost function by taking steps
proportional to gradient of the health function at a
given point. In our case, the dialogue structure of
the debate is represented by a Graph G(V,E) us-
ing rebuttal and same author links. Nodes (v ∈ V )
of graph represents debate posts with their senti-
ment score, and edges (e ∈ E) represent the di-
alogue information between two posts with value
‘1’ denoting same author posts and ‘−1’ rebutting
participant posts.

We formulate the health function H(G) which
measures the health of the given graph G(V,E)
in Algorithm 4. This health function signifies the

health or correctness of each edge in the debate
structure.

Algorithm 4 Debate Health Function
Require: Debate Graph G(V,E)

1: H(G)← 0
2: for all eij ∈ E do
3: if eij = 1 then
4: if Vi ∗ Vj > 0 then
5: H(G) = H(G) + 1
6: else
7: H(G) = H(G) + (1− |Vi−Vj |2 )
8: end if
9: else

10: if Vi ∗ Vj < 0 then
11: H(G) = H(G) + 1
12: else
13: H(G) = H(G) + |Vi − Vj |
14: end if
15: end if
16: end for

Return H(G)

It calculates health of each edge based on dia-
logue information it holds and participating nodes’
scores. A perfect score of 1 is assigned to each
edge if participating nodes satisfy edge criteria
(line 4–5, 10–11). If not, difference of nodes’ sen-
timent scores are used to calculate edges’ health.
(line 6–7, 12–13)

For an imperfect edge, updating sentiment
scores of its connecting nodes will increase its
health thus improving health of the graph. Thus
we aim to increase the health of the graph by grad-
ually modifying posts’ sentiment scores.

Gradient Ascent algorithm (Algorithm 5) is fed
with parameters set to (EPOCH = 1000, δ =
0.01 and α = 0.05). For each iteration, let
G(V,E) represent the current state of the graph
and H its health. For each node, the sentiment
score is updated by adding partial derivative of
health function with respect to given node at the
current state (line 9). Partial derivative of the
Health function with respect to current node is de-
fined in line 8. This continues (line 1 − 15) untill
there is no such node which improves the graph’s
health or till the number of iterations reach epoch.

These refined post sentiment scores along with
post features (topic Count and intention type
count) are used to classify posts’ stance. We dis-
cuss the results in Subsection 6.2.
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Algorithm 5 Gradient Ascent Approach

Require: Debate Graph G(V,E) and H(G) Health
Function

1: for iteraton = 1→ EPOCH do
2: H ← Health(G(V,E))
3: newH ← H
4: for all vi ∈ V do
5: V ′ ← V
6: v′i ← v′i + δ
7: H ′ ← Health(G′(V ′, E))

8: PDi ← (H′−H)
δ

9: vi ← vi + α ∗ PDi

10: newH = max(newH,H ′)
11: end for
12: if newH = H then
13: Break
14: end if
15: end for

Figure 1 gives a working example of our ap-
proach. It clearly shows improving health of the
graph using the gradient ascent method helps in
rectifying post P1’s stance.

Figure 1: Working Example of Gradient Ascent

6 Experiments and Results

This section highlights experiments, results, ad-
vantages and shortcomings of our approach on in-
tention capturing and posts’ stance classification
tasks.

6.1 Capturing User Intentions

Experiments on debate posts from following de-
bates are carried out: Superman vs Batman, Fire-
fox vs Internet Explorer, Cats vs Dogs, Ninja vs
Pirates and Star Wars vs Lord Of The Rings. Our
experimental data for utterances’ intention captur-
ing includes 1928 posts and 9015 utterances from
5 debates with equal intention class distribution
for each domain. Thus our data has 1803 correctly
annotated utterances belonging to each intention
class. The first task focuses on classifying each
utterance into one of the proposed intention tags.

Our first baseline is a Unigram system which
uses unigram content information of the utter-
ances. Unigram systems are proved reliable in
sentiment analysis (Mullen and Collier, 2004;
Pang and Lee, 2004). The second baseline sys-
tem LexFeatures uses the lexical features (Table
5). This baseline system is a strong baseline for the
evaluation because it captures sentiment as well as
pragmatic information of the utterances. We con-
struct two systems to capture intentions: a Topic-
Score system which uses the topic directed sen-
timent scores (described in Subsection 3.3) and
topic occurrence counts to capture utterance in-
tentions, and a TopicScore+LexFeatures system
which uses topic sentiment scores (described in
Subsection 3.3) along with lexical features in Ta-
ble 5. All systems are implemented using the
Weka toolkit with its standard SVM implementa-
tion. Table 7 shows the accuracies of classifying
utterance intentions for each of described baseline
and proposed systems.

Accuracy Total A+ A− B+ B− NI
Unigram 64.2 63.2 65.4 60.3 66.5 65.6
LexFeatures 62.7 64.3 60.7 64.2 61.9 62.4
TopicScore 68.4 68.1 68.7 67.2 68.7 69.3
TopicScore+
LexFeatures

74.3 73.9 74.8 75.1 73.6 74.1

Table 7: Accuracy of Utterance Intention Classifi-
cation

Overall we notice that the proposed approaches
perform better than baseline systems, with Top-
icScore+LexFeatures outperforming all systems.
This shows that topic directed sentiment score
helps in capturing users’ intentions better than the
word level sentiment analysis. We can also con-
clude that the Unigram system achieves higher ac-
curacies than the lexFeatures system, showing that
what the user says is a better indicator of user’s
intentions than his sentiments and thus confirm-
ing previous research results (Somasundaran and
Wiebe, 2010; Pang and Lee, 2008). TopicScore
performs lower in capturing ‘NI’ tag than the base-
line systems, denoting that TopicScore is not cap-
turing debate topics and their sentiments correctly.
Thus it assigns non-NI tagged utterances an ‘NI’
tag, lowering its accuracy.

We run the same approach but comparing utter-
ance words only with the debate topics in calculat-
ing topic directed sentiment score and not with the
lists of extended targets. This produces an accu-
racy of 70.8% clearly highlighting the importance
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of extended targets in calculating debate topic di-
rected sentiment analysis.

6.2 Post Stance Classification
Experiment data covers 2040 posts with equal
topic stance distribution from each of the follow-
ing domains: Superman vs Batman, Firefox vs
Internet Explorer, Cats vs Dogs, Ninja vs Pirates
and Star Wars vs Lord Of The Rings. Two base-
line systems are designed for this task of debate
post’s stance classification. The first baseline,
sentVicinity, assigns each word’s sentiment score
to the closest debate topic entity. Then, the senti-
ment score of the debate topics over an entire post
is compared to classify post stance. The second
baseline, subjTopic, counts the number of subjec-
tive words in each utterance of the post and assigns
them to debate topic related entity if present in
the utterance. It compares overall subjective pos-
itivity of debate topics to assign post stance. We
also compared our approach with the (Arg+Sent)
method proposed by Somasundaran and Wiebe
(2010).

Three systems described in Subsection 4.1 are
used to compute post’s sentiment score by ana-
lyzing its content namely, uttrScore, argScore and
argSpanScore. Post sentiment scores from these
three techniques along with post features (topic
Count and intention type count) are used to clas-
sify post stance and results are compared in Table
8. Table 8 shows that the second approach of cal-
culating posts’ sentiment scores using their argu-
ment structure outperforms the other approaches.

System Accuracy
sentVicinity 61.6%
subjTopic 58.1%
Arg+Sent 63.9%
uttrScore 67.4%
argScore 70.3%
argSpanScore 69.2%

Table 8: Stance Classification Using Post Content

Our approach perform better than Somasun-
daran and Wiebe (2010)’s approach signifying the
importance of identifying target-opinion depen-
dency relation as opposed to assigning the opin-
ion words to each content word in the sentence.
It is important to notice that the argSpanScore
method which multiplies argument score by its
span doesn’t perform as well as argScore alone.
This shows the utterance sentiment strength mat-
ters more than neighboring same intention utter-

ance. This supports our hypothesis that online de-
bate posts focus more on sentiments rather than
discourse coherence.

We experiment with gradient ascent approach
and study how refining posts’ sentiment scores
based on the dialogue structure of the debate helps
improving stance classification. Table 9 gives the
classification accuracies between argScore tech-
nique and gradient ascent method.

System Accuracy
Total Dialogue Non-dialogue

argScore 70.3% 70.5% 70.1%
argScore + gra-
dientAscent

74.4% 80.1% 70.1%

Table 9: Stance Classification: Dialogue Structure

The dialogue column in Table 9 shows accura-
cies for posts participating in dialogue structure
i.e., those linked to other post with same author or
rebutting links. It shows a remarkable improve-
ment (10% gain) which clearly signifies impor-
tance of the dialogue structure. The non-dialogue
column shows the accuracies for posts not in-
volved in dialogue structure. As health function
for debate graph is a function of dialogue partici-
pating posts, it does not affect stance classification
accuracy for non-dialogue participating posts. Di-
alogue participating posts cover 41% of the exper-
iment data giving 4% accuracy improvement over
argScore system on complete dataset.

7 Conclusions

In this paper, We designed debate specific utter-
ance level intention tags and described a topic
directed sentiment analysis approach to capture
these intentions. We proposed a novel approach to
capture the posts’ intention structure. Our results
validate our hypothesis that capturing user inten-
tions and post intention structure helps in classi-
fying posts’ stance. It also emphasizes the impor-
tance of building the intention structure rather than
just aggregating utterances’ sentiment scores.

This is the first application of Gradient Ascent
method for stance classification. Results show
re-modifying the posts’ sentiment scores by tak-
ing the debates’ structure into account highly im-
proves stance classification accuracies over inten-
tion based method. We aim to apply topic directed
sentiment scores along with lexical features for de-
bate summarization in our future work.
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Abstract

Our aim is to acquire the attributes of con-
cepts denoted by unknown words from
users during dialogues. A word unknown
to spoken dialogue systems can appear in
user utterances, and systems should be ca-
pable of acquiring information on it from
the conversation partner as a kind of self-
learning process. As a first step, we pro-
pose a method for generating more spe-
cific questions than simple wh-questions
to acquire the attributes, as such ques-
tions can narrow down the variation of
the following user response and accord-
ingly avoid possible speech recognition er-
rors. Specifically, we obtain an appropri-
ately distributed confidence measure (CM)
on the attributes to generate more specific
questions. Two basic CMs are defined us-
ing (1) character and word distributions in
the target database and (2) frequency of
occurrence of restaurant attributes on Web
pages. These are integrated to comple-
ment each other and used as the final CM.
We evaluated distributions of the CMs by
average errors from the reference. Re-
sults showed that the integrated CM out-
performed the two basic CMs.

1 Introduction

In most spoken dialogue systems, knowledge
bases for the systems are constructed off-line. In
other words, they are not updated during dia-
logues. On the other hand, humans update their
knowledge not only by reading books but also
through interaction with other people. When they
encounter an unknown word during conversations,
humans notice that it is new to them and acquire
knowledge about it by asking their conversational
partner. This self-learning process is one of the

Tell me about 

“Osteria Liu”.
I don’t know that restaurant.

Is it “Italian”? 

Tell me about

“Toyo”.
I don’t know that restaurant.

What type of cuisine is it?

SystemUser

Figure 1: Example of simple and specific ques-
tions.

most intelligent features of humans. We think that
applying this intelligent feature to spoken dialogue
systems will make them more usable.

We present a method that generates appropri-
ate questions in order to acquire the attributes of
a concept that an unknown word denotes when it
appears in a user utterance. Here, we define un-
known words as those whose attributes necessary
for generating responses were not defined by the
system developer; that is, unknown to the response
generation module in the spoken dialogue system.
The system cannot reply to user utterances includ-
ing such words even if they are correctly recog-
nized by its automatic speech recognition (ASR)
module.

Questions to the user to acquire the attribute
should be specific. In spoken dialogue sys-
tems, specific questions are far preferable to wh-
questions because they can narrow down varia-
tions of the following user response. Such ques-
tions lead to a better ASR performance of the re-
sponse and reduce the risk that it includes new
other unknown words.

Two example dialogues are shown in Figure 1.
Since our target task is restaurant database re-
trieval, we set the unknown words as restaurant
names and the attribute as their cuisine in our
restaurant database. In the examples shown, the
system uses a simple wh-question (the upper part)
and a specific Yes-No question (the lower part) to
obtain cuisine types. Here, “Toyo” and “Osteria
Liu” are restaurant names. We assume that the
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Table 1: Question types according to the number of cuisines (num).
num Question form Example

1 Yes-No question Is it cuisine c1?
2 Alternative question Which cuisine is it, c1 or c2?
3 3-choice question Which cuisine is it, c1, c2, or c3?

≥4 Wh-question What cuisine is it?

system already knows these are restaurant names
but does not know its attributes such as its cuisine
type. The system uses a wh-question for “Toyo”
since no clue is obtained for it. In contrast, since
“Osteria Liu” contains information on cuisines in
the name itself, a concrete Yes-No question is used
to ask whether the cuisine is “Italian”.

We propose a method for providing a well-
distributed confidence measure (CM) to generate
more specific questions. For this purpose, we esti-
mate the cuisine type of a restaurant from its name,
which is assumed to be unknown to the system.
There have been many previous studies that esti-
mate word and character attributes using Web in-
formation (Pasca et al., 2006; Yoshinaga and Tori-
sawa, 2007). Our two estimation methods are rel-
atively simpler than these studies, since our main
focus is to generate more concrete questions on the
basis of appropriate CMs. That is, the CMs should
be high when the system seems to correctly esti-
mate a cuisine type and low when the estimation
seems difficult.

We assume a restaurant name as the input; that
is, we suppose that the system can recognize the
restaurant name in the user’s utterance correctly
by its ASR module and understand it is a restau-
rant name by its LU module. Nevertheless, it
still remains unknown to its response generation
module. This is a feasible problem when using
a large vocabulary continuous speech recognition
(LVCSR) engine containing over several million
words (Jyothi et al., 2012) and a statistical named
entity (NE) tagger (Tjong Kim Sang and Meul-
der, 2003; Zhou and Su, 2002; Ratinov and Roth,
2009).

The problem we tackle in this paper is differ-
ent from trying to estimate the NE class of an un-
known word (Takahashi et al., 2002; Meng et al.,
2004). We assume the system already knows that
it is a restaurant name. Rather, we try to acquire
the attribute (e.g., cuisine type) of the concept of
the unknown word, which is required for generat-
ing responses about the restaurant in subsequent

dialogues.

2 Generating Questions Based on CM

The system determines a question type on the ba-
sis of CM. The CM is estimated for each cuisine
type cj in the target database. In this paper, the
number of cuisine types is 16, all of which are
in our restaurant database; that is, cj ∈ C and
|C| = 16.

Table 1 shows the four question types and their
examples. These are determined by parameter
num, which is the number of cuisine types that
should be included in the question. If the sys-
tem obtains one cuisine type that it is very con-
fident about and thus has a high CM, it should
generate the most specific question, i.e., a Yes-
No question; in this case, the number should be
1. In contrast, if unreliable cuisine types are ob-
tained, which means lower CMs, the system gen-
erates questions including several cuisine types.

The num can be determined by Equation (1):

num = min(n) s.t.
n∑

j=1

CM(cj) > θ, (1)

where CM(cj) is a confidence measure for cui-
sine type cj in its descending order. θ is a constant
and can be manually decided considering the dis-
tribution of CM(cj). This equation means that if
only the CM(c1) is greater than θ (i.e., n = 1),
the system generates a specific question includ-
ing only cuisine type c1, while if the total from
CM(c1) to CM(c4) is smaller than θ (i.e., n = 4),
the system does not use estimated cuisine types
and instead generates a wh-question.

If the CM on the cuisine type is well-distributed,
the system can generate appropriate questions. In
the following section, methods to obtain such CMs
are explained.

3 Estimating Cuisine Types and
Calculating CM

The final CM is obtained by integrating two ba-
sic CMs. The system then uses this final CM to
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generate questions. The two basic CM estimation
methods are:

1. Using word and character distribution in the
target database

2. Using frequency of the restaurant attributes
on the Web

A process overview of the proposed method is
shown in Figure 2. Its input to the system is an
unknown restaurant name and its output is the es-
timated CMs. The system generates questions on
the basis of the estimated CMs, which are calcu-
lated for each cuisine type.

3.1 Attribute Estimation Using Word and
Character Distribution in Database

We estimate the cuisine types of an unknown
restaurant by using the word and character distri-
bution in the target database. The target database
contains many pairs of restaurant names and cui-
sine types. The estimation is performed by us-
ing supervised machine learning trained with the
pairs. The overview of calculating CMD is shown
in Figure 3. This approach is based on our in-
tuition that some cuisine types can be estimated
from restaurant names on the basis of their char-
acter types or typical character sequences they

contain. For example, a restaurant name com-
posed of only katakana1 is probably a French or
Italian restaurant because words imported from
other countries to Japan are called “katakana loan-
words” and are written in katakana characters
(Kay, 1995).

We use the maximum entropy (ME) model
(Berger et al., 1996) as a classifier. Its posterior
probability p(cj |si) is used as a CMD denoting
the CM estimated using a database. CMD is cal-
culated as

CMD(si, cj) = p(cj |si)

=
1

Z
exp

[
~λ(cj) · ~φ(si)

]
, (2)

where si is a restaurant name, cj (∈ C) is a
cuisine type, ~φ(si) is a feature vector obtained
from a restaurant name, ~λ(cj) is a weight vector,
and Z is a normalization coefficient that ensures∑

cj
CMD(si, cj) = 1.

We use three types of feature vectors obtained
from each restaurant name:

• Character n-grams (n = 1, 2, 3)

• Words

• Character types

The feature values of the character n-gram and the
word are scored as 1 if such features are contained
in the restaurant name. The Japanese morpholog-
ical analyzer Mecab (Kudo et al., 2004) with the
IPADIC dictionary is used to segment restaurant
names into word sequences. The character type

1Katakana is a Japanese syllabary. There are three kinds
of characters in Japanese. Kanji (Chinese character) are lo-
gograms and hiragana and katakana are syllabaries. Katakana
is mainly used for writing imported words and hiragana is
used for writing original Japanese words.
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is represented by the four character types used in
the Japanese writing system: hiragana, katakana,
kanji (Chinese characters), and romaji (Roman let-
ters). For example, the restaurant name “Maru
Sushi (まる寿司)” includes two character types:
“Maru (まる)” is written in hiragana and “Sushi
(寿司)” is written in kanji. Therefore, the fea-
ture values for hiragana and kanji are both 1, while
those for katakana and romaji are 0. Another ex-
ample is shown using the restaurant “IB cafe (IB
カフェ)”, in which the “IB” part is romaji and the
“cafe (カフェ)” part is katakana. Therefore, in this
case, the feature values of katakana and romaji are
1 and those of hiragana and kanji are 0.

We perform feature selection for the obtained
features set (Guyon and Elisseeff, 2003). The clas-
sifier needs to be built without overfitting because
we assume that a restaurant name as the input to
this module is unknown and does not exist in the
database. We use the mutual information (Peng
et al., 2005; Yang and Pedersen, 1997) between
each feature and the set of cuisine types as its cri-
terion. This represents how effective each feature
is for the classification. For example, in the fea-
tures obtained from the restaurant name “まる寿
司”, which is a Japanese restaurant, the 2-gram
feature “寿司” frequently co-occurs with the cui-
sine type “Japanese restaurant”. This is an effec-
tive feature for the cuisine type estimation. In con-
trast, the 2-gram feature “まる” is not effective be-
cause its co-occurrence with cuisine types is infre-
quent. Mutual information is calculated as

I(fk;C) =
∑

cj∈C

p(fk, cj) log
p(fk, cj)

p(fk)p(cj)
, (3)

where p(fk) is an occurrence probability of feature
fk in the database, p(cj) is an occurrence probabil-
ity of cuisine type cj (∈ C), and p(fk, cj) is a joint
probability of the feature and the cuisine type.

Features having lower mutual information val-
ues are removed until we deem that overfitting has
been avoided, specifically, when the estimation
accuracies become almost the same between the
closed and open tests. We confirm this by cross-
validations (CV) instead of open tests.

3.2 Estimation Using the Web

We estimate a restaurant’s cuisine type and calcu-
late CMs by using its frequency on the Web as
CMW . This is based on an assumption that a
restaurant’s name appears with its cuisine type on
Web pages. CMW is calculated in the following
steps, as shown in Figure 4.

1. Obtaining related Web pages:
Twenty pages per search query were ob-
tained, as this was the limit of the number of
pages when this experiment was performed.
We used the Yahoo! Web search API2. The
query is formed with the target restaurant
name and the following two words: “Aichi
(愛知)” and “restaurant (レストラン)”. The
two are added to narrow down the search re-
sult since our domain is a restaurant search
in Aichi prefecture. For example, the query
is “<rest>愛知レストラン” for the target
restaurant name <rest>.

2http://developer.yahoo.co.jp/webapi/search/websearch
/v2/web search.html
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2. Calculating Pfreq(cj):
We count the frequency of each cuisine type
cj in the i-th Web pages, which are ranked
by the Web search API. We then sum up the
frequency through all the obtained pages and
calculate its posterior probability.

Pfreq(cj) =

∑
i wi · freqi(cj)∑

cj

∑
i wi · freqi(cj)

(4)

Here, freqi(cj) is the frequency of cj in the
i-th page. Weight wi is calculated using two
factors, rank(i) and cuisine(i):

wi =
1

rank(i) · cuisine(i)
(5)

(a) rank(i): The ranking of pages in the
Web search API
We assume that a Web page is more re-
lated to the target restaurant if the Web
search API ranks it higher.

(b) cuisine(i): The number of cuisine
types in the i-th Web page
We assume that a Web page contain-
ing many different cuisine types does
not indicate one particular cuisine. For
example, a page on which only “Chi-
nese restaurant” appears is more reliable
than that on which more cuisine types
(“Chinese restaurant”, “Japanese restau-
rant”, “Japanese pub”, and “Western-
style restaurant”, for example) appear,
as a page indicating a “Chinese restau-
rant”.

3. Scaling Pfreq(cj):
CMW is calculated by scaling each
Pfreq(cj) with the corresponding αj . αj

is a scaling coefficient that emphasizes the
differences among CMW : αj is equal to
or smaller than 1 and becomes smaller as j
increases.

CMW (cj) =
αjPfreq(cj)∑
cj

αjPfreq(cj)
(6)

αj = Pfreq(cj)/Pfreq(c1) (7)

3.3 Integration of CMs

We define CMI by integrating the two basic CMs:
CMD and CMW . Specifically, we integrate them
by the logistic regression (Hosmer Jr. et al., 2013)

shown in Equation (8). The optimal parameters,
i.e., weights for the CMs, are determined using a
data set with reference labels. The teacher signal
is 1 if the estimated cuisine type is correct and 0
otherwise.

CMI(cj) =
1

1 + exp(−f(cj))
(8)

f(cj) = wDCMD(cj) + wW CMW (cj) + w0

Here, wD and wW are the weights for CMD and
CMW , and w0 is a constant.

4 Experiment

We evaluate our method to obtain the CMs from
three aspects. First, we evaluate the effect of fea-
ture selection based on mutual information. Sec-
ond, we evaluate how the CMs were distributed
and whether they were appropriate measures for
question generation. Third, we determine the ef-
fectiveness of integrating the two basic CMs. In
this paper, we used a restaurant database in Aichi
prefecture containing 2,398 restaurants with 16
cuisine types.

4.1 Effect of Feature Selection Based on
Mutual Information

We determined whether overfitting could be
avoided by feature selection based on mutual in-
formation in the estimation using a database. We
regard overfitting to be avoided when estimation
accuracies become almost the same between the
closed and open tests. For the closed test, estima-
tion accuracy was calculated for all 2,398 restau-
rants in the database by using a classifier that was
trained with the same 2,398 restaurants. For the
open test, it was calculated by 10-fold CV for the
2,398 restaurants. This experiment is not for de-
termining a feature set but rather for determining
a feature selection ratio. That is, the feature se-
lection result is kept not as a feature set but as a
ratio. The resulting ratio is applied to the num-
ber of features appearing in another training data
(e.g., that in Section 4.2) and then the feature set
is determined.

Figure 5 shows the estimation accuracy of the
closed test and the 10-fold CV when the feature
selection was applied. The horizontal axis denotes
ratios of features used to train the classifier out of
20,679 features in total. They were selected in de-
scending order of mutual information. The ver-
tical axis denotes the estimation accuracy of the
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Figure 5: Estimation accuracies of closed test and
10-fold CV.

cuisine types. Figure 5 shows that, at first, over-
fitting occurs if all features were used for training;
that is, the feature selection ratio = 100%. This
can be seen by the difference in estimation accu-
racies, which was 28.1% between the closed test
and the 10-fold CV. The difference decreased as
the number of used features decreased, and almost
disappeared at feature selection ratio = 0.8%. In
these selected features, as an example, the 2-gram
“gyoza (餃子)”, which seems intuitively effective
for cuisine type estimation is, included3.

4.2 Evaluation for Distribution of CMs

We evaluate the distribution of CMs obtained with
the estimation results. Specifically, we evaluated
three types of distributions: CMD, CMW , and
CMI . We extracted 400 restaurants from the
database and used them as evaluation data. The
remaining 1,998 restaurants were used as training
data for the classifier to calculate CMD. In all
features obtained from these 1,998 restaurants, the
ME classifier uses 0.8% of them, which is the fea-
ture selection ratio based on the mutual informa-
tion determined in Section 4.1. That is, the feature
set itself obtained in the feature selection is not de-
livered into the evaluation in this section.

We used average distances between each CM
score and its reference as the criterion to evalu-
ate the distribution of the CMs. Generally, CMs
should be as highly scored as possible when the
estimation is correct and as lowly scored as possi-
ble otherwise. We calculate the distances over the

3“Gyoza (餃子)” is a kind of dumplings and one of the
most popular Chinese foods. It often appears in Chinese
restaurant names in Japan.

Table 3: Evaluation against each CM.
eval(CMx) MB(CMx)

CMD 0.31 0.37
CMW 0.28 0.32
CMI 0.25 0.28

400 estimation results.

eval(CMx) =

∑N
i |CM i

x − φi
x|

N
(9)

Here, N is the total number of the estimation re-
sult, so N = 400 in this paper. φi

x for CM i
x is

defined as

φi
x =

{
1, If estimation result i is correct
0, Otherwise

(10)

Note that φx depends on CMx because estimation
results differ depending on the CMx used.

We also set the majority baseline as Equation
(11). Here, all CMs are regarded as 0 or 1 in Equa-
tion (9). Because there were more correct estima-
tion results than incorrect ones, as shown in Table
2, we used 1 for the majority baseline, as

MB(CMx) =

∑N
i |1 − φi

x|
N

. (11)

The results are shown in Table 3. A compar-
ison of the three eval(CMx) demonstrates that
the integrated CMI is the most appropriate in our
evaluation criterion because it is the lowest of the
three. The relative error reduction rates from CMI

against CMD and CMW were 16% and 37%, re-
spectively. Each eval(CMx) outperformed the
corresponding majority baseline.

4.3 Effectiveness of Integrated CM
We verify the effectiveness of the CM integration
from another viewpoint. Specifically, we confirm
whether the number of correct estimation results
increases by integration.

First, we show the distribution of the three CMs
and whether they were correct or not in Table 2.
The bottom row of the table shows that CMI ob-
tained correct estimation results for 297 restau-
rants, which is the highest of the three CMs.

More specifically, we investigated how many
estimation results changed by using the three
CMs. Here, an estimation result means the cui-
sine type that is given the highest confidence. This
result is shown in Table 4, where C denotes a case
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Table 2: Distribution of estimation results by CM values.
CMD CMW CMI

CM range Correct Incorrect Correct Incorrect Correct Incorrect
0.0 – 0.1 0 0 0 32 2 10
0.1 – 0.2 0 0 0 11 9 15
0.2 – 0.3 1 16 14 22 15 18
0.3 – 0.4 6 19 28 19 10 8
0.4 – 0.5 11 25 29 21 13 12
0.5 – 0.6 21 29 56 9 13 12
0.6 – 0.7 22 28 85 7 15 7
0.7 – 0.8 41 16 42 3 17 6
0.8 – 0.9 21 9 19 1 19 9
0.9 – 1.0 131 4 1 1 184 10

Total 254 146 274 124 297 103

Table 4: Estimation results by three CMs.

CMD / CMW

I / I I / C C / I C / C

C 0 51 33 213
CMI I 85 10 8 0

C: correct, I: incorrect

when a cuisine type was correctly estimated and I
denotes that it was not. The four columns with ’/’
denote the numbers of estimation results for CMD

and CMW . For example, the C/I column denotes
that estimation results based on the database were
correct and those using the Web were incorrect,
that is, the I/C and C/I columns mean that the
two estimation results differed. The table shows
that 102 of 400 restaurants corresponded to these
cases, that is, either of the two estimation results
was incorrect. It also shows that estimation results
for 84 of the 102 (82%) restaurants became correct
by the integration.

Two examples are shown for which the esti-
mation results became correct by the integration.
First, “Kaya (加屋)” is a restaurant name whose
cuisine type is “Japanese-style pancake”. Its cui-
sine type was correctly estimated by CMW while
it was incorrectly estimated as “Japanese pub” by
CMD. This was because, in Japanese, “Kaya (加
屋)” has no special meaning associated with spe-
cific cuisine types. Thus, it is natural that its cui-
sine type was incorrectly estimated from the word
and character distribution of the name. On the
other hand, when Web pages about it were found,
“Japanese-style pancake” co-occurs frequently in
the obtained pages, and thus it was correctly es-
timated by CMW . Second, “Tama-Sushi Imaike
(玉寿司 今池)” is a restaurant name whose cui-
sine type is “Japanese restaurant”. Its cuisine type
was estimated correctly by CMD while it was in-

correctly estimated as “Japanese pub” by CMW .
CMD was effective in this case because the part
of “Sushi (寿司)” indicates a Japanese cuisine. No
Web pages for it were found indicating its cuisine
type correctly, and thus CMW failed to estimate
it.

5 Conclusion

Our aim is to acquire the attributes of an unknown
word’s concept from the user through dialogue.
Specifically, we set restaurant cuisine type as the
attribute to obtain and showed how to generate
specific questions based on the estimated CM. We
use two estimation methods: one based on the tar-
get database and the other on the Web. A more
appropriate CM was generated in terms of its dis-
tribution and estimation accuracy by integrating
these two CMs.

There is little prior research on obtaining and
updating system knowledge through dialogues,
with the notable exception of the knowledge au-
thoring system of (Knott and Wright, 2003). Their
system also uses the user’s text input for construct-
ing the system knowledge from scratch, which is
used to generate simple stories. Our study is dif-
ferent in two points: (1) we focus on generating
several kinds of questions because we use ASR,
and (2) we try to handle unknown words, which
will be stored in the target database to be used in
future dialogues.

We should point out that these kinds of ques-
tions can be generated only when the types of un-
known concepts are given. We assume the type
of unknown concepts is already known and thus
the attributes to be asked are also known. More
specifically, we assume that the concept denoted
by an unknown word is a restaurant name and its
attributes are also known. The cuisine type has
been estimated as one of the attributes. However,
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when the type is unknown, the system first needs
to identify its attributes to ask. That is, the sys-
tem first needs to ask about its supertype and then
to ask about attributes that are typical for objects
of this type. This issue needs to be addressed in
order for the system to acquire arbitrary new con-
cepts. This paper has shown the first step for ob-
taining concepts through dialogues by generating
questions. Many issues remain in this field for fu-
ture work.
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Abstract
In situated dialogue, because humans and
agents have mismatched capabilities of
perceiving the shared physical world, ref-
erential grounding becomes difficult. Hu-
mans and agents will need to make ex-
tra efforts by collaborating with each other
to mediate a shared perceptual basis and
to come to a mutual understanding of in-
tended referents in the environment. In
this paper, we have extended our previous
graph-matching based approach to explic-
itly incorporate collaborative referring be-
haviors into the referential grounding al-
gorithm. In addition, hypergraph-based
representations have been used to account
for group descriptions that are likely to oc-
cur in spatial communications. Our empir-
ical results have shown that incorporating
the most prevalent pattern of collaboration
with our hypergraph-based approach sig-
nificantly improves reference resolution in
situated dialogue by an absolute gain of
over 18%.

1 Introduction

As more and more applications require humans
to interact with robots, techniques to support sit-
uated dialogue have become increasingly impor-
tant. In situated dialogue, humans and artificial
agents (e.g., robots) are co-present in a shared
environment to achieve joint tasks. Their dia-
logues often involve making references to the en-
vironment. To ensure the conversation proceeds
smoothly, it is important to establish a mutual un-
derstanding of these references, a process called
referential grounding (Clark and Brennan, 1991):
the agent needs to identify what the human refers
to in the environment and the human needs to
know whether the agent’s understanding is correct;
and vice versa.

Although reference resolution (Heeman and
Hirst, 1995; Gorniak and Roy, 2004; Siebert
and Schlangen, 2008) and referential ground-
ing (Traum, 1994; DeVault et al., 2005) have been
studied in previous work, the unique characteris-
tics of situated dialogue post bigger challenges to
this problem. In situated dialogue, although hu-
mans and agents are co-present in a shared world,
they have different capabilities in perceiving the
environment (a human can perceive and reason
about the environment much better than an agent).
The shared perceptual basis, which plays an im-
portant role in facilitating referential grounding
between the human and the agent, thus is miss-
ing. Communication between the human and the
agent then becomes difficult, and they will need
to make extra efforts to jointly mediate a shared
basis and reach a mutual understanding (Clark,
1996). The goal of this paper is to investigate what
kinds of collaborative efforts may happen under
mismatched perceptual capabilities and how such
collaborations can be incorporated into our refer-
ential grounding algorithm.

Previous psycholinguistic studies have indi-
cated that grounding references is a collaborative
process (i.e., collaborative referring) (Clark and
Wilkes-Gibbs, 1986; Clark and Brennan, 1991):
The process begins with one participant present-
ing an initial referring expression. The other par-
ticipant would then either accept it, reject it, or
postpone the decision. If a presentation is not
accepted, then either one participant or the other
needs to refashion it. This new presentation (i.e.,
the refashioned expression) is then judged again,
and the process continues until the current pre-
sentation is accepted. To understand the implica-
tion of collaborative referring under the situation
of mismatched perceptual capabilities, we have
conducted experiments on human-human conver-
sation using a novel experimental setup. Our col-
lected data demonstrate an overwhelming use of
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collaborative referring to mediate a shared percep-
tual basis.

Motivated by these observations, we have de-
veloped an approach that explicitly incorporates
collaborative referring into a graph-matching al-
gorithm for referential grounding. As the conver-
sation unfolds, our approach incrementally builds
a dialogue graph by keeping track of the contri-
butions (i.e., presentation and acceptance) from
both the human and the robot. This dialogue
graph is then matched against the perceived en-
vironment (i.e., a vision graph representing what
are perceived by the robot from the environment)
in order to resolve referring expressions from the
human. In addition, in contrast to our previous
graph-based approach (Liu et al., 2012), the new
approach applies hypergraphs: a more general
and flexible representation that can capture group-
based (n-ary) relations (whereas a regular graph
can only model binary relations between two enti-
ties). Our empirical results have shown that, incor-
porating the most prevalent pattern of collabora-
tion (i.e., agent-present-human-accept, discussed
later) with the hypergraph-based approach signif-
icantly improves reference resolution in situated
dialogue by an absolute gain of over 18%.

In the following sections, we first give a brief
discussion about the related work. We then de-
scribe our experiment setting and the patterns of
collaboration observed in the collected data. We
then illustrate how to build a dialogue graph as
the conversation unfolds, followed by the formal
definition of the hypergraph representation and
the referential grounding procedure. Finally we
demonstrate the advantage of using hypergraphs
and incorporating a prevalent collaborative behav-
ior into the graph-matching approach for reference
resolution.

2 Related Work

In an early work, Mellish (Mellish, 1985) used a
constraint satisfaction approach to identify refer-
ents that could be only partially specified. This
work illustrated the theoretical idea of how to re-
solve referring expressions based on an internal
model of a world. Heeman and Hirst (Heeman
and Hirst, 1995) presented a planning-based ap-
proach to cast Clark’s collaborative referring idea
into a computational model. They used plan con-
struction and plan inference to capture the pro-
cesses of building referring expressions and identi-

fying their referents. Previous work in situated set-
tings (Dhande, 2003; Gorniak and Roy, 2004; Fu-
nakoshi et al., 2005; Siebert and Schlangen, 2008)
mainly focused on developing/learning computa-
tional models that map words to visual features of
objects in the environment. These “visual seman-
tics” of words were then integrated into seman-
tic composition procedures to resolve referring ex-
pressions.

These previous work has provided valuable in-
sights in computational approaches for reference
resolution. However, they mostly dealt with a sin-
gle expression or a single referent. In this pa-
per, our goal is to resolve complex referring di-
alogues that involve multiple objects in a shared
environment. In our previous work (Liu et al.,
2012), we developed a graph-matching based ap-
proach to address this problem. However, the pre-
vious approach can not handle group-based rela-
tions among multiple objects. Furthermore, it did
not look into incorporating collaborative behav-
iors, which is a particularly important characteris-
tic in situated dialogue. This paper aims to address
these limitations.

3 Experiments and Observations

To investigate collaborative referring under mis-
matched perceptual capabilities, we conducted ex-
periments on human-human interaction (details of
the experimental setup can be found in (Liu et al.,
2012)). In these experiments, we have two human
subjects play a set of naming games. One sub-
ject (referred to as the human-player) is provided
with an original image containing over ten objects
(Figure 1(a)). Several of these objects have se-
cret names. The other subject (referred to as the
robot-player) only has access to an impoverished
image of the same scene (Figure 1(b)) to mimic
the lower perceptual capability of a robot. The
human-player’s goal is to communicate the names
of target objects to the robot-player so that the
robot-player knows which object in his view has
what name. The impoverished image was auto-
matically created by applying standard computer
vision algorithms and thus may contain different
types of processing errors (e.g., mis-segmentation
and/or mis-recognition).

Using this setup, we have collected a set of dia-
logues. The following shows an example dialogue
segment (collected using the images shown in Fig-
ure 1):
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Figure 1: An example of different images used in
our experiments.

H1: there is basically a cluster of four objects in the upper
left, do you see that

R2 : yes
H: ok, so the one in the corner is a blue cup
R : I see there is a square, but fine, it is blue
H: alright, I will just go with that, so and then right under

that is a yellow pepper
R : ok, I see apple but orangish yellow
H: ok, so that yellow pepper is named Brittany
R : uh, the bottom left of those four? Because I do see a

yellow pepper in the upper right
H: the upper right of the four of them?
R : yes
H: ok, so that is basically the one to the right of the blue cup
R : yeah
H: that is actually an apple, it is green, I guess it has some

amount of yellow on it, but that is a green apple and it
is named Ashley

. . . . . .

This example demonstrates two important char-
acteristics regarding referential communication
under mismatched perceptual capabilities. First,
conversation partners rely on both object-specific
properties (e.g., object class, color) and spatial
relations to describe objects in the environment.
Spatial expressions include not only the binary re-
lations (e.g., “the one to the left of the blue cup”),
but also the group-based references (Tenbrink and
Moratz, 2003; Funakoshi et al., 2005) (e.g., “the
upper right of the four of them”).

Second, because the shared perceptual basis
is missing here, the partners make extra efforts
to refer and ground references. For example,
the human-player go through step-by-step install-
ments (Clark and Wilkes-Gibbs, 1986) to come
to the targeted object. The robot-player often
proactively provides what he perceives from the
environment. The human-player and the robot-
player collaborate with each other through itera-
tive presentation-acceptance phases as described
in the Contribution Model proposed in (Clark and
Schaefer, 1989; Clark and Brennan, 1991).

1H stands for the human-player.
2R stands for the robot-player.

These observations indicate that, the approach
to referential grounding in situated dialogue
should capture not only binary relations but also
group-based relations. Furthermore, it should go
beyond traditional approaches that purely rely on
semantic constraints from single utterances. It
should incorporate the step-by-step collaborative
dynamics from the discourse as the conversation
proceeds.

4 Modeling Collaboration

In this section, we first give a brief description of
collaboration patterns observed in our data, and
then discuss one prevalent pattern and illustrate
how it may be taken into consideration by our
computational approach for referential grounding.

4.1 Patterns of Collaboration
Consistent with Clark’s Contribution Model, the
interactions between the human-player and the
robot-player in general fall into two phases: a pre-
sentation phase and an acceptance phase. In our
data, a presentation phase mainly consists of the
following three forms:
• A complete description: the speaker issues a

complete description in a single turn. For ex-
ample, “there is a red apple on the top right”.
• An installment: a description is divided

into several parts/installments, each of which
needs to be confirmed before continuing to
the rest. For example,

A: under the big green cup we just talked about,
B: yes
A: there are two apples,
B: OK
A: one is red and one is yellow.

• A trial: a description (either completed or in-
complete) with a try marker. For example, “Is
there a red apple on the top right?”

In an acceptance phase, the addressee can either
accept or reject the current presentation. Two ma-
jor forms of accepting a presentation are observed
in our data:
• Acknowledgement: the addressee explicitly

shows his/her understanding, using assertions
(e.g., “Yes”,“Right”, “I see”) or continuers
(e.g., “uh huh”, “ok”).
• Relevant next turn: the addressee proceeds

to the next contribution that is relevant to the
current presentation. For example: A says “I
see a red apple” and directly following that B
says “there is also a green apple to the right
of that red one”.
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In addition, there are also two forms of rejecting
a presentation:

• Rejection: the addressee explicitly rejects the
current presentation, for example, “I don’t
see any apple”.
• Alternative description: the addressee

presents an alternative description. For
example, A says “there is a red apple on the
top left,” and immediately following that B
says “I only see a red apple on the right”.

In general, referential grounding dialogues in
our data emerge as hierarchical structures of re-
cursive presentation-acceptance phases. The ac-
ceptance to a previous presentation often repre-
sents a new presentation itself, which triggers fur-
ther acceptance. In particular, our data shows
that when mediating their shared perceptual ba-
sis, the human-player often takes into considera-
tion what the robot-player sees and uses that to
gradually lead to his intended referents. This is
demonstrated in the following example3, where
the human-player accepts (Turn 3) the robot-
player’s presentation (Turn 2) through a relevant
next turn.

(Turn 1) H: There is a kiwi fruit.
(Turn 2) R: I don’t see any kiwi fruit. I see an apple.
(Turn 3) H: Do you see a mug to the right of that apple?
(Turn 4) R: Yes.
(Turn 5) H: OK, then the kiwi fruit is to the left of that apple.

As shown later in Section 5, this is one promi-
nent collaborative strategy observed in our data.
We give this pattern a special name: agent-
present-human-accept collaboration. Next we
continue to use this example to show how the
agent-present-human-accept pattern can be incor-
porated to potentially improve reference resolu-
tion.

4.2 An Illustrating Example

In this example, the human and the robot face
a shared physical environment. The robot per-
ceives the environment through computer vision
(CV) algorithms and generates a graph represen-
tation (i.e., a vision graph), which captures the
perceived objects and their spatial relations4. As
shown in Figure 2(a), the kiwi is represented as
an unknown object in the vision graph due to in-
sufficient object recognition. Besides the vision

3This is a clean-up version of the original example to
demonstrate the key ideas.

4The spatial relations between objects are represented as
their relative coordinates in the vision graph.

graph, the robot also maintains a dialogue graph
that captures the linguistic discourse between the
human and the robot.

At Turn 1 in Figure 2(b), the human says “there
is a kiwi fruit”. Upon receiving this utterance,
through semantic processing, a node representing
“a kiwi” is generated (i.e., x1). The dialogue graph
at this point only contains this single node. Iden-
tifying the referent of the expression “a kiwi fruit”
is essentially a process that matches the dialogue
graph to the vision graph. Because the vision
graph does not have a node representing a kiwi ob-
ject, no high confidence match is returned at this
point. Therefore, the robot responds with a rejec-
tion as in Turn 2 (Figure 2(c)) “I don’t see any
kiwi fruit” 5. In addition, the robot takes an extra
effort to proactively describe what is being con-
fidently perceived (i.e., “I see an apple”). Now
an additional node y1 is added to the dialogue
graph to represent the term “an apple” 6. Note that
when the robot generates the term “an apple”, it
knows precisely which object in the vision graph
this term refers to. Therefore, as shown in Fig-
ure 2(c), y1 is mapped to v2 in the vision graph.

In Turn 3 (Figure 2(d)), through semantic pro-
cessing on the human’s utterance “a mug to the
right of that apple”, two new nodes (x2 and x3)
and their relation (RightOf ) are added to the di-
alogue graph. In addition, since “that apple”(i.e.,
x2) corefers with “an apple” (i.e., y1) presented by
the robot in the previous turn, a coreference link
is created from x2 to y1. Importantly, in this turn
human displays his acceptance of the robot’s pre-
vious presentation (“an apple”) by coreferring to it
and building further reference based on it. This is
exactly the agent-present-human-accept strategy
described earlier. Since y1 maps to object v2 and
x2 now links to y1, it becomes equivalent to con-
sider x2 also maps to v2. We name a node such
as x2 a grounded node, since from the robot’s
point of view this node has been “grounded” to a
perceived object (i.e., a vision graph node) via the
agent-present-human-accept pattern.

At this point, the robot matches the updated di-
alogue graph with the vision graph again and can

5Note that, since in this paper we are working with a
dataset of human-human (i.e., the human-player and the
robot-player) dialogues, decisions from the robot-player are
assumed known. We leave robot’s decision making (i.e., re-
sponse generation) into our future work.

6We use xi to denote nodes that represent expressions
from the human’s utterances and yi to represent nodes from
the robot’s utterances.
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Figure 2: An example of incorporating collaborative efforts in an unfolding dialogue into graph representations.

successfully match x3 to v3. Note that, the match-
ing occurs here is considered constrained graph-
matching in the sense that some nodes in the dia-
logue graph (i.e., x2) are already grounded, and
the only node needs to be matched against the
vision graph is x3. Different from previous ap-
proaches that do not take dialogue dynamics into
consideration, the constrained matching utilizes
additional constraints from the collaboration pat-
terns in a dialogue and thus can improve both the
efficiency and accuracy of the matching algorithm.
This is one innovation of our approach here.

Based on such matching result, the robot re-
sponds with a confirmation as in Turn 4 Fig-
ure 2(e)). The human further elaborates in Turn
5 “the kiwi is to the left of the apple”. Again se-
mantic processing and linguistic coreference reso-
lution will allow the robot to update the dialogue
graph as shown in Figure 2(f). Given this dialogue
graph, based on the context of the larger dialogue
graph and through constrained matching, it will

be possible to match x1 to v1 although the object
class of v1 is unknown.

This example demonstrates how the dialogue
graph can be created to incorporate the collabo-
rative referring behaviors as the conversation un-
folds and how such accumulated dialogue graph
can help referential resolution through constrained
matching. Next, we give a detailed account on
how to create a dialogue graph and briefly discuss
graph-matching for reference resolution.

4.3 Dialogue Graph
To account for different types of referring expres-
sions (i.e., object-properties, binary relations and
group-based relations), we use hypergraphs to rep-
resent dialogue graphs.

4.3.1 Hypergraph Representation
A directed hypergraph (Gallo et al., 1993) is a 2-
tuple in the form of G = (X, A), in which

X = {xm}
A = {ai = (ti, hi) | ti ⊆ X, hi ⊆ X}
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(a) Dialogue Graph (b) Vision Graph

Figure 3: Example hypergraph representations

X is a set of nodes, and A is a set of “hyperarcs”.
Similar to an arc in a regular directed graph, each
hyperarc ai in a hypergraph also has two “ends”,
i.e., a tail (ti) and a head (hi). The tail and head
of a hyperarc are both subsets of X , thus they can
contain any number of nodes in X . Hypergraph is
a more general representation than regular graph.
It can represent not only binary relations between
two nodes, but also group-based relations among
multiple nodes.

For example, suppose the language input issued
by the human includes the following utterances:

1. There is a cluster of four objects in the upper left.
2. The one in the corner is a blue cup.
3. Under the blue cup is a yellow pepper.
4. To the right of the blue cup, which is also in the upper

right of the four objects, is a green apple.

The corresponding dialogue graph Gd =
(Xd, Ad) is shown in Figure 3(a), where Xd =
{x1, x2, x3, x4} and Ad = {a1, a2, a3}. In Ad,
for example, a1 = ({x1}, {x3}) represents the
relation “right of” between the tail {x3} and the
head {x1}, and a3 = ({x3}, {x1, x2, x3, x4}) rep-
resents the group-based relation “upper right” be-
tween one node and a group of nodes.

As also illustrated in Figure 3(a), we can at-
tach a set of labels (or attributes) {attrk} to a
node/hyperarc, and use them to store specific in-
formation about this node/hyperarc. The per-
ceived visual world can be represented by a
hypergraph in a similar way (i.e., a vision graph),
as shown in Figure 3(b) 7.

4.3.2 Building Dialogue Graphs
Given the hypergraph representation, a set of op-
erations can be applied to build a dialogue graph
as the conversation unfolds. It mainly consists of
three components:

7Hyperarcs of the vision graph are not shown in the figure.
A hyperarc may exist between any two subsets of objects.

Semantic Constraints. Apply a semantic parser to
extract information from human utterances. For
example, the utterance “The kiwi is to the left of
the apple” can be parsed into a formal meaning
representation as

[x1, x2] , [Kiwi(x1), Apple(x2), LeftOf(x1, x2)]

This representation contains a list of discourse
entities introduced by the utterance, and a list of
FOL predicates specifying the properties and rela-
tions of these entities. For each discourse entity, a
node is added to the graph. Unary predicates be-
come the labels for nodes, and binary predicates
become arcs in the graph. Group-based relations
are incorporated into the graphs as hyperarcs.
Discourse Coreference. For each discourse entity
in a referring expression, identify whether it is a
new discourse entity or it corefers to a discourse
entity mentioned earlier. In our previous example
in Figure 2(d), x2 corefers with y1, thus a coref-
erence link is added to link the coreferring nodes.
Coreferring nodes are merged before matching.
Dialogue Dynamics. Different types of dialogue
dynamics can be modeled. In this paper, we only
focus on a particularly prevalent type of dynamics
as observed from our data, i.e. the agent-present-
human-accept pattern as we described in Section
4.1. When such a pattern is identified, the associ-
ated nodes (e.g., x2 in the previous example) will
be marked as grounded nodes and the mappings
to their grounded visual entities (i.e., vision graph
nodes) will be added into the dialogue graph.

Based on the above three types of operations,
the dialogue graph is updated at each turn of the
conversation.

4.3.3 Constrained Matching
Given a dialogue graph G = (X, A) and a vi-
sion graph G′ = (X ′, A′), reference resolution
becomes a graph matching problem which is to
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find a one-to-one mapping between the nodes in
X and in X ′. Due to the insufficiencies of the
NLP and the CV components, both the dialogue
graph and the vision graph are likely to contain er-
rors. Therefore, we do not require every node in
the dialog graph to be mapped to a node in the vi-
sion graph, but follow the inexact graph matching
criterion (Conte et al., 2004) to find the best match
even if they are only partial.

The matching algorithm is similar to the one
used in our previous work for regular graphs (Liu
et al., 2012), which uses a state-space search ap-
proach (Zhang, 1999). The key difference here
is to incorporate the agent-present-human-accept
collaboration pattern. The search procedure can
now start from the state that already represents
the known matching of grounded nodes (as il-
lustrated in Section 4.2), instead of starting from
the root. Thus it is constrained in a smaller and
more promising subspace to improve both effi-
ciency and accuracy.

5 Evaluation

A total of 32 dialogues collected from our ex-
periments (as described in Section 3) are used in
the evaluation. For each of these dialogues, we
have manually annotated (turn-by-turn) the formal
semantics, discourse coreferences and grounded
nodes as described in Section 4.3.2. Since the fo-
cus of this paper is on incorporating collaboration
into graph matching for referential grounding, we
use these annotations to build the dialogue graphs
in our evaluation. Vision graphs are automatically
generated by CV algorithms from the original im-
ages used in the experiments. The CV algorithms’
object recognition performance is rather low: only
5% of the objects in those images are correctly rec-
ognized. Thus reference resolution will need to
rely on relations and collaborative strategies.

The 32 dialogue graphs have a total of 384
nodes8 that are generated from human-players’ ut-
terances (12 per dialogue on average), and a to-
tal of 307 nodes generated from robot-players’ ut-
terances (10 per dialogue on average). Among
the 307 robot-player generated nodes, 187 (61%)
are initially presented by the robot-player and
then coreferred by human-players’ following ut-
terances (i.e., relevant next turns). This indicates

8As mentioned in Section 4.3.2, multiple expressions that
are coreferential with each other and describing the same en-
tity are merged into a single node.

that the agent-present-human-accept strategy is a
prevalent way to collaborate in our experiment. As
mentioned earlier, those human-player generated
nodes which corefer to nodes initiated by robot-
players are marked as grounded nodes. In total,
187 out of the 384 human-player generated nodes
are in fact grounded nodes.

To evaluate our approach, we apply the graph-
matching algorithm on each pair of dialogue graph
and vision graph. The matching results are com-
pared with the annotated ground-truth to calcu-
late the accuracy of our approach in ground-
ing human-players’ referring descriptions to vi-
sual objects. For each dialogue, we have pro-
duced matching results under four different set-
tings: with/without modeling collaborative re-
ferring (i.e., the agent-present-human-accept col-
laboration) and with/without using hypergraphs.
When collaborative referring is modeled, the
graph-matching algorithm uses the grounded
nodes to constrain its search space to match the
remaining ungrounded nodes. When collabora-
tive referring is not modeled, all the human-player
generated nodes need to be matched.

The results of four different settings (averaged
accuracies on the 32 dialogues) are shown in Ta-
ble 1. Modeling collaborative referring improves
the matching accuracies for both regular graphs
and hypergraphs. When regular graphs are used,
it improves overall matching accuracy by 11.6%
(p = 0.05, paired Wilcoxon T-test). The improve-
ment is even higher as 18.3% when hypergraphs
are used (p = 0.012, paired Wilcoxon T-test). The
results indicate that proactively describing what
the robot sees to the human to facilitate com-
munication is an important collaborative strategy
in referential grounding dialogues. Humans can
often ground the robot presented object via the
agent-present-human-accept strategy and use the
grounded object as a reference point to further
describe other intended object(s), and our graph-
matching approach is able to capture and utilize
such collaboration pattern to improve the referen-
tial grounding accuracy.

The improvement is more significant when
hypergraphs are used. A potential explanation
is that those group-based relations captured by
hypergraphs always involve multiple (more than
2) objects (nodes). If one node in a group-based
relation is grounded, all other involved nodes can
have a better chance to be correctly matched.
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Regular graph Hypergraph
Not modeling 44.1% 47.9%collaborative referring

Modeling 55.7% 66.2%collaborative referring
Improvement 11.6% 18.3%

Table 1: Averaged matching accuracies under four
different settings.

Group 1 Group 2 Group 3
Number of dialogues 9 11 12
% of grounded nodes <30% 30%˜60% >60%
Average number of 20 21 12object properties a

Average number of 11 13 8
relations b

Not modeling 49.7% 49.4% 45.3%collaborative referring
Modeling 57.0% 76.6% 63.6%collaborative referring

Improvement 7.3% 27.2% 18.3%

aSpecified by human-players.
bSpecified by human-players. The number includes both

binary and group-based relations.

Table 2: Matching accuracies of three groups of
dialogues (all the matching results here are pro-
duced using hypergraphs).

Whereas in regular graphs one grounded node can
only improve the chance of one other node, since
only one-to-one (binary) relations are captured by
regular graphs.

To further investigate the effect of modeling
collaborative referring, we divide the 32 dia-
logues into three groups according to how often
the agent-present-human-accept collaboration pat-
tern happens (measured by the percentage of the
grounded nodes among all the human-player gen-
erated nodes in a dialogue). As shown at the top
part of Table 2, the agent-present-human-accept
pattern happened less often in the dialogues in
group 1 (i.e., less than 30% of human-player gen-
erated nodes are grounded nodes). In the dia-
logues in group 2, robot-players more frequently
provided proactive descriptions which led to more
grounded nodes. Robot-players were the most
proactive in the dialogues in group 3, thus this
group contains the highest percentage of grounded
nodes. Note that, although the dialogues in group
3 contain more proactive contributions from robot-
players, human-players tend to specify less num-
ber of properties and relations describing intended
objects (as shown in the middle part of Table 2).

The matching accuracies for each of the three
groups are shown at the bottom part of Table 2.

Since the agent-present-human-accept pattern ap-
pears less often in group 1, modeling collabora-
tive referring only improves matching accuracy
by 7.3%. The improvements for group 2 and
group 3 are more significant compared to group
1. However, group 3’s improvement is less than
group 2, although the dialogues in group 3 contain
more proactive contributions from robot-players.
This indicates that in some cases even with mod-
eling collaborative referring, underspecified in-
formation from human speakers (human-players
in our case) may still be insufficient to identify
the intended referents. Therefore, incorporating a
broader range of dialogue strategies to elicit ade-
quate information from humans is also important
for successful human-robot communication.

6 Conclusion
In situated dialogue, conversation partners make
extra collaborative efforts to mediate a shared per-
ceptual basis for referential grounding. It is impor-
tant to model such collaborations in order to build
situated conversational agents. As a first step, we
developed an approach for referential grounding
that takes a particular type of collaborative refer-
ring behavior, i.e. agent-present-human-accept,
into account. By incorporating this pattern into the
graph-matching process, our approach has shown
an absolute gain of over 18% in subsequent refer-
ence resolution. Extending the results in this pa-
per, our future work will address explicitly model-
ing the collaborative dynamics with a richer repre-
sentation. The dialogue graph presented in this pa-
per represents all the mentioned entities and their
relations that are currently available at any given
dialogue status. But we have not modeled the col-
laborative dynamics at the illocutionary level. Our
next step is to explicitly represent those dynam-
ics, not only for grounding human references to
the physical world, but also generating the collab-
orative behaviors for the agent.
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Abstract

This paper presents a quantitative descrip-
tion of the lexical items used for linguis-
tic feedback in the Corpus of Interactional
Data (CID). The paper includes the raw
figures for feedback lexical item as well
as more detailed figures concerning inter-
individual variability. This effort is a first
step before a broader analysis including
more discourse situations and featuring
communicative function annotation.

Index Terms: Feedback, Backchannel, Corpus,
French Language

1 Objectives

Conversational feedback is mostly performed
through short utterances such as yeah, mh, okay
not produced by the main speaker but by one of
the other participants of a conversation. Such ut-
terances are among the most frequent in conver-
sational data (Stolcke et al., 2000). They also
have been described in psycho-linguistic models
of communication as a crucial communicative tool
for achieving coordination or alignment in dia-
logue (Clark, 1996).

The general objective of the project (ANR
CoFee: Conversational Feedback)1(Prévot and
Bertrand, 2012) in which this work takes place
is to propose a fine grained model of the
form/function relationship concerning feedback
behaviors in conversation. The present study is
first exploration aiming at knowing better the dis-
tribution of these items in one of our corpus. More
precisely, we would to verify how much inter-
individual variability we will face in further study
and whether we can identify a structure in this
variability (e.g speaker profiles). Second, we tried

1See the project website: http://cofee.hypotheses.org

to check there some strong trends in terms of evo-
lution of use of these items in the course of the
conversation. This later point was not conclusive
and is not developed in this paper.

Some data-intensive works exist for English
(Gravano et al., 2012), Japanese (Kamiya et al.,
2010; Misu et al., 2011) or Swedish (Allwood et
al., 1992; Cerrato, 2007; Neiberg et al., 2013) but
not on many other languages such as French for
example. On French, the work of (Muller and
Prévot, 2003; Muller and Prévot, 2009) concerned
a smaller scale (A hour corpus) and very specific
task. (Bertrand et al., 2007) was focussed on the
feedback inviting cues and also on a smaller scale
(2 × 15 minutes). They showed that particular
pitch contours and discursive markers play a sys-
tematic role as inviting-cues both for vocal and
gestural back-channels.

The paper is structured as follow. Section 2
presents the conversational corpus used for this
study, then section 3 presents how this corpus has
been processed. Section 4 is related to general fig-
ures for the feedback lexical items, followed by
more detailed information about inter-individual
variability (section 5).

2 The corpus

The Corpus of Interactional Data (CID) (Bertrand
et al., 2008; Blache et al., 2009)2 is an audio-video
recording of 8 hours of spontaneous French dia-
logues, 1 hour of recording per session. Each di-
alogue involved two participants of the same gen-
der. One of the following two topics of conver-
sation was suggested to participants: conflicts in
their professional environment or unusual situa-
tions in which participants may have found them-
selves. It features a nearly free conversational
style with only a single theme proposed to the par-
ticipants at the beginning of the experiment. This

2http://www.sldr.org/sldr000027/en
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corpus is fully transcribed and forced-aligned at
phone level. Moreover, it has been annotated with
various linguistic information (Prosodic Phrasing,
Discourse units, Syntactic tags, ...) (Blache et al.,
2010) which will allow us later to take advantage
of these levels of analysis.

Numerous studies have been carried out in pre-
pared speech. However, conversational speech
refers to a more informal activity, in which par-
ticipants have constantly to manage and negotiate
turn-taking, topic changes (among other things)
without any preparation. As a consequence, nu-
merous phenomena appear such as hesitations, re-
peats, backchannels, etc. Phonetic phenomena
such as non-standard elision, reduction phenom-
ena, truncated words, and more generally, non-
standard pronunciations are also very frequent.
All these phenomena can impact on the phoneti-
zation, then on alignment.

3 Processing the corpus

The transcription process is done following spe-
cific conventions derived from that of the GARS
(Blanche-Benveniste and Jeanjean, 1987). The
result is what we call an enriched orthographic
transcription (EOT), from which two derived tran-
scriptions are generated automatically : the stan-
dard orthographic transcription (the list of ortho-
graphic tokens) and a specific transcription from
which the phonetic tokens are obtained to be
used by the grapheme-phoneme converter. From
the phoneme sequence and the audio signal, the
aligner outputs for each phoneme its time localiza-
tion. This corpus has been processed with several
aligners. The first and main one (Brun et al., 2004)
is HMM-based, it uses a set of 10 macro-classes
of vowel (7 oral and 3 nasal), 2 semi-vowels and
15 consonants. Finally, from the time aligned
phoneme sequence plus the EOT, the orthographic
tokens is time-aligned.

The alignment for this paper is another ver-
sion that has been carried out using SPPAS3 (Bigi,
2012). SPPAS is a tool to produce automatic anno-
tations which include utterance, word, syllabic and
phonemic segmentations from a recorded speech
sound and its transcription.

Alignment of items of the list given in (1) were
then manually verified. Largest errors were cor-
rected to obtain reliable alignments.

DM prononciations are the standard ones except
3http://www.lpl-aix.fr/∼bigi/sppas/

for a few cases. There are only two items with
non standard cases that are over 2 occurrences:
sampa: m.w.e.) that is an hybrid between mh
and ouais, and sampa w.a.l.a, a reduction of
v.w.a.l.a voilà.

The extraction themselves have been realized
by the authors with a Python script and all the
statistical analyses and plots have been produced
with R statistical analysis tool.

4 Descriptive statistics for the lexical
markers used in feedback

All the lexical items of the list given in (1) were
automatically extracted and categorized into two
categories: (i) Isolated items are items or sequence
of items surrounded by pauses of at least 200 ms
and not including any extra material than the items
of this list ; (ii) Initial items (or sequence items)
are located in front of some other items (but there
is no other material within the sequence). Most
of these items also occur in final or even sur-
rounded positions but we did not consider these
cases since they do are not clearly related to feed-
back. More precisely surrounded items are mostly
consisting in breaks of disfluencies or genuinely
integrated construction (e.g j’étais d’accord avec
lui / I agreed with him). Final ones can play a
role in eliciting feedback or sometimes bring some
kind of closure at the end of the utterance (what
has been described as Pivot Ending in (Gravano et
al., 2012)).

(1) ah (ah), bon (well), ben (well), euh (err,
uh), mh (mh), ouais (yeah), oui (yes), non
(no), d’accord (agreed), OK (okay), voilà
(that’s it, right)

Strictly speaking, the list (1) is not exhaustive.
However, other items are already in the thin part
of the distribution’s tail. Moreover, some of the
items such as euh / err are not necessarily related
to feedback. However, by crossing lexical values
with position we expect to get close enough the
full set of tokens involved in feedback. For exam-
ple, initial euh not followed by a feedback related
item will not be included in the final dataset. This
is also an objective of the present work to identify
these situations.

The different markers exhibit very different fig-
ures with regard to their location as it can be seen
in 1. While some are specialized in isolated feed-
back such as the continuer mh which is most of the

88



time backchanneled, others are found at the begin-
ning of utterances such as euh, ah. The later makes
sense since euh is also a filled pause.
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Figure 1: Distribution of isolated vs. initial posi-
tion for the most frequent lexical items

In total 197 different combinations of the ba-
sic markers were identified. The most frequent
are the simple repetitions of items such as ouais
(up to nine times) or mh. There are also more
complex structures as exhibited in (2) that seem
to mix two kinds of items: base ones and mod-
ifiers (ah, euh). The base ones seem by default
to carry general purpose communicative functions
as described in (Bunt, 2009; Bunt, 2012) while the
others can also be produced alone but are generally
dealing specific dimension such as turn-taking, at-
titude expression or time management.

(2) a. ah ouais d’accord ok (ah yeah right
okay)

b. voilà oui non (that’s it yes no)

With regard to duration, the data is rather messy
concerning the very long items. There are extreme
lengthening on these units. Aside that and the filler
uh that exhibit a wide spread, the other items are
not produced with huge variations. Monosyllabic
remain well centered around 150-250 ms while di-
syllabic and repeated items are distributed in the
250-500 ms range. This is important for our next
step in which automatic acoustic analysis of these
items will be performed.
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Figure 2: Duration (in seconds) of each lexical
type

5 Inter-individual variability

Inter-individual variation is a big issue on the way
to the generalizability. We would like to under-
stand some of the feedback producing profiles.
Our intuitions coming from familiarity of the data
is that there are strong variation but they corre-
spond to a few different speaking styles. In fu-
ture work, we would like to see in a second step
whether we can identify and characterize these
styles.
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Figure 3: Number of feedback items per speaker

Figure 3 illustrates the total figures of feedback
per speaker. As expected variation is huge, from
132 to 425 but with in fact with few outliers with
a nice batch of speaker in the 200 − 300 range.
The wider spread of the distribution in the high
range comes from two factors. First of all, there
are participants producing a high quantity of feed-

89



back items. They produce a massive amount of
light backchannels (mh, ouais) compared to low-
quantity feedback producers. The later also pro-
duce feedback during the long pauses of the main
speaker but they produce much less overlapping
backchannels. This should be double checked
with a specific measure (adding overlapping as a
factor). However, a second effect seems important
for at least one speaker (the outlier): the amount
to time holding the floor. In fact the speaker pro-
ducing the most feedback did so because she was
rarely the main speaker.

In order to get a global idea of the different uses
of these items, Figure 5 represents the proportion
of each item per speaker. As expected, the varia-
tion is important but one can spot some tendencies.
For examples for the most frequent items, the rank
seems to preserved across speakers.
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Figure 4: Distribution of the lexical items

Based on their feedback profile (proportion of
use of each items as illustrated in Figure 5), we
attempted to cluster the participants as showed in
5. While the lower parts of the dendrogram are
hard to interpret the higher part matches well with
the impression acquired by listening to the corpus
(no backchannels and rather formal feedback vs.
lots of backchannels and very colloquial style).

6 Current and Future Work

About this first batch of analyses, we will com-
plete the analysis of the evolution during the con-
versation. More precisely, we will go at the
individual level looking for time-based changes
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Figure 5: Dendrogram of the participants cluster
based on their feedback profile

in their profiles as well as looking at the pairs
for tracking potential convergence effect either in
terms of distribution of lexical marker types or in
their duration.

In parallel to this work, we are launching in-
dependent prosodic and kinesic analyses of the
forms, as well as a discourse analysis of the func-
tions. Moreover the work is being extended by
adding two corpora in the study in order to allow
for a better situation generalisability: A French
MapTask; and a third corpus consisting in a less
cooperative situation. The idea is later to bring
together the observations from the different levels
in order to propose a multidimensional model for
feedback in French dialogues.

Those are steps toward more extensive studies
in the spirit of (Gravano et al., 2012) or (Neiberg
et al., 2013) on French language and in which we
hope to address more directly the issue of dis-
course situation generalisability.
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Abstract 

In this paper, we describe novel methods for 

topic segmentation based on patterns of dis-

course organization. Using a corpus of news 

texts, our results show that it is possible to use 

discourse features (based on Rhetorical Struc-

ture Theory) for topic segmentation and that 

we outperform some well-known methods. 

1 Introduction 

Topic segmentation aims at finding the bounda-

ries among topic blocks in a text (Chang and 

Lee, 2003). This task is useful for a number of 

important applications such as information re-

trieval (Prince and Labadié, 2007), automatic 

summarization (Wan, 2008) and question-

answering systems (Oh et al., 2007). 

In this paper, following Hearst (1997), we as-

sume that a text or a set of texts develop a main 

topic, exposing several subtopics as well. We 

also assume that a topic is a particular subject 

that we write about or discuss (Hovy, 2009), and 

subtopics are represented in pieces of text that 

cover different aspects of the main topic (Hearst, 

1997; Hennig, 2009). Therefore, the task of topic 

segmentation aims at dividing a text into topical-

ly coherent segments, or subtopics. The granular-

ity of a subtopic is not defined, as a subtopic may 

contain one or more sentences or paragraphs. 

Several methods have been tested for topic 

segmentation. There are, however, no studies on 

how discourse structure directly mirrors topic 

boundaries in texts and how they may contribute 

to such task, although such possible correlation 

has been suggested (e.g., Hovy and Lin, 1998). 

In this paper, we follow this research line, 

aiming at exploring the relationship of discourse 

and subtopics. In particular, our interest is main-

ly on the potential of Rhetorical Structure Theory 

(RST) (Mann and Thompson, 1987) for this task. 

We propose and evaluate automatic topic seg-

mentation strategies based on the rhetorical 

structure of a text. We also compare our results 

to some well-known algorithms in the area, 

showing that we outperform these algorithms. 

Our experiments were performed using a corpus 

of news texts manually annotated with RST and 

subtopics. 

The remainder of this paper is organized as 

follows. Section 2 gives a brief background on 

text segmentation. Section 3 describes our auto-

matic strategies to find the subtopics. The corpus 

that we use is described in Section 4. Section 5 

presents some results and Section 6 contains the 

conclusions and future work. 

2 Related work 

Several approaches have tried to measure the 

similarity across sentences and to estimate where 

topic boundaries occur. One well-known ap-

proach, that is heavily used for topic segmenta-

tion, is TextTiling (Hearst, 1997), which is based 

on lexical cohesion. For this strategy, it is as-

sumed that a set of lexical items is used during 

the development of a subtopic in a text and, 

when that subtopic changes, a significant propor-

tion of vocabulary also changes.  

Passoneau and Litman (1997), in turn, have 

combined multiple linguistic features for topic 

segmentation of spoken text, such as pause, cue 

words, and referential noun phrases. Hovy and 

Lin (1998) have used various complementary 
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techniques for topic segmentation, including 

those based on text structure, cue words and 

high-frequency indicative phrases for topic iden-

tification in a summarization system. Although 

the authors do not mention an evaluation of these 

features, they suggested that discourse structure 

might help topic identification. For this, they 

suggested using RST.  

RST represents relations among propositions 

in a text and discriminates nuclear and satellite 

information. In order to present the differences 

among relations, they are organized in two 

groups: subject matter and presentational rela-

tions. In the former, the text producer intends 

that the reader recognizes the relation itself and 

the information conveyed, while in the latter the 

intended effect is to increase some inclination on 

the part of the reader (Taboada and Mann, 2006). 

The relationships are traditionally structured in a 

tree-like form (where larger units – composed of 

more than one proposition – are also related in 

the higher levels of the tree).  

To the best of our knowledge, we have not 

found any proposal that has directly employed 

RST for topic segmentation purposes. Following 

the suggestion of the above authors, we investi-

gated how discourse structure mirrors topic shifts 

in texts. Next section describes our approach to 

the problem. 

3 Strategies for topic segmentation  

For identifying and partitioning the subtopics of 

a text, we developed four baseline algorithms 

and six other algorithms that are based on dis-

course features. 

The four baseline algorithms segment at para-

graphs, sentences, random boundaries (randomly 

selecting any number of boundaries and where 

they are in a text) or are based on word reitera-

tion. The word reiteration strategy is an adapta-

tion of TextTiling
1
 (Hearst, 1997) for the charac-

teristics of the corpus that we used (introduced 

latter in this paper). 

The algorithms based on discourse consider 

the discourse structure itself and the RST rela-

tions in the discourse tree. The first algorithm 

(which we refer to as Simple Cosine) is based on 

Marcu’s idea (2000) for measuring the “good-

ness” of a discourse tree. He assumes that a dis-

course tree is “better” if it exhibits a high-level 

structure that matches as much as possible the 

                                                 
1
 We have specifically used the block comparison 

method with block size=2. 

topic boundaries of the text for which that struc-

ture was built. Marcu associates a clustering 

score to each node of a tree. For the leaves, this 

score is 0; for the internal nodes, the score is giv-

en by the lexical similarity between the immedi-

ate children. The hypothesis underlying such 

measurements is that better trees show higher 

similarity among their nodes. We have adopted 

the same idea using the cosine measure. We have 

proposed that text segments with similar vocabu-

lary are likely to be part of the same topic seg-

ment. In our case, nodes with scores below the 

average score are supposed to indicate possible 

topic boundaries. 

The second algorithm (referred to as Cosine 

Nuclei) is also a proposal by Marcu (2000). It is 

assumed that whenever a discourse relation holds 

between two textual spans, that relation also 

holds between the most salient units (nuclei) as-

sociated with those spans. We have used this 

formalization and measured the similarity be-

tween the salient units associated with two spans 

(instead of measuring among all the text spans of 

the relation, as in the previous algorithm).  

The third (Cosine Depth) and fourth (Nuclei 

Depth) algorithms are variations of Simple Co-

sine and Cosine Nuclei. For these new strategies, 

the similarity for each node is divided by the 

depth where it occurs, traversing the tree in a 

bottom-up way. These should guarantee that 

higher nodes are weaker and might better repre-

sent topic boundaries. Therefore, we have the 

assumption that topic boundaries are more likely 

to be mirrored at the higher levels of the dis-

course structure. We also have used the average 

score to find out less similar nodes. Figure 1 

shows a sample RST tree. The symbols N and S 

indicate the nucleus and satellite of each rhetori-

cal relation. For this tree, the score between 

nodes 3 and 4 is divided by 1 (since we are at the 

leaf level); the score between Elaboration and 

node 5 is divided by 2 (since we are in a higher 

level, 1 above the leaves on the left); and the 

score between Sequence and Volitional-result is 

divided by 3 (1 above the leaves on the right). 

 

 

Figure 1. Example of an RST structure 
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The next algorithms are based on the idea that 

some relations are more likely to represent topic 

shifts. For estimating this, we have used the 

CSTNews (described in next section), which is 

manually annotated with subtopics and RST. 

In this corpus, there are 29 different types of 

RST relations that may connect textual spans. In 

an attempt to characterize topic segmentation 

based on rhetorical relations, we recorded the 

frequency of those relations in topic boundaries. 

We realized that some relations were more fre-

quent on topic boundaries, whereas others never 

occurred at the boundaries of topics. Out of the 

29 relations, 16 appeared in the reference annota-

tion. In topic boundaries, Elaboration was the 

most frequent relation (appearing in 60% of the 

boundaries), followed by List (20%) and Non-

Volitional Result (5%). Sequence and Evidence 

appeared in 2% of the topic boundaries, and 

Background, Circumstance, Comparison, Con-

cession, Contrast, Explanation, Interpretation, 

Justify, and Non-Volitional Cause in 1% of the 

boundaries. 

We used this knowledge about the relations’ 

frequency and attributed a weight associated with 

the possibility that a relation indicates a bounda-

ry, in accordance with its frequency on topic 

boundaries in the reference corpus. Figure 2 

shows how the 29 relations were distributed. One 

relation is weak if it usually indicates a bounda-

ry; in this case, its weight is 0.4. One relation is 

medium because it may indicate a boundary or 

not; therefore, its weight is 0.6. On the other 

hand, a strong relation almost never indicates a 

topic boundary; therefore, its weight is 0.8. Such 

values were empirically determined. Another 

factor that may be observed is that all presenta-

tional relations are classified as strong, with the 

exception of Antithesis. This is related to the def-

inition of presentational relations, and Antithesis 

was found in the reference segmentation with a 

low frequency. 

 
Class Relations 

Weak 

(0.4) 

Elaboration, Contrast, Joint, List 

Medium 

(0.6) 

Antithesis, Comparison, Evaluation 

Means, Non-Volitional Cause, Non-

Volitional Result, Solutionhood, Voli-

tional Cause, Volitional Result, Sequence 

Strong 

(0.8) 

Background, Circumstance, Concession, 

Conclusion, Condition, Enablement, Evi-

dence, Explanation, Interpretation, Justi-

fy, Motivation, Otherwise, Purpose, Re-

statement, Summary 

Figure 2. Classification of RST relations 

From this classification we created two more 

strategies: Relation_Depth and Nu-

clei_Depth_Relation. Relation_Depth associates 

a score to the nodes by dividing the relations 

weight by the depth where it occurs, in a bottom-

up way of traversing the tree. We also have used 

the average score to find out nodes that are less 

similar. As we have observed that some im-

provement might be achieved every time nuclei 

information was used, we have tried to combine 

this configuration with the relations’ weight. 

Hence, we computed the scores of the Nuclei 

Depth strategy times the proposed relations 

weight. This was the algorithm that we called 

Nuclei_Depth_Relation. Therefore, these two 

last algorithms enrich the original Cosine Depth 

and Nuclei Depth strategies with the relation 

strength information.  

The next section presents the data set we have 

used for our evaluation. 

4 Overview of the corpus 

We used the CSTNews corpus
2
 that is composed 

of 50 clusters of news articles written in Brazili-

an Portuguese, collected from several sections of 

mainstream news agencies: Politics, Sports, 

World, Daily News, Money, and Science. The 

corpus contains 140 texts altogether, amounting 

to 2,088 sentences and 47,240 words. On aver-

age, the corpus conveys in each cluster 2.8 texts, 

41.76 sentences and 944.8 words. All the texts in 

the corpus were manually annotated with RST 

structures and topic boundaries in a systematic 

way, with satisfactory annotation agreement val-

ues (more details may be found in Cardoso et al., 

2011; Cardoso et al., 2012). Specifically for topic 

boundaries, groups of trained annotators indicat-

ed possible boundaries and the ones indicated by 

the majority of the annotators were assumed to 

be actual boundaries. 

5 Evaluation 

This section presents comparisons of the results 

of the algorithms over the reference corpus. 

The performance of topic segmentation is usu-

ally measured using Recall (R), Precision (P), 

and F-measure (F) scores. These scores quantify 

how closely the system subtopics correspond to 

the ones produced by humans. Those measures 

compare the boundary correspondences without 

considering whether these are close to each oth-

er: if they are not the same (regardless of wheth-

                                                 
2
 www2.icmc.usp.br/~taspardo/sucinto/cstnews.html 
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er they are closer or farther from one another), 

they score zero. However, it is also important to 

know how close the identified boundaries are to 

the expected ones, since this may help to deter-

mine how serious the errors made by the algo-

rithms are. We propose a simple measure to this, 

which we call Deviation (D) from the reference 

annotations. Considering two algorithms that 

propose the same amount of boundaries for a text 

and make one single mistake each (having, there-

fore, the same P, R, and F scores), the best one 

will be the one that deviates the least from the 

reference. The best algorithm should be the one 

with the best balance among P, R, F, and D 

scores.  

The results achieved for the investigated 

methods are reported in Table 1. The first 4 rows 

show the results for the baselines. The algorithms 

based on RST are in the last 6 rows. The last row 

represents the human performance, which we 

refer by topline. It is interesting to have a topline 

because it possibly indicates the limits that au-

tomatic methods may achieve in the task. To find 

the topline, a human annotator of the corpus was 

randomly selected for each text and his annota-

tion was compared with the reference one. 

As expected, the paragraph baseline was very 

good, having the best F values of the baseline 

set. This shows that, in most of the texts, the sub-

topics are organized in paragraphs. Although the 

sentence baseline has the best R, it has the worst 

D. This is due to the fact that not every sentence 

is a subtopic, and to segment all of them be-

comes a problem when we are looking for major 

groups of subtopics. TextTiling is the algorithm 

that deviates the least from the reference seg-

mentation. This happens because it is very con-

servative and detects only a few segments, some-

times only one (the end of the text), causing it to 

have a good deviation score, but penalizing R. 

 
Algorithm R P F D 

TextTiling 0.405 0.773 0.497 0.042 

Paragraph 0.989 0.471 0.613 0.453 

Sentence 1.000 0.270 0.415 1.000 

Randomly 0.674 0.340 0.416 0.539 

Simple Cosine 0.549 0.271 0.345 0.545 

Cosine Nuclei 0.631 0.290 0.379 0.556 

Cosine Depth 0.873 0.364 0.489 0.577 

Nuclei Depth 0.899 0.370 0.495 0.586 

Relation_Depth 0.901 0.507 0.616 0.335 

Nuclei_Depth 

Relation 

0.908 0.353 0.484 0.626 

Topline 0.807 0.799 0.767 0.304 

Table 1. Evaluation of algorithms 

In the case of the algorithms based on RST, we 

may notice that they produced the best results in 

terms of R, P, and F, with acceptable D values. 

We note too that every time the salient units 

were used, R and P increase, except for Nu-

clei_Depth_Relation. Examining the measures, 

we notice that the best algorithm was Rela-

tion_Depth. Although its F is close to the one of 

the Paragraph baseline, the Relation_Depth algo-

rithm shows a much better D value. One may see 

that the traditional TextTiling was also outper-

formed by Relation_Depth.  

As expected, the Topline (the human, there-

fore) has the best F with acceptable D. Its F val-

ue is probably the best that an automatic method 

may expect to achieve. It is 25% better than our 

best method (Relation_Depth). There is, there-

fore, room for improvements, possibly using oth-

er discourse features. 

We have run t-tests for pairs of algorithms for 

which we wanted to check the statistical differ-

ence. As expected, the F difference is not signifi-

cant for Relation_Depth and the Paragraph algo-

rithms, but it was significant with 95% confi-

dence for the comparison of Relation_Depth with 

Nuclei_Depth and TextTiling (also regarding the 

F values). Finally, the difference between Rela-

tion_Depth and the Topline was also significant. 

6 Conclusions and future work 

In this paper we show that discourse structures 

mirror, in some level, the topic boundaries in the 

text. Our results demonstrate that discourse 

knowledge may significantly help to find bound-

aries in a text. In particular, the relation type and 

the level of the discourse structure in which the 

relation happens are important features. To the 

best of our knowledge, this is the first attempt to 

correlate RST structures with topic boundaries, 

which we believe is an important theoretical ad-

vance. 

At this stage, we opted for a manually anno-

tated corpus, because we believe an automatic 

RST analysis would surely decrease the corre-

spondence that was found. However, better dis-

course parsers have arisen and this may not be a 

problem anymore in the future. 
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Abstract

This paper presents a practical
methodology for the integration of
reinforcement learning during the
design of a Spoken Dialogue System
(SDS). It proposes a method that
enables SDS designers to know, in
advance, the number of dialogues that
their system will need in order to learn
the value of each state-action couple.
We ask the designer to provide a user
model in a simple way. Then, we run
simulations with this model and we
compute confidence intervals for the
mean of the expected return of the
state-action couples.

1 Introduction

The Dialogue Manager (DM) of a Spoken Di-
alogue System (SDS) selects actions accord-
ing to its current beliefs concerning the state
of the dialogue. Reinforcement Learning (RL)
has been more and more used for the optimisa-
tion of dialogue management, freeing designers
from having to fully implement the strategy of
the DM.

A framework known as Module-Variable
Decision Process (MVDP) was proposed by
Laroche et al. (2009) who integrated RL into
an automaton-based DM. This led to the de-
ployment of the first commercial SDS imple-
menting RL (Putois et al., 2010).

Our work intends to continue this effort in
bridging the gap between research advances
on RL-based SDS and industrial release. One
important issue concerning the design of an
RL-based SDS is that it is difficult to evalu-
ate the number of training dialogues that will

be necessary for the system to learn an opti-
mal behaviour. The underlying mathematical
problem is the estimation of the training sam-
ple size needed by the RL algorithm for con-
vergence. Yet, designers are often not experts
in RL. Therefore, this paper presents a simple
methodology for evaluating the necessary sam-
ple size for an RL algorithm embedded into an
SDS. This methodology does not require any
RL expertise from designers. The latter are
asked to provide a model of user behaviour in
a simple way. According to this model, numer-
ous simulations are run and the sample size
for each module-state-action triple of the DM
is estimated. This methodology was tested on
an SDS designed during the CLASSiC Euro-
pean project1 (Laroche et al., 2011) and we
show that these computations are robust to
varying models of user behaviour.

2 Dialogue Management as a
Module-Variable Decision
Process

Module-Variable Decision Processes (MVDP)
factorise learning into modules, each module
having its own state and action spaces. For-
mally, an MVDP is a tuple (M, VM , AM , T )
where M is the module space, VM is the space
of local contexts, for each module m, Vm ⊂ VM

is the set of variables which are relevant for
m’s decision making. Am ⊂ AM is the set of
possible actions, an action beeing a transition
in the automaton. T ⊂ R is the time scale. In
the following, time is measured in number of
dialogue turns, a turn being the time elapsed
between two ASR results.

1Computational Learning in Adaptive Systems for
Spoken Conversation, http://www.classic-project.org/
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2.1 The Compliance Based
Reinforcement Learning
Algorithm

The Compliance-Based Reinforcement Learn-
ing algorithm (CBRL, Laroche et al., 2009) is
an adaptation of the Monte Carlo algorithm
to online off-policy learning. Each evaluation
phase in the Monte Carlo procedure requires
numerous new episodes. CBRL enables to ac-
celerate this process by adjusting the current
policy not after a set of many new episodes
but right after each episode and using all the
previous episodes to evaluate the policy. Each
dialogue is modelled as a sequence of decisions
dt = (mt, st, at, t) where mt is the module en-
countered at time t, st is the current local con-
text of mt and at is the action chosen by mt.
Each decision dt leads to an immediate reward
Rt. With γ a discount factor, the return for a
decision dt is rt =

∑tf
ti=t γti−tRti , tf being the

final turn of the dialogue. For a given module
m, the value of any state-action couple (s, a)
is the expected return starting from (s, a) and
then choosing actions according to π, the pol-
icy of the system: Qπ

m(s, a) = E[rt | mt =
m, st = s, at = a, π]. π is the set of all the
policies of the modules: π = {πm1 , ..., πm|M|}.
After a dialogue is taken under policy π, the
value of any triple (m, s, a) is updated as in
Equation 1.

Qπ
m(s, a) =

∑

Θm(s,a)

ωtrt

Ωm(s, a)
(1)

where Ωm(s, a) =
∑

Θm(s,a)

ωt,

and Θm(s, a) = {dt}mt=m;st=s;at=a (2)

For any module m, the algorithm evaluates
the value of each couple (s, a) according to all
the decisions in which this tuple has been in-
volved from the beginning of learning (the set
of decisions Θm(s, a)). After each evaluation
of the Q-function, the policy π is updated fol-
lowing an exploratory strategy based on the
Upper Confidence Bound 1 - Tuned approach
(Auer et al., 2002). The weights ωt in Equa-
tion 1 are there to take into account the fact
that π is evaluated according to all the rewards
observed since the beginning of learning, re-
wards that were obtained following other poli-
cies. A local compliance cπ(dt) is associated

with each decision dt: it is the expected re-
gret induced by at not being the optimal ac-
tion according to the system’s current policy
π, cπ(dt) = Qπ

mt
(st, at)−maxa∈Amt

Qπ
mt

(st, a).
The global compliance with π of the decisions
following dt is a discounted sum of the local
compliances. The weight wt is then an increas-
ing function of the global compliance.

3 Problem Resolution

3.1 Approach

The problem to be solved is the follow-
ing. Let an MVDP (M, VM , AM , T ). For
each triple (m, s, a), we want to compute
the error made on the estimate Qm(s, a) of
E[r | m, s, a] according to the number of ob-
servations Θm(s, a). Let r1, ..., r|Θm(s,a)| be
the returns corresponding to the decisions in
Θm(s, a) and σm(s,a) the variance of these re-
turns. We build a confidence interval for
E[r | m, s, a], centered in the estimate Qm(s, a)
from user simulations with a bi-gram model
specified by the designer.

3.2 User Simulations

User simulation has been an active line of
research as it is often costly to gather real
data (Scheffler and Young, 2002; Georgila et
al., 2006; Yang and Heeman, 2007; Pietquin
and Hastie, 2010). Task-oriented systems such
as commercial ones aim to respond to a spe-
cific need. They are often conceived as slot-
filling systems (Raux et al., 2003; Chandramo-
han et al., 2011). The dialogue is relatively
well-guided by the system so there is no need
to take into account complex conversational
groundings to simulate user behaviour. There-
fore, we choose here to ask the designer to pro-
vide a bi-gram model (Eckert et al., 1997): a
probability distribution of user behaviour only
conditioned on the latest system action. For
each possible response, the designer provides
a lower and an upper bound for its probability
of occurring. Eckert et al. (1997) showed that
slight modifications of user behaviour in the
bi-gram model did not entail great differences
of system performance. We support this claim
in Section 4 where we show that the confidence
intervals computation is robust to varying user
behaviour.
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3.3 Confidence Intervals

According to the Lyapunov central limit
theorem, Qm(s, a) converges in law to the
normal distribution of mean E[Qm(s, a)] =
E[r | m, s, a] and variance var(Qm(s, a)) =∑

Θm(s,a) w2
k

Ω2
m(s, a)

σ2
m(s, a). However, since σ2

m(s, a)

is unknown and the observations are not nec-
essarily distributed according to a normal law,
we can only rely on an asymptotic result ac-
cording to which, for a sufficiently large num-
ber of samples, the previous convergence re-
sult holds with the unbiased estimate of the
returns variance σ̃m(s, a). A confidence inter-
val of probability 1 − α for E[r | m, s, a] is
then:

[Qm(s, a) − ϵm,s,a, Qm(s, a) + ϵm,s,a] (3)

We note uα = Φ−1
N(0,1)(1− α

2 ), with ΦN(0,1) the

cumulative distribution function of N(0, 1):

ϵm,s,a =

∑

Θm(s,a)

ω2
k

Ωm(s, a)
σ̃m(s, a)uα (4)

In the non-weighted case, the previous asymp-
totic result is generally considered to hold for
a number of samples greater than 30. We thus
consider the confidence intervals to be valid for

Ωm(s, a) =
Ω2

m(s, a)∑
Θm(s,a) ω2

k

> 30.

3.4 β-Convergence Definition

A confidence interval can be computed for each
(m, s, a) triple of the system. From this com-
putation, we deduce the number of dialogues
necessary for convergence i.e. for the width
of the confidence interval to be under a given
threshold. The confidence interval radius of a
triple (m, s, a) depends on the variance of ob-
served returns (see equation 4) so we define
the normalised confidence interval radius:

ϵm,s,a =
ϵm,s,a

σ̂m(s, a)
=

uα√
Ωm(s, a) − 1

(5)

We will consider that a triple (m, s, a) will
have β-converged once the normalised confi-
dence interval radius will have come under β.

Figure 1: A schematic view of the system.

4 Experiments

4.1 System Description

The negotiation strategy of the system is hard-
coded (see Figure 1). The system starts each
dialogue proposing to the user its first avail-
ability (module 1). Then, if the user rejects
the proposition, the system asks them to give
their first availability (module 3). If the first
two steps have not resulted in success, the sys-
tem proposes its next availabilities (module 2)
until an appointment is booked (module 7) or
the system has no more propositions to make
(module 8). When a user proposes a date, the
system asks for a confirmation through mod-
ule 4. Two error-repair modules (modules 6
and 5) notify the user that they have not been
understood or heard (in case of a time out).
More details can be found in (Laroche et al.,
2011). Each module has to choose between
three actions: uttering with a calm (action 1),
neutral (action 2) or dynamic (action 3) tone.
In our experiments, user simulation was mod-
elled so that the first two alternatives were ar-
tificially disadvantaged: the number of failures
was slightly increased whenever one of them
was chosen. We modelled here the fact that
users would always prefer the dynamic intona-
tion.

We ran 2000 simulations, one simulation
consisting of a complete dialogue ending with
an update of the state-action value function for
each of the system’s modules. The following
results are averages on 100 runs.

We set the hanging-up rate to 10%. α was
set to 0.05 and β to 0.1. In the following sec-
tion, we use the notation (i, j, k) to refer to
(mi, sj , ak).

2

2sj is always equal to 1 because the local contexts
space is equal to the module space
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Figure 2: Evolution of ϵm,s,a for triples (1, 1,
1), (1, 1, 3), (4, 1, 2) and (4, 1, 3) according
to the total number of dialogues. Users prefer
action 3.

4.2 Results

By the end of our experiments, modules 4, 5
and 8 had not β0.1-converged. Module 5 was
not likely to be visited quite often according to
our specification of user behaviour. The same
happened for module 4, only accessible from
module 3 (see Figure 1), which was not itself
often visited. Module 1 is, with module 8, a
starting module of the system. At the begin-
ning of a dialogue, module 1 had a 95% proba-
bility of being visited whereas this probability
was of 5% for module 8 (this only happened
when all available appointments had already
been booked). Therefore, module 1 was vis-
ited once during almost every dialogue. We
will now focus on modules 1 and 4 for clarity
of presentation.

We can conclude from Figure 2 that triple
(1, 1, 3) β0.1-converged after about 640 di-
alogues, corresponding to about 425 visits
whereas neither triple (1, 1, 1) nor (4, 1, 2)
nor (4, 1, 3) β0.1-converged, even after 2000 di-
alogues. Indeed, these triples did not receive
enough visits during the simulations. Triple
(1, 1, 3) β0.1-converged whereas (1, 1, 1) did
not because, at one point, the growth of the
number of visits to (1, 1, 1) slowed down as
module 1 favoured action 3 and reduced its
exploration of other actions. The fact is that
the RL algorithm did not need such a precise
estimation for (1, 1, 1) to understand action 1
(the neutral tone) was suboptimal.

The variance over the 100 runs of the final
estimation of ϵm,s,a was below 0.01. For all
triples of the system, the variance was very
low after about 500 dialogues only (from 10−5

to 0.02). This means that the approximate
user behaviour, defined with probability win-
dows, only had a limited impact on the reli-
ability of the computed confidence intervals.
The probability windows used in the experi-
ments were narrow (of an average size of 10%)
so user behaviour did not change drastically
from a run to another. With a behaviour much
more erratic (larger probability windows), the
variance over 10 runs was higher but did not
exceed 0.02.

5 Related Work

Suendermann et al. (2010) tackled the issue of
reducing the risk induced by on-line learning
for commercial SDS with contender-based di-
alogue management. Our study relates to this
work but within the more complex learning
structure of RL.

Closer to our study, Tetreault et al. (2007)
compared confidence intervals for the expected
return for different MDPs, all modelling the
same SDS but with a different state space.
They showed how the intervals bounds as well
as the expected cumulative returns estima-
tions could be used in order to select an appro-
priate state space. More recently, Daubigney
et al. (2011) as well as Gasic et al. (2011) de-
veloped an efficient exploration strategy for an
MDP-based DM based on the uncertainties on
the expected returns estimations. The differ-
ence between these two approaches and ours
is that they compute the confidence intervals
for a known policy whereas we compute the
expected confidence intervals for an unknown
policy that will be learnt on-line.

6 Conclusion

To help the development of SDS embedding
on-line RL, we have designed and implemented
an algorithm which computes the normalised
confidence interval radius for the value of a
state-action couple. We have illustrated this
algorithm on an appointment scheduling SDS.
We believe our method can be transferred to
any system implementing an RL episodic task,
as long as the environment can be simulated.
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Abstract

Intelligent Tutoring Systems (ITSs) are
now recognised as an interesting alter-
native for providing learning opportuni-
ties in various domains. The Reinforce-
ment Learning (RL) approach has been
shown reliable for finding efficient teach-
ing strategies. However, similarly to other
human-machine interaction systems such
as spoken dialogue systems, ITSs suffer
from a partial knowledge of the interlocu-
tor’s intentions. In the dialogue case, en-
gineering work can infer a precise state of
the user by taking into account the uncer-
tainty provided by the spoken understand-
ing language module. A model-free ap-
proach based on RL and Echo State New-
torks (ESNs), which retrieves similar in-
formation, is proposed here for tutoring.

1 Introduction

For the last decades, Intelligent Tutoring Sys-
tems (ITSs) have become powerful tools in various
domains such as mathematics (Koedinger et al.,
1997), physics (Vanlehn et al., 2005; Litman and
Silliman, 2004; Graesser et al., 2005), computer
sciences (Corbett et al., 1995), reading (Mostow
and Aist, 2001), or foreign languages (Heift and
Schulze, 2007; Amaral and Meurers, 2011). Their
appeal relies on the fact that each student does not
have to follow an average teaching strategy, espe-
cially as the one-to-one tutoring has been proven
the most efficent (Bloom, 1968). The expertise of
a teacher relies on his capacity to advice at the
right time the student to acquire new skills. To
do so, the teacher is able to choose iteratively ped-
agogical activities. From this perspective, teach-
ing is a sequential decision-making problem. To
solve it, the reinforcement learning (Sutton and
Barto, 1998) approach and the Markov Decision

Process (MDP) paradigm have been successfully
used (Iglesias et al., 2009). Given a situation, each
teacher’s decision is locally quantified by a re-
ward. However, the consequences of the teacher’s
actions on the student’s cognition cannot be ex-
actly determined, which introduce uncertainty.

To find a solution, one can notice that spoken
dialogue management and tutoring are closely re-
lated. Both are humain-computer interactions in
which the human user’s intentions are not per-
fectly known. In the spoken dialogue case, the
partial observability is due to the recognition er-
rors introduced by the speech understanding mod-
ule. They are taken into account by using some
hypotheses about how the language is constructed.
Thus, accurate models to link observations from
the user’s recognised utterances to the underlying
intentions can be set up. For example, the Hidden
Information State paradigm (Young et al., 2006;
Young et al., 2010) builds a state which is a sum-
mary of the dialogue history (Gašić et al., 2010;
Daubigney et al., 2011; Daubigney et al., 2012).
However, in the ITS case, such a state is harder to
develop since the cognition cannot be determined
by analysing a physical signal. Thus, a model-free
approach is preferred here.

To do so, a memory of the past observations
and actions is built by means of a Recurrent Neu-
ral Network (RNN) and more precisely an Echo
State Network (ESN) (Jaeger, 2001). The inter-
nal state of the network can be shown (under some
resonable conditions) to meet the Markov prop-
erty (Szita et al., 2006). This internal state is then
used with a standard RL algorithm to estimate the
optimal solution. It has already been applied to RL
in (Szita et al., 2006) in limited toy applications
and it is, to our knowledge, the first attempt to use
it in an interaction framework. The proof of con-
cept presented in Szita’s article uses the common
SARSA algorithm which is an on-line and on-
policy algorithm. Each improvement of the strat-
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egy is directly tested. In the case of teaching, test-
ing poor decisions can be problematic. Here, we
thus propose the combination of an ESN with an
off-line and off-policy algorithm, namely the Least
Square Policy Algorithm (LSPI) (Lagoudakis and
Parr, 2003), which is another original contribu-
tion of this paper. Indeed, learning the solution
with Partially Observable MDPs in a batch and
off-policy manner is not common in the literature.

2 Markov Decision Process and
Reinforcement Learning

Formally, an MDP is a tuple {S,A, T,R, γ} set
up to describe the tutor environment. The set
S is the state space which represents the infor-
mation about the student, A is the action space
which contains the tutor’s actions, T is a set of
transition probabilities defined such that T =
{p(s′|s, a),∀(s′, s, a) ∈ S × S × A}, R is the
reward function, given according to the student
progression for example, and γ ∈ [0, 1] is the
discount factor which weights the future rewards.
The set of transitions probabilities in the ITS case
is unknown: the evolution of the student intentions
cannot be determined. Solving the MPD consists
in finding the optimal strategy, called the optimal
policy which brings the highest expected cumula-
tive reward.

However, in the ITS case, information about the
student’s knowledge, represented by s, can only
be known through observations. Let O = {oi} be
the set of possible observations. Yet, if only ob-
servations are available, a memory of what hap-
pened during previous interactions (the history)
is necessary, because the process of observations
does not meet the Markov property. The his-
tory is the sequence of observation-action pairs
encountered during a whole teaching phase. Let
H = {hi} be the set of all possible histories with
hi = {o0, a0, o1, a1, ..., oi−1, ai−1, oi}.

When the POMDP framework is used, the un-
derlying state si is inferred from the history by
means of a model of probabilities linking si to
hi. In the case of human-machine interactions, this
model is not available. It can be approximated but
the considered solutions are ad-hoc to a particular
problem, thus difficult to reuse. Here, we propose
an approach with as few assumptions as possible
about the student cognitive model by using Echo
States Networks (ESNs). This approach builds a
compact representation of the history space H .

u0

u1

u2

Input

x0

x1

x2

x3

x4 x5

x6

x7 x8

x9

Reservoir

y0

y1

y2

y3

Output

1

Figure 1: RNN structure (for sake of readability,
all the connections do not appear).

3 Echo State Networks

An Echo State Network is represented by three
layers of neurons (Fig. 1): an input, a hidden and
an output. The number of neurons in the hidden
layer is supposed to be large and each of them
can be connected to itself. These recurrent con-
nections are responsible for reusing the value of
the neurons at a previous time step. Consequently,
a memory is built in the reservoir and trajectories
can be encoded. Only the connections from the
hidden layer to the output one are learnt since all
the other connections are randomly and sparsely
set. The recurrent connections are defined so that
the echo state property is met (Jaeger, 2001): if
after a given number of updates of the input neu-
rons, two internal states are exactly the same, then
the input sequences which led to these two internal
states are identical.

The connections of the ESN are presented
in Fig. 2, with uk ∈ RNi , xk ∈ RNh and
yk ∈ RNo , respectively representing the values
of the input, hidden and output layers, Ni, Nh

and No being the respective number of neurons
and W in ∈ MNh×Ni , W

hid ∈ MNh×Nh
and

W out ∈ MNo×Nh
, matrix containing the synap-

tic weights. After a training, the output yk returns
a linear approximation of the internal state of the
reservoir. This output depends on the sequence of
inputs u0, · · · , uk and not only uk, through xk.

Combining ESNs and RL is of interest. By
means of the echo state property, a summary of
the observations and decisions encountered during
the tutoring phase is provided through the internal
state x. In (Szita et al., 2006), it has been proven
to meet the Markov property with high probabil-
ity. It thus can be used as a state for standard
RL algorithms. Here, more precisely, it represents
the basis function of an approximation of the Q-
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Figure 2: Structure of an ESN. For the example,
Ni = 1 and No = 1.

function. This function is associated with a policy
π, defined for each couple (s, a) ∈ S × A such
that Qπ(s, a) = E

[∑
i γ

iri|s0 = s, a0 = a
]

and
quantifies the policy. ESNs are used in the fol-
lowing way to solve RL problems. The network
is responsible for giving, from an observations ok
and an action ak at time step k, a linear estimation
of the value of the Q-function Q̂θ(hk, ak) (with
hk = {o0, a0, ..., ok−1, ak−1, ok}). The state s is
not used in the estimation of the Q-function since
it is unknown. Instead, it is replaced by the history
hk. The input of the ESN, uk, is thus the con-
catenation of the observation ok and the action ak:
uk = (ok, ak). The internal state xk which com-
ponent are in [−1, 1], is a summary of the history
hk and the action ak. Thus, the estimation of the
Q-function is Q̂θ(hk, ak) = θ>xk. The values of
the output connections are learnt by means of the
LSPI algorithm. With this algorithm, the optimal
policy is learnt from a fixed set of data.

4 Experimental settings

For the experiments, we assume that the teaching
can be done by means of three actions. First, a les-
son can be presented to make the knowledge of the
student increase. The second and third actions are
evaluations. They can either be a simple question
or a final exam. The final exam consists in ask-
ing a hundred yes/no questions of equal complex-
ity and on the same topic. The student does not
have a feedback. Once it is proposed, a new teach-
ing episode starts. Three observations are returned
to the ITS. If a lesson is proposed to the user, the
observation is neutral: no feedback comes from
the student since the direct influence of the lesson
remains unknown. The two other obervations ap-
pear when a question is asked (yes or no). Conse-
quently, one observation is not enough to choose
the next action since no clue is given about how
many lessons have led to this result. A non-null re-

ward is only given when a final exam is proposed.
In this case, it is proportional to the rate of cor-
rect answers among all the answers given during
the exam. Thus, each improvement is taken into
account. The γ factor is set to 0.97.

In this proof of concept, the results have been
obtained with simulated students from (Chang et
al., 2006) to ensure the reproducibility of the ex-
periments. The simulation implements two abili-
ties: answering a question and learning with a les-
son. Three groups of students have been set up.
The first one, T1, is supposed to be able to learn
very efficiently, the second, T2, needs a few more
lessons to provide good answers, and the third, T3,
needs a lot of lessons to answer correctly.

5 Results

Several teaching strategies have been compared.
As a lower bound baseline, a random strategy has
been tested. With a probability (w.p.) of 0.6, a les-
son is proposed, w.p. of 0.2 a question is chosen,
and w.p. of 0.2 a final exam is proposed. The data
generated with this random strategy have been
used by the LSPI algorithm and an informed state
space. The second baseline proposed is the reac-
tive policy learnt by LSPI (called reactive-LSPI),
only from obervations. Neither the information
about the number of lessons proposed nor the in-
ternal state of the ESN is used. The third strategy
is learnt by using the observations and a counter
of lessons already given (called informed-LSPI).
Thus, this state supposedly contains sufficient in-
formation to take the decision. For this case, since
the numbers of observations and lessons are dis-
crete thus countable, a tabular representation is
chosen for the Q-function. The fourth strategy
uses the internal state of the ESN as basis function
for the Q-function (called ESN-LSPI). There are
50 hidden neurons. Different sizes of training data
sets are tested. Among the data, the three types of
students are represented in equal proportions. One
hundred policies are learnt for each of the methods
presented, except for the ESN-LSPI. For this one,
10 ESNs are generated and 10 training sessions are
performed with each one of them. The mean over
the average results of each of the 10 learnings is
presented in the results. Each of the policies have
been tested 1000 times.

Fig. 3 shows a comparison of the learnt strate-
gies. The three types of students are used for
the training and test phases. One can notice that
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Figure 3: Comparison of the different strategies.

the standard deviation is larger when the ESN are
used because uncertainty is added when generat-
ing the ESN since the connections are randomly
set. The random and the reactive policies give
the poorest results. Yet, the average reward in-
creases because of the data in the training set. For
small sets, long sequences of lessons only have not
been encountered. Thus, larger rewards have not
been encountered either. For the two other curves,
with a reasonable number of interactions (around
8000), a good strategy is learnt by using informed-
LSPI. The strategies learnt with the ESN require
fewer transitions and allow a faster learning. In
this case, the optimum is reached with 2000 transi-
tions while 8000 ones are needed to reach the same
quality with the informed-LSPI strategy. Around
10000 samples, both policies give the same re-
sults. However, less information is given in the
ESN approach (only observations). Thus, this ap-
proach is more generic. The counter information
may not be sufficient for more complex problems.

To compare the efficiency of the learnt policies,
the informed-LSPI and ESN-LSPI are plotted for
each group of students in Fig. 4. All the strate-
gies are learnt with the same data sets than pre-
viously, but only one type of students is tested at
a time. For the T2 and T3 types, the average re-
sults are better with ESN-LSPI (especially for the
T3 type). For the T1 group, informed-LSPI re-
turns slighlty better results. A better insight of
the behaviour of each policy is given in Fig. 5 by
plotting the distribution of the actions used dur-
ing the test phase. A comparison reveals that the
number of lessons is higher in the ESN-LSPI case
(around 3) whereas only one lesson is given in av-
erage with informed-LSPI. This is of benefit to
students of the third group and thus implicitly to
those of the first and second groups. The number
of lessons is even larger for the third group than for
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the training dataset is 10000).

the two others (0.5 more in average). However, in
the informed-LSPI case, the learnt policy is only
profitable for those of the first group, who are al-
ready skilled (this conclusion is consistent with the
Fig. 4). Questions are very rarely asked because
once the number of lessons has been learnt, they
bring no more information.

6 Conclusion

We proposed a model-free approach which uses
only observations to find optimal teaching state-
gies. A summary of the history encountered is
implemented by means of an ESN. This summary
has been proven to be Markovian by (Szita et al.,
2006). A standard RL algorithm which can learn
from already collected data, is then used to per-
form the learning. Preliminary experiments have
been presented on simulated data. In future works,
we plan to apply this method to SDSs.
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Abstract

Some things people say are more impor-
tant, and some less so. Importance varies
from moment to moment in spoken dialog,
and contextual prosodic features and pat-
terns signal this. A simple linear regres-
sion model over such features gave esti-
mates that correlated well, 0.83, with hu-
man importance judgments.

1 Importance in Language and Dialog

Not everything people say to each other is equally
important, for example many ums and uhs have al-
most no significance, in comparison to those con-
tent words or nuances that are critical in one way
or another.

Many language processing applications need to
detect what is important in the input stream, in-
cluding dialog systems and systems for summa-
rization, information retrieval, information extrac-
tion, and so on. Today this is primarily done
using task-specific heuristics, such as discarding
stopwords, giving more weight to low frequency
words, or favoring utterances with high average
pitch. In this paper, however, we explore a gen-
eral, task-independent notion of importance, tak-
ing a dialog perspective.

Section 2 explains our empirical approach. Sec-
tions 3 and 4 explore the individual prosodic fea-
tures and longer prosodic patterns that dialog par-
ticipants use to signal to each other what is impor-
tant and unimportant. Section 5 describes predic-
tive models that use this information to automat-
ically estimate importance and Section 6 summa-
rizes the significance and future work needed.

2 Annotating Importance

No standard definition of importance is useful for
describing what happens, moment-by-moment, in
spoken dialog. The closest contender would be
entropy, as defined in information theory. For
text we can measure the difficulty of guessing let-
ters or words, as a measure of their unpredictabil-
ity and thus informativeness (Shannon, 1951), but
this is indirect, time-consuming, and impossible
to apply to non-symbolic aspects of language. We
can also measure the value of certain information,
such as prosody, for improving the accuracy of
predictions, but again this is indirect and time-
consuming (Ward and Walker, 2009).

We therefore chose to do an empirical study. We
hired a student to annotate importance. Wanting
to capture her naive judgments, atheoretically, we
did not precisely define importance for her. In-
stead we discussed the concept briefly, noting that
importance may be judged: not just by content
but also by value for directing the future course
of the dialog, not just from the speaker’s perspec-
tive but also from the listener’s, and not just from
the words said but also from how they were said.

The labeling tool used enabled the annotator to
navigate back and forth in the dialogs, listen to the
speakers together in stereo or independently, de-
limit regions of any desired size including words
and word fragments, and ascribe to each region an
importance value. While importance is continu-
ous, for convenience we used the whole numbers
from 0 to 5, with 5 indicating highest importance,
4 typical importance, 3 somewhat less importance,
2 and 1 even less, and 0 silence. To have a variety
of speakers, topics, and speaking styles, the mate-
rial was from the Switchboard corpus (Godfrey et
al., 1992).
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Figure 1: Importance versus Time, in milliseconds. Rectangular line: Annotator judgments; Jagged line:
Predictions (discussed below). The words are all by one speaker, horizontally positioned by approximate
occurrence.

In total, she labeled both tracks of just over 100
minutes of dialog. There was diversity in labels,
supporting our belief that importance is not mono-
tone: the largest fraction of non-zero-labeled re-
gions, covering 38% of the total time, was at level
4, but there were also 20% at level 3 and 37% at
level 5. In general importance was variable, on
average staying at the same level for only 1.5 sec-
onds. Figure 1 illustrates.

In parallel, the second author labeled 17 min-
utes of the same dialogs1. The agreement in terms
of Kappa was .80 (“very good”) across all cate-
gories, and .67 (“good”) excluding the zero-level
labels, which were mostly for silent regions and
thus easy to agree on. In terms of Weighted Kappa,
appropriate here since the labels are ordered (and
thus, for example, a 1-point difference matters
much less than a 5-point difference), the agree-
ment levels were .92 and .71, for all and for the
zero-excluding sets, respectively. The differences
were mainly due to minor variations in boundary
placement, missing labels for small quiet sounds
such as inbreaths and quiet overlapping backchan-
nels, and different ratings of repeated words, and
of backchannels (Ward and Richart-Ruiz, 2013).

3 Correlating Prosodic Factors

First we briefly examined lexical correlates of im-
portance, by examining the average importance
of words in this corpus (Ward and Richart-Ruiz,
2013). To summarize some key findings: Less fre-
quent words tend to have higher average per-word
importance, however ratings vary widely, depend-
ing on context. Some words have effects at a dis-
tance, for example, because tends to indicate that

1All labels are freely available at
http://www.cs.utep.edu/nigel/importance/

whatever is said one second later will be impor-
tant. The interlocutor’s words can also be infor-
mative, for example oh and uh-huh tend to indi-
cate that whatever the interlocutor said one second
ago was important. The “words” with the most
extreme average importance — notably uh-huh,
um-hum, um and laughter — are fillers, backchan-
nels and other vocalizations of types which can
be detected well from the prosodic and inter-
actional contexts (Neiberg and Gustafson, 2011;
Truong and van Leeuwen, 2007). Thus a word-
based model of importance would be challenging
to build and might not have much value. We there-
fore turned our attention to prosody.

While prosody-importance connections have
not been considered directly, several studies have
found correlations between prosodic features and
various importance-related constructs, such as
predictability, involvement, engagement, activa-
tion, newness, and interest (Bell et al., 2009; Yu
et al., 2004; Batliner et al., 2011; Roehr and Bau-
mann, 2010; Oertel et al., 2011; Hsiao et al., 2012;
Kahn and Arnold, 2012; Kawahara et al., 2010).
However these studies have all been limited to spe-
cific features, functions, or hypotheses. Our aims
being instead exploratory, we looked for features,
from among a broad inventory, which correlate
with importance, as it occurs in a broad variety of
contexts.

Our feature inventory included features of 8
classes: four basic types — volume, pitch height,
pitch range, and speaking-rate — each computed
for both participants: the speaker and the inter-
locutor. Within each class, features were com-
puted over windows of various widths and at var-
ious offsets, for a total of 78 features (Ward and
Richart-Ruiz, 2013).
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The speaker features correlating most strongly
with importance were volume and speaking rate.
Although the very strongest correlations were with
volume slightly in the past, volume both before
and after the current moment was strongly cor-
related over all windows, with one exception.
Speaker pitch height, in contrast, correlated neg-
atively with importance across all windows, con-
trary to what is often seen in monolog data.

The interlocutor features correlating most
strongly with importance were again volume and
speaking rate, but only over windows close to the
point of interest, perhaps due to co-construction
or supportive back-channeling; over more distant
windows, both past and future, these correlate neg-
atively. Interlocutor pitch range correlated nega-
tively over all windows.

4 Correlating Dialog-Activity Patterns

Thus we find that some prosodic features have dif-
ferent effects depending on their offset from the
frame of interest. Perhaps prosody is not just
marking importance vaguely somewhere in the
area, but more precisely indicating important and
unimportant moments.

To explore this we used Principal Components
Analysis (PCA), as described in detail in (Ward
and Vega, 2012). In short, this method finds
patterns of prosodic features which co-occur fre-
quently in the data, and so provides an unsuper-
vised way to discover the latent structure underly-
ing the observed regularities. We correlated the di-
mensions resulting with PCA with the importance
values. Many dimensions had significant correla-
tions, indicating that importance relates to many
prosodic structures and contexts. Each dimension
had two characteristic patterns, one corresponding
to high values on that dimension and one to low
values. We were able to interpret most of these in
terms of dialog activities (Ward and Vega, 2012).

Tending to be more important was: speech in
the middle of other speech (dimension 1), rather
than words snuck in while the other has the floor;
simultaneous speech (dimension 2), understand-
ably as such times tended to be high in involve-
ment and/or backchannels; times of encountering
and resolving turn conflicts (dimension 7), more
than places where the participants were support-
ively interleaving turns, which in this corpus were
generally more phatic than contentful; crisp turn
ends (dimension 8), rather than slow repetitious

model correlation m.a.e.

m5pTree decision tree .38 1.21
neural network .66 1.20
simple linear regression .79 .89
linear regression .83 .75

ditto, past-only features .83 .79

Table 1: Prediction Quality in terms of correlation
and mean absolute error, for various learning algo-
rithms.

wind-downs; “upgraded assessments,” in which a
speaker agrees emphatically with an assessment
made by the other (dimension 6); and times when
speakers were solicitous, rather than controlling
(dimension 19). Dimension 6 is interesting in
that it matches an interaction pattern described as
an exemplar of prosodic co-construction (Ogden,
2012). Dimension 19 was one of those underlying
the exception noted above: the negative correla-
tion between importance and speaker volume over
the window from 0–50 milliseconds after the point
of prediction. Upon examination, low volume at
this offset often occurred when seeking agreement
and during quiet filled pauses in the vicinity of
high-content words.

5 Predictive Models

We next set out to build predictive models, for two
reasons: to judge whether the features discussed
above are adequate for building useful models, and
to determine what additional factors would be re-
quired in a more complete model.

The task is, given a timepoint in a track in a dia-
log, to predict the importance of what the speaker
is saying at that moment. Our performance met-
rics were the mean absolute error and the correla-
tion coefficient, computed over all frames; thus a
predictor is better to the extent that its predictions
are close to and correlate highly with the annota-
tor’s labels, including the implicit zero labels in
regions of silence or noise.

We built models using four algorithms in Weka.
All models performed poorly on dialogs for which
there was cross-track bleeding or other noise. As
these are artifacts of this corpus and would not be
relevant for most applications, our main evaluation
used only the five tracks with good audio quality.
These all had different speakers. We did five-fold
cross-validation on this; Table 1 gives the results.
Linear regression was best, by both measures and
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past future all
−400 −200 0

speaker .55 .64 .66 .59 .70
interloc. .37 .43 .43 .37 .47
both .62 .70 .71 .65 .74

Table 2: Model Quality, in terms of R2, as a func-
tion of the features used.

across every fold, and this was consistent for all
the other training and test sets tried.

To compare the performance of this predictor to
human performance, we also trained a model us-
ing 5 tracks to predict performance over two test
tracks, a total of 224495 test datapoints, which
the second judge also had annotated. Over these
the predictor did almost as well as second judge
in correlation (.88 versus .92), but not so well in
terms of mean absolute error (.75 versus .31).

Analyzing the errors, we noted several types of
cause (Ward and Richart-Ruiz, 2013). First, per-
formance varied widely across tracks, with mean
absolute errors from .55 to .97, even though all the
features were speaker-normalized. The high value
was for a speaker who was an outlier in two re-
spects: the only female among four males, and the
only East-Coast speaker among four Texans. Thus
results might be improved by separately model-
ing different genders and dialects. Second, predic-
tions were often off in situations like those where
the two human judges disagreed. Third, most of
the errors were due to feature-set issues: robust-
ness, poor loudness features, and not enough fine-
grained features. Fourth, our prosodic-feature-
only model did very poorly at distinguishing be-
tween the highest importance levels, 4 and 5, but
was otherwise generally good.

Table 2 shows how performance varies with the
features used; here quality is measured using sim-
ply the R2 of a linear regression over all the data.
Performance is lower with only the left-context
features, as would be required for real-time appli-
cations, but not drastically so; as seen also in the
last line of Table 1. Performance is only slightly
lower when predicting slightly in advance, without
using any features closere than 200 ms prior to the
prediction point, but notably worse 400 ms before.
Features of the interlocutor’s behavior are helpful,
partially why explaining dialog can be easier to
understand than monolog (Branigan et al., 2011).

6 Broader Significance and Future Work

Sperber and Wilson argue that “attention and
thought processes . . . automatically turn toward in-
formation that seems relevant: that is, capable of
yielding cognitive effects” (Sperber and Wilson,
1987). This paper has identified some of the cues
that systems can use to “automatically turn to-
ward” the most important parts of the input stream.
Overall, these findings show that task-independent
importance can be identified fairly reliably, and
that it can be predicted fairly well using simple
prosodic features and a simple model. Signifi-
cantly, we find that importance is frequently not
signaled or determined by one participant alone,
but is often truly a dialog phenomenon. We see
three main directions for future work:

First, there is ample scope to build better models
of importance, not only by pursuing the prosodic-
feature improvements noted above, but in exam-
ining lexical, semantic, rhetorical-structure and
dialog-structure correlates of importance.

Second, one could work to put our pretheoreti-
cal notion of importance on a firmer footing, per-
haps by relating it to entropy, or to the time course
of the psychological processes involved in retriev-
ing, creating, managing, and packaging informa-
tion into speech; or to the design and timing of
dialog contributions so as not to overload the lis-
tener’s processing capacity.

Third, there are applications. For example, a
dialog system needing to definitely convey some
information to the user could use an appropriate
prosodic lead-in to signal it properly, doing an in-
teractional dance (Gratch et al., 2007; Brennan et
al., 2010) to prepare the recipient to be maximally
receptive at the moment when the critical word
is said. Another potential application is in voice
codecs, as used in telecommunications. Today’s
codecs treat all speech as equally valuable. In-
stead we would like to transmit more important
words and sounds at higher quality, and less im-
portant ones at lower quality, thereby increasing
perceived call quality without increasing the aver-
age datarate, of course while properly considering
all perceptual factors (Voran and Catellier, 2013).
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Abstract

We use hand-crafted simulated negotiators
(SNs) to train and evaluate dialogue poli-
cies for two-issue negotiation between two
agents. These SNs differ in their goals and
in the use of strong and weak arguments
to persuade their counterparts. They may
also make irrational moves, i.e., moves not
consistent with their goals, to generate a
variety of negotiation patterns. Different
versions of these SNs interact with each
other to generate corpora for Reinforce-
ment Learning (RL) of argumentation di-
alogue policies for each of the two agents.
We evaluate the learned policies against
hand-crafted SNs similar to the ones used
for training but with the modification that
these SNs no longer make irrational moves
and thus are harder to beat. The learned
policies generally do as well as, or bet-
ter than the hand-crafted SNs showing that
RL can be successfully used for learning
argumentation dialogue policies in two-
issue negotiation scenarios.

1 Introduction

The dialogue policy of a dialogue system decides
on what dialogue move (also called action) the
system should make given the dialogue context
(also called dialogue state). Building hand-crafted
policies is a hard task, and there is no guarantee
that the resulting policies will be optimal. This is-
sue has motivated the dialogue community to use
statistical methods for automatically learning dia-
logue policies, the most popular of which is Rein-
forcement Learning (RL) (Szepesvári, 2010).

To date, RL has been used mainly for learn-
ing dialogue policies for slot-filling applications
such as restaurant recommendations (Williams
and Young, 2007; Chandramohan et al., 2010;
Jurčı́ček et al., 2012; Gašić et al., 2012), flight

reservations (Henderson et al., 2008), sightsee-
ing recommendations (Misu et al., 2010), appoint-
ment scheduling (Georgila et al., 2010), techni-
cal support (Janarthanam and Lemon, 2010), etc.,
largely ignoring other types of dialogue. RL has
also been applied to question-answering (Misu et
al., 2012) and tutoring domains (Tetreault and Lit-
man, 2008; Chi et al., 2011). There has also been
some work on applying RL to the more difficult
problem of learning negotiation policies (Heeman,
2009; Paruchuri et al., 2009; Georgila and Traum,
2011a; Georgila and Traum, 2011b; Nouri et al.,
2012), which is the topic of this paper.

In negotiation dialogue the system and the user
have opinions about the optimal outcomes and try
to reach a joint decision. Dialogue policy deci-
sions are typically whether to present, accept, or
reject a proposal, whether to compromise, etc. Re-
wards may depend on the type of policy that we
want to learn. For example, a cooperative policy
should be rewarded for accepting proposals.

Recently, Georgila and Traum (2011a; 2011b)
learned argumentation dialogue policies for nego-
tiation against users of different cultural norms in
a one-issue negotiation scenario. We extend this
work by learning argumentation policies in a two-
issue negotiation setting. We aim to learn system
(or agent) policies that will persuade their inter-
locutor (a human user or another agent) to agree
on the system’s preferences.

Our research contribution is two-fold: First, to
our knowledge this is the first study that uses RL
for learning argumentation policies in a two-issue
negotiation scenario and one of the few studies on
using RL for negotiation. Second, for the first
time, we learn policies for agents with different
degrees of persuasion skills, i.e., agents that pro-
vide strong or weak arguments.

Section 2 introduces RL, and section 3 de-
scribes our two-issue negotiation domain and our
learning methodology. Section 4 presents our
evaluation results and section 5 concludes.
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2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learn-
ing technique used to learn the policy of an
agent (Szepesvári, 2010). RL is used in
the framework of Markov Decision Processes
(MDPs) (Szepesvári, 2010) or Partially Observ-
able Markov Decision Processes (Williams and
Young, 2007). In this paper we use MDPs.

An MDP is defined as a tuple (S, A, P , R, γ)
where S is the set of states that the agent may be
in, A is the set of actions of the agent, P : S × A
→ P (S, A) is the set of transition probabilities be-
tween states after taking an action, R : S × A→
< is the reward function, and γ ∈ [0, 1] a discount
factor weighting long-term rewards. At any given
time step i the agent is in a state si ∈ S. When the
agent performs an action αi ∈ A following a pol-
icy π : S → A, it receives a reward ri(si, αi) ∈ <
and transitions to state s

′
i according to P (s

′
i|si, αi)

∈ P . The quality of the policy π followed by the
agent is measured by the expected future reward
also called Q-function, Qπ : S × A→<.

To estimate the Q-function we use Least-
Squares Policy Iteration (LSPI) (Lagoudakis and
Parr, 2003; Li et al., 2009). LSPI can learn directly
from a corpus of dialogues and is sample efficient.
We use linear function approximation of the Q-
function. Thus Q(s, α) =

∑k
i=1wiφi(s, α) where

s is the state that the agent is in and α the action
that it performs in this state, and ŵ is a vector of
weights wi for the feature functions φi(s, α). The
magnitude of a weight wi shows the contribution
of the feature φi(s, α) to the Q(s, α) value.

3 Learning Argumentation Policies

In our experiments, two agents negotiate on two is-
sues that are independent of each other. Each issue
may have three possible outcomes. Our approach
can be applied to any such issues. For the sake
of readability, from now on we will use a negoti-
ation scenario in which Agents 1 and 2 are hav-
ing a party and need to agree on the type of food
that will be served (Thai, Italian, Mexican) and the
day of the week that the party will be held (Friday,
Saturday, Sunday). Agents 1 and 2 have different
goals. Table 1 shows the points that Agents 1 and 2
earn for each negotiation outcome.

We build hand-crafted simulated negotiators
(SNs) for the two agents that interact with each
other to generate simulated corpora. The SNs dif-
fer not only in their goals but also in whether
they use strong or weak arguments to persuade

Agent 1 Agent 2
Food type
Thai 200 0
Italian 100 40
Mexican 0 80
Day of the week
Friday 80 0
Saturday 40 100
Sunday 0 200

Table 1: Rewards for Agents 1 and 2.

their counterparts, and sometimes make irrational
moves, i.e., moves not consistent with their goals.
For example, Agent 1 may reject an offer for
“Thai” food, and Agent 2 may offer or accept “Fri-
day”. This is to generate a variety of negotiation
patterns. There is also some randomness regard-
ing whether the SN will start the conversation by
a direct offer or by providing an argument.

The SNs for Agents 1 and 2 can choose
among 13 actions: “offer-Thai”, “offer-
Italian”, “offer-Mexican”, “offer-Friday”,
“offer-Saturday”, “offer-Sunday”, “provide-
argument-Thai”, “provide-argument-Mexican”,
“provide-argument-Friday”, “provide-argument-
Sunday”, “accept”, “reject”, “release-turn”. In our
setup Agents 1 and 2 do not provide arguments for
“Italian” or “Saturday” since these are acceptable
options for both agents. Because Agent 1 cares
more about the food type and Agent 2 cares more
about the day there is potential for trade-offs,
i.e., “I’ll give you the food type that you want if
you agree on the day that I want”. So we have
one more action “trade-off” which is basically a
combined action “offer-Thai, offer-Sunday”. The
two agents have to agree on both issues for the
dialogue to end. If there is no agreement in 40
turns then the dialogue stops.

Note that for testing our learned policies (see
section 4) we use a rationalized version of these
SNs. For example, Agent 1 never offers “Sunday”
and never accepts “Mexican”. We will refer to the
SNs that exhibit some degree of randomness and
irrationality as “semi-rational” and the SNs that al-
ways behave rationally as “rational”.

For training, 4 corpora are generated (50,000 di-
alogues each) using different SNs, each of which
is limited to using either strong or weak argu-
ments: SN for Agent 1 with strong arguments vs.
SN for Agent 2 with strong arguments, SN for
Agent 1 with strong arguments vs. SN for Agent 2
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with weak arguments, SN for Agent 1 with weak
arguments vs. SN for Agent 2 with strong argu-
ments, and SN for Agent 1 with weak arguments
vs. SN for Agent 2 with weak arguments.

We use LSPI to learn policies directly from the
4 corpora. Each agent is rewarded only at the end
of the dialogue based on the agreement. So if the
outcome is “Thai” and “Saturday” Agent 1 will
earn 240 points and Agent 2 100 points. We set a
small reward +1 point for each policy action taken.
Table 2 shows our state representation.

The first 10 state variables are self-explanatory.
Below we explain how the “counter” variables
work. Initially the counter for “Thai” arguments
is set to 0 and Agent 2 supports food type “Mexi-
can”. Every time the policy of Agent 1 provides
an argument in favor of “Thai”, the counter for
“Thai” arguments is increased by 1 and the counter
for “Mexican” arguments is decreased by 1 (like
a penalty). Every time the policy of Agent 1 ar-
gues in favor of “Mexican” the counter for “Thai”
arguments is decreased by 1 and the counter for
“Mexican” arguments is increased by 1. When
the counter for “Thai” arguments becomes 3,
then the state variable “Thai-argument-counter-
reached-threshold” becomes “yes” and Agent 2 is
ready to yield to the demands of Agent 1. This
threshold of 3 was set empirically after experimen-
tation. Likewise for the rest of the “counter” vari-
ables. We also account for both strong and weak
arguments. When the arguments of an agent are
weak, even if the corresponding counters exceed
the predefined threshold and the associated state
variables change from “no” to “yes”, the behav-
ior of their interlocutor will not change. This is
to simulate the fact that weak arguments cannot be
persuasive. The release action counter works simi-
larly. Initially it is 0 but after 4 consecutive actions
of the same speaker it is set to 1 to ensure that the
turns are not very long.

There are 786,432 possible states and
11,010,048 possible Q-values (state-action
pairs). We use linear function approximation
with 1,680 manually selected features. The
rationale for selecting these features is as follows:
We associate the action “offer-Thai” with the
state variables “current-day-accepted”, “Thai-
rejected”, “Italian-rejected”, “Mexican-rejected”,
“Thai-argument-counter-reached-threshold”, and
“Mexican-argument-counter-reached-threshold”.
Thus we assume that the values of the other state
variables are irrelevant. This is an approximation
(to keep the number of features manageable) that

Current offer on the table (null/Thai/Italian/
Mexican/Friday/Saturday/Sunday/trade-off)

By whom is the current offer on the table
(null/Agent1/Agent2)

Currently accepted food type
(null/Thai/Italian/Mexican)

Currently accepted day (null/Friday/
Saturday/Sunday)

Has food type Thai been rejected? (no/yes)
Has food type Italian been rejected? (no/yes)
Has food type Mexican been rejected? (no/yes)
Has day Friday been rejected? (no/yes)
Has day Saturday been rejected? (no/yes)
Has day Sunday been rejected? (no/yes)
Has counter for food type Thai arguments

reached threshold? (no/yes)
Has counter for food type Mexican arguments

reached threshold? (no/yes)
Has counter for day Friday arguments

reached threshold? (no/yes)
Has counter for day Sunday arguments

reached threshold? (no/yes)
Has release action counter reached

threshold (no/yes)

Table 2: State variables that we keep track of and
all the possible values they can take.

has drawbacks, e.g., we may have an “offer-Thai”
action even though the food type agreed so far is
“Thai” (because there is no feature to associate the
currently accepted food type value with a “Thai”
offer). With this configuration we end up having
4 × 25 = 128 binary features just for the action
“offer-Thai”. Similarly, features are selected for
the rest of the actions.

We partition each one of our 4 simulated cor-
pora into 5 subsets of 10,000 dialogues each. Each
partition is processed independently and will be
referred to as trial. We train policies for each
trial of each corpus type (20 policies for each
agent). Thus we end up with the following 4
types of policies for Agent 1 (and likewise for the
policies of Agent 2): Agent 1 with strong argu-
ments trained against Agent 2 with strong argu-
ments (Agent 1 S(S)); Agent 1 with strong argu-
ments trained against Agent 2 with weak argu-
ments (Agent 1 S(W)); Agent 1 with weak argu-
ments trained against Agent 2 with strong argu-
ments (Agent 1 W(S)); and Agent 1 with weak
arguments trained against Agent 2 with weak ar-
guments (Agent 1 W(W)).
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Policy Opponent Policy Opponent Policy Opponent
Score Score #Actions #Actions #Turns #Turns

Agent 1 S(S) vs. Agent 2 S 214.3 164.3 7.6 6.2 2.0 1.6
Agent 1 S(S) vs. Agent 2 W 214.1 164.5 7.4 6.1 2.0 1.6
Agent 1 S(W) vs. Agent 2 S 213.9 165.1 7.6 6.2 2.0 1.6
Agent 1 S(W) vs. Agent 2 W 214.1 164.7 7.4 6.1 2.0 1.6
Agent 1 W(S) vs. Agent 2 S 192.4 196.5 9.1 8.5 2.5 2.4
Agent 1 W(S) vs. Agent 2 W 197.9 198.9 7.6 7.0 2.1 1.9
Agent 1 W(W) vs. Agent 2 S 195.0 197.9 8.8 8.5 2.5 2.4
Agent 1 W(W) vs. Agent 2 W 198.1 199.0 7.7 7.0 2.2 2.0

Table 3: Results of different training and testing combinations for learned policies of Agent 1 and rational
SNs for Agent 2.

4 Evaluation

Each policy of Agent 1 resulting from a trial
is evaluated against two hand-crafted SNs for
Agent 2, one where Agent 2 provides strong ar-
guments (Agent 2 S) and one where Agent 2 pro-
vides weak arguments (Agent 2 W). So for the
condition “Agent 1 with strong arguments trained
against Agent 2 with strong arguments (Agent 1
S(S))” we have 5 policies, each of which interacts
with “Agent 2 S” (or “Agent 2 W”). We calcu-
late the averages of the earned points for each of
the agents, of the number of actions per dialogue
of each agent, and of the number of turns per di-
alogue of each agent, over 10,000 dialogues per
policy. Likewise for the policies of Agent 2. Note
that the SNs used in the evaluation do not behave
irrationally like the ones used for training, and thus
are harder to beat.

In Table 3 we can see the results for the policy
of Agent 1. Results for the policy of Agent 2 are
similar given that the goals of Agent 2 mirror the
goals of Agent 1. As we can see, the policy of
Agent 1 with strong arguments learned to provide
the appropriate arguments and make Agent 2 agree
on “Thai” and “Friday” or “Saturday”. When the
policy of Agent 1 provides only weak arguments it
cannot get day “Friday” but it can secure a trade-
off. This is because both the learned policies and
the SNs usually accept trade-off offers (due to the
way the hand-crafted SNs were constructed). We
also performed tests with SNs that did not propose
or accept as many trade-offs. This arrangement fa-
vored the policy of Agent 1 with strong arguments,
and hurt the performance of the policy of Agent 1
with weak arguments playing against Agent 2 with
strong arguments. This shows that trade-offs help
the weaker negotiators.

Furthermore, we experimented with testing on

semi-rational SNs similar to the ones used for
training and the results were better for the policy
of Agent 1 with weak arguments and worse for the
policy of Agent 1 with strong arguments. So like
trade-offs a semi-rational SN favors the weaker
negotiators.

5 Conclusion

We learned argumentation dialogue policies for
two-issue negotiation, using simulated corpora
generated from the interaction of two hand-crafted
SNs that differed in their goals and in the use of
strong and weak arguments to persuade their coun-
terparts. These SNs sometimes made random or
irrational moves to generate a variety of negotia-
tion patterns.

We used these simulated corpora and RL to
learn argumentation dialogue policies for each of
the two agents. Each of the learned policies was
evaluated against hand-crafted SNs similar to the
ones used for training but with the modification
that these SNs no longer made irrational moves
and thus were harder to beat. The policies gener-
ally did as well as, or better than the hand-crafted
SNs showing that RL can be successfully used for
learning argumentation dialogue policies in two-
issue negotiation scenarios.

For future work we would like to use automatic
feature selection (Li et al., 2009; Misu and Kash-
ioka, 2012) and learn policies for more than two
issues and more than three outcomes per issue.
Selecting features manually is a difficult process
that requires a lot of experimentation and trial-
and-error.
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Abstract

In this work, we study the effectiveness of
state-of-the-art, sophisticated supervised
learning algorithms for dialogue act mod-
eling across a comprehensive set of differ-
ent spoken and written conversations in-
cluding: emails, forums, meetings, and
phone conversations. To this aim, we com-
pare the results of SVM-multiclass and
two structured predictors namely SVM-
hmm and CRF algorithms. Extensive em-
pirical results, across different conversa-
tional modalities, demonstrate the effec-
tiveness of our SVM-hmm model for di-
alogue act recognition in conversations.

1 Introduction

Revealing the underlying conversational struc-
ture in dialogues is important for detecting the
human social intentions in spoken conversations
and in many applications including summariza-
tion (Murray, 2010), dialogue systems and di-
alogue games (Carlson, 1983) and flirt detec-
tion (Ranganath, 2009). As an additional example,
Ravi and Kim (2007) show that dialogue acts can
be used for analyzing the interaction of students in
educational forums.

Recently, there have been increasing interests
for dialogue act (DA) recognition in spoken and
written conversations, which include meetings,
phone conversations, emails and blogs. However,
most of the previous works are specific to one of
these domains. There are potentially useful fea-
tures and algorithms for each of these domains,
but due to the underlying similarities between
these types of conversations, we aim to identify a
domain-independent DA modeling approach that
can achieve good results across all types of con-
versations. Such a domain-independent dialogue
act recognizer makes it possible to automatically

recognize dialogue acts in a wide variety of con-
versational data, as well as in conversations span-
ning multiple domains/modalities; for instance a
conversation that starts in a meeting and then con-
tinues via email.

While previous work in DA modeling has fo-
cused on studying only one (Carvalho, 2005;
Shrestha, 2004; Ravi, 2007; Ferschke, 2012; Kim,
2010a; Sun, 2012) or, in a few cases, a couple of
conversational domains (Jeong, 2009; Joty, 2011),
in this paper, we analyze the performance of su-
pervised DA modeling on a comprehensive set
of different spoken and written conversations that
includes: emails, forums, meetings, and phone
conversations. More specifically, we compare
the performance of three state-of-the-art, sophis-
ticated machine learning algorithms, which in-
clude SVM-multiclass and two structured predic-
tors SVM-hmm and Conditional Random Fields
(CRF) for DA modeling. We present an exten-
sive set of experiments studying the effectiveness
of DA modeling on different types of conversa-
tions such as emails, forums, meeting, and phone
discussions. The experimental results show that
the SVM-hmm algorithm outperforms other su-
pervised algorithms across all datasets.

2 Related Work

There have been several studies on supervised
dialogue act (DA) modeling. To the best of
our knowledge, none of them compare the per-
formance of DA recognition on different syn-
chronous (e.g., meeting and phone) and asyn-
chronous (e.g., email and forum) conversations.
Most of the works analyze DA modeling in a spe-
cific domain. Carvalho and Cohen (2005) propose
classifying emails into their dialogue acts accord-
ing to two ontologies for nouns and verbs. The
ontologies are used for determining the speech
acts of each single email with verb-noun pairs.
Shrestha and McKeown (2004) also study the
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problem of DA modeling in email conversations
considering the two dialogue acts of question and
answer. Likewise, Ravi and Kin (2007) present
a DA recognition method for detecting questions
and answers in educational discussions. Ferschke
et al. (2012) apply DA modeling to Wikipedia dis-
cussions to analyze the collaborative process of
editing Wikipedia pages. Kim et al. (2010a) study
the task of supervised classification of dialogue
acts in one-to-one online chats in the shopping do-
main.

All these previous studies focus on DA recog-
nition in one or two domains, and do not sys-
tematically analyze the performance of different
dialog act modeling approaches on a compre-
hensive set of conversation domains. As far as
we know, the present work is the first that pro-
poses domain-independent supervised DA model-
ing techniques, and analyzes their effectiveness on
different modalities of conversations.

3 Dialogue Act Recognition

3.1 Conversational structure

Adjacent utterances in a conversation have a
strong correlation in terms of their dialogue acts.
As an example, if speaker 1 asks a question to
speaker 2, it is a high probability that the next ut-
terance of the conversation would be an answer
from speaker 2. Therefore, the conversational
structure is a paramount factor that should be taken
into account for automatic DA modeling. The con-
versational structure differs in spoken and written
discussions. In spoken conversations, the discus-
sion between the speakers is synchronized. The
speakers hear each other’s ideas and then state
their opinions. So the temporal order of the ut-
terances can be considered as the conversational
structure in these types of conversations. How-
ever, in written conversations such as email and
forum, authors contribute to the discussion in dif-
ferent order, and sometimes they do not pay atten-
tion to the content of previous posts. Therefore,
the temporal order of the conversation cannot be
used as the conversational structure in these do-
mains, and appropriate techniques should be used
to extract the underlying structure in these conver-
sations.

To this aim, when reply links are available in
the dataset, we use them to capture the conversa-
tion structure. To obtain a conversational structure
that is often even more refined than the reply links,

we build the Fragment Quotation Graph. To this
end, we follow the procedure proposed by Joty et
al. (2011) to extract the graph structure of a thread.

3.2 Features
In defining the feature set, we have two primary
criteria, being domain independent and effective-
ness in previous works. Lexical features such as
unigrams and bigrams have been shown to be use-
ful for the task of DA modeling in previous stud-
ies (Sun, 2012; Ferschke, 2012; Kim, 2010a; Ravi,
2007; Carvalho, 2005). In addition, unigrams have
been shown to be the most effective among the
two. So, as the lexical feature, we include the fre-
quency of unigrams in our feature set.

Moreover, length of the utterance is another
beneficial feature for DA recognition (Ferschke,
2012; Shrestha, 2004; Joty, 2011), which we add
to our feature set. The speaker of an utterance
has shown its utility for recognizing speech acts
(Sun, 2012; Kim, 2010a; Joty, 2011). Sun and
Morency (2012) specifically employ a speaker-
adaptation technique to demonstrate the effective-
ness of this feature for DA modeling. We also
include the relative position of a sentence in a
post for DA modeling since most of previous stud-
ies (Ferschke, 2012; Kim, 2010a; Joty, 2011)
prove the efficiency of this feature.

3.3 Algorithms
Since most top performing DA models use su-
pervised approaches (Carvalho, 2005; Shrestha,
2004; Ravi, 2007; Ferschke, 2012; Kim, 2010a),
to analyze the performance of DA modeling on a
comprehensive set of different spoken and written
conversations, we compare the state-of-the-art su-
pervised algorithms.

We employ three state-of-the-art, sophisticated
supervised learning algorithms:

SVM-hmm predicts labels for the examples
in a sequence (Tsochantaridis, 2004). This
approach uses the Viterbi algorithm to find the
highest scoring tag sequence for a given obser-
vation sequence. Being a Hidden Markov Model
(HMM), the model makes the Markov assump-
tion, which means that the label of a particular
example is assigned only by considering the
label of the previous example. This approach is
considered an SVM because the parameters of the
model are trained discriminatively to separate the
label of sequences by a large margin.
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CRF is a probabilistic framework to label and
segment sequence data (Lafferty, 2001). The
main advantage of CRF over HMM is that it re-
laxes the assumption of conditional independence
of observed data. HMM is a generative model
that assigns a joint distribution over label and
observation sequences. Whereas, CRF defines the
conditional probability distribution over label se-
quences given a particular observation sequence.
SVM-multiclass is a generalization of binary
SVM to a multiclass predictor (Crammer, 2001).
The SVM-multiclass does not consider the
sequential dependency between the examples.

4 Corpora

Gathering conversational corpora for DA model-
ing is an expensive and time-consuming task. Due
to the privacy issues, there are few available con-
versational datasets.

For asynchronous conversations, we use avail-
able corpora for email and forum discussions. For
synchronous domains we employ available cor-
pora in multi-party meeting and phone conversa-
tions.

BC3 (Email): As the labeled dataset for email
conversations, we use BC3 (Ulrich, 2008), which
contains 40 threads from W3C corpus. The
BC3 corpus is annotated with twelve domain-
independent dialogue acts, which are mainly
adopted from the MRDA tagset, and it has been
used in several previous works (e.g., (Joty, 2011)).

CNET (Forum): As the labeled forum dataset,
we use the available CNET corpus, which is an-
notated with eleven domain-independent dialogue
acts in a post-level (Kim et al, 2010b). This corpus
consists of 320 threads and a total of 1332 posts,
which are mostly from technical forums.

MRDA (Meeting): ICSI-MRDA dataset is
used as labeled data for meeting conversation,
which contains 75 meetings with 53 unique speak-
ers (Shriberg, 2004). The ICSI-MRDA dataset re-
quires one general tag per sentence followed by
variable number of specific tags. There are 11
general tags and 39 specific tags in the annotation
scheme. We reduce their tagset to the eleven gen-
eral tags to be consistent with the other datasets.

SWBD (Phone): In addition to multi-party
meeting conversations, we also report our experi-
mental results on Switchboard-DAMSL (SWBD),
which is a large-scale corpus containing telephone
speech (Jurafsky, 1997). This corpus is annotated

with the SWBD-DAMSL tagset, which consists of
220 tags. We use the mapping table presented by
Jeong (2009) to reduce the tagset to 16 domain-
independent dialogue acts.

All the available corpora are annotated with di-
alogue acts at the sentence-level. The only excep-
tion is the CNET forum dataset, on which we ap-
ply DA classification at the post-level.

5 Experiments and Results

5.1 Experimental settings

In our experiments, we use the SVM-hmm1 and
SVM-multiclass2 packages developed with the
SVM-light software. We use the Mallet package3

for the CRF algorithm. The results of supervised
classifications are compared to the baseline, which
is the majority class of each dataset. We apply
5-fold cross-validation for the supervised learn-
ing methods to each dataset, and compare the re-
sults of different methods using micro-averaged
and macro-averaged accuracies.

