Zheng Yuan

May refer to several people

Other people with similar names: Zheng Yuan (Cambridge)


2024

pdf bib
How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Guanting Dong | Hongyi Yuan | Keming Lu | Chengpeng Li | Mingfeng Xue | Dayiheng Liu | Wei Wang | Zheng Yuan | Chang Zhou | Jingren Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) with enormous pre-training tokens and parameters emerge diverse abilities, including math reasoning, codegeneration, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). While the open-source community has explored ad-hoc SFT for enhancing individual capabilities, proprietary LLMs exhibit versatility across various skills. Therefore, understanding the facilitation of multiple abilities via SFT is paramount. In this study, we specificially focuses on the interplay of data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. We propose four intriguing research questions to explore the association between model performance and various factors including data amount, composition ratio, model size and SFT strategies. Our experiments reveal that distinct capabilities scale differently and larger models generally show superior performance with same amount of data. Mathematical reasoning and code generation consistently improve with increasing data amount, whereas general abilities plateau after roughly a thousand samples. Moreover, we observe data composition appears to enhance various abilities under limited data conditions, yet can lead to performance conflicts when data is plentiful. Our findings also suggest the amount of composition data influences performance more than the composition ratio. In analysis of SFT strategies, we find that sequentially learning multiple skills risks catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy offers a promising solution to learn multiple abilities with different scaling patterns.

pdf bib
MuggleMath: Assessing the Impact of Query and Response Augmentation on Math Reasoning
Chengpeng Li | Zheng Yuan | Hongyi Yuan | Guanting Dong | Keming Lu | Jiancan Wu | Chuanqi Tan | Xiang Wang | Chang Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In math reasoning with large language models (LLMs), fine-tuning data augmentation by query evolution and diverse reasoning paths is empirically verified effective, profoundly narrowing the gap between open-sourced LLMs and cutting-edge proprietary LLMs. In this paper, we conduct an investigation for such data augmentation in math reasoning and are intended to answer: (1) What strategies of data augmentation are more effective; (2) What is the scaling relationship between the amount of augmented data and model performance; and (3) Can data augmentation incentivize generalization to out-of-domain mathematical reasoning tasks?To this end, we create two new dataset AugGSM8K and AugMATH, by complicating and diversifying the queries and sampling multiple reasoning paths from GSM8K and MATH.We obtained a series of LLMs called MuggleMath by fine-tuning LLaMA models on AugGSM8K and AugMATH. MuggleMath substantially achieves new state-of-the-art on GSM8K and MATH.A log-linear relationship and a segmented log-linear are presented between MuggleMath’s performance and the amount of augmented data on GSM8K and MATH, respectively.We also find that it is weak in out-of-domain math reasoning generalization from AugGSM8K to MATH and from AugMATH to GSM8K, which suggests that augmenting queries that cover a broader range of subjects is more beneficial for generalization.

pdf bib
Speculative Contrastive Decoding
Hongyi Yuan | Keming Lu | Fei Huang | Zheng Yuan | Chang Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Large language models (LLMs) exhibit exceptional performance in language tasks, yet their auto-regressive inference is limited due to high computational requirements and is sub-optimal due to the exposure bias. Inspired by speculative decoding and contrastive decoding, we introduce Speculative Contrastive Decoding (SCD), a straightforward yet powerful decoding approach that leverages predictions from smaller language models (LMs) to achieve both decoding acceleration and quality improvement. Extensive evaluations and analyses on four diverse language tasks demonstrate the effectiveness of SCD, showing that decoding efficiency and quality can compatibly benefit from one smaller LM.

pdf bib
Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM
Zijin Hong | Zheng Yuan | Hao Chen | Qinggang Zhang | Feiran Huang | Xiao Huang
Findings of the Association for Computational Linguistics: ACL 2024

Generating accurate SQL queries for user questions (text-to-SQL) has been a long-standing challenge since it requires a deep understanding of both the user’s question and the corresponding database schema in order to retrieve the desired content accurately. Existing methods rely on the comprehensive capability of large language models (LLMs) to generate the SQL. However, some necessary knowledge is not explicitly included in the database schema and user question or has been learned by LLMs. Thus, the generated SQL of the knowledge-insufficient questions may be inaccurate, negatively influencing the text-to-SQL models’ performance and robustness. To address this challenge, we propose the Knowledge-to-SQL framework, which employs tailored Data Expert LLM (DELLM) to provide helpful knowledge for all text-to-SQL models. Specifically, we introduce the detailed implementation of DELLM regarding table reading and the basic fine-tuning process. We further propose a Preference Learning via Database Feedback (PLDBF) strategy, refining the DELLM to generate more helpful knowledge for LLMs. Extensive experiments verify that DELLM can enhance the state-of-the-art approaches for text-to-SQL tasks. The corresponding code of DELLM is released for further research.

