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Introduction

The 2018 Conference on Computational Natural Language Learning (CoNLL) is the 22nd in the series
of annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2018 will be held on October 31 - November 1, 2018, and is co-located with the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP) in Brussels, Belgium.

CoNLL 2018 followed the tradition of previous CoNLL conferences in inviting only long papers, in
order to accommodate papers with experimental material and detailed analysis. The final, camera-ready
submissions were allowed a maximum of nine content pages plus unlimited pages of references and
supplementary material.

CoNLL 2018 received a record number of 295 submissions in total, out of which 5 had to be rejected for
formal reasons and 16 were withdrawn by the authors during the review period. Of the remaining 274
papers, 57 papers were chosen to appear in the conference program, with an overall acceptance rate of
20.8%. One of these was withdrawn after the notification, resulting in 56 papers for the final program:
16 were selected for oral presentation, and the remaining 40 for poster presentation plus lightning oral
presentation. All 56 papers appear here in the conference proceedings.

CoNLL 2018 features two invited speakers, Asifa Majid (University of York) and Max Welling
(University of Amsterdam / CIFAR). As in recent years, it also features two shared tasks: one on
Universal Morphological Reinflection and one on Multilingual Parsing from Raw Text to Universal
Dependencies. Papers accepted for the shared tasks are published in companion volumes of the CoNLL
2018 proceedings.

We would like to thank all the authors who submitted their work to CoNLL 2018, and the program
committee for helping us select the best papers out of many high-quality submissions. We are grateful to
the many program committee members who did a thorough job reviewing our submissions. Due to the
the growing size of of the conference, we also had area chairs, for the first time, supporting the CoNLL
organization. We were fortunate to have 12 excellent areas chairs who assisted us greatly in selecting the
best programme:

Marine Carpuat, University of Maryland, USA

Paul Cook, University of New Brunswick, USA
Vera Demberg, Saarland University, Germany
Graham Neubig, Carnegie Mellon University, USA
Sebastian Pado, University of Stuttgart, Germany
Siva Reddy, Stanford University, USA

Roi Reichart, Technion, Israel

Alan Ritter, Ohio State University, USA

Tim Rocktischel, University of Oxford, UK
Mehrnoosh Sadrzadeh, Queen Mary University of London, UK
Sameer Singh, University of California, Irvine USA
Yulia Tsvetkov, Carnegie Mellon University, USA

We are immensely thankful to Julia Hockenmaier and to the members of the SIGNLL board for their
valuable advice and assistance in putting together this year’s program. We also thank Ben Verhoeven,
for maintaining the CoNLL 2018 website and Miikka Silfverberg for preparing the proceedings for the
main conference. Finally, we would like to thank our hard working assistants, Phong Le and Edoardo
Ponti, for their great support with the conference administration and publicity.
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Finally, our gratitude goes to our sponsors, Google Inc. and Textkernel, for supporting the conference
financially.

We hope you enjoy the conference!

Anna Korhonen and Ivan Titov

CoNLL 2018 conference co-chairs
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Keynote Talk
Inductive Bias in Deep Learning

Max Welling

Deep learning is often considered a ‘black box’ predictor, that is, a highly flexible mapping from input
variables to target variables which is hard to interpret. In almost all other scientific disciplines researchers
build highly intuitive models with few variables in which decades of accumulated expertise is embedded.
Not surprisingly, black box models need a lot of data to be successful as predictors while generative
models need much less data. One natural question to ask is if we can inject more inductive bias in black
box models, such as deep neural networks.

We will look at two different ways to achieve this. First, data often has certain symmetries, i.e. a satellite
image will have no useful information in the orientation of the objects of interest. This is of course
similar to the fact that in natural images there is typically no useful information in the absolute location
of the objects. Convolutions implement the latter inductive bias and lead to very significant gains in terms
of data efficiency. We will argue that there may be other symmetries present in data (such as orientation)
which can also be hardcoded in a deep architecture and result in data efficiency gains. We will illustrate
this idea in pathology slide analysis.

A second way to inject inductive bias into predictors is to consider the data generating process of the
data. I will argue that for certain tasks, such as image reconstruction, the generative process can be
directly embedded into the classifier by, at every layer of the network, comparing the data generated by
the current reconstruction with the observations and feeding the difference back into the network. We
will illustrate the resulting model, which we call the “Recurrent Inference Machine” on the task MRI
image reconstruction.
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Keynote Talk
Semantic Spaces Across Diverse Languages

Asifa Majid

Across diverse disciplines there is a wide-spread assumption that natural languages are equally express-
ible: anything that can be thought can be said. In fact, words are held to label categories that exist
independently of language, such that language merely captures these pre-existing categories. In this talk,
I will illustrate through cross-linguistic comparison across diverse domains that named distinctions are
not nearly as self-evident as they may seem on first examination. Even for basic perceptual experiences,
languages vary in which notions they lexicalise, and which concepts are coded at all. Crucially, in order
to develop a universal theory of semantics, scholars must first seriously engage with the cultural variation
found worldwide.
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Abstract

Complex textual information extraction tasks
are often posed as sequence labeling or shal-
low parsing, where fields are extracted using
local labels made consistent through proba-
bilistic inference in a graphical model with
constrained transitions. Recently, it has be-
come common to locally parametrize these
models using rich features extracted by recur-
rent neural networks (such as LSTM), while
enforcing consistent outputs through a sim-
ple linear-chain model, representing Marko-
vian dependencies between successive labels.
However, the simple graphical model struc-
ture belies the often complex non-local con-
straints between output labels. For example,
many fields, such as a first name, can only oc-
cur a fixed number of times, or in the pres-
ence of other fields. While RNNs have pro-
vided increasingly powerful context-aware lo-
cal features for sequence tagging, they have
yet to be integrated with a global graphical
model of similar expressivity in the output dis-
tribution. Our model goes beyond the lin-
ear chain CRF to incorporate multiple hidden
states per output label, but parametrizes their
transitions parsimoniously with low-rank log-
potential scoring matrices, effectively learning
an embedding space for hidden states. This
augmented latent space of inference variables
complements the rich feature representation
of the RNN, and allows exact global infer-
ence obeying complex, learned non-local out-
put constraints. We experiment with several
datasets and show that the model outperforms
baseline CRF+RNN models when global out-
put constraints are necessary at inference-time,
and explore the interpretable latent structure.

1 Introduction

As with many other prediction tasks involving
complex structured outputs, such as image seg-
mentation (Chen et al., 2018), machine transla-

1

tion (Bahdanau et al., 2015), and speech recogni-
tion (Hinton et al., 2012), deep neural networks
(DNNs) for sequence labeling and shallow pars-
ing have become standard tools for for information
extraction (Collobert et al., 2011; Lample et al.,
2016). In the language of structured prediction,
DNNs process the input sequence to produce a
rich local parametrization for the output prediction
model. However, output variables obey a variety
of hard and soft constraints — for example, in se-
quence tagging tasks such as named entity recog-
nition, I-PER cannot follow B-ORG.

Interestingly, even with such powerful local fea-
turization, the DNN model does not automatically
capture a mode of the output distribution through
local decisions alone, and can violate these con-
straints. Successful applications of DNNs to se-
quence tagging gain from incorporating a sim-
ple linear chain probabilistic graphical model to
enforce consistent output predictions (Collobert
et al., 2011; Lample et al., 2016), and more gen-
erally the addition of a graphical model to en-
force output label consistency is common practice
for other tasks such as image segmentation (Chen
et al., 2018).