5.2 Results

Table 1 shows the results of supervised classifi-
cation on different conversation modalities. We
observe that SVM-hmm and CRF classifiers out-
perform SVM-multiclass classifier in all conversa-
tional domains. Both SVM-hmm and CRF classi-
fiers consider the sequential structure of conversa-
tions, while this is ignored in the SVM-multiclass
classifier. This shows that the sequential structure
of the conversation is beneficial independently of
the conversational modality. We can also observe
that the SVM-hmm algorithm results in the highest
performance in all datasets. As shown in (Altun,
2003), generalization performace of SVM-hmm
is superior to CRF. This superiority also applies
to the DA modeling task across all the conversa-
tional modalities. However, as it was investigated
by Keerthi and Sundararajan (2007), the discrep-
ancy in the performance of these methods may
arise from different feature functions that these
two methods use, and they might perform simi-
larly when they use the same feature functions.

Comparing the results across different datasets,
we can also note that the largest improvement
of SVM-hmm and CRF is on the SWBD, the

1http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
2http://svmlight.joachims.org/svm_multiclass.html
3http://mallet.cs.umass.edu
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Corpus Baseline SVM-multiclass SVM-hmm CRF
Micro Macro Micro Macro Micro Macro Micro Macro

BC3 69.56 8.34 73.57 (4.01) 8.34 (0) 77.75 (8.19) 18.20 (9.86) 72.18 (2.62) 14.9 (6.56)
CNET 36.75 9.09 34.8 (-1.95) 9.3 (0.21) 58.7 (21.95) 17.1 (8.01) 40.3 (3.55) 11.5 (2.41)
MRDA 66.47 9.09 66.47 (0) 9.09 (0) 80.5 (14.03) 32.4 (23.31) 77.8 (11.33) 22.9 (13.81)
SWBD 46.44 6.25 46.5 (0.06) 6.25 (0) 74.32 (27.88) 30.13 (23.88) 73.04 (26.6) 24.05 (17.8)

Table 1: Results of supervised DA modeling; columns are micro-averaged and macro-averaged accura-
cies with difference with baseline in parentheses.

phone conversation dataset. Moreover, super-
vised DA recognition on synchronous conversa-
tions achieves a better performance than on asyn-
chronous conversations. We can argue that this is
due to the less complex sequential structure of syn-
chronous conversations. A lower macro-averaged
accuracy in asynchronous conversations (i.e., fo-
rums and emails) can be justified in the same way.

By looking at the results in asynchronous con-
versations, we observe a larger improvement of
micro-averaged accuracy over the CNET corpus.
This might be due to two reasons: i) the DA tagsets
in both corpora are different (i.e., no overlap in
tagsets); and ii) the conversational structure in fo-
rums and emails is different.

5.3 Discussion
We analyze the strengths and weakness of super-
vised DA modeling with SVM-hmm in different
conversations individually.

BC3: SVM-hmm succeeds in classifying most
of the statement and yes-no question speech acts in
the BC3 corpus. However, it does not show a high
accuracy for classifying polite mechanisms such
as ’thanks’ and ’regards’. Through the error anal-
ysis, we observed that in most of these cases the
error arose from the voting algorithm. Moreover,
the improvement of supervised DA modeling on
the BC3 corpus is smaller than the other datasets.
This may suggest that email conversation is a chal-
lenging domain for DA recognition.

CNET: The inventory of dialogue acts in the
CNET dataset can be considered as two groups of
question and answer dialogue acts, and we would
need more sophisticated features in order to clas-
sify the posts into the fine-grained dialogue acts.
The SVM-hmm succeeds in predicting the labels
of question-question and answer-answer dialogue
acts, but it performs poorly for the other labels.
The improvement of DA modeling over the base-
line is significant for this dataset. To further im-
prove the performance, a hierarchical DA classifi-
cation can be applied. In this way, the posts would

be classified into question and non-question dia-
logue acts in the first level.

MRDA: SVM-hmm performs well for pre-
dicting the classes of statement, floor holder,
backchannel, and wh-question. Floor holders and
backchannels are mostly the short utterances such
as ’ok’, ’um’, and ’so’, and we believe the length
and unigrams features are very effective for pre-
dicting these dialogue acts. On the other hand,
SVM-hmm fails in predicting the other types of
questions such as rhetorical questions and open-
ended questions by classifying them as statements.
Arguably by adding more sophisticated features
such as POS tags, SVM-hmm would perform bet-
ter for classifying these speech acts.

SWBD: The improvement of supervised DA
recognition on the SWBD is higher than the other
domains. Supervised DA classification correctly
predicts most of the classes of statement, reject re-
sponse, wh-question, and backchannel. However,
SVM-hmm cannot predict some specific dialogue
acts of phone conversations such as self-talk and
signal-non-understanding. There are a few utter-
ances in the corpus with these dialogue acts, and
most of them are classified as statements.

6 Conclusion and Future Work

We have studied the effectiveness of sophisticated
supervised learning algorithms for DA modeling
across a comprehensive set of different spoken and
written conversations. Through an extensive ex-
periment, we have shown that our proposed SVM-
hmm algorithm with the domain-independent fea-
ture set can achieve high results on different syn-
chronous and asynchronous conversations.

In future, we will incorporate other lexical and
syntactic features in our supervised framework.
We also plan to augment our feature set with
domain-specific features like prosodic features for
spoken conversations. We will also investigate the
performance of our domain-independent approach
in a semi-supervised framework.
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7 Appendix A. Frequency of Dialogue
Acts in the Corpora

Tag Dialogue Acts Email
(BC3)

Forum
(CNET)

Meeting
(MRDA)

Phone
(SWBD)

A Accept response 2.07% – – 6.96%
AA Acknowledge and appreciate 1.24% – – 2.12%
AC Action motivator 6.09% – – 0.38%
P Polite mechanism 6.97% – – 0.12%

QH Rhetorical question 0.75% – 0.34% 0.25%
QO Open-ended question 1.32% – 0.17% 0.3%
QR Or/or-clause question 1.10% – – 0.2%
QW Wh-question 2.29% – 1.63% 0.95%
QY Yes-no question 6.75% – 4.75% 2.62%
R Reject response 1.06% – – 1.03%
S Statement 69.56% – 66.47% 46.44%
U Uncertain response 0.79% – – 0.15%
Z Hedge – – – 11.55%
B Backchannel – – 14.44% 26.62%
D Self-talk – – – 0.1%
C Signal-non-understanding – – – 0.14%

FH Floor holder – – 7.96% –
FG Floor grabber – – 2.96% –
H Hold – – 0.76% –

QRR Or clause after yes-no question – – 0.38% –
QR Or question – – 0.2% –
QQ Question-question – 27.92% – –
QA Question-add – 11.67% – –

QCN Question-confirmation – 3.89% – –
QCC Question-correction – 0.36% – –
AA Answer-answer – 36.75% – –
AD Answer-add – 8.84% – –
AC Answer-confirmation – 0.36% – –
RP Reproduction – 0.71% – –
AO Answer-objection – 1.07% – –
RS Resolution – 7.78% – –
O Other – 0.71% – –

Table 2: Dialogue act categories and their relative
frequency.

Table 2 indicates the dialogue acts of each cor-
pus and their relative frequencies in that dataset.
The table shows that the distribution of dialogue
acts in the datasets are not balanced. Most of the
utterances in the datasets are labeled as statements.
Consequently, during the classification step, most
of the utterances are labeled as the statement dia-
logue act. This always affects the performance of
a classifier in dealing with low frequency classes.
A possible approach to tackle this problem is to
cluster the correlative dialogue acts into the same
group and apply a DA modeling approach in a hi-
erarchical manner.
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Abstract

Determining the quality of an ongoing in-
teraction in the field of Spoken Dialogue
Systems is a hard task. While existing
methods employing automatic estimation
already achieve reasonable results, still
there is a lot of room for improvement.
Hence, we aim at tackling the task by es-
timating the error of the applied statistical
classification algorithms in a two-stage ap-
proach. Correcting the hypotheses using
the estimated model error increases per-
formance by up to 4.1 % relative improve-
ment in Unweighted Average Recall.

1 Introduction

Evaluating the quality of Spoken Dialogue Sys-
tems (SDSs) has long since been a challenging
task. While objective metrics like task completion
and dialogue duration are not human-centered,
subjective measures compensate for this by mod-
eling the user’s subjective experience. This infor-
mation may be used to increase the dialogue sys-
tem’s performance (cf. (Ultes et al., 2012b)).

In human-machine dialogues, however, there is
no easy way of deriving the user’s satisfaction
level. Moreover, asking real users for answering
questions about the system performance requires
them to spend more time talking to the machine
than necessary. It can be assumed that a regular
user does not want to do this as human-machine
dialogues usually have no conversational charac-
ter but are task oriented. Hence, automatic ap-
proaches are the preferred choice.

Famous work on determining the satisfaction
level automatically is the PARADISE framework
by Walker et al. (1997). Assuming a linear depen-
dency between objective measures and User Satis-
faction (US), a linear regression model is applied
to determine US on the dialogue level. This is not

only very costly, as dialogues must be performed
with real users, but also inadequate if quality on a
finer level is of interest, e.g., on the exchange level.

To overcome this issue, work by Schmitt et
al. (2011) introduced a new metric for measuring
the performance of an SDS on the exchange level
called Interaction Quality (IQ). They used statisti-
cal classification methods to automatically derive
the quality based on interaction parameters. Qual-
ity labels were applied by expert raters after the di-
alogue on the exchange level, i.e., for each system-
user-exchange. Automatically derived parameters
were then used as features for creating a statistical
classification model using static feature vectors.
Based on the same data, Ultes et al. (2012a) put
an emphasis on the sequential character of the IQ
measure by applying temporal statistical classifi-
cation using Hidden Markov Models (HMMs) and
Continuous Hidden Markov Models (CHMMs).

However, statistical classifiers usually do not
achieve perfect performance, i.e., there will al-
ways be misclassification. While most work fo-
cuses on applying different statistical models and
improving them (Section 2), learning the error to
correct the result afterwards represents a different
approach. Therefore, we present our approach on
estimating the error of IQ recognition models to
correct their hypothesis in order to eventually yield
better recognition rates (Section 4). The definition
of IQ and data used for the evaluation of our ap-
proach (Section 5) is presented in Section 3. Our
approach is also compared to a simple hierarchical
approach also discussed in Section 5.

2 Related Work on Dialogue Quality

Besides Schmitt et al., other research groups have
performed numerous work on predicting subjec-
tive quality measures on an exchange level, all not
incorporating any form of error correction.

Engelbrecht et al. (2009) presented an approach
using Hidden Markov Models (HMMs) to model
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en… en-1en-2e1 en+1 … exchange level parameters

window level parameters

dialogue level parameters

Figure 1: The three different modeling levels rep-
resenting the interaction at exchange en.

the SDS as a process evolving over time. Perfor-
mance ratings on a 5 point scale (“bad”, “poor”,
“fair”, “good”, “excellent”) have been applied by
the users during the dialogue.

Higashinaka et al. (2010) proposed a model for
predicting turn-wise ratings for human-human dia-
logues analyzed on a transcribed conversation and
human-machine dialogues with text from a chat
system. Ratings ranging from 1 to 7 were ap-
plied by two expert raters labeling for smoothness,
closeness, and willingness.

Hara et al. (2010) derived turn level ratings from
overall ratings of the dialogue which were applied
by the users afterwards on a five point scale. Us-
ing n-grams to model the dialogue, results for dis-
tinguishing between six classes at any point in the
dialogue showed to be hardly above chance.

3 The LEGO Corpus

For estimating the Interaction Quality (IQ), the
LEGO corpus published by Schmitt et al. (2012)
is used. IQ is defined similarly to user satisfac-
tion: While the latter represents the true disposi-
tion of the user, IQ is the disposition of the user as-
sumed by an expert rater. The LEGO corpus con-
tains 200 calls (4,885 system-user-exchanges) to a
bus information system (cf. (Raux et al., 2006)).
Labels for IQ on a scale from 1 (extremely un-
satisfied) to 5 (satisfied) have been assigned by
three expert raters with an inter-rater agreement of
κ = 0.54. In order to ensure consistent labeling,
the expert raters had to follow labeling guidelines
(cf. (Schmitt et al., 2012)).

Parameters used as input variables for the IQ
model have been derived from the dialogue sys-
tem modules automatically for each exchange on
three levels: the exchange level, the dialogue level,
and the window level (see Figure 1). As parame-
ters like the confidence of the speech recognizer
can directly be acquired from the dialogue mod-
ules, they constitute the exchange level. Based on
this, counts, sums, means, and frequencies of ex-
change level parameters from multiple exchanges

are computed to constitute the dialogue level (all
exchanges up to the current one) and the window
level (the three previous exchanges). A complete
list of parameters is listed in (Schmitt et al., 2012).

Schmitt et al. (2011) performed IQ recognition
on this data using linear SVMs. They achieved an
Unweighted Average Recall (UAR) of 0.58 based
on 10-fold cross-validation. Ultes et al. (2012a)
applied HMMs and CHMMs using 6-fold cross
validation and a reduced feature set achieving an
UAR of 0.44 for HMMs and 0.39 for CHMMs.

4 Error Estimation Model

Error correction may be incorporated into the sta-
tistical classification process by a two-stage ap-
proach, which is depicted in Figure 2.

At the first stage, a statistical classification
model is created using interaction parameters as
input and IQ as target variable. For this work,
a Support Vector Machine (SVM) and a Rule
Learner are applied. At the second stage, the er-
ror er of the hypothesis h0 is calculated by

er = h0 − r , (1)

where the reference r denotes the true IQ value.
In order to limit the number of error classes, the
signum function is applied. It is defined as

sgn(x) :=





−1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 .

(2)

Therefore, the error is redefined as

er = sgn(h0 − r) . (3)

Next, a statistical model is created similarly to
stage one but targeting the error er. The difference
is that the input parameter set is extended by the IQ
hypothesis h0 of stage one. Here, two approaches
are applied: Creating one model which estimates
all error classes (−1,0,1) and creating two mod-
els where each estimates positive (0,1) or negative
error (−1,0). For the latter variant, the error of
the class which is not estimated by the respective
model is mapped to 0. By this, the final error hy-
pothesis he may be calculated by simple addition
of both estimated error values:

he = he−1 + he+1 . (4)

Combining the hypothesis of the error estima-
tion he with the hypothesis of the IQ estimation h0
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Figure 2: The complete IQ estimation process including error correction. After estimating IQ in Stage 1
(upper frame), the error is estimated and the initial hypothesis is corrected in Stage 2 (lower frame).

at stage one produces the final hypothesis hf de-
noting the Interaction Quality estimation corrected
by the estimated error of the statistical model:

hf = h0 − he . (5)

As the error estimation will not work perfectly,
it might recognize an error where there is none or
– even worse – it might recognize an error contrary
to the real error, e.g.,−1 instead of +1. Therefore,
the corrected hypothesis might be out of range. To
keep hf within the defined bounds of IQ, a lim-
iting functions is added to the computation of the
final hypothesis resulting in

hf = max(min(h0 − he), bu), bl) , (6)

where bu denotes the upper bound of the IQ labels
and bl the lower bound.

5 Experiments and Results

All experiments are conducted using the LEGO
corpus presented in Section 3. By applying 5-fold
cross validation, hypotheses for each system-user-
exchange which is contained in the LEGO corpus
are estimated. Please note that some textual inter-
action parameters are discarded due to their task-
dependent nature leaving 45 parameters1.

For evaluation, we rely on two measures: The
unweighted average recall (UAR) and the root

1Removed parameters: Activity, LoopName, Prompt,
RoleName, SemanticParse, SystemDialogueAct, UserDia-
logueAct, Utterance

mean squared error (RMSE). UAR represents the
accuracy corrected by the effects of unbalanced
data and is also used by cited literature. RMSE is
used since the error correction method is limited
to correcting the results only by one. For bigger
errors, the true value cannot be reached.

The performances of two different statistical
classification methods are compared, both applied
for stage one and stage two: Support Vector Ma-
chine (SVM) (Vapnik, 1995) using a linear ker-
nel, which is also used by Schmitt et al. (2011),
and Rule Induction (RI) based on Cohen (1995).
Furthermore, a normalization component is added
performing a range normalization of the input pa-
rameters in both stages. This is necessary for using
the implementation of the statistical classification
algorithms at hand.

For error estimation, two variants are explored:
using one combined model for all three error
classes (−1,0,+1) and using two separate models,
one for distinguishing between −1 and 0 and one
for distinguishing between +1 and 0 with com-
bining their results afterwards. While using RI for
error estimation yields reasonable performance re-
sults for the combined model, it is not suitable for
error estimation using two separate models as all
input vectors are mapped to 0. Hence, for the two
model approach, only the SVM is applied .

Results for applying error correction (EC) are
presented in Table 1. Having an SVM at stage one
(column SVM), recognition performance is rela-
tively improved by up to 4.6 % using EC. With RI
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Table 1: Results for IQ recognition: UAR and
RMSE for IQ recognition without stage two, with
error correction at stage two, and with a simple hi-
erarchical approach.

UAR RMSE
stage two SVM RI SVM RI

none 51.1% 60.3% 0.97 0.88
error correction

SVM 50.7% 59.6% 0.97 0.83
RI 52.5% 58.1% 0.88 0.85

2xSVM 53.2% 60.6% 0.88 0.85
simple hierarchical approach

SVM 50.2% 57.6% 0.97 0.85
RI 58.9% 58.7% 0.88 0.88

at stage one, performance is only increased by up
to 0.5 % which has shown to be not significant us-
ing the Wilcoxon test. The relative improvements
in UAR are depicted in Figure 3.

Furthermore, these results are compared to a
simple hierarchical approach (SH) where the hy-
pothesis h0 of the stage one classifier is used as
an additional feature for the stage two classifier
targeting IQ directly. Here, the performance of
the stage two classifier is of most interest since
this approach can be viewed as one stage classi-
fication with an additional feature. The results in
Table 1 show that RI does not benefit from addi-
tional information (comparison of last row with
one stage RI recognition). SVM recognition at
stage two, though, shows better results. While its
performance is reduced using the SVM hypothe-
sis as additional feature, adding the RI hypothesis
improved UAR up to 12.6 % relatively. However,
there is no reasonable scenario where one would
not use the better performing RI in favor of using
its results as additional input for SVM recognition.

The question remains why SVM benefits from
Error Correction as well as from adding additional
input parameters while RI does not. It remains un-
clear if this is an effect of the task characteristics
combined with the characteristics of the classifi-
cation method. It may as well be caused by low
classification performance. A classifier with low
performance might be more likely to improve its
performance by additional information or EC.

6 Conclusion

In this work, we presented an approach for im-
proving the recognition of Interaction Quality by
estimating the error of the classifier in order to cor-
rect the hypothesis. For the resulting two-staged

‐0.8%
‐1.3%

2.7%

‐3.7%

4.1%

0.5%

‐4%

‐3%

‐2%

‐1%

0%

1%

2%

3%

4%

SVM RI

error correction (SVM)

error correction (RI)

error correction (2 x SVM)

Figure 3: The relative improvement of EC in UAR
grouped by stage one classifiers SVM and RI.

approach, two different statistical classification al-
gorithm were applied for both stages, i.e., SVM
and Rule Learner. Performance could be improved
for both stage one classifiers using separate er-
ror models relatively improving IQ recognition by
up to 4.1 %. The proposed error correction ap-
proach has been compared to a simple hierarchi-
cal approach where the hypohtesis of stage one
is used as additional feature of stage two classi-
fication. This apprach relatively improved SVM
recognition by up to 12.6 % using a Rule Learner
hypothesis as additional feature. However, as one-
stage Rule Learner classification already provides
better results than this hierarchical approach, is
does not seem reasonable to employ this config-
uration. Nonethelesse, why only the SVM could
benefit from additional information (error correc-
tion or simple hierarchical appraach) remains un-
clear and should be investigated in future work.

Moreover, some aspects of the error correc-
tion approach have to be discussed controversially,
e.g., applying the signum function for calculating
the error. While the obvious advantage is to limit
the number of error classes a statistical classifica-
tion algorithm has to estimate, it also prohibits of
being able to correct all errors. If the absolute er-
ror is bigger than one it can never be corrected.
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Abstract

SCXML was proposed as one description
language for dialog control in the W3C
Multimodal Architecture but lacks the fa-
cilities required for grounding and rea-
soning. This prohibits the application of
many dialog modeling techniques for mul-
timodal applications following this W3C
standard. By extending SCXML with a
Prolog datamodel and scripting language,
we enable those techniques to be em-
ployed again. Thereby bridging the gap
between respective dialog modeling re-
search and a standardized architecture to
access and coordinate modalities.

1 Introduction

Deploying multimodal applications has long been
an activity of custom solutions, each with their
own access to modalities, approaches to sensor fu-
sion and fission and techniques for dialog mod-
eling. With the advent of the W3C MMI archi-
tecture (Bondell et al., 2012), the W3C proposed
a standardized approach to ensure interoperabil-
ity among its constituting components (Schnelle-
Walka et al., 2013; Dahl, 2013).

The architecture proposed by the W3C decom-
poses a multimodal application into a nested struc-
ture of interaction managers for dialog control and
modality components for in- and output. An ap-
plication is conceived as a set of control docu-
ments expressed in SCXML (Barnett et al., 2012)
or CCXML (Auburn et al., 2011) for the interac-
tion managers and a set of presentation documents
with modality-specific markup for the modality
components. A topmost root controller document
describes the global dialog and instantiates modal-
ity components as required. Each modality com-
ponent can, in turn, again be an interaction man-
ager, handling more fine granular concerns of dia-

log control, such as error correction or even sensor
fusion/fission.

As one proposed XML dialect for control doc-
uments, State Chart XML (SCXML) is given the
responsibility to model an applications dialog be-
havior. SCXML as such is a markup language to
express Harel state charts (Harel and Politi, 1998)
with nested and parallel machine configurations.
The transitions between configurations are trig-
gered by events delivered into the interpreter ei-
ther from external components or raised by the
interpreter itself. Whenever an event arrives, the
SCXML interpreter can perform actions described
as executable content. This includes invoking or
sending events to external components, processing
data or updating the datamodel via an embedded
scripting language.

SCXML has been proven to be suitable to de-
couple the control flow and presentation layer
in dialog management (Wilcock, 2007). It has
been used in several applications to express dialog
states (Brusk et al., 2007) or to easily incorporate
external information (Sigüenza Izquierdo et al.,
2011). However, SCXML seems to be suited only
to implement finite state or frame-based/form-
filling dialogue management approaches. Appli-
cations using theses dialog techniques are often-
times inflexible as they lack grounding and rea-
soning. In this regard, Fodor and Huerta (2006)
demand that dialog managers should feature: (i) a
formal logic foundation, (ii) an interference en-
gine, (iii) general purpose planners and (iv) knowl-
edge representation and expressiveness.

Most of these requirements are addressed by
employing Prolog. Embedding it as a scripting
language into SCXML allows multimodal applica-
tions in the W3C MMI Architecture to employ the
more elaborate dialog management techniques, re-
sulting in more natural and flexible interaction. In
this paper we describe our integration of Prolog
as an embedded scripting language in an SCXML
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datamodel. All of the work described here is im-
plemented as part of our uSCXML interpreter1 by
embedding the SWI Prolog implementation.

2 The Prolog Datamodel

Datamodels in SCXML are more than simple
repositories for storing data. With the exception
of the null datamodel, they provide access to
embedded scripting languages. The datamodels
already specified by the SCXML draft are the
null, the xpath and the ecmascript data-
model. Prolog itself is a declarative language for
logic programming in which facts and rules are
used to answer queries. The result of a query is
either a boolean value or the set of valid assign-
ments for the queries variables.

In the following sections, we will describe our
integration of Prolog as a datamodel in SCXML.
The structure of the description loosely follows the
existing descriptions for datamodels already found
in the SCXML draft.

2.1 Assignments

In an SCXML document, there are two elements
which will assign values to variables in the data-
model. These are <data> for initial assignments
and <assign> itself. In Prolog, variable assign-
ment is only available in the scope of a query. To
realize variable assignment nevertheless, we in-
troduce the variables as predicates, with their as-
signed data as facts. Listing 1 exemplifies some
assignments followed by their resulting Prolog
facts.
<data id="father">

bob, jim.
bob, john.

</data>
% father(bob, jim).
% father(bob, john).

<data id="">
mother(martha, jim).
mother(martha, john).

</data>
% mother(martha, jim).
% mother(martha, john).

<assign location="">
retract(father(bob, jim)).
assert(father(steve, jim)).

</assign>
% father(bob, john).
% father(steve, jim).

<data id="childs">
<child name="john" father="bob" />
<child name="jim" father="bob" />

</data>
% childs([
% element(child,
% [father=bob, name=john], []),

1https://github.com/tklab-tud/uscxml

% element(child,
% [father=bob, name=jim], [])]).

<data id="household">
{
name: "The Bobsons",
members: [’bob’, ’martha’, ’jim’, ’john’]

}
</data>
% household({
% name:’The Bobsons’,
% members:[bob, martha, jim, john]}).

Listing 1: Assignments and their results in Prolog.

If given, the id or location attribute iden-
tifies the predicate for which the content is to be
asserted as fact, otherwise the content is assumed
to be a dot-separated list of prolog queries or ex-
pressions. The content might also be loaded per
URL in the element’s src attribute. In the con-
text of SCXML, it is important to support XML
and JSON data as shown in the last two examples.
Not only enables this an application developer to
load data from existing XML and JSON files, it is
also important to support these representations for
incoming events as we will see in the next section.

There is no standardized representation for
XML DOMs or JSON data in Prolog. We prag-
matically settled upon the structure returned by the
SWI-Prolog SGML parser and the JSON converter
as de-facto standards respectively.

With the Prolog datamodel, having an id
or location attribute at assignment elements
seems superfluous. We do keep them as the
SCXML draft specifies these as required at-
tributes.

2.2 Structure of Events

Whenever an event is received by the SCXML in-
terpreter, it has to be transformed into a suitable
representation in order to operate on its various
fields and content as defined by the SCXML draft.
We choose to represent an event as the single pred-
icate event/1 with its facts as compound terms
reflecting the event’s fields as shown in listing 2.
event(name(’foo’)).
event(type(’external’)).
event(sendid(’s1.bar’)).
event(origin(’http://host/path/basichttp’)).
event(origintype(’http://www.w3.org/TR/scxml

/#BasicHTTPEventProcessor’)).
event(invokeid(’’)).
event(data(...)).
event(param(...)).
event(raw(...)).

Listing 2: Example facts for event/1.

This representation enables access to the events
individual fields by simple queries such as
event(name(X)), which will resolve X to the
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event’s name foo. Whenever the interpreter is
about to process a new event, all old facts about
event/1 are retracted and reasserted with regard
to the new event.

The event’s data field may contain a space nor-
malized string as an atomic term, an XML DOM
or, optionally, data from a JSON structure. The
structure of JSON and XML DOMs is the same as
with assignments in listing 1.

2.3 Scripting
The <script> element either contains Prolog
expressions as they would be written in a Prolog
file or references such a file directly via its src at-
tribute. Together with <assign> and <data>,
this element is the third available to load Prolog
files into the SCXML interpreter. This is some-
what undesirable and we would propose to use
(i) <data> to establish initial a-priori knowledge
as facts, (ii) <assign> for subsequent changes
and additions to facts and (iii) <script> to in-
troduce new rules or load Prolog files containing
primarily rules.

It is important to note that we do provide a full
ISO-Prolog implementation at runtime. This en-
ables an application developer to load arbitrary
Prolog files with all their facts and rules.

2.4 System Variables
The SCXML draft requires the datamodel to ex-
pose various platform specific values to the data-
model. These are the identifier of the current ses-
sion, the name of the document and the available
I/O processors to send and receive events. Follow-
ing the approach of defining predicates to provide
access to information in the datamodel, we intro-
duced predicates as given in listing 3.
% name/1:
name("foo").

% sessionid/1:
sessionid("bar").

% ioprocessors/1:
ioprocessors(

basichttp(
location(’http://host/path/basichttp’))).

ioprocessors(
scxml(location(’http://host/path/scxml’))).

% ioprocessors/2:
ioprocessors(

name(basichttp),
location(’http://host/path1’)).

ioprocessors(
name(’http://www.w3.org/TR/scxml/#

BasicHTTPEventProcessor’),
location(’http://host/path1’)).

...

Listing 3: Predicates for system variables.

Defining two predicates for ioprocessors is sim-
ply a matter of convenience as their short names
(e.g. basichttp or scxml) are suited as functors
for compound terms, where their canonic names
are not. Therefore ioprocessors/1 will only
contain the short names, and ioprocessors/2
contains both. This allows us to send events, e.g
with the basichttp ioprocessor via:
<send type="basichttp"

targetexpr="ioprocessors(basichttp(
location(X)))"

event="foo">

Listing 4: Sending ourself an event via basichttp.

2.5 Conditional Expressions

Conditional expressions in SCXML are used
to guard transitions and as part of <if> and
<elseif> elements in executable content. They
consist of a single, datamodel specific expression
that ought to evaluate to a boolean value. In the
case of our Prolog datamodel, these expressions
can take the form of an arbitrary query (see list-
ing 5). If there exists at least one solution to the
query, the conditional expression will be evaluated
to true, and false otherwise.
% Is there someone who is not the father
% of Jim and older than bob?
<if cond="not(father(X, jim)),

older(X, bob).">

% Was the current event received from an
% external component?
<transition
target="s3"
cond="event(type(X)), X=’external’"/>

% Does the JSON structure in the event’s
% data contain a household whose name
% is ’The Bobsons’?
<transition
target="s5"
cond="event(data(household(name:X))),

X=’The Bobsons’"/>

Listing 5: Boolean expressions in cond attribute.

2.6 Evaluating as String

There are several situations in the SCXML draft,
where an element from the datamodel needs to
be represented as a string. These are usually at-
tributes of elements that equal or end in expr, e.g.
log.expr or send.targetexpr.

In these contexts, the interpreter will allow for
queries with a single free variable that has to re-
solve to an atomic term. The actual value of the
expression is then the string representation of the
variable from the last solution to the query (see
listing 6).
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% This query only has a single solution
<log label="Event Name"

expr="event(name(X))" />

% This query has multiple solutions, only the
% last is used when evaluating as string
<log label="Bob’s youngest son"

expr="father(bob, X)" />

Listing 6: Evaluating an expression as string.

2.7 Foreach
The <foreach> element in SCXML allows to
iterate over values as part of executable content.
Its attributes are array as an iterable expres-
sion, item as the current element in the array and
index as the current iteration index.

In our Prolog datamodel, this element is avail-
able to iterate over all solutions of a query as
shown in listing 7.
<foreach array="father(bob, X)"

item="child"
index="index">

<log label="child" expr="child(X)" />
<log label="index" expr="index(X)" />

</foreach>

% results in the following log output
child: jim
index: 0
child: john
index: 1
child: jack
index: 2

Listing 7: Foreach expressions.

3 Example

Listing 8 exemplifies some of the language fea-
tures of the Prolog datamodel. We start by intro-
ducing two predicates with the <data> element,
the first defined as dot seperated facts, the second
one as inline Prolog expressions. In the first state
s1, we iterate all children of bob and log their
names. Transitioning to the next state is performed
if bob and martha have a common child. In s2, we
send ourself an event containing a XML snippet
using the basichttp I/O processor. Then we tran-
sition to the final state if there is an element with
a tagname of p in the received XML document.
In the final state we print all facts we established
via Prolog’s listing/1 predicate and the inter-
preter stops.
<scxml datamodel="prolog">

<datamodel>
<data id="father">

bob, jim.
bob, john.

</data>
<data id="">

mother(martha, jim).
mother(martha, john).

</data>
</datamodel>

<state id="s1">
<onentry>
<foreach array="father(bob, X)"

item="child"
index="index">

<log label="index" expr="index(X)" />
<log label="child" expr="child(X)" />

</foreach>
</onentry>
<transition target="s2"

cond="mother(martha, X),
father(bob, X)"/>

</state>
<state id="s2">
<onentry>
<send type="basichttp"

targetexpr="ioprocessors(
basichttp(location(X)))"

event="foo">
<content>
<p>Snippet of XML</p>

</content>
</send>

</onentry>
<transition
cond="member(element(’p’,_,_), X),

event(data(X))" />
</state>
<state final="true">
<log label="Listing" expr="listing." />

</state>
</scxml>

Listing 8: Example SCXML document.

4 Conclusion

Providing a Prolog datamodel for SCXML enables
applications in the W3C MMI architecture to em-
ploy grounding and reasoning for facts established
during a prior to a dialog. It even enables develop-
ers to load complete, existing Prolog programs to
to be used during event processing. This extends
SCXML to fulfill the requirements for dialog man-
agement as defined by Fodor and Huerta (2006).

There are multiple variations to the integration
of Prolog and more experience is needed still to
determine whether the approach presented here is
optimal.
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Abstract
We address the problem of localized error
detection in Automatic Speech Recognition
(ASR) output to support the generation of tar-
geted clarifications in spoken dialogue sys-
tems. Localized error detection finds specific
mis-recognized words in a user utterance. Tar-
geted clarifications, in contrast with generic
‘please repeat/rephrase’ clarifications, target
a specific mis-recognized word in an utter-
ance (Stoyanchev et al., 2012a) and require
accurate detection of such words. We extend
and modify work presented in (Stoyanchev et
al., 2012b) by experimenting with a new set
of features for predicting the likelihood of a
local error in an ASR hypothesis on an un-
sifted version of the original dataset. We im-
prove over baseline results, where only ASR-
generated features are used, by constructing
optimal feature sets for utterance and word
mis-recognition prediction. The f-measure for
identifying incorrect utterances improves by
2.2% and by 3.9% for identifiying incorrect
words.

1 Introduction
Spoken Dialogue Systems typically indicate their lack
of understanding of user input by simple requests for
repetition or rephrasing – “I’m sorry, I didn’t under-
stand you.”, or “Can you please repeat?”. However
human conversational partners generally provide more
targeted clarification requests. Corpus analysis of hu-
man conversations have shown that people are more
likely to indicate what they have understood and what
they have not understood by producing reprise clar-
ification questions (Purver, 2004; Stoyanchev et al.,
2012a), as illustrated in the following exchange where
XXX indicates a word misunderstood by speaker B:

A: Do you have any XXX in your bag?
B: Do I have any what in my bag?

A reprise clarification question targets a specific mis-
recognized word and incorporates recognized context

into a clarification question.
We investigate replacing generic please repeat clari-

fications with more natural targeted clarifications in au-
tomatic spoken systems. Targeted clarifications allow
users to provide a concise response to a clarification
question which is beneficial for spoken systems accept-
ing broad vocabulary and flexible syntax. Examples of
such systems include tutoring systems, intelligent as-
sistants, and spoken translation systems (Litman and
Silliman, 2004; Dzikovska et al., 2009; Akbacak et al.,
2009).

To enable Spoken Dialogue Systems (SDS) to gen-
erate targeted clarification questions, we must first be
able to identify mis-recognized words with high accu-
racy. We term such mis-recognition detection localized
error detection. Accurate distinction between correctly
and incorrectly recognized words is essential to the cre-
ation of appropriate targeted clarification questions.

In previous research on recognition error detection in
dialogue systems, researchers have addressed error de-
tection at the utterance level (Hirschberg et al., 2004;
Komatani and Okuno, 2010). In this paper we present
results of classification experiments designed to de-
tect localized errors within the utterance. Our base-
line results are obtained from a classifier trained only
on word posterior probabilities generated by an Auto-
matic Speech Recognition (ASR) engine. ASR confi-
dence score computation is an active research area, re-
lying upon acoustic and lexical collocation information
to compute confidence scores. We determine whether
improvement over baseline can be achieved by training
a classifier for utterance and word mis-recognition pre-
diction on an expanded feature set that includes lexical,
positional, prosodic, semantic, syntactic as well as ad-
ditional ASR score features. All of the features we ex-
periment with can be computed from an ASR hypothe-
sis without affecting the performance of a SDS materi-
ally. After determining optimal feature sets we experi-
ment with one- and two-stage approaches for localized
error detection. The first simply identifies whether a
word is correctly recognized or not. The second first
classifies an utterance as incorrect or correct and then
classifies errors only on utterances labeled incorrect.
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This work extends earlier work in which we eval-
uated a smaller set of syntactic and prosodic fea-
tures (Stoyanchev et al., 2012b). In addition to im-
provements implemented in the ASR engine that we
use to produce ASR hypotheses, our current work re-
ports results on a larger dataset which includes com-
mands to the system and utterances containing disflu-
encies. Here, we propose a framework for localized
error detection that does not rely upon pre-filtering of
the dataset.

In Section 2 we describe our corpus. In Section 3
we discuss our classification experiments. In Section
4 we discuss our results. In Section 5 we present our
conclusions and discuss future research.

2 Data
We conduct our machine learning experiments on the
DARPA TRANSTAC corpus (Weiss et al., 2008). The
TRANSTAC corpus is comprised of staged conversa-
tions between American military personnel and Ara-
bic interviewees utilizing IraqComm speech-to-speech
translation system (Akbacak et al., 2009). This data
was collected by NIST between 2005 and 2008 in eval-
uation exercises. The dataset contains audio record-
ings and manual transcript of English and Arabic utter-
ances. We used SRI’s DynaSpeak (Franco et al., 2002)
speech recognition system to recognize the English ut-
terances and use posterior probabilities from DynaS-
peak as our baseline feature. We create a corpus from
this dataset that contains over 99% of the English ut-
terances. 38 utterances were removed from the dataset
either for lack of actual speech data or errors in refer-
ence transcription. 26.2% of our cleaned corpus con-
sist of mis-recognized instances and 6.4% of the total
words in it are incorrectly recognized by DynaSpeak
(see Table 1). We are using an unsifted version of the
corpus used in our previous work (Stoyanchev et al.,
2012b) whose hypotheses were produced with a new
version of the DynaSpeak ASR system. In our previous
work utterances containing disfluencies and commands
to the system were excluded. We seek to avoid the cas-
cading errors that would follow from implementing a
2-step framework for localized error detection where
the first step is command and disfluency detection and
the second step is localized error detection. The 1-step
framework also has the advantage of working for all ut-
terances including ones that contain commands or dis-
fluencies. Due to these differences, our current results
are not directly comparable with our previous results.

Table 1: Corpus statistics

Overall Correct ASR Incorr ASR
All utts. 3,952 2,914 (73.7%) 1,038 (26.2%)
All wrds. 25,333 23,705 (93.6%) 1,628 (6.4%)

wrds in err utts 7,888 6,260 (79.4%) 1,628 (20.6%)

3 Method
We analyze how the performance of predicting mis-
recognized utterances and words is affected by the
use of lexical, positional, prosodic, semantic, and syn-
tactic features in addition to ASR confidence scores.
We perform machine learning experiments using the
Weka Machine Learning Library to construct a J48
decision tree classifier boosted with MultiBoostAB
method (Witten and Eibe, 2005).

Baseline confidence features We use ASR posterior
scores extracted from the log files output by Dynaspeak
as a baseline feature set in our experiments. In the utter-
ance mis-recognition prediction experiment, we calcu-
late the average of the logarithm of the ASR posterior
scores over all words in the hypothesis. In the word
mis-recognition prediction experiment we use the log-
arithm of the posterior score of a given word.

Feature selection We run a heuristic feature ex-
ploration experiment to identify optimal feature sets
for predicting mis-recognized utterances and mis-
recognized words. We first use a greedy approach
adding one feature at a time to the baseline ASR feature
set and only keep a feature in the set if it improves F-
measure predicting mis-recognition. We then use an al-
ternate greedy approach in which we begin with a fea-
ture set composed of all extracted features and proceed
to remove one feature at a time and only leave it out
of the set if incorrect F-measure improved or remained
the same with its absence. The second approach yields
the optimal feature sets for both utterance and word
mis-recognition prediction. Table 2 lists the features
that make up these optimal sets. For incorrect utter-
ance prediction, we run a 10-fold cross validation on
all utterances. For incorrect word prediction, we run a
10-fold cross validation on all words in mis-recognized
utterances.1 We next describe the features we found to
be useful in prediction and those that did not improve
performance.

3.1 Useful Features

ASR context features We use the logarithm of the pos-
terior score of a given word and the average of the log-
arithm of the posterior scores for both a given word and
its surrounding context. We use one word context be-
fore and after the given word. We also use the average
of the logarithm of the posterior scores for all words in
the utterance.

Lexical features We hypothesize that properties of
words such as length and frequency are predictive of
whether a word is correctly recognized. In particular,
noting that words of greater length are often better rec-
ognized by an ASR engine, we examine the length, fre-
quency, and posterior score of the maximum and min-

1Because of the size limitations of our dataset feature se-
lection and evaluation are performed on the same dataset.
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imum words in an utterance. For mis-recognized ut-
terance prediction, we find that the average length of a
word in the utterance are useful features for predicting
both mis-recognized utterances and words. For mis-
recognized word prediction, we find the word length of
the surrounding words, the current word, and the fre-
quency of the longest word in an utterance are useful.
We also find that utterance length calculated in words is
a useful feature for predicting both utterance and word
mis-recognition.

Positional features Motivated by the use of dialogue
history features in Lopes et al (2011), we find that the
location of the hypothesis relative to the speaker’s first
utterance in the dialogue (utterance location) is a use-
ful feature. Similarly, we obtain improvement from the
word index feature, the distance of the word from the
first word in the utterance.

Syntactic POS tags were shown to be helpful in our
previous work and we find that these tags improve the
current results as well. We obtain these from the Stan-
ford POS tagger (et al., 2003). In mis-recognized ut-
terance prediction, we use unigram and bigram counts
of POS tags as a feature. For mis-recognized word pre-
diction, we use the word’s POS tag as well as the POS
tag for the surrounding one or two words.

We obtain a binary Func/Content feature using a
function word list to distinguish function from content
words. The list includes certain adverbs, conjunctions,
determiners, modal verbs, primary verbs such as be,
prepositions, pronouns, and WP-pronouns. These tags
also boost our ability to identify mis-recognized words.
The feature Func/Tot ratio is the fraction of function
words to total words in an ASR hypothesis. We hy-
pothesize that an extreme value of the Func/Tot ratio
may indicate a potential mis-recognition, and it does
improve both utterance and word mis-recognition pre-
diction.

3.2 Less Useful Features

Features we do not find helpful include information as-
sociated with the minimum length word in the utter-
ance, the fraction of words in an utterance that pos-
sess greater length than the average length word in the
corpus, as well as syntactic features such as a depen-
dency tag assigned to the word. Additional unhelp-
ful features include prosodic features, such as shimmer
and jitter identified by PRAAT (Boersma and Weenink,
2013) and pitch and phrase information extracted from
AuToBI(Rosenberg, 2010) software. Performing a se-
mantic role label of our hypotheses with the software
SENNA (Collobert et al., 2011) also did not provide
helpful semantic features.

System Performance To evaluate performance of
our mis-recognized word classifier, we use the selected
features in 1-stage and 2-stage approaches. First, we
train models for utterance and word classification sep-

Table 2: Features

Cat Specific In Optimal Utt
Feature Set

In Optimal
Wrd Feature
Set

ASR Log Post Score Yes (avg of all
wrds in utt)

Yes (curr wrd)

ASR-
CTX

Log Post Score No Yes (avg of curr
wrd, curr wrd
context, avg of
all wrds in utt)

Lex Wrd length Yes (avg wrd
length in utt)

Yes
(curr,prev,next)

Max Wrd freq No Yes

Utt length Yes Yes

POS Utt location Yes Yes

Word Index No Yes (curr)

Syn POS Tag Yes (unigram
and bigram
count)

Yes
(curr,prev,next)

Func/Cont tag No Yes (curr, prev,
next)

Func/Tot ratio Yes Yes

arately on 80% of the dataset with up-sampling (35%)2

of the incorrect instances as well as with the actual dis-
tribution of incorrect instances in the corpus (20.6% ut-
terances, 6.4% words). We then test these models on
the remaining 20% of the dataset using the 1-stage and
2-stage approach. In the 1-stage approach we test on
20% of the total words in the corpus. In the 2-stage ap-
proach we first test on 20% of the total utterances in the
corpus and then only test on the words in the utterances
labeled as mis-recognized.

4 Results
New Feature Experiments Using our newly con-
structed utterance feature set we are able to boost incor-
rect utterance classification F-measure by 2.2% from
.597 to .610 (see Table 3). The increase in F-measure
for incorrect utterance mis-recognition is due to an in-
crease in incorrect utterance recall from .531 to .555.
There is a slight decrease in incorrect utterance pre-
cision from .682 to .678. Overall classification accu-
racy improves by 2.1% points (absolute) from 81.2%
to 83.3%. Using our newly constructed word feature
set we are able to improve incorrect word classification
F-measure by 3.9% from .620 to .644 (see Table 4). For
incorrect word classification there is an increase in both
mis-recognized word precision and recall; the former
increasing from .678 to .719 and the latter increasing
from .571 to .584. The results for incorrect word clas-
sification represent a statistically significant improve-

2This percentage was derived empirically.
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Table 3: Utterance new feature experiment results
Feature Correct Incorrect % F-Measure Incorr Imp Accuracy

P — R — F P — R — F over ASR Only
ASR .845 — .912 — .877 .682 — .531 — .597 - 81.2%

ASR+LEX+POS+SYN .851 — .906 — .878 .678 — .555 — .610 2.2% 83.3%
Table 4: Word new feature experiment results

Feature Correct Incorrect % F-Measure Incorr Imp Accuracy
P — R — F P — R — F over ASR only

ASR .893 — .930 — .911 .678 — .571 — .620 - 85.5%
ASR+LEX+POS+SYN .897 — .941 — .918 .719 — .584 — .644 3.9% 86.7%

Table 5: 1-stage and 2-stage approach results
Experiment Correct Incorrect Accuracy

P — R — F P — R — F
Maj. Baseline .94 — 1.00 — .97 - — 0 — - 94%

1-stage original .97 — .94 — .96 .39 — .57 — .46 92%
1-stage (35% upsample) .98 — .90 — .94 .31 — .72 — .44 89%

2-stage original .96 — .98 — .97 .51 — .34 — .41 94%
2-stage (35% upsample) .96 — .96 — .96 .41 — .46 — .43 93%

ment3. Overall classification accuracy improves by
1.2% points (absolute) from 85.5% to 86.7%.

1-stage and 2-stage experiments To estimate how
well a dialogue system could perform incorrect word
classification we run our 1-stage and 2-stage ap-
proaches. The 1-stage approaches (with and without
up-sampling) are able to achieve higher recall; while
the 2-stage approaches (with and without up-sampling)
are able to achieve higher precision. The 2-stage re-
sult’s higher precision is not surprising given that this
approach has two chances to filter out correct words
— first with utterance classification and then with
word classification. In our 1-stage approach with up-
sampling we are able to identify almost 3/4 (72%) of
the incorrect words in the corpus (see Table 5). In
our 2-stage approach without up-sampling we are able
to accurately label just over 1/2 (51%) of the total in-
stances we identify as incorrect. In future work we will
experiment with additional features in order to boost
precision for incorrect word classification to a level
suitable for use in the construction of reprise clarifi-
cation questions.

5 Conclusions
We have presented results of machine learning exper-
iments that utilize new features to improve localized
detection of ASR errors to assist spoken dialogue sys-
tem’s production of reprise clarification questions. We
conducted feature selection experiments to find optimal
feature sets to train classifiers for utterance and word
mis-recognition prediction. We find that certain lexi-
cal, positional, and syntactic features improve classi-
fication results over a baseline feature set containing
only ASR posterior score features. We improve incor-
rect F-measure for utterance mis-recognition prediction
by 2.2% by adding utterance length, location, fraction

3χ2test(p < .01)

of function words to total words, average word length,
and unigram and bigram count to the baseline feature
set. By removing average word length as well as uni-
gram and bigram count from this optimal set for utter-
ances and adding the current word’s ASR-context fea-
tures, length, distance from first word, POS tag, Con-
tent/Function tag as well as the length of the current’s
words surrounding 1 or 2 word contexts, we improve
incorrect F-measure for word mis-recognition predic-
tion by 3.9% . We then employ these feature sets in
1-stage and 2-stage approached to obtain our final re-
sults. The 2-stage (no up-sampling) approach yields the
highest precision for detection of word mis-recognition
at 51% while the 1-stage (with 35% up-sampling) ap-
proach yields the highest recall for detection of word
mis-recognition at 72%.

In order to implement this approach in a working
dialog system we would need to increase our word
mis-recognition precision. The presence of false pos-
itives in mis-recognition prediction (correctly recog-
nized words classified as mis-recognized) could lead
to unnecessary clarification requests — potentially de-
railing the dialogue.

In future work we will experiment with additional
corpora as well as with an even more fine-grained ap-
proach to local error detection, looking for deletions,
insertions, and substitutions. Potentially, optimal clas-
sifiers could be found for each of these types of mis-
recognition. If we are able to identify the type of ASR
error as well as its location, we should be able to im-
prove our construction of clarifications questions.

We will also continue our investigation of how to use
reprise clarification questions in SDS. Once we have
detected localized ASR errors we must still refine our
strategies for constructing clarification questions using
this information. We are also studying how appropri-
ate and inappropriate reprise clarification questions are
handled by SDS users.
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Abstract
We model human responses to speech recog-
nition errors from a corpus of human clarifi-
cation strategies. We employ learning tech-
niques to study 1) the decision to either stop
and ask a clarification question or to continue
the dialogue without clarification, and 2) the
decision to ask a targeted clarification question
or a more generic question. Targeted clarifi-
cation questions focus specifically on the part
of an utterance that is misrecognized, in con-
trast with generic requests to ‘please repeat’
or ‘please rephrase’. Our goal is to generate
targeted clarification strategies for handling er-
rors in spoken dialogue systems, when appro-
priate. Our experiments show that linguis-
tic features, in particular the inferred part-of-
speech of a misrecognized word are predictive
of human clarification decisions. A combina-
tion of linguistic features predicts a user’s de-
cision to continue or stop a dialogue with ac-
curacy of 72.8% over a majority baseline accu-
racy of 59.1%. The same set of features predict
the decision to ask a targeted question with ac-
curacy of 74.6% compared with the majority
baseline of 71.8%.1

1 Introduction
Clarification questions are common in human-human
dialogue. They help dialogue participants main-
tain dialogue flow and resolve misunderstandings.
Purver (2004) finds that in human-human dialogue
speakers most frequently use reprise clarification ques-
tions to resolve recognition errors. Reprise clarification
questions use portions of the misunderstood utterance
which are thought to be correctly recognized to target
the part of an utterance that was misheard or misunder-
stood. In the following example from (Purver, 2004),
Speaker B has failed to hear the word toast and so con-
structs a clarification question using a portion of the
correctly understood utterance — the word some — to
query the portion of the utterance B has failed to under-
stand:

1This work was partially funded by DARPA HR0011-12-
C-0016 as a Columbia University subcontract to SRI Interna-
tional.

A: Can I have some toast please?
B: Some?
A: Toast.

Unlike human conversational partners, most di-
alogue systems today employ generic ‘please re-
peat/rephrase’ questions asking a speaker to repeat or
rephrase an entire utterance. Our goal is to introduce
reprise, or targeted, clarifications into an automatic
spoken system. Targeted clarifications can be espe-
cially useful for systems accepting unrestricted speech,
such as tutoring systems, intelligent agents, and speech
translation systems. Using a reprise question, a user
can correct an error by repeating only a portion of
an utterance. Targeted questions also provide natural
grounding and implicit confirmation by signalling to
the conversation partner which parts of an utterance
have been recognized.

In order to handle a misrecognition, the system must
first identify misrecognized words (Stoyanchev et al.,
2012), determine the type of question to ask, and con-
struct the question. In this work, we address two points
necessary for determining the type of question to ask:

• Is it appropriate for a system to ask a clarification
question when a misrecognized word is detected?

• Is it possible to ask a targeted clarification ques-
tion for a given sentence and an error segment?

To answer these questions, we analyze a corpus of hu-
man responses to transcribed utterances with missing
information which we collected using Amazon Me-
chanical Turk (2012). Although the data collection
was text-based, we asked annotators to respond as they
would in a dialogue. In Section 2, we describe related
work on error recovery strategies in dialogue systems.
In Section 3, we describe the corpus used in this exper-
iment. In Section 4, we describe our experiments on
human clarification strategy modelling. We conclude
in Section 5 with our plan for applying our models in
spoken systems.

2 Related work
To handle errors in speech recognition, slot-filling di-
alogue systems typically use simple rejection (“I’m
sorry. I didn’t understand you.”) when they have
low confidence in a recognition hypothesis and ex-
plicit or implicit confirmation when confidence scores
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are higher. Machine learning approaches have been
successfully employed to determine dialogue strate-
gies (Bohus and Rudnicky, 2005; Bohus et al., 2006;
Rieser and Lemon, 2006), such as when to provide
help, repeat a previous prompt, or move on to the next
prompt. Reiser and Lemon (2006) use machine learn-
ing to determine an optimal clarification strategy in
multimodal dialogue. Komatani et al. (2006) propose a
method to generate a help message based on perceived
user expertise. Corpus studies on human clarifications
in dialogue indicate that users ask task-related ques-
tions and provide feedback confirming their hypothesis
instead of giving direct indication of their misunder-
standing (Skantze, 2005; Williams and Young, 2004;
Koulouri and Lauria, 2009). In our work, we model
human strategies with the goal of building a dialogue
system which can generate targeted clarification ques-
tions for recognition errors that require additional user
input but which can also recover from other errors au-
tomatically, as humans do.

3 Data
In our experiments, we use a dataset of human re-
sponses to missing information, which we collected
with Amazon Mechanical Turk (AMT). Each AMT an-
notator was given a set of Automatic Speech Recog-
nition (ASR) transcriptions of an English utterance
with a single misrecognized segment. 925 such utter-
ances were taken from acted dialogues between En-
glish and Arabic speakers conversing through SRI’s
IraqComm speech-to-speech translation system (Akba-
cak et al., 2009). Misrecognized segments were re-
placed by “XXX” to indicate the missing information,
simulating a dialogue system’s automatic detection of
misrecognized words (Stoyanchev et al., 2012). For
each sentence, AMT workers were asked to 1) indi-
cate whether other information in the sentence made
its meaning clear despite the error, 2) guess the miss-
ing word if possible, 3) guess the missing word’s part-
of-speech (POS) if possible, and 4) create a targeted
clarification question if possible. Three annotators an-
notated each sentence. Table 1 summarizes the results.
In 668 (72%) of the sentences an error segment corre-
sponds to a single word while in 276 (28%) of them, an
error segment corresponds to multiple words. For mul-
tiple word error segments, subjects had the option of
guessing multiple words and POS tags. We scored their
guess correct if any of their guesses matched the syn-
tactic head word of an error segment determined from
an automatically assigned dependency parse structure.

We manually corrected annotators’ POS tags if the
hypothesized word was itself correct. After this post-
processing, we see that AMT workers hypothesized
POS correctly in 57.7% of single-word and 60.2% of
multi-word error cases. They guessed words correctly
in 34.9% and 19.3% of single- and multi-word error
cases. They choose to ask a clarification question in
38.3% /47.9% of cases and 76.1%/62.3% of these ques-
tions were targeted clarification questions. These re-

Single-word Agree Multi-word
error error

Total sent 668 (72%) - 276 (28%)
Correct POS 57.7% 62% 60.2%
Correct word 34.9% 25% 19.3%
Ask a question 38.3% 39% 47.9%
Targeted question 76.1% 25% 62.3%

Table 1: Annotation summary for single-word and
multi-word error cases. Absolute annotator agreement
is shown for single-word error cases.

sults indicate that people are often able to guess a POS
tag and sometimes an actual word. We observe that 1)
in a single-word error segment, subjects are better at
guessing an actual word than they are in a multi-word
error segment; and 2) in a multi-word error segment,
subjects are more likely to ask a clarification question
and less likely to ask a targeted question. All three an-
notators agree on POS tags in 62% of cases and on hy-
pothesized words in 25%. Annotators’ agreement on
response type is low — not surprising since there is
more than one appropriate and natural way to respond
in dialogue. In 39% of cases, all three annotators agree
on the decision to stop/continue and in only 25% of
cases all three annotators agree on asking a targeted
clarification question. Figure 1 shows the annotator

Figure 1: Distribution of decisions to ask a question or
continue dialogue without a question.
distribution for asking a clarification question vs. con-
tinuing the dialogue based on hypothesized POS tag. It
indicates that annotators are more likely to ask a ques-
tion than continue without a question when they hy-
pothesize a missing word to be a content word (noun
or adjective) or when they are unsure of the POS of the
missing word. They are more likely to continue when
they believe a missing word is a function word. How-
ever, when they believe a missing word is a verb, they
are more likely to continue, and they are also likely to
identify the missing verb correctly.

Figure 2 shows a distribution of annotator decisions
as to the type of question they would ask. The pro-
portion of targeted question types varies with hypoth-
esized POS. It is more prevalent than confirm and
generic questions combined for all POS tags except
preposition and question word, indicating that annota-
tors are generally able to construct a targeted clarifica-
tion question based on their analysis of the error seg-
ment.
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Figure 2: Distribution of decisions for targeted, confir-
mation, and generic question types.

4 Experiment
We use our AMT annotations to build classifiers for 1)
choice of action: stop and engage in clarification vs.
continue dialogue; and 2) type of clarification ques-
tion (targeted vs. non-targeted) to ask. For the con-
tinue/stop experiment, we aim to determine whether a
system should stop and ask a clarification question. For
the targeted vs. non-targeted experiment, we aim to de-
termine whether it is possible to ask a targeted clarifi-
cation question.2

Using the Weka (Witten and Eibe, 2005) machine
learning framework, we build classifiers to predict
AMT decisions. We automatically assign POS tags to
transcripts using the Stanford tagger (Toutanova and
others, 2003). We compare models built with an au-
tomatically tagged POS for an error word (POS-auto)
with one built with POS guessed by a user (POS-
guess). Although a dialogue manager may not have
access to a correct POS, it may simulate this by pre-
dicting POS of the error. We assign dependency tags
using the AMU dependency parser (Nasr et al., 2011)
which has been optimized on the Transtac dataset.

We hypothesize that a user’s dialogue move depends
on the syntactic structure of a sentence as well as
on syntactic and semantic information about the er-
ror word and its syntactic parent. To capture sentence
structure, we use features associated with the whole
sentence: POS ngram, all pairs of parent-child depen-
dency tags in a sentence (Dep-pair), and all semantic
roles (Sem-presence) in a sentence. To capture the syn-
tactic and semantic role of a misrecognized word, we
use features associated with this word: POS tag, depen-
dency tag (Dep-tag), POS of the parent word (Parent-
POS), and semantic role of an error word (Sem-role).

We first model individual annotators’ decisions for
each of the three annotation instances. We measure
the value that each feature adds to a model, using an-
notators’ POS guess (POS-guess). Next, we model a
joint annotators’ decision using the automatically as-
signed POS-auto feature. This model simulates a sys-
tem behaviour in a dialogue with a user where a system
chooses a single dialogue move for each situation. We
run 10-fold cross validation using the Weka J48 Deci-

2If any annotators asked a targeted question, we assign a
positive label to this instance, and negative otherwise.

sion Tree algorithm.

Feature Description
Count

Word-position beginning if a misrecognized word is
the first word in the sentence, end if it
is the last word, middle otherwise.

Utterance-length number of words in the sentence
Part-of-speech (compare)

POS-auto POS tag of the misrecognized word au-
tomatically assigned on a transcript

POS-guess POS tag of the misrecognized word
guessed by a user

POS ngrams
POS ngrams all bigrams and trigrams of POS tags in

a sentence
Syntactic Dependency

Dep-tag dependency tag of the misrecognized
word automatically assigned on a tran-
script

Dep-pair dependency tags of all (parent, child)
pairs in the sentence

Parent-POS POS tag of the syntactic parent of the
misrecognized word

Semantic
Sem-role semantic role of the misrecognized

word
Sem-presence all semantic roles present in a sentence

Table 2: Features

4.1 Stop/Continue Experiment
In this experiment, we classify each instance in the
dataset into a binary continue or stop decision. Since
each instance is annotated by three annotators, we first
predict individual annotators’ decisions. The absolute
agreement on continue/stop is 39% which means that
61% of sentences are classified into both classes. We
explore the role of each feature in predicting these de-
cisions. All features used in this experiment, except for
the POS-guess feature, are extracted from the sentences
automatically. Variation in the POS-guess feature may
explain some of the difference between annotator deci-
sions.

Features Acc F-measure %Diff
Majority baseline 59.1%
All features 72.8% † 0.726 0.0%

less utt length 72.9% † 0.727 +0.1%
less POS ngrams 72.8% † 0.727 +0.1%
less Semantic 72.6% † 0.724 -0.3%
less Syn. Depend. 71.5% † 0.712 -1.9%
less Position 71.2% † 0.711 -2.0%
less POS 67.9% † 0.677 -6.7%

POS only 70.1% † 0.690 -5.0%
Table 3: Stop/Continue experiment predicting individ-
ual annotator’s decision with POS-guess. Accuracy, F-
measure and Difference of f-measure from All feature.
†indicates statistically significant difference from the
majority baseline (p<.01)

Table 3 shows the results of continue/stop classifica-
tion. A majority baseline method predicts the most fre-
quent class continue and has 59.1% accuracy. In com-
parison, our classifier, built with all features, achieves
72.8% accuracy.
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Next, we evaluate the utility of each feature by re-
moving it from the feature set and comparing the model
built without it with a model built on all features. POS
is the most useful feature, as we expected: when it is
removed from the feature set, the f-measure decreases
by 6.7%. A model trained on the POS-guess feature
alone outperforms a model trained on all other features.
Word position in the sentence is the next most salient
feature, contributing 2% to the f-measure. The syntac-
tic dependency features Syn-Dep, Dep-pair, and Parent
POS together contribute 1.9%.3

Next, we predict a majority decision for each sen-
tence. Table 4 shows the accuracy of this prediction.
A majority baseline has an accuracy of 59.9%. When
we use a model trained on the POS-auto feature alone,
accuracy rises to 66.1%, while a combination of all fea-
tures further increases it to 69.2%.

Features Acc F-measure
Majority baseline 59.9%
POS 66.1% † 0.655
All features 69.2% † 0.687

Table 4: Stop/Continue experiment predicting majority
decision, using POS-auto. †indicates statistically sig-
nificant difference from the majority baseline (p<.01).

4.2 Targeted Clarification Experiment
In this experiment, we classify each instance into tar-
geted or not targeted categories. The targeted category
comprises the cases in which an annotator chooses to
stop and ask a targeted question. We are interested in
identifying these cases in order to determine whether a
system should try to ask a targeted clarification ques-
tion. Table 5 shows the results of this experiment. The
majority baseline predicts not targeted and has a 71.8%
accuracy because in most cases, no question is asked.
A model trained on all features increases accuracy to
74.6%. POS is the most salient feature, contributing
3.8% to the f-measure. All models that use POS fea-
ture are significantly different from the baseline. The
next most salient features are POS ngram and a com-
bination of syntactic dependency features contributing
1% and .5% to the f-measure respectively.

Table 6 shows system performance in predicting a
joint annotators’ decision of whether a targeted ques-
tion can be asked. A joint decision in this experiment
is considered not targeted when none of the annotators
chooses to ask a targeted question. We aim at identi-
fying the cases where position of an error word makes
it difficult to ask a clarification question, such as for a
sentence XXX somebody steal these supplies. Using the
automatically assigned POS (POS-auto) feature alone
achieves an accuracy of 62.2%, which is almost 10%
above the baseline. A combination of all features, sur-
prisingly, lowers the accuracy to 59.4%. Interestingly, a
combination of all features less POS increases accuracy

3All trained models are significantly different from the
baseline. None of the trained models are significantly dif-
ferent from each other.

Features Acc F-measure %Diff
Majority baseline 71.8%
All features 74.6% † 0.734 0.0%
All feature (POS guess)

less Utt length 74.8% † 0.736 +0.3%
less Position 74.9% † 0.731 -0.4%
less Semantic 74.8% † 0.737 +0.4%
less Syn. Depend. 74.2% † 0.730 -0.5%
less POS ngram 74.2% † 0.727 -1.0%
less POS 74.0% 0.706 -3.8%

POS 74.1% † 0.731 -0.4%
Table 5: Targeted/not experiment predicting individ-
ual annotator’s decision with POS-guess. Accuracy, F-
measure and Difference of f-measure from All feature.
†indicates statistically significant difference from the
majority baseline (p<.05)

above the baseline by 7.6% points to 60.1% accuracy.

Features Acc F-measure
Majority baseline 52.5%
POS only 62.2% † 0.622
All features 59.4% † 0.594
All features less POS 60.1% † 0.600

Table 6: Targeted/not experiment predicting majority
decision, using POS tag feature POS-auto. †indicates
statistically significant difference from the majority
baseline.

5 Conclusions and Future Work
In this paper we have described experiments modelling
human strategies in response to ASR errors. We have
used machine learning techniques on a corpus anno-
tated by AMT workers asked to respond to missing in-
formation in an utterance. Although annotation agree-
ment in this task is low, we aim to learn natural strate-
gies for a dialogue system by combining the judge-
ments of several annotators. In a dialogue, as in other
natural language tasks, there is more than one appro-
priate response in each situation. A user does not judge
the system (or another speaker) by a single response.
Over a dialogue session, appropriateness, or lack of it
in system actions, becomes evident. We have shown
that by using linguistic features we can predict the de-
cision to either ask a clarification question or continue
dialogue with an accuracy of 72.8% in comparison with
the 59.1% baseline. The same linguistic features pre-
dict a targeted clarification question with an accuracy
of 74.6% compared to the baseline of 71.8%.

In future work, we will apply modelling of a clari-
fication choice strategy in a speech-to-speech transla-
tion task. In our related work, we have addressed the
problem of automatic correction of some ASR errors
for cases when humans believe a dialogue can continue
without clarification In other work, we have addressed
the creation of targeted clarification questions for han-
dling the cases when such questions are appropriate.
Combining these research directions, we are develop-
ing a clarification component for a speech-to-speech
translation system that responds naturally to speech
recognition errors.
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Abstract
1
 

In this demonstration, we will showcase 

BBN’s Speech-to-Speech (S2S) transla-

tion system that employs novel interac-

tion strategies to resolve errors through 

user-friendly dialog with the speaker. 

The system performs a series of analysis 

on input utterances to detect out-of-

vocabulary (OOV) named-entities and 

terms, sense ambiguities, homophones, 

idioms and ill-formed inputs. This analy-

sis is used to identify potential errors and 

select an appropriate resolution strategy. 

Our evaluation shows a 34% (absolute) 

improvement in cross-lingual transfer of 

erroneous concepts in our English to Ira-

qi-Arabic S2S system. 

1 Introduction 

Great strides have been made in Speech-to-

Speech (S2S) translation systems that facilitate 

cross-lingual spoken communication (Stallard et. 

al., 2011). However, in order to achieve broad 

domain coverage and unrestricted dialog capabil-

ity, S2S systems need to be transformed from 

passive conduits of information to active partici-

pants in cross-lingual dialogs. These active par-

ticipants must detect key causes of communica-

tion failures and recover from them in an effi-

cient, user-friendly manner. 

                                                 
Disclaimer: This paper is based upon work supported by the 

DARPA BOLT Program. The views expressed are those of 

the authors and do not reflect the official policy or position 

of the Department of Defense or the U.S. Government. 
 

Distribution Statement A (Approved for Public Release, 

Distribution Unlimited) 

Our ongoing work on eyes-free S2S systems is 

focused on detecting three types of errors that 

affect S2S systems. First, out-of-vocabulary 

(OOV) words are misrecognized as phonetically 

similar words that do not convey the intended 

concept. Second, ambiguous words such as hom-

ophones and homographs often lead to recogni-

tion and translation errors. Also, unseen idioms 

produce erroneous literal translations. Third, user 

errors such as mispronunciations and incomplete 

utterances lead to ASR errors. We will demon-

strate our interactive error resolution strategies to 

recover from each of these error types. 

Section 2 presents our system architecture. 

Section 3 describes nine interactive error resolu-

tion strategies that are the focus of this demon-

stration. An evaluation of our English to Iraqi-

Arabic S2S system is summarized in Section 4. 

2 System Architecture 

 
Figure 1 shows the architecture of our two-way 

 
 

Figure 1: BBN S2S System with Error Recovery 

in English to Iraqi-Arabic direction 
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English to Iraqi-Arabic S2S translation system. 

In the English to Iraqi direction, the initial Eng-

lish ASR hypothesis and its corresponding trans-

lation are processed through a series of analysis 

(e.g. parsing, sense disambiguation) and error 

detection (e.g. ASR/MT confidence, Homo-

phone/Idiom/Named-Entity detection) modules. 

A detailed discussion on the various error detec-

tion modules can be found in Prasad et. al. 

(2012). A novel Inference Bridge data structure 

supports storage of these analyses in an intercon-

nected and retraceable manner. The potential 

erroneous spans are identified and ranked in an 

order of severity using this data structure. 

Based on the top ranked error, one of nine er-

ror resolution strategies (discussed in Section 3), 

is selected and executed. Each strategy is com-

posed of a sequence of steps which include ac-

tions such as TTS output, user input processing, 

translation (unconstrained or constrained) and 

other error type specific operations. This se-

quence is hand-crafted to efficiently recover 

from an error. Following a multi-expert design 

(Turunen and Hakulinen, 2003), each strategy 

represents an error-specific expert. 

3 Error Resolution Strategies 

Figure 2 illustrates the sequence of steps for the 

nine interaction strategies used by our system.  

The OOV Name and ASR Error strategies are 

designed to interactively resolve errors caused by 

OOV words (names and non-names) as well as 

other generic ASR and MT errors. When a span 

of words is identified as an OOV named-entity, 

the user is asked to confirm whether the audio 

segment corresponding to those words is a name. 

Upon user confirmation, the audio segment is 

spliced into the output target language utterance. 

This is based on the principle that audio seg-

ments containing names are understandable 

across languages. 

In the case where a generic erroneous span is 

detected, the user is asked to rephrase the utter-

ance. This strategy is suitable for handling multi-

ple error types including OOVs, mispronuncia-

tions, and generic ASR/MT errors. Additionally, 

the ASR Errors strategy has been designed to 

 

Figure 2. Interaction Strategies for Error Resolution 
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capture a large fraction of the OOV name false 

negatives (i.e. missed detections) by allowing the 

user to indicate if the identified erroneous span is 

a name. Because of the confusability between the 

errors handled by these two strategies, we have 

found it beneficial to maintain reciprocity be-

tween them to recover from all the errors handled 

by each of these strategies. 

The four Word Sense (WS) disambiguation 

strategies resolve sense ambiguity errors. The 

underlying principle behind these strategies is 

that the sense of an ambiguous word must be 

confirmed by at least two of four possible inde-

pendent sources of evidence. These four sources 

include (a) the translation system (sense lookup 

corresponding to phrase pair associated with the 

ambiguous word), (b) a list of source-language 

contextual keywords that disambiguate a word, 

(c) the sense predicted by a sense-disambiguation 

model and (d) sense specified by the user. Be-

sides the objective to minimize user effort, these 

multiple sources are necessary because not all of 

them may be available for every ambiguous 

word. Case 1: No Mismatch strategy corresponds 

to the case where sources (a) and (c) agree. Case 

2: Filtered strategy corresponds to the case 

where (a) and (b) agree. In both of these cases, 

the system proceeds to present the translation to 

the Arabic speaker without performing any error 

resolution. If these three sources are unable to 

resolve the sense of a word, the user is asked to 

confirm the sense identified by source (a) as il-

lustrated in Case 3: Mismatch strategy. If the 

user rejects that sense, a list of senses is present-

ed to the user (Case 4: Backoff strategy). The 

user-specified sense then drives constrained de-

coding to obtain an accurate translation. 

Albeit simpler, the two homophone resolution 

strategies mimic the word sense disambiguation 

strategies in principle and design. The observed 

homophone variant produced by the ASR must 

be confirmed either by a homophone disambigu-

ation model (Case 1: No Mismatch) or by the 

user (Case 2: Mismatch). The input utterance is 

modified (if needed) by substituting the resolved 

homophone variant in the ASR output which is 

then translated and presented to the Arabic 

speaker. 

Strategies for resolving errors associated with 

idioms and incomplete utterances primarily rely 

on informing the user about these errors and elic-

iting a rephrasal. For idioms, the user is also giv-

en the choice to force a literal translation when 

appropriate. 

Following a mixed-initiative design, at all 

times, the user has the ability to rephrase their 

utterance as well as to force the system to pro-

ceed with the current translation. This allows the 

user to override system false alarms whenever 

suitable. The interface also allows the user to 

repeat the last system message which is helpful 

for comprehension of some of the synthesized 

system prompts for unfamiliar users. 

4 Summary of Evaluation 

Our S2S system equipped with the error resolu-

tion strategies discussed in the previous section 

was evaluated on 103 English utterances (25 

unique utterances repeated by multiple speakers). 

Each utterance was designed to elicit one of the 

error types listed in Section 1. 

The ASR word error rate for these utterances 

was 23%. The error detection components were 

able to identify 59% of these errors and the cor-

responding error resolution strategies were cor-

rectly triggered. 

The erroneous concepts in 13 of the 103 utter-

ances (12.6%) were translated without any error. 

Using the error resolution strategies, an addition-

al 34% of the erroneous concepts were accurate-

ly translated. This increased precision is 

achieved at the cost of user effort. On average, 

the strategies needed 1.4 clarifications turns per 

utterance. 

Besides focusing on improving the error de-

tection and resolution capabilities, we are cur-

rently working on extending these capabilities to 

two-way S2S systems. Specifically, we are de-

signing interactive strategies that engage both 

users in eyes-free cross-lingual communication. 
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Abstract 

This demo paper describes our Artificial Intel-
ligent Dialogue Agent (AIDA), a dialogue 
management and orchestration platform under 
development at the Institute for Infocomm Re-
search. Among other features, it integrates dif-
ferent human-computer interaction engines 
across multiple domains and communication 
styles such as command, question answering, 
task-oriented dialogue and chat-oriented dia-
logue. The platform accepts both speech and 
text as input modalities by either direct micro-
phone/keyboard connections or by means of 
mobile device wireless connection. The output 
interface, which is supported by a talking ava-
tar, integrates speech and text along with other 
visual aids. 

1 Introduction 

Some recent efforts towards the development of 
a more comprehensive framework for dialogue 
supported applications include research on multi-
domain or multi-task dialogue agents (Komatani 
et. al 2006, Lee et. al 2009, Nakano et. al 2011, 
Lee et. al 2012). With this direction in mind, our 
Artificial Intelligent Dialogue Agent (AIDA) has 
been created aiming the following two objec-
tives: (1) serving as a demonstrator platform for 
showcasing different dialogue systems and relat-
ed technologies, and (2) providing an experi-
mental framework for conducting research in the 
area of dialogue management and orchestration. 

The main objective of this paper is to present 
and describe the main characteristics of AIDA. 
The rest of the paper is structured as follows. 
First, in section 2, a description of APOLLO, the 
software integration platform supporting AIDA 
is presented. Then, in section 3, the main features 
of AIDA as a dialogue management and orches-
tration platform are described, and a real exam-
ple of human interaction with AIDA is reported. 
Finally, in section 4, our conclusions and future 
work plans are presented.  

2 The APOLLO Integration Platform 

APOLLO (Jiang et al. 2012) is a component 
pluggable dialogue framework, which allows for 
the interconnection and control of the different 
components required for the implementation of 
dialogue systems. This framework allows for the 
interoperability of four different classes of com-
ponents: dialogue (ASR, NLU, NLG, TTS, etc.), 
managers (vertical domain-dependent task man-
agers), input/output (speech, text, image and vid-
eo devices), and backend (databases, web crawl-
ers and indexes, rules and inference engines). 

 The different components can be connected to 
APOLLO either by means of specifically created 
plug-ins or by using TCP-IP based socket com-
munications. All component interactions are con-
trolled by using XML scripts. Figure 1 presents a 
general overview of the APOLLO framework. 

  

 
Figure 1: The APOLLO framework 
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3 Main Features of AIDA  

AIDA (Artificial Intelligent Dialogue Agent) is a 
dialogue management and orchestration plat-
form, which is implemented over the APOLLO 
framework. In AIDA, different communication 
task styles (command, question answering, task-
oriented dialogue and chatting) are hierarchically 
organized according to their atomicity; i.e. more 
atomic (less interruptible) tasks are given prefer-
ence over less atomic (more interruptible) tasks.  

In the case of the chatting engine, as it is the 
least atomic task of all, it is located in the bottom 
of the hierarchy. This engine also behaves as a 
back-off system, which is responsible for taking 
care of all the user interactions that other engines 
fail to resolve properly.    

In AIDA, a dialogue orchestration mechanism 
is used to simultaneously address the problems 
of domain switching and task selection. One of 
the main components of this mechanism is the 
user intention inference module, which makes 
informed decisions for selecting and assigning 
turns across the different individual engines in 
the platform.  

Domain and task selection decisions are made 
based on three different sources of information: 
the current user utterance, which includes stand-
ard semantic and pragmatic features extracted 
from the user utterance; engine information 
states, which takes into account individual in-
formation states from all active engines in the 
platform; and system expectations, which is con-
structed based on the most recent history of user-
system interactions, the task hierarchy previously 
described and the archived profile of the current 
user interacting with the system. 

Our current implementation of AIDA inte-
grates six different dialogue engines: (BC) a basic 
command application, which is responsible for 
serving basic requests such as accessing calendar 
and clock applications, interfacing with search 
engines, displaying maps, etc.; (RA) a reception-
ist application, which consists of a question an-
swering system for providing information about 
the Fusionopolis Complex; (IR) I2R information 
system, which implements as question answering 
system about our institute; (FR) a flight reserva-
tion system, which consists of a frame-based dia-
logue engine that uses statistical natural language 
understanding; (RR) a restaurant recommenda-
tion system, which implements a three-stage 
frame-based dialogue system that uses rule-base 
natural language understanding, and (CH) our 
IRIS chatting agent (Banchs and Li, 2012). 

Regarding input/output modalities, speech and 
text can be used as input channels for user utter-
ances. Direct connections via microphone and 
keyboard are supported, as well as remote con-
nections via mobile devices.  

Additionally, audio and video inputs are used 
to provide AIDA with user identification and 
tracking capabilities. In the first case, speaker 
identification techniques are used to compare the 
voice profile of the current speaker with a set of 
users already known by the system. In the second 
case, face detection and tracking are used in 
combination with sound localization to deter-
mine what the current speaker’s location is when 
dealing with multi-party dialogue scenarios. 

The main output of AIDA is composed of a 
browser interface in which several frames, in-
cluding different visual elements, are presented 
along with a talking avatar. The different visual 
elements include a banner, a text display and a 
general purpose frame for displaying different 
html files, images or URL’s as required.  

For avatar and text-to-speech, AIDA relies on 
the SitePal API (SitePal 2013). This API allows 
for controlling both the avatar speech and gaze. 
Speech functionalities are used for generating a 
spoken form of the system’s output (which is 
also displayed as text in one of the frames of the 
interface) and gaze functionalities are used in 
combination with face tracking to direct the ava-
tar attention to the user who is speaking.    

Figure 2 illustrates the main output interface 
of AIDA. 

 

 
Figure 2: AIDA’s output interface. 
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Finally, an actual example of a user interaction 
with the AIDA platform is presented in Table 1. 
In the table, the following information is provid-
ed for each of the turns composing the dialogue: 
the user utterance, the corresponding system re-
sponse, the engine that was responsible for gen-
erating the response, and the action taken by the 
system (if any action was taken).  
 
Turn Speaker Utterance/Action 

1 USER Good morning, how are you? 
AIDA-CH How can I help you? 

2 
USER Can you help me to book a flight? 

AIDA-FR Flight reservation, how can I help you? 
(action) Displays flight reservation main screen 

3 USER I want to fly from Singapore to Tokyo 
AIDA-FR What day do you want to leave? 

4 USER Next Monday in the evening 
AIDA-FR What day do you want to return? 

5 
USER The second of April in the morning 

AIDA-FR Here is your itinerary 
(action) Displays flight schedule on the screen 

6 

USER Is there any coffee shop nearby? 

AIDA-RA There are three coffee shops in this buil-
ding: Jass Café, Starbucks and Ya Kun 

(action) Shows logos of retrieved coffee shops  

7 USER Do you drink coffee? 
AIDA-CH Coffee? 

8 USER Yes, coffee 
AIDA-CH No 

9 USER Why not? 
AIDA-CH Well, for one thing you can’t spell.  

10 

USER Please suggest a good Italian restaurant 

AIDA-RR What area of the city do you want me to 
search for? 

(action) Displays restaurant system main screen 

11 

USER Near Sentosa 

AIDA-RR 

Ok, I have found one restaurant for you: 
Alkaff Mansion Ristorante. Do you 
want more information or do you want 
to make a reservation? 

(action) Displays http://www.alkaff.com.sg/  

12 
USER Yes please 

AIDA-RR Ok, I will do a reservation for you! And, 
how many guests is this reservation for? 

13 
USER Only two persons 

AIDA-RR And, will you be interested in dinner or 
lunch?  

14 
USER Please make it for tonight 

AIDA-RR Your reservation has been made. 
(action) Displays reservation details 

15 USER Great, thank you 
AIDA-CH You are welcome 

Table 2: Example of a user interaction with AIDA 

4 Conclusions and Future Work 

In this demo paper we have presented AIDA (Ar-
tificial Intelligent Dialogue Agent), the dialogue 
management and orchestration platform currently 
under development at the Institute for Infocomm 
Research in Singapore.  

AIDA integrates different communication task 
styles (command, question answering, dialogue 
and chat) into a single conversational agent. It 
also combines speech recognition and synthesis, 
image processing and avatar technologies to im-
prove the user-system interaction experience. 

Our future plans include the incorporation of 
more vertical applications into the platform, as 
well as the integration of machine translation 
engines to develop multilingual capabilities. 

Demonstration Plan 

During the SIGDIAL demo presentation, the fol-
lowing functionalities will be demonstrated: text 
and speech input; dialogue orchestration among 
receptionist, flight reservation, I2R information 
system, restaurant booking and chatting agent; 
and avatar-supported speech and visual output 
interface. For the case of speech input and ava-
tar-supported output, the use of these technolo-
gies is subject to the availability of internet con-
nection at the location of the demo.  
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Abstract

We summarize the status of an ongoing
project to develop and evaluate a compan-
ion for isolated older adults. Four key
scientific issues in the project are: em-
bodiment, interaction paradigm, engage-
ment and relationship. The system ar-
chitecture is extensible and handles real-
time behaviors. The system supports mul-
tiple activities, including discussing the
weather, playing cards, telling stories, ex-
ercise coaching and video conferencing. A
live, working demo system will be pre-
sented at the meeting.

1 Introduction

The Always-On project1 is a four-year effort, cur-
rently in its third year, supported by the U.S. Na-
tional Science Foundation at Worcester Polytech-
nic Institute and Northeastern University. The goal
of the project is to create a relational agent that
will provide social support to reduce the isolation
of healthy, but isolated older adults. The agent is
“always on,” which is to say that it is continuously
available and aware (using a camera and infrared
motion sensor) when the user is in its presence and
can initiate interaction with the user, rather than,
for example requiring the user login to begin in-
teraction. Our goal is for the agent to be a natural,
human-like presence that “resides” in the user’s
dwelling for an extended period of time. Begin-
ning in the fall of 2013, we will be placing our
agents with about a number of users for a month-
long, 4 arm, evaluation/comparison study.

1http://www.cs.wpi.edu/˜rich/always

Some%reply!

Another%reply%

Something%else%

Me%too!!

I’ve%got%great%%cards%

Some%reply!

Another%reply%

Something%else%

Some%reply!

Another%reply%

Something%else%

Just%%play!%

I’ve%got%terrible%cards!%

Figure 1: Virtual agent interface — “Karen”

Our project focuses on four key scientific is-
sues:

• the embodiment of the agent,

• the interaction paradigm,

• the engagement between the user and the
agent, and

• the nature of the social relationship between
the user and the agent.

1.1 Embodiment

We are experimenting with two forms of agent em-
bodiment. Our main study will employ the vir-
tual agent Karen, shown in Figure 1, that comes
from the work of Bickmore et al. (Bickmore et
al., 2005). Karen is a human-like agent animated
from a cartoon-shaded 3D model. She is shown
in Figure 1 playing a social game of cards with
user. Notice that user input is via a touch-screen
menu. Also, the speech bubble does not appear
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in the actual interface, which uses text-to-speech
generation.

We are also planning an exploratory study sub-
stituting the Reeti2 robot, shown in Figure 2,
for Karen, but otherwise keeping the rest of the
system (i.e., the menus, text-to-speech and other
screen graphics) as much the same as possible.
One big difference we expect is that the effect of
face tracking with the robotic agent will be much
stronger than with Karen. On the other hand, be-
cause Reeti is not as human-like as Karen, it is
possible that it will not be as well accepted overall
as Karen.

1.2 Interaction Paradigm

The main interaction paradigm in our system is
conversation, and in particular, dialog. The agent
makes its contributions to the dialog using speech,
and the user chooses his/her contribution from a
menu of utterances provided on the touch screen.
Dialogs evolve around various activities and can
extend for quite a long time (up to five or ten min-
utes) if the user chooses to continue the conversa-
tion. Dialog models can be created using whatever
system that the system designer chooses. In our
work, we use models that are scripting formats,
a Java state machine model based on adjacency
pairs or created with the dialog tool Disco (Rich
and Sidner, 2012). This variety of models makes
our system more flexible for system designers.

The agent is not designed to accept speech input
for several reasons:

• lack of voice models for older adults;

• no reliable means to circumscribe the collec-
tion of utterances that the system could un-
derstand;

• the wide range of activities to talk about with
the agent results in a huge number of utter-
ance structures, semantic structures and pos-
sible intentions. We doubt there are existing
speech-to-utterance semantics systems avail-
able to support such a plethora of choices
with high reliability. As our project is not
about spoken language understanding, we
opted not to take on this burden.

Some of the activities between user and agent
involve additional on-screen graphics, such as the

2http://www.reeti.fr

card game shown in Figure 1, or a Week-At-A-
Glance

TM
style planning calendar. When playing

cards together, the user is allowed to directly ma-
nipulate the cards on-screen. For the calendar,
the user may only do deictic gestures. All other
information is handled through dialog. We have
thus eschewed other traditional GUI methods us-
ing icons, pull-down lists, etc., in favor of using
speech and menu dialog interaction whenever pos-
sible. The other exception, like direct manipula-
tion of cards on-screen, is a virtual keyboard to
allow typing in of proper names of people and
places. Our motivation for this design choice is
to reinforce the relationship between the user and
the agent, and to simplify the interaction in com-
parison to standard GUIs.

1.3 Engagement

Our system continu-

Figure 2: Robotic
interface — “Reeti”

ously maintains a model
of the state of engage-
ment (Sidner et al., 2005)
between the user and the
agent. For example, when
the agent senses nearby
motion (via infrared) fol-
lowed by the appearance
of a face in its vision
system, it decides that the
user is initiating engagement. Disengagement
can come about at the natural conclusion of
the conversation or when the user leaves for an
unexpected reason, e.g., to answer a ringing door
bell. Because our agent cannot understand sounds
in the environment, it may not know why the user
has disengaged, but it does have simple strategies
for dealing with unexpected interruptions. Gen-
erally, the agent does not initiate disengagement,
although it may attempt to hurry the conclusion
of a session if some event in the user’s calendar is
about to start.

Since the user and agent have conversations
over an extended period of time, it is natural to
consider that they have some kind of social re-
lationship (Bickmore and Schulman, 2012; Kidd
and Breazeal, 2007). To reason about this rela-
tionship, we have implemented a planning system
(Coon et al., 2013) that decides which activities
are appropriate to suggest to the user each time
they interact (in what we call a session). This plan-
ning system uses a relationship model based on
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the closeness between the agent and user. Their
closeness increases as they do activities together.
Closeness decreases when the user and agent do
not interact for a period of time, such as a few
days.

Each available activity has a required closeness
in order to be undertaken. Only those activities
whose required closeness is less than or equal to
the current closeness between the user and agent
will be suggested for the current session. Activi-
ties that, although suggested, do not actually occur
(due to user choice or other reasons) are reported
to the relationship planning system for planning
the next session.

2 Activities for User and Agent

We will demonstrate our operational system with a
several of the activities that the user and agent can
do together. In total, we will have more than ten
different activities including: discuss the weather,
learn about the activities to do with the agent, play
a social game of cards, talk about family/friends,
tell a life story to the agent, promote exercise,
promote nutrition, hear a humorous tale from the
agent, get health tips from the agent, speak with
a friend/family member via Skype

TM
(with all the

details of SKYPE managed by the agent), and
manage a personal calendar for the user.

A typical interaction with the agent might start
with some greetings (specific to the time of day)
and then some discussion of the weather. The
weather discussion can be as short as today’s
weather forecast or extend to the next day, weather
in other cities, and weather where friends or fam-
ily live. At the user’s choice, weather might be fol-
lowed by a social game of cards where the agent’s
and user’s hands in the game and the way the game
is played out are commented upon. If the user
and agent are somewhat well acquainted, there-
after might follow discussion of the user’s family
and friends. For each person that agent has learned
about, the agent might ask:

Figure 3 shows an excerpt from a menu-based
interaction in our currently running system. Fol-
lowing ths discussion of family and friends the
user might opt to end the conversation or continue
with other activities such as the calendaring sys-
tem, hearing some health tips from the agent, and
so on.

Agent: So how is Mary doing?
• I don’t want to talk about her today.
• I’m done talking about my family and friends.
• Overall pretty good.
• Not so great. ⇐User

Agent: Oh, what’s wrong?
• She is ill.
• She had an accident.
• She lost a family member. ⇐User
• She is pretty lonely.
• She is postponing a visit to me.

Agent: That’s very sad.

Figure 3: Example menu-based interaction.
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Abstract

We demonstrate a conversational interface
that assists pedestrian users in navigat-
ing within urban environments and acquir-
ing tourist information by combining spo-
ken dialogue system, question-answering
(QA), and geographic information sys-
tem (GIS) technologies. In contrast to
existing mobile applications which treat
these problems independently, our An-
droid agent addresses the problem of navi-
gation and touristic question-answering in
an integrated fashion using a shared dia-
logue context with multiple interleaved di-
alogue threads. In this paper, we present
the architecture and features of our lat-
est system, extended from an earlier ver-
sion which was built and evaluated with
real users (Janarthanam et al., 2013). The
new features include navigation based on
visible landmarks, navigation adapted to
the user’s previous route knowledge, and
tourist information pushing based on vis-
ible and proximal points-of-interest. The
system also uses social media to infer
“popularity” of geographical entities.

1 Introduction

We demonstrate a conversational interface that ad-
dresses the problems of pedestrian navigation and
Question Answering (QA) in urban environments,
which is an extended version of the system eval-
uated in (Janarthanam et al., 2013). Our system
brings together Spoken Dialogue Systems (SDS)
and Question Answering (QA) with Geographic
Information Systems (GIS) for user positioning
and tracking, city modelling and urban visibility
modelling. There has been little prior work that
addresses these problems - navigation, visibility,
and tourist information provision - in an integrated

way. By navigation, we refer to the problem of
finding appropriate destinations to go to and the
task of wayfinding to reach them (Golledge, 1992;
Raubal and Winter, 2002) and by tourist informa-
tion provision we refer to the problem of meet-
ing the informational needs of a user about enti-
ties such as museums, statues, famous personal-
ities, etc. With the proliferation of smartphones,
there has been a number of mobile apps developed
to address these problems. However, these apps
have the following problems: first, they demand
the user’s visual attention because they predom-
inantly present information on a mobile screen.
This can be dangerous in urban environments, as
well as being distracting. Second, these apps ad-
dress the problems of navigation and tourist infor-
mation independently and do not employ a shared
interaction context. This means that users cannot
switch between tourist information and navigation
tasks in a natural and fluid manner.

User1: Take me to the National Museum.

System2: The National Museum is about 300 meters away ...

System3: At the KFC, turn left on to South Bridge ...

System4 : Near you is the statue of David Hume.

User2: Who is David Hume.

System5: David Hume was a Scottish philosopher....

User3: Tell me more about David Hume.

System6: He was one of the most important figures in.. ...

System7: You should be able to see the museum in front of you.

User4: Tell me more about the museum.

System8: The National Museum of Scotland is a....

Table 1: An example interaction with SpaceBook

In contrast to existing mobile apps, we present
a system that has a speech-only interface and ad-
dresses navigation and QA in an integrated way.

Table 1 presents an example interaction with
our system showing the integrated use of navi-
gation and question-answering capabilities. Ut-
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terance System4-8 shows the system’s capability
to push information from the QA system about
nearby points-of-interest (PoI) during a navigation
task, which the user can then follow-up on (in ut-
terances User2 and User3). The final 3 utterances
show a natural switch between navigation to an en-
tity and QA about that entity.

2 Related work

Mobile applications such as Siri, Google Maps
Navigation, Sygic, etc. address the problem of
navigation while applications like Triposo, Guide-
pal, Wikihood, etc. address the problem of tourist
information by presenting the user with descrip-
tive information about various points of interest
(PoI) in the city. While some exploratory applica-
tions present snippets of information about a pre-
compiled list of PoI, others applications dynam-
ically generate a list of PoI arranged based on
their proximity to the users. Users can also ob-
tain specific information about PoI using Search
applications. Also, since these navigation and ex-
ploratory/search applications do not address both
problems in an integrated way, users need to
switch between them and therefore lose interac-
tion context.

While most applications address these two
problems independently, some like Google Now,
Google Field Trip, etc, mix navigation with ex-
ploration. However, such applications present in-
formation primarily visually on the screen for the
user to read. In contrast, our system has the objec-
tive of keeping the user’s cognitive load low and
preventing users from being distracted (perhaps
dangerously so) from walking in the city (Kray et
al., 2003). Also, our system allows users to inter-
leave the two sub-tasks seamlessly and can keep
entities discussed in both tasks in shared context
(as shown in Table 1).

Several systems have addressed the issue of
pedestrian navigation (Malaka and Zipf, 2000;
Dale et al., 2003; Heinroth and Buhler, 2008).
Some dialogue systems deal with presenting in-
formation concerning points of interest (Ko et al.,
2005; Misu and Kawahara, 2007; Kashioka et al.,
2011). In contrast to all these earlier work, we
demonstrate a system that deals with both naviga-
tion and tourist information issues in an integrated
fashion.

Figure 1: System Architecture

3 Multithreaded dialogue management

The architecture of the current system is shown
in figure 1. The Interaction Manager (IM) is
the central component of this architecture, which
provides the user with navigational instructions,
pushes PoI information and manages QA ques-
tions. It receives the user’s input in the form of
a dialogue act (DA) from the ASR module and
the user’s location (latitude and longitude), orien-
tation and speed from the Pedestrian Tracker mod-
ule. Based on these inputs and the dialogue con-
text, the IM responds with a system output dia-
logue act. The Interaction Manager manages the
conversation using five coversational threads: di-
alogue control, response, navigation, question an-
swering, and PoI pushing. These different threads
represent the state of different dimensions of the
user-system conversation that interleave with each
other. Each of these threads generates a dialogue
action based on a dialogue policy. A dialogue pol-
icy is a mapping between dialogue states and dia-
logue actions, which are semantic representations
of what the system wants to say next. Dialogue
actions from the five threads are stored in five sep-
arate queues.

The queues are assigned priorities that decide
the order in which items from the queues will
be popped. For instance, informing the user of
a PoI could be delayed if the user needs to be
given an instruction to turn at the junction he is
approaching. For this reason, priority is assigned
to dialogue threads as follows.
Priority 1. Dialogue control (calibration phase,
repeat request, clarifications etc)
Priority 2. Responding to user requests
Priority 3. System initiated navigation task actions
Priority 4. Responses to User initiated QA actions
Priority 5. PoI Push actions
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Dialogue control The IM initiates the conversa-
tion with a calibration phase where the user’s ini-
tial location and orientation are obtained. In this
phase, the IM requests the user to walk a few yards
so that the pedestrian tracker can sense the user’s
location and orientation. During the course of the
coversation, the IM uses this thread to manage
repeat requests, issues with unparsed user utter-
ances, utterances that have low ASR confidence,
and so on. The dialogue control thread is used to
manage reference resolution in cases where refer-
ring expressions are underspecified.

Navigation The IM identifies the location of the
destination entity and queries the City Model for a
route plan. The plan provides information such as
numbers of exits at junctions, the exit number the
user should take, turn angle, popularity index of
the street, and the slope of the road. In an attempt
to adapt the route instructions to user route knowl-
edge, the IM first picks the most popular street in
the plan and asks the users if they can get to the
street on their own. Also, the IM queries the Visi-
bility Engine (VE) for highly salient visible land-
marks (computed using Flickr tags) that can used
to direct the user. Instructions based on visible
landmarks are given whenever possible.

Question Answering The system also answers
ad hoc questions from the user (e.g. “Who is David
Hume?”, “What is the Old College?”, etc). These
are sent to the QA server and answered based on
responses from the QA server. The dialogue pol-
icy here is to answer the user’s question with the
first snippet available and ask the user to request
for more if interested.

Pushing PoI Information When the user is mo-
bile, the IM identifies points of interest on the
route based on two factors: proximity and visibil-
ity. Proximity push is done by checking for PoIs
near the user using high-scoring ones when there
are many, based on tourist popularity ratings in the
City Model. Visibility push is done by querying
the VE for salient entities visible to the user that
may be worth pushing. The dialogue policy is to
introduce the PoI entity along with visual descrip-
tors if available. The IM queries the QA server for
snippets on entity and if available, pushes them the
first snippet to the user. The user is encouraged to
ask for more if interested.

4 Conclusion

We demonstrate a mobile conversational system
to support pedestrian users in navigation and
question-answering tasks in urban environments.
The system is a speech-only interface and inter-
leaves navigation and tourist information in an in-
tegrated way, using a shared dialogue context. For
example, using the navigational context, our sys-
tem can push point-of-interest information which
can then initiate touristic exploration tasks using
the QA module. An evaluation of an earlier ver-
sion was reported in (Janarthanam et al., 2013).
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Abstract

The Parlance system for interactive
search processes dialogue at a micro-
turn level, displaying dialogue phe-
nomena that play a vital role in hu-
man spoken conversation. These di-
alogue phenomena include more nat-
ural turn-taking through rapid sys-
tem responses, generation of backchan-
nels, and user barge-ins. The Par-
lance demonstration system differen-
tiates from other incremental systems
in that it is data-driven with an infras-
tructure that scales well.

1 Introduction

The Parlance system provides interactive
search through a Spoken Dialogue System
(SDS). This SDS aims to be incremental to al-
low for more natural spoken interaction. Tra-
ditionally, the smallest unit of speech process-
ing for interactive systems has been a full ut-
terance with strict, rigid turn-taking. The
Parlance architecture, however, is an incre-
mental framework that allows for processing
of smaller ‘chunks’ of user input, which en-
ables one to model dialogue phenomena such
as barge-ins and backchannels. This work is
carried out under the FP7 EC project Par-
lance 1, the goal of which is to develop inter-
active search through speech in multiple lan-
guages. The domain for the demonstration
system is interactive search for restaurants in
San Francisco. An example dialogue is given
in Table 1.

∗Authors are in alphabetical order
1http://www.parlance-project.eu

SYS Thank you for calling the Parlance Restaurant
system. You may ask for information by cuisine
type, price range or area. How may I help you?

USR I want to find an Afghan restaurant.........which is
in the cheap price range.

SYS .......................................................[uhuhh]........
The Helmand Palace is a cheerful setting for au-
thentic Afghan cuisine.

USR What is the address and phone number?
SYS The address 2424 Van Ness Ave ....

Table 1: Example dialogue excerpt for restaurant in-
formation in San Francisco

2 Background

Previous work includes systems that can deal
with ‘micro-turns’ (i.e. sub-utterance process-
ing units), resulting in dialogues that are more
fluid and responsive. This has been backed up
by a large body of psycholinguistic literature
that indicates that human-human interaction
is in fact incremental (Levelt, 1989).
It has been shown that incremental dia-

logue behaviour can improve the user experi-
ence (Skantze and Schlangen, 2009; Baumann
et al., 2011; Selfridge et al., 2011) and en-
able the system designer to model several di-
alogue phenomena that play a vital role in
human discourse (Levelt, 1989) but have so
far been absent from systems. These dialogue
phenomena that will be demonstrated by the
Parlance system include more natural turn-
taking through rapid system responses, gener-
ation of backchannels and user barge-ins. The
system differentiates from other incremental
systems in that it is entirely data-driven with
an infrastructure that potentially scales well.

3 System Architecture

Figure 1 gives an overview of the Par-
lance system architecture, which maintains
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Figure 1: Overview of the Parlance system
architecture

the modularity of a traditional SDS while at
the same time allowing for complex interaction
at the micro-turn level between components.
Each component described below makes use

of the PINC (Parlance INCremental) dialogue
act schema. In this scheme, a complete dia-
logue act is made up of a set of primitive di-
alogue acts which are defined as acttype-item
pairs. The PINC dialogue act scheme supports
incrementality by allowing SLU to incremen-
tally output primitive dialogue acts whenever
a complete acttype-item pair is recognised with
sufficient confidence. The complete dialogue
act is then the set of these primitive acts out-
put during the utterance.

3.1 Recognition and Understanding

The Automatic Speech Recogniser (ASR) and
Spoken Language Understanding (SLU) com-
ponents operate in two passes. The audio in-
put is segmented by a Voice Activity Detec-
tor and then coded into feature vectors. For
the first pass of the ASR2, a fast bigram de-
coder performs continuous traceback generat-
ing word by word output. During this pass,
while the user is speaking, an SLU module
called the “segment decoder” is called incre-

2http://mi.eng.cam.ac.uk/research/dialogue/
ATK_Manual.pdf

mentally as words or phrases are recognised.
This module incrementally outputs the set of
primitive dialogue acts that can be detected
based on each utterance prefix. Here, the ASR
only provides the single best hypothesis, and
SLU only outputs a single set of primitive dia-
logue acts, without an associated probability.
On request from the Micro-turn Interaction

Manager (MIM), a second pass can be per-
formed to restore the current utterance using a
trigram language model, and return a full dis-
tribution over the complete phrase as a con-
fusion network. This is then passed to the
SLU module which outputs the set of alter-
native complete interpretations, each with its
associated probability, thus reflecting the un-
certainty in the ASR-SLU understanding pro-
cess.

3.2 Interaction Management

Figure 1 illustrates the role of the Micro-turn
Interaction Manager (MIM) component in the
overall Parlance architecture. In order to
allow for natural interaction, the MIM is re-
sponsible for taking actions such as listening to
the user, taking the floor, and generating back-
channels at the micro-turn level. Given various
features from different components, the MIM
selects a micro-turn action and sends it to the
IM and back-channel generator component to
generate a system response.

Micro-turn Interaction Manager A
baseline hand-crafted MIM was developed
using predefined rules. It receives turn-taking
information from the TTS, the audio-output
component, the ASR and a timer, and updates
turn-taking features. Based on the current
features and predefined rules, it generates
control signals and sends them to the TTS,
ASR, timer and HUB. In terms of micro-turn
taking, for example, if the user interrupts
the system utterance, the system will stop
speaking and listen to the user. The system
also outputs a short back-channel and stays in
user turn state if the user utterance provides
limited information.

Interaction Manager Once the MIM has
decided when the system should take the floor,
it is the task of the IM to decide what to say.
The IM is based on the partially observable
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Markov decision process (POMDP) frame-
work, where the system’s decisions can be op-
timised via reinforcement learning. The model
adopted for Parlance is the Bayesian Update
of Dialogue State (BUDS) manager (Thom-
son and Young, 2010). This POMDP-based
IM factors the dialogue state into condition-
ally dependent elements. Dependencies be-
tween these elements can be derived directly
from the dialogue ontology. These elements
are arranged into a dynamic Bayesian network
which allows for their marginal probabilities
to be updated during the dialogue, compris-
ing the belief state. The belief state is then
mapped into a smaller-scale summary space
and the decisions are optimised using the nat-
ural actor critic algorithm.

HUB The HUB manages the high level flow
of information. It receives turn change infor-
mation from the MIM and sends commands
to the SLU/IM/NLG to ‘take the floor’ in the
conversation and generate a response.

3.3 Generation and TTS

We aim to automatically generate language,
trained from data, that is (1) grammatically
well formed, (2) natural, (3) cohesive and (4)
rapidly produced at runtime. Whilst the first
two requirements are important in any dia-
logue system, the latter two are key require-
ments for systems with incremental processing,
in order to be more responsive. This includes
generating back-channels, dynamic content re-
ordering (Dethlefs et al., 2012), and surface
generation that models coherent discourse phe-
nomena, such as pronominalisation and co-
reference (Dethlefs et al., 2013). Incremen-
tal surfacce generation requires rich context
awareness in order to keep track of all that has
been generated so far. We therefore treat sur-
face realisation as a sequence labelling task and
use Conditional Random Fields (CRFs), which
take semantically annotated phrase structure
trees as input, in order to represent long dis-
tance linguistic dependencies. This approach
has been compared with a number of compet-
itive state-of-the art surface realisers (Deth-
lefs et al., 2013), and can be trained from
minimally labelled data to reduce development
time and facilitate its application to new do-
mains.

The TTS component uses a trainable HMM-
based speech synthesizer. As it is a paramet-
ric model, HMM-TTS has more flexibility than
traditional unit-selection approaches and is es-
pecially useful for producing expressive speech.

3.4 Local Search and Knowledge Base

The domain ontology is populated by the local
search component and contains restaurants in
5 regional areas of San Francisco. Restaurant
search results are returned based on their lon-
gitude and latitude for 3 price ranges and 52
cuisine types.

4 Future Work

We intend to perform a task-based evaluation
using crowd-sourced users. Future versions
will use a dynamic Knowledge Base and User
Model for adapting to evolving domains and
personalised interaction respectively.
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Abstract

While natural language as an interaction
modality is increasingly being accepted by
users, remaining technological challenges
still hinder its widespread employment.
Tools that better support the design, devel-
opment and improvement of these types
of applications are required. This demo
presents a prototyping framework for Spo-
ken Dialog System (SDS) design which
combines existing language technology
components for Automatic Speech Recog-
nition (ASR), Dialog Management (DM),
and Text-to-Speech Synthesis (TTS) with
a multi-step component for Natural Lan-
guage Understanding (NLU).

1 Introduction

Recently speech and other types of natural lan-
guage are experiencing an increased acceptance
when being used for interacting with ‘intelli-
gent’ computing systems. This trend is particu-
larly reflected by products such as Apple’s Siri1,
Google’s Now2 and Nuance’s Dragon Solutions3.
While these applications demonstrate the indus-
try’s vision of how we should be interacting with
our current and future devices, they also highlight
some of the great challenges that still exist. One
of these challenges may be seen in the fact that
Automatic Speech Recognition (ASR) remains a
highly error-prone technology which influences
subsequent natural language processing compo-
nents such as Natural Language Understanding
(NLU) and Dialog Management (DM) and leads
to often unsatisfying user experiences. Hence we
require appropriate tools that better support the
testing and studying of language as an interaction

1http://www.apple.com/ios/siri/
2http://www.google.com/landing/now/
3http://www.nuance.com/dragon/

modality and consequently allow us to build bet-
ter, more user-centered applications.

This demo presents our approach of develop-
ing a prototyping tool for Spoken Dialog Systems
(SDS). Our solution is particularly focusing on
the natural language understanding aspect of SDS
design. The overall framework is composed of
a set of existing open-source technology compo-
nents (i.e. ASR, DM, TTS) which are expanded
by several additional NLP modules responsible for
natural language understanding as well as genera-
tion. The following sections first provide a general
overview of the entire framework and then focus
particularly on the NLU part of our solution and
the different sub-modules it integrates.

2 Spoken Dialog System Design

A state-of-the-art SDS usually consists of a set of
technology components that are integrated to form
a consecutive processing chain. Starting on the
input side the ASR module produces a hypothe-
sis about the orthographic content of a spoken ut-
terance. The NLU takes this recognized utterance
and converts it into a machine readable command
or input Dialog Act (DA). The DM processes this
input DA and sends the relevant output DA to the
Natural Language Generation (NLG) component.
The NLG is then responsible for converting the
output DA into appropriate natural language text.
Finally, the Text-to-Speech (TTS) synthesis com-
ponent takes the text transmitted by the NLG and
speaks it to a user.

According to this general architecture different
open-source language components have been in-
tegrated to form a loosely coupled SDS frame-
work. The framework includes ASR performed by
the Julius Large Vocabulary Continuous Speech
Recognition engine4, dialog management based
on the Disco DM library (Rich, 2009; Rich

4http://julius.sourceforge.jp/en index.php

157



and Sidner, 2012) and TTS achieved through the
MARY Text-to-Speech Synthesis Platform5. Ad-
ditionally, we have integrated the WebWOZ Wiz-
ard of Oz Prototyping Platform6 (Schlögl et al.,
2010) in order to allow for the simulation of (flaw-
less) natural language understanding. Expanding
these existing components we have then developed
as a set of modules responsible for actual system-
based natural language processing. The following
section describes these modules in more detail and
highlights the types of challenges they try to over-
come.

3 Natural Language Understanding

Within the processing chain of a spoken/text-
based dialog system, the NLU component is the
link between the wide and informal communica-
tion space of a user’s input and the formal and
rather restrictive semantic space that can be pro-
cessed by the DM (Mori et al., 2007). Trying to
bridge these two spaces we have connected sev-
eral modules to form an NLU processing segment
whose different modules are described below.

3.1 Semantic Parsing

First we use a Semantic Parsing (SP) module to
convert the transcribed speech provided by the
ASR into so-called Semantic Frames (SFs). To
achieve this mapping Jurčı́ček et al. (2009) de-
signed a Transformation-Based Learning Seman-
tic Parser (Brill, 1995) which we adapted to inte-
grate it with our framework. The algorithm applies
an ordered set of rules to hypothetical [utterance,
SF] pairs in order to find the closest matching SF.

3.2 Semantic Unification

Next we use what we call the Semantic Unifier
and Reference Resolver (SURR) module to con-
vert input SFs into SFs that can be processed by
the DM input interface. To do this we imple-
mented a bottom-up search algorithm for rewrit-
ing trees whose nodes contain lists of valued slots.
The algorithm looks for a group of root nodes that
can be reached in the forest (i.e. the existing num-
ber of trees) by transforming an input SF’s set of
slots according to the given rewriting rules. It suc-
ceeds when all slots can be rewritten into a root
list of slots. This module is supported by exter-
nal knowledge sources such as for example the

5http://mary.dfki.de/
6https://github.com/stephanschloegl/WebWOZ

context in which an utterance has been produced
(i.e. it receives input from the Context Catcher
module described below). Furthermore it could
call operating system functions, sensor readings
7 or other knowledge sources capable of provid-
ing relevant data, in order to resolve and disam-
biguate input. For instance, special-valued slots
like ‘date=today’ are dynamically resolved to the
correct data type and value, making the NLU more
sensitive to its surrounding environment.

3.3 Context Inclusion
In order to optimize information exchange
Human-Human interactions usually build up a
common knowledge between dialog participants.
This inherent grounding process can be compared
to the dialog history recorded in an SDS’s DM.
Using these recordings we have introduced a so-
called Context Catcher (CC) module. The way
this module is currently working is as follows: The
DM requests information from the user to progress
through the task-oriented dialog. The user replies
without specifying the type of data he/she is pro-
viding, the overall intent of the utterance or the re-
lation to any dialog slot. The CC evaluates the re-
quest expressed by the DM and consequently up-
dates various parameters of the SURR component.
Consequently the SURR is able to provide a better,
more context-specific mapping between raw SFs
provided by the SP module and the expected slots
to be filled by the DM component.

3.4 Dialog Act Conversion
An SDS’s DM expects formal meaning represen-
tations to be converted to actual dialog moves or
Dialog Acts (DA); similar to parametrized dialog
commands. A DA is the smallest unit of determin-
istic action to support the dialogue flow. The num-
ber of DAs that are available at any given point is
finite, dynamic and depends on the current state of
the dialog (Note: Here a state does not refer to a
‘real’ state, such as the ones used in Markov De-
cision Processes or Partially Observable Markov
Decision Processes, but rather to a general status
of the dialog). In other words, two input utter-
ances carrying the same meaning may lead to dif-
ferent consequences depending on a given dialog
state. The right action, i.e. the accurate DA, is to
be determined by the NLU component. As there

7Note: At the moment sensor readings are not imple-
mented as they are currently not available in the developing
environment
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is usually a many-to-many matching between SFs
and actual DAs we integrated an additional Dialog
Act Converter (DAC) module. This module uses
the context to generate a list of expected slots for
which a user may provide a value (i.e. it converts
possible DAs to SFs). Then a matching between
the actual inputs and the expectations is applied in
order to find the most probable DA.

4 Supporting Mixed Initiatives

SDS dialog designs usually run along an initia-
tive scale that ranges from user-driven to strictly
machine-driven interaction. In the case of a
machine-driven dialog a user has to follow the re-
quests of the system. Interactions that lie out of the
scope of this dialog design are not understood and
may either be discarded or, in the worst case, lead
to a system failure. Despite this potential for fail-
ure, machine-driven designs make the dialog eas-
ier to control and thus less prone to errors, yet,
due to the lack of adaptability exposed by the sys-
tem, also less human-like. On the other hand, pure
user-driven dialog designs minimize the functional
range of a system as they only react to commands
without assuring their functional integrity.

The above described modular approach to NLU
aims to support a mixed initiative design where a
system’s integrity and its goals are sufficiently de-
fined; the user, however, is not restricted by the
type and amount of spoken input he/she can use
to interact. To offer this type of interaction the
system needs to handle three kinds of potential
mis-usages: (1) out-of-application cases, (2) out-
of-dialog cases and (3) out-of-turn cases. To ad-
dress the first one our training corpus has been
augmented so that it includes examples of garbage
SFs. As a result an out-of-application utterance
triggers a generic reply from the system, notifying
the user that he/she is outside the scope of the ap-
plication. In the case where a user stays within
the scope of the application but tries to initiate
a new unrelated dialog (i.e. out-of-dialog case),
the DM’s stack of tasks is incremented with the
new dialog. The system will lead the user back
to the previous topic once the newly added one
is completed. Finally, as for the out-of-turn cases
i.e. the cases where a user would answer a sys-
tem request with a non-expected utterance such as
an over-complete one, the NLU process, retriev-
ing the DM’s expectations, discards unrelated or
over-complete information.

5 Demo Description

Focusing on the NLU aspect of the SDS pipeline
this demo will demonstrate how the different mod-
ules described above (i.e. SP, SURR, CC, and
DAC) work together. An application scenario
from the ambient assisted living domain (i.e. the
operation of a ‘Pillbox’ application) will serve as
an example use case. It will be shown how the
natural language input potentially recognized by
an ASR component is further interpreted by our
NLU processing segment. All the steps discussed
in Section 3 will be visible.

6 Conclusion

In this paper we described a set of NLU compo-
nents that were integrated as part of a loosely cou-
pled SDS. Separate modules for semantic parsing,
semantic unification and reference resolution, con-
text inclusion as well as dialog act conversion have
been described. Furthermore we have highlighted
how our system offers support for mixed-initiative
dialog interactions. A first test of this NLU pro-
cessing chain showed that the use of our multi-
component approach is feasible, and we believe
that this solution can be seen as a valuable test and
development framework for natural language pro-
cessing research.
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Institut Mines-Télécom
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Abstract
The Wizard of Oz (WOZ) method has
been used for a variety of purposes in
early-stage development of dialogue sys-
tems and language technology applica-
tions, from data collection, to experimen-
tation, prototyping and evaluation. How-
ever, software to support WOZ experimen-
tation is often developed ad hoc for spe-
cific application scenarios. In this demo
we present WebWOZ, a web-based WOZ
prototyping platform that aims at support-
ing a variety of experimental settings and
combinations of different language tech-
nology components. We argue that a
generic and distributed platform such as
WebWOZ can increase the usefulness of
the WOZ method.

1 Introduction

The use of language technologies such as Auto-
matic Speech Recognition (ASR), Machine Trans-
lation (MT) and Text-to-Speech Synthesis (TTS)
has significantly increased in recent years. Drivers
of adoption have been enhanced quality and in-
creasingly ubiquitous access to products and ser-
vices. However, the technology is still far from
perfect and typically substantial engineering effort
is needed before prototypes can deliver a user ex-
perience robust enough to allow potential applica-
tions to be evaluated with real users. For graph-
ical interfaces, well-known prototyping methods
like sketching and wire-framing support the de-
signer in obtaining early impressions and initial
user feedback. These low-fidelity prototyping
techniques do, however, not map well onto sys-
tems based around speech and natural language.
Wizard of Oz (WOZ) tries to fill this gap by using
a human ‘wizard’ to mimic some of the function-
ality of a system, which allows for evaluating po-
tential user experiences and interaction strategies

without the need for building a fully functional
product first (Gould et al., 1983).

2 The WebWOZ Platform

WebWOZ is an entirely web-based, open-source
Wizard of Oz prototyping platform1. It allows for
testing interaction scenarios that employ one or
more Language Technology Components (LTC).
The integration of these LTCs is done via web ser-
vices. Currently we have integrated ASR from
Google using HTML-based Speech Input2, on-
the-fly MT from Microsoft3 and TTS provided
by the Muse Speech Technology Research Plat-
form4. In addition we support pre-recorded audio
and video files that are accessible through a web
server. Table 1 shows the different components
currently integrated into WebWOZ. Depending on
the application scenario those components can be
turned on and off as well as be used in combina-
tion (Schlögl et al., 2010; Schlögl et al., 2011).

2.1 Software Requirements

WebWOZ is written in Java and therefore can be
hosted on a typical application server (e.g. Apache
Tomcat). In addition a relational database (e.g.
MySQL) is needed. In order to run experiments
we further recommend the use of an up-to-date
web browser that is able to adequately interpret
recent HTML5 commands. For the moment, the
Chrome browser is probably the best choice, since
it supports speech input without the need for in-
stalling an additional plug-in. However, we are
convinced that soon most web browsers will sup-
port the majority of HTML5 features required by
WebWOZ.

1https://github.com/stephanschloegl/WebWOZ/
2http://lists.w3.org/Archives/Public/public-xg-

htmlspeech/2011Feb/att-0020/api-draft.html
3http://msdn.microsoft.com/en-us/library/ff512419.aspx
4http://muster.ucd.ie/content/muse-speech-technology-

research-platform
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Table 1: WebWOZ Component List
ASR HTML Speech Input
MT Microsoft Translate
TTS Muse Speech Technology

Pre-recorded Audio Files

2.2 Supported Scenarios

One of the main features of WebWOZ is its in-
tegrated CMS-like editing functionality. This
permits researchers/designers to create their own
WOZ experiments without requiring from them
any programming skills. They can add, edit, and
delete utterances and organize them in different
tabs (dialogue stages) using the wizard interface
(cf. demo video5). Corresponding client (i.e. non-
wizard) user/password combinations can be added
and distinct interaction modes for the experiment
can be set (e.g. ASR on/off, TTS on/off, MT
on/off, etc.). The client interface itself runs in
a separate browser window, which allows for an
easy integration into already existing web applica-
tions.

Following this architecture WebWOZ supports
the design of a variety of experimental settings.
Different scenarios from classic monolingual text-
to-text to multi-lingual speech-to-speech interac-
tions are possible. From a wizard’s perspective,
tasks can reach from pure dialogue management
to augmenting LTC output. That is, in WebWOZ
a wizard can act as the substitute for a working di-
alogue manager, linking a test persons’ input with
an appropriate response by choosing from a set
of pre-defined answer possibilities. Alternatively,
however, one could be focusing on enhancing the
quality of a single LTC by augmenting its output.
Examples might include choosing from an n-best
list of recognition results or the post-editing of
output produced by an MT service.

3 Why a Web-based Solution?

The WOZ technique is usually used for four main
purposes related to the design and implementation
of dialogue systems: (1) it is used for dialogue
data collection, (2) for controlled experimentation
(including system evaluation), (3) for exploration
of design alternatives and (4) for teaching of sys-
tem design. Given this context, why should one
build a web-based WOZ platform? What are the

5http://youtu.be/VPqHfXHq4X0

benefits of such a solution? As it turns out, one can
identify benefits to each of the above mentioned
main uses of the WOZ method.

In terms of data collection, the gathering of mul-
timodal dialogue corpora is often a complex and
time consuming enterprise. It requires standard-
ization and uniformity with respect to data format,
timing and encoding, as well as collection settings
and procedures. WOZ techniques have been in-
creasingly used for this purpose, particularly in the
gathering of data for studying multimodal infor-
mation presentation and interaction e.g. (Rieser et
al., 2011). A Web-based platform such as Web-
WOZ can facilitate data collection by geographi-
cally distributed groups while guaranteeing adher-
ence to the requisite standards.

As regards experiments, a crucial requirement
from the perspective of scientific methodology is
reproducibility. Different research groups need to
be able to replicate experiments according to pre-
cisely prescribed procedures and settings. Wiz-
ard of OZ experiments, however, are usually con-
ducted using purpose built, ad hoc tools and soft-
ware. This makes replication difficult, if not im-
possible. WebWOZ provides a widely available,
standardized environment in which experimental
protocols can be precisely specified and shared
with interested research groups, thus supporting
reproducibility. These features are similarly im-
portant for extrinsic system components evalua-
tion e.g. (Schneider and Luz, 2011) where the
overall system functionality should be kept con-
stant while a specific component to be tested (say,
an MT module) is varied.

WOZ techniques are also employed for explo-
ration (through prototyping) of design ideas and
alternatives, particularly at the early design stages
of interactive systems that involve diverse lan-
guage technology components. In this case, repro-
ducibility and controlled conditions are less im-
portant. However, as distributed system develop-
ment becomes a common practice WebWOZ can
be used in such scenarios as a shared design arti-
fact to support the activities of geographically dis-
tributed design teams as well as the communica-
tion among them.

Finally, WebWOZ can be (and has been) used in
support of teaching the development of dialogue
systems. While students are usually introduced to
WOZ (i.e. written on a lecture slide) only a small
portion of them receives actual hands-on experi-
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ence. One reason for this lack of practical usage
might be that in order to be applicable in a teaching
context, any approach would have to have a low
logistical and technical overhead to enable stu-
dents to quickly design and carry out evaluations.
Our experience with WebWOZ has shown that the
web-based approach significantly lowers this bar-
rier. To date more than 50 students were able to de-
sign experiments and hence improve their under-
standing of the complexity of dialogue systems.

4 Uses of WebWOZ in Research

WebWOZ has already been employed in two dif-
ferent research studies. The first study explored
the effects of MT when it is used in combination
with TTS (Schneider et al., 2010). The second
study aimed at building and evaluating a corpus of
feedback utterances sent to language learners who
try to improve their pronunciation (Cabral et al.,
2012).

The experimental set-up of these two stud-
ies differed greatly, highlighting the flexibility of
WebWOZ. The first study tested the scenario of
an intelligent computer system recommending ap-
propriate Internet connection bundles to German
speaking customers. To support this scenario a
set of pre-defined dialogue utterances as well as
the relevant domain utterances (i.e. examples of
Internet connection bundles) were collected, auto-
matically translated and then added to WebWOZ.
On-the-fly translation was not used as the experi-
menters wanted to control for any possible incon-
sistencies. The TTS part of the experiment did
not utilize a synthesis directly, but rather used the
possibility of WebWOZ handling pre-synthesized
audio files. ASR was simulated by the wizard.
Voice-over-IP was used to transmit the partici-
pant’s voice to the wizard, who then selected an
appropriate response.

The second study was less restrictive. Here the
researcher’s goal was to built up and evaluate a
corpus of feedback utterances, for which the wiz-
ard could be more open in terms of responses.
Similarly to the first study a set of pre-defined
responses was added to WebWOZ. However, in
cases were those utterances were not sufficient, the
wizard could use a free-text field to reply. Again
Voice-over-IP was used to transfer speech input
from a test user to the wizard and TTS was turned
off, as the experiment design used textual feed-
back only.

5 Conclusion and Future Work

We presented WebWOZ a Wizard of Oz proto-
typing platform that is developed in our research
group. WebWOZ differs from existing WOZ tools
by being entirely web-based and through its goal
of supporting various types of application scenar-
ios. The different features of WebWOZ were high-
lighted and it was described how two independent
studies already made use of them. Future work
aims to optimize WebWOZ, to generalise it to fur-
ther experimental settings and to extend it by inte-
grating additional modalities. To do so the system
has been installed in our partner institutions where
it has currently been adapted to support additional
settings in at least two other research projects. Al-
though we are aware of the fact that the great
difference between the interests of individual re-
searchers pose challenges to the design of a truly
generic WOZ tool, we believe that our platform
can be a helpful starting point for a variety of re-
searchers and designers who may wish to use the
WOZ method.

References
J. P. Cabral, M. Kane, Z. Ahmed, M. Abou-Zleikha,
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Abstract 

In this paper, we present a user study where a 
robot instructs a human on how to draw a 
route on a map, similar to a Map Task. This 
setup has allowed us to study user reactions to 
the robot’s conversational behaviour in order 
to get a better understanding of how to gener-
ate utterances in incremental dialogue systems. 
We have analysed the participants' subjective 
rating, task completion, verbal responses, gaze 
behaviour, drawing activity, and cognitive 
load. The results show that users utilise the ro-
bot’s gaze in order to disambiguate referring 
expressions and manage the flow of the inter-
action. Furthermore, we show that the user’s 
behaviour is affected by how pauses are real-
ised in the robot’s speech.  

1 Introduction 

Dialogue systems have traditionally relied on 
several simplifying assumptions. When it comes 
to temporal resolution, the interaction has been 
assumed to take place with a strict turn-taking 
protocol, where each speaker takes discrete turns 
with noticeable gaps in between. While this as-
sumption simplifies processing, it fails to model 
many aspects of human-human interaction such 
as turn-taking with very short gaps or brief over-
laps and backchannels in the middle of utteranc-
es (Heldner & Edlund, 2010). Recently, re-
searchers have turned to more incremental mod-
els, where the dialogue is processed in smaller 
units (Schlangen & Skantze, 2011). On the out-
put side, this allows dialogue systems to start 
speaking before processing is complete, generat-
ing and synthesizing the response segment by 
segment, until the complete response is realised. 
If a segment is delayed, there will be a pause in 
the middle of the system’s speech. While previ-
ous studies have clearly shown the potential ben-
efits of incremental speech generation (Skantze 

& Hjalmarsson, 2012; Dethlefs et al., 2012; 
Buschmeier et al., 2012), there are few studies on 
how users react to pauses in the middle of the 
system’s speech.  

Apart from the real-time nature of spoken in-
teraction, spoken dialog technology has for a 
long time also neglected the physical space in 
which the interaction takes place. In application 
scenarios which involve situated interaction, 
such as human-robot interaction, there might be 
several users talking to the system at the same 
time (Bohus & Horvitz, 2010), and there might 
be physical objects in the surroundings that the 
user and the system refer to during the interac-
tion (Boucher et al., 2012). In such settings, gaze 
plays a very important role in the coordination of 
joint attention and turn-taking. However, it is not 
clear to what extent humans are able to utilize 
the gaze of a robot and respond to these cues.  

Here, we present a user study where a robot 
instructs a human on how to draw a route on a 
map, similar to a Map Task. The nature of this 
setting allows us to study the two phenomena 
outlined above. First, we want to understand how 
a face-to-face setting facilitates coordination of 
actions between a robot and a user, and how well 
humans can utilize the robot's gaze to disambig-
uate referring expressions in situated interaction. 
The second purpose of this study is to investigate 
how the system can either inhibit or encourage 
different types of user reactions while pausing by 
using filled pauses, gaze and syntactic complete-
ness.   

2 Background 

2.1 Gaze in situated interaction 

Gaze is one of the most studied visual cues in 
face-to-face interaction, and it has been associat-
ed with a variety of functions, such as managing 
attention (Vertegaal et al., 2001), expressing in-
timacy and exercising social control (Kleinke, 
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1986), highlighting the information structure of 
the propositional content of speech (Cassell, 
1999) as well as coordinating turn-taking 
(Duncan, 1972). One of the most influential pub-
lications on this subject (Kendon, 1967) shows 
that speakers gaze away when initiating a new 
turn. At the end of a turn, in contrast, speakers 
shift their gaze towards their interlocutors as to 
indicate that the conversational floor is about to 
become available. Furthermore, it has been 
shown that gaze plays an important role in col-
laborative tasks. In a map task study by Boyle et 
al. (1994), it was shown that speakers in a face-
to-face setting interrupt each other less and use 
fewer turns, words, and backchannels per dia-
logue than speakers who can not see each other. 

A lot of research has also been done on how 
gaze can be used to facilitate turn-taking with 
robots (Mutlu et al., 2006; Al Moubayed et al., 
2013) and embodied conversational agents 
(Torres et al., 1997). Several studies have also 
explored situated human-robot interaction, where 
the interlocutors sit around a table with objects 
that can be referred to, thus constituting a shared 
space of attention (Yoshikawa et al., 2006; John-
son-Roberson et al., 2011). However, there are 
very few studies on how the robot’s gaze at ob-
jects in the shared visual scene may improve task 
completion in an interactive setting. One excep-
tion is a controlled experiment presented by 
Boucher et al. (2012), where the iCub robot in-
teracted with human subjects. While the study 
showed that humans could utilize the robot’s 
gaze, the interaction was not that of a free con-
tinuous dialogue.  

Similarly to the study presented here, Nakano 
et al. (2003) presented a system that describes a 
route to a user in a face-to-face setting. Based on 
studies of human-human interaction, they im-
plemented a model of face-to-face grounding. 
However, they did not provide a detailed analysis 
of the users’ behaviour when interacting with 
this system. 

Even if we successfully manage to model hu-
man-like behaviour in a system, it is not certain 
to what extent humans react to these signals 
when interacting with a robot. In the current 
work, we investigate to what extent the robot’s 
gaze can be used to: (1) help the user disambigu-
ate referring expressions to objects in the shared 
visual scene, and (2) to either inhibit or encour-
age different types of user reactions while the 
system pauses or at turn endings. 

2.2 Pauses in the system's speech 

Speakers in dialogue produce speech piece by 
piece as the dialogue progresses. When starting 
to speak, dialogue participants typically do not 
have a complete plan of how to say something or 
even what to say. Yet, they manage to rapidly 
integrate information from different sources in 
parallel and simultaneously plan and realize new 
dialogue contributions (Levelt, 1989). Still, 
pauses occur frequently within utterances and it 
has been shown that these play a significant role 
in human-human dialogue (for an overview, see 
Rochester, 1973). For example, the timing and 
duration of pauses have important structural 
functions (Goldman-Eisler, 1972), pauses (filled 
and silent) are associated with high cognitive 
load and planning difficulties (Brennan & Wil-
liams, 1995), and whether a pause is detected or 
not does not only depend on duration but also on 
its linguistic context (Boomer & Dittmann, 
1962). 

Recently, several studies have looked into the 
possibilities of replicating the incremental behav-
iour of humans in human-machine interaction. 
Work on incremental speech generation has fo-
cused on the underlying system architecture 
(Schlangen & Skantze, 2011), how to incremen-
tally react to events that occur while realizing an 
utterance (Dohsaka & Shimazu, 1997, 
Buschmeier et al., 2012), and how to make the 
incremental processes more efficient in order to 
reduce the system’s response time (e.g. Dethlefs 
et al., 2012). In a recent study, we implemented a 
model of incremental speech generation in a dia-
logue system (Skantze & Hjalmarsson, 2012). By 
allowing the system to generate and synthesize 
the response segment by segment, the system 
could start to speak before the processing of the 
input was complete. However, if a system seg-
ment was delayed for some reason, the system 
generated a response based on the information 
obtained so far or by generating a pause (filled or 
unfilled). The system also employed self-repairs 
when the system needed to revise an already re-
alised speech segment. Despite these disfluencies 
(filled pauses and self-repairs), an evaluation of 
the system showed that in comparison to a non-
incremental version, the incremental version had 
a shorter response time and was perceived as 
more efficient by the users. 

However, pauses do not only have to be a 
side-effect of processing delays. Pauses could 
also be used wisely to chunk longer instructions 
into shorter segments, giving the user enough 
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time to process the information. In this case, the 
system should instead invite user reactions dur-
ing the course of its utterance. In the current 
work, we investigate to what extent the system 
can use filled pauses, syntactic completeness and 
gaze as cues to either inhibit or encourage the 
user to react when the system pauses.  

3 Human-robot Map Task data 

Map Task is a well establish experimental para-
digm for collecting data on human-human dia-
logue [30]. Typically, an instruction-giver has a 
map with landmarks and a route, and is given the 
task of describing this route to an instruction-
follower, who has a similar map but without the 
route drawn on it. In a previous study, (Skantze, 
2012) we used this paradigm for collecting data 
on how humans elicit feedback in human-
computer dialogue. In that study, the human was 
the instruction-giver. In the current study, we use 
the same paradigm for a human-robot dialogue, 
but here the robot is the instruction-giver and the 
human is the instruction-follower. This has re-
sulted in a rich multi-modal corpus of various 
types of user reactions to the robot’s instructions, 
which vary across conditions.  

 
Figure 1: The experimental setup. 

3.1 A Map Task dialogue system 

The experimental setup is shown in Figure 1. 
The user is seated opposite to the robot head 
Furhat (Al Moubayed et al., 2013), developed at 
KTH. Furhat uses a facial animation model that 
is back-projected on a static mask. The head is 
mounted on a neck (with 3 degrees of freedom), 
which allows the robot to direct its gaze using 
both eye and head movements. The dialogue sys-
tem was implemented using the IrisTK frame-
work developed at KTH (Skantze & Al Mou-
bayed, 2012), which provides a set of modules 
for input and output, including control of Furhat 
(facial gestures, eye and head movements), as 
well as a statechart-based authoring language for 

controlling the flow of the interaction. For 
speech synthesis, we used the CereVoice unit 
selection synthesizer developed by CereProc 
(www.cereproc.com). 

Between the user and the robot lies a large 
map printed on paper. In addition, the user has a 
digital version of the map presented on a screen 
and is given the task to draw the route that the 
robot describes with a digital pen. However, the 
landmarks on the user’s screen are blurred and 
therefore the user also needs to look at the large 
map in order to identify the landmarks. This map 
thereby constitutes a target for joint attention. 
While the robot is describing the route, its gaze is 
directed at the landmarks under discussion (on 
the large map), which should help the user to 
disambiguate between landmarks. In a previous 
study, we have shown that human subjects can 
identify the target of Furhat's gaze with an accu-
racy that is very close to that of observing a hu-
man (Al Moubayed et al., 2013). At certain plac-
es in the route descriptions, the robot also looks 
up at the user. A typical interaction between the 
robot and a user is shown in Table 1. As the ex-
ample illustrates, each instruction is divided into 
two parts with a pause in between, which results 
in four phases per instruction: Part I, Pause, Part 
II and Release. Whereas user responses are not 
mandatory in the Pause phase (the system will 
continue anyway after a short silence threshold, 
as in U.2), the Release requires a verbal re-
sponse, after which the system will continue. We 
have explored three different realisations of 
pauses, which were systematically varied in the 
experiment: 

COMPLETE : Pauses preceded by a syntactically 
complete  phrase (R.5). 

INCOMPLETE : Pauses preceded by a syntactical-
ly incomplete phrase (R.9).  

FILLED : Pauses preceded by a filled pause (R.1). 
The phrase before the filled pause was some-
times incomplete and sometimes complete. 

To make the conditions comparable, the amount 
of information given before the pauses was bal-
anced between conditions. Thus, the incomplete 
phrases still contained an important piece of in-
formation and the pause was inserted in the be-
ginning of the following phrase (as in R.9).  
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Table 1: An example interaction. 

Turn Activity Phase 

R.1 [gazing at map] continue towards the 

lights, ehm... 

Part I 

U.2 [drawing] Pause 

R.3 until you stand south of the stop 

lights [gazing at user] 

Part II 

U.4 [drawing] alright [gazing at robot] Release 

R.5 [gaze at map] continue and pass east 

of the lights... 

Part I 

U.6 okay [drawing] Pause 

R.7 ...on your way towards the tower 

[gaze at user] 

Part II 

U.8 Could you take that again? Release 

R.9 [gaze at map] Continue to the large 

tower, you pass... 

Part I 

U.10 [drawing] Pause 

R.11 ...east of the stop lights [gaze at user] Part II 

U.12 [drawing] okay, I am at the tower Release 

 

 
Figure 2: An example map. 

Given the current limitations of conversational 
speech recognition, and lack of data relevant for 
this task, we needed to employ some trick to be 
able to build a system that could engage in this 
task in a convincing way in order to evoke natu-
ral reactions from the user. One possibility would 
be to use a Wizard-of-Oz setup, but that was 
deemed to be infeasible for the time-critical be-
haviour that is under investigation here. Instead, 
we employed a trick similar to the one used in 
(Skantze, 2012). Although the users are told that 
the robot cannot see their drawing behaviour, the 
drawing on the digital map, together with a voice 
activity detector that detects the user’s verbal 
responses, is actually used by the system to se-
lect the next action. An example of a map can be 
seen in Figure 2. On the intended route (which 
obviously is not shown on the user’s screen), a 
number of hidden “spots” were defined – posi-
tions relative to some landmark (e.g. “east of the 

field”). Each instruction from the system was 
intended to guide the user to the next hidden 
spot. Each map also contained an ambiguous 
landmark reference (as “the tower” in the exam-
ple). 

Pilot studies showed that there were three 
basic kinds of verbal reactions from the user: (1) 
an acknowledgement of some sort, encouraging 
the system to continue, (2) a request for repeti-
tion, or (3) a statement that some misunderstand-
ing had occurred. By combining the length of the 
utterance with the information about the progres-
sion of the drawing, these could be distinguished 
in a fairly robust manner. How this was done is 
shown in Table 2. Notice that this scheme allows 
for both short and long acknowledgements (U.4, 
U.6 and U.12 in the example above), as well as 
clarification requests (U.8). It also allows us to 
explore misunderstandings, i.e. cases where the 
user thinks that she is at the right location and 
makes a short acknowledgement, while she is in 
fact moving in the wrong direction. Such prob-
lems are usually detected and repaired in the fol-
lowing turns, when the system continues with the 
instruction from the intended spot and the user 
objects with a longer response. This triggers the 
system to either RESTART the instruction from a 
previous spot where the user is known to have 
been ("I think that we lost each other, could we 
start again from where you were at the bus 
stop?"), or to explicitly CHECK whether the user 
is at the intended location ("Are you at the bus 
stop?"), which helps the user to correct the path.  

Table 2: The system’s action selection based on 
the user’s voice activity and drawing. 

User  

response 

Drawing Action 

Short/Long Continues to the 

next spot 

CONTINUE 

Short/Long Still at the same 

spot 

REPHRASE 

Short (<1s.) At the wrong spot CONTINUE (with  

misunderstanding) 

Long (>1s.) At the wrong spot RESTART or CHECK 

No resp. Any CHECK 

3.2 Experimental conditions  

In addition to the utterance-level conditions 
(concerning completeness) described above, 
three dialogue-level conditions were implement-
ed:  

CONSISTENT gaze (FACE): The robot gazes at 
the landmark that is currently being described 
during the phases Part I, Pause and Part II. In 
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accordance with the findings in for example 
Kendon (1967), the robot looks up at the end 
of phase Part II, seeking mutual gaze with the 
user during the Release phase. 

RANDOM  gaze (FACE): A random gaze behav-
iour, where the robot randomly shifts between 
looking at the map (at no particular landmark) 
and looking at the user, with an interval of 5-
10 seconds. 

NOFACE: The robot head was hidden behind a 
paper board so that the user could not see it, 
only hear the voice. 

3.3 Data collection and analysis 

We collected a corpus of 24 subjects interacting 
with the system, 20 males and 4 females between 
the ages of 21-47. Although none of them were 
native speakers, all of them had a high proficien-
cy in English. First, each subject completed a 
training dialogue and then six dialogues that 
were used for the analysis. For each dialogue, 
different maps were used. The subjects were di-
vided into three groups with 8 subjects in each:  

Group A: Three maps with the CONSISTENT 

(FACE) version and three maps with the 
NOFACE version. All pauses were 1.5 s. long. 

Group B: Three maps with the RANDOM (FACE) 
version and three maps with the NOFACE ver-
sion. All pauses were 1.5 s. long. 

Group C: Three maps with the CONSISTENT ver-
sion and three maps with the NOFACE ver-
sion. All pauses were 2-4 s. long (varied ran-
domly with a uniform distribution).  

For all groups, the order between the FACE 
and the NOFACE condition was varied and bal-
anced. Group A and Group B allow us to explore 
differences between the CONSISTENT and RAN-

DOM versions. This is important, since it is not 
evident to what extent the mere presence of a 
face affects the interaction and to what extent 
differences are due to a consistent gazing behav-
iour. Group C was added to the data collection 
since we wanted to be able to study users' behav-
iour during pauses in more detail. Thus, Group C 
will only be used to study within-group effects of 
different pause types and will not be compared 
against the other groups.  

After the subjects had interacted with the sys-
tem, they filled out a questionnaire. First, they 
were requested to rate with which version (FACE 
or NOFACE) it was easier to complete the task. 
Second, the participants were requested to rate 

whether the robot’s gaze was helpful or confus-
ing when it came to task completion, landmark 
identification and the timing of feedback. All 
ratings were done on a continuous horizontal line 
with either FACE or “the gaze was helpful” on 
the left end and NOFACE or “the gaze was con-
fusing” on the right end. The centre of the line 
was labelled with “no difference”. 

During the experiments, the users’ speech and 
face were recorded and all events in the system 
and the drawing activity were automatically 
logged. Afterwards, the users' voice activity that 
had been automatically detected online was 
manually corrected and transcribed. Using the 
video recordings, the users’ gaze was also manu-
ally annotated, depending on whether the user 
was looking at the map, the screen or at the ro-
bot.  

 In this study, we also wanted to explore the 
possibility of measuring cognitive load in hu-
man-robot interaction using EDA (electrodermal 
activity). Hence, in an explorative manner, we 
investigated how the realisation of the system’s 
pauses and the presence of the face affected the 
cognitive costs of processing the system’s in-
structions. For measuring this, we used a weara-
ble EDA device, which exerts a direct current on 
the skin of the subject in order to measure skin 
conductance responses. For these measurements 
as well as the logging of the data the Q-Sensor 
developed by Affectiva1  was used. The meas-
urements were taken from the fingertips of the 
subjects. The sampling rate was 8 Hz. All post 
processing was carried out in Ledalab2. We first 
applied the Butterworth filter and then carried 
out a Continuous Decomposition Analysis. All 
skin conductance responses (SCR) with a mini-
mum amplitude of 0.01 muS and a minimal dis-
tance of 700ms were used for further analysis. 
Due to problems with the EDA device, we only 
have data for six subjects in Group A, six in 
Group B and none in Group C.  

4 Results 

Analyses of the different measures used here re-
vealed that they were not normally distributed. 
We have therefore consistently used non-
parametric tests. All tests of significance are 
done using two-tailed tests at the .05 level.  

                                                 
1 http://www.affectiva.com/ 
2 http://www.ledalab.de/ 
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4.1 Subjective ratings 

The questionnaire was used to analyse differ-
ences in subjective ratings between Group A and 
B. The marks on the horizontal continuous lines 
in the questionnaire were measured with a ruler 
based on their distance from the midpoint (la-
belled with “no difference”) and normalized to a 
scale between 0 and 1. A Wilcoxon Signed 
Ranks Test was carried out, using these rankings 
as differences. The results show that the Con-
sistent version differed significantly from the 
midpoint (“no difference”) in four dimensions 
whereas there were no significant differences 
from the midpoint for RANDOM version. More 
specifically, Group A (CONSISTENT) (n=8) found 
it easier to complete the task in the face condi-
tion than in the no face condition (Mdn=0.88, 
Z=-2.54, p=.012). The same group thought that 
the robot’s gaze was helpful rather than confus-
ing when it came to task completion (Mdn=0.84, 
Z=-2.38, p=.017), landmark identification 
(Mdn=0.83, Z=-2.52, p=.012) and to decide 
when to give feedback (Mdn=0.66, Z=-1.99, 
p=.046). The results of the questionnaire are pre-
sented in Figure 3. 

 
Figure 3: The results from the questionnaire. The 
bars show the median rating for Group A (con-
sistent) and Group B (random). 

4.2 Task completion 

Apart from the subjective ratings, we also want-
ed to see whether the face-to-face setting affect-
ed task completion. In order to explore this, we 
analysed the time and number of utterances it 
took for the users to complete the maps. On av-
erage, the dialogues in Group A (CONSISTENT) 
were 2.5 system utterances shorter and 8.9 sec-
onds faster in the FACE condition than in the 
NOFACE condition. For Group B (RANDOM), the 
dialogues were instead 2.3 system utterances and 
17.3 seconds longer in the FACE condition 
(Mann-Whitney U-test, p<.05). Thus, it seems 
like the face facilitates the solving of the task, 

and that this is not just due to the mere presence 
of a face, but that the intelligent gaze behaviour 
actually contributes. In fact, the RANDOM gaze 
worsens the performance, possibly because sub-
jects spent time on trying to make sense of sig-
nals that did not provide any useful information. 

Looking at more local phenomena, it seems 
like there was also a noticeable difference when 
it comes to miscommunication. The dialogues in 
the RANDOM/FACE condition had a total of 18 
system utterances of the type RESTART (vs. 7 in 
CONSISTENT), and a total of 33 CHECK utteranc-
es (vs. 15 in CONSISTENT). A chi-square test 
shows that the differences are statistically signif-
icant (χ2(1, N=25) = 4.8, p =.028; χ2(1, N=48) = 
6.75, p=.009). This indicates that the users that 
did not get the CONSISTENT gaze to a larger ex-
tent did not manage to follow the system’s in-
structions, most likely because they did not get 
guidance from the robot’s gaze in disambiguat-
ing referring expressions. 

4.3 Gaze behaviour 

In order to analyse the users’ direction of atten-
tion during the dialogues, the manual annotation 
of the participants’ gaze was analysed. First, we 
explored how the completion type of the robot's 
utterance affected the users’ gaze. In this analy-
sis, FILLED  and INCOMPLETE have been merged 
(since there was no difference in the users’ gaze 
between these conditions). The percentage of 
gaze at the robot over the four different utterance 
phases for complete and incomplete utterances is 
plotted in Figure A in the Appendix. Note that 
the different phases actually are of different 
lengths depending on the actual content of the 
utterance and the length of the pause. However, 
these lengths have been normalized in order to 
make it possible to analyse the average user be-
haviour. For each phase, a Mann-Whitney U-test 
was conducted. The results show that the per-
centage of gaze at Furhat during the mid-
utterance pause is higher when the first part of 
the utterance is incomplete than when it is com-
plete (U=7573.0, p<.001). There were, however, 
no significant differences in gaze direction be-
tween complete and incomplete utterance during 
the other three phases (p>.05). This indicates that 
users gaze at the robot to elicit a continuation of 
the instruction when it is incomplete. 