pdf bib
ART: The Alternating Reading Task Corpus for Speech Entrainment and Imitation
Zheng Yuan | Dorina de Jong | Štefan Beňuš | Noël Nguyen | Ruitao Feng | Róbert Sabo | Luciano Fadiga | Alessandro D’Ausilio
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We introduce the Alternating Reading Task (ART) Corpus, a collection of dyadic sentence reading for studying the entrainment and imitation behaviour in speech communication. The ART corpus features three experimental conditions - solo reading, alternating reading, and deliberate imitation - as well as three subcorpora encompassing French-, Italian-, and Slovak-accented English. This design allows systematic investigation of speech entrainment in a controlled and less spontaneous setting. Alongside detailed transcriptions, it includes English proficiency scores, demographics, and in-experiment questionnaires for probing linguistic, personal and interpersonal influences on entrainment. Our presentation covers its design, collection, annotation processes, initial analysis, and future research prospects.

pdf bib
MLDSP-MA: Multidimensional Attention for Multi-Round Long Dialogue Sentiment Prediction
Yunfei Yin | Congrui Zou | Zheng Yuan | Xianjian Bao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The intelligent chatbot takes dialogue sentiment prediction as the core, and it has to tackle long dialogue sentiment prediction problems in many real-world applications. Current state-of-the-art methods usually employ attention-based dialogue sentiment prediction models. However, as the conversation progresses, more topics are involved and the changes in sentiments become more frequent, which leads to a sharp decline in the accuracy and efficiency of the current methods. Therefore, we propose a Multi-round Long Dialogue Sentiment Prediction based on Multidimensional Attention (MLDSP-MA), which can focus on different topics. In particular, MLSDP-MA leverages a sliding window to capture different topics and traverses all historical dialogues. In each sliding window, the contextual dependency, sentiment persistence, and sentiment infectivity are characterized, and local attention cross fusion is performed. To learn dialogue sentiment globally, global attention is proposed to iteratively learn comprehensive sentiments from historical dialogues, and finally integrate with local attention. We conducted extensive experimental research on publicly available dialogue datasets. The experimental results show that, compared to the current state-of-the-art methods, our model improves by 3.5% in accuracy and 5.7% in Micro-F1 score.

pdf bib
Text Diffusion Model with Encoder-Decoder Transformers for Sequence-to-Sequence Generation
Hongyi Yuan | Zheng Yuan | Chuanqi Tan | Fei Huang | Songfang Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The diffusion model, a new generative modeling paradigm, has achieved great success in image, audio, and video generation.However, considering the discrete categorical nature of the text, it is not trivial to extend continuous diffusion models to natural language. In this work, we propose SeqDiffuSeq, a text diffusion model, to approach sequence-to-sequence text generation with an encoder-decoder Transformer architecture.To improve the generation performance, SeqDiffuSeq is equipped with the self-conditioning technique and our newly proposed adaptive noise schedule technique. Self-conditioning enables SeqDiffuSeq to better use the predicted sequence information during the generation process.The adaptive noise schedule balances the difficulty of denoising across time steps at the token level.Experiment results illustrate the improved performance on five sequence-to-sequence generation tasks compared to other diffusion-based models regarding text quality and inference time.