Previous work in DNN-featurized sequence tag-
ging with graphical models for information extrac-
tion has limited its output structure modeling to
these simple local Markovian dependencies. In
this work, we explore the addition of latent vari-
ables to the prediction model, and through a parsi-
monious factorized parameter structure, perform
representation learning of hidden state embed-
dings in the graphical model, complementary to
the standard practice of representation learning in
the local potentials of the segmentation model. By
factorizing the log-potentials of the hidden state
transition matrices, we are able to learn large num-
bers of hidden states without overfitting, while the
latent dynamics add the capability to learn global

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 1-10
Brussels, Belgium, October 31 - November 1, 2018. (©)2018 Association for Computational Linguistics



**GROUND TRUTH**

-. Candice PUFIRSTNAME = Kosgel pyLASTNAME . 0yrsold PuAGE

She pUGENDER s stillthe same mysHiFT sTaTus . No other changes. -
*kCRE**

-. Candice pyFIRSTNAME = Kosgel pyLAsTNAME . 0yrsold puace

She puveeENDER s stillthe same mysHIFT sTatus . No other changes. All obs are
all normal MYSHIFT STATUS .

**QUR MODEL**
-. Candice PUFIRSTNAME = KOSgel PILASTNAME

She puyeENDER s stillthe same mysHIFT sTaTus . No other changes . -

Figure 1: An example result from the CLEF
eHealth dataset. The soft output constraint sug-
gests tagging patient status as Myshift/Others if
there already is a Myshift_Status tag. Note that we
have the same phrase tagged as Myshift_Status in
the training dataset.

Oyrsold pracGE

constraints on the overall prediction, without sac-
rificing efficient exact inference.

While soft and hard global constraints have a
rich history in sequence tagging (Koo et al., 2010;
Rush and Collins, 2012; Anzaroot et al., 2014),
they have been underexplored in the context of
neural-network based feature extraction models.
In response, we present a latent-variable CRF
model with a novel mechanism for learning la-
tent constraints without overfitting, using low-rank
embeddings of large-cardinality latent variables.
For example, these non-local constraints appear
in fine-grained nested field extraction, which re-
quires hierarchical consistency between the sub-
tags of an entity. Further, information extraction
and slot filling tasks often require domain specific
constraints — for example, we must avoid extract-
ing the same field multiple times. A good combi-
nation of input featurization and output modeling
is needed to capture these structural dependencies.

In this work we present a method for sequence
labeling in which representation learning is ap-
plied not only to inputs, but also to output space,
in the form of a lightly parameterized transition
function between a large number of latent states.
We introduce a hidden state variable and learn the
model dynamics in the hidden state space rather
than the label state space. This relaxes the Markov

assumption between output labels and allows the
model to learn global constraints. To avoid the
quadratic blowup in parameters with the size of the
latent state space, we factorize the transition log-
potentials into a low-rank matrix, avoiding over-
fitting by effectively learning parsimonious em-
bedded representations of the latent states. While
the low rank log-potential matrix does not im-
prove test-time inference speed, we can perform
exact Viterbi inference to compute the labeling se-
quence. Figure 1 shows an example where our
model finds the correct labeling sequence while
a standard DNN+CRF model fails, by obeying a
global constraint learned from the training data.

We examine the performance of the Embedded-
State Latent CRF on two datasets: citation ex-
traction on the UMass Citations dataset and med-
ical record field extraction on the CLEF dataset.
We observe improved performance in both tasks,
whose outputs obey complex structural dependen-
cies that are not able to be captured by RNN fea-
turization. Our biggest improvement comes in the
medical domain, where the small training set gives
our parsimonious approach to output representa-
tion learning an extra advantage.

2 Proposed Model

2.1 Problem Formulation

We consider the sequence labeling task, defined as
follows. Given an input text sequence with 7" to-
kens x = {x1,x9,...,x7}, find a corresponding
output sequence y = {y1,y2, ..., y7 } Where each
output symbol y; is one of /N possible output la-
bels. There are structural dependencies between
the output labels, and resolving such dependencies
is necessary for good performance.

2.2 Background

The input featurization in our model is similar to
previously mentioned existing methods for tag-
ging with DNNs (Collobert et al., 2011). We rep-
resent each input token x; with a word embed-
ding w;. We then feed the embedded sequence
w = {wi,wy, ...,wr} into a bidirectional LSTM
(Graves and Schmidhuber, 2005). As a result,
each input x; is associated with a contextualized
feature vector f; = [ﬁ, <]Tt] € R? where ﬁ) and }Tt
represent the left and right context at time step ¢ of
the sequence.

In this work, we concern ourselves with the
mapping from these input features to a distribution



over output label sequences.
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Figure 2: Comparing PGMs for tag prediction.

A straightforward solution is to use a feed-
forward network to map the feature vector to the
corresponding label. From a probabilistic perspec-
tive, this method is equivalent to the probabilistic
graphical model in Fig.2a. Here, the goal is to es-
timate the posterior distribution:
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where the joint distribution over the sequence is
fully factorized, i.e. there is no structural de-
pendency between y; and the distribution P(y; |
x¢) is parameterized by a deep neural network
UY(yp; x¢) = feed_forward(f;, y;). This model
ignores all the structural dependencies between
the output labels during prediction, though not fea-
turization, and has been found unsuitable for struc-
tured prediction tasks on sequences (Collobert
etal., 2011).

In order to enforce some local output consis-
tency, Collobert et al. (2011) introduce a linear
chain Conditional Random Field (CRF) layer to
the model (Fig.2b). They define the energy func-

tion for a particular configuration as follows

T
Ely [ x) = Z%y(mt, ye) + Yy (Ye, Y1) (2)

t=1

where the local log-potentials 1), are parameter-
ized by a DNN, and (for their application) the edge
log-potentials v, are parameterized by an input-
independent parameter matrix, modeling the intra-
state dependencies under a Markovian assump-
tion, giving the data log-likelihood as

—log Z exp(E(y’ | x))

logP(y [ x) = E(y | x)

3)

Collobert et al. (2011) show a +1.71 performance
gain in Named-Entity Recognition (NER) by ex-
plicitly enforcing these local structural dependen-
cies. However, the Markov assumption is limiting,
and much of the gain comes from enforcing deter-
ministic hard constraints of the segmentation en-
coding (e.g. I-ORG cannot go after B-PER). Simi-
lar types of local gains come from hierarchical tag-
ging schemes (e.g. I-DATE should be tagged as /-
VENUE/DATE if it appears inside the I-VENUE/*
segment). We would like to model, and learn,
global, semantically meaningful soft constraints,
e.g. BOOKTITLE should become TITLE if an-
other TITLE does not appear in the same citation
(Anzaroot et al., 2014). The state transition dy-
namics of the linear-chain CRF model are limited
by arestriction to interaction between N output la-
bels. The information-rich features f; € R? input
to the local potential are restricted to a local pref-
erence over the IV labels in output space, failing
to exploit the full power of the underlying feature
space.

2.3 Embedded-State Latent CRF

Our proposed model, the embedded-state latent
CREF, is shown in Figure 2c. We introduce a se-
quence of hidden states z = {z1, 22, ..., 27} where
z¢ is one of M possible discrete hidden states and
M >> N. Similarly, the corresponding energy
for a particular joint configuration over y and z is

T
) = bz, 20) + Yye (e, 22)

=1
+ 22 (24, 241) “4)

where 1, (24, 2¢), Vy2(yt, 2¢) are the local inter-
action log-potentials between the input features

E(y,z|x



and hidden states, and the hidden states and out-
put states, respectively. The hidden state dynamics
come from the log-scores ..z, z¢+1) for transi-
tioning between hidden state z; to z;y1. The pos-
terior distribution over output labels can be com-
puted by summing over all possible configurations
of z

Ply [x)= Y exp(Ely.z[x) O

where Z = 3 ., exp (E(y',2' [ x)) is the
partition function. The local log-potentials
Yy (xy, 2¢) are produced by an affine transform
from the RNN feature extractor, and the output
potentials ., (2, y;) are many-to-one mappings
from the hidden state, with learned potentials but
pre-allocated numbers of states for each output la-
bel.