Second, we wanted to explore if gaze direction 
can be used as a cue of whether the user will 
provide a verbal response in the pause or not. 
The percentage of gaze at the robot over the four 
utterance phases for system utterances with and 

0 0.5 1

RANDOM CONSISTENT

Did the robot’s gaze help you to 

understand which landmark he was 

talking about? (0=confusing, 1=helpful)

Did the robot’s gaze help you to 

complete the task?(0=confusing, 

1=helpful)

Did the robot’s gaze affect your 

decisions of when to give feedback?

(0=confusing, 1=helpful)

When was it easier to complete

the task? (noFace=0, face=1)

“No difference”

168



without user response in the pause is plotted in 
Figure B in the Appendix. For each phase, a 
Mann-Whitney U-test was conducted. The re-
sults show that the percentage of gaze at Furhat 
during the mid-utterance pause (U=1945.5, 
p=.008) and Part II (U=2090.0, p=.008) of the 
utterance is lower when the user gives a verbal 
response compared to when there is no response. 
There were however no significant differences in 
gaze direction between complete and incomplete 
utterance during the other two phases (p>.05). 

4.4 Verbal feedback behaviour 

Apart from the user’s gaze behaviour, we also 
wanted to see whether syntactic completeness 
before pauses had an effect on whether the users 
gave verbal responses in the pause. Figure 4 
shows the extent to which users gave feedback 
within pauses, depending on pause type and 
FACE/NOFACE condition. As can be seen, COM-

PLETE triggers more feedback, FILLED  less feed-
back and INCOMPLETE even less. Interestingly, 
this difference is more distinct in the FACE con-
dition (χ2(2, N=157) = 10.32, p<.01). In fact, the 
difference is not significant in the NOFACE con-
dition (p >.05).  

 
Figure 4: Presence of feedback depending on 
pause type (Group C). 

In Skantze et al. (2013), we have also done a 
more thorough analysis of the verbal acknowl-
edgements from the users. The analysis shows 
that the prosody and lexical choice in these 
acknowledgements ("okay", "yes", "yeah", 
"mm", "mhm", "ah", "alright" and "oh") to some 
extent signal whether the drawing activity is 
about to be initiated or has been completed. The 
analysis also shows how these parameters are 
correlated to the perception of uncertainty. 

4.5 Drawing behaviour 

Whereas gaze and verbal responses can be re-
garded as communicative signals, the users were 
told that the robot could not observe their draw-

ing activity. However, the drawing of the route 
can be regarded as the purpose of the interaction 
and it is therefore important to understand how 
this is affected by the system’s behaviour under 
different conditions. First, we wanted to see how 
the completeness of the robot's utterance in com-
bination with the presence of the face affected 
the drawing activity. In this analysis, FILLED  and 
INCOMPLETE have been merged (since there was 
no clear difference). The mean drawing activity 
over the four phases of the descriptions is plotted 
in Figure C in the Appendix. For each phase, a 
Kruskal-Wallis test was conducted showing that 
there is a significant difference between the con-
ditions in the Pause phase (H(3) = 28.8, p<.001). 
Post-hoc tests showed that FACE/INCOMPLETE 
has a lower drawing activity than the other con-
ditions, and that NOFACE/INCOMPLETE has a 
lower drawing activity than the COMPLETE con-
dition. Thus, INCOMPLETE phrases before pauses 
seem to have an inhibiting effect on the user’s 
drawing activity in general, but this effect ap-
pears to be much larger in the FACE condition. 

Second, we aimed to investigate to what ex-
tent the robot’s gaze at landmarks during ambig-
uous references helps users to discriminate be-
tween landmarks.  The mean drawing activity 
over the four phases of the descriptions of am-
biguous landmarks is plotted in Figure D in the 
Appendix. For each phase, a Kruskal-Wallis test 
was conducted showing that there is a significant 
difference between the conditions in the Part II 
phase (H(2)=10.2, p=.006). Post-hoc tests 
showed that CONSISTENT has a higher drawing 
activity than the RANDOM and NOFACE condi-
tions. However, there is no such difference when 
looking at non-ambiguous descriptions. This 
shows that robot’s gaze at the target landmark 
during ambiguous references makes it possible 
for the subjects to start to draw quicker.  

4.6 Cognitive load 

As mentioned above, we also wanted to study the 
cognitive costs of processing the system’s in-
structions, as measured with a wearable EDA 
device. For each system utterance part (Part I and 
Part II), we calculated the sum of the amplitudes 
of the skin conductance responses (SoSCR) dur-
ing the following three seconds. The SoSCR dur-
ing the pause, depending on pause type are 
shown in Figure 5. A Kruskal-Wallis test re-
vealed that there is an overall effect (H(2)=8.7, 
p=.13), and post-hoc tests showed that there is a 
significant difference between utterances which 
are incomplete and those with filled pauses, indi-
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cating that the syntactic incompleteness without 
a filled pause leads to a higher cognitive load.  
We have no good explanation for this, and we do 
not know whether this is due to how the syntacti-
cally incomplete segments were realised by the 
synthesizer, or whether the same effect would 
appear in human-human interaction. 

 
Figure 5: EDA at different pause types (Group A 
and B). 

A similar analysis was done after both Part I and 
Part II to see if there is any difference in SoSCR 
between ambiguous and non-ambiguous refer-
ences in the different conditions, as shown in in 
Figure 6. No such differences were found for 
Group B, but for Group A, ambiguous references 
were followed by a higher SoSCR in the 
NOFACE condition, indicating that the robot’s 
gaze helps in disambiguating the referring ex-
pressions and reduces cognitive load (Mann-
Whitney U-test; U = 6585, p = .001).  

 
Figure 6: EDA for Group A (CONSISTENT). 

5 Conclusions and Discussion 

In this study, we have investigated to what extent 
the robot’s gaze can be used to: (1) help the user 
disambiguate referring expressions to objects in 
the shared visual scene, and (2) to either inhibit 
or encourage different types of user reactions 
while the system pauses. The  results show  that  
the robot’s gaze behaviour  was  rated  as  help-
ful  rather  than  confusing for  task completion,  
landmark  identification and feedback timing. 
These effects were not present when the robot 
used a random gaze behaviour. The efficiency of 

the gaze was further supported by the time it 
took to complete the task and the number of mis-
understandings. These results in combination 
with a faster drawing activity and lower cogni-
tive load when system’s reference was ambigu-
ous, suggest that the users indeed utilized the 
system’s gaze to discriminate between land-
marks.  

The second purpose of this study was to inves-
tigate to what extent filled pauses, syntactic 
completeness and gaze can be used as cues to 
either inhibit or encourage the user to react in 
pauses. First, the results show that pauses pre-
ceded by incomplete syntactic segments or filled 
pauses appear to inhibit user activity. Thus, our 
analyses of gaze and drawing activity show that 
users give less feedback, draw less and look at 
the robot to a larger extent when the preceding 
system utterance segment is incomplete than 
when it is complete. An interesting observation is 
that the inhibiting effect on drawing activity ap-
pears to be more pronounced in the face-to-face 
condition, which indicates that gaze also plays an 
important role here (since the robot looked down 
at the map during the pauses). Additionally, there 
is less cognitive load when the silence is preced-
ed by a filled pause. These results suggest that 
incomplete system utterances prevent further 
user processing; instead the user waits for more 
input from the system before starting to carry out 
the system’s instruction. After complete utter-
ance segments, however, there is more drawing 
activity and the user looks less at the robot, sug-
gesting that the user has already started to carry 
out the system’s instruction. 

The results presented in this study have impli-
cations for generating multimodal behaviours 
incrementally in dialogue systems for human-
robot interaction. Such a system should be able 
to generate speech and gaze intelligently in order 
to inhibit or encourage the user to act, depending 
on the state of the system's processing. In future 
studies, we plan to extend our previous model of 
incremental speech generation (Skantze & 
Hjalmarsson, 2012) with such capabilities.   
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Appendix 

 

 Part I Pause Part II Release 

Figure A: Average user gaze depending on pause type (Group C). 

 

 Part I Pause Part II Release 

Figure B: Average user gaze depending whether the user responds in the pause (Group A and B). 

 
 Part I Pause Part II Release 

Figure C: Average drawing activity depending on pause type and the presence of the face (Group C). 

 
 Part I Pause Part II Release 

Figure D: Average drawing activity during ambiguous references depending on condition (Group A and B). 

172



Proceedings of the SIGDIAL 2013 Conference, pages 173–182,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Interpreting Situated Dialogue Utterances:
an Update Model that Uses Speech, Gaze, and Gesture Information

Casey Kennington
CITEC, Bielefeld University

ckennington1

Spyros Kousidis
Bielefeld University

spyros.kousidis2

1@cit-ec.uni-bielefeld.de
2@uni-bielefeld.de

David Schlangen
Bielefeld University

david.schlangen2

Abstract

In situated dialogue, speakers share time
and space. We present a statistical model
for understanding natural language that
works incrementally (i.e., in real, shared
time) and is grounded (i.e., links to en-
tities in the shared space). We describe
our model with an example, then estab-
lish that our model works well on non-
situated, telephony application-type utter-
ances, show that it is effective in ground-
ing language in a situated environment,
and further show that it can make good use
of embodied cues such as gaze and point-
ing in a fully multi-modal setting.

1 Introduction

Speech by necessity unfolds over time, and in spo-
ken conversation, this time is shared between the
participants. Speakers are also by necessity lo-
cated, and in face-to-face conversation, they share
their (wider) location (that is, they are co-located).
The constraints that arise from this set of facts are
often ignored in computational research on spoken
dialogue, and where they are addressed, typically
only one of the two is addressed.

Here, we present a model that computes in an
incremental fashion an intention representation for
dialogue acts that may comprise both spoken lan-
guage and embodied cues such as gestures and
gaze, where these representations are grounded in
representations of the shared visual context. The
model is trained on conversational data and can be
used as an understanding module in an incremen-
tal, situated dialogue system.

Our paper begins with related work and back-
ground and then specifies in an abstract way the
task of the model. We describe our model formally
in Section 4, followed by three experiments with
the model, the first establishing it with a traditional

spoken language understanding (SLU) setting, the
second to show that our model works well under
situated conditions, and the third shows that our
model can make use of embodied cues. We fin-
ish the paper with a general discussion and future
work.

2 Related Work and Background

The work presented in this paper connects and ex-
tends several areas of research: grounded seman-
tics (Roy, 2005; Hsiao et al., 2008; Liu et al.,
2012), which aims to connect language with the
world, but typically does not work incrementally;
semantic parsing / statistical natural language un-
derstanding (NLU), which aims to map an utter-
ance to its meaning representation (using vari-
ous routes and approaches, such as logical forms
(Zettlemoyer and Collins, 2007; Zettlemoyer and
Collins, 2009), dependency-based compositional
semantics (Liang et al., 2011), neural networks
(Huang and Er, 2010), Markov Logic Networks
(MLN) (Meurs et al., 2008; Meza-Ruiz et al.,
2008), and dynamic Bayesian networks (Meurs
et al., 2009); see also overviews in (De Mori et
al., 2008; Wang et al., 2011)), but typically nei-
ther provides situated interpretations nor incre-
mental specifications of the representations; incre-
mental NLU (DeVault et al., 2009; DeVault et al.,
2011; Aist et al., 2007; Schlangen and Skantze,
2009), which focuses on incrementality, but not
on situational grounding; integration of gaze into
language understanding (Prasov and Chai, 2010),
which was not incremental.

We move beyond this work in that we present a
model that is incremental, uses a form of grounded
semantics, can easily incorporate multi-modal in-
formation sources, and finally on which inference
can be performed quickly, satisfying the demands
of real-time dialogue. The model brings together
aspects we’ve previously looked into separately:
grounded semantics in (Siebert and Schlangen,
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2008); incremental interpretation (reference res-
olution) in (Schlangen et al., 2009); incremental
general NLU in (Heintze et al., 2010); and a more
sophisticated approach that handled all of these us-
ing markov logic networks, but did not work in
real-time or with multi-modal input (Kennington
and Schlangen, 2012).

3 The Task

The task for our model is as follows: to compute at
any moment a distribution over possible intentions
(expressed as semantic frames), given the unfold-
ing utterance and possibly information about the
state of the world in which the utterance is hap-
pening. The slots of these frames are to be filled
with semantic constants, that is, they are uniquely
resolved; if appropriate, to objects in the shared
environment.

This is illustrated in Figure 1, where for
three successive incremental units (Schlangen and
Skantze, 2009) (that is, successively available bits
of information pertaining to the same act, such as
words of an utterance, or information about speech
accompanying gesture) three distributions over in-
tentions are shown.1

[   ]fe: a [   ]fe: b [   ]fe: a

IU1 IU2 IU3

Donnerstag, 2. Mai 2013

Figure 1: Schematic Illustration of Task

4 Our Model

More formally, the goal of the model is to recover
I , the intention of the speaker behind her utter-
ance, in an incremental fashion, that is, word by
word. We make the assumption that the set of
possible intentions is finite, and that they consist
of (combinations of) entities (where however even
actions like taking are considered ‘entities’; more
on this below). We observe U , the current word
that the speaker uttered as part of their utterance
(and features derived from that). We also assume
that there is an unobserved mediating variable R,

1Here, no links between these intention representations
are shown. The model we present in the next section is
an update model, that is, it builds the representation at step
tn based on that at tn−1; other possibilities are explored in
(Heintze et al., 2010) and (Kennington and Schlangen, 2012).

which represents the (visual or abstract) proper-
ties of the (visually present, or abstract) object
of the intention. So, what we need to calculate
is P (I|U,R), even though ultimately we’re inter-
ested only in P (I|U). By definition of conditional
probability, P (I|U,R) = P (I, U,R)∗P (U,R)−1.
We factorise P (I, U,R) as indicated in the follow-
ing:

P (I|R,U) =
P (R|I)P (I)P (U |R)

P (U,R)
(1)

That is, we make the assumption that R is con-
ditional only on I , and U is conditional only on
R. Marginalizing over R gets us the model we’re
interested in (and it amounts to a not uncommon
tagging model with a hidden layer):

P (I|U) = P (I)
∑

r∈R

P (U |R = r)P (R = r|I)

P (U,R = r)

(2)

Where we can move P (I) out of the summation,
as it is not dependent on R. Hence, we need three
models, P (I), P (U |R) and P (R|I), to compute
P (I|U). Figure 2 shows how these three models
interact over time.

It−2

Rt−2

Ut−2

It−1

Rt−1

Ut−1

It

Rt

Ut

Figure 2: Our model represented as an unrolled
DBN over three words.

Each sub-model will now be explained.

P(I) At the beginning of the computation for an
incoming sentence, we set the prior P (I) to a uni-
form distribution (or, if there is reason to do so, a
different distribution to encode initial expectations
about intentions; i.e., prior gaze information). For
later words, it is set to the posteriori of the pre-
vious step, and so this constitutes a Bayesian up-
dating of belief (with a trivial, constant transition
model that equates P (It−1) and P (It)).2

2In that sense, our incremental understanding could be
called “intra-sentential belief tracking,” in analogy to the cur-
rent effort to track system belief about user intentions across
turns (Ma et al., 2012; Williams, 2010).
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The other models represent knowledge about
links between intentions and object properties,
P (R|I), and knowledge about language use,
P (U |R). We now explain how this knowledge is
acquired.

P(R|I) The model P (R|I) provides the link be-
tween objects (as occurring in the intentions) and
their properties. Here we follow, to our knowl-
edge, a novel approach, by deriving this distribu-
tion directly from the scene representation. This
is best explained by looking at the overall model
in a generative way. First, the intention is gener-
ated, P (I), then based on that a property, P (R|I).
We assume that with equal probability one of the
properties that the intended object actually has is
picked to be verbalised, leaving zero probability
for the ones that it does not have. This in a way is
a rationality assumption: a rational speaker will, if
at all, mention properties that are realised and not
others (at least in non-negative contexts).

P(U|R), learned directly The other model,
P (U |R), can be learned directly from data by
(smoothed) Maximum Likelihood estimation. For
training, we assume that the property R that is
picked out for verbalisation is actually observable.
In our data, we know which properties the refer-
ent actually has, and so we can simply count how
often a word (and its derived features) co-ocurred
with a given property, out of all cases where that
property was present.

P(U|R), via P(R|U) Instead of directly learn-
ing a model of the data, we can learn a discrimina-
tive model that connects words and properties.

In Equation 2, we can rewrite P (U |R) using
Bayes’ Rule:

P (I|U) = P (I)
∑

r∈R

P (U)P (R = r|U)P (R = r|I)

P (R = r)P (U,R = r)
(3)

P (U) is a constant when computing P (I|U) for
all possible values of I whose actual value does
not change the rank of each intention, and so can
be dropped. P (R) can be approximated with a
uniform distribution, and can also be dropped,
yielding:

P (I|U) = P (I)
∑

r∈R

P (R = r|U)P (R = r|I)

P (U,R = r)

(4)
Other models could also be learned here; we chose
a discriminative model to show that our model
works under varied circumstances.

word red round square green
the 0.03 0.02 0.02 0.02
red 0.82 0.009 0.09 0.01
ball 0.02 0.9 0.02 0.07

Table 1: P (U |R) for our toy domain for some
values of U and R; we assume that this model is
learned from data (columns are excerpted from a
distribution over a larger vocabulary).

int. red round square green
obj1 0.5 0.5 0 0
obj2 0.5 0 0.5 0

Table 2: P (R|I), for our example domain.

Properties An important part of our model is
the set of properties. Properties can be visual
properties such as color or shape or spatial prop-
erties (left-of, below, etc.). Though not the fo-
cus of this paper, they could also be concep-
tual properties (the verb run can have the proper-
ties of movement, use of legs, and quick).
Another example, New York has the property of
being New York. (That is generally sufficient
enough to denote New York, but note that descrip-
tive properties (e.g., “location of the Empire State
Building”) could be used as well.) The purpose
of the properties is to ground intentions with lan-
guage in a more fine-grained way than the words
alone.

We will now give an example of the generative
approach as in Equation 2 (it is straight-forward to
do the same for the discriminative model).

4.1 Example

The task is reference resolution in a shared visual
context: there is an intention to refer to a visible
object. For this example, there are two objects
obj1 and obj2, and four properties to describe
those objects, red, round, square and green.
The utterance for which we want to track a dis-
tribution over possible referents, going word-by-
word, is the red ball. obj1 happens to be a red
ball, with properties red and round; obj2 is a
red cube, with the properties red and square.

We now need the models P (U |R) and P (R|I).
We assume the former is learned from data, and
for the four properties and three words gives us re-
sults as shown in Table 1 (that is, P (U = the|R =
red) = 0.03). The model P (R|I) can be read off
the representation of the scene: if you intend to
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refer to object obj1 (I = obj1), you can either
pick the property red or the property round, so
both get a probability of 0.5 and all others 0; sim-
ilar for obj2 and red and square (Table 2).

Table 3 now shows an application of the full
model to our example utterance. The cells
in the columns labeled with properties show
P (U |R)P (R|I) for the appropriate properties and
intentions (objects), the column Σ shows results
after marginalizing over R. The final column then
factors in P (I) with a uniform prior for the first
word, and the respectively previous distribution
for all others, and normalises.

I U red rnd. sq. Σ P (I|U)

obj1 the .015 .01 0 .025 .5
obj2 .015 0 .01 .025 .5
obj1 red .41 .0045 0 .41 .47
obj2 .41 0 .045 .46 .53
obj1 ball .01 .45 0 .46 .96
obj2 .01 0 .01 .02 .04

Table 3: Application of utterance the red ball,
where obj1 is the referred object

As these numbers show, the model behaves as
expected: up until ball, the utterance does not
give enough information to decide for either ob-
ject probabilities are roughly equal, once ball is
uttered obj1 is the clear winner.

This illustrated how the model works in princi-
ple and showed that it yields the expected results
in a simple toy domain. In the next section we will
show that this works in more realistic domains.

5 Experiments

Our model’s task is to predict a semantic frame,
where the required slots of the frame are known
beforehand and each slot value is predicted us-
ing a separate model P (I|U). We realise P (U |R)
as a Naive Bayes classifier (NB) which counts co-
occurrences of utterance features (words, bigrams,
trigrams; so U is actually a tuple, not a single vari-
able) and properties (but naively treats features as
independent), and which is smoothed using add-
one smoothing. As explained earlier, P (I) repre-
sents a uniform distribution at the beginning of an
utterance, and the posteriori of the previous step,
for later words. We also train a discriminative
model, P (R|U), using a maximum entropy classi-
fier (ME) using the same features as NB to classify
properties.3

3http://opennlp.apache.org/

5.1 A Non-Situated Baseline using ATIS

We performed an initial test of our model using
a corpus in traditional NLU: the air travel infor-
mation system (ATIS) corpus (Dahl et al., 1994)
using the pre-processed corpus as in (Meza-Ruiz
et al., 2008). In ATIS, the main task is to predict
the slot attributes (the values were simply words
from the utterance); however, the GOAL slot (rep-
resenting the overall utterance intent) was was al-
ways present, the value of which required a predic-
tion. We tested our model’s ability to predict the
GOAL slot (using very simple properties; the prop-
erty of a GOAL intention is itself, i.e., the property
of flight is flight) and found encouraging re-
sults (the GOAL slot baseline is 71.6%, see (Tur et
al., 2010); our NB and ME models obtained scores
of 77% and 77.9% slot value prediction accura-
cies, respectively). How our model works under
more complicated settings will now be explained.

5.2 Puzzle Domain: Speech-Only

Figure 3: Example
Pentomino Board




ACTION rotate
OBJECT object-4
RESULT clockwise




Figure 4: Pento
frame example

Data and Task The Pentomino domain
(Fernández et al., 2007) contains task-oriented
conversational data; more specifically, we worked
with the corpus also used recently in (Heintze et
al., 2010; Peldszus et al., 2012; Kennington and
Schlangen, 2012). This corpus was collected in
a Wizard-of-Oz study, where the user goal was
to instruct the computer to pick up, delete, rotate
or mirror puzzle tiles on a rectangular board (as
in Figure 3), and place them onto another one.
For each utterance, the corpus records the state of
the game board before the utterance, the immedi-
ately preceding system action, and the intended
interpretation of the utterance (as understood
by the Wizard) in the form of a semantic frame
specifying action-type and arguments, where
those arguments are objects occurring in the
description of the state of the board. The language
of the corpus is German. An example frame is
given in Figure 4.
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The task that we want our model to perform is
as follows: given information about the state of
the world (i.e., game board), previous system ac-
tion, and the ongoing utterance, predict the values
of the frame. To this end, three slot values need
to be predicted, one of which links to the visual
scene. Each slot value will be predicted by an in-
dividual instantiation of our model (i.e., each has
a different I to predict). Generally, we want our
model to learn how language connects to the world
(given discourse context, visual context, domain
context, etc.). We used a combination of visual
properties (color, shape, and board position), and
simple properties to ground the utterance with I .

Our model gives probability distributions over
all possible slot values, but as we are interested
in single best candidates (or the special value
unknown if no guess can be made yet), we ap-
plied an additional decision rule to the output of
our model. If the probability of the highest candi-
date is below a threshold, unknown is returned,
otherwise that candidate is returned. Ties are bro-
ken by random selection. The thresholds for each
slot value were determined empirically on held-
out data so that a satisfactory trade-off between
letting through wrong predictions and changing
correct results to unknown was achieved.

Procedure All results were obtained by aver-
aging the results of a 10-fold validation on 1489
Pento boards (i.e., utterances+context, as in (Ken-
nington and Schlangen, 2012)). We used a sep-
arate set of 168 boards for small-scale, held-out
experiments. As this data set has been used
in previous work, we use previous results as
baselines/comparisons. For incremental process-
ing, we used InproTK (Baumann and Schlangen,
2012).4

On the incremental level, we followed
(Schlangen et al., 2009) and (Kennington and
Schlangen, 2012) for evaluation, but use a subset
of their incremental metrics, with a modification
on the edit overhead:
first correct: how deep into the utterance do we
make the first correct guess?
first final: how deep into the utterance do we
make the correct guess, and don’t subsequently
change our minds?
edit overhead: what is the ratio of unnecessary
edits / sentence length, where the only necessary
edit is that going from unknown to the final,

4http://sourceforge.net/projects/inprotk/

correct result anywhere in the sentence)?

Results The results for full utterances are given
in Table 4. Both of our model types work better
than (Heintze et al., 2010) which used support vec-
tor machines and conditional random fields, and
(Peldszus et al., 2012) which was rule-based (but
did not include utterances with pronouns like we
do here). The NB version did not work well in
comparison to (Kennington and Schlangen, 2012)
which used MLN, but the ME version did in most
metrics. Overall these are nice results as they
are achieved using a more straightforward model
with rather simple features (with room for exten-
sions). Another welcome result is performance
from noisy data (trained and evaluated on automat-
ically transcribed speech; ASR); the ME version of
our model is robust and performs well in compar-
ison to previous work.

NB ME K H P
fscore 81.16 92.26 92.18 76.9

(74.5) (89.4) (86.8)
slot 73.62 88.91 88.88

(66.4) (85.1) (81.6)
frame 42.57 74.08 74.76

(34.2) (67.2) (61.2)
action 80.05 93.62 92.62
object 76.27 90.79 84.71 64.3
result 64.4 82.34 86.65

Table 4: Comparison of results from Pento: Naive
Bayes NB, Maximum Entropy ME, (Kennington
and Schlangen, 2012) K, (Heintze et al., 2010)
H, (Peldszus et al., 2012) P; values in parenthe-
ses denote results from automatically transcribed
speech.

A big difference between our current model
and MLN is the way incrementality is realised:
MLN was restart incremental in that at each incre-
ment, features from the full utterance prefix were
used, not just the latest word; the present model is
fully incremental in that a prior belief is updated
based only on the new information. This, how-
ever, seems to lead our model to perform with less
accuracy for the result slot, which usually oc-
curs at the end of the sentence.

Incremental Table 5 shows the incremental
results in the same way as (Kennington and
Schlangen, 2012). Utterances are binned into
short, normal, and long utterance lengths (1-6,
7-8, 9-17 words, respectively) as determined by
looking at the distribution of utterance lengths,
which appeared as a normal distribution with 7 and
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das graue Teil in der ersten Reihe nehmen

Figure 5: Example of reference resolution for the utterance: das graue Teil in der ersten Reihe nehmen /
the gray piece in the first row take; lighter cell background means higher probability assigned to piece.

8-word utterances having highest representation.
In comparison with (Kennington and Schlangen,
2012), our model generally takes longer to come
to a first correct for action, but is earlier for the
other two slots. For first final, our model always
takes longer, albeit with lower edit overhead. This
tells us that our model is more careful than the
MLN one; it waits longer before making a final de-
cision and it doesn’t change its mind as much in
the process, which arguably is desired behaviour
for incremental systems.

action 1-6 7-8 9-14
first correct (% into utt.) 5.78 2.56 3.64
first final (% into utt.) 38.26 36.10 30.84
edit overhead 2.37
object 1-6 7-8 9-14
first correct (% into utt.) 7.39 7.5 10.11
first final (% into utt.) 44.7 44.18 35.55
edit overhead 4.6
result 1-6 7-8 9-14
first correct (% into utt.) 15.16 23.23 20.88
first final (% into utt.) 42.55 40.57 35.21
edit overhead 10.19

Table 5: Incremental Results for Pento slots with
varying sentence lengths.

Figure 5 illustrates incremental performance by
showing the distribution over the pieces (using the
ME model; lighter means higher probability) for
the utterance das graue Teil in der ersten Reihe
nehmen (the gray piece in the first row take / take
the gray piece in the first row) for each word in
the utterance. When the first word, das is uttered,
it already assigns probabilities to the pieces with
some degree of confidence (note that in German,
das (the) denotes the neuter gender, and the piece
on the right with the lowest probability is often re-
ferred to by a noun (Treppe) other than neuter).
Once graue (gray) is uttered, the distribution is
now more even upon the three gray pieces, which
remains largely the same when Teil (piece) is ut-
tered. The next two words, in der (in the) give
more probability to the left gray piece, but once er-
sten Reihe (first row) is uttered, the most probable
piece becomes the correct one, the second piece

from the left on the top.

5.3 Puzzle Domain: Speech, Gaze and Deixis

Data and Task Our final experiment uses newly
collected data (Kousidis et al., 2013), again from
the Pentomino domain. In this Wizard-of-Oz
study, the participant was confronted with a Pento
game board containing 15 pieces in random col-
ors, shapes, and positions, where the pieces were
grouped in the four corners of the screen (exam-
ple in Figure 6). The users were seated at a table
in front of the screen. Their gaze was then cali-
brated with an eye tracker (Seeingmachines Face-
Lab) placed above the screen and their arm move-
ments (captured by a Microsoft Kinect, also above
the screen) were calibrated by pointing to each
corner of the screen, then the middle of the screen.
They were then given task instructions: (silently)
choose a Pento tile on the screen and then instruct
the computer game system to select this piece by
describing and pointing to it. When a piece was se-
lected (by the wizard), the participant had to utter
a confirmation (or give negative feedback) and a
new board was generated and the process repeated
(each instance is denoted as an episode). The ut-
terances, board states, arm movements, and gaze
information were recorded, as in (Kousidis et al.,
2012). The wizard was instructed to elicit point-
ing gestures by waiting to select the participant-
referred piece by several seconds, unless a point-
ing action by the participant had already occurred.
When the wizard misunderstood, or a technical
problem arose, the wizard had an option to flag
the episode. In total, 1214 episodes were recorded
from 8 participants (all university students). All
but one were native speakers; the non-native spoke
proficient German (see Appendix for a set of ran-
dom example utterances).

The task in this experiment was reference res-
olution (i.e., filling a single-slot frame). The in-
formation available to our model for these data
include the utterance (ASR-transcribed and repre-
sented as words, bigrams, and trigrams), the vi-
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Figure 6: Example Pento board for gaze and deixis
experiment; yellow piece in the top-right quadrant
has been “selected” by the wizard after the partic-
ipant utterance.

sual context (game board), gaze information, and
deixis (pointing) information, where a rule-based
classifier predicted from the motion capture data
the quadrant of the screen at which the participant
was pointing. These data were very noisy (and
hence, realistic) despite the constrained conditions
of the task: the participants were not required to
say things a certain way (as long as it was under-
stood by the wizard); their hand movements poten-
tially covered their faces which interfered with the
eye tracker; each participant had a different way of
pointing (each had their own gesture space, hand-
edness, distance of hand from body when point-
ing, alignment of hand with face, etc.). Also, the
episodes were not split into individual utterances,
but rather interpreted as one; this indicates that the
model can deal with belief tracking over whole in-
teractions (here, if the wizard did not respond, the
participant had to clarify her intent in some way,
producing a new utterance).

Procedure Removing the flagged utterances and
the utterances of one of the participants (who had
misunderstood the task) left us with a total of 1051
utterances. We used 951 for development (fine-
tuning of parameters, see below), and 100 for eval-
uation. Evaluation was leave-one-out (i.e., 100
fold cross validation) where the training data were
all other 1050 utterances. For this experiment, we
only used the ME model as it performed much bet-
ter in the previous experiment. We give results
as resolution accuracy. We incorporate gaze and
deixis information in two ways: (1) We computed
the distribution over tiles gazed at, and quadrant
of the screen pointed at during the interval before
and during an utterance. The distributions were
then combined at the end of the utterance with the

NLU distribution (denoted as Gaze and Point); that
is, Gaze and Point had their own P (I) which were
evenly interpolated with the INLU P (I|U), and (2)
we incrementally computed properties to be pro-
vided to our INLU model; i.e., a tile has a prop-
erty in R of being looked at if it is gazed at for
some interval of time, or tiles in a quadrant of the
screen have the property of being pointed at.
These models are denoted as Gaze-F and Point-F.
As an example, Figure 7 shows an example utter-
ance, gaze, and gesture activity over time and how
they are reflected in the model (the utterance is the
observed U , where the gaze and gesture become
properties in R for the tiles that they affect). Our
baseline model is the NLU without using gaze or
deixis information; random accuracy is 7%.

We also include the percentage of the time
the gold tile is in the top 2 and top 4 rankings
(out of 15); situations in which a dialogue sys-
tem could at least provide alternatives in a clar-
ification request (if it could detect that it should
have low confidence in the best prediction; which
we didn’t investigate here). Importantly, these re-
sults are achieved with automatically transcribed
utterances; hand transcriptions do not yet exist for
these data. For gaze, we also make the naive as-
sumption that over the utterance the participant
(who in this case is the speaker) will gaze at his
chosen intended tile most of the time.

Figure 7: Human activity (top) aligned with how
modalities are reflected in the model for Gaze-F
and Point-F (bottom) over time for example utter-
ance: take the yellow tile.

Results See Table 6 for results. The models that
have access to gaze and pointing gestures can re-
solve better than those that do not. Our findings
are consistent in that referential success with gaze
alone approaches 20% (a rate found by (Pfeiffer,
2010) in a different setting). Another interest-
ing result is that the Gaze-F and Point-F variants,
that continuously integrate multi-modal informa-
tion, perform the same as or better than their non-
incremental counterparts (where the distributions
are weighted once at the end of the utterance).
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Version Acc Top 2 Top 4
Gaze 18%

(baseline) NLU 50% 59% 77%
NLU + Gaze 53% 62% 80%
NLU + Point 52% 65% 90%

NLU + Gaze + Point 53% 70% 91%
NLU + Gaze-F 53% 65% 78%
NLU + Point-F 57% 68% 88%

NLU+Gaze-F+Point-F 56% 69% 85%

Table 6: Accuracies for reference resolution task
when considering NLU, gaze and pointing infor-
mation before and during the utterance (Gaze and
Point), and gaze and pointing information when
considered as properties to the NLU model (Gaze-
F and Point-F).

Incremental We also include incremental re-
sults when using gaze and deixis. We binned the
sentences in the same way as in the previous ex-
periment (the distribution of sentence lengths was
similar). Figure 8 shows how the NLU model base-
line, the (NLU+) Gaze-F, Point-F, and Gaze-F +
Point-F models perform incrementally for utter-
ances of lengths 7-8. All models increase mono-
tonically, except for Point-F at one point in the ut-
terance and Gaze-F at the end. It would appear that
the gaze as an information source is a good early
indicator of speaker intent, but should be trusted
less as the utterance progresses. Deixis is more
trustworthy overall, and the two taken together of-
fer a more stable model. Table 7 shows the re-
sults using the previously explained incremental
metrics. All models have little edit overhead, but
don’t make the correct final decision until well into
the utterances. This was expected due to the noisy
data. A consumer of the output of these models
would need to wait longer to trust the results given
by the models (though the number of words of the
utterance can never be known beforehand).

6 Discussion and Conclusions

We presented a model for the interpretation of
utterances in situated dialogue that a) works in-
crementally and b) can ground meanings in the
shared context. Taken together, the three experi-
ments we’ve reported give good evidence that our
model has the potential to be used as a success-
ful NLU component of an interactive dialogue sys-
tem. Our model can process at a speed which is
faster than the ongoing utterance, which will al-
low it to be useful in real-time, interactive exper-
iments. And, crucially, our model is able to inte-

Figure 8: Incremental process for referential accu-
racy; comparing NLU, Gaze-F, Point-F, and Gaze-
F + Point-F for utterances of length 7-8.

NLU 1-6 7-8 9-14
first correct (% into utt.) 22.2 37.2 30
first final (% into utt.) 82.4 82.4 74.8
edit overhead 2.95
Gaze-F 1-6 7-8 9-14
first correct (% into utt.) 23 32 31.1
first final (% into utt.) 84.1 81.5 75.4
edit overhead 2.89
Point-F 1-6 7-8 9-14
first correct (% into utt.) 21.4 30 23.3
first final (% into utt.) 83.5 80 72.3
edit overhead 2.59
Gaze-F + Point-F 1-6 7-8 9-14
first correct (% into utt.) 16.7 31 28
first final (% into utt.) 81.5 81 73.9
edit overhead 2.67

Table 7: Incremental results for Pento slots with
varying sentence lengths.

grate information from various sources, including
gaze and deixis. We expect the model to scale to
larger domains; the number of computations that
are required grows with |I| × |R|.

Our model makes use of properties which are
used to connect an utterance to an intention.
Knowing which properties to use requires empir-
ical testing to determine which ones are useful.
We are working on developing principled meth-
ods for selecting such properties and their con-
tribution (i.e., properties should not be uniform).
Future work also includes better use of linguistics
(instead of just n-grams), building a more sophis-
ticated DBN model that has fewer independence
assumptions, e.g. tracking properties as well by
making Rt depended on Rt−1. We are also in
the process of using the model interactively; as a
proof-of-concept, we were trivially able to plug it
into an existing dialogue manager for Pento do-
mains (see (Buß et al., 2010)).
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Appendix A: Example Utterances (Pento
Speech)

1. nimm die Brücke in der oberen Reihe
2. nimm das Teil in der mittleren Reihe das zweite
Teil in der mittleren Reihe
3. und setz ihn in die Mitte links
4. dreh das nach links
5. ähm und setz ihn oben links in die Ecke
6. nimm bitte den gelben Winkel oben
7. bewege das Kästchen die Treppe unten links
8. lösche das Teil in der Mitte
9. nimm die gelbe Krücke aus der zweiten Reihe
oben
10. und verschiebe es in die erste Zeile dritte
Spalte

Appendix B: Example Utterances (Speech,
Gaze and Deixis)

(as recognised by the ASR)
1. dieses teil genau st es oben links t
2. das t mit vier rechts oben ist d es direkt hier
rechts
3. grüne von rechts uh fläche
4. das obere grüne zähl hm so es obersten hohles
e rechts oben ecke
5. ähm das hintere kreuz unten links rechts rechts
6. äh das einzige blaue symbol oben rechts
7. das einzige grün okay oben rechts
8. hm innerhalb diesem blauen striche vorne hm
so genau in die genau rechts
9. und das sind dann nehmen diese fünf zeichen
oben nämlich genau das in der mitte so
10. oben links is die untere
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Abstract

We describe the annotation of a multi-
modal corpus that includes pointing ges-
tures and haptic actions (force exchanges).
Haptic actions are rarely analyzed as full-
fledged components of dialogue, but our
data shows haptic actions are used to ad-
vance the state of the interaction. We re-
port our experiments on recognizing Di-
alogue Acts in both offline and online
modes. Our results show that multimodal
features and the dialogue game aid in DA
classification.

1 Introduction

When people collaborate on physical or virtual
tasks that involve manipulation of objects, dia-
logues become rich in gestures of different kinds;
the actions themselves that collaborators engage
in also perform a communicative function. Col-
laborators gesture while speaking, e.g. saying
“Try there?” while pointing to a faraway location;
they perform actions to reply to their partner’s ut-
terances, e.g. opening a cabinet to comply with
“please check cabinet number two”. Conversely,
they use utterances to reply to their partner’s ges-
tures and actions, e.g. saying “not there, try the
other one” after their partner opens a cabinet. Ges-
tures and actions are an important part of such di-
alogues; while the role of pointing gestures has
been explored, the role that haptic actions (force
exchanges) play in an interaction has not.

In this paper, we present our corpus of multi-
modal dialogues in a home care setting: a helper
is helping an elderly person perform activities of
daily living (ADLs) such as preparing dinner. We
investigate how to apply Dialogue Act (DA) clas-
sification to these multimodal dialogues. Many
challenges arise. First, an utterance may not di-
rectly follow a spoken utterance, but a gesture or a

haptic action. Likewise, the next move is not nec-
essarily an utterance, it can be a gesture (pointing
or haptics) only, or a multimodal utterance. Third,
when people use gestures and actions together
with utterances, the utterances become shorter,
hence the textual context that has been used to ad-
vantage in many previous models is impoverished.
Our contributions concern: exploring the dialogue
functions of what we call Haptic-Ostensive (H-O)
actions (Foster et al., 2008), namely haptics ac-
tions that often perform a referential function; ex-
perimenting with both offline and online DA clas-
sification, whereas most previous work only fo-
cuses on offline classification (Stolcke et al., 2000;
Hastie et al., 2002; Di Eugenio et al., 2010a); high-
lighting the role played by multimodal features
and dialogue structure (in the form of dialogue
games) as concerns DA classification.

Our work is part of the RoboHelper project (Di
Eugenio et al., 2010b) whose ultimate goal is to
deploy robotic assistants for the elderly so that
they can safely remain living in their home. The
models we derive from our experiments are the
building blocks of a multimodal information-state
based dialogue manager, whose architecture is
shown in Figure 1. The dialogue manager per-
forms reference resolution, specifically resolving
third person pronouns and deictics in utterances;
classifies utterances to DAs; infers the dialogue
games for utterances; updates the dialogue state,
and finally decides what the next step is in the in-
teraction. We have discussed our approach to mul-
timodal reference resolution in (Chen et al., 2011;
Chen and Di Eugenio, 2012). In this paper, we fo-
cus on the Dialogue Act classification component.
We will also touch on Dialogue Game inference.
Our collaborators are developing the speech pro-
cessing, vision and haptic recognition components
(Franzini and Ben-Arie, 2012; Ma and Ben-Arie,
2012; Javaid and Žefran, 2012), that, when inte-
grated with the dialogue manager we are building,
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Figure 1: System Architecture

will make the interface situated in and able to deal
with a real environment.

After discussing related work in Section 2, we
present our multimodal corpus and the multidi-
mensional annotation scheme we devised in Sec-
tion 3. In Section 4 we discuss all the features we
used to build machine learning models to classify
DAs. Sections 5 is devoted to our experiments and
the results we obtained. We conclude and discuss
future work in Section 6.

2 Related Work

Due to its importance in dialogue research, DA
classification has been the focus of a large body
of research (Stolcke et al., 2000; Sridhar et
al., 2009; Di Eugenio et al., 2010a; Boyer
et al., 2011). Some of this work has been
made possible by several available corpora tagged
with DAs, including HCRC Map Task (Ander-
son et al., 1991), CallHome (Levin et al., 1998),
Switchboard (Graff et al., 1998), ICSI Meeting
Recorder (MRDA) (Shriberg et al., 2004), and the
AMI multimodal corpus (Carletta, 2007).

Researchers have applied various approaches
to this task. Initially only simple textual fea-
tures were used, e.g. n-grams were used to
model the constraints for DA sequences in an
HMM model (Stolcke et al., 2000). Zimmermann
et al. (2006) investigated the joint segmentation
and classification of DAs using prosodic features.
Sridhar et al. (2009) showed that prosodic cues
can improve DA classification for a Maximum En-
tropy based model. Di Eugenio et al. (2010a)
extended Latent Semantic Analysis with linguis-
tic features, including dialogue game information.
Boyer et al. (2011) integrates facial expressions

to significantly improve the recognition of several
DAs, whereas Ha et al. (2012) shows that auto-
matically recognized postural features may help to
disambiguate DAs.

It should be pointed out that most of this work
focuses on offline DA classification – namely, DA
classification is performed on the corpus using
the gold-standard classification for the previous
DA(s). Since some sort of history of previous
DAs is used by all systems, using online classi-
fication for the previous DAs will unavoidably im-
pact performance (Sridhar et al., 2009; Kim et al.,
2012). Additionally, for models such as HMMs
and CRF that approach the problem as sequence
labeling, online processing means that only a par-
tial sequence is available.

3 The ELDERLY-AT-HOME Corpus

This work is based on the ELDERLY-AT-HOME
corpus, a multimodal corpus in the domain of el-
derly care (Chen and Di Eugenio, 2012). The
corpus contains 20 human-human dialogues. In
each dialogue, a helper (HEL) and an elderly
person (ELD) perform Activities of Daily Liv-
ing (ADL) (Krapp, 2002), such as getting up from
chairs, finding pots, cooking pasta. The setting
is a fully equipped studio apartment used for
teaching and research in a partner university (see
Figure 2). The corpus contains 482 minutes of
recorded videos, which comprise 301 minutes of
what we call effective video, obtained by eliminat-
ing irrelevant content such as explanations of the
tasks and interruptions by the person who accom-
panied the elderly subject (who is not playing the
part of the helper). This 301 minutes contain 4782
spoken turns. The corpus includes video and au-
dio data in .avi and .wav format, haptics data col-
lected via instrumented gloves in .csv format, and
the transcribed utterances in xml format.

The Find subcorpus of our corpus comprises
only Find tasks, where subjects look for and re-
trieve various kitchen objects such as pots, silver-
ware, pasta, etc. from various locations in the
apartment. We define a Find task as a continuous
time span during which the two subjects are col-
laborating on finding objects. Find tasks naturally
arise while performing an ADL such as preparing
dinner. Figure 3 shows a Find task example.
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Figure 2: Data Collection Experiment

Figure 3: Find Task Example

3.1 Annotation

We devised a multidimensional annotation scheme
since we are interested in investigating the role
played in the interaction by modalities different
from speech. Our annotation scheme comprises
three main components: the multimodal event an-
notation, which includes annotating for pointing
gestures, haptic-ostensive actions, their features,
and their relationships to utterances; the dialogue
act annotation; and the referential expression an-
notations already described in (Chen et al., 2011;
Chen and Di Eugenio, 2012).

3.1.1 Multimodal Event Annotation
To study the roles played by different sorts of mul-
timodal actions, and how they contribute to the
flow of the dialogue, pointing gestures, Haptic-
Ostensive (H-O) actions, and the relations among
them have been annotated on the Find subcorpus.
The Find subcorpus contains 137 Find tasks, col-
lected from the dialogues of 19 pairs of subjects
from the larger corpus. 1 The multimodal annota-

1One pair of subjects was excluded, because ELD ap-
peared confused. Our goal was to recruit elderly subjects with

tion tool Anvil (Kipp, 2001) was used to transcribe
all the utterances, and to annotate for all categories
described in this paper. Each annotation category
is an annotation group in Anvil. For each subject,
one track is defined for each annotation group, for
a total of 4 tracks per subject in Anvil.

Pointing gestures are used naturally when peo-
ple refer to a far away object. We define a pointing
gesture as a hand gesture without physical contact
with the target. Our definition of pointing gesture
does not include head or other body part move-
ments used to indicate targets. Our corpus in-
cludes very few occurrences of those; additionally,
our collaborators in the RoboHelper project focus
on recognizing hand gestures. We have identified
two types of pointing gestures. The first is, point-
ing gestures with an identifiable target, which is
usually indicated by a short time stable hand point-
ing. The other type is without a fixed target. It
usually happens when the subject points to several
targets in a short time, or the subject just points to
a large space area.

For a pointing gesture, we mark two attributes:
the time span and the target. The time span of
a pointing gesture starts when the subject initi-
ates the hand movement, ends when the subject
starts to draw the hand back. We have devised a
Referring Index System (Chen and Di Eugenio,
2012) to mark the different types of targets: sin-
gle identifiable target, multiple identifiable targets
and unidentifiable target.

During Find tasks, subjects need to physically
interact with the objects, e.g. they need to open
cabinets to get plates, to put a pot on the stove etc.
Those physical contact actions often perform a re-
ferring function as well, either adding new enti-
ties to the discourse model, or referring to an al-
ready established referent. For example, in Fig-
ure 3, the action [Touch(Hel,Drawer1)] that ac-
companies Utt4 disambiguates This by referring to
Drawer1, tantamount to a pointing gesture; con-
versely, the action [Takeout(HEL,spoon1)] associ-
ated with Utt8 establishes a referent for spoon1.
Following (Foster et al., 2008), we label Haptic-
Ostensive (H-O) those actions that involve physi-
cal contact with an object, and that can at the same
time perform a referring function. Note that target
objects here exclude the partner’s body parts, as
when HEL helps ELD get up from a chair.

No existing work that we know of identifies

intact cognitive functions, but this subject was an exception.
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types of H-O actions. Hence, we had to define our
own categories, based on the following two princi-
ples: (1) The H-O types must be grounded in our
data, namely, the definitions are empirically based:
these H-O actions are frequently observed in the
corpus. (2) They are within the scope of what our
collaborators can recognize from the haptic sig-
nals. The five H-O action types we defined are:

• Touch: when the subject only touches the
targets, no immediate further actions are per-
formed

• MANIP-HOLD: when the subject takes out
or picks up an object and holds it stably for a
short period of time

• MANIP-NO-HOLD: when the subject takes
out or picks up an object, but without explic-
itly showing it to the other subject

• Open: starts when the subject has physical
contact with the handle of the fridge, a cabi-
net or a drawer, and starts to pull; ends when
the physical contact is off

• Close: when the subject has physical con-
tact with the handle of the fridge, a cabinet
or a drawer, and starts to push; ends when the
physical contact is off

For H-O action annotation, three attributes are
marked: time span, target and action type. The
“Target” attribute is similar to the “Target” at-
tribute in pointing gesture annotation. Since H-
O actions are more accurate than pointing ges-
tures (Foster et al., 2008), the targets are all iden-
tifiable.

Table 1 provides distributions of the length in
seconds for different types of events in the Find
corpus. Table 2 shows the counts of different
events divided by type of participant. From these
two tables, it is apparent that:

• Pointing gestures and H-O actions were fre-
quently used: their total corresponds to 61%
of the number of utterances

• Utterances are short: only 1.7”, and 4.2
words on average

• ELD performed 66% of pointing gestures,
and HEL 97.5% of H-O actions

Multimodal Event Relation Annotation.
Pointing gestures and H-O actions can accompany
an utterance, e.g. see move 2 in Figure 3: HEL

Utterances Pointing H-O Actions Total
2555” 571” 1088” 4377”

Table 1: Find Subcorpus: Length in seconds

ELD HEL Total
Utterances 756 760 1516

Words 3612 2981 6593
Pointing 219 113 332

H-O Actions 15 582 597

Table 2: Find Subcorpus: Counts

asks “Down there” while pointing to a drawer;
or can be used independently, e.g. see move 6
in Figure 3: HEL does not utter any words, but
opens the drawer after ELD confirms that is
the right drawer with “Uh-huh”. In the latter
case, HEL used an action to respond to ELD.
Pointing gestures and H-O actions are followed
by utterances as well, e.g. move 11 in Figure 3:
after HEL opens a drawer, ELD says “Yes, there
it is”.

To understand how pointing gestures and H-O
actions participate in the dialogues and how they
interact with utterances, we further annotated the
relationship between utterances, pointing gestures
and H-O actions. Just using timespans is not
sufficient. It is not necessarily the case that utter-
ance U is associated with gesture / H-O action G
if their timespans overlap. This type of annotation
is purely local: the fact that turns 2-5 in Figure 3
confirm which drawer to open, would be captured
at the dialogue game level.

First, we assign to each utterance, pointing ges-
ture and H-O action a unique event index, so that
we can refer to these events with their indices. For
pointing gestures and H-O actions, we define two
more attributes: “associates” and “follows”. If a
pointing gesture or H-O action is associated with
an utterance, the “associates” value will be the in-
dex of that utterance; by default, the “associates”
value is empty. If a pointing gesture or H-O ac-
tion independently follows an utterance, the “fol-
lows” value will be that utterance’s index. E.g.,
for move 6 in Figure 3, we mark the H-O action
“Open” with “follows [5]”.

For utterances, we only mark the “follows” at-
tribute. If an utterance directly follows a point-
ing gesture or H-O action, we use the index of the
pointing gesture or H-O action as the “follows”
value. By default, the “follows” attribute of an ut-
terance is empty. It means that an utterance fol-
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lows its immediate previous utterance.
We define a move as any combination of related

utterances, pointing gestures and H-O actions, per-
formed by the same subject. On the basis of the
event relation annotations, we can compute the di-
alogue’s move flow using the following algorithm.

1. Order all the utterances in a Find task session
by the utterance start time

2. Until all the utterances are processed, for
each unprocessed utterance ui:

(a) If ui follows a pointing gesture or H-O
action, that pointing gesture or H-O ac-
tion forms a new move mk; add mk to
the sequence before ui

(b) Find all the pointing gestures and H-
O actions labelled as associates of ui.
These events form the move mi together
with ui

(c) Recursively find the events which fol-
low the last generated move, together
with all their associated events to form
another move

This algorithm computes 1791 moves, as shown in
Table 3. More than 90% of pointing gestures are
used with utterances. Only 377 out of 596 H-O ac-
tions are included in the moves, mostly because the
H-O action “Close” frequently follows an “Open”
action (these cases are not detected by the algo-
rithm, because they don’t advance the dialogue).

ELD HEL Total
Utterances 545 507 1052
Pointing 9 11 20

H-O 5 213 218
Utterance&Pointing 209 100 309

Utterance&H-O 2 153 155
Total 770 984 1754

Table 3: Moves Statistics in Find Corpus

3.1.2 Dialogue Act Annotation
Since the Find corpus is task-oriented in nature,
we built on the dialogue act inventory of HCRC
MapTask, a well-known task oriented corpus (An-
derson et al., 1991). The MapTask tag set con-
tains 11 moves:2 instruct, explain, check, align,
query-w, query-yn; acknowledge, reply-y, reply-n,
reply-w, clarify. However, this inventory of DAs
does not cover utterances that are used to respond

2A twelfth move, Ready, does not appear in our corpus.

to gestures and actions, such as Utt.11 in Figure 3.
The semantics of the reply-{y/n/w} tags does not
cover these situations. Hence, we devised three
more tags, which apply only to statements that fol-
low a move composed exclusively of a gesture or
an action (in the sense of “follow” just discussed):

• state-y: a statement which conveys “yes”,
such as Utt.11 in Figure 3.

• state-n: a statement which conveys “no”, e.g.
if Utt.11 had been Wait, try the third drawer.

• state: still a statement , but not conveying ac-
ceptance or rejection, e.g. So we got the soup.

Hence, the DAs in {state-y, state-n, state} are
used to tag responses to actions, and the DAs
in {reply-y, reply-n, reply-w} are used to tag re-
sponses to utterances. Table 4 shows the distribu-
tion of DAs by subject.

Dialogue Act ELD HEL Total Ratio
Instruct 295 19 314 20.7%

Acknowledge 22 186 208 13.7%
Reply-y 179 3 182 12.0%
Check 1 155 156 10.3%

Query-yn 23 133 156 10.3%
Query-w 3 144 147 9.7%
Reply-w 132 4 136 9.0%
State-y 40 36 76 5.0%
State-n 16 50 66 4.4%
Reply-n 27 9 36 2.4%

State 7 15 22 1.5%
Explain 10 4 14 0.9%
Align 1 2 3 0.3%
Total 756 760 1516 100%

Table 4: Dialogue Act Counts in Find Corpus

Intercoder Agreement. In order to verify the
reliability of our annotations, we double coded
15% of the data for pointing gestures, H-O actions
and DAs. These are the dialogues from 3 pairs of
subjects, and contain 22 Find tasks. Because the
pointing gestures and H-O actions are time span
based, when we calculate agreement, we use an
overlap based approach. If the two annotations
from the two coders overlap by more than 50% of
the event length, and the other attributes are the
same, we count this as a match. We used κ to
measure the reliability of the annotation (Cohen,
1960). We obtained reasonable values: for point-
ing gestures, κ=0.751, for H-O actions, κ=0.703,
and for DAs, κ=0.789.
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4 Experimental Setup

We ran experiments classifying the DA tag for the
current utterance. We employ supervised learn-
ing approaches, specifically: Conditional Random
Field (CRF) (Lafferty et al., 2001), Maximum En-
tropy (MaxEnt), Naive Bayes (NB), and Decision
Tree (DT). These algorithms are widely used for
DA classification (Sridhar et al., 2009; Ivanovic,
2008; Ha et al., 2012; Kim et al., 2012). We
used Mallet (McCallum, 2002) to build CRF mod-
els. MaxEnt models were built using the Max-
Ent 3 package from the Apache OpenNLP pack-
age. Naive Bayes and Decision Tree models were
built with the Weka (Hall et al., 2009) package (for
decision trees, we used the J48 implementation).
All the results we will show below were obtained
using 10 fold cross validation.

4.1 Features
Among our goals were not only to obtain effec-
tive classifiers, but also to investigate which kind
of features are most effective for our tasks. As
a consequence, beyond textual features and dia-
logue history features, we experimented with mul-
timodal features extracted from other modalities,
utterance features, and automatically inferred dia-
logue game features.

Textual features (TX) are the most widely used
features for DA classification (Stolcke et al., 2000;
Bangalore et al., 2008; Sridhar et al., 2009; Di Eu-
genio et al., 2010a; Kim et al., 2010; Boyer et al.,
2011; Ha et al., 2012; Kim et al., 2012). The tex-
tual features we use include lexical, syntactic, and
heuristic features.

• Lexical features: Unigrams of the words and
part-of-speech tags in the current utterance.
The words used in the features are processed
using the morphology tool from the Stanford
parser (De Marneffe and Manning, 2008).

• Syntactic features: The top node and its
first two child nodes from the sentence parse
tree. If an utterance contains multiple sen-
tences, we use the last sentence. Sentences
are parsed using the Stanford parser.

• Number of sentences and number of words in
the utterance. We use Apache OpenNLP li-
brary 4 to detect sentences and tokenize them.

3http://maxent.sourceforge.net
4http://opennlp.apache.org/

• Heuristic features: whether an utterance con-
tains WH words (e.g. what, where), whether
an utterance contains yes/no words (e.g. yes,
no, yeah, nope).

Utterance features (UT) are extracted from
the current utterance’s meta information. Previ-
ous research showed that utterance meta informa-
tion such as the utterance speaker can help classify
DAs (Ivanovic, 2008; Kim et al., 2010).

• The actor of the utterance

• The time length of the utterance

• The distance of the current utterance from the
beginning of the dialogue

The pointing gesture feature (PT) indicates
whether the actor of the current utterance ui is
making a pointing gesture G, i.e., whether G is
associated with ui, and hence, part of move mi.

Haptic-Ostensive features (H-O) indicate
whether the actor of the current utterance ui is per-
forming any H-O action G i.e., whether G is asso-
ciated with ui, and hence, part of move mi; and
the type of that action, if yes.

Location features (LO) include the locations
of the two actors, whether they are in the same
location, whether the actor of the current utter-
ance changes the location during the utterance.
Since we do not have precise measurement of sub-
jects’ locations, we annotate approximate loca-
tions by dividing the apartment into four large ar-
eas: kitchen, table, lounge and bed.

The dialogue game feature (DG) models hi-
erarchical dialogue structure. Some previous re-
search on DA classification has shown that hier-
archical dialogue structure encoded via the no-
tion of conversational games (Carlson, 1983) sig-
nificantly improves DA classification (Hastie et
al., 2002; Sridhar et al., 2009; Di Eugenio et al.,
2010a). In MapTask, a game is defined as a se-
quence of moves starting with an initiation (in-
struct, explain, check, align, query-yn, query-w)
and encompassing all utterances up until the pur-
pose of the game has been fulfilled, or abandoned.
In the Find corpus, dialogue games have not been
annotated. In order to use the DG feature, we use
a just-in-time approach to infer dialogue games.
For each dialogue, we maintain a stack for dia-
logue games. When an utterance is classified as
an initiating DA tag, we assume the dialogue has
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entered a new dialogue game, and push the DA la-
bel as the dialog game to the top of the stack. The
DG feature value is the top element of the stack.
The dialogue game feature is always inferred at
run time during classification process, just before
an utterance is being processed. Hence, when we
classify the DA for the current utterance ui, the
DG value that we use is the closest preceding ini-
tiating DA.

Dialogue history features (DH) model what
happened before the current utterance (Sridhar et
al., 2009; Di Eugenio et al., 2010a). We encode:

• The previous move’s actor

• Whether the previous move has the same ac-
tor as the current move

• The type of the previous move; if it is an ut-
terance, its DA tag; if it is an H-O action, the
type of H-O action

5 DA Classification Experiments

We ran the DA classification experiments with
three goals. First, we wanted to assess the ef-
fectiveness of different types of features, espe-
cially, the effectiveness of gesture, H-O action, lo-
cation and dialogue game features. Second, we
wanted to compare the performances of different
machine learning algorithms on such a multimodal
dialogue dataset. Third, we wanted to investigate
the performances of different algorithms in the on-
line and offline experiment settings. The DA clas-
sification task could be treated as a sequence label-
ing problem (Stolcke et al., 2000). However, dif-
ferent from other sequence labeling problems such
as part-of-speech tagging, a dialogue system can-
not wait until the whole dialogue ends to classify
the current DA. A dialogue system needs online
DA classification models to classify the DAs when
a new utterance is processed by the system. There
are two differences between online and offline DA
classification modes. First, when we generate the
dialogue history and dialogue game features, we
use the previously classified DA tag results for on-
line mode, while we use the gold-standard DA tags
for offline mode. Second, MaxEnt (using beam
search) and CRF evaluate and classify all the ut-
terances in a dialogue at the same time in offline
mode; however in online mode, MaxEnt and CRF
can only work on the partial sequence up to the
utterance to classify. Whereas this may sound ob-
vious, it explains why the performance of these

classifiers may be even more negatively affected
in online mode with respect to their offline perfor-
mance, as compared to other classifiers. We will
see that indeed this will happen for CRF, but not
for MaxEnt.

To evaluate feature effectiveness, we group the
features into seven groups: textual features (TX),
utterance features (UT), pointing gesture fea-
ture (PT), H-O action features (H-O), location
features (LO), dialogue game feature (DG), dia-
logue history features (DH). Then we generate all
the combinations of feature groups to run exper-
iments. For each classification algorithm, we ran
10-fold cross-validation experiments, for each fea-
ture group combination, in both online and offline
mode. It would be impossible to report all our re-
sults. Similarly to (Ha et al., 2012), we report our
results with single feature groups and incremen-
tal feature group combinations, as shown in Ta-
ble 5. Whereas all combinations were tried, the
omitted results do not shed any additional light on
the problem. The majority baseline, which al-
ways assigns the most frequent tag to every utter-
ance, has an accuracy of 20.3%.

The CRF offline model performs best, which
confirms the results of (Kim et al., 2010; Kim
et al., 2012). This is due to the strong correla-
tion between dialogue history features (DH) and
the states of the CRF. In online mode, when there
is noise in the previous DA tags, the CRF’s per-
formance drops significantly (p≤.005, using χ2).
A significant drop in performance from offline to
online mode also happens to NB (p≤.005) and
DT (p<.025). MaxEnt performs very stably, the
best online model performs only .015 worse than
the best offline model. The best MaxEnt offline
model beats the other algorithms’ best models ex-
cept CRF, while the MaxEnt online model outper-
forms all the other algorithms’ online models. Our
results thus demonstrate that MaxEnt works best
for online DA classification on our data.

As concerns features, for online models, textual
features (TX) are the most predictive as a feature
type used by itself. When we add pointing ges-
ture (PT), H-O features (H-O) and location fea-
tures (LO) together to textual features, we notice
a significant performance improvement for most
models (except CRF models). For MaxEnt, which
gives the best results for online models, none of
the gesture, H-O action and location features alone
significantly improve the results, but all three to-
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Features CRF MaxEnt NB DT
Offline Online Offline Online Offline Online Offline Online

1. TX (Textual) .654 .641 .630 .630 .449 .453 .450 .450
2. UT (Utterance) .506 .376 .353 .353 .417 .417 .392 .392
3. PT (Pointing) .225 .155 .210 .210 .212 .212 .212 .212
4. H-O (Haptic-Ostensive) .187 .147 .237 .237 .243 .243 .212 .212
5. LO (Location) .259 .176 .264 .264 .259 .259 .265 .265
6. DG (Dialogue Game) .737 .136 .305 .189 .212 .212 .212 .212
7. DH (Dialogue History) .895 .119 .480 .302 .478 .284 .471 .294
8. TX+PT .654 .651 .639 .639 .453 .453 .450 .450
9. TX+PT+H-O .670 .649 .637 .637 .456 .456 .449 .449
10. TX+PT+H-O+LO .648 .645 .657∗ .657∗ .523∗ .523∗ .536∗ .536∗

11. TX+PT+H-O+LO+UT .668 .612 .685 .685 .563 .563 .568 .568
12. TX+PT+H-O+LO+UT+DG .770∗∗ .528 .722∗∗ .709∗∗ .566 .591∗∗ .576 .607∗∗

13. TX+PT+H-O+LO+UT+DG+DH .847† .475 .757† .742† .635† .606 .671† .627

Table 5: Dialogue Act Classification Accuracy: * indicates significant improvement after adding PT+H-
O+LO to TX (cf. lines 1 and 10); ** indicates significant improvement after adding DG to TX+PT+H-
O+LO+UT (cf. lines 11 and 12); †indicates significant improvement after adding DH to TX+PT+H-
O+LO+UT+DG (cf. lines 12 and 13); bold font indicates the feature group set giving best performance
for each column.

gether do. This confirms the finding of (Ha et al.,
2012) that non-verbal features help DA classifica-
tion. To assess which feature is the most important
among those three non-verbal features, we exam-
ined the experiment results with a leave-one-out
strategy, that is for each classifier in offline and
online modes, we leave one of the gesture, H-O
and location features out from the full experiment
feature set (TX+PT+H-O+LO+UT+DG+DH). No
significant difference was discovered.

When the dialogue game features (DG) are
added to the models, performance increases sig-
nificantly for CRF offline model (p<.005), Max-
Ent offline (p<.005) and online (p<.05) mod-
els, NB online model (p<.05) and DT online
model (p<.005). It confirms previous findings, in-
cluding by our group (Di Eugenio et al., 2010a),
that dialogue game features (DG) play a very im-
portant role in DA classification, even via the sim-
ple approximation we used. When the dialogue
history features (DH) are added to the models,
performance increased significantly for all the of-
fline models and the MaxEnt online model, with
p<.005. This confirms previous findings that dia-
logue history helps with DA classification.

6 Conclusions and Future Work

In this paper we described our multimodal cor-
pus which is annotated with multimodal informa-
tion (pointing gestures and H-O actions) and dia-
logue acts. Our corpus analysis shows that peo-
ple actively use pointing gestures and H-O actions
alongside utterances in dialogues. The function of

H-O actions in dialogue had hardly been studied
before. Our experiments show that MaxEnt per-
forms best for the online DA classification task.
Multimodal and dialogue game features both im-
prove DA classification.

Short-term future work includes manual anno-
tation for dialogue games, in the hope that more
accurate dialogue game features may further im-
prove DA classification. Longer term future work
includes prediction of the specific next move – the
specific DA and/or the specific gesture, pointing or
H-O action. We have now developed some of the
building blocks of an information-state based mul-
timodal dialogue manager. The major aspects we
still need to address are defining the information-
state for the Find task, and developing rules to up-
date the information-state with multimodal infor-
mation, the classified DAs, and the co-reference
resolution models we already built (Chen et al.,
2011; Chen and Di Eugenio, 2012). Once the
information-state component is in place, we can
expect better and more detailed predictions.
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Abstract
We explore the presence of indicators of
psychological distress in the linguistic be-
havior of subjects in a corpus of semi-
structured virtual human interviews. At
the level of aggregate dialogue-level fea-
tures, we identify several significant dif-
ferences between subjects with depres-
sion and PTSD when compared to non-
distressed subjects. At a more fine-grained
level, we show that significant differences
can also be found among features that
represent subject behavior during specific
moments in the dialogues. Finally, we
present statistical classification results that
suggest the potential for automatic assess-
ment of psychological distress in individ-
ual interactions with a virtual human dia-
logue system.

1 Introduction

One of the first steps toward dealing with psy-
chological disorders such as depression and PTSD
is diagnosing the problem. However, there is of-
ten a shortage of trained health care professionals,
or of access to those professionals, especially for
certain segments of the population such as mili-
tary personnel and veterans (Johnson et al., 2007).
One possible partial remedy is to use virtual hu-
man characters to do a preliminary triage screen-
ing, so that mental healthcare providers can focus
their attention on those who are most likely to need
help. The virtual human would engage an indi-
vidual in an interview and analyze some of their
behavioral characteristics. In addition to serving
a triage function, this automated interview could
produce valuable information to help the health-
care provider make their expert diagnosis.

In this paper, we investigate whether features
in the linguistic behavior of participants in a con-
versation with a virtual human could be used

for recognizing psychological distress. We focus
specifically on indicators of depression and post-
traumatic stress disorder (PTSD) in the verbal be-
havior of participants in a Wizard-of-Oz corpus.

The results and analysis presented here are part
of a broader effort to create an automated, interac-
tive virtual human dialogue system that can detect
indicators of psychological distress in the multi-
modal communicative behavior of its users. Re-
alizing this vision requires a careful and strate-
gic design of the virtual human’s dialogue behav-
ior, and in concert with the system’s behavior, the
identification of robust “indicator” features in the
verbal and nonverbal responses of human intervie-
wees. These indicators should be specific behavior
patterns that are empirically correlated with spe-
cific psychological disorders, and that can inform
a triage screening process or facilitate the diagno-
sis or treatment performed by a clinician.

In this paper, we report on several kinds of such
indicators we have observed in a corpus of 43
Wizard-of-Oz interactions collected with our pro-
totype virtual human, Ellie, pictured in Figure 1.
We begin in Section 2 with a brief discussion of
background and related work on the communica-
tive behavior associated with psychological dis-
tress. In Section 3, we describe our Wizard-of-Oz
data set. Section 4 presents an analysis of indicator
features we have explored in this data set, identi-
fying several significant differences between sub-
jects with depression and PTSD when compared
to non-distressed subjects. In Section 5 we present
statistical classification results that suggest the po-
tential for automatic assessment of psychological
distress based on individual interactions with a vir-
tual human dialogue system. We conclude in Sec-
tion 6.

2 Background and Related Work

There has been a range of psychological and clin-
ical research that has identified differences in the
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Figure 1: Ellie.

communicative behavior of patients with specific
psychological disorders such as depression. In this
section, we briefly summarize some closely re-
lated work.

Most work has observed the behavior of patients
in human-human interactions, such as clinical in-
terviews and doctor-patient interactions. PTSD is
generally less well studied than depression.

Examples of the kinds of differences that have
been observed in non-verbal behavior include dif-
ferences in rates of mutual gaze and other gaze
patterns, downward angling of the head, mouth
movements, frowns, amount of gesturing, fidget-
ing, emotional expressivity, and voice quality; see
Scherer et al. (2013) for a recent review.

In terms of verbal behavior, our exploration of
features here is guided by several previous obser-
vations in the literature. Cohn and colleagues have
identified increased speaker-switch durations and
decreased variability of vocal fundamental fre-
quency as indicators of depression, and have ex-
plored the use of these features for classification
(Cohn et al., 2009). That work studied these fea-
tures in human-human clinical interviews, rather
than in virtual human interactions as reported here.
In clinical studies, acute depression has been as-
sociated with decreased speech, slow speech, de-
lays in delivery, and long silent pauses (Hall et al.,
1995). Aggregate differences in lexical frequen-
cies have also been observed. For example, in
written essays, Rude et al. (2004) observed that
depressed participants used more negatively va-
lenced words and used the first-person pronoun “I”
more frequently than never-depressed individuals.

Heeman et al. (2010) observed differences in chil-
dren with autism in how long they pause before
speaking and in their use of fillers, acknowledg-
ments, and discourse markers. Some of these fea-
tures are similar to those studied here, but looked
at children communicating with clinicians rather
than a virtual human dialogue system.

Recent work on machine classification has
demonstrated the ability to discriminate between
schizophrenic patients and healthy controls based
on transcriptions of spoken narratives (Hong et al.,
2012), and to predict patient adherence to med-
ical treatment from word-level features of dia-
logue transcripts (Howes et al., 2012). Automatic
speech recognition and word alignment has also
been shown to give good results in scoring narra-
tive recall tests for identification of cognitive im-
pairment (Prud’hommeaux and Roark, 2011; Lehr
et al., 2012).

3 Data Set

In this section, we introduce the Wizard-of-Oz
data set that forms the basis for this paper. In
this virtual human dialogue system, the charac-
ter Ellie depicted in Figure 1 carries out a semi-
structured interview with a single user. The sys-
tem was designed after a careful analysis of a
set of face-to-face interviews in the same do-
main. The face-to-face interviews make up the
large human-human Distress Assessment Inter-
view Corpus (DAIC) that is described in Scherer
et al. (2013). Drawing on observations of inter-
viewer behavior in the face-to-face dialogues, El-
lie was designed to serve as an interviewer who
is also a good listener, providing empathetic re-
sponses, backchannels, and continuation prompts
to elicit more extended replies to specific ques-
tions. The data set used in this paper is the re-
sult of a set of 43 Wizard-of-Oz interactions where
the virtual human interacts verbally and nonver-
bally in a semi-structured manner with a partici-
pant. Excerpts from the transcripts of two interac-
tions in this Wizard-of-Oz data set are provided in
the appendix in Figure 5.1

3.1 Procedure

The participants were recruited via Craigslist and
were recorded at the USC Institute for Creative

1A sample demonstration video of an interaction be-
tween the virtual agent and a human actor can be seen here:
http://www.youtube.com/watch?v=ejczMs6b1Q4
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Technologies. In total 64 participants interacted
with the virtual human. All participants who met
requirements (i.e. age greater than 18, and ad-
equate eyesight) were accepted. In this paper,
we focus on a subset of 43 of these participants
who were told that they would be interacting with
an automated system. (The other participants,
which we exclude from our analysis, were aware
that they were interacting with a human-controlled
system.) The mean age of the 43 participants in
our data set was 36.6 years, with 23 males and 20
females.

We adhered to the following procedure for data
collection: After a short explanation of the study
and giving consent, participants completed a series
of questionnaires. These questionnaires included
the PTSD Checklist-Civilian version (PCL-C) and
the Patient Health Questionnaire, depression mod-
ule (PHQ-9) (Scherer et al., 2013) along with other
questions. Then participants engage in an inter-
view with the virtual human, Ellie. After the di-
alogue concludes, participants are then debriefed
(i.e. the wizard control is revealed), paid $25 to
$35, and escorted out.

The interaction between the participants and El-
lie was designed as follows: Ellie explains the pur-
pose of the interaction and that she will ask a series
of questions. She then tries to build rapport with
the participant in the beginning of the interaction
with a series of casual questions about Los Ange-
les. Then the main interview begins, including a
range of questions such as:

What would you say are some of your
best qualities?

What are some things that usually put
you in a good mood?

Do you have disturbing thoughts?

What are some things that make you re-
ally mad?

How old were you when you enlisted?

What did you study at school?

Ellie’s behavior was controlled by two human
“wizards” in a separate room, who used a graph-
ical user interface to select Ellie’s nonverbal be-
havior (e.g. head nods, smiles, back-channels)
and verbal utterances (including the interview
questions, verbal back-channels, and empathy re-
sponses). This Wizard-of-Oz setup allows us to
prove the utility of the protocol and collect training

data for the eventual fully automatic interaction.
The speech for each question was pre-recorded us-
ing an amateur voice actress (who was also one of
the wizards). The virtual human’s performance of
these utterances is animated using the SmartBody
animation system (Thiebaux et al., 2008).

3.2 Condition Assessment

The PHQ-9 and PCL-C scales provide researchers
with guidelines on how to assess the participants’
conditions based on the responses. Among the
43 participants, 13 scored above 10 on the PHQ-
9, which corresponds to moderate depression and
above (Kroenke et al., 2001). We consider these
13 participants as positive for depression in this
study. 20 participants scored positive for PTSD,
following the PCL-C classification. The two pos-
itive conditions overlap strongly, as the evalu-
ated measurements PHQ-9 and PCL-C correlate
strongly (Pearson’s r > 0.8, as reported in Scherer
et al. (2013)).

4 Feature Analysis

4.1 Transcription and timing of speech

We have a set D = {d1, ..., d43} of 43 dialogues.
The user utterances in each dialogue were tran-
scribed using ELAN (Wittenburg et al., 2006),
with start and end timestamps for each utterance.2

At each pause of 300ms or longer in the user’s
speech, a new transcription segment was started.
The resulting speech segments were subsequently
reviewed and corrected for accuracy.

For each dialogue di ∈ D, this process resulted
in a sequence of user speech segments. We repre-
sent each segment as a tuple 〈s, e, t〉, where s and e
are the starting and ending timestamps in seconds,
and t is the manual text transcription of the corre-
sponding audio segment. The system speech seg-
ments, including their starting and ending times-
tamps and verbatim transcripts of system utter-
ances, were recovered from the system log files.

To explore aggregate statistical features based
on user turn-taking behavior in the dialogues, we
employ a simple approach to identifying turns
within the dialogues. First, all user and system
speech segments are sorted in increasing order of

2ELAN is a tool that supports annotation of
video and audio, from the Max Planck Insti-
tute for Psycholinguistics, The Language Archive,
Nijmegen, The Netherlands. It is available at
http://tla.mpi.nl/tools/tla-tools/elan/.
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Segment level features

(a) mean speaking rate of each user segment

(b) mean onset time of first segment in each user turn

(c) mean onset time of non-first segments in user turns

(d) mean length of user segments

(e) mean minimum valence in user segments

(f) mean mean valence in user segments

(g) mean maximum valence in user segments

(h) mean number of filled pauses in user segments

(i) mean filled pause rate in user segments

Dialogue level features
(j) total number of user segments

(k) total length of all user segments

Figure 2: List of context-independent features.

their starting timestamps. All consecutive seg-
ments with the same speaker are then designated
as constituting a single turn. While this simple
scheme does not provide a detailed treatment of
relevant phenomena such as overlapping speech,
backchannels, and the interactive process of ne-
gotiating the turn in dialogue (Yang and Heeman,
2010), it provides a conceptually simple model for
the definition of features for aggregate statistical
analysis.

4.2 Context-independent feature analysis

We begin by analyzing a set of shallow features
which we describe as context-independent, as they
apply to user speech segments independently of
what the system has recently said. Most of these
are features that apply to many or all user speech
segments. We describe our context-independent
features in Section 4.2.1, and present our results
for these features in Section 4.2.2.

4.2.1 Context-independent features
We summarize our context-independent features
in Figure 2.

Speaking rate and onset times Based on previ-
ous clinical observations related to slowed speech
and increased onset time for depressed individuals
(Section 2), we defined features for speaking rate
and onset time of user speech segments.

We quantify the speaking rate of a user speech
segment 〈s, e, t〉, where t = 〈w1, ..., wN 〉, as
N/(e − s). Feature (a) is the mean value of
this feature across all user speech segments within
each dialogue.

Onset time is calculated using the notion of user
turns. For each user turn, we extracted the first
user speech segment in the turn fu = 〈su, eu, tu〉,
and the most recent system speech segment ls =
〈ss, es, ts〉. We define the onset time of such a first
user segment as su − es, and for each dialogue,
feature (b) is the intra-dialogue mean of these on-
set times.

In order to also quantify pause length between
user speech segments within a turn, we define fea-
ture (c), a similar feature that measures the mean
onset time between non-first user speech segments
within a user turn in relation to the preceding user
speech segment.

Length of user segments As one way to quan-
tify the amount of speech, feature (d) reports the
mean length of all user speech segments within a
dialogue (measured in words).

Valence features for user speech Features (e)-
(g) are meant to explore the idea that distressed
users might use more negative or less positive vo-
cabulary than non-distressed subjects. As an ex-
ploratory approach to this topic, we used Senti-
WordNet 3.0 (Baccianella and Sebastiani, 2010),
a lexical sentiment dictionary, to assign valence
to individual words spoken by users in our study.
The dictionary contains approximately 117,000
entries. In general, each word w may appear in
multiple entries, corresponding to different parts
of speech and word senses. To assign a single va-
lence score v(w) to each word in the dictionary, in
our features we compute the average score across
all parts of speech and word senses:

v(w) =

∑
e∈E(w) PosScoree(w)−NegScoree(w)

|E(w)|

where E(w) is the set of entries for the word w,
PosScoree(w) is the positive score for w in entry
e, and NegScoree(w) is the negative score for w
in entry e. This is similar to the “averaging across
senses” method described in Taboada et al. (2011).

We use several different measures of the va-
lence of each speech segment with transcript t =
〈w1, ..., wn〉. We compute the min, mean, and max
valence of each transcript:

minimum valence of t = minwi∈t v(wi)
mean valence of t = 1

n

∑
wi∈t v(wi)

maximum valence of t = maxwi∈t v(wi)

Features (e)-(f) then are intra-dialogue mean
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values for these three segment-level valence mea-
sures.

Filled pauses Another feature that we explored
is the presence of filled pauses in user speech seg-
ments. To do so, we counted the number of times
any of the tokens uh, um, uhh, umm, mm, or mmm
appeared in each speech segment. For each dia-
logue, feature (h) is the mean number of these to-
kens per user speech segment. In order to account
for the varying length of speech segments, we also
normalize the raw token counts in each segment
by dividing them by the length of the segment, to
produce a filled pause rate for the segment. Fea-
ture (i) is the mean value of the filled pause rate
for all speech segments in the dialogue.

Dialogue level features We also included two
dialogue level measures of how “talkative” the
user is. Feature (j) is the total number of user
speech segments throughout the dialogue. Feature
(k) is the total length (in words) of all speech seg-
ments throughout the dialogue.

Standard deviation features For the classifica-
tion experiments reported in Section 5, we also in-
cluded a standard deviation variant of each of the
features (a)-(i) in Figure 2. These variants are de-
fined as the intra-dialogue standard deviation of
the underlying value, rather than the mean. We
discuss examples of standard deviation features
further in Section 5.

4.2.2 Results for context-independent
features

We summarize the observed significant effects in
our Wizard-of-Oz corpus in Table 1.

Onset time We report our findings for individu-
als with and without depression and PTSD for fea-
ture (b) in Table 1 and in Figure 3. The units are
seconds. While an increase in onset time for in-
dividuals with depression has previously been ob-
served in human-human interaction (Cohn et al.,
2009; Hall et al., 1995), here we show that this
effect transfers to interactions between individuals
with depression and virtual humans. We find that
mean onset time is significantly increased for indi-
viduals with depression in their interactions with
our virtual human Ellie (p = 0.018, Wilcoxon
rank sum test).

Additionally, while to our knowledge onset time
for individuals with PTSD has not been reported,
we also found a significant increase in onset time
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Figure 3: Onset time.

for individuals with PTSD (p = 0.019, Wilcoxon
rank sum test).

Filled pauses We report our findings for individ-
uals with and without depression and PTSD under
feature (h) in Table 1 and in Figure 4. We observed
a significant reduction in this feature for both in-
dividuals with depression (p = 0.012, Wilcoxon
rank sum test) and PTSD (p = 0.014, Wilcoxon
rank sum test). We believe this may be related
to the trend we observed toward shorter speech
segments from distressed individuals (though this
trend did not reach significance). There is a pos-
itive correlation, ρ = 0.55 (p = 0.0001), be-
tween mean segment length (d) and mean number
of filled pauses in segments (h).

Other features We did not observe significant
differences in the values of the other context-
independent features in Figure 2.

4.3 Context-dependent features
Our data set allows us to zoom in and look at
specific contextual moments in the dialogues, and
observe how users respond to specific Ellie ques-
tions. As an example, one of Ellie’s utterances,
which has system ID happy lasttime, is:

happy lasttime = Tell me about the last
time you felt really happy.

In our data set of 43 dialogues, this question was
asked in 42 dialogues, including 12 users positive
for depression and 19 users positive for PTSD.
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Feature Depression (13 yes, 30 no) PTSD (20 yes, 23 no)

(b) mean onset time of first
segment in each user turn

↑
Depr.: 1.72 (0.89)

No Depr.: 1.08 (0.56)
p = 0.018

↑
PTSD.: 1.56 (0.80)

No PTSD.: 1.03 (0.57)
p = 0.019

(h) mean number of filled pauses
in user segments

↓
Depr.: 0.32 (0.19)

No Depr.: 0.48 (0.23)
p = 0.012

↓
PTSD: 0.36 (0.24)

No PTSD: 0.49 (0.21)
p = 0.014

Table 1: Results for context-independent features. For each feature and condition, we provide the mean
(standard deviation) for individuals with and without the condition. P-values for individual Wilcoxon
rank sum tests are provided. An up arrow (↑) indicates a significant trend toward increased feature values
for positive individuals. A down arrow (↓) indicates a significant trend toward decreased feature values
for positive individuals.
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Figure 4: Number of filled pauses per speech seg-
ment.

This question is one of 95 topic setting utter-
ances in Ellie’s repertoire. (Ellie has additional
utterances that serve as continuation prompts,
backchannels, and empathy responses, which can
be used as a topic is discussed.)

To define context-dependent features, we asso-
ciate with each user segment the most recent of
Ellie’s topic setting utterances that has occurred in
the dialogue. We then focus our analysis on those
user segments and turns that follow specific topic
setting utterances. In Table 2, we present some ex-
amples of our findings for context-dependent fea-
tures for happy lasttime.3

3While we provide significance test results here at the p <
0.05 level, it should be noted that because of the large number
of context-dependent features that may be defined in a small
corpus such as ours, we report these merely as observations in
our corpus. We do not claim that these results transfer beyond

The contextual feature labeled (g′) in Table 2 is
the mean of the maximum valence feature across
all segments for which happy lasttime is the most
recent topic setting system utterance. We provide
a full example of this feature calculation in Fig-
ure 5 in the appendix.

As the figure shows, we find that users with
both PTSD and depression show a sharp reduc-
tion in the mean maximum valence in their speech
segments that respond to this question. This sug-
gests that in these virtual human interactions, this
question plays a useful role in eliciting differen-
tial responses from subjects with these psycholog-
ical disorders. We observed three additional ques-
tions which showed a significant difference in the
mean maximum valence feature. One example is
the question, How would your best friend describe
you?.

With feature (b′) in Table 2, we find an in-
creased onset time in responses to this question for
subjects with depression.4 Feature (d′) shows that
subjects with PTSD exhibit shorter speech seg-
ments in their responses to this question.

We observed a range of findings of this sort for
various combinations of Ellie’s topic setting utter-
ances and specific context-dependent features. In
future work, we would like to study the optimal
combinations of context-dependent questions that
yield the most information about the user’s distress
status.

this data set.
4In comparing Table 2 with Table 1, this question seems

to induce a higher mean onset time for distressed users than
the average system utterance does. This does not seem to be
the case for non-distressed users.
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Feature Depression (12 yes, 30 no) PTSD (19 yes, 23 no)

(g′) mean maximum valence
in user segments following
happy lasttime

↓
Depr.: 0.15 (0.07)

No Depr.: 0.26 (0.12)
p = 0.003

↓
PTSD: 0.16 (0.08)

No PTSD: 0.28 (0.11)
p = 0.0003

(b′) mean onset time of first
segments in user turns
following happy lasttime

↑
Depr.: 2.64 (2.70)

No Depr.: 0.94 (1.80)
p = 0.030

n.s.
PTSD: 2.18 (2.48)

No PTSD: 0.80 (1.76)
p = 0.077

(d′) mean length of user
segments following
happy lasttime

n.s.
Depr.: 5.95 (1.80)

No Depr.: 10.03 (6.99)
p = 0.077

↓
PTSD: 6.82 (5.12)

No PTSD: 10.55 (6.68)
p = 0.012

Table 2: Example results for context-dependent features. For each feature and condition, we provide
the mean (standard deviation) for individuals with and without the condition. P-values for individual
Wilcoxon rank sum tests are provided. An up arrow (↑) indicates a significant trend toward increased
feature values for positive individuals. A down arrow (↓) indicates a significant trend toward decreased
feature values for positive individuals.

5 Classification Results

In this section, we present some suggestive clas-
sification results for our data set. We construct
three binary classifiers that use the kinds of fea-
tures described in Section 4 to predict the pres-
ence of three conditions: PTSD, depression, and
distress. For the third condition, we define dis-
tress to be present if and only if PTSD, depres-
sion, or both are present. Such a notion of distress
that collapses distinctions between disorders may
be the most appropriate type of classification for a
potential application in which distressed users of
any type are prioritized for access to health care
professionals (who will make a more informed as-
sessment of specific conditions).

For each individual dialogue, each of the three
classifiers emits a single binary label. We train
and evaluate the classifiers in a 10-fold cross-
validation using Weka (Hall et al., 2009).

While our data set of 43 dialogues is perhaps
of a typical size for a study of a research proto-
type dialogue system, it remains very small from
a machine learning perspective. We report here
two kinds of results that help provide perspective
on the prospects for classification of these condi-
tions. The first kind looks at classification based
on all the context-independent features described
in Section 4.2.1. The second looks at classifica-
tion based on individual features from this set.

In the first set of experiments, we trained a
Naı̈ve Bayes classifier for each condition using

all the context-independent features. We present
our results in Table 3, comparing each classifier to
a baseline that always predicts the majority class
(i.e. no condition for PTSD, no condition for de-
pression, and with condition for distress).

We note first that the trained classifiers all out-
perform the baseline in terms of weighted F-score,
weighted precision, weighted recall, and accuracy.
The accuracy improvement over baseline is sub-
stantial for PTSD (20.9% absolute improvement)
and distress (23.2% absolute improvement). The
accuracy improvement over baseline is more mod-
est for depression (2.3% absolute). We believe
one factor in the relative difficulty of classifying
depression more accurately is the relatively small
number of depressed participants in our study
(13).

While it has been shown in prior work (Cohn et
al., 2009) that depression can be classified above
baseline performance using features observed in
clinical human-human interactions, here we have
shown that classification above baseline perfor-
mance is possible in interactions between human
participants and a virtual human dialogue system.
Further, we have shown classification results for
PTSD and distress as well as depression.

We tried incorporating context-dependent fea-
tures, and also unigram features, but found that
neither improved performance. We believe our
data set is too small for effective training with
these very large extended feature sets.
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Disorder Model Weighted F-score Weighted Precision Weighted Recall Accuracy

PTSD Naı̈ve Bayes 0.738 0.754 0.744 74.4%

Majority Baseline 0.373 0.286 0.535 53.5%

Depression Naı̈ve Bayes 0.721 0.721 0.721 72.1%

Majority Baseline 0.574 0.487 0.698 69.8%

Distress Naı̈ve Bayes 0.743 0.750 0.744 74.4%

Majority Baseline 0.347 0.262 0.512 51.2%

Table 3: Classification results.

In our second set of experiments, we sought to
gain understanding of which features were pro-
viding the greatest value to classification perfor-
mance. We therefore retrained Naı̈ve Bayes classi-
fiers using only one feature at a time. We summa-
rize here some of the highest performing features.

For depression, we found that the feature stan-
dard deviation in onset time of first segment in
each user turn yielded very strong performance
by itself. In our corpus, we observed that de-
pressed individuals show a greater standard devia-
tion in the onset time of their responses to Ellie’s
questions (p = 0.024, Wilcoxon rank sum test).
The value of this feature in classification comple-
ments the clinical finding that depressed individu-
als show greater onset times in their responses to
interview questions (Cohn et al., 2009).

For distress, we found that the feature mean
maximum valence in user segments was the most
valuable. We discussed findings for a context-
dependent version of this feature in Section 4.3.
This finding for distress can be related to previ-
ous observations that individuals with depression
use more negatively valenced words (Rude et al.,
2004).

For PTSD, we found that the feature mean num-
ber of filled pauses in user segments was among
the most informative.

Based on our observation of classification per-
formance using individual features, we believe
there remains much room for improvement in fea-
ture selection and training. A larger data set would
enable feature selection approaches that use held
out data, and would likely result in both increased
performance and deeper insights into the most
valuable combination of features for classification.

6 Conclusion

In this paper, we have explored the presence of in-
dicators of psychological distress in the linguistic
behavior of subjects in a corpus of semi-structured

virtual human interviews. In our data set, we
have identified several significant differences be-
tween subjects with depression and PTSD when
compared to non-distressed subjects. Drawing on
these features, we have presented statistical classi-
fication results that suggest the potential for auto-
matic assessment of psychological distress in indi-
vidual interactions with a virtual human dialogue
system.
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Appendix A. Wizard-of-Oz Dialogue Excerpts

Example user with PTSD and depression Example non-distressed user

max
valence

transcript

Ellie (happy lasttime) tell me
about the last time you
felt really happy

User 0.014 when i play with my dog
Ellie when was the last time

that happened?
User 0.000 this morning
Ellie aw
Ellie tell me more about that
User 0.312 i don’t know i just
User 0.010 whenever i get
User 0.312 super bored or i just

need some time to
User 0.312 for myself i just play

with the dog
Ellie that’s good
User 0.000 yeah

0.1371 = mean
maximum valence in
user segments following
happy lasttime

Ellie (ideal weekendC) tell
me how you spend your
ideal weekend

max
valence

transcript

Ellie (happy lasttime) tell me
about the last time you
felt really happy

User 0.562 um the last time i felt
really happy was

User 0.000 hm
User 0.000 today
Ellie tell me more about that
User 0.688 uh just from the moment

i woke up it was a
beautiful sunny day

User -0.062 i
User 0.565 went to see some friends

we had a good time
went to school

User 0.565 had some good grades
on some papers um
wrote a good essay

User 0.292 feel pretty accomplished
and

User 0.312 i feel like my day is just
User 0.565 a good day
Ellie that’s so good to hear

0.3487 = mean
maximum valence in
user segments following
happy lasttime

Ellie (BF describe) how
would your best friend
describe you?

Figure 5: Examples of maximum valence feature.

202



Proceedings of the SIGDIAL 2013 Conference, page 203,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Spoken Language Understanding for Natural
Interaction

Jerome Bellegarda
Apple, Inc

1 Infinite Loop, Cupertino, CA 95014, USA
jerome@apple.com

Natural language interaction has the potential to considerably enhance
user experience, especially in mobile devices like smartphones and electronic
tablets. Recent advances in software integration and efforts toward more
personalization and context awareness have brought closer the long-standing
vision of the ubiquitous intelligent personal assistant. Multiple voice-driven
initiatives by a number of well-known companies have now reached commer-
cial deployment. In this talk, I will review the two major semantic interpreta-
tion frameworks underpinning virtual personal assistance, and reflect on the
inherent complementarity in their respective advantages and drawbacks. I
will then discuss some of the attendant choices made in the practical deploy-
ment of such systems, and speculate on their likely evolution going forward.
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Abstract 

Learning dialogue management models poses 
significant challenges. In a complex task-
oriented domain in which information is ex-
changed via parallel, interleaved dialogue and 
task streams, effective dialogue management 
models should be able to make dialogue 
moves based on both the dialogue and the task 
context. This paper presents a data-driven ap-
proach to learning dialogue management mod-
els that determine when to make dialogue 
moves to assist users’ task completion activi-
ties, as well as the type of dialogue move that 
should be selected for a given user interaction 
context. Combining features automatically ex-
tracted from the dialogue and the task, we 
compare two alternate modeling approaches. 
The results of an evaluation indicate the 
learned models are effective in predicting both 
the timing and the type of system dialogue 
moves. 

1 Introduction 

Automated dialogue systems allow users to in-
teract with information systems in a natural and 
intuitive manner. With the growth of speech-
enabled applications for mobile devices, the de-
mands for practical dialogue systems have been 
increasing at an accelerating pace. The core tasks 
of automated dialogue systems include dialogue 
management, which is concerned with selecting 
system actions in response to a given user input. 
Traditionally, dialogue managers have been 
manually constructed. However, manually craft-
ing dialogue managers is labor-intensive and 
yields systems that are brittle with respect to un-
expected user behaviors. For rapid creation of 
robust and adaptive dialogue systems, data-
driven approaches to dialogue management hold 

much appeal. Recent work on dialogue systems 
has explored machine learning techniques to au-
tomatically learn dialogue managers from corpo-
ra (Scheffler and Young, 2002; Hardy et al., 
2006; Williams and Young, 2007; Bangalore et 
al., 2008; Sridhar et al., 2009). 

To support more natural human-computer dia-
logue, earlier work on dialogue systems envi-
sioned rich interaction environments that take 
into account observed user actions for selecting 
optimal dialogue strategies (Carberry, 1990; Rich 
and Sidner, 1998; Allen et al., 2001). However, 
recent data-driven approaches have primarily 
focused on application domains in which infor-
mation between the user and the system are 
communicated solely by dialogue, such as tele-
phone-based systems (Hardy et al., 2006; 
Bangalore et al., 2008) and online chat dialogues 
(Ivanovic, 2008; Kim et al., 2010). With increas-
ing demands for natural human-computer inter-
action beyond these restricted application do-
mains, dialogue systems are required to support 
more complex types of interaction, in which us-
ers perform tasks in parallel to exchanging dia-
logue. For instance, dialogue interfaces for task-
assistance systems, such as intelligent tutoring 
systems, should be able to monitor users’ task 
completion activities and incorporate the ob-
served activities into dialogue management deci-
sions such that the systems can provide users 
with spontaneous assistance (e.g., providing 
hints) even without an explicit request from the 
user.  

We have been exploring data-driven ap-
proaches for a complex task-oriented application 
domain in which information is delivered both 
by exchanging dialogue with users and by ob-
serving users’ task completion activities. Our 
previous work has focused on the automatic in-
terpretation of user dialogue input (Boyer et al., 
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2010; Ha et al., 2012). Findings suggest that 
identifying an effective representation to com-
bine information from dialogue and users’ task 
completion activities is key to effective dialogue 
processing in a domain consisting of parallel dia-
logue and task streams. 

As the next step in this line of investigation on 
complex task-oriented domains with parallel dia-
logue and task streams, this work proposes an 
approach to automatically learning dialogue 
management models from a human dialogue cor-
pus. The proposed approach combines infor-
mation from a dialogue stream and a task stream 
in order to create spontaneous dialogue interven-
tions for users based on monitoring users’ activi-
ties. Two subtasks of dialogue management are 
addressed: the first is to determine when to pro-
vide dialogue feedback (timing), and the second 
is to determine what kind of dialogue feedback to 
provide (type). Dialogue managers in conven-
tional domains have primarily focused on the 
selection of feedback type. However, determin-
ing the appropriate timing of system moves is 
critical for dialogue systems that support parallel 
dialogue and task streams.  

The work presented here makes three contri-
butions. First, it endeavors to expand data-driven 
dialogue management by addressing more com-
plex task-oriented domains consisting of parallel 
dialogue and task streams. Second, it proposes a 
timing intervention model that determines the 
correct time to make spontaneous system inter-
ventions. Third, it presents a maximum entropy 
dialogue management model and compares al-
ternate approaches. It also compares the predic-
tive power of the dialogue and task streams on 
the targeted dialogue management tasks. 

2 Related Work 

Data-driven approaches to dialogue management 
continue to be the subject of increasing attention 
within the dialogue community. Prominent 
among these are reinforcement learning ap-
proaches for learning dialogue policies from cor-
pora (Henderson et al., 2008; Levin et al., 2000; 
Lewis and Di Fabbrizio, 2006; Roy et al., 2000; 
Scheffler and Young, 2002; Singh et al., 2002; 
Williams and Young, 2007; Young, 2002). These 
approaches model dialogue as Markov decision 
processes, either fully observable (MDPs) or par-
tially observable (POMDPs), in which the transi-
tions of dialogue states are associated with sys-
tem actions and rewards. The goal of reinforce-
ment learning is to learn optimal policies that 

maximize aggregate expected rewards, such as 
user satisfaction (Walker et al., 1997). Learned 
policies that result from RL exploration do not, 
by design, necessarily reflect the patterns in the 
bootstrap dialogue corpus. Additionally, to cover 
all possible state spaces, reinforcement learning 
typically requires a very large set of training da-
ta, which limits the complexity of the dialogue 
system in its representation of the dialogue states 
and the system actions (Young et al., 2013).  

A second body of related work focuses on dia-
logue act classification. Classification-based ap-
proaches aim at learning the patterns of dialogue 
that are present in the corpus. A variety of ma-
chine learning frameworks have been exploited, 
including hidden Markov models (Stolcke et al., 
2000; Boyer et al.,  2010), maximum entropy 
models (Bangalore et al., 2008; Sridhar et al., 
2009; Ha et al., 2012), support vector machines 
(Ivanovic, 2008), conditional random fields (Kim 
et al., 2010),  and memory-based classifiers in 
combination with latent semantic analysis (Di 
Eugenio et al., 2010). Classification-based ap-
proaches incorporate rich sets of features, includ-
ing not only lexical information, syntactic fea-
tures, and dialogue structure, but also prosodic 
features in the case of spoken dialogue (Stolcke 
et al., 2000; Sridhar et al., 2009) and non-verbal 
features such as facial expressions (Boyer et al., 
2011) and shifts in posture (Ha et al., 2012). 

While most work on dialogue act classifica-
tion has focused on either offline analysis of dia-
logue (Stolcke et al., 2000; Ivanovic, 2008; Kim 
et al., 2010; Di Eugenio et al., 2010) or interpre-
tation of user dialogue (Boyer et al., 2010; Ha et 
al., 2012), Bangalore et al. (2008) utilized dia-
logue act classification as a mechanism for de-
termining system dialogue moves. They pro-
posed a unified dialogue act classification ap-
proach for both the interpretation of user utter-
ances and selection of system dialogue moves. 

Our work is similar to Bangalore et al. (2008) 
in that it takes a dialogue act classification ap-
proach to the task of selecting system dialogue 
moves. However, it addresses the problems 
posed by complex task-oriented application do-
mains in which information is communicated not 
only by dialogue exchanges but also by monitor-
ing users’ task performance. In such domains, a 
user’s task activities constitute a full communica-
tive stream in its own right, separate from the 
dialogue stream. The challenges of parallel dia-
logue and task streams are addressed by exploit-
ing automatically obtained task features com-
bined with dialogue features. In contrast to pre-
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vious work (Bangalore et al. 2008, Boyer et al., 
2010), in which task information was derived 
from manual annotation, our work utilizes auto-
matically computed task features. 

Our work also focuses on a growing applica-
tion area of dialogue systems: intelligent tutor-
ing. In support of student learning, recent work 
in this area utilized human tutorial dialogue cor-
pora to learn effective tutorial strategies using 
MDPs (Chi et al., 2010; Mitchell et al., 2013), to 
develop tutorial dialogue models that adapt to 
students’ affective states (Forbes-Riley and 
Litman, 2011), and to improve robustness of a 
symbolic tutorial dialogue system (Dzikovska et 
al., 2013).  

3 Task-Oriented Dialogue Corpus 

To learn dialogue management models from nat-
urally occurring human-to-human dialogue we 
utilize a human tutorial dialogue corpus we col-
lected in the domain of introductory program-
ming in Java. The corpus consists of textual dia-
logue exchanges between students and tutors in a 
web-based remote-tutoring interface, aligned 
with task context logs (Appendix A). A subset of 
the corpus was annotated with dialogue acts, 
which was used to train and test the dialogue 
management models described in this paper. 

3.1 Human tutoring study 

The data collection study involved forty-two un-
dergraduate students who were paired with one 
of four tutors. The students were enrolled in a 
first-year engineering course and were pre-
screened to filter out those with significant pro-
gramming experience. The students were com-
pensated for their participation with partial 
course credit. The tutors were graduate students 
with previous tutoring or teaching experience in 
Java programming, and the students worked with 
the same tutor for the entire study. Each lesson 
consisted of between four and thirteen distinct 
subtasks.  

The students completed six forty-minute tutor-
ing lessons, covering progressive topics in intro-
ductory computer science over four weeks. Each 
lesson consisted of four to thirteen subtasks, in 
which later subtasks built upon earlier ones. Dur-
ing each tutoring session, the paired student and 
tutor interacted remotely using a web-based tu-
toring interface. With this tutoring interface, the 
student and the tutor were able to exchange tex-
tual dialogue and share a synchronized view of 
the task.  

For each lesson, students completed a pre-test 
and a post-test before and after the main tutoring 
session. The pre- and post-test consisted of the 
same set of questions to assess students’ 
knowledge related to the lesson’s objectives. 
Compared to students’ pre-test results, signifi-
cant learning gains were observed on the post-
test, which indicates that the tutorial dialogue 
was effective for student learning (Mitchell et al., 
2012).  

3.2 Dialogue annotation 

A subset of the collected data was manually an-
notated with dialogue acts using an annotation 
scheme consisting of 13 dialogue act tags for 
task-oriented tutorial dialogue (Table 1). The 
annotated corpus consists of the first of the six 
tutoring lessons from 21 students, which contains 
2564 utterances (1777 tutor, 787 student). The 
average number of utterances per tutoring ses-
sion was 122 (min = 74; max = 201). The aver-
age number of tutor utterances per session was 
84.6 (min = 51; max = 137), and the average 
number of student utterances per session was 
37.4 (min = 22; max = 64). 

Three human annotators were trained to apply 
the scheme. The training consisted of an iterative 
process involving collaborative and independent 
tagging, followed by refinements of the tagging 
protocol. At the initial phase of training, the an-
notators tagged the corpus collaboratively. In 
later phases annotators tagged independently. To 
compute agreement between different annotators, 
24% (5 of the 21 sessions) of the corpus were 
doubly annotated by two annotators. All possible 
pairs of the annotators participated in double an-
notation. The aggregate agreement was 0.80 in 
Cohen’s Kappa (Cohen, 1960). 

4 Dialogue Management Models 

To support a task-oriented dialogue system capa-
ble of not only responding to users’ dialogue in-
put but also providing spontaneous system inter-
vention during users’ task activities, a dialogue 
manager should provide two functionalities. The 
first is to determine the timing of a system dia-
logue move (i.e., whether or not to provide a tu-
torial dialogue move at a given context). The 
second is to determine the type of dialogue move 
(i.e., selecting from available system dialogue 
acts). In this work, the problem of determining 
the system’s next dialogue move is cast as a clas-
sification task. In previous work we found a 
maximum entropy approach was effective for 
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classifying user dialogue acts for task-oriented 
dialogue with parallel dialogue and task streams 
(Ha, 2012). Maximum entropy outperformed 
both Naive Bayes and conditional random fields. 
Building on these results, we employ a maximum 
entropy classifier to learn dialogue management 
models that predict both the timing and the type 
of the system dialogue move. The following sec-
tions describe two alternate approaches to dia-
logue management that can both determine the 
timing and determine the type of system dialogue 
interventions.  

4.1 One-step dialogue management model 

In the first model, the two dialogue management 
tasks are framed as a single classification prob-
lem by treating the decision of not to make a tu-
torial dialogue move as a special dialogue act. 
Thus, a finite set of dialogue moves allowed for 
the system is defined as 𝑀 = 𝑚!,𝑚!,⋯ ,𝑚! , 
in which 𝑀 = 𝐷𝐴   ∪ 𝑁𝑜𝑀𝑜𝑣𝑒 and 𝐷𝐴 =
{𝑑𝑎!,𝑑𝑎!,⋯ ,𝑑𝑎!}  is the set of dialogue acts 
available for the system. Given 𝑀  and the 𝑖!! 
step in a given user interaction history 
𝐻!!!! =   ℎ!!! , ℎ!!!!!,⋯ , ℎ!, the goal of the dia-
logue management model is to predict system’s 
dialogue move 𝑚!!! for the next step, which is 
determined by the following equation. 

𝑚!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!∈!𝑃 𝑚 𝐻!!!!              (1) 

The task-oriented dialogue considered in this 
work includes two parallel and interleaved data 
streams: an explicit dialogue stream, consisting 
of textual exchanges between a student and a 
tutor, and an implicit task stream, consisting of 
the student’s problem-solving activities. Thus, a 
given interaction history can be decomposed into 
a dialogue history and a task history, rewriting 
equation (1) as follows, 

𝑚!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!∈!𝑃 𝑚 𝐷!!!! ,𝑇!!!!     (2) 

in which 𝐷!!!! = 𝑑!!! ,𝑑!!!!!,⋯ ,𝑑!  and 
𝑇!!!! = 𝑡!!! , 𝑡!!!!!,⋯ , 𝑡!  represent the history 
of dialogue utterances and the history of student 
task activities, respectively. 

In this work, the conditional probability distri-
bution in Equation (2) is estimated using the 
maximum entropy framework (Berger et al., 
1996). The maximum entropy framework selects 
a probability distribution that results in the high-
est entropy among all possible solutions. Given a 
vector 𝜋 of feature set, the conditional probabil-
ity distribution is estimated by the following 
equation, 

𝑃 𝑋 = 𝑚! 𝜋 =    !
!(!)

𝑒!!!∙!                     (3) 

in which 𝜆 represents weights and 𝑍 is a normal-
izing factor. This work used MALLET 

Tag Description Agreement 
H Hint: The tutor gives advice to help the student proceed with the task .50 
DIR  Directive: The tutor explicitly tells the student the next step to take .63 
ACK  Acknowledgement: Either the tutor or the student acknowledges previous utterance; 

conversational grounding 
.73 

RC  Request for Confirmation: Either the tutor or the student requests confirmation from the 
other participant (e.g., “Make sense?”) 

Insufficient 
data 

RF  Request for Feedback: The student requests an assessment of his performance or his 
work from the tutor 

1.0 

PF  Positive Feedback: The tutor provides a positive assessment of the student’s perfor-
mance 

.90 

LF Lukewarm Feedback: The tutor provides an assessment that has both positive and nega-
tive elements 

.80 

NF Negative Feedback: The tutor provides a negative assessment of the student’s perfor-
mance 

.40 

Q Question: A question which does not fit into any of the above categories .95 
A Answer: An answer to an utterance marked Q .94 

C Correction: Correction of a typo in a previous utterance .54 
S  Statement: A statement which does not fit into any of the above categories .71 
O Other: Other utterances, usually containing only affective content .69 

Table 1.  Dialogue act annotation scheme and inter-rater agreement 
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(McCallum, 2002) to estimate this conditional 
distribution.  

4.2 Two-step dialogue management model 

A potential shortcoming of the one-step model is 
that the probability distribution over dialogue 
acts is prone to distortion depending on the por-
tion of NoMove in the training data. To avoid 
this, the second model takes a two-step approach, 
treating each dialogue management task as an 
independent classification task. The two-step 
model first determines whether or not to make a 
dialogue move. If a decision is made to provide a 
dialogue move, the second classifier is called for 
a selection of the type of dialogue move.  

In this model, system’s dialogue move 𝑚!!! 
for the next interaction step is determined by a 
function 𝑓 𝐻!!!! , such that 

𝑓 𝐻!!!! = 𝑁𝑜𝑀𝑜𝑣𝑒,                                                                               (4) 
when   𝑃 𝑁𝑜𝑀𝑜𝑣𝑒 𝐻!!!! > 𝑃 𝑀𝑜𝑣𝑒 𝐻!!!!                               

𝑓 𝐻!!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!"∈!"𝑃 𝑑𝑎 𝐻!!!!       (5) 
otherwise.  

Similar to the one-step model, Equation (5) can 
be written as 

𝑓 𝐻!!!! = 𝑎𝑟𝑔𝑚𝑎𝑥!"∈!"𝑃 𝑑𝑎 𝐷!!!! ,𝑇!!!!  (6) 

This conditional probability distribution is also 
estimated by the maximum entropy framework. 

5 Features 

To learn high-performing dialogue management 
models for task-oriented dialogue with parallel 
dialogue and task streams, it is crucial to have an 
effective representation of user interaction state 
that captures information from all available data 
streams. The dialogue management models de-
scribed in the previous section determine the sys-
tem’s next dialogue move based on user interac-
tion state specified by the features extracted from 
the dialogue and the task streams. In contrast to 
previous work on task-oriented dialogue, in 
which task information is incorporated into dia-
logue utterances by manual tagging (Bangalore 
et al., 2008; Boyer et al., 2010), our work does 
not require manual effort to obtain the relevant 
task information. Instead, we rely on task context 
logs generated during students’ interactions with 
the tutoring interface, as well as a notion of stu-
dents’ task progress automatically estimated by a 
task analysis algorithm. The same set of features 

is used for the prediction of both the timing and 
the type of system move. 

5.1 Automatic task analysis 

In order to provide a measure of students’ task 
progress through each of the tutoring sessions, an 
edit distance metric was implemented. This met-
ric computes the minimum edit distance between 
a student’s program at a particular time t and a 
representative solution for a given programming 
task, in order to estimate how far away the stu-
dent is from completing the task. Because our 
tutors were experienced in the subject matter and 
were familiar with the lesson structures, we can 
safely assume that they knew what this final state 
of the code would be and thus had an intuitive 
metric of student progress, which is analogous to 
our edit distance metric. As this value changes 
over a session, one can observe how the stu-
dent’s progress is affected by tutor dialogue acts. 

Because a character-based edit distance would 
not capture the relative functional importance of 
each part of the student’s program, our edit dis-
tance metric is based on tokenized versions of 
the program, as generated by the Java compiler, 
and the output is the number of tokens that differ 
from the solution for that task. In this way, 
comments, variable names, or string literals with 
many characters are all treated as single tokens 
and do not artificially inflate the edit distance. 
This tokenization also allows for abstraction of 
these comments, variable names, and string liter-
als into generalized tokens so that they can be 
more easily compared between students.  

5.2 Dialogue features 

Previous work on dialogue act classification has 
shown that lexical features extracted from dia-
logue utterances are good predictors of dialogue 
acts (Bangalore et al., 2008; Boyer et al., 2010a; 
Kim et al., 2010). However, this finding does not 
apply when the goal of dialogue act classification 
is to learn dialogue management models because 
determining system moves precedes system ut-
terance generation. Instead, this work exploits 
features that represent local interaction structure 
within dialogue streams, which includes current 
student dialogue act, current tutor dialogue act, 
previous tutor dialogue act, and tutor utterance 
count. 

• Current student dialogue act represents 
the interpreted dialogue act for the previ-
ous user dialogue input. Student dialogue 
act interpretation is not addressed in this 
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paper, assuming the existence of an exter-
nal module that carries out user dialogue 
interpretation (e.g., Ha et al., 2012). 

• Current tutor dialogue act represents the 
type of system dialogue act at the current 
interaction step. In our tutorial dialogue 
corpus, we observed tutors often made 
several dialogue utterances in succession, 
such as a feedback (“Great Job.”) fol-
lowed by a question (“Do you have any 
questions?”). Thus, the value of the cur-
rent tutor dialogue act impacts the proba-
bility distribution over the tutor’s next dia-
logue move. This feature captures such 
temporal patterns present in tutor dialogue 
moves as observed in the corpus. 

• Previous tutor dialogue act represents the 
type of system dialogue act generated for 
the previous interaction step. This is simi-
lar to the current tutor dialogue act fea-
ture, but models longer temporal patterns 
by extending the size of interaction history. 

•  Tutor utterance count represents the 
number of system dialogue acts generated 
in succession without interruption until the 
current interaction step. In our corpus, it 
was observed that the tutor dialogue turns 
often consist of multiple utterances. This 
feature is included to model system dia-
logue turns consisting of multiple utteranc-
es. 

5.3 Task features 

To create a rich representation of task context, a 
number of features were automatically extracted 
from task streams. Three groups of task infor-
mation were considered, including types of task 
activity taken by user, the amount of time taken 
between certain activities, and the user’s task 
progress estimated by the task analysis algorithm 
(Section 5.1). Alternate representations of these 
features were empirically compared, resulting in 
the following task features incorporated in cur-
rent dialogue management models. 

• Current log type represents the type of 
activity taken at the current interaction 
step either by the user or the system. A 
complete list of log types is shown in 
Appendix B.  

• Previous log type represents the type of 
activity taken at the previous interaction 
step. Analogous to previous tutor dia-
logue act in dialogue stream, this feature 

models temporal patterns among task ac-
tivities. 

• Same log type is a binary feature indi-
cating the type of activities at the current 
and previous interaction step is identical.  

• Previous and current log type is a fea-
ture that combines the current and previ-
ous log types (i.e., a bigram of log types). 

• Elapsed time is the amount of time 
since the last logged activity, which rep-
resents the duration of the user’s inac-
tivity. This feature is included to enable 
the learned dialogue management model 
to make spontaneous dialogue interven-
tions when a user has been detected to be 
inactive for an excessive period of time.  

• Elapsed coding time specifies the 
amount of time the user has taken since 
the beginning of current coding task.  

6 Evaluation 

The dialogue act models were trained and tested 
using the manually annotated portion of the task-
oriented tutorial dialogue corpus described in 
Section 3. The textual dialogue exchanges in the 
corpus were aligned with the logged task-
completion activities based on the timestamp, 
resulting in 6919 total interaction logs. Table 2 
shows the distribution of different types of ac-
tivities in the resulting interaction logs. It was 
observed that tutors made a dialogue move in 
26.5% of the total logged interactions (Table 3). 

Among the thirteen dialogue acts in the origi-
nal annotation scheme (Section 3.2), four rarely 
occurring dialogue acts were combined into other 
categories, which include LF (lukewarm feed-
back) merged with NF (negative feedback) and 
RC (request for confirmation), RF (request for 
feedback), and C (correction) merged to O (oth-
er).  A new category, GREET (greetings) was 

Interaction Type Frequency (%) 
Programming 38.2 
Compiling the Program 10.8 
Running the Program 12.2 
Progressing to Next Task 4.2 
Exchanging Dialogue 34.6 

Table 2. Distribution of interaction types 

Tutor Dialogue Move Frequency (%) 
Move 26.5 
NoMove 73.5 
Table 3. Distribution of system dialogue move 
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added to distinguish conventional expressions for 
greetings and thanks from more general state-
ments and questions. Table 4 shows the resulting 
distribution of tutor dialogue acts in the corpus. 

The performance of the dialogue act models 
were evaluated in a ten-fold cross validation. In 
the cross validation, the corpus was partitioned to 
ten non-overlapping sets and each set was used 
as testing data exactly once, while models were 
trained using the remaining nine sets. 

6.1 Results 

The first study compared the accuracies of the 
dialogue management models on predicting the 
timing and the type of tutor dialogue moves. The 
accuracy of the timing prediction was calculated 
for all user interaction logs in the data, including 
both dialogue exchanges and task-completion 
activities. The accuracy of the type prediction 
was calculated for dialogue activities by tutors 
only. The results are shown in Table 5. 

Both the one-step (t(9) = 4.14, p = 0.0013) and 
the two-step (t(9) = 6.26, p < .0001) models per-
formed significantly better than the majority 
baseline in predicting the timing of tutorial dia-
logue moves. The two-step model achieved 
higher accuracy than the one-step model. The 
difference between the two models was statisti-
cally significant (t(9) = 2.17, p = 0.0291).  

The one-step (t(9) = 2.68, p = 0.0126) and the 
two-step (t(9) = 10.93, p < 0.0001) models 

achieved significantly higher accuracies over the 
baseline for the task of predicting the type of tu-
torial dialogue moves, as well. Again, the two-
step model performed significantly better than 
the one-step model (t(9) = 4.22, p = .0011).  

6.2 Comparing dialogue and task streams 

The second study compared the predictive power 
of the dialogue stream and the task stream on the 
given two dialogue management tasks. In this 
study, the accuracy of the two-step model was 
compared in three conditions: using the dialogue 
features only (Dialogue), using the task features 
only (Task), and using all features (All). Table 6 
reports the results. 

For determining when to intervene, the dia-
logue and the task features exhibited similar pre-
dictive power. No statistical significance was 
found for the difference between the dialogue 
and the task conditions. The highest accuracy 
was achieved by the All condition. Compared to 
the All condition, the Dialogue condition showed 
statistically significant decrease in accuracy (t(9) 
= 2.21, p = 0.0272), which implies the task 
stream provided important features for the dia-
logue management model in determining the tim-
ing of tutorial dialogue moves. 

A similar trend was observed for determining 
what type of dialogue move to make. The Dia-
logue and the Task conditions achieved similar 
accuracies, with the highest accuracy achieved 
by the All condition. The drops in accuracy com-
pared to the All condition were statistically sig-
nificant for both the Dialogue (t(9) = 3.38, p = 
0.0040) and the Task conditions. (t(9) = 4.36, p = 
0.0009). The results imply that the prediction of 
the type of tutorial dialogue moves required in-
formation from both the dialogue and the task 
streams.  

7 Discussion 

The experiments presented in Section 6 com-
pared two alternate approaches to learning dia-
logue management models for two given sub-
tasks: determining when to provide the user with 
a dialogue move, and determining which type of 

Dialogue Act Frequency (%) 
S (Statement) 35.4 
PF (Positive Feedback) 19.8 
Q (Question) 16.0 
H (Hint)  8.0 
DIR (Directive)  6.6 
A (Answer)  5.7 
GREET (Greetings)  3.1 
ACK (Acknowledgement)  2.3 
NF (Negative Feedback)  1.5 
O (Other)  1.6 

Table 4. Distribution of tutor dialogue acts 

Model Timing Type 
Baseline 73.5 35.4 
One-step 79.2* 40.5* 
Two-step  80.3*§  49.7*§ 
Table 5. Model accuracy (%) on dialogue man-
agement tasks (*statistical significance over 
baseline, §statistical significance over one-step 
model) 

Features Timing Type 
Dialogue 79.6 45.0 
Task 80.1 44.9 
All  80.3*  49.7*§ 
Table 6. Comparison of features on dialogue 
management tasks (*statistical significance over 
Dialogue, §statistical significance over Task) 
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dialogue move to choose. The results suggest 
that the two-step approach, which models the 
two subtasks as separate classifiers, was more 
effective than the alternate one-step approach, 
which combined the two subtasks into a single 
classification problem. The two-step model 
achieved higher performance than the one-step 
model in both the timing and the type prediction. 
However, the difference in the performance of 
the two models was more apparent in the type 
prediction, with the two-step model achieving 
over 22% higher accuracy than the one-step 
model. One possible explanation for the superi-
ority of the two step-model over the one-step 
model is that the corpus used to train the models 
was highly skewed. For more than 73% of the 
total interaction logs in the corpus, the tutors did 
not provide any dialogue feedback. Since the 
one-step model treated NoMove as a special dia-
logue act, the skewed distribution over NoMove 
and Move impacted the learned distribution over 
dialogue acts.  

Two previous investigations reported the accu-
racies of dialogue act classification on system 
utterances. Bangalore et al. (2008) reported a 
prediction accuracy of 55% for system dialogue 
acts when a flat task model was used in a cata-
logue-ordering domain. When a hierarchical task 
structure was used in the same domain, the 
achieved prediction accuracy for system dialogue 
acts was 35.6% (Bangalore and Stent, 2009). 
Boyer (2010) achieved accuracy of 57% for sys-
tem dialogue acts in a task-oriented tutorial dia-
logue. While both of these lines of investigation 
employed task structure features that were manu-
ally annotated, our best-performing two-step dia-
logue management model resulted in comparable 
performance utilizing only automatic features, 
achieving an accuracy of 49.7%. 

A crucial distinction between user and system 
dialogue act classification is that lexical features 
for a given dialogue turn are not available for 
system dialogue act classification because a sys-
tem utterance is generated after a system dia-
logue act is selected. The absence of lexical fea-
tures poses a significant challenge to system dia-
logue act classification, given that lexical fea-
tures have been among the most predictive fea-
tures for this task. To address this challenge, fu-
ture research should continue exploring larger 
spaces of features to improve prediction accura-
cies of learned models. 

8 Conclusions and Future Work 

Automatically learning dialogue management 
models for complex task-oriented domains with 
separate dialogue and task streams poses signifi-
cant challenges. Effective dialogue management 
models in such domains should be able to proac-
tively intervene by making spontaneous dialogue 
moves based on the observed history of both the 
dialogue and the user’s task activities. With the 
overarching goal of creating a data-driven auto-
mated dialogue system that incorporates parallel 
dialogue and task streams, this paper has pre-
sented classification-based dialogue management 
models that integrate a rich set of features auto-
matically extracted from parallel dialogue and 
task streams. Two subtasks of dialogue manage-
ment were considered: when the system should 
provide user with a dialogue move and what type 
of system dialogue act the system should select 
for a given user interaction context. An evalua-
tion found that a two-step approach that modeled 
the two subtasks as separate classifiers were ef-
fective, achieving significantly higher perfor-
mance than an alternate approach that modeled 
the two subtasks with a single classifier. 

The results suggest several promising direc-
tions for future work. First, incorporating richer 
features may improve the accuracies of learned 
models, such as more global interaction histories 
and deeper dialogue structures. Second, develop-
ing more sophisticated task analyses will inform 
the learned models with a representation of the 
user task context, guiding the models to make 
more context-appropriate decisions. Finally, it 
will be important to evaluate the learned models 
by incorporating them into a dialogue manage-
ment system and validating their effectiveness in 
interactions with users in rich task-oriented dia-
logue.  
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Appendix A. An Excerpt from the Task-Oriented Dialogue Corpus 

Lesson 
ID 

Task 
ID Role Type Text Timestamp 

1 4 STUDENT CODING System.out.printIn("Hello World" 2011-09-21 
08:17:17.737 

1 4 STUDENT CODING System.out.printIn("Hello World") 2011-09-21 
08:17:19.407 

1 4 STUDENT CODING System.out.printIn("Hello World"); 2011-09-21 
08:17:19.812 

1 4 TUTOR MESSAGE good. 2011-09-21 
08:17:24.913 

1 4 TUTOR MESSAGE also you can try to compile at anytime. 2011-09-21 
08:17:33.805 

1 4 STUDENT COMPILE_ 
BEGIN 

studentCode\jt101\JavaTutor3.java 2011-09-21 
08:17:38.080 

1 4 STUDENT COMPILE_ 
ERROR 

line 1  : cannot find symbol 
symbol  : method printIn(java.lang.String) 
location: class java.io.PrintStream 
System.out.printIn("Hello World"); 
          ^ 
1 error 

2011-09-21 
08:17:38.220 

1 4 TUTOR MESSAGE carefully compare your line with the example 2011-09-21 
08:17:57.330 

Appendix B.  Types of Activity Logs in Corpus 

Log Type Description Action Initiator 
MESSAGE Either student or tutor has sent a chat message. Student, Tutor 
SESSION_PROGRESS Tutor has allowed student to progress to next task. Tutor 
CODING Student has written programming code. Student 
COMPILE_BEGIN Student has begun compiling code. Student 
COMPILE_SUCCESS Recent code compilation has ended successfully. N/A 
COMPILE_ERROR Recent code compilation has failed with errors. N/A 
RUN_BEGIN Student has begun running code. Student 
INPUT_SENT Student has sent an input to a running code. Student 
RUN_SUCCESS Recent code running has ended successfully. N/A 
RUN_STOP Tutor has stopped running student’s code because of errors in the 

code. 
Tutor 
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Abstract
Existing spoken dialogue systems are typ-
ically designed to operate in a static and
well-defined domain, and are not well
suited to tasks in which the concepts and
values change dynamically. To handle dy-
namically changing domains, techniques
will be needed to transfer and reuse ex-
isting dialogue policies and rapidly adapt
them using a small number of dialogues in
the new domain. As a first step in this di-
rection, this paper addresses the problem
of automatically extending a dialogue sys-
tem to include a new previously unseen
concept (or slot) which can be then used
as a search constraint in an information
query. The paper shows that in the con-
text of Gaussian process POMDP optimi-
sation, a domain can be extended through
a simple expansion of the kernel and then
rapidly adapted. As well as being much
quicker, adaptation rather than retraining
from scratch is shown to avoid subjecting
users to unacceptably poor performance
during the learning stage.

1 Introduction

Existing spoken dialogue systems are typically de-
signed to operate in a static and well-defined do-
main, and are not well suited to tasks in which
the concepts and values change dynamically. For
example, consider a spoken dialogue system in-
stalled in a car, which is designed to provide in-
formation about nearby hotels and restaurants. In
this case, not only will the data change as the
car moves around, but the concepts (or slots) that
a user might wish to use to frame a query will
also change. For example, a restaurant system de-
signed to be used within cities might not have the
concept of ‘al fresco’ dining and could not there-
fore handle a query such as “Find me a French

restaurant where I can eat outside”. In order to
make this possible, techniques will be needed to
extend and adapt existing dialogue policies.

Adaptation can be viewed as a process of im-
proving action selection in a different condition to
the one in which the policy was originally trained.
While adaptation has been extensively studied in
speech recognition (see an overview in (Gales and
Young, 2007)), in spoken dialogue systems it is
still relatively novel and covers a wide range of
possible research topics (Litman and Pan, 1999;
Litman and Pan, 2002; Georgila and Lemon, 2004;
Janarthanam and Lemon, 2010).

A recent trend in statistical dialogue modelling
has been to model dialogue as a partially ob-
servable Markov decision process (POMDP). This
provides increased robustness to errors in speech
understanding and automatic dialogue policy op-
timisation via reinforcement learning (Roy et al.,
2000; Zhang et al., 2001; Williams and Young,
2007; Young et al., 2010; Thomson and Young,
2010). A POMDP-based dialogue manager main-
tains a distribution over every possible dialogue
state at every dialogue turn. This is called the
belief state. Based on that distribution the sys-
tem chooses the action that gives the highest ex-
pected reward, measured by the Q-function. The
Q-function for a belief state and an action is the
expected cumulative reward that can be obtained
if that action is taken in that belief state. The opti-
misation typically requires O(105) to O(106) di-
alogues, so is normally done in interaction with a
simulated user (Jurčı́ček et al., 2011b).

In reinforcement learning, policy adaptation has
been addressed in the context of transfer learn-
ing (Taylor and Stone, 2009). The core idea is to
exploit expertise gained in one domain (source do-
main) to improve learning in another domain (tar-
get domain). A number of techniques have been
developed but they have not been previously ap-
plied to dialogue management.
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Gaussian process (GP) based reinforcement
learning (Engel, 2005) has been recently applied
to POMDP dialogue policy optimisation in or-
der to exploit the correlations between different
belief states and thus reduce the number of dia-
logues needed for the learning process (Gašić et
al., 2010).

An important feature of a Gaussian process is
that it can incorporate a prior mean and variance
for the function it estimates, in this case the Q-
function. Setting these appropriately can signif-
icantly speed up the process of learning. If the
mean or the variance are estimated in one envi-
ronment, for example a particular user type or a
particular domain, they can be used as a prior for
adaptation in a different environment, i.e. another
user type or another domain. A Gaussian process
does not depend on the belief state but on the cor-
relation between two belief states encoded by the
kernel function. Therefore, if one defines a kernel
function for two belief states in one domain, the
policy can be used in a different domain, provided
that the correlations between belief states follow a
similar pattern.

This paper explores the problem of extending an
existing domain by introducing a previously un-
seen slot. Specifically, a simple restaurant system
is considered which allows a user to search for
restaurants based on food-type and area. This do-
main is then extended by introducing an additional
price-range slot. The policy is trained for the basic
two-slot domain and then reused in the extended
domain by defining a modified kernel function and
using adaptation. This strategy not only allows for
the knowledge of a previously trained policy to be
reused but it also guards against poor performance
in the early stages of learning. This is particularly
useful in a real-world situation where the adapta-
tion is performed in direct interaction with users.
In addition, a potential application of this tech-
nique to reduce the number of training dialogues
is examined. The domain is decomposed into a
series of simple domains and the policy is grad-
ually adapted to the final domain with a smaller
number of dialogues than are normally needed for
training.

The rest of the paper is organised as follows. In
Section 2 the background on Gaussian processes

in POMDP optimisation is given. Then Section 3
gives a description of the Bayesian Update of Di-
alogue State dialogue manager, which is used as
a test-bed for the experiments. In Section 4, a
simple method of kernel modification is described
which allows a policy trained in the basic domain
to be used in an extended domain. Methods of
fast adaptation are investigated in Section 5 and
this adaptation strategy is then tested via interac-
tion with humans using the Amazon Mechanical
Turk service in Section 6. Finally, the use of re-
peated adaptation to speed up the process of policy
optimisation by learning gradually from simple to
more complex domains is explored in Section 7,
before presenting conclusions in Section 8.

2 Gaussian processes in POMDPs

The role of a dialogue policy π is to map each be-
lief state b ∈ B into an action a ∈ A so as to
maximise the expected cumulative reward, a mea-
sure of how good the dialogue is.

The expected cumulative reward is defined by
the Q-function as:

Q(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
,

(1)
where rτ is the reward obtained at time τ , T is
the dialogue length and γ is the discount factor,
0 < γ ≤ 1. Optimising the Q-function is then
equivalent to optimising the policy π.

A Gaussian process (GP) is a non-parametric
Bayesian probabilistic model that can be used
for function regression (Rasmussen and Williams,
2005). It is fully defined by a mean and a kernel
function which defines prior function correlations.

GP-Sarsa is an on-line RL algorithm that mod-
els the Q-function as a Gaussian process (Engel
et al., 2005), Q(b, a) ∼ GP (0, k((b, a), (b, a)))
where the kernel k(·, ·) is factored into separate
kernels over the belief state and action spaces
kC(b,b′)kA(a, a′). For a sequence of belief state-
action pairs Bt = [(b0, a0), . . . , (bt, at)]T visited
in a dialogue and the corresponding observed im-
mediate rewards rt = [r1, . . . , rt]T, the posterior
of the Q-function for any belief state-action pair
(b, a) is defined by the following:
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Q(b, a)|rt,Bt ∼ N (Q(b, a), cov((b, a), (b, a))),

Q(b, a) = kt(b, a)
THT

t (HtKtH
T
t + σ2HtH

T
t )
−1rt,

cov((b, a), (b, a)) = k((b, a), (b, a))− kt(b, a)
THT

t (HtKtH
T
t + σ2HtH

T
t )
−1Htkt(b, a)

Ht =




1 −γ · · · 0 0
0 1 · · · 0 0
...

. . . . . .
...

...
0 · · · 0 1 −γ


 ,

kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T,
Kt = [kt((b

0, a0)), . . . ,kt((b
t, at))]

(2)

where Kt is the Gram matrix – the matrix of the
kernel function values for visited points Bt, Ht is
a linear operator that captures the reward looka-
head from the Q-function (see Eq. 1) and σ2 is
an additive noise parameter which controls how
much variability in theQ-function estimate we ex-

pect during the process of learning.
If we assume that the Gaussian process

places a prior mean on the Q-function,
Q(b, a) ∼ GP (m(b, a), k((b, a), (b, a)))
then the posterior mean Q(b, a) is given by (Ras-
mussen and Williams, 2005):

Q(b, a) = m(b, a) + kt(b, a)
THT

t (HtKtH
T
t + σ2HtH

T
t )
−1(rt −mt), (3)

where mt = [m(b0, a0), . . . ,m(bt, at)]T. The
estimate of the variance is same as in Eq. 2.

The Q-function posterior in Eqs. 2 and 3
defines a Gaussian distribution for every be-
lief state-action pair. Thus, when a new be-
lief state b is encountered, for each action a ∈
A, there is a Gaussian distribution Q(b, a) ∼
N (Q(b, a), cov((b, a), (b, a)))). Sampling from
these Gaussian distributions gives a set of Q-
values for each action {Q(b, a) : a ∈ A} from
which the action with the highest sampledQ-value
can be selected:

π(b) = argmax
a
{Q(b, a) : a ∈ A} . (4)

In this way, the stochastic model of theQ-function
is effectively transformed into a stochastic policy
model, which can be optimised to maximise the re-
ward (Geist and Pietquin, 2011; Gašić et al., 2011;
Gašić et al., 2012).

Due to the matrix inversion in Eq. 2, the compu-
tational complexity of calculating the Q-function
posterior is O(t3), where t is the number of data
points in Bt, and this poses a serious computa-
tional problem. The algorithm used here to ap-
proximate the Gaussian process is the kernel span

sparsification method described in (Engel, 2005).
In this case, only a set of representative data points
is retained – called the dictionary of visited points.

3 BUDS dialogue manager

The Bayesian Update of Dialogue State (BUDS)
dialogue manager is a POMDP-based dialogue
manager (Thomson and Young, 2010) which fac-
torises the dialogue state into conditionally de-
pendent elements. These elements are arranged
into a dynamic Bayesian network, which allows
for their marginal probability distributions to be
updated during the dialogue. Thus, the belief
state of the BUDS dialogue manager consists of
the marginal posterior probability distribution over
hidden nodes in the Bayesian network. The hidden
nodes in the BUDS system consist of the history
nodes and the goal nodes for each concept in the
dialogue. For instance in a restaurant information
domain these include area, food-type, address.
The history nodes define possible dialogue histo-
ries for a particular concept, eg. system-informed,
user-requested. The goal nodes define possible
values for a particular concept, eg. Chinese, In-
dian. The role of the policy π is then to map each
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belief state into a summary action a from the sum-
mary action space A. Once a summary action is
found it is heuristically mapped into the master
action that the system finally takes (Gašić et al.,
2012). The master actions are composed of dia-
logue act type and list of slot value pairs. There are
15 dialogue act types in the BUDS system that fa-
cilitate not only simple information providing sce-
narios but also more complex dialogues where the
user can change their mind and ask for alterna-
tives.

To apply GP policy optimisation, a kernel func-
tion must be defined on both the belief state space
B and the action space A. The kernel function
over the belief state b is constructed from the sum
of individual kernels over the hidden node distri-
butions, such that the kernel function of two cor-
responding nodes is based on the expected likeli-
hood kernel (Jebara et al., 2004), which is also a
simple linear inner product:

kB(b,b′) =
∑

h

〈bh,b′h〉, (5)

where bh is the probability distribution encoded
in the hth hidden node. This kernel gives the ex-
pectation of one belief state distribution under the
other.

For history nodes, the kernel is a simple inner
product between the corresponding node distribu-
tions. While it is possible to calculate the kernel
function for the goal nodes in the same way as for
the history nodes, in this case, the choice of sys-
tem action, such as confirm or inform, does not
depend on the actual values. It rather depends on
the shape of the distribution and, in particular, it
depends on the probability of the most likely value
compared to the rest. Therefore, to exploit the cor-
relations further, the kernel over two goal nodes
is calculated as the dot product of vectors, where
each vector represents the corresponding distribu-
tion sorted into order of probability. The only ex-
ceptions are the goal for the method node and the
discourse act node. The former defines whether
the user is searching for a venue by name or by
constraints and the latter defines which discourse
act the user used, eg. acknowledgement, thank you.
Their kernels are calculated in the same way as for
the history nodes.

For the action space kernel, the δ-kernel is used
defined by:

kA(a, a′) = δa(a
′). (6)

where δa(a′) = 1 iff a = a′.

3.1 TopTable domain
The TopTable domain consists of restaurants in
Cambridge, UK automatically extracted from the
TopTable web service (TopTable, 2012). There are
about 150 restaurants and each restaurant has 7 at-
tributes – slots. This results in a belief space that
consists of 25 concepts where each concept takes
from 3 to 150 values and each value has a proba-
bility in [0, 1]. The summary action space consists
of 16 summary actions.
3.2 The agenda-based simulated user
In training and testing a simulated user was used.
The agenda-based user simulator (Schatzmann,
2008; Keizer et al., 2010) factorises the user state
into an agenda and a goal. The goal ensures
that the user simulator exhibits consistent, goal-
directed behaviour. The role of the agenda is to
elicit the dialogue acts that are needed for the user
simulator to fulfil the goal. In addition, an er-
ror model adds confusions to the simulated user
input such that it resembles those found in real
data (Thomson et al., 2012). The length of the N-
best list was set to 10 and the confusion rate was
set to 15% during training and testing.1 This error
rate means that 15% of time the true hypothesis is
not in the N-best list. Intermediate experimenta-
tion showed that these confusion rates are typical
of real data.

The reward function was set to give a reward
of 20 for successful dialogues, zero otherwise. In
addition, 1 is deducted for each dialogue turn to
encourage shorter dialogues. The discount factor
γ is set to 1 and the dialogue length is limited to
30 turns.

4 Extended domains

Transfer learning is a reinforcement learning tech-
nique which address three problems:

• given a target domain, how to select the
most appropriate source domain from a set of
source domains,

• given a target and a source domain how to
find the relationship between them, and

• given a target and a source domain and the
relationship between them, how to effectively
transfer knowledge between them.

1Except of course where the system is explicitly tested on
varying noise levels.
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Here we assume that we are given a source and
a target domain and that the relationship between
them is defined by mapping the kernel function.
Knowledge transfer is then effected by adapting
the source domain policy for use in the target do-
main. For the latter, two forms of adaptation are
investigated: one simply continues to update the
set of source data dictionary points with new dic-
tionary points, the second uses the source domain
posterior as a prior for the new target domain.

In this case, the source is a basic restaurant do-
main with slots name, area, food-type, phone, ad-
dress, and postcode. The extended target domain
has an additional price-range slot. We are inter-
ested primarily in training the policy on the ba-
sic domain and testing it on the extended domain.
However, since real applications may also require
a slot to be forgotten, we also investigate the re-
verse where the policy is trained in the extended
domain and tested on the basic domain.

In order to enable the required cross domain
portability, a kernel function defining the correla-
tion between belief states from differing domains
is needed. Since the extended domain has an ex-
tra slot and thus extra hidden nodes, we need to
define the correlations between the extra hidden
nodes and the hidden nodes in the belief state of
the basic domain. This can be performed in vari-
ous ways, but the simplest approach is to specify
which slot from the basic domain is most similar
to the new slot in the extended domain and then
match their corresponding hidden nodes. In that
way the belief state kernel function between two
belief states bB, bE for the basic B and the ex-
tended E domain becomes:

kB(bB,bE) =
∑

h∈B
〈bB

h ,b
E
h〉+

∑

e/∈B
〈bB

l(e),b
E
e 〉, (7)

where h are the hidden nodes in the basic domain,
e are the hidden nodes in the extended domain and
function l : E→ B for each hidden node that does
not exist in the basic domain finds its appropriate
replacement. In the particular case studied here,
the slot area is most similar to the new price-range
slot since they both have a relatively small number
of values, about 5. Hence, l(price-range)→ area.
If the cardinality of the mapped slots differ, the
shorter is padded with zeros though other forms of
normalisation are clearly possible.

The (summary) action space for the extended
domain has more actions than the basic domain.

For example, one action that exists in the extended
domain and does not exist in the basic domain is
request(price-range). To define the kernel func-
tion between these sets of actions, one can specify
for each extra action in the extended domain its
most similar action in the basic domain:

kA(aB, aE) =
{
δaB(a

E) aE ∈ AB,
δaB(L(a

E)) aE /∈ AB,
(8)

where function L : AE → AB for each action
that does not exist in the basic domain finds its
replacement action.

Functions L and l are here defined manually.
However, a simple but effective heuristic would be
to find for each new slot in the extended domain, a
slot in the basic domain with similar cardinality.

Porting in the reverse direction from the ex-
tended to the basic domain is easier since one can
simply disregard the extra hidden nodes and ac-
tions in the kernel calculation.

To experimentally examine the extent to which
this method supports cross domain portability, we
trained policies for both domains until conver-
gence, using 105 dialogues on the simulated user.
We then cross tested them on the mismatching do-
mains at varying user input error rates. The results
are given in Fig. 1.
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Figure 1: Cross testing policies trained on differ-
ent domains. bsc refers to the basic domain, extd is
the extended domain, trn is training and tst is test-
ing.

From the results it can be seen that the policy
trained for the basic domain has a better perfor-
mance than the policy trained on the extended do-
main, when tested on the matching domain (com-
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pare bsc-trn&tst with extd-trn&tst). The extended do-
main has more slots so it is more difficult for the
system to fulfil the user request, especially in noisy
conditions. Secondly, the performance of the pol-
icy trained on the extended domain and tested on
the basic domain is close to optimal (compare bsc-
trn&tst with extd-trn&bsc-tst). However, the pol-
icy trained on the basic domain and tested on the
extended domain has much worse performance
(compare bsc-trn&extd-tst with extd-trn&tst). It is
hard for the policy to adequately extrapolate from
the basic to the extended domain. This difference
in performance, however, motivates the need for
adaptation and this is investigated in the next sec-
tion.

5 Adaptation

Adaptation of a policy trained on one domain to
another can be performed in several ways. Here
we examine two adaptation strategies similar to
the method described in (Taylor et al., 2007),
where every action-value for each state in the tar-
get domain is initialised with learned source do-
main values.

The first strategy is to take the policy trained in
the source domain and simply continue training it
in the target domain until convergence. In Gaus-
sian process reinforcement learning, this means
that we assume a zero-mean prior on the Gaussian
process for theQ-function and let the dictionary of
visited points Bt from Eq. 2 consist of both points
visited in the source domain and the extended tar-
get domain, making sure that the Gram matrix
Kt uses extended domain kernel function where
necessary. However, the estimate of the variance
decreases with the number of visited points (see
Eq. 2). The danger therefore when performing
adaptation in this way is that the estimate of vari-
ances obtained in the source domain will be very
small since the policy has already been trained un-
til convergence with a large number of dialogues.
As a consequence, the rate of exploration defined
by sampling in Eq. 4 will be reduced and thus lead
to the subsequent optimisation in the new target
domain falling prematurely into a local optimum.

As an alternative, we propose another adapta-
tion strategy. The estimate of the posterior of the
mean for the Q-function, Q in Eq. 2, from the pol-
icy trained on the basic domain can be taken to be
the prior of the mean when the policy is trained on
the extended domain as in Eq. 3. More precisely, if

Qbsc is the posterior mean of the policy trained on
the basic domain then mextd = Qbsc. In this case
it is also important to make sure that the kernel
function used to calculateQbsc is redefined for the
extended domain where necessary. The prior on
the variance is the original kernel function renor-
malised:

k((b, a), (b′, a′))← k((b,a),(b′,a′))√
k((b,a),(b,a))k((b′,a′),(b′,a′))

.

(9)
Given that the estimate of the mean provides rea-
sonable performance, it is not necessary to place
a flat prior on the variance of the Q-function and
therefore the kernel is normalised as in Eq. 9.

When comparing adaptation strategies, we are
interested in two aspects of performance. The first
is the performance of the policy during training.
The second is how quickly the policy reaches the
optimal performance. For that reason we adopt
the following evaluation scheme. After every 100
adaptation dialogues we test the partially opti-
mised policy with 1000 simulated dialogues, dif-
ferent to the ones used in adaptation. These 1000
dialogues are the same for every test point on the
graph. The results are given in Fig. 2.
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Figure 2: Different adaptation strategies

The lower horizontal line represents the perfor-
mance of the policy trained on the basic source
domain and tested on the extended target domain.
This is the baseline. The upper horizontal line
represents the policy trained until convergence on
the extended domain and also tested on the ex-
tended domain. This provides the gold standard.
The adaptation strategy that takes both the mean
and variance of the policy trained on the basic do-
main and retrains the policy on the extended do-
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main is denoted as ADAPT in Fig. 2. The adap-
tation strategy that uses the posterior mean of the
policy trained on the source domain as the prior
mean for adaptation is denoted as PRIOR in Fig. 2.
Finally, for comparison purposes we show the per-
formance of the policy that is trained from scratch
on the extended domain. This is denoted as TRAIN
on the graph. It can be seen that both adapta-
tion strategies significantly reduce the number of
training dialogues and, more importantly, main-
tain the level of performance during adaptation.
The adaptation strategy that places the prior on the
mean has slightly worse performance in the begin-
ning but provides the best performance after 1500
dialogues. As already noted, this could be due
to overly confident variances in the ADAPT case
leading to a local optimum.

6 Human experiments

In order to adapt and evaluate policies with hu-
mans, we used crowd-sourcing via the Ama-
zon Mechanical Turk service in a set-up similar
to (Jurčı́ček et al., 2011a; Gašić et al., 2013).
The BUDS dialogue manager was incorporated
in a live telephone-based spoken dialogue system.
The Mechanical Turk users were assigned spe-
cific tasks in the extended TopTable domain. They
were asked to find restaurants that have particu-
lar features as defined by the given task. To elicit
more complex dialogues, the users were some-
times asked to find more than one restaurant, and
in cases where such a restaurant did not exist they
were required to seek an alternative, for example
find a Chinese restaurant instead of a Vietnamese
one. After each dialogue the users filled in a feed-
back form indicating whether they judged the di-
alogue to be successful or not. Based on that bi-
nary rating, the subjective success was calculated
as well as the average reward. An objective rat-
ing can also be obtained by comparing the system
outputs with the predefined task.