pdf bib
Routing to the Expert: Efficient Reward-guided Ensemble of Large Language Models
Keming Lu | Hongyi Yuan | Runji Lin | Junyang Lin | Zheng Yuan | Chang Zhou | Jingren Zhou
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The complementary potential of Large Language Models (LLM) assumes off-the-shelf LLMs have heterogeneous expertise in a wide range of domains and tasks so that an ensemble of LLMs can achieve consistently better performance. Existing ensemble methods for LLMs mainly focus on reward model ranking of outputs, leading to significant computation overhead. To combat this issue, we revisit the complementary potential of LLMs and further elaborate on it by mining latent expertise with off-the-shelf reward models. We propose ZOOTER, a reward-guided routing method distilling rewards on training queries to train a routing function, which can precisely distribute each query to the LLM with expertise about it. We also integrate a tag-based label enhancement to mitigate noise from uncertainty when using rewards as silver supervision. ZOOTER shows computation efficiency in inference as it only introduces minor computation overhead of a routing function compared with reward model ranking methods. We evaluate ZOOTER on a comprehensive benchmark collection with 26 subsets in different domains and tasks. ZOOTER outperforms the best single model on average and ranks first on 44% of tasks, even surpassing multiple reward model ranking methods.

2023

pdf bib
HyPe: Better Pre-trained Language Model Fine-tuning with Hidden Representation Perturbation
Hongyi Yuan | Zheng Yuan | Chuanqi Tan | Fei Huang | Songfang Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Language models with the Transformers structure have shown great performance in natural language processing. However, there still poses problems when fine-tuning pre-trained language models on downstream tasks, such as over-fitting or representation collapse. In this work, we propose HyPe, a simple yet effective fine-tuning technique to alleviate such problems by perturbing hidden representations of Transformers layers. Unlike previous works that only add noise to inputs or parameters, we argue that the hidden representations of Transformers layers convey more diverse and meaningful language information. Therefore, making the Transformers layers more robust to hidden representation perturbations can further benefit the fine-tuning of PLMs en bloc. We conduct extensive experiments and analyses on GLUE and other natural language inference datasets. Results demonstrate that HyPe outperforms vanilla fine-tuning and enhances generalization of hidden representations from different layers. In addition, HyPe acquires negligible computational overheads, and is better than and compatible with previous state-of-the-art fine-tuning techniques.

pdf bib
The ADAIO System at the BEA-2023 Shared Task: Shared Task Generating AI Teacher Responses in Educational Dialogues
Adaeze Adigwe | Zheng Yuan
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

This paper presents the ADAIO team’s system entry in the Building Educational Applications (BEA) 2023 Shared Task on Generating AI Teacher Responses in Educational Dialogues. The task aims to assess the performance of state-of-the-art generative models as AI teachers in producing suitable responses within a student-teacher dialogue. Our system comprises evaluating various baseline models using OpenAI GPT-3 and designing diverse prompts to prompt the OpenAI models for teacher response generation. After the challenge, our system achieved second place by employing a few-shot prompt-based approach with the OpenAI text-davinci-003 model. The results highlight the few-shot learning capabilities of large-language models, particularly OpenAI’s GPT-3, in the role of AI teachers.

pdf bib
Exploring Partial Knowledge Base Inference in Biomedical Entity Linking
Hongyi Yuan | Keming Lu | Zheng Yuan
Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

Biomedical entity linking (EL) consists of named entity recognition (NER) and named entity disambiguation (NED). EL models are trained on corpora labeled by a predefined KB. However, it is a common scenario that only entities within a subset of the KB are precious to stakeholders. We name this scenario partial knowledge base inference; training an EL model with one KB and inferring on the part of it without further training. In this work, we give a detailed definition and evaluation procedures for this practically valuable but significantly understudied scenario and evaluate methods from three representative EL paradigms. We construct partial KB inference benchmarks and witness a catastrophic degradation in EL performance due to dramatically precision drop. Our findings reveal these EL paradigms can not correctly handle unlinkable mentions (NIL), so they are not robust to partial KB inference. We also propose two simple-and-effective redemption methods to combat the NIL issue with little computational overhead.

pdf bib
Prompt Discriminative Language Models for Domain Adaptation
Keming Lu | Peter Potash | Xihui Lin | Yuwen Sun | Zihan Qian | Zheng Yuan | Tristan Naumann | Tianxi Cai | Junwei Lu
Proceedings of the 5th Clinical Natural Language Processing Workshop

Prompt tuning offers an efficient approach to domain adaptation for pretrained language models, which predominantly focus on masked language modeling or generative objectives. However, the potential of discriminative language models in biomedical tasks remains underexplored.To bridge this gap, we develop BioDLM, a method tailored for biomedical domain adaptation of discriminative language models that incorporates prompt-based continual pretraining and prompt tuning for downstream tasks. BioDLM aims to maximize the potential of discriminative language models in low-resource scenarios by reformulating these tasks as span-level corruption detection, thereby enhancing performance on domain-specific tasks and improving the efficiency of continual pertaining. In this way, BioDLM provides a data-efficient domain adaptation method for discriminative language models, effectively enhancing performance on discriminative tasks within the biomedical domain.