Factorized transition log-potentials We em-
pirically observe that introducing a large number
of hidden states can lead to overfitting, due to over-
parameterization of the output dependencies. For
example, JOURNAL often co-occurs with PAGES
but JOURNAL is not strictly accompanied by
PAGES (Anzaroot et al., 2014). Therefore, we
regularize the state transition log-potential with a
low-rank constraint, forming an embedding matrix
wherein state transition interaction scores are me-
diated through low-dimensional state embeddings
rather than a fully unconstrained parameter matrix.
Instead of learning A € RM>*M 3 fyll-rank hid-
den state transition potential, we learn a low-rank
model A = UTV where U and V are two rank-k
matrices. This reduces the number of parameters
from M? to 2Mk (where k << M) and shares
statistical strength when learning transitions be-
tween similar states.

Inference. The brute-force computation of the
posterior distribution using (5) is intractable, espe-
cially with the large number of hidden states. For-
tunately, both the energy and the partition func-
tion can be computed efficiently using tree be-
lief propagation. Due to the deterministic map-
ping from hidden states to outputs, we can sim-
ply fold the local input and output potentials
Va2, 2¢) and 1y, (ys, 2) into the edge poten-
tials and perform the forward-backward algorithm
as in a standard linear-chain CRF. This determin-
istic mapping also lets us enforce hard transition
constraints while retaining exact inference. Fur-
thermore, since our implementation is in PyTorch

(Paszke et al., 2017), we only need to imple-
ment the forward pass, as automatic differentiation
(back-propagation) is equivalent to the backward
pass (Eisner, 2016).

MAP inference. At test time, we run the Viterbi
algorithm to search for the best configuration over
z rather than over y. Mapping from the hidden
state z; to the output label y; is deterministic given
the output state embedding.

3 Related Work

Much deep learning research concerns itself with
learning to represent the structure of input space
in a way that is highly predictive of the output.
In this work, while using state-of-the-art sequence
tagging baselines for input representation learn-
ing, we concern ourselves with learning the global
structure of the output space of label sequences,
as well as fine-grained local distinctions in output
space. While representation learning in the form
of fine-grained, discrete, latent state transitions in
the output space has been explored in this context
(e.g. various latent-variable conditional random
fields (Quattoni et al., 2007; Sutton et al., 2007,
Morency et al., 2007) and latent structured support
vector machines (Yu and Joachims, 2009)), we en-
able the use of many more hidden states without
overfitting by factorizing the log-potential transi-
tion matrices and modeling the log-scores of latent
state interactions as products of low-dimensional
embeddings, effectively performing feature learn-
ing in output space.

A simple linear-chain CRF over the labels was
used in early applications of deep learning to se-
quence tagging (Collobert et al., 2011), as well
as the most recent high-performing segmenta-
tion models for named entity recognition (Lample
etal., 2016). Outside of NLP, in tasks such as com-
puter vision, certain classes of fully-connected
graphical models over the output pixels have been
used for multi-dimensional smoothing (Adams
et al., 2010; Krihenbiihl and Koltun, 2011), bor-
rowing techniques for the graphics literature.

However, none of these models performs rep-
resentation learning in the output space, as in the
case of our proposed embedded latent-state model.
Srikumar and Manning (2014) propose a similar
factorized representation of output labels and their
transitions, but only apply this to pairwise transi-
tions of output labels and not latent dynamics of
the whole sequence, while we believe the biggest



gains are to be found by marrying representation
learning techniques with latent variable methods.

In the graphical models literature, the most sim-
ilar work to ours is the Latent-Dynamic CRF of
Morency et al. (2007), who propose the same
graphical model structure, without the deep input
featurization, or more importantly, the learned em-
bedded factorization of transition scores. Addi-
tionally, that work uses a deterministic mapping
of equal numbers of hidden states to output la-
bels, while we have a hard-constrained (hidden
states to output variables are always many-to-one),
but learned, potential with different outputs pre-
allocated different numbers of states based on cor-
pus frequency.

Many graphical models have been proposed for
natural language processing under hard and soft
global constraints, e.g. (Koo et al., 2010; Anza-
root et al., 2014; Vilnis et al., 2015), many based
on dual decomposition (Rush and Collins, 2012).
However, the constraints are often fixed, and even
when learned (Anzaroot et al., 2014; Vilnis et al.,
2015), the learning is done simply on constraint
weights generated from pre-made templates, the
construction of which requires domain knowledge.

Finally, Structured Prediction Energy Networks
(Belanger and McCallum, 2016; Belanger et al.,
2017) have been used for NLP tasks such as se-
mantic role labeling, but they perform approx-
imate inference through gradient descent on a
learned energy function over labelings, effec-
tively a fully-connected graphical model, while
our model sits more clearly within the frame-
work of graphical models, permitting exact infer-
ence with only nonconvex learning, common to all
latent-variable models.

4 Experiments

We experiment on two datasets with a rich output
label space, the UMass Citations dataset (Anza-
root and McCallum, 2013) and the CLEF eHealth
dataset (Suominen et al., 2015). Both of the
datasets have a hierarchical label space, enforced
by hard transition constraints, making this a form
of shallow parsing (Anzaroot et al., 2014), with
additional soft constraints in the label space due
to the interdependent nature of the fields being ex-
tracted.

4.1 Datasets
4.1.1 UMass Citations

We experiment with citation field extraction on
the UMass Citations dataset (Anzaroot and Mc-
Callum, 2013), a collection of 2476 richly la-
beled citation strings, each tagged in a hierar-
chical manner, across a set of 38 entities de-
marcating both coarse-grained labeled segments,
such as title, date, authors and venue, as well
as fine-grained inner segments where applica-
ble. The data follows a train/dev/test split of
1454, 655 and 367 citations, with 231085 to-
tal tokens. For example, a person’s last name
could be tagged as AUTHORS/PERSON/PERSON-
LAST or VENUE/EDITOR/PERSON/PERSON-LAST
depending on whether the person is the author of
the cited TITLE or an editor of the publication
VENUE. Similarly, year could be tagged as either
DATE/YEAR or VENUE/DATE/YEAR depending on
whether it is the cited work’s publication date or
the publication date of the venue of the cited work.

4.1.2 CLEF eHealth

We perform our second set of sequence label-
ing experiments on the NICTA Synthetic Nursing
Handover dataset (Suominen et al., 2015) for clin-
ical information extraction, consisting of 101 doc-
uments totaling 32122 tokens.

It is a synthetic dataset of handover records,
which contain patient profiles as written by a
registered nurse (RN) working in the medical
ward and delivering verbal handovers to another
nurse at a shift change by the patients bedside.
A document is typically 100-300 words long,
and the included handover information contains
five coarse entities i.e, PATIENTINTRODUCTION,
MYSHIFT, APPOINTMENTS, MEDICATION
and FUTURECARE. Similar to the setup of
the citation field extraction task described in
Section 4.1.1, each of these coarse categories
has a further level of nested finer labels and
the entities to be identified are all hierarchical
in nature. For example, the PATIENTINTRO-
DUCTION section contains entities such as
PATIENTINTRODUCTION/LASTNAME and PA-
TIENTINTRODUCTION/UNDERDR_LASTNAME,
the APPOINTMENTS section contains APPOINT-
MENT/PROCEDURE_CLINICIANLASTNAME, and
MEDICATION contains MEDICATION/DOSAGE
and MEDICATION/MEDICINE. There are a total
of 35 such fine-grained entities. In addition to



the hard-constrained hierarchical structure of the
labels, the task also exhibits interesting global
constraints, such as only tagging the first occur-
rence of the patient’s gender, or the convention
of labeling the most brief description of a nurse’s
shift status as MYSHIFT/STATUS, while the de-
tails of the shift are tagged as MYSHIFT/OTHER.
In such cases, information extraction benefits
from modeling output label dependencies, as we
show in the results section.

4.2 Training Details

Our baseline is the BILSTM+CRF model from
Lample et al. (2016), employing a bidirectional
LSTM with 500 hidden units for input featuriza-
tion to capture long-range dependencies in the in-
put space. Since we do not focus on input featur-
ization, we do not use character-level embeddings
in the baseline model.