During policy adaptation, at the end of each
call, users were asked to press 1 if they were satis-
fied (i.e. believed that they had been successful in
fulfilling the assigned task) and 0 otherwise. The
objective success was also calculated. The dia-
logue was then only used for adaptation if the user
rating agreed with the objective measure of suc-
cess as in (Gašić et al., 2013). The performance
based on user ratings during adaptation for both
adaptation strategies is given in Table 1.

Table 1: Policy performance during adaptation

#Diags Reward Success (%)
ADAPT 251 11.7± 0.5 92.0± 1.7
PRIOR 329 12.1± 0.4 96.7± 1.0

We then evaluated four policies with real users:
the policy trained on the basic domain, the pol-
icy trained on the extended domain and the pol-
icy adapted to the extended domain using the prior
and the policy adapted to the extended domain via
interaction with real users using retraining. The
results are given in Table 2.

Table 2: Human evaluation of four systems in the
extended domain: trained in the basic domain,
trained in the extended domain, trained in the ba-
sic and adapted in the extended domain using both
ADAPT and PRIOR methods.

Training #Diags Reward Success(%)
Basic 246 11.0± 0.5 91.9± 1.7
Extended 250 12.1± 0.4 94.4± 1.5
ADAPT 268 12.6± 0.4 94.4± 1.4
PRIOR 252 12.4± 0.4 95.6± 1.3

The results show two important features of
these adaptation strategies. The first is that it is
possible to adapt the policy from one domain to
another with a small number of dialogues. Both
adaptation techniques achieve results statistically
indistinguishable from the matched case where the
policy was trained directly in the extended do-
main. The second important feature is that both
adaptation strategies guarantee a minimum level
of performance during training, which is better
than the performance of the basic policy tested on
the extended domain. This is particularly impor-
tant when training with real users so that they are
not exposed to poor performance at any time dur-
ing training.

7 Application to fast learning

The above results show that transfer learning
through policy adaptation can be relatively fast.
Since complex domains can be decomposed into a
series of domains with gradually increasing com-
plexity, an alternative to training a system to con-
vergence starting from an uninformative prior is
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to train a system in stages iteratively adapting to
successively more complex domains (Taylor and
Stone, 2009).

We explored this idea by training the extended
system in three stages. The first has only one slot
that the user can specify: food-type and additional
slots phone, address and postcode that can be re-
quested (initial in Fig. 3). The second has an ad-
ditional area slot (intermediate in Fig. 3) and the
final domain has a the price-range slot added (final
on the graph).

A policy for each of these domains was trained
until convergence and the average rewards of these
policies are the horizontal lines on Fig. 3. In addi-
tion, the following adaptation schedule was imple-
mented. An initial policy was trained from scratch
for the one-slot initial system using only 1500 dia-
logues. The resulting policy was then retrained for
the intermediate two-slot system using again just
1500 dialogues. Finally, the required three-slot
system was trained using 1500 dialogues. At each
stage the policy was tested every 100 training dia-
logues, and the resulting performances are shown
by the three graphs initial-train, intermediate-adapt
and final-adapt in Fig. 3. The policies were tested
on the domains they are trained on or adapted to.

It can be seen that after just 500 dialogues of
the third stage (i.e. after just 3500 dialogues in to-
tal) the policy reaches optimal performance. It has
been shown previously that Gaussian process re-
inforcement learning for this task normally takes
104 dialogues (Gašić et al., 2012) so this schedule
halves the number of dialogues needed for train-
ing. Also it is important to note that when training
from scratch the average reward is less than 5 for
300 dialogues (see TRAIN in Fig. 2), in this case
that only happens for about 100 dialogues (see
initial-train in Fig. 3).

8 Conclusions

This paper has investigated the problem of ex-
tending a dialogue system to handle new previ-
ously unseen concepts (i.e. slots) using adapta-
tion based transfer learning. It has been shown that
a GP kernel can be mapped to establish a relation-
ship between a basic and an extended domain and
that GP-based adaptation can restore a system to
optimal performance within 200 to 300 adaptation
dialogues. A major advantage of this technique is
that it allows a minimum level of performance to
be guaranteed and hence guards against subject-
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Figure 3: Application of transfer learning to fast
training. The target is to achieve the performance
of the fully trained 3 slot system as shown by the
lower horizontal line final. This is achieved in three
stages, with the target being achieved part way
through the 3rd stage using just 3500 dialogues in
total.

ing the user to poor performance during the early
stages of adaptation.

Two methods of adaptation have been studied –
one based on augmenting the training points from
the source domain with new points from the tar-
get domain, and a second which treats the source
policy as a prior for the target policy. Results us-
ing the prior method were consistently better. In a
further experiment, it was also shown that starting
with a simple system and successively extending
and adapting it slot by slot, can achieve optimal
performance faster than one trained directly from
scratch.

These results suggest that it should be feasi-
ble to construct dialogue systems which can dy-
namically update and extend their domains of dis-
course automatically during direct conversations
with users. However, further investigation of
methods for learning the relationship between the
new and the old domains is needed. Also, the
scalability of these results to large-scale domain
expansion remains a topic for future work.
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M Gašić, C. Breslin, M. Henderson, Szummer M.,
B Thomson, P. Tsiakoulis, and S Young. 2013.
On-line policy optimisation of Bayesian Dialogue
Systems by human interaction. In Proceedings of
ICASSP.

M Geist and O Pietquin. 2011. Managing Uncertainty
within the KTD Framework. In Proceedings of the
Workshop on Active Learning and Experimental De-
sign, Sardinia (Italy).

K Georgila and O Lemon. 2004. Adaptive multimodal
dialogue management based on the information state
update approach. In W3C Workshop on Multimodal
Interaction.

S Janarthanam and O Lemon. 2010. Adaptive Re-
ferring Expression Generation in Spoken Dialogue
Systems: Evaluation with Real Users. In Proceed-
ings of SIGDIAL.

T Jebara, R Kondor, and A Howard. 2004. Probability
product kernels. J. Mach. Learn. Res., 5:819–844,
December.
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Abstract

This paper describes a new approach to
automatic learning of strategies for social
multi-user human-robot interaction. Us-
ing the example of a robot bartender that
tracks multiple customers, takes their or-
ders, and serves drinks, we propose a
model consisting of a Social State Recog-
niser (SSR) which processes audio-visual
input and maintains a model of the social
state, together with a Social Skills Execu-
tor (SSE) which takes social state updates
from the SSR as input and generates robot
responses as output. The SSE is modelled
as two connected Markov Decision Pro-
cesses (MDPs) with action selection poli-
cies that are jointly optimised in interaction
with a Multi-User Simulation Environment
(MUSE). The SSR and SSE have been in-
tegrated in the robot bartender system and
evaluated with human users in hand-coded
and trained SSE policy variants. The re-
sults indicate that the trained policy out-
performed the hand-coded policy in terms
of both subjective (+18%) and objective
(+10.5%) task success.

1 Introduction

As the use of robot technology in the home as well
as in public spaces is increasingly gaining attention,
the need for effective and robust models for natural
and social human robot interaction becomes more
important. Whether it involves robot companions
(Vardoulakis et al., 2012), game-playing robots
(Klotz et al., 2011; Brooks et al., 2012; Cuayáhuitl
and Kruijff-Korbayová, 2012), or robots that help
people with exercising (Fasola and Mataric, 2013),
human users should be able to interact with such
service robots in an effective and natural way, us-
ing speech as well as other modalities of commu-
nication. Furthermore, with the emergence of new

application domains there is a particular need for
methods that enable rapid development of mod-
els for such new domains. In this respect, data-
driven approaches are appealing for their capability
to automatically exploit empirical data to arrive at
realistic and effective models for interpreting user
behaviour, as well as to learn strategies for effective
system behaviour.

In spoken dialogue systems research, statisti-
cal methods for spoken language understanding,
dialogue management, and natural language gen-
eration have proven to be feasible for effective
and robust interactive systems (Rieser and Lemon,
2011; Lemon and Pietquin, 2012; Young et al.,
2010; Young et al., 2013). Although such methods
have recently also been applied to (multi-modal)
human-robot interaction (Stiefelhagen et al., 2007;
Cuayáhuitl et al., 2012), work on multi-user human-
robot interaction has been limited to non-statistical,
hand-coded models (Klotz et al., 2011).

On the other hand, substantial work has been
done in the field of situated multi-party interaction
in general, including data-driven approaches. In
particular, Bohus & Horvitz (2009) have addressed
the task of recognising engagement intentions using
online learning in the setting of a screen-based em-
bodied virtual receptionist, and have also worked
on multi-party turn-taking in this context (Bohus
and Horvitz, 2011).

In this paper we describe a statistical approach
to automatic learning of strategies for selecting ef-
fective as well as socially appropriate robot actions
in a multi-user context. The approach has been de-
veloped using the example of a robot bartender (see
Figure 1) that tracks multiple customers, takes their
orders, and serves drinks. We propose a model con-
sisting of a Social State Recogniser (SSR) which
processes audio-visual input and maintains a model
of the social state, and a Social Skills Executor
(SSE) which takes social state updates from the
SSR as input and generates robot responses as out-
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put. The SSE is modelled as a hierarchy of two con-
nected Markov Decision Processes (MDPs) with
action selection policies that are jointly optimised
in interaction with a Multi-User Simulation Envi-
ronment (MUSE).

Figure 1: The robot bartender with two customers

In the remainder of this paper we will describe
the robot system in more detail (Section 2), fol-
lowed by descriptions of the SSR (Section 3), the
SSE (Section 4), and MUSE (Section 5). In Sec-
tion 6 we then discuss in more detail the MDP
model for the SSE and the process of jointly opti-
mising the policies, and present evaluation results
on simulated data. Next, we present results of the
first evaluation of the integrated SSE-MDP compo-
nent with human users (Section 7). The paper is
concluded in Section 8.

2 Robot bartender system

The robot system we used for evaluating the models
is equipped with vision and speech input processing
modules, as well as modules controlling two robot
arms and a talking head. Based on observations
about the users in the scene and their behaviour, the
system must maintain a model of the social context,
and decide on effective and socially appropriate
responses in that context. Such a system must be
able to engage in, maintain, and close interactions
with users, take a user’s order by means of a spoken
conversation, and serve their drinks. The overall
aim is to generate interactive behaviour that is both
task- effective and socially appropriate: in addition
to efficiently taking orders and serving drinks, the
system should, e.g., deal with customers on a first-
come, first-served basis, and should manage the
customers’ patience by asking them politely to wait
until the robot is done serving another customer.

As shown in Figure 1, the robot hardware con-

sists of a pair of manipulator arms with grippers,
mounted to resemble human arms, along with
an animatronic talking head capable of produc-
ing facial expressions, rigid head motion, and lip-
synchronised synthesised speech. The input sen-
sors include a vision system which tracks the loca-
tion, facial expressions, gaze behaviour, and body
language of all people in the scene in real time
(Pateraki et al., 2013), along with a linguistic pro-
cessing system (Petrick et al., 2012) combining a
speech recogniser with a natural-language parser
to create symbolic representations of the speech
produced by all users. More details of the architec-
ture and components are provided in (Foster et al.,
2012). An alternative embodiment of the system is
also available on the NAO platform.

3 Social State Recogniser

The primary role of the Social State Recogniser
(SSR) is to turn the continuous stream of messages
produced by the low-level input and output com-
ponents of the system into a discrete representa-
tion of the world, the robot, and all entities in the
scene, integrating social, interaction-based, and
task-based properties. The state is modelled as a
set of relations such as facePos(A)=(x,y,z) or
closeToBar(A); see (Petrick and Foster, 2013)
for details on the representation used.

In addition to storing all of the low-level sensor
information, the SSR also infers additional rela-
tions that are not directly reported by the sensors.
For example, it fuses information from vision and
speech to determine which user should be assigned
to a recognised spoken contribution. It also pro-
vides a constant estimate of whether each customer
is currently seeking attention from the bartender
(seeksAttention(A)): the initial version of this
estimator used a hand-coded rule based on the ob-
servation of human behaviour in real bars (Huth
et al., 2012), while a later version (Foster, 2013)
makes use of a supervised learning classifier trained
on labelled recordings of humans interacting with
the first version of the robot bartender.

The SSR provides a query interface to allow
other system components access to the relations
stored in the state, and also publishes an updated
state to the SSE every time there is a change which
might require a system action in response (e.g.,
a customer appears, begins seeking attention, or
makes a drink order).
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4 Social Skills Executor

The Social Skills Executor (SSE) controls the be-
haviour of the robot system, based on the social
state updates it receives from the SSR. The out-
put of the SSE consists of a combination of non-
communicative robot actions and/or communica-
tive actions with descriptions of their multi-modal
realisations. In the bartender domain, the non-
communicative actions typically involve serving
a specific drink to a specific user, whereas the com-
municative actions have the form of dialogue acts
(Bunt et al., 2010), directed at a specific user, e.g.
setQuestion(drink) (“What would you like to
drink?”) or initialGreeting() (“Hello”).

In our design of the SSE, the decision making
process resulting in such outputs (including the ‘no
action’ output) consists of three stages: 1) social
multi-user coordination: managing the system’s
engagement with the users present in the scene (e.g.,
accept a user’s bid for attention, or proceed with an
engaged user), 2) single-user interaction: if pro-
ceeding with an engaged user, generating a high-
level response to that user, in the form of a com-
municative act or physical action (e.g., greeting the
user or serving him a drink), and 3) multi-modal
fission: selecting a combination of modalities for
realising a chosen response (e.g., a greeting can be
realised through speech and/or a nodding gesture).
One advantage of such a hierarchical design is that
strategies for the different stages can be developed
independently. Another is that it makes automatic
policy optimisation more scalable.

5 Multi-User Simulated Environment

In order to test and evaluate the SSE, as well as to
train SSE action selection policies, we developed
a Multi-User Simulated Environment (MUSE).
MUSE allows for rapidly exploring the large space
of possible states in which the SSE must select
actions. A reward function that incorporates in-
dividual rewards from all simulated users in the
environment is used to encode preferred system
behaviour in a principled way. A simulated user
assigns a reward if they are served the correct drink,
and gives penalties associated with their waiting
time and various other forms of undesired system
responses (see Section 6.1 for more details about
the reward function). All of this provides a practi-
cal platform for evaluating different strategies for
effective and socially appropriate behaviour. It also
paves the way for automatic optimisation of poli-

cies, for example by using reinforcement learning
techniques, as we will discuss in Section 6.1.

The simulated environment replaces the vision
and speech processing modules in the actual robot
bartender system, which means that it generates 1)
vision signals in every time-frame, and 2) speech
processing results, corresponding to sequences of
time-frames where a user spoke. The vision obser-
vations contain information about users that have
been detected, where they are in the scene, whether
they are speaking, and where their attention is di-
rected to. Speech processing results are represented
semantically, in the form of dialogue acts (e.g.,
inform(drink=coke), “I would like a coke”). As
described in Section 3, the SSR fuses the vision and
speech input, for example to associate an incoming
dialogue act with a particular user.

The simulated signals are the result of combin-
ing the output from the simulated users in the en-
vironment. Each simulated user is initialised with
a random goal (in our domain a type of drink they
want to order), enters the scene at some point, and
starts bidding for attention at some point. Each
simulated user also maintains a state and gener-
ates responses given that state. These responses
include communicative actions directed at the bar-
tender, which are translated into a multi-channel
vision input stream processed by the SSR, and, in
case the user realises the action through speech,
a speech processing event after the user has fin-
ished speaking. Additionally, the simulated users
start with a given patience level, which is reduced
in every frame that the user is bidding for atten-
tion or being served by the system. If a user’s pa-
tience has reduced to zero, s/he gives up and leaves
the bar. However, it is increased by a given fixed
amount when the system politely asks the user to
wait, encoded as a pausing dialogue act. The be-
haviour of the simulated users is partly controlled
by a set of probability distributions that allow for
a certain degree of variation. These distributions
have been informed by statistics derived from a
corpus of human-human customer-bartender inter-
actions (Huth et al., 2012).

In addition to information about the simulated
users, MUSE also provides feedback about the
execution of robot actions to the SSR, in partic-
ular the start and end of all robot speech and non-
communicative robot actions. This type of informa-
tion simulates the feedback that is also provided in
the actual bartender system by the components that
directly control the robot head and arms. Figure 2
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Figure 2: Social state recognition and social skills execution in a multi-user simulated environment.

shows the architecture of the system interacting
with the simulated environment.

6 MDP model for multi-user interaction

To enable automatic optimisation of strategies for
multi-user social interaction, the SSE model as de-
scribed in Section 4 was cast as a hierarchy of two
Markov Decision Processes (MDPs), correspond-
ing to the social multi-user coordination and single-
user interaction stages of decision making. Both
MDPs have their own state spaces S1 and S2, each
defined by a set of state features, extracted from
the estimated social state made available by the
SSR—see Tables 1 and 3. They also have their own
action setsA1 andA2, corresponding to the range
of decisions that can be made at the two stages (Ta-
bles 2 and 4), and two policies π1 : S1 → A1 and
π2 : S2 → A2, mapping states to actions.

6.1 Policy optimisation

Using the MDP model as described above, we
jointly optimise the two policies, based on the re-
wards received through the SSR from the simulated
environment MUSE. Since MUSE gives rewards
on a frame-by-frame basis, they are accumulated
in the social state until the SSR publishes a state
update. The SSE stores the accumulated reward
together with the last state encountered and action
taken in that state, after which that reward is reset
in the social state. After each session (involving
interactions with two users in our case), the set
of encountered state-action pairs and associated

rewards is used to update the policies.
The reward provided by MUSE in each frame

is the sum of rewards Ri given by each individual
simulated user i, and a number of general penalties
arising from the environment as a whole. User
rewards consist of a fixed reward in case their goal
is satisfied (i.e., when they have been served the
drink they wanted and ordered), a penalty in case
they are still waiting to be served, a penalty in case
they are engaged with the system but have not been
served their drink yet, and additional penalties, for
example when the system turns his attention to
another user when the user is still talking to it, or
when the system serves a drink before the user has
ordered, or when the system serves another drink
when the user already has been served their drink.
General penalties are given for example when the
system is talking while no users are present.

The policies are encoded as functions that assign
a value to each state-action pair; these so-called
Q-values are estimates of the long-term discounted
cumulative reward. Given the current state, the
policy selects the action with the highest Q-value:

π(s) = arg max
a

Q(s, a) (1)

Using a Monte-Carlo Control algorithm (Sutton
and Barto, 1998), the policies are optimised by
running the SSR and SSE against MUSE and using
the received reward signal to update the Q-values
after each interaction sequence. During training,
the SSE uses an ε-greedy policy, i.e., it takes a
random exploration action with probability ε = 0.2.
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Index Feature Values
4 · i Interaction status for user i + 1 nonEngaged/seeksAttention/engaged
4 · i + 1 Location of user i + 1 notPresent/!closeToBar/closeToBar
4 · i + 2 User i + 1 was served a drink no/yes
4 · i + 3 User i + 1 asked to wait no/yes

Table 1: State features for the social multi-user coordination policy. For each user, 4 features are included
in the state space, resulting in 32 · 22 = 36 states for interactions with up to 1 user, increasing to 1296
states for interactions with up to 2 users and 46, 656 states for up to 3 users.

Index Action
0 No action
3 · i + 1 Ask user i + 1 to wait
3 · i + 2 Accept bid for attention from user i + 1
3 · i + 3 Proceed interaction with (engaged) user i + 1

Table 2: Actions for the social multi-user coordination policy.

In the policy update step, a discount factor γ = 0.95
is used, which controls the impact that rewards
received later in a session have on the value of state-
action pairs encountered earlier in that session.

Figure 3 shows the learning curve of a joint
policy optimisation, showing average rewards ob-
tained after running the SSE with trained policies
for 500 runs, at several stages of the optimisation
process (after every 2500 sessions/runs/iterations,
the trained policy was saved for evaluation). In this
particular setup, simulated users gave a reward of
550 upon goal completion but in the total score this
is reduced considerably due to waiting time (-2 per
frame), task completion time (-1 per frame) and
various other potential penalties. Also indicated
are the performance levels of two hand-coded SSE
policies, one of which uses a strategy of asking a
user to wait when already engaged with another
user (labelled HDC), and one in which that second
user is ignored until it is done with the engaged user
(labelled HDCnp). The settings for user patience
as discussed in Section 5 determine which of these
policies works best; ideally these settings should be
derived from data if available. Nevertheless, even
with the hand-coded patience settings, the learning
curve indicates that both policies are outperformed
in simulation after 10k iterations, suggesting that
the best strategy for managing user patience can be
found automatically.

7 Human user evaluation

The SSE described above has been integrated in
the full robot bartender system and evaluated for
the first time with human users. In the experiment,

both a hand-coded version and a trained version
of the SSE component were tested; see Table 6 in
Appendix A for the trajectory of state-action pairs
of an example session. The hand-coded version
uses the policy labelled HDC, not HDCnp (see
Section 6.1). In each of the sessions carried out, one
recruited subject and one confederate (one of the
experimenters) approached the bartender together
as clients and both tried to order a drink (coke or
lemonade). After each interaction, the subject filled
out the short questionnaire shown in Figure 4.

Q1: Did you successfully order a drink from the bartender?
[Y/N]

Please state your opinion on the following statements:
[ 1:strongly disagree; 2:disagree; 3:slightly disagree;
4:slightly agree; 5:agree; 6:strongly agree ]

Q2: It was easy to attract the bartender’s attention [1–6]

Q3: The bartender understood me well [1–6]

Q4: The interaction with the bartender felt natural [1–6]

Q5: Overall, I was happy about the interaction [1–6]

Figure 4: Questionnaire from the user study.

37 subjects took part in this study, resulting in a
total of 58 recorded drink-ordering interactions:
29 that used the hand-coded SSE for interaction
management, and 29 that used the trained SSE.

The results from the experiment are summarised
in Table 5. We analysed the results using a linear
mixed model, treating the SSE policy as a fixed fac-
tor and the subject ID as a random factor. Overall,
the pattern of the subjective scores suggests a slight
preference for the trained SSE version, although
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Index Feature Values
0 Reactive pressure none/thanking/greeting/goodbye/apology
1 Status of user goal unknown/usrInf/sysExpConf/sysImpConf/

grounded/drinkServed/sysAsked
2 Own proc. state none/badASR

Table 3: State features for the single-user interaction policy. In this case, there are 5 · 7 · 2 = 70 states.

Index Action Example
0 No action
1 returnGreeting() “Hello”
2 autoPositive() “Okay”
3 acceptThanking() “You’re welcome”
4 autoNegative() “What did you say?”
5 setQuestion(drink) “What drink would you like?”
6 acceptRequest(drink=x) + serveDrink(x) “Here’s your coke”

Table 4: Actions for the single-user interaction policy, which correspond to possible dialogue acts, except
for ‘no action’ and serving a drink. The specific drink types required for two of the actions are extracted
from the fully specified user goal in the social state maintained by the SSR.

only the difference in perceived success was statis-
tically significant at the p < 0.05 level. The actual
success rate of the trained policy was also some-
what higher, although not significantly so. Also,
the interactions with the trained SSE took slightly
longer than the ones with the hand-coded SSE in
terms of the number of system turns (i.e., the num-
ber of times the SSE receives a state update and
selects a response action, excluding the times when
it selects a non-action); however, this did not have
any overall effect on the users’ subjective ratings.

The higher success rate for the trained SSE could
be partly explained by the fact that fewer ASR prob-
lems were encountered when using this version;
however, since the SSE was not triggered when a
turn was discarded due to low-confidence ASR, this
would not have had an effect on the number of sys-
tem turns. There was another difference between
the hand-coded and trained policies that could have
affected both the success rate and the number of
system turns: for interactions in which a user has
not ordered yet, nor been asked for their order, the
hand-coded strategy randomly chooses between
asking the user for their order and doing nothing,
letting the user take the initiative to place the order,
whereas the trained policy always asks the user for
their order (this action has the highest Q-value, al-
though in fact the value for doing nothing in such
cases is also relatively high).

We also carried out a stepwise multiple linear
regression on the data from the user experiment

to determine which of the objective measures had
the largest effect, as suggested by the PARADISE
evaluation framework (Walker et al., 2000). The re-
sulting regression functions are shown in Figure 5.
In summary, all of the subjective responses were
significantly affected by the objective task success
(i.e., the number of drinks served); the number of
low-ASR turns also affected most of the responses,
while various measures of dialogue efficiency (such
as the system response time and the time taken to
serve drinks) also had a significant impact. In gen-
eral, these regression functions explain between
15–25% of the variance in the subjective measures.

As an initial analysis of the validity of the sim-
ulated environment, we compared the state distri-
bution of the simulated data accumulated during
policy optimisation with that of the human user
evaluation data. In terms of coverage, we found
that only 46% of all states encountered in the real
data were also encountered during training. How-
ever, many of these states do not occur very often
and many of them do not require any action by
the robot (a trained policy can easily be set to take
no-action for unseen states). If we only include
states that have been encountered at least 20 times,
the coverage increases to over 70%. For states en-
countered at least 58 times, the coverage is 100%,
though admittedly this covers only the 10 most
frequently encountered states. The similarity of
the two distributions can be quantified by comput-
ing the KL-divergence, but since such a number is
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Figure 3: Learning curve for joint optimisation of SSE-MDP policies.

System NS PSucc* PAtt PUnd PNat POv NDSrvd NST NBAsr
SSE-TRA 29 97% 4.10 4.21 3.00 3.83 1.97 (98.5%) 7.38 3.14
SSE-HDC 29 79% 4.14 3.83 2.93 3.83 1.76 (88.0%) 6.86 3.82

TOTAL 58 88% 4.12 4.02 2.97 3.83 1.86 (93.0%) 7.12 3.48

Table 5: Overview of system performance results from the experiment. In the leftmost column SSE-TRA
and SSE-HDC refer to the trained and hand-coded SSE versions; the column NS indicates the number of
sessions; the columns PSucc (perceived success), PAtt (perceived attention recognition), PUnd (perceived
understanding), PNat (perceived naturalness), and POv (perceived overall performance) give average
scores resulting from the 5 respective questionnaire questions; NDSrvd indicates the average number of
drinks served per session (out of 2 maximum – the percentage is given in brackets); NST indicates the
average number of system turns per session; while NBAsr indicates the average number of cases where
the user speech was ignored because the ASR confidence was below a predefined threshold. The marked
column indicates that the difference between the two SSE versions was significant at the p < 0.05 level.

hard to interpret in itself, this will only be useful
if there were a state distribution from an alterna-
tive simulator or an improved version of MUSE for
comparison.

8 Conclusion

In this paper we presented a new approach to au-
tomatic learning of strategies for social multi-user
human-robot interaction, demonstrated using the
example of a robot bartender that tracks multiple
customers, takes their orders, and serves drinks.
We presented a model consisting of a Social State
Recogniser (SSR) which processes audio-visual in-
put and maintains a model of the social state, and
a Social Skills Executor (SSE) which takes social
state updates from the SSR as input and generates
robot responses as output. The main contribution
of this work has been a new MDP-based model
for the SSE, incorporating two connected MDPs

with action selection policies that are jointly op-
timised in interaction with a Multi-User Simula-
tion Environment (MUSE). In addition to showing
promising evaluation results with simulated data,
we also presented results from a first evaluation of
the SSE component with human users. The experi-
ments showed that the integrated SSE component
worked quite well, and that the trained SSE-MDP
achieved higher subjective and objective success
rates (+18% and +10.5% respectively).

Our model currently only utilises two policies,
but in more complex scenarios the task could be
further modularised and extended by introducing
more MDPs, for example for multimodal fission
and natural language generation. The approach of
using a hierarchy of MDPs has some similarity with
the Hierarchical Reinforcement Learning (HRL)
approach which uses a hierarchy of Semi-Markov
Decision Processes (SMDPs). In (Cuayáhuitl et al.,
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PSucc = 0.88 + 0.14 ∗ N(NDSrvd) − 0.07 ∗ N(NBAsr) (r2 = 0.21)

PAtt = 4.12 + 0.76 ∗ N(NDSrvd) − 0.46 ∗ N(RTm) − 0.38 ∗ N(FDTm) (r2 = 0.22)

PUnd = 4.02 + 0.41 ∗ N(NDSrvd) − 0.36 ∗ N(NBAsr) − 0.40 ∗ N(NST) − 0.41 ∗ N(RTm) − 0.39 ∗ N(STm) (r2 = 0.24)

PNat = 2.97 + 0.36 ∗ N(NDSrvd) − 0.29 ∗ N(NBAsr) − 0.31 ∗ N(NST) − 0.44 ∗ N(RTm) (r2 = 0.16)

POv = 3.83 + 0.65 ∗ N(NDSrvd) − 0.38 ∗ N(NBAsr) − 0.52 ∗ N(RTm) (r2 = 0.24)

Figure 5: PARADISE regression functions from the user study. The labels are the same as those in Table 5,
with the following additions: RTm is the mean system response time per user, STm is the mean serving
time per user, and FDTm is the mean time to serve the first drink; all times are measured in milliseconds.
N represents a Z score normalisation function (Cohen, 1995).

2012) for example, this hierarchy is motivated by
the identification of multiple tasks that the robot
can carry out and for which multiple SMDP agents
are defined. In every step of the interaction, control
lies with a single SMDP agent somewhere in the
hierarchy; once it arrives at its final state it returns
control to its parent SMDP. An additional transi-
tion model is introduced to permit switching from
an incomplete SMDP to another SMDP at the same
level, making interactions more flexible. In our ap-
proach, control always starts at the top level MDP
and lower level MDPs are triggered depending on
the action taken by their parent MDP. For social
interaction with multiple users, flexible switching
between interactions with different users is impor-
tant, so an arguably more sophisticated HRL ap-
proach to multi-user interaction will rely heavily
on the transition model. Another approach to mod-
ularising the task domain through multiple policies
is described in (Lison, 2011), where ‘meta-control’
of the policies relies on an activation vector. As in
the HRL SMDP approach, this approach has not
been applied in the context of multi-user interaction.
In any case, a more thorough and possibly experi-
mental analysis comparing our approach with these
other approaches would be worth investigating.

In the future, we plan to extend our MDP model
to a POMDP (Partially Observable MDP) model,
taking uncertainty about both speech and visual
input into account in the optimisation of SSE poli-
cies by incorporating alternative hypotheses and
confidence scores provided by the input modules
into the social state. Since hand-coding strategies
becomes more challenging in the face of increased
uncertainty due to noisy input, the appeal of auto-
matic strategy learning in a POMDP framework
becomes even stronger. In a previous offline ver-
sion of our combined SSR and SSE, we have shown
in preliminary simulation experiments that even in
an MDP setting, an automatically trained SSE pol-

icy outperforms a hand-coded policy when noise is
added to the speech channel (Keizer et al., 2013).

Another direction of research is to annotate the
data collected in the described experiment for fur-
ther analysis and use it to improve the features of
the simulated environment. The improved models
should lead to trained policies that perform better
when evaluated again with human users. We will
also make use of the findings of the PARADISE
regression to fine-tune the reward function used
for policy optimisation: note that two of the main
features indicated by the PARADISE procedure—
task success and dialogue efficiency—are already
those included in the current reward function, and
we will add a feature to account for the effects of
ASR performance. We are also considering using
collected data for direct supervised or off-policy
reinforcement learning of SSE strategies.

Finally, we aim to extend our domain both in
terms of interactive capabilities (e.g., handling com-
munication problems, social obligations manage-
ment, turn-taking) and task domain (e.g., handling
more than the current maximum of 2 users, group
orders, orders with multiple items). In order to
make the (PO)MDP model more scalable and thus
keeping the learning algorithms tractable, we also
aim to incorporate techniques such as value func-
tion approximation into our model.
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H. Holzapfel, F. Kraft, K. Nickel, M. Voit, and
A. Waibel. 2007. Enabling multimodal human-
robot interaction for the Karlsruhe humanoid robot.
IEEE Transactions on Robotics, 23(5):840–851.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement Learning: An Introduction. MIT Press.

L. Pfeifer Vardoulakis, L. Ring, B. Barry, C. Sidner,
and T. Bickmore. 2012. Designing relational agents
as long term social companions for older adults. In
Proceedings IVA, Santa Cruz, CA.

Marilyn Walker, Candace Kamm, and Diane Litman.
2000. Towards developing general models of usabil-
ity with PARADISE. Natural Language Engineer-
ing, 6(3–4):363–377.
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Appendix A: Example session with two guests ordering a drink

Timestamp
Level 1 MDP Level 2 MDP

Description
State features Action State features Action

13:28:45:966 0 1 0 0 0 0 0 0 0 - - A1 visible, but not close to bar; no response
generated yet.

13:28:48:029 1 2 0 0 0 0 0 0 2 - - A1 not close to bar and seeking attention: BT
acknowledges this and engages with A1.

13:28:53:680 3 2 0 0 1 2 0 0 4 - - A2 visible, close to the bar, and seeking atten-
tion; BT is already engaged with A1 and there-
fore asks A2 to wait.

13:28:55:715 3 2 0 0 1 2 0 1 3 0 0 0 1 BT continues his interaction with A1 and asks
for their order.

13:28:56:928 3 2 0 0 1 2 0 1 3 0 6 0 0 BT continues with A1 and waits for them to
order.

13:28:56:928 3 2 0 0 1 2 0 1 3 0 6 0 0 Same as above: BT still waiting for A1’s order.

. . . Due to repeated ASR failures, this state action
pair is encountered several times.

13:29:52:066 3 2 0 0 1 2 0 1 3 0 1 0 2 A1’s has now been successfully recognised; BT
serves the ordered drink to A1.

13:30:12:013 3 2 1 0 1 2 0 1 5 - - A2 still seeking attention; BT can now acknowl-
edge this and engage with A1.

13:30:13:307 1 2 1 0 3 2 0 1 6 0 0 0 1 BT continues with A2 and asks for their order.

13:30:14:475 1 2 1 0 3 2 0 0 6 0 6 0 0 BT continues with A2 and waits for them to
order

13:30:17:737 1 2 1 0 3 2 0 0 6 0 1 0 2 A2’s recognised; BT serves ordered drink to A2.

13:30:37:623 1 2 1 0 3 2 1 0 0 - - Both A1 and A2 have been served; BT does
nothing

13:30:41:440 1 2 1 0 3 2 1 0 0 - - Same as above.

. . .

Table 6: SSE-MDP trajectory for one session from the evaluation data, showing the states and response
actions taken for both MDPs. The states are represented via their value indices, corresponding to Tables 1
and 3; the action indices similarly correspond to the actions in Tables 2 and 4. In the descriptions, A1 and
A2 refer to the first and second user detected; BT refers to the bartender.
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Abstract

Due to the mobile Internet revolution, peo-
ple tend to browse the Web while driv-
ing their car which puts the driver’s safety
at risk. Therefore, an intuitive and non-
distractive in-car speech interface to the
Web needs to be developed. Before de-
veloping a new speech dialog system in a
new domain developers have to examine
what the user’s preferred interaction style
is in order to use such a system. This pa-
per reports from a very recent driving sim-
ulation study and its preliminary results
which are conducted in order to compare
different speech dialog strategies. The
use of command-based and conversational
SDS prototypes while driving is evaluated
on usability and driving performance. Dif-
ferent GUIs are designed in order to sup-
port the respective dialog strategy the most
and to evaluate the effect of the GUI on us-
ability and driver distraction. The prelim-
inary results show that the conversational
speech dialog performs more efficient than
the command-based dialog. However, the
conversational dialog distracts more from
driving than the command-based. Further-
more, the results indicate that an SDS sup-
ported by a GUI is more efficient and bet-
ter accepted by the user than without GUI.

1 Introduction

The pervasive use of smartphones in daily situ-
ations impacts the automotive environment. In
order to stay “always connected” people tend to
use their smartphone’s Internet functions manually
while driving. However, using a smartphone man-
ually while driving, distracts the driver and endan-
gers the driver’s safety. According to Governors
Highway Safety Association (2011) 25% of U.S.

car crashes are related to drivers using their cell-
phones while driving. Therefore, the development
of an intuitive and non-distractive in-car speech in-
terface to the Web is essential in order to increase
driver safety (Peissner et al., 2011).

Before developing a new speech dialog system
(SDS) in a new domain developers have to ex-
amine how users would interact with such a sys-
tem. An Internet user study by Hofmann et al.
(2012a) in which the subjects had to solve Internet
tasks orally, revealed that concerning communica-
tional (e.g. sending an Email) and transactional
tasks (e.g. booking a hotel) conversational and
command-based speaking styles were used with
equal frequency. Because of the equal frequency
of occurrence you have to examine which speech
dialog strategy - the command-based or the con-
versational - is the most suitable for these tasks.

First studies on the evaluation of dialog strate-
gies have been conducted by Devillers and
Bonneau-Maynard (1998) who compare two SDS
allowing the user to retrieve touristic information.
One dialog strategy guides the user via system
suggestions, the other does not. The evaluated di-
alog strategies comprise the fundamental ideas the
command-based and conversational dialog strat-
egy consist of. By applying qualitative and quan-
titative criteria they conclude that user guidance is
suitable for novices and appreciated by all kinds
of users. However, there was no GUI involved
and the speech interaction was performed as pri-
mary task. Considering the driving use case other
results may be achieved since the primary task is
driving. Furthermore, the use of these SDS among
advanced users needs to be investigated.

In the TALK project, Mutschler et al. (2007)
compared a command-based speech dialog to a
conversational dialog where the driver had to con-
trol the in-car mp3-player by speech while driving.
The same graphical user interface (GUI) was used
for both dialog strategies. Although the conver-
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sational dialog was more efficient the command-
based dialog was more appreciated by the sub-
jects. According to Mutschler et al. the high error
rate of the conversational strategy was the reason
for the higher acceptance of the command-based
dialog. There were no significant differences in
the driving performance revealed when using the
different SDS.

The speech recognizer quality has improved
enormously within the last five years. There-
fore, the weak speech recognition performance of
Mutschler et al.’s conversational dialog may be
nowadays less significant. Furthermore, the use of
the same GUI for different dialog strategies could
have additionally influenced the result. The GUI
should be adapted to the particular dialog strategy
in order to benefit from the advantages of the re-
spective strategy the most and to allow for a com-
parison of optimal systems.

This paper reports from a very recent driving
simulation study and its preliminary results which
are conducted in order to compare different speech
dialog strategies. The use of command-based and
conversational SDS prototypes while driving is
evaluated on usability and driving performance.
The systems have been developed for German and
allows users to perform a hotel booking by speech.
Different GUIs are designed in order to support the
respective dialog strategy the most and to evaluate
the effect of the GUI on usability and driver dis-
traction. The experiments have been conducted
at DFKI, Saarbrücken using the OpenDS1 driv-
ing simulation. The research work is performed
within the scope of the EU FP7 funding project
GetHomeSafe2.

The remainder of the paper is structured as fol-
lows: In Section 2, the developed SDS prototypes
are briefly described. Section 3 presents the ex-
perimental setup and its results and finally, con-
clusions are drawn.

2 SDS Prototype Concepts

The chosen use case for the design of the SDS
concepts is booking a hotel by speech while driv-
ing since it covers many different subdialog types
(parameter input, list presentation and browsing,
etc.). For this purpose, the online hotel booking
service HRS3 has been used as data provider for

1http://www.opends.eu/
2http://www.gethomesafe-fp7.eu
3http://www.hrs.com

the SDS.
Each SDS prototype concept offers the same

functionality: First, the user has to input his search
parameter to retrieve a list of hotels. The user
can browse the list and ask for detailed informa-
tion about a certain hotel. If the hotel matches his
needs he is able to book the hotel. In addition, the
user can change the search parameters.

In the following, the different speech dialog
strategies and the corresponding GUI designs are
briefly decribed. A detailed description of the
human-machine interface (HMI) concepts can be
found in Hofmann et al. (2012b).

2.1 Speech Dialog Strategy Design

SDS Prototypes for German language have been
developed including the following SDS features:
In order to speak to the system the driver has to
press a Push-To-Activate (PTA) button. Further-
more, the driver is able to interrupt the system
while prompting the user (“barge-in”). When de-
signing the different dialog strategies we particu-
larly focused our attention on the dialog initiative,
the possibility to enter multiple input parameters
and the acoustic feedback.

2.1.1 Command-based Speech Dialog
Strategy

The dialog behavior of the command-based dialog
strategy corresponds to the voice-control which
can be found in current state-of-the-art in-car SDS.
By calling explicit speech commands the speech
dialog is initiated and the requested information is
delivered or the demanded task is executed. There
are several synonyms available for each command.
By using implicit feedback in the voice prompts
the driver is informed about what the system has
understood. After the first command the user is
guided by the system and executes the steps which
are suggested and displayed by the system. The
GUI supports the speech dialog by showing the
“speakable” commands as widgets on the screen
(see Section 2.2). A sample dialog is illustrated in
the following:

Driver: Book a hotel.
System: Where would you like to book a hotel?
Driver: In Berlin.
System: When do you want to arrive in Berlin?
Driver: Tomorrow.
System: How long would you like to stay in Berlin?
Driver: Until the day after tomorrow.
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2.1.2 Conversational Speech Dialog Strategy
In the conversational dialog strategy the dialog ini-
tiative switches during the speech interaction. The
driver is able to speak whole sentences where mul-
tiple parameters can be set within one single ut-
terance. Thereby, the dialog can be more natural,
flexible and efficient. The driver is informed about
what the system has understood by using implicit
feedback. The GUI does not present the “speak-
able” commands on the screen. In order to indi-
cate the possible functions icons are displayed (see
Section 2.2). A sample dialog is presented in the
the following:

Driver: I would like to book a hotel in Berlin.
System: When do you arrive in Berlin?
Driver: I’ll arrive tomorrow and leave

the day after tomorrow.

As illustrated in the example the driver can al-
ready indicate some input parameters when ad-
dressing the system for the first time. The system
verifies which input parameters are missing in or-
der to send a hotel request. The system prompts
the user and collects the missing information. Al-
though the system asks for only one parameter, the
user is able to give more or other information than
requested.

2.2 GUI Design

The different GUIs have been designed in order to
support the speech dialog strategies and to eval-
uate the effect of the GUI on usability and driv-
ing performance. The different GUIs have been
customized corresponding to the dialog strate-
gies only as much as necessary since an objec-
tive comparison is targeted. When designing the
screens we followed the international standard-
ized AAM-Guidelines (Driver Focus-Telematics
Working Group, 2002).

2.2.1 Command-based GUI Design
In the command-based dialog strategy the driver
uses commands to speak to the system. In order
to give the driver an understanding of the “speak-
able” commands, the speech dialog is supported
by the GUI. For that reason the currently possible
speech commands are displayed on the screen at
all times which may lead to a high visual distrac-
tion. Hence, in automotive terms the command-
based speech dialog strategy is also called “speak-
what-you-see” strategy.

Figure 1(a) illustrates the main screen of the ho-
tel booking application at the beginning of the ho-

tel booking dialog. Here, the first input parameter
“destination” (“Ziel” in German) is requested by
the system. Afterwards the user is guided step-by-
step by the system. When the driver has given the
requested information, a new widget appears on
the screen and the system asks the driver for the
corresponding input.

2.2.2 Conversational GUI Design

In the conversational dialog strategy the driver can
speak freely and does not have to use certain com-
mands. There is no need to give the driver a vi-
sual feedback of the currently “speakable” com-
mands whereby the visual distraction may be low-
ered. For that reason, the content on the head unit
screen does not have to indicate the possible op-
tions to proceed with the speech dialog. The sub-
function line which was used to indicate the avail-
able commands is replaced by only few symbols
which resemble the current GUI state. Figure 1(b)
shows the form filling main screen at the begin-
ning of the speech interaction where the user is
already able to input several parameters at once.

2.2.3 Without GUI

We also investigated the need for a visual feed-
back, why the two speech dialog strategies are
also evaluated “without GUI”. In this case, with-
out GUI means that no content information is dis-
played on the screen. However, a visual feedback
which indicates if the user is allowed to talk is
presented in the top bar of the screen (see Figure
1(c)).

3 Evaluation

3.1 Method

3.1.1 Participants

The experiment was conducted at DFKI,
Saarbrücken. In total, 24 German participants
(mainly students) participated in the experiment.
All participants received a monetary expense
allowance and possessed a valid driver’s license.
Due to missing data recordings during the exper-
iment data of 1 participant had to be excluded
from the analyses. The remaining participants
comprised 9 male and 14 female subjects and the
average age was 26 years (standard deviation (SD)
= 4,1). 56,5% of the participants were driving
their car at least once a day. 56,5% had little to no
experience with speech-controlled devices.
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(a) Command-based GUI (b) Conversational GUI (c) “without” GUI

Figure 1: Main Screens at the Beginning of the Interaction.

3.1.2 Experimental Design
Four different HMI concept variants were evalu-
ated in a 2x2 (speech dialog strategy: command-
based vs. conversational, GUI: with vs. without)
design. The Command-based and Conversational
GUI were only used with the corresponding dialog
strategy. The 4 HMI concepts were the following:
• Command-based speech dialog (“Comm”)

– with GUI (“CommGUI”) and
– without GUI (“CommNoGUI”)

• Conversational speech dialog (“Conv”)
– with GUI (“ConvGUI”) and
– without GUI (“ConvNoGUI”)

Each participant encountered all four conditions
(“within-design”). For each condition, two tasks
had to be accomplished. We investigated the
participants speech dialog performance and in-
fluences on driving performance while using the
SDS.

3.1.3 Materials
Speech Dialog Prototypes: In the experiment,
the speech dialog prototypes described in Section
2 have been used. In order to explain the func-
tionality and the control of the SDS prototypes to
the user, instruction videos for each speech dia-
log strategy were presented. By presenting tutorial
videos, we ensured that each participant was given
identical instructions.

During the experiment, participants had to solve
several tasks: They had to book a certain hotel
according to given search parameters. The tasks
were verbalized as little stories which contained
the necessary parameters in a memorable manner.
A sample task in English is presented below:

Imagine, you and your colleague are on the way

to Cologne for a two-day meeting right now. You

need two single rooms for these two nights which

you have not booked, yet. Your appointment

takes place in the city center of Cologne, where

you would like to spend your night. Please look

for a matching hotel for those nights.

In total, participants had to perform 16 tasks. Four
tasks were used as sample tasks to familiarize par-
ticipants with the respective speech dialog strategy
after showing the instruction video. The remain-
ing eight tasks were used for the data collection.

Questionnaires: During the experiment differ-
ent questionnaires were used:

• Preliminary Interview: In a preliminary ques-
tionnaire we collected demographical infor-
mation (age, gender, etc.) about the partic-
ipants. Furthermore, we surveyed driving
habits, experience with speech-controlled de-
vices, and hotel booking habits.

• SASSI questionnaire (Hone and Graham,
2001): The SASSI questionnaire covering 6
dimensions consists of 34 questions and is
widely used to measure subjective usability
evaluation of SDS.

• DALI questionnaire (Pauzie, 2008): The
DALI questionnaire covers 6 dimensions in
order to evaluate the user’s cognitive load.
The applied questionnaire consisted of 7
questions covering each dimension and an
additional question addressing the manual
demand.

• Final Interview: This questionnaire was de-
signed to allow for a direct comparison of the
respective SDS prototypes at the end of the
experiment. Each participant had to rate the
different SDS on a scale from 1 - 10 regard-
ing several subjective measures. For each of
the six SASSI dimensions, one question was
asked. Additionally, we asked questions to
directly compare cognitive load and to get
information about the participants’ personal
preference of interaction style with the sys-
tem at different sub dialogs.

Driving Simulation Setup: The experiment
was conducted in the driving simulator at DFKI’s
“future lab” (see Figure 2). The participants were
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sitting on the driver’s seat in a car which was
placed in front of a canvas onto which the driving
simulation was projected. The participants con-
trolled the driving simulation by the car steering
wheel and pedals. During the experiment the ex-
aminer was sitting on the passenger seat.

Figure 2: DFKI Driving Simulator Setup.

Previous driving simulation studies employ the
standard Lane Change Test (LCT) by Mattes
(2003). However, this driving task does not con-
tinuously mentally demand the user and thus, does
not reflect the real cognitive load while driving.
Furthermore, LCT is based on single tracks which
limits the recordings to a certain time. We em-
ployed the ConTRe (Continuous Tracking and Re-
action) task as part of the OpenDS1 driving sim-
ulation software which complements the de-facto
standard LCT including higher sensitivity and a
more flexible driving task without restart interrup-
tions. The steering task for lateral control resem-
bles a continuous follow drive which will help to
receive more detailed results about the two diverse
dialog strategies. Furthermore, mental demand is
addressed explicitly by employing an additional
reaction task implemented as longitudinal control.
A detailed description of the ConTRe task can be
found in Mahr et al. (2012).

In the experiment, after giving the participant
the hotel booking task instructions, the experi-
menter started the driving simulation. When the
participant has crossed the start sign in the simula-
tion he had to begin the speech dialog. When the
hotel booking was completed, the experimenter
stopped the driving simulation. Thereby, driving
performance was only recorded during the speech
dialog.

3.1.4 Procedure
In the experiment, 4 conditions were evaluated:
The conversational speech dialog (with and with-
out GUI) and the command-based speech dialog
(with and without GUI). We did not randomize
all four conditions, because the participants might
have been confused if the speech dialog styles vary
too often. Therefore, we decided to employ dialog
styles blockwise (see Figure 3). In one block, only
one speech dialog variant with the two GUI condi-
tions was tested. The order of the two blocks was
counterbalanced between participants to control
for learning and order effects. Thereby, half of the
participants were first introduced to the command-
based dialog, whereas the other half of the partic-
ipants started with the conversational dialog. Fur-
thermore, the order of GUI conditions within one
block was balanced between participants. In each
of the four conditions, the participants had to per-
form two tasks. The order of the tasks was the
same for all participants regardless of the system
condition. Hence, all tasks were encountered in
all dialog and GUI combinations. When the sec-
ond task was finished, participants had to fill out
the SASSI and the DALI questionnaire for each
condition.

Task 1

Task 2

SASSI + DALI

Task 1

Task 2

SASSI + DALI

Task 1

Task 2

SASSI + DALI

Task 1

Task 2

SASSI + DALI

with GUI

without GUI

without GUI

with GUI

Data Collection
SDS Type 1

Data Collection
SDS Type 2

…

Figure 3: Experiment Structure.

The overall procedure of the experiment is il-
lustrated in Figure 4. At the beginning of the
experiment, participants had to fill out the pre-
liminary questionnaire. Afterwards they had the
possibility to get to know the driving simulation
in a test drive lasting at least 4 minutes. After
the test drive, the participants completed a 4 min-
utes baseline drive and had to fill out the DALI
questionnaire afterwards to assess driving perfor-
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mance without secondary task. Next, the partic-
ipants were shown the video of their first speech
dialog variant and became familiar with the SDS
by performing the 4 explorative tasks. Subse-
quently, participants performed the first SDS con-
dition (SDS Type 1) both with and without GUI.
After testing SDS Type 1, SDS Type 2 was intro-
duced by presenting its instruction video and again
the explorative tasks were performed. Participants
performed the second SDS condition (SDS Type
2) also with and without GUI. Finally, participants
completed a second baseline drive and filled out
the final questionnaire.

Preliminary Interview

Test Drive

Baseline Drive 1 +
DALI

Video SDS Type 1

Trial Booking 
(4 explorative Tasks)

Data Collection
SDS Type 1

Video SDS Type 2

Trial Booking
(4 explorative Tasks)

Data Collection
SDS Type 2

Baseline Drive 2

Final Interview

Figure 4: Overall Procedure of the Experiment.

3.1.5 Dependent Variables
In the experiment, we collected several types of
data to evaluate the speech dialog and the driv-
ing performance data. During speech interaction
the SDS produces log files, which contain the link
to the recorded audio file of the spoken user ut-
terance, the speech recognizer result, the inter-
pretation of the natural language understanding
(NLU) module, and the text-to-speech (TTS) out-
put. Based on the log file, the whole speech di-
alog can be reconstructed. The driving simula-
tion OpenDS also produces log files at runtime,
which contain the steering wheel deviation for lat-
eral control and the reaction times for longitudinal
control for each recorded time frame. During the
experiment, the examiner was observing the test
procedure in order to take notes on task success.
Based on the collected data, the measures illus-
trated in Table 1 were computed in order to evalu-
ate the speech dialog and the driving performance.
A detailed description and definition of the mea-
sures can be found in (Möller, 2005).

In this preliminary analysis, due to time con-
straints, only the first block of each participant
could be transcribed and analyzed. In this report,

Measure Data Source
TS Observations

Speech Dialog NoT SDS logs
Performance DD SDS logs

Measures CER SDS logs
Subjective Usability SASSI,

Assessment Final Interview
Driving MDev OpenDS logs

Performance Subjective Assessment DALI,
Measures of Cognitive Load Final Interview

Table 1: Evaluation Measures of the Experiment.

we focus on the SDS performance. Based on the
observations the task success (TS) of each speech
dialog is assessed. The speech dialog logs are used
to compute the Number of Turns (NoT) and the
dialog duration (DD) of each dialog. We assess
the concept error rate (CER) of each user utter-
ance within a dialog instead of the word error rate
(WER) since this value is crucial to a successful
speech dialog. A subjective usability assessment is
achieved by employing the SASSI questionnaire.
Based on the OpenDS logs we compute the mean
deviation (MDev) of the steering wheel. In the
next step, the reaction time, the DALI question-
naire and the final interview are analyzed.

Overall, we expect better usability evaluation
for the conversational dialog conditions compared
with the command-based condition. The partic-
ipants will accept the conversational dialog bet-
ter than the command-based dialog because if re-
flects the human-human communication. Further-
more, we expect the conversational dialog to dis-
tract less than the command-based dialog because
it is easier to control. Generally, a visual feed-
back makes it more comfortable to interact with
an SDS. Therefore, we expect the participants to
accept the SDS with GUI better than without GUI.
However, concerning the influence of the GUI on
the driving performance, we expect the GUI to
cause more driver distraction due to the glances
onto the GUI screen.

3.2 Results

In the following, the preliminary results concern-
ing SDS quality and driving performance are pre-
sented. In total, 48 command-based dialogs and
44 conversational dialogs were transcribed and an-
alyzed. First, the results of the speech dialog eval-
uation are described, followed by the results of
the driving performance evaluation. When com-
paring the two speech dialog strategies (“Comm”
vs. “Conv”) dependent t-tests for paired exam-
ples have been applied. Concerning the compar-
ison of the 4 GUI conditions (“CommGUI” vs.
“CommNoGUI”, “ConvGUI” vs. “ConvNoGUI”)
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the repeated measures anova test was applied. For
each comparison, a significance level α =0,05 was
assumed.

3.2.1 Speech Dialog
In this Section, first, the results of the speech dia-
log performance measures are presented, followed
by the results of the questionnaires.

Task Success: In the first block of each experi-
ment, each participant had to solve 4 tasks while
data was recorded. Each of the 92 dialogs were
finished with a hotel booking. If the participant
booked a hotel, which did not match the task re-
quirements the task was annotated as failed. Fig-
ure 5 shows the percentage of solved tasks for
both speech dialog strategies (left) and addition-
ally split according to the two GUI conditions
(right). Using the command-based SDS prototype,
participants were able to solve 95,8% of the tasks.
93,8% of the tasks could be solved when using
the conversational prototype. Participants solved
tasks more effective when using the command-
based prototype with GUI than without GUI. In
contrast, the participants solved more tasks suc-
cessfully when using the conversational prototype
without GUI than with GUI. However, none of the
differences was found to be significant.
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Figure 5: Overall TS rates.

Number of Turns: Figure 6 presents the aver-
age NoT. The high number of turns is due to the
list browsing the user has to perform in order to
find the matching hotel. Using the conversational
SDS prototype, significantly fewer dialog turns
were needed than using the command-based SDS
prototype (p=0,047). The conditions without GUI
needed less turns than the conditions with GUI.
However, no significant differences were found
when comparing the conditions with GUI with the
conditions without GUI.
Dialog Duration: In Figure 7 the average DD
is illustrated. The dialogs of the conversational
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Figure 6: Average NoT per speech dialog.

speech dialogs were significantly shorter than the
command-based speech dialogs (p=0,003). Com-
paring the GUI conditions within one speech di-
alog strategy, it seems that participants using the
conversational speech dialog needed less time to
accomplish a task when they could use the GUI.
However, there was no significant difference re-
vealed. Concerning the GUI conditions of the
command-based dialog, no significant differences
could be found, too.

104,9 
91,6 

104,4 105,3 

81,2 

102 

0

20

40

60

80

100

120

Comm Conv CommGUI CommNoGUI ConvGUI ConvNoGUI

D
ia

lo
g 

D
u

ra
ti

o
n

 (
se

c)
 

Figure 7: Average DD per speech dialog.

Concept Error Rate: The average CER per
dialog is significantly smaller in the command-
based speech dialog compared to the conversa-
tional speech dialog strategy (p=0,02) (see Figure
8). When comparing the GUI conditions within
one speech dialog strategy, it seems that less con-
cept errors occurred when the participants used the
SDS prototypes supported by a GUI. However, no
significant differences were found.
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Figure 8: Average CER per speech dialog.
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SASSI: The overall result of the SASSI ques-
tionnaire is illustrated in Figure 9. All SDS
achieve a positive usability assessment. The con-
versational dialog is slightly better accepted by the
user. It seems that the users accept the SDS sup-
ported by a GUI better than without a GUI. How-
ever, for none of the comparisons significant dif-
ferences were found.
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Figure 9: Overall SASSI result per speech dialog.

3.2.2 Driving Performance
In this Section a preliminary driving performance
result is presented.

Mean Deviation: Figure 10 shows the MDev of
the baseline drive (left), both speech dialog strate-
gies (middle) and additionally split according to
the two GUI conditions (right). The MDev of the
baseline drive is 0,1. The MDev was significantly
smaller when the participants used the command-
based speech dialog (p=0,01) while driving com-
pared to the conversational dialog. No significant
differences were found when comparing the con-
ditions with GUI with the conditions without GUI.
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Figure 10: Average MDev per speech dialog.

3.3 Discussion
The preliminary results show that the participants
were able to successfully finish the tasks with
both SDS prototype variants. All SDS proto-
types achieved a positive subjective usability as-
sessment. Although the CER is higher when using
the conversational dialog, it performs more effi-
cient than the command-based dialog which is due

to the possibility to input multiple parameters at
once. The MDev of the baseline drive is as high
as when using the command-based speech dialog
while driving. Usually, one would expect a bet-
ter driving performance when performing no sec-
ondary task. However, the ConTRe task is a quite
difficult task since it continuously mentally de-
mands the user. Therefore, the MDev is relatively
high when only the driving task is performed. The
conversational speech dialog distracts more from
driving than the command-based dialog. Using the
command-based dialog, the user is guided by the
system step-by-step, which makes it easier to use.
The mental demand when using the command-
based SDS might be lower and therefore, this dia-
log strategy might be less distractive.

Concerning the comparison of the GUI condi-
tions the results indicate that the conditions with
GUI are more user-friendly than the conditions
without GUI. However, we did not find any sig-
nificant differences, yet, since the data set is too
small when comparing the GUI conditions. When
the whole data set of the experiment is analyzed
further significances might be revealed.

4 Conclusions

This paper reports from a very recent driving sim-
ulation study and its preliminary results which are
conducted in order to compare different speech di-
alog strategies. The use of command-based and
conversational SDS prototypes while driving is
evaluated on usability and driving performance.
Different GUIs are designed in order to support
the respective dialog strategy the most and to eval-
uate the effect of the GUI on usability and driver
distraction. The preliminary results show that the
conversational speech dialog performs more effi-
cient than the command-based dialog. However,
the conversational dialog distracts more from driv-
ing than the command-based. Furthermore, the re-
sults indicate that an SDS supported by a GUI is
more efficient and better accepted by the user than
without GUI.

In the next step, the data set will be analyzed on
all mentioned usability and driving performance
measures. The different subdialog types of each
dialog will be investigated in detail on dialog per-
formance and speaking styles. Furthermore, cross-
links between subdialogs and the driving perfor-
mance measures are analyzed.
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Abstract

Goal-oriented dialog agents are expected
to recognize user-intentions from an utter-
ance and execute appropriate tasks. Typi-
cally, such systems use a semantic parser
to solve this problem. However, semantic
parsers could fail if user utterances contain
out-of-grammar words/phrases or if the se-
mantics of uttered phrases did not match
the parser’s expectations. In this work,
we have explored a more robust method
of task prediction. We define task predic-
tion as a classification problem, rather than
“parsing” and use semantic contexts to im-
prove classification accuracy. Our classi-
fier uses semantic smoothing kernels that
can encode information from knowledge
bases such as Wordnet, NELL and Free-
base.com. Our experiments on two spoken
language corpora show that augmenting
semantic information from these knowl-
edge bases gives about 30% absolute im-
provement in task prediction over a parser-
based method. Our approach thus helps
make a dialog agent more robust to user
input and helps reduce number of turns re-
quired to detected intended tasks.

1 Introduction

Spoken dialog agents are designed with particular
tasks in mind. These agents could provide infor-
mation or make reservations, or other such tasks.
Many dialog agents often can perform multiple
tasks: think of a customer service kiosk system
at a bank. The system has to decide which task it
has to perform by talking to its user. This problem
of identifying what to do based on what a user has
said is called task prediction.

Task prediction is typically framed as a parsing
problem: A grammar is written to semantically

parse the input utterance from users, and these se-
mantic labels in combination are used to decide
what the intended task is. However, this method
is less robust to errors in user-input. A dialog sys-
tem consists of a pipeline of cascaded modules,
such as speech recognition, parsing, dialog man-
agement. Any errors made by these modules pro-
pogate and accumulate through the pipeline. Bo-
hus and Rudnicky (2005) have shown that this
cascade of errors, coupled with users employ-
ing out-of-grammar phrases results in many “non-
understanding” and “misunderstanding” errors.

There have been other approaches to perform
dialog task prediction. Gorin et al. (1997) has pro-
posed a salience-phrase detection technique that
maps phrases to their corresponding tasks. Chu-
Carroll and Carpenter (1999) casted the task de-
tection as an information retrieval — detect tasks
by measuring the distance between the query vec-
tor and representative text for each task. Bui
(2003) and Blaylock and Allen (2006) have cast it
as a hierarchical sequence labeling problem using
Hidden Markov Models (HMM). More recently,
(Bangalore and Stent, 2009) built an incremen-
tal parser that gradually determines the task based
on the incoming dialog utterances. (Chen and
Mooney, 2010) have developed a route instruc-
tions frame parser to determine the task in the con-
text of a mobile dialog robot. These approaches
mainly use local features such as dialog context,
speech features and grammar-based-semantic fea-
tures to determine the task. However grammar-
based-semantic features would be insufficient if
an utterance uses semantically similar phrases that
are not in the system’s domain or semantics. If
the system could explore semantic information be-
yond the scope of its local knowledge and use ex-
ternal knowledge sources then they will help im-
prove the task prediction.

(Cristianini et al., 2002) (Wang and Domeni-
coni, 2008) (Moschitti, 2009) found that open-
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domain semantic knowledge resources are use-
ful for text classification problems. Their success
in limited data scenario is an attractive prospect,
since most dialog agents operate in scarce train-
ing data scenarios. (Bloehdorn et al., 2006) has
proposed a semantic smoothing kernel based ap-
proach for text classification. The intuition be-
hind their approach is that terms (particularly con-
tent words) of two similar sentences or documents
share superconcepts (e.g., hypernyms) in a knowl-
edge base. Semantic Similarity between two terms
can be computed using different metrics (Pedersen
et al., 2004) based on resources like WordNet.

Open domain resources such as world-wide-
web, had been used in the context of speech recog-
nition. (Misu and Kawahara, 2006) and (Creutz
et al., 2009) used web-texts to improve the lan-
guage models for speech recognition in a target
domain. They have used a dialog corpus in or-
der to query relevant web-texts to build the target
domain models. Although (Araki, 2012) did not
conduct empirical experiments, yet they have pre-
sented an interesting architecture that exploits an
open-domain resource like Freebase.com to build
spoken dialog systems.

In this work, we have framed the task prediction
problem as a classification problem. We use the
user’s utterances to extract lexical semantic fea-
tures and classify it into being one of the many
tasks the system was designed to perform. We
harness the power of semantic knowledge bases
by bootstraping an utterance with semantic con-
cepts related to the tokens in the utterance. The se-
mantic distance/similarity between concepts in the
knowledge base is incorporated into the model us-
ing a kernel. We show that our approach improves
the task prediction accuracy over a grammar-based
approach on two spoken corpora (1) Navagati
(Pappu and Rudnicky, 2012): a corpus of spo-
ken route instructions, and (2) Roomline (Bohus,
2003): a corpus of spoken dialog sessions in room-
reservation domain.

This paper is organized as following: Section
2 describes the problem of dialog task predic-
tion and the standard grammar based approach to
predict the dialog task. Then in Section 3, we
describe the open-domain knowledge resources
that were used in our approach and their advan-
tages/disadvantages. We will discuss our semantic
kernel based approach in the Section 4. We report
our experiment results on task prediction in Sec-

tion 5. In Section 6, we will analyze the errors that
occur in our approach, followed by concluding re-
marks and possible directions to this work.

2 Parser based Dialog Task Prediction

In a dialog system, there are two functions of a
semantic grammar — encode linguistic constructs
used during the interactions and represent the do-
main knowledge in-terms of concepts and their in-
stances. Table 1 illustrates the tasks and the con-
cepts used in a navigation domain grammar. The
linguistic constructions help the parser to segment
an utterance into meaningful chunks. The domain
knowledge helps in labeling the tokens/phrases
with concepts. The parser uses the labeled tokens
and the chunked form of the utterance, to classify
the utterance into one of the tasks.

Table 1: Tasks and Concepts in Grammar

Tasks Examples
Imperative GoToPlace, Turn, etc
Advisory Instructions You_Will_See_Location
Grounding Instructions You_are_at_Location
Concepts Examples
Locations buildings, other landmarks
Adjectives-of-Locations large, open, black, small etc.
Pathways hallway, corridor, bridge, etc.
LiftingDevice elevator, staircase, etc.
Spatial Relations behind, above, on left, etc.
Numbers turn-angles, distance, etc.
Ordinals first, second, etc. floor numbers

The dialog agent uses the root node of a parser
output as the task. Figure 1 illustrates a semantic
parser output for a fictitious utterance in the nav-
igation domain. The dialog manager would con-
sider the utterance as an “Imperative” for this ex-
ample.

Imperative

go direction

forward

distance

number

five

units

meters

Figure 1: Illustration of Semantic Parse Tree used
in a Dialog System
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2.1 Grammar: A Knowledge Resource

Grammar is a very useful resource for a dialog sys-
tem because it could potentially represent an ex-
pert’s view of the domain. Since knowledge en-
gineering requires time and effort, very few di-
alog systems can afford to have grammars that
are expert-crafted and robust to various artefacts
of spoken language. This becomes a major chal-
lenge for real world dialog systems. If the sys-
tem’s grammar or the domain knowledge does not
conform to its users and their utterances, the parser
will fail to produce a correct parse, if the parse
is incorrect and/or the concept labeling is incor-
rect. Lack of comprehensive semantic knowledge
is the cause of this problem. An open-domain
knowledge base like Wordnet (Miller, 1995), Free-
base (Bollacker et al., 2008) or NELL (Carlson
et al., 2010) contains comprehensive information
about concepts and their relationships present in
the world. If used appropriately, open-domain
knowledge resources can help compensate for in-
complete semantic knowledge of the system.

3 Open-Domain Semantic Knowledge
Bases

Like grammars, open-domain knowledge re-
sources contain concepts, instances and relations.
The purpose of these resources is to organize
common sense and factoid information known to
the mankind in a machine-understandable form.
These resources, if filtered appropriately, contain
valuable domain-specific information for a dialog
agent. To this end, we propose to use three knowl-
edge resources along with the domain grammar for
the task prediction. A brief overview of each of the
knowledge resources is given below:

3.1 Wordnet: Expert Knowledge Base

Wordnet (Miller, 1995) is an online lexical
database of words and their semantics curated
by language experts. It organizes the words and
their morphological variants in a hierarchical fash-
ion. Every word has at least one synset i.e.,
sense and a synset has definite meaning and a
gloss to illustrate the usage. Synsets are con-
nected through relationships such as hypernyms,
hyponyms, meronyms, antonyms etc. Each synset
can be considered as an instance and their par-
ent synsets as concepts. Although Wordnet con-
tains several ( 120,000) word forms, some of our
domain-specific word forms (e.g., locations in a

navigation domain) will not be present. Therefore,
we would like to use other open-domain knowl-
edge bases to augment the agent’s knowledge.

3.2 Freebase: Community Knowledge Base

Freebase.com (Bollacker et al., 2008) is a col-
laboratively evolving knowledge base with the
effort of volunteers. It organizes the facts
based on types/concepts along with several predi-
cates/properties and their values for each fact. The
types are arranged in a hierarchy and the hierar-
chy is rooted at “domain”. Freebase facts are con-
stantly updated by the volunteers. Therefore, it is a
good resource to help bootstrap the domain knowl-
edge of a dialog agent.

3.3 NELL: Automated Knowledge Base

Never-Ending Language Learner(NELL) (Carlson
et al., 2010) is a program that learns and organizes
the facts from the web in an unsupervised fashion.
NELL is on the other end of the knowledge base
spectrum which is not curated either by experts or
by volunteers. NELL uses a two-step approach to
learn new facts: (1) extract information from the
text using pattern-based, semi-structured relation
extractors (2) improve the learning for next itera-
tion based on the evidence from previous iteration.
Every belief/fact in its knowledge base has con-
cepts, source urls, extraction patterns, predicate,
the surface forms of the facts and a confidence
score for the belief. Although the facts could be
noisy in comparison to ones in other knowledge
bases, NELL continually adds and improves the
facts without much human effort.

4 Semantic Kernel based Dialog Task
Prediction

We would like to use this apriori knowledge about
the world and the domain to help us predict the
dialog task. The task prediction problem can be
treated as a classification problem. Classification
algorithms typically use bag-of-words representa-
tion that converts a document or sentence into a
vector with terms as components of the vector.
This representation produces very good results in
scenarios with sufficient training data. However
in a limited training data or extreme sparseness
scenario such as ours, (Siolas and d’Alché Buc,
2000) has shown that Semantic Smoothing Ker-
nel technique is a promising approach. The major
advantage of this approach is that they can incor-
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porate apriori knowledge from existing knowledge
bases. The semantic dependencies between terms,
dependencies between concepts and instances, can
be encoded in these kernels. The semantic kernels
can be easily plugged into a kernel based classi-
fier help us predict the task from the goal-oriented
dialog utterances.

In our experiments, we used an implementation
of Semantic Kernel from (Bloehdorn et al., 2006)
and plugged it into a Support Vector Machine
(SVM) classifier (SVMlight) (Joachims, 1999). As
a part of experimental setup, we will describe the
details of how did we extract the semantic depen-
dencies from each knowledge base and encoded
them into the kernel.

5 Experiments

Our goal is to improve the task prediction for a
given spoken dialog utterance by providing addi-
tional semantic context to the utterance with the
help of relevant semantic concepts from the se-
mantic knowledge bases. The baseline approach
would use the Phoenix parser’s output to deter-
mine the intended task for an utterance. From our
experiments, we show that our knowledge-driven
approach will improve upon the baseline perfor-
mance on two corpora (1) Navagati Corpus: a nav-
igation directions corpus (2) Roomline Corpus: a
room reservation dialog corpus.

5.1 Setup

We have divided each corpus into training and test-
ing datasets. We train our task classification mod-
els on the manual transcriptions of the training
data and evaluated the models on the ASR output
of the testing data. Both Navagati and Roomline
corpora came with manually annotated task labels
and manual transcriptions for the utterances. We
filtered out the non-task utterances such as “yes”,
“no” and other clarifications from the Roomline
corpus. We obtained the ASR output for the Nava-
gati corpus by running the test utterances through
PocketSphinx (Huggins-Daines et al., 2006). The
Roomline corpus already had the ASR output for
the utterances. Table 2 illustrates some of the
statistics for each corpus.

Our baseline model for the task detection is the
Phoenix (Ward, 1991) parser output, which is the
default method used in the Ravenclaw/Olympus
dialog systems (Bohus et al., 2007). For the Nava-
gati Corpus we have obtained the parser output us-

ing the grammar and method described in (Pappu
and Rudnicky, 2012). For the Roomline corpus,
we extracted the parser output from the session
logs from the the corpus distribution.

Corpus-Stats Navagati RoomLine
Tasks 4 7
Words 503 498
Word-Error-rate 46.3% 25.6%
Task Utts 934 18911

Task Training-Utts 654 1324
Task Testing-Utts 280 567
Tasks

N1. Meta R1. NeedRoom
N2. Advisory R2. ChooseRoom
N3. Imperative R3. QueryFeatures
N4. Grounding R4. ListRooms

R5. Identification
R6. CancelReservation
R7. RejectRooms

Table 2: Corpus Statistics

5.1.1 Semantic Facts to Semantic Kernel
The semantic kernel takes a term proximity ma-
trix as an input, then produces a positive semidef-
inite matrix which can be used inside the kernel
function. In our case, we build a term proxim-
ity matrix for the words in the recognition vocabu-
lary. (Bloehdorn et al., 2006) found that using the
term-concept pairs in the proximity matrix is more
meaningful following the intuition that terms that
share more number of concepts are similar as op-
posed to terms that share fewer concepts. We have
used following measures to compute the proximity
value P and some of them are specific to respec-
tive knowledge bases:

• gra: No weighting for term-concept pairs in
the Grammar, i.e.,
P = 1, for all concepts ci of t, P = 0 other-
wise.

• fb: Weighting using normalized Free-
base.com relevance score, i.e.,

P =
fbscore(t, ci)− fbscore(t, cmin)

fbscore(t, cmax)− fbscore(t, cmin)
(1)

• nell: Weighting for the NELL term-concept
pairs using the probability for a belief i.e.,

P = nellprob(t, ci) (2)

, for all concepts ci of t, P = 0 otherwise.
1Originally has 10356 utts; filtered out non-task utts.
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• wnpath: Weighting for the term-concept
pairs in the Wordnet based on the shortest
path, i.e.,

P = wnPATH(t, ci) (3)

for all concepts ci of t, P = 0 otherwise.

• wnlch: Weighting for the term-concept
pairs in the Wordnet based on the Leacock-
Chodorow Similiarity, i.e.,

P = wnLCH(t, ci) (4)

for all concepts ci of t, P = 0 otherwise.

• wnwup: Weighting for the term-concept
pairs in the Wordnet based on the Wu-Palmer
Similarity, i.e.,

P = wnWUP (t, ci) (5)

for all concepts ci of t, P = 0 otherwise.

• wnres: Weighting for the term-concept
pairs in the Wordnet based on the Resnik
Similarity using Information Content, i.e.,

P = wnRES(t, ci) (6)

for all concepts ci of t, P = 0 otherwise.

To create a grammar-based proximity matrix,
we extracted the concept-token pairs from the
parser output on the reference transcriptions in
both corpora. In order to create a wordnet-based
proximity matrix, we retrieve the hypernyms for
the corresponding from Wordnet using the Word-
net 3.0 database 2. For the freebase concept-token
pairs, we query tokens for a list of types with the
help of the MQL query interface3 to the freebase.
To retrieve beliefs from NELL we downloaded a
tsv formatted database called every-belief-in-the-
KB4 and then queried for facts using unix grep
command.

5.2 Results
Our objective is to evalute the effect of augmented
semantic features on the task detection. As noted
earlier, we divided both corpora into training and
testing datasets. We build our models on the man-
ual transcriptions from the training data and eval-
uate on the ASR hypotheses of the testing data.

2http://www.princeton.edu/wordnet/download/
3https://www.googleapis.com/freebase/v1/search
4http://rtw.ml.cmu.edu/rtw/resources

For the Navagati corpus, we use the same training-
testing split that we used in our previous work be-
cause the grammar was developed based on the
training data. For the Roomline corpus, we ran-
domly sample 30% of the testing data from the
entire corpus.

Our first semantic-kernel based model SEM-
GRA uses the domain grammar as a “knowledge
base”. This is a two step process: (1) we extract
the concept-token pairs from the parse output of
the training data. (2) Then, assign a uniform prox-
imity score (1.0) for all pairs of words that ap-
pear under a particular concept otherwise 0.0 (gra
as mentioned in the previous section). We aug-
ment the grammar concepts to the utterances in
the datasets, learn SEM-GRA model and classify
the test-hypotheses. For all our models we use
a fixed C = 0.07 value (soft-margin parameter)
for the SVM classifiers. This model achieved high-
est performance at this value during a parameter-
sweep. SEM-GRA model outperformed the parser-
baseline on both datasets (see Table 3). It clearly
takes advantage of the domain knowledge encoded
in the form of semantic-relatedness between con-
cepts and token pairs.

What if a dialog system does not have gram-
mar to begin with? We use the same two step pro-
cess to build semantic-kernel based models using
one open-domain knowledge base at a time. We
built Wordnet based models (SEM-WNWUP, SEM-
WNPATH, SEM-WNLCH, SEM-WNRES) using dif-
ferent proximity measures described in the previ-
ous section. From Table 3 SEM-WNRES model,
one that uses information content performs the
best among all wordnet based models. In order
to compute the information content we used the
pair-wise mutual information scores available for
brown-corpus.dat in the NLTK (Bird et al., 2009)
distribution. Other path based scores were also
computed using NLTK API for Wordnet.

We observed that our wordnet-based models
capture relatedness between most-common nouns
(e.g., room numbers) and their concepts but not
for some of the less-common ones (e.g., loca-
tion names). To compensate this imbalance, we
use larger knowledge resources freebase.com and
NELL. First we searched for the facts in each of
these knowledge bases using every token in the vo-
cabulary of both corpora. We pick the top concept
for each token based on the score provided by the
respective search interfaces. In freebase we have
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Table 3: F1 (in %) comparison of parse baseline against semantic-kernel models with their corresponding
similarity metrics

Corpus baseline SEMGRA SEMWNWUP SEMWNPATH SEMWNLCH SEMWNRES SEMFBASE SEMNELL
Navagati 40.1 65.8 67.1 67.7 66.4 69 68.7 66.2
Roomline 54.3 79.7 77.3 79.5 79.6 80.6 83.3 81.1

about 100 concepts that are relevant to the vocab-
ulary and in the NELL model we have about 250
concepts that are relevant to the vocabulary in each
of the corpora. The models based on NELL (SEM-
NELL) and Freebase (SEM-FBASE) capture relat-
edness between less-common nouns and their con-
cepts. We can see that both of these models per-
form comparable to the domain grammar model
SEM-GRA which also captures the relatedness be-
tween less-common nouns and their concepts. We
believe that both freebase and NELL has a supe-
rior performance because of wider-range of con-
cept coverage and non-uniform proximity mea-
sures used in the semantic kernel, which gives
a better judgement of relatedness than a uniform
measure used in the SEM-GRA model.

Since we observed that an individual model is
good at capturing a particular aspect of an utter-
ance, we extended the individual semantic models
by combining the proximity matrices from each
of them and augmenting their semantic concepts
to the training and testing datasets. We built four
combined models as shown in Table 4 by varying
the wordnet’s proximity metric to identify which
one of them works best in combination with other
semantic metrics. The wnresmetric performs the
best both in standalone and combination settings.
(Bloehdorn et al., 2006) also found that wnres
particularly performs well for lower values of the
soft-margin parameter in their experiments.

Table 4: F1-Score (in %): Models with semantics
combined from different KBs (ALL-KB)

Model Navagati Roomline
GRA+WNWUP+FBASE+NELL 70.8 82.2
GRA+WNPATH+FBASE+NELL 70.1 81.4
GRA+WNLCH+FBASE+NELL 70.8 81.3
GRA+WNRES+FBASE+NELL 73.4 83.7

6 Discussion

We have built a model that exploits different se-
mantic knowledge bases and predicts the task on
both corpora with high accuracy. But how is it af-

fected by factors like misrecognition and context
ambiguity?

6.1 Influence of Recognition Errors
When the recognition is bad, it is obvious that the
accuracy would go down. We would like to know
which of these knowledge resources can augment
useful semantics despite misrecognitions. Table 2
shows that WER on the Navagati corpus is about
46% and the Roomline corpus is about 25%. We
compared the F1-score of different models on ut-
terances for different ranges of WER as shown in
the Figure 2 on the Navagati Corpus. We notice
that the model built using all knowledge bases is
more robust even at higher WER. We did similar
analysis on the Roomline corpus and did not no-
tice any differences across models due to relatively
lower WER (25.6%).
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Figure 2: Word Error Rate vs F1-Score for KB-
based Models on Navagati Corpus

6.2 Confusion among Tasks
We found that a particular pair of tasks are more
confusing than others. Here we present an analysis
of such confusion pairs for both corpora for dif-
ferent classification models. Table 5 and Table 6
show the pairs of tasks that are most confused in
the experiments. The ALL-KB model (a combina-
tion of all knowledge bases) has least number of
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Table 5: Most confusable pairs of tasks in Navagati Corpus for KB based classification models
(See Table 2 for task labels)

KBType ALL-KB SEM-WNRES SEM-NELL SEM-FBASE
ActualTask N2 N4 N2 N4 N2 N4 N1 N2 N4
Predicted N3 N1 N3 N3 N3 N3 N3 N3 N3
ConfusionPerTask 10.5% 27.7% 26.3% 33.3% 26.3% 38.8% 22.2% 28.9% 44.4%

Table 6: Most confusable pairs of tasks in Roomline Corpus for KB based classification models
(See Table 2 for task labels)

KBType ALL-KB SEM-WNRES SEM-NELL SEM-FBASE
ActualTask R4 R4 R6 R4 R6 R3 R4 R5 R6
Predicted R3 R5 R5 R1 R1 R1 R3 R1 R1
ConfusionPerTask 36.6% 48.7% 44.4% 25.6% 44.5% 32.5% 23% 53.4% 55.5%

confusion pairs among all the models. This is due
to more relevant concepts are augmented to an ut-
terance compared to fewer relevant concepts that
augmented while using individual models.

We inspected the confused tasks by examin-
ing the feature vectors of misclassified examples.
While using the ALL-KB model 10% of the utter-
ances from N2 (Advisory) were confused for N3
(Imperative) because of phrases like “your left”,
“your right”. These phrases were often associated
with N3 utterances. To recovery from such ambi-
guities, the agent could ask a clarification question
e.g., “are we talking about going there or find it
on the way?” to resolve the differences between
these tasks. The system could not only get clar-
ification but also bootstrap the original utterance
of the user with the clarification to gather addi-
tional context to retrain the task detection models.
The individual models were also confused about
N2 and N3 tasks, where we could use similar clar-
ification strategies to improve the task prediction.
27% of the N4 (grounding about current robot’s
position) utterances were confused for N1 (meta
comments about the robot’s rounavigation route)
because these utterances shared more number of
freebase concepts with the N1 model. The system
could resolve such utterances by asking a clarifi-
cation question “are we talking about the current
position?”. Individual models i.e., SEM-WNRES,
SEM-FBASE and SEM-NELL suffered mostly from
the lack of concepts capturing semantics related
to all types of entities (e.g., most common nouns,
less common entities etc.,) found in an utterance.

We examined the confusion pairs in the Room-
line corpus and observed that R4 (ListRooms) and
R3 (Queries) tasks were most confused in the

ALL-KB model. On closer inspection, we found
that R4 utterances are about listing the rooms that
are retrieved by the system. Whereas, R3 utter-
ances are about asking whether a room has a facil-
ity (e.g., projector availability). In the ambiguous
utterances, often the R4 utterances were about fil-
tering the list of rooms by a facility type.

7 Conclusion

We proposed framing the dialog task prediction
problem as a classification problem. We used an
SVM classifier with semantic smoothing kernels
that incorporate information from external knowl-
edge bases such as Wordnet, NELL, Freebase. Our
method shows good improvements over a parser-
based baseline. Our analysis also shows that our
proposed method makes task prediction be more
robust to moderate recognition errors.

We presented an analysis on task ambiguity and
found that these models can confuse one task for
another. We believe that this analysis highlights
the need for dialog based clarification strategies
that cannot only help the system for that instance
but also help the system improve its task predic-
tion accuracy in future dialog sessions.

8 Future Work

This work stands as a platform to make a spoken
dialog system learn relevant semantic information
from external knowledge sources. We would like
to extend this paradigm to let the system acquire
more information through dialog with a user. The
system could elicit new references to a known se-
mantic concept. For example, a navigation agent
knows a task called “GoToRestaurant” but the
user-utterance had the word “diner” and it was
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not seen in the context of “restaurant”. The agent
somewhat predicts this utterance is related to “Go-
ToRestaurant” using the approach described in this
paper. It could ask the user an elicitation question:
“You used diner in the context of a restaurant, is
diner really a restaurant?”. The answer to this
question will help the system gradually understand
what parts of an open-domain knowledge base can
be added into its own domain knowledge base. We
believe that the holistic approach of learning from
automated processes and learning through dialog,
will help the dialog systems get better interaction
by interaction.
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Abstract

We present virtual human dialogue mod-
els which primarily operate on the surface
text level and can be extended to incor-
porate additional information state annota-
tions such as topics or results from simpler
models. We compare these models with
previously proposed models as well as two
human-level upper baselines. The mod-
els are evaluated by collecting appropri-
ateness judgments from human judges for
responses generated for a set of fixed dia-
logue contexts. Our results show that the
best performing models achieve close to
human-level performance and require only
surface text dialogue transcripts to train.

1 Introduction

Virtual Humans (VH) are autonomous agents who
can play the role of humans in simulations (Rickel
and Johnson, 1999; Traum et al., 2005). For these
simulations to be convincing these agents must
have the ability to communicate with humans and
other agents using natural language. Like other di-
alogue system types, different architectures have
been proposed for virtual human dialogue sys-
tems. These architectures can afford different fea-
tures and require different sets of resources. E.g.,
an information state based architecture such as the
one used in SASO-ST (Traum et al., 2005) can
model detailed understanding of the task at hand
and progression of dialogue, but at the cost of re-
quiring resources such as information state update
rules and an annotated corpus or grammar to be
able to map surface text to dialogue acts.

For some virtual human dialogue genres such
as simple question-answering or some negotiation
domains, a simple model of dialogue progression
would suffice. In such a case we can build dia-
logue models that primarily operate on a surface

text level. These models only require surface text
dialogue transcripts as a resource, and don’t re-
quire expensive manual update rules, grammars,
or even extensive corpus annotation.

In this paper, we describe the construction and
evaluation of several models for engaging in dia-
logue by selecting an utterance that has been seen
previously in a corpus. We include one model that
has been used for this task previously (Gandhe and
Traum, 2007b), an adaptation of a model that has
been used in a similar manner, though on hand-
authored data sets, rather than data sets extracted
automatically from a corpus (Leuski and Traum,
2008), as well as a new set of models, using per-
ceptrons on surface text features as well as more
abstract information state annotations such as top-
ics. We also tackle the question of evaluating such
dialogue models manually as well as automati-
cally, starting with systematically analyzing var-
ious decisions involved in the evaluation process.
We situate our work with respect to previous eval-
uation methods.

2 Related Work

The task of a dialogue model is to formulate an
utterance given a dialogue context. There are
two approaches towards formulating an utterance:
Generation, where a response is compositionally
created from elements of the information state,
including the context of previous utterances, and
Selection, where a response is chosen from pre-
viously seen set of responses. In (Gandhe and
Traum, 2010), we examined the theoretical poten-
tial for the selection approach, looking at a wide
variety of domains, and evaluating based on sim-
ilarity between the actual utterance and the best
match in the previously seen corpus. We saw a
wide variance in scores across domains, both as to
the similarity scores and improvement of scores as
more data is considered. For task-oriented plan-
ning domains, such as Monroe (Stent, 2000) and
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TRAINS (Heeman and Allen, 1994), as well as
open conversation in Switchboard (Godfrey et al.,
1992), the performance was very low. On the other
hand, for more limited domains such as simple
question-answering (Leuski et al., 2006) or role-
play negotiation in a scenario, the performance
was high, with METEOR scores averaging over
0.8.

One possible selection criterion is to assume
that the most appropriate response is the most
probable response according to a model trained
on human-human dialogues. More formally, let
there be a dialogue 〈u1, u2, . . . , ut−1, ut, . . . , uT 〉,
where utterance ut appears in contextt =
〈u1, u2, . . . , ut−1〉. If we have a dialogue model
P estimated from the training corpus then the for-
mulated response uq for some unseen contextq is
given by,

ut = argmax
i

P (ui|contextt) ∀ui ∈ Upossible

where Upossible is a set of all possible response ut-
terances. Ideally we would like to estimate a prob-
ability distribution P , but since it’s hard to esti-
mate and we only need argmax for this applica-
tion, we approximate P with a ranking function.
We can compare previous work within this frame-
work.

In our previous work (Gandhe and Traum,
2007a), we used context similarity as the rank-
ing function P (see section 3.1 for details). This
model is trained from in-domain surface text di-
alogue transcripts. Leuski et al. (2006) model P
as cross-lingual relevance, where the task of se-
lecting an appropriate response is seen as cross-
lingual information retrieval where the response
utterance ut is the relevant document and the
contextt is treated as a query from different lan-
guage. This model has been applied to simple
question answering where context is the previous
utterance and the training data is manually anno-
tated question-answer pairs. DeVault et al. (2011)
have proposed to use a multi-class classification
model (such as maximum entropy) for estimat-
ing P . Their method restricts the set Upossible

to a set of canonical utterances which represent
distinct dialogue acts. This allows for a limited
number of classes (|Upossible|) and also maximizes
the number of distinct contexts seen per utterance.
This model is also trained from manually anno-
tated utterance-context pairs and can additionally
use manually created utterance paraphrases.

Apart from the models discussed above which
have been mainly applied to dialogue domains
situated in a story context, there has been some
work in surface text based dialogue models for
open domains. Ritter et al. (2011) use informa-
tion retrieval based and statistical machine trans-
lation (SMT) based approaches towards predicting
the next response in Twitter conversations. Also
Chatbots typically use surface text based process-
ing such as string transformations (e.g., AIML
rules (Wallace, 2003)). Such rules can also be
learned from a dialogue corpus (Abu Shawar and
Atwell, 2005). Systems employing SMT or string
transformation rules are formulating a response
by Generation approach and it can be frequently
ungrammatical or incoherent, unlike the selection
approach which will always pick something that
someone has once said (even though it might be
inappropriate in the current context).

3 Dialogue Models

3.1 Nearest Context
In previous work (Gandhe and Traum, 2007a), we
modeled P as,

P (ui|contextq) ≈ Sim(contexti, contextq)

where contexti is the context in which utterance
ui was seen in training corpus and Sim is con-
text similarity in a customized vector-space model.
The model restricts the set of possible response
utterances (Upossible) to the set of utterances ob-
served in the training data (Utrain). The context
is approximated using the previous two utterances
(one from each speaker). This model does not use
the contents of the utterance ui itself.

3.2 Cross-lingual Relevance Model
Leuski et al. (2006) model P as a cross-lingual rel-
evance model. This model takes into account the
content of the utterance ui as well as the content of
the context. It does not impose any restriction on
Upossible, but in practice it is restricted to the set
of utterances in the training data. The model al-
lows the context to be composed of multiple fields,
each with its own weight. This allows us to ex-
tend the model where the context is approximated
by the previous two utterances. The weights need
to be learned using a held-out development set,
which presents a challenge in the case of multiple
fields (possible if we add more information state
annotations), modest amounts of training data and
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non-availability of an automatic and reliable esti-
mate of the model’s performance. Here, for the
first time, we apply this model to automatically
extracted pairs of utterance-context and evaluate
it. For our model we used the implementation that
is available as a part of NPCEditor (Leuski and
Traum, 2011) and manually set the field weights
corresponding to the two previous utterances to be
equal (0.5).

3.3 Perceptron

As discussed earlier, the task of selecting the most
appropriate response can be viewed as multi-class
classification. But there are a couple of issues.
First, since we operate at the surface text level,
each unique response utterance will be labeled as
a separate class. The number of classes is the
number of unique utterances seen in the training
set, which is relatively large. As the training data
grows, the number of classes will increase. Sec-
ond, there are very few examples (on average a
single example) per class. We need a classifier that
can overcome these issues.

The perceptron algorithm and its variants –
voted perceptron and averaged perceptron are
well known classification models (Freund and
Schapire, 1999). They have been extended for use
in various natural language processing tasks such
as part-of-speech tagging (Collins, 2002), pars-
ing (Collins, 2004) and discriminative language
modeling (Roark et al., 2007). Here we use the
averaged perceptron model for mapping from dia-
logue context to an appropriate response utterance.

Collins (2002) outlines the following four com-
ponents of a perceptron model:
• The training data. In our case it is a set of au-

tomatically extracted utterance-context pairs
{. . . , 〈ui, contexti〉, . . .}
• A function GEN(context) that enumerates a

set of all possible outputs (response utter-
ances) for any possible input (dialogue con-
text)
• A feature extraction function Φ :
〈u, context〉 → Rd that is defined over
all possible pairings of response utterances
and dialogue contexts. d is the total number
of possible features.
• A parameter vector ᾱ ∈ Rd

Using such a perceptron model, the most appropri-
ate response utterance (ut) for the given dialogue
context (contextt) is given by,

uq = argmax
ui∈GEN(context)

Φ(ui, contextq) · ᾱ

Algorithm 1 Perceptron Training Algorithm
Initialize: t← 0 ; ᾱ0 ← 0
for iter = 1 to MAX ITER do

for i = 1 to N do
ri ← argmax

u∈GEN(contexti)
Φ(u, contexti) · ᾱt

if ri 6= ui then
ᾱt+1 ← ᾱt + Φ(ui, contexti) −
Φ(ri, contexti)

else
ᾱt+1 ← ᾱt

end if
t← t+ 1

end for
end for
return ᾱ← (

∑
t ᾱt)/(MAX ITER×N)

The parameter vector ᾱ is trained using the
training algorithm described in Algorithm 1. The
algorithm goes through the training data one in-
stance at a time. For every training instance, it
computes the best response utterance (ri) for the
context based on its current estimate of the param-
eter vector ᾱt. The algorithm changes the param-
eter vector only if it makes an error (ri 6= ui). The
update drives the parameter vector away from the
error (ri) and towards the correct output (ui). The
final parameter vector ᾱ is an average of all the in-
termediate ᾱt values. The averaging of parameter
vectors avoids overfitting.

The feature extraction function Φ can list any
arbitrary features from the pair 〈u, context〉. We
consider information state annotations (ISt) along
with the surface text corresponding to the previous
two turns. The features could also include scores
computed from other models, such as those pre-
sented in sections 3.1 and 3.2. Figure 1 illustrates
an example context and utterance, and several fea-
tures. We examine several sets of features, Surface
text based features (ΦS), Retrieval model based
features (ΦR), and Topic based features (ΦT ).

Surface text based features (ΦS) are the fea-
tures extracted from the surface text of the previ-
ous utterances in the dialogue context (contextj)
and the response utterance (ui). ΦS(d)(ux, uy) ex-
tracts surface text features from two utterances – a
response utterance (ux) and an utterance (uy) from
the context that is (d) utterances away. There are
four types of features we extract:
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• common term(d,w) features indicate the
number of times a wordw appears in both the
utterances. The total number of possible fea-
tures is O(|V |) and we select a small subset
of words (Selected common(d)) from the
vocabulary.
• The common term count(d) feature indi-

cates the number of words that appear in both
utterances.
• The unique common term count(d) fea-

ture indicates the number of unique words
that appear in both utterances.
• cross term(d,wx, wy) features indicate the

number of times the word wx appears in the
utterance ux and the word wy appears in the
utterance uy. The total possible number of
such cross features is very large (O(|V |2)),
where |V | is the utterance vocabulary size.
In order to keep the training tractable and
avoid overfitting, we select a small subset of
cross features (Selected cross(d)) from all
possible features.

In this model, we perform feature selection by
selecting the subsets Selected cross(d) and
Selected common(d). The training algorithm re-
quires evaluating the feature extraction (ΦS) func-
tion for all possible pairings of response utterances
and contexts. One simple feature selection crite-
rion is to allow the features only appearing in true
pairings of response utterance and context (i.e.
features from ΦS(〈ui, contextj〉) ∀i = j). The
subset Selected common(d) for common term
features is selected by extracting features from
only such true pairings.

For selecting cross term(d,wx, wy) features
we use only true pairings but we need to
reduce this subset even further. We im-
pose additional constraints based on the col-
lection frequency of lexical events such as,
cf(wx) > thresholdx, cf(wy) > thresholdy,
cf(〈wx, wy〉) > thresholdxy. Further reduction
in size of the selected subset of cross term fea-
tures is achieved by ranking the features using a
suitable ranking function and choosing the top n
features. In this model, we rank the cross term
features based on pointwise mutual-information
pmi(〈wx, wy〉) given by,

log
p(〈wx, wy〉)
p(wx)p(wy)

= log

(
#〈wx,wy〉

#〈·,·〉

)

(
#〈wx,·〉
#〈·,·〉

)
·
(
#〈·,wy〉
#〈·,·〉

)

Summing up, ΦS(d)(ux, uy) =

{cross term(d,wx, wy) : wx ∈ ux∧
wy ∈ uy ∧ 〈wx, wy〉 ∈ Selected cross(d)}

∪ {common term(d,w) : w ∈ ux ∧w ∈ uy ∧
w ∈ Selected common(d)}

∪ {common term count(d)}
∪ {unique common term count(d)}

Retrieval model based features (ΦR) are
the scores computed in a fashion similar to
the Nearest Context model. Sim(ux, uy) is
a cosine similarity function for tf-idf weighted
vector space representations of utterances and
Sim(contexta, contextb) is the same function
from Nearest Context model. We define three fea-
tures,

• retrieval score =
|L|
max
k=1

Sim(contextj , contextk) · Sim(ui, uk)

• context sim@best utt match =
Sim(contextj , contextb)

where, b =
|L|

argmax
k=1

Sim(ui, uk)

• utt sim@best context match = Sim(ui, ub)

where, b =
|L|

argmax
k=1

Sim(contextj , contextk)

ΦR(〈ui, contextj〉) = {retrieval score,
context sim@best utt match,
utt sim@best context match}

Topic based feature (ΦT ) tracks the topic sim-
ilarity between the topic of the dialogue context
and the response utterance. A topic is marked
as mentioned if a set of keywords triggering that
topic have been previously mentioned in the dia-
logue. Each information state (IS) consists of a
topic signature which can be viewed as a boolean
vector representing mentions of topics.

ΦT (〈ui, contextj〉) = {topic similarity}
topic similarity = cosine(ISi, ISj)

where, ISi is the topic and is part of contexti
which is the context associated with the utterance
ui.

The perceptron model presented here allows
novel combinations of resources such as combin-
ing surface text transcripts with information state
annotations for tracking topics in the conversa-
tion. As compared to the generative cross-lingual
relevance model approach, the perceptron model
is a discriminative model. It is also a paramet-
ric model and the inference requires linear time
with respect to the size of candidate utterances
(|GEN(context)|) and the number of features (|ᾱ|).
Although, computing some of the features them-
selves (e.g., ΦR features) requires linear time with
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...
contextj [uj(−2)] Doctor you are the threat i need protection from you

[uj(−1)] Captain no no
you do you do not need protection from me
i am here to help you
uh what i would like to do is move your your clinic to a safer location
and uh give you money and medicine to help build it

utterance [ui] Doctor i have no way of moving

ΦS(〈ui, contextj〉) = { cross term(−2, “moving”, “need”) = 1,
common term(−2, “i”) = 1,
common term count(−2) = 1, unique common term count(−2) = 1,
cross term(−1, “moving”, “give”) = 1,
common term(−1, “i”) = 1, common term(−1, “no”) = 1,
common term count(−1) = 2, unique common term count(−1) = 2,
retrieval score = 0.198, context sim@best utt match = 0.198,
utt sim@best context match = 0,
topic similarity = 0.667 }

Figure 1: Features extracted from a context (contextj) and a response utterance (ui)

respect to the size of the training data. The per-
ceptron model can rank an arbitrary set of utter-
ances given a dialogue context. But some of the
features (e.g., topic similarity) require that the
utterance ui(ui ∈ |GEN(context)|) be associated
with a known context (contexti). For all our mod-
els we use GEN(context) = Utrain.

We have implemented three different vari-
ants of the perceptron model based on the
choice of features used. Perceptron(surface)
model uses only surface text features (Φ =
ΦS). The other two models are Percep-
tron(surface+retrieval) where Φ = ΦS ∪ ΦR and
Perceptron(surface+retrieval+topic) where Φ =
ΦS ∪ ΦR ∪ ΦT .

Figure 2 shows a schematic representation of
these models along with the set of resources be-
ing used by each model. The figure also shows the
relationships between these models. The arrows
point from a less informative model to a more in-
formative model and the annotations on these ar-
rows indicate the additional information used.

4 Evaluation

For the experiments reported in this paper, we
used the human-human spoken dialogue corpus
collected for the project SASO-ST (Traum et al.,
2005). In this scenario, the trainee acts as an
Army Captain negotiating with a simulated doc-

Figure 2: A schematic representation of imple-
mented unsupervised dialogue models and the re-
lationships between the information used by their
ranking functions.

tor to convince him to move his clinic to another
location. The corpus is a collection of 23 roleplay
dialogues and 13 WoZ dialogues lasting an aver-
age of 40 turns (a total of ≈ 1400 turns and ≈ 30k
words).

We perform a Static Context evalua-
tion (Gandhe, 2013). In Static Context evaluation,
all the dialogue models being evaluated receive
the same set of contexts as input. These dialogue
contexts are extracted from actual in-domain
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human-human dialogues and are not affected by
the dialogue model being evaluated. For every
turn whose role is to be played by the system, we
predict the most appropriate response in place of
that turn given the dialogue context.

Since the goal for virtual humans is to be as
human-like as possible, a suitable evaluation met-
ric is how appropriate or human-like the responses
are for a given dialogue context. The evaluation
reported here employs human judges. We set up a
simple subjective 5-point likert scale for rating ap-
propriateness – 1 being a very inappropriate non-
sensical response and 5 being a perfectly appropri-
ate response.

We built five dialogue models to play the role
of the doctor in SASO-ST domain, viz.: Near-
est Context (section 3.1), Cross-lingual Relevance
Model (section 3.2) and three perceptron models
(section 3.3) with different feature sets. These
dialogue models are evaluated using 5 in-domain
human-human dialogues from the training data (2
roleplay and 3 WoZ dialogues, referred to as test
dialogues). A dialogue model is trained in a leave-
one-out fashion where the training data consists of
all dialogues except the one test dialogue that is
being evaluated. A dialogue model trained in this
fashion is then used to predict the most appropri-
ate response for every context that appears in the
test dialogue. This process is repeated for each test
dialogue and for each dialogue model being evalu-
ated. In this evaluation setting, the actual response
utterance found in the original human-human dia-
logue may not belong to the set of utterances being
ranked by the dialogue model. We also compare
these five dialogue models with two human-level
upper baselines. Figure 4 in the appendix shows
some examples of utterances returned by a couple
of the models.

4.1 Human-level Upper Baselines

In order to establish an upper baseline for human-
level performance for the evaluation task, we con-
ducted a wizard data collection. We asked human
volunteers (wizards) to perform a similar task to
that performed by the dialogue models being eval-
uated. The wizard is presented with a set of ut-
terances (Utrain) and is asked to select a subset
from these that will be appropriate as a response
for the presented dialogue context. Compared to
this, the task of the dialogue model is to select
a single most appropriate response for the given

context.
DeVault et al. (2011) carried out a similar wiz-

ard data collection but at the dialogue act level,
where wizards were asked to select only one re-
sponse dialogue act for each dialogue context.
Their findings suggest that there are several valid
response dialogue acts for a dialogue context. A
specific dialogue act can be realized in several
ways at the surface text level. For these reasons
we believe that for a given dialogue context there
are often several appropriate response utterances
at the surface text level. In our setting the dia-
logue models work at the surface text level and
hence the wizards were asked to select a subset of
surface text utterances that would be appropriate
responses. Each wizard was asked to select sev-
eral (ideally between five and ten, but always at
least one) appropriate responses for each dialogue
context. Four wizards participated in this data col-
lection with each wizard selecting responses for
the contexts from the same five human-human test
dialogues. The set of utterances to chose from
(Utrain) for every test dialogue was built in the
same leave-one-out fashion as used for evaluating
the implemented dialogue models.

There are a total of 89 dialogue contexts where
the next turn belongs to doctor. As expected, wiz-
ards frequently chose multiple utterances as ap-
propriate responses (mean = 7.80, min = 1, max
= 25).

This data collected from wizards is used to build
two human-level upper-baseline models for the
task of selecting a response utterance given a di-
alogue context:

Wizard Max Voted model returns the response
which gets the maximum number of votes
from the four wizards. Ties are broken
randomly.

Wizard Random model returns a random utter-
ance from the list of all utterances marked as
appropriate by one of the wizards.

4.2 Comparative Evaluation of Models
We performed a static context evaluation using
four judges for the above-mentioned two human-
level baselines (Wizard Random and Wizard Max
Voted) and five dialogue models (Nearest Con-
text, Cross-lingual Relevance Model and three
perceptron models), as described in section 3.3.
We tune the parameters used for the perceptron
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models based on the automatic evaluation met-
ric, Weak Agreement (DeVault et al., 2011). Ac-
cording to this evaluation metric a response utter-
ance is judged as perfectly appropriate (a score
of 5) if any of the wizards chose this response
utterance for given context and inappropriate (a
score of 0) otherwise. The Perceptron(surface)
model was trained using 30 iterations, the Per-
ceptron(surface+retrieval) using 20 iterations,
and the Perceptron(surface+retrieval+topic) was
trained using 25 iterations. For all perceptron
models we used thresholdx = thresholdy =
thresholdxy = 3.

For a comparative evaluation of dialogue mod-
els, we need an evaluation setup where judges
could see the complete dialogue context along
with the response utterances generated by the di-
alogue models to be evaluated. In this setup, we
show all the response utterances next to each other
for easy comparison and we do not show the ac-
tual response utterance that was encountered in
the original human-human dialogue. We built a
web interface for collecting appropriateness rat-
ings that addresses the above requirements. Fig-
ure 3 shows the web interface used by the four
judges to evaluate the appropriateness of response
utterances for given dialogue context. The appro-
priateness was rated on the same scale of 1 to 5.
The original human-human dialogue (roleplay or
WoZ) is shown on the left hand side and the re-
sponse utterances from different dialogue models
are shown on the right hand side. In cases where
different dialogue models produce the same sur-
face text response only one candidate surface text
is shown to judge. Once the judge has rated all the
candidate responses they can proceed to the next
dialogue context. This setting allows for compar-
ative evaluation of different dialogue models. The
presentation order of responses from different di-
alogue models is randomized. Two of the judges
also performed the role of the wizards in our wiz-
ard data collection as outlined in section 4.1, but
the wizard data collection and the evaluation tasks
were separated by a period of over 3 months.

Table 1 shows the results of our compara-
tive evaluation for each judge and averaged over
all judges. We also computed inter-rater agree-
ment for individual ratings for all response ut-
terances using Krippendorff’s α (Krippendorff,
2004). There were a total of n = 397 distinct
response utterances that were judged by the eval-

uators. The Krippendorff’s α for all four judges
was 0.425 and it ranges from 0.359 to 0.495 for
different subsets of judges. The value of α indi-
cates that the inter-rater agreement is substantially
above chance (α > 0), but indicates a fair amount
of disagreement, indicating that judging appropri-
ateness is a hard task even for human judges. Al-
though there is low inter-rater agreement at the
individual response utterance level there is high
agreement at the dialogue model level. Pearson’s
correlation between the average appropriateness
for different dialogue models ranges from 0.928
to 0.995 for different pairs of judges.

We performed a paired Wilcoxon test to check
for statistically significant differences in differ-
ent dialogue models. Wizard Max Voted is sig-
nificantly more appropriate than all other models
(p < 0.001). Wizard Random is significantly more
appropriate than Cross-lingual Relevance Model
(p < 0.05) and significantly more appropriate
than the three perceptron models as well as Near-
est Context model (p < 0.001). Cross-lingual
Relevance Model is significantly more appropri-
ate than Nearest Context (p < 0.01). All other
differences are not statistically significant at the 5
percent level.

We found that adding topic annotations did not
help. This is in contrast with previous observa-
tion (Gandhe and Traum, 2007b), where topic in-
formation helped when evaluation was performed
in Dynamic Context setting. In Dynamic Context
setting, the dialogue model is used in an online
fashion where the response utterances it generates
become part of the dialogue contexts with respect
to which the subsequent responses are predicted
and evaluated. The topic information ensures sys-
tematic progression of dialogue. But for static
context evaluation such help is not required as the
dialogue contexts are extracted from human hu-
man dialogues and are fixed.

5 Conclusion

In this paper we introduced dialogue models that
can be trained simply from in-domain surface
text dialogue transcripts. Some of these models
also allow for incorporating additional informa-
tion state features such as topics or results of sim-
pler models. We have evaluated the appropriate-
ness of responses and have compared these mod-
els with two human-level baselines. Evaluating
response appropriateness is highly subjective as
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Figure 3: Screenshot of the user interface for static context comparative evaluation of dialogue models

Model #Utts
Avg. appropriateness Appropriateness

(All judges)
Judge 1 Judge 2 Judge 3 Judge 4 Avg stddev

Nearest Context 89 4.12 3.98 3.40 3.53 3.76 1.491
Perceptron(surface) 89 3.97 4.11 3.51 3.62 3.80 1.445
Perceptron
(surface+retrieval)

89 4.26 4.12 3.51 3.72 3.90 1.414

Perceptron
(surface+retrieval+topic)

89 4.21 4.09 3.51 3.57 3.85 1.433

Cross-lingual Relevance
Model

89 4.28 4.31 3.70 3.91 4.05 1.314

Wizard Random 89 4.55 4.55 4.03 4.16 4.32 1.153
Wizard Max Voted 89 4.76 4.84 4.40 4.52 4.63 0.806

Table 1: Offline comparative evaluation of dialogue models.

can be seen from the fact that utterances which
receive more wizard votes (Wizad Max Voted) re-
ceive significantly higher appropriateness ratings
than those which receive fewer votes (Wizard Ran-
dom). The performance of best performing dia-
logue models are close to human-level baselines.
In future we plan to use larger datasets which
should be easy, since no additional annotations are
required for training these dialogue models.
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Original Human-Human Dialogue Model response
Captain hello how are you doing sir
Doctor what do you want

i have patients waiting for me
hello
what can i do for you mr

Captain sir i come by to offer you some assistance ah on
behalf of my commander
ah we want to try to support you in this hospital
and ah improving the health and welfare of the
civilians that you have under your care

Doctor well this is your opinion i see captain
is this a is this a suggestion from your
commander

Captain i am sorry sir
could you say again

Doctor well this is your opinion you are the threat
i need protection from you

(a) Perceptron(surface)

Original Human-Human Dialogue Model response
Captain hello doctor perez
Doctor hello hello

what was your name
captain dezois very nice to meet you
i am sorry but i am very busy today
so i only have a limited amount of time
what can i help you with

Captain i am captain xx
Doctor so

do you need help
ok
what do you want i have patients waiting for me

Captain yes
i have a very urgent matter to discuss
with you

Doctor are you injured pl please captain
i i am sorry to cut you off
but i really must uh go
i was in the middle of examining a patient

(b) Cross-lingual Relevance Model

Figure 4: Example interaction for the dialogue models in static context setting. The second column
shows the original human-human dialogue and the third column shows the dialogue model’s response
for the corresponding system turn.
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Abstract 

Based on German production data from 
the ‘Kiel Corpus of Spontaneous 
Speech’, we conducted two perception 
experiments, using an innovative interac-
tive task in which participants gave real 
oral responses to resynthesized question 
stimuli. Differences in the time interval 
between stimulus question and response 
show that segmental reduction, intensity 
level, and the shape of the phrase-final 
rise all function as cues to turn-taking in 
conversation. Thus, the phonetics of turn-
taking goes beyond the traditional triad 
of duration, voice quality, and F0 level. 

1 Introduction 

1.1 Empirical background 

Signalling turn-taking intentions is essential for 
successful speech communication. Accordingly, 
it was shown for all well-described languages 
that turn holding and yielding cues are robustly 
encoded in complex redundant bundles of mor-
phosyntactic and/or phonetic patterns. The pho-
netic patterns primarily rely on prosody, taking a 
considerable part of its functional load. Com-
pared with turn holding, turn yielding is typically 
signalled phrase-finally by extensive terminal 
falling or high rising F0 movements, deviation 
from modal phonation – mostly in the direction 
of creak phonation – and increasing final length-
ening from penultimate to ultimate syllables. 
These differences seem to be used in the same 
way across many languages, and not least for this 
reason their validity is beyond doubt (e.g., Dun-
can, 1972; Beattie, 1981; Lehiste, 1982; Kohler, 
1983; Nakatani et al., 1995; Ogden, 2001; Fon, 
2002; Kohler, 2004; Peters, 2006; Vaissière & 
Michaud 2006; Gravano, 2009; Fon et al., 2011). 

However, leaving aside gaze and gesture pat-
terns (cf. Kendon, 1995; Taboada, 2006), a 
growing body of evidence from production stud-
ies suggests that the phonetics of turn-taking is 
still richer and goes beyond the traditional triad 
of voice quality, duration, and the level or direc-
tion of F0 patterns. Turn holding or yielding also 
seems to include the fourth prosodic dimension, 
i.e. intensity, as well as details in the shape of 
phrase-final rises and the degree of phrase-final 
segmental reduction. 

For example, phrase-final voiceless plosives in 
English are realized either fully pronounced and 
with strong post-aspiration, or in reduced forms 
that lack post-aspiration and are (partly) replaced 
by glottalization, cf. “got” [g WÅ tH] vs. [g WÅ 0/t4], 
and “cap” [k H +Qp H] vs. [k H + Q / p |]. The difference 
between the unreduced and reduced forms was 
for a long time claimed to be a matter of free 
variation, until it was revealed in corpus analyses 
of different varieties of English that reduced 
forms were produced turn-medially whereas un-
reduced forms occurred almost exceptionally at 
the end of a speaker’s turn (Local et al., 1986; 
Docherty et al., 1997; Local & Walker, 2012). 

More recently, it was additionally found for 
English and French in independent analyses of 
spontaneous speech corpora that the intensity 
levels of phrase-final syllables differ depending 
on whether the syllables occur turn-medially or 
turn-finally (Gravano & Hirschberg, 2009; Cle-
mens & Dieckhaus, 2009; Raux, 2008; Fried-
berg, 2011). The difference was the same in both 
languages: “speakers tend to lower their voices 
when approaching turn boundaries, whereas 
they reach turn-internal pauses with a higher 
intensity“ (Gravano & Hirschberg, 2009:256). 

Furthermore, Dombrowski & Niebuhr (2005) 
showed on the basis of one of the largest corpora 
of Standard Northern German – the Kiel Corpus 
of Spontaneous Speech – that it is not only the 
range of phrase-final intonation movements that 

261



distinguishes turn-internal from turn-final bound-
aries. At least in the case of rises, it also matters 
whether the shape of the rise is concave (slow 
rise followed by fast rise) or convex (fast rise 
followed by slow rise). Convex rises occurred 
predominantly turn-medially, whereas concave 
rises were used by speakers almost invariably at 
the end of a turn. A similar distribution of rise 
shapes was found by Asu (2006) for discourse 
markers in spontaneous dialogues of Estonian. 

1.2 Question and aim 

The three groups of cross-linguistic findings on 
reduction levels, intensity levels and rise shapes 
have in common that their perceptual relevance 
for turn-taking has never been tested as yet. That 
is, do listeners actually interpret phrase-final dif-
ferences in (i) the degree of segmental reduction, 
(ii) the intensity level, and (iii) the shape of F0 
rises as signals of turn-holding and/or turn-
yielding? Providing a first answer to this ques-
tion is the main aim of the present paper. 

Clayards et al. (2007) showed that the more 
systematically acoustic cues are used in speech 
production the more likely they are exploited by 
listeners. Given the distinct production findings 
for (i)-(iii) and their consistency across lan-
guages or language varieties, it was already ex-
pectable that the answer to our question would be 
‘yes’; and, indeed our results met our expecta-
tion. Yet, empirical testing was indispensable. 

1.3 Research subject  

Our study was based on a single language vari-
ety: Standard Northern German. However, in 
view of the strong cross-linguistic parallels in the 
phonetics of turn-taking (cf. 1.1), it is reasonable 
to assume that our results will also be applicable 
to many other languages. 

In order to test the effects of intensity differ-
ences and particularly of reduction differences on 
the perception of turn-internal and turn-final 
boundaries, we used the most frequent sonorous 
word-final syllable in German: <-en#>. It always 
occurs unstressed and is phonologically repre-
sented as a sequence of schwa and alveolar nasal 
/´n/. However, next to its corresponding canoni-
cal pronunciation as [´n] (or rather [I 4 n]), the 
word-final <-en#> syllable is known to undergo 
different reduction processes. The two most im-
portant processes are /´/ elision, which leaves a 
syllabic nasal, and assimilation of the syllabic 
nasal to the place of articulation of the preceding 
consonant. For example, “lieben” (to love) can 

be realized as [» li˘b´n], [» li˘bn `], or [» li˘bm̀]. Like-
wise, possible pronunciations of “sagen” (to say) 
are [»za˘ g ´n], [»za˘ g n `], and [»za˘ g N `]. 

However, prior to conducting any perception 
experiments, we first had to confirm that the dif-
ferences in the turn-internal vs. turn-final reduc-
tion and intensity levels found for English and 
French (cf. 1.1) do occur as well in Standard 
Northern German (the differences in rise shape 
are already known for Standard Northern Ger-
man and thus need not be replicated). Therefore, 
our perception experiments were preceded by an 
analysis of the Kiel Corpus of Spontaneous 
Speech. This analysis is detailed below. 

2 Corpus analysis 

2.1 Analysis method 

The Kiel Corpus of Spontaneous Speech includes 
117 dialogues which add up to more than four 
hours of Standard Northern German speech from 
52 male or female interlocutors (Kohler, 1996). 
The corpus is completely annotated, segmentally 
and prosodically. The segmental annotations are 
made such that they specify reduction processes 
like assimilation, elision, lenition, and “articula-
tory prosodies” in terms of deviations from the 
canonical forms of the spoken words (articula-
tory prosodies preserve the “phonetic essence” of 
segmentally elided words or syllables in the form 
of suprasegmental sound qualities and are thus 
an important cue to word identification in re-
duced speech, Kohler & Niebuhr 2011). Fur-
thermore, the structure of the corpus in combina-
tion with the prosodic annotation allows a differ-
ential search for phrase and turn boundaries.  

On this basis, we conducted an annotation-
based analysis of unstressed word-final <-en#> 
syllables in turn-final and turn-internal position. 
The turn-internal tokens were further subdivided 
into phrase-final and phrase-internal syllables. 
The latter phrase-internal syllables were not di-
rectly relevant for our research question but still 
included for the sake of completeness. Our cor-
pus query yielded a total of 17,023 word-final   
<-en#> syllables. The majority of the syllables, 
viz. 11,329 tokens, occurred in phrase- and turn-
internal position. For the phrase-final but turn-
internal position, we found 4,090 <-en#> sylla-
bles. The phrase- and turn-final position was rep-
resented by 1,604 tokens. The information about 
whether the <-en#> syllables were subject of re-
duction processes, and if so, whether degree of 
reduction differed across the three syntactic-
prosodic positions was derived from the segmen-
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tal annotation. We focussed on the two main re-
duction processes exemplified in 1.3: /´/ elision 
and, if the /´/ is absent, additional progressive 
place assimilation of the syllabic nasal /n/ to-
wards [m] or [N]. 

In a subsequent step, we took random sub-
samples of 50 <-en#> syllables from each of the 
three syntactic-prosodic positions and analyzed 
their intensity levels manually in Adobe Audi-
tion. Measurements were taken in terms of mean 
acoustic energy (in dB). As mixing syllables with 
and without schwa could have biased our inten-
sity measurements, all three sub-samples only 
contained syllabic [n `] nasals. The results of our 
reduction and intensity analyses are presented in 
the following section. 

2.2 Results of the production data 

To put it in a nutshell, analyzing the segmental 
annotation of the Kiel Corpus clearly showed: 
The more finally a <-en#> syllable was produced 
the lower was its degree of segmental reduction. 
This fact is illustrated in Figures 1(a)-(b). While 
virtually no <-en#> syllable in turn-medial and 
phrase-medial position was realized with a [´] or 
a similar vocoid sound before the nasal, about 
7% of the <-en#> syllables in turn-medial but 
phrase-final position showed such a vocoid sec-
tion (Fig.1a). The amount of schwas or similar 
vocoids increased above 10% for those <-en#> 
syllables that occurred phrase-finally and turn-
finally. Among the <-en#> syllables that were 
realized without /´/, the frequency of place as-
similation of the syllabic /n/ decreased from al-
most 80% in phrase-medial and turn-medial posi-
tion, through about 66% in turn-medial but 
phrase-final position, to only about 20% in 
phrase-final and turn-final position (Fig.1b). 

Although these figures speak for themselves, 
we also assessed their statistical significance by 
means of a χ² test. The test was based on the ab-
solute number of // and /n/ occurrences in the 
3x2 conditions of Figures 1(a)-(b). The test sta-
tistics corroborate that reduction becomes sig-
nificantly stronger under increasing finality 
(χ²=373.554, df=2, p<0.001). 

A similar tripartite picture emerged for the in-
tensity measurements. The intensity level in the 
random sub-samples of 3x50 <-en#> syllables 
(realized as syllabic nasals) decreased succes-
sively by on average about 3.5-6.2 dB (for fe-
male speakers less than for male speakers) from 
phrase- and turn-medial tokens to tokens which 

are both phrase-final and turn-final. That is, the 
softest <-en#> syllables occurred immediately 
before a turn transition. A one-way ANOVA 
showed that the intensity decrease across the 
three finality conditions was highly significant 
(F[2,147]=45.941, p<0.001). 
 

 
 

Figure 1: Degree of reduction of <-en#> sylla-
bles in terms of (a) /´/ elision and (b) place as-
similation of /n/ by the preceding consonant 
(when /´/ is absent). The <-en#> syllables oc-
curred in phrase- and turn-internal position (left), 
in turn-internal but phrase-final position (mid-
dle), or in phrase- and turn-final position (right). 

2.3 Conclusion from the production data 

Three conclusions can be drawn from the results 
of our corpus analysis. First, the degree of reduc-
tion of sound segments in Standard Northern 
German – represented by <-en#> syllables – dif-
fers substantially depending on whether they co-
incide with phrase boundaries or turn boundaries. 
The degree of reduction is lower at turn-final 
than at turn-internal boundaries. Second, also the 
intensity levels before different types of syntac-
tic-prosodic boundaries show clear differences. 
However, while the degree of segmental reduc-
tion decreases from phrase-internal through 
phrase-final to turn-final boundaries, the degree 
of intensity reduction increases by on average up 
to 100%. Third, the findings for Standard North-
ern German, particularly the direction of changes 
from phrase-final but turn-internal to phrase- and 
turn-final boundaries, are qualitatively consistent 
with those that have been found before for spon-
taneous dialogues in English and French. 

After having confirmed that Standard North-
ern German resembles English and French with 
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regard to the production of reduction and inten-
sity differences at turn-internal and turn-final 
boundaries, we continued with conducting two 
perception experiments. They were based on 
question stimuli, whose ends were varied in a 
binary fashion with respect to <-en#> reduction, 
intensity level and the shape of the final F0 rise. 

3 Perception experiment 1: reduction 
and rise shape 

3.1 Stimulus generation 

When it comes to testing the perceptual rele-
vance of phonetic details for turn yielding or 
holding, internal/ecological validity is a big is-
sue. We addressed this issue by developing an 
interactive experimental design in which the par-
ticipants gave real verbal responses to the stim-
uli. Our target stimuli were syntactically marked 
questions, whose last constituent was concluded 
by a target word. As there were 16 different 
questions, we had 16 different target words. All 
of them were similarly frequent verbal infinitives 
of two or three syllables, and with lexical stress 
and a rising nuclear pitch accent (L+H*) on the 
penultimate syllable. The pitch-accent rise was 
complemented by a high boundary tone (H-%), 
and hence the rise continued across the final syl-
lable until the end of the utterance. The final syl-
lable was <-en#>. Two target-word examples 
have already been given in 1.3; further examples 
are “fliegen” (to fly), “liegen” (to lie), “kramen” 
(to fish sth out), and “fragen” (to question). In 
half (i.e. eight) of the target words, <-en#> was 
preceded by a labial consonant (/m,b/). The other 
half had a velar consonant (/N,g/) before the      
<-en#> syllable. Moreover, the target words 
were balanced with respect to vowel quantity and 
height of the stressed vowel (/i(:)/ or /a(:)/). 

The target questions were embedded in con-
text frames, i.e. they were preceded by 1-2 intro-
ductory statements and followed by an alterna-
tive question starting with “oder” (or). For ex-
ample, “Ich hab Anjas Freund letztens Hand in 
Hand mit einer anderen durch die Stadt laufen 
sehen. Meinst Du, ich soll Ihr das sagen ? – oder 
soll ich mich da lieber raus halten?“ (I saw 
Anja‘s boyfriend yesterday wandering hand in 
hand through the streets with another girl. Do 
you think I should tell her? – or should I rather 
butt out?). The crucial point is that the alternative 
question is optional. It may or may not be there 
so that the target question could equally be turn-
internal or turn-final. In order to validate this po-
sitional ambiguity, we ran a pretest with 12 par-

ticipants and orthographic representations of our 
target questions. The pretest confirmed that none 
of the target questions had a semantic bias to-
wards occurring in turn-internal or turn-final po-
sition (i.e. with/without an alternative question). 

The 16 sequences of preparatory statement(s), 
target question and alternative question were 
produced by a phonetically trained female 
speaker (KG) with unreduced, canonically pro-
nounced <-en#> syllables ([´n]) at the end of the 
target words. The sequences were digitally re-
corded and constituted our first set of 16 base 
stimuli. Then, KG produced the same 16 se-
quences again, but this time the <-en#> syllables 
were highly reduced to either [m̀] or [N `]. The 
latter segments were used to create a second set 
of 16 base stimuli by taking the stimuli of the 
first set and replacing (with Adobe Audition) 
their fully pronounced [´ n] syllables with the 
corresponding highly reduced nasal. In this way, 
we ended up with two sets 16 base stimuli. The 
stimuli in each set were phonetically absolutely 
identical except for the <-en#> syllables, which 
were either fully pronounced or highly reduced.  

 
 

Figure 2: Shape manipulation of the nuclear F0 
rise L+H* H-% at the end of the target questions, 
yielding 32 questions with convex and 32 ques-
tions with concave rises. 

Before proceeding with the next step, we 
checked our base stimulus endings for confound-
ing turn-taking factors. First, there were no de-
viations from modal phonation in the target syl-
lables. Second, final lengthening was also con-
trolled insofar as the fully pronounced and highly 
reduced target syllables showed no systematic 
duration differences. Moreover, all duration dif-
ferences were below the just noticeable differ-
ence of 20% (cf. Klatt 1976), which corresponds 
to about 40 ms in the case of our target syllables. 

All 32 base stimuli were then subjected to a 
PSOLA manipulation in PRAAT, in which we 
firstly set the pause between target and alterna-
tive question to exactly 1.5 seconds. For reasons 
that will be explained in 3.2, this interval is at the 
upper limit of turn-internal pauses in dialogues 
and thus suitable to raise the reasonable suspi-
cion that no alternative question would follow 
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(e.g., Edlund & Heldner, 2005). Finally, we re-
placed the naturally produced F0 patterns at the 
end of the 32 target questions (all of them were 
more or less linear rises) by clearly convex and 
concave rises of the same overall range, as is il-
lustrated in Figure 2. The rises were stylized at 
rise onset, pivot, and rise offset. They set in right 
before the stressed vowel; the pivot was located 
at the end of the stressed vowel. 

The PSOLA manipulations resulted in 64 re-
synthesized stimuli. Another 64 stimuli were 
created by cutting off the alternative questions 
from the 64 resynthesized stimuli. 

3.2 Subjects and procedure 

Twenty native speakers of Standard Northern 
German participated in the perception experi-
ment (14 females, 6 males, 20-30 years old). All 
participants were undergraduate students of Em-
pirical Linguistics at the University of Kiel.  

The participants sat in a sound-treated room 
and put on a headset. Then, they were instructed 
that they would be presented with 64 stimuli, 
each of which would end in a question. Their 
task would be to conceive themselves in a dia-
logue situation and to respond to the questions of 
their female dialogue partner with short, plain 
answers (‘yes/no’, ‘don’t know’, ‘we’ll see’ and 
the like) as soon as they would think that they 
were given the floor. However, if they answered 
too early, i.e. before their dialogue partner’s turn 
had ended, their answer would count as a failure. 
On the other hand, if they did not respond within 
1.5 seconds after their dialogue partner’s turn 
had ended (indicated by a bleep), then their an-
swer would count as a failure, too. At the end of 
the experiment, that participant who gave the 
most valid answers in the shortest average re-
sponse time would win a prize (a 50 € voucher). 

The crucial point in this procedure was that 
the participants did not know when the target 
question was turn-internal or turn-final, i.e. when 
it was followed by an additional alternative ques-
tion, as this variable was randomly distributed 
across the 64 stimuli. In this way, we avoided 
that the participants were able to learn artificial 
turn yielding or holding cues during the experi-
ment by correlating the phonetic variation at the 
end of the target questions with the occurrence of 
alternative questions. Furthermore, informal pre-
tests showed that the dichotomous forces of the 
competitive task – i.e. the risk of premature vs. 
overdue responses – were effective in making 
participants focus on the stimuli and exploiting 
given acoustic cues. 

Prior to the actual experimental session, which 
took about 20 min, the participants received a 
practice session with 12 stimuli that were ran-
domly selected for each participant. The 64 stim-
uli of the subsequent experimental session were 
also played in individually randomized orders. 

The entire experimental sessions of all partici-
pants were recorded via their headsets. Re-
cordings were made with Audacity in the form of 
digital stereo files with separate channels for 
stimuli and responses. On this basis, we meas-
ured the response times, i.e. the time intervals 
from the end of the target question to the first 
response signal of the participant (which in-
cluded smacks). This response-time measure (in 
ms) served as dependent variable. Response-time 
measurements were made manually in Audacity. 
Figure 3 displays an example. If the relevant first 
response came too late (e.g., after an alternative 
question had begun) or not at all, response time 
measurements were capped at 1.5 seconds. 

 
 

 
 

Figure 3: Audacity screenshot showing an exam-
ple of a response-time measurement; top: stimu-
lus channel, bottom: response channel. 

3.3 Hypotheses of Experiment 1 

Assuming that participants would respond more 
readily/reluctantly when they perceived turn-
yielding/-holding cues in the target questions of 
their virtual female dialogue partner, we hy-
pothesized that response times would be shorter 
(i) for target questions ending in concave than in 
convex rises and (ii) for target questions ending 
in unreduced [´n] syllables rather than in the re-
duced syllabic nasals [m̀] or [N `]. 

Although we used target questions with differ-
ent wordings (that included the target words), a 
pretest showed that none of these wordings cre-
ated a semantic bias towards a turn-internal or 
turn-final interpretation (cf. 3.1). Thus, we ex-
pected no effect of the variable Question Word-
ing on response times. The same was true for the 
target-word internal variable Segmental Context 
(<-en#> preceded by a labial or velar consonant).  
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3.4 Results of Experiment 1 

The results of the first perception experiment 
are depicted in Figure 4 in terms of response 
times per stimulus condition, averaged across all 
20 participants. For the statistical analysis, we 
used a four-way repeated-measures ANOVA 
(n=20) based on the fixed factors Reduction (2 
levels), Rise Shape (2 levels), Segmental Context 
(2 levels), and Question Wording (8 levels). The 
ANOVA yielded three significant main effects 
on the dependent variable Response Time (in 
ms). The main effects concerned Reduction 
(F[1,19]= 57.716, p<0.001, ηp²= 0.752), Rise 
Shape (F[1,19]= 63.462, p<0.001, ηp²= 0.770), and 
Segmental Context (F[1,19]= 10.991, p<0.001, 
ηp²= 0.366). The factor Question Wording was 
not significant, neither was any of the interac-
tions. Insofar, our results allow a straightforward 
analysis. As is shown in Figure 4, response times 
were significantly shorter … 

• when the target questions ended in the 
unreduced [´ n] syllables rather than in the 
reduced syllables [m̀] or [N `]; 

• when the rising intonation at the end of 
the target questions had a concave rather 
than a convex shape, i.e. when the F0 rise 
started shallowly across the initial, ac-
cented syllable of the utterance-final verb 
and continued steeply until the end of the 
utterance (cf. Fig.2); 

• when the final <-en#> syllable was pre-
ceded by a labial rather than a velar plo-
sive or nasal. 

 

 
Figure 4: Results of Experiment 1 in terms of 
average response times (in ms) per stimulus con-
dition; each bar n=20. 

3.5 Conclusions from Experiment 1 

Our hypotheses concerning the effects of rise 
shape and the degree of (question-)final reduc-
tion on the participants’ response times were 
confirmed. Participants responded slowest after 

target questions that ended in a convex final rise 
across a widely reduced <-en#> syllable, and 
they responded fastest after target questions that 
ended in a concave final rise across an unreduced 
<-en#> syllable. The latter target questions 
caused response times of only 300-400 ms, 
which is exactly in the order of magnitude of 
successful – i.e. intended and correctly inter-
preted – turn transitions in German (Weilhammer 
& Rabold, 2003). This fact lends further support 
to our main conclusion: Rise shape and degree of 
reduction, which were both found to vary utter-
ance-finally on the part of speech production, 
also function as cues to turn-yielding and/or turn-
holding on the part of speech perception. 

Moreover, as expected on the basis of our se-
mantic pretest, Question Wording had no effect 
on response times. However, we found an unex-
pected response-time effect of Segmental Con-
text, i.e. the place of articulation of the consonant 
that preceded the <-en#> syllables. We have no 
clear explanation for this finding as yet. It could 
be an experimental artefact caused by different 
frequencies of occurrence of our ‘labial’ and ‘ve-
lar’ target words. Such frequency differences, 
even if they are small, could be associated with 
different reduction baselines. These baselines 
could have then interacted differently with the 
turn-taking interpretation of our Reduction vari-
able. Alternatively, the effect of Segmental Con-
text could be due to a difference in intrinsic in-
tensity, which is slightly higher for velar than for 
labial consonants. This difference also applied to 
the final nasal /n/ when it was assimilated to [m `] 
or [N `]. That a lower/higher intensity level to-
wards the end of utterances can basically be in-
terpreted as a turn-yielding and/or turn-holding 
cue will be shown in the following Experiment 2. 

4 Perception experiment 2: reduction 
and intensity level 

Although Experiment 2 primarily tested, if and 
how utterance-final intensity variation affected 
the listeners’ response times, it was additionally 
used to investigate the reduction effect of Ex-
periment 1 in more detail. In Experiment 1, we 
contrasted widely reduced <-en#> syllables ([m̀], 
[N `]) with their maximally unreduced counterpart 
[´n], being aware of the fact that [´n] is a rare 
realization of <-en#>, cf. Figure 1(a). Now, in 
Experiment 2, we turned to the much more fre-
quent, but also perceptually much more subtle 
reduction difference in <-en#> syllables: assimi-
lated and non-assimilated syllabic nasals. 
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4.1 Hypotheses of Experiment 2 

Our hypotheses were that response times would 
be shorter (i) for target questions ending in low 
rather than in high intensity levels and (ii) for 
target questions ending in less reduced (non-
assimilated) [n `] rather than in reduced (assimi-
lated) [m̀] or [N `]. In addition, we expect to repli-
cate the secondary findings of Experiment 1: 
There should be no systematic effect of Question 
Wording; and, concerning the Segmental Con-
text, there should be faster response times for the 
group of target words with ‘labial’ consonants. 

4.2 Method of Experiment 2 

The method was the same as in Experiment 1, 
except for three points. 

First, we performed a second round of re-
cordings in which we attenuated the reduction 
difference at the end of the target questions from 
[´n] vs. [m `]/[N `] to [n `] vs. [m]̀/[N `]. That is, all   
<-en#> syllables were realized as syllabic nasals 
so that the reduction difference became only a 
matter of presence vs. absence of place assimila-
tion by the preceding labial or velar consonant. 
The pause between target and alternative ques-
tion in the stimuli was again set to 1.5 seconds 
by inserting or cutting out silence. 

 

 
Figure 5: Intensity contrast (loud: +40%, top vs. 
soft: -60%, bottom) created for Experiment 2, 
exemplified by “kramen” (to fish sth. out). 

 
Second, instead of the difference in rise shape 

(all target questions of Experiment 2 ended in a 
similarly concave rise), we created a difference 
in the intensity level of the <-en#> syllable. 
More specifically, the naturally produced inten-
sity pattern of each syllabic nasal [n `], [m `] or [N `] 
(which typically featured a small intensity in-
crease towards the center of the sound segment, 
followed by a steep intensity decrease until the 
end of the target question) was expanded by 40% 
for the “loud” condition and abated by 60% for 
the “soft” condition. So, the resulting pairs of 
stimuli showed a clearly perceivable intensity 

contrast – “loud” vs. “soft” – in the amount of 
100% or 6 dB at the end of the target questions. 
The intensity manipulation was conducted with 
Adobe Audition. An example of two waveforms 
of the question-final target word “kramen” (to 
fish sth. out, without place assimilation of /n/) is 
presented in Figure 5. 

Third, Experiment 2 was run with a different 
group of 20 native speakers of Standard Northern 
German (15 females, 5 males, 23-38 years old). 

4.3 Results of Experiment 2 

We used again a four-way repeated-measures 
ANOVA for analyzing our response-time meas-
urements. The fixed factors were the same as in 
Experiment 1, except that the former factor Rise 
Shape was substituted by the factor Intensity De-
crease. The results of the ANOVA are restricted 
to three significant main effects that concerned 
the fixed factors Reduction (F[1,19]= 324.653, 
p<0.001, ηp²= 0.945), Intensity Decrease (F[1,19]= 
460.355, p<0.001, ηp²= 0.96), and Segmental 
Context (F[1,19]= 72.091, p<0.001, ηp²= 0.791). 

As can be seen in Figure 6, the effect of Re-
duction is due to the fact that participants re-
sponded more quickly in the less reduced [n `] 
condition than in the reduced [m̀] or [N `] condi-
tions. Furthermore, responses came faster when 
the degree of intensity reduction at the end of the 
target question was stronger, i.e. when target 
questions ended softer rather than louder. Fi-
nally, response times were shorter when the syl-
labic nasal at the end of the target question was 
labial rather than velar and/or preceded by a la-
bial rather than a velar consonant. 

 

 

 
Figure 6: Results of Experiment 2 in terms of 
average response times (in ms) per stimulus con-
dition; each bar n=20. 

4.4 Conclusions from Experiment 2 

All hypotheses in 4.1 were supported by Experi-
ment 2 The effect of Reduction means that our 
participants detected the subtle phonetic differ-
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ence between non-assimilated and assimilated 
question-final /n/, and their reaction to this subtle 
difference was consistent with that of Experi-
ment 1: Participants respond readily when the 
target question ended less reduced, and/or they 
hesitated to respond after those target questions 
whose final <-en#> syllables were more strongly 
reduced. So, Experiment 2 provided additional 
evidence for our conclusion that stronger seg-
mental reduction functions as a cue to turn-
holding and/or that weaker segmental reduction 
functions as a cue to turn-yielding. 

The intensity level of the final <-en#> sylla-
bles had a separate effect. That louder ending 
questions delayed the participants’ response 
times suggests that a high utterance-final inten-
sity level has a turn-holding function. Addition-
ally (or alternatively), the immediate responses 
after soft ending questions indicate that the lower 
utterance-final intensity level is a cue to turn-
yielding. Like for the segmental effects above, 
the intensity effects fit in well with the real use 
and distribution of intensity differences in spon-
taneous dialogues, cf. 1.1. 

If we view the loud vs. soft contrast in terms 
of a low vs. high degree of reduction, then we 
can see that intensity reduction and segmental 
reduction played opposite roles in turn-taking. 
Stronger reduction at the segmental level pointed 
in the direction of turn-holding, whereas stronger 
intensity reduction pointed in the direction of 
turn-yielding. This fact leads to the conclusion 
that turn-taking cues are no indexical cues inso-
far as they cannot be uniformly projected onto 
changes in the speaker’s effort. 

Furthermore, Experiment 2 also replicated the 
Segmental-Context effect of Experiment 1. As-
suming – in accord with previous studies and 
informal measurements in our stimuli – that the 
labial condition was associated with an overall 
lower intensity level in the target words than the 
velar condition (e.g., due to longer closure dura-
tions, less intense releases, and closed lips during 
nasal production), then the unexpected Segmen-
tal-Context effect becomes understandable as an 
additional reflection of the role of intensity in 
turn-taking. That is, as has been anticipated in 
3.5, the intrinsically higher intensity in our velar 
target words created a bias towards turn-holding, 
and/or the intrinsically less intense labial target 
words created a bias towards turn-yielding. 

Finally, a comparison of Figures 4 and 6 
shows that the response times yielded by Ex-
periment 2 were overall longer than those of Ex-
periment 1. This general bias should not be over 

interpreted as it is probably just due to the fact 
that Experiment 2 was performed in the evening, 
whereas Experiment 1 took place in the morning. 

5 General discussion 

It is known for a long time that turn yielding and 
holding rely on complex form-function systems. 
So far, these systems have been typically associ-
ated with the prosodic triplet of duration, voice 
quality, and F0 level. Together they create bun-
dles of perceptually salient phrase-final patterns 
that involve the direction and range of intonation 
movements, final lengthening, and non-modal 
voice qualities (typically glottalization). 

More recently, analyses of spontaneous dia-
logues suggested that the bundles of final turn 
yielding and holding cues are still richer and in-
clude also comparatively subtle differences in the 
degree of segmental reduction, the intensity 
level, and the shape of intonation movements, 
especially of rises. Our study enhanced this pro-
duction evidence and confirmed for Standard 
Northern German that listeners do in fact pick up 
on these additional phrase-final differences and 
interpret them – in parallel to their use in produc-
tion – as cues to turn yielding and/or holding.  

The question that we raised in 1.2 can thus be 
answered affirmatively; and this means that our 
study laid the ground for a broader scope in the 
phonetics of turn-taking. In particular, as is dem-
onstrated by the turn-taking effects of segmental 
elision and assimilation, this broader scope has to 
span the traditionally separated segmental and 
prosodic layers of the speech signal. That is, like 
for prominence, intonation, and many other 
form-function systems, the phonetics of turn-
taking is not merely a matter of prosody. 

Moreover, our findings stress that understand-
ing speech communication includes having a 
constant eye on phonetic detail. Every phonetic 
detail should initially be considered functional 
rather than prejudging it as epiphenomenal or 
random variation.  

Previous studies, some of which are cited in 
1.1, have shown that the production and percep-
tion of turn yielding and holding exhibit strong 
similarities across many – even unrelated – lan-
guages. For this reason, we assume that our find-
ings are of general cross-linguistic significance. 
Testing this assumption will be the obvious next 
step. The corresponding perception experiments 
should use the same innovative task as the pre-
sent study. Although this task is complex, its in-
teractive concept proved to yield clear results 
while ensuring a high level of ecological validity. 

268



References 

E.L. Asu. 2006. Rising intonation in Estonian: an 
analysis of map task dialogues and spontaneous 
conversations. Proc. Phonetic Symposium 2006, 
Helsinki, Finland: 1-9. 

W.G. Beattie. 1981. The regulation of speaker turns in 
face-to-face conversation: Some implications for 
conversation in sound-only communication chan-
nels. Semiotica, 34: 55-70. 

M. Clayards, R.N. Aslin, M.K. Tanenhaus, and R.A. 
Jacobs. 2007. Within category phonetic variability 
affects perceptual uncertainty. Proc. 16th Interna-
tional Congress of Phonetic Sciences, Saar-
brücken, Germany: 701-704. 

C. Clemens and C. Diekhaus. 2009. Prosodic turn-
yielding Cues with and without optical Feedback. 
Proc. SIGDIAL 2009: the 10th Annual Meeting of 
the Special Interest Group in Discourse and Dia-
logue, London, UK: 107–110. 

G.J. Docherty, J. Milroy, L. Milroy, and D. Walshaw. 
1997. Descriptive adequacy in phonology: A varia-
tionist perspective. J. of Linguistics, 33: 275–310. 

E. Dombrowski and O. Niebuhr. 2005. Acoustic pat-
terns and communicative functions of phrase-final 
rises in German: activating and restricting con-
tours. Phonetica, 62: 176-195. 

S. Duncan, Jr.. 1972. Some signals and rules for tak-
ing speaking turns in conversations. Journal of 
Personality and Social Psychology, 23: 283-292. 

J. Edlund and M. Heldner. 2005. Exploring prosody 
in interaction control. Phonetica, 62: 215-226. 

J.-Y. Fon. 2002. A cross-linguistic study on syntactic 
and discourse boundary cues in spontaneous 
speech. PhD thesis, Ohio State University, USA. 

J.-Y. Fon, K. Johnson, and S. Chen. 2011. Durational 
Patterning at Syntactic and Discourse Boundaries 
in Mandarin Spontaneous Speech. Language and 
Speech, 54: 5-32. 

H. Friedberg. 2011. Turn-taking cues in a human tu-
toring cirpus. Proc. Association for Computational 
Linguistics, Portland, USA: 94-98. 

A. Gravano. 2009. Turn-taking and affirmative cue 
words in task-oriented dialogue. PhD thesis, Co-
lumbia University, USA. 

A. Gravano and J. Hirschberg. 2009. Turn yielding 
cues in task-oriented dialogue. Proc. SIGDIAL 
2009: the 10th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue, London, 
UK: 253-261. 

A. Kendon. 1995. Gestures as illocutionary and dis-
course structure markers in Southern Italian con-
versation. Journal of Pragmatics, 23: 247-279. 

K.J. Kohler. 1983. Prosodic boundary signals in Ger-
man. Phonetica, 40: 89–134. 

K.J. Kohler. 1996. Labelled data bank of spoken 
Standard German: The Kiel Corpus of Spontaneous 
Speech. Proc. 4th  International Conference on 
Spoken Language Processing, Philadelphia, USA: 
1938-1941. 

K.J. Kohler. 2004. Categorical speech perception re-
visited. Proc. of the Conference From Sound to 
Sense: 50+ years of discoveries in speech commu-
nication, MIT, Cambridge, USA: 1-6. 

K.J. Kohler and O. Niebuhr. 2011. On the role of ar-
ticulatory prosodies in German message decod-
ing. Phonetica, 68: 1-31. 

D. H. Klatt. 1976. Linguistic uses of segmental dura-
tion in English: Acoustic and perceptual evidence. 
Journal of the Acoustical Society of America 59: 
1208-21. 

