Named Entity Recognition with Bidirectional LSTM-CNNs

Jason P.C. Chiu, Eric Nichols


Abstract
Named entity recognition is a challenging task that has traditionally required large amounts of knowledge in the form of feature engineering and lexicons to achieve high performance. In this paper, we present a novel neural network architecture that automatically detects word- and character-level features using a hybrid bidirectional LSTM and CNN architecture, eliminating the need for most feature engineering. We also propose a novel method of encoding partial lexicon matches in neural networks and compare it to existing approaches. Extensive evaluation shows that, given only tokenized text and publicly available word embeddings, our system is competitive on the CoNLL-2003 dataset and surpasses the previously reported state of the art performance on the OntoNotes 5.0 dataset by 2.13 F1 points. By using two lexicons constructed from publicly-available sources, we establish new state of the art performance with an F1 score of 91.62 on CoNLL-2003 and 86.28 on OntoNotes, surpassing systems that employ heavy feature engineering, proprietary lexicons, and rich entity linking information.
Anthology ID:
Q16-1026
Volume:
Transactions of the Association for Computational Linguistics, Volume 4
Month:
Year:
2016
Address:
Cambridge, MA
Editors:
Lillian Lee, Mark Johnson, Kristina Toutanova
Venue:
TACL
SIG:
Publisher:
MIT Press
Note:
Pages:
357–370
Language:
URL:
https://aclanthology.org/Q16-1026
DOI:
10.1162/tacl_a_00104
Bibkey:
Cite (ACL):
Jason P.C. Chiu and Eric Nichols. 2016. Named Entity Recognition with Bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, 4:357–370.
Cite (Informal):
Named Entity Recognition with Bidirectional LSTM-CNNs (Chiu & Nichols, TACL 2016)
Copy Citation:
PDF:
https://preview.aclanthology.org/ml4al-ingestion/Q16-1026.pdf
Code
 additional community code
Data
CoNLLCoNLL 2003DBpediaOntoNotes 5.0