Both the baseline model and our EL-CRF model
were implemented in PyTorch. For training our
models, we use the hyper-parameter settings from
the LSTM+CRF model of Lample et al. (2016).
Although, we did explore different optimizer tech-
niques to enhance SGD such as Adam (Kingma
and Ba, 2015), Averaged SGD (Polyak and Judit-
sky, 1992) and YellowFin (Zhang et al., 2017),
none of them performed as well as mini-batch
SGD with a batch-size of 1. We also employed
gradient clipping to a norm of 5.0, a learning
rate of 0.01, learning rate decay of 0.05, dropout
with p = 0.5, and early stopping, tuned on the
citation development data. We initialized our
word level embeddings using pre-trained 100 di-
mensional Glove embeddings (Pennington et al.,
2014), which gave better performance on our tasks
than the skip-n-gram embeddings (Ling et al.,
2015) used in the original work of Lample et al.
(2016). The datasets were pre-processed to zero-
replace all occurrences of numbers. Finally, we
experimented with both IOBES and IOB tagging
schemes, with IOB demonstrating higher perfor-
mance on our tasks.

Embedding size We tune the embedding size
(rank constraint) for the hidden state matrix A,
varying from 10 to 40, alongside the neural net-
work parameters, and report results when fixing
the other hyperparameters and varying embedding
size, similar to ablation analysis. Table 4 shows
the impact of different embedding sizes on the per-
formance of the model. We found that a size of

20 works best for both datasets, confirming the
importance of the rank-constrained log-potential
when using large-cardinality hidden variables.

Mapping tags to hidden states We find that the
mapping between tags and hidden states greatly
influences the performance of the model. We ex-
perimented with several heuristics (e.g., individual
IOB tag count ratio and entity count ratio), and
found that allocating a number of hidden states
proportional to the entity count gives us the best
performance.

4.2.1 Evaluation

We report field-level F1 scores as computed using
the conlleval.pl script.

Since the train/validation/test splits were clearly
defined for the UMass Citation dataset, we trained
the models on the training split, tuned the hyper-
parameters on the validation split and report the
scores on the test dataset. However, as there
were only 101 documents in the CLEF eHealth
dataset, we report the Leave-One-Out (LOO)
cross-validation F1 scores for this dataset i.e., we
trained 101 models each with a different held-out
document, merged the respective test outputs, and
computed the F1 score on this merged output.

4.3 Results

Table 1 shows that overall performance on the
UMass Citation dataset using the embedded-state
latent CRF (95.18) is marginally better than the
baseline BILSTM+CRF model (95.07). However,
examining the entities with the largest F1 score
improvement in Table 2, we see that they are
mostly within the VENUE section, which has long-
range constraints with other sections, giving ev-
idence of the model’s ability to learn constraints
from the citation dataset.

Dataset | CRF | EL-CRF | +
UMASS CITATION | 95.07 | 9518 | 0.11
CLEF EHEALTH | 68.66 | 7032 | 1.66

Table 1: Entity-level F1 scores of the embedded-
state latent CRF and BiLSTM+CREF baseline.

Table 1 demonstrates that EL-CRF outperforms
the BILSTM+CRF on both datasets, with larger
gains on the much smaller CLEF data. Table
3 shows the top-gaining entities include MEDI-
CATION_MEDICINE and MEDICATION_DOSAGE,



Label | CRF | EL-CRF | + | S
|

V/DEPARTMENT | 66.67 | 100 | 33.33 | 1
V/STATUS | 7778 | 875 | 972 | 9
PERS(‘)'IQE_I/WPI/DDLE ‘ 8333 ‘ 91.67 ‘ 8.34 ‘ 11
REFERENCE.ID | 85.11 | 93.02 | 791 | 22
V/SERIES | 5517 | 6154 | 637 | 12
V/ADDRESS | 78.85 | 8431 | 546 | 46

Table 2: Top 5 entities in terms of F1 improve-
ment on the UMass Citation Dataset. The col-
umn S shows the support for a given entity in the
test dataset. Key for contracted entity names: V:
VENUE, E: EDITOR, P: PERSON

Label | CRF | EL-CRF | + | S
P/DR/GIVENNAMES/
INITIALS 33.33 64.29 30.96 15
A/PROCEDURE/
TIME 34.78 53.66 18.88 | 28
M/MEDICINE | 5528 | 711 | 15.82 | 157
FA/WARNING/
ABNORMALRESULT 0 1143 143 | 59

M/DOSAGE | 909 | 1875 | 9.66 | 37
Table 3: Top 5 entities in terms of F1 im-
provement on the CLEF eHealth dataset.
Key for contracted entity names: P/DR:

PATIENT_INTRODUCTION/UNDER_DR, A
APPOINTMENT, M: MEDICATION, FA: FU-
TURE_ALERT

due to the global constraint that those entities al-
ways co-occur.

5 Qualitative Analysis

In this section, we provide qualitative evidence
that the embedded-state latent CRF learns con-
straints which are not captured by the standard
CRFE.

First, we pick a few representative examples
from the UMass Citations dataset and discuss
when our model is able to correctly determine the
label sequence based on the output constraints. In
addition to the the hard constraints arising from hi-
erarchical segmentation, this dataset also exhibits
empirical pairwise constraints between fields e.g.
two different authors’ first names cannot be placed
next to each other. Figure 3 demonstrates that the
CRF model fails to enforce such constraints.
Another constraint we observe in the citation data

Factor Size | UMass Citation | CLEF eHealth

10| 94.92 | 70.06
20 | 95.18 | 7151
30| 94.91 | 69.92
40 | 94.88 | 7033
Full Rank | 95.13 | 7L

Table 4: Comparison of F1 scores obtained by
varying the factor_size parameter, and setting the
other model and neural network parameters from
the model with the best cross validation.

**GROUND TRUTH**

Figure 3: Authors name constraint violation

is that the Venue/Series tag only appears once per
citation if Venue/Booktitle is also present. Our
model obeys this constraint and marks the whole
span as Title instead of breaking it into Title and
Venue/Series, even though the input text for that
segment in isolation could represent a valid series
(Figure4).
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Figure 4: Title should not co-occur with series.

Sometimes output structural dependencies are not
able to resolve ambiguity in the labeling sequence.
In Figure 5 our model correctly predicts the pres-
ence of a Venue/Booktitle and a Venue/Series, but
it fails to correctly assign the entity labels.
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Figure 5: There is at most one series per citation.

The CLEF eHealth dataset holds a different set
of constraints than the citation data, and its input
sequences are not strong local indicators of the
labeling sequence. Therefore, our model shows
stronger performance over the Markovian baseline

on my shift, en same
MEDICATION_DOSAGE regimen MEDICATION_MEDICINE , no other changes and the
doctors has n't come in to see him today . Heis  all stable mysHIFT sTaTUS .

**CRF**

Alex PIFIRSTNAME

came In with back

s

nd

w

on my shift, on same regimen MYSHIFT STATUS , no other changes and the doctors

has n't come in to see him today . He is ~ all stable MysHIFT STATUS .

MEDICATION_DOSAGE regimen MEDICATION MEDICINE , no other changes and the

doctors has n't come in to see him today . Heis  all stable MYSHIFT STATUS .

Figure 6: The gender indicator constraint and
nurse’s shift status constraint in the CLEF eHealth
dataset.

Finally, a T-SNE (Maaten and Hinton, 2008)
clustering on the embedding vectors of the output
tags, shown in Figure 7, demonstrates that output

structural dependencies can be reflected in tag em-
bedding space.

@Patientintroduction_Gender

MyShift_Status

MyShift_ActivitiesOfDailyLiving

MyShift_Wounds/Skin

MyShift_input/Diet
Future_Goal/TaskToBeCompleted/ExpectedOutcome

MyShift_OtherObservation
MyShift_RiskManagement

Figure 7: A part of the T-SNE clustering of the
tag embedding from the CLEF eHealth dataset.
The two tag PATIENTINTRODUCTION_GENDER
and MYSHIFT_STATUS are under the similar con-
straint of being tagged only once per document.