2022

pdf bib
CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark
Ningyu Zhang | Mosha Chen | Zhen Bi | Xiaozhuan Liang | Lei Li | Xin Shang | Kangping Yin | Chuanqi Tan | Jian Xu | Fei Huang | Luo Si | Yuan Ni | Guotong Xie | Zhifang Sui | Baobao Chang | Hui Zong | Zheng Yuan | Linfeng Li | Jun Yan | Hongying Zan | Kunli Zhang | Buzhou Tang | Qingcai Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Artificial Intelligence (AI), along with the recent progress in biomedical language understanding, is gradually offering great promise for medical practice. With the development of biomedical language understanding benchmarks, AI applications are widely used in the medical field. However, most benchmarks are limited to English, which makes it challenging to replicate many of the successes in English for other languages. To facilitate research in this direction, we collect real-world biomedical data and present the first Chinese Biomedical Language Understanding Evaluation (CBLUE) benchmark: a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification, and an associated online platform for model evaluation, comparison, and analysis. To establish evaluation on these tasks, we report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.

pdf bib
Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding
Zheng Yuan | Chuanqi Tan | Songfang Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Automatic ICD coding is defined as assigning disease codes to electronic medical records (EMRs).Existing methods usually apply label attention with code representations to match related text snippets. Unlike these works that model the label with the code hierarchy or description, we argue that the code synonyms can provide more comprehensive knowledge based on the observation that the code expressions in EMRs vary from their descriptions in ICD. By aligning codes to concepts in UMLS, we collect synonyms of every code. Then, we propose a multiple synonyms matching network to leverage synonyms for better code representation learning, and finally help the code classification. Experiments on the MIMIC-III dataset show that our proposed method outperforms previous state-of-the-art methods.

pdf bib
Automatic Biomedical Term Clustering by Learning Fine-grained Term Representations
Sihang Zeng | Zheng Yuan | Sheng Yu
Proceedings of the 21st Workshop on Biomedical Language Processing

Term clustering is important in biomedical knowledge graph construction. Using similarities between terms embedding is helpful for term clustering. State-of-the-art term embeddings leverage pretrained language models to encode terms, and use synonyms and relation knowledge from knowledge graphs to guide contrastive learning. These embeddings provide close embeddings for terms belonging to the same concept. However, from our probing experiments, these embeddings are not sensitive to minor textual differences which leads to failure for biomedical term clustering. To alleviate this problem, we adjust the sampling strategy in pretraining term embeddings by providing dynamic hard positive and negative samples during contrastive learning to learn fine-grained representations which result in better biomedical term clustering. We name our proposed method as CODER++, and it has been applied in clustering biomedical concepts in the newly released Biomedical Knowledge Graph named BIOS.

pdf bib
BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model
Hongyi Yuan | Zheng Yuan | Ruyi Gan | Jiaxing Zhang | Yutao Xie | Sheng Yu
Proceedings of the 21st Workshop on Biomedical Language Processing

Pretrained language models have served as important backbones for natural language processing. Recently, in-domain pretraining has been shown to benefit various domain-specific downstream tasks. In the biomedical domain, natural language generation (NLG) tasks are of critical importance, while understudied. Approaching natural language understanding (NLU) tasks as NLG achieves satisfying performance in the general domain through constrained language generation or language prompting. We emphasize the lack of in-domain generative language models and the unsystematic generative downstream benchmarks in the biomedical domain, hindering the development of the research community. In this work, we introduce the generative language model BioBART that adapts BART to the biomedical domain. We collate various biomedical language generation tasks including dialogue, summarization, entity linking, and named entity recognition. BioBART pretrained on PubMed abstracts has enhanced performance compared to BART and set strong baselines on several tasks. Furthermore, we conduct ablation studies on the pretraining tasks for BioBART and find that sentence permutation has negative effects on downstream tasks.

pdf bib
Fusing Heterogeneous Factors with Triaffine Mechanism for Nested Named Entity Recognition
Zheng Yuan | Chuanqi Tan | Songfang Huang | Fei Huang
Findings of the Association for Computational Linguistics: ACL 2022