I. Lehiste. 1982. Some phonetic characteristics of 
discourse. Studia Linguistica, 36: 117-130 

J. Local, J. Kelly, and W.H. Wells. 1986. Towards a 
phonology of conversation: Turn-taking in Tyne-
side English. Journal of Linguistics, 22: 411–437. 

J. Local and. G. Walker. 2012. How phonetic features 
project more talk. Journal of the International 
Phonetic Association, 42: 255-281. 

C.H. Nakatani, J. Hirschberg, and B.J. Grosz. 1995. 
Discourse structure in spoken language: Studies on 
speech corpora. Proc. AAAI Spring Symposium on 
Empirical Methods in Discourse Interpretation and 
Generation, Palo Alto, USA: 1-7. 

R.A. Ogden. 2001. Turn transition, creak and glottal 
stop in Finnish talk-in-interaction. Journal of the 
International Phonetic Association, 31: 139–152. 

B. Peters. 2006. Form und Funktion prosodischer 
Grenzen im Gespräch. PhD thesis, Christian-
Albrechts-Universität zu Kiel, Germany. 

A. Raux. 2008. Flexible turn-taking for spoken dialog 
systems. PhD thesis, Carnegie Mellon University, 
Pittsburgh, USA. 

M. Taboada. 2006. Spontaneous and non-spontaneous 
turn taking. Pragmatics, 16: 329-360. 

J. Vaissière, J. and A. Michaud. 2006. Prosodic con-
stituents in French: a data-driven approach. In I. 
Fónagy, Y. Kawaguchi, T. Moriguchi (eds), Pros-
ody and syntax (pp. 47-64). Amsterdam: John Ben-
jamins. 

K. Weilhammer and S. Rabold. 2003. Durational as-
pects in turn taking. Proc. 15th International 
Congress of Phonetic Sciences, Barcelona, Spain : 
931–934. 

269



Proceedings of the SIGDIAL 2013 Conference, pages 270–279,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Gesture Semantics Reconstruction Based on Motion Capturing and
Complex Event Processing: a Circular Shape Example

Thies Pfeiffer, Florian Hofmann
Artificial Intelligence Group

Faculty of Technology
Bielefeld University, Germany
(tpfeiffe|fhofmann)

@techfak.uni-bielefeld.de

Florian Hahn, Hannes Rieser, Insa Röpke
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Abstract

A fundamental problem in manual based
gesture semantics reconstruction is the
specification of preferred semantic con-
cepts for gesture trajectories. This issue
is complicated by problems human raters
have annotating fast-paced three dimen-
sional trajectories. Based on a detailed
example of a gesticulated circular trajec-
tory, we present a data-driven approach
that covers parts of the semantic recon-
struction by making use of motion captur-
ing (mocap) technology. In our FA3ME
framework we use a complex event pro-
cessing approach to analyse and annotate
multi-modal events. This framework pro-
vides grounds for a detailed description of
how to get at the semantic concept of cir-
cularity observed in the data.

1 Introduction

Focussing on iconic gestures, we discuss the ben-
efit of motion capturing (mocap) technology for
the reconstruction of gesture meaning and speech
meaning: A fundamental problem is the specifica-
tion of semantic concepts for gesture trajectories,
e.g., for describing circular movements or shapes.
We start with demonstrating the limitations of our
manual based annotation. Then we discuss two
strategies of how to deal with these, pragmatic in-
ference vs. low level annotation based on mocap
technology yielding a more precise semantics. We
then argue that the second strategy is to be pre-
ferred to the inferential one.

The annotation of mocap data can be re-
alised semi-automatically by our FA3ME frame-
work for the analysis and annotation of multi-
modal events, which we use to record multi-modal
corpora. For mocap we use the tracking sys-
tem ART DTrack2 (advanced realtime tracking

GmbH, 2013), but the framework is not restricted
to this technical set-up. In cooperation with others
(e.g., (Kousidis et al., 2012)), we also have used
products from Vicon Motion Systems (2013) and
the Microsoft Kinect (Microsoft, 2013). Pfeiffer
(2013) presents an overview on mocap technology
for documenting multi-modal studies.

We thus provide details about the way gestures
are analysed with FA3ME and about the procedure
to reconstruct the gesture meaning for the circular
movement in our chosen example. We conclude
with a discussion of how these low-level recon-
structions can be integrated into the reconstruction
of speech and gesture meaning.

2 From Linguistic Annotation to MoCap

In this section we describe our methodology for
the reconstruction of gesture meaning, speech
meaning and its interfacing, illustrated by an ex-
ample. We then show a shortcoming of our
corpus-based annotation and discuss two possible
solutions to amend it, pragmatic inference vs. se-
mantics based on mocap technology. The technol-
ogy described in Section 3 will in the end enable
us to get the preferred reconstruction of gesture se-
mantics.

The reconstruction of the gesture meaning and
its fusion with speech meaning to get a multi-
modal proposition works as follows: On the
speech side we start with a manual transcription,
upon which we craft a context free syntax analy-
sis followed by a formal semantics. On the ges-
ture side we build an AVM-based representation
of the gesture resting on manual annotation.1 Tak-
ing the gesture as a sign with independent mean-
ing (Rieser, 2010), this representation provides the
basis for the formal gesture semantics. In the next

1We do not use an explicit gesture model, which would
go against our descriptive intentions. The range of admissible
gestures is fixed by annotation manuals and investigations in
gesture typology.
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Figure 1: Our example: a circular gesture (left:
video still) to describe the path around the pond
(right).

step, the gesture meaning and the speech meaning
are fused into an interface (Röpke et al., 2013).
Every step in these procedures is infested by un-
derspecification which, however, we do not deal
with here. These are, for instance, the selection
of annotation predicates, the attribution of logical
form to gestures and the speech analysis.

In our example, we focus on two gesture pa-
rameters, the movement feature of the gesture
and the representation technique used. It orig-
inates from the systematically annotated corpus,
called SaGA, the Bielefeld Speech-and-Gesture
Alignment-corpus (Lücking et al., 2012). It con-
sists of 25 dialogues of dyads conversing about a
“bus ride” through a Virtual Reality town. One
participant of each dyad, the so-called Route-
Giver (RG), has done this ride and describes the
route and the sights passed to the other participant,
the so-called Follower (FO). The taped conversa-
tions are annotated in a fine-grained way.

In the example, the RG describes a route section
around a pond to the FO. While uttering “Du gehst
drei Viertel rum/You walk three quarters around”,
she produces the gesture depicted in Figure 1. In-
tuitively, the gesture conveys a circularity infor-
mation not expressed in the verbal meaning. In or-
der to explicate the relation of speech and gesture
meaning, we use our methodology as described
above. To anticipate, we get a clear contribution
of the speech meaning which is restricted by the
gesture meaning conveying the roundness infor-
mation. The first step is to provide a syntactical
analysis which you can see in Figure 2.2

2The gesture stroke extends over the whole utterance.
Verb phrases can feature so-called “sentence brackets”. Here,
due to a sentence bracket, the finite verb stem “gehst” is sepa-
rated from its prefix (“rum”). Together they embrace the Ger-
man Mittelfeld, here “drei Viertel”. Observe the N-ellipsis
“∅” in the NP. The prefix and the finite verb stem cannot be
fully interpreted on their own and are therefore marked with

S

VP

VPref*

rum
around

VFin**

NP

N

∅

Quant

N

Viertel
quarters

NUM

drei
three

VFin*

gehst
walk

NP

PN

Du
You

gesture stroke

Figure 2: Syntax analysis

The speech representation is inspired by a
Montague-Parsons-Reichenbach event ontology,
and uses type-logic notions. Ignoring the embed-
ding in an indirect speech act3, the speech se-
mantics represents an AGENT (the FO) who is
engaged in a WALK-AROUND event e related to
some path F, and a THEME relating the WALK-
AROUND event e with the path F.

∃eyF 3/4x(WALK-AROUND(e) ∧
AGENT(e, FO) ∧ THEME(e, x)

∧ F(x, y)) (1)

The gesture semantics is obtained using the an-
notated gesture features. The relevant features are
the movement of the wrist (Path of Wrist) and the
Representation Technique used.



Path of Wrist ARC<ARC<
ARC<ARC

Representation Technique Drawing




4

Interpreting the values ARC<ARC<
ARC<ARC and Drawing, respectively, the
calculated gesture semantics represents a bent
trajectory consisting of four segments:

an asterisk.
3We have treated the function of speech-gesture ensem-

bles in dialogue acts and dialogues elsewhere (Rieser and
Poesio (2009), Rieser (2011), Hahn and Rieser (2011),
Lüecking et al. (2012)).

4This is a shortened version of the full gesture-AVM. Fea-
tures like hand shape etc. are ignored. See Rieser (2010) for
other annotation predicates.
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∃xy1y2y3y4(TRAJECTORY0(x) ∧ BENT(y1) ∧
BENT(y2)∧ BENT(y3)∧ BENT(y4)∧y1 < y2 < y3

< y4 ∧ SEGMENT(y1, x) ∧ SEGMENT(y2, x) ∧
SEGMENT(y3, x) ∧ SEGMENT(y4, x)). (2)

The paraphrase is: There exists a TRAJECTORY0

x which consists of four BENT SEGMENTS y1, y2,
y3, y4. We abbreviate this formula to:

∃x1(TRAJECTORY1(x1)) (3)

In more mundane verbiage: There is a particu-
lar TRAJECTORY1 x1. In a speech-gesture inter-
face5 (Rieser, 2010) both formulae are extended
by adding a parameter in order to compositionally
combine them:

λY.∃eyF 3/4x (WALK-AROUND(e) ∧
AGENT(e, FO) ∧ THEME(e, x)

∧ F(x, y) ∧ Y(y)) (4)

We read this as: There is a WALK-AROUND event
e the AGENT of which is FO related to a three
quarters (path) F. This maps x onto y which is in
turn equipped with property Y.

λz.∃x1(TRAJECTORY1(x1) ∧ x1 = z) (5)

This means “There is a TRAJECTORY1 x1 identical
with an arbitrary z”. The extensions (4) and (5) are
based on the intuition that the preferred reading is
a modification of the (path) F by the gesture.

Taking the gesture representation as an argu-
ment for the speech representation, we finally get
a simplified multi-modal interface formula. The
resulting proposition represents an AGENT (FO)
who is engaged in a WALK-AROUND event e and a
THEME that now is specified as being related to
a bent trajectory of four arcs due to formula (2):

∃ey 3/4x ∃F(WALK-AROUND(e)∧
AGENT(e, FO) ∧ THEME(e, x) ∧ F(x, y)

∧ TRAJECTORY1(y)) (6)

We take this to mean “There is an AGENT FO’s
WALK-AROUND event e related to a three quarters
(path) F having a TRAJECTORY1 y”.

As a result, the set of models in which the
orginal speech proposition is true is restricted to

5How our model deals with interfacing speech meaning
and gesture meaning has been elaborated in a series of papers
(see footnote 3). We are well aware of the work on gesture-
speech integration by Lascarides and colleagues which we
deal with in a paper on interfaces (Rieser (2013)).

the set of models that contain a bent trajectory
standing in relation to the (path) F. But this restric-
tion is too weak. Intuitively, the gesture conveys
the meaning of a horizontal circular trajectory and
not just four bent arcs. To see the shortcoming,
note that the set of models also includes models
which include a path having four bends that do not
form a circular trajectory.

We envisage two methods to get the appropri-
ate circularity intuition: pragmatic enrichment and
an improvement of our gesture datum to capture
the additional information conveyed in the ges-
ture: By pragmatic enrichment, on the one hand,
horizontal orientation and circularity of the ges-
ture trajectory are inferred using abduction or de-
faults. However, the drawback of working with
defaults or abduction rules is that we would have
to set up too many of them depending on the vari-
ous shapes and functions of bent trajectories.

On the other hand, the datum can be improved
to yield a circularly shaped trajectory instead of
the weaker one consisting of four bent arcs. Our
motion capture data supports the second method:
The motion capture data allows us to compute the
complete trajectory drawn in the gesture space.
This will be the basis for producing a mapping
from gesture parameters to qualitative relations
which we need in the truth conditions. In the end,
we achieve a circular trajectory that is defined as
one approximating a circle, see Section 4.3.

In this mapping procedure resides an under-
specification, which is treated by fixing a thresh-
old for the application of qualitative predicates
through raters’ decisions. This threshold value
will be used in giving truth conditions for, e.g.,
(11), especially for determining APPROXIMATE.

We prefer the second method since it captures
our hypothesis that the gesture as a sign conveys
the meaning circular trajectory. The gain of the
automated annotation via mocap which we will
see subsequently is an improvement of our orig-
inal gesture datum to a more empirically founded
one. As a consequence, the set of models that sat-
isfy our multi-modal proposition can be specified.
This is also the reason for explicitly focussing on
gesture semantics in this paper.

3 FA3ME - Automatic Annotation as
Complex Event Processing

The creation of FA3ME, our Framework for the
Automatic Annotation and Augmentation of Multi-
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modal Events, is inter alia motivated by our key
insight from previous studies that human raters
have extreme difficulties when annotating 3D ges-
ture poses and trajectories. This is especially
true when they only have a restricted view on the
recorded gestures. A typical example is the restric-
tion to a fixed number of different camera angles
from which the gestures have been recorded. In
previous work (Pfeiffer, 2011), we proposed a so-
lution for the restricted camera perspectives based
on mocap data: Our Interactive Augmented Data
Explorer (IADE) allowed human raters to immerse
into the recorded data via virtual reality technol-
ogy. Using a 3D projection in a CAVE (Cruz-
Neira et al., 1992), the raters were enabled to
move freely around and through the recorded mo-
cap data, including a 3D reconstruction of the ex-
perimental setting. This interactive 3D visuali-
sation supported an advanced annotation process
and improved the quality of the annotations but
at high costs. Since then, we only know of Kipp
(2010) who makes mocap data visible for anno-
tators by presenting feature graphs in his annota-
tion tool Anvil in a desktop-based setting. In later
work, Nguyen and Kipp (2010) also support a 3D
model of the speaker, but this needed to be hand-
crafted by human annotators. A more holistic ap-
proach for gesture visualizations are the Gesture
Space Volumes Pfeiffer (2011), which summarize
gesture trajectories over longer timespans or mul-
tiple speakers.

The IADE system also allowed us to add visual
augmentations during the playback of the recorded
data. These augmentations were based on the
events from the mocap data, but aggregated sev-
eral events to higher-level representations. In a
study on pointing gestures (Lücking et al., 2013),
we could test different hypotheses about the con-
struction of the direction of pointing by adding
visual pointing rays shooting in a 3D reconstruc-
tion of the original real world setting. This al-
lowed us to asses the accuracy of pointing at a
very high level in a data-driven manner and derive
a new model for the direction of pointing (Pfeiffer,
2011).

3.1 Principles in FA3ME

In the FA3ME project, we iteratively refine our
methods for analysing multi-modal events. As a
central concept, FA3ME considers any recorded
datum as a first-level multi-modal event (see Fig-

ure 3, left). This can be a time-stamped frame
from a video camera, an audio sample, 6-degree-
of-freedom matrices from a mocap system or gaze
information from an eye-tracking system (e.g., see
Kousidis et al. (2012)).

A distinctive factor of FA3ME is that we con-
sider annotations as second-level multi-modal
events. That is, recorded and annotated data
share the same representation. Annotations can be
added by both, human raters and classification al-
gorithms (the event rules in Figure 3, middle). An-
notations can themselves be target of annotations.
This allows us, for example, to create automatic
classifiers that rely on recorded data and manual
annotations (e.g., the first yellow event in Figure 3
depends on first-level events above and the blue
second-level event to the right). This is helpful
when classifiers for complex events are not (yet)
available. If, for instance, no automatic classifiers
for the stroke of a gesture exists, these annotations
can be made by human raters. Once this is done,
the automatic classifiers can describe the move-
ments during the meaningful phases by analysing
the trajectories of the mocap data.

Third-level multi-modal events are augmenta-
tions or extrapolations of the data. They might
represent hypotheses, such as in the example of
different pointing rays given above.

3.2 Complex Event Processing

In FA3ME, we consider the analysis of multi-
modal events as a complex event processing (CEP)
problem. CEP is an area of computer science ded-
icated to the timely detection, analysis, aggrega-
tion and processing of events (Luckham, 2002). In
the past years, CEP has gained an increased atten-
tion especially in the analysis of business relevant
processes where large amount of data, e.g., share
prices, with high update rates are analysed. This
has fostered many interesting tools and frame-
works for the analysis of structured events (Arasu
et al., 2004a; EsperTech, 2013; Gedik et al., 2008;
StreamBase, 2013). Hirte et al. (2012) apply
CEP to a motion tracking stream from a Microsoft
Kinect for real-time interaction, but we know of
no uses of CEP for the processing of multi-modal
event streams for linguistic analysis.

Dedicated query languages have been devel-
oped by several CEP frameworks which allow us
to specify our event aggregations descriptively at
a high level of abstraction (Arasu et al., 2004b;

273



Figure 3: In FA3ME, incoming multi-modal events are handled by a complex event processing frame-
work that matches and aggregates events based on time windows to compose 2nd level multi-modal
events. All multi-modal events can then be mapped to tiers in an annotation tool.

Gedik et al., 2008). The framework we use for
FA3ME is Esper (EsperTech, 2013), which pro-
vides a SQL-like query language. As a central ex-
tension of SQL, CEP query languages introduce
the concept of event streams and time windows as
a basis for aggregation (see Figure 3).

The CEP approach of FA3ME allows us to cre-
ate second- and third-level multi-modal events on-
the-fly. We can thus provide near real-time anno-
tations of sensor events. However, we have to con-
sider the latencies introduced by sensors or com-
putations and back-date events accordingly.

As a practical result, once we have specified our
annotation descriptions formally in the language
of CEP, these descriptions can be used to create
classifiers that operate both on pre-recorded multi-
modal corpora and on real-time data. This makes
CEP interesting for projects where research in Lin-
guistics and Human-Computer Interaction meet.

4 From MoCap to Linguistic Models

In this section, we will now address the problem
of annotating the circular trajectory. In order to
get the preferred semantics we yet cannot rely ex-
clusively on the automatic annotation. We need
the qualitative predicate “phase” to identify the
meaningful part of the gesture (the stroke). Addi-
tionally, the qualitative predicate “representation
technique” is required to select the relevant mo-
cap trackers. For instance, the representation tech-
nique “drawing” selects the marker of the tip of
the index finger. We thus require a hybrid model
of manual and automatic annotations. In the fol-
lowing, we will focus on the automatic annotation.

First of all, when using mocap to record data,
a frame of reference has to be specified as a ba-

Figure 4: The coordinate system of the speaker
(left). The orientations of the palms are classified
into eight main directions (right).

sis for all coordinate systems. We chose a person-
centered frame of reference anchored in the solar
plexus (see Figure 4). The coronal plane is de-
fined by the solar plexus and the two shoulders.
The transverse plane is also defined by the solar
plexus, perpendicular to the coronal plane with a
normal-vector from solar plexus to the point ST
(see Figure 4) between the two shoulders.

4.1 Basic Automatic Gesture Annotations

The analysis of mocap data allows us to create ba-
sic annotations that we use in our corpora on-the-
fly. This speeds up the annotation process and lets
human raters focus on more complex aspects. One
basic annotation that can be achieved automati-
cally is the classification of the position of gestur-
ing hands according to the gesture space model of
McNeill (1992). As his annotation schema (see
Figure 5, right) is tailored for the annotation of
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Figure 5: Our extended gesture space categorisa-
tion (upper left) is based on the work of McNeill
(lower right).

video frames, we extended this model to support
mocap as well (see Figure 5, left). The important
point is that the areas of our schema are derived
from certain markers attached to the observed par-
ticipant. The upper right corner of the area C-UR
(Center-Upper Right), for example, is linked to the
marker for the right shoulder. Our schema thus
scales directly with the size of the participant. Be-
sides this, the sub-millimeter resolution of the mo-
cap system also allows us to have a more detailed
structure of the center area. The schema is also
oriented according to the current coronal plane of
the participant and not, e.g., according to the per-
spective of the camera.

A second example is the classification of the ori-
entation of the hand, which is classified according
to the scheme depicted in Figure 4, right. This
classification is made relative to the transversal
plane of the speaker’s body.

4.2 Example: The Circular Trajectory

For the detection and classification of gestures
drawing shapes two types of multi-modal events
are required. First, multi-modal events generated
by the mocap system for the hand. These events
contain matrices describing the position and ori-
entation of the back of the hand. Second, multi-

modal events that mark the gesture stroke (one
event for the start and one for the end) have to be
generated, either by hand or automatically. At the
moment, we rely on our manual annotations for
the existing SaGA corpus.

We realise the annotation of circular trajecto-
ries in two steps. First, we reduce the trajectory
provided by the mocap system to two dimensions.
Second, we determine how closely the 2D trajec-
tory approximates a circle.

Projection of the 3D Trajectory
The classifier for circles collects all events for the
hand that happened between the two events for the
stroke. As noted above, these events represent the
position and orientation of the hand in 3D-space.
There are several alternatives to reduce these three
dimensions to two for classifying a circle (a 3D
Object matching a 2D circle would be a sphere, a
circular trajectory through all 3 dimensions a spi-
ral). The principal approach is to reduce the di-
mensions by projecting the events on a 2D plane.

∃xy (TRAJECTORY(x)∧ PROJECTION- OF(x, y)

∧ TRAJECTORY2D(y)) (7)

Which plane to chose depends on the choice
made for the annotation (e.g., global for the cor-
pus) and thus on the context. For the description
of gestures in dialogue there are several plausible
alternatives. First, the movements could be pro-
jected onto one of the three body planes (sagit-
tal plane, coronal plane, transversal plane). In our
context, the transversal plane is suitable, as we are
dealing with descriptions of routes, which in our
corpus are made either with respect to the body
of the speaker or with respect to the plane of an
imaginary map, both extend parallel to the floor.
Figure 6 (upper left) shows the circular movement
in the transversal plane. A different perspective
is presented in Figure 6 (right). There the perspec-
tive of a bystander is chosen. This kind of perspec-
tive can be useful for describing what the recipient
of a dialogue act perceives, e.g., to explain misun-
derstandings. For this purpose, the gesture could
also be annotated twice, once from the speaker’s
and once from the recipient’s perspective.

At this point we want to emphasise that posi-
tion and orientation of the planes do not have to be
static. They can be linked to the reference points
provided by the mocap system. Thus when the
speaker turns her body, the sagittal, coronal and
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Figure 6: The circle-like gesture from our exam-
ple can be visualised based on the mocap data. The
right side shows the visualisation from the per-
spective of an interlocutor, the visualisation in the
upper left corner is a projection of the movement
on the transversal plane of the speaker.

transversal planes will move accordingly and the
gestures are always interpreted according to the
current orientation.

The plane used for projection can also be de-
rived from the gesture itself. Using principal com-
ponent analysis, the two main axes used by the
gesture can be identified. These axes can then have
arbitrary orientations. This could be a useful ap-
proach whenever 3D objects are described and the
correct position and orientation of the ideal circle
has to be derived from the gesture.

Circle Detection
Once the gesture trajectory has been projected
onto a 2D plane, the resulting coordinates are clas-
sified. For this, several sketch-recognition algo-
rithms have been proposed (e.g., (Alvarado and
Davis, 2004; Rubine, 1991)). These algorithms
have been designed for sketch-based interfaces
(such as tablets or digitisers), either for recognis-
ing commands or for prettifying hand-drawn dia-
grams. However, once the 3D trajectory has been
mapped to 2D, they can also be applied to natural
gestures. The individual sketch-recognition algo-
rithms differ in the way they are approaching the
classification problem. Many algorithms follow a
feature-based approach in which the primitives to
be recognised are described by a set of features
(such as aspect ratio or ratio of covered area) (Ru-
bine, 1991). This approach is especially suited,
when new primitives are to be learned by example.
An alternative approach is the model-based ap-
proach in which the primitives to be recognised are

described based on geometric models (Alvarado
and Davis, 2004; Hammond and Davis, 2006).
Some hybrid approaches also exist (Paulson et al.,
2008). The model-based approaches are in line
with our declarative approach to modelling, and
are thus our preferred way for classifying shapes.

In our case, the projected 2D trajectory
of the gesture is thus classified by a model-
based sketch-recognition algorithm, which clas-
sifies the input into one of several shape classes
(circle, rectangle, ...) with a correspond-
ing member function ISSHAPE(y, CIRCLE) ∈
[0 . . . 1]. By this, we can satisfy a subformula
APPROXIMATES(y, z) ∧ CIRCLE(z) by pre-setting
a certain threshold. The threshold has to be cho-
sen by the annotators, e.g., by rating positive and
negative examples, as it may vary between partic-
ipants and express the sloppiness of their gestures.

4.3 From MoCap to a Revision of Semantics
The result of the FA3ME reconstruction of our
gesture example can be expressed as follows:

∃xyz (TRAJECTORY(x)

∧ PROJECTION- OF(x, y) ∧ TRAJECTORY2D(y)

∧ APPROXIMATES(y, z) ∧ CIRCLE(z)) (8)

So we have: There is a projection of TRAJEC-
TORY x, TRAJECTORY2D y, which is approximat-
ing a circle. We can now provide a description of
the domain which can satisfy formula (8). Conse-
quently, formula (8) is enhanced by definition (9).

CIRCULAR TRAJECTORY(x) =DEF

∃yz(TRAJECTORY2(x)∧ PROJECTION- OF(x, y)∧
APPROXIMATES(y, z) ∧ circle(z)) (9)

This definition reads as “a CIRCULAR TRAJEC-
TORY x is a TRAJECTORY2 which has a PROJEC-
TION y that approximates some circle z”.

The formula (9) substitutes the TRAJECTORY1

notion. The improved multi-modal meaning is
(10):

∃ey 3/4x ∃F(WALK-AROUND(e)∧
AGENT(e, FO) ∧ THEME(e, x) ∧ F(x, y)

∧ CIRCULAR TRAJECTORY(y)) (10)

Interfacing the new gesture representation with
the speech representation captures our intuition
that the gesture reduces the original set of mod-
els to a set including a circular-shaped trajectory.
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Figure 7: Specification of gesture semantics due
to results of classification in FA3ME. Simulation
data feed into the gesture semantics which inter-
faces with the speech semantics.

The division of labour between linguistic seman-
tics and FA3ME technology regarding the seman-
tic reconstruction is represented in Figure 7.

By way of explanation: We have the multi-
modal semantics integrating speech semantics and
gesture semantics accomplished via λ-calculus
techniques as shown in Section 2. As also ex-
plained there, it alone would be too weak to de-
limit the models preferred with respect to the
gesture indicating roundness. Therefore FA3ME
technology leading to a definition of CIRCU-
LAR TRAJECTORY is used which reduces the set
of models to the preferred ones assuming a thresh-
old n for the gestures closeness of fit to a circle.
Thus, the relation between some gesture parame-
ters and qualitative relations like circular can be
considered as a mapping, producing values in the
range [0 . . . 1]. Still, it could happen that formula
(8) cannot be satisfied in the preferred models. As
a consequence, the multi-modal meaning would
then fall short of satisfaction.

5 Conclusion

During our work on the interface between speech
and gesture meaning our previous annotations
turned out to be insufficient to support the seman-
tics of concepts such as CIRCULAR TRAJECTORY.
This concept is a representative of many others
that for human annotators are difficult to rate with
the rigidity required for the symbolic level of se-
mantics. Scientific visualisations, such as depicted
in Figure 6, can be created to support the human
raters. However, there is still the problem of per-
spective distortions three dimensional gestures are
subject to when viewed from different angles and
in particular when viewed on a 2D screen. It is

also difficult to follow the complete trajectory of
such gestures over time. Thus, one and the same
gesture can be rated differently depending on the
rater, while an algorithm with a defined threshold
is not subject to these problems.

The presented hybrid approach based on quali-
tative human annotations, mocap and our FA3ME
framework is able to classify the particular 2D tra-
jectories we are interested in following a three-
step process: After the human annotator identi-
fied the phase and selected relevant trackers, the
dimensions are reduced to two and a rigid model-
based sketch-recognition algorithm is used to clas-
sify the trajectories. This classification is re-
peatable, consistent and independent of perspec-
tive. A first comparison of the manually anno-
tated data and the automatic annotations revealed
a high match. All differences between the annota-
tions can be explained by restrictions of the video
data which yielded a lower precision in the hu-
man annotations specifying the slant of the hand.
Thus, the main issues we had with the results
of human raters have been addressed, however a
more formal evaluation on a large corpus remains
to be done. What also remains is a specification
of membership functions for each kind of ges-
ture trajectories of interest (e.g., circular, rectan-
gular, etc.). For this, a formal specification of what
we commonly mean by, for instance, CIRCULAR,
RECTANGULAR etc. is required.

The automated annotation via mocap im-
proves our original gesture datum to capture the
circularity-information conveyed in the gesture.
We have a better understanding of the gesture
meaning adopted vis-à-vis the datum considered.
As it turns out, resorting to pragmatic inference
cannot be avoided entirely, but we will exclude
a lot of unwarranted readings which the manual-
based logical formulae would still allow by us-
ing the approximation provided by body tracking
methods. Not presented here is the way third-level
multi-modal events are generated by re-simulating
the data in a 3D world model to generate context
events, e.g., to support pragmatics.
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Abstract

In many environments (e. g. sports com-
mentary), situations incrementally unfold
over time and often the future appearance
of a relevant event can be predicted, but not
in all its details or precise timing. We have
built a simulation framework that uses our
incremental speech synthesis component
to assemble in a timely manner complex
commentary utterances. In our evaluation,
the resulting output is preferred over that
from a baseline system that uses a simpler
commenting strategy. Even in cases where
the incremental system overcommits tem-
porally and requires a filled pause to wait
for the upcoming event, the system is pre-
ferred over the baseline.

1 Introduction

In spontaneous speech, speakers often commit tem-
porally, e. g. by starting utterances that they do not
yet know how to complete (Clark, 1996), putting
time pressure on them for the generation of a com-
pletion. While this may be for planning and effi-
ciency reasons, it also enables them to start com-
menting on events for which the outcome is not yet
known. For example when a ball is flying towards
the goal, but it is uncertain yet whether it will hit,
in sports commentary.

To accommodate this incremental behaviour, hu-
man speakers plan their utterances just somewhat
ahead, typically in chunks of major phrases (Levelt,
1989), and remain flexible to change or abandon
the original plan, or to hesitate, e. g. to adapt their
timing. This flexibility is in contrast to speech
output in spoken dialogue systems (SDSs) which
typically generate, synthesize and deliver speech
in units of full utterances that cannot be changed
while ongoing, apart from being aborted or inter-
rupted (Edlund, 2008).

Recently, incremental speech synthesis (iSS) has
been presented (Dutoit et al., 2011; Baumann and
Schlangen, 2012b) which allows to start partial ut-
terances that are then smoothly extended during
verbalization. Incremental spoken output for di-
alogue systems has been shown to improve natu-
ralness (Buschmeier et al., 2012) and Skantze and
Hjalmarsson (2010) have used filled pauses to hold
a turn. Dethlefs et al. (2012) present an incremental
NLG strategy to reduce the need for filled pauses
in interactions.

We investigate the impact of incremental spoken
output in a highly dynamic environment, that is,
where the rate of external events is high enough
to allow only few utterances to finish as planned.
As an example, we choose an otherwise simple
commentary domain, where incremental output en-
ables the system to combine multiple events into
one complex commenting utterance that takes into
account predictions about upcoming events. If the
system overcommits to the timing of future events,
it autonomously uses a filled pause until more ma-
terial becomes available.

2 Related Work

A paradigmatic example of a domain that uses
open-ended utterances is sports commentary,
which has received some attention in the NLG
community. For example, Chen and Mooney
(2008) present a system that learns from hand-
annotated data what to comment on. However,
attention seems to have been placed more on
truthfulness of the content, as, judging from videos
provided on their website,1 the formulations
that are produced are rather monotonic (“pink7
dribbles towards the goal. pink7 shoots for the

goal. pink7 passes to...”). More importantly,
the delivery of a produced utterance does not seem
to be temporally tied to the occurrence of the event.

1
http://www.cs.utexas.edu/users/ml/clamp/sportscasting
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Figure 1: The map shown in the CarChase domain,
including the car on one of its itineraries (red; an-
other in blue). At the depicted moment we can
assume that the car will take a turn, but do not
know whether left or right.

Repeatedly, utterances are synthesized long after
the fact that they describe which sometimes has
become obsolete at that point (for example, a goal
is scored while the system still talks about a pass).

Lohmann et al. (2011) describe another domain
that can be called highly dynamic: a system that
adds spoken assistance to tactile maps for the vi-
sually impaired. In their settings, users can move
around on a computer representation of a map with
a hand-held haptic force-feedback device. Users
are given spoken advice about the currently tra-
versed streets’ names, the relation of streets to each
other, and to other map objects in the user’s vicin-
ity. Such exploratory moves by users can become
rather quick, which in the system they describe
can lead to output that comes late, referring to a
position that has long been left.

3 A Highly Dynamic Commenting Domain

Our example domain combines properties of the
sports commentary and map exploration domains
mentioned above: the CarChase domain depicted
in Figure 1. In the domain, a car drives around
streets on the map and a commentator (supposed to
be observing the scene from above) comments on
where it is driving and what turns it is taking.

The car’s itinerary in our domain simulator is
scripted from a configuration file which assigns
target positions for the car at different points in time
and from which the motion and rotation of the car
is animated. The speed of the car is set so that the
event density is high enough that the setting cannot
be described by simply producing one utterance
per event – in other words: the domain is highly
dynamic.

time event description ongoing utterance (already realized part in bold,
newly appended continuation in italic)

t1 car on Main Street The car drives along Main Street.
t2 car will likely turn . . . drives along Main Street and then turns ‹hes›
t3 car turns right . . . drives along Main Street and then turns right.

Figure 2: Example of incremental utterance pro-
duction as a car drives along a street and turns. The
ongoing utterance is extended as events unfold.

4 A Strategy for Incremental
Commentary

We distinguish three types of events in the do-
main: identification (ID) events trigger the system
to name the street the car is on, turn events fire
when the car is taking a turn. Finally, turn-prep
events fire when it is obvious that the car will turn
but the direction of the turn remains open. These
three event types are shown in Figure 2 at time t1
(ID), t2 (turn-prep), and t3 (turn).

As can be seen in the example in Figure 2, the
turn-prep event enables a system that is able to
incrementally update its ongoing utterance to con-
tinue speaking about the anticipated future (“and
then turns”) without knowing the direction of the
turn. This allows an incremental system to output
efficient utterances that fluently combine multiple
events and avoid repetition. Furthermore, turn-prep
events enable the system to output the direction
of the turn (the most important information) very
shortly after the fact.

A non-incremental system, in contrast, must out-
put individual utterances for every event and utter-
ances can only start after the fact. Furthermore,
a non-incremental system cannot extend ongoing
utterances, rendering turn-prep events useless.

5 Implemented System

The system used for the experiment reported be-
low uses an early version of incremental speech
synthesis as implemented in INPROTK (Baumann
and Schlangen, 2012c), a toolkit for incremental
spoken dialogue processing based on the IU model
(Schlangen and Skantze, 2009). The system al-
lows to extend ongoing utterances, enabling the
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incremental commenting strategy outlined above.
In addition, we implemented a capability to syn-

thesize a hesitation if no more content is specified,
and to continue as soon as content becomes avail-
able. (Thus, in contrast to (Skantze and Hjalmars-
son, 2010), hesitations do not consume additional
time.) By using hesitations, the system gracefully
accommodates temporal over-commitment (i. e. the
obligation to produce a continuation that is not ful-
filled in time) which may occur, e. g. when the car
drives slower than anticipated and a turn’s direction
is not yet known when the system needs it.

In the preliminary version of iSS used for the ex-
periments, no prosodic integration of continuations
takes place, resulting in prosodic discontinuities;
see (Baumann and Schlangen, 2012a) for a detailed
assessment of prosodic integration in iSS.

As we focus on the merit of iSS in this work, we
did not implement a scene analysis/event detection
nor a NLG component for the task.2 Instead, the
commentary is scripted from the same configura-
tion file that controls the car’s motion on the board.
iSS events lag behind slightly, ensuring that visual
analysis would be possible, and event/text corre-
spondence is close, matching NLG capabilities.

6 Experiment

To evaluate the incremental system, we compared
it to a non-incremental baseline system which is
unable to alter speech incrementally and hence can-
not smoothly extend ongoing partial utterances. In-
stead, the baseline system always produces full
utterances, one per event. To ensure the tempo-
ral proximity of delivery with the causing event
in the baseline system, utterances can be marked
as optional (in which case they are skipped if the
system is still outputting a previous utterance), or
non-optional (in which case an ongoing utterance
is aborted in favour of the new utterance). All ‘turn’
events in the domain were marked as optional, all
street ID events as non-optional.

We devised 4 different configurations (including
the itineraries shown in Figure 1), and the timing of
events was varied (by having the car go at different
speeds, or by delaying some events), resulting in 9
scenarios; in 3 of these, the incremental system gen-
erated one or more hesitations. Both systems’ out-
put for the 9 scenarios was recorded with a screen-
recorder, resulting in 18 videos that were played in

2However, Lohmann et al. (2012) present an incremental
NLG strategy for a similar task.

random order to 9 participants (university students
not involved in the research). Participants were
told that various versions of commentary-generat-
ing systems generated the commentary based on
the running picture in the videos and were then
asked to rate each video on a five-point Likert scale
with regards to how natural (similar to a human)
the spoken commentary was (a) formulated, and
(b) pronounced. In total, this resulted in 81 paired
samples for each question.3

The assumption (and rationale for the second
question) was that the incremental system’s formu-
lations would result in higher formulation ratings,
while we hoped the acoustic and prosodic artefacts
resulting from the coarsely implemented incremen-
tal synthesis would not significantly hurt pronun-
ciation ratings. In order to not draw the subjects’
attention towards incremental aspects, no question
regarding the timeliness of the commentary was
asked for explicitly.

7 Results

The mean ratings for both formulation quality and
pronunciation quality for the incremental and base-
line systems is shown in Figure 3. The median
differences in the ratings of the two conditions is
2 points on the Likert scale for question (a) and
0 points for question (b) (means of 1.66 and 0.51,
respectively), favouring the incremental system.
The sign test shows that the advantage of the incre-
mental system is clearly significant for questions
(a) (68+/9=/4-; p < .0001) and (b) (38+/30=/13-;
p < .0007)4.

Thus, it is safe to say that the production strate-
gies enabled by incremental speech synthesis (i. e.
starting to speak before all evidence is known and
extending the utterance as information becomes
available) allows for formulations in the spoken
commentary that are favoured by human listeners.

Incremental behaviour in the 3 scenarios that
required hesitations was rated significantly worse
than in those scenarios without hesitations for both
questions (t-tests, p < .001 (a) and p < .01 (b)). This

3The experiment was conducted in one language (German)
only, but we believe our results to carry over to other lan-
guages. Specifically, we assume that most or all languages
cater for commenting, and believe that human commenters
universally use their ability to integrate events late in the utter-
ance. However, practices of commenting may work differently
(and differently well) among languages.

4We also conducted a non-paired t-test for question (b), as
the different formulations of the systems might have effects on
pronunciation quality; this test was also significant (p < .0012).
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Figure 3: Mean ratings of formulation and pronun-
ciation for the incremental and baseline systems;
the formulation rating differs for utterances with
and without hesitations in the incremental system.

is a clear indication that a system should try to
avoid over-commitment, as users do not accept hes-
itations as inevitable (given that there was simply
no evidence yet where the car would turn, for exam-
ple). However, even in those scenarios that require
filled pauses, the incremental commentary’s for-
mulation is rated as significantly better than the
baseline system’s (sign test, 18+/5=/4-; p < .005)
while there is no effect on pronunciation in these
cases.

8 Discussion & Outlook

The results indicate a clear user preference for open-
ended, extensible utterances that grow as events un-
fold. Furthermore, this preference is stronger than
the negative impact of filled pauses that are needed
to cover temporal over-commitment, and despite
the poor quality of filled pauses in the current sys-
tem, which we plan to improve in the future.

Similarly to spoken commentary in dynamic do-
mains, conversational speech requires revisions and
reactions to events such as listener feedback, or the
absence thereof (Clark, 1996). Thus, we believe
that our results, as well as iSS in general, also apply
to a broad range of conversational SDS tasks.

Finally, synthesis quality appears to be less im-
portant than interaction adequacy: we found no
difference in rating of perceptual quality (‘pronun-
ciation’) between the variants, even though in isola-
tion iSS sounded noticeably worse in the prototype.
This result calls for interactive adequacy as an op-
timization target over (isolated) perception ratings
for speech synthesis, and also challenges the use of
canned speech in conversational SDSs, which does
not adapt to the interaction.
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Abstract

In this paper, we propose a framework for
conversational robots that facilitates four-
participant groups. In three-participant con-
versations, the minimum unit for multiparty
conversations, social imbalance, in which a
participant is left behind in the current conver-
sation, sometimes occurs. In such scenarios, a
conversational robot has the potential to facili-
tate situations as the fourth participant. Conse-
quently, we present model procedures for ob-
taining conversational initiatives in incremen-
tal steps to engage such four-participant con-
versations. During the procedures, a facilitator
must be aware of both the presence of dom-
inant participants leading the current conver-
sation and the status of any participant that is
left behind. We model and optimize these situ-
ations and procedures as a partially observable
Markov decision process. The results of ex-
periments conducted to evaluate the proposed
procedures show evidence of their acceptabil-
ity and feeling of groupness.

1 Introduction

We present a framework for conversational robots
that facilitates four-participant groups with proper pro-
cedures for obtaining initiatives. Figure 1 (a) de-
picts a two-participant conversation. In such sit-
uations, conversational contexts including floor ex-
changes are commonly grounded between two inter-
locutors. Many dialogue systems have dealt with
such two-participant situations (Raux and Eskenazi,
2009) (Chao and Thomaz, 2012). However, in three-
participant conversations, as is shown in Figure 1(b),
which is the minimum unit for multiparty conversation,
floor exchanges cannot always be identified among the
participants. Clark presented the participation struc-
ture model (Clark, 1996), drawing on Goffman’s work
(Goffman, 1981). In such three-participant situations,
interactions between two dominant participants out of
the three primarily occur (between participant A and B)
and the other participant, who cannot properly get the
floor to speak for a long while (cannot be promoted to
be either a speaker or an addressee) tends to get left be-

hind, even though all of them are “ratified participants”
considered by the current speaker.

In terms of engagement among conversational par-
ticipants, Martin et al., (Martin and White, 2005) pro-
posed the appraisal theory that encompasses three sub-
categories, namely Attitude, Engagement, and Gradu-
ation. Attitude deals with expressions of affect, judge-
ment, and appreciation. Engagement focuses on lan-
guage use by which speakers negotiate an interpersonal
space for their positions and the strategies which they
uses to either acknowledge, ignore, or curtail other
voices or points of view. Graduation focuses on the
resources by which sparkers regulate the impact of
these resources. Sidner et al., defined engagement as
“the process by which two (or more) participants es-
tablish, maintain and end their perceived connection
during interactions they jointly undertake” (Sidner et
al., 2004). Based on these previous studies, we de-
fine engagement as the process establishing connec-
tions among participants using dialogue actions so that
they can represent their own positions properly. So, the
three-participant model dictates the need for one more
participant who helps the participant who is left behind
to engage him/her in the conversation. Conversational
robots have the potential to participate in such conver-
sations as the fourth participant, as illustrated in Figure
1 (c-1). Figure 1 (c-2) gives an example of the partici-
pants’ speech activities in a certain duration. In this ex-
ample, participant C’s activity is relatively smaller than
that of the others, and so he/she is likely to get left be-
hind in the current conversational situation for a num-
ber of reasons. When a robot steps into the situation to
coordinate, there should be proper procedures in place
to obtain initiatives to control conversational contexts
and to give it back to the others. If a robot naively starts
to approach a participant who is left behind just after
a left-behind situation is detected, it could break the
current conversation. In order to coordinate situations,
a facilitator (robot) must take the following procedu-
ral steps: (1) Be aware of both the presence of domi-
nant participants leading the current conversation and
the status of a participant who is left behind, (2) Ob-
tain the initiative to control the situation and wait for
approval from the others, either explicitly or implicitly,
and (3) Give the floor to a suitable participant.

Research on specially situated facilitation agents in
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Figure 1: Types of conversations according to number of participants (dashed arrows represent their gazes): (a)
Two-participant conversation model, which conventional dialogue systems have focused on. (b) Three-participant
conversation model, the minimum unit for a multiparty conversation. In such multiparty conversations, social
imbalance occasionally occurs. (c-1) Four-participant conversation, with a robot that regulates the imbalance
situation, and (c-2) chart showing the unequal speech activities of the participants. In this case, participant C
appears to have less opportunity to take the floor to speak, hence, the robot is expected to help him.

multiparty conversations has been conducted by vari-
ous researchers. Matsusaka et al. pioneered the act of a
physical robot participating in multiparty conversations
(Matsusaka et al., 2003). We previously developed a
multiparty quiz-game type facilitation system for el-
derly care (Matsuyama et al., 2008) and reported on the
effectiveness of the existence of a robot (Matsuyama
et al., 2010). Dosaka et al. developed a thought-
evoking dialogue system for multiparty conversations
with a quiz game task (Dohsaka et al., 2009). They
reported that the existence of agents and empathic ex-
pressions are effective for user satisfaction and increase
the number of user utterances. Bohus modeled engage-
ment in multiparty conversations along Sinder’s defini-
tion, namely open world dialogue (Bohus and Horvitz,
2009). In terms of facilitation, Benne et al. (Benne and
Sheats, 1948) and Bales (Bales, 1950) pioneered inves-
tigations into small group dynamics, including func-
tional facilitation roles. Kumar et al. designed a dia-
logue action selection model based on Bales’s Socio-
Emotional Interaction Categories for text-based char-
acter agents (Kumar et al., 2011).

In this paper, we propose a framework of proce-
dural facilitation process to increase the total engage-
ment of a group, with caring about side-effects of be-
haviors at the same time. The situations and proce-
dures are modeled and optimized as a partially observ-
able Markov decision process (POMDP), which is suit-
able for real-world sequential decision processes, in-
cluding dialogue systems (Williams and Young, 2007).
We begin by reviewing facilitation of small groups,
and summarize requirement specifications for facilita-
tion robots in the next section. In Section 3, we first
describe representations of small group situations and
procedures for maintaining small groups, then we dis-
cuss how to model them as POMDP. In Section 4, we
give an overview of the architecture of our proposed
system. We then discuss two experiments conducted to

verify the efficacy of the small group maintenance pro-
cedures. Finally, we summarize our work and conclude
this paper.

2 Facilitating Small Groups

2.1 Maintaining Small Groups

Benne et al. analyzed functional roles in small groups
to understand the activities of individuals in small
groups (Benne and Sheats, 1948). They categorized
functional roles in small groups into three classes:
Group task roles, Group building and maintenance
roles, and Individual roles. The Group task roles are
defined as “related to the task which the group is de-
ciding to undertake or has undertaken.” Those roles ad-
dress concerns about the facilitation and coordination
activities for task accomplishment. The Group building
and maintenance roles are defined as “oriented toward
the functioning of the group as a group.” They con-
tribute to social structures and interpersonal relations.
Finally, the Individual roles are directed toward the
individual satisfaction of each participant’s individual
needs. They deal with individual goals that are not rel-
evant either to the group task or to group maintenance.
Drawing on Benne’s work, Bales proposed interaction
process analysis (IPA), a framework for the classifica-
tion of individual behavior in a two-dimensional role
space consisting of a Task area and a Socio-emotional
area (Bales, 1950). The roles related to the Task area
concern behavioral manifestations that impact the man-
agement and solution of problems that a group is ad-
dressing. Examples of task-oriented activities include
initiating the floor, giving information, and providing
suggestions regarding a task. The roles related to the
Socio-emotional area affect the interpersonal relation-
ships either by supporting, enforcing, or weakening
them. For instance, complementing another person to
increase group cohesion and mutual trust among mem-
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bers is one example of positive socio-emotional behav-
ior. Benne’s typology of functional roles is evaluated
as valuable with remarkable accuracy. In this paper,
we employ Benne’s Group building and maintenance
roles,1 which are related to Bales’s Socio-emotional
area, in order to arrange the following three abstract
functional roles of group maintenance:

1. Topic Maintenance Role: Maintaining for con-
flict, ideas, and topics. This person mediates
the difference between other members, attempts
to reconcile disagreements, and relieves tension
in conflict situations. This role inherits Compro-
miser, Harmonizer, and Standard setter.

2. Floor Maintenance Role: Maintaining the
chance for the floor in the group in a di-
rect/indirect way. This person encourages or asks
questions of the person who is not or could not get
engaged in conversations, and attempts to keep the
communication channel open. This role inherits
Gatekeeper, Expediter, and Encourager.

3. Observation Role: Overlooking the conversation
situation by finding appropriate topics, observing
the motivations and moods of the participants, and
comprehending the relations between participants
in conversations. This person follows the conver-
sation and comments and interprets the group’s
internal process. This role inherits Observer and
commentator and Encourager.

2.2 Procedures for Small Group Maintenance

In order that a participant who wants to claim an ini-
tiative (we call this participant a “claimant”) is trans-
ferred an initiative by the participant leading the current
conversation (we call this participant a “leader”), the
claimant must take procedural steps. First, the claimant
must participate in the current dominant conversation
the leader is leading, try to claim an initiative, and then
wait for either explicit or implicit approval from the
leader. Let us take the example shown in Figure 2. In
the figure, participants A and B are primarily leading
the current conversation. Participant C cannot get the
floor to speak, and so the robot desires to give the floor
to C. If the robot speaks to C directly, without being
aware of A and B, the conversation might be broken,
or separated into two (A-B and C-Robot), at best. In
order not to break the situation, the robot should par-
ticipate in the dominant conversation between A and B
first, and set the stage such that the robot is approved
to initiate the next situation. In this paper, we define
such a state in which a person is participating in a dom-
inant conversation as a “Engaged” state, and the op-
posite state as “Unengaged”. Thus, in Clark’s partic-

1Benne’s Group building and maintenance roles are Com-
promiser, Harmonizer, Standard setter, Gatekeeper and ex-
pediter, Encourager, Observer and commentator, and Fol-
lower.

(Addresee)
Robot

gaze

(Side-Participant)

Participant C 

(Speaker)

Participant B

(Side-Participant)

Participant A

ENGAGED

UN-ENGAGED

ENGAGED

ENGAGED

Figure 2: Four-participant conversational group. Four
participants, including a robot, are talking about a cer-
tain topic. Participants A and B are leading the con-
versation, and mainly keep the floor. The robot also
engages with A and B in line with the topic. C is an un-
engaged participant, who does not have many chances
to take the floor for a while. The dashed arrows indicate
the direction they are facing, assuming their gazes.

ipation structure, speaker and addressee are automat-
ically Engaged participants. Side-participants are di-
vided into Engaged and Unengaged participants based
on their situations. In this paper, we assume that an
Unengaged participant needs to respond to a Engaged
participant’s adjacency pair part to be engaged. Adja-
cency pairs are minimal units of conversation that are
composed of two utterances by several speakers (Sche-
gloff and Sacks, 1973). The speaking of the first ut-
terance (the first part) provokes a responding utterance
(the second part), and sometimes a third response (the
third part). Understanding adjacency pairs is, therefore,
essential to detecting cut-in timing.

On the basis of our discussion above, we define the
following constraints for both Engaged and Unengaged
participants when they address and shift current topics:

1. Constraint of addressing: An unengaged partici-
pant must not address the other unengaged partic-
ipants directly.

2. Constraint of topic shifting: An engaged partic-
ipant must not shift the current topic when he/she
addresses the other unengaged participants.

The relationship between subjective and objective
participants that are permitted to approach in the two
constraints are shown in Tables 1 and 2. In the follow-
ing sections, we describe a computational model that
has the group maintenance functions discussed above.

3 Procedure Optimization
3.1 Representation of Engagement State
We assume only one speaker and one addressee exist
at each time-step and one or two side-participants may
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Table 1: Permission relationship between subjective
and objective participants for the constraint of address-
ing. “Engaged” means a participant is assigned as
a speaker or an addressee or a side-participant, who
engages with the conversational group. ”Unengaged”
means a participant is assigned as an unengaged side-
participant.

XXXXXXXXXXSubject
Objective

Engaged Unengaged

Engaged permitted permitted
Unengaged permitted NOT permitted

Table 2: Permission relationship for permission be-
tween subjective and objective participants in the con-
straint of topic shifting.

XXXXXXXXXXSubject
Objective

Engaged Unengaged

Engaged permitted NOT permitted
Unengaged NOT permitted NOT permitted

exist in four-participant conversations. We define side-
participants as having two states: “Engaged” and “Un-
engaged”. In the scenario shown in Figure 2, partic-
ipant C may not be able to take the floor for a while.
The situation probably resolves itself when the current
topic is shifted. Hence, we define the depth of side-
participant DepthSPT as the duration that a participant
is assigned while the same topic continues, which rep-
resents the level of engagement.

DepthSPTi = DurationSPTi/Durationtopic j (1)

UnengagedSPT =

{
SPTi if DepthSPTi > T hreshold
none otherwise

(2)
The suffix i represents a participant’s ID.
We also define an Un-Engaged participant’s motiva-

tion to speak on the current topic. Thus, this state af-
fects decision-making about topic maintenance. The
amount of motivation of a participant is calculated as
a linear sum of speech activities, smiling duration, and
nodding duration. Further, the motivations in our cur-
rent model are heuristically assumed to be binary vari-
ables.

Motivationi =

{
1 if MotivAmounti > T hreshold
0 otherwise

(3)

3.2 Procedure Optimization using POMDP
To optimize the procedures discussed above, we
model the task as a partially observable Markov deci-
sion process (POMDP) (Williams and Young, 2007).
Formally, a POMDP is defined as a tuple β =

O

R

Timestamp t

Sh

Sm

O’

R’

Timestamp t + 1

A’p

S’h

A’sSm

Ap

As ’

Figure 3: Influence diagram representation of the
POMDP model. Circles represent random variables,
squares represent decision nodes, and diamonds repre-
sent utility nodes. Shaded circles indicate random vari-
ables, while unshaded circles represent observed vari-
ables. Solid directed arcs indicate casual effect, while
dashed directed arcs indicate that a distribution is used.

{S,A,T,R,O,Z,γ,b0}, where S is a set of states de-
scribing the agent’s world, A is a set of actions that
the agent may take, T defines a transition probabil-
ity P(s′|s,a), R defines the expected reward r(s,a), O
is a set of observations the agent can receive about
the world, and Z defines an observation probability,
P(o′|s′,a), γ is a geometric discount factor 0 < γ < 1,
and b0 is an initial belief state b0(s). At each time-step,
the belief state distribution b is updated as follows:

b′(s′) = γ ·P(o′|s′,a)∑
s

P(s′|s,a)b(s) (4)

In this paper, we assume S can be factored into three
components: the participants’ engagement states Se,
the participants’ motivation states Sm, and the partic-
ipants’ actions Ap. Hence, the factored POMDP state S
is defined as

s = (se,sm,ap) (5)

and the belief state b becomes

b = b(se,sm,ap) (6)

To compute the transition function and observation
function, a few intuitive assumptions are made:

P(s′|s,a) =P(s′
e,s

′
m,a′

p|se,sm,ap,as)

=P(s′
e|sh,sm,ap,as)·

P(s′
m|s′

e,sh,sm,ap,as)·
P(a′

p|s′
m,s′

e,se,sm,ap,as)

(7)

Figure 3 shows the influence diagram depiction of our
proposed model. We assume conditional independence
as follows: The first term in (7), which we call the
participants’ engagement model TSe , indicates how the
robot engages in the current dominant conversation at
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each time-step. We assume that the participants’ en-
gagement state at each time-step depends only on the
previous engagement state, the participants’ action, and
the system action. In this paper, the participants’ en-
gagement model only contains the robot’s engagement
states because it is sufficient for the obtaining initiatives
procedures . Table 3 shows the states of engagement.

TSe = P(s′
e|se,ap,as) (8)

In this paper, the probabilities of (8) were handcrafted,
based on the consideration in Section 2.2 and our expe-
riences. When the engagement state is the Un-Engaged
state and the robot is asked by a current speaker,
the state should be changed to the Pre-Engaged state,
where the robot is awaiting the speaker’s approval
for the Engaged state. We assume that any dialogue
acts from the speaker addressing the robot in the Pre-
Engaged are approvals. Otherwise, the state will be
back to the Un-Engaged. The Engaged state gradually
goes down to the Un-Engaged state in time-steps unless
the robot selects any dialogue acts.

We call the second term the participants’ motivation
model TSm . It indicates how an Un-Engaged participant
has the motivation to take the floor at each time-step.
This state implies that the participant who is left be-
hind (target person) has a motivation to speak on the
current topic. Thus, this state affects decision-making
about topic shift. We assume that a participant’s moti-
vation at each time-step depends only on the previous
system action. The motivations are defined as an un-
engaged participant’s ID and a binary (true/false) vari-
able, which is calculated by (3) .

TSm = P(s′
m|as) (9)

We call the third term the participants’ action model
TAp . It indicates what actions the participants are likely
to take at each time-step. We assume the participants’
actions at each time-step depends on the previous par-
ticipant’s action, the previous system action, and the
current robot’s engagement state. As shown in Table
5, participants’ actions include adjacency pair types.
Understanding adjacency pairs is essential to detecting
cut-in timing. In this paper, we recognize the adjacency
pairs only by keyword matching using the results of
speech recognition.

TAp = P(a′
p|s′

h,ap,as) (10)

The transition probabilities of adjacency pair types
are based on a corpus we collected. We recorded
two four-participant conversational groups (all partic-
ipants were human subjects), where they were talked
about movies. The total duration was around 60 min-
utes. Each utterance is segmented automatically by our
speech recognition. After the recording, adjacency pair
types were manually annotated for all speech segments.

We define the observation probability Z as follows:

Z = P(o′|s′,a) = P(o′|s′
m,a′

p,as) (11)

Table 3: Engagement states Se
Engagement states Meaning
Un-Engaged The robot is not engaging with the current conversation.
Pre-Engaged The robot is waiting for approval to engage with

the current conversation.
Engaged The robot is engaging with the current conversation.

Table 4: Motivation states Sm
Motivation states Meaning
Motivated The participant who is left behind has a motivation to speak

on the current topic (interested in the current topic).
Not-Motivated The participant who is left behind does not have any

motivation to speak (not interested in the current topic).

Given the definitions above, the belief state can be up-
dated at each time-step by substituting (8), (9), and (10)
into (4).

b′(s′
m,a′

p) =γ ·P(o′|s′
m,a′

p,as)︸ ︷︷ ︸
observation

model

·P(s′
m|as)︸ ︷︷ ︸

motivation
model

·P(a′
p|s′

e,ap,as)︸ ︷︷ ︸
participants’
action model

·

∑
sh

P(s′
e|se,ap,as)︸ ︷︷ ︸

engagement
model

·b(sm,ap)

(12)

Table 6 shows the system actions. The system has
seven actions available.

On the basis of the consideration of the constraints in
Section 2.2, the reward measure includes components
for both the appropriateness and inappropriateness of
the robot’s behaviors.

As an optimization algorithm, we employed the
heuristic search value iteration (HSVI) algorithm pro-
posed by Smith et al., which is one of point-based al-
gorithms (Smith and Simmons, 2012).

4 System Architecture
Based on the studies on small group maintenance, we
propose an architecture for conversational robots that
has the capability to facilitate small groups, as shown
in Figure 4. The framework primarily comprises Sit-
uation Analysis, Dialogue Management, and Sentence
Generation processes.

4.1 Situation Analysis and Dialogue Management
Each time the system detects an endpoint of speech
from the automatic speech recognition (ASR) module,
it interprets the current situation. The Situation Analy-
sis process includes participation roles recognition, ad-
jacency pair part recognition, and question analysis.

Participation roles including a speaker, an addressee,
and side-participants are recognized by the results of
voice activity detection (VAD) and face directions
recognition. The face directions are captured by depth-
RGB cameras (Microsoft Kinect). In this paper, we
use a hand-crafted role classifier. The speaker classi-
fication accuracy is 75.1% and the addressee classifi-
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Figure 4: The architecture of the system primarily comprises the Situation Analysis, the Dialogue Management,
and the Sentence Generation processes. The Situation Analysis process receives sensory information from RGBD
cameras (Microsoft Kinect) and speech recognizers for each participant. The Dialogue Management process is
described in Section 3. The Answer Generation process has the capability of doing additional phrasing with the
robot’s own opinions.

Table 5: Participants’ actions Ap
Participants’ actions Meaning
first-part A participant made an adjacency part (question)
second-part A participant made a second adjacency part (answer)
third-part A participant made a third adjacency part
other A participant asked or answered the other participant
call A participant called the robot’s name

Table 6: System actions As
System actions Meaning
answer Answering the current speaker’s question　　　　　
question-new-topic Asking someone a question related to a new topic
question-current-topic Asking someone a question related to the current topic
trivia Giving a trivia
simple-reaction Reacting simply
nod Nodding to the current speaker
none Doing nothing

cation accuracy is 67.2% Adjacency pairs are recog-
nized by the results of the participation role recognion
and speech recognition. We use a hand-crafted adja-
cency pairs classifier. The classification accuracy is
around 60%, which mostly depends on the classifica-
tion accuracy of addressing for a robot. In the ques-
tion analysis process, a speech utterance is interpreted
with question types (5W1H interrogatives: e.g., “who,”
“what,” “how,” etc.) and predicate (verbs and adjec-
tives). Questions are classified into two categories:
Factoid type questions and Non-factoid type questions.

In the Dialogue Management process, a dialog ac-
tion is selected based on abstracted conversational situ-
ation to maintain a small group, which we described in
Section 3.

4.2 Sentence Generation

The Sentence Generation process consists of two com-
ponents: Answer Generation and Question Genera-
tion. Based on the results of the Question Analysis
process, answers are classified into two types: Fac-
toid type answers and Non-factoid type answers (opin-
ions). Factoid answers are generated from a structured
database. In this research, we use Semantic Web tech-

nologies. After analyzing a question, it is interpreted
as a SPARQL query, a resource description framework
(RDF) format query language to search RDF databases.
We use DBpedia as an RDF database2.

The opinion (non-factoid type answers) generation
process refers opinion data automatically collected
from a large amount of reviews in the Web. The opinion
generation consists of four process: document collec-
tion, opinion extraction, sentence style conversion, and
sentence ranking. As an example task, we collected re-
view documents from the Yahoo! Japan Movie site 3.

The opinion extraction consists of two processes: ex-
traction of evaluative expressions and classification of
their sentiment polarities (positive/negative). We elimi-
nate opinions with negative sentiments because the sys-
tem is expected to talk about positive contents in our
conversational task. Nakagawa et al. (Nakagawa et al.,
2008) used both a subjective evaluative dictionary (Hi-
gashiyama et al., 2008) and an evaluative noun dictio-
nary (Kobayashi et al., 2007). We use an evaluative
word dictionary we prepare based on their works. In
order to extract evaluative expressions which can ap-
pear at any position in a sentence, we use the IOB en-
coding method, which has been commonly used for
extent-identification tasks (Breck et al., 2007). Using
IOB, each word is tagged as either (B)eginning an en-
tity, being (I)n an entity, or being (O)utside of an entity.
Based on the proposed method by Nakagawa et al, we
use linear-chain conditional random fields (CRF) for
the IBO encoding.

In order to preserve consistency of system’s charac-
ter, sentence styles are converted based on a hand-craft
rule we prepare. After Japanese morphological analy-
sis, punctuation marks and particular symbols and are
eliminated. Then the last morpheme is converted.

We propose three ranking algorithms in terms of
length and novelty: Short, Standard and Diverse. The
Short is short length first algorithm. In this algorithm,

2http://ja.dbpedia.org/
3http://movies.yahoo.co.jp
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at first, top 30% of sentences by TF-IDF score, which
consists of seven to ten morphemes, are extracted. We
assume top 30% of candidates is reasonably associated
with a current topic. For the Standard and Diverse
algorithms, at first, top 30% of sentences by TF-IDF
score, which consists of fifteen to twenty morphemes,
are extracted. The Standard algorithm is expected to
contain substantial opinions or reasons, which can ap-
peal to users about a certain topic. In this algorithm,
the list is sorted by adjective term frequency. The Di-
verse algorithm is expected to express opinions or rea-
sons with novel styles, which can be unpredictable or
sometimes serendipitous to users about a certain topic.
In this algorithm, the list is sorted in the inverse order
by adjective term frequency.

4.3 Question Generation and User Model
The Question Generation module has two main func-
tions: giving someone the floor and collecting users’
preferences and experiences for the User Model.

The User Model is preferred for topic maintenance.
A preferred new topic is decided using cosine similar-
ity of TF-IDF scores. The topic scores (TopicScore)
of all topics are calculated based on cosine similari-
ties of the current topic (CurrentTopic), a user’s topic
preferences of all topics (Pre f erenceTopic), and expe-
riences (ExperienceTopic) between the CurrentTopic
and each Topic.

TopicScorei = α cos(Topici ·CurrentTopic)

+β
(

∑
m

cos(Topici ·Pre f erenceTopicm)

)

+ γ
(

∑
n

cos(Topici ·ExperienceTopicm)

)

(13)

4.4 Experimental Platform
For our experimental platform, we used the multimodal
conversation robot ”SCHEMA([

∫
e:ma]),” (Matsuyama

et al., 2009) shown in Figure 2. SCHEMA is approxi-
mately 1.2[m] in height, which is the same as the level
of the eyes of an adult male sitting down in a chair.
It has 10 degrees of freedom for right-left eyebrows,
eyelids, right-left eyes (roll and pitch) and neck (pitch
and yaw). It can express anxiousness and surprise us-
ing its eyelids and control its gaze using eyes, neck,
and autonomous turret. In addition, it has six degrees
of freedom for each arm, which can express gestures.
One degree of freedom is assigned to the mouth to in-
dicate explicitly whether the robot is speaking or not.
A computer is inside the belly to control the robot’s
actions, and an external computer sends commands to
execute various behaviors though a WiFi network. All
modules, including the ASRs and a speech synthesizer
are connected to each other though a middleware called
the Message-Oriented NEtworked-robot Architecture
(MONEA), which we earlier produced (Nakano et al.,
2006).

5 Experiments
We designed the following two experiments to eval-
uate the appropriateness and feeling of groupness of
our proposed procedures for multiparty conversations
(experiment 1), and the appropriateness of timing for
initiating procedures (experiment 2). In order to can-
cel the effects of recognition errors, we prepared video
recordings of four-participant situations (Human par-
ticipant A, B, C, and a robot), just like 2. We created the
following three conditions, all of which are optimized
as POMDP. All subjects were native Japanese speakers
recruited from Waseda University campus. They were
first given a brief description of the purpose and the
procedure of the conversation. They were instructed
that A and B have a friendly relationship with each
other, C is coming in for the first time and is feeling
nervous, therefore, C is left behind in the conversation,
and a robot is trying to maximize the total engagement
of this situation. We also explained “a engaged situ-
ation” meant “a situation in which all participant are
given their opportunities to speak something fairly.”

5.1 Experiment 1: Appropriateness and
Groupness by Usage of Procedures

A total of 35 subjects (23 males and 12 females) par-
ticipated in this experiment. The ages of the subjects
ranged between 20 and 25 years with an average age of
20.5 years. After they watched the videos, they were
asked to complete questionnaires about their feeling of
groupness (“For which condition did you feel a sense
of groupness?”) and free-form questionnaires. The fol-
lowing four conditions were videotaped, and the video
edited at around 30 s. All videos contained the same
topic (“Princess Mononoke”). The spatial arrangement
was the same as shown in Figure 2.

Condition 1: Without procedures (without topic
shifting). A robot directly asks a participant left be-
hind without procedures claiming an initiative. As is
shown in Figure 8, just after a sequence of interactions
between A and B, which is segmented by a third ad-
jacency pair part, a robot directly asks C. The topic is
still maintained (“Princess Mononoke”).

Condition 2: With procedures (without topic shift-
ing). A robot directly asks a participant left behind with
a procedure. As is shown in Figure 9, Just after a se-
quence of interactions between A and B, a robot asks
A with the first pair part and waits for A’s response (the
second part). Then it finishes the interaction with A,
and asks C to give a floor. In this case, topic is still
maintained the current one (“Princess Mononoke”).

Condition 3: Without procedures + topic shifting. In
#6 question of Condition 1 (Figure 8), a robot initiates
a new topic (“From Up On Poppy Hill”) instead.

Condition 4: With procedures + topic shifting. In
#7 question of Condition 2 (Figure 9), a robot initiates
a new topic (“From Up On Poppy Hill”) instead.

After watching the movies, they were requested to
answer Likert 7-scaled questionnaires about (a) appro-
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priateness of procedures, (b) Feeling of groupness.

5.2 Experiment 2: Appropriateness of Timing of
Initiating Procedures

A total of 32 subjects (21 males and 11 females) par-
ticipated in this experiment. The ages of the sub-
jects ranged between 20 and 25 years with an aver-
age age of 20.5 years. After they watched the videos,
they were asked to complete questionnaires about the
timing of the initiating procedures (“Which video did
you feel was the most appropriate?”). The following
three conditions were videotaped, and edited at around
30 s. All videos contained the same topic (“Princess
Mononoke”). The spatial arrangement was the same as
shown in Figure 2. We created three conditions:

Condition 1 (first part): Initiating a procedure just
after the first adjacent pair part.

Condition 2 (second part): Initiating a procedure
just after the second adjacent pair part.

Condition 3 (No AP): Out of consideration of adja-
cency pairs.

In conditions 1 and 2, the robot initiated its proce-
dures just after the first and second parts, respectively.
In condition 3, the robot initiated its procedure in the
middle of the adjacency pairs, which is intended to
show that the robot does not care about adjacency pairs.
We did not consider the timings of the third part of the
adjacency pair because we had already examined the
appropriateness of the timing of the third part in ex-
periment 1. After watching the movies, they were re-
quested to answer Likert 7-scaled questionnaires about
the robot’s appropriateness of behavior.

5.3 Results and Discussions

Figure 5 shows usages of procedures are appropriate to
approach a participant left behind either with or without
topic shifting. The t-test result shows a significant dif-
ference between condition 1 and 2, as well as between
3 and 4 (p < 0.01). Figure 6 shows usages of proce-
dures generate feelings of groupness. The t-test result
also shows a significant difference between condition 1
and 2, as well as between 3 and 4 (p < 0.01).

Figure 7 (a) shows initiating procedures without
topic shifting in timings of just after the second pair

parts is more appropriate than other conditions. The re-
sult of an analysis of variance (ANOVA) shows signif-
icant differences among conditions (F [2,26] = 34.46,
p < 0.01). The result of multiple comparisons with the
Tukey HSD method shows a significant difference be-
tween condition 1 and 2, as well as between 2 and 3
(p < 0.01). Figure 7 (b) shows initiating procedures
with topic shifting in timings of just after the second
pair parts is more appropriate than other conditions.
The result of an analysis of variance (ANOVA) shows
significant differences among conditions (F [2,26] =
42.52, p < 0.01). The result of multiple comparisons
with the Tukey HSD method shows a significant differ-
ence between condition 1 and 2, as well as between 2
and 3 (p < 0.01).

From these results, usages of procedures obtaining
initiatives before approaching a participant left behind
showed evidences of acceptability as a participant’s be-
haviors, and feeling of groupness in a group. As for
timings, initiating the procedures just after the second
or third adjacency pair parts is felt more appropriate
than the first pairs by participants.

6 Conclusions
We proposed a framework for conversational robots
facilitating four-participant groups. Based on a rep-
resentation of conversational situations, we presented
a model of procedures obtaining conversational initia-
tives in incremental steps to maximize total engage-
ment of such four-participant conversations. These sit-
uations and procedures were modeled and optimized
as a partially observable Markov decision process. As
the results of two experiments, usages of procedures
obtaining initiatives showed evidences of acceptability
as a participant’s behaviors, and feeling of groupness.
As for timings, initiating the procedures just after the
second or third adjacency pair parts is felt more appro-
priate than the first pairs by participants.
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# SPK → ADD AP Sentences
1 A→B First Have you ever watched “Princess Mononoke”?
2 B→A Second Yes, I have
3 A→B First Oh, you have?
4 B→A Second Yeah.
5 A→B Third I see
6 R→C First Have you ever watched “Princess

Mononoke”?
7 C→R Second Yes, I have

Figure 8: Transcript of condition 1 (experiment 2)

# SPK → ADD AP Sentences
1 A→B 1st Have you ever watched “Princess Mononoke”?
2 B→A Second Yes, I have
3 A→B Third I see.
4 R→A First It is one of my favorite movies among Ghibri’s
5 A→B Second Really?
6 B→A Third Yes.
7 R→C First Have you ever watched “Princess

Mononoke”?
8 C→R Second Yes, I have

Figure 9: Transcript of condition 2 (experiment 2)

1 2 3

4 5 6

# SPK → ADD AP Se Sentences

(Topic: “007 Skyfall”)

1 A→B 1st Un Let’s talk about the “Skyfall.”

2 A→B 1st Un Have you ever seen the latest one?

3 B→A 2nd Un Well, I’ve not seen that.

4 A→B 3rd Un Oh, really.

5 R→A 1st Pre Well, I like the Bond Girl.

6 A→R 2nd Pre I see.

7 R→A 1st Pre I think that movie is good because of the setting of the ”old age” for the 44-year

old James Bond.

8 A→R 2nd H Uh-huh.

(R is approved to obtain an initiative)

9 R→A 3rd H Yes.

10 R→C 1st H Have you ever seen the ”Skyfall”?

11 C→R 2nd H No, I haven’t.

12 A→C 1st H Oh, you haven’t seen it?

13 C→A 2nd H I never seen that before.

1

2

3

4

5

6

Figure 10: Interaction scenes. The “AP” signifies adjacency pair types. At #4, the system recognized A’s adjacency
third part and then generated a spontaneous opinion addressed to A (#5) as the first part. At that point, the system
assumed the state of engagement (Se) had changed from Un-Engaged to Pre-Engaged. After the system observed
A’s second part at #8, it assumed it at gotten approval to obtain an initiative to control the context (Engaged). At
#10, the robot asked C a question in order to give him the floor.
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Abstract

In this paper, we propose a novel approach
to infer dialogue acts using the notion of
tacit contracts. We describe the interper-
sonal linguistic features that our analysis
grammar can identify in uttered texts and
present an inference procedure that strictly
separates the semantic and pragmatic steps
of utterance understanding, thereby meet-
ing a higher degree of modularity, a pre-
requisite for extending robot functionality.

Keywords: Dialogue System; Dialogue
Act; Attitude; Stance

1 Introduction

John is reading “Merlin”, when the door bell rings.
He cannot walk, but his intelligent wheelchair Rol-
land is nearby. He says: “Rolland, I need to open
the door. Can you take me there?” Rolland re-
sponds “Sure, I’m coming!”, comes to him, waits
for him to sit comfortably, and then says “Let’s
go!” before driving him to the door side where
John is able to reach the door handle.

So seamless are the interactions in our Wizard-
of-Oz experiment (Anastasiou et al., 2012; Vale
and Mast, 2012b) yet so difficult for an intelligent
wheelchair. How is it to know that “I need to open
the door” and “Can you take me there?” should
not be understood separately as a statement and a
question but together as a command to move to-
wards the door for enabling the user to open it?

Each utterance is an action that affects the inter-
active situation. Not only does it construe events,
but it also constitutes exchanges between interac-
tants such as stating the speaker’s need of perform-
ing an action and asking about the listener’s capa-
bility of providing a service.

All speaking robots need some method of cop-
ing with this dual character of situated utterances.
A frequent approach is Dialogue Act Detection,

a family of statistical methods trained on human-
annotated corpora (Allen and Core, 1997; Juraf-
sky et al., 1997; Jurafsky et al., 1997; Jekat et al.,
1995). An alternative approach is Plan Recogni-
tion, which consists of using a planner having lin-
guistic meaning and a domain model as inputs. We
depart from this tradition by proposing a contrac-
tual approach in which semantic and pragmatic as-
pects of understanding are symbolically explored
in separate steps of inference.

The main rationale for not pursuing the detec-
tion of dialogue acts as patterns in the uttered text
is that the intended effect of an utterance is not to
be found in the wording (Marcu, 1997); and the
rationale for not taking construed events directly
as plan steps is that the functional roles of inter-
actants in cooperative work are decisive for inter-
preting attitudes.

In this paper, we present an automatic seman-
tic analysis of the interpersonal features of lin-
guistic units and propose a compatible three-step
procedure consisting of transformation, contex-
tualization and inference to enable an intelligent
wheelchair to understand implied dialogue acts.

In the following two sections, we describe prior
approaches to understanding interpersonal mean-
ing and discuss their relevance for our approach.
Then we introduce a classification of interper-
sonal linguistic features and explain how we re-
express these implicit features of language explic-
itly in a standardised format. Finally, we describe
the procedure used by the pragmatic module of
our wheelchair in order to contextualise utterance
meaning and infer implied dialogue acts.

2 Dialogue Act Detection

Dialogue act detection is the most frequently used
approach for dealing with the interpersonal aspect
of dialogue. In this section, we review two frame-
works for dialogue act detection: the annotation
standard DAMSL (Allen and Core, 1997) and the
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dialogue act component of the successful applica-
tion Verbmobil (Jekat et al., 1995).

2.1 DAMSL and Derivates

The tagging system of Dialogue Act Markup in
Several Layers (DAMSL) is a tag system for
speaker’s intention. It uses binary decision trees
for tagging utterances with up to four attributes
(layers) of the speaker’s intention: communicative
status, information level, backward- and forward-
looking functions. DAMSL has been thoroughly
tested for annotation (Core and Allen, 1997; Ju-
rafsky et al., 1997; Ivanovic, 2005; Stolcke et
al., 2000) with inter-annotator agreement reach-
ing approx. 70-85%. Recent attempts to au-
tomatise DAMSL dialogue act detection using sta-
tistical methods (Core, 1997; Rosset and Lamel,
2004; Rangarajan Sridhar et al., 2007; Rosset et
al., 2008; Rangarajan Sridhar et al., 2009) reach
similar accuracy.

However, high accuracy scores need to be rel-
ativized, as precision and recall may be very low
for most tags— Rangarajan Sridhar et al. (2009)
report <1% for all but the two most frequent tags.
Moreover, agreement rates tell nothing about the
severity of mistagging for application usage.

The second and most compromising issue lies in
the annotation scheme itself. Context-dependent
decision trees turn utterance tagging into guess
work, since utterances map differently to world
models in different situations. For instance, there
is danger “of annotators confusing surface form
with [contextual] speaker intent, for instance la-
belling an info-request in the form of a statement
as an other-statement” (Stent, 2000).

The third issue concerns applicability. The
DAMSL research community has built annotated
corpora and automated dialogue act detection.
Only lately, there has been research on automatic
learning of dialogue act flow patterns on large
manually annotated corpora of dialogue. Whether
these dialogue act flows will be usable in real ap-
plied systems is yet to be determined.

2.2 Verbmobil

A different approach to Dialogue Act Detection is
followed by Verbmobil, a successful applied dia-
logue system for travel booking. It uses 55 types
of dialogue act, tailored to the particular appli-
cation domain of travel booking, e.g. Request-
Suggest-Duration. Classification of utterances is

achieved by detecting keywords and syntactic pat-
terns in the word sequence of the utterance and
matching them against keyword and pattern lists
which are typical for each dialogue act type. Am-
biguity is solved by using a context-based prefer-
ence order learnt from a large annotated corpus.

This approach works with a caveat: embedding
domain content like stay duration in dialogue act
types may cause an explosion of categories for
less restricted domains and, while easily recognis-
able, such tailored categories are domain specific.
Therefore, they are not reusable when creating an
application for a new domain.

2.3 Detection Trade-Off

In short, we argue that statistical methods of di-
alogue act detection do not scale. This approach
always leads to a trade-off between suboptimal
inter-annotator agreement as in DAMSL or lack
of reusability as in Verbmobil.

The reason for this trade-off is that two issues
of different natures are tackled at the same time:
semantics and pragmatics. The lack of a strati-
fied linguistic theory with semantic and pragmatic
steps behind these classifications is the cause of a
bad fit between categories and grammatical struc-
ture in the case of DAMSL. This shortcoming can
be partially overcome through the usage of tai-
lored categories at the expense of large annotated
training corpora and a low reusability.

Tailoring is particularly expensive when experi-
mental data is not easily obtainable as for human-
wheelchair interaction. Therefore we need a dif-
ferent approach that separates text analysis from
utterance contextualisation (see Section 4).

3 Belief-Desire-Intention Approach

The formal theory of rational interaction (FTRI)
is a plan-based approach to dialogue management
that divides user mental representations into be-
liefs, desires and intentions (BDI). The dialogue
manager keeps track of which planned tasks are
feasible for, assigned to and/or completed by par-
ticular agents (Sadek, 1992; Sadek, 1994; Sadek
et al., 1996; Sadek et al., 1997). Logical infer-
ences are made with respect to interactant’s mental
states in order to plan the next verbal action of the
dialogue system. The interpersonal features of the
linguistic model are very simple. User utterances
are classified into one of 3 categories of syntactic
patterns (directive, interrogative, or affirmative),
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and are used in combination with spotted verbs in
order to determine the beliefs, desires, and inten-
tions of the user. Lists of implications are used
in order to infer actions from certain combinations
of intentions and beliefs. An example for such an
implication is: If a user u intends (I) to have an
action a DONE, u intends (I) her/his utterance to
have the same rational effect RE as performing a
by her/himself; in other words, by informing the
system about her or his intention to have a task
performed, the user delegates the performance of
this task to the system. The formal theory of ratio-
nal interaction along with similar theories have re-
ceived strong criticism. They lack a formalization
of linguistic meaning (structural meaning) capable
of encapsulating the richness and flexibility of lin-
guistic systems. Moreover, “[BDI p]lan-based ap-
proaches [to dialogue management] are also criti-
cised as being more opaque, especially given the
large amount of procedural processing and lack
of a well-founded semantics for plan-related op-
erations” (Traum et al., 1999). Improving upon
BDI plan-based approaches, Traum’s work takes
into account dialogue acts (Traum and Hinkelman,
1992) and obligations (Traum and Allen, 1994).
Reflecting Traum et al.’s critique of the BDI ap-
proach, the present work can be understood as
a step towards the theoretical conceptualization
of some of BDI’s opaque operations within an
information-state approach to dialogue manage-
ment.

4 Contract-Supported Interaction

Our work is supported by automatic functional
text analysis (parsing) with Combinatory Catego-
rial Grammar (CCG) (Steedman and Baldridge,
2011) using Systemic Functional Theory (Hall-
iday and Matthiessen, 2004). This enables us
to detect personal stances and attitude automati-
cally in the syntactic structure of the utterance (see
Section 4.1). Based on these detected concepts,
we generate a standardised typed feature struc-
ture, which captures the commonalities of differ-
ent utterance types with respect to the implied ex-
pectations from the addressee. Rather than hy-
pothesizing about the user’s mental states, we are
able to base our interpretation solely on what is
linguistically expressed as required from the ad-
dressee. Our usage of inference is somewhat sim-
ilar to the one proposed by FTRI; however, with
the formalised concept of tacit contracts—further

formalizing the update operations in the dialogue
system of Matheson et al. (2000)., we gain situ-
ational flexibility which is of great value, because
tacit contracts are not universally valid, but depend
on the roles of the interactants in a given situation.

4.1 Interpersonal Upper Model

On the semantic level, we adopt the most compre-
hensive linguistic description of the interpersonal
component of human languages, which is found
in the Systemic Functional Grammar of English
(Halliday and Matthiessen, 2004). We created an
ontology of linguistic units, the Interpersonal Up-
per Model, covering all interpersonal features of
Systemic Functional Theory with minor adjust-
ments and extensions. Using this classification of
linguistic units, we implemented a Combinatory
Categorial Grammar for German to parse a cor-
pus collected in a Wizard-of-Oz experiment where
users gave commands to an intelligent wheelchair
in order to perform simple domestic tasks like
washing their hands or opening the door (Anasta-
siou et al., 2012; Vale and Mast, 2012b; Vale and
Mast, 2012a).

For an intelligent wheelchair to understand the
utterances of the user, first it must cope with the
various ways in which interpersonal meaning is
expressed in language. For example, by utter-
ing either of the clauses “I want you to leave.”
or “Leave!”, the speaker commands the addressee
to perform the action of leaving. Although they
share this interpersonal function, the first makes
the command explicit by referring to the requirer
and performer of the service while the second
leaves it implicit in the structure of the clause.

Halliday and Matthiessen (2004) call such ex-
pression pairs, where different wordings represent
the same interpersonal meaning, interpersonally
agnate expressions. In their work, grammatical
metaphor is defined as the process whereby con-
cepts which are usually implicit in the structure of
clauses are re-expressed with more explicit refer-
ential representations.

It must be noted that this analysis relies strictly
on utterance semantics, i.e. the information that
can be gained from automatically analyzing the
utterance alone, without relying on linguistic or
situational context. By relying on parsing rather
than string-level methods such as POS-tagging,
keyword spotting and statistical utterance classi-
fication, we have the advantage of retaining the
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rich information contained in the structure of the
utterance. For our approach, we rely on pars-
ing with Categorial Combinatory Grammar (CCG)
(Steedman and Baldridge, 2011) based on Sys-
temic Functional Theory. This methodology pro-
vides us with a systematic, theory-based way of
retrieving features of the linguistic structure of an
utterance that are relevant for human-computer in-
teraction. When parsing with a functional gram-
mar, syntactic units are classified according to
their function. Therefore, the segmentation of the
utterance into constituents is based on the compo-
sitionality of semantic units.

In the remainder of this section, we will explain
in detail the two main characters of interpersonal
meaning, attitude and stance and how they are
recognised in linguistic structure. In the follow-
ing section, we will proceed to demonstrate how
we turn the concept of grammatical metaphors into
a method for representing interpersonal linguistic
features explicitly in a standardised manner.

4.1.1 Attitude
Attitudes (or direct speech acts) specify the kind of
thing negotiated: a mercative attitude indicates an
exchange of goods (“A beer, please!”), an impera-
tive attitude an exchange of services (“Please take
me to the kitchen!”), and a declarative attitude an
exchange of information (“Is the door closed?”).
They also specify the orientation of the exchange
between the interactants: whether the speaker is
offering something to the addressee (“Your beer!”
– offertive attitude) or demanding something from
them (“A beer please!” – mandative).

By classifying attitudes in these two dimen-
sions, we have a clear separation of exchange ori-
entation (speaker to addressee or vice-versa) and
exchange stock (good, service, or information).
The combination of these options yielding six dif-
ferent attitudes1, as shown in Table 1.

Table 1: Orientation × Stock→ Attitude

Orientation × Stock Attitude
demand info mandative × declarative interrogative

offer info offertive × declarative affirmative
demand service mandative × imperative directive

offer service offertive × imperative preemptive
demand good mandative × mercative questive

offer good offertive × mercative donative

1The full ontology contains more distinctions that are ig-
nored here for the sake of brevity.

As Example (1) shows, a mercative attitude (ex-
change of goods) is usually expressed by noun
groups with modifiers such as “please”. There is
no constituent for Process nor Subject. Impera-
tive attitudes (exchange of services) are usually
expressed by predicates, that is, they have no Sub-
ject constituent as shown in Example (2). Finally,
declarative attitudes (exchange of information) are
usually expressed by full predications 2, as in Ex-
amples (3) and (4).

(1) “A beer, please!” (mercative)
(2) “Please take me to the kitchen!” (imperative)
(3) “The door is closed.” (declarative)
(4) “Is the door closed?” (declarative)

Because there is a mapping between the syntactic
level of an utterance structure and the kind of stock
being exchanged (goods, services or information),
we can automatically detect which attitude each
utterance has.

4.1.2 Stance
Stance (or modality) “construe[s] the region of
cognitive uncertainty that lies between ‘yes’ and
‘no”’ (Halliday and Matthiessen, 2004). There are
two primary kinds of stance: control determines
whether someone wants something (inclination,
e.g. “is keen to”, “wants”) or is wanted for some-
thing (regulation, e.g. “is supposed to”, “must”),
and conviction determines how likely something
is (likelihood, e.g. “it’s likely to rain”, “it’s def-
initely not going to rain”), or how often it occurs
(usuality, e.g. “It often rains in summer.”, “it never
rains in the desert.”). Because Systemic Func-
tional Theory works by delimiting semantically
classified syntactic units based on possible seman-
tic oppositions, combinatory categorial parsing of
expressions is straight forward.

4.2 Grammatical Metaphor
As discussed in the previous section, attitude has
an orientation from the speaker to the addressee
or vice versa (offering or demanding). The ser-
vice requirer and/or provider are not explicitly
mentioned, but determined by the syntactic struc-
ture used and the roles of the interactants in the
dialogue, speaker and addressee. Halliday and
Matthiessen (2004) call this interpersonal orien-
tation . Stance provides a linguistic tool to explic-
itly express the source and target of orientation,
detaching them from the interactional situation.

2i.e. association between a subject and a predicate
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For instance, “Leave!” is a service demand with
an interpersonal orientation from the addressee to
the speaker. If one rephrases this with “must” as
in “you must leave.” or “he must leave.”, one ob-
tains a personal stance, that is, an orientation from
the speaker to the provider of the service which is
explicitly expressed by a reference such as “you”
or “he”. By rephrasing the utterance again with
“require” as in “you are required by me” or “you
are required by law”, one obtains an impersonal
stance, that is, both requirer and service performer
are referred to explicitly and not assumed from the
orientation of the linguistic exchange.

It is possible to express the same interpersonal
meaning with an impersonal orientation as with an
interpersonal orientation. For example, “You are
required by me to leave.”, just like “Leave!”, takes
the speaker as the requirer and the addressee as the
performer of the required action of leaving, there-
fore these two expressions are agnate, making the
first a grammatical metaphor of the second.

Table 2: Possible orientations.
Interpers. Personal Impersonal
leave you must leave you are required by me to leave

he must leave he is required by me to leave
you are required by law to leave
he is required by law to leave

4.2.1 Addressee-centered perspective
Each attitude brings about a required response
from the addressee: offertive attitudes, by offer-
ing a stock, pose a requirement to receive this
stock and mandative attitudes, by demanding a
stock, pose a requirement to give one. These re-
quired responses can be expressed explicitly in
more metaphorical agnate expressions. For ex-
ample, the attitude of offering goods (offertive
× mercative → donative) is represented by the
process “take” in agnate expressions with the ad-
dressee as the subject as in “Take some cookies.”.
Table 3 shows the mapping of all 6 main attitudes
onto their corresponding requirements from the
addressee.

With mappings from the less metaphorical
expressions to more metaphorical ones, the
wheelchair can construe a standardised semantic
representation to work with. This explicitation
method enables us to capture the semantic com-
monalities of a broad variety of different linguis-
tic expressions. Examples (5) and (6) show two
different utterances whose standardised represen-

Table 3: Mapping of attitudes onto requirements
from the addressee

Attitude Required Reaction Process
donative receive goods take
questive give goods hand
preemptive receive services assign
directive give services perform
affirmative receive information know
interrogative give information say

tations are highly similar. Example (5) is an in-
formation offer, re-expressed as a requirement to
know a given information. Agnately, Example (6)
is a service demand, re-expressed as a requirement
to perform the service of being aware of the same
information, a particular way of knowing it3.

(5) “it’s snowing”
LINGUISTIC MEANING:
Speaker offers to Addressee information that

it’s snowing

ADDRESSEE-CENTERED MEANING:
Speaker requires Addressee

to know that
it’s snowing

(6) “be aware that it’s snowing”
LINGUISTIC MEANING:
Speaker demands from Addressee service

of being aware that
it’s snowing

ADDRESSEE-CENTERED MEANING:
Speaker requires Addressee

to perform
being aware that

it’s snowing

Speaker requires Addressee
to be aware that

it’s snowing

The standardised semantic representation has the
advantage that the wheelchair needs to treat re-
quirements in only the most explicit representation
when deciding which action it is expected to per-
form. In the following section, we will explain the
concept of tacit contracts, and how they are used
by our interpersonal calculus in order to extract
the dialogue act from the user utterance as repre-
sented by the addressee-centered semantic repre-
sentation and the situation model.

4.3 Tacit Contracts

While the addressee-centered semantic treatment
enables an intelligent wheelchair to deal with ut-
terances such as (7) and the more metaphorical (8)
in a standardised manner independent of the situ-
ation, there is a further step of processing needed

3As performing an action is the same as acting, in Exam-
ple (6), “requiring to perform being aware” can be simplified
to “requiring to be aware”.
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in order to deal with the full scope of utterances
collected in our usability experiment.

(7) “Take me to the kitchen.”
(8) “I want you to take me to the kitchen.”
(9) “I must go to the kitchen.”

For instance, the wheelchair needs to understand
that utterance (9) is, in the dialogue situation, not
only an offering of information of a need of the
user, but a more polite variant to Examples (7)
and (8) (Vale and Mast, 2012a). The meaning
the speaker intends to convey goes beyond what
is said. Grice (1975) called this kind of pragmatic
inference conversational implicature. They arise
from the the understanding of a set of conversa-
tional maxims which humans can be expected to
observe in conversation in combination with fea-
tures of the interactional situation in which it is ut-
tered. In contrast, conventional implicatures arise
from the meaning of the uttered sentence and the
maxims of communication, without any influence
from the interactional situation. Récanati (1991)
improved the Gricean model of maxims, but for
theoretical reasons accepted no linguistic formal-
ism, which makes his model impossible to apply
in intelligent wheelchair design.

Relevance Theory (Sperber and Wilson, 1995;
Carston, 1998) further develops the concept of in-
ference in a cognitive paradigm by replacing max-
ims of communication with a balance between the
cognitive effort needed to make an inference and
its positive cognitive effect under the principle of
relevance. Like Récanati, they establish the lin-
guistic meaning as the boundary between seman-
tics and pragmatics and divide the inferential pro-
cess into the two subprocesses enrichment (result-
ing in the explicatum) and deduction (resulting in
the implicatum).

As the main aim of this theory is to explain hu-
man cognition and not to design artificial intelli-
gence, it is not directly translatable into a method
for automation in applied robotics. One prob-
lem for automation is the assumption that inter-
actants access and use all kinds of information, as
needed. The inherently open nature of this theory
makes its operationalization as a general frame-
work impossible. In addition, assessing the rele-
vance and cognitive effort of every item of infor-
mation and process of reasoning makes it compu-
tationally too complex for practical applications.
Moreover, Relevance Theory is not backed by a

grammatical theory, and therefore lacks a com-
prehensive set of interpersonal linguistic features
such as attitudes and stances.

In our approach, we follow the principle of sep-
arating meaning into linguistic meaning, explica-
tum, and implicatum, as proposed by Relevance
Theory. Instead of the general effort-effect bal-
ance, we propose the concept of tacit contracts
which operate on the pragmatic deduction step of
communication in the Relevance Theory frame-
work. Tacit contracts also differ from Grice’s sys-
tem of conversational maxims, which is not spe-
cific enough to distinguish which inferences are
expected from particular individuals in their cur-
rent functional roles.

Rather than general maxims of communication,
tacit contracts are specific agreements entered into
by two or more parties that establish obligations
between those parties. These contracts determine
the services that a party is required to perform
in given situations. Therefore they determine the
services that the speaker can expect from the ad-
dressee when he or she causes these situations to
happen. For example, a contract such as “your
wish is my command” only applies to interactants
occupying a given role in the interaction, such as
caregiver, waiter, etc., and only for a given set of
actions that correspond to this role. If Karl is sit-
ting in a café and says to the waiter “I would like
steak for the main course.”, the waiter would treat
this wish as a command to serve the desired food,
because bringing food is part of his tacit contract
as a waiter. If Karl were to state “I would like to
have your hat.”, the waiter would not consider this
a command, but a statement, because, although he
would be capable to do so, providing the hat is not
part of his contract as a waiter.

Politeness, in this perspective, is a manner of
obtaining a stock whereby a speaker replaces his
or her requirement for an addressee to give out a
stock with an exchange of information about the
current situation. The new information triggers
a tacit contract which then enables the addressee
to infer the contractual requirement for the current
situation in a separate step of deduction.

4.3.1 Interactional Situation
For inferring implicata it is also important to dif-
ferentiate two types of businesses: stocks and is-
sues. For instance, in the afore-mentioned table-
attending situation, let’s suppose Karl had said
the same utterance to his friend Hanna “I would
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like steak for the main course. Because Hanna
cannot give a steak to Karl, the business of this
interaction, providing a steak, is an issue and
not a stock—they cannot exchange it, but only
talk about it. The difference to the hat example
above is that the waiter can provide his hat, but is
not required to do so by any applicable contract,
whereas Hanna may want to provide the steak, but
is not able to4.

By classifying businesses into stocks and issues,
it is possible to trim down the inferential process
further to avoid undesired implicatures. For in-
stance, a wheelchair should treat the following two
utterances differently: 1. “I would like to go to the
kitchen” and 2. “I would like to open the door”.
Taking someone to the kitchen is a stock in this
interaction—a service that the wheelchair can per-
form and that the user can assign to it. Opening the
door, on the other hand, is not in the range of the
wheelchair’s capabilities and therefore an issue.

In the following subsection, we will explain
how contracts and business kinds are used in the
inferential calculus for generating an implicatum
out of the explicatum. Then we will proceed to
present the specific contracts relevant for the in-
teraction with an intelligent wheelchair.

4.3.2 Contractual Calculus
Reference resolution and all other situational at-
tachments of meaning are dealt with in the en-
riching step of the inferential process. Example
(10) shows the enrichment of an utterance in the
wheelchair scenario.
(10)“I would like to go to the kitchen”

ADDRESSEE-CENTERED MEANING:
Speaker requires Addressee

to know that
Speaker would like

to go to the kitchen
EXPLICATUM:
JOHN requires ROLLAND

to know that
JOHN is keen

to go to KITCHEN#1

After enrichment, the contractual phase is entered.
Contracts may be triggered by a requirement to-
wards the wheelchair to say or know. This is then
re-interpreted as a polite requirement to give or re-
ceive goods, services, or information depending
on the contract.

The process for selecting applicable tacit con-
tracts is the following: once a declarative re-
quirement has been detected, the system checks

4Notice that this reasoning constraint is similar to the Fea-
sibility predicate of FTRI.

Table 4: Surrogation

User: “I need to go to the kitchen.”
I need to go to the kitchen

Subject Finite – –
Actor – Process Destination

Medium – – –

Wheelchair: “Ok, I’ll take you there.”
I ’ll take you there

Subject Finite – – –
Actor – Process Action-Goal Destination
Agent – – Medium –

whether the speaker is the requirer and the ad-
dressee the provider of the impersonal stance.
If so, for each known contract, it is determined
whether the contract applies for the given requirer
and provider in their current functional roles. For
each applicable contract, the contract script is per-
formed, as will be shown in the following section.

4.3.3 Wheelchair Contracts
Here we present the contracts needed for un-
derstanding the utterances that occurred in our
wheelchair-usage corpus. All user utterances in
the corpus, except for three cases, can be under-
stood appropriately with the given contracts.

Surrogation is the contract whereby a statement
by the speaker of their inclination or obligation to
perform an action is interpreted as a demand of
a service. For example, if the user puts a bottle
on the intelligent wheelchair and tells it “I need to
take this bottle to Hannah”, the wheelchair should
treat this as a command to take the bottle to Han-
nah, assuming she is close by (similar to the im-
plication in FTRI discussed in section 3).

For a non-affecting action such as “going”, the
entity that undergoes change as a result of the ac-
tion (the Medium) is the Actor. In an affecting ac-
tion such as “put”, on the other hand, the Medium
is the Action-Goal or action target—the thing be-
ing put. If a person states that they need to per-
form an action, the wheelchair needs to perform
a service in which it is the Actor and which im-
poses the same result on the Medium. As Table
4 shows, this entails substituting a non-affecting
action (“go”) with an affecting action (“take”).

Example (11) shows the performance of a con-
tractual implicature in the deductive process.

(11)“I need to go to the kitchen”
EXPLICATUM:
JOHN requires ROLLAND

to know that
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JOHN is required
to go to the kitchen

IMPLICATUM:
JOHN politely requires ROLLAND

to take JOHN to the kitchen

Supply is a contract whereby requiring X to say
whether X will do should be interpreted as requir-
ing X to do.

Need gleaning is a contract whereby the ad-
dressee is required to interpret a question about the
availability of a stock as a statement of its need by
the speaker. This contract is used together with
Surrogation to create polite commands. Example
(12) shows the inference of first applying the con-
tract need gleaning, interpreting a requiring X to
say whether X can do Y as a requiring X to know
that Y needs to be done, and then applying the con-
tract surrogation, as described above.

(12)“Can you take me to the kitchen?”
EXPLICATUM:
JOHN requires ROLLAND

to say whether
ROLLAND can

take JOHN to the kitchen

IMPLICATUM: NEED GLEANING
JOHN politely requires ROLLAND

to know that
JOHN needs

to be taken to the kitchen

IMPLICATUM: SURROGATION
JOHN requires ROLLAND very politely

to take JOHN to the kitchen

Support is a contract whereby the statement of
the speaker’s inclination or obligation to perform
an action is understood as a command to offer the
stock that serves to fulfill the preconditions for
performing his or her intended or required action.
As Example (13) shows, requiring X to know that
Y is keen to is interpreted as requiring X to perform
an action that enables Y to.
(13)“I’d like to open the door!”

EXPLICATUM:
JOHN requires ROLLAND

to know that
JOHN is keen

to open the door

IMPLICATUM: SUPPORT
JOHN politely requires ROLLAND

to take JOHN to a place
where JOHN can open the door

This contract is dependent on the classification of
entities by affordances and usage preconditions. A
wheelchair can only decide where to take the user
who says ”I would like to do a mouth wash”, if it
knows that doing a mouth wash requires the user
to be at a certain position in front of a wash basin.

In addition, in order to distinguish whether to
apply the contract support or the contract surro-
gate, the distinction between stock and issue is

central. If the desired action of the speaker is a
stock, i.e. a service that can be performed by the
wheelchair, the contract surrogate should be ap-
plied. If it is an issue, the contract support should
be applied instead.

5 Discussion and Outlook

We have presented the main linguistic features of
our Enactment Upper Model and shown how to in-
fer dialogue acts by using tacit contracts. With this
procedure, we are able to determine automatically
which actions the wheelchair is expected to do for
most utterances of our corpus. From a theoretical
point of view, we proposed a method of deducing
implicata by applying contractual scripts that com-
bine a linguistic and a philosophical approach with
the strict purpose of automation and, in specific,
of controlling an intelligent wheelchair. In doing
so, we fill the gap between a linguist’s set of lexi-
cogrammatical features with requiring force and a
philosopher’s set of axioms from which it can be
deduced whether the user made a request.

On a robot design perspective, we have spared
the text analysis component from creating specific
speech acts for a number of clause structures such
as “can you...” and “will you...” and so on, which
would otherwise be necessary, and spared the dia-
logue manager from managing a large number of
user’s dialogue-related intentions and from deal-
ing with the otherwise present ambiguity of con-
textually interpretable utterances such as “I need
to open the door”. In addition, our approach en-
ables adjustment for new wheelchair functionality
without rewriting the whole text analysis compo-
nent and allows for an easy addition of new tacit
contracts with corresponding scripts.

The approach presented in this paper provides a
principled way for inferring dialogue acts that uses
the structural information present in the clause and
therefore enables high accuracy and reusability
both on the semantic and on the pragmatic level.
In order to gain a full understanding of the scala-
bility of this approach, further investigation of ap-
plicable contracts in different application domains
is necessary.
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Abstract

This study explores laughter distribution
around topic changes in multiparty conver-
sations. The distribution of shared and solo
laughter around topic changes was examined
in corpora containing two types of spoken in-
teraction; meetings and informal conversation.
Shared laughter was significantly more fre-
quent in the 15 seconds leading up to topic
change in the informal conversations. A sam-
ple of informal conversations was then anal-
ysed by hand to gain further insight into links
between laughter and topic change.

1 Introduction

Human spoken interaction comprises a bundle of
signals and cues, together and separately providing
information relevant to the topic or task at hand, and
serving to build or maintain social bonds. Dialogue
is multifunctional, serving social as well as informa-
tion transfer goals. Laughter is predominantly social
rather than a solo activity, is universally present in
humans, part of the ‘universal human vocabulary’,
innate, instinctual, and inherited from primate an-
cestors (Provine, 2004; Glenn, 2003). In conversa-
tion, it predominantly punctuates rather than inter-
rupts speech. Accounts of laughter’s role range from
response to humour to a social cohesion or bonding
mechanism used since our primate days. It has been
suggested that laughter is often a co-operative mech-
anism which can provide clues to dialogue structure
(Holt, 2011). Herein, we investigate the relevance of
laughter to topic change by analysing two corpora of
conversational speech in terms of temporal distribu-
tion of laughter, first through statistical analysis of

laughter and topic change distribution, then by man-
ual study of an hour of spontaneous conversation.

2 Laughter and Topic Change

Conversation analysis has highlighted connections
between laughter and topic change; many conver-
sations in the Holt corpus of mostly two person tele-
phone dialogues include laughter at topic closings
(Holt, 2010). Laughter has been linked to topic
closure in situations where one participant produces
jokes or laughs, thus inviting others to join in, with
this invitation open to refusal if interlocutors con-
tinue speaking on the topic at hand (Jefferson, 1979).
Holt (2010) suggests that laughter may arise at topic
changes because turns consisting only of laughter
are backwards looking, not adding to the last topic,
and thus constituting a signal that the current topic
has been exhausted and that the conversation is at
a topic change relevant point. We hypothesise that
these laughter turns form a ‘buffer’ allowing partic-
ipants a reassuring moment of social bonding. In
a meeting, there is a set agenda, a chairperson, and
protocols for moving from topic to topic. In social
dialogue, the goal is to pass time together, and top-
ics are not lined up ready for use. Aversion to poten-
tially embarrassing silence may be more pertinent in
informal conversation; thus laughter preceding topic
change may be more likely in informal dialogue.

Although there is much mention of laughter in
conversation analysis, it is difficult to find quanti-
tative data on its distribution in spoken interaction.
Previous work (Bonin et al., 2012b) established that
laughter, particularly shared laughter, is less likely
to occur in the first quarter of a topic than in the fi-
nal quarter, and that this distinction is greater in so-
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cial conversation. In this work we test the hypothe-
sis that laughter should be frequently found before
rather than simply around topic changes. We ex-
amine the frequency of laughter within a range of
distances from either side of a topic change, to in-
vestigate if there is a period of higher laughter fre-
quency independent of topic length. We are also
interested in exploring whether the turns leading
to topic change follow the observations on topic
change sequences and laughter distribution in two
party conversations in the literature. If there are
identifiable sequences involving laughter leading to
topic change, knowledge of their architecture will
aid in creating algorithms for discourse recognition
and segmentation in multiparty conversation.

The notion of topic in discourse has been stud-
ied extensively but a concise definition is diffi-
cult to find. Topic has been described at sen-
tence level (Lambrecht, 1996), at discourse level
(Van Dijk, 1981); as a manifestation of speakers in-
tentions (Passonneau and Litman, 1997), and as co-
herent segments of discourse about the same thing
(Van Dijk, 1996). Here, we consider topic at dis-
course level as a chunk of coherent content.

3 Corpora

We analysed two datasets to cover free natural inter-
action and more structured meetings.

3.1 Topic annotation in TableTalk and AMI
Both TableTalk and AMI have topic annotations
freely available. TableTalk topics were annotated
manually by two labellers at a single level; AMI
annotations include top-level or core topics whose
content reflects the main meeting structure, and
subtopics for small digressions inside the core top-
ics. Here we use the core topic segmentation which
is more in line with the TableTalk annotation.

3.2 TableTalk
The TableTalk corpus contains multimodal record-
ings of free flowing natural conversations among
five participants, recorded at the Advanced Telecom-
munication Research Labs in Japan (Campbell,
2009). In order to collect as natural data as possi-
ble, neither topics of discussion nor activities were
restricted in advance. Three sessions were recorded
over three consecutive days in an informal setting

over coffee, by three female (Australian, Finnish,
and Japanese) and two male (Belgian and British)
participants (Jokinen, 2009). The conversations are
fully transcribed and segmented for topic, and also
annotated for affective state of participants and for
gesture and postural communicative functions us-
ing MUMIN (Allwood et al., 2007). Table-talk has
been analyzed in terms of engagement and laugh-
ter (Bonin et al., 2012a) and lexical accommodation
(Vogel and Behan, 2012). Our analyses used tran-
scripts of the entire corpus: about 3h 30, 31523 to-
kens and 5980 turns. Laughter was transcribed in
intervals on the speech transcription tier as @w, (un-
less inserted as part of a longer utterance). The total
number of laughs is 713. Shared laughter was auto-
matically annotated as described in §4.

3.3 AMI

The AMI (Augmented Multi-party Interaction)
Meeting Corpus is a multimodal data set of 100
hours of meeting recordings (McCowan et al.,
2005). The corpus contains real and scenario-driven
meetings. We base our analysis on the scenario
based meetings, with a total of 717,239 tokens. Each
meeting has four participants, and the same subjects
meet over four different sessions to discuss a design
project. The sessions correspond to four different
project steps (Project kick-off meeting, Functional
Design, Conceptual Design and Detailed Design).
Each participant is given a role to play (project
manager, marketing expert, industrial designer and
user interface designer) and keeps this role until the
end of the scenario. Conversations are all in En-
glish, with 91 native speakers and 96 non-native
speakers participating. There are 11,277 instances
of laughter, annotated in the transcripts as vocal-
sounds/laugh. About 25% of these laughs are anno-
tated with start time only.

4 Analytical methodologies

4.1 Automated and manual analyses

Both corpora were also analysed automatically, and
a one-hour sample of the TableTalk corpus was anal-
ysed on a case-by-case basis to investigate if laugh-
ter around topic change did indeed follow the pat-
terns proposed in the literature.

For the initial stages of ongoing manual analysis
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to gain more insight into the mechanisms underly-
ing laughter and topic change, a one-hour stretch of
conversation from the second day of the TableTalk
was selected for study. The mechanism outlined
by Holt, based on Jefferson’s work on laughter and
Schegloff’s topic final sequences (Schegloff, 2007),
hinges on whether a laughter invitation is taken up
an interlocutor in two party dialogue. If it is, then
one or more laughter turns ensue and the likelihood
of topic change is high. The opposite occurs when
the interlocutor does not take up the invitation but
rather continues with further talk on the topic, avert-
ing topic change. We were interested in observing if
this phenomenon occurred in multiparty conversa-
tion, and if subsequent topic change was dependent
on how many of the group took up the invitation to
laugh. As analysis of the two corpora showed higher
likelihood of laughter before topic change in more
informal conversation, we chose to examine a sam-
ple of TableTalk for preliminary study.

This sample contained 1834 utterances, 36 T-
event or topic change instants, and 329 laughs
among the five participants, of which 76 were solo
while the remainder contributed to a total of 68
shared laugh events, all of which were manually an-
notated on separate laughter tiers. For each instance
of laughter, we also annotated the number of partic-
ipants who laughed and the distance from the laugh-
ter to the next topic commencement.

4.2 Temporal definitions and measurement

We use an algorithm resulting from earlier work to
annotate shared and solo laughter. The algorithm
was motivated by the observation that in both cor-
pora laughter was sometimes annotated with start
time only, and also that laughter in response to the
same stimulus should be considered shared laugh-
ter. These two factors taken together allow us to
recover shared laughter that may be missed if we
simply count overlapping laughs of distinct speak-
ers. The algorithm defines shared laughter as: (a)
overlapping laughs of distinct speakers; or (b) con-
secutive laughs of distinct speakers within distance
✏. We calculate ✏ using the probability distribution
that successive laughs with observation of start time
only are part of a shared laugh event, trained on a
subset of overlapping laughs from the corpora.

Topic changes (T-events) are the annotated time

points where topic shifts in conversation. We
counted the frequency of laughter, shared laughter,
and solo laughter into 5-second bins at T-event mi-
nus multiples of 5 seconds (T-5, T-10, T-15, T-20) in
order to look at the laughter trend near topic termi-
nation. A meaningful threshold emerges (T-15 sec-
onds) where a change in the laughter trend is vis-
ible. Hence we counted the frequency of laughter
between T-15 and T, and T and T+15.

5 Results

5.1 Automated processing

We counted the frequency of laughter, shared laugh-
ter, and solo laughter in 5-second bins at T- event
time T minus multiples of 5 seconds (T-5, T-10,
T-15, T-20). Fig. 1 shows the mean frequency of
laughs per bin in TableTalk. While in AMI the distri-
bution over the bins does not show significant trends,
in TableTalk, we noticed a significant change at T-
15.1 Hence we take T-15 as a rational threshold
marking some change in the laughter distribution be-
fore a topic boundary in informal chat.

Then we analyzed the frequency of laughter be-
tween T-15 and T (we call this segment wt) and
T+15 (wb). As shown in Fig. 2, we notice a signifi-
cant difference in the amount of both shared and solo
laughter between topic terminations (wt) and topic
beginnings (wb). In particular topic terminations
show a higher frequency of laughter than topic be-
ginnings. The result holds in AMI and in TableTalk.

5.2 Manual processing

The first observation from the manual analysis is
that the shared/solo laugh ratio is heavily skewed to-
wards shared laughter (253 laughs were shared vs 79
solo). Laughs were combined into laugh events ac-
cording to the number of participants involved. The
length of laugh events was significantly shorter for
one-person laugh events than for shared laughter, see
Fig. 3. Distance to next topic change and number of

1The laughter counts in the bins for each of T-5, T-10 and T-
15 are significantly greater than random samples of 5 sec. con-
versation slices (Wilcox directed test, p < 0.002); the counts
for T-20 are not significantly greater than random slices. Fur-
ther, the counts for T-20 are significantly less than those in each
of T-15 (p < 0.02), T-10 (p < 0.02) and T-5 (p < 0.005), while
the pairwise differences among T-15, T-10 and T-5 are not sign-
ficant. We conclude that T-15 contains an inflection point.
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Figure 1: Frequency of laughter in TableTalk between T-
20 and T in 5-second bins. Bars represent the mean laugh
count per bin
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Figure 2: Shared (sh) and Solo (so) laughs in topic
termination (wt) and topic beginning segments (wb)-
TableTalk

laughers in a laugh event, seen in Fig. 4, showed sig-
nificant negative correlation (p < 0.05).

6 Discussion and Conclusion

Our results indicate a likelihood of shared laugher
appearing in the final 15 seconds before a new topic
commences. This is in line with the literature which
reports laughter at topic transition relevant places,
and thus before a topic change. We have also seen
that the number of people sharing laughter is re-
lated to reducing distance from the laughter to the
next topic change, and that laugh events are longer
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Figure 3: Laughter event length by number of laughers.
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Figure 4: Distance to next topic by number of laughers.

as more participants join in. Models of a complex-
ity adequate to predict human behaviour require ex-
haustively detailed analysis of stretches of conver-
sation in addition to broad statistical analysis. Our
combination of approaches has proven fruitful. Sev-
eral observations from the preliminary close exami-
nation of the TableTalk data provide fruit for further
research. Many of the short solo laughs may be seen
as responses to one’s own or another participant’s
content, while stronger solo laughs may tend to in-
vite longer and stronger laughter from others, lead-
ing to topic change possibilities. An acoustic anal-
ysis of the laughter will investigate this. We also
observed that shared laughter among several partic-
ipants which did not result in topic change were fre-
quently interpretable as attempts to draw an ongo-
ing topic to a close. This merits investigation to
see whether these laugh events can be considered
topic transition relevant places. Analysis of speaker
changes and turn retrieval in and around these laugh-
ter events is underway to model these events.
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Rüdiger Hoffmann, and Vincent C. Müller, edi-
tors, Behavioural Cognitive Systems, pages 73–88.
Springer, LNCS 7403.

308



Proceedings of the SIGDIAL 2013 Conference, pages 309–313,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

IMHO: An Exploratory Study of Hedging in Web Forums

Liliana Mamani Sanchez
Trinity College Dublin

mamanisl@scss.tcd.ie

Carl Vogel
Trinity College Dublin
vogel@tcd.ie

Abstract

We explore hedging in web forum con-
versations, which is interestingly different
to hedging in academic articles, the main
focus of recent automatic approaches to
hedge detection. One of our main results
is that forum posts using hedges are more
likely to get high ratings of their useful-
ness. We also make a case for focusing
annotation efforts on hedges that take the
form of first-person epistemic phrases.

1 Introduction

Computational linguistics research in hedging, use
of linguistic expressions whose contribution to
sentence meaning is a modulation of the accuracy
of the content they embed, and speculation detec-
tion has been done intensively in the domain of
scholarly texts. The interest created in this do-
main has expanded to some extent to other do-
mains such as news and reviews. Automatic pro-
cessing of speculation requires at some stage the
annotation of words or phrases conveying uncer-
tainty (Vincze et al., 2008). More complex en-
deavours imply the annotation of various elements
of context involved in the expression of hedging
(Rubin et al., 2005; Wiebe et al., 2005).

In web forums where users’ contributions play
a vital role in the forum dynamics, such as mutual
support forums that are part of the ecosystem of
technology company supports for users, exploring
the features that make a contributor outstanding
is relevant.1 A user shows a distinctive behavior
by writing useful posts that help other users in the
problem that first motivated their participation in

1Throughout, we use “web forum” to refer to such ecosys-
tems: we speculate that their informal nature makes our ob-
servations generalize to other sorts of web forum in which
solutions to problems are not the focal point; even general
discussion forums can be witnessed to trigger community
weighting of contributions.

the forum. This paper emerges from our interest
in finding features that predict which contributors
will be most appreciated.

Many lexical and grammatical devices aid
hedging (expressions such as epistemics verbs,
modals, adjectives, etc. name but a few) as do non-
lexical devices such as conditionals. We deem sin-
gular first person epistemic phrases as hedges that
can help to identify the subject of a hedging event.
We analyze the correlation between the use of
epistemic phrases (vs. other types of hedges) and
the probability of posts containing these hedges of
being considered useful by the forum community.
We also explore whether epistemic phrases consti-
tute a distinctive feature that support user classifi-
cations. In §2, we described the function of hedges
according to a hedging classification framework
and in relation to the domain of web forums. Then
§3 describes the profiling work done and discusses
the main findings. We conclude in §4.

2 Functions of hedging

The research by Hyland (1998) is one of the broad-
est studies about hedging functions in scientific
articles, and which makes use of categories that
have strong relationship, at face value, to the like-
lihood that the reader of hedged material will find
the material sufficiently useful or sufficiently well
expressed to prompt the reader to rate highly the
message containing the material, whether with an
explicit facility to record kudos or otherwise. Hy-
land proposed a poly-pragmatic classification of
hedges based on their indicating function: reader-
oriented, writer-oriented, attribute and reliability.
Briefly, attribute and reliability hedges both re-
late to the accuracy of the message conveyed. At-
tribute hedges relate to the conformity of the de-
scribed situation with encyclopedic expectations
(1), while reliability hedges relate to the level of
certainty of the speaker about the propositional
content (2). In a different dimension, reader ori-
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ented hedges are composed with the concern that
the “reader” accept the truth of the embedded
content (3), thereby presupposing the “writer’s”
commitment to the content, while writer oriented
hedges disclaim commitment to the content (4).

(1) Protypical mammals are land-dwellers.

(2) Probably, respected ancient Greeks
thought whales to be fish.

(3) I think that if you reboot, the changes will
take effect.

(4) Based on what you’ve said, you seem
right.

Applying this classification scheme not to schol-
arly prose but to web forums, it seems likely that
readers in technical forums would prefer the accu-
racy of attribute hedges (1) over the relative uncer-
tainty of reliability hedges (2), and that the reader
oriented hedges (3) supply comfort in the implica-
tion of both the quality of the embedded claims
and the absence of arrogance. This research is
attempting to test these hypotheses by assessing
the relationship between the likelihood of posts re-
ceiving kudos and the quantity of hedges in these
categories that the posts contain.

Unfortunately, answering the question is com-
plex, because it is not in all cases obvious whether
a linguistic expression contains a hedge or what
function the hedges serve when they do exist.
Therefore, we attempt a partial answer to the ques-
tion by examining those hedge expressions which
can be processed with some reliability using au-
tomated means. Consider the taxonomy of lin-
guistic expressions in Fig. 1. The boxed regions
of this taxonomy are amenable to automatic pro-
cessing. Further, epistemic hedges with first-
person singular subjects relate strongly to reader
oriented hedges (3) in Hyland’s taxonomy. The
non-phrasal hedges are heterogeneous in function.

Figure 1: A taxonomy of linguistic expressions.
Linguistic Expressions

epistemic hedges other expressions

non−phrasal

lexical

phrasal

1st person singular other

conditionals ...

...

...

We do not claim this separation of hedging
markers can fully account for pragmatic and se-
mantic analysis of hedging in web forums, but we
are confident this classification supports reliable
annotation for quantificational assessment of cer-
tainty and hedging in this informal domain. We
base our profiling experiments (§3) on this func-
tional separation of hedging markers.

3 Profiling posts by hedging

3.1 Description of the forum dataset

The dataset we used created out of a forum that
is part of customer support services provided by
a software vendor company. Although we were
not able to confirm the forum demographics, we
can infer they are mostly American English speak-
ers as the forum was set up first for USA cus-
tomers. Some other features are best described by
Vogel and Mamani Sanchez (2013). Our dataset
is composed of 172,253 posts that yield a total
of 1,044,263 sentences. This dataset has been
intensively “cleaned”, as originally it presented
a great variety of non-linguistic items such as
HTML codes for URLS, emoticons, IP addresses,
etc. These elements were replaced by wild-cards
and also user names have been anonymised, al-
though some non-language content may remain.

A forum user can give a post “kudos” if he/she
finds it useful or relevant to the topic being ad-
dressed in a forum conversation.2 We counted
the number of kudos given to each post. There
are four user categories in the forum: {employee,
guru, notranked, ranked}.3 A poster’s rank de-
pends, among other factors, on the number of
posts they make and their aggregate kudos.

3.2 Epistemic phrases versus other hedges

We created two lexicons, one composed by first
person singular epistemic phrases and one by non-
phrasal hedges. Initially, a set of epistemic phrases
where taken from Kärkkäinen (2010): {I think, I
don’t know, I know, etc.} and from Wierzbicka
(2006). The non-phrasal hedge lexicon was cre-
ated from words conveying at least some degree of
uncertainty: {appear, seem, sometimes, suggest,
unclear, think, etc.}, taken from Rubin (2006).
Additional hedges were included after the pilot

2A user may accord kudos for any reason at all, in fact.
3In the forum we studied, there are actually many ranks,

with guru as the pinnacle for a non-employee; we grouped
the non-guru ranked posters together.
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annotation. The lexicons are composed by 76
and 109 items, respectively. There are many
other hedge instances that are not included in
these lexicons but our experiment restricts to these
items. Epistemic phrases include acronyms such
as “IMHO”, “IMO” and “AFAIK” that we deem
meet functions described in §2.

A pilot manual annotation of hedges was con-
ducted on in order to verify the viability of auto-
matic annotation. Our automatic annotation pro-
cedure performs a sentence by sentence matching
and tagging of both kinds of hedging. The pro-
cedure uses a maximal matching strategy to tag
hedges, e.g. if “I would suggest” is found, this
is tagged and not “suggest”. This automatic tag-
ging procedure does not account for distinctions
between epistemic and deontic readings of hedges,
nor between speculative or non-speculative uses of
non-phrasal hedges. 107,134 posts contain at least
one hedge: 34,301 posts contain at least one epis-
temic phrase; 101,086, at least one non-phrasal
hedge; 28,253, at least one of each.

3.3 Methods of analysis
In §3.1 we showed there are two ways to charac-
terize a post: 1) By its writer category and 2) by
the number of times it gets accorded kudos. We
devise a third characterisation by exploring epis-
temic phrases and non-phrasal hedge usage in in-
dividual posts as a whole, tracking use of both
types of hedge in each post. We devised three
discretization functions (DF) for assigning a la-
bel to each post depending on the type of hedges
contained within. The DFs take two parameters,
each one representing either the relative or bina-
rized frequency non-phrasal hedges and epistemic
phrases (nphr or epphr). DF1 relies on the oc-
currence of either type of hedge; a post is of a
mixed nature if it has at least one of each hedge
type. DF2 is based on a majority decision depend-
ing on the hedge type that governs the post and
only assigns the label hedgmixed when both types
of hedges appear in the same magnitude. DF3
expands DF1 and DF2 by evaluating whether ei-
ther majority or only one type of hedge is found,
e.g. we wanted to explore the fact that even when
non-phrasal hedges domain one post, an epistemic
phrase is contained as well, in contrast to when
only non-phrasal hedges occur in a post.

D
F1

epphr==0 epphr>0
nphr ==0 nohedges epphrasal
nphr >0 nonphrasal hedgmixed

D
F2

nphr=0 & epphr=0 nohedges
nphr > epphr nonphrasal
nphr < epphr epphrasal
nphr =epphr hedgmixed

D
F3

epphr=0 epphr>0
nphr=0 nohedges epphronly

nphr>0 nonphronly
nphr > epphr nonphrmostly
nphr < epphr epphrmostly
nphr =epphr hedgmixed

We computed four measures for each post based
on these functions, m1 is calculated by using DF1
having raw frequencies of hedges as parameters,
m2 and m3 result from applying DF3 and DF2
respectively to frequencies of hedge type averaged
by the corresponding lexicon size, and m4 is cal-
culated from DF3 over hedge frequencies aver-
aged by post word count. Other measures are also
possible, but these seemed most intuitive.

We were interested in the extent that hedge-
based post categories correlate with a post’s kudos
and with a post’s user category as tests of hypoth-
esis outlined in §2. We want to know which cor-
relations hold regardless of the choice of intuitive
measure and which are measure dependent.

3.4 Results and discussion
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Figure 2: Design plot with the mean of kudos of
each kind of post per each measure.

In Fig. 2, we show how the different hedge-
based classifications of posts (m1, m2, m3, m4)
relate to the average kudo counts for posts. Each
measure is shown in an individual scale.4 The hor-
izontal line represents the average of kudos for
all posts so we can observe which categories are
above/below the mean. Comparison and contrast

4For this comparison, we dropped extreme outliers in the
number of kudos and hedges, and we calculated these mea-
sures only in posts that had at least one kudo attribution.
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of the relationship between categorisation of posts
with each mi and mean kudos is interesting. For
example, when epistemic phrases dominate a post
(epphrmostly), there is the greatest mean of ku-
dos visible with the measure m2. The second
highest positive effect is of non-phrasal hedges
dominating a post (nonphrmostly) in m2 and m4.
The next strongest effect occurs when both of
hedges types appear in a post (hedgmixed in m1
and m3) and when they have about the same av-
erage density (m4), followed by when non-phrasal
hedges appear exclusively in a post. While there is
no consensus across the different scales that epis-
temic phrase-dominated posts are the most likely
to obtain kudos, still their occurrence has a posi-
tive effect in the average of kudos obtained. There
is low probability of kudos when only epistemic
phrases appear and the lowest probability when no
hedge occurs.5 Thus, we argue that the four mea-
sures are jointly and individually useful.
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Figure 3: Percentages of m1-hedge types in each
user category.

The relationship between hedge use and user
category is depicted (for m1) in Fig. 3. While
for all four user roles, epistemic phrases are exclu-
sively present in the lowest percentage of posts,
their contribution is shown in posts with mixed
hedge types. Posts with only non-phrasal hedges
are the most frequent across all user categories.
We had predicted no significance in this respect

5The contribution of epistemic phrases to the likelihood
of kudos could be due to other factors such as the use of first
person in general. We profiled the use of pronouns “I” and
“my” and we found a negative correlation between frequency
of these pronouns and the number of kudos per post. There
is a small but not significant correlation restricting to those
posts with non-zero kudos.

since non-phrasal hedges could map into any of
Hyland’s functions, however our intuition was
wrong as there is a significant difference (p<0.05)
in the proportions of posts per hedge type category
when making comparisons across user categories
one to one. Only when comparing proportions of
hedge type posts by gurus and notranked users
is there no significant difference in hedgmixed,
nonphrasal and nohedges posts.6 Employees and
ranked users have the highest rates of use of mixed
hedges. Ranked and guru posts have the high-
est ratios of exclusively epistemic phrase hedges,
meeting expectations. Employees have the low-
est ratio of user of epistemic phrases on their own,
this presumably since they frequently write posts
on behalf of the company so they are least likely
to make subjective comments: their posts have the
lowest percentage of use of “I” and “my”.

These two approaches to assessing associations
between different classifications of forum posts re-
veal that posts using hedges are the most likely to
be accorded kudos and that guru and ranked users
are the most frequent users of epistemic phrases
in general. This lends support to the view that
first person singular epistemic phrases, the epit-
ome of reader-oriented hedges, are predictive of
coarse grained rank in the forum.

4 Conclusions and future work

We have found that the hedges used contribute to
the probability of a post getting high ratings. Posts
with no hedges are the ones awarded least kudos.
We have still to test the correlation between epis-
temic phrases and other types of hedges when they
both are found in a single post. We think that au-
tomatic methods should focus in first person epis-
temic phrases as they show writer’s stance at the
same time as softening their commitment or antic-
ipating reader’s response. Following the annota-
tion described here, manual annotation work is un-
der way, where epistemic phrases and non-phrasal
hedges constitute two distinct categories. Our on-
going work seeks other ways to measure the con-
tribution of these categories to reader expression
of appreciation of posts and whether hedge us-
age creates natural user categorizations. We also
study other types of web forum dialogue to explore
whether hedging follows similar trends.

6A two-sample test of proportions was used to test the
significance of differences between amounts of hedge type
posts for each category.
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Abstract
A challenge in dialogue act recognition
is the mapping from noisy user inputs to
dialogue acts. In this paper we describe
an approach for re-ranking dialogue act
hypotheses based on Bayesian classifiers
that incorporate dialogue history and Au-
tomatic Speech Recognition (ASR) N-best
information. We report results based on
the Let’s Go dialogue corpora that show
(1) that including ASR N-best information
results in improved dialogue act recogni-
tion performance (+7% accuracy), and (2)
that competitive results can be obtained
from as early as the first system dialogue
act, reducing the need to wait for subse-
quent system dialogue acts.

1 Introduction

The primary challenge of a Dialogue Act Recog-
niser (DAR) is to find the correct mapping be-
tween a noisy user input and its true dialogue
act. In standard “slot-filling” dialogue sys-
tems a dialogue act is generally represented as
DialogueActType(attribute-value pairs), see Sec-
tion 3. While a substantial body of research has
investigated different types of models and meth-
ods for dialogue act recognition in spoken dia-
logue systems (see Section 2), here we focus on
re-ranking the outputs of an existing DAR for eval-
uation purposes. In practice the re-ranker should
be part of the DAR itself. We propose to use mul-
tiple Bayesian classifiers to re-rank an initial set
of dialogue act hypotheses based on information
from the dialogue history as well as ASR N-best
lists. In particular the latter type of information
helps us to learn mappings between dialogue acts
and common mis-recognitions. We present exper-
imental results based on the Let’s Go dialogue cor-
pora which indicate that re-ranking hypotheses us-
ing ASR N-best information can lead to improved

recognition. In addition, we compare the recogni-
tion accuracy over time and find that high accuracy
can be obtained with as little context as one system
dialogue act, so that there is often no need to take
a larger context into account.

2 Related Work

Approaches to dialogue act recognition from spo-
ken input have explored a wide range of meth-
ods. (Stolcke et al., 2000) use HMMs for dialogue
modelling, where sequences of observations cor-
respond to sequences of dialogue act types. They
also explore the performance with decision trees
and neural networks and report their highest ac-
curacy at 65% on the Switchboard corpus. (Zim-
mermann et al., 2005) also use HMMs in a joint
segmentation and classification model. (Grau et
al., 2004) use a combination of Naive Bayes and
n-grams with different smoothing methods. Their
best models achieve an accuracy of 66% on En-
glish Switchboard data and 89% on a Spanish cor-
pus. (Sridhar et al., 2009; Wright et al., 1999)
both use a maximum entropy classifier with n-
grams to classify dialogue acts using prosodic fea-
tures. (Sridhar et al., 2009) report an accuracy of
up to 74% on Switchboard data and (Wright et al.,
1999) report an accuracy of 69% on the DCIEM
Maptask Corpus. (Bohus and Rudnicky, 2006)
maintain an N-best list of slot values using logis-
tic regression. (Surendran and Levow, 2006) use
a combination of linear support vector machines
(SVMs) and HMMs. They report an accuracy of
65.5% on the HCRC MapTask corpus and con-
clude that SVMs are well suited for sparse text and
dense acoustic features. (Gambäck et al., 2011)
use SVMs within an active learning framework.
They show that while passive learning achieves an
accuracy of 77.8% on Switchboard data, the ac-
tive learner achieves up to 80.7%. (Henderson et
al., 2012) use SVMs for dialogue act recognition
from ASR word confusion networks.
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Figure 1: Pipeline architecture for dialogue act recognition and re-ranking component. Here, the input
is a list of dialogue acts with confidence scores, and the output is the same list of dialogue acts but with
recomputed confidence scores. A dialogue act is represented as DialogueActType(attribute-value pairs).

Several authors have presented evidence in
favour of Bayesian methods. (Keizer and op den
Akker, 2007) have shown that Bayesian DARs
can outperform baseline classifiers such as deci-
sion trees. More generally, (Ng and Jordan, 2001)
show that generative classifiers (e.g. Naive Bayes)
reach their asymptotic error faster than discrimina-
tive ones. As a consequence, generative classifiers
are less data intensive than discriminative ones.

In addition, several authors have investigated
dialogue belief tracking. While our approach
is related to belief tracking, we focus here on
spoken language understanding under uncertainty
rather than estimating user goals. (Williams, 2007;
Thomson et al., 2008) use approximate inference
to improve the scalability of Bayes nets for be-
lief tracking and (Lison, 2012) presents work on
improving their scalability through abstraction.
(Mehta et al., 2010) model user intentions through
the use of probabilistic ontology trees.

Bayes nets have also been applied to other
dialogue-related tasks, such as surface realisa-
tion within dialogue (Dethlefs and Cuayáhuitl,
2011) or multi-modal dialogue act recognition
(Cuayáhuitl and Kruijff-Korbayová, 2011). In the
following, we will explore a dialogue act recogni-
tion technique based on multiple Bayesian classi-
fiers and show that re-ranking with ASR N-best in-
formation can improve recognition performance.

3 Re-Ranking Dialogue Acts Using
Multiple Bayesian Networks

Figure 1 shows an illustration of our dialogue act
re-ranker within a pipeline architecture. Here, pro-
cessing begins with the user’s speech being inter-
preted by a speech recogniser, which produces a
first N-best list of hypotheses. These hypotheses
are subsequently passed on and interpreted by a
dialogue act recogniser, which in our case is rep-
resented by the Let’s Go parser. The parser pro-
duces a first set of dialogue act hypotheses, based
on which our re-ranker becomes active. A full

dialogue act in our scenario consists of three el-
ements: dialogue act types, attributes (or slots),
and slot values. An example dialogue act is in-
form(from=Pittsburgh Downtown). The dialogue
act re-ranker thus receives a list of hypotheses
in the specified form (triples) from its preceding
module (a DAR or in our case the Let’s Go parser)
and its task is to generate confidence scores that
approximate true label (i.e. the dialogue act really
spoken by a user) as closely as possible.

We address this task by using multiple Bayesian
classifiers: one for classifying a dialogue act type,
one for classifying a set of slots, and the rest for
classifying slot values. The use of multiple classi-
fiers is beneficial for scalability purposes; for ex-
ample, assuming 10 dialogue act types, 10 slots,
10 values per slot, and no other dialogue con-
text results in a joint distribution of 1011 parame-
ters. Since a typical dialogue system is required to
model even larger joint distributions, our adopted
approach is to factorize them into multiple inde-
pendent Bayesian networks (with combined out-
puts). A multiple classifier system is a power-
ful solution to complex classification problems in-
volving a large set of inputs and outputs. This
approach not only decreases training time but has
also been shown to increase the performance of
classification (Tax et al., 2000).

A Bayesian Network (BN) models a joint prob-
ability distribution over a set of random variables
and their dependencies, see (Bishop, 2006) for
an introduction to BNs. Our motivation for us-
ing multiple BNs is to incorporate a fairly rich di-
alogue context in terms of what the system and
user said at lexical and semantic levels. In con-
trast, using a single BN for all slots with rich di-
alogue context faces scalability issues, especially
for slots with large numbers of domain values,
and is therefore not an attractive option. We
denote our set of Bayesian classifiers as λ =
{λdat, λatt, ..., λval(i)}, where BN λdat is used to
rank dialogue act types, BN λatt is used to rank
attributes, and the other BNs (λval(i)) are used to
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rank values for each slot i. The score of a user
dialogue act (< d, a, v >) is computed as:

P (d, a, v) =
1

Z

∏
P (d|pad)P (a|paa)P (v|pav),

where d is a dialogue act type, a is an attribute
(or slot), v is a slot value, pax is a parent random
variable, andZ is a normalising constant. This im-
plies that the score of a dialogue act is the product
of probabilities of dialogue act type and slot-value
pairs. For dialogue acts including multiple slot-
value pairs, the product above can be extended ac-
cordingly. The best and highest ranked hypothesis
(from spaceH) can be obtained according to:

< d, a, v >∗= arg max
<d,a,v>∈H

P (d, a, v).

In the following, we describe our experimental
setting. Here, the structure and parameters of our
classifiers will be estimated from a corpus of spo-
ken dialogues, and we will use the equations above
for re-ranking user dialogue acts. Finally, we re-
port results comparing Bayesian classifiers that
make use of ASR N-best information and dialogue
context against Bayesian classifiers that make pre-
dictions based on the dialogue context alone.

4 Experiments and Results

4.1 Data
Our experiments are based on the Let’s Go corpus
(Raux et al., 2005). Let’s Go contains recorded in-
teractions between a spoken dialogue system and
human users who make enquiries about the bus
schedule in Pittsburgh. Dialogues are driven by
system-initiative and query the user sequentially
for five slots: an optional bus route, a departure
place, a destination, a desired travel date, and a
desired travel time. Each slot needs to be explic-
itly (or implicity) confirmed by the user. Our anal-
yses are based on a subset of this data set contain-
ing 779 dialogues with 7275 turns, collected in the
Summer of 2010. From these dialogues, we used
70% for training our classifiers and the rest for
testing (with 100 random splits). Briefly, this data
set contains 12 system dialogue act types1, 11 user
dialogue act types2, and 5 main slots with varia-
tions3. The number of slot values ranges between

1ack, cant help, example, expl conf, go back, hello,
impl conf, more buses, request, restart, schedule, sorry.

2affirm, bye, go back, inform, negate, next bus, prevbus,
repeat, restart, silence, tellchoices.

3date.absday, date.abmonth, date.day, date.relweek, from,
route, time.ampm, time.arriveleave, time.hour, time.minute,
time.rel, to.

*

Figure 2: Bayesian network for probabilistic rea-
soning of locations (variable “from desc”), which
incorporates ASR N-best information in the vari-
able“from desc nbest” and dialogue history in-
formation in the remaining random variables.

102 and 103 so that the combination of all possi-
ble dialogue act types, attributes and values leads
to large amounts of triplets. While the majority
of user inputs contain one user dialogue act, the
average number of system dialogue acts per turn
is 4.2. Note that for the user dialogue act types,
we also model silence explicitly. This is often not
considered in dialogue act recognisers: since the
ASR will always try to recognise something out
of any input (even background noise), typical dia-
logue act recognisers will then try to map the ASR
output onto a semantic interpretation.

4.2 Bayesian Networks
We trained our Bayesian networks in a supervised
learning manner and used 43 discrete features (or
random variables) plus a class label (also discrete).
The feature set is described by three main subsets:
25 system-utterance-level binary features4 derived
from the system dialogue act(s) in the last turn; 17
user-utterance-level binary features5 derived from
(a) what the user heard prior to the current turn,
or (b) what keywords the system recognised in its

4System utterance features: heardAck, heardCantHelp,
heardExample, heardExplConf, heardGoBackDAT, heard-
Hello, heardImplConf, heardMoreBuses, heardRequest,
heardRestartDAT, heardSchedule, heardSorry, heardDate,
heardFrom, heardRoute, heardTime, heardTo, heardNext,
heardPrevious, heardGoBack, heardChoices, heardRestart,
heardRepeat, heardDontKnow, lastSystemDialActType.

5User utterance features: hasRoute, hasFrom, hasTo, has-
Date, hasTime, hasYes, hasNo, hasNext, hasPrevious, has-
GoBack, hasChoices, hasRestart, hasRepeat, hasDontKnow,
hasBye, hasNothing, duration in secs. (values=0,1,2,3,4,>5).

316



list of speech recognition hypotheses; and 1 word-
level non-binary feature (* nbest) corresponding
to the slot values in the ASR N-best lists.

Figure 2 shows the Bayes net corresponding to
the classifier used to rank location names. The
random variable from desc is the class label, the
random variable from desc nbest (marked with an
asterisk) incorporates slot values from the ASR
N-best lists, and the remaining variables model
dialogue history context. The structure of our
Bayesian classifiers were derived from the K2 al-
gorithm6, and their parameters were derived from
maximum likelihood estimation. In addition, we
performed probabilistic inference using the Junc-
tion tree algorithm7. Based on these data and
tools, we trained 14 Bayesian classifiers: one for
scoring dialogue act types, one for scoring at-
tributes (slots), and the rest for scoring slot values.

4.3 Experimental Results
We compared 7 different dialogue act recognisers
in terms of classification accuracy. The compar-
ison was made against gold standard data from
a human-labelled corpus. (Semi-Random) is a
recogniser choosing a random dialogue act from
the Let’s Go N-best parsing hypotheses. (Inci) is
our proposed approach considering a context of i
system dialogue acts, and (Ceiling) is a recogniser
choosing the correct dialogue act from the Let’s
Go N-best parsing hypotheses. The latter was used
as a gold standard from manual annotations, which
reflects the proportion of correct labels in the N-
best parsing hypotheses.

We also assessed the impact of ASR N-best in-
formation on probabilistic inference. To this end,
we compared Bayes nets with a focus on the ran-
dom variable “* nbest”, which in one case con-
tains induced distributions from data and in the
other case contains an equal distribution of slot
values. Our hypothesis is that the former setting
will lead to better performance.

Figure 3 shows the classification accuracy of
our dialogue act recognisers. The first point to no-
tice is that the incorporation of ASR N-best infor-
mation makes an important difference. The per-
formance of recogniser IncK (K being the num-
ber of system dialogue acts) is 66.9% without
ASR N-best information and 73.9% with ASR N-
best information (the difference is significant8 at

6www.cs.waikato.ac.nz/ml/weka/
7www.cs.cmu.edu/˜javabayes/Home/
8Based on a two-sided Wilcoxon Signed-Rank test.
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Figure 3: Bayesian dialogue act recognisers show-
ing the impact of ASR N-best information.

p < 0.05). The latter represents a substantial im-
provement over the semi-random baseline (62.9%)
and Lets Go dialogue act recognizer (69%), both
significant at p < 0.05. A second point to notice is
that the differences between Inci (∀ i>0) recognis-
ers were not significant. We can say that the use of
one system dialogue act as context is as competi-
tive as using a larger set of system dialogue acts.
This suggests that dialogue act recognition carried
out at early stages (e.g. after the first dialogue act)
in an utterance does not degrade recognition per-
formance. The effect is possibly domain-specific
and generalisations remain to be investigated.

Generally, we were able to observe that more
than half of the errors made by the Bayesian clas-
sifiers were due to noise in the environment and
caused by the users themselves, which interfered
with ASR results. Detecting when users do not
convey dialogue acts to the system is therefore still
a standing challenge for dialogue act recognition.

5 Conclusion and Future Work

We have described a re-ranking approach for user
dialogue act recognition. Multiple Bayesian clas-
sifiers are used to rank dialogue acts from a set of
dialogue history features and ASR N-best infor-
mation. Applying our approach to the Let’s Go
data we found the following: (1) that including
ASR N-best information results in improved di-
alogue act recognition performance; and (2) that
competitive results can be obtained from as early
as the first system dialogue act, reducing the need
to include subsequent ones.

Future work includes: (a) a comparison of our
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Bayesian classifiers with other probabilistic mod-
els and forms of training (for example by us-
ing semi-supervised learning), (b) training dia-
logue act recognisers in different (multi-modal and
multi-task) domains, and (c) dealing with random
variables that contain very large domain values.
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Sample Re-Ranked User Inputs

User input: “forty six d”
N-Best List of Dialogue Acts Let’s Go Score Bayesian Score
inform(route=46a) 3.33E-4 1.9236763E-6
inform(route=46b) 1.0E-6 1.5243509E-16
inform(route=46d) 0.096107 7.030841E-4
inform(route=46k) 0.843685 4.9941495E-10
silence() NA 0

User input: “um jefferson hills to mckeesport”
N-Best List of Dialogue Acts Let’s Go Score Bayesian Score
inform(from=mill street) 7.8E-4 3.5998527E-16
inform(from=mission street) 0.015577 3.5998527E-16
inform(from=osceola street) 0.0037 3.5998527E-16
inform(from=robinson township) 0.007292 3.5998527E-16
inform(from=sheraden station) 0.001815 3.1346254E-8
inform(from=brushton) 2.45E-4 3.5998527E-16
inform(from=jefferson) 0.128727 0.0054255757
inform(from=mckeesport) 0.31030 2.6209198E-4
silence() NA 0
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Abstract

Can speaker gaze and speaker arm move-
ments be used as a practical informa-
tion source for naturalistic conversational
human–computer interfaces? To investi-
gate this question, we recorded (with eye
tracking and motion capture) a corpus of
interactions with a (wizarded) system. In
this paper, we describe the recording, anal-
ysis infrastructure that we built for such
studies, and analysis we performed on
these data. We find that with some initial
calibration, a “minimally invasive”, sta-
tionary camera-based setting provides data
of sufficient quality to support interaction.

1 Introduction

The availability of sensors such as Microsoft
Kinect and (almost) affordable eye trackers bring
new methods of naturalistic human-computer in-
teraction within reach. Studying the possibilities
of such methods requires building infrastructure
for recording and analysing such data (Kousidis et
al., 2012a). We present such an infrastructure—
the mint.tools collection (see also (Kousidis et
al., 2012b))1—and present results of a study we
performed on whether speaker gaze and speaker
arm movements can be turned into an information
source for an interactive system.

2 The mint.tools Collection

The mint.tools collection comprises tools (and
adaptations to existing tools) for recording and
analysis of multimodal data. The recording archi-
tecture (Figure 1) is highly modular: each infor-
mation source (sensor) runs on its own dedicated
workstation and transmits its data via the local area
network. In the setup described in this paper, we

1Available at http://dsg-bielefeld.de/
mint/.
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Figure 1: Overview of components of mint.tools;
our contributions denoted by italics font. Top mid-
dle shows example lab setup; middle right shows
corresponding VR scene, visualising motion cap-
ture and tracking of head posture, eye and gaze

perform motion capture via Microsoft Kinect and
head, eye and gaze tracking via Seeingmachines
Facelab 5.2 We have developed specialised plug-
ins that connect these sensors to the central com-
ponent in our architecture, Instantreality.3 This
is a VR environment we use for monitoring the
recording process by visualising a reconstructed
3D scene in real-time. A logging component si-
multaneously streams the timestamped and inte-
grated sensor data to disk, ensuring that all data are
synchronised. The data format is a shallow XML
representation of timed, typed events.