6 Conclusion & Future Work

We present a latent variable model which not
only parametrizes local potentials with the learned
features from a deep neural network, but learns
embedded representations in a large hidden state
space, leveraging feature learning in both the in-
put and output representations. Experimental re-
sults demonstrate that our model can learn global
structural dependencies in the presence of ambigu-
ities that cannot be resolved by local featurization
of the input sequence. We find interpretable struc-
ture in the output state embeddings.

Future work will apply our model to larger
datasets with more complex dependencies, and in-
troduce multiple latent states per time-step, en-
abling exponentially more expressivity in output
states at the cost of exact inference. We will
also explore approximate inference methods, such
as expectation propagation, to speed up message
passing in the regime of low-rank log-potentials.
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Abstract

Word embeddings have become a mainstream
tool in statistical natural language processing.
Practitioners often use pre-trained word vec-
tors, which were trained on large generic text
corpora, and which are readily available on the
web. However, pre-trained word vectors often-
times lack important words from specific do-
mains. It is therefore often desirable to extend
the vocabulary and embed new words into a
set of pre-trained word vectors. In this paper,
we present an efficient method for including
new words from a specialized corpus, contain-
ing new words, into pre-trained generic word
embeddings. We build on the established view
of word embeddings as matrix factorizations
to present a spectral algorithm for this task. Ex-
periments on several domain-specific corpora
with specialized vocabularies demonstrate that
our method is able to embed the new words
efficiently into the original embedding space.
Compared to competing methods, our method
is faster, parameter-free, and deterministic.

1 Introduction

There has been a recent surge of neural word em-
bedding models (Mikolov et al., 2013a,b). These
models have been shown to perform well in a va-
riety of NLP problems, such as word similarity
and relational analogy tasks. Word embeddings
play a crucial role in diverse fields such as com-
puter vision (Hwang and Sigal, 2014), news clas-
sification (Kenter and De Rijke, 2015; Phung and
De Vine, 2015), machine translation (Zou et al.,
2013; Wu et al., 2014), and have been extended
in various ways (Rudolph et al., 2016; Bamler and
Mandt, 2017; Peters et al., 2018).

Instead of training word embeddings from
scratch, practitioners often resort to high-quality,
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pre-trained word embeddings which can be down-
loaded from the web. These embeddings were
trained on massive corpora, such as online news.
The downside is that their vocabulary is often re-
stricted, and by nature, is very generic. An open
question remains of how to optimally include new
words from highly specialized text corpora into an
existing word embedding fit. Such transfer learning
has several advantages. First, one saves the com-
putational burden of learning high-quality word
vectors from scratch. Second, one can already
rely on the fact that the majority of word embed-
ding vectors are semantically meaningful. Third,
as we show in this paper, there are deterministic
and parameter-free approaches that fulfill this goal,
making the scheme robust and reproducible.

For a practical application, imagine that we are
given a small corpus, such as a collection of sci-
entific articles, and our goal is to include the as-
sociated vocabulary into a pre-trained set of word
vectors which were learned on Google Books or
Wikipedia. The scientific corpus contains both
common words (e.g., “propose”, “experiment’)
and domain-specific words, such as “submodular”
and “‘sublinear”. However, this specialized cor-
pus can be safely assumed to be too small to train
a word embedding model from scratch. Alterna-
tively, we could merge the domain-specific corpus
with a large generic corpus and train the entire
word-embedding from scratch, but this would be
computationally demanding and non-reproducible
due to the non-convexity of the underlying opti-
mization problem. In this paper, we show how to
include the specialized vocabulary into the generic
set of word vectors without having to re-train the
model on the large vocabulary, simply relying on
linear algebra.

A naive baseline method is to fix the pre-trained

Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 11-20
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word vectors and only update the new ones. We
found that this approach suffers from local optima
and sensitive to hyper-parameters; therefore it is
not reliable in practice. In contrast, our approach is
not based on gradient descent and therefore more
robust, deterministic, and parameter-free.

In this paper, we propose a Spectral Online Word
Embedding (SOWE) algorithm for integrating new
words into a pre-trained word embedding fit. Our
approach is based on online matrix factorization. In
more detail, our main contributions are as follows:

e We propose a Spectral Online Word Embed-
ding (SOWE) method to include new words
into a pre-trained set of word vectors. This
approach does naturally not suffer from opti-
mization problems, such as initialization, pa-
rameter tuning, and local optima.

Our approach approximately reduces to an
online matrix factorization problem. We pro-
vide a bound on the approximation error and
show that this error does not scale with the
vocabulary size (Theorem 1).

The complexity of proposed method scales lin-
early with the size of vocabulary and quadrat-
ically with embedding dimension, making the
approach feasible in large-scale applications.

We evaluate our method on two domain spe-
cific corpora. Experimental results show that
our method is able to embed new vocabulary
faster than the baseline method while obtain-
ing more meaningful embeddings. It is also
parameter-free and deterministic, making the
approach easily reproducible.

2 Related Work

Our paper departs from word embeddings learned
via the skip-gram method, and shows how the vo-
cabulary can be extended in an online fashion, us-
ing methods from linear algebra. As such, our ap-
proach relates to word embeddings, online learning,
and the singular value decomposition (SVD).

Skip-Gram Model Our model builds on word
embeddings trained via the skip-gram model with
negative sampling (SGNS), proposed by Mikolov
et al. (2013a,b). These papers proposed a scalable
training algorithm based on negative sampling.
The model predicts a target word in the mid-
dle of a sentence based on its surrounding words
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(contexts). Each target word / context word is asso-
ciated with a feature vector whose entries are latent,
and are treated as parameters to be learned. This
model is efficient to train via stochastic gradient
descent; its resulting word vectors provide state-of-
the-art results on various linguistic tasks (Liu et al.,
2015; Pickhardt et al., 2014). The skip-gram model
was influential both in the machine learning and
related communities.

Levy and Goldberg (2014) showed that
word2vec can be viewed as an implicit matrix
factorization of the pointwise mutual information
matrix (PMI) of word distributions. The authors
present a closed-form solution based on a singular
value decomposition of a sparse version of this ma-
trix, termed SPPMI. In this paper, we extend on this
view and present an efficient online learning algo-
rithm based on a decomposition of SPPMI matrix
which departs form pre-trained word embeddings.

Online Word Embeddings Kiros et al. (2015)
propose adding new words into an existing embed-
ding space using a projection method to warm-start
learning the new words. The authors assumed that
there already exist well-trained word vectors from a
large underlying vocabulary, and present a method
that projects word vectors from an old space to a
new space, where the projection matrix is learned
from known words.

Bojanowski et al. (2016) exploited character-
level features. Concretely, they train a character-n-
gram model to locate the new word vector near the
existing word with similar root. Le and Mikolov
(2014) introduced paragraph-level vectors (instead
of word-level), a fixed-length feature representa-
tions for variable-length texts. When embedding
new paragraphs, old paragraph vectors are frozen,
and the new ones are updated. Furthermore, Luo
et al. (2015) proposed an efficient online method to
address the memory issue encountered when learn-
ing word embeddings based on nonnegative matrix
factorization.

Online SVD We already discussed word embed-
dings via implicit matrix factorization (IMF) above.
This method is based on a truncated SVD on a
square matrix whose size is the vocabulary size. As
this paper combines this idea with online learning,
we review related word on online singular value
decompositions.

Online SVD (incremental SVD) is a classical
problem in numerical linear algebra (Datta, 2010),



and is intensively used in recommendation sys-
tems (Sarwar et al., 2002; Brand, 2003) and sub-
space learning (Li, 2004). Online SVD only pos-
sesses an approximate solution. Recently some
methods have been proposed to reduce the involved
approximation error (Shamir, 2015; Allen-Zhu and
Li, 2016) based on iterative learning. In this paper,
we use the same online SVD method as in Sarwar
et al. (2002), which owns a closed-form solution.