Nested entities are observed in many domains due to their compositionality, which cannot be easily recognized by the widely-used sequence labeling framework.A natural solution is to treat the task as a span classification problem. To learn better span representation and increase classification performance, it is crucial to effectively integrate heterogeneous factors including inside tokens, boundaries, labels, and related spans which could be contributing to nested entities recognition. To fuse these heterogeneous factors, we propose a novel triaffine mechanism including triaffine attention and scoring.Triaffine attention uses boundaries and labels as queries and uses inside tokens and related spans as keys and values for span representations.Triaffine scoring interacts with boundaries and span representations for classification. Experiments show that our proposed method outperforms previous span-based methods, achieves the state-of-the-art F1 scores on nested NER datasets GENIA and KBP2017, and shows comparable results on ACE2004 and ACE2005.

pdf bib
Generative Biomedical Entity Linking via Knowledge Base-Guided Pre-training and Synonyms-Aware Fine-tuning
Hongyi Yuan | Zheng Yuan | Sheng Yu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Entities lie in the heart of biomedical natural language understanding, and the biomedical entity linking (EL) task remains challenging due to the fine-grained and diversiform concept names. Generative methods achieve remarkable performances in general domain EL with less memory usage while requiring expensive pre-training. Previous biomedical EL methods leverage synonyms from knowledge bases (KB) which is not trivial to inject into a generative method. In this work, we use a generative approach to model biomedical EL and propose to inject synonyms knowledge in it. We propose KB-guided pre-training by constructing synthetic samples with synonyms and definitions from KB and require the model to recover concept names. We also propose synonyms-aware fine-tuning to select concept names for training, and propose decoder prompt and multi-synonyms constrained prefix tree for inference. Our method achieves state-of-the-art results on several biomedical EL tasks without candidate selection which displays the effectiveness of proposed pre-training and fine-tuning strategies. The source code is available at https://github.com/Yuanhy1997/GenBioEL.

2021

pdf bib
Improving Biomedical Pretrained Language Models with Knowledge
Zheng Yuan | Yijia Liu | Chuanqi Tan | Songfang Huang | Fei Huang
Proceedings of the 20th Workshop on Biomedical Language Processing

Pretrained language models have shown success in many natural language processing tasks. Many works explore to incorporate the knowledge into the language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge bases. For example, UMLS contains millions of entities with their synonyms and defines hundreds of relations among entities. Leveraging this knowledge can benefit a variety of downstream tasks such as named entity recognition and relation extraction. To this end, we propose KeBioLM, a biomedical pretrained language model that explicitly leverages knowledge from the UMLS knowledge bases. Specifically, we extract entities from PubMed abstracts and link them to UMLS. We then train a knowledge-aware language model that firstly applies a text-only encoding layer to learn entity representation and then applies a text-entity fusion encoding to aggregate entity representation. In addition, we add two training objectives as entity detection and entity linking. Experiments on the named entity recognition and relation extraction tasks from the BLURB benchmark demonstrate the effectiveness of our approach. Further analysis on a collected probing dataset shows that our model has better ability to model medical knowledge.

2018

pdf bib
Construction of the Literature Graph in Semantic Scholar
Waleed Ammar | Dirk Groeneveld | Chandra Bhagavatula | Iz Beltagy | Miles Crawford | Doug Downey | Jason Dunkelberger | Ahmed Elgohary | Sergey Feldman | Vu Ha | Rodney Kinney | Sebastian Kohlmeier | Kyle Lo | Tyler Murray | Hsu-Han Ooi | Matthew Peters | Joanna Power | Sam Skjonsberg | Lucy Lu Wang | Chris Wilhelm | Zheng Yuan | Madeleine van Zuylen | Oren Etzioni
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers)

We describe a deployed scalable system for organizing published scientific literature into a heterogeneous graph to facilitate algorithmic manipulation and discovery. The resulting literature graph consists of more than 280M nodes, representing papers, authors, entities and various interactions between them (e.g., authorships, citations, entity mentions). We reduce literature graph construction into familiar NLP tasks (e.g., entity extraction and linking), point out research challenges due to differences from standard formulations of these tasks, and report empirical results for each task. The methods described in this paper are used to enable semantic features in www.semanticscholar.org.