The tracking equipment used in this setting is
camera-based, providing for a minimally invasive
setting, as subjects are not required to wear any
equipment or tracking markers. In addition to the
tracking sensors, video and audio are recorded us-

2http://www.microsoft.com/en-us/
kinectforwindows/, http://www.
seeingmachines.com/product/facelab/, re-
spectively

3Built by IGD Fraunhofer, http://www.
instantreality.org
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ing one HD camera. The AV channel is synchro-
nised with the stream data from the sensors by
means of a timecode in view of the camera.

Representative of the high modularity and flexi-
bility of the mint.tools architecture is the ease with
which components can be added. For the setting
described here, a GUI was created which connects
to the VR environment as an additional sensor,
transmitting all of its state updates, which then
are synchronously logged together with all other
stream data from the trackers. This allows us to
recreate the full scene (subject behaviour and the
stimuli they received) in the virtual reality envi-
ronment, for later inspection (see below Figure 6).

The analysis part of the mint.tools collection
comprises a package for the Python programming
language (described below) and a version of the
ELAN annotation tool (Lausberg and Sloetjes,
2009), which we modified to control the replay of
the virtual reality scene; this makes it possible to
view video, annotations and the 3D reconstruction
at the same time and in synchronisation.

Sensors are represented as nodes in a node-tree
within the 3D environment. The values of data
fields in these nodes are continuously updated as
new data is received from the network. Using
more than one sensor of the same type means sim-
ply another instantiation of that node type within
the tree. In this way, our architecture facilitates
tracking many people or complex setups where
many sensors are required to cover an area.

3 Procedure / The TAKE Corpus

Our experiment is a Wizard-of-Oz scenario in
which subjects (7 in total) were situated in front of
a 40” screen displaying random Pentomino boards
(Fernández et al., 2007). Each board configura-
tion had exactly 15 Pentomino pieces of various
colours and shapes, divided in four grids located
near the four corners of the screen (see Figure 3
below). At the beginning of the session, a head and
gaze model were created for the subject within the
FaceLab software. Next, the subjects were asked
to point (with their arm stretched) at the four cor-
ners and the center of the screen (with each hand),
to calibrate to their pointing characteristics.

In the main task, subjects were asked to
(silently) choose a piece and instruct the “system”
to select it, using speech and/or pointing gestures.
A wizard then selected the indicated piece, caus-
ing it to be highlighted. Upon approval by the

subject, the wizard registered the result and a new
board was created. We denote the time-span from
the creation of a board to the acknowledgement
by the subject that the correct piece was selected
an episode. The wizard had the option to not im-
mediately highlight the indicated piece, in order
to elicit a more detailed description of the piece
or a pointing gesture. What we were interested
in learning from these data was whether speaker
gaze and arm movements could be turned into sig-
nals that can support a model of situated language
understanding. We focus here on the signal pro-
cessing and analysis that was required; the model
is described in (Kennington et al., 2013).

4 Analysis and Results

We perform the analyses described in this sec-
tion using the analysis tools in the mint.tools col-
lection, mumodo.py. This is a python package
we have developed that interfaces our recorded
stream data with powerful, freely available, sci-
entific computing tools written in the Python pro-
gramming language.4 mumodo.py facilitates im-
porting streamed data into user-friendly, easily
manageable structures such as dataframes (tables
with extended database functionality), or compati-
ble formats such as Praat TextGrids (Boersma and
Weenink, 2013) and ELAN tiers. In addition, mu-
modo.py can remote-control playback in ELAN
and Instant Reality for the purpose of data view-
ing and annotation.

4.1 Gaze

Our post-processing and analysis of the gaze data
focuses primarily on the detection of eye fixations
in order to determine the pentomino pieces that the
subjects look at while speaking. This knowledge
is interesting from a reference resolution point of
view. Although Koller et al (2012) explored lis-
tener gaze in that context, it is known that gaze pat-
terns differ in interactions, depending on whether
one speaks or listens (Jokinen et al., 2009).

Facelab provides a mapping between a person’s
gaze vector and the screen, which yields an in-
tersection point in pixel coordinates. However,
due to limitations to the accuracy of the calibra-
tion procedure and noise in the data, it is pos-

4Especially IPython and Pandas, as collected for exam-
ple in https://www.enthought.com/products/
epd/. Example of finished analyses using this package
can be found at http://dsg-bielefeld.de/mint/
mintgaze.html
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sible that the gaze vector does not intersect the
model of the screen when the subject is looking at
pieces near screen corners. For this reason, we first
perform offline linear interpolation, artificially ex-
tending the screen by 200 pixels in each direction,
by means of linear regression of the x, y compo-
nents of the gaze vector with the x, y pixel coordi-
nates, respectively (R2 > 0.95 in all cases). Fig-
ure 2 shows the probability density function of in-
tersection points before (left) and after this process
(right), for one of the subjects. We see on the right
plot that many intersection points fall outside the
viewable screen area, denoted by the shaded rect-
angle.

Figure 2: Probability density function of gaze in-
tersections on screen before (left) and after inter-
polating for points 200 pixels around screen edges
(right). Shaded rectangle shows screen size

In order to detect the eye fixations, we use two
common algorithms, namely the I-DT and ve-
locity algorithms, as described in (Nyström and
Holmqvist, 2010). The I-DT algorithm requires
the points to lie within a pre-defined “dispersion”
area (see Figure 3), while the velocity algorithm
requires the velocity to remain below a thresh-
old. In both algorithms, a minimum fixation time
threshold is also used, while a fixation centroid is
calculated as the midpoint of all points in a fixa-
tion. Increasing the minimum fixation time thresh-
old and decreasing the dispersion area or velocity
(depending on the algorithm) results in fewer fix-
ations being detected.

Figure 3: Fixation detection using the I-DT algo-
rithm, circles show the dispersion radius threshold

Gaze fixations can be combined with informa-
tion on the pentomino board in order to determine
which piece is being looked at. To do this, we cal-
culate the euclidean distance between each piece
and the fixation centroid, and assign the piece a
probability of being gazed at, which is inversely
proportional to its distance from the centroid.

Figure 4 illustrates the gazing behaviour of the
subjects during 1051 episodes: After an initial
rapid scan of the whole screen (typically before
they start speaking), subjects fixate on the piece
they are going to describe (the “gold piece”). This
is denoted by the rising number of fixations on the
gold piece between seconds 5–10. At the same
time, the average rank of the gold piece is higher
(i.e. closer to 1, hence lower in the plot). Subse-
quently, the average rank drops as subjects tend to
casually look around the screen for possible dis-
tractors (i.e. pieces that are identical or similar to
the gold piece).

We conclude from this analysis that, especially
around the onset of the utterance, gaze can provide
a useful signal about intended referents.

Figure 4: Average Rank and Counts over time (all
episodes)

4.2 Pointing Gestures
We detect pointing gestures during which the arm
is stretched from Kinect data (3D coordinates of
20 body joints) using two different methods. The
first is based on the distance of the hand joint from
the body (Sumi et al., 2010). We define the body
as a plane, using the coordinates of the two shoul-
ders, shoulder-center and head joints, and use a
threshold beyond which a movement is considered
a possible pointing gesture.

The second detection method uses the idea that,
while the arm is stretched, the vectors defined by
the hand and elbow, and hand and shoulder joints,
respectively, should be parallel, i.e. have a dot
product close to 1 (vectors are first normalised).
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Figure 5: detection of pointing thresholds by dis-
tance of left(blue) or right(green) hand from body

In reality, the arm is never strictly a straight line,
hence a threshold (0.95-0.98) is set, depending on
the subject. The result of this process is an an-
notation tier of pointing gestures (for each hand),
similar to the one shown in Figure 5. To make
pointing gesture detection more robust, we only
consider gestures identified by both methods, i.e.
the intersection of the two annotation tiers.

Further, we want to map the pointing gestures to
locations on the screen. Following a methodology
similar to Pfeiffer (2010), we define two methods
of determing pointing direction: (a) the extension
of the arm, i.e. the shoulder-hand vector, and (b)
the hand-head vector, which represents the subjec-
tive point-of-view (looking through the tip of one’s
finger). Figure 6 shows both vectors: depending
on the subject and the target point, we have found
that both of these vectors perform equally well, by
considering the gaze intersection point (green dot
on screen) and assuming that subjects are looking
where they are pointing.

Figure 6: Hand-to-head and hand-to-shoulder
pointing vectors

In order to map the pointing gestures to ac-
tual locations on the screen, we use the calibra-
tion points acquired at the beginning of the ses-
sion, and plot their intersections to the screen
plane, which we compute analytically, as we al-
ready have a spatial model of both the vector in
question (Kinect data) and the screen location (In-

stantreality model).
Based on the pointing gestures we have de-

tected, we look at the pointing behaviour of par-
ticipants as a function of the presence of distrac-
tors. This knowledge can be used in designing
system responses in a multimodal interactive en-
viroment or in training models to expect pointing
gestures depending on the state of the scene. Fig-
ure 7 shows the result from 868 episodes (a subset
that satisfies minor technical constraints). Overall,
the subjects pointed in 60% of all episodes. Pieces
on the board may share any of three properties:
shape, colour, and location (being in the same cor-
ner on the screen). The left plot shows that sub-
jects do not point more than normal when only
one property is shared, regardless of how many
such distractors are present, while they point in-
creasingly more when pieces that share two or all
three properties exist. The plot on the right shows
that subjects point more when the number of same
colour pieces increases (regardless of position and
shape) and even more when identical pieces occur
anywhere on the board. Interestingly, shape by it-
self does not appear to be considered a distractor
by the subjects.

Figure 7: Frequency of pointing gestures as a
function of the presence of distractors. Dot size
denotes the confidence of each point, based on
sample size

5 Conclusions

We have presented a detailed account of analysis
procedures on multimodal data acquired from ex-
periments in situated human-computer interaction.
These analyses have been facilitated by mint.tools,
our collection of software components for mul-
timodal data acquisition, annotation and analysis
and put to use in (Kennington et al., 2013). We
will continue to further improve our approach for
manageable and easily reproducible analysis.
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Abstract 

Unsupervised dialogue act modeling holds 
great promise for decreasing the develop-
ment time to build dialogue systems. 
Work to date has utilized manual annota-
tion or a synthetic task to evaluate unsu-
pervised dialogue act models, but each of 
these evaluation approaches has substan-
tial limitations. This paper presents an in-
context evaluation framework for an un-
supervised dialogue act model within tuto-
rial dialogue. The clusters generated by 
the model are mapped to tutor responses 
by a handcrafted policy, which is applied 
to unseen test data and evaluated by hu-
man judges. The results suggest that in-
context evaluation may better reflect the 
performance of a model than comparing 
against manual dialogue act labels. 

1 Introduction 

A central focus within the dialogue systems re-
search community is developing techniques for 
rapidly constructing dialogue systems. One tech-
nique that has proven highly promising is to take 
a corpus-based approach to dialogue system au-
thoring, for example by bootstrapping policy 
learning (Henderson, Lemon, & Georgila, 2008; 
Williams & Young, 2003), predicting what a 
human agent would do (Bangalore, Di Fabbrizio, 
& Stent, 2008), or learning supervised dialogue 
act models (Stolcke et al., 2000). Traditionally, 
these corpus-based approaches require some 
amount of manual annotation prior to learning 
the dialogue models.  In many cases, this manual 
annotation is a problematic bottleneck for system 
development.  

For tutorial dialogue systems, which aim to 
support students in acquiring skills or 
knowledge, heavy manual annotation is often 
required for learning models that classify student 
utterances with respect to dialogue acts (Forbes-
Riley & Litman, 2005; Serafin & Di Eugenio, 
2004), questioning strategies (Becker, Palmer, 
Vuuren, & Ward, 2012), or information sharing 
(Mayfield, Adamson, & Rosé, 2012) 

For dialogue act modeling in particular, recent 
work has demonstrated the great promise of un-
supervised approaches, which are learned with-
out the use of manual labels (Crook, Granell, & 
Pulman, 2009; Ezen-Can & Boyer, 2013; Ritter, 
Cherry, & Dolan, 2010). However, because gold 
standard labels are not a part of model learning, 
how to best evaluate unsupervised models repre-
sents a significant open research question 
(Vlachos, 2011).  

Most quantitative evaluations of unsupervised 
dialogue act models have relied on agreement 
with manual dialogue act annotations, though 
these annotations were not used in model learn-
ing (Crook et al., 2009; Rus, Moldovan, Niraula, 
& Graesser, 2012; Ezen-Can & Boyer, 2013). 
Relying on manually tagged dialogue act labels 
to evaluate an unsupervised model has two major 
drawbacks: it does not fully avoid the manual 
annotation bottleneck, and it imposes a hand-
authored criterion onto a fully data-driven model, 
which may be unnecessarily limiting. Distinc-
tions made by an unsupervised model may be 
useful within a dialogue system, even if these 
categories are different from the distinctions 
made within a hand-authored dialogue act tagset.  

This paper presents a novel evaluation 
framework for unsupervised dialogue act classi-
fication of user utterances within tutorial dia-
logue. Instead of attempting to evaluate the mod-
el intrinsically, we evaluate its performance on 
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an external task: triggering an appropriate utter-
ance via a simple dialogue policy. This evalua-
tion, which does not require an end-to-end dia-
logue system, judges the model in the simulated 
context of the target task. The results demon-
strate that this in-context evaluation may be 
equally useful as comparing against gold stand-
ard dialogue act labels, while substantially reduc-
ing the time required for human annotation.   

2 Related Work 

Perhaps the earliest unsupervised approach for 
dialogue act modeling investigated hidden Mar-
kov models with a bag-of-words approach in a 
meeting scheduling domain (Woszczyna & 
Waibel, 1994), using perplexity with respect to 
manual labels for evaluating the number of hid-
den states. Dirichlet process clustering has been 
investigated for dialogue act classification in the 
train fares and scheduling domain (Crook et al., 
2009), evaluating on intra-cluster similarity and 
inter-cluster similarity along with error rates with 
respect to manual labels. Another Bayesian ap-
proach utilized hidden Markov models and topic 
modeling to classify Twitter posts (Ritter et al., 
2010). Notably, Ritter et al. utilize an utterance 
ordering task, rather than manual labels, for 
quantitative evaluation. Most recently, standard 
k-means and EM clustering algorithms were used 
for dialogue act clustering on an educational cor-
pus, and the model’s accuracy was again evalu-
ated with respect to manual labels (Rus et al., 
2012). The current paper builds on these prior 
findings by applying a recently developed clus-
tering framework and proposing a novel in-
context evaluation scheme that can be used re-
gardless of the unsupervised dialogue act model-
ing technique underlying it. 

3 Dialogue Act Clustering 

We consider an unsupervised dialogue act classi-
fication model on a corpus of human-human stu-
dent and tutor dialogues centered on a computer 
programming task within a textual dialogue envi-
ronment (Boyer et al., 2009). There are 1,525 
student utterances and 3,332 tutor utterances in 
the corpus. This paper focuses on dialogue act 
classification for student utterances, since in a 
tutorial dialogue system the tutor dialogue acts 
are system-generated.  

The corpus was manually labeled in prior 
work with nine dialogue acts tailored to capture 
phenomena of interest within tutorial dialogue: 
general Question, Evaluation Question (request 

specific feedback on the task), Statement, Posi-
tive Feedback, Lukewarm Feedback, Negative 
Feedback, Grounding, Greeting, and Extra-
domain (utterances that are off topic). The Kappa 
for agreement on these manual tags was 0.76. 
These tags will be used within the present work 
to compare the in-context performance of the 
unsupervised policy with a manual-tag policy, 
but the tags are not used to learn or tune the un-
supervised model. 

The unsupervised dialogue act model evaluat-
ed here is based on a recently developed ap-
proach that adapts the query-likelihood technique 
from information retrieval to rank utterances 
similar to each target utterance (Ezen-Can & 
Boyer, 2013). Each utterance within the training 
set is queried against all other utterances within 
the training set using bigram features.  

Vectors encode the resulting utterance simi-
larity, and these vectors are provided to a k-
means clustering algorithm to partition the utter-
ances into dialogue acts. Our recent work (Ezen-
Can & Boyer, 2013) evaluated query-likelihood 
dialogue act clustering against two other ap-
proaches with respect to classifying manual la-
bels, and the query-likelihood approach outper-
formed k-means clustering using leading tokens 
(Rus et al., 2012) and Dirichlet process cluster-
ing (Crook et al., 2009). In the current work we 
add to the feature vectors the first level of the 
parse tree as provided by the Stanford parser 
(Klein & Manning, 2003).  

The number of clusters was selected based on 
sum of squared errors (SSE). As with many pa-
rameterized models, model fit tends to increase 
with more parameters, but there are important 
tradeoffs in computation time and risk of overfit-
ting. In experiments, k=number of clusters 
ranged from 2 to 24. 21 clusters were chosen, 
corresponding to the rightmost “knee” within the 
SSE graph (see Appendix).1 

4 Evaluation Framework 

Evaluating unsupervised dialogue act clusters 
presents numerous challenges. In prior evalua-
tions of query-likelihood clustering, we comput-
ed accuracy with respect to the manually applied 
dialogue act tags described earlier, demonstrating 
41.64% accuracy for a model with 8 clusters, 
compared to 34.90% accuracy for the Rus et al. 
                                                
1 Selecting the number of clusters is a subjective deci-
sion. Nonparametric techniques, such as variations on 
Dirichlet process clustering, hold promise for address-
ing this limitation in the future. 
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(2012) k-means approach and 24.48% accuracy 
for Dirichlet process clustering (Crook et al., 
2009) on our corpus. However, the goal of the 
current work is to substantially reduce the human 
tagging required to evaluate the model. We also 
aim to test the hypothesis that comparing against 
manual labels under-represents the utility of the 
unsupervised model. That is, a dialogue policy 
built on the unsupervised model could perform 
better than the relatively low classification accu-
racy for manual tags would suggest. Our evalua-
tion will explore this hypothesis. 

In order to achieve these goals, we first trained 
an unsupervised dialogue act model on 75% of 
the corpus using the query-likelihood approach 
described in Section 3. The resulting model has 
21 clusters. Then, we handcrafted a dialogue pol-
icy for tutor responses by qualitatively examin-
ing each cluster of training data and creating one 
tutor response for each cluster. Some clusters and 
their corresponding tutor utterances are depicted 
in Figure 1. This policy was applied by classify-
ing unseen utterances from a held-out test set 
(25% of the corpus) using the learned model 
(Figure 2). The result of this process is that for 
each student utterance from the test set, a tutor 
response is generated based on the policy. This 
process resulted in 373 student utterances, one 
for each utterance in the 25% testing set, each 
paired with a corresponding tutor response gen-
erated by the hand-authored policy. 

The evaluation goal is to determine whether 
the responses made by this policy are reasonable, 
which will represent the utility of the unsuper-
vised dialogue act model for its intended use 
within a dialogue manager. We used human 
judges to rate the output of the policy. Thirty 
student utterances and tutor responses were ran-
domly selected from the available utterances 
generated by the test set. An example set of ut-
terances and policies can be seen in the Appen-
dix. These items were placed in a survey that 
asked the reader to rate the extent to which each 
tutor response makes sense given the student ut-
terance. (One item was inadvertently omitted 
from the survey, resulting in 29 items that were 
evaluated by the judges and that will be analyzed 
here.) To avoid bias introduced by the ordering 
of items, they were presented in a different ran-
domized order for each of the seven judges who 
completed the survey. (29 items from a compari-
son condition using manual tags were also ran-
domly interleaved into the survey, as described 
later in this section.) Judges used a rating scale 
from 1 to 4 (1=makes no sense, 2=makes a little 

sense, 3=makes a lot of sense, and 4=makes per-
fect sense). Since the models only used the cur-
rent student utterance, the dialogue history was 
also not shown to the human raters.  

Across the seven judges, the average rating of 
the tutor responses selected by the unsupervised 
policy was 2.35. We also collapsed the ratings 
into positive (≥2.5 average across seven judges) 
and negative (<2.5 average). With this binary 
categorization, 44.8% of the time tutor responses 
generated by the unsupervised policy were rated 
positively. It is important to note that no infor-
mation other than dialogue act was considered 
for generating the tutor responses; the tutor utter-
ances were relatively content-free and based only 
on the dialogue act categorization given by the 
unsupervised model. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1: Clusters from unsupervised dialogue act 

modeling and corresponding dialogue policy  
(typographical errors originated in corpus) 

 

For comparison, we also constructed a hand-
crafted dialogue policy using the manual dia-
logue act labels and applied this policy to the 
same utterances as were used to evaluate the un-
supervised model. These pairs of student utter-
ances and tutor responses were interleaved ran-
domly on the same survey provided to seven 
human judges. The same tutor responses as in the 
unsupervised policy were used whenever possi-
ble for this manual-tag policy. The tutor respons-
es generated from the manual-tag policy received 
an average score of 2.22, slightly lower than the 
average of 2.35 for tutor responses generated by 
the unsupervised policy. The binary positive-
negative split for these ratings reveals that 31% 
were rated positively (≥2.5 average), compared 
to 44.8% for the unsupervised policy. 

Direct comparisons between the unsupervised 
policy and the manual-tag policy must be inter-
preted with caution, in part because the unsuper-
vised policy was more granular (based on 21 
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clusters) than the manual-tag policy (based on 9 
tags) and also because it can be difficult to en-
sure that the two policies were of equal quality. 
On the other hand, the unsupervised policy uti-
lized no manual labels and was applied to an un-
seen test set, while the manual-tag policy was 
based on reliable tags applied to the actual utter-
ances from the testing set.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Finally, we evaluated the extent to which the 

4-category rating scheme was reliable across 
judges. The weighted Kappa (Cohen, 1968), used 
for ordinal scales because it penalizes disagree-
ments less if they are closer together, was 0.30 
averaged across all pairs of judges, indicating 
fair agreement (Landis & Koch, 2013). For the 
collapsed binary ratings, average pairwise ordi-
nary Kappa was 0.36. 

5 Discussion 

It was hypothesized that evaluating an unsuper-
vised dialogue act model against manual labels 
may be an inappropriately strict metric, requiring 
the model to conform to the criteria used by hu-
mans to handcraft the manual tagset. Indeed, the 
accuracy of the unsupervised dialogue act model 
presented here with 21 clusters was 30.4% for 
identifying manual labels (arrived at by assigning 
the majority class tag to each unsupervised clus-
ter after clustering was complete). The majority 
class baseline (most frequent student dialogue act 
tag) was Evaluation Question with a relative fre-
quency of 25.87%, so on accuracy for identifying 
manual labels, the unsupervised model improved 
modestly over baseline. In contrast, when this 
unsupervised model was used to select a tutor 
response within a dialogue policy, the response 
was judged positively 44.8% of the time by hu-
man judges. Moreover, recall that the tutor re-
sponses were content free and took only the dia-

logue act label into account (no information state 
or topic). Therefore, it is meaningful to consider 
what percent of the time the responses were rated 
as making some sense (receiving a 2, 3, or 4 rat-
ing average across the human judges). By this 
criterion, 65.5% of tutor responses selected by 
the unsupervised policy were rated as sensible.  

Finally, this evaluation approach demon-
strates promise for alleviating the bottleneck of 
manual annotation for dialogue act models. Each 
item within the current evaluation survey re-
quired approximately 15 seconds to judge, using 
untrained human judges, for a total of approxi-
mately 1 hour of effort across all seven judges. 
The time required for handcrafting policies was 
relatively small, approximately 1 hour. In con-
trast, the dialogue act annotation scheme re-
quired approximately 35 seconds per utterance 
(amortizing substantial up-front training time for 
each annotator) when applied as part of previous 
work, for a total of approximately 50 hours per 
annotator.  

6 Conclusion 

Unsupervised dialogue act modeling holds great 
promise for decreasing development time of dia-
logue systems. We have presented an unsuper-
vised dialogue act model and an evaluation 
framework to judge the utility of the unsuper-
vised model within a dialogue management task. 
The results demonstrate that in-context evalua-
tion of an unsupervised dialogue act model, ra-
ther than accuracy against manual labels, may 
better reflect the usefulness of the model for dia-
logue management. Furthermore, this evaluation 
technique may greatly reduce the time required 
by human judges to evaluate the model.  

One of the most promising directions for fu-
ture work involves devising unsupervised dia-
logue act models that leverage a richer represen-
tation in order to perform better. These rich fea-
tures may include dialogue history, adjacency 
pair information, and topic modeling. Addition-
ally, it is important for the community to evalu-
ate unsupervised dialogue models in the full con-
text of deployed systems. 
Acknowledgments. This material is based upon 
work supported by the National Science Founda-
tion under Grants DRL-1007962 and CNS-
1042468. Any opinions, findings, conclusions, or 
recommendations expressed in this report are 
those of the authors and do not necessarily repre-
sent the views of the National Science Founda-
tion. 

Figure 2: Evaluation framework structure 
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Appendix 

 
Figure 3: Sum of squared errors graph 

 
Table 1: Example student utterances  

and tutor responses 
Student  
Utterance 

Tutor Response 
(Unsupervised 
Policy) 

Tutor Re-
sponse (Manu-
al-Tag Policy) 

I'm trying to think, 
heh                                                                                                                                      

Don't worry 
about it. I'm here 
to help. 

That part is 
tricky. 
 

how can I pull 
values out of an 
array or can I 
reference them 
with code like 
zipDigits[1]?                                                                                                                                                                       

Great question. 
Let's look at the 
task decription 
together to see if 
it can help. 

Good question. 
Let's analyze the 
code together to 
see if it is right. 

thanks for the 
reminder                                                                                                                                                                                                                                              

I'm here to help! Great, seems 
like we agreed.  

does that mean I 
should declare it 
at the top of the 
code?                                                                                                                                                             

Maybe you 
should try it out. 

Good question. 
Let's analyze the 
code together to 
see if it is right. 
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Abstract 

We explore the plausibility of using automated 
spoken dialog systems (SDS) for administer-
ing survey interviews. Because the goals of a 
survey dialog system differ from more tradi-
tional information-seeking and transactional 
applications, different measures of task accu-
racy and success may be warranted. We report 
a large-scale experimental evaluation of an 
SDS that administered survey interviews with 
questions drawn from government and social 
scientific surveys. We compare two dialog 
confirmation strategies: (1) a traditional strate-
gy of explicit confirmation on low-confidence 
recognition; and (2) no confirmation. With ex-
plicit confirmation, the small percentage of re-
sidual errors had little to no impact on survey 
data measurement. Even without confirmation, 
while there are significantly more errors, im-
pact on the substantive conclusions of the sur-
vey is still very limited. 

1 Introduction 
Survey interviews play a critical role in the oper-
ation of government and commerce. Large-scale 
social scientific surveys provide key indicators of 
the success or failure of economic and social pol-
icies, driving critical policy and funding deci-
sions. Market research surveys are key in evalu-
ating products and services for business. 

Survey interviews are typically conducted ei-
ther via telephone or face-to-face by skilled hu-
man interviewers. But ongoing changes in com-
munication technology threaten the viability of 
these methods. As people migrate from landline 
telephony to mobile-only (Ehlen and Ehlen 
2007) and Voice-over-IP (Fuchs 2008) as prima-
ry modes of communication, they undermine the 
effectiveness of traditional survey sampling 
techniques that rely on random selection of num-

bers within a dial code. Telephone respondents 
were once reachable at a fixed geographic loca-
tion in a largely predictable conversational envi-
ronment. Now they are increasingly mobile, and 
more apt to prefer asynchronous communication. 
Thus it is imperative to understand how these 
changing behaviors affect survey results. 

The work described here is part of a larger re-
search project (see Schober et al. 2012; Conrad 
et al. 2013) that investigates the viability of four 
different modes for administering a survey inter-
view over a smartphone: automated voice, hu-
man voice, automated SMS text, and human 
SMS text. Here we focus specifically on the au-
tomated voice mode and explore the use of a 
spoken dialog system for survey administration. 

Spoken dialog systems are widely used in te-
lephony applications such as customer service, 
information access, and transaction fulfillment. 
They are also now common in virtual assistant 
applications for smartphones and mobile devices. 
But survey designers seeking automation have 
mostly eschewed spoken dialog in favor of tex-
tual web surveys or touchtone DTMF response 
systems. A preliminary comparison of spoken 
dialog and touchtone survey systems is available 
in Bloom (2008), and Stent et al. (2007) offer an 
evaluation of a spoken dialog system for aca-
demic course ratings. The work presented here 
describes the first large-scale investigation into 
spoken dialog technology as a viable means of 
administering the kinds of surveys that produce 
official statistics and social scientific data.  

Survey interview designers should be interest-
ed in using spoken dialog systems for several 
reasons. The most obvious reason is to curtail the 
error and bias that human interviewers are 
known to introduce to survey results data. Dec-
ades of research and investment led to “standard-
ized interviewing techniques” to reduce this error 
(Fowler and Mangione 1990), and limit a survey 
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interviewer’s ability to offer help or clarification 
in ways that might affect results. Automated dia-
log systems can be thought of as the ultimate in 
standardization, as they can be designed to pro-
vide exactly the same interaction possibilities to 
all respondents. In effect, everyone can be inter-
viewed by the same “interviewer.” Or, if survey 
designers want to allow clarification in an inter-
view, an automated spoken dialog system can 
ensure that the same possibilities are available to 
all respondents (Schober and Conrad 1997). 

Unlike systems that use human interviewers, 
there is marginal additional cost per interview 
after the initial investment of building a system. 
This offers significant potential for cost savings 
in large cross-sectional samples or repeated panel 
surveys, such as the U.S. Current Population 
Survey or the American Community Survey. Re-
peated data collection allows refinement and re-
training of speech models to improve perfor-
mance. Spoken dialog system surveys can be 
administered on demand at any time of day, al-
lowing a better fit with respondents’ circum-
stances and schedules. Compared to asynchro-
nous text-based interviews like web or paper-
and-pencil surveys, spoken dialog systems can 
capture richer verbal paradata (Couper 2009) or 
process data like pauses, disfluencies and proso-
dy (Ehlen et al. 2007). Finally, survey tasks fit 
nicely within the limitations of current recogni-
tion and dialog technology, since they tend to 
have a purposefully structured and controlled 
interaction flow and generally require only a lim-
ited number of responses to each question. 

While spoken dialog systems have the poten-
tial to remove data error that is introduced by 
variation in human interviewer behaviors, they 
also introduce risks to survey data quality due to 
speech recognition and understanding error.  
Numerous strategies for mitigating error have 
been explored in research on dialog systems 
(Bohus and Rudnicky 2005, Litman et al. 2006). 
One approach is to use either an explicit or im-
plicit confirmation of the user's input. Following 
previous research showing that explicit confir-
mation is less confusing for users (Shin et al. 
2002), we adopt an explicit confirmation strate-
gy, which is also more in keeping with standard-
ized interview techniques. 

The effects of speech recognition and under-
standing errors may be different in a survey dia-
log system than in most current spoken dialog 
applications. One consideration is speaker initia-
tive, and the stake of the user in the interaction. 
In systems for customer service, information ac-

cess, or transactions, the user generally initiates 
contact with the system and seeks to accomplish 
a task where the system’s recognition accuracy 
will affect success of the user’s own goal. But in 
a survey dialog, the system initiates contact, and 
most respondents do not have a stake in whether 
the designers of the survey system succeed at 
collecting high quality data from them.  

This is a key point where a survey interview-
ing system might differ from traditional SDS: 
From the survey researchers’ perspective, the 
critical question is not whether individual users 
achieve some goal, but rather the extent to which 
individual errors in system recognition and un-
derstanding affect the distribution of responses 
across the population sample, affecting the quali-
ty of the estimates produced. If recognition errors 
do not affect the substantive conclusions based 
on the survey data, then survey researchers 
should be able to tolerate the imprecision of 
recognition error. This situation makes survey 
system evaluation rather different from how one 
would expect to evaluate the task success of a 
traditional SDS, like a customer service system.  

In Section 2, we characterize the content of the 
survey items, describe the dialog strategy, and 
provide examples of interaction. Section 3 de-
scribes the technical architecture of the survey 
dialog system. We provide experimental evalua-
tion in Section 4, and conclusions in Section 5. 

2 Survey interview dialogs 
After an initial question assessing whether the 
respondent is in an environment where it is safe 
for them to talk, our system administers a series 
of 32 questions drawn from major U.S. social 
surveys, including the Behavioral Risk Factor 
Surveillance System (BRFSS), National Survey 
of Drug Use and Health (NSDUH), General So-
cial Survey (GSS), and the Pew Internet and 
American Life Project. The sample transcribed 
dialogs in Appendix 1 illustrate various features 
of interaction with the system. Question types 
include Yes/No, categorical (where users pick 
from a specified set of response options), and 
numerical questions. Some categorical items are 
grouped into battery questions with the same re-
sponse options for all the items. 

The system supports explicit requests to repeat 
the question or ask for help, and mimics a 
“standardized interviewing” style of interaction 
that trained interviewers would use to repeat or 
clarify a question when the answer is rejected or 
requires confirmation. Thresholds set on acoustic 
and language confidence scores are used to de-
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cide whether to reject, explicitly confirm, or ac-
cept a response. The final question in the dialog 
in Appendix A (“Thinking about …”) illustrates 
the importance of confirmation in ensuring the 
correct survey response is recorded. In this case, 
the system misrecognized “None” for “Nine,” 
but this was caught by the explicit confirmation 
prompt. Two terms are introduced in the final 
example that we will return to in the evaluation. 
First hypothesis indicates the speech recognition 
and semantic result produced by the system the 
first time the question is asked. Last hypothesis 
indicates the speech recognition and semantic 
result that the system produced the last time the 
question was asked within the segment.  

3 System Architecture 
The survey dialog system is directly integrated 
with a custom-built survey data case collection 
management system (PAMSS). When a survey 
case is administered, the case management sys-
tem makes an HTTP request to a voice gateway, 
which initiates a call to the respondent. When the 
respondent answers, it bridges the call to a spo-
ken dialog system running within the AT&T 
WatsonSM speech platform. The system uses pre-
recorded prompts for survey questions and re-
prompts. Confirmations for numeric responses 
combine prompts with TTS output. 

 
Figure 1: Survey Dialog System Architecture 

Users’ spoken inputs are recognized using state-
specific grammars for each question. Data were 
not initially available for training statistical mod-
els, so SRGS (Hunt and McGlashan 2004) 
grammars were built for each answer. These 
were tuned in an initial pilot phase. The gram-
mars included standard responses for the ques-
tion, along with common paraphrases and fram-
ing words from the question. In the Watson plat-
form, a dialog manager  (built in Python) is inte-
grated with ASR and TTS engines. Questions to 
be administered are represented in a declarative 
format in a survey item specification along with 

references to the appropriate prompts and gram-
mars. The dialog manager interprets this specifi-
cation to administer the survey and control the 
interaction flow. As the user responds to ques-
tions, the answers are posted back to the survey 
case management system.  

4 Experimental Evaluation 
We evaluated the survey dialog system as part of 
the first phase of a larger experiment comparing 
different survey interaction modes (Schober et al. 
2012). In this phase, 642 subjects were recruited 
from Craigslist, Facebook, Google Ads, and 
Amazon Mechanical Turk. A web-based screener 
application verified respondents to be over 21 
and collected their zip code. Of these, 158 re-
spondents were randomly assigned to the auto-
mated voice condition. A $20 iTunes gift card 
was given as an incentive after completion of a 
post-interview web questionnaire. This included 
multiple-choice questions examining user satis-
faction with their experience. In total there were 
8,228 spoken inputs over the 158 respondent dia-
logs. These responses were transcribed, coded, 
and annotated for semantic content. 

The questions we sought to answer were: 
What is the performance of a spoken dialog sys-
tem on a typical survey task? What impact does 
speech recognition and concept error have on 
overall survey estimates? Does an automated 
survey system benefit from implementing a tradi-
tional confirmation strategy, where responses 
with low confidence scores are verified with con-
firmation dialog? We also examine the impact of 
dialog length and confirmation prompts on a 
qualitative measure of user satisfaction. 

4.1 ASR and concept accuracy 
We evaluated overall word, sentence, and con-
cept accuracy for all 8,228 spoken utterances to 
the system, shown in the first row of Table 1. 

Accuracy: Word  Sentence  Concept  
All  80% 78.2% 90.3% 
First  81.2% 78% 88.9% 
Last 88.5% 85.4% 95.6% 

Table 1: System Performance 

An input is “concept accurate” if the semantic 
value assigned by the system exactly matches 
that assigned by the annotator. First shows the 
performance on the first response made by a user 
to each question before any confirmation dialog. 
Last shows performance on the last time each 
question was asked. Concept accuracy on last 
responses is 95.6%, showing that the confirma-
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tion strategy resulted in a 60% relative reduction 
in error compared to the first response. 

4.2 Impact of Errors on Survey Estimates 
Recognition error is undoubtedly a key factor in 
overall user experience. But unlike dialog sys-
tems for information access, search, and transac-
tions, the most important factor in a survey dia-
log system is the impact of errors on the quality 
of the estimates derived from the survey. To ex-
amine the impact of the residual 4.4% concept 
error on overall survey error, we compared an-
swer distributions derived from the system hy-
pothesis for the last response versus the annota-
tion of the last response using paired t-tests. 

For the 18 categorical questions, we conducted 
t-tests comparing the counts for each response 
option of each question. For all 18 questions (a 
total of 77 response categories) none of the dif-
ferences were statistically significant (p<0.05). 
For the 14 numerical questions, for only one 
(“Number of times shopping in a grocery store in 
the last month”) did the interpretations differ 
significantly (Annotated: 7.8 times, Hypothesis: 
7.6 times, p=0.04).1 This is strong evidence that 
speech recognition errors in this system did not 
have a major effect on survey estimates. 

How much survey error would have occurred 
without the dialog strategy?  To test this, we 
compared the annotated last response to the sys-
tem hypothesis for the first response, simulating 
an interaction without confirmation dialog, and 
thus lower recognition accuracy—see Table 1 
(This is not a perfect simulation, as we have no 
independent evidence on whether the first or fi-
nal response is true). There would indeed have 
been more survey error without dialog, although 
the overall level was still surprisingly low. For 
the 18 categorical questions, 14 of the 77 re-
sponse categories show significant differences 
(p<0.05). For the 14 numerical questions, two 
showed significant differences.  

4.3 User Satisfaction 
One of the post-interview questionnaire items 
provided a qualitative measure of user satisfac-
tion: “Overall, how satisfied were you with the 
interview?” The results were: Very satisfied 
(47.3%), Somewhat satisfied (41.8%), Somewhat 
dissatisfied (7.1%), and Very dissatisfied (0.6%).  
We examined the impact of various dialog fea-
tures that seemed on intuitive grounds plausibly 

                                                
1 If we treat the two interpretations as independent samples, 
the response distributions did not differ significantly at all. 

connected with satisfaction: average number of 
turns per question, average number of clarifica-
tion prompts per session, and average number of 
no input response prompts. We conducted a se-
ries of logistic regressions with one variable con-
trolled at a time to see the extent to which each 
of these features affected satisfaction. A Chi-
squared test was used to measure significance. 
All three features were significant predictors 
when comparing Somewhat/Very Dissatisfied to 
Very/Somewhat satisfied (Table 2). 

Feature Odds ratio  SE p 
# turns per Q 10.411 0.787 0.003 
# clarifications  1.043 0.033 0.024 
# no input  2.001 0.176 <0.001 

Table 2: User satisfaction regression 

5 Conclusion 
Our results demonstrate the viability of conduct-
ing survey interviews of the sort from which im-
portant national statistics are derived with spoken 
dialog systems.  In our system, the speech recog-
nition errors (with an overall concept recognition 
rate of 95.6%) did not substantially affect the 
error of the survey estimates; for only one of 32 
questions was there a significant difference in the 
survey estimate determined by the automated 
spoken dialog system compared to the annotated 
result. Of course, we don’t know whether these 
results generalize to dialog systems with other 
features, different questions, or different re-
spondents; much remains to be learned.  

Nonetheless, our results provide some guid-
ance for improving respondent satisfaction and 
minimizing survey error in future development 
of survey dialog systems.  For example, for nu-
merical questions, which generally involve larger 
numbers of response options, recognition errors 
may be reduced by adopting the strategy of ask-
ing the respondent to select among categories 
representing ranges (e.g. “none”, “1 to 5 times”, 
“6 to 10 times”).  Recognition performance could 
be improved by tuning confirmation strategies, 
e.g. applying a tighter confidence threshold for 
numerical vs. categorical questions. In a broad 
scale application of a repeated spoken dialog 
survey, greater amounts of data could be availa-
ble for training statistical models for the respons-
es, for improved recognition accuracy and fur-
ther reduced concept error. Finally, it is worth 
exploring the trade-offs for survey error and re-
spondent satisfaction between adding potentially 
frustrating confirmation dialog and accepting 
lower-confidence recognition for subsequent 
human annotation and processing.  
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Appendix – Sample Survey Dialogs 
I: Have you smoked at least 100 cigarettes in your 
entire life? Yes or no. 
R: No 
I: Thanks 
 
I: Now I'd like to ask you some questions specific to 
your diet. For the next group of questions, I'll ask you 
how much you favor or oppose engaging in certain 
behaviors. After I say the behavior, please say one of 
the following: strongly favor, somewhat favor, neither 
favor nor oppose, somewhat oppose or strongly op-
pose. The first behavior...avoiding fast food. 
R: Strongly oppose 
I: You said strongly oppose, right? 
R: Yes 
I: Got it 
I: The next behavior: Maintaining a healthy diet 
R: Repeat 
I: The next behavior: Maintaining a healthy diet 
R: Strongly agree 
I: Sorry, I didn't hear you. When thinking about 
'maintaining a healthy diet', please say one of the fol-
lowing: strongly favor, somewhat favor, neither favor 
nor oppose, somewhat oppose or strongly oppose.  
R: Somewhat favor 
I: You said somewhat favor, right?  
R: Yes  
I: Thanks 
… 
I: Thinking about the time since your eighteenth 
birthday (including the recent past that you've already 
told us about), how many male partners have you had 
sex with?  
R: None  (First hypothesis: “Nine”) 
I: I think you said '9'. Is that right? Yes or No.  
R: No  
I: Thinking about the time since your eighteenth 
birthday (including the recent past that you've already 
told us about), how many male partners have you had 
sex with?  
R: Zero (Last hypothesis: “Zero”) 
I: Thanks 
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Abstract

Even though open-domain conversational
dialogue systems are required in many
fields, their development is complicated
because of the flexibility and variety of
user utterances. To address this flexibil-
ity, previous research on conversational di-
alogue systems has selected system utter-
ances from web articles based on surface
cohesion and shallow semantic coherence;
however, the generated utterances some-
times contain irrelevant sentences with re-
spect to the input user utterance. We pro-
pose a template-based approach that fills
templates with the most salient words in
a user utterance and with related words
that are extracted using web-scale depen-
dency structures gathered from Twitter.
Our open-domain conversational dialogue
system outperforms retrieval-based con-
ventional systems in chat experiments.

1 Introduction
The need for open-domain conversational dia-
logue systems continues to grow. Such systems
are beginning to be actively investigated from their
social and entertainment aspects (Shibata et al.,
2009; Ritter et al., 2011; Wong et al., 2012);
conversational dialogues also have potential for
therapy purposes and for evoking a user’s uncon-
scious requests in task-oriented dialogues (Bick-
more and Cassell, 2001). However, developing
open-domain conversational dialogue systems is
difficult, since the huge variety of user utterances
makes it harder to build knowledge resources for
generating appropriate system responses. To ad-
dress this issue, previous research has selected sys-
tem utterances from web articles or microblogs on
the basis of surface cohesion and shallow seman-
tic coherence (Shibata et al., 2009; Jafarpour and
Burges, 2010; Wong et al., 2012); however, the se-
lected utterances sometimes contain sentences ir-
relevant to the user utterance since they originally
appeared in a different context.

To satisfy both web-scale topic coverage and
suppression of irrelevant sentences, we propose a
template-based approach that fills templates with
words related to the topic of the user utterance and
with words related to the topic-words. This ap-
proach enables us to generate a wide range of sys-
tem responses when we properly extract related
words. To obtain words related to topic-words,
we analyzed the dependency structures of a huge
number of sentences posted to such microblogs as
Twitter, where a large number and variety of sen-
tences are posted daily. This way, we can generate
a variety of appropriate system responses despite
wide variation in user utterances.

We develop a conversational dialogue system
that generates system utterances with our pro-
posed utterance generation approach and exam-
ine its effectiveness by chat experiments with real
users.

2 Related Work
To generate system utterances for conversational
dialogue systems, Ritter et al. (2011) proposed a
statistical machine translation-based approach that
considers source-reply tweet pairs as a bilingual
corpus. They compared the following three ap-
proaches: IR-status, which retrieves reply tweets
whose associated source tweets most resemble
the user utterance (Jafarpour and Burges, 2010);
IR-response, which retrieves reply tweets that
are the most similar to the user utterance; and
their proposed SMT-based approach, named MT-
chat. They reported that MT-chat outperformed
the other approaches and that IR-response was su-
perior to IR-status. However, these approaches
used only the words, and not the structures, of user
utterances to generate system utterances.

Yoshino et al. (2011) proposed a QA system
that answers questions about current events by re-
trieving, from news articles, descriptions contain-
ing similar dependency structures as those of the
user’s questions. Although this retrieval-based ap-
proach is effective for answering the user’s fac-
tual questions, it is insufficient to generate sub-
jective utterances for conversational dialogue sys-
tems since such systems are required to introduce

334



new topics or to respond with opinions related to
user utterances.

3 Open-domain Utterance Generation
Open-domain conversational dialogue systems
should be able to respond to any user utterance on
any topic. To achieve this, we adopt a template-
based approach that estimates the topic of the
user utterance, extracts words related to the topic-
words, and fills templates with these words. The
template-based approach resembles previous rule-
based approaches, but these dialogue systems had
difficulty achieving coverage for template fillers.
In contrast, our approach utilizes the dependency
structures of sentences gathered from microblogs
that have a wide range of topics, in order to ex-
tract the related words used in template-filling.
The dependency parser we use is a state-of-the-art
Japanese dependency parser that uses Conditional
Random Fields trained on text and blog posts, and
performs cascaded chunking until all dependen-
cies are found. This parser achieved 84.59% de-
pendency accuracy on a corpus of Japanese blog
posts (Imamura et al., 2007).

Microblog posts do not typically contain formu-
laic utterances such as greetings or back-channels.
Therefore, in addition to the template-filling ap-
proach, we adopt dialogue act based utterance
generation for the formulaic uttenances. Figure 1
illustrates the whole architecture of our system.

3.1 Topic-word-driven Template-based
Utterance Generation

Our topic-word-driven template-based approach
consists of the following three steps: topic estima-
tion, related word extraction, and template-filling
utterance generation.

3.1.1 Topic Estimation
We identify three types of potential topic in an in-
put user utterance: proper nouns, common nouns,
and predicates (verbs, adjectives, adjectival verbs,
and verbal nouns).
Proper Nouns We take the last proper noun
that appears in the user’s utterance as a poten-
tial topic. Since general Japanese morphologi-
cal analyzers cannot capture recent proper nouns,
we complement the proper noun dictionary entries
with Wikipedia entries1.
Common Nouns To identify potential topics
from common nouns, we calculate the inverse doc-
ument frequency (IDF) of each common noun (all
nouns except for proper, time-related, and verbal
ones) in the user’s utterance. We use a corpus of
microblog posts and treat each post as a document.
We adopt the word with the highest IDF as a po-
tential topic.

1https://github.com/nabokov/mecab-dic-overdrive
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Figure 1: System Architecture
Predicates We take the predicate that composes
a dependency in the highest layer of the depen-
dency structure as a potential topic. For example,
we adopt “ask”, but not “walk” from the utterance
“I asked the man walking on the street”.
3.1.2 Related word Extraction
To obtain topic-related words, a thesaurus or topic
model such as Latent Dirichlet Allocation are the
most popular approaches (Blei et al., 2003). How-
ever, these approaches return semantically simi-
lar words to input query words, which do not ef-
fectively introduce new information into the sys-
tem utterances. Therefore, we count the depen-
dencies between words in a huge number of sen-
tences gathered from microblogs, and utilize the
most frequently dependent words. This approach
enables us to extract adjectives related to proper
noun topics; for example, the adjectives beautiful,
good, clear, white, and huge are extracted for Mt.
Fuji. Since microblogs contain a huge number of
subjective posts, we expect the extracted words to
be subjective and suitable for conversational dia-
logue systems. In this work, we extract adjectives
for proper and common nouns, and nouns and their
case frames for predicates. Examples of extracted
words are shown in Table 2.
3.1.3 Template-filling Utterance Generation
We generate two types of system utterances using
manually defined templates: subjective sentences
with proper nouns and common nouns; and ques-
tions with predicates and their case frames.
Noun-driven Subjective Sentence Generation
We generate system utterances using the proper
and common nouns and their related adjectives.
Here, we adopt different templates for each word
type; proper nouns have explicit meanings, so ad-
jectives related to them are easily suited for any di-
alogue context. By contrast, since common nouns
are used in various contexts in microblogs, ad-
jectives related to common nouns may not fit the
dialogue context. Thus, we use “suki” (“like”
in English), or “nigate” (“don’t like” in English)
in the templates based on the proportion of posi-
tive/negative adjectives in the set of related words
for a common noun topic. Table 3 shows represen-
tative examples for each type. If the system gener-
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ates subjective utterances as the system’s own im-
pression of the dialogue topic, the user will expect
the system to justify or explain its opinion; how-
ever, our system cannot answer that kind of ques-
tion. Thus, we define the templates using hedges
such as “I hear that...” to avoid such questions.
The number of templates for proper nouns is eight,
and for common nouns is four for each polarity.
Predicate-driven Question Sentence Genera-
tion We generate question sentences using pred-
icates and their related nouns and case frames. To
elicit user utterances on a particular topic, we gen-
erate How/What/Where/When types of questions
as shown in Table 3. To select a question word,
we use the predicate types and the classes of the
related nouns. If the predicate type is adjective or
adjectival noun, we select “how” for the question
word. If the predicate type is verbal noun or verb
and location class words appear in the related noun
phrase, we select “where” for the question word;
the time class induces the question word “when”.
When no proper noun is found in the topic-word,
we select “what”. The number of templates for
proper nouns is three for each interrogative type.

3.2 Dialogue act based Utterance Generation
Our approach has difficulty generating appropriate
responses to formulaic utterances such as greet-
ings and back-channels. To address this weakness,
we adopt dialogue act based utterance generation
for these types of utterance. A dialogue act is an
abstract expression of a speaker’s intention (Stol-
cke et al., 2000); we used the 33 dialogue acts de-
fined in Meguro et al. (2010).

Our dialogue act based approach estimates the
next dialogue act that the system should output
based on the user’s utterance, and generates a sys-
tem utterance based on the system’s predicted di-
alogue act if the dialogue act is greetings, sympa-
thy, non-sympathy, filler, or confirmation.

3.2.1 User’s Dialogue act Estimation
We collected 1,259 conversational dialogues from
47 human subjects and labeled each sentence of
the collected data using the 33 dialogue acts.
67,801 dialogue acts are contained in the corpus.

We estimated the 33 dialogue acts from user
utterances using a logistic regression model and
adopted 1- and 2-gram words and 3- and 4-gram
characters as model features. We trained our
model using 1,000 dialogues and evaluated it us-
ing 259 dialogues. The estimation accuracy was
about 61%, whereas the human annotation agree-
ment rate was about 59%.

3.2.2 Dialogue control Model and Utterance
Generation with Predicted Dialogue act

We developed a dialogue control model that esti-
mates the system’s next dialogue act based on the

user’s dialogue act. The model features are the
user’s current dialogue act vector, the system’s last
dialogue act vector, and the user’s last dialogue act
vector. Each dialogue act vector consists of a 33-
dimensional binary vector space. We used the dia-
logue corpus described above to train and evaluate
our model, which we trained with 1,000 dialogues
and evaluated using 259 dialogues. The estimation
accuracy was 31%, whereas the dialogue act an-
notation agreement rate between humans is 60%.
We exploited the fact that formulaic utterances can
pre-define corresponding utterances regardless of
the context. Table 4 shows example generated sen-
tences for each dialogue act.
4 Experiment
4.1 Experiment Setting
We recruited ten native Japanese-speaking partic-
ipants in their 20’s and 30’s (two males and eight
females) from outside of the authors’ organiza-
tion, who have experience using chat systems (not
bots). Each participant chatted with the following
systems, provided subjective evaluation scores for
each system for each of the eight criteria shown in
Table 1 (2)-(10) using 7-point Likert scales, and at
the end ranked all the systems. We examined the
effectiveness of our proposed approach by com-
parison with the following six systems.

We built the following proposed systems with
about 150 M posts gathered from Twitter (ex-
cluding posts that contain “@”, “RT”, “http” and
brackets, and posts that don’t contain any depen-
dency pairs). At the beginning of a dialogue or
the end of a conversation topic when the topic-
based approach didn’t generate system utterances,
the proposed approaches generated questions such
as “What is your favorite movie?” to introduce
the next conversation topic. These questions were
gathered from utterances in the self-introduction
phase (about the five initial utterances) of each di-
alogue in our dialogue corpus. We manually se-
lected 109 questions that have no context from
179 questions gathered from our corpus, and chose
a question at random to generate each topic-
inductive question.
Proposed-All This approach used all found top-
ics: proper and common nouns, and predicates.
This approach is expected to be well-balanced
since it generates both content-focused utterances
and general WH-type questions.
Proposed-Nouns This approach used only
proper and common nouns, not predicates.
Proposed-Predicates This approach used only
predicates, not proper nor common nouns.
Retrieval-Self This approach resembles the IR-
response method in Ritter et al. (2011). This ap-
proach chose the most similar posts to the user ut-
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Prop.-All Prop.-Noun Prop.-Pred. Ret.-self Ret.-reply Human
(1) Number of superior prefs. vs. Prop.-All - 4 3 0∗∗ 2∗ 9∗∗

(2) Naturalness of dialogue flow 4.0 3.1∗∗ 3.5 2.2∗∗ 3.5 6.5∗∗

(3) Grammatical correctness 4.0 3.7 4.4 4.1 3.9 6.4∗∗

(4) Dialogue usefulness 3.7 2.9∗∗ 3.9 2.7∗∗ 3.5 6.1∗∗

(5) Ease of considering next utterance 3.5 3.4 4.4∗∗ 2.4∗∗ 3.3 5.7∗∗

(6) Variety of system utterances 4.3 4.0 4.2 2.9∗∗ 4.0 5.5
(7) User motivation 4.5 4.0∗ 4.7 3.7∗ 4.6 5.6∗∗

(8) System motivation that the user feels 4.7 4.1∗ 4.3 3.5∗∗ 4.5 5.7∗

(9) Desire to chat again 3.7 2.8∗∗ 3.3 2.0∗∗ 3.1 5.7∗∗

(10) Averaged score of all evaluation items 4.05 3.50∗∗ 4.08 2.93∗∗ 3.8∗ 5.9∗∗

Table 1: System preferences and evaluation scores on 7-point Likert scale (∗: p<.1, ∗∗: p<.05)

terance from source posts using the Lucene2 infor-
mation retrieval library, which is an IDF-weighted
vector-space similarity. We built about 55 M
source-reply post pairs from Twitter.
Retrieval-Reply This approach is the same as
the IR-status method in Ritter et al. (2011). It
chooses a reply post whose associated source posts
most resemble the user’s utterance.
Human As an upper-bound of these systems,
the user chats with a human using the same chat
interface used by the other systems.

Each dialogue took place over four minutes and
was conducted through a text chat interface, and
the orders of presentation of systems to partici-
pants was randomized. Since the humans have
to type their utterances and the systems can gen-
erate utterances much faster than typing, we set
the transition of the system utterances to about ten
seconds to avoid different response intervals be-
tween the systems and the humans. Table 5 shows
a dialogue example.
4.2 Results and Discussion
Table 1 shows that Proposed-All is ranked the
highest of all the automatic systems (1), and
achieves the best average evaluation scores (2)-
(10). Statistical analyses were performed using
the Binomial test for (1) and Welch’s t test for (2)
to (10). Proposed-All was ranked higher than the
retrieval-based approaches (10 of 10 participants
ranked Proposed-All higher than Retrieval-Self,
and 8 participants ranked Proposed-All higher
than Retrieval-Reply), but none of our three pro-
posed approaches was ranked significantly higher
than the others.

The evaluation scores also demonstrate the
characteristics of each approach. Proposed-Nouns
shows significantly low scores in dialogue flow
(2), dialogue usefulness (4), and system motiva-
tion (9). Since this approach is overly affected by
the nouns in the user utterances, users didn’t feel
that the system was actually thinking. Proposed-
Predicates shows a high score in ease of thinking
about the next utterance (5) since it generates WH-
type questions for which users can easily produce
answer utterances.

2http://lucene.apache.org

For conventional retrieval-based approaches,
contrary to Ritter et al. (2011), Retrieval-Self
shows significantly lower scores in almost all
the evaluation items, and Retrieval-Reply shows
scores close to Proposed-All. These results re-
flect the retrieved corpus size, which is 40 times
larger than that of Ritter et al. (2011). When
the retrieval performance improves, Retrieval-Self
returns posts that are too similar to user utter-
ances, while Retrieval-Reply can find appropri-
ate source posts. Retrieval-Reply shows almost
the same scores as Proposed-All for each single
evaluation metric, but Retrieval-Reply is inferior
to Proposed-All in the averaged evaluation items
(10). This is a reason why Retrieval-Reply is also
inferior in (1).

None of the systems approached human per-
formance. The users thought that the systems
were not able to respond to user utterances that
referred to the system itself, like personal ques-
tions; and that the systems didn’t understand user
utterances since the systems sometimes generate
a question that contains different but semantically
similar words to those used by the user, due to the
lack of thesaurus knowledge.
5 Conclusions
We proposed a novel open-domain utterance gen-
eration approach for a conversational dialogue
system that generates system utterances using
templates populated with topics and related words
extracted from a huge number of dependency
structures. Our chat experiments demonstrated
that our template-based approach generated sys-
tem utterances preferred over those produced
with retrieval-based approaches, and that WH-
type questions make it easy for users to produce
their next utterance. Our work also indicated
that template-based utterance generation, which is
considered a legacy approach, has potential when
the template-filling resource is huge. Future work
includes improving the data-driven topic selec-
tion in the proposed approach, the aggregation of
words with web-scale class structures like Tama-
gawa et al. (2012), response generation for utter-
ances that describe the systems themselves, and
exploitation of information about the user to gen-
erate system utterances.
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Appendix
Topic-word Extracted topic-related words

Mt.Fuji beautiful, good, clear, white, huge (adj)
Bread delicious, good, like, cute (adj)

Eat I (“ga”: subject-case), rice (“wo”: target-case)
together (“ni”: “with”,“ to”)

Table 2: Extracted topic-related words (translated
by authors)

Word type Template example
Proper nouns I hear that [Noun] is [adj], isn’t it?

[Noun] ha [adj] deshitakke? (JP)
General nouns Actually, I am weak in [Noun]...

[Noun] ha chotto nigate desu... (JP)
Adjectives and How does it [Noun]?

adjectival nouns douiu huuni [Noun] nndesuka? (JP)
Verbs and Where do you [Verb]?

verbal nouns doko de [Verb] nndesuka? (JP)

Table 3: Templates for topic types (translated by
authors)

Dialogue act Example
Greetings Hello.
Sympathy Good./ Nice.

Non-sympathy Not so good..
Filler Uh.

Confirmation Really?/Oh, [Noun].

Table 4: Generated utterances for dialogue acts
(translated by authors)

Speaker Utterance
User Hello.

System Hello. Do you like movies?
User I like movies.

System Good. I think movie is fun, isn’t it?
User I like reading more than going to the movies.

System Reading is also good.
User I borrow books from my local library.

System Nice. I hear that libraries are quiet.
User Yes, they usually are.

I used to study, write reports, and read books.

Table 5: Dialogues between user and Proposed-
All (translated by authors)
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Abstract 

Learning and improving natural turn-taking 
behaviors for dialogue systems is a topic of 
growing importance. In task-oriented dia-
logue where the user can engage in task ac-
tions in parallel with dialogue, unrestricted 
turn taking may be particularly important for 
dialogue success. This paper presents a novel 
Markov Decision Process (MDP) representa-
tion of dialogue with unrestricted turn taking 
and a parallel task stream in order to automat-
ically learn effective turn-taking policies for a 
tutorial dialogue system from a corpus. It also 
presents and evaluates an approach to auto-
matically selecting features for an MDP state 
representation of this dialogue. The results 
suggest that the MDP formulation and the 
feature selection framework hold promise for 
learning effective turn-taking policies in task-
oriented dialogue systems. 

1 Introduction 

Determining when to make a dialogue move is a 
topic of growing importance in dialogue systems. 
While systems historically relied on explicit turn-
taking cues, more recent work has focused on 
learning and improving on natural turn-taking 
behaviors (Raux and Eskenazi 2012; Selfridge et 
al. 2012). For tutorial dialogue in particular, ef-
fectively timing system moves can substantially 
impact the success of the dialogue. For example, 
failing to provide helpful feedback to a student 
who is confused may lead to decreased learning 
(Shute 2008) or to disengagement (Forbes-Riley 
and Litman 2012), while providing tutorial feed-
back or interventions at inappropriate times 
could also have a negative impact on the out-
come of the dialogue (D’Mello et al. 2010).  

Reinforcement Learning (RL) is a widely used 
approach to constructing effective dialogue poli-

cies using either MDPs or POMDPs (Williams 
and Young 2007). To date, RL has been applied 
to learn the most effective dialogue move to 
make, but has not been applied to learning the 
timings of these moves, although the related con-
cept of when to release a turn has been explored 
(English and Heeman 2005). The domain of tuto-
rial dialogue poses an additional modeling chal-
lenge: the dialogue is task-oriented, but unlike 
many task-oriented dialogues in which all infor-
mation is communicated via dialogue, students 
solve problems within a separate task stream 
which conveys essential information for dialogue 
management decisions.  

This paper addresses dialogue with both unre-
stricted turn taking and a parallel task stream 
with a novel Markov Decision Process represen-
tation. Because turn boundaries are not clearly 
defined or enforced, we apply RL to the problem 
of when to make a dialogue move, rather than 
what type of dialogue move to make. In order to 
determine which criteria are most relevant to 
making this decision, the approach utilizes a fea-
ture selection approach based on a new Separa-
tion Ratio metric and compares the selected fea-
tures against an existing approach based on ex-
pected cumulative reward (Chi et al. 2011). Fi-
nally, the resulting feature spaces are evaluated 
with simulated users acquired in a supervised 
fashion from held-out portions of the corpus. The 
results inform the development of turn-taking 
policies in task-oriented dialogue systems. 

2 Corpus 

The corpus used for this work was collected dur-
ing 2011 and 2012 as part of the JavaTutor tuto-
rial dialogue project. It consists of 66 textual dia-
logues between human tutors and students, with 
an average of 90 tutor dialogue moves and 36 
student dialogue moves. Each pair interacted for 
through a computer-mediated interface to com-
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plete introductory computer programming tasks. 
Students edited their computer programs within a 
parallel task stream also collected as part of the 
corpus (see Appendix A). Tutors viewed the task 
actions synchronously through the interface. The 
success of each dialogue was measured by learn-
ing gain between pretest and posttest. Overall the 
dialogues were effective; the average learning 
gain was 42.3% (statistically > 0; p < .0001). The 
substantial variation in learning gains (min=-
28.6%; max= 100%) will be leveraged within the 
MDP reward structure. 

3 MDP Representation 

A Markov Decision Process (MDP) models a 
system in which a policy can be learned to max-
imize reward (Sutton and Barto 1998). It consists 
of a set of states S, a set of actions A representing 
possible actions by an agent, a set of transition 
probabilities indicating how likely it is for the 
model to transition to each state sʹ ϵ S from each 
state s ϵ S when the agent performs each action a 
ϵ A in state s, and a reward function R that maps 
real values onto transitions and/or states, thus 
signifying their utility.  

Previous applications of RL to dialogue sys-
tems, using both MDPs and POMDPs, have dealt 
with the decision of what type of dialogue move 
to make (Chi et al. 2011; Williams and Young 
2007). These systems make this decision either at 
predetermined decision points (Tetreault and 
Litman 2008), following the trigger of a silence 
threshold (Raux and Eskenazi 2012), or when the 
system determines it has enough information to 
advance the dialogue (Selfridge et al. 2012). For 
the JavaTutor corpus, however, the tutor could 
choose to make a move at any time. Rather than 
applying handcrafted rules to determine decision 
points, we apply RL to learn when to make a dia-
logue move in order to maximize the success of 
the dialogue. For this MDP, the action set is de-
fined as A = {TutorMove, NoMove}.  

The states for the MDP consist of combina-
tions of features representing the current state of 
the session. The possible features available for 
selection are described in Table 1, and are all 
automatically extracted from system logs. The 
Task Trajectory and Edit Distance features are 
based on computing a token-level edit distance 
from a student’s program with respect to that 
student’s final correct solution. This distance 
measures a student’s progress over the course of 
a dialogue while avoiding the need to manually 
annotate the task stream. In a deployed system, 

this edit distance can be estimated by comparing 
to previously acquired solutions from other stu-
dents.  

 
Feature Description Values 

Current 
Action 

The current action 
being taken by the 
student  

• TASK 
• STUDENTDIAL 
• NOACTION 

Task  
Trajectory 

The effect of the last 
task action on the edit 
distance to the final 
task solution 

• CLOSER 
• FARTHER 
• NOCHANGE 

Last  
Action 

Last turn taken by 
either interlocutor 

• TUTORDIAL 
• STUDENTDIAL 
• TASK 

Number of 
Tutor 
Moves 

Number of tutor turns 
taken thus far in the 
dialogue 

• LOW  (< 30) 
• MID   (30-59) 
• HIGH (> 60) 

Edit  
Distance 

The edit distance to the 
final solution 

• LOW  (< 20) 
• MID   (20-49) 
• HIGH (> 50) 

Elapsed 
Idle Time 

The number of se-
conds since the last 
student action 

• LOW  (< 7) 
• MID   (7-15) 
• HIGH (> 15) 

 

Table 1. Features available to be selected 

Tutor moves are encoded as MDP actions, 
while student actions are encoded as transitions 
to a new state with a NoMove tutor action. To 
account for the possibility that both interlocutors 
could construct messages simultaneously or that 
dialogue and task actions could happen at the 
same time, the following protocol was applied: if 
a tutor was making a dialogue move (i.e., typing 
a message), the state transition accompanying a 
student action was made after the tutor move was 
complete, and the student move was associated 
with that TutorMove action.  

Another important consideration for this rep-
resentation was how to segment the task stream 
into discrete actions. Through empirical investi-
gation the timeout threshold of 1.5 seconds was 
selected as a balance between large numbers of 
successive task events or very few, most of 
which overlapped with tutor turns.  

There were three additional states in the MDP: 
the Initial state and two final states, FinalHigh 
and FinalLow, occurring only at the end of a dia-
logue and providing rewards of +100 and −100, 
respectively. A median split on student learning 
gains was used to assign each dialogue to either 
the FinalHigh state or FinalLow state. 

4 Feature Selection 

While retaining all six features would allow for a 
rich state representation, it would also lead to 
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issues with sparsity (Singh et al. 2002). In fact, 
nearly 90% of states averaged less than one visit 
per dialogue when using all six features, leading 
to inadequate coverage of the state space on 
which to build reliable MDP policies. This sec-
tion compares two methods used to select fea-
tures from among the six available. 

The first approach is based on the Expected 
Cumulative Reward (ECR) in the initial state, a 
metric previously used to evaluate state represen-
tations for a tutorial dialogue system using RL 
(Chi et al. 2011; Tetreault and  Litman 2008). A 
higher initial-state ECR indicates a higher proba-
bility of achieving a favorable outcome when 
following a reward-maximizing policy. Maxim-
izing ECR has also been the focus of other fea-
ture selection approaches for RL (Misu and 
Kashioka 2012,  Li et al. 2009). 

While initial-state ECR provides a measure of 
the likelihood of a favorable outcome, it does not 
address how well a particular state representation 
captures key decision points. That is, it does not 
directly represent the extent to which each deci-
sion along the path to a successful outcome con-
tributed to that outcome, or whether the second-
best decision in a particular state would have 
been equally useful. In order to measure this dif-
ference, we introduce the Separation Ratio (SR), 
which represents how much better a particular 
policy is compared to its alternatives. SR for a 
state is calculated by taking the absolute differ-
ence between the estimated values of two actions 
in that state and dividing by the mean of the two 
values. SR for a policy is the mean of the SRs 
across all states.  

An SR near zero for a state indicates that the 
decision to take one action over another in that 
state is likely to have little effect on the final out-
come of the dialogue. On the other hand, a high 
SR indicates a crucial decision point, where tak-
ing an off-policy action leads to a much lower 
probability of a successful outcome. The intui-
tion behind this metric is that a state representa-
tion that supports policies with high SR high-
lights features that are useful in executing an ef-
fective turn-taking policy, while a state represen-
tation that produces policies with low SR fails to 
capture this information. 

Using these two metrics, we evaluated the util-
ity of each of the six features. Starting with two 
empty state representations, one for each metric, 
a greedy algorithm added one feature at a time to 
each. That is, at each step for each metric, the 
feature was added that led to the highest value on 
the metric when combined with the features al-

ready chosen. For each of the two metrics, we 
built a state representation and used it as the ba-
sis for an MDP. This MDP was then trained with 
policy iteration (Sutton and Barto 1998), and the 
two state representations that led to the highest 
value on each metric were carried over to the 
next iteration. The goal here is to evaluate the 
relative utility of each feature, so we continued 
adding features until they were exhausted, lead-
ing to a full ordering of features for each condi-
tion (Table 2).  
 

Iteration Initial-State ECR 
Feature Ordering 

Mean SR  
Feature Ordering 

1 Last Action Number of Tutor 
Moves 

2 Task Trajectory Edit Distance 
3 Current Action Last Action 
4 Elapsed Idle Time Current Action 

5 Number of Tutor 
Moves Elapsed Idle Time 

6 Edit Distance Task Trajectory 
 

Table 2. Feature selection using Expected Cumu-
lative Reward (ECR) and Separation Ratio (SR) 

Given the orderings in Table 2, the next step in 
building a RL system is to decide which iteration 
of the feature spaces to use. That is, how does a 
system designer determine when to stop adding 
features? Previous work (Chi et al. 2011; 
Tetreault and Litman 2008) viewed an absolute 
increase in the value of initial-state ECR as a 
signal for the quality of a newly added feature. 
So, one could say that feature addition should 
stop if initial-state ECR does not increase be-
tween iterations. In the current analysis, howev-
er, this would result in termination at the second 
iteration for the mean SR ordering and termina-
tion at the first iteration for the initial-state ECR 
ordering. These undesirably early terminations 
most likely occur because the first features se-
lected in both orderings represent tutor actions: a 
tutor can always choose to make a move, thus 
setting the Last Action feature to TUTORDIAL, 
and a tutor has direct control over the value of 
Number of Tutor Moves. This control of features 
leads to deterministic control of state if the con-
text provided by student-driven features is ab-
sent. This can allow a policy to remain in the 
state that maximizes the transition probability to 
the end state, thus increasing ECR for all states 
due to deterministic transitions. Therefore, a dif-
ferent type of stopping criterion is required. 
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A stopping criterion must balance two com-
peting goals. On the one hand, the size of the 
state space must be limited to avoid issues with 
sparsity, as state-action pairs that are not well 
explored during training might not be assigned 
values proportional to their expected rewards in a 
deployed system. On the other hand, a feature 
space that is too small may not sufficiently repre-
sent the possible states of the world, and might 
fail to capture the criteria most relevant to mak-
ing decisions. These competing goals of com-
pactness and descriptive power must both be 
considered when choosing an appropriate feature 
space for a RL model.  

In an attempt to balance these goals, we pro-
pose a stopping criterion based on the ratio of 
states that are sparse states. A sparse state is de-
fined as any state that occurs less than once per 
dialogue on average. A sharp increase in sparse 
states was observed between the third and fourth 
iterations for both metrics (15% to 56% for ECR 
and 26% to 47% for SR), so feature addition 
stopped at the third iteration. This resulted in 
only one of the three selected features being 
shared among the two conditions: the Last Action 
made by either person (Table 2). In addition, 
both feature sets include a feature related to the 
task progress of the student: Task Trajectory for 
ECR and Edit Distance for SR. The next section 
reports on an experiment to evaluate these two 
feature spaces. 

5 Evaluation 

A series of simulated dialogues was used to 
evaluate the two resulting feature spaces via the 
policies derived using them. These simulations 
were based on five-fold cross-validation, as in 
prior work (Henderson et al. 2008), with policies 
trained on four of the five folds and simulated 
users learned from the remaining fold. 

As noted above, the rewards in the MDP were 
based on student learning gain, but learning gain 
(like user satisfaction in other dialogue domains) 
is not directly observable during the dialogues. 
However, we found that students in the high 
learning gain group had fewer non-zero task ac-
tions (actions that changed the edit distance to 
the final task solution) than students in the low 
learning gain group (p < 0.05). Therefore, num-
ber of non-zero task actions is used as a measure 
of dialogue success, with lower numbers being 
better. We derived the average change in edit 
distance on each state transition from the testing 
folds, and defined that a simulated dialogue 

would end when the edit distance reached zero 
(i.e., the student arrived at the correct solution).  

Table 3 shows the results of running 5,000 
simulations in each fold for both the learned pol-
icy and for an anti-policy where each decision 
was reversed. The anti-policy is included to pro-
vide a point of comparison for the policies 
learned in each feature space, and offers insight 
into the quality of the learned policies, similar to 
the inverse policies learned in prior work (Chi et 
al. 2011). The table shows that the learned poli-
cies in the ECR feature space had slightly better 
results overall (lower number of non-zero task 
actions), while the SR feature space had larger 
separation between the learned policies and anti-
policies. These results suggest that feature selec-
tion based on SR was able to identify important 
decision criteria with only a minor decrease in 
reward compared to ECR.   

 
Feature 
Space Policy Average non-zero 

task action count 

ECR Learned policy 43.2 
Anti-policy 49.6 

SR Learned policy 47.3 
Anti-policy 97.4 

 

Table 3. Results of simulated dialogues (lower 
non-zero task action count is better) 

6 Conclusion 

Modeling unrestricted turn taking within an RL 
framework, particularly for task-oriented dia-
logue with both a dialogue and a parallel task 
stream, presents numerous challenges. This pa-
per has presented a novel representation of such 
dialogue with a tutoring domain, and has pre-
sented and evaluated a feature selection method 
based on a new Separation Ratio metric, which 
can inform the development of turn-taking poli-
cies in dialogue systems. Future work includes a 
more fine-grained analysis of the timing of dia-
logue moves as well as an evaluation of these 
results in a deployed system.  
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Appendix A. Corpus excerpt 
1. Student begins declaring a String variable. 
2. Student starts typing a message. 
3. Student message: Could I type in String The 

Adventure Quest; ? or would I need to put in 
quotes or something? 

4. Student resumes working on task. 
5. Tutor starts typing a message. 
6. Tutor message: TheAdventureQuest is fine 
7. Student declares variable called The Adven-
ture Quest (Incorrect Java syntax) 

8. Tutor starts typing a message. 
9. Student catches mistake and renames variable to 
TheAdventureQuest 

10. Tutor message: Can't have spaces :) 
11. Tutor starts typing a message 
12. Tutor message: Good job 
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Abstract 

Natural Language call routing remains a com-
plex and challenging research area in machine 
intelligence and language understanding. This 
paper is in the area of classifying user utter-
ances into different categories. The focus is on 
design of algorithm that combines supervised 
and unsupervised learning models in order to 
improve classification quality. We have shown 
that the proposed approach is able to outper-
form existing methods on a large dataset and 
do not require morphological and stop-word 
filtering. In this paper we present a new for-
mula for term relevance estimation, which is a 
modification of fuzzy rules relevance estima-
tion for fuzzy classifier. Using this formula 
and only 300 frequent words for each class, we 
achieve an accuracy rate of 85.55% on the da-
tabase excluding the “garbage” class (it in-
cludes utterances that cannot be assigned to 
any useful class or that can be assigned to 
more than one class). Dividing the “garbage” 
class into the set of subclasses by agglomera-
tive hierarchical clustering we achieve about 
9% improvement of accuracy rate on the 
whole database. 

1 Introduction 

Natural language call routing can be treated as an 
instance of topic categorization of documents 
(where the collection of labeled documents is 

used for training and the problem is to classify 
the remaining set of unlabeled test documents) 
but it also has some differences. For instance, in 
document classification there are much more 
terms in one object than in single utterance from 
call routing task, where even one-word utteranc-
es are common. 
A number of works have recently been published 
on natural language call classification. B. Car-
penter, J. Chu-Carroll, C.-H. Lee and H.-K. Kuo 
proposed approaches using a vector-based in-
formation retrieval technique, the algorithms de-
signed by A. L. Gorin, G. Riccardi, and J. H. 
Wright use a probabilistic model with salient 
phrases. R. E. Schapire and Y. Singer focused on 
a boosting-based system for text categorization.  
The most similar work has been done by A. 
Albalate, D. Suendermann, R. Pieraccini, A. 
Suchindranath, S. Rhinow, J. Liscombe, K. 
Dayanidhi, and W. Minker. They have worked 
on the data with the same structure: the focus 
was on the problem of big part of non-labeled 
data and only few labeled utterances for each 
class, methods of matching the obtained clusters 
and the given classes have also been considered; 
they provided the comparison of several classifi-
cation methods that are able to perform on the 
large scale data.  
The information retrieval approach for call rout-
ing is based on the training of the routing matrix, 
which is formed by statistics of appearances of 
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words and phrases in a training set (usually after 
morphological and stop-word filtering). The new 
caller request is represented as a feature vector 
and is routed to the most similar destination vec-
tor. The most commonly used similarity criterion 
is the cosine similarity. The performance of sys-
tems, based on this approach, often depends on 
the quality of the destination vectors.  
In this paper we propose a new term relevance 
estimation approach based on fuzzy rules rele-
vance for fuzzy classifier (H. Ishibuchi, T. 
Nakashima, and T. Murata., 1999) to improve 
routing accuracy. We have also used a decision 
rule different from the cosine similarity. We as-
sign relevancies to every destination (class), cal-
culate the sums of relevancies of words from the 
current utterance and choose the destination with 
the highest sum.  
The database for training and performance eval-
uation consists of about 300.000 user utterances 
recorded from caller interactions with commer-
cial automated agents. The utterances were man-
ually transcribed and classified into 20 classes 
(call reasons), such as appointments, operator, 
bill, internet, phone or video. Calls that cannot be 
routed certainly to one reason of the list are clas-
sified to class _TE_NOMATCH.  
A significant part of the database (about 27%) 
consists of utterances from the “garbage” class 
(_TE_NOMATCH). Our proposed approach de-
composes the routing task into two steps. On the 
first step we divide the “garbage” class into the 
set of subclasses by one of the clustering algo-
rithms and on the second step we define the call 
reason considering the “garbage” subclasses as 
separate classes. We apply genetic algorithms 
with the whole numbers alphabet, vector quanti-
zation network and hierarchical agglomerative 
clustering in order to divide “garbage” class into 
subclasses. The reason to perform such a cluster-
ing is due to simplify the detection of the class 
with non-uniform structure.  
Our approach uses the concept of salient phrases: 
for each call reason (class) only 300 words with 
the highest term relevancies are chosen. It allows 
us to eliminate the need for the stop and ignore 
word filtering. The algorithms are implemented 
in C++. 
As a baseline for results comparison we have 
tested some popular classifiers from RapidMiner, 
which we have applied to the whole database and 
the database with decomposition.  
This paper is organized as follows: In Section II, 
we describe the problem and how we perform the 
preprocessing. Section III describes in detail the 

way of the term relevance calculating and the 
possible rules of choosing the call class. In Sec-
tion IV we present the clustering algorithms 
which we apply to simplify the “garbage” class 
detection. Section V reports on the experimental 
results. Finally, we provide concluding remarks 
in Section VI. 

2 Problem Description and Data Pre-
processing 

The data for testing and evaluation consists of 
about 300.000 user utterances recorded from 
caller interactions with commercial automated 
agents. Utterances from this database are manu-
ally labeled by experts and divided into 20 clas-
ses (_TE_NOMATCH, appointments, operator, 
bill, internet, phone etc). Class _TE_NOMATCH 
includes utterances that cannot be put into anoth-
er class or can be put into more than one class. 
The database is also unbalanced, some classes 
include much more utterances than others (the 
largest class _TE_NOMATCH includes 6790 ut-
terances and the smallest one consists of only 48 
utterances).  
The initial database has been preprocessed to be 
a binary matrix with rows representing utterances 
and columns representing the words from the 
vocabulary. An element from this binary matrix, 
aij, equals to 1 if in utterance i the word j appears 
and equals to 0 if it does not appear.  
Utterance duplicates were removed. The prepro-
cessed database consisting of 24458 utterances 
was divided into train (22020 utterances, 
90,032%) and test set (2438 utterances, 9,968%) 
such that the percentage of classes remained the 
same in both sets. The size of the dictionary of 
the whole database is 3464 words, 3294 words 
appear in training set, 1124 words appear in test 
set, 170 words which appear only in test set and 
do not appear in training set (unknown words), 
33 utterances consisted of only unknown words, 
and 160 utterances included at least one un-
known word. 

3 Term Relevance Estimation  

For each term we assign a real number term rele-
vance that depends on the frequency in utteranc-
es. Term relevance is calculated using a modified 
formula of fuzzy rules relevance estimation for 
fuzzy classifier. Membership function has been 
replaced by word frequency in the current class. 
The details of the procedure are:  
Let L be the number of classes; ni is the number 
of utterances of the ith class; Nij is the number of 
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jth word occurrence in all utterances of the ith 
class; Tji=Nji/ni is the relative frequency of jth 
word occurrence in the ith class. 
Rj=maxi Tji, Sj=arg(maxi Tji) is the number of 
class which we assign to jth word; 
The term relevance, Cj, is given by 
 

 
 
 

Cj is higher if the word occurs often in few clas-
ses than if it appears in many classes.  
The learning phase consists of counting the C 
values for each term, it means that this algorithm 
uses the statistical information obtained from 
train set. We have tested several different 
decision rules defined in Table 1. 
 

 Decision rules 

RC 
 

For each class i we 
calculate Ai 

 
Then we find the num-

ber of class which 
achieves maximum of 

Ai 
 

RC max 
 

C 
 

C with 
limit 

 

R 
 

Table 1. Decision Rules  
 
The best obtained accuracies is achieved with the 
decision rule C, where the destination is chosen 
that has the highest sum of word relevancies 
from the current utterance. In Table 2 we show 
the obtained results on the whole database and 
database without “garbage” class. 
 

 Train Test 
With class “garbage” 0,614 0,551 

Without class “garbage” 0,887 0,855 
Table 2. Performance of the new TRE approach 

4 Clustering methods 

After the analysis of the performances of stand-
ard classification algorithms on the given data-
base, we can conclude that there exists one spe-
cific class (class _TE_NOMATCH) where all 
standard techniques perform worse. Due to the 
non-uniform structure of the “garbage” class it is 
difficult to detect the whole class by the pro-
posed procedure. If we apply this procedure di-
rectly we achieve only 55% of accuracy rate on 

the test data (61% on the train data). We suggest 
to divide the “garbage” class into the set of sub-
classes using one of the clustering methods and 
then recount the values of Cj taking into account 
that there are 19 well defined classes and that the 
set of the “garbage” subclasses can be consider 
as separate classes.  
In this paper the following clustering methods 
are used: a genetic algorithm with integers, vec-
tor quantization networks trained by a genetic 
algorithm, hierarchical agglomerative clustering 
with different metrics.  

4.1 Genetic Algorithm 

The train set accuracy is used as a fitness func-
tion. Each individual is the sequence of nonnega-
tive integer numbers (each number corresponds 
to the number of “garbage” subclass). The length 
of this sequence is the number of utterances from 
train set which belong to the “garbage” class. 
We apply this genetic algorithm to find directly 
the optimal clustering using different numbers of 
clusters and we can conclude that with increasing 
the clusters number (in the “garbage” class) we 
get better classification accuracy on the whole 
database. We have used the following parameters 
of GA: population size = 50, number of genera-
tion = 50, weak mutation, tournament selection, 
uniform crossover, averaged by 50 runs. Apply-
ing this method we achieve about 7% improve-
ment of accuracy rate on train data and about 5% 
on test data.  

4.2 Vector Quantization Network 

We have also implemented vector quantization 
network. For a given number of subclasses we 
search for the set of code vectors (the number of 
code vectors is equal to the number of sub-
classes). These code vectors are optimized using 
genetic algorithm where as a fitness function we 
use the classification quality on the train set. 
Each code vector corresponds to a certain “gar-
bage” subclass. The object belongs to the sub-
class if the distance between it and the corre-
sponding code vector is smaller than the distanc-
es between the object and all other code vectors. 
Applying this algorithm to the given database we 
obtain results similar to the results of the genetic 
algorithm.  

4.3 Hierarchical Agglomerative Clustering 

In this work we consider hierarchical agglomera-
tive binary clustering where we set each utter-
ance to one subclass and then we consequently 
group classes into pairs until there is only one 
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class containing all utterances or until we 
achieve a certain number of classes. The perfor-
mance of hierarchical clustering algorithms de-
pends on the metric (the way to calculate the dis-
tance between objects) and the criterion for clus-
ters union. In this work we use Hamming metric 
and Ward criterion (J. Ward. 1963).  

5 Experimental results 

The approach described above has been applied 
on the preprocessed corpus which has been pro-
vided by Speech Cycle company. We propose 
that only terms with highest value of RC (prod-
uct of R and C) are contributed to the total sum. 
We have investigated the dependence of the new 
TRE approach on the frequent words number 
(Figure 1). The best accuracy rate was obtained 
with more than 300 frequent words. By using 
only limited set of words we eliminated the need 
of stop and ignore words filtering. This also 
shows that the method works better if utterance 
includes terms with high C values. This approach 
requires informative well-defined classes and 
enough data for statistical model. 

 
Figure 1. New TRE approach with different numbers 
of frequent words (x-axis: number of frequent words; 
y-axis: accuracy) 

 
Figure 2. Overall accuracy 

Figure 3. Comparison of decision rules (x-axis: deci-
sion rule; y-axis: accuracy) 
 
We have tested standard classification algorithms 
(k-nearest neighbors algorithms, Bayes classifi-
ers, Decision Stump, Rule Induction, perceptron) 
and the proposed approach on the database with 
“garbage” class and on the database without it 
(Figure 2). The proposed algorithm outperforms 
all other methods with has an accuracy rate of 
85.55%. Figure 3 provides accuracies of different 
decision rules. Applying the proposed formula to 
the whole database we obtain 61% and 55% of 
classification quality on train and test data. We 
should also mention that the common tf.idf ap-
proach gives us on the given data 45% and 38% 
of accuracy rate on the train and test data. The 
proposed approach performs significantly better 
on this kind of data.  
Using the agglomerative hierarchical clustering 
we achieve about 9% improvement. The best 
classification quality is obtained with 35 sub-
classes on the train data (68.7%) and 45 sub-
classes on the test data (63.9%). Clustering into 
35 subclasses gives 63.7% of accuracy rate on 
the test data. 

6 Conclusion 

This paper reported on call classification experi-
ments on large corpora using a new term rele-
vance estimation approach. We propose to split 
the classification task into two steps: 1) cluster-
ing of the “garbage” class in order to simplify its 
detection; 2) further classification into meaning-
ful classes and the set of “garbage” subclasses. 
The performance of the proposed algorithm is 
compared to several standard classification algo-
rithms on the database without the “garbage” 
class and found to outperform them with the ac-
curacy rate of 85.55%.  
Dividing the “garbage” class into the set of sub-
classes by genetic algorithm and vector quantiza-
tion network we obtain about 5% improvement 
of accuracy rate and by agglomerative hierar-
chical clustering we achieve about 9% improve-
ment of accuracy rate on the whole database.  
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Abstract 

In this paper, we introduce our counseling dia-

log system. Our system interacts with users by 

recognizing what the users say, predicting the 

context, and following the users‟ feelings. For 

this interaction, our system follows three basic 

counseling techniques: paraphrasing, asking 

open questions, and reflecting feelings. To fol-

low counseling techniques, we extracted 

5W1H information and user emotions from 

user utterances, and we generated system ut-

terances while using the counseling techniques. 

We used the conditional random field algo-

rithm to extract 5W1H information, and con-

structed our counseling algorithm using a dia-

log strategy that was based on counseling 

techniques. A total of 16 adults tested our sys-

tem and rated it with a higher score as an in-

teractive communicator compared with the 

baseline system. 

1 Introduction 

Over the past 45 years, suicide rates have in-

creased by 60% worldwide.
1
 To prevent suicide, 

suicide people need to counsel with counselors. 

However, counseling with a human counselor 

requires a substantial cost, and in addition, there 

is a location restriction. Developing a counseling 

dialog system could be an effective solution to 

address this problem because the system has no 

limitations with respect to time and location. 

In this study, we present a counseling dialog 

system. The system interacts with users by rec-

ognizing what the users say, predicting the con-

text, and following the users‟ feelings. We used 

three counseling techniques for our system, to 

interact with the users. The system performs par-

aphrasing, asks open questions, and reflects feel-

ings. 

                                                 
1
 

http://www.who.int/mental_health/prevention/suicide/suicid

eprevent/en/ 

Paraphrasing is a technique that paraphrases 

user utterances. For example, when a user utter-

ance is “My dog picked up the ball”, then it 

could be paraphrased by “Oh, your dog picked 

up the ball”. The technique of asking open ques-

tions is to ask some questions to the user, to ob-

tain more information. For example, when a user 

says “I played computer games”, then the coun-

selor could say “When did you play?” or “Where 

did you play?”. Finally, reflecting a feeling is a 

similar technique to paraphrasing, but it includes 

emotional comments. For example, when a user 

says “My dog died. I‟m so sad”, then the counse-

lor could say, “Oh, your dog died. You look de-

pressed.” or “You look so sad”. 

In our approach, we extract 5W1H (who, what, 

when, where, why, how) information and four 

basic emotions (happy, afraid, sad, and angry) 

from user utterances. We generate system utter-

ances using 5W1H information and basic emo-

tions. 

2 Counseling Techniques 

Counselors show empathy with clients by listen-

ing and understanding them. Clients feel com-

fortable by a counselor‟s attention. Counselors 

listen, ask questions, answer questions, and con-

centrate on clients. Attention and empathy is im-

portant for counseling. Counselors show interest 

and care about the clients‟ emotions. Our coun-

seling dialog system also focused on attending 

and empathy. 

Many counseling techniques are used in coun-

seling. Basic attending, self-expression, and mi-

cro-training skills are introduced in Theron et al. 

(2008). Basic attending and self-expression skills 

are about non-verbal behavior, such as tone of 

voice and eye contact. Micro-training skills are 

the basic verbal counseling techniques that are 

learned for counseling beginners: open and 

closed questions, minimal encouragement, para-

phrasing, reflection of feelings and summariza-

tion. 
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We chose three micro-training skills to attend 

and show empathy with clients. These skills are 

open questions, paraphrasing, and reflection of 

feelings because they are basic techniques to 

show emphasize effectively. 

3 Related Work 

The SEMAINE project aims to build a Sensitive 

Artificial Listeners (SAL) – conversational 

agents that are designed to interact with a human 

user through robust recognition and the genera-

tion of non-verbal behavior (Schröder et al., 

2008). This system detects user emotions by 

multimodal sensors (camera, microphone). A 

virtual face in this system shows facial expres-

sions based on user emotions, and it encourages 

the user to speak by reacting and asking ques-

tions. These techniques could show empathy 

with users. However, it has limited verbal skills 

because SEMAINE does not have language un-

derstanding module. In our research, our system 

follows user utterances and generates system ut-

terances based on user‟s 5W1H. 

4 Data Collection 

We generated 4,284 utterances by using fifty-

three 5W1H information sets and four basic 

emotions (Figure 1). Each utterance could be 

generated by using part of the 5W1H information 

and four emotions. 

 

Who When Where What How Why

My 

mom
Yesterday Park Key Lost

Her pocket

was punctured

Emotion

Sad

My mom lost key yesterday.

Yesterday, my mom lost key at the park.

Sadly, my mom lost key yesterday.

My mom lost key because her pocket was punctured.

Given Situation

Collected Corpus
 

Figure 1. Counseling Corpus Collecting Process 

 

We tagged each 5W1H element in each utter-

ance and the user intention for each utterance 

(Table 1). The system‟s actions were labeled by 

following counseling strategies which will be 

discussed in section 5.3. 

 

Tagged Corpus User Intention System Action

<who>My mom</who> <how>lost</how> <what>a 

key</what> <when>yesterday</when>.

Inform_5W1H Ask_Open_Question

<when>Yesterday</when>, <who>my mom</who> 

<how>lost</how> <what>a key</what> at the 

<where>park</where>.

Inform_5W1H Paraphrase

<who>My mom</who> <how>lost</how> <what>a 

key</what> <when>yesterday</when>. I‟m so sad.

Inform_5W1H_

Emotion

Reflect_Feeling

I‟m so sad. Inform_Emotion Reflect_Feeling

Thank you. Thank Welcome

Good bye. Bye Bye  
Table 1.  Corpus Tagging Examples 

 

User intentions we defined can be separated in 

two groups: „counseling‟ and „others‟. Utterances 

in „counseling‟ group include 5W1H information 

or emotional information. Utterances which do 

not including them are in „others‟ group. Greet-

ings, thanks, and farewells are included (Table 2). 

 

Counseling group Others group

Inform_5W1H,

Inform_emotion, 

Inform_5W1H_emotion, …

Thank, Bye, Greeting, Agree, 

Disagree, …

 
Table 2. Two Separated Groups of User Intentions 

5 Method 

5.1 Architecture 

Our system architecture is given in graph 2. 

When a user inputs a sentence, a natural lan-

guage understanding (NLU) module understands 

the main action (the user‟s intention) and extracts 

the 5W1H entities from the user‟s utterance. The 

emotion detection module detects the user‟s 

emotions using the emotional keyword diction-

ary. The dialog management module decides the 

system‟s action from the main action and the 

5W1H information from the trained module from 

the example dialog corpus. The natural language 

generation (NLG) module generates the system 

utterance using a system utterance template. We 

can generate the system utterance by replacing 

5W1H slots with entities. 

 

User

Natural 

Language 

Understanding

Dialog 

Manager

Natural 

Language 

Generation

Dialog 

Template

Emotion 

Detector

Output

Emotional 

Keyword

 
Figure 2. Counseling Dialog System Hierarchy 
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5.2 Natural Language Understanding 

In our approach, the NLU module understands 

the user utterance by classifying the main action 

and the 5W1H entities from the user utterance. 

To classify user intention, we used maximum 

entropy model (Ratnaparkhi, 1998) trained on a 

linguistically motivated features. We used a lexi-

cal word features for the utterance model. The 

lexical word features are lexical trigrams using 

previous, current, and next lexical words. To ex-

tract 5W1H entities, we used a conditional ran-

dom field (CRF) model (Laffery et al., 2001). 

We also used lexical word features (lexical tri-

grams) to train model. 

5.3 Dialog Management with Counseling 

Strategy 

When we extract 5W1H information or user 

emotions, the dialog management module keeps 

them in the emotion slot or in the six 5W1H slots. 

This slot information is discussed in a dialog. 

The dialog management module decides the 

system‟s action by the main action, the 5W1H 

entities, and the user‟s emotions. Dialog man-

agement follows the rules in figure 3, which is 

our dialog strategy for the counseling system. In 

figure 3, „Counseling group?‟ node finds users 

intentions included in „others group‟ (rejection or 

thanks could be included). The „User Emotion 

Detection‟ node figures out whether the user ut-

terance is to include emotional keywords or 

whether the user emotion is already known by 

the discourse. The „6 slot empty‟ node checks 

whether the user utterance includes at least one 

of the 5W1H elements or whether the 5W1H en-

tity is already known. The „6 slot full‟ node de-

cides whether the user utterance with a discourse 

has all six 5W1H entries. From this strategy, we 

can notice that we cannot reflect a user‟s feeling 

without the user‟s emotion. We cannot ask open 

questions when all of the 5W1H slots are filled. 
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Figure 3. Dialog Strategy Architecture 

5.4 Emotion Detection 

The emotion detection module decides the user‟s 

emotion with respect to the four basic emotions. 

To detect the user‟s emotions, we find emotional 

keywords in the user‟s utterances. If any emo-

tional keyword appears in a user utterance, we 

decide that the user‟s emotion which includes 

that keyword. For this approach, we made a dic-

tionary of emotional keywords for each basic 

emotion. The dictionary has approximately 15 

emotional keywords for each basic emotion (Ta-

ble 3). 

 

Emotion Keywords

Happy happy, joy, glad, pleasure, …

Sad sad, depress, grief, sorrow, …

Angry anger, rage, indignation, wrath, …

Afraid afraid, fear, terror, dread, …
 

Table 3. Emotional Keywords for Emotions 

5.5 Natural Language Generation 

The NLG module generates the system‟s utter-

ances by selecting an utterance template from the 

template database. There are various system 

templates for each system action, for the 5W1H 

slot entities, and for the user‟s emotions (Figure 

4). When the system template is chosen, we can 

generate system utterances by replacing the 

5W1H slot with a 5W1H discourse. „O‟ means 

we should have the entity, „X‟ means we do not 

have the entity, and „*‟ means we do not care 

whether we have the entity or not. 

 

Who When Where What How Why Emotion System Action

O X O O O X O Reflect Emotion

O X O O O X * Paraphrase

System Action System Template

Reflect Emotion Oh, <who> <how> <what>. You look so sad.

Paraphrase Oh, did <who> <how> <what>?

System Utterance

Oh, your mom lost a key. You look so sad.

Oh, did your mom lost a key?

Who When Where What How Why

My 

mom
Yesterday Park Key Lost

Her pocket

was punctured

Emotion

Sad

 
Figure 4. System Utterance Generation 

 

Our overall counseling dialog example is shown 

in (Table 4). 
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User My mom lost a key yesterday.

System Oh, where did you mom lost a key?

User At the park.

System Your mom lost a key at the park, right?

User Yes, that‟s right. I‟m so sad.

System You look so sad. Cheer up.

User Thank you.

System My pleasure.
 

Table 4. Counseling Dialog Example 

6 Experiment 

We measured how systems show empathy with 

users. Our baseline system is a Korean chat-

oriented dialog system (Kim et al., 2012). The 

chat-oriented dialog system shows empathy by 

understanding user utterances and making a con-

versation. In our experiment, 7 basic situations 

are given for each person. Situations are ex-

plained by 5W1H, and users generated various 

utterances using that information. Each person 

generated approximately 100 utterances during 

30 minutes and made estimates for each system. 

We recruited 16 volunteers to use our system and 

to estimate its effectiveness. Each user checked 

17 questions from 1 to 10. The questions ask us-

ers how does each system understand the user 

utterance, is it appropriate for counseling, and 

does it satisfy the users (Table 5). 

 

Question
Chat-

Oriented
Counseling

1-1. The system used counseling techniques: 

paraphrasing, open question, reflect feeling.
3.50 7.06

1-2. The system knows my emotion. 3.44 6.88

1-3. There was no break in the conversation. 2.63 6.88

1-4. The system acts like a counselor. 2.88 6.69

1-5. The system shows empathy with me. 4.69 7.31

1-6. I feel the system understands me. 2.56 6.50

2-1. The system understands what I said. 2.88 6.81

2-2. The system understands 5W1H information. 4.13 7.44

2-3. System utterances are appropriate. 2.75 6.94

2-4. System utterances have no problem. 3.50 5.50

3-1. I could speak about various situations. 4.31 6.38

3-2. I had a casual conversation. 4.75 6.88

3-3. Scenarios look expandable. 5.50 7.63

4-1. I satisfied overall conversation. 3.10 6.56

4-2. I satisfied overall counseling. 2.38 6.56

4-3. The system looks appropriate as a counselor. 2.50 6.38

4-4. I‟ll recommend the system as a counselor to my

friends.
2.31 5.38

Mean 3.40 6.69

Standard Deviation 0.96 0.59
 

Table 5. Experiment Results 

 

Questions 1-1 to 1-6 ask users how each sys-

tem is appropriate as a counselor. Counseling 

system rated 6.89 for mean. Questions 2-1 to 2-4 

are about users‟ utterances understandability. In 

these questions, counseling system rated 6.67 on 

the average. Questions 3-1 to 3-3 show how var-

ious dialogs covered. Our system got 6.96 for 

mean. Finally, questions 4-1 to 4-4 are about 

overall satisfaction. These questions rated 6.22 

for mean. Our p-value through t-test was 

3.77*10
-11

. 

Counseling system got higher score than chat-

oriented system because users felt empathy better 

with our system than baseline system. As a coun-

selor, counseling system is much better than 

chat-oriented system. Our baseline system was 

not appropriate as a counselor because it rated 

3.39 for average. However, our system scored 

over 6.5 overall. It means our system is valuable 

as a counselor.  

7 Conclusion 

In this study, we introduced counseling tech-

niques that we used to implement counseling 

dialog system. The experimental results showed 

that our system shows empathy with users. Alt-

hough the results of this study bring us a step 

closer to implementing counseling dialog system, 

the results are only valid with 5W1H information 

in Korean. Our future works are to improve our 

counseling dialog system using new NLU mod-

ule which extracts 5W1H information from more 

general utterances, with new emotion detection 

method, and with more counseling techniques. 
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Abstract

The goal of the SIMSI (Safe In-vehicle
Multimodal Speech Interaction) project is
threefold. Firstly, to integrate a dialogue
system for menu-based dialogue with a
GUI-driven in-vehicle infotainment sys-
tem. Secondly, to further improve the in-
tegrated system with respect to driver dis-
traction, thus making the system safer to
use while driving. Thirdly, to verify that
the resulting system decreases visual dis-
traction and cognitive load during interac-
tion. This demo paper describes the inte-
gration of the two existing systems, and
the test environment designed to enable
evaluation of the system.

1 Background

1.1 Driver distraction and safety
Driver distraction is one common cause of acci-
dents, and is often caused by the driver interact-
ing with technologies such as mobile phones, me-
dia players or navigation systems. The so-called
100-car study (Neale et al., 2005) revealed that
secondary task distraction is the largest cause of
driver inattention, and that the handling of wire-
less devices is the most common secondary task.
The goal of SIMSI is to design systems which en-
able safe interaction with technologies in vehicles,
by reducing the cognitive load imposed by the in-
teraction and minimizing head-down time.

1.2 The Talkamatic Dialogue Manager
Based on Larsson (2002) and later work, Talka-
matic AB has developed the Talkamatic Dialogue
Manager (TDM) with the goal of being the most
competent and usable dialogue manager on the
market, both from the perspective of the user and
from the perspective of the HMI developer. TDM
provides a general interaction model founded in

human interaction patterns, resulting in a high de-
gree of naturalness and flexibility which increases
usability. Also, TDM reduces complexity for de-
velopers and users, helping them to reach their
goals faster and at a lower cost.

A major problem with the current state-of-the-
art in-vehicle spoken dialogue systems is that they
are either too simplistic to be useful to the end
user, or alternatively that they are fairly sophisti-
cated but unmanageable for the manufacturer due
to the size and complexity of the implementation.
TDM offers sophisticated multi-modal interaction
management solutions which allow for easy modi-
fication and development, allowing interaction de-
signers to easily explore new solutions and re-
ducing overhead for new dialogue applications in
terms of code and development man-hours.

TDM deals with several interaction patterns
which are basic to human-human linguistic in-
teraction, and offers truly integrated multimodal-
ity which allows user to freely switch between
(or combine) modalities. All these solutions are
domain-independent which means that they need
not be implemented in each application. Using
Talkamatic technology, dialogue behaviour can be
altered without touching application properties,
and application properties can be updated without
touching the dialogue logic. This makes testing of
different dialogue strategies, prompts etc. consid-
erably quicker and easier than when using regular
state-machine-based dialogue systems.

In addition, as the dialogue strategy is separated
from the application logic, development time for
new dialogue applications can be significantly re-
duced. Furthermore, the developer designing the
application does not need to be a dialogue expert
as the dialogue design is built into the dialogue
manager.
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1.3 Integrated multimodality in TDM

There are reasons to believe that multi-modal in-
teraction is more efficient and less distracting than
uni-modal interaction (Oviatt et al., 2004). TDM
supports multi-modal interaction where voice out-
put and input (VUI) is combined with a traditional
menu-based GUI with graphical output and hap-
tic input. In cases where a GUI already exists,
TDM can replace the GUI-internal interaction en-
gine, thus adding speech while keeping the origi-
nal GUI design. All system output is realized both
verbally and graphically, and the user can switch
freely between uni-modal (voice or screen/keys)
and multi-modal interaction.

To facilitate the browsing of lists (a well known
interaction problem for dialogue systems), Talka-
matic has developed its Voice-Cursor technology1

(Larsson et al., 2011). It allows a user to browse
a list in a multi-modal dialogue system without
looking at a screen and without being exposed to
large chunks of readout information.

A crucial property of TDM’s integrated multi-
modality is the fact that it enables the driver of a
vehicle to carry out all interactions without ever
looking at the screen, either by speaking to the sys-
tem, by providing haptic input, or by combining
the two. We are not aware of any current mul-
timodal in-vehicle dialogue system offering this
capability. Additional information is available at
www.talkamatic.se.

1.4 Mecel Populus

While TDM offers full menu-based multimodal
interaction, the GUI itself is fairly basic and does
not match the state of the art when it comes to
graphical design. By contrast, Mecel Populus is
an commercial-grade HMI (Human Machine In-
terface) with professionally designed visual out-
put. The Mecel Populus suite is a complete tool
chain for designing, developing and deploying
user interfaces for distributed embedded systems.
It minimizes the time and cost of producing eye-
catching, full-featured HMIs.

The Mecel Populus concept has several unique
features compared to traditional HMI develop-
ment. These features, when combined, remove the
barriers that traditionally exist between the peo-
ple working with requirements, system engineer-
ing, HMI design and implementation. An HMI
is created and verified in Mecel Populus Editor

1Patent Pending

Figure 1: SIMSI system overview

without having to write any software. The HMI is
then downloaded to the target environment where
Mecel Populus Engine executes it. Mecel Popu-
lus has been designed for the automotive industry
to deliver high performance user interfaces with a
short time-to-market and to enable efficient soft-
ware life cycle management. Additional informa-
tion is available at www.mecel.se/products.

2 System integration

The goal of this part of SIMSI is to provide a
project-specific integration of TDM and the Me-
cel Populus platform. In this way, we estab-
lish a commercial-grade HMI for experiments and
demonstrations. At the same time, the integration
of TDM and Populus increases the commercial po-
tential of both platforms, since it integrates a state-
of-the-art HMI tool without voice capabilities and
a dialogue manager with limited graphical capa-
bilities.

The major problem in integrating Populus and
TDM is that both systems keep track of the cur-
rent state of the interaction and manage transitions
between states resulting from user or system ac-
tions. Hence, there is a need to keep the systems in
sync at all times. This is managed by a Transition
Queue (TQ) module which keeps a lock which can
be grabbed by either system at any time, unless
it has already been grabbed by the other system.
The systems then enter into a master-slave rela-
tion where the master is the system which owns
the lock. The master tells the slave how the in-
teraction state is to be updated, and the slave only
waits for messages from the master until the lock
has been returned to the TQ.
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Figure 2: SIMSI test environment overview

3 Test environment

The purpose of this part of the project is to conduct
ecologically valid test of the applications, and to
begin and continue an iterative development cycle
of testing - evaluation - development. We want to
find the best interaction solutions in cases where it
is not intuitively clear what is best. This involves
implementing variants of a behaviour, testing them
on naive users, collecting data from these interac-
tions, and establishing statistically significant re-
sults based on the collected data.

The test environment consists of two parts, apart
from the dialogue system: a driving simulator
(SCANeR from Octal) and an eye tracker (Smart
Eye Pro from Smarteye). In later tests we will also
include instruments for measuring cognitive load.

In our setup we have three monitors, giving the
user a wide field of view. We also have a gaming
steering wheel, including pedals, gear lever and a
driver’s seat. These are used mainly to control the
driving simulator, but there are also a number of
buttons on the steering wheel which are used to
browse the menus in the HMI and as Push-to-talk
(PTT). An Android tablet (Asus Eee Pad Trans-
former TF101) showing the HMI GUI is placed in
front of the user, trying to match the position of a
display in a car. Both TDM and Populus run on
the same desktop computer as the driving simula-
tor, and a Populus Android app runs on the tablet.
The app allows the user to select items by tapping
them, as well as scrolling in lists in normal smart
phone fashion. The eye tracker runs on a sepa-
rate desktop computer, as it requires a substantial
amount of processing power.

Figure 3: SIMSI test environment in action

Studio software that comes with the driving
simulator is used to design and run scenarios. The
scenarios govern how autonomous traffic should
behave and events, such as weather change and
the state of traffic signals. The simulator logs data
for the environment and each vehicle. Data like
lane deviation (where in the lane the vehicle is)
and how the user handles instruments, e.g. steer-
ing wheel and pedals, can be used to measure cog-
nitive load. At a later stage this kind of data can
also be used to trigger behaviour in the dialogue
system.

The eye tracker uses three cameras to track the
user’s eyes and head at 60 Hz. The cameras are
spaced to give good tracking in the middle of the
scene, where you typically look when you’re driv-
ing, and at the same time capture head movement
to the side. As we are interested in when the user is
looking at the tablet, we placed one of the cameras
specifically to improve eye tracking in this area.
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Abstract

We present two dialogue systems for lan-
guage learning which both restrict the di-
alog to a specific domain thereby pro-
moting robustness and the learning of a
given vocabulary. The systems vary in how
much they constrain the learner’s answer :
one system places no other constrain on
the learner than that provided by the re-
stricted domain and the dialog context ; the
other provides the learner with an exercise
whose solution is the expected answer.
The first system uses supervised learning
for simulating a human tutor whilst the
second one uses natural language gener-
ation techniques to produce grammar ex-
ercises which guide the learner toward the
expected answer.

1 Introduction

Work on dialog based tutors for language learn-
ing includes both chatbot systems which maintain
a free flowing dialog with the learner (Shawar and
Atwell, 2007; Jia, 2004) and form-focused dia-
log systems which restrict the learner answer e.g.,
by providing her with an answer template to be
filled in for the dialog to continue (Wilske and
Wolska, 2011). While the former encourages lan-
guage practice with a virtual tutor and requires a
good knowledge of the language, the latter focuses
on linguistic forms and usually covers a more re-
stricted lexical field thereby being more amenable
to less advanced learners.

In these notes, we describe a dialog architecture
which (i) supports both free-flowing and form-
focused man/machine dialog ; and (ii) ensures that
in both cases, dialogs are restricted to a specific
lexical field. The free-flowing dialog system uses
supervised classification techniques to predict the
system dialog move based on the learner’s input

and does not explicitely constrain the learner’s an-
swer. In contrast, the dialog system for intermedi-
ate learners provides an exercise which the learner
must solve to construct her answer.

To restrict the dialog to a specific domain and
to improve system robustness, we make use of a
finite-state automaton (FSA) describing the range
of permissible interactions within a given domain.
This FSA serves to guide the collection of human-
human interactions necessary to train the classi-
fier ; to verify and if necessary to adjust the sys-
tem’s predicted answer ; and to support the gener-
ation of the exercise provided in the form-focused
dialog engine.

2 Finite State Automaton and Domain
Representation

To support focused dialog and promote robust-
ness, we make use of the FSA depicted in Fig-
ure 2. This FSA models a generic sequence of
(System Question, Learner Answer, System Re-
action) turns instantiating 4 main question/answer
patterns and two possible system reactions.

The system question systematically formulates
a question which explicitly lists a set of possible
answers.

The learner’s answer is then classified into four
main types. It selects one of the proposed answers ;
it chooses another alternative not mentioned in
the system’s question ; it indicates that the learner
does not know the correct answer or does not un-
derstand the question ; or it meets neither of these
categories.

Finally, for each answer, the system can con-
tinue the dialogue by making a “confirmation”
which is used to reassure the learner in the free
dialogue system and to provide some feedback in
the guided dialogue system ; or just by “inform-
ing” to the learner of the correct answer before
getting into the next question.

Given a specific domain, this generic FSA is
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>S:Welcome to my house!, I’m the cat. Do you want
to play with me? || ask(ready)
>L:Ok. || answer(ready)
>S:Great! How are you doing? || ask(health)
>L: I’m doing very well, thanks!
|| answer(health, pref-option)
>S: Awesome! || confirm(health,pref-option)
>S: Come! I want to show you the kitchen!
|| inform(health)
>S:In the kitchen we prepare lunch. I prepare
soup very often. Do you prefer soup or salad?
|| ask(pref-meal)
>L:I prefer salad.
|| answer(pref-meal,pref-option)
>S:So do I! || confirm(pref-meal,pref-option)
>S:I also love cheese. || inform(pref-meal)
>S:Where do we usually keep the cheese?
|| ask(cheese where)
>L:In the fridge || answer(cheese where,pref-option)
>S:You are right || confirm(cheese where,pref-option)
>S:In the fridge || inform(cheese where)
...
>S:Thanks for this little chat! See you soon
|| quit

FIGURE 1 – Example of a dialog (translated from
French to English)

instantiated differently for each question/answer
pair making up a dialog. In particular, in the cur-
rent demonstration system, it is instantiated to
model a dialog situated in the kitchen of a virtual
world. Figure 1 shows an example dialog.

3 Situated Dialogues for language
learning

Our dialog systems for language learning are in-
tegrated in a serious game called I-FLEG (Interac-
tive French Learning Game, (Amoia et al., 2012))
in which the learner can trigger grammar exercices
and interactive dialog sessions by clicking on the
objects present in the virtual world.

IFLEG integrates the two dialog systems for
language learning mentioned above namely, a
“free answer dialog system” where the learner an-
swer is guided only by the preceding dialog ex-
changes ; and a “guided dialog system” which re-
stricts the set of permissible answers by providing
the learner with an exercise whose solution pro-
vides a possible answer given the current dialog
context.

3.1 Data collection

To provide the training data necessary to train
the free dialog system, we conducted a Wizard-
of-Oz experiment where language learners were
invited to engage in a conversation with the wiz-
ard, a French tutor. In these experiments, we fol-
lowed the methodology and used the tools for
data collection and annotation presented in (Rojas-
Barahona et al., 2012a). Given an FSA specifiying

a set of 5 questions the learner had to answer, the
wizard guided the learner through the dialog us-
ing this FSA. The resulting corpus consists of 52
dialogues and 1906 sentences.

3.2 Free answer Dialogue System
The free answer dialogue system simulates

the behavior of the wizard tutor by means of
a Logistic-Regression classifier, the FSA and
a generation-by-selection algorithm. The system
first uses the FSA to determine the next question
to be asked. Then for each question, the Logistic-
Regression classifier is used to map the learner an-
swer to a system dialog act. At this stage, the FSA
is used again, in two different ways. First, it is used
to ensure that the predicted system dialog act is
consistent with the states in the FSA. In case of a
mismatch, a valid dialog act is selected in the cur-
rent context. In particular, unpredicted “preferred
options” and “do not know” learner answers are
detected using keyword spotting methods. If the
classifier prediction conflicts with the prediction
made by key word spotting, it is ignored and the
FSA transition is prefereed.

Second, since the system has several consecu-
tive turns, and given that the classifier only pre-
dicts the next one, the FSA is used to determine
the following system dialog acts sequence. For
instance, if the predicted next system dialog act
was “confirm”, according to the FSA the follow-
ing system dialog act is “inform” and then eiher
the next question encoded in the FSA or “quit”.

Training the simulator To train the classifier,
we labeled each learner sentence with the dialog
act caracterising the next system act. The features
used for trainig included context features (namely,
the four previous system dialogue acts) and the set
of content words present in the learner turns af-
ter filtering using tf*idf (Rojas Barahona et al.,
2012b). Given the learner input and the current di-
alog context, the classifier predicts the next system
move.

Generation by Selection Given the system move
predicted by the dialog manager, the system turn
is produced by randomly selecting from the train-
ing corpus an utterance annotated with that dialog
move.

3.3 Guided dialogue system
Unlike the free answer dialogue, the guided di-

alogue strongly constrains the learner answer by
suggesting it in the form of a grammar exercise.
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FIGURE 2 – Finite-state automata that defines the different states in the dialog for each question Q X. S
defines the system, and P the learner.

In the guided dialogue system, the dialogue
paths contained in the training corpus are used to
decide on the next dialogue move. In a first step,
learner’s moves are labelled with the meaning rep-
resentation associated to them by the grammar un-
derlying the natural language generator used to
produce IFLEG grammar exercises. Given a se-
quence S/L contained in the training corpus with
S, a system turn and L the corresponding learner’s
turn, the system then constructs the exercise pro-
viding the learner’s answer using the methodology
described in (Perez-Beltrachini et al., 2012). First,
a sentence is generated from the meaning repre-
sentation of the learner answer. Next, the linguis-
tic information (syntactic tree, morpho-syntactic
information, lemmas) associated by the generator
with the generated sentence is used to build a shuf-
fle, a fill-in-the-blank or a transformation exercise.
Here is an example interaction produced by the
system :

S : Vous préférez la soupe ou le fromage ? (Do you

prefer soup or salad ?)
Please answer using the following words : { je,
adorer, le, soupe }

This dialogue setting has several benefits. The
dialogue script provides a rich context for each
generated exercise item, learners are exposed to
example communicative interactions, and the sys-
tem can provide feedback by comparing the an-
swer entered by the learner against the expected
one.

4 Sample Dialogue

In this demo, the user will be able to interact
with both dialogue systems, situated in the kitchen
of a virtual world, and where the tutor prompts
the learner with questions about meals, drinks,
and various kitchen related activities such as floor
cleaning and food preferences.
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M. Amoia, T. Brétaudière, A. Denis, C. Gardent, and

L. Perez-Beltrachini. 2012. A Serious Game for Second
Language Acquisition in a Virtual Environment. Jour-
nal on Systemics, Cybernetics and Informatics (JSCI),
10(1) :24–34.

J. Jia. 2004. The study of the application of a web-based
chatbot system on the teaching of foreign languages. In
Society for Information Technology & Teacher Educa-
tion International Conference, volume 2004, pages 1201–
1207.

L. Perez-Beltrachini, C. Gardent, and G. Kruszewski. 2012.
Generating Grammar Exercises. In NAACL-HLT 7th
Workshop on Innovative Use of NLP for Building Educa-
tional Applications, Montreal, Canada, June.

L. M. Rojas-Barahona, A. Lorenzo, and C. Gardent. 2012a.
Building and exploiting a corpus of dialog interactions be-
tween french speaking virtual and human agents. In Pro-
ceedings of the 8th International Conference on Language
Resources and Evaluation.

L. M. Rojas Barahona, A. Lorenzo, and C. Gardent. 2012b.
An end-to-end evaluation of two situated dialog systems.
In Proceedings of the 13th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages 10–19,
Seoul, South Korea, July. ACL.

B. Abu Shawar and E. Atwell. 2007. Chatbots : are they
really useful ? In LDV Forum, volume 22, pages 29–49.

S. Wilske and M. Wolska. 2011. Meaning versus form in
computer-assisted task-based language learning : A case
study on the german dative. JLCL, 26(1) :23–37.

359



Proceedings of the SIGDIAL 2013 Conference, pages 360–362,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Open-Domain Information Access with Talking Robots

Kristiina Jokinen and Graham Wilcock
University of Tartu, Estonia and University of Helsinki, Finland
kjokinen@ut.ee, graham.wilcock@helsinki.fi

Abstract
The demo shows Wikipedia-based open-
domain information access dialogues with
a talking humanoid robot. The robot uses
face-tracking, nodding and gesturing to
support interaction management and the
presentation of information to the partner.

1 Introduction

The demo shows open-domain information access
dialogues with the WikiTalk system on a Nao
humanoid robot (Jokinen and Wilcock, 2012b).
An annotated video of the demo can be seen
at https://docs.google.com/file/d/
0B-D1kVqPMlKdOEcyS25nMWpjUG8.

The WikiTalk system can be viewed from two
complementary perspectives: as a spoken dialogue
system or as a question-answering (QA) system.

Viewed as a spoken dialogue system, WikiTalk
supports constructive interaction for talking about
interesting topics (Jokinen and Wilcock, 2012a).
However, using Wikipedia as its knowledge source
instead of a finite database means that WikiTalk
is completely open-domain. This is a significant
breakthrough compared with traditional closed-
domain spoken dialogue systems.

Viewed as a QA system, WikiTalk provides
Wikipedia-based open-domain knowledge access
(Wilcock, 2012). However, by using sentences
and paragraphs from Wikipedia, the system is able
to talk about the topic in a conversational manner,
thus differing from a traditional QA system.

The Nao robot prototype version of WikiTalk
was implemented by Csapo et al. (2012) during
eNTERFACE 2012, the 8th International Summer
Workshop on Multimodal Interfaces at Supélec in
Metz (Figure 1). The humanoid robot uses face-
tracking, nodding and gesturing to support interac-
tion management and the presentation of new in-
formation to the partner (Han et al., 2012; Meena
et al., 2012).

Figure 1: Working with the Nao humanoid robot.

2 Outline of the system

At the heart of the system (Figure 2) is a conver-
sation manager based on a finite state machine.
However, the states are not based on the domain-
specific tasks and utterences for a fixed domain.
In WikiTalk, the states function at a more abstract
dialogue management level dealing for example
with topic initiation, topic continuation, and topic
switching. Further details of this approach are
given by Wilcock (2012).

The finite state machine also has extensions that
store various parameters of past interactions and
influence the functionality of the state machine.
The conversation manager communicates with a
Wikipedia manager to obtain information from
Wikipedia, and a Nao manager to map its states
onto the actions of the robot.

To enable the robot to react to various events
while getting information from Wikipedia, the
Nao manager registers events and alerts the appro-
priate components of the system when anything of
interest occurs either on the inside or the outside
of the system. Figure 2 shows three examples of
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Figure 2: The system architecture, from (Csapo et al., 2012).

event handling within the Nao Talk module which
drives the robot’s speech functionality. The func-
tions isSaying(), startOfParagraph(),
and endOfSentence() are called periodically
by the Nao manager, and return True whenever the
robot is talking, reaches the start of a paragraph, or
finishes a sentence, respectively. Whenever such
events occur, the Nao manager can trigger appro-
priate reactions, for example, through the Gestures
module which drives the robot’s nodding and ges-
turing functionalities.

The history of the user’s interactions is stored in
a statistics dictionary in the conversation manager.
Using a set of simple heuristics, it is possible to
create more interesting dialogues by ensuring that
the robot does not give the same instructions to the
user in the same way over and over again, and by
varying the level of sophistication in terms of the
functionalities that are introduced to the user by
the robot. For example, at first the robot gives sim-
ple instructions, allowing the user to practice and
understand the basic functionalities of the system.
For more advanced users, the system suggests new
kinds of use cases which may not have previously
been known to the user.

A corpus of videos of user trials with the system
(Figure 3) was collected at the eNTERFACE 2012
workshop. The user trials and user questionnaires
were used for system evaluation, which is reported
by Anastasiou et al. (2013).

3 Outline of the demo

The demo is deliberately live, unscripted, and im-
provised. However, it typically starts with the
robot in a sitting position. The robot stands up and
greets the user, then asks what topic the user wants
to hear about. The robot suggests some of its own
favourite topics.

When the user selects a topic, the system gets
information about the topic from Wikipedia and
divides it into chunks suitable for spoken dialogue
contributions. The system then manages the spo-
ken presentation of the chunks according to the
user’s reactions. If the user asks for more, or oth-
erwise shows interest in the topic, the system con-
tinues with the next chunk.

Crucially, the system makes smooth topic shifts
by following the hyperlinks in Wikipedia when-
ever the user repeats the name of one of the
links. For example, if the system is talking about
Shakespeare and says ”Shakespeare was born in
Stratford-upon-Avon”, the user can say ”Stratford-
upon-Avon?” and the system smoothly switches
topics and starts talking about Stratford-upon-
Avon using the Wikipedia information about this
new topic.

The user can ask for any chunk to be repeated,
or go back to the previous chunk. The user can
also interrupt the current chunk and ask to skip to
another chunk on the same topic.
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Figure 3: Testing spoken interaction with Nao.

The user can interrupt the robot at any time by
touching the top of the robot’s head. The robot
stops talking and explicitly acknowledges the in-
terruption by saying ”Oh sorry!” and waiting for
the user’s input. The user can then tell it to con-
tinue, to go back, to skip to another chunk, or to
switch to a new topic.

The dialogue is open-domain and typically
wanders freely from topic to topic by smooth topic
shifts following the links in Wikipedia. However,
if the user wants to jump to an entirely unrelated
topic, an awkward topic shift can be made by say-
ing the command ”Alphabet!” and spelling the
first few letters of the new topic using a spelling
alphabet (Alpha, Bravo, Charlie, etc.).

As well as talking about topics selected by the
user, the robot can take the initiative by suggesting
potentially interesting new topics. One way to do
this is by using the ”Did you know ...?” sections
from Wikipedia that are new every day.

The demo ends when the user tells the robot to
stop. The robot thanks the user and sits down.

4 Previous demos

The system was first demonstrated in July 2012 at
the 8th International Summer Workshop on Multi-
modal Interfaces (eNTERFACE 2012) in Metz.

An annotated video of this demo can be seen
at https://docs.google.com/file/d/
0B-D1kVqPMlKdOEcyS25nMWpjUG8.

The system was also demonstrated at the 3rd
IEEE International Conference on Cognitive Info-
communications (CogInfoCom 2012).
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Abstract

We present a Wizard of Oz (WoZ) envi-
ronment that was designed to build an arti-
ficial embodied intelligent tutoring system
(ITS) that is capable of empathic conver-
sations with school pupils aged between
10-13. We describe the components and
the data that we plan to collect using the
environment.

1 Introduction

We present a Wizard of Oz (WoZ) environment
that was built as a part of the EC FP7 EMOTE
project1. The objective of this work is to col-
lect multimodal interaction data to build an arti-
ficial embodied intelligent tutoring system (ITS)
that is capable of empathic conversations with
school pupils aged between 10-13. Specifically,
the EMOTE (EMbOdied-perceptive Tutors for
Empathy-based learning) project aims to design
and evaluate a new generation of robotic tutors
that have perceptive and expressive capabilities
to engage in empathic interactions with learners
in schools and home environments. The project
will carry out interdisciplinary research on affect
recognition, learner models, adaptive behaviour
and embodiment for human-robot interaction in
learning environments, grounded in psychologi-
cal theories of emotion in social interaction and
pedagogical models for learning facilitation. An
overview of the project can be found in (Desh-
mukh et al., 2013).

Wizard of Oz is an effective technique in Hu-
man Computer Interaction (HCI) studies where
an interactive agent, which is not yet fully au-
tonomous, is remotely controlled by a human wiz-

1http://emote-project.eu/

ard. However the participants who are interacting
with the agent are not told that the agent is being
remotely controlled. The wizard may be tasked
to control one or many parts of the agent such
as speech recognition and understanding, affect
recognition, dialogue management, utterance and
gesture generation and so on. Studies have shown
that users “go easy” on computers during inter-
action and therefore interaction with “wizarded”
system are at the level of complexity that can be
learned and emulated (Pearson et al., 2006).

The WoZ environment presented in this paper
will be used to collect data to inform the algo-
rithms for affect recognition and empathic dia-
logue management. The WoZ environment is de-
signed to collect data on how human tutors aided
with a robotic interface adapt to learners’ emotions
and cognitive states in tutorial tasks. In this study,
the wizard plays the same role as that of affect
recognition and dialogue management modules in
the actual final system.

2 Previous work

Wizard-of-Oz (WoZ) frameworks have been used
in several studies since (Fraser and Gilbert, 1991)
in order to collect human-computer dialogue data
to help design dialogue systems. WoZ systems
have been used to collect data to learn (e.g.
(Strauss et al., 2007)) and evaluate dialogue man-
agement policies (e.g. (Cuayáhuitl and Kruijff-
Korbayova, 2012)).

3 The EMOTE Wizard of Oz
environment

The WoZ environment consists of the wizard’s
desk, the interactive touch table, sensors, and the
robotic embodiment as shown in Figure 1. The
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wizard will be seated in a different room away
from the learner.

Figure 1: Wizard of Oz environment

3.1 Wizard’s desk
The wizard’s desk consists of two display screens.
The touch table display at the user end will be mir-
rored on to one of the displays at the wizard’s desk
using which the wizard can observe the learner’s
activities related to the educational application.
Another display will contain the Wizard Interface,
a software application that allows the wizard to in-
teract with the learner (see Figure 2). The Wiz-
ard Interface consists of four panels: task control,
information, learner response and operations. In
the task control panel, the wizard will be
able to choose a task plan for the learner and ac-
cess the tool and curriculum scripts (XML file).
The tool script contains information on how to use
the tools that are at the disposal of the learner. For
instance, to create a marker on the map, one has
to click on the appropriate tool and click on the
map and so on. The curriculum script contains
information on the skills that the learner needs
to exercise or develop during his interaction with
the system. For instance, in order to identify the
right direction, the system will present the mneu-
monic phrase “Naughty Elephants Squirt Water”
in various forms such as a hint, question, pump-
ing move, etc. to provide support to the learner.
The information panel contains the video
feed from two cameras (see Section 3.4). This
will allow the wizard to determine the affective
state of the learner. The learner’s response to the
agent’s utterances (such as answering questions in
the curriculum scripts) will also be displayed in
the learner response panel. Finally, the
operations panel provides options for the
Wizard to respond to the learner based on the tools

and curriculum scripts. These responses are ei-
ther customised or predefined. The customised
responses facilitate the wizard to execute robot
movements on lower level (individual head, arm
movements) and predefined responses contain a
list for combined predefined speech, sound and be-
haviours.

Figure 2: Wizard’s Interface

3.2 Touch table

The interactive touch table is a 55 inch Multitac-
tion table capable of sensing multiple touch events
simultaneously. The educational application is
displayed on the table surface. A map based appli-
cation has been developed to teach learners basic
and advanced map reading skills (see Figure 3).
The touch interface allows the learner to use touch
to click, drag and zoom the map. The application
has two panels of GUI objects such as buttons and
text boxes namely, the tools panel and the interac-
tion panel. The tools panel consists of tools that
the learner can use to manipulate the map, while
using the interaction panel the learner can interact
with the tutor. Some of the tools that are currently
available are to get grid references for a position
on the map, dropping markers on the map, change
map types, etc. For instance, if the tutor asks a
yes/no question, the learner can respond by press-
ing the yes or the no button. The learner can an-
swer the tutor’s questions by typing into the text
box in the interaction panel.
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Figure 3: Map reading skills application

3.3 Robotic embodiment

The robotic embodiment is a Nao robot (torso ver-
sion) that sits on the side of the touch table. It is
capable of head, arm and body gestures in addi-
tion to synthesised speech. The robot receives the
text and gestures selected by the wizard through
the Wizard Interface. Tutor’s utterances will be
synthesized into speech using the in-built text to
speech (TTS) engine while the gestures are re-
alised using appropriate head, arm and body mo-
tions. To increase naturalness, the robot will also
have idle movement in-between wizard selections.

3.4 Sensors

The environment has an array of sensors such as
two video cameras and a Kinect sensor. A Kinect
sensor and a video camera are placed in front the
learner. Another camera is placed in front of the
robot (as shown in Figure 1).

4 Data collection

In this section, we discuss the data that we aim
to collect using the WoZ environment. We intend
to collect these data during experiments where hu-
man tutors play the wizard’s role and the learners
from in the 10-13 year age-range will play the role
of learners. The task for the learner is to carry
out an expedition using the map application that
he or she is provided with. In order to solve the
steps of the expedition, the learner will have to
exercise his/her map reading skills. Map reading
skills such as compass directions, contour lines,
grid lines, etc. will have to be exercised using
appropriate map tools provided in the application.
The tutor’s role is to observe the learner responses
(both verbal and physical) and respond to them ap-
propriately using the interaction panel in the Wiz-
ard Interface application.

Simultaneous video feeds from two cameras
and the Kinect sensor will be recorded during the
tutor-learner interaction. These data will be fur-
ther used for affect recognition tasks based on
learner’s head, arm and body gestures. The inter-
action between the tutor and the learner in terms
of tutor dialogue actions, utterances and learner
responses in terms of button presses will also be
logged.

5 Demo

We propose to demonstrate the WoZ environment
set up using two laptops: learner desktop with the
map application and another with the wizard’s in-
terface. The learner desktop will also display a
simulated Nao robot. We will also exhibit the logs
that we collect from the pilot studies with a Geogr-
phy teacher acting as the wizard tutor and school
pupils as tutees.
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Abstract 

The demonstrator presents a test-bed for 

collecting data on human–computer dia-

logue: a fully automated dialogue system 

that can perform Map Task with a user. 

In a first step, we have used the test-bed 

to collect human–computer Map Task di-

alogue data, and have trained various da-

ta-driven models on it for detecting feed-

back response locations in the user’s 

speech. One of the trained models has 

been tested in user interactions and was 

perceived better in comparison to a sys-

tem using a random model. The demon-

strator will exhibit three versions of the 

Map Task dialogue system—each using a 

different trained data-driven model of 

Response Location Detection.  

1 Introduction 

A common procedure in modelling human-like 

dialogue systems is to collect data on human–

human dialogue and then train models that pre-

dict the behaviour of the interlocutors. However, 

we think that it might be problematic to use a 

corpus of human–human dialogue as a basis for 

implementing dialogue system components. One 

problem is the interactive nature of the task. If 

the system produces a slightly different behav-

iour than what was found in the original data, 

this would likely result in a different behaviour 

in the interlocutor. Another problem is that hu-

mans are likely to behave differently towards a 

system as compared to another human (even if a 

more human-like behaviour is being modelled). 

Yet another problem is that much dialogue be-

haviour is optional and therefore makes the actu-

al behaviour hard to use as a gold standard. 

 

Figure 1: The Map Task system user interface 

To improve current systems, we need both a 

better understanding of the phenomena of human 

interaction, better computational models and bet-

ter data to build these models. An alternative ap-

proach that has proven to be useful is to train 

models on human–computer dialogue data col-

lected through Wizard-of-Oz studies (Dahlbäck 

et al., 1993). However, the methodology might 

be hard to use when the issue under investigation 

is time-critical behaviour such as back-channels.  

A third alternative is to use a boot-strapping 

procedure, where more and more advanced (or 

human-like) versions of the system are built iter-

atively. After each iteration, users interact with 

the system and data is collected. This data is then 

used to train/improve data-driven models of in-

teraction in the system. A problem here, howev-

er, is how to build the first iteration of the sys-

tem, since many components, e.g., Automatic 

Speech Recognition (ASR), need some data to be 

useful at all.  

In this demonstration we present a test-bed for 

collecting data on time-critical human–computer 

dialogue phenomena: a fully automated dialogue 

system that can perform the Map Task with a 
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user (Skantze, 2012). In a first step, following 

the boot-strapping procedure, we collected hu-

man–computer Map Task dialogue data using 

this test-bed and then trained various data-driven 

models on this data for detecting feedback re-

sponse locations in user’s speech. A trained 

model has been implemented and evaluated in 

interaction with users—in the same environment 

used for collecting the data (Meena et al., in 

press). The demonstrator will exhibit three ver-

sions of the Map Task dialogue system—each 

using a different trained data-driven model of 

Response Location Detection (RLD). 

2 The Map Task Dialogue System 

Map Task is a common experimental paradigm 

for studying human–human dialogue. In our set-

up, the user (the information giver) is given the 

task of describing a route on a map to the system 

(the information follower). The choice of Map 

Task is motivated partly because the system may 

allow the user to keep the initiative during the 

whole dialogue, and thus only produce responses 

that are not intended to take the initiative, most 

often some kind of feedback. Thus, the system 

might be described as an attentive listener.  

The basic components of the system can be 

seen in Figure 2. Dashed lines indicate compo-

nents that were not part of the first iteration of 

the system (used for data collection), but which 

have been used in the second iteration of the sys-

tem that uses a model trained on the collected 

data. To make the human–computer Map Task 

dialogue feasible without any full speech under-

standing we have implemented a trick: the user is 

presented with a map on a screen (see Figure 1) 

and instructed to move the mouse cursor along 

the route as it is being described. The user is told 

that this is for logging purposes, but the real rea-

son for this is that the system tracks the mouse 

position and thus knows what the user is current-

ly talking about. It is thereby possible to produce 

a coherent system behaviour without any speech 

recognition at all, only basic speech detection. 

This often results in a very realistic interaction
1
.  

The system uses a simple energy-based speech 

detector to chunk the user’s speech into inter-

pausal units (IPUs), that is, periods of speech that 

contain no sequence of silence longer than 200 

ms. Such a short threshold allows the system to 

give backchannels (seemingly) while the user is 

                                                 
1
 An example video can be seen at 

http://www.youtube.com/watch?v=MzL-B9pVbOE. 

speaking or take the turn with barely any gap. 

The end of an IPU is a candidate for the RLD 

model to identify whether it is a Response Loca-

tion (RL). 

 

Prosodic 
analysis

Dialogue 
manager

Map
Window

Speech 
detector

Response
Location
Detector

Contextual
features

Prosodic
features

IPUs Response
Location

Mouse movements

Speech 
synthesizer

Response

ASR Syntactic features  

Figure 2: The basic components of the system. 

Each time the RLD detects a RL, the dialogue 

manager produces a response, depending on the 

current state of the dialogue and the position of 

the mouse cursor. Table 1 shows an example 

Map Task dialogue illustrating the different types 

of responses the system could produce. The dia-

logue manager always starts with an Introduction 

and ends with an Ending, once the mouse cursor 

has reached the destination. Between these, it 

selects from the other responses (Reprise Frag-

ment, Clarification and Backchannel), partly 

randomly, but also depending on the length of 

the last user turn (longer turn triggers Repeat or 

Restart) and the current mouse location (e.g., a 

Guess if mouse hovers over the same area for 

some time). 

Table 1: An example Map Task dialogue between a 

user (U) and system (S) [User utterances with ASR 

error(s) are indicated with a *]  

S Introduction Could you help me to find my way to 
the bus stop? 

U  start from the department store 

S Backchannel yeah 

U  and eh 

S Guess Should I start by going west? 

U  yeah do that 

U  then you will get to a meadow and 
when you get to the meadow 
*you get to a meadow until you get 
to the meadow 

S Repeat Eh, could you repeat that? 

U  you go straight and you see a mead-
ow on your right side 

S Clarification  
Request  

A green field? 

U  ehm yeah a field 

S Backchannel mhm 

U  pass the meadow and turn right so 
you are going north  
*the meadow and turn right to your 
going north 

S Backchannel okay 

U  you get to a restaurant 

367



S Reprise 
Fragment 

A restaurant 

U  then you have to turn right and that 
will take you to 
*you have turned right and at will 
take you turn 

S Restart Eh, I think I lost you at the restau-
rant, could you take that again? 

…   

U  at the junction go south and then 
you will get to the bus stop 

S Ending Okay, thanks a lot. 

3 Data-driven models of RLD 

Using the system described in the previous 

section a corpus of 50 human–computer Map 

Task dialogue was collected and used to train a 

data-driven model of RLD. Since we didn’t have 

a sophisticated model of RLD during the first 

iteration a naïve model was used. This model 

would wait for a random period between 0 and 

800 ms after an IPU ended. If no new IPUs were 

initiated during this period, a RL was detected. 

Each IPU in the corpus was then manually la-

belled as either Hold (a response would be inap-

propriate) or Respond (a response is expected) 

type. On this data various models were trained 

on online extractable features—covering syntax, 

context and prosody. Table 2 illustrates the per-

formance of the various models. Going a step 

further, model #6 was deployed in the Map Task 

dialogue system (with an ASR component) and 

evaluated in user interactions. The result sug-

gests that the trained model provide for smooth 

turn-transitions in contrast to the Random model 

(Meena et al., in press). 

Table 2: Performance of various models of RLD 

[NB: Naïve Bayes; SVM: Support Vector Machine; 

Models with * will be exhibited in the demonstration] 

# RLD model % accuracy (on ASR results) 

1* Random 50.79% majority class baseline 

2 Prosody 64.5% (SVM learner) 

3 Context 64.8% (SVM learner) 

4* 
Prosody 
+ Context 

69.1% (SVM learner) 

5 Syntax 81.1% (NB learner) 

6* 
Syntax 
+ Prosody  
+ Context 

82.0 % (NB learner) 

4 Future applications 

The Map Task test-bed presented here has the 

potential for modelling other human-like conver-

sational behaviour in dialogue systems: 

Clarification strategies: by deploying explicit 

(did you mean turn right?) and implicit (a reprise 

such as turn right) or elliptical (‘right?’) clarifi-

cation forms in the grounding process one could 

investigate the efficiency and effectively of these 

human-like clarification strategies.  

User utterance completion: It has been sug-

gested that completion of user utterances by a 

dialogue system would result in human-like con-

versational interactions. However, completing 

user’s utterance at every opportunity may not be 

the best strategy (DeVault et al., 2009). The pre-

sented system could be used to explore when it is 

appropriate to do so. We have observed in our 

data that the system dialogue acts Guess (cf. Ta-

ble 1) and Reprise often helped the dialogue pro-

ceed further – by completing user utterances – 

when the user had difficulty describing a land-

mark on a route. 

Visual cues: the system could be integrated in 

a robotic head, such as Furhat (Al Moubayed et 

al., 2013), and visual cues from the user could be 

used for improving the current model of RLD. 

This could be used further to explore the use of 

extra-linguistic system behaviours, such as head 

nods and facial gestures, as feedback responses. 
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Abstract

We demonstrate a robotic agent in a 3D
virtual environment that understands hu-
man navigational instructions. Such an
agent needs to select actions based on not
only instructions but also situations. It
is also expected to immediately react to
the instructions. Our agent incrementally
understands spoken instructions and im-
mediately controls a mobile robot based
on the incremental understanding results
and situation information such as the lo-
cations of obstacles and moving history. It
can be used as an experimental system for
collecting human-robot interactions in dy-
namically changing situations.

1 Introduction

Movable robots are ones that can execute tasks
by moving around. If such robots can understand
spoken language navigational instructions, they
will become more useful and will be widely used.
However, spoken language instructions are some-
times ambiguous in that their meanings differ de-
pending on the situations such as robot and obsta-
cle locations, so it is not always easy to make them
understand spoken language instructions. More-
over, when they receive instructions while they are
moving and they understand instructions only af-
ter they finish, accurate understanding is not easy
since the situation may change during the instruc-
tion utterances.

Although there have been several pieces of
work on robots that receive linguistic navigational
instructions (Marge and Rudnicky, 2010; Tellex et
al., 2011), they try to understand instructions be-
fore moving and they do not deal with instructions
when situations dynamically change.

We will demonstrate a 3D virtual robotic system
that understands spoken language navigational in-

structions in a situation-dependent way. It incre-
mentally understands instructions so that it can un-
derstand them based on the situation at that point
in time when the instructions are made.

2 A Mobile Robot in a 3D Virtual
Environment

We use a robotic system that works in a virtual
environment built on top of SIROS (Raux, 2010),
which was originally developed for collecting di-
alogues between two participants who are engag-
ing in an online video game. As an example, a
convenience store environment was developed and
a corpus of interaction was collected (Raux and
Nakano, 2010). One of the participants, the oper-
ator, controls a (simulated) humanoid robot whose
role is to answer all customer requests. The other
participant plays the role of a remote manager who
sees the whole store but can only interact with
the operator through speech. The operator has the
robot view (whose field of view and depth are lim-
ited to simulate a robot’s vision) and the manager
has a birds-eye view of the store (Figure 1). Cus-
tomers randomly visit the store and make requests
at various locations. The manager guides the op-
erator towards customers needing attention. The
operator then answers the customer’s requests and
gets points for each satisfied request.

Using the virtual environment described above,
we have developed a system that operates the robot
according to the human manager’s instructions.
Currently we deal with only navigational instruc-
tions for moving the robot to a customer.

Figure 2 depicts the architecture for our system.
We use Sphinx-4 (Lamere et al., 2003) for speech
recognition. Its acoustic model is trained on the
Wall Street Journal Corpus and its trigram lan-
guage model was trained on 1,616 sentences in the
human-human dialogue corpus described above.
Its vocabulary size is 275 words. We use Festival
(Black et al., 2001) for speech synthesis.
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Figure 1: The manager’s view of the convenience
store.
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Figure 2: System architecture.

We use HRIME (HRI Intelligence Platform
based on Multiple Experts) (Nakano et al., 2008)
for dialogue and behavior control. In an HRIME
application, experts, which are modules dedicated
to specific tasks, are activated at appropriate times
and perform tasks. The navigation expert is ac-
tivated when the system receives a navigational
instruction. There are seven semantic categories
of instructions; they areturn-right, turn-left, go-
forward, go-back, repeat-the-previous-action, do-
the-opposite-action-of-the-previous-one, andstop.
Utterances that do not fall into any of these are ig-
nored. We assume that there are rules that match
linguistic patterns and those semantic categories.
For example, “right” corresponds toturn-right,
and “more” corresponds torepeat-the-previous-
action. The navigation expert sends the SIROS
server navigation commands based on the rec-
ognized semantic categories. Those commands
move the robot in the same way as a human op-

erator operates the robot using the keyboard, and
the results are shown on the display the manager
is watching. When the robot starts moving and it
cannot move because of an obstacle, it reports it to
the manager by sending its utterance to the speech
synthesizer.

When the robot has approached a customer who
is requesting help, the task is automatically per-
formed by the task execution expert.

The global context in the dialogue and behavior
controller stores information on the environment
which is obtained from the SIROS server, and it
can be used by the experts. As in the same way in
the human-human interaction, it holds information
only on customers and obstacles close to the robot
so that restricted robot vision can be simulated.

3 Situated Incremental Understanding

Sometimes manager utterances last without pauses
like ”right, right, more right, stop”, and the sit-
uation changes during the utterances because the
robot and the customers can move. So our sys-
tem employs incremental speech recognition and
moves the robot if a navigational instruction pat-
tern is found in the incremental output. To obtain
incremental speech recognition outputs, we em-
ployed InproTK (Baumann et al., 2010), which is
an extension to Sphinx-4. It enables the system
to receive tentative results every 10ms, which is a
hypothesis for the interval from the beginning of
speech to the point in time.

However, since incremental outputs are some-
times unstable and the instructions are ambiguous
in that the amount of movement is not specified,
not only incremental speech recognition outputs
but also obstacle locations and moving history is
used to determine the navigation commands.

In our system, the robot navigation expert re-
ceives incremental recognition results and if it
finds a navigational instruction pattern, it consults
the situation information in the global context,
and issues a navigation command based on sev-
eral situation-dependent understanding rules that
are manually written. Below are examples.