3 Method

We present our spectral word embedding method
to efficiently insert new words from an extended
vocabulary into pre-trained word embeddings, with-
out having to re-train the model on the extended
vocabulary. We first introduce some relevant back-
ground with respect to word embedding via implicit
matrix factorization (Section 3.1) before presenting
our method (Section 3.2) and theoretical considera-
tion (Section 3.3).

Notation In this paper, the vocabulary of the ex-
isting pre-trained word embedding is called base
vocabulary, whose size is m. After adding new
words, we call the whole vocabulary the extended
vocabulary; its size is n = m + m/, where m/
is the number of unique new words. We assume
m’ < m, so O(n) = O(m). Furthermore, let
d denote the embedding dimension. As will be
explained below, let Sy, Sgy denote the SPPMI
matrices of the base and extended vocabularies, re-
spectively. The subscript “full”, thus, always refers
to the extended vocabulary.

3.1 Background: Word Embedding via
Implicit Matrix Factorization (IMF)

The basis of our approach is the skip-gram
model with negative sampling (SGNS), also called
word2vec (Mikolov et al., 2013a,b). Let D denote
the set of all observed of word-context pairs. Fur-
thermore, # (w, c¢) denotes the number of times the
pair (w, ¢) appears in D, and « and ¢ are the word
and context embeddings.
The objective that SGNS minimizes is

L=>Y > {#w,c)logo(d-e)

wEVy ceVe
+k-Ecymppllogo(—w - E’N)]}.

(1)

In the limit of large d, Levy and Goldberg
(2014) found the following closed-form solution

#(w,c) '\D|> — log k.

to Eq 1: x:w-€:10g<#(w)#(0)
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Figure 1: Block-structure of the Pointwise Mutual
Information Matrix considered in this paper, and
its block-structure for extended vocabulary. It cor-
responds to Equation (6).

The first term can be seen as an empirical es-
timate of Pointwise Mutual Information (PMI):

PMI(w,c) = log( Plw,) ) Thus, the matrix

P(w)P(c)
M that SGNS factorizes can be constructed from
M;; = PMI(w;, ¢;) — log k. For computational
convenience, Levy and Goldberg (2014) suggested
a sparse and consistent alternative called Shifted
Positive PMI (SPPMI):

SPPMI(w, ¢) = max(PMI(w, ¢) — logk,0).
2)
Levy and Goldberg (2014) showed that using such
sparse representation, word and context embed-
dings could be efficiently obtained using a trun-
cated singular value decomposition.

As will be explained in the next section, our ap-
proach builds on the intuition that word2vec implic-
itly factorizes the SPPMI matrix. Given pre-trained
word and context vectors, we ask for an efficient
way of extending the vocabulary and re-adjusting
these vectors accordingly.

3.2 SOWE: Spectral Online Word
Embedding

Our method takes advantages of the implicit ma-
trix factorization method for efficiently embedding
previously unseen words. Given a pre-trained word
embedding, we firstly transform it to the SVD
form. Using such form, under mild approxima-
tion, we can utilize efficient online SVD (Sarwar
et al., 2002) to obtain the word embeddings for the
extended vocabulary.

Figure 1 presents a sketch of the problem that we
want to solve. We start from a (m-+m') x (m+m/)
matrix in the extended vocabulary space, for which
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A=UEVT)

Figure 2: A sketch of the matrix manipulations carried out in online SVD (Algorithm 2). Given the
truncated SVD of A ~ ULV " and new columns a, we first compute b, the projection of a on U, i.e.,
b = U "a. Then we concatenate Z = XV " and b via V' = [Z,b] . Finally, we do rank-d truncated SVD
on V', ie, [Vi, X, Us] = tSVD(V',d). Final result is [UUs, X, V| = tSVD([4, al, d).

Algorithm 1 Spectral Online Word Embedding
(SOWE)

Input: Old word/context vectors W and C' with
Sy = WC', co-occurrence matrices involving
new vocabulary 2/, 1/, and 2’ (see Fig. 1).

Output: Word/context vectors Wiy, Crup for ex-

tended vocabulary.

SVD of WC'T via QR decomposition.

U, Ry + QR(W) /I O(md?)

V, Ry < QR(C) /I O(md?)

Uo, %, Vo < SVD(R1 Ry ) 1/ O(d?)

U<« UUy /I O(md?)

V « VVy 11 O(md?)

Horizontal and vertical Online SVD.

U, V'« OSVD([USV T, 2])

Utatt, Lutt; Ve <= OSVD( [UIZ/V,T } )-

ly',2']
Return new embeddings.
: What <= Ugan - vV Zganl,
: Crant <= Vi - vV 25

R A O S e

—_ = =

we seek an approximate factorization. We assume
that we already have a factorization of the upper-
left submatrix of size m x m, implicitly obtained
from word2vec or related word embedding algo-
rithms. We seek an efficient linear algebra algo-
rithm that, given the block-structure, results in a
factorization of the whole matrix in linear time in
m. This will be detailed below.

Overview The following steps summarize our
overall proposed procedure.

e We start by assuming that our word embed-
ding algorithm came from a factorization of
the pointwise mutual information matrix of
word frequencies. Thus, Sy ~ WC'T.

e In order to make use of efficient only SVD,
we need to convert this matrix product into
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an SVD form. This can be done in O(m)
time and results in WC'T = UXV ' (Sec-
tion 3.2.1).

Next, we need to estimate all elements in the
extended pointwise mutual information ma-
trix, see Figure 1. We first estimate the dom-
inant block (section 3.2.2 (i)), and show that
it can be approximated by our previously ob-
tained SVD. We then estimate the remaining
blocks (section 3.2.2 (ii)). For the latter, we
need to estimate the frequencies of the new
words relative to the old words.

We are now in a position to efficiently com-
pute a new SVD for the extended pointwise
mutual information matrix, Usy Zun VfuT11 us-
ing online SVD. The operational costs are still
O(m) ((iii) in Section 3.2.2).

Finally we define our new embedding ma-

trices as Wy = Upaiv/ 2 and Cryp =
Vv 2tan1, which completes our algorithm.

These steps will be explained in more detail below.

3.2.1 SVD from Word-Context Vectors

The first step in our algorithm is to obtain a singular
value decomposition (SVD) of the old vocabulary’s
approximate PMI matrix Sy. Our working hypothe-
sis is that our pre-trained word and context embed-
ding matrices W and C' are already approximately
factorizing this matrix,

So~WC'. 3)
Levy and Goldberg (2014) showed that this fac-
torization is correct in the limit of a large enough
embedding dimension d, but is only approximately
true otherwise. In this paper, we will use Eq. 3 as a
working hypothesis.



Computing an SVD from Sy would usually be
an operation that costs O(m?), thus would scale
quadratically in the vocabulary size. In such factor-
ization would be not practical, since m is typically
of the order of hundred thousands. Instead, we
show next that, given a low-rank factorization of
So in terms of W and C renders this cost linear
in the vocabulary size, making such an approach
practical. The following procedure corresponds to
steps 1-6 in Algorithm 1.

A truncated SVD (tSVD) of Sy with rank d can
be obtained from QR decompositions (Golub and
Loan, 1996) of W and C' as follows:

= QR(W); = QR(C)

This results in So = U’R;Ry V'T. In a second
step, we apply an SVD to R; R; :

U', Ry V', Ry

U", %, V" =SVD(R1R,).

The costs of this are small, as Ry 2 are d x d ma-
trices. Since the composition of two orthogonal
matrices is still orthogonal, we obtain the SVD
of Sy as U = U'U", V = V'V”. Note that
this transformation is exact since in our approx-
imation, Sy = WC'T was already of rank d. Thus,
WCT = UXV. The complexity of this operation
is O(md?), which concludes the first step.

3.2.2 Utilizing Online SVD to Embed
Extended Vocabulary

The next steps amout to adding new words to the
old embeddings by adding rows and columns to the
original SPPMI matrix, and efficiently factorizing
it via online SVD.

