Efficient, Compositional, Order-sensitive n-gram Embeddings
Adam Poliak, Pushpendre Rastogi, M. Patrick Martin, Benjamin Van Durme
Abstract
We propose ECO: a new way to generate embeddings for phrases that is Efficient, Compositional, and Order-sensitive. Our method creates decompositional embeddings for words offline and combines them to create new embeddings for phrases in real time. Unlike other approaches, ECO can create embeddings for phrases not seen during training. We evaluate ECO on supervised and unsupervised tasks and demonstrate that creating phrase embeddings that are sensitive to word order can help downstream tasks.- Anthology ID:
- E17-2081
- Volume:
- Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers
- Month:
- April
- Year:
- 2017
- Address:
- Valencia, Spain
- Editors:
- Mirella Lapata, Phil Blunsom, Alexander Koller
- Venue:
- EACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 503–508
- Language:
- URL:
- https://aclanthology.org/E17-2081
- DOI:
- Cite (ACL):
- Adam Poliak, Pushpendre Rastogi, M. Patrick Martin, and Benjamin Van Durme. 2017. Efficient, Compositional, Order-sensitive n-gram Embeddings. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 503–508, Valencia, Spain. Association for Computational Linguistics.
- Cite (Informal):
- Efficient, Compositional, Order-sensitive n-gram Embeddings (Poliak et al., EACL 2017)
- PDF:
- https://preview.aclanthology.org/ml4al-ingestion/E17-2081.pdf
- Code
- azpoliak/eco