• If there is an obstacle in the direction that the
recognized instruction indicates, ignore the
recognized instruction. For example, when
“go forward” is recognized but there is an ob-
stacle ahead, it is guessed that the recognition
result was an error.
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Turn left Turn to the left Go straight

I’m turning left I’m turning left I’m going forward
9.95 11.135.873.41 4.39 4.77

9.80 12.139.132.43 3.12 4.32

3.45 7.54 16.159.81

Initial position Turn to the left Make the orientation parallel 
to an obstacle Go forward

Left turn Going forward

Manager’s
utterance

Robot’s
utterance
Robot’s
action

Go straight
3.46 12.13

14.0912.93
I’m going forward

Robot
orientation

Figure 3: Interaction example.

• When rotating, adjust the degree of rotation
so that the resulting orientation becomes par-
allel to obstacles such as a display shelf. This
enables the robot to smoothly go down the
aisles.

Figure 3 shows an example interaction. In the
demonstration, we will show how the robot moves
according to the spoken instructions by a human
looking at the manager display. We will compare
our system with its non-incremental version and a
version that does not use situation-dependent un-
derstanding rules to show how incremental situ-
ated understanding is effective.

4 Future Work

We are using this system for collecting a corpus
of human-robot interaction in dynamically chang-
ing situations so that we can analyze how hu-
mans make utterances in such situations. Fu-
ture work includes to make the system understand
more complicated utterances such as “turn a lit-
tle bit to the left”. We are also planning to work
on automatically learning the situation-dependent
action selection rules from such a corpus (Vogel
and Jurafsky, 2010) to navigate the robot more
smoothly.
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Abstract 

We present an online system that provides a 
complete web-based sandbox for creating, 
testing and publishing embodied conversation-
al agents. The tool, called Roundtable, em-
powers many different types of authors and 
varying team sizes to create flexible interac-
tions by automating many editing workflows 
while limiting complexity and hiding architec-
tural concerns. Finished characters can be pub-
lished directly to web servers, enabling highly 
interactive applications.  

1 Introduction 

To support the creation of a virtual guide system 
called SimCoach (Rizzo et al, 2011) designed to 
help military service personnel and their families 
understand behavioral healthcare issues and learn 
about support resources, a core virtual human 
architecture that included a new dialogue man-
agement approach was developed (Morbini et al., 
2012b). SimCoach is an embodied, conversa-
tional virtual human guide delivered via the web 
and is supported by a flexible information state 
dialogue manager called FLoReS designed to 
support mixed initiative dialogue with conversa-
tional systems. Morbini et al. (2012a) provide a 
detailed description of the dialogue manager. 

Although FLoReS supports a wide variety of 
virtual human character behaviors, these must be 
specified in dialogue policies that must be au-
thored manually. Initially, authoring for this dia-
logue manager required coding of policies using 
a custom programming language. Therefore sig-
nificant training for content authors was neces-
sary, as well as substantial support from dialogue 

system developers in managing resources such as 
training data for the language understanding sys-
tem. To improve the accessibility of the system 
to non-technical subject matter experts and other 
creative staff, it became clear that additional 
tools were necessary. In this demonstration, we 
present Roundtable: a web-based authoring envi-
ronment for virtual human characters that is de-
signed for use by subject matter experts who are 
qualified for content authoring in targeted do-
mains, but who may not possess technical skills 
in programming or experience in dialogue sys-
tem design.  

2 Supporting rapid authoring of dia-
logue agents for the web 

Roundtable is a complete web-based authoring 
system enabling the end-to-end creation, valida-
tion, testing and web publishing of virtual human 
characters using the SimCoach virtual human 
architecture. The system provides features that 
empower many types of authors, team sizes and 
makeups. The system allows an author to select 
from a set of preconfigured 3D character models, 
model the dialogue policy through behavior tem-
plates and more direct subdialogue editing, train 
and test the natural language understanding com-
ponent, render animation performances associat-
ed with character behaviors and utterances, and 
test both text-based and fully animated interac-
tions. Finally, the complete character dataset can 
be exported and deployed to a live, highly avail-
able server environment, where interaction data 
can be monitored and periodically collected for 
analysis and refinement, all from within the same 
browser environment (Figure 1). The entire sys-
tem, from authoring to end-user interaction with 
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the virtual human character, is web-based and 
requires only a current web browser for content 
authors and end users.  

 
(a)

 
(b)

  
(c)

  
(d)

  
Figure 1:  Selected modules from the Roundtable 
character authoring system (a) character project 
browser; (b) dialogue policy editor; (c) training 
data manager (d) action and animation asset man-
ager 

At the core of the authoring application is an 
object-oriented information model and set of 
management systems that span the following 
roles: 

• Dialogue content management, respon-
sible for persistence, search, validation 
and retrieval operations of all dialogue el-
ements including subdialogue networks; 
information state variables and effects; 
goals and effects; and dialogue action an-
notations that provide the mapping to the 
action database. 

• Training data management, concerned 
with managing training items for a data-
driven natural language understanding 
module, as well as providing support for 
running regressions when updating the 
training set.   

• Action management, provides data op-
erations for managing potentially large 
sets of virtual human performance-related 
assets, including utterance text, speech au-
dio when not system-generated, annotated 
nonverbal behavior schedules, as well as 
non-performance actions which include 
web-hosted videos, digested web articles, 
or any arbitrary HTML effect. 

• Deployment management, enabling 
rapid deployment of locally tested charac-
ters to highly available web servers as well 
as review and data warehousing functions 
for both analytic and refinement purposes. 

The information model is implemented in a re-
lational database that fully specifies, relates and 
allows inquiry and validation of authored infor-
mation. Additionally, a complete web application 
programming interface (API) powers the 
Roundtable application, providing a transactional 
framework for data operations as well as user 
privilege enforcement, but which also allows 
application expansion. 

The information model also serves to decouple 
the authoring representation from the data struc-
tures necessary to drive dialogue behavior at 
runtime. Prior to realizing an authored character 
in the FLoReS engine, project dialogue data ele-
ments are exported into the format expected by 
the runtime target, a process that we expect to 
expand in the future to support different dialogue 
managers and language understanding configura-
tions.  
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Figure 2: The interactive virtual human character 
published to the web, accessible by current brows-
ers.  

3 Demo script 

This demonstration will show how to build a 
simple conversational virtual human character 
using Roundtable, from acquiring an account 
(http://authoring.simcoach.org, free for academic 
research) to obtaining the URL for the newly 
created character, and all of the steps in between. 
The workflow to build a character is as follows: 

1. In the project module (Figure 1a) we create a 
new character by providing a unique name 
and selecting an existing 3D character mod-
el.  

2. Opening the newly created project brings up 
the interaction module (Figure 1b) where we 
choose from a list of available subdialogue 
templates that can be used for common dia-
logue behaviors (question-answer, greeting, 
etc.). The provided Greeting and Goodbye 
templates are used to define the character’s 
conversational behavior when initiating and 
ending an interaction, respectively. Invoking 
the Question-Answer template, we can 
quickly define how the character will re-
spond to a specific question or statement. 
Each template requires a name and sample 
text for any user or system utterance.  

3. Following the template-based subdialogue 
generation, we create training data for the 
natural language understanding component 
by providing possible user utterances associ-
ated with each user dialogue act in the tem-
plates used (Figure 1c).  

4. The last task is to refine system utterances, 
which are generated automatically during the 
step of policy authoring, and generate anima-
tion data. From the action module, we can 
search and inspect all system actions. For 
any system action, with a single button click, 

we can synthesize audio and render anima-
tions (Figure 1d).  

5. Finally, we navigate to the test module, 
compile our character project, and are then 
able to chat with the new character to ensure 
expected behavior. At this point, the charac-
ter is ready to be deployed, with its unique 
URL, and is immediately accessible on the 
web (Figure 2). 

4 Conclusion  

We described the Roundtable online authoring 
framework that has been designed to support 
non-expert users in rapidly creating embodied, 
conversational virtual characters of varying 
complexities.  The tool, being web-based, re-
quires zero configuration to get started and au-
thored virtual characters can be deployed to In-
ternet-facing web servers immediately, expand-
ing the reach of many dialogue-driven applica-
tions.  
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Abstract 

We present a data-driven model for de-

tecting suitable response locations in the 

user’s speech. The model has been 

trained on human–machine dialogue data 

and implemented and tested in a spoken 

dialogue system that can perform the 

Map Task with users. To our knowledge, 

this is the first example of a dialogue sys-

tem that uses automatically extracted 

syntactic, prosodic and contextual fea-

tures for online detection of response lo-

cations. A subjective evaluation of the 

dialogue system suggests that interac-

tions with a system using our trained 

model were perceived significantly better 

than those with a system using a model 

that made decisions at random. 

1 Introduction 

Traditionally, dialogue systems have rested on a 

very simple model for turn-taking, where the sys-

tem uses a fixed silence threshold to detect the 

end of the user’s utterance, after which the sys-

tem responds. However, this model does not cap-

ture human-human dialogue very accurately; 

sometimes a speaker just hesitates and no turn-

change is intended, sometimes the turn changes 

after barely any silence (Sacks et al., 1974). 

Therefore, such models can result in systems that 

interrupt the user or are perceived as unrespon-

sive. Related to the problem of turn-taking is that 

of backchannels (Yngve, 1970).  Backchannel 

feedback – short acknowledgements such as uh-

huh or mm-hm – are used by human interlocutors 

to signal continued attention to the speaker, 

without claiming the floor. If a dialogue system 

should be able to manage smooth turn-taking and 

back-channelling, it must be able to first identify 

suitable locations in the user’s speech to do so.  

Duncan (1972) found that human interlocutors 

continuously monitor several cues, such as con-

tent, syntax, intonation, paralanguage, and body 

motion, in parallel to manage turn-taking. Simi-

lar observations have been made in various other 

studies investigating the turn-taking and back-

channelling phenomena in human conversations. 

Ward (1996) has suggested that a low pitch re-

gion is a good cue that backchannel feedback is 

appropriate. On the other hand, Koiso et al. 

(1998) have argued that both syntactic and pro-

sodic features make significant contributions in 

identifying turn-taking and back-channelling rel-

evant places. Cathcart et al. (2003) have shown 

that syntax in combination with pause duration is 

a strong predictor for backchannel continuers.  

Gravano & Hirschberg (2009) observed that the 

likelihood of occurrence of a backchannel in-

creases with the number of syntactic and prosod-

ic cues conjointly displayed by the speaker. 

However, there is a general lack of studies on 

how such models could be used online in dia-

logue systems and to what extent that would im-

prove the interaction. There are two main prob-

lems in doing so. First, the data used in the stud-

ies mentioned above are from human–human 

dialogue and it is not obvious to what extent the 

models derived from such data transfers to hu-

man–machine dialogue. Second, many of the 

features used were manually extracted. This is 

especially true for the transcription of utterances, 

but several studies also rely on manually anno-

tated prosodic features.  

In this paper, we present a data-driven model 

of what we call Response Location Detection 

(RLD), which is fully online. Thus, it only relies 

375



on automatically extractable features—covering 

syntax, prosody and context. The model has been 

trained on human–machine dialogue data and has 

been implemented in a dialogue system that is in 

turn evaluated with users. The setting is that of a 

Map Task, where the user describes the route and 

the system may respond with for example 

acknowledgements and clarification requests.  

2 Background 

Two influential theories that have examined the 

turn-taking mechanism in human conversations 

are the signal-based mechanism of Duncan 

(1972) and the rule-based mechanism proposed 

by Sacks (1974). According to Duncan, “the 

turn-taking mechanism is mediated through sig-

nals composed of clear-cut behavioural cues, 

considered to be perceived as discrete”. Duncan 

identified six discrete behavioural cues that a 

speaker may use to signal the intent to yield the 

turn. These behavioural cues are: (i) any devia-

tion from the sustained intermediate pitch level; 

(ii) drawl on the final syllable of a terminal 

clause; (iii) termination of any hand gesticulation 

or the relaxation of tensed hand position—during 

a turn; (iv) a stereotyped expression with trailing 

off effect; (v) a drop in pitch and/or loudness; 

and (vi) completion of a grammatical clause. Ac-

cording to the rule-based mechanism of Sacks 

(1974) turn-taking is regulated by applying rules 

(e.g. “one party at a time”) at Transition-

Relevance Places (TRPs)—possible completion 

points of basic units of turns, in order to mini-

mize gaps and overlaps. The basic units of turns 

(or turn-constructional units) include sentential, 

clausal, phrasal, and lexical constructions. 

Duncan (1972) also suggested that speakers 

may display behavioural cues either singly or 

together, and when displayed together they may 

occur either simultaneously or in tight sequence. 

In his analysis, he found that the likelihood that a 

listener attempts to take the turn is higher when 

the cues are conjointly displayed across the vari-

ous modalities.  

While these theories have offered a function-

based account of turn-taking, another line of re-

search has delved into corpora-based techniques 

to build models for detecting turn-transition and 

feedback relevant places in speaker utterances.  

Ward (1996) suggested that a 110 millisecond 

(ms) region of low pitch is a fairly good predic-

tor for back-channel feedback in casual conver-

sational interactions. He also argued that more 

obvious factors, such as utterance end, rising in-

tonation, and specific lexical items, account for 

less than they seem to. He contended that proso-

dy alone is sometimes enough to tell you what to 

say and when to say. 

In their analysis of turn-taking and backchan-

nels based on prosodic and syntactic features, in 

Japanese Map Task dialogs, Koiso et al. (1998) 

observed that some part-of-speech (POS) fea-

tures are strong syntactic cues for turn-change, 

and some others are strongly associated with no 

turn-change. Using manually extracted prosodic 

features for their analysis, they observed that 

falling and rising F0 patterns are related to 

changes of turn, and flat, flat-fall and rise-fall 

patterns are indications of the speaker continuing 

to speak. Extending their analysis to backchan-

nels, they asserted that syntactic features, such as 

filled pauses, alone might be sufficient to dis-

criminate when back-channelling is inappropri-

ate, whereas presence of backchannels is always 

preceded by certain prosodic patterns. 

Cathcart et al. (2003) presented a shallow 

model for predicting the location of backchannel 

continuers in the HCRC Map Task Corpus 

(Anderson et al., 1991). They explored features 

such as POS, word count in the preceding speak-

er turn, and silence pause duration in their mod-

els. A model based on silence pause only insert-

ed a backchannel in every speaker pause longer 

than 900 ms and performed better than a word 

model that predicted a backchannel every sev-

enth word. A tri-gram POS model predicted that 

nouns and pronouns before a pause are the two 

most important cues for predicting backchannel 

continuers. The combination of the tri-gram POS 

model and pause duration model offered a five-

fold improvement over the others. 

Gravano & Hirschberg (2009) investigated 

whether backchannel-inviting cues differ from 

turn-yielding cues. They examined a number of 

acoustic features and lexical cues in the speaker 

utterances preceding smooth turn-changes, back-

channels, and holds. They have identified six 

measureable events that are strong predictors of a 

backchannel at the end of an inter-pausal unit: (i) 

a final rising intonation; (ii) a higher intensity 

level; (iii) a higher pitch level; (iv) a final POS 

bi-gram equal to ‘DT NN’, ‘JJ NN’, or ‘NN 

NN’; (v) lower values of noise-to-harmonic rati-

os; and (vi) a longer IPU duration. They also ob-

served that the likelihood of a backchannel in-

creases in quadratic fashion with the number of 

cues conjointly displayed by the speaker. 

When it comes to using these features for 

making turn-taking decisions in dialogue sys-
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tems, there is however, very little related work. 

One notable exception is Raux & Eskenazi 

(2008) who presented an algorithm for dynami-

cally setting endpointing silence thresholds based 

on features from discourse, semantics, prosody, 

timing, and speaker characteristics. The model 

was also applied and evaluated in the Let’s Go 

dialogue system for bus timetable information. 

However, that model only predicted the end-

pointing threshold based on the previous interac-

tion up to the last system utterance, it did not 

base the decision on the current user utterance to 

which the system response is to be made. 

In this paper, we train a model for online Re-

sponse Location Detection that makes a decision 

whether to respond at every point where a very 

short silence (200 ms) is detected. The model is 

trained on human–machine dialogue data taken 

from a first set of interactions with a system that 

used a very naïve policy for Response Location 

Detection. The trained model is then applied to 

the same system, which has allowed us to evalu-

ate the model online in interaction with users.  

3 A Map Task dialogue system 

In a previous study, we presented a fully auto-

mated spoken dialogue system that can perform 

the Map Task with a user (Skantze, 2012). Map 

Task is a common experimental paradigm for 

studying human-human dialogue, where one sub-

ject (the information giver) is given the task of 

describing a route on a map to another subject 

(the information follower). In our case, the user 

acts as the giver and the system as the follower. 

The choice of Map Task is motivated partly be-

cause the system may allow the user to keep the 

initiative during the whole dialogue, and thus 

only produce responses that are not intended to 

take the initiative, most often some kind of feed-

back. Thus, the system might be described as an 

attentive listener.  

Implementing a Map Task dialogue system 

with full speech understanding would indeed be 

a challenging task, given the state-of-the-art in 

automatic recognition of conversational speech. 

In order to make the task feasible, we have im-

plemented a trick: the user is presented with a 

map on a screen (see Figure 1) and instructed to 

move the mouse cursor along the route as it is 

being described. The user is told that this is for 

logging purposes, but the real reason for this is 

that the system tracks the mouse position and 

thus knows what the user is currently talking 

about. It is thereby possible to produce a coher-

ent system behaviour without any speech recog-

nition at all, only basic speech detection. This 

often results in a very realistic interaction, as 

compared to what users are typically used to 

when interacting with dialogue systems—in our 

experiments, several users first thought that there 

was a hidden operator behind it
1
.  

 

 

Figure 1: The user interface, showing the map. 

The basic components of the system can be 

seen in Figure 2. Dashed lines indicate compo-

nents that were not part of the first iteration of 

the system (used for data collection), but which 

have been used in the model presented and eval-

uated here. The system uses a simple energy-

based speech detector to chunk the user’s speech 

into inter-pausal units (IPUs), that is, periods of 

speech that contain no sequence of silence longer 

than 200 ms. Such a short threshold allows the 

system to give backchannels (seemingly) while 

the user is speaking or take the turn with barely 

any gap. Similar to Gravano & Hirschberg 

(2009) and Koiso et al. (1998), we define the end 

of an IPU as a candidate for the Response Loca-

tion Detection model to identify as a Response 

Location (RL). We use the term turn to refer to a 

sequence of IPUs which do not have any re-

sponses between them. 

 

 

Figure 2: The basic components of the system. 

                                                 
1
 An example video can be seen at 

http://www.youtube.com/watch?v=MzL-B9pVbOE. 
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Each time the RLD model detected a RL, the 

dialogue manager produced a Response, depend-

ing on the current state of the dialogue and the 

position of the mouse cursor. Table 1 shows the 

different types of responses the system could 

produce. The dialogue manager always started 

with an Introduction and ended with an Ending, 

once the mouse cursor had reached the destina-

tion. Between these, it selected from the other 

responses, partly randomly, but also depending 

on the length of the last user turn and the current 

mouse location. Longer turns often led to Restart 

or Repetition Requests, thus discouraging longer 

sequences of speech that did not invite the sys-

tem to respond. If the system detected that the 

mouse had been at the same place over a longer 

time, it pushed the task forward by making a 

Guess response. We also wanted to explore other 

kinds of feedback than just backchannels, and 

therefore added short Reprise Fragments and 

Clarification Requests (see for example Skantze 

(2007) for a discussion on these).  

Table 1: Different responses from the system 

Introduction “Could you help me to find my way to 
the train station?” 

Backchannel “Yeah”, “Mhm”, “Okay”, “Uhu” 

Reprise  
Fragment  

“A station, yeah” 

Clarification  
Request  

“A station?” 

Restart “Eh, I think I lost you at the hotel, how 
should I continue from there?” 

Repetition  
Request  

“Sorry, could you take that again?” 

Guess “Should I continue above the church?” 

Ending “Okay, thanks a lot.” 

 

A naïve version of the system was used to col-

lect data. Since we initially did not have any so-

phisticated model of RLD, it was simply set to 

wait for a random period between 0 and 800 ms 

after an IPU ended. If no new IPUs were initiated 

during this period, a RL was detected, resulting 

in random response delays between 200 and 

1000 ms. Ten subjects participated in the data 

collection. Each subject did 5 consecutive tasks 

on 5 different maps, resulting in a total of 50 dia-

logues. 

Each IPU in the corpus was manually annotat-

ed into three categories: Hold (a response would 

be inappropriate), Respond (a response is ex-

pected) and Optional (a response would not be 

inappropriate, but it is perfectly fine not to re-

spond). Two human-annotators labelled the cor-

pus separately. For all the three categories the 

kappa score was 0.68, which is substantial 

agreement (Landis & Koch, 1977). Since only 

2.1% of all the IPUs in the corpus were identified 

for category Optional, we excluded them from 

the corpus and focused on the Respond and Hold 

categories only. The data-set contains 2272 IPUs 

in total; the majority of which belong to the class 

Respond (50.79%), which we take as our majori-

ty class baseline. Since the two annotators agreed 

on 87.20% of the cases, this can be regarded as 

an approximate upper limit for the performance 

expected from a model trained on this data. 

In (Skantze, 2012), we used this collected data 

to build an offline model of RLD that was 

trained on prosodic and contextual features. In 

this paper, we extend this work in three ways. 

First, we bring in Automatic Speech Recognition 

(ASR) for adding syntactic features to the model. 

Second, the model is implemented as a module 

in the dialogue system so that it can extract the 

prosodic features online. Third, we evaluate the 

performance of our RLD model against a base-

line system that makes a random choice, in a dia-

logue system interacting with users.  

In contrast to some related work (e.g. Koiso et 

al., 1998), we do not discriminate between loca-

tions for backchannels and turn-changes. Instead, 

we propose a general model for response loca-

tion detection. The reason for this is that the sys-

tem mostly plays the role of an attentive listener 

that produces utterances that are not intended to 

take the initiative or claim the floor, but only to 

provide different types of feedback (cf. Table 1). 

Thus, suitable response locations will be where 

the user invites the system to give feedback, re-

gardless of whether the feedback is simply an 

acknowledgement that encourages the system to 

continue, or a clarification request. Moreover, it 

is not clear whether the acknowledgements the 

system produces in this domain should really be 

classified as backchannels, since they do not only 

signal continued attention, but also that some 

action has been performed (cf. Clark, 1996). In-

deed, none of the annotators felt the need to mark 

relevant response locations within IPUs.  

4 A data-driven model for response lo-

cation detection 

The human–machine Map Task corpus described 

in the previous section was used for training a 

new model of RLD. We describe below how we 

extracted prosodic, syntactic and contextual fea-

tures from the IPUs. We test the contribution of 

these feature categories—individually as well as 
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in combination, in classifying a given IPU as 

either Respond or Hold type. For this we explore 

the Naïve Bayes (NB) and Support Vector Ma-

chine (SVM) algorithms in the WEKA toolkit 

(Hall et al., 2009). All results presented here are 

based on 10-fold cross-validation. 

4.1 Prosodic features 

Pitch and intensity (sampled at 10 ms) for each 

IPU were extracted using ESPS in 

Wavesurfer/Snack (Sjölander & Beskow, 2000). 

The values were transformed to log scale and z-

normalized for each user. The final 200 ms 

voiced region was then identified for each IPU. 

For this region, the mean pitch, slope of the 

pitch (using linear regression)—in combination 

with the correlation coefficient r for the regres-

sion line, were used as features. In addition to 

these, we also used the duration of the voiced 

region as a feature. The last 500 ms of each IPU 

were used to obtain the mean intensity (also z-

normalised). Table 2 illustrates the power of pro-

sodic features, individually as well as collective-

ly (last row), in classifying an IPU as either Re-

spond or Hold type. Except for mean intensity all 

other features individually provide an improve-

ment over the baseline. The best accuracy, 

64.5%, was obtained by the SVM algorithm us-

ing all the prosodic features. This should be 

compared against the baseline of 50.79%. 

Table 2: Percentage accuracy of prosodic features 

in detecting response locations 

 Algorithm 

Feature(s) NB  SVM  

Mean pitch 60.3 62.7 

Pitch slope 59.0 57.8 

Duration 58.1 55.6 

Mean intensity 50.3 52.2 

Prosody (all combined) 63.3 64.5 

4.2 Syntactic features 

As lexico-syntactic features, we use the word 

form and part-of-speech tag of the last two 

words in an IPU. All the IPUs in the Map Task 

corpus were manually transcribed. To obtain the 

part-of-speech tag we used the LBJ toolkit 

(Rizzolo & Roth, 2010). Column three in Table 3 

illustrates the discriminatory power of syntactic 

features—extracted from the manual transcrip-

tion of the IPUs. Using the last two words and 

their POS tags, the Naïve Bayes learner achieves 

the best accuracy of 83.6% (cf. row 7). While 

POS tag is a generic feature that would enable 

the model to generalize, using word form as a 

feature has the advantage that some words, such 

as yeah, are strong cues for predicting the Re-

spond class, whereas pause fillers, such as ehm, 

are strong predictors of the Hold class. 

Table 3: Percentage accuracy of syntactic features 

in detecting response locations 

  
Manual  

transcriptions 

ASR  

results 

# Feature(s) NB SVM NB SVM  

1 Last word (Lw) 82.5 83.9 80.8 80.9 

2 
Last word part-of-

speech (Lw-POS)  
79.4 79.5 74.5 74.6 

3 
Second last word 

(2ndLw) 
68.1 67.7 67.1 67.0 

4 

Second last word 

Part-of-speech 

(2ndLw-POS) 

66.9 66.5 65.8 66.1 

5 Lw + 2ndLw 82.3 81.5 80.8 80.6 

6 
Lw-POS 

+ 2ndLw-POS 
80.3 80.5 75.4 74.87 

7 

Lw + 2ndLw 

+ Lw-POS 

+ 2ndLw-POS 
83.6 81.7 79.7 79.7 

8 
Last word diction-

ary (Lw-Dict) 
83.4 83.4 78.0 78.0 

9 
Lw-Dict 

+ 2ndLw-Dict 
81.2 82.6 76.1 77.7 

10 

Lw + 2ndLw 

+ Lw-Conf 

+ 2ndLw-Conf  

82.3 81.5 81.1 80.5 

 

An RLD model for online predictions requires 

that the syntactic features are extracted from the 

output of a speech recogniser. Since speech 

recognition is prone to errors, an RLD model 

trained on manual transcriptions alone would not 

be robust when making predictions in noisy data. 

Therefore we train our RLD model on actual 

speech recognised results. To achieve this, we 

did an 80-20 split of the Map Task corpus into 

training and test sets respectively. The transcrip-

tions of IPUs in the training set were used to 

train the language model of the Nuance 9 ASR 

system. The audio recordings of the IPUs in the 

test set were then recognised by the trained ASR 

system. After performing five iterations of split-

ting, training and testing, we had obtained the 

speech recognised results for all the IPUs in the 

Map Task corpus. The mean word error rate for 

the five iterations was 17.22% (SD = 3.8%).  

Column four in Table 3 illustrates the corre-

sponding performances of the RLD model 

trained on syntactic features extracted from the 

best speech recognized hypotheses for the IPUs. 

With the introduction of a word error rate of 

17.22%, the performances of all the models us-
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ing only POS tag feature decline. The perfor-

mances are bound to decline further with in-

crease in ASR errors. This is because the POS 

tagger itself uses the left context to make POS 

tag predictions. With the introduction of errors in 

the left context, the tagger’s accuracy is affected, 

which in turn affects the accuracy of the RLD 

models. However, this decline is not significant 

for models that use word form as a feature. This 

suggests that using context independent lexico-

syntactic features would still offer better perfor-

mance for an online model of RLD. We therefore 

also created a word class dictionary, which gen-

eralises the words into domain-specific classes in 

a simple way (much like a class-based n-gram 

model). Row 9 in Table 3 illustrates that using a 

dictionary instead of POS tag (cf. row 6) im-

proves the performance of the online model. We 

have also explored the use of word-level confi-

dence scores (Conf) from the ASR as another 

feature that could be used to reinforce a learning 

algorithm’s confidence in trusting the recognised 

words (cf. row 10 in Table 3).  

The best accuracy, 81.1%, for the online mod-

el of RLD is achieved by the Naïve Bayes algo-

rithm using the features word form and confi-

dence score, for last two words in an IPU. 

4.3 Contextual features 

We have explored three discourse context fea-

tures: turn and IPU length (in words and se-

conds) and last system dialogue act. Dialogue 

act history information have been shown to be 

vital for predicting a listener response when the 

speaker has just responded to the listener’s clari-

fication request (Koiso et al. (1998); Cathcart et 

al. 2003; Gravano & Hirschberg (2009); Skantze, 

2012). To verify if this rule holds in our corpus, 

we extracted turn length and dialogue act labels 

for the IPUs, and trained a J48 decision tree 

learner. The decision tree achieved an accuracy 

of 65.7%. One of the rules learned by the deci-

sion tree is: if the last system dialogue act is 

Clarification or Guess (cf. Table 1), and the turn 

word count is less than equal to 1, then Respond. 

In other words, if the system had previously 

sought a clarification, and the user has responded 

with a yes/no utterance, then a system response 

is expected. A more general rule in the decision 

tree suggests that: if the last system dialogue act 

was a Restart or Repetition Request, and if the 

turn word count is more than 4 then Respond 

otherwise Hold. In other words, the system 

should wait until it gets some amount of infor-

mation from the user.  

Table 4 illustrates the power of these contex-

tual features in discriminating IPUs, using the 

NB and the SVM algorithms. All the features 

individually provide improvement over the base-

line of 50.79%. The best accuracy, 64.8%, is 

achieved by the SVM learner using the features 

last system dialogue act and turn word count. 

Table 4: Percentage accuracy of contextual features 

in detecting response locations 

 
Manual 

transcriptions 

ASR  

results 

Features NB  SVM  NB  SVM  

Last system dialogue act 54.1 54.1 54.1 54.1 

Turn word count 61.8 61.9 61.5 62.9 

Turn length in seconds 58.4 58.8 58.4 58.8 

IPU word count 58.4 58.2 58.1 59.3 

IPU length in seconds 57.3 61.2 57.3 61.2 

Last system dialogue act 

+ Turn word count 
59.9 64.5 60.4 64.8 

 

4.4 Combined model 

Table 5 illustrates the performances of the RLD 

model using various feature category combina-

tions. It could be argued that the discriminatory 

power of prosodic and contextual feature catego-

ries is comparable. A model combining prosodic 

and contextual features offers an improvement 

over their individual performances. Using the 

three feature categories in combination, the Na-

ïve Bayes learner provided the best accuracy: 

84.6% (on transcriptions) and 82.0% (on ASR 

output). These figures are significantly better 

than the majority class baseline of 50.79% and 

approach the expected upper limit of 87.20% on 

the performance.  

Table 5: Percentage accuracy of combined models  

 
Manual  

transcriptions 

ASR  

results 

Feature categories NB SVM NB SVM 

Prosody  63.3 64.5 63.3 64.5 

Context  59.9 64.5 60.4 64.8 

Syntax  82.3 81.5 81.1 80.5 

Prosody + Context 67.7 70.2 67.5 69.1 

Prosody + Context 

+ Syntax 
84.6 77.2 82.0 77.1 

  

Table 6 illustrates that the Naïve Bayes model 

for Response Location Detection trained on 

combined syntactic, prosodic and contextual fea-

tures, offers better precision (fraction of correct 

decisions in all model decisions) and recall (frac-

tion of all relevant decisions correctly made) in 

comparison to the SVM model. 
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Table 6: Precision and Recall scores of the NB and 

the SVM learners trained on combined prosodic, con-

textual and syntactic features. 

Prediction class 
Precision (in %) Recall (in %) 

NB  SVM  NB  SVM  

Respond 81.0  73.0 87.0 84.0 

Hold 85.0 81.0 78.0 68.0 

 

5 User evaluation 

In order to evaluate the usefulness of the com-

bined model, we have performed a user evalua-

tion where we test the trained model in the Map 

Task dialogue system that was used to collect the 

corpus (cf. section 3). A version of the dialogue 

system was created that uses a Random model, 

which makes a random choice between Respond 

and Hold. The Random model thus approximates 

our majority class baseline (50.79% for Re-

spond). Another version of the system used the 

Trained model – our data-driven model – to 

make the decision. For both models, if the deci-

sion was a Hold, the system waited 1.5 seconds 

and then responded anyway if no more speech 

was detected from the user. 

We hypothesize that since the Random model 

makes random choices, it is likely to produce 

false-positive responses (resulting in overlap in 

interaction) as well as false-negative responses 

(resulting in gap/delayed response) in equal pro-

portion. The Trained model on the other hand 

would produce fewer overlaps and gaps.  

In order to evaluate the models, 8 subjects (2 

female, 6 male) were asked to perform the Map 

Task with the two systems. Each subject per-

formed five dialogues (which included 1 trial and 

2 tests) with each version of the system. This 

resulted in 16 test dialogues each for the two sys-

tems. The trial session was used to allow the us-

ers to familiarize themselves with the dialogue 

system. Also, the audio recording of the users’ 

speech from this session was used to normalize 

the user pitch and intensity for the online prosod-

ic extraction. The order in which the systems and 

maps were presented to the subjects was varied 

over the subjects to avoid any ordering effect in 

the analysis.  

The 32 dialogues from the user evaluation 

were, on average, 1.7 min long (SD = 0.5 min). 

The duration of the interactions with the Random 

and the Trained model were not significantly 

different. A total of 557 IPUs were classified by 

the Random model whereas the Trained model 

classified 544 IPUs. While the Trained model 

classified 57.7% of the IPUs as Respond type the 

Random model classified only 48.29% of the 

total IPUs as Respond type, suggesting that the 

Random model was somewhat quieter.  

It turned out that it was very hard for the sub-

jects to perform the Map Task and at the same 

time make a valid subjective comparison be-

tween the two versions of the system, as we had 

initially intended. Therefore, we instead con-

ducted another subjective evaluation to compare 

the two systems. We asked subjects to listen to 

the interactions and press a key whenever a sys-

tem response was either lacking or inappropriate. 

The subjects were asked not to consider how the 

system actually responded, only evaluate the tim-

ing of the response. 

Eight users participated in this subjective 

judgment task. Although five of these were from 

the same set of users who had performed the 

Map Task, none of them got to judge their own 

interactions. The judges listened to the Map Task 

interactions in the same order as the users had 

interacted, including the trial session. Whereas it 

had been hard for the subjects who participated 

in the dialogues to characterize the two versions 

of the system, almost all of the judges could 

clearly tell the two versions apart. They stated 

that the Trained system provided for a smooth 

flow of dialogue. The timing of the IPUs was 

aligned with the timing of the judges’ key-

presses in order to measure the numbers of IPUs 

that had been given inappropriate response deci-

sions. The results show that for the Random 

model, 26.75% of the RLD decisions were per-

ceived as inappropriate, whereas only 11.39% of 

the RLD decisions for the Trained model were 

perceived inappropriate. A two-tailed two-

sample t-test for difference in mean of the frac-

tion of inappropriate instances (key-press count 

divided by IPU count) for Random and Trained 

model show a clear significant difference (t = 

4.66, dF = 30, p < 0.001). 

We have not yet analysed whether judges pe-

nalized false-positives or false-negatives to a 

larger extent, this is left to future work. Howev-

er, some judges informed us that they did not 

penalize delayed response (false-negative), as the 

system eventually responded after a delay. In the 

context of a system trying to follow a route de-

scription, such delays could sometimes be ex-

pected and wouldn’t be unnatural. For other 

types of interactions (such as story-telling), such 

delays may on the other hand be perceived as 

unresponsive. Thus, the balance between false-

positives and false-negatives might need to be 

tuned depending on the topic of the conversation.  
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6 Conclusion  

We have presented a data-driven model for de-

tecting response locations in the user’s speech. 

The model has been trained on human–machine 

dialogue data and has been integrated and tested 

in a spoken dialogue system that can perform the 

Map Task with users. To our knowledge, this is 

the first example of a dialogue system that uses 

automatically extracted syntactic, prosodic and 

contextual features for making online detection 

of response locations. The models presented in 

earlier works have used only prosody (Ward, 

1996), or combinations of syntax and prosody 

(Koiso et al., 1998), syntax and context (Cathcart 

et al., 2003), prosody and context (Skantze, 

2012), or prosody, context and semantics (Raux 

& Eskenazi (2008). Furthermore, we have evalu-

ated the usefulness of our model by performing a 

user evaluation of a dialogue system interacting 

with users. None of the earlier models have been 

tested in user evaluations. 

The significant improvement of the model 

gained by adding lexico-syntactic features such 

as word form and part-of-speech tag corroborates 

with earlier observations about the contribution 

of syntax in predicting response location (Koiso 

et al., 1998; Cathcart et al., 2003; Gravano & 

Hirschberg, 2009). While POS tag alone is a 

strong generic feature for making predictions in 

offline models its contribution to decision mak-

ing in online models is reduced due to speech 

recognition errors. This is because the POS tag-

ger itself uses the left context to make predic-

tions, and is not typically trained to handle noisy 

input. We have shown that using only the word 

form or a dictionary offers a better performance 

despite speech recognition errors. However, this 

of course results in a more domain-dependent 

model. 

Koiso et al., (1998), have shown that prosodic 

features contribute almost as strongly to response 

location prediction as the syntactic features. We 

do not find such results with our model. This 

difference could be partly attributed to inter-

speaker variation in the human–machine Map 

Task corpus used for training the models. All the 

users who participated in the corpus collection 

were non-native speakers of English. Also, our 

algorithm for extracting prosodic features is not 

as powerful as the manual extraction scheme 

used in (Koiso et al., 1998). Although prosodic 

and contextual features do not seem to improve 

the performance very much when syntactic fea-

tures are available, they are clearly useful when 

no ASR is available (70.2% as compared to the 

baseline of 50.79%).  

The subjective evaluation indicates that the in-

teractions with a system using our trained model 

were perceived as smoother (more accurate re-

sponses) as compared to a system using a model 

that makes a random choice between Respond 

and Hold. 

7 Future work 

Coordination problems in turn-transition and re-

sponsiveness have been identified as important 

short-comings of turn-taking models in current 

dialogue systems (Ward et al., 2005). In continu-

ation of the current evaluation exercise, we 

would next evaluate our Trained model—on an 

objective scale, in terms of its responsiveness 

and smoothness in turn-taking and back-

channels. An objective measure is the proportion 

of judge key-presses coinciding with false-

positive and false-negative model decisions. We 

argue that in comparison to the Random model 

our Trained model produces (i) fewer instances 

of false-negatives (gap/delayed response) and 

therefore has a faster response time, and (ii) few-

er instances of false-positives (overlap) and thus 

provides for smooth turn-transitions.  

We have so far explored syntactic, prosodic 

and contextual features for predicting response 

location. An immediate extension to our model 

would be to bring semantic features in the model. 

In Meena et al. (2012) we have presented a data-

driven method for semantic interpretation of ver-

bal route descriptions into conceptual route 

graphs—a semantic representation that captures 

the semantics of the way human structure infor-

mation in route descriptions. Another possible 

extension is to situate the interaction in a face-to-

face Map Task between a human and a robot and 

add features from other modalities such as gaze. 

In a future version of the system, we do not 

only want to determine when to give responses 

but also what to respond. In order to do this, the 

system will need to extract the semantic concepts 

of the route directions (as described above) and 

utilize the confidence scores from the spoken 

language understanding component in order to 

select between different forms of clarification 

requests and acknowledgements.  
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Abstract

Barge-in enables the user to provide input
during system speech, facilitating a more
natural and efficient interaction. Stan-
dard methods generally focus on single-
stage barge-in detection, applying the di-
alogue policy irrespective of the barge-in
context. Unfortunately, this approach per-
forms poorly when used in challenging
environments. We propose and evaluate
a barge-in processing method that uses a
prediction strategy to continuously decide
whether to pause, continue, or resume the
prompt. This model has greater task suc-
cess and efficiency than the standard ap-
proach when evaluated in a public spoken
dialogue system.

Index Terms: spoken dialogue systems, barge-in

1 Introduction

Spoken dialogue systems (SDS) communicate
with users with spoken natural language; the op-
timal SDS being effective, efficient, and natural.
Allowing input during system speech, known as
barge-in, is one approach that designers use to
improve system performance. In the ideal use
case, the system detects user speech, switches off
the prompt, and then responds to the user’s utter-
ance. Dialogue efficiency improves, as the sys-
tem receives information prior to completing its
prompt, and the interaction becomes more natu-
ral, as the system demonstrates more human-like
turn-taking behavior. However, barge-in poses a
number of new challenges; the system must now
recognize and process input during its prompt that
may not be well-formed system directed speech.
This is a difficult task and standard barge-in ap-
proaches often stop the prompt for input that will
not be understood, subsequently initiating a clari-
fication sub-dialogue (“I’m sorry, I didn’t get that.

You can say...etc.”). This non-understood barge-in
(NUBI) could be from environmental noise, non-
system directed speech, poorly-formed system di-
rected speech, legitimate speech recognition diffi-
culties (such as acoustic model mismatch), or any
combination thereof.

This paper proposes and evaluates a barge-in
processing method that focuses on handling NU-
BIs. Our Prediction-based Barge-in Response
(PBR) model continuously predicts interpretation
success by applying adaptive thresholds to incre-
mental recognition results. In our view, predicting
whether the recognition will be understood has far
more utility than detecting whether the barge-in
is truly system directed speech as, for many do-
mains, we feel only understandable input has more
discourse importance than system speech. If the
input is predicted to be understood, the prompt is
paused. If it is predicted or found to be NUBI, the
prompt is resumed. Using this method, the sys-
tem may resume speaking before recognition is
complete and will never initiate a clarifying sub-
dialogue in response to a NUBI. The PBR model
was implemented in a public Lets Go! statistical
dialogue system (Raux et al., 2005), and we com-
pare it with a system using standard barge-in meth-
ods. We find the PBR model has a significantly
better task success rate and efficiency.

Table 1 illustrates the NUBI responses produced
by the standard barge-in (Baseline) and PBR mod-
els. After both prompts are paused, the standard
method initiates a clarifying sub-dialogue whereas
PBR resumes the prompt.

We first provide background on Incremental
Speech Recognition and describe the relevant re-
lated work on barge-in. We then detail the
Prediction-based Barge-in Response model’s op-
eration and motivation before presenting a whole-
call and component-wise analysis of the PBR

1Work done while at AT&T Labs - Research
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Table 1: System response to Non-Understood Barge-In (NUBI)

Baseline Ok, sixty one <NUBI> Sorry, say a bus route like twenty eight x
PBR Ok, sixty one <NUBI> sixty one c. Where are you leaving from?

model. The paper concludes with a discussion of
our findings and implications for future SDS.

2 Background and Related Work

Incremental Speech Recognition: Incremental
Speech Recognition (ISR) provides the real-time
information critical to the PBR model’s continu-
ous predictions. ISR produces partial recognition
results (“partials”) until input ceases and the “fi-
nal” recognition result is produced following some
silence. As partials have a tendency to be revised
as more audio is processed, stability measures are
used to predict whether a given partial hypothe-
sis will be present in the final recognition result
(McGraw and Gruenstein, 2012; Selfridge et al.,
2011). Here, we use Lattice-Aware ISR, which
produces partials after a Voice Activity Detector
(VAD) indicates speech and limits them to be a
complete language model specified phrase or have
guaranteed stability (Selfridge et al., 2011).

Barge-In: Using the standard barge-in model,
the system stops the prompt if barge-in is detected
and applies the dialogue logic to the final recogni-
tion result. This approach assumes that the barge-
in context should not influence the dialogue pol-
icy, and most previous work on barge-in has fo-
cused on detection: distinguishing system directed
speech from other environmental sounds. Cur-
rently, these methods are either based on a VAD
(e.g. (Ström and Seneff, 2000)), ISR hypothe-
ses (Raux, 2008), or some combination (Rose and
Kim, 2003). Both approaches can lead to detection
errors: background speech will trigger the VAD,
and partial hypotheses are unreliable (Baumann et
al., 2009). To minimize this, many systems only
enable barge-in at certain points in the dialogue.

One challenge with the standard barge-in model
is that detection errors can initiate a clarifying sub-
dialogue to non-system directed input, as it is un-
likely that this input will be understood (Raux,
2008). Since this false barge-in, which in most
cases is background speech (e.g. the television), is
highly indicative of poor recognition performance
overall, the system’s errant clarifying response can
only further degrade user experience.

Strom and Seneff (2000) provide, to our knowl-

edge, the only mature work that proposed deviat-
ing from the dialogue policy when responding to
a barge-in recognition. Instead of initiating a clar-
ifying sub-dialogue, the system produced a filled-
pause disfluency (’umm’) and resumed the prompt
at the phrase boundary closest to the prompt’s sus-
pension point. However, this model only operated
at the final recognition level (as opposed the incre-
mental level) and, unfortunately, they provide no
evaluation of their approach. An explicit compar-
ison between the approaches described here and
the PBR model is found in Section 3.5.

3 Prediction-based Barge-in Response

The PBR model is characterized by three high-
level states: State 1 (Speaking Prediction), whose
goal is to pause the prompt if stability scores pre-
dict understanding; State 2 (Silent Prediction),
whose goal is to resume the prompt if stability
scores and the incremental recognition rate pre-
dict non-understanding; and State 3 (Completion),
which operates on the final recognition result, and
resumes the prompt unless the recognition is un-
derstood and the new speech act will advance the
dialogue. Here, we define “advancing the dia-
logue” to be any speech act that does not start a
clarifying sub-dialogue indicating a NUBI. Tran-
sitions between State 1 and 2 are governed by
adaptive thresholds — repeated resumptions sug-
gest the user is in a noisy environment, so each
resumption increases the threshold required to ad-
vance from State 1 to State 2 and decreases the
threshold required to advance from State 2 to State
1. A high-level comparison of the standard model
and our approach is shown in Figure 1; a complete
PBR state diagram is provided in the Appendix.

3.1 State 1: Speaking Prediction

In State 1, Speaking Prediction, the system is both
speaking and performing ISR. The system scores
each partial for stability, predicting the probability
that it will remain “stable” – i.e., will not be later
revised – using a logistic regression model (Self-
ridge et al., 2011). This model uses a number of
features related to the recognizer’s generic confi-
dence score, the word confusion network, and lat-
tice characteristics. Table 2 shows partial results
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Table 2: Background noise and User Speech ISR

Background Noise User Utterance
Partial Stab. Scr. Partial Stab. Scr.
one 0.134 six 0.396
two 0.193 sixty 0.542
six 0.127 fifty one 0.428
two 0.078 sixty one a 0.491

and stability scores for two example inputs: back-
ground noise on the left, and the user saying “sixty
one a” on the right.

State 1 relies on the internal threshold param-
eter, T1. If a partial’s stability score falls below
T1, control remains in State 1 and the partial re-
sult is discarded. If a stability score meets T1, the
prompt is paused and control transitions to State 2.
T1 is initially set to 0 and is adapted as the dialogue
progresses. The adaptation procedure is described
below in Section 3.4. If a final recognition result
is received, control transitions directly to State 3.
Transitioning from State 1 to State 2 is only al-
lowed during the middle 80% of the prompt; oth-
erwise only transitions to State 3 are allowed.1

3.2 State 2: Silent Prediction

Upon entering State 2, Silent Prediction, the
prompt is paused and a timer is started. State 2 re-
quires continuous evidence (at least every T2 ms)
that the ISR is recognizing valid speech and each
time a partial result that meets T1 is received, the
timer is reset. If the timer reaches the time thresh-
old T2, the prompt is resumed and control returns
to State 1. T2 is initially set at 1.0 seconds and is
adapted as the dialogue progresses. Final recogni-
tion results trigger a transition to State 3.

The resumption prompt is constructed using the
temporal position of the VAD specified speech
start to find the percentage of the prompt that was
played up to that point. This percentage is then
reduced by 10% and used to create the resump-
tion prompt by finding the word that is closest to,
but not beyond, the modified percentage. White
space characters and punctuation are used to deter-
mine word boundaries for text-to-speech prompts,
whereas automatically generated word-alignments
are used for pre-recorded prompts.

1We hypothesized that people will rarely respond to the
current prompt during the first 10% of prompt time as over-
laps at the beginning of utterances are commonly initiative
conflicts (Yang and Heeman, 2010). Users may produce
early-onset utterances during the last 10% that should not
stop the prompt as it is not an “intentional” barge-in.

Figure 1: The Standard Barge-in and PBR Models

3.3 State 3: Completion

State 3, Completion, is entered when a final recog-
nition result is received and determines whether
the current dialogue policy will advance the dia-
logue or not. Here, the PBR model relies on the
ability of the dialogue manager (DM) to produce a
speculative action without transitioning to the next
dialogue state. If the new action will not advance
the dialogue, it is discarded and the recognition
is NUBI. However, if it will advance the dialogue
then it is classified as an Understood Barge-In
(UBI). In the NUBI case, the system either contin-
ues speaking or resumes the current prompt (tran-
sitioning to State 1). In the UBI case, the system
initiates the new speech act after playing a short
reaction sound and the DM transitions to the next
dialogue state. This reaction sound precedes all
speech acts outside the barge-in context but is not
used for resumption or timeout prompts. Note that
by depending solely on the new speech act, our
model does not require access to the DM’s internal
understanding or confidence scoring components.

3.4 Threshold adjustments

States 1 and 2 contain parameters T1 and T2 that
are adapted to the user’s environment. T1 is the
stability threshold used in State 1 and State 2 that
controls how stable an utterance must be before
the prompt should be paused. In quiet environ-
ments — where only the user’s speech produces
partial results — a low threshold is desirable as
it enables near-immediate pauses in the prompt.
Conversely, noisy environments yield many spu-
rious partials that (in general) have much lower
stability scores, so a higher threshold is advan-
tageous. T2 is the timing threshold used to re-
sume the prompt during recognition in State 2. In
quiet environments, a higher threshold reduces the
chance that the system will resume its prompt dur-
ing a well-formed user speech. In noisy environ-
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Figure 2: Example dialogue fragment of PBR Model

ments, a lower threshold allows the system to re-
sume quickly as the NUBI likelihood is greater.

Both T1 and T2 are dependent on the number of
system resumptions, as we view the action of re-
suming the prompt as an indication that the thresh-
old is not correct. With every resumption, the pa-
rameter R is incremented by 1 and, to account for
changing environments, R is decremented by 0.2
for every full prompt that is not paused until it
reaches 0. Using R, T1 is computed by T1 = 0.17·
R, and T2 by T2 = argmax(0.1, 1 − (0.1 · R)).2

3.5 Method Discussion
The motivation behind the PBR model is both the-
oretical and practical. According to Selfridge and
Heeman (2010), turn-taking is best viewed as a
collaborative process where the turn assignment
should be determined by the importance of the
utterance. During barge-in, the system is speak-
ing and so should only yield the turn if the user’s
speech is more important than its own. For many
domains, we view non-understood input as less
important than the system’s prompt and so, in this
case, the system should not release the turn by
stopping the prompt and initiating a clarifying sub-
dialogue. On the practical side, there is a high
likelihood that non-advancing input is not system
directed, to which the system should neither con-
sume, in terms of belief state updating, nor re-
spond to, in terms of asking for clarification. In
the rare case of non-understood system directed
speech, the user can easily repeat their utterance.
Here, we note that in the event that the user is
backchanneling, the PBR model will behave cor-
rectly and not release the turn.

The PBR approach differs from standard barge-
in approaches in several respects. First, standard
barge-in stops the prompt (i.e., transitions from
State 1 to State 2) if either the VAD or the partial
hypothesis suggests that there is speech; our ap-
proach — using acoustic, language model, and lat-
tice features — predicts whether the input is likely
to contain an interpretable recognition result. Sec-

2The threshold update values were determined empiri-
cally by the authors.

ond, standard barge-in uses a static threshold; our
approach uses dynamic thresholds that adapt to
the user’s acoustic environment. Parameter adjust-
ments are straightforward since our method auto-
matically classifies each barge-in as NUBI or UBI.
In practice, the prompt will be paused incorrectly
only a few times in a noisy environment, after
which the adaptive thresholds will prevent incor-
rect pauses at the expense of being less responsive
to true user speech. If the noise level decreases,
the thresholds will become more sensitive again,
enabling swifter responses. Finally, with the ex-
ception of Strom and Seneff, standard approaches
always discard the prompt; our approach can re-
sume the prompt if recognition is not understood
or is proceeding poorly, enabling the system to
resume speaking before recognition is complete.
Moreover, resumption yields a natural user expe-
rience as it often creates a repetition disfluency
(“Ok, sixty - sixty one c”), which are rarely no-
ticed by the listener (Martin and Strange, 1968).

An example dialogue fragment is shown in Fig-
ure 2, with the state transitions shown above. Note
the transition from State 2 to State 1, which is the
system resuming speech during recognition. This
recognition stream, produced by non-system di-
rected user speech, does not end until the user says
“repeat” for the last time.

4 Evaluation Results

The PBR model was evaluated during the Spoken
Dialog Challenge 2012-2013 in a live Lets Go!
bus information task. In this task, the public can
access bus schedule information during off hours
in Pittsburgh, PA via a telephonic interaction with
a dialogue system (Raux et al., 2005). The task
can be divided into five sub-tasks: route, origin,
destination, date/time, and bus schedules. The last
sub-task, bus schedules, provides information to
the user whereas the first four gather information.
We entered two systems using the same POMDP-
based DM (Williams, 2012). The first system, the
“Baseline”, used the standard barge-in model with
VAD barge-in detection and barge-in disabled in
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Figure 3: Estimated success rate for the PBR and Baseline systems. Stars indicate p<0.018 with χ2 test.

a small number of dialogue states that appeared
problematic during initial testing. The second sys-
tem used the PBR model with an Incremental In-
teraction Manager (Selfridge et al., 2012) to pro-
duce speculative actions in State 3. The pub-
lic called both systems during the final weeks of
2011 and the start of 2012. The DM applied a lo-
gistic regression based confidence measure to de-
termine whether the recognition was understood.
Both systems used the AT&T WATSONSM speech
recognizer (Goffin et al., 2005) with the same
sub-task specific rule-based language models and
standard echo cancellation techniques. The beam
width was set to maximize accuracy while still
running faster than real-time. The PBR system
used a WATSON modification to output lattice-
aware partial results.

Call and barge-in statistics are shown in Table
3. Here, we define (potential) barge-in (some-
what imprecisely) as a full recognition that at
some point overlaps with the system prompt, as
determined by the call logs. We show the calls
with barge-in before the bus schedule sub-task was
reached (BI-BS) and the calls with barge-in during
any point of the call (BI All). Since the Baseline
system only enabled barge-in at specific points in
the dialogue, it has fewer instances of barge-in
(Total Barge-In) and fewer barge-in calls. Regret-
fully, due to logging issues with the PBR system,
recognition specific metrics such as Word Error
Rate and true/false barge-in rates are unavailable.

4.1 Estimated Success Rate

We begin by comparing the success rate and
efficiency between the Baseline and PBR sys-

Table 3: Baseline and PBR call/barge-in statistics.

Baseline PBR
Total Calls 1027 892
BI-BS 228 (23%) 345 (39%)
BI All 281 (27%) 483 (54%)
Total Barge-In 829 1388

tems. Since task success can be quite difficult to
measure, we use four increasingly stringent task
success definitions: Bus Times Reached (BTR),
where success is achieved if the call reaches the
bus schedule sub-task; List Navigation (List Nav.),
where success is achieved if the user says ‘’next”,
“previous”, or “repeat” — the intuition being that
if the user attempted to navigate the bus sched-
ule sub-task they were somewhat satisfied with
the system’s performance so far; and Immediate
Exit (BTR2Ex and ListNav2Ex), which further
constrains both of the previous definitions to only
calls that finish directly after the initial visit to the
bus times sub-task. Success rate for the defini-
tions were automatically computed (not manually
labeled). Figure 3 shows the success rate of the
PBR and Baseline systems for all four definitions
of success. It shows, from left to right, Barge-In,
No Barge-In (NBI), and All calls. Here we restrict
barge-in calls to those where barge-in occurred
prior to the bus schedule task being reached.

For the calls with barge-in, a χ2 test finds sig-
nificant differences between the PBR and Base-
line for all four task success definitions. However,
we also found significant differences in the NBI
calls. This was surprising since, when barge-in
is not triggered, both systems are ostensibly the
same. We speculate this could be due to the Base-
line’s barge-in enabling strategy: an environment
that triggers barge-in in the Baseline would always
trigger barge-in in the PBR model, whereas the
converse is not true as the Baseline only enabled
barge-in in some of the states. This means that
there is a potential mismatch when separating the
calls based on barge-in, and so the fairest compar-
ison is using All the calls. This is shown on the far
right of Figure 3. We find that, while the effect is
not as large, there are significant differences in the
success rate for the PBR model for the most and
least stringent success definition, and very strong
trends for the middle two definitions (p < 0.07 for
BTR2Ex and p < 0.054 for List Nav.). Taken as
a whole, we feel this offers compelling evidence
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Figure 4: Seconds from beginning of dialogue to
reaching the Bus Schedule Information sub-task

that the PBR method is more effective: i.e. yields
higher task completion.

Next, we turn our attention to task efficiency.
For this, we report the amount of clock time from
the beginning of the call to when the Bus Schedule
sub-task was reached. Calls that do not reach this
sub-task are obviously excluded, and PBR times
are adjusted for the reaction sound (explained in
Section 3.3). Task efficiency is reported by cu-
mulative percentage in Figure 4. We find that,
while the NBI call times are nearly identical for
both systems, the PBR barge-in calls are much
faster than the Baseline calls. Here, we do not
feel the previously described mismatch is partic-
ularly problematic as all the calls reached the goal
state and the NBI are nearly identical. In fact, as
more NUBI should actually reduce efficiency, the
potential mismatch only strengthens the result.

Taken together, these results provide substantial
evidence that the PBR model is more effective and
more efficient than the Baseline. In order to ex-
plain PBR’s performance, we explore the effect of
prediction and resumption in isolation.

4.2 State 1: Speaking Prediction

State 1 is responsible for pausing the prompt, the
goal being to pause the prompt for UBI input and
not to pause the prompt for NUBI input. The
prompt is paused if a partial’s stability score meets
or exceeds the T1 threshold. We evaluate the ef-
ficacy of State 1 and T1 by analyzing the statis-
tics of NUBI/UBI input and Paused/Not Paused
(hereafter Continued) prompts. Since resuming
the prompt during recognition affects the recog-
nition outcome, we restrict our analysis to recog-
nitions that do not transition from State 2 back
to State 1. For comparison we show the overall
UBI/NUBI percentages for the Baseline and PBR
systems. This represents the recognition distri-

Table 4: Evaluation of T1, off-line PBR, and Base-
line VAD. For T1 we respectively (‘-’ split) show
the UBI/NUBI % that are Paused/Continued, the
Paused/Continued % that are UBI/NUBI, and the
percentage over all recognitions

T1 (%) VAD (%)
Paused Continued PBR BL

UBI 72-40-26 28-29-10 36 54
NUBI 61-60-39 39-71-25 64 46

bution for the live Baseline VAD detection and
off-line speculation for the PBR model. Recall
PBR does have VAD activation preceding partial
results and so the off-line PBR VAD shows how
the model would have behaved if it only used the
VAD for detection, as the Baseline does.

Table 4 provides a number of percentages, with
three micro-columns separated by dashes (’-’) for
T1. The first micro-column shows the percent-
age of UBI/NUBI that either Paused or Contin-
ued the prompt (sums to 100 horizontally). The
second micro-column shows the percentage of
Paused/Continued that are UBI/NUBI (sums to
100 vertically). The third micro-column shows
the percentage of each combination (e.g. UBI and
Paused) over all the barge-in recognitions. The
VAD columns show the percentage of UBI/NUBI
that (would) pause the prompt.

We first look at UBI/NUBI percentage that are
Paused/Continued (first micro-column): We find
that 72% of UBI are paused and 28% are Contin-
ued versus 61% of NUBI that are Paused with 39%
Continued. We now look at the Paused/Continued
percentage that are UBI/NUBI (second micro-
column): We find that 40% of Paused are UBI
and 60% are NUBI, whereas 29% of Continued
are UBI and 71% are NUBI. So, while T1 sus-
pends the prompt for the majority of NUBI (not
desirable, though expected since T1 starts at 0),
it has high precision when continuing the prompt.
This reduces the number of times that the prompt
is paused erroneously for NUBI while minimizing
incorrect (UBI) continues. This is clearly shown
by considering all of the recognitions (third micro-
column). We find that PBR erroneously paused
the prompt for 39% of recognitions, as opposed to
64% for the off-line PBR and 46% for the Base-
line. This came at the cost of reducing the number
of correct (UBI) pauses to 26% from 36% (off-line
PBR) and 54% (Baseline VAD).

The results show that the T1 threshold had
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Figure 5: Secs from Speech Start to Final Result

modest success at discriminating UBI and NUBI;
while continuing the prompt had quite a high
precision for NUBI, the recall was substantially
lower. We note that, since erroneous pauses lead
to resumptions and erroneous continues still lead
to a new speech act, there is minimal cost to these
errors. Furthermore, in our view, reducing the per-
centage of recognitions that pause and resume the
prompt is more critical as these needlessly disrupt
the prompt. In this, T1 is clearly effective, reduc-
ing the percentage from 64% to 39%.

4.3 State 2: Silent Prediction
State 2 governs whether the prompt will remain
paused or be resumed during incremental recogni-
tion. This decision depends on the time parameter
T2, which should trigger resumptions for NUBIs.
Since the act of resuming the prompt during recog-
nition changes the outcome of the recognition, it
is impossible to evaluate how well T2 discrimi-
nated recognition results. However, we can evalu-
ate the effect of that resumption by comparing UBI
percentages between the PBR and Baseline sys-
tems. We first present evidence that T2 is most ac-
tive during longer recognitions, and then show that
longer Baseline recognitions have a lower UBI
percentage than longer PBR recognitions specif-
ically because of T2 resumptions. “Recognitions”
refer to speech recognition results, with “longer”
or “shorter” referring to the clock time between
speech detection and the final recognition result.

We first report the PBR and Baseline response
and recognition time. We separate the PBR barge-
in recognitions into two groups: State 2→State 3,
where the system never transitions from State 2
to State 1, and State 2→State 1, where the sys-
tem resumes the prompt during recognition, tran-
sitioning from State 2 to State 1. The cumulative
percentages of the time from speech detection to
final recognition are shown in Figure 5. We find
that the State 2→State 3 recognitions are far faster

Figure 6: UBI % by minimum recognition time

than the Baseline recognitions, which in turn are
far faster than the State 2→State 1 recognitions.
The difference between PBR and Baseline recog-
nitions implies that T2 has greater activation dur-
ing longer recognitions. Given this, the overall
barge-in response time for PBR should be faster
than the Baseline (as the PBR system is resum-
ing where the Baseline is silent). Indeed this is
the case: the PBR system’s overall mean/median
response time is 1.58/1.53 seconds whereas Base-
line has a mean/median response time of 2.61/1.8
seconds.

The goal of T2 is for the system to resume when
recognition is proceeding poorly, and we have
shown that it is primarily being activated during
longer recognitions. If T2 is functioning properly,
recognition length should be inversely related to
recognition performance, and longer recognitions
should be less likely to be understood. Further-
more, if T2 resumption improves the user’s expe-
rience then longer PBR recognitions should per-
form better than Baseline recognitions of compa-
rable length. Figure 6 presents the UBI percent-
age by the minimum time for recognitions that
reach State 2. We find that, when all recogni-
tions are accounted for (0 second minimum), the
Baseline has a higher rate of UBI. However, as
recognition time increases the Baseline UBI per-
centage decreases (suggesting successful T2 func-
tioning) whereas the PBR UBI percentage actu-
ally increases. Since longer PBR recognitions are
dominated by T2 resumptions, we speculate this
improvement is driven by users repeating or initi-
ating new speech that leads to understanding suc-
cess, as the PBR system is responding where the
Baseline system is silent.

4.4 Resumption
The PBR model relies on resumption to recover
from poor recognitions, either produced in State 2
or State 3. Instead of a resumption, the Baseline

390



Figure 7: Sub-Task Abandonment Rate. NUBI is
different at p < 0.003

system initiates a clarifying sub-dialogue when a
barge-in recognition is not understood. We com-
pare these two behaviors using the call abandon-
ment rate — the user hangs-up — of sub-tasks
with and without NUBI. Here, we exclude the Bus
Schedule sub-task as it is the goal state.

Figure 7 shows the call abandonment rate for
sub-tasks that either have or do not have NUBI.
We find that there is a significant difference in
abandoned calls for NUBI sub-tasks between the
two systems (33% vs 48%, p < 0.003 using a χ2

test), but that there is no difference for the calls
that do not have NUBI (7.6% vs 8.4%). This re-
sult shows that prompt resumption is viewed far
more favorably by users than initiating a clarify-
ing sub-dialogue.

5 Discussion and Conclusion

The above results offer strong evidence that the
PBR model increases task success and efficiency,
and we found that all three states contribute to
the improved performance by creating a more ro-
bust, responsive, and natural interaction. T1 pre-
diction in State 1 reduced the number of spurious
prompt suspensions, T2 prediction in State 2 led to
improved understanding performance, and prompt
resumption (States 2 and 3) reduced the number of
abandoned calls.

An important feature of the Prediction-based
Barge-in Response model is that, while it lever-
ages incremental speech processing for barge-in
processing, it does not require an incremental di-
alogue manager to drive its behavior. Since the
model is also domain independent and does not
require access to internal dialogue manager com-
ponents, it can easily be incorporated into any ex-
isting dialogue system. However, one limitation of
the current model is that the prediction thresholds
are hand-crafted. We also believe that substan-

tial improvements can be made by explicitly at-
tempting to predict eventual understanding instead
of using the stability score and partial production
rate as a proxy. Furthermore, the PBR model does
not distinguish between the causes of the non-
understanding, specifically whether the input con-
tained in-domain user speech, out-of-domain user
speech, or background noise. This case is specifi-
cally applicable in domains where system and user
speech are in the same channel, such as interact-
ing via speaker phone. In this context, the system
should be able to initiate a clarifying sub-dialogue
and release the turn, as the system must be more
sensitive to the shared acoustic environment and
so its current prompt may be less important than
the user’s non-understood utterance.

The results challenge a potential assumption re-
garding barge-in: that barge-in indicates greater
user pro-activity and engagement with the task.
One of the striking findings was that dialogues
with barge-in are slower and less successful than
dialogues without barge-in. This suggests that,
for current systems, dialogues with barge-in are
more indicative of environmental difficulty than
user pro-activity. The superior performance of
the PBR model, which is explicitly resistant to
non-system directed speech, implies that domi-
nant barge-in models will have increasingly lim-
ited utility as spoken dialogue systems become
more prevalent and are used in increasingly dif-
ficult environments. Furthermore, within the con-
text of overall dialogue systems, the PBR model’s
performance emphasizes the importance of contin-
uous processing for future systems.

This paper has proposed and evaluated the
Prediction-based Barge-in Response model. This
model’s behavior is driven by continuously pre-
dicting whether a barge-in recognition will be un-
derstood successfully, and combines incremental
speech processing techniques with a prompt re-
sumption procedure. Using a live dialogue task
with real users, we evaluated this model against
the standard barge-in model and found that it led
to improved performance in both task success and
efficiency.
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A Appendix

This diagram represents the possible operating positions the Prediction-based Barge-in Response
model can be in. If the prompt is complete, the PBR model applies the dialogue policy to the final
recognition result and initiates the on-policy speech act. If the prompt was finished without being paused
it decrements R. In the latter case (barge-in), it operates using the three states as described in Section 2.
When a partial is recognized the Stability Score is computed and compared to the T1 threshold parame-
ter. If the score is below T1 the partial is discarded. Otherwise, if the model is in State 1 (the prompt is
on) the prompt is paused, a timer is started, and control transitions to State 2. If the model is in State 2
the timer is restarted. After transitioning to State 2, control only returns to State 1 if the timer exceeds
T2. At this time, the prompt is resumed and the resumption parameter R is incremented. Control im-
mediately transitions to State 3 if a final recognition result is received. The result is evaluated by the
dialogue manager, and the new speech act is returned. If the speech act indicates the recognition was not
understood successfully, the system either resumes (if in State 1) or continues (if in State 2). In the case
of resumption, R is incremented. If the new speech act indicates understanding success, the new speech
is immediately produced.
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Abstract
We present an analysis of several pub-
licly available automatic speech recogniz-
ers (ASRs) in terms of their suitability for
use in different types of dialogue systems.
We focus in particular on cloud based
ASRs that recently have become available
to the community. We include features
of ASR systems and desiderata and re-
quirements for different dialogue systems,
taking into account the dialogue genre,
type of user, and other features. We then
present speech recognition results for six
different dialogue systems. The most in-
teresting result is that different ASR sys-
tems perform best on the data sets. We
also show that there is an improvement
over a previous generation of recognizers
on some of these data sets. We also inves-
tigate language understanding (NLU) on
the ASR output, and explore the relation-
ship between ASR and NLU performance.

1 Introduction

Dialogue system developers who are not also
speech recognition experts are in a better posi-
tion than ever before in terms of the ease of in-
tegrating existing speech recognizers in their sys-
tems. While there have been commercial solutions
and toolkits for a number of years, there were a
number of problems in getting these systems to
work. For example, early toolkits relied on spe-
cific machine hardware, software, and firmware
to function properly, often had a difficult instal-
lation process, and moreover often didn’t work
well for complex dialogue domains, or challeng-
ing acoustic environments. Fortunately the situ-
ation has greatly improved in recent years. Now
there are a number of easy to use solutions, in-
cluding open-source systems (like PocketSphinx),
as well as cloud-based approaches.

While this increased choice of quality recogniz-
ers is of great benefit to dialogue system develop-
ers, it also creates a dilemma – which recognizer
to use? Unfortunately, the answer is not simple –
it depends on a number of issues, including the
type of dialogue domain, availability and amount
of training data, availability of internet connectiv-
ity for the runtime system, and speed of response
needed. In this paper we assess several freely
available speech recognition engines, and exam-
ine their suitability and performance in several di-
alogue systems. Here we extend the work done in
Yao et al. (2010) focusing in particular on cloud
based freely available ASR systems. We include
2 local ASRs for reference, one of which was also
used in the earlier work for easy comparison.

2 Speech Recognizer Features and
Engines

The following are some of the major criteria for
selection of a speech recognizer.

Customization Some of the available speech
recognizers allow the users to tune the recognizer
to the environment it will operate in, by providing
a specialized lexicon, trained language models or
acoustic models. Customization is especially im-
portant for dialogue systems whose input contains
specialized vocabulary (see section 4).

Output options A basic recognizer will output
a string of text, representing its best hypothesis
about the transcription of the speech input. Some
recognizers offer additional outputs which are use-
ful for dialogue systems: ranked n-best hypothe-
ses allow later processing to use context for dis-
ambiguation, and incremental results allow the
system to react while the user is still speaking.

Performance characteristics Dialogue systems
differ in their requirements for response speed; a
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System Customization
Output options

Open Source
Performance

N-best Incremental Speed Installation

Pocketsphinx Full Yes Yes Yes realtime Local
Apple No Noa No No network Cloud
Google No Yes Yesb No network Cloud
AT&T Partialc Yes No No network Cloud
Otosense-Kaldi Full Yes No Yesd variablee Local
aSingle output annotated with alternative hypotheses. bOnly for web-delivered applications in a Google Chrome browser.
cCustom language models. dRelease scheduled for Fall 2013. eUser controls trade-off between speed and output quality.

Table 1: Speech recognizer features important for use in dialogue systems

speech recognizer that runs locally can help by
avoiding network latencies.

Output quality Typically, a dialogue system
would want the best recognition accuracy pos-
sible given the constraints. Ultimately, dialogue
systems want the output that would yield the best
performance for Natural Language Understand-
ing and other downstream processes. As a rule,
better speech recognition leads to better language
understanding, though this is not necessarily the
case for specific applications (see section 5).

We evaluated 5 freely available speech recog-
nizers. Their features are summarized in Table 1.
We did not include the MIT WAMI toolkit1 as we
are focused on speech services that can directly
be used by stand alone applications as opposed to
web delivered ones. We did not include commer-
cial recognizers such as Nuance, because licensing
terms can be difficult for research institutions, and
in particular, disallow publishing benchmarks.

Pocketsphinx is a version of the CMU Sphinx
ASR system optimized to run also on embedded
systems (Huggins-Daines et al., 2006). Pocket-
sphinx is fast, runs locally, and requires relatively
modest computational resources. It provides n-
best lists and lattices, and supports incremental
output. It also provides a voice activity detec-
tion functionality for continuous ASR. This ASR
is fully customizable and trainable, but users are
expected to provide language models suitable for
their applications. A few acoustic models are pro-
vided, and can be adapted using the CMUSphinx
tools.2

1http://wami.csail.mit.edu/
2http://cmusphinx.sourceforge.net/wiki/tutorialadapt

Apple Dictation is the OS level feature in both
MacOSX and iOS.3 It is integrated into the text in-
put system pipeline so a user can replace her key-
board with a microphone for entering text in any
application. Dictation is often associated with the
Siri personal assistant feature of iOS. While it is
likely that Dictation and Siri share the same ASR
technology, Dictation only does speech recogni-
tion. Apple states that Dictation learns the charac-
teristics of the user’s voice and adapts to her accent
(Apple Inc, 2012). Dictation requires an internet
connection to send recorded user speech to Ap-
ple’s servers and receive ASR results. Processing
starts as soon as the user starts speaking so the de-
lay of getting the recognition results after the user
finishes speaking is minimal.

To integrate Dictation into a dialogue system,
a system designer needs to include any system de-
fined text input control into her application and use
the control APIs to observe text changes. The user
would need to press a key when starting to speak
and push the key again once she is done speak-
ing. The ASR result is a text string annotated with
alternative interpretations of individual words or
phrases in the text. There is an API for extract-
ing those interpretations from the result. While the
Dictation feature is reasonably fast and easy to in-
tegrate, dialogue system developers have no con-
trol over the ASR process, which must be treated
as a black box. Apple dictation is limited in that
no customization is possible, no partial recogni-
tion results are provided, and there is an unspeci-
fied limit on the number of utterances dictated for
a period of time, which is not a problem for inter-
action between a single user and a dialogue sys-
tem, but may be an issue in dialogue systems that
support multiple concurrent users.

3Dictation was introduced in iOS 5.0 and MacOSX 10.8.
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Google Speech API provides support for the
HTML 5 speech input feature.4 It is a cloud based
service in which a user submits audio data using
an HTML POST request and receives as reply the
ASR output in the form of an n-best list. The au-
dio data is limited to roughly 10 seconds in length,
longer clips are rejected and return no ASR results.
The user can (1) customize the number of hy-
potheses returned by the ASR, (2) specify which
language the audio file contains and (3) enable a
filter to remove profanities from the output text.
As is the case with Apple Dictation, ASR must be
treated as a black box, and no task customization
is possible for dialogue system developers. Users
cannot specify or provide custom language models
or acoustic models. The service returns only the fi-
nal hypothesis, there is no incremental output.5 In
addition, results for the same inputs may change
unpredictably, since Google may update or other-
wise change its service and models, and models
may be adapted using specific audio data supplied
by users. In our experiments, we observed accu-
racy improvements when submitting the same au-
dio files over repeated trials over two weeks.

AT&T Watson is the ASR engine available
through the AT&T Speech Mashup service.6 It is
a cloud based service that can be accessed through
HTML POST requests, like the Google Speech
API. AT&T Watson is designed to support the de-
mands of online spoken dialogue systems, and can
be customized with data specific to a dialogue sys-
tem. Additionally, in our tests we did not observe
any limitation in the maximum length of the in-
put audio data. However, AT&T does not provide
a default general-purpose language model, and
application-specific models must be built within
the Speech Mashup service using user-provided
text data. The acoustic model must be selected
from a list provided by the AT&T service, and
acoustic models can be further customized within
the Speech Mashup service. The ASR returns an
n-best list of hypotheses but does not provide in-
cremental output.

Otosense-Kaldi Another ASR we employed
was the Kaldi-based OtoSense-Kaldi engine de-

4https://www.google.com/speech-api/v1/recognize
5The demo page shows continuous speech understanding

with incremental results but requires Google Chrome to run
and is specific to web delivered applications:
http://www.google.com/intl/en/chrome/demos/speech.html

6https://service.research.att.com/smm

veloped at SAIL.7 OtoSense-Kaldi8 is an on-line,
multi-threaded architecture based on the Kaldi
toolkit (Povey et al., 2011) that allows for dynam-
ically configurable and distributed ASR.

3 Dialogue Systems, Users, and Data

All spoken dialogue systems are similar in some
respects, in that there is speech by a user (or users)
that needs to be recognized, and this speech is
punctuated by speech from the system. More-
over, the speech is not fully independent, but ut-
terances are connected to other utterances, e.g. an-
swers to questions, or clarifications. There are,
however many ways in which systems can differ,
that have implications for which speech recogniz-
ers are most appropriate. Some of the dimensions
to consider are:

Type of microphone(s) One of the biggest im-
pacts on ASR is the acoustic environment. Will
the audio be clean, coming from a close-talking
head or lapel-mounted microphone, or will it need
to be picked up from a broader directional micro-
phone or microphone array?

Number of speakers/microphones Will there
be one designated microphone per person, or will
speaker identification need to be performed? Will
audio from the system confuse the ASR?

Push to talk or continuous speech Will the
user clearly identify the start and end of speech,
or will the system need to detect speech acousti-
cally?

Type of Users Will there be designated long-
term users, where user-training or system model
adaptation is feasible, or will there be many un-
known users, where training is not feasible? See
also section 3.1 for more on user types.

Genre What kinds of things will people be say-
ing to the system? Is it mostly commands or short
answers to questions, or more open-ended conver-
sation? See section 3.2 for more on genre issues.

Training Data Is within-domain training data
available, and if so how much?

3.1 Types of Users
The type of user is important for the overall
design of the system and has implications for

7http://sail.usc.edu
8OtoSense-Kaldi will be released (BSD license) in 2013.
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ASR performance as well. One important as-
pect is the broad physical differences among
speakers, such as male vs female, adult vs child
(e.g. Bell and Gustafson, 2003), or language pro-
ficiency/accent, that will have implications for the
acoustics of what is said, and ASR results. Other
aspects of users have implications for what will
be said, and how successful the interface may
be, overall. Many (e.g. Hassel and Hagen, 2006;
Jokinen and Kanto, 2004) have looked at the dif-
ferences between novice and expert users. Ai et
al. (2007a) also points out a difference between
real users and recruited subjects. Real users also
come in many different flavors, depending on their
purposes. E.g. are they interacting with the system
for fun, to do a specific task that they need to get
done, to learn something (specific or general), or
with some other purpose in mind?

We considered the following classes of users,
ordered from easiest to hardest to get to acceptable
performance and robustness levels:

Demonstrators are generally the easiest for a sys-
tem to understand – a demonstrator is trained in
use of the system, knows what can and can’t be
said, is motivated toward success, and is gener-
ally interested in showing off the most impres-
sive/successful aspects of the system to an audi-
ence rather than using it for its own sake.

Trained/Expert Users are similar to demonstra-
tors, but use the system to achieve specific results
rather than just to show off its capabilities. This
means that users may be forced down lines that
are not ideal for the system, if these are necessary
to accomplish the task.

Motivated Users do not have the training of ex-
pert users, and may say many things that the sys-
tem can not handle as opposed to equivalent ex-
pressions that could be handled. However moti-
vated users do want the system to succeed, and in
general are willing to do whatever they think is
necessary to improve system performance. Unlike
expert users, motivated users might be incorrect
about what will help the system (e.g. hyperarticu-
lation in response to system misunderstanding).

Casual Users are interested in finding out what
the system can do, but do not have particular moti-
vations to help or hinder the system. Casual Users
may also leave in the middle of an interaction, if it
is not engaging enough.

Red Teams are out to test or “break” the system,
or show it as not-competent, and may try to do
things the system can’t understand or react well
to, even when an alternative formulation is known
to work.

3.2 Types of Dialogue System Genres

Dialogue Genres can be distinguished along many
lines, e.g. the number and relationship of partic-
ipants, specific conversational rules, purposes of
the participants, etc. We distinguish here four gen-
res of dialogue system that have been in use at
the Institute for Creative Technologies and that we
have available corpora for (there are many other
types of dialogue genres, including tutoring, ca-
sual conversation, interviewing,. . . ). Each genre
has implications for the internal representations
and system architectures needed to engage in that
genre of dialogue.

Simple Question-answering This genre in-
volves strong user-initiative and weak global di-
alogue coherence. The user can ask any ques-
tion to the system at any time, and the system
should respond, with an appropriate answer if
able, or with some other reply indicating either
inability or unwillingness to provide the answer.
This genre allows modeling dialogue at a surface-
text level (Gandhe, 2013), without internal se-
mantic representations of the input, and where
the result of “understanding” input is the system’s
expected output. The NCPEditor9 (Leuski and
Traum, 2011) is a toolkit that provides an author-
ing environment, classification, and dialogue ca-
pability for simple question-answering characters.
The SGT Blackwell, SGT Star, and Twins systems
described below are all systems in this genre.

Advanced Question-answering This genre is
similar to the simple question-answering charac-
ters, in that the main task of the user is to elicit
information from the system character. The differ-
ence is that there is more long-range and interme-
diate dialogue coherence, in that questions can be
answered several utterances after they have been
asked, there can be intervening sub-dialogues, and
characters sometimes take the initiative to pursue
their own goals rather than just responding to the
user. Because of the requirements for somewhat
deeper understanding, and relation of input to con-

9Available free for academic research purposes from
https://confluence.ict.usc.edu/display/VHTK/Home
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text and character goals and policies, there is a
need of at least a shallow semantic representa-
tion and representation of the dialogue informa-
tion state, and the character must distinguish un-
derstanding of the input from the character out-
put (since the latter will depend on the dialogue
policy and information state, not just the under-
standing of input). The tactical questioning archi-
tecture (Gandhe et al., 2009)10 provides author-
ing and run-time support for advanced question-
answering characters, and has been used to build
over a dozen characters for purposes such as train-
ing tactical questioning, training culture, and psy-
chology experiments (Gandhe et al., 2011). The
Amani character described below is in this genre.

Slot-filling Probably the most common type of
dialogue system (at least in the research commu-
nity) is slot-filling. Here the dialogue is fairly
structured, with an initial greeting phase, then one
or more tasks, which all start with the user se-
lecting the task, and the system taking over ini-
tiative to “fill” and possibly confirm the needed
slots, before retrieving some information from a
database, or performing a simple service.11 This
genre also requires a semantic representation, at
least of the slots and acceptable values. Gener-
ally, the set of possible values is large enough, that
some form of NLG is needed (at least template
filling), rather than authoring of all full sentences.
There are a number of toolkits and development
frameworks that are well suited to slot-filling sys-
tems, e.g. Ravenclaw (Bohus and Rudnicky, 2003)
or Trindikit (Larsson and Traum, 2000). The Ra-
diobots system, described below is in this genre.

Negotiation and Planning In this genre, the
system is more of an equal partner with the user,
than a servant, as in the slot-filling systems. The
system must not merely understand user requests,
but must also evaluate whether they meet the sys-
tem goals, what the consequences and precondi-
tions of requests are, and whether there are better
alternatives. For this kind of inference, a more de-
tailed semantic representation is required than just
filling in slots. While we are not aware of publicly
available software that makes this kind of system
easy to construct, there have been several built us-
ing an information-state approach, or the soar cog-

10Soon to be released as part of the virtual human toolkit.
11Mixed-initiative versions of this genre exist, where the

user can also provide unsolicited information, which reduces
the number of system queries needed.

nitive architecture. The TRIPS system (Allen et
al., 2001) also has many similarities.

3.3 ICT Dialogue Systems Tested

We tested the recognizers described in section 2
on data sets collected from six different dialogue
domains. Five are the same ones tested in Yao et
al. (2010), to which we added the Twins set. De-
tails on the size of the training and development
sets may be found in Yao et al. (2010), here we
report only the numbers relevant to the Twins do-
main and to the NLU analysis, which are not in
Yao et al. (2010).

SGT Blackwell was created as a virtual human
technology demonstration for the 2004 Army Sci-
ence Conference. This is a question-answering
character, with no internal semantic representation
and the primary NLU task merged with Dialogue
management as selecting the best response.

The original users were ICT demonstrators.
However, there were also some experiments with
recruited participants (Leuski et al., 2006a; Leuski
et al., 2006b). Later SGT Blackwell became a part
of the “best design in America” triennial at the
Cooper-Hewitt Museum in New York City, and
the data set here is from visitors to the museum,
who are mostly casual users, but range from expert
to red-team. Users spoke into a mounted direc-
tional microphone (see Robinson et al., 2008 for
more details).

SGT STAR (Artstein et al., 2009a) is a question-
answering character similar to SGT Blackwell, al-
though designed to talk about Army careers rather
than general knowledge. The users are Army per-
sonnel who went to job fairs and visited schools in
the mobile Army adventure vans, speaking using
headset microphones, and performing for an audi-
ence. The users are somewhere between demon-
strators and expert users. They are speaking to
SGT STAR for the benefit of an audience, but their
primary purpose is to convey information to the
audience in a memorable way (through dialogue
with SGT STAR) rather than to show off the high-
lights of the character.

The Twins are two life-size virtual characters
who serve as guides at the Museum of Science
in Boston (Swartout et al., 2010). The charac-
ters promote interest in Science, Technology, En-
gineering and Mathematics (STEM) in children
between the ages of 7 and 14. They are question-
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answering characters, but unlike SGTs Blackwell
and Star, the response is a whole dialogue se-
quence, potentially involving interchange from
both characters, rather than a single character turn.

There are two types of users for the Twins:
demonstrators, who are museum staff members,
using head-mounted microphones, and museum
visitors, who use a Shure 522 table-top mounted
microphone (Traum et al., 2012). More on analy-
sis of the museum data can be found in (Aggarwal
et al., 2012). We also investigated speech recog-
nition and NLU performance in this domain in
Morbini et al. (2012).

This dataset contains 14K audio files each an-
notated with one of the 168 possible response se-
quences. The division in training development and
test is the same used in Morbini et al. (2012) (10K
for training, the rest equally divided between de-
velopment and test).

Amani (Artstein et al., 2009b; Artstein et al.,
2011) is an advanced question-answering char-
acter used as a prototype for systems meant to
train soldiers to perform tactical questioning. The
users are in between real users and test subjects:
they were cadets at the U.S. Military Academy in
April 2009, who interacted with Amani as a uni-
versity course exercise on negotiation techniques.
They used head-mounted microphones to talk with
Amani.

This dataset comprises of 1.8K audio files each
annotated with one of the 105 possible NLU se-
mantic classes.

Radiobots (Roque et al., 2006) is a training pro-
totype that responds to military calls for artillery
fire in a virtual reality urban combat environment.
This is a domain in the slot-filling genre, where
there is a preferred protocol for the order in which
information is provided and confirmed. Users are
generally trainees, learning how to do calls for fire,
they are motivated users with some training. The
semantic processing involved tagging each word
with the dialogue act and parameter that it was as-
sociated with (Ai et al., 2007b).

This data set was collected during the develop-
ment of the system in 2006 at Fort Sill, Oklahoma,
during two evaluation sessions from recruited vol-
unteer trainees who performed calls for specific
missions (Robinson et al., 2006). These subjects
used head-mounted microphones rather than the
ASTI simulated radios from later data collection.

SASO-EN (Traum et al., 2008) is a negotiation
training prototype in which two virtual characters
negotiate with a human “trainee” about moving a
medical clinic. The genre is negotiation and plan-
ning, where the human participant must try to form
a coalition, and the characters reason about utili-
ties of different proposals, as well as causes and
effects. The output of NLU is a frame represen-
tation including both semantic elements, like the-
matic argument structure, and pragmatic elements,
such as addressee and referring expressions. Fur-
ther contextual interpretation is performed by each
of the virtual characters to match the (possibly par-
tial) representation to actions and states in their
task model, resolve other referring expressions,
and determine a full set of dialogue acts (Traum,
2003). Speech was collected at the USC Insti-
tute for Creative Technologies (ICT) during 2006–
2009, mostly from visitors and new hires, who
acted as test subjects.

This dataset has 4K audio files each anno-
tated with one of the 117 different NLU semantic
classes.

4 ASR Performance

We tested each of the Datasets described in Sec-
tion 3.3 with some of the recognizers described
in Section 2. All recognizers were tested on the
Amani, SASO-EN, and Twins domains, and we
also tested a natural language understanding com-
ponent on these data sets (Section 5). For SGT
Blackwell, SGT STAR, and Radiobots, we report
the performance on the same development set used
in Yao et al. (2010). For Amani and SASO-EN
(where we also report the NLU performance), we
run a 10-fold cross-validation in which 9 folds
where used to train the NLU and ASR language
model and the 10th was used for testing. For the
Twins dialogue system, we used the same partition
into training, development and testing reported in
Morbini et al. (2012) and the results reported here
are from the development set. Due to differences
in training/testing regimens, performance of sys-
tems are only comparable within each domain.

Table 2 summarizes the performance of the var-
ious ASR engines on the evaluation data sets. Per-
formance is measured as Word Error Rate and was
obtained using the NIST SCLITE tool.12

Note that only Otosense-Kaldi in the Twins do-
main had adapted acoustic models. In the remain-

12http://www.itl.nist.gov/iad/mig/tools/
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Speech recognizer
Evaluation data set

Amani Radiobots SASO-EN SGT Blackwell SGT Star Twins

Pocketsphinx 39.7 11.8 28.4 51 28.6 81
Apple 28 — 30.9 — — 29
AT&T 29 12.1 16.3 27.3 21.7 28.8
Google 23.8 36.3 20 18 26 20.6
Otosense-Kaldi 33.7 — 22.1 — — 18.7

Table 2: Word Error Rates (%) for the various dialogue systems and ASR systems tested.

ing cases only the language model was adapted.
Looking at the results on the development set re-
ported in Yao et al. (2010), we have improvements
in 3 out of 5 domains: Amani (−11.8% Google),
SASO-EN (−11.7% AT&T) and SGT Blackwell
(−13% Google). In Radiobots and SGT Star the
performance achieved with just language model
adaptation, when permitted, is worse: +4.8% and
+1.7% respectively.

We find that there is no single best performing
speech recognizer: results vary greatly between
the evaluation test sets. In 4 of the 6 datasets over-
all, and 2 of the 3 datatests tested with Otosense-
Kaldi, the best performer is a cloud-based ser-
vice (Google or AT&T). There are two datasets
for which a local, fully customizable recognizer
performs better than the cloud-based services. Ra-
diobots, consisting of military calls for artillery
fire, has a fairly limited and very specialized vo-
cabulary, and indeed the two recognizers with cus-
tom language models (Pocketsphinx and AT&T)
perform much better than the non-customizable
recognizer (Google).

The Twins dataset is unique in that for the
Otosense-Kaldi system we custom-trained acous-
tic and language models, while standard WSJ
acoustic models and adapted language models
were used for the other dialogue systems. In
both cases the models were triphone based with
a Linear Discriminant Analysis (LDA) front end,
and Maximum Likelihood Linear Transforma-
tion (MLLT) and Maximum Mutual Information
(MMI) training. This reflects on the very good
performance in the Twins domain, decent perfor-
mance on the SASO-EN domain (reasonable mis-
match of WSJ and SASO-EN) and very degraded
performance in Amani (highly mismatched Amani
and WSJ domains). The observed degradation in
performance is accentuated by the MMI discrim-
inative training on the mismatched-WSJ data. As

with PocketSphinx and Watson, and unlike with
Apple Dictation and Google Speech API, with
Kaldi we fully control experimental conditions
and can guarantee no contamination of the train-
test data.

In summary, our evaluation shows that cus-
tomizable recognizers are useful when the ex-
pected speech is highly specialized, or when sub-
stantial resources are available for tuning the rec-
ognizer.

5 NLU Accuracy & Relation between
ASR and NLU

While the different genres of system have different
types of output for NLU: response text, dialogue
act and parameter tags, speech acts, or semantic
frames, many of them can be coerced into a se-
lection task, in which the NLU selects the right
output from a set of possible outputs. This allows
any multiclass classification algorithm to be used
for NLU. A possible drawback is that for some
inputs, the right output might not be available in
the set considered by the training data, even if it
might easily be constructed from known parts us-
ing a generative approach.

A second issue is that even though we can cast
the problem as multi-class classification, classifi-
cation accuracy is not always the most appropriate
metric of NLU quality. For question-answering
characters, getting an appropriate and relevant re-
ply is more important than picking the exact re-
ply selected by a human domain designer or an-
notator: there might be multiple good answers, or
even the best available answer might not be very
good. For that reason, the question-answering
characters allow an “off-topic” answer and Error-
return plots (Artstein, 2011) might be necessary
to choose an optimal threshold. For the SASO-EN
system, slot-filler metrics such as precision, recall,
and f-score are more appropriate than frame accu-
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racy, because some frames may have many slots
in common and few that are different (e.g. just a
different addressee). Nonetheless, we begin our
analysis within this common framework. For sim-
plicity, we start with just three domains: Twins,
Amani, and SASO-EN. SGT STAR and Blackwell
are very similar to Twins in terms of NLU. Ra-
diobots is more challenging to coerce to multiclass
classification.

Conventional wisdom in the speech and lan-
guage processing community is that performance
of ASR and NLU are closely tied: improved
speech recognition leads to better language under-
standing, while deficiencies in speech recognition
cause difficulty in understanding. This conven-
tional wisdom is borne out by decades of experi-
ence with speech and dialogue systems, though we
are not aware of attempts to systematically demon-
strate it. The present study shows that the expected
relation between speech recognition and language
understanding holds for the systems we tested.

Accepted assumptions about the relation be-
tween speech recognition and language under-
standing have been repeatedly challenged. Direct
challenges are typically limited to specific appli-
cations. Wang et al. (2003) show that for a slot-
filling NLU, ASR can be specifically tuned to rec-
ognize those words that are relevant to the slot-
filling task, resulting in improved understanding
despite a decrease in performance on overall word
recognition. However, Boros et al. (1996) found
that when not optimizing the ASR for the specific
slot filling task there is a nearly linear correlation
between word accuracy and NLU accuracy. Al-
shawi (2003) and Huang and Cox (2006) show that
in call-routing applications the word level can be
dispensed with altogether and calls routed based
on phonetic information alone without noticeable
loss in performance. These challenges suggest that
the speech-language divide is not as clean as the
theory suggests.

To investigate the relation between ASR and
NLU, we ran each ASR output from each of
the 5 recognizers through an understanding com-
ponent to obtain an NLU output (each dataset
had a separate NLU component, which was held
constant for all speech recognizers). ASR and
NLU performance are conventionally measured on
scales of opposite polarity: better performance
shows up as lower word error rates but higher
NLU accuracies. For the correlations we invert the

conventional ASR scale and use word accuracy, so
that higher numbers signify better performance on
both scales.13

Figure 1 shows the results obtained in the 3 di-
alogue systems by the various ASR systems. The
figures plot ASR performance against NLU per-
formance; NLU results on manual transcriptions
are included for comparison. There are too few
data points for the correlations between ASR and
NLU performance to be significant, but the trends
are positive, as expected.

Our experiments lend supporting evidence to
the claim that in general, ASR performance is pos-
itively linked to NLU performance (special cases
notwithstanding). The 3 datasets exhibit posi-
tive correlations between speech recognition and
language understanding performance. Thus, we
claim that the basis of the conventional wisdom
is sound: speech recognition directly affects lan-
guage understanding. This conclusion holds when
the speech recognizer has been optimized to pro-
duce the most accurate transcript, rather than for a
specific NLU.

6 Conclusion and Future Work

We have extended here the ASR system evaluation
published in Yao et al. (2010) including some new
cloud based ASR services that achieve very good
performance showing an improvement of around
12%. We also showed that ASR and NLU perfor-
mance are correlated.

One possible avenue of future work is to ex-
tract importance weights for each word from the
learnt NLU models and use these weights to try
to explain those cases that diverge from the corre-
lation between ASR and NLU performance. This
may also give us a better measure than WER for
assessing ASR performance in dialogue systems.
Another avenue of future work involves examin-
ing different types of NLU engines, and different
metrics for the different dialogue system genres,
which, again, may lead to a more relevant assess-
ment of ASR performance.
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Abstract

In a spoken dialog system, dialog state
tracking deduces information about the
user’s goal as the dialog progresses, syn-
thesizing evidence such as dialog acts over
multiple turns with external data sources.
Recent approaches have been shown to
overcome ASR and SLU errors in some
applications. However, there are currently
no common testbeds or evaluation mea-
sures for this task, hampering progress.
The dialog state tracking challenge seeks
to address this by providing a heteroge-
neous corpus of 15K human-computer di-
alogs in a standard format, along with a
suite of 11 evaluation metrics. The chal-
lenge received a total of 27 entries from 9
research groups. The results show that the
suite of performance metrics cluster into 4
natural groups. Moreover, the dialog sys-
tems that benefit most from dialog state
tracking are those with less discriminative
speech recognition confidence scores. Fi-
nally, generalization is a key problem: in
2 of the 4 test sets, fewer than half of the
entries out-performed simple baselines.

1 Overview and motivation

Spoken dialog systems interact with users via nat-
ural language to help them achieve a goal. As the
interaction progresses, the dialog manager main-
tains a representation of the state of the dialog
in a process called dialog state tracking (DST).
For example, in a bus schedule information sys-
tem, the dialog state might indicate the user’s de-
sired bus route, origin, and destination. Dialog
state tracking is difficult because automatic speech

∗Most of the work for the challenge was performed when
the second and third authors were with Honda Research In-
stitute, Mountain View, CA, USA

recognition (ASR) and spoken language under-
standing (SLU) errors are common, and can cause
the system to misunderstand the user’s needs. At
the same time, state tracking is crucial because
the system relies on the estimated dialog state to
choose actions – for example, which bus schedule
information to present to the user.

Most commercial systems use hand-crafted
heuristics for state tracking, selecting the SLU re-
sult with the highest confidence score, and dis-
carding alternatives. In contrast, statistical ap-
proaches compute scores for many hypotheses for
the dialog state (Figure 1). By exploiting correla-
tions between turns and information from external
data sources – such as maps, bus timetables, or
models of past dialogs – statistical approaches can
overcome some SLU errors.

Numerous techniques for dialog state tracking
have been proposed, including heuristic scores
(Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young,
2007), kernel density estimators (Ma et al., 2012),
and discriminative models (Bohus and Rudnicky,
2006). Techniques have been fielded which scale
to realistically sized dialog problems and operate
in real time (Young et al., 2010; Thomson and
Young, 2010; Williams, 2010; Mehta et al., 2010).
In end-to-end dialog systems, dialog state tracking
has been shown to improve overall system perfor-
mance (Young et al., 2010; Thomson and Young,
2010).

Despite this progress, direct comparisons be-
tween methods have not been possible because
past studies use different domains and system
components, for speech recognition, spoken lan-
guage understanding, dialog control, etc. More-
over, there is little agreement on how to evaluate
dialog state tracking. Together these issues limit
progress in this research area.

The Dialog State Tracking Challenge (DSTC)
provides a first common testbed and evaluation

404



Figure 1: Overview of dialog state tracking. In this example, the dialog state contains the user’s desired
bus route. At each turn t, the system produces a spoken output. The user’s spoken response is processed
to extract a set of spoken language understanding (SLU) results, each with a local confidence score. A
set of Nt dialog state hypotheses is formed by considering all SLU results observed so far, including the
current turn and all previous turns. Here, N1 = 3 and N2 = 5. The dialog state tracker uses features of
the dialog context to produce a distribution over all Nt hypotheses and the meta-hypothesis that none of
them are correct.

suite for dialog state tracking. The DSTC orga-
nizers made available a public, heterogeneous cor-
pus of over 15K transcribed and labeled human-
computer dialogs. Nine teams entered the chal-
lenge, anonymously submitting a total of 27 dialog
state trackers.

This paper serves two roles. First, sections 2
and 3 provide an overview of the challenge, data,
and evaluation metrics, all of which will remain
publicly available to the community (DST, 2013).
Second, this paper summarizes the results of the
challenge, with an emphasis on gaining new in-
sights into the dialog state tracking problem, in
Section 4. Section 5 briefly concludes.

2 Challenge overview

2.1 Problem statement
First, we define the dialog state tracking problem.
A dialog state tracker takes as input all of the ob-
servable elements up to time t in a dialog, includ-
ing all of the results from the automatic speech

recognition (ASR) and spoken language under-
standing (SLU) components, and external knowl-
edge sources such as bus timetable databases and
models of past dialogs. It also takes as input a
set of Nt possible dialog state hypotheses, where
a hypothesis is an assignment of values to slots in
the system. The tracker outputs a probability dis-
tribution over the set of Nt hypotheses, and the
meta-hypothesis REST which indicates that none
of them are correct. The goal is to assign probabil-
ity 1.0 to the correct state, and 0.0 to other states.
Note that the set of dialog states is given. Also
note that Nt varies with t – typically as the dia-
log progresses and more concepts are discussed,
the number of candidate hypotheses increases. An
example is given in Figure 1.

In this challenge, dialog states are generated in
the usual way, by enumerating all slots values that
have appeared in the SLU N-best lists or system
output up until the current turn. While this ap-
proach precludes a tracker assigning a score to an
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SLU value that has not been observed, the cardi-
nality of the slots is generally large, so the likeli-
hood of a tracker correctly guessing a slot value
which hasn’t been observed anywhere in the input
or output is vanishingly small.

2.2 Challenge design
The dialog state tracking challenge studies this
problem as a corpus-based task – i.e., dialog state
trackers are trained and tested on a static corpus
of dialogs, recorded from systems using a variety
of state tracking models and dialog managers. The
challenge task is to re-run state tracking on these
dialogs – i.e., to take as input the runtime system
logs including the SLU results and system output,
and to output scores for dialog states formed from
the runtime SLU results. This corpus-based de-
sign was chosen because it allows different track-
ers to be evaluated on the same data, and because a
corpus-based task has a much lower barrier to en-
try for research groups than building an end-to-end
dialog system.

In practice of course, a state tracker will be used
in an end-to-end dialog system, and will drive ac-
tion selection, thereby affecting the distribution of
the dialog data the tracker experiences. In other
words, it is known in advance that the distribu-
tion in the training data and live data will be mis-
matched, although the nature and extent of the
mis-match are not known. Hence, unlike much
of supervised learning research, drawing train and
test data from the same distribution in offline ex-
periments may overstate performance. So in the
DSTC, train/test mis-match was explicitly created
by choosing test data to be from different dialog
systems.

2.3 Source data and challenge corpora
The DSTC uses data from the public deployment
of several systems in the Spoken Dialog Challenge
(SDC) (Black et al., 2010), provided by the Dialog
Research Center at Carnegie Mellon University. In
the SDC, telephone calls from real passengers of
the Port Authority of Allegheny County, who runs
city buses in Pittsburgh, were forwarded to dialog
systems built by different research groups. The
goal was to provide bus riders with bus timetable
information. For example, a caller might want
to find out the time of the next bus leaving from
Downtown to the airport.

The SDC received dialog systems from three
different research groups, here called Groups A,

B, and C. Each group used its own ASR, SLU,
and dialog manager. The dialog strategies across
groups varied considerably: for example, Groups
A and C used a mixed-initiative design, where the
system could recognize any concept at any turn,
but Group B used a directed design, where the
system asked for concepts sequentially and could
only recognize the concept being queried. Groups
trialled different system variants over a period of
almost 3 years. These variants differed in acoustic
and language models, confidence scoring model,
state tracking method and parameters, number of
supported bus routes, user population, and pres-
ence of minor bugs. Example dialogs from each
group are shown in the Appendix.

The dialog data was partitioned into 5 train-
ing corpora and 4 testing corpora (Table 1).
The partioning was intended to explore different
types of mis-match between the training and test
data. Specifically, the dialog system in TRAIN1A,
TRAIN1B, TRAIN1C, TRAIN2, and TEST1 are all
very similar, so TEST1 tests the case where there
is a large amount of similar data. TEST2 uses the
same ASR and SLU but a different dialog con-
troller, so tests the case where there is a large
amount of somewhat similar data. TEST3 is very
similar to TRAIN3 and tests the case where there
is a small amount of similar data. TEST4 uses a
completely different dialog system to any of the
training data.

2.4 Data preparation

The dialog system log data from all three groups
was converted to a common format, which
described SLU results and system output using
a uniform set of dialog acts. For example, the
system speech East Pittsburgh Bus Schedules.
Say a bus route, like 28X, or say I’m not sure.
was represented as hello(), request(route), exam-
ple(route=28x), example(route=dontknow). The
user ASR hypothesis the next 61c from oakland to
mckeesport transportation center was represented
as inform(time.rel=next), inform(route=61c),
inform(from.neighborhood=oakland), in-
form(to.desc=“mckeesport transportation
center”). In this domain there were a total
of 9 slots: the bus route, date, time, and three
components each for the origin and destination,
corresponding to streets, neighborhoods, and
points-of-interest like universities. For complete
details see (Williams et al., 2012).
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TRAIN TEST

1A 1B 1C 2 3 1 2 3 4
Group A A A A B A A B C
Year(s) 2009 2009 2009 2010 2010 2011 2012 2011-2 2010
Dialogs 1013 1117 9502 643 688 715 750 1020 438

Turns/Dialog 14.7 13.3 14.5 14.5 12.6 14.1 14.5 13.0 10.9
Sys acts/turn 4.0 3.8 3.8 4.0 8.4 2.8 3.2 8.2 4.6
Av N-best len 21.7 22.3 21.9 22.4 2.9 21.2 20.5 5.0 3.2

Acts/N-best hyp 2.2 2.2 2.2 2.3 1.0 2.1 2.0 1.0 1.6
Slots/turn 44.0 46.5 45.6 49.0 2.1 41.4 36.9 4.3 3.5

Transcribed? yes yes yes yes yes yes yes yes yes
Labelled? yes no no yes yes yes yes yes yes

1-best WER 42.9% 41.1% 42.1% 58.2% 40.5% 57.9% 62.1% 48.1% 55.6%
1-best SLU Prec. 0.356 - - 0.303 0.560 0.252 0.275 0.470 0.334

1-best SLU Recall 0.522 - - 0.388 0.650 0.362 0.393 0.515 0.376
N-best SLU Recall 0.577 - - 0.485 0.738 0.456 0.492 0.634 0.413

Table 1: Summary of the datasets. One turn includes a system output and a user response. Slots are
named entity types such as bus route, origin neighborhood, date, time, etc. N-best SLU Recall indicates
the fraction of concepts which appear anywhere on the SLU N-best list.

Group B and C systems produced N-best lists
of ASR and SLU output, which were included in
the log files. Group A systems produced only 1-
best lists, so for Group A systems, recognition was
re-run with the Pocketsphinx speech recognizer
(Huggins-Daines et al., 2006) with N-best output
enabled, and the results were included in the log
files.

Some information in the raw system logs was
specific to a group. For example, Group B’s logs
included information about word confusion net-
works, but other groups did not. All of this infor-
mation was included in a “system specific” sec-
tion of the log files. Group A logs contained about
40 system-specific name/value pairs per turn, and
Group B about 600 system-specific name/value
pairs per turn. Group C logs contained no system
specific data.

3 Labeling and evaluation design

The output of a dialog state tracker is a proba-
bility distribution over a set of given dialog state
hypotheses, plus the REST meta-hypothesis. To
evaluate this output, a label is needed for each di-
alog state hypothesis indicating its correctness.

In this task-oriented domain, we note that the
user enters the call with a specific goal in mind.
Further, when goal changes do occur, they are
usually explicitly marked: since all of the sys-

tems first collect slot values, and then provide bus
timetables, if the user wishes to change their goal,
they need to start over from the beginning. These
“start over” transitions are obvious in the logs.
This structure allows the correctness of each di-
alog state to be equated to the correctness of the
SLU items it contains. As a result, in the DSTC
we labeled the correctness of SLU hypotheses in
each turn, and then assumed these labels remain
valid until either the call ends, or until a “start
over” event. Thus to produce the labels, the la-
beling task followed was to assign a correctness
value to every SLU hypothesis on the N-best list,
given a transcript of the words actually spoken in
the dialog up to the current turn.

To accomplish this, first all user speech was
transcribed. The TRAIN1 datasets had been tran-
scribed using crowd-sourcing in a prior project
(Parent and Eskenazi, 2010); the remainder were
transcribed by professionals. Then each SLU hy-
pothesis was labled as correct or incorrect. When a
transcription exactly and unambiguously matched
a recognized slot value, such as the bus route
“sixty one c”, labels were assigned automati-
cally. The remainder were assigned using crowd-
sourcing, where three workers were shown the true
words spoken and the recognized concept, and
asked to indicate if the recognized concept was
correct – even if it did not match the recognized
words exactly. Workers were also shown dialog
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history, which helps decipher the user’s meaning
when their speech was ambiguous. If the 3 work-
ers were not unanimous in their labels (about 4%
of all turns), the item was labeled manually by the
organizers. The REST meta-hypothesis was not
explicitly labeled; rather, it was deemed to be cor-
rect if none of the prior SLU results were labeled
as correct.

In this challenge, state tracking performance
was measured on each of the 9 slots separately,
and also on a joint dialog state consisting of all the
slots. So at each turn in the dialog, a tracker output
10 scored lists: one for each slot, plus a 10th list
where each dialog state contains values from all
slots. Scores were constrained to be in the range
[0, 1] and to sum to 1.

To evaluate tracker output, at each turn, each hy-
pothesis (including REST) on each of the 10 lists
was labeled as correct or incorrect by looking up
its corresponding SLU label(s). The scores and la-
bels over all of the dialogs were then compiled to
compute 11 metrics. Accuracy measures the per-
cent of turns where the top-ranked hypothesis is
correct. This indicates the correctness of the item
with the maximum score. L2 measures the L2 dis-
tance between the vector of scores, and a vector of
zeros with 1 in the position of the correct hypoth-
esis. This indicates the quality of all scores, when
the scores as viewed as probabilities.

AvgP measures the mean score of the first cor-
rect hypothesis. This indicates the quality of the
score assigned to the correct hypothesis, ignoring
the distribution of scores to incorrect hypotheses.
MRR measures the mean reciprocal rank of the
first correct hypothesis. This indicates the quality
of the ordering the scores produces (without nec-
essarily treating the scores as probabilities).

The remaining measures relate to receiver-
operating characteristic (ROC) curves, which
measure the discrimination of the score for the
highest-ranked state hypothesis. Two versions
of ROC are computed – V1 and V2. V1 com-
putes correct-accepts (CA), false-accepts (FA),
and false-rejects (FR) as fractions of all utter-
ances, so for example

CA.V 1(s) =
#CA(s)

N
(1)

where #CA(s) indicates the number of correctly
accepted states when only those states with score
≥ s are accepted, and N is the total number
of states in the sample. The V1 metrics are a
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Figure 2: Schedule2 accuracy averaged over slots
for every tracker on every dataset. Percentages un-
der the datasets indicate the percent of the track-
ers which exceeded the performance of both base-
lines.

useful indication of overall performance because
they combine discrimination and overall accuracy
– i.e., the maximum CA.V 1(s) value is equal to
accuracy computed above.

V2 considers fractions of correctly classified ut-
terances, so for example

CA.V 2(s) =
#CA(s)

#CA(0)
. (2)

The V2 metrics are useful because they measure
the discrimination of the scoring independently of
accuracy – i.e., the maximum value of CA.V 2(s)
is always 1, regardless of accuracy.

From these ROC statistics, several met-
rics are computed. ROC.V1.EER computes
FA.V 1(s) where FA.V 1(s) = FR.V 1(s).
The metrics ROC.V1.CA05, ROC.V1.CA10,
and ROC.V1.CA20 compute CA.V 1(s) when
FA.V 1(s) = 0.05, 0.10, and 0.20 respec-
tively. ROC.V2.CA05, ROC.V2.CA10, and
ROC.V2.CA20 do the same using the V2 ver-
sions.

Apart from what to measure, there is currently
no standard that specifies when to measure – i.e.,
which turns to include when computing each met-
ric. So for this challenge, a set of 3 schedules were
used. schedule1 includes every turn. schedule2
include turns where the target slot is either present
on the SLU N-best list, or where the target slot
is included in a system confirmation action – i.e.,
where there is some observable new information
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Figure 3: Receiver operating characteristc (ROC)
curve for SLU confidence scores of the 1-best hy-
pothesis in the test datasets. The SLU confidence
score in TEST3 is most discriminative; TEST1 and
TEST2 are the least discriminative.

about the target slot. schedule3 includes only the
last turn of a dialog.

In sum, for each tracker, one measurement is re-
ported for each test set (4), schedule (3), and met-
ric (11) for each of the 9 slots, the “joint” slot, and
a weighted average of the individual slots (11), for
a total of 4 · 3 · 11 · 11 = 1452 measurements per
tracker. In addition, each tracker reported average
latency per turn – this ranged from 10ms to 1s.

3.1 Baseline trackers

For comparisons, two simple baselines were im-
plemented. The first (Baseline0) is a majority
class baseline that always guesses REST with
score 1. The second (Baseline1) follows simple
rules which are commonly used in spoken dialog
systems. It maintains a single hypothesis for each
slot. Its value is the SLU 1-best with the highest
confidence score observed so far, with score equal
to that SLU item’s confidence score.

4 Results and discussion

Logistically, the training data and labels, bus
timetable database, scoring scripts, and baseline
system were publicly released in late December
2012. The test data (without labels) was released
on 22 March 2013, and teams were given a week to
run their trackers and send results back to the orga-
nizers for evaluation. After the evaluation, the test
labels were published. Each team could enter up
to 5 trackers. For the evaluation, teams were asked
to process the test dialogs online – i.e., to make a
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Figure 4: Average rank of top-performing trackers
for the four metrics identified in Figure 6. Rank-
ing was done using the given metric, schedule2,
and the weighted average of all slots. Tn.Em in-
dicates team n, entry m.

single pass over the data, as if the tracker were be-
ing run in deployment. Participation was open to
researchers at any institution, including the orga-
nizers and advisory board. To encourage partici-
pation, the organizers agreed not to identify par-
ticipants in publications, and there was no require-
ment to disclose how trackers were implemented.

9 teams entered the DSTC, submitting a total of
27 trackers. The raw output and all 1452 measure-
ments for each tracker (and the 2 baselines) are
available from the DSTC homepage (DST, 2013).

4.1 Analysis of trackers and datasets

We begin by looking at one illustrative metric,
schedule2 accuracy averaged over slots, which
measures the accuracy of the top dialog hypothe-
sis for every slot when it either appears on the SLU
N-best list or is confirmed by the system.1 Results
in Figure 2 show two key trends. First, relative
to the baselines, performance on the test data is
markedly lower than the training data. Comparing
TRAIN2 to TEST1/TEST2 and TRAIN3 to TEST3,
the relative gain over the baselines is much lower
on test data. Moreover, only 38% of trackers per-
formed better than a simple majority-class base-
line on TEST4, for which there was no matched
training data. These findings suggests that gen-
eralization is an important open issues for dialog
state trackers.

Second, Figure 2 indicates that the gains made

1Results using the joint dialog state are broadly similar,
and are omitted for space.
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Figure 5: Percent of highest-scored dialog state hypotheses which did not appear in the top-ranked SLU
position vs. schedule2 accuracy over all slots. Trackers – including those with the highest accuracy –
for TEST1 and TEST2 rarely assigned the highest score to an SLU hypothesis other than the top. All
trackers for TEST3 and TEST4 assigned the highest score to an SLU hypothesis other than the top in a
non-trivial percent of turns.

by the trackers over the baselines are larger
for Group A systems (TEST1 and TEST2) than
for Group B (TEST3) and C (TEST4) systems.
Whereas the baselines consider only the top SLU
hypothesis, statistical trackers can make use of
the entire N-best list, increasing recall – compare
the 1-best and N-best SLU recall rates in Table 1.
However, Group A trackers almost never assigned
the highest score to an item below the top position
in the SLU N-best list. Rather, the larger gains for
Group A systems seem due to the relatively poor
discrimination of Group A’s SLU confidence score
(Figure 3): whereas the trackers use a multitude
of features to assign scores, the baselines rely en-
tirely on the SLU confidence for their scores, so
undiscriminative SLU confidence measures ham-
per baseline performance.

4.2 Analysis of metrics

This challenge makes it possible to study the em-
pirical differences among the evaluation metrics.
Intuitively, if the purpose of a metric is to order

a set of trackers from best to worst, then 2 met-
rics are similar if they yield a similar ordering over
trackers. Specifically, for every metricm, we have
a value x(m, d, s, t) where d is the dataset, and
s is the evaluation schedule, and t is the tracker.
We define r(m, d, s, t) as the rank of tracker t
when ordered using metric m, dataset d and eval-
uation schedule s. Using these ranks, we compute
Kendall’s Tau for every d, s, and pair of metrics
m1 and m2 (Kendall, 1938). We then compute the
average Kendall’s Tau for m1 and m2 by averag-
ing over all d and s.2

Results are in Figure 6. Here we see 4 natu-
ral clusters emerge: a cluster for correctness with
Accuracy, MRR, and the ROC.V1.CA measures; a
cluster for probability quality with L2 and Aver-
age score; and two clusters for score discrimina-
tion – one with ROC.V1.EER and the other with
the three ROC.V2 metrics. This finding suggest

2A similar analysis over schedules showed that the differ-
ences in ranking for different schedules were smaller than for
metrics.
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at (x, y) is given by 1−τ , where τ is the average Kendall’s Tau computed on the rank orderings produced
by methods x and y. Larger circles indicate dissimilar rankings; smaller circles indicate similar rankings;
missing circles indicate identical rankings. The red boxes indicate groups of metrics that yield similar
rankings.

that measuring one metric from each cluster will
contain nearly the same information as all 9 met-
rics. For example, one might report only Accu-
racy, L2, ROC.V1.EER, and ROC.V2.CA5.

Using these 4 metrics, we rank-ordered each
tracker, using schedule2 and a weighted average
of all slots. We then computed the average rank
across the 4 test sets. Finally we selected the set
of trackers with the top three average ranks for
each metric. Results in Figure 4 emphasize that
different trackers are tuned for different perfor-
mance measures, and the optimal tracking algo-
rithm depends crucially on the target performance
measure.

5 Conclusion

The dialog state tracking challenge has provided
the first common testbed for this task. The data,
evaluation tools, and baselines will continue to be
freely available to the research community (DST,
2013). The details of the trackers themselves will
be published at SIGDIAL 2013.

The results of the challenge show that the
suite of performance metrics cluster into 4 natural
groups. We also find that larger gains over conven-
tional rule-based baselines are present in dialog

systems where the speech recognition confidence
score has poor discrimination. Finally, we observe
substantial limitations on generalization: in mis-
matched conditions, around half of the trackers en-
tered did not exceed the performance of two sim-
ple baselines.

In future work, it should be verified that im-
provements in dialog state tracking lead to im-
provements in end-to-end dialog performance
(e.g., task completion, user satisfaction, etc.). In
addition, it would be interesting to study dialogs
where goal changes are more common.
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Appendix 1: Sample dialog excerpts

Below are transcripts of calls in the DSTC corpus.
The user’s side shows utterances as transcribed by
human annotators.

Group A

SYS: Welcome to the CMU Let’s Go bus informa-
tion system. To get help at any time, just say Help
or press zero. What can I do for you?
USR: 61c evening hours
SYS: For example, you can say, when is the next
28X from DOWNTOWN to THE AIRPORT? or
I’d like to go from MCKEESPORT to HOME-
STEAD tomorrow at 10 a.m.
USR: i’d like to go [noise]
SYS: Where are you leaving from?
USR: from Kennywood tomorrow at 6:30 PM
SYS: Leaving from MCKEE. Is this correct?
USR: yes
SYS: Okay What is your destination?
USR: downtown
SYS: Going to DOWNTOWN. Is this correct?
USR: yes
SYS: Right When do you want to travel?
USR: 6:30 PM
SYS: Leaving at 6 30 p.m.. Is this correct?
USR: [noise] yes
SYS: Alright Hold on. I’ll look that up. There is
a 71D leaving FIFTH AVENUE AT DARRAGH
MCKEE at 6 40 p.m.. It will arrive at FIFTH AV-
ENUE AT MARKET at 6 58 p.m.. To get more
information about buses related to this trip, you
can say, when is the next bus, or, when is the pre-
vious bus. To ask about a different trip, you can
say, start a new query. If you are finished, you can
say goodbye.
USR: start a new query
SYS: Okay, let’s start from the beginning.
USR: ...

Group B

SYS: East Pittsburgh Bus Schedules. Say a bus
route, like 28X, or say I’m not sure.
USR: 61A
SYS: Okay, 61A. To change, say go back. Where
are you leaving from?
USR: Downtown
SYS: Okay, downtown. You can always say go
back. And where are you going to?
USR: East Pittsburgh East Pittsburgh
SYS: Pittsburgh. Is that right?
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USR: No
SYS: Oh, sorry, where are you going to?
USR: East Pittsburgh
SYS: Okay, East Pittsburgh. Do you want times
for the next few buses? Say yes or no.
USR: Yes
SYS: Ok, the next few buses. To change, say go
back. At 7:45 PM today, there is a 61 A, from
Fifth Avenue And Market Street, Downtown, ar-
riving Dynamo Alley And Beech Avenue, In East
Pittsburgh, at 8:42 PM. Say repeat, next, previous,
or start over.

Group C
SYS: Welcome to the Lets Go! bus information
system for Pittsburgh. Where would you like to
leave from?
USR: [noise]
SYS: Where do you wanna leave from?
USR: [noise] um I’m leaving from Forbes avenue
and Murray avenue
SYS: I’m sorry but I do not know any stops in the
moon neighborhood. The routes I currently cover
are the following: 28X, 54C, 56U, 61A, 61B, 61C,
61D and 64.
USR: um I need the scheduling information for the
61D
SYS: Where would you like to leave from?
USR: Forbes and Murray
SYS: Where do you wanna go?
USR: Greenfield
SYS: When are you going to take that bus?
USR: 61D
SYS: When are you going to take that bus?
USR: 61D
SYS: When would you like to travel? Say next bus
for the the next bus .
USR: next bus
SYS: The next bus from forbes avenue at murray
to greenfield is the 61D, leaving at 8 43 p.m. . It
arrives at murray avenue at loretta at 8 52 p.m. .
You may now say. next bus, previous bus, restart,
or goodbye.
USR: [noise] good-bye
SYS: Thank you goodbye

Appendix 2: Example log fragment
Following is a log from a call in TRAIN3. Some
elements have been omitted for space. Logs are
formatted in JavaScript Object Notation (JSON).
{
"session-id": "dt-201007221854-4808D",
"turns": [ {
"input": {
"asr-hyps": [
{ "asr-hyp": "sixty one b",

"score": 0.834314,
},
...

],
"slu-hyps": [
{ "slu-hyp": [

{"act": "inform",
"slots": [["route", "61b"]]},

],
"score": 0.834314,

},
...

],
"audio-file": "002.raw",
"start-time": 7.504
},
"output": {
"start-time": 0.078,
"transcript": "East Pittsburgh Bus

Schedules. Say a bus route, like
28X, or say I’m not sure.",

"dialog-acts": [
{ "act": "hello",
"slots": [] },

{ "act": "request",
"slots": [["route",null]] },

{ "act": "example",
"slots": [["route","28x"]] },

{ "act": "example",
"slots": [["route","dontknow"]] }

],
}
"system-specific": {
"wcn": {
"best_path_score": 0.9965,
"best_path": {
"word": ["sixty","one","b"],
"prob": [ 1.0,1.0,0.9965 ],

}
"network": [ ... ]

},
"nbest": [
{
"normSpeechLhood": -152.654,
"lastSpeechFrame": 266,
"numFrames": 354,
"udelta": -3.0280,
"speechLikelihood": -15876.0,

},
...

],
...

},
},
...
]

}
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Abstract 

For robust spoken conversational interaction, 

many dialog state tracking algorithms have 

been developed. Few studies, however, have 

reported the strengths and weaknesses of each 

method. The Dialog State Tracking Challenge 

(DSTC) is designed to address this issue by 

comparing various methods on the same 

domain. In this paper, we present a set of 

techniques that build a robust dialog state 

tracker with high performance: wide-coverage 

and well-calibrated data selection, feature-rich 

discriminative model design, generalization 

improvement techniques and unsupervised 

prior adaptation. The DSTC results show that 

the proposed method is superior to other 

systems on average on both the development 

and test datasets.  

1 Introduction 

Even though we have recently seen an explosive 

growth of interest in speech-enabled applications, 

there are still many problems to overcome in 

order to provide users with practical and 

profitable services. One of the long-standing 

problems which may often frustrate users is 

Automatic Speech Recognition (ASR) error. Due 

to ASR error, it is barely possible to directly 

observe what the user said and finally figure out 

the true user goal. The aim of dialog state 

tracking is, therefore, to accurately estimate the 

true dialog state from erroneous observations as 

a dialog unfolds. 

In order to achieve this goal, many dialog state 

tracking algorithms have been developed. Few 

studies, however, have reported the strengths and 

weaknesses of each method. The Dialog State 

Tracking Challenge
1
 (DSTC) was organized to 

advance state-of-the-art technologies for dialog 

state tracking by allowing for reliable 

comparisons between different approaches using 

the same datasets. Unlike other machine 

learning-based empirical tasks, DSTC is also 

carefully designed to take into consideration 

diverse realistic mismatches. For instance, there 

are test datasets that were collected by systems 

using different speech recognizers, spoken 

language understanding (SLU) modules, and 

dialog managers. Also there are test datasets that 

were produced by similar systems but deployed 

at a different time (1 year later) with extended 

coverage. Since such mismatches between 

training and test data may often happen in real 

deployment, it is important to build a tracker 

which constantly shows high performance across 

all test datasets despite various mismatches. 

The aim of this paper is to describe a set of 

techniques used to build a robust tracker with 

high performance: wide-coverage and well-

calibrated data selection, feature-rich 

discriminative model design, generalization 

improvement techniques and unsupervised prior 

adaptation. Our challenge systems are basically 

various combinations of those techniques. The 

DSTC results demonstrate the effectiveness of 

each technique.  

This paper is structured as follows. Section 2 

describes the challenge setup. Section 3 

elaborates on our proposed approaches. Section 4 

briefly describes previous research and other 

systems that participated in DSTC. Section 5 

presents and discusses the results. Finally, 

Section 6 concludes with a brief summary and 

suggestions for future research.  

                                                 
1
 http://research.microsoft.com/en-us/events/dstc/ 
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2 Dialog State Tracking Challenge 

This section describes the task for DSTC and 

datasets provided for training and test. Most part 

of this section is borrowed from the DSTC 

manual
2
.  

2.1 Task Description 

DSTC data is taken from several different 

spoken dialog systems which all provided bus 

schedule information for Pittsburgh, 

Pennsylvania, USA as part of the Spoken Dialog 

Challenge (Black et al., 2011). There are 9 slots 

which are evaluated: route, from.desc, 

from.neighborhood, from.monument, to.desc, 

to.neighborhood, to.monument, date, and time. 

Since both marginal and joint representations of 

dialog states are important for deciding dialog 

actions, the challenge takes into consideration 

both. Each joint representation is an assignment 

of values to all slots.  Thus there are 9 marginal 

outputs and 1 joint output in total, which are all 

evaluated separately. 

The dialog tracker receives SLU N-best 

hypotheses for each user turn, each with a 

confidence score. In general, there are a large 

number of values for each slot, and the coverage 

of N-best hypotheses is good, thus the challenge 

confines consideration of goals to slots and 

values that have been observed in an SLU output. 

By exploiting this aspect, the task of a dialog 

state tracker is to generate a set of observed slot 

and value pairs, with a score between 0 and 1. 

The sum of all scores is restricted to sum to 1.0. 

Thus 1.0 – total score is defined as the score of a 

special value None that indicates the user’s goal 

has not yet been appeared on any SLU output. 

2.2 Datasets 

The data is divided into 2 training sets and 4 test 

sets (Table 1). For standardized development sets, 

each training set is split in half. Participants were 

asked to report results on the second half of each 

set. The data from group A in train2, and test1 

was collected using essentially the same dialog 

system. Only a few updates were made to reflect 

changes to the bus schedule. The data in test2 

was collected using a different version of group 

A’s dialog manager. The data from group B in 

train3 and test3 were collected using essentially 

the same dialog system; the main difference is 

that test3 covers more bus routes. Test4 tests the 

condition when training and testing using totally 

                                                 
2
 http://research.microsoft.com/apps/pubs/?id=169024 

different dialog systems, and when there is no 

same-system training data available. 

2.3 Metrics 

There are a variety of aspects of tracker 

performance that were measured: accuracy, mean 

reciprocal rank (MRR), ROC curves, Average 

score
3

, and Brier score
4

. There are three 

schedules for determining which turns to include 

in each evaluation. 

 Schedule 1: Include all turns. 

 Schedule 2: Include a turn for a given 

concept only if that concept either appears on 

the SLU N-Best list in that turn, or if the 

system’s action references that concept in 

that turn. 

 Schedule 3: Include only the turn before the 

system starts over from the beginning, and 

the last turn of the dialog. 

3 Recipe for Building a Robust Tracker  

In this section, we present several ingredients for 

building a robust state tracker that come into play 

at various levels of the development process: 

from data selection to model adaptation. 

3.1 Wide-Coverage and Well-Calibrated 

Data Selection 

The first step to create a robust dialog state 

tracker is the use of data which covers diverse 

system dialog actions and user inputs with well-

calibrated confidence scores. Since dialog 

policies can be varying according to how a 

dialog proceeds, it is crucial to arrange a training 

dialog corpus with well-balanced dialog actions. 

For example, group A datasets barely have 

implicit confirmation and heavily rely on explicit 

confirmation, while group B datasets have both 

types of confirmation. Thus a model trained on 

group A datasets cannot exploit implicit 

                                                 
3
 the average score assigned to the correct item 

4
 the L2 norm between the vector of scores output by 

dialog state tracker and a vector with 1 in the position 

of the correct item, and 0 elsewhere 

Dataset Source Calls Time period 

train2 Group A 678 Summer 2010 

train3 Group B 779 Summer 2010 

test1 Group A 765 Winter 2011-12 

test2 Group A 983 Winter 2011-12 

test3 Group B 1037 Winter 2011-12 

test4 Group C 451 Summer 2010 
 

Table 1: Dataset description. 
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confirmation when applied to group B datasets, 

whereas a model trained on group B datasets can 

be applied to group A datasets without much 

loss.  

Another important aspect of the data is how 

well user inputs are calibrated. If the confidence 

score is well-calibrated, confirmation can be 

skipped in the case of a hypothesis with a high 

confidence.  On the contrary, if the quality of the 

confidence score is very poor, a successful dialog 

will only be possible via heavy use of 

confirmation. Thus a model trained on a well-

calibrated dataset is likely to perform well on the 

poorly-calibrated dataset because of backup 

confirmation. Whereas, a model trained on the 

poorly-calibrated dataset will not perform well 

on the well-calibrated dataset due to the 

mismatch of the confidence score as well as the 

scarceness of confirmation information. The 

group A datasets have been shown to be poorly 

calibrated (Lee and Eskenazi, 2012); this is also 

shown in Fig. 2. Group B datasets are relatively 

well-calibrated, however. 

The importance of wide coverage and well-

calibrated data can be observed by examining the 

results of entry1 and entry2 (Fig. 1) which are 

trained on group A and B datasets, respectively. 

3.2 Feature-Rich Discriminative Model Design 

Most previous approaches are based on 

generative temporal modeling where the current 

dialog state is estimated using a few features 

such as the current system action and N-best 

hypotheses with corresponding confidence scores 

given the estimated dialog state at the previous 

turn (Gasic and Young, 2011; Lee and Eskenazi, 

2012; Raux and Ma, 2011; Thomson and Young, 

2010; Williams, 2010; Young et al., 2010). 

However, several fundamental questions have 

been raised recently about the formulation of the 

dialog state update as a generative temporal 

model: limitation in modeling correlations 

between observations in different time slices; and 

the insensitive discrimination between true and 

false dialog states (Williams, 2012).  

 
Figure 2: Estimated empirical accuracy of confidence 

score for from slot. Ideally calibrated confidence score 

should be directly proportional to empirical accuracy. 

 

 
 

Figure 1: Diagram showing the relation between datasets and models. Each team could have up to five systems 

entered. Our challenge entries are tagged by their entry numbers. More detailed descriptions about each model 

are provided in Section 3. 
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In fact, such limitations can be improved by 

adopting a discriminative approach, which 

enables the incorporation of a rich set of features 

without worrying about their interdependence 

(Sutton and McCallum, 2006). For example, a 

hypothesis that repeats with low confidence 

scores is likely to be a manifestation of ASR 

error correlations between observations in 

different time slices. Thus, the highest 

confidence score that a hypothesis has attained 

so far could be a useful feature in preventing 

repeated incorrect hypotheses from defeating the 

correct hypothesis (which had a higher score but 

was only seen once). Another useful feature 

could be the distribution of confidence scores 

that a hypothesis has attained thus far, since it 

may not have the same effect as having a single 

observation with the total score due to the 

potential nonlinearity of confidence scores. 

There are many other potentially useful features. 

The entire list of features used for the challenge 

system is found in Appendix A. 

In addition to the role of rich features in 

performance enhancement, the incorporation of 

rich features is also important for robust state 

tracking. If the tracker estimates the true state by 

considering various aspects of observations and 

prior knowledge, then the influence of 

differences in certain factors between datasets 

can be mitigated by many other factors that are 

retained relatively unchanged between datasets.  

For the challenge system, we employed a 

Maximum Entropy (MaxEnt) model which is one 

of most powerful undirected graphical models. 

Unlike previous work using MaxEnt (Bohus and 

Rudnicky, 2006) where the model is limited to 

maintain only the top K-best hypotheses, we 

amended MaxEnt to allow for the entire set of 

observed hypotheses to be incorporated; Several 

feature functions which differ only by output 

labels were aggregated into one common feature 

function so that they can share common 

parameters and gather their statistics together 

(Appendix A). This modification is also crucial 

for robust estimation of the model parameters 

since some slots such as from and to can have 

about 10
4
 values but most of them are not seen in 

the training corpus. 

The effectiveness of feature-rich 

discriminative modeling can be observed by 

comparing the results of DMALL and PBM (Fig. 

1) which are discriminative and generative 

models, respectively. 

Note that interesting relational constraints, e.g. 

whether or not departure and arrival places are 

valid on a route, can be incorporated by adopting 

a structured model such as Conditional Random 

Field (CRF). But CRF was not used for the 

challenge since the bus information that was 

provided is not compatible with every dataset. 

The effectiveness of a structured model has been 

investigated in a separate publication (Lee, 2013). 

3.3 Generalization Improvement Techniques 

Even though the incorporation of a set of rich 

features helps overcome the weaknesses of 

previous approaches, it also implies a risk of 

overfitting training datasets due to its increased 

capacity of function class. Overfitting is a serious 

hazard especially for test datasets that are 

severely dissimilar to training datasets. As noted 

above, since the test datasets of the challenge are 

intentionally arranged to have various 

mismatches, it is crucial that we prevent a model 

from overfitting training datasets. In the rest of 

this section, we describe various ways of 

controlling the capacity of a model.  

 The most obvious method to control the 

capacity is to penalize larger weights 

proportional to the squared values of the weights 

or the absolute values of the weights. We employ 

the Orthant-wise Limited-memory Quasi Newton 

optimizer (Andrew and Gao, 2007) for L1 

regularization. The weights for L1 regularization 

were set to be 10 and 3 for the prior features and 

the other features, respectively. These values 

were chosen through cross-validation over 

several values rather than doing a thorough 

search. 

A second method, which is often convenient, 

is to start with small weights and then stop the 

learning before it has time to overfit provided 

that it finds the true regularities before it finds 

the spurious regularities that are related to 

specific training datasets. It could be hard, 

however, to decide when to stop. A typical 

technique is to keep learning until the 

performance on the validation set gets worse and 

then stop training and go back to the best point. 

For the challenge systems, we applied a simpler 

method that is to stop the training if the average 

objective function change over the course of 10 

previous iterations is less than 0.1, which is 

usually set to a much smaller number such as 10
-4

. 

In general, prediction errors can be 

decomposed into two main subcomponents, i.e., 

error due to bias and variance (Hastie et. al, 

2009). It is also known that there is a tradeoff 

between bias and variance. If a model is flexible 

enough to fit the given data, errors due to bias 
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will decrease while errors due to variance will 

increase. The methods stated above try to 

achieve less error by decreasing errors due to 

variance. However we cannot avoid increasing 

errors due to bias in this way. Thus we need a 

method to alleviate the tradeoff between bias and 

variance.  

System combination is one powerful way to 

reduce variance without raising bias. If we 

average models that have different forms and 

make different mistakes, the average will do 

better than the individual models. This effect is 

largest when the models make very different 

predictions from one another. We could make the 

models different by simply employing different 

machine learning algorithms as well as by 

training them on different subsets of the training 

data.  

The challenge system, entry3, consists of three 

discriminative models and one generative model 

(Fig. 1). Entry1 and entry2 were trained on 

different training datasets to make them produce 

different predictions. DMCOND is a discriminative 

model trained on both train2 and train3. Also, 

DMCOND differs from other discriminative 

models in the way that it was trained: the 

parameters associated with the features which are 

computable without grounding action 

information (features (1), (5), (8), (9) and (10) in 

Appendix A) are trained first and then the other 

features are learned given the former parameters. 

The idea behind this training method is to 

encourage the model to put more weight on 

dialog policy invariant features. The final 

component PBM is the AT&T Statistical Dialog 

Toolkit
5

 which is one of the state-of-the-art 

generative model-based systems. We modified it 

to process implicit confirmation and incorporate 

the prior distribution which was estimated on the 

training corpus. The prior distribution was 

smoothed by an approximate Good-Turing 

estimation on the fly when the system encounters 

an unseen value at run time. The improvement 

from system combination is verified by the 

results of entry3. 

3.4 Unsupervised Prior Adaptation 

While a prior is a highly effective type of 

information for dialog state tracking, it is also 

able to hamper the performance when incorrectly 

estimated. Thus it is worthwhile to investigate 

adapting the prior to the test datasets. Since a 

dialog state tracker is meant to estimate the 

                                                 
5
 http://www2.research.att.com/sw/tools/asdt/ 

posterior probabilities over hypotheses, we can 

extract estimated labels from test datasets by 

setting an appropriate threshold, taking the 

hypotheses with a greater probability than the 

threshold as labels. By combining the predictive 

prior from test datasets and the prior from 

training datasets, we adapted entry2 and entry3 

in an unsupervised way to produce entry5 and 

entry4, respectively (Fig. 1). For each test dataset, 

we used different thresholds: 0.95 for test1, test2 

and test3, and 0.85 for test4. 

4 Related Work 

Since the Partially Observable Markov Decision 

Process (POMDP) framework has offered a 

well-founded theory for both state tracking and 

decision making, most earlier studies adopted 

generative temporal models, the typical way to 

formulate belief state updates for POMDP-based 

systems (Williams and Young, 2007). Several 

approximate methods have also emerged to 

tackle the vast complexity of representing and 

maintaining belief states, e.g., partition-based 

approaches (Gasic and Young, 2011; Lee and 

Eskenazi, 2012; Williams, 2010; Young et al., 

2010) and Bayesian network (BN)-based 

methods (Raux and Ma, 2011; Thomson and 

Young, 2010). A drawback of the previous 

generative models is that it is hard to incorporate 

a rich set of observation features, which are often 

partly dependent on one another. Moreover, the 

quality of the confidence score will be critical to 

all generative models proposed so far, since they 

do not usually try to handle potential nonlinearity 

in confidence scores.  

As far as discriminative models are concerned, 

the MaxEnt model has been applied (Bohus and 

Rudnicky, 2006). But the model is restricted to 

maintaining only the top K-best hypotheses, 

where K is a predefined parameter, resulting in 

potential degradation of performance and 

difficulties in extending it to structured models. 

Finally, there is a wide range of systems that 

participated in Dialog State Tracking Challenge 

2013: from rule-based systems to fairly complex 

statistical methods such as Deep Neural 

Networks. Since we have not only traditional 

generative models such as Dynamic Bayesian 

Network and partition-based approaches, but also 

newly-proposed discriminative approaches such 

as log-linear models, Support Vector Machines 

and Deep Neural Networks, the analysis of the 

challenge results is expected to reveal valuable 

lessons and future research directions. 
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5 Results and Discussion  

The official results of the challenge are publicly 

available and our team is team6. As mentioned in 

Section 2.3, there are a variety of aspects of 

tracker performance that were measured on 

different schedules. Since prediction accuracy at 

the end of a dialog directly translates to the 

success of the entire task, we first show the 

average accuracy across all test datasets 

measured at schedule 3 in Fig. 3. The average 

accuracy at schedule 3 also well represents how 

robust a state tracker is since the test datasets are 

widely distributed in the dimensions of dialog 

policies, dialog length and the quality of user 

input and confidence score.  

First of all, we note that our 4 entries 

(entries2-5) took the top positions in both the All 

and Joint categories. Entry4, which showed the 

best performance, outperformed the best entry 

from other teams by 4.59% (entry2 of team9) 

and 10.1% (entry2 of team2). Specificially, the 

large improvement in Joint implies that our 

model performs evenly well for all slots and is 

more robust to the traits of each slot. 

Furthermore, from the results we can verify 

the effectiveness of each technique for achieving 

robustness. Given the large gap between the 

performance of entry1 and of entry2, it is clearly 

shown that a model trained on a wide-coverage 

and well-calibrated dialog corpus can be 

applicable to a broad range of test datasets 

without much loss. Even though entry2 was 

trained on only 344 dialogs (the first half of 

train3), it already surpasses most of competing 

models.  

The utility of a feature-rich discriminative 

model is demonstrated by the fact that DMALL 

greatly outperformed PBM. We also note that 

just using a discriminative model does not 

 

 
 

(a) All slot: a weighted average accuracy across all slots 

 
(b) Joint slot 

 

Figure 3: Accuracy measured at schedule 3 averaged over the test and development datasets. Models which do 

not appear in Fig. 1 are the best system of each team except for us. Rule denotes a rule-based system, Hybrid a 

hybrid system of discriminative and generative approaches, DiscTemp a discriminative temporal model, RForest 

a random forest model, DNN a deep neural network model, DiscJoint a discriminative model which deals with 

slots jointly, SVM a support vector machine model, and DBN a dynamic Bayesian network mode. 
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guarantee improved performance since many 

discriminative systems that participated in the 

challenge underperformed some of the entries 

that were based on generative modeling or rules. 

This result implies that devising effective 

features is central to performance.  

In addition, this result also points to the 

necessity of controlling the capacity of a model. 

While our models constantly show good 

performance both on development sets and test 

sets, the performance of the other models 

significantly dropped off. In fact, this explains 

why Hybrid and Rule systems switch their 

positions in the Joint slot. Moreover, many other 

systems in the graph tail seem to be severely 

overfitted, resulting in poor performance on test 

datasets despite relatively good performance on 

development datasets. As expected, system 

combination gives rise to better accuracy without 

loss of robustness; entry3 clearly outperforms 

each of its components, i.e. entry1, entry2, 

DMCOND and PBM, on both development and test 

datasets. 

Finally, the improvement observed when 

using unsupervised prior adaptation is also 

shown to be positive but its effect size is not 

significant: entry5 vs. entry2 and entry4 vs. 

entry3. Given that the way in which we have 

adapted the model is fairly primitive, we believe 

that there is much room to refine the 

unsupervised adaptation method.  

MRR measures the average of 1/R, where R is 

the rank of the first correct hypothesis. MRR at 

schedule 3 measures the quality of the final 

ranking which may be most important to a multi-

modal interface that can display results to the 

user. Even though the results are not displayed 

due to space limitations, the results for MRR are 

very similar to those for accuracy. Our 4 entries 

(entries2-5) still take the top positions. 

The ROC curves assess the discrimination of 

the top hypothesis’ score. The better 

discrimination at schedule 2 may be helpful for 

reducing unnecessary confirmations for values 

with sufficiently high belief. Also, the better 

discrimination at schedule 3 may enable a model 

to adapt to test data in an unsupervised manner 

by allowing us to set a proper threshold to 

produce predictive labels. The ROC curves of 

our systems again showed the highest levels of 

discrimination. 

6 Conclusion 

In this paper, we presented a set of techniques to 

build a robust dialog state tracker without losing 

performance: wide-coverage and well-calibrated 

data selection, feature-rich discriminative model 

design, generalization improvement techniques 

and unsupervised prior adaptation. The results in 

terms of various metrics show that the proposed 

method is truly useful for building a tracker 

prominently robust not only to mismatches 

between training and test datasets but also to the 

traits of different slots. Since we used relatively 

simple features for this work, there is much room 

to boost performance through feature 

engineering. Also, more thorough search for 

regularization weights can give additional 

performance gain. Moreover, one can extend the 

present discriminative model presented here to a 

structured version which can improve 

performance further by allowing  relational 

constraints to be incorporated (Lee, 2013). 

Finally, we believe that once a more detailed and 

thorough investigation of the challenge results 

has been carried out, we will be able to take the 

best of each system and combine them to 

generate a much better dialog state tracker.   
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Appendix A. Feature Functions 

Feature functions are playing a central role to the 

performance of discriminative models. We 

describe the feature functions that we used for 

the challenge system in the following. To 

facilitate readers’ understanding an example of 

feature extraction is illustrated in Fig. 4. 

One of the most fundamental features for 

dialog state tracking should exploit the 

confidence scores assigned to an informed 

hypothesis. The simplest form could be direct 

use of confidence scores. But often pre-trained 

confidence measures fail to match the empirical 

distribution of a given dialog domain (Lee and 

Eskenazi, 2012; Thomson et al. 2010). Also the 

distribution of confidence scores that a 

hypothesis has attained so far may not have the 

same effect as the total score of the confidence 

scores (e.g., in Fig. 4, two observations for 61C 

with confidence score 0.3 vs. 0.6 which is the 

sum of the scores). Thus we create a feature 

function that divides the range of confidence 

scores into bins and returns the frequency of 

observations that fall into the corresponding bin: 
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where      ( )  returns the set of confidence 

scores whose action informs   in the sequence of 

observations   
 .         (   )  computes the 

frequency of observations that fall into the     

bin. 

There are two types of grounding actions 

which are popular in spoken dialog systems, i.e., 

implicit and explicit confirmation. To leverage 

affirmative or negative responses, the following 

feature functions are introduced in a similar 

fashion as the        feature function: 
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where      ( )  /      ( )  returns the set of 

confidence scores whose associated action 

affirms / negates   in the sequence of 

observations   
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where          ( ) indicates whether or not the 

user has negated the system’s implicit 

confirmation in the sequence of observations   
 . 

One of interesting feature functions is the so-

called baseline feature which exploits the output 

of a baseline system. The following feature 

function emulates the output of the baseline 

system which always selects the top ASR 

hypothesis for the entire dialog: 
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(5) 

 

where          ( )  returns the maximum 

confidence score whose action informs   in the 

sequence of observations   
 .    (   )  indicates 

whether or not the maximum score falls into the 

    bin. 