Given a representation of the old block of the
PMI matrix in terms of an SVD, our next task is
to compute the new elements of this matrix that
correspond to the extended vocabulary of m’ words,
with m’ < m. We denote this matrix Sgy €
ROm+m)x(m+m) “and it has the following block
structure (see also Fig. 1):

S’
St £ <y’T z’) .

In the following three steps, we describe how to
estimate and efficiently factorize this matrix.

“4)

(i) Approximating the main block In a first
step, we approximate the main block S’ of the
SPPMI matrix (Eq. 4). We show that to a first
approximation, this is just the SPPMI matrix of the
original vocabulary, hence S’ ~ Sj.
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Algorithm 2 Recap: Online SVD (OSVD)

Input: Rank-d truncated SVD (tSVD) of A €
R™ ™ U, X,V = tSVD(A,d), where a €
Rmxm”U e Rde,V e Rnxd’z c Rdxd’
{d,m'} < {m,n}.

Output: Rank-d truncated SVD of [A, a:

: U™, 3%, V* <~ tSVD([A, al, d)

Compute projection of new matrix to U.

b« Ula. //O(ndm')

Z « XV /10(nd)

V'« [Z,0". I/ O(nd?)

Apply tSVD to projection.

Vs, Xs, Us + tSVD(V', d).

11 O((n+m')d?) = O(nd?)

Return the results.

U~ UU,, X X, V* + V.

R e A A R e

/1 O(nd?)

,_
=4

To set up the SPPMI matrix, the following
formula has to be applied to the observed co-
occurrence counts #(w, ¢) between all word and
context words in the extended vocabulary:

#(w,c) -|D|
#(w) #(c)

Besides the co-occurrence counts, this also involves
the absolute frequencies #(w) and #(c) of words
and context vectors in the extended vocabulary, as
well as the total number of counts | D|. Note that all
these quantities enter only on a logarithmic scale.

The co-occurrence counts #(w, ¢) are the same
for the SPPMI matrices of the original and full
vocabularies. What differs slightly are the absolute
counts #(w), #(c), and |D| (these are slightly
higher in the extended corpus). However, since
we assumed that the original training corpus was
much bigger than the corpus containing the new
words, we can safely assume that the change in
log #(w), log #(c), and log | D| is negligible (we
will further specify and analyze this approximation
in our section 3.3). Thus, S’ ~ Sy. Furthermore,
since we have shown in section 3.2.1 that So =
UXVT, this results in

vt o
Sfull% y/T Z/ .

max { log ( ) —logk, 0} 5

(6)

(ii) Adding rows and columns The matrices
2,y € R™™ in Eq. 6 are tall-and-skinny ma-
trices that contain information about cross co-
ocurrences between old and new words, and 2’ €
R™ %™ are the co-occurrences of new words in



the new vocabulary. Next, we will describe how to
estimate these quantities, taking into account that
we don’t have access to the original training corpus
that was used to learn the word embeddings of the
old vocabulary.

As follows, we focus on x’ as an example (es-
timating 3’ works analogously). In this case, we
observe the co-occurrence counts #(w, ¢) between
words w from the base vocabulary in the context
of context words ¢ from the new vocabulary. To
compute the SPPMI (2), we then apply Eq. 5 to all
obtained counts. This results in z’. The remaining
problem is that #(w) and | D| are unknown to us,
and some heuristics have to be found to circumvent
this problem.

First, notice that Z-(%)

corresponds to the word

D
frequencies in the original corpus. Furthermore,
we are only interested in log %. The logarithm

is less sensitive to the result of the estimation of
this quantity.

When using pre-trained word embeddings, the
embedding vectors are typically ranked according
to their frequency. We estimated the word fre-
quency based based on their frequencies on the
smaller corpus. For words from the old vocabulary
that are not present in the new corpus, we inter-
polated using an exponential model, taking their
frequency rankings into account.

Another heuristic has to be found to approximate
2/, in which case #(w) and #(c) are available, but
|D| is unknown. Here, we assume that the new
words are about as rare as the rarest words in the
old vocabulary, setting #(w)/|D] to the frequency
of the least frequent word in corpus. This specifies
the extended SPPMI matrix. Next, we show how
to efficiently re-factorize it.

(iii) Factorizing the Extended SPPMI Matrix
Finally, the approximated SPPMI matrix is effi-
ciently factorized using online SVD.

This can not be carried out in a single step, be-
cause the online SVD method sketched in Algo-
rithm 2 only supports the addition either rows or
columns (here presented for columns). Thus, we
first concatenate UXV " and 2’ horizontally and
perform a rank d truncated SVD. In a second step,
we concatenate the resulting singular value decom-
position vertically with the concatenation of ¢/’ and
2’ to obtain a truncated SVD of the full SPPMI ma-
trix. Algorithm 2 gives the details; for more details
we refer to (Sarwar et al., 2002). This results in
an approximate SVD for the full matrix. Word and
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context embeddings can be obtained trivially from
the SVD.

Finally, let us discuss the complexity of the
method. The online SVD subroutine dominates the
complexity of our approach, as it scales as O(nd?).
In all steps, the costs remain linear in the vocabu-
lary size. This makes our approach scalable and
convenient to use. In contrast, when carrying out an
SVD from scratch to compute the word and context
embeddings, we would have a quadratic scaling in
the vocabulary size, which would be impractical.

3.3 Theoretical Analysis

In this section, we show that under certain assump-
tions, the difference between approximate SPMMI
matrix S, (Equation 6) and SPMMI matrix Spyy
(Equation 4) is bounded. This justifies the previ-
ous assumption that we can substitute Sf ;, for Sgy.
Now we want to show theoretically that this is a
reasonable approximation. First, we make some
assumptions.

Assumption 1. There exists a constant ¢y > 0
such that number of nonzero (nnz) entries in m xXm
SPPMI matrix can be upper-bounded by c1m, i.e.,
nnz(SPPMI) < cym.

Remark 1. It is reasonable to assume that in
Shifted Positive PPMI matrix, most of the words
are only closely related to a small number of other
words.

Assumption 2. Every entry in co-occurrence ma-
trix can be bounded by co > 0, i.e., #(w,c) <
ca for Y w,c

This is always satisfied, since the number of
observed co-occurrences is always bounded.

Assumption 3. For m x m SPPMI matrix, there
exists a constant c3 > 0 such that the number of
w and c occur in corpus D at least csm times, i.e.,
min{c;, w;} > cgy/m for ¥ i.

Now, we provide our main theoretical result.

Theorem 1. Under Assumption I, 2 and 3, the
gap between Sj,full and Sgy in Frobenius norm can

3\/c1c2
Cc3

be bounded by a constant ¢4 = ,Le.,

Spatl|F < ca.

Sjl‘ull -

This results implies that the difference between
S§u11 and Sty is bounded by a constant independent
of the vocabulary size. Since in large-scale word
embedding models the size of the vocabulary is
typically 10° or even 109, the relative difference
between these two matrices can be negligible. We



Dataset Method Loss for new Loss for all time
FOUN -1.47+0.004e5  -1.702640.00004¢7 103.8

NIPS FOUN+anneal  -1.46+£0.006e5 -1.702640.00006¢7 103.3
SOWE (ours) -1.52e5 -1.7031e7 47.1

Economic FOUN -8.64+0.007e4  -1.6907+0.000007¢7  84.3
News FOUN-+anneal -8.63+0.01e4 -1.690740.00001¢7 87.8
SOWE (ours) -8.65¢4 -1.6904¢e7 45.79

Table 1: Performance on NIPS Abstract and Economic News. The unit of running time is second. We
report the average value of 10 independent runs for FOUN and standard deviation in brackets only for
“loss for new”. For FOUN, “loss for all words” is the sum of “loss for new words” and “loss that are only
related to old words”(which is a constant). So standard deviation of “loss for all” is equal to “loss for all”.

provide the proof of the theorem in supplementary
materials.