Yet another feature function of this kind is the 

accumulated score which adds up all confidence 

scores associated with inform and affirm and 

subtracts the ones with negation: 
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Since we have a partition-based tracker, it is also 

possible to take advantage of its output: 
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where    ( )  returns the posterior probability 

of a hypothesis estimated by the partition-based 

tracker. Note that such feature functions as 

         ( ) ,         ( )  and    ( )  are not 

independent of the others defined previously, 

which may cause generative models to produce 

deficient probability distributions. 

It is known that prior information can boost 

the performance (Williams, 2012) if the prior is 

well-estimated. One of advantages of generative 

models is that they provide a natural mechanism 

to incorporate a prior. Discriminative models 

also can exploit a prior by introducing additional 

feature functions: 
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where           ( ) returns the fraction of 

occurrences of   in the set of true labels. 

If the system cannot process a certain user 

request, it is highly likely that the user change 

his/her goal. The following feature function is 

designed to take care of such cases: 
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where     ( ) indicates whether or not   is out-

of-coverage. 

As with other log-linear models, we also have 

feature functions for bias: 
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(10) 

 

Note that we have an additional bias term for 

None to estimate an appropriate weight for it. 

Here, None is a special value to indicate that the 

true hypothesis has not yet appeared in the ASR 

N-best lists. Since there are generally a large 

number of values for each concept, the 

probability of the true hypothesis will be very 

small unless the true hypothesis appears on the 

N-best lists. Thus we can make inferences on the 

model very quickly by focusing only on the 

observed hypotheses at the cost of little 

performance degradation. 

 
 

Figure 4: A simplified example of feature extraction for the route concept. It shows the values that each feature 

will have when three consecutive user inputs are given. 
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Abstract

This paper presents a generic dialogue
state tracker that maintains beliefs over
user goals based on a few simple domain-
independent rules, using basic probability
operations. The rules apply to observed
system actions and partially observable
user acts, without using any knowledge
obtained from external resources (i.e.
without requiring training data). The core
insight is to maximise the amount of in-
formation directly gainable from an error-
prone dialogue itself, so as to better lower-
bound one’s expectations on the perfor-
mance of more advanced statistical tech-
niques for the task. The proposed method
is evaluated in the Dialog State Track-
ing Challenge, where it achieves compara-
ble performance in hypothesis accuracy to
machine learning based systems. Conse-
quently, with respect to different scenarios
for the belief tracking problem, the poten-
tial superiority and weakness of machine
learning approaches in general are investi-
gated.

1 Introduction

Spoken dialogue system (SDS) can be modelled
as a decision process, in which one of the main
problems researchers try to overcome is the un-
certainty in tracking dialogue states due to error-
prone outputs from automatic speech recognition
(ASR) and spoken language understanding (SLU)
components (Williams, 2012). Recent advances
in SDS have demonstrated that maintaining a dis-
tribution over a set of possible (hidden) dialogue
states and optimising dialogue policies with re-
spect to long term expected rewards can signifi-
cantly improve the interaction performance (Roy
et al., 2000; Williams and Young, 2007a). Such

methods are usually developed under a partially
observable Markov decision process (POMDP)
framework (Young et al., 2010; Thomson and
Young, 2010; Williams, 2010), where the distribu-
tion over dialogue states is called a ‘belief’ and is
modelled as a posterior updated every turn given
an observation. Furthermore, instead of simply
taking the most probable (or highest confidence
score) hypothesis of the user act as in ‘traditional’
handcrafted systems, the observation here may
consist of an n-best list of the SLU hypotheses (di-
alogue acts) with (normalised) confidence scores.
See (Henderson and Lemon, 2008; Williams and
Young, 2007b; Thomson et al., 2010; Young et al.,
2013) for more details of POMDP-based SDS.

It is understandable that beliefs more accurately
estimating the true dialogue states will ease the
tuning of dialogue policies, and hence can result
in better overall system performance. The accu-
racy of belief tracking has been studied in depth
by Williams (2012) based on two SDS in public
use. Here the effects of several mechanisms are
analysed, which can alter the ‘most-believed’ dia-
logue state hypothesis (computed using a genera-
tive POMDP model) from the one derived directly
from an observed top SLU hypothesis. Williams’s
work comprehensively explores how and why a
machine learning approach (more specifically the
generative model proposed in (Williams, 2010))
functions in comparison with a naive baseline.
However, we target a missing intermediate anal-
ysis in this work: how much information one
can gain purely from the SLU n-best lists (and
the corresponding confidence scores), without any
prior knowledge either being externally learned
(using data-driven methods) or designed (based on
domain-specific strategies), but beyond only con-
sidering the top SLU hypotheses. We explain this
idea in greater detail as follows.

Firstly, we can view the belief update procedure
in previous models as re-constructing the hidden
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dialogue states (or user goals) based on the previ-
ous belief, a current observation (normally an SLU
n-best list), and some prior knowledge. The prior
knowledge can be observation probabilities given
a hidden state, the previous system action and/or
dialogue histories (Young et al., 2010; Thom-
son and Young, 2010; Williams, 2010), or prob-
abilistic domain-specific ontologies (Mehta et al.,
2010), where the probabilities can be either trained
on a collection of dialogue examples or manually
assigned by human experts. In such models, a
common strategy is to use the confidence scores in
the observed n-best list as immediate information
substituted into the model for belief computation,
which implies that the performance of such belief
tracking methods to a large extent depends on the
reliability of the confidence scores. On the other
hand, since the confidence scores may reflect the
probabilities of the occurrences of corresponding
user acts (SLU hypotheses), a belief can also be
maintained based on basic probability operations
on those events (as introduced in this paper). Such
a belief will advance the estimation obtained from
top SLU hypotheses only, and can serve as a base-
line to justify how much further improvement is
actually contributed by the use of prior knowledge.
Note that the fundamental method in this paper re-
lies on the assumption that confidence scores carry
some useful information, and their informative-
ness will affect the performance of the proposed
method as will be seen in our experiments (Sec-
tion 5).

Therefore, this paper presents a generic belief
tracker that maintains beliefs over user goals only
using information directly observable from the di-
alogue itself, including SLU n-best list confidence
scores and user and system behaviours, such as
a user not disconfirming an implicit confirma-
tion of the system, or the system explicitly re-
jecting a query (since no matching item exists),
etc. The belief update is based on simple proba-
bility operations and a few very general domain-
independent rules. The proposed method was
evaluated in the Dialog State Tracking Challenge
(DSTC) (Williams et al., 2013). A systematic
analysis is then conducted to investigate the ex-
tent to which machine learning can advance this
naive strategy. Moreover, the results show the per-
formance of the proposed method to be compara-
ble to other machine learning based approaches,
which, in consideration of the simplicity of its im-

plementation, suggests that another practical use
of the proposed method could be as a module
in an initial system installation to collect training
data for machine learning techniques, in addition
to functioning as a baseline for further analysing
them.

The remainder of this paper is organised as fol-
lows. Section 2 reviews some basic mathematical
background, based on which Section 3 introduces
the proposed belief tracker. Section 4 briefly de-
scribes the DSTC task. The evaluation results and
detailed analysis are illustrated in Section 5. Fi-
nally, we further discuss in Section 6 and conclude
in Section 7.

2 Basic Mathematics

We first review some basic mathematics, which
provide the fundamental principles for our be-
lief tracker. Let P (X) denote the probability of
the occurrence of an event X , then the proba-
bility of X not occurring is simply P (¬X) =
1 − P (X). Accordingly, if X occurs at a time
with probability P1(X), and at a second time, it
occurs with probability P2(X) independently of
the first time, then the overall probability of its
occurrence is P (X) = 1 − P1(¬X)P2(¬X) =
1 − (1 − P1(X))(1 − P2(X)). To generalise,
we can say that in a sequence of k independent
events, if the probability of X occurring at the ith
time is Pi(X), the overall probability of X hav-
ing occurred at least once among the k chances
is P (X) = 1 −∏k

i=1 Pi(¬X) = 1 −∏k
i=1(1 −

Pi(X)). This quantity can also be computed re-
cursively as:

P t(X) = 1− (1− P t−1(X))(1− Pt(X)) (1)

where P t(X) denotes the value of P (X) after t
event occurring chances, and we let P 0(X) = 0.

Now we consider another situation. Let A be
a binary random variable. Suppose that we know
the prior probability of A being true is Pr(A). If
there is a chance where with probability P (B) we
will observe an event B independent of A, and we
assume that if B happens, we must set A to false,
then after this, the probability of A still being true
will become P (A = true) = Pr(A) ∗ P (¬B) =
Pr(A)(1− P (B)).

3 A Generic Belief Tracker

In this section, we will take the semantics defined
in the bus information systems of DSTC as
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examples to explain our belief tracker. Without
losing generality, the principle applies to other
domains and/or semantic representations. The
SDS we are interested in here is a turn-based
slot-filling task. In each turn, the system executes
an action and receives an observation. The
observation is an SLU n-best list, in which each
element could be either a dialogue act without
taking any slot-value arguments (e.g. affirm()
or negate()) or an act presenting one or more
slot-value pairs (e.g. deny(route=64a) or
inform(date.day=today, time.ampm=
am)), and normalised confidence scores are
assigned to those dialogue act hypotheses. In
addition, we follow a commonly used assumption
that the user’s goal does not change during a
dialogue unless an explicit restart action is
performed.

3.1 Tracking Marginal Beliefs

Since a confidence score reflects the probability
of the corresponding dialogue act occurring in the
current turn, we can apply the probability opera-
tions described in Section 2 plus some ‘common
sense’ rules to track the marginal probability of a
certain goal being stated by the user during a di-
alogue trajectory, which is then used to construct
our beliefs over user goals. Concretely, we start
from an initial belief b0 with zero probabilities for
all the slot-value hypotheses and track the beliefs
over individual slot-value pairs as follows.

3.1.1 Splitting-Merging Hypotheses
Firstly, in each turn, we split those dialogue acts
with more than one slot-value pairs into single
slot-value statements and merge those identical
statements among the n-best list by summing over
their confidence scores, to yield marginal confi-
dence scores for individual slot-value representa-
tions. For example, an n-best list observation:

inform(date.day=today, time.ampm=am) 0.7

inform(date.day=today) 0.3

after the splitting-merging procedure will become:

inform(date.day=today) 1

inform(time.ampm=am) 0.7

3.1.2 Applying Rules
Let Pt(u, s, v) denote the marginal confidence
score for a user dialogue act u(s = v) at turn

t. Then the belief bt(s, v) for the slot-value pair
(s, v) is updated as:

• Rule 1: If u = inform, then bt(s, v) =
1− (1− bt−1(s, v))(1− Pt(u, s, v)).

• Rule 2: If u = deny, then bt(s, v) =
bt−1(s, v)(1− Pt(u, s, v)).

In addition, motivated by some strategies com-
monly used in rule-based systems (Bohus and
Rudnicky, 2005), we consider the effects of cer-
tain system actions on the beliefs as well. Let a(h)
be one of the system actions performed in turn t,
where h stands for a set of n slot-value arguments
taken by a, i.e. h = {(s1, v1), . . . , (sn, vn)}. We
check:

• Rule 3: If a is an implicit or explicit confir-
mation action (denoted by impl-conf and
expl-conf, respectively) and an affirm
or negate user act u is observed with con-
fidence score Pt(u):

– Rule 3.1: If u = affirm, then
bt(si, vi) = 1 − (1 − bt−1(si, vi))(1 −
Pt(u)), ∀(si, vi) ∈ h.

– Rule 3.2: If u = negate, then
bt(si, vi) = bt−1(si, vi)(1 − Pt(u)),
∀(si, vi) ∈ h.

• Rule 4: Otherwise, if a is an impl-conf
action, and there are no affirm/negate
user acts observed, and no information pre-
sented in a is re-informed or denied in the
current turn, then we take all (si, vi) ∈ h as
being affirmed by the user with probability 1.

However, note that, the marginal probabilities
b(s, v) computed using the above rules do not nec-
essarily yield valid beliefs, because sometimes we
may have

∑
v b(s, v) > 1 for a given slot s. When

this occurs, a reasonable solution is to seek a
multinomial vector b̄(s, ·) that minimises the sym-
metrised Kullback-Leibler (KL) divergence be-
tween b(s, ·) and itself. It can be checked that
solving such an optimisation problem is actually
equivalent to simply normalising b(s, ·), for which
the proof is omitted here but can be found in Ap-
pendix B.

Finally, we consider an extra fact that normally
a user will not insist on a goal if he/she has been
notified by the system that it is impossible to sat-
isfy. (In the DSTC case, such notifications cor-
respond to those canthelp.* system actions.)
Therefore, we have:
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• Rule 5: If the system has explicitly disabled
a hypothesis h, we will block the generation
of any hypotheses containing h in the be-
lief tracking procedure, until the dialogue fin-
ishes.

Note here, if h is a marginal hypothesis, elimi-
nating it from our marginal belief will result in
joint hypotheses (see Section 3.2) containing h
also being blocked, but if h is a joint representa-
tion, we will only block the generation of those
joint hypothesis containing h, without affecting
any marginal belief.

3.2 Constructing Joint Representations
Beliefs over joint hypotheses can then be con-
structed by probabilistic disjunctions of those
marginal representations. For example, given two
marginal hypotheses (s1, v1) and (s2, v2) (s1 6=
s2) with beliefs b(s1, v1) and b(s2, v2) respec-
tively, one can compute the beliefs of their joint
representations as:

bjoint(s1 = v1, s2 = v2) = b(s1, v1)b(s2, v2)

bjoint(s1 = v1, s2 = null) = b(s1, v1)b(s2,null)

bjoint(s1 = null, s2 = v2) = b(s1,null)b(s2, v2)

where null represents that none of the current
hypotheses for the corresponding slot is correct,
i.e. b(s,null) stands for the belief that the in-
formation for slot s has never been presented by
the user, and can be computed as b(s,null) =
1−∑v b(s, v).

3.3 Limitations
The insight of the proposed approach is to explore
the upper limit of the observability one can ex-
pect from an error-prone dialogue itself. Never-
theless, this method has two obvious deficiencies.
Firstly, the dialogue acts in an SLU n-best list
are assumed to be independent events, hence er-
ror correlations cannot be handled in this method
(which is also a common drawback of most ex-
isting models as discussed by Williams (2012)).
Modelling error correlations requires statistics on
a certain amount of data, which implies a poten-
tial space of improvement left for machine learn-
ing techniques. Secondly, the model is designed
to be biased on the accuracy of marginal be-
liefs rather than that of joint beliefs. The be-
liefs for joint hypotheses in this method can only
lower-bound the true probability, as the observ-
able dependencies among some slot-value pairs

are eliminated by the splitting-merging and re-
joining procedures described above. For exam-
ple, in the worst case, a multi-slot SLU hypoth-
esis inform(s1 = v1, s2 = v2) with a confi-
dence score p < 1 may yield two marginal be-
liefs b(s1, v1) = p and b(s2, v2) = p,1 then the
re-constructed joint hypothesis will have its belief
bjoint(s1 = v1, s2 = v2) = p2, which is exponen-
tially reduced compared to the originally observed
confidence score. However, the priority between
the marginal hypotheses and the joint representa-
tions to a greater extent depends on the action se-
lection strategy employed by the system.

4 Description of DSTC

DSTC (Williams et al., 2013) is a public eval-
uation of belief tracking (a.k.a. dialogue state
tracking) models based on the data collected
from different dialogue systems that provide bus
timetables for Pittsburgh, Pennsylvania, USA.
The dialogue systems here were fielded by three
anonymised groups (denoted as Group A, B, and
C).

There are 4 training sets (train1a,
train1b, train2 and train3) and 4
test sets (test1. . .4) provided, where all the
data logs are transcribed and labelled, except
train1b which is transcribed but not labelled
(and contains a much larger number of dialogues
than others). It is known in advance to partici-
pants that test1 was collected using the same
dialogue system from Group A as train1* and
train2, test2 was collected using a different
version of Group A’s dialogue manager but is
to a certain extent similar to the previous ones,
train3 and test3 were collected using the
same dialogue system from Group B (but the
training set for this scenario is relatively smaller
than that for test1), and test4 was collected
using Group C’s system totally different from any
of the training sets.

The evaluation is based on several different met-
rics2, but considering the nature of our system, we
will mainly focus on the hypothesis accuracy, i.e.

1The worst case happens when (s1, v1) and (s2, v2) are
stated for the first time in the dialogue and cannot merge with
any other marginal hypotheses in the current turn, as their
marginal beliefs will remain p without being either propa-
gated by the belief update rules, or increased by the merging
procedure.

2Detailed descriptions of these metrics can be found in the
DSTC handbook at http://research.microsoft.
com/en-us/events/dstc/
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Figure 1: Hypothesis accuracy on the four test sets: the columns in each schedule, from left to right,
stand for the ensemble, mixed-domain, in-domain and out-of-domain system groups, except for test4
where the last three groups are merged into the right-hand side column.

percentage of turns in which the tracker’s 1-best
hypothesis is correct, but with the receiver operat-
ing characteristic (ROC) performance briefly dis-
cussed as well. In addition, there are 3 ‘sched-
ules’ for determining which turns to include when
measuring a metric: schedule 1 – including
all turns, schedule 2 – including a turn for a
given concept only if that concept either appears
on the SLU n-best list in that turn, or if the sys-
tem action references that concept in that turn, and
schedule 3 – including only the turn before the
restart system action (if there is one), and the
last turn of the dialogue.

5 Evaluation and Analysis

The method proposed in this paper corresponds to
Team 2, Entry 1 in the DSTC submissions. In
the following analysis, we will compare it with
the 26 machine learning models submitted by the
other 8 anonymised participant teams plus a base-

line system (Team 0, Entry 1) that only con-
siders the top SLU result.

Each team can submit up to 5 systems, whilst
the systems from a same team may differ from
each other in either the statistical model or the
training data selection (or both of them). There is
a brief description of each system available after
the challenge. For the convenience of analysis and
illustration, on each test set we categorise these
systems into the following groups: in-domain –
systems trained only using the data sets which
are similar (including the ‘to-some-extent-similar’
ones) to the particular test set, out-of-domain –
systems trained on the data sets which are to-
tally different from the particular test set, mixed-
domain – systems trained on a mixture of the in-
domain and out-of-domain data, and ensemble –
systems combining multiple models to generate
their final output. (The ensemble systems here are
all trained on the mixed-domain data.) Note that,

427



0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7
TEST 1

 

 

Correct
Incorrect

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7
TEST 2

 

 

Correct
Incorrect

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TEST 3

 

 

Correct
Incorrect

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7
TEST 4

 

 

Correct
Incorrect

Figure 2: Distributions of SLU confidence scores on the four test sets: The x-axis stands for the confi-
dence score interval, and the y-axis stands for the occurrence rate.

for test4 there are no in-domain data available,
so all those non-ensemble systems are merged into
one group. Detailed system categorisation on each
test set can be found in Appendix A.

5.1 Hypothesis Accuracy
We plot the hypothesis accuracy of our method
(red dashed line) on the 4 test sets in compari-
son with the baseline system (blue dotted line) and
other systems in Figure 1, where different mark-
ers are used to identify the systems from different
teams. Here we use the overall accuracy of the
marginal hypotheses (all) and the accuracy of
the joint hypotheses (joint) to sketch the gen-
eral performance of the systems, without looking
into the result for each individual slot.

It can be seen that the proposed method pro-
duces more accurate marginal and joint hypothe-
ses than the baseline on all the test sets and in
all the schedules. Moreover, generally speak-
ing, further improvement can be achieved by prop-
erly designed machine learning techniques. For
example, some systems from Team 6, especially
their in-domain and ensemble ones, almost consis-

tently outperform our approach (as well as most of
the models from the other teams) in all the above
tasks. In addition, the following detailed trends
can be found.

Firstly, and surprisingly, our method tends
to be more competitive when measured using
schedule 1 and schedule 3 than using
schedule 2. As schedule 2 is supposed to
measure system performance on the concepts that
are in focus, and to prevent a belief tracker receiv-
ing credit for new guesses about those concepts
not in focus, the results disagree with our origi-
nal expectation of the proposed method. A possi-
ble explanation here is that some machine learning
models tend to give a better belief estimation when
a concept is in focus, however their correct top hy-
potheses might more easily be replaced by other
incorrect ones when the focus on the concepts in
those correct hypotheses are lost (possibly due to
improperly assigned correlations among the con-
cepts). In this sense, our method is more robust,
as the beliefs will not change if their correspond-
ing concepts are not in focus.
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Figure 3: ROC equal error rate on the four test sets: The columns in each schedule, from left to right,
stand for the ensemble, mixed-domain, in-domain and out-of-domain system groups, except for test4
where the last three groups are merged into the right-hand side column.

Secondly, the proposed method had been sup-
posed to be more preferable when there are no (or
not sufficient amount of) in-domain training data
available for those statistical methods. Initial evi-
dence to support this point of view can be observed
from the results on test1, test2 and test3.
More concretely, when the test data distribution
becomes less identical to the training data distri-
bution on test2, out system outperforms most
of the other systems except those from Team 6
(and a few others in the schedule 2/all task
only), compared to its middle-level performance
on test1. Similarly, on test3when the amount
of available in-domain training data is small, our
approach gives more accurate beliefs than most of
the others with only a few exceptions in each sce-
nario, even if extra out-of-domain data are used to
enlarge the training set for many systems. How-
ever, the results on test4 entirely contradicts the
previous trend, where a significant number of ma-
chine learning techniques perform better than our
domain-independent rules without using any in-

domain training data at all. We analyse such re-
sults in detail as follows.

To explain the unexpected outcome on test4,
our first concern is the influence of Rule 4, which
is relatively ‘stronger’ and more artificial than
the other rules. Hence, for the four test sets,
we compute the percentage of dialogues where a
impl-conf system action occurs. The statistics
show that the occurrence rates of the implicit con-
firmation system actions in test1. . .4 are 0.01,
0, 0.94 and 0.67, respectively. This means that
the two very extreme cases happen in test3 and
test2 (the situation in test1 is very similar to
test2), and the result for test4 is roughly right
in the middle of them, which suggests that Rule
4 will not be the main factor to affect our per-
formance on test4. Therefore, we further look
into the distributions of the SLU confidence scores
across these different test sets. A normalised his-
togram of the confidence scores for correct and
incorrect SLU hypotheses observed in each test
set is plotted in Figure 2. Here we only consider
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the SLU hypotheses that will actually contribute
during our belief tracking processes, i.e. only the
inform, deny, affirm and negate user dia-
logue acts. It can be found that the dialogue sys-
tem used to collect the data in test4 tends to
produce significantly more ‘very confident’ SLU
hypotheses (those with confidence scores greater
than 0.8) than the dialogue systems used for col-
lecting the other test sets, where, however, a con-
siderable proportion of its highly confident hy-
potheses are incorrect. In such a case, our system
would be less capable in revising those incorrect
hypotheses with high confidence scores than many
machine learning techniques, since it to a greater
extent relies on the confidence scores to update the
beliefs. This finding indicates that statistical ap-
proaches will be helpful when observed informa-
tion is less reliable.

5.2 Discussions on the ROC Performance

Besides the hypothesis accuracy, another impor-
tant issue will be the ability of the beliefs to dis-
criminate between correct and incorrect hypothe-
ses. Williams (2012) suggests that a metric to
measure such performance of a system is the ROC
curve. Note that, in the DSTC task, most of the
systems from the other teams are based on dis-
criminative models (except two systems, a simple
generative model from Team 3 and a deep neural
network method from Team 1), which are opti-
mised specifically for discrimination. Unsurpris-
ingly, our approach becomes much less competi-
tive when evaluated based on the ROC curve met-
rics, as illustrated in Figure 3 using the ROC equal
error rate (EER) for the all and joint scenar-
ios. (ERR stands for the intersection of the ROC
curve with the diagonal, i.e. where the false ac-
cept rate equals the false reject rate. The smaller
the ERR value, the better a system’s performance
is.) However, our argument on this point is that
since an optimised POMDP policy is not a linear
classifier but has a manifold decision surface (Cas-
sandra, 1998), the ROC curves may not be able to
accurately reflect the influence of beliefs on a sys-
tem’s decision quality, for which further investiga-
tions will be needed in our future work.

6 Further Discussions

In this paper, we made the rules for our belief
tracker as generic as possible, in order to ensure
the generality of the proposed mechanism. How-

ever, in practice, it is extendable by using more
detailed rules to address additional phenomena if
those phenomena are deterministically identifiable
in a particular system. For example, when the sys-
tem confirms a joint hypothesis (s1 = v1, s2 =
v2) and the user negates it and only re-informs one
of the two slot-values (e.g. inform(s1 = v′1)),
one may consider that it is more reasonable to only
degrade the belief on s1 = v1 instead of reducing
the beliefs on both s1 = v1 and s2 = v2 syn-
chronously as we currently do in Rule 3.2. How-
ever, the applicability of this strategy will depend
on whether it is possible to effectively determine
such a compact user intention from an observed
SLU n-best list without ambiguities.

7 Conclusions

This paper introduces a simple rule-based belief
tracker for dialogue systems, which can maintain
beliefs over both marginal and joint representa-
tions of user goals using only the information ob-
served within the dialogue itself (i.e. without need-
ing training data). Based on its performance in
the DSTC task, potential advantages and disad-
vantages of machine learning techniques are anal-
ysed. The analysis here is more focused on general
performance of those statistical approaches, where
our concerns include the similarity of distributions
between the training and test data, the adequacy of
available training corpus, as well as the SLU confi-
dence score distributions. Model-specific features
for different machine learning systems are not ad-
dressed at this stage. Considering its competitive-
ness and simplicity of implementation, we suggest
that the proposed method can serve either as a rea-
sonable baseline for future research on dialogue
state tracking problems, or a module in an ini-
tial system installation to collect training data for
those machine learning techniques.
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A System Categorisation

Table 1 shows detailed categorisation of the sys-
tems submitted to DSTC, where TiEj stands for
Team i, Entry j.

ensemble
T6E3, T6E4, T9E1, T9E2, T9E3
T9E4, T9E5

mixed-domain non-ensem
ble

for
t
e
s
t
4

T1E1, T3E1, T3E2, T3E3, T4E1
T5E2, T5E4, T5E5, T8E4, T8E5

in-domain
test1 T5E1
test2

T6E1, T8E1, T8E2
T5E3

test3 T6E2, T6E5, T8E3 T7E1
out-of-domain

test1
test2

T6E2, T6E5, T8E3

test3 T6E1, T8E1, T8E2

Table 1: Categorisation of the systems submitted
to DSTC.

B Symmetrised KL-divergence
Minimisation

We prove the following proposition to support our
discussions in the end of Section 3.1.
Proposition 1 Let p ∈ RN be an arbitrary N -
dimensional non-negative vector (i.e. p ≥ 0).
Let p̄ = p

‖p‖1 , where ‖ · ‖1 stands for the `1-
norm of a vector. Then p̄ is the solution of the
optimisation problem. minq≥0,‖q‖1=1DSKL(p‖q),
where DSKL(p‖q) denotes the symmetrised KL-
divergence between p and q, defined as:

DSKL(p‖q) = DKL(p‖q) + DKL(q‖p) (2)

=
∑

i

pi log
pi
qi

+
∑

i

qi log
qi
pi
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and pi and qi denote the ith element in p and q
respectively.

Proof Let q∗ = arg minq≥0,‖q‖1=1DSKL(p‖q).
Firstly, using the facts that limx→0 x log x

y → 0

and limx→0 y log y
x → +∞, ∀y > 0, one can eas-

ily prove that if pi = 0 then q∗i = 0, and pi 6= 0
then q∗i 6= 0, because otherwise the objective value
of Eq. (2) will become unbounded.

Therefore, we only consider the case p > 0 and
q > 0. By substituting pi = p̄i‖p‖1 into Eq. (2),
we obtain:

DSKL(p‖q) = ‖p‖1
∑

i

p̄i log
‖p‖1p̄i
qi

+
∑

i

qi log
qi
‖p‖1p̄i

= ‖p‖1
(∑

i

p̄i log
p̄i
qi

+
∑

i

p̄i log ‖p‖1
)

+
∑

i

qi log
qi
p̄i
−
∑

i

qi log ‖p‖1

= ‖p‖1
∑

i

p̄i log
p̄i
qi

+
∑

i

qi log
qi
p̄i

+(‖p‖1 − 1) log ‖p‖1
= ‖p‖1DKL(p̄‖q) + DKL(q‖p̄)

+(‖p‖1 − 1) log ‖p‖1
≥ (‖p‖1 − 1) log ‖p‖1

where we use the facts that
∑

i p̄i = 1,
∑

i qi = 1,
DKL(p̄‖q) ≥ 0 and DKL(q‖p̄) ≥ 0, since p̄ and
q are valid distributions. It can be found that the
minimum (‖p‖1 − 1) log ‖p‖1 is only achievable
when DKL(p̄‖q) = 0 and DKL(q‖p̄) = 0, i.e. q =
p̄, which proves Proposition 1.
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Abstract

Statistical approaches to dialog state track-
ing synthesize information across multi-
ple turns in the dialog, overcoming some
speech recognition errors. When training
a dialog state tracker, there is typically
only a small corpus of well-matched dia-
log data available. However, often there is
a large corpus of mis-matched but related
data – perhaps pertaining to different se-
mantic concepts, or from a different dialog
system. It would be desirable to use this
related dialog data to supplement the small
corpus of well-matched dialog data. This
paper addresses this task as multi-domain
learning, presenting 3 methods which syn-
thesize data from different slots and differ-
ent dialog systems. Since deploying a new
dialog state tracker often changes the re-
sulting dialogs in ways that are difficult to
predict, we study how well each method
generalizes to unseen distributions of dia-
log data. Our main result is the finding that
a simple method for multi-domain learn-
ing substantially improves performance in
highly mis-matched conditions.

1 Introduction

Spoken dialog systems interact with users via nat-
ural language to help them achieve a goal. As the
interaction progresses, the dialog manager main-
tains a representation of the state of the dialog in a
process called dialog state tracking. For example,
in a bus schedule information system, the dialog
state might indicate the user’s desired bus route,
origin, and destination. Dialog state tracking is
difficult because errors in automatic speech recog-
nition (ASR) and spoken language understanding
(SLU) are common, and can cause the system to
misunderstand the user’s needs. At the same time,

state tracking is crucial because the system relies
on the estimated dialog state to choose actions –
for example, which bus schedule information to
present to the user.

Most commercial systems use hand-crafted
rules for state tracking, selecting the SLU result
with the highest confidence score observed so far,
and discarding alternatives. In contrast, statisti-
cal approaches compute a posterior distribution
over many hypotheses for the dialog state, and
in general these have been shown to be superior
(Horvitz and Paek, 1999; Williams and Young,
2007; Young et al., 2009; Thomson and Young,
2010; Bohus and Rudnicky, 2006; Metallinou et
al., 2013).

Unfortunately, when training a dialog state
tracker, there is rarely a large corpus of matched
data available. For example, a pilot version of the
system may be fielded in a controlled environment
to collect a small initial corpus. Yet there is of-
ten a large quantity of mis-matched dialog data
available. For example, dialog data might be avail-
able from another dialog system – such as an ear-
lier version with a different recognizer, dialog con-
troller, and user population – or from a related task
– such as searching for restaurants instead of ho-
tels.

In this paper, we tackle the general problem of
how to make use of disparate sources of data
when training a dialog state tracker. For exam-
ple, should a tracker for each slot be trained on
small sets of slot-specific data, or should data from
all slots be combined somehow? Can dialog data
from another system be used to build effective
tracker for a new system for which no data (yet)
exists? Once data from the new system is avail-
able, is the old data still useful?

These inter-related questions can be formalized
as multi-domain learning and generalization.
Multi-domain learning (MDL) refers to the task
of building a model – here, a state tracker – for
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a target domain using training data from both the
target domain and a different but related domain.
Generalization refers to the ability of a model to
perform well in a domain unlike that seen in any
of the training data. Both multi-domain learning
and generalization are active research topics in the
machine learning community, with broad applica-
tions. (Joshi et al., 2012) provides a comparison of
popular methods on several (non-dialog) tasks, in-
cluding sentiment classification in on-line product
reviews.

In dialog state tracking, there are a variety of
properties that could be cast as a “domain”. In this
paper, we explore two obvious domains: different
dialog systems, and different slots, where slots are
informational sub-units of the dialog state, such as
the origin, bus route, and departure time in a bus
timetables spoken dialog system. We apply sev-
eral methods for MDL across varied dialog sys-
tems, slots, and combinations of both. MDL is
attractive for dialog state tracking because the dis-
tribution across slots and systems is related but
not identical. For example, the ranges of speech
recognition confidence scores for two slots such as
bus route and date may be different, or one system
may use confirmations much more often than an-
other. Despite these differences, there are useful
patterns: regardless of the slot or system, higher
confidence scores and responses of “yes” to con-
firmations provide more certainty. The hope is that
MDL can provide a principled way of using all
available data to maximize accuracy.

An important problem in dialog state tracking is
that deploying a new tracker into production will
produce a new distribution of dialog data that may
be unlike data observed at training time in ways
that are difficult to predict. As a result, it is impor-
tant to test the generalization of dialog state track-
ing models on data that differs from the training
distribution. In this paper, we evaluate each of the
MDL approaches on multiple held-out datasets,
ranging from well-matched to very mis-matched
– i.e., dialog data from the same dialog system, a
modified version of the dialog system, and a com-
pletely different dialog system.

We show that dialog data from multiple existing
systems can be used to build good state trackers
for a completely new system, and that a simple
form of MDL improves generalization substan-
tially. We also find that, if well-matched data from
that new system is available, the effect (positive or

negative) of MDL is slight. Since in practice the
level of mis-match can be difficult to predict, this
suggests that training with (a particular form of)
MDL is the safest approach.

This paper is organized as follows. Section 2
describes the algorithm used for state tracking and
the dialog data employed. Section 3 then intro-
duces methods for multi-domain learning. Section
4 presents results and Section 5 briefly concludes.

2 Preliminaries

We begin by describing the core model used for
dialog state tracking, and the source data. Both of
these will be important for the development of the
multi-domain learning methods in Section 3.

2.1 Dialog state tracking model

There are two dominant approaches to statisti-
cal methods for dialog state tracking. Genera-
tive approaches use generative models that capture
how the SLU results are generated from hidden
dialog states (Horvitz and Paek, 1999; Williams
and Young, 2007; Young et al., 2009; Thomson
and Young, 2010). In contrast, discriminative ap-
proaches use conditional models, trained in a dis-
criminative fashion to directly estimate the distri-
bution over a set of state hypotheses based on a
large set of informative features (Bohus and Rud-
nicky, 2006). Previous work has found that dis-
criminative approaches yield better performance
(Metallinou et al., 2013), so we base our experi-
ments on a discriminative model.

We will assume that each dialog state hypothe-
sis is described by a feature vector x, consisting of
|x| = X features. For example, a feature might be
the confidence score of the most recent recognition
result corresponding to the hypothesis. Features
can also be included which describe the current
dialog context, such as how many times the target
slot has been requested or confirmed. At a turn in
a dialog with index i, there are N(i) dialog state
hypotheses, each described by X features. We de-
note the concatenation of all N(i) feature vectors
as X(i), which has size XN(i).

The dialog state tracking task is to take as in-
put the complete feature vector X(i), and output a
distribution over the N(i) hypotheses, plus an ad-
ditional meta-hypothesis REST that indicates that
none of the hypotheses is correct. For training, la-
bels y(i) indicate which of the N(i) hypotheses is
correct, or else if none of them is correct. By con-
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Feats/hyp
Group |X| |X∗| Corpus Dialogs Mismatch to training data

A 90 54
643 TRAIN2 None – same distribution
715 TEST1 Low
750 TEST2 Medium

B
90 316

1020 TRAIN3 None – same distribution
438 TEST3 Low

C 90 0 TEST4 High

Table 1: Corpora used in this paper. |X| denotes the number of common features, and |X∗| denotes the
number of system-specific features. The data in systems TEST1 and TEST3 has low mis-match to the
training data because they use very similar dialog managers as in TRAIN2 and TRAIN3, respectively.
The system in corpus TEST2 used a different dialog manager from TRAIN2, but the same set of system
actions, speech recognizer, and TTS, resulting in a medium level of mis-match. The system in corpus
TEST4 was completely different from any system in the training data. On average there were approxi-
mately 13 system turns and 13 user turns per dialog across all corpora. The TRAIN* corpora are used
for training, and the TEST* corpora are used for testing. Complete details of the corpora are given in
(Williams et al., 2013).

struction the hypotheses are disjoint; with the ad-
dition of the REST meta-hypothesis, exactly one
hypothesis is correct by construction. After the di-
alog state tracker has output its distribution, this
distribution is passed to a separate, downstream
process that chooses what action to take next (e.g.,
how to respond to the user).

Note that the dialog state tracker is not predict-
ing the contents of the dialog state hypotheses:
the dialog state hypotheses’ contents and features
are given by some external process – for exam-
ple, simply enumerating all SLU values observed
so far in the dialog. Rather, the task is to pre-
dict a probability distribution over the hypotheses,
where the probability assigned to a hypothesis in-
dicates the probability that it is correct.

In our previous work, we developed a
discriminatively-trained maximum-entropy model
for dialog state tracking (Metallinou et al., 2013).
The model estimates a single weight for each
feature in x; to keep learning tractable, these
weights are shared across all state hypotheses be-
ing scored. The model includes L1 and L2 regu-
larization. This model was found to out-perform
generative models, rule-based approaches typi-
cally used in industry, and competing discrimina-
tive approaches. The complete details are given
in (Metallinou et al., 2013) and are not crucial to
this paper, because the multi-domain learning ap-
proaches used here will not modify the learning
algorithm, but rather modify the features, as de-
scribed below.

2.2 Dialog data

We use dialog data and evaluation methods from
the Dialog State Tracking Challenge (Williams
et al., 2013; Williams et al., 2012). This data
comes from public deployments of dialog systems
which provide bus schedule information for Pitts-
burgh, USA. Three different research groups – de-
noted Groups A, B, and C – provided dialog sys-
tems. Each group used completely different sys-
tems, composed of different speech recognizers,
acoustic and language models, language under-
standing, dialog design, and text-to-speech. The
differences between systems from different groups
was substantial: for example, Group A and C
systems allowed users to provide any information
at any time, whereas Group B systems followed
a highly directed flow, separately collecting each
slot. In addition, Groups A and B fielded several
versions of their systems over a multi-year period
– these versions differed in various ways, such as
acoustic models, confidence scoring model, state
tracking method and parameters, number of sup-
ported bus routes, presence of minor bugs, and
user population. Differences across versions and
groups yielded differences in overall performance
and distributions in the data (Black et al., 2011;
Williams, 2012). Following the dialog state track-
ing challenge, we use these differences to test the
ability of dialog state tracking methods to gener-
alize to new, unseen distributions of dialog data.
Table 1 lists the groups, datasets, and the relative
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match/mis-match between training and test data.
In this data, there are 9 slots: the bus route, date,

time, and three components each for the origin
and destination, roughly corresponding to streets,
neighborhoods, and points-of-interest like univer-
sities. In this paper we will build trackers that op-
erate on slots independently – i.e., at each turn, a
total of 9 trackers will each output a ranked list of
dialog state hypotheses for its slot.1 The state hy-
potheses consist of all of the values for that slot ob-
served so far in the dialog – either in an SLU result
or output by the system – plus the meta-hypothesis
REST that represents the case that none of the ob-
served values is correct.

Each dialog state hypothesis is described by a
set of features extracted from the dialog data. The
Dialog State Tracking Challenge provides data
from all systems in a standard format, from which
we extracted 90 features per dialog state hypoth-
esis. We refer to these as common features, be-
cause they are available for all systems. We de-
note the concatenation of all common features for
all hypotheses at a given turn as XA, XB , or XC ,
subscripted based on the system from which they
were extracted. In addition, the challenge data
includes system-specific information. From the
Group A and B logs we extracted 54 and 316
system-specific features per hypothesis, respec-
tively. We denote the concatenation of all system-
specific features for all hypotheses at a given turn
as X∗

A or X∗
B , subscripted based on the system

from which they were extracted. Group C logs
provided no additional system-specific informa-
tion. Examples of features are provided in the Ap-
pendix.

3 Multi-domain learning methods

3.1 Models for multi-domain learning
In multi-domain learning (MDL), data instances
are of the form (X(i), y(i), d(i)), where X(i) are
features for instance i, y(i) is the label for instance
i, and d(i) is the domain of instance i, where there
are a total of D domains. The goal is to build a
good model for Pd(y|X) – i.e., to predict the la-
bel of an instance given its features and domain.
A baseline model uses only data from domain d to
train Pd(y|X); MDL tackles the problem of how
to build models that use data from all domains to
improve on this baseline. In this paper, we con-

1For simplicity, in this paper we do not consider joint state
hypotheses, which include more than one slot.

sider the fully-supervised case, where all of the
training data has been labeled.

We explore four ways of constructing models.
First, in the IND baseline model, we build D sep-
arate models using only data from a single do-
main. Next, in the POOL model, the data from all
domains is simply pooled together into one large
corpus; the single model trained on this corpus is
used in all domains. Each feature vector is aug-
mented to include an indicator of the domain d(i)
from which it originated, as this has been found to
confer much of the benefit of more complex MDL
algorithms (Joshi et al., 2012). The POOL model
can be viewed as the simplest form of MDL.

Next, the MDL1 model employs a simple
but powerful method for MDL developed by
(Daume III, 2007). For each data instance, a syn-
thetic feature vector is formed with D + 1 blocks
of size |X|. Each block is set to all zeros, except
for block d(i) and block D + 1 which are both set
to X(i). For example, with D = 3 domains, the
synthetic feature vector for X(i) from domain 1
would be 〈X(i),0,0,X(i)〉, and for X(j) from do-
main 2 would be 〈0,X(j),0,X(j)〉, where 0 is a
vector of zeros of size |X|. This synthetic corpus
is then used to train a single model which is used
in any domain.

This approach has been found to be successful
on a variety of machine learning tasks, including
several NLP tasks (Daume III, 2007). To explain
the intuition, consider a single feature component
of X, X[k], which appears D + 1 times in the
synthetic feature vectors. For model estimation,
assume a standard loss function with a term that
penalizes classification errors, and a regularization
term that penalizes non-zero feature weights. Intu-
itively, if an individual scalar feature X[k] behaves
differently in the domains, the classifier will prefer
the per-domain copies, and assign a zero weight to
the final copy, reducing the error term of the loss
function, at the expense of a small increase in the
regularization term. On the other hand, if an indi-
vidual scalar feature X[k] behaves similarly across
domains, the model will prefer to assign a single
non-zero weight to the final copy and zeros to the
per-domain copies, as this will reduce the regular-
ization term in the loss function. In other words,
the classifier will prefer the shared copy when do-
ing so has little impact to accuracy – i.e., the clas-
sifier chooses on a feature-by-feature basis when
to keep domains separate, and when to pool do-
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Synthetic feature vector encoding for data from:
Method Target Slot Slot 1 Slot 2 · · · Slot 9

SLOTIND

1 X1 not used · · · not used
2 not used X2 · · · not used
· · · · · · · · · · · · · · ·
9 not used not used · · · X9

SLOTPOOL all X1 X2 · · · X3

SLOTMDL1 all X1,0, . . . ,0,X1 0,X2, . . . ,0,X2 · · · 0,0, . . . ,X9,X9

SLOTMDL2

1 X1,0,X1 0,X2,X2 · · · 0,X9,X9

2 0,X1,X1 X2,0,X2 · · · 0,X9,X9

· · · · · · · · · · · · · · ·
9 0,X1,X1 0,X2,X2 · · · X9,0,X9

Table 2: Synthetic features constructed for each multi-domain learning method applied to slots. Here,
the subscript on X indicates the slot it describes.

mains.
When the number of domains D is large,

MDL1 can produce large, sparse synthetic feature
vectors, confounding training. MDL2 addresses
this by constructing D separate models; in model
d, data from all domains except d is pooled into
one meta-domain. Then the procedure in MDL1
is followed. For example, for model d = 1, in-
stances X(i) from domain d(i) = 1 is represented
as 〈X(i),0,X(i)〉; data from all other domains
d(i) 6= 1 is represented as 〈0,X(i),X(i)〉. This
synthetic data is then used to train a model for do-
main 1.

3.2 Application to dialog state tracking

In this study, we consider two orthogonal dimen-
sions of domain – systems and slots – and combi-
nations of the two.

Multi-domain learning across slots means
building a tracker for one slot using dialog data
pertaining to that slot, plus data pertaining to other
slots. In the experiments below, this is done by
treating each of the 9 slots as a domain and apply-
ing each of the four MDL methods above. Table 2
specifies the precise form of the synthetic feature
vectors for each method.

Multi-domain learning across systems means
building a tracker for one dialog system using dia-
log data collected with that system, plus data from
other dialog systems. Each of the two corpora in
the training data – TRAIN2 from Group A and
TRAIN3 from Group B – is treated as a domain.
Since only the common features are shared across
domains (i.e., systems), model complexity can be
reduced by building different models depending

on the target group – the group the model will
be tested on – and including system-specific fea-
tures only for the target group. For example, when
a model will be trained on data from Groups A
and B, then tested on data from Group A, we in-
clude common features from A and B but system-
specific features from only A. Table 3 specifies the
precise form of the synthetic feature vectors for
each method. Also, when MDL is applied across
systems, there are only 2 sources of training data,
so MDL2 is identical to MDL1 (and thus isn’t
shown in the results).

Applying multi-domain learning to both sys-
tems and slots is done by composing the two fea-
ture synthesis steps. This process is simple but can
increase the size of synthetic feature vectors by up
to an order of magnitude.

3.3 Evaluation method

In the experiments below, we train dialog state
trackers that output a scored list of dialog state
hypotheses for each slot at each turn in the dia-
log. For evaluation, we measure the fraction of
output lists where the top dialog state hypothesis
is correct. A dialog state hypothesis is correct if
it corresponds to a slot value which has been rec-
ognized correctly. The dialog state tracker may
include the meta-hypothesis REST among its hy-
potheses – this meta-hypothesis is labeled as cor-
rect if no correct values have yet been recognized
for this slot.

Since most turns contain no information about
most slots, we limit evaluation to turns where new
information for a slot appears either in the speech
recognition output, or in the system output. For
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Synthetic feature vector
encoding for data from:

Method Target group Group A Group B

SYSTEMIND
A XA,X

∗
A not used

B not used XB,X
∗
B

SYSTEMIND-A C XA not used
SYSTEMIND-B C not used XB

SYSTEMPOOL

A XA,X
∗
A XB,0

B XA,0 XB,X
∗
B

C XA XB

SYSTEMMDL
A XA,X

∗
A,0,XA 0,0,XB,XB

B 0,0,XA,XA XB,X
∗
B,0,XB

Table 3: Synthetic features constructed for each multi-domain learning method applied to systems. Here,
the subscript on X indicates the system it originated from. Asterisk super-scripts indicate system-specific
features, which are only included for the group the tracker will be tested on (i.e., the target group).

example, in turn i, if a system confirms a bus route,
and a date appears in the speech recognition out-
put, both of these slots in turn i will be included
when computing average accuracy. If the time slot
appears in neither the system output nor anywhere
in the speech recognition output of turn i, then the
time slot in turn i is excluded when computing av-
erage accuracy. The accuracy computation itself
was done by the scoring tool from the Dialog State
Tracking Challenge, using the schedule2 accuracy
metric for all slots (Williams et al., 2013; Williams
et al., 2012).

For comparison, we also report performance of
a simple rule-based tracker. For each slot, this
tracker scans over all values recognized so far in
the dialog, and returns the value which has been
recognized with the highest local SLU confidence
score.

4 Results

We first evaluated performance of multi-domain
learning in isolation, excluding the effects of gen-
eralization. To do this, we divided TRAIN2 and
TRAIN3 in half, using the first halves for train-
ing and the second halves for testing. This ex-
periment gives an indication of the performance of
multi-domain learning if conditions in deployment
match the training data.

Results are shown in Figure 1a-1b. Here, the
effects of multi-domain learning across systems
and slots is rather small, and inconsistent. For ex-
ample, pooling slot data yields best performance
on TRAIN3, and worst performance in TRAIN2.

Applying MDL across systems yields best perfor-
mance for TRAIN3, but not for TRAIN2. Overall,
when training and test data are very well-matched,
MDL has little effect.

Of course, in practice, training and test data will
not be well-matched, so we next evaluated per-
formance of multi-domain learning including the
effects of generalization. Here we trained using
the complete TRAIN2 and TRAIN3 corpora, and
tested on TEST1, TEST2, TEST3, and TEST4.

Results are shown in Figures 1c-1f. The dom-
inant trend is that, at high levels of mis-match as
in TEST3 and TEST4, simply pooling together all
available data yields a large increase in accuracy
compared to all other methods. The majority of
the increase is due to pooling across slots, though
pooling across systems yields a small additional
gain. This result echos past work, where pooling
data is often competitive with more sophisticated
methods for multi-domain learning (Joshi et al.,
2012).

In our case, one possible reason for this result
is that simply pooling the data introduces a sort of
regularization: note that the models with SLOT-
POOL and SYSTEMPOOL have the highest ratio
of training data to model parameters. The MDL
methods also use all the data, but via their larger
synthetic feature vectors, they increase the number
of model parameters. The smaller model capacity
of the POOL models limit the ability to completely
fit the training data. This limitation can be a li-
ability for matched conditions – see for example
Figure 1a – but may help the model to generalize
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(a) Evaluation on TRAIN2 (Group A), in which there is min-
imal mis-match between the training and test data.
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(b) Evaluation on TRAIN3 (Group B), in which there is min-
imal mis-match between the training and test data.
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(c) Evaluation on TEST1 (Group A), in which there is low
mis-match between the training and test data.
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(d) Evaluation on TEST3 (Group B), in which there is low
mis-match between the training and test data.
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(e) Evaluation on TEST2 (Group A), in which there is
medium mis-match between the training and test data.
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(f) Evaluation on TEST4 (Group C), in which there is high
mis-match between all of the training data and test data.

Figure 1: Average accuracy of different approaches to multi-domain learning in dialog state tracking.
Squares show SLOTIND, circles SLOTPOOL, unshaded diamonds SLOTMDL1, and shaded diamonds
SLOTMDL2. The solid line shows performance of a simple rule-based tracker, which is not trained on
data. In all plots, the vertical axis is shown on the same scale for comparability (12% from bottom to top),
and indicates average accuracy of the top dialog state (c.f., Section 3.3). In panels 1a and 1b, training is
done on the first halves of TRAIN2 and TRAIN3, and testing on the second halves. In the other panels,
training uses all of TRAIN2 and TRAIN3. In panel 1f, the categories for TEST4 – for which there is no
in-domain data – are different than the other panels.
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in mis-matched conditions.

5 Conclusion

This paper has examined multi-domain learning
and generalization in dialog state tracking. Two
dimensions of domain have been studied – learn-
ing across slots and learning across systems – and
three simple methods for multi-domain learning
have been studied. By using corpora of real di-
alogs from the Dialog State Tracking Challenge,
generalization has been studied through varying
levels of mis-match between training and test data.

The results show that simply pooling together
data yields large benefits in highly mis-matched
conditions and has little effect in well-matched
conditions. In practice of course, the level of mis-
match a new tracker will produce is difficult to pre-
dict. So the safest strategy seems to be to always
pool together all available data.

There are a variety of issues to examine in future
work. First, the MDL methods used in this study
were chosen for their simplicity and versatility: by
augmenting features, no changes were required to
the learning method. There exist other methods of
MDL which do modify the learning, and in some
cases yield better performance. It would be inter-
esting to test them next, perhaps including meth-
ods that can construct deeper representations than
the maximum entropy model used here.

More broadly, this study has been limited to su-
pervised multi-domain learning, in which labeled
data from multiple domains is available at training
time. It would clearly be desirable to develop a
method for unsupervised adaptation, in which the
model is adjusted as the unlabeled test data is ex-
perienced.

For now, the contribution of this study is to pro-
vide at least an initial recommendation to prac-
titioners on how to best make use of disparate
sources of dialog data when building a statistical
dialog state tracker.
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Appendix

Example common features extracted for all systems
Number of times slot value has been observed in any previous speech recognition result

Whether the most recent speech recognition result includes this slot value
The highest rank on the speech recognition N-best list that this slot value has been observed

The number of times this slot has been requested by the system
Whether the system requested this slot in the current turn

The number of items on the current speech recognition N-best list
Whether confirmation for this slot has been attempted

If confirmation for this slot has been attempted, whether the user was recognized as saying “yes”
The fraction of recognitions of this slot value in the training set which were correct
The fraction of dialogs in the training set in which the user requested this slot value

Example system-specific features extracted for Group A systems
Acoustic model score

Average word confidence score
Whether barge-in was triggered

Decoder score
Language model score

Maximum and minimum confidence score of any word
Estimated speaking rate

Estimated speaker gender (male/female)
Example system-specific features extracted for Group B systems

Score of best path through the word confusion network
Lowest score of any word on the best path through the word confusion network

Number of speech frames found
Decoder cost

Garbage model likelihood
Noise model likelihood

Average difference in decoder cost, per frame, between the best path and any path through the lattice
Whether barge-in was triggered

Table 4: Examples of features used for dialog state tracking. Group C logs provided no system-specific
information.
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Abstract 

Many dialog state tracking algorithms have 

been limited to generative modeling due to the 

influence of the Partially Observable Markov 

Decision Process framework. Recent analyses, 

however, raised fundamental questions on the 

effectiveness of the generative formulation. In 

this paper, we present a structured 

discriminative model for dialog state tracking 

as an alternative. Unlike generative models, 

the proposed method affords the incorporation 

of features without having to consider 

dependencies between observations. It also 

provides a flexible mechanism for imposing 

relational constraints. To verify the 

effectiveness of the proposed method, we 

applied it to the Let’s Go domain (Raux et al., 

2005). The results show that the proposed 

model is superior to the baseline and 

generative model-based systems in accuracy, 

discrimination, and robustness to mismatches 

between training and test datasets.  

 

1 Introduction 

With the recent remarkable growth of speech-

enabled applications, dialog state tracking has 

become a critical component not only for typical 

telephone-based spoken dialog systems but also 

for multi-modal dialog systems on mobile 

devices and in automobiles. With present 

Automatic Speech Recognition (ASR) and 

Spoken Language Understanding errors, it is 

impossible to directly observe the true user goal 

and action. It is crucial, therefore, to accurately 

estimate the true dialog state from erroneous 

observations as a dialog unfolds.  

Since the Partially Observable Markov 

Decision Process (POMDP) framework has 

offered a well-founded theory for both state 

tracking and decision making, most earlier 

studies adopted generative temporal models, the 

typical way to formulate belief state updates for 

POMDP-based systems (Williams and Young, 

2007). Several approximate methods have also 

emerged to tackle the vast complexity of 

representing and maintaining belief states, e.g., 

partition-based approaches (Gasic and Young, 

2011; Lee and Eskenazi, 2012a; Williams, 2010; 

Young et al., 2010) and Bayesian network (BN)-

based methods (Raux and Ma, 2011; Thomson 

and Young, 2010). 

To verify the effectiveness of these techniques, 

some were deployed in a real user system for the 

Spoken Dialog Challenge (Black et al., 2010). 

The results demonstrated that the use of 

statistical approaches helps estimate the true 

dialog state and achieves increased robustness to 

ASR errors (Thomson et al., 2010b; Lee and 

Eskenazi 2012b; Williams, 2011; Williams, 

2012). However, further analysis also raised 

several fundamental questions about the 

formulation of the belief update as a generative 

temporal model: limitation in modeling 

correlations between observations in different 

time slices; and the insensitive discrimination 

between true and false dialog states (Williams, 

2012). There are more potential downsides of 

generative models, which will be discussed in 

detail in Section 2. 

On the other hand, natural language 

processing, computer vision and other machine 

learning research areas have increasingly 

profited from discriminative approaches. 

Discriminative approaches directly model the 

class posteriors, allowing them to incorporate a 

rich set of features without worrying about their 

dependencies on one another. This could result in 

a deficient probability distribution with 

generative models (Sutton and McCallum, 2006). 
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The aim of this paper is to describe a first 

attempt to adopt a structured discriminative 

model for dialog state tracking. To handle 

nonlinearity of confidence score and variable 

cardinality of the possible values of output 

variables, the traditional approaches applied to 

other tasks have been modified.  

To verify the effectiveness of the proposed 

method, we applied it to the Let’s Go
1
 domain 

(Raux et al., 2005). The proposed model was 

compared with its unstructured version without 

relational constraints, the baseline system which 

always takes the top ASR hypothesis in the entire 

dialog, and finally the AT&T Statistical Dialog 

Toolkit
2
 (ASDT) which is one of the state-of-the-

art generative model-based systems. 

This paper is structured as follows. Section 2 

describes previous research and the novelty of 

our approach. Section 3 elaborates on our 

proposed structured discriminative approach. 

Section 4 explains the experimental setup. 

Section 5 presents and discusses the results. 

Finally, Section 6 concludes with a brief 

summary and suggestions for future research.  

2 Background and Related Work  

A statistical dialog system needs to update its 

dialog state when taking the action    and 

observing  . Since the POMDP framework 

assumes the Markovian property between states, 

updating a belief state involves only the previous 

belief state, the system action, and the current 

observation: 

 

  (  )     (  |  )∑ (  |    ) ( )

   

 (1) 

 

where  ( )  denotes the probability distribution 

over states  ,  ( | )  the likelihood of   given 

the state  ,  (  |    )  the state transition 

probability, and   is a normalizing constant. 

In practice, however, belief state updates 

(Equation 1) in many domains are often 

computationally intractable due to the 

tremendously large size of the belief state space. 

In order to reduce the complexity of the belief 

states, the following belief state factorization has 

been commonly applied to the belief update 

procedure (Williams et al., 2005): 
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2
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where  ,  ,   , represents the user goal, the 

dialog history, and the user action, respectively. 

Partition-based approaches (Gasic and Young, 

2011; Lee and Eskenazi, 2012; Williams, 2010; 

Young et al., 2010) attempt to group user goals 

into a small number of partitions and split a 

partition only when this distinction is required by 

observations. This property endows it with the 

high scalability that is suitable for fairly complex 

domains. In partition-based approaches, the goal 

model in Equation 2 is further approximated as 

follows: 
 

∑ (  |    
 )  ∑ (  | )

  

 (3) 

  
where   is a partition from the current turn. One 

of the flaws of the partition-based approaches is 

that when one defines a partition to be a 

Cartesian product of subsets of possible values of 

multiple concepts, it will be difficult to adopt 

sophisticated prior distributions over partitions. 

That may lead to either employing very simple 

priors such as uniform distribution or 

maintaining partition structures separately for 

each concept. This is one of the main reasons 

that the previous partition-based approaches 

could not incorporate probabilistic or soft 

relational constraints into the models.  

To allow for relational constraints and 

alleviate the complexity problem at the same 

time, Dynamic Bayesian Networks (DBN) with 

more detailed structures for the user goal have 

also been developed (Thomson and Young, 

2010). Nevertheless, there is still a limitation on 

the types of constraints they can afford. Since 

DBN is a directed network, it is not quite suitable 

for specifying undirected constraints. For 

example, in the Let’s Go domain, users can say 

the same name for the arrival place as the 

departure place if they are distracted, missing the 

prompt for the arrival place and so repeating 

themselves with the departure place. It is also 

possible for some place names with similar 

pronunciations to be recognized as the same (e.g. 

Forbes and Forward). The system can, in this 
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case, use the constraint that the departure and 

arrival places may not be identical. 

Another drawback of both approaches is that it 

is hard to incorporate a rich set of observation 

features, which are often partly dependent on 

each other. One can create a feature which 

reflects ASR error correlations between 

observations in different time slices. For example, 

a hypothesis that repeats with low confidence 

scores is likely to be a manifestation of ASR 

error correlations. Thus, the highest confidence 

score that a hypothesis has attained so far could 

be a useful feature in preventing repeated 

incorrect hypotheses from defeating the correct 

hypothesis (which had a higher score but was 

only seen once). Another useful feature could be 

the distribution of confidence scores that a 

hypothesis has attained thus far, since it may not 

have the same effect as having a single 

observation with the total score due to the 

potential nonlinearity of confidence scores. 

There are many other potentially useful features. 

The entire list of features is found in Section 3.2. 

Dynamic Probabilistic Ontology Trees (Raux 

and Ma, 2011) is another method based upon 

DBN which does not impose explicit temporal 

structures. Since it does not impose temporal 

structures, it is more flexible in considering 

multiple observations together. However, it is 

still difficult to capture co-dependent features, 

which are exemplified above, without 

introducing probabilistic deficiency due to its 

generative foundation (Appendix E). Moreover, 

the quality of the confidence score will be critical 

to all generative models up to that point since 

they do not usually try to handle potential 

nonlinearity in confidence scores. 

As far as discriminative models are concerned, 

the Maximum Entropy (MaxEnt) model has been 

applied (Bohus and Rudnicky, 2006). But the 

model is limited to a set of separate models for 

each concept, not incorporating relational 

dependencies. Also, it is restricted to maintain 

only top K-best hypotheses where K is a 

predefined parameter, resulting in potential 

degradation of performance and difficulties in 

extending it to structured models. In Section 3, 

our structured discriminative model is described. 

It is designed to take into consideration the 

aforementioned limitations of generative models 

and the previous discriminative approach. 

3 Structured Discriminative Model 

Unlike generative models, discriminative models 

directly model the class posterior given the 

observations. Maximum Entropy is one of most 

powerful undirected graphical models (Appendix 

A). But for some tasks that predict structured 

outputs, e.g. a dialog state, MaxEnt becomes 

impractical as the number of possible outputs 

astronomically grows. For example, in the Lets 

Go domain, the size of possible joint output 

configurations is around 10
17

. To address this 

problem, Conditional Random Field (CRF) was 

introduced which allows dependencies between 

output variables to be incorporated into the 

statistical model (Appendix B).  

3.1 Model Structure for Dialog State 

Tracking 

We now describe our model structure for dialog 

state tracking in detail using the Let’s Go domain 

as a running example. The graphical 

representation of the model is shown in Fig. 1. 

The global output nodes for each concept (clear 

nodes in Fig. 1) are unlike other temporal 

models, where a set of output nodes are newly 

introduced for each time slice. Instead, as a 

dialog proceeds, a set of new observations   
  

(shaded nodes in Fig. 1) are continuously 

attached to the model structure and the feature 

 
 

Figure 1: Factor graph representing the structured discriminative model in the Let’s Go domain. The shaded 

nodes show observed random variables. The smaller solid node is the deterministic parameters and explicitly 

represents parameter sharing between two associated factors.  
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functions are responsible for producing fixed 

length feature vectors. The sequence of 

observations includes not only ASR N-best lists 

but also system actions from the beginning of the 

dialog to the current time slice  . Any output 

node can be freely connected to any other to 

impose desirable constraints between them 

whether or not the connections form a loop (solid 

lines in Fig. 1).  

In practice, models rely extensively on 

parameter tying, e.g., transition parameters in a 

Hidden Markov Model. One specific example of 

relational constraints and parameter tying 

naturally arises in the Let’s Go domain: the 

feature function which indicates whether a place 

is valid on a given route could use the same 

weights for both departure and arrival places (the 

solid node and the associated factor nodes in Fig. 

1). Parameter tying is also implicitly taking 

place. This is crucial for robust estimation of the 

model parameters in spite of data sparseness. 

Some concepts such as from and to can have 

about 10
4
 values but most of them are not seen in 

the training corpus. Thus we aggregate several 

feature functions which differ only by output 

labels into one common feature function so that 

they can gather their statistics together. For 

example, we can aggregate the observation 

feature functions (dotted lines in Fig. 1) 

associated with each output label except for 

None (Section 3.2). Here, None is a special value 

to indicate that the true hypothesis has not yet 

appeared in the ASR N-best lists. Since there are 

generally a large number of values for each 

concept, the probability of the true hypothesis 

will be very small unless the true hypothesis 

appears on the N-best lists. Thus we can make 

inferences on the model very quickly by focusing 

only on the observed hypotheses at the cost of 

little performance degradation. Additionally, the 

feature function aggregation allows for the entire 

observed hypotheses to be incorporated without 

being limited to only the pre-defined number of  

hypotheses.  

3.2 Model Features 

In this section, we describe the model features 

which are central to the performance of 

discriminative models. Features can be broadly 

split into observation features and relational 

features. To facilitate readers’ understanding an 

example of feature extraction is illustrated in Fig. 

2. 

One of the most fundamental features for 

dialog state tracking should exploit the 

confidence scores assigned to an informed 

hypothesis. The simplest form could be direct 

use of confidence scores. But often pre-trained 

confidence measures fail to match the empirical 

distribution of a given dialog domain (Lee and 

Eskenazi, 2012; Thomson et al. 2010a). Also the 

distribution of confidence scores that a 

hypothesis has attained so far may not have the 

same effect as the total score of the confidence 

scores (e.g., in Fig. 2, two observations for 61C 

with confidence score 0.3 vs. 0.6 which is the 

sum of the scores). Thus we create a feature 

function that divides the range of confidence 

scores into bins and returns the frequency of 

observations that fall into the corresponding bin: 
 

       (    
 )  

        {
                 (       (    

 ))

           
   
(4) 

 

where      ( )  returns the set of confidence 

scores whose action informs   in the sequence of 

observations   
 .         (   )  computes the 

frequency of observations that fall into the     

bin. 

There are two types of grounding actions 

which are popular in spoken dialog systems, i.e., 

implicit and explicit confirmation. To leverage 

affirmative or negative responses to such system 

acts, the following feature functions are 

introduced in a similar fashion as the        

feature function: 
 

 
 

Figure 2: A simplified example of feature extraction for the route concept. It shows the values that each feature 

will have when three consecutive user inputs are given. 
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where      ( )  /      ( )  returns the set of 

confidence scores whose associated action 

affirms / negates   in the sequence of 

observations   
 . 

 

           (    
 )  

                         {
                  (    

 )

           
   

(7) 

 

where          ( ) indicates whether or not the 

user has negated the system’s implicit 

confirmation in the sequence of observations   
 . 

Another interesting feature function is the so-

called baseline feature which exploits the output 

of a baseline system. The following feature 

function emulates the output of the baseline 

system which always selects the top ASR 

hypothesis for the entire dialog: 
 

          (    
 )  

      {
            (           (    

 ))

           
   
(8) 

 

where          ( )  returns the maximum 

confidence score whose action informs   in the 

sequence of observations   
 .    (   )  indicates 

whether or not the maximum score falls into the 

    bin. 

Yet another feature function of this kind is the 

accumulated score which adds up all confidence 

scores associated with inform and affirm and 

subtracts the ones with negation: 
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 )  

                  

{
 
 

 
              ∑     (    
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                           ∑     (    
 )

                           ∑     (    
 )

                 

   
(9) 

 

Note that such feature functions as 

          ( )  and          ( )  are not 

independent of the others defined previously, 

which may cause generative models to produce 

deficient probability distributions (Appendix E). 

It is known that prior information can boost 

the performance (Williams, 2012) if the prior is 

well-estimated. One of advantages of generative 

models is that they provide a natural mechanism 

to incorporate a prior. Discriminative models 

also can exploit a prior by introducing additional 

feature functions: 
 

      (    
 )  

            {
            (            ( ))
           

   
(10) 

 

where           ( ) returns the fraction of 

occurrences of   in the set of true labels. 

If the system cannot process a certain user 

request, it is highly likely that the user change 

his/her goal. The following feature function is 

designed to take care of such cases: 
 

        (    
 )  {

             ( )
           

   (11) 

 

where     ( ) indicates whether or not   is out-

of-coverage. 

As with other log-linear models, we also have 

feature functions for bias: 
 

    (    
 )    

        (    
 )   {

          
            

 
(12) 

 

Note that we have an additional bias term for 

None to estimate an appropriate weight for it. 

Regarding relational constraints, we have 

created two feature functions. To reflect the 

presumption that it is likely for the true 

hypothesis for the place concepts (i.e. from and 

to) to be valid on the true hypothesis for the 

route concept, we have: 
 

              (   )  

                             {
              (   )

                            
   

(13) 

 

where      (   )  indicates whether or not the 

place   is valid on the route  . Another feature 

function considers the situation where the same 

place name for both departure and arrival places 

is given: 
 

               (     )  

        {
                             

                                                       
   

(14) 

 

3.3 Inference & Parameter Estimation 

One of the common grounding actions of spoken 

dialog systems is to ask a confirmation question 

about hypotheses which do not have sufficient 

marginal beliefs. This makes marginal inference 
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to be one of the fundamental reasoning tools for 

dialog state tracking. In treelike graphs, exact 

marginal probabilities are efficiently computable 

by using the Junction Tree algorithm (Lauritzen 

and Spiegelhalter, 1988) but in general it is 

intractable on structured models with loops.  

Since it is highly likely to have loopy 

structures in various domains (e.g. Fig. 1), we 

need to adopt approximate inference algorithms 

instead. Note that CRF (Equation 16) is an 

instance of the exponential family. For the 

exponential family, it is known that the exact 

inference can be formulated as an optimization 

problem (Wainwright and Jordan, 2008). The 

variational formulation opens the door to various 

approximate inference methods. Among many 

possible approximations, we adopt the Tree 

Reweighted Belief Propagation (TRBP) method 

which convexifies the optimization problem that 

it guarantees finding the global solution 

(Appendix C).  

On the other hand, joint inference also 

becomes important for either selecting a 

hypothesis to confirm or determining the final 

joint configuration when there exist strong 

relational dependencies between concepts. 

Moreover, we would like to find not just the best 

configuration but rather the top   configurations. 

Since the number of concept nodes is generally 

moderate, we approximate the inference by 

searching for the top   configurations only 

within the Cartesian product of the top   

hypotheses of each concept. For domains with a 

large number of concepts, one can use more 

advanced methods, e.g., Best Max-Marginal 

First (Yanover and Weiss, 2004) and Spanning 

Tree Inequalities and Partitioning for 

Enumerating Solutions (Fromer and Globerson, 

2009). 

The goal of parameter estimation is to 

minimize the empirical risk. In this paper, we 

adopt the negative of the conditional log 

likelihood (Appendix D). Given the partial 

derivative (Equation 26), we employ the 

Orthant-wise Limited-memory Quasi Newton 

optimizer (Andrew and Gao, 2007) for L1 

regularization to avoid model overfitting.  

4 Experimental Setup 

In order to evaluate the proposed method, two 

variants of the proposed method (discriminative 

model (DM) and structured discriminative model 

(SDM)) were compared with the baseline system, 

which always takes the top ASR hypothesis for 

the entire dialog and outputs the joint 

configuration using the highest average score, 

and the ASDT system as being the state-of-the-

art partition-based model (PBM). To train and 

evaluate the models, two datasets from the 

Spoken Dialog Challenge 2010 are used: a) 

AT&T system (Williams, 2011), b) Cambridge 

system (Thomson et. al, 2010b).  

For discriminative models, we used 10 bins 

for the feature functions that need to discretize 

their inputs (Section 3.2). Parameter tying for 

relational constraints was applied to dataset A 

but not to dataset B. To make sure that TRBP 

produces an upper bound on the original entropy, 

the constants    were set to be     for SDM and 

1 for DM (Appendix C). Also the weights for L1 

regularization were set to be 10 and 2.5 for the 

prior features and the other features, respectively. 

These values were chosen through cross-

validation over several values rather than doing a 

thorough search. For the ASDT system, we 

modified it to process implicit confirmation and 

incorporate the prior distribution which was 

estimated on the training corpus. The prior 

distribution was smoothed by approximate 

Good-Turing estimation on the fly when the 

system encounters an unseen value at run time. 

Two aspects of tracker performance were 

measured at the end of each dialog, i.e. Accuracy 

and Receiver Operating Characteristic (ROC). 

Accuracy measures the percent of dialogs where 

the tracker’s top hypothesis is correct. ROC 

assesses the discrimination of the top 

hypothesis’s score. Note that we considered 

None as being correct if there is no ASR 

hypothesis corresponding to the transcription. If 

all turns are evaluated regardless of context, 

concepts which appear earlier in the dialog will 

be measured more times than concepts later in 

the dialog. In order to make comparisons across 

concepts fair, concepts are only measured when 

 Route From To Date Time Joint 

Training 378 334 309 33 30 378 

Test 379 331 305 54 50 379 
 

(a) Dataset A 
 

 Route From To Date Time Joint 

Training 94 403 353 18 217 227 

Test 99 425 376 18 214 229 
 

(b) Dataset B 
 

Table 1: Counts for each concept represent the 

number of dialogs which have non-empty utterances 

for that concept. From and To concepts add up the 

counts for their sub-concepts. Joint denotes the joint 

configuration of all concepts. 
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they are in focus. It does not, however, allow for 

a tracker to receive score for new estimations 

about concepts that are not in focus. In addition, 

dialogs with more turns will have a greater effect 

than dialogs with fewer turns. Therefore we only 

measure concepts which appear in the dialog at 

the last turn of the dialog before restart. The 

statistics of the training and test datasets are 

summarized in Table 1. 

5 Results and Discussion  

The results indicate that discriminative methods 

outperform the baseline and generative method 

by a large performance gap for both dataset A 

and B (Table 2). Also, SDM exceeds DM, 

demonstrating the effectiveness of using 

relational constraints. Furthermore, the 

performance of SDM surpasses that of the best 

system in the Dialog State Tracking Challenge
3
 

(Lee and Eskenazi, 2013). Even though the 

generative model underperforms discriminative 

models, it is also shown that dialog state tracking 

methods in general are effective in improving 

robustness to ASR errors. Another noteworthy 

result is that the gains for Joint by using 

discriminative models are much larger than those 

for All. Estimating joint configurations correctly 

is crucial to eventually satisfy the user’s request. 

This result implies that the proposed model 

performs evenly well for all concepts and is more 

robust to the traits of each concept. For example, 

PBM works relatively poorly for To on dataset A. 

What makes To different is that the quality of the 

                                                 
3
 http://research.microsoft.com/en-us/events/dstc/ 

ASR hypotheses of the training data is much 

better than that of test data: the baseline accuracy 

on the training data is 84.79% while 77.05% on 

the test data. Even though PBM suffers this 

mismatch, the discriminative models are doing 

well without significant differences, implying 

that the discriminative models achieve 

robustness by considering not just the confidence 

score but also several features together. 

Since there has been no clear evidence that the 

use of N-best ASR hypotheses is helpful for 

dialog state tracking (Williams, 2012), we also 

report accuracies while varying the number of N-

best hypotheses. The results show that the use of 

N-bests helps boost accuracy across all models 

on dataset A. However, interestingly it hampers 

the performance in the case of dataset B. It 

demonstrates that the utility of N-bests depends 

on various factors, e.g., the quality of N-bests 

and dialog policies. The system which yielded 

dataset A employs implicit and explicit 

confirmation much more frequently than the 

system which produced dataset B does. The 

proposed model trained on dataset A without 

confirmation features incorporated actually 

showed a slight degradation in accuracy when 

using more than 3-bests. This result indicates that 

we need to take into consideration the type of 

dialog strategy to determine how many 

hypotheses to use. Thus, it can be conceivable to 

dynamically change the range of N-bests 

according to how a dialog proceeds. That allows 

the system to reduce processing time when a 

dialog goes well. 

 All (%)  Joint 

N-best Baseline PBM DM SDM  Baseline PBM DM SDM 

1-best 74.80 77.93 83.65 83.74  53.56 54.62 60.16 60.69 

3-best 74.80 84.00 88.83 89.10  53.56 64.38 70.18 70.98 

5-best 74.80 84.54 89.54 89.81  53.56 65.70 72.30 73.09 

All 74.80 84.81 89.81 90.26  53.56 65.96 73.09 74.67 
 

(a) Dataset A 

 

 All  Joint 

N-best Baseline PBM DM SDM  Baseline PBM DM SDM 

1-best 65.46 68.73 78.00 80.12  11.35 12.23 26.20 30.13 

3-best 65.46 68.02 78.00 79.51  11.35 11.35 27.51 28.82 

5-best 65.46 67.40 77.92 79.15  11.35 11.79 24.89 25.76 

All 65.46 66.61 78.00 79.24  11.35 11.79 24.89 25.76 
 

(b) Dataset B 
 

Table 2: Accuracy of the comparative models. The best performaces across the models are marked in bold. All 

means a weighted average accuracy across all concepts. 
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The ROC curves assess the discrimination of 

the top hypothesis’ score (Fig. 3). Note that the 

discriminative models are far better than PBM on 

both dataset A and B. In fact, PBM turns out to 

be even worse than the baseline. The better 

discrimination can give rise to additional values 

of a tracker. For example, it can reduce 

unnecessary confirmations for values with 

sufficiently high belief. Also, it enables a model 

to adapt to test data in an unsupervised manner 

by allowing us to set a proper threshold to 

produce predictive labels.  

6 Conclusion 

In this paper, we presented the first attempt, to 

our knowledge, to create a structured 

discriminative model for dialog state tracking. 

Unlike generative models, the proposed method 

allows for the incorporation of various features 

without worrying about dependencies between 

observations. It also provides a flexible 

mechanism to impose relational constraints. The 

results show that the discriminative models are 

superior to the generative model in accuracy, 

discrimination, and robustness to mismatches 

between training and test datasets. Since we used 

relatively simple features for this work, there is 

much room to boost performance through feature 

engineering. Also, more thorough search for 

regularization weights can give additional 

performance gain. Moreover, one can apply 

different loss functions, e.g., hinge loss to obtain 

structured support vector machine. In order to 

further confirm if the performance improvement 

by the proposed method can be translated to the 

enhancement of the overall spoken dialog 

system, we need to deploy and assess it with real 

users. 
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Appendix A. Maximum Entropy 

Maximum Entropy directly models the class 

posterior given the observations:  
 

 ( | )  
 

 ( )
   (   (   ))   (15) 

 

where  ( ) is a normalization function,   the model 

parameters, and  (   ) the vector of feature functions 

which are key to performance. 

Appendix B. Conditional Random Field 

Let   be a factor graph over outputs  . Then, if 

the distribution  ( | ) factorizes according to   

and   *  +  is the set of factors in  , the 

conditional distribution can be written as: 
 

 ( | )  
 

 ( )
∏    (  

  (     ))

    

 (16) 

 

In practice, models rely extensively on parameter 

tying. To formalize this, let the factors of   be 

partitioned to   *          +, where each    

is a clique template whose parameters are tied. 

Each clique template is a set of factors which has 

an associated vector of feature functions 

  (     )  and parameters   . From these it 

follows (Sutton and McCallum, 2006):  
 

 ( | )  
 

 ( )
∏ ∏    (  

  (     ))

         

 (17) 

 

where the normalizing function is: 
 

 ( )  ∑ ∏ ∏    (  
  (     ))

          

 (18) 

 

Appendix C. Tree-reweighted Belief Propagation 

Unlike treelike graphs, computing exact marginal 

probabilities is in general intractable on 

structured models with loops. Therefore, we need 

to adopt approximate inference algorithms 

instead. Note that CRF (Equation 16) is an 

instance of exponential family: 
 

 (   )      (   ( )   ( )) (19) 
 

where   is a function of the observations   and 

the parameters   above,  ( ) a vector of 

sufficient statistics consisting of indicator 

functions for each configuration of each clique 

and each variable, and  ( ) is the log-partition 
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function    ∑     (   ( ) ) . For exponential 

family, it is known that the exact inference can 

be formulated as an optimization problem 

(Wainwright and Jordan, 2008): 
 

 ( )     
   

     ( ) (20) 
 

where   *  |       ( )+ is the marginal 

polytope,  ( ) is the mapping from parameters 

to marginals, and  ( ) is the entropy. Applying 

Danskin’s theorem to Equation 20 yields: 
 

 ( )  
  

  
       

   
     ( ) (21) 

 

Thus both the partition function (Equation 20) 

and marginals (Equation 21) can be computed at 

once. The variational formulation opens the door 

to various approximate inference methods: to 

derive a tractable algorithm, one approximates 

the log-partition function  ̃( )  by using a 

simpler feasible region of   and a tractable  ( ). 

Then the approximate marginals are taken as the 

exact gradient of  ̃ . Among many possible 

approximations, we adopt the Tree Reweighted 

Belief Propagation (TRBP) method which 

convexifies the optimization problem that it 

guarantees finding the global solution. TRBP 

takes the local polytope as a relaxation of the 

marginal polytope: 
 

  * |∑ (  )

    

  (   ) ∑ (  )

  

    + (22) 

 

where  and   index each clique and output 

variable, respectively. TRBP approximates the 

entropy as follows: 
 

 ( )  ∑ (  )  ∑    (  )

  

 (23) 

 

where  ( )  denotes the mutual information and 

the constants    need to be selected so that they 

generate an upper bound on the original entropy. 
 

Appendix D. Parameter Estimation For 

Conditional Random Field 

The goal of parameter estimation is to minimize 

the empirical risk: 
 

 ( )  ∑ (       )

 

 (24) 

 

where there is summation over all training 

examples. The loss function  (       ) 
quantifies the difference between the true and 

estimated outputs. In this paper, we adopt the 

negative of the conditional log likelihood: 

 ( )  ∑ ∑   
  (     )

         

     ( ) (25) 

 

The partial derivative of the log likelihood with 

respect to a vector of parameters    associated 

with a clique template    is: 
  

  

   
 ∑   (     )

     

 

              ∑ ∑  (  
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 (  
 |  ) 

(26) 

 

Appendix E. Probabilistic Deficiency 

To include interdependent features in a 

generative model, we have two choices: enhance 

the model to represent dependencies among the 

inputs, or make independence assumptions. The 

first approach is often difficult to do while 

retaining tractability. For example, it is hard to 

model the dependence between        , 

       ,        ,            , and 

         . On the other hand, the second 

approach can hurt performance by resulting in 

poor probability estimates. Let’s consider the 

joint probability  (         )  which the 

generative approach is based on. Because of the 

independence assumption, the joint probability 

can be written as  ( ) (  | )  (  | ) . For 

example, let’s assume that we observe two 

hypotheses 61D and 61B with confidence score 

0.6 and 0.2, respectively. Then the conditional 

probabilities can be written as: 
 

 (                       |   )  
                (         |   )   

                         (             |   )  
 

 (                       |   ) 
          (         |   )   
              (             |   ) 

 

Since           and                have 

a strong correlation, their probability estimates 

should also be positively correlated. To simplify 

the discussion, now suppose 61B and 61D are 

equiprobable,  (   )    (   )  and have 

similar conditional probabilities: 
 

 (         |   )    (         |   ) 
 (             |   )    
                                          (             |   ) 

 

Then, multiplying those conditional probabilities, 

 (         | )   (             | ) , 

will increase or decrease the confidence of the 

classifier too much, even though no new 

evidence has been added. 
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Abstract

In this paper, we describe two dialogue
state tracking models competing in the
2012 Dialogue State Tracking Challenge
(DSTC). First, we detail a novel discrim-
inative dialogue state tracker which di-
rectly estimates slot-level beliefs using de-
terministic state transition probability dis-
tribution. Second, we present a gener-
ative model employing a simple depen-
dency structure to achieve fast inference.
The models are evaluated on the DSTC
data, and both significantly outperform the
baseline DSTC tracker.

1 Introduction

The core component of virtually any dialogue sys-
tem is a dialogue state tracker. Its purpose is to
monitor dialogue progress and provide compact
representation of the past user input and system
output in the form of a dialogue state. In previ-
ous works on this topics, Williams (2007) used
particle filters to perform inference in a complex
Bayesian network modelling the dialogue state,
Williams (2008) presented a generative tracker
and showed how to train an observation model
from transcribed data, Young et al. (2010) grouped
indistinguishable dialogue states into partitions
and consequently performed dialogue state track-
ing on these partitions instead of the individual
states, Thomson and Young (2010) used a dy-
namic Bayesian network to represent the dialogue
model in an approximate form, and Mehta et al.
(2010) used probabilistic ontology trees.

In this paper, we describe two probabilistic di-
alogue state trackers: (1) a discriminative dia-
logue state tracker (DT) – a model using a sim-
ple deterministic state transition probability, re-
sulting in significant computational savings, and
(2), a generative dialogue state tracker (GT) – a

model using simple conditional dependency struc-
ture with tied and handcrafted model parameters.
Both trackers were evaluated in the DSTC. The
aim of the DSTC was to provide a common testbed
for different dialogue state tracking methods and
to evaluate these methods in a unified way. Be-
cause of limited space, the interested reader is re-
ferred to Williams et al. (2013) for information
about the data and evaluation metrics used in the
challenge.

This paper is structured as follows. The de-
terministic and generative trackers are detailed in
Section 2 and the presented models are evaluated
on the DSTC data in Section 3. Section 4 discusses
the obtained results, and Section 5 concludes the
paper.

2 Bayesian Dialogue State Tracking

The goal of dialogue state tracking is to moni-
tor progress in the dialogue and provide a com-
pact representation of the dialogue history in the
form of a dialogue state. Because of the uncer-
tainty in the user input, statistical dialogue sys-
tems maintain a probability distribution over all di-
alogue states called the belief state and every turn,
as the dialogue progresses, updates this distribu-
tion in the light of the new observations in a pro-
cess called belief monitoring.

Since the true observations are hidden, the
belief state depends on the past and current
observation probabilities, p(o1), . . . , p(ot), and
system actions, a0, . . . , at−1, which are re-
ferred to as the observed history: ht =
{a0, p(o1), . . . , at−1, p(ot)}. If the system is
Markovian, the belief state bt depends only on the
previous belief state bt−1, the observation distribu-
tion p(ot), and the last system action at−1. There
are two ways to derive the belief state update using
the Bayes theorem, resulting either in discrimina-
tive or generative probabilistic models.

The discriminative update can be represented as
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follows:

bt = b(st|ht)
=

∑

st−1,ot

p(st|at−1, st−1,ot)b(st−1|ht−1)p(ot) (1)

where the probability p(st|at−1, st−1,ot) repre-
sents the discriminative dialogue model. By fur-
ther factorisation of (1), we can derive the genera-
tive update formula:

bt ∝
∑

st−1,ot

p(st|at−1, st−1)p(ot|st)·

· b(st−1|ht−1)p(ot) (2)

where the transition probability p(st|at−1, st−1)
and the observation probability p(ot|st) represent
the generative dialogue model.

In our approach, we define the dialogue state
as a vector s = [s1, . . . , sN ] where si are val-
ues for slots in the dialogue domain, e.g. to.desc
or from.monument. The observations are factored
similarly to o = [o1, . . . , oN ], where oi are indi-
vidual slot-level observations, e. g. inform(to.desc
= downtown)⇔ oto.desc = downtown. The prob-
ability of the slot-level observations p(oi) can be
easily obtained by marginalising the observation
probability p(o). Because of limited space, only
the processing of the inform dialogue acts is de-
scribed in detail.

In the next two sections, we present the discrim-
inative and generative models of belief update em-
ployed in the DSTC challenge by using the factori-
sation of the full belief state into independent fac-
tors to obtain computationally efficient updates.

2.1 Discriminative Belief Update

In this work, the belief state bt is defined as a
product of marginal probabilities of the individual
slots, b(st) =

∏
i b(s

i
t), where sit is the i-th slot at

the turn t and the slot belief b(sit) is a probability
distribution over all values for the slot i. To keep
the notation uncluttered, the slot index, i, will be
omitted in the following text. To further simplify
the belief updates, similarly to the full belief mon-
itoring represented by (1), the slot belief depends
only on the previous slot belief bt−1, the observa-
tion distribution p(ot), and the last system action
at−1. This results in update rules for individual
slots s as follows:

b(st) =
∑

st−1,ot

p(st|at−1, st−1, ot)b(st−1)p(ot) (3)

where the conditional probability distribution
p(st|at−1, st−1, ot) represents the slot-level dia-
logue model.

There are two aspects which have to be taken
into account when we consider the presented be-
lief update: (1) the computational complexity and
(2) the parameters of the dialogue model. First,
the complexity of the belief update is given by the
number of slot values and observations because
the sum must be evaluated for all their combina-
tions. This suggests that even this update may be
computationally too expensive for slots where ob-
servations have a large number of values. Second,
the slot-level dialogue model describes probabilis-
tically how the value of a slot changes according
to the context and the observations. Parameters
of this conditional distribution would ideally be
estimated from annotated data. Because of data
sparsity, however, such estimates tend to be rather
poor and either they must be smoothed or the pa-
rameters must be tied. To overcome this problem,
we decided to set the parameters manually on the
basis of two simple assumptions leading to very
computationally efficient updates. First, we as-
sume that our dialogue model should completely
trust what the user says. Second, we assume that
the user goal does not change when the user is
silent. For example, if the user says: “I want to
go downtown”, oto.desct = downtown, then the
state should be sto.desct = downtown; and when
the user says nothing in the next turn, oto.desct+1 = �
(where the symbol � is a special slot value repre-
senting that the user was silent), the state remains
sto.desct+1 = downtown. This is captured by the fol-
lowing definition of the slot-level dialogue model:

p(st|at−1, st−1, ot) =




1 (st = ot ∧ ot 6= �)∨

(st = st−1 ∧ ot = �)
0 otherwise

(4)

When (4) is substituted into (3), the belief up-
date greatly simplifies and appears into the follow-
ing form:

b(st) =





st = � : p(st−1 = �)p(ot = �)

st 6= � :
p(ot = st)
+ p(ot = �)p(st−1 = st)

(5)

Note that this model effectively accumulates
probability from multiple hypotheses and from
multiple turns. For example, its ability to “remem-
ber” the belief from the previous turn is propor-
tional to the probability mass assigned to the SLU
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hypothesis that the user was silent about the slot in
question. In the special case when the user is silent
with probability 1.0, the current belief is equal to
the previous belief.

This belief update is very computationally effi-
cient. First, instead of summing over all combi-
nations of the slot and observation values (3), the
belief can be computed by means of a simple for-
mula (5). Second, if the user does not mention a
particular slot value during the dialogue, this value
will always have a probability of zero. Therefore,
only the probability for values suggested by the
SLU component has to be maintained.

2.2 Generative model for belief update

Similarly to the discriminative belief update, the
generative model relies on factorisation of the full
belief state into a product of marginal slot be-
liefs and a simple dependency structure where a
slot belief depends only on the previous slot be-
lief, the slot observation distribution p(oit), and
the last system action at−1. The dialogue model
p(st|at−1, st−1, ot) is further factored, however,
into the transition model p(st|at−1, st−1) and the
observation model p(ot|st) as given in (2).

The transition model describes the probability
that the user will change his/her goal, given the
previous goal and the last system action. For ex-
ample, if the system asks the user about a specific
slot, then it is reasonable to have a larger prob-
ability of this slot changing its value. As noted
for the discriminative model, estimation of the di-
alogue model parameters requires a large amount
of data, which was not available in the challenge.
Therefore, we used parameter tying as described
by Thomson and Young (2010), and set the tied
parameters manually:

p(st|at−1, st−1) =

{
θt if st = st−1

1−θt
|values|−1

otherwise (6)

where θt describes the probability of a slot value
staying the same and |values| denotes the number
of values for the slot. In other words, the probabil-
ity θt sets a tradeoff between the system’s ability
to remember everything that was said in the past
and accepting new information from the user. If θt
is too high, the system will put a strong emphasis
on the previous states and will largely ignore what
the user is saying. When testing different values of
θt on heldout data, we observed that if they are se-
lected reasonably, the overall performance of the

system does not change much. Therefore, the θt
value was fixed at 0.8 for all slots and all datasets.

The observation model p(ot|st) describes the
dependency between the observed values and the
slot values. Similarly to the transition model, pa-
rameters of the observation probability distribu-
tion were tied and set manually:

p(ot|st) =
{
θo if ot = st

1−θo
|values|−1

otherwise. (7)

where θo defines the probability of the agreement
between the observation and the slot value. The
probability of agreement describes how the model
is robust to noise and systematic errors in SLU.
When θo is set high, the model assumes that the
SLU component makes perfect predictions, and
therefore the SLU output must agree with the slot
values. Based on manual tuning on held-out data,
θo was set to 0.8.

Inference in the presented model is performed
with Loopy Belief Propagation (LBP) (Pearl,
1988). LBP is an approximate message passing
inference algorithm for Bayesian networks (BN).
LBP can be computationally intensive if there are
nodes with many parents in the network. There-
fore, as previously described, our model uses a
simple dependency structure where slots depend
only on the same slot from the previous turn, and
slot-level observations depend on the correspond-
ing slot from the same turn. To make the inference
even more efficient, one can take advantage of the
tied observation and transition probabilities. We
group all unobserved values in the nodes of BN
together and maintain only a probability for the
group as a whole, as suggested by Thomson and
Young (2010).

3 Evaluation

The discriminative (DT) and generative dialogue
(GT) trackers described in Sections 2.1 and 2.2
were evaluated on the DSTC data.

The input of DT and GT were the SLU n-best
lists either with original probabilities or the scores
mapped into the probability space. The track-
ers were evaluated on both live and batch data.
The metrics were computed with Schedule 1 (see
Williams et al. (2013)). In addition, we include
into the evaluation the DSTC baseline tracker. The
results on the live and batch data are shown in Ta-
ble 1 in the Appendix. Please note that the results
for GT differ from the results submitted for DSTC.
Only after the submission deadline, did we find
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that some of the parameters in the transition model
were set incorrectly. After the setting was fixed,
the results improved.

The results show that the DT consistently out-
performs the baseline tracker and the DT achieves
comparable or better results than the GT. The DT
clearly provides better estimates of the dialogue
states because of the incorporation of the context
and the processing of multiple hypotheses. To
assess the statistical significance of the accuracy
metric, 95% confidence scores for all measure-
ments were computed. Overall, the confidence in-
tervals were between 0.1% and 0.4% on the indi-
vidual tests. On this basis, all differences larger
than 1.0% can be considered statistically signifi-
cant.

The GT outperforms the baseline tracker on all
but the batch data. Manual inspection of the re-
sults revealed that the generative model is very
sensitive to the probabilities assigned to the obser-
vations. For the batch data, presumably due to the
score normalisation, the probabilities of hypothe-
ses in the n-best lists were very similar to each
other. As a result, the generative model had dif-
ficulties discriminating between the observed val-
ues.

In comparison with all trackers submitted for
DSTC, the DT achieves second-best accuracy
among the submitted trackers and the GT is among
the average trackers. For more details see Table 2
in the Appendix, where the average scores were
computed from the accuracy and the Brier score
on test sets 1, 2, 3, and 4.

Regarding the Brier score, the results show that
the DT outperforms the baseline tracker and esti-
mates the belief state as well as the best tracker
in the DSTC. This can prove especially important
when the tracker is used within a complete dia-
logue system where the policy decisions do not
depend on the best dialogue state but on the belief
state.

4 Discussion

The presented discriminative and generative mod-
els differ in two main areas: (1) how they incorpo-
rate observations into the belief state and (2) com-
putational efficiency.

(1) Both the DT and GT models can accumulate
information from multiple hypotheses and from
multiple turns. The GT, however, tends to “forget”
the dialogue history because the generative model

indiscriminately distributes some of the probabil-
ity mass from a slot value that was not recently
mentioned to all other slot values each turn. This
behaviour (see Table 3 for an example) is not easy
to control because “forgetting” is a consequence
of the model being able to represent the dynamics
of a user changing his/her goal. The DT does not
have this problem because the change in the goal
is directly conditioned on the observations. If the
user is silent, then the DT “copies” the past belief
state and no probability in the belief state is dis-
tributed as described in (5).

(2) The DT tracker is significantly faster com-
pared with the GT tracker while offering compa-
rable or better performance. The slot level belief
update in the discriminative model has a complex-
ity of O(n) whereas in the generative model it has
a complexity of O(n2), where n is the number of
values in the slot. When tested on a regular per-
sonal computer, the DT processed all four DSTC
test sets, 4254 dialogues in total, in 2.5 minutes
whereas the GT tracker needed 51 minutes. There-
fore, the DT tracker is about 20 times more com-
putationally efficient on the DSTC data. Although
GT achieved performance allowing real-time use
(it needed 0.1 seconds per turn) in the Let’s Go do-
main, for more complex applications the GT could
simply be too slow. In this case, the proposed dis-
criminative tracker offers a very interesting alter-
native.

5 Conclusion
This paper described two dialogue state tracking
models submitted for the DSTC challenge: (1)
the discriminative tracker and (2) the generative
tracker. The discriminative tracker is based on
a conceptually very simple dialogue model with
deterministic transition probability. Interestingly,
this discriminative model gives performance com-
parable to the more complex generative tracker;
yet it is significantly more computationally effi-
cient. An extended description of this work can be
found in the technical report (Žilka et al., 2013).
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A Comparison of the BT, DT, and GT
trackers

live data metric BT DT GT
test1 accuracy 0.77 0.88 0.88

Brier score 0.29 0.21 0.21
test2 accuracy 0.79 0.89 0.85

Brier score 0.27 0.20 0.23
test3 accuracy 0.92 0.94 0.93

Brier score 0.14 0.11 0.16
test4 accuracy 0.82 0.86 0.87

Brier score 0.24 0.21 0.20
ALL accuracy 0.83 0.89 0.88

Brier score 0.24 0.18 0.20
batch data metric BT DT GT
test1 accuracy 0.75 0.88 0.74

Brier score 0.35 0.27 0.39
test2 accuracy 0.79 0.88 0.77

Brier score 0.30 0.26 0.33
ALL accuracy 0.77 0.88 0.76

Brier score 0.32 0.27 0.36

Table 1: Accuracy of the trackers on the live and
batch test sets, where BT stands for the DSTC
baseline tracker, DT denotes the discriminative
tracker, and GT denotes the generative tracker.
ALL denotes the average scores over the live and
batch test sets.

B Comparison with the DSTC trackers

team/system accuracy Brier score
BT - C 0.81 0.27
BT 0.83 0.24
DT 0.89 0.18
GT 0.88 0.20
team1 0.88 0.23
team2 0.88 0.21
team4 0.81 0.28
team5 0.88 0.21
team6 0.91 0.18
team7 0.85 0.23
team8 0.83 0.24
team9 0.89 0.20

Table 2: Accuracy of the trackers submitted for
the DSTC, where BT - C denotes the DSTC base-
line tracker without removing the systematically
erroneous SLU hypotheses, BT denotes the DSTC
baseline tracker, DT denotes the discriminative
tracker, GT denotes the generative tracker, and
team* denote the best trackers submitted by other
teams. The scores are averaged scores obtained on
the four DSTC test sets.

C The problem of “forgetting” of the
observed values in the GT tracker

# P SLU hyp. slot value GS DS
1 1.0 centre centre 0.8 1.0

0.0 null null 0.2 0.0
2 1.0 null centre 0.68 1.0

null 0.32 0.0
3 1.0 null centre 0.608 1.0

null 0.392 0.0

Table 3: Example of three turns in which the gen-
erative system “forgets” the observed value. # de-
notes the turn number, P denotes the probability
of the observation, SLU hyp. denotes the observed
hypothesis, GS denotes the belief of the generative
system, and DS denotes the belief of the discrimi-
native system.
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Jurčı́ček. 2013. Bayesian Discriminative and Gen-
erative Models used in the 2012 Dialogue State
Tracking Challenge. Technical report, Faculty of
Mathematics and Physics, Charles University in
Prague, July.

456



Proceedings of the SIGDIAL 2013 Conference, pages 457–461,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Dialog State Tracking using Conditional Random Fields

Hang Ren, Weiqun Xu, Yan Zhang,Yonghong Yan
The Key Laboratory of Speech Acoustics and Content Understanding

Institute of Acoustics, Chinese Academy of Sciences
21 North 4th Ring West Road, Beijing, China, 100190

{renhang, xuweiqun, zhangyan, yanyonghong}@hccl.ioa.ac.cn

Abstract

This paper presents our approach to dialog
state tracking for the Dialog State Track-
ing Challenge task. In our approach we
use discriminative general structured con-
ditional random fields, instead of tradi-
tional generative directed graphic models,
to incorporate arbitrary overlapping fea-
tures. Our approach outperforms the sim-
ple 1-best tracking approach.

1 Introduction

Spoken dialog systems have been widely devel-
oped in recent years. However, when dialogs are
conducted in noisy environments or the utterance
itself is noisy, it is difficult for machines to cor-
rectly recognize or understand user utterances. In
this paper we present a novel dialog state track-
ing method, which directly models the joint prob-
ability of hypotheses onN -best lists. Experiments
are then conducted on the DSTC shared corpus,
which provides a common dataset and an evalua-
tion framework

The remainder of this paper is organized as fol-
lows. Section 2 reviews relevant studies in dia-
log state tracking. Section 3 introduces our new
approach and presents the model and features we
used in detail. Section 4 describes experiment set-
tings and gives the result. Section 5 concludes this
paper with a discussion for possible future direc-
tions.

2 Previous Work

For the task of dialog state tracking, previous
research focused on dynamic Bayesian models
(DBN)(Young et al., 2013). User goal, dialog his-
tory and other variables are modeled in a graphi-
cal model. Usually, Markov assumptions are made
and in each turn the dialog state is dependent on

the ASR outputs and the dialog state of the pre-
vious turn. Dependency on other features, such
as system action, dialog history could be assumed
as long as their likelihood is modeled. For a
POMDP-based dialog model, the state update rule
is as follows:

bt+1(st+1) = ηP (ot+1|st+1, at)∑

st

P (st+1|st, at)bt(st) (1)

where bt(st) is the belief state at time t, ot+1 is the
observation at time t+ 1, at is the machine action.
Thus the dialog states are estimated incrementally
turn by turn.

Since each node has hundreds, or even thou-
sands, of possible assignments, approximation is
necessary to make efficient computation possible.
In POMDP-based dialog systems, two common
approaches are adopted (Young et al., 2013), i.e.,
N -best approximation and domain factorization.

In theN -best approach, the probability distribu-
tion of user goals are approximated using N -best
list. The hidden information state (HIS) model
(Young et al., 2010) makes a further simplification
that similar user goals are grouped into a single
entity called partition, inside which all user goals
are assigned the same probabilities. The Bayesian
update of dialog state (BUDS) model (Thomson
and Young, 2010) is a representative of the second
approach and adopts a different approximation
strategy, where each node is further divided into
sub-nodes for different domain concepts and in-
dependence assumptions of sub-nodes across con-
cepts are made. Recent studies have suggested
that a discriminative model may yield better per-
formance than a generative one (Bohus and Rud-
nicky, 2006). In a discriminative model, the emis-
sion part of the state update rule is modeled dis-
criminatively. Possible flawed assumptions in a
completely generative models could be mitigated
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in this way, such as the approximation of obser-
vation probability using SLU scores (Williams,
2012a; Williams, 2012b).

3 Proposed Method

3.1 Discriminative State Tracking Model
Most previous methods model the distribution of
user goals for each turn explicitly, which can lead
to high computation cost. In our work, the joint
probability of all items on the N -best lists from
SLU is modeled directly and the state tracking re-
sult is generated at a post-processing stage. Thus
the state tracking problem is converted into a la-
beling task as is shown in equation 2, which in-
volves modeling the joint probability of the N -
best hypotheses.

bt(st) = P (H1,1, H1,2, ...,Ht,m−1, Ht,m) (2)

where Ht,m is a binary variable indicating the
truthfulness of the m-th hypothesis at turn t.

For each turn, the model takes into account all
the slots on theN -best lists from the first turn up to
the current one, and those slots predicted to be true
are added to the dialog state. The graphical model
is illustrated in figure 1. To predict dialog state at
turn t, the N -best items from turn 1 to t are all
considered. Hypotheses assigned true labels are
included in the dialog state. Compared to the DBN
approach, the dialog states are built ‘jointly’. This
approach is reasonable because what the tracker
generates is just some combinations of all N -best
lists in a session, and there is no point guessing be-
yond SLU outputs. We leverage general structured
Conditional Random Fields (CRFs) to model the
probabilities of the N -best items, where factors
are used to strengthen local dependency. Since
CRF is a discriminative model, arbitrary overlap-
ping features can be added, which is commonly
considered as an advantage over generative mod-
els.

3.2 Conditional Random Fields
CRF is first introduced to address the problem
of label bias in sequence prediction (Lafferty et
al., 2001). Linear-chain CRFs are widely used to
solve common sequence labeling problem in nat-
ural language processing. General structured CRF
has also been reported to be successful in various
tasks (Sutton and McCallum, 2012).

In general structured CRF, factor templates are
utilized to specify both model structure and pa-

...

Hyp1

Hyp2

HypN

Turn t

Slot1=...
Slot2=...

...

Turn t-1

Figure 1: Dialog state update using CRFs, where
the 8 rectangles above denote N -best hypothe-
ses for each turn, and the box below represents
the dialog state up to the current turn. Con-
nections between rectangles denote ‘Label-Label’
factors. ‘Label-Observation’ factors are not shown
for simplicity.

rameter tying (Sutton and McCallum, 2012). Fac-
tors are partitioned into a series of templates, and
factors inside each template share the same param-
eters.

p(y|x) =
1

Z(x)

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,yc; θp), (3)

where C is the set of factor templates and x,y are
inputs and labels respectively. Template factors
are written as

Ψc(xc,yc; θp) = exp

K(p)∑

k=1

θpkfpk (xc,yc) (4)

and Z(x) is the normalizing function

Z(x) =
∑

y

∏

Cp∈C

∏

Ψc∈Cp

Ψc(xc,yc; θp) (5)

In the experiment we use Factorie1 to define and
train the model.

3.3 Model Structure and Features

In the model, slots in every N -best item up
to the current turn are represented as binary
variables. For simplification of data structure,
each slot in a single N -best item is extracted
and represented using different label vari-
ables, with the same rank indicating their

1Available from https://github.com/
factorie/factorie.
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original places in the N -best list. For exam-
ple, the item slots: [from: Pittsburgh,

data: Tuesday], score: 0.85, rank: 2,
is converted to two slots: slots: [from:

Pittsburgh], score: 0.85, rank: 2 and
slots: [date: Tuesday], score: 0.85,

rank: 2. Label-label connections are specified
using factor templates between slot pairs, and
Label-observation templates are used to add
slot-wise features. Without label-label connection
the model is reduced to a maximum entropy
model, and with more connections added, the
graph tends to have loopy structures.

Two classes of feature sets (templates) in the ex-
periment are defined as follows.

(1) Label-Label factor templates are used to
strengthen the bond between certain slots.

Pairwise-slots of the same rank This template is
built for pairs of slots in a turn with the same
rank to bind their boolean assignment. To
avoid creating too many loops and make in-
ference efficient, the factors are added in such
an order that the slots involved in a single turn
are linked in a linear way.

Pairwise-slots with identical value Slots with
identical value may appear in the N -best
list for multiple times. Besides, user can
mention the same slot in different turns,
making these slots more reliable. Similar
ordering mechanism is utilized to avoid
redundant loops.

(2) Label-observation templates are used to add
features for the identification of the truthfulness of
slots.

SLU score and rank of slot The score generated
by the ASR and SLU components is a direct
indicator of the correctness degree of slots.
However, a slot’s true reliability is not neces-
sarily linear with its score. The relationship is
quite different for various ASR and SLU al-
gorithms, and scores produced by some ASR
are not valid probabilities. As we adopt a
data-driven approach, we are able to learn
this relationship from data. In addition to the
SLU score, the slot rank is also added to the
feature set.

Dialog history (grounding information) In
most spoken dialog systems, explicit and

implicit groundings are adapted to indicate
the correctness of the system belief. This
information is useful to determine the
correctness of slots. The grounding infor-
mation includes grounding type (implicit
or explicit grounding), user reply (negation
or confirmation) and corresponding SLU
scores.

Count of slots with identical value As previ-
ously mentioned, slots with identical values
can appear several times and slots with more
frequent occurrences are more likely to be
correct.

Domain-specific features Slots for some domain
concepts often have values with specific
forms. For example, in the DSTC data sets,
the route slots are usually filled with values
like ‘61d’, ‘35b’, and SLU often generates
noisy outputs like ‘6d’, ‘3d’. Thus the lexi-
cal form is a very useful feature.

Baseline Tracker The simple and fast 1-best
tracking algorithm is used as the baseline
tracker and exhibits a satisfying performance.
Thus the tracking result is added as an addi-
tional feature. This indicates the possibility
of combining tracking outputs from differ-
ent algorithms in this discriminative model,
which may improve the overall tracking per-
formance.

4 Experiment

4.1 Task and Data
The Dialog State Tracking Challenge (DSTC)2

aims at evaluating dialog state tracking algorithms
on shared real-user dialog corpus. In each dia-
log session, ASR and SLU results are annotated,
making it possible to conduct direct comparison
among various algorithms. For further details,
please refer to the DSTC handbook (Williams et
al., 2013b).

4.2 Corpus Preprocessing
The ASR and SLU components can generate many
noisy hypotheses which are completely wrong,
rendering the dialog corpus seriously imbalanced
at the level of slots (there are more wrong slots
than true slots). We use resampling to prevent

2http://research.microsoft.com/en-us/
events/dstc/
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the model from biasing towards making negative
judgements. Before training, the total number of
correct slots in a set is counted, and equal num-
ber of wrong slots are sampled from the subset of
all the wrong slots. These chosen negative slots
plus all the positive slots together constitute the
effective slot set for model training, with remain-
ing slots fixed to their true value and regarded as
observed variables. To make full use of the dia-
log corpus, this process is repeated for eight times,
producing a bigger and balanced corpus.

4.3 Model Training
In the training phase, the log-likelihood function
is optimized using the LBFGS method with L2-
regularization. Loopy belief propagation is used
as the inference routine. It can be shown that for
factor graphs without loops, the marginal proba-
bilities produced by loopy belief propagation are
exact. Model selection is done according to the
log-likelihood on the development set.

4.4 Predicting and Tracking
For each dialog session, the predicted slot labels
are mapped to tracking results. To produce a N -
best list of tracking results, the top N configura-
tions of slots and corresponding probability scores
are generated. Gibbs sampling is adopted. The
sampling is repeated for 1000 times in each cor-
pus, after each sampling the configuration of slots
is mapped to certain tracking state. More efficient
inference routines, such as M-best belief propaga-
tion (Yanover and Weiss, 2004), could be utilized,
which would be suitable for practical real-time ap-
plication.

4.5 Results
After tracker outputs are generated based on the
sampling results, they are scored using evaluation
tools provided by the DSTC organizers. Several
metrics are evaluated, including precisions, ROC
performance, etc. Individual and joint slots are
scored respectively. And different schedules are
used, which indicats the turns included for evalu-
ation. Partial results are shown in table 1. A sys-
tematic analysis by the organizers is in the DSTC
overview paper (Williams et al., 2013a). The com-
plete challenge results can be found on DSTC
website. On the test sets of test1, test2 and test3,
the CRF-based model achieves better performance
than the simple baseline in most metrics. How-
ever, on test4, the performance degrades seriously

when there is a mismatch between training data
and test data, since test4 is produced by a different
group and does not match the training set. It shows
that the CRF-based model is very flexible and is
able to learn the properties of ASR and SLU, thus
adapting to a specific system. But it has a tendency
of overfitting .

Test1 Test4
Metric CRF BASE CRF BASE

ACC 0.987 0.983 0.960 0.986
L2 0.020 0.021 0.046 0.017

MRR 0.990 0.988 0.980 0.990
CA05 0.987 0.983 0.960 0.986
EER 0.015 0.983 0.021 0.012

Table 1: Results of slot ‘Date’ on Test1 and Test4
(schedule1 is used). The tracker used on Test4 is
trained on Test3. Details of the metrics can be
found in DSTC handbook(Williams et al., 2013b)

5 Conclusions and Future Directions

We proposed a CRF-based discriminative ap-
proach for dialog state tracking. Preliminary re-
sults show that it achieves better performance than
the 1-best baseline tracker in most metrics when
the training set and testing set match. This indi-
cates the feasibility of our approach which directly
models joint probabilities of the N -best items.

In the future, we will focus on the following
possible directions to improve the performance.
Firstly, we will enrich the feature set and add more
domain-related features. Secondly, interactions of
slots between dialog turns are not well modeled
currently. This problem can be alleviated by tun-
ing graph structures, which deservers further stud-
ies. Moreover, it is challenging to use online train-
ing methods, so that the performance could be im-
proved incrementally when more training samples
are available.
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Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2010. The hidden information state model:
A practical framework for POMDP-based spoken di-
alogue management. Computer Speech and Lan-
guage, 24(2):150–174.
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Abstract

We describe our experience with engineer-

ing the dialog state tracker for the first

Dialog State Tracking Challenge (DSTC).

Dialog trackers are one of the essential

components of dialog systems which are

used to infer the true user goal from the

speech processing results. We explain the

main parts of our tracker: the observation

model, the belief refinement model, and

the belief transformation model. We also

report experimental results on a number

of approaches to the models, and compare

the overall performance of our tracker to

other submitted trackers. An extended ver-

sion of this paper is available as a technical

report (Kim et al., 2013).

1 Introduction

In spoken dialog systems (SDSs), one of the main

challenges is to identify the user goal from her ut-

terances. The significance of accurately identify-

ing the user goal, referred to as dialog state track-

ing, has emerged from the need for SDSs to be

robust to inevitable errors in the spoken language

understanding (SLU).

A number of studies have been conducted to

track the dialog state through multiple dialog turns

using a probabilistic framework, treating SLU re-

sults as noisy observations and maintaining prob-

ability distribution (i.e., belief) on user goals (Bo-

hus and Rudnicky, 2006; Mehta et al., 2010; Roy

et al., 2000; Williams and Young, 2007; Thomson

and Young, 2010; Kim et al., 2011).

In this paper, we share our experience and

lessons learned from developing the dialog state

tracker that participated in the first Dialog State

Tracking Challenge (DSTC) (Williams et al.,

2013). Our tracker is based on the belief up-

date in the POMDP framework (Kaelbling et al.,

1998), particularly the hidden information state

(HIS) model (Young et al., 2010) and the partition

recombination method (Williams, 2010).

2 Dialog State Tracking

Our tracker mainly follows the belief update in

HIS-POMDP (Young et al., 2010). The SDS ex-

ecutes system action a, and the user with goal

g responds to the system with utterance u. The

SLU processes the utterance and generates the re-

sult as anN -best list o = [〈ũ1, f1〉, . . . , 〈ũN , fN 〉]
of the hypothesized user utterance ũi and its as-

sociated confidence score fi. Because the SLU

is not perfect, the system maintains a probability

distribution over user goals, called a belief. In ad-

dition, the system groups user goals into equiva-

lence classes and assigns a single probability for

each equivalence class since the number of user

goals is often too large to perform individual be-

lief updates for all possible user goals. The equiv-

alence classes are called partitions and denoted as

ψ. Hence, given the current belief b, system action

a, and recognized N -best list o, the dialog state

tracker updates the belief b′ over partitions as fol-

lows:

b′(ψ′) ∝
∑

u

Pr(o|u) Pr(u|ψ′, a) Pr(ψ′|ψ)b(ψ)

(1)

where Pr(o|u) is the observation model,

Pr(u|ψ, a) is the user utterance model, Pr(ψ′|ψ)
is the belief refinement model.

2.1 Observation Model

The observation model Pr(o|u) is the probability

that the SLU produces the N -best list o when the

user utterance is u. We experimented with the fol-

lowing three models for the observation model.

Confidence score model: as in HIS-POMDP,

this model assumes that the confidence score fi
obtained from the SLU is exactly the probability
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of generating the hypothesized user utterance ũi.
Hence, fi = Pr(ũi, fi|u).

Histogram model: this model estimates a func-

tion that maps the confidence score to the proba-

bility of correctness. We constructed a histogram

of confidence scores from the training datasets

to obtain the empirical probability Pr(cor(fi)) of

whether the entry associated with confidence score

fi is a correct hypothesis or not.

Generative model: this model is a simplified

version of a generative model in (Williams, 2008)

that only uses confidence score: Pr(ũi, fi|u) =
Pr(cor(i)) Pr(fi|cor(i)) where Pr(cor(i)) is the

probability of the i-th entry being a correct hy-

pothesis and Pr(fi|cor(i)) is the probability of the

i-th entry having confidence score fi when it is a

correct hypothesis.

2.2 User Utterance Model

The user utterance model Pr(u|ψ, a) indicates

how the user responds to the system action a
when the user goal is in ψ. We adopted the HIS-

POMDP user utterance model, consisting of a bi-

gram model and an item model. The details are

described in (Kim et al., 2013).

2.3 Belief Refinement Model

Given the SLU result ũi and the system action

a, the partition ψ is split into ψ′
i with probabil-

ity Pr(ψ′
i|ψ) and ψ − ψ′

i with probability Pr(ψ −
ψ′
i|ψ). The belief refinement model Pr(ψ′

i|ψ) can

be seen as the proportion of the belief that is car-

ried from ψ to ψ′
i. This probability can be defined

by the following models:

Empirical model: we count n(ψ) from the

training datasets, which is the number of user

goals that are consistent with partition ψ. The

probability is then modeled as Pr(ψ′
i|ψ) =

n(ψ′
i)

n(ψ)

if n(ψ) > 0 and Pr(ψ′
i|ψ) = 0 otherwise.

Word-match model: this model extends the

empirical model by using the domain knowledge

when the SLU result ũi does not appear in the

training datasets. We calculated how many words

w ∈ W in the user utterance ũi were included in

a bus timetable D. The model is thus defined as

Pr(ψ′
i|ψ) =

n(ψ′
i)

n(ψ) if n(ψ′
i) > 0 and Pr(ψ′

i|ψ) =
α

|W |
∑

w∈W δ(w ∈ D) otherwise. δ is the indica-

tor function (δ(x) = 1 if x holds and δ(x) = 0
otherwise) and α is the parameter estimated via

cross-validation.

Mixture model: this model mixes the empiri-

cal model with a uniform probability, defined as

Pr(ψ′
i|ψ) = ǫ 1

nG
+ (1 − ǫ)

n(ψ′
i)

n(ψ) if n(ψ′
i) > 0 and

Pr(ψ′
i|ψ) = 1

nG
otherwise. nG is the number of all

possible user goals which is treated as the param-

eter of the model and found via cross-validation,

together with the mixing parameter ǫ ∈ [0, 1].

2.4 Belief Transformation Model

The belief update described above pro-

duces the M -best hypotheses of user goals

[〈g̃1, b(g̃1)〉, . . . , 〈g̃M , b(g̃M )〉] in each dialog turn,

which consists of M most likely user goal hy-

potheses g̃i and their associated beliefs b(g̃i). The

last hypothesis g̃M is reserved as the null hypoth-

esis ∅ with the belief b(∅) = 1 − ∑M−1
i=1 b(g̃i),

which represents that the user goal is not known

up to the current dialog turn.

One of the problems with the belief update is

that the null hypothesis often remains as the most

probable hypothesis even when the SLU result

contains the correct user utterance with a high con-

fidence score. This is because an atomic hypothe-

sis has a very small prior probability.

To overcome this problem, we added a post-

processing step which transforms each belief b(hi)
to the final confidence score si.

Threshold model: this model ensures that the

top hypothesis has confidence score θ when a be-

lief of the hypothesis is greater than a threshold δ.

The final output list is [〈h∗, s∗〉, 〈∅, 1−s∗〉] where

h∗ = argmaxh∈{g̃1,...,g̃M−1} b(h) and

s∗ =

{
θ, if b(h∗) > δ

b(h∗), otherwise.
(2)

Full-list regression model: this model esti-

mates the probability that each hypothesis is cor-

rect via casting the task as regression. The

model uses two logistic regression functions F∅
and Fh. F∅ predicts the probability of correct-

ness for the null hypothesis ∅ using the sin-

gle input feature φ∅ = b(∅). Likewise, Fh
predicts the probability of correctness for non-

null hypotheses hi using the input feature φi =
b(hi). The model generates the final output

list [〈h1, s1〉, . . . , 〈hM−1, sM−1〉, 〈∅, sM 〉] where

hi = g̃i and

si =





F∅(φi)
PM−1

j=1 Fh(φj)+F∅(φ∅)
, if i = M

Fh(φi)
PM−1

j=1 Fh(φj)+F∅(φ∅)
, otherwise.

(3)

463



Rank regression model: this model works in

a similar way as in the full-link regression model,

except that it uses a single logistic regression func-

tion Fr for both the non-null and null hypothe-

ses, and takes the rank value of the hypotheses

as an additional input feature. The final out-

put list is [〈h1, s1〉, . . . , 〈hM−1, sM−1〉, 〈∅, sM 〉]
where hi = g̃i and

si = Fr(φi)
PM

j=1 Fr(φj)
. (4)

3 Experimental Setup

In the experiments, we used three labeled train-

ing datasets (train1a, train2, train3) and three test

datasets (test1, test2, test3) used in DSTC. There

was an additional test dataset (test4), which we

decided not to include in the experiments since

we found that a significant number of labels were

missing or incorrect.

We measured the tracker performance accord-

ing to the following evaluation metrics used in

DSTC1: accuracy (acc) measures the rate of the

most likely hypothesis h1 being correct, average

score (avgp) measures the average of scores as-

signed to the correct hypotheses, l2 norm mea-

sures the Euclidean distance between the vector

of scores from the tracker and the binary vector

with 1 in the position of the correct hypotheses,

and 0 elsewhere, mean reciprocal rank (mrr)

measures the average of 1/R, where R is the

minimum rank of the correct hypothesis, ROC

equal error rate (eer) is the sum of false accept

(FA) and false reject (FR) rates when FA rate=FR

rate, and ROC.{v1,v2}.P measures correct accept

(CA) rate when there are at most P% false accept

(FA) rate2.

4 Results and Analyses

Since there are multiple slots to track in the dialog

domain, we report the average performance over

the “marginal” slots including the “joint” slot that

assigns the values to all slots.

4.1 Observation Model

Tbl. 1 shows the cross-validation results of the

three observation models. In train1a and train2, no

model had a clear advantage to others, whereas in

1http://research.microsoft.com/apps/pubs/?id=169024
2There are two types of ROC measured in DSTC depend-

ing on how CA and FA rates are calculated. The detailed dis-
cussion is provided in the longer version of the paper (Kim et
al., 2013).

Table 1: Evaluation of observation models.
Train1a Train2 Train3

Conf Hist Gen Conf Hist Gen Conf Hist Gen

accuracy 0.81 0.82 0.82 0.84 0.86 0.85 0.90 0.89 0.88
avgp 0.77 0.78 0.78 0.81 0.82 0.82 0.81 0.79 0.77
l2 0.31 0.30 0.30 0.26 0.25 0.25 0.25 0.27 0.30
mrr 0.87 0.87 0.88 0.89 0.89 0.89 0.94 0.93 0.92
roc.v1.05 0.69 0.70 0.70 0.73 0.74 0.74 0.82 0.80 0.79
roc.v1.10 0.74 0.75 0.75 0.78 0.80 0.80 0.87 0.85 0.83
roc.v1.20 0.78 0.79 0.79 0.83 0.84 0.84 0.89 0.87 0.85
roc.v1.eer 0.14 0.14 0.14 0.12 0.13 0.13 0.10 0.11 0.12
roc.v2.05 0.34 0.34 0.34 0.24 0.15 0.23 0.52 0.54 0.52
roc.v2.10 0.54 0.46 0.46 0.33 0.26 0.25 0.71 0.67 0.70
roc.v2.20 0.70 0.70 0.69 0.43 0.41 0.41 0.83 0.78 0.80

Table 2: Evaluation of belief refinement models.
Train1a Train2 Train3

Emp WordMix Emp WordMix Emp WordMix

accuracy 0.75 0.77 0.81 0.80 0.84 0.84 0.71 0.88 0.90
avgp 0.75 0.76 0.77 0.78 0.80 0.81 0.68 0.80 0.81
l2 0.34 0.34 0.31 0.31 0.27 0.26 0.42 0.26 0.25
mrr 0.83 0.85 0.87 0.86 0.89 0.89 0.82 0.93 0.94
roc.v1.05 0.66 0.68 0.69 0.64 0.68 0.73 0.58 0.78 0.82
roc.v1.10 0.69 0.71 0.74 0.73 0.78 0.78 0.65 0.83 0.87
roc.v1.20 0.73 0.74 0.78 0.77 0.82 0.83 0.68 0.86 0.89
roc.v1.eer 0.22 0.13 0.14 0.13 0.13 0.12 0.13 0.11 0.10
roc.v2.05 0.34 0.24 0.34 0.30 0.24 0.24 0.61 0.51 0.52
roc.v2.10 0.47 0.38 0.54 0.42 0.26 0.33 0.64 0.67 0.71
roc.v2.20 0.72 0.60 0.70 0.56 0.37 0.43 0.72 0.77 0.83

train3, the confidence score model outperformed

others. Further analyses revealed that the confi-

dence scores from the SLU results were not suf-

ficiently indicative of the SLU accuracy in train1a

and train2. The histogram and the generative mod-

els are expected to perform at least as well as the

confidence score model in train3, but they didn’t

in the experiments. We suspect that this is due to

the naive binning strategy we used to model the

probability distribution.

4.2 Belief Refinement Model

As shown in Tbl. 2, the mixture model outper-

formed others throughout the metrics. It even

outperforms the word-match model which tries to

leverage the domain knowledge to handle novel

user goals. This implies that, unless the domain

knowledge is used properly, simply taking the

mixture with the uniform distribution yields a suf-

ficient level of performance.

4.3 Belief Transformation Model

Tbl. 3 summarizes the performances of the belief

transformation models. All three models outper-

formed the pure belief update, although not shown
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Table 3: Evaluation of belief transform models.
Train1a Train2 Train3

Thre Full Rank Thre Full Rank Thre Full Rank

accuracy 0.81 0.81 0.81 0.83 0.84 0.85 0.89 0.90 0.90
avgp 0.80 0.77 0.77 0.82 0.81 0.81 0.85 0.81 0.78
l2 0.28 0.31 0.32 0.25 0.26 0.26 0.22 0.25 0.28
mrr 0.84 0.87 0.87 0.86 0.89 0.89 0.91 0.94 0.92
roc.v1.05 0.66 0.69 0.69 0.65 0.73 0.72 0.45 0.82 0.80
roc.v1.10 0.71 0.74 0.75 0.69 0.78 0.79 0.68 0.87 0.86
roc.v1.20 0.71 0.78 0.78 0.74 0.83 0.83 0.79 0.89 0.89
roc.v1.eer 0.18 0.14 0.14 0.21 0.12 0.12 0.49 0.10 0.09
roc.v2.05 0.22 0.34 0.34 0.20 0.24 0.24 0.42 0.52 0.48
roc.v2.10 0.41 0.54 0.52 0.22 0.33 0.33 0.42 0.71 0.56
roc.v2.20 0.64 0.70 0.71 0.30 0.43 0.49 0.43 0.83 0.75

in the table. The full-list and the rank regres-

sion models show a similar level of performance

improvement. This is a naturally expected result

since they use regression to convert the beliefs to

final confidence scores, as an attempt to compen-

sate for the errors incurred by approximations and

assumptions made in the observation and belief re-

finement models.

4.4 DSTC Result

In order to compare our tracker with others par-

ticipated in DSTC, we chose tracker43 as the most

effective one among our 5 submitted trackers since

it achieved the top scores in the largest num-

ber of evaluation metrics. In the same way, we

selected tracker2 for team3, tracker3 for team6,

tracker3 for team8, and tracker1 for the rest of the

teams. The results of each team are presented in

Tbl. 4. The baseline tracker is included as a ref-

erence, which simply outputs the hypothesis with

the largest SLU confidence score in the N -best

list.

Compared to other teams, our tracker showed

strong performance in acc, avgp, l2 and mrr. A

detailed discussion on the results is provided in the

longer version of the paper (Kim et al., 2013).

5 Conclusion

In this paper, we described our experience with

engineering a statistical dialog state tracker while

participating in DSTC. Our engineering effort was

focused on improving three important models in

the tracker: the observation, the belief refine-

ment, and the belief transformation models. Us-

ing standard statistical techniques, we were able

3The tracker4 used the confidence score model, the mix-
ture model and the rank regression model.

Table 4: Results of the trackers. The bold face

denotes top 3 scores in each evaluation metric. T9

is our tracker.
BaseT1 T2 T3 T4 T5 T6 T7 T8 T9

Test 1
accuracy 0.71 0.83 0.81 0.81 0.74 0.80 0.87 0.78 0.51 0.82
avgp 0.73 0.77 0.77 0.81 0.74 0.79 0.82 0.76 0.49 0.79
l2 0.38 0.32 0.32 0.27 0.37 0.30 0.25 0.34 0.72 0.29
mrr 0.80 0.88 0.86 0.85 0.81 0.85 0.90 0.84 0.59 0.88
roc.v1.05 0.62 0.72 0.67 0.60 0.20 0.71 0.76 0.65 0.20 0.72
roc.v1.10 0.63 0.78 0.75 0.77 0.29 0.75 0.82 0.70 0.33 0.76
roc.v1.20 0.67 0.82 0.79 0.79 0.53 0.78 0.85 0.76 0.35 0.79
roc.v1.eer 0.24 0.13 0.25 0.24 0.74 0.12 0.12 0.15 0.52 0.14
roc.v2.05 0.49 0.64 0.01 0.02 0.00 0.55 0.16 0.19 0.04 0.26
roc.v2.10 0.69 0.71 0.14 0.03 0.00 0.68 0.39 0.35 0.05 0.47
roc.v2.20 0.71 0.80 0.48 0.29 0.00 0.74 0.59 0.58 0.27 0.62

Test 2
accuracy 0.55 0.65 0.71 0.68 0.63 0.62 0.79 0.65 0.34 0.71
avgp 0.57 0.55 0.63 0.68 0.63 0.62 0.71 0.65 0.29 0.65
l2 0.60 0.63 0.50 0.45 0.52 0.54 0.39 0.49 1.00 0.48
mrr 0.65 0.72 0.79 0.76 0.71 0.72 0.84 0.74 0.46 0.80
roc.v1.05 0.43 0.49 0.52 0.45 0.16 0.48 0.66 0.48 0.04 0.49
roc.v1.10 0.45 0.54 0.57 0.63 0.16 0.51 0.71 0.54 0.11 0.57
roc.v1.20 0.48 0.59 0.64 0.64 0.27 0.54 0.76 0.60 0.26 0.63
roc.v1.eer 0.19 0.20 0.39 0.14 0.63 0.21 0.16 0.19 0.36 0.22
roc.v2.05 0.43 0.52 0.24 0.27 0.00 0.40 0.46 0.41 0.05 0.38
roc.v2.10 0.47 0.60 0.40 0.37 0.00 0.62 0.53 0.47 0.17 0.41
roc.v2.20 0.50 0.70 0.48 0.56 0.00 0.70 0.62 0.55 0.44 0.47

Test 3
accuracy 0.79 0.79 0.84 0.82 0.82 0.78 0.84 0.79 0.79 0.85
avgp 0.75 0.72 0.76 0.79 0.78 0.70 0.75 0.75 0.76 0.74
l2 0.35 0.37 0.32 0.29 0.30 0.40 0.33 0.34 0.32 0.34
mrr 0.83 0.85 0.88 0.85 0.85 0.83 0.89 0.84 0.80 0.89
roc.v1.05 0.56 0.65 0.68 0.72 0.70 0.62 0.69 0.70 0.33 0.74
roc.v1.10 0.66 0.70 0.77 0.77 0.76 0.69 0.76 0.74 0.47 0.78
roc.v1.20 0.74 0.76 0.82 0.80 0.80 0.74 0.81 0.77 0.61 0.82
roc.v1.eer 0.19 0.16 0.15 0.27 0.12 0.17 0.15 0.12 0.34 0.13
roc.v2.05 0.56 0.62 0.34 0.28 0.21 0.62 0.61 0.14 0.00 0.56
roc.v2.10 0.59 0.71 0.48 0.37 0.52 0.66 0.66 0.42 0.00 0.67
roc.v2.20 0.66 0.78 0.73 0.52 0.82 0.71 0.78 0.87 0.00 0.79

to produce a tracker that performed competitively

among the participants.

As for the future work, we plan to refine the

user utterance model for improving the perfor-

mance of the tracker since there are a number of

user utterances that are not handled by the cur-

rent model. We also plan to re-evaluate our tracker

with properly handling the joint slot, since the cur-

rent tracker constructs models independently for

each marginal slot and then combines the results

by simply multiplying the predicted scores.
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Abstract
While belief tracking is known to be im-
portant in allowing statistical dialog sys-
tems to manage dialogs in a highly robust
manner, until recently little attention has
been given to analysing the behaviour of
belief tracking techniques. The Dialogue
State Tracking Challenge has allowed for
such an analysis, comparing multiple be-
lief tracking approaches on a shared task.
Recent success in using deep learning for
speech research motivates the Deep Neu-
ral Network approach presented here. The
model parameters can be learnt by directly
maximising the likelihood of the training
data. The paper explores some aspects of
the training, and the resulting tracker is
found to perform competitively, particu-
larly on a corpus of dialogs from a system
not found in the training.

1 Introduction
Statistical dialog systems, in maintaining a distri-
bution over multiple hypotheses of the true dialog
state, are able to behave in a robust manner when
faced with noisy conditions and ambiguity. Such
systems rely on probabilistic tracking of dialog
state, with improvements in the tracking quality
being important in the system-wide performance
in a dialog system (see e.g. Young et al. (2009)).

This paper presents a Deep Neural Network
(DNN) approach for dialog state tracking which
has been evaluated in the context of the Dia-
log State Tracking Challenge (DSTC) (Williams,
2012a; Williams et al., 2013)1.

Using Deep Neural Networks allows for the
modelling of complex interactions between arbi-
trary features of the dialog. This paper shows im-
provements in using deep networks over networks

1More information on the DSTC is available at
http://research.microsoft.com/en-us/events/dstc/

with fewer hidden layers. Recent developments in
speech research have shown promising results us-
ing deep learning, motivating its use in the context
of dialog (Hinton et al., 2012; Li et al., 2013).

This paper presents a technique which solves
the task of outputting a sequence of probability
distributions over an arbitrary number of possible
values using a single neural network, by learning
tied weights and using a form of sliding window.
As the classification task is not split into multiple
sub-tasks for a given slot, the log-likelihood of the
tracker on training data can be directly maximised
using gradient ascent techniques.

The domain of the DSTC is bus route informa-
tion in the city of Pittsburgh, but the presented
technique is easily transferable to new domains,
with the learned models in fact being domain in-
dependent. No domain specific knowledge is used,
and the classifier learned does not require knowl-
edge of the set of possible values. The tracker per-
formed highly competitively in the ‘test4’ dataset,
which consists of data from a dialog system not
seen in training. This suggests the model is ca-
pable of capturing the important aspects of dia-
log in a robust manner without overtuning to the
specifics of a particular system.

Most attention in the dialog state belief tracking
literature has been given to generative Bayesian
network models (Paek and Horvitz, 2000; Thom-
son and Young, 2010). Few trackers have been
published using discriminative classifiers, a no-
table exception being Bohus and Rudnicky (2006).
An analysis by Williams (2012b) demonstrates
how such generative models can in fact degrade
belief tracking performance relative to a simple
baseline. The successful use of discriminative
models for belief tracking has recently been al-
luded to by Williams (2012a) and Li et al. (2013),
and was a prominent theme in the results of the
DSTC.
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2 The Dialog State Tracking Challenge
This section describes the domain and method-
ology of the Dialog State Tracking Challenge
(DSTC). The Challenge uses data collected during
the course of the Spoken Dialog Challenge (Black
et al., 2011), in which participants implemented
dialog systems to provide bus route information in
the city of Pittsburgh. This provides a large cor-
pus of real phonecalls from members of the public
with real information needs.

Set Number of calls Notes
train1a 1013 Labelled training data

train1b&c 10619 Same dialog system as
train1a, but unlabelled

train2 678 Similar to train1*

train3 779 Different participant to
other train sets

test1 765 Very similar to train1*
and train2

test2 983 Somewhat similar to
train1* and train2

test3 1037 Very similar to train3

test4 451 System not found in
any training set

Table 1: Summary of datasets in the DSTC

Table 1 summarises the data provided in the
challenge. Labelled training sets provide labels
for the caller’s true goal in each dialog for 5 slots;
route, from, to, date and time.

Participants in the DSTC were asked to report
the results of their tracker on the four test sets in
the form of a probability distribution over each
slot for each turn. Performance was determined
using a basket of metrics designed to capture dif-
ferent aspects of tracker behaviour Williams et al.
(2013). These are discussed further in Section 4.

The DNN approach described here is referred to
in the results of the DSTC as ‘team1/entry1’.

3 Model
For a given slot s at turn t in a dialog, let St, s de-
note the set of possible values for s which have oc-
curred as hypotheses in the SLU for turns ≤ t. A
tracker must report a probability distribution over
St, s ∪ {other} representing its belief of the user’s
true goal for the slot s. The probability of ‘other’
represents the probability that the user’s true goal
is yet to appear as an SLU hypothesis.

A neural network structure is defined which
gives a discrete distribution over the |St, s|+1 val-
ues, taking the turns ≤ t as input.

Figure 1 illustrates the structure used in this ap-
proach. Feature functions fi (t, v) for i = 1 . . .M

f1 (t, v) f1 (t− T + 1, v)
∑t−T

t′=0 f1 (t
′, v)

f2 (t, v) f2 (t− T + 1, v)
∑t−T

t′=0 f2 (t
′, v)

fM (t, v) fM (t− T + 1, v)
∑t−T

t′=0 fM (t′, v)

t t− T + 1 (0 . . . t− T )

f1

f2

fM

. . .

...

h1

[
= tanh(W0f

T + b0)
]

h2

[
= tanh(W1h

T
1 + b1)

]

h3

[
= tanh(W2h

T
2 + b2)

]

E(t, v)
[
= W3h

T
3

]

Figure 1: The Neural Network structure for computing
E (t, v) ∈ R for each possible value v in the set St, s. The
vector f is a concatenation of all the input nodes.

are defined which extract information about the
value v from the SLU hypotheses and machine
actions at turn t. A simple example would be
fSLU (t, v), the SLU score that s=v was informed
at turn t. A list of the feature functions actually
used in the trial is given in Section 3.1. For nota-
tional convenience, feature functions at negative t
are defined to be zero:
∀i ∀v, t′ < 0⇒ fi (t

′, v) = 0.
The input layer for a given value v is fixed in

size by choosing a window size T , such that the
feature functions are summed for turns ≤ t − T .
The input layer therefore consists of (T ×M) in-
put nodes set to fi (t

′, v) for t′ = t−T+1 . . . t and
i = 1 . . .M , and M nodes set to

∑t−T
t′=0 fi (t

′, v)
for i = 1 . . .M .

A feed-forward structure of hidden layers is
chosen, which reduces to a single node denoted
E (t, v). Each hidden layer introduces a weight
matrix Wi and a bias vector bi as parameters,
which are independent of v but possibly trained
separately for each s. The equations for each layer
in the network are given in Figure 1.

The final distribution from the tracker is:

P (s = v) = eE(t, v)
/Z

P (s /∈ St, s) = eB/Z

Z = eB +
∑

v′∈St, s

eE(t, v
′)

where B is a new parameter of the network, in-
dependent of v and possibly trained separately for
each slot s.
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3.1 Feature Functions
As explained above, a feature function is a func-
tion f (t, v) which (for a given dialog) returns a
real number representing some aspect of the turn
t with respect to a possible value v. A turn con-
sists of a machine action and the subsequent Spo-
ken Language Understanding (SLU) results. The
functions explored in this paper are listed below:
1. SLU score; the score assigned by the SLU to

the user asserting s=v.
2. Rank score; 1/r where r is the rank of s=v in

the SLU n-best list, or 0 if it is not on the list.
3. Affirm score; SLU score for an affirm action

if the system just confirmed s=v.
4. Negate score; as previous but with negate.
5. Go back score; the score assigned by the SLU

to a goback action matching s=v.
6. Implicit score; 1− the score given in the SLU

to a contradictory action if the system just im-
plicitly confirmed s=v, otherwise 0.

7. User act type; a feature function for each pos-
sible user act type, giving the total score of the
user act type in the SLU. Independent of s & v.

8. Machine act type; a feature function for each
possible machine act type, giving the total num-
ber of machine acts with the type in the turn.
Independent of s & v.

9. Cant help; 1 if the system just said that it can-
not provide information on s=v, otherwise 0.

10. Slot confirmed; 1 if s=v′ was just confirmed
by the system for some v′, otherwise 0.

11. Slot requested; 1 if the value of s was just re-
quested by the system, otherwise 0.

12. Slot informed; 1 if the system just gave infor-
mation on a set of bus routes which included a
specific value of s, otherwise 0.

4 Training
The derivatives of the training data likelihood with
respect to all the parameters of the model can
be computed using back propagation, i.e. the
chain rule. Stochastic Gradient Descent with mini-
batches is used to optimise the parameters by de-
scending the negative log-likelihood in the direc-
tion of the derivatives (Bottou, 1991). Termina-
tion is triggered when performance on a held-out
development set stops improving.

Each turn t and slot s in a dialog for which
|St, s| > 0 provides a non-zero summand to the
total log-likelihood of the training data. These in-
stances may be split up by slot to train a separate
network for each slot. Alternatively the data can

be combined to learn a slot independent model.
The best approach found was to train a slot inde-
pendent model for a few epochs, and then switch
to training one model per slot (see Section 4.4).

This section presents experiments varying the
training of the model. In each case the parameters
are trained using all of the labelled training sets.
The results are reported for test4 since this system
is not found in the training data. They are therefore
unbiassed and avoid overtuning problems.

The ROC curves, accuracy, Mean Reciprocal
Rank (MRR) and l2 norm of the tracker across all
slots are reported here. (A full definition of the
metrics is found in Williams et al. (2013).) These
are computed throughout using statistics at every
turn t where |St, s| > 0 (referred to as ‘schedule
2’ in the terminology of the challenge.) Table 2
and Figure 3 in Appendix A show these metrics.
The ‘Baseline’ system (‘team0/entry1’ in the chal-
lenge), considers only the top SLU hypothesis so
far, and assigns the SLU confidence score as the
tracker probability. It does not therefore incorpo-
rate any belief tracking.
4.1 Window Size
The window size, T , was varied from 2 to 20. T
must be selected so that it is large enough to cap-
ture enough of the sequence of the dialog, whilst
ensuring sufficient data to train the weights con-
necting the inputs from the earlier turns. The re-
sults suggest that T = 10 is a good compromise.
4.2 Feature Set
The features enumerated in Section 3.1 were split
into 4 sets. F1 = {1} includes only the SLU
scores; F2 = {1, ..., 6} includes feature func-
tions which depend on the user act and the value;
F3 = {1, ..., 8} also includes the user act and ma-
chine act types; and finally F4 = {1, ..., 12} in-
cludes functions which depend on the system act
and the value. The results clearly show that adding
more and more features in this manner monotoni-
cally increases the performance of the tracker.
4.3 Structure
Some candidate structures of the hidden layers
(h1, h2, ...) were evaluated, including having no
hidden layers at all, which gives a logistic regres-
sion model. In Table 2 the structure is represented
as a list giving the size of each hidden layer in turn.

Three layers in a funnelling [20, 10, 2] configu-
ration is found to outperform the other structures.
The l2 norm is highly affected by the use of deeper
network structure, suggesting it is most useful in
tweaking the calibration of the confidence scores.
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ROC Acc. MRR l2
Baseline

0.5841 0.7574 0.5728

Window Size
T =2 0.6679 0.8044 0.5405

5 0.6875 0.8191 0.5164
10 0.6922 0.8207 0.5331
15 0.6718 0.8107 0.5352
20 0.6817 0.8190 0.5174

Feature Set
F1 0.5495 0.7364 0.6838
F2 0.6585 0.7954 0.6631
F3 0.6823 0.8134 0.5525
F4 0.6922 0.8207 0.5331

Structure
[] 0.6751 0.8074 0.5658

[50] 0.6679 0.8046 0.5450
[20] 0.6656 0.8060 0.5394

[50, 10] 0.6645 0.8045 0.5404
[20, 2] 0.6543 0.7952 0.5514

[20, 10, 2] 0.6922 0.8207 0.5331

Initialisation
Separate 0.6907 0.8206 0.5472

Single Model 0.6779 0.8111 0.5570
Shared Init. 0.6922 0.8207 0.5331

Table 2: Results for variant trackers described in Section
4. By default, we train using the shared initialisation training
method with T = 10, all the features enumerated in Section
3.1, and 3 hidden layers of size 20, 10 and 2.

4.4 Initialisation
The three methods of training alluded to in Sec-
tion 4 were evaluated; training a model for each
slot without sharing data between slots (Separate);
training a single slot independent model (Single
Model); and training for a few epochs a slot in-
dependent model, then using this to initialise the
training of separate models (Shared Initialisation).

The method of shared initialisation appears to
be the most effective, scoring the best on accu-
racy, MRR and l2. Training in this manner is par-
ticularly beneficial for slots which are under rep-
resented in the training data, as it initiates the pa-
rameters to sensible values before going on to spe-
cialise to that particular slot.

5 Performance in the DSTC
A DNN tracker was trained for entry in the
DSTC. Training used T=10, the full feature set,
a [20, 10, 2] hidden structure and the shared ini-
tialisation training method. Other parameters such
as the learning rate and regularisation coefficient
were tweaked by analysing performance on a held
out subset of the training data. All the labelled

test1
Acc.MRR

test2
Acc.MRR

test3
Acc.MRR

test4
Acc.MRR

all
Acc.MRR

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 2: Accuracy and MRR of the 28 entries in the DSTC
for all slots. Boxplots show minimum, maximum, quartiles
and the median. Dark dot is location of the entry presented in
this paper (DNN system).

training data available was used. The tracker is
labelled as ‘team1/entry1’ in the DSTC.

The DNN approach performed competitively in
the challenge. Figure 2 summarises the perfor-
mance of the approach relative to all 28 entries in
the DSTC. The results are less competitive in test2
and test3 but very strong in test1 and test4.

The performance in test4, dialogs with an un-
seen system, was probably the best because the
chosen feature functions forced the learning of a
general model which was not able to exploit the
specifics of particular ASR+SLU configurations.
Features which depend on the identity of the slot-
values would have allowed better performance in
test2 and test3, allowing the model to learn dif-
ferent behaviours for each value and learn typical
confusions. It would also have been possible to ex-
ploit the system-specific data available in the chal-
lenge, such as more detailed confidence metrics
from the ASR.

For a full comparison across the entries in the
DSTC, see Williams et al. (2013). In making com-
parisons it should be noted that this team did not
alter the training for different test sets, and submit-
ted only one entry.

6 Conclusion
This paper has presented a discriminative ap-
proach for tracking the state of a dialog which
takes advantage of deep learning. While sim-
ple Gradient Ascent training was tweaked in this
paper using the ‘Shared Initialisation’ scheme, a
possible promising future direction would be to
further experiment with more recent methods for
training deep structures e.g. initialising the net-
works layer by layer (Hinton et al., 2006).

Richer feature representations of the dialog con-
tribute strongly to the performance of the model.
The feature set presented is applicable across a
broad range of slot-filling dialog domains, sug-
gesting the possibility of using the models across
domains without domain-specific training data.
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A ROC Curves
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Figure 3: ROC (Receiver Operating Characteristic) Curves
x-axis and y-axis are false acceptance and true acceptance
respectively. Lines are annotated as per Table 2.
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