4 Experiment

In this section, we show empirical results where we
compare our proposed SOWE with other continu-
ous word embedding algorithms.We first present
some generic settings of our experiments, followed
by quantitative and qualitative baseline compar-
isons. Compared to the baselines, we find that
our method is more efficient and finds more se-
mantically meaningful embeddings. Our method
takes less than one minute to insert about 1,000
domain-specific words (e.g., machine learning re-
lated words from NIPS abstracts) into a pre-trained
embedding model with more than 180,000 words.

Experimental Setup Our approach departs from
pre-trained word vectors from a generic training
corpus. We downloaded publicly available pre-
trained word embeddings and two small text cor-
pora from specific domains. Our goal is to insert
the domain-specific words that do not already ap-
pear in the original vocabulary efficiently into the
embeddings.

First, we report on basic settings for our exper-
iments. The pre-trained embedding model based
on English Wikipedia is available online '. It con-
tains 183,870 words. The embedding dimension
is 300. The small, domain-specific corpora that
we considered were the following ones: (1) “NIPS
Abstracts”: this data set contains abstracts of all
the NIPS papers from 2014 to 2016. The data set
contains 981 new words. (2) “Economy News”:
This data set contains news articles, containing 868
new words. These two corpora are much smaller
than base corpus. For both the base corpus and
the new corpus, the text was pre-processed using a

'http://u.cs.biu.ac.il/~yogo/data/
syntemb/bow5.words.bz2
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window of 5 tokens on each side of the target word,
where stop-words and non-textual elements were
removed, and sentence splitting and tokenization
were applied.

Baselines: FOUN and FOUN+annealing A
natural idea for inserting new words into a pre-
estisting word embedding fit is to fix the old
word/context vectors, and only to update the new
ones. This is our baseline method, referred in the
following as “Fix Old, Update New” (FOUN). The
approach uses the word2vec objective and employs
stochastic gradient descent for training. We employ
Robbins-Monro learning schedules (Robbins and
Monro, 1951), setting the stepsize at the ¢-th step
as ¢ = a(t + )~ "', We used grid-search to find
optimal parameters on all considered data sets, and
found k = 5, v = led, a = 1/10 (for different
tasks) to be optimal. Due to the involved random-
ness in the baseline approach, we conducted 10
independent trials using different random seeds for
each results and reported the average results. For
“FOUN+annealing” we used the same settings as
in FOUN, but added random zero-mean Gaussian
noise to the gradient. To this end, we employed a
version of Stochastic Gradient Langevin Dynam-
ics (Welling and Teh, 2011), where we scaled down
the noise by a factor of 0.01.

Loss minimization and runtime We considered
the word2vec loss on the extended vocabulary and
evaluated the value of the loss function on the em-
bedding vectors obtained form the different meth-
ods under consideration. The associated loss values
and runtimes are reported in Table 1 for the “NIPS
Abstracts”, and for “Economy News”. We found
both approaches yield similar values of the loss
function. (In our experiments below, however, we
will show that our obtained word vectors seem to
reflect the semantics of the original corpus better.)
As a clear improvement, we found that our method



Method

FOUN joyous haworth legionnaires kristiansand cade dingo gaozu mightywords budged freret pepco
FOUN-+annealing emmerich hotham totnes crescendo emt demesne family-friendly rutter khazars dijon isidro
SOWE (ours) midcap ultralow jawboning cdw lennar sucres moviefone terest supercenters ious wci

Nearest Neighbor

Table 2: Nearest Neighbors of “eurodollars” in extended vocabulary.

Method Nearest Neighbor
FOUN mattias valmiki invalided mailman malkovich bufo khufu dijon propagating madman
FOUN + annealing  interrogative bouncers jf time-dependent invalidating bmo enameled subgroup brenda anal keller
SOWE (ours) cannot nonsmooth cnns coreset svrg sublinear denoising Istm interpretability

Table 3: Nearest Neighbors of “submodular” in extended vocabulary. We measure the distance using
cosine distance.

EN-WS-353- EN-MEN-TR- EN-RW- EN-WS-353-
Method SIM EN-MTurk-771 3K STANFORD ALL
Ideal 69.94 57.45 64.43 43.26 65.14
FOUN 65.13 54.67 57.47 42.99 64.02
FOUN-+anneal 64.99 54.89 57.50 42.73 64.01
SOWE (ours) 66.48 55.49 56.56 42.92 64.82

Table 4: Performance on word similarity task using text8 dataset. “ideal” means the matrix factorization
method proposed in Levy and Goldberg (2014). FOUN and FOUN+annealing are the baseline that we
are comparing with.

capital-common- nationality-

Method countries adjective family.txt Syntactic
Ideal 49.60% 50.55% 55.23% 30.49%
FOUN 45.73% 50.63% 55.01% 30.30%
FOUN + anneal 44.70% 49.97% 55.03% 30.26%
SOWE (ours) 46.43% 50.71% 50.43% 29.38%

Table 5: Performance on word analogy task using text8 dataset. “ideal” means learning the word embedding
with the full extended vocabulary from scratch. Here, the matrix factorization method proposed in Levy
and Goldberg (2014) is used on the Sf,;. FOUN and FOUN+annealing are the baseline that we are
comparing with.

split capital- nationality-
Method ) common- L family.txt Syntactic
number . adjective
countries

Ideal 64.74% 64.49% 62.32% 39.18%
FOUN 64.45+:0.25%  62.43+0.38%  61.294+0.44%  38.73£0.58 %
FOUN + anneal 20 64.26+0.38%  64.10+£047 % 61.73+1.83 %  38.94+0.77%
SOWE (ours) 64.26+0.79%  64.22+£0.47%  60.09£0.32%  38.2010.72%
FOUN 59.80+1.27 %  60.93+1.76%  59.23+1.88%  38.47+£1.23 %
FOUN + anneal 10 58.84+1.82%  59.93£1.90 %  59.77£2.00%  38.19+1.47%
SOWE (ours) 59.89+3.85%  60.86£1.02%  58.84+0.85%  38.00+1.83%
FOUN 51.884+4.03 %  52.10+2.94%  51.83+3.11%  33.33£2.09 %
FOUN + anneal 5 52.204+6.03%  52.08+£3.96 % 54.01+3.88 %  33.84+2.11%
SOWE (ours) 51.14+%3.74  49.50£2.83%  50.84+1.44%  31.824+2.73 %

Table 6: Performance on word analogy task using existing embedding results and text8 dataset with
different folds of splits. In the row “Ideal”, we use the well-trained word embedding results downloaded

from Internet. FOUN and FOUN+annealing are the baseline that we are comparing with.
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is faster than the baseline, yielding a factor of 8
times speedup. We consider the baseline method
to be converged when the loss value of the current
epoch is close (smaller than a threshold) to that of
the previous epoch, where the threshold is 1e2 for
NIPS abstract and Economics News.

Qualitative Nearest Neighbor Test To test
whether the learned embedding vectors are seman-
tically meaningful, we chose some words from the
new vocabulary and reported their nearest neigh-
bors in the extended vocabulary. We expect the
nearest neighbors to have a close semantic mean-
ings. We chose cosine similarity as a means to
measure distance between words.

We chose the words “eurodollars” as a query for
“Economic News” and “submodular” for “NIPS Ab-
stracts”. The results are reported in Table 2 and 3.
In the case of economics, we see that our algorithm
recovered meaningful words such as “midcap” and
“ultralow”. The baseline methods failed to return
meaningful results with respect to the query. One
possible reason is that the baseline’s underlying
optimization algorithm got trapped in a poor local
optimum. In the case of NIPS abstracts (Table 3),
our SOWE method results in words such as “nons-
mooth” and “coreset” which are highly related to
the query “submodular”, while the FOUN-based
methods fail. Our approach thus outperforms the
baseline in providing meaningful relationships be-
tween the pre-trained word vectors and the newly
embedded ones. More examples are provided in
the Appendix.

Evaluations on NLP Tasks Additionally, we
evaluated the proposed method on some down-
stream NLP tasks, such as pairwise word similarity.
To this end, we used datasets that contain word
pairs associated with human-assigned similarity
scores 2. The word vectors are evaluated by rank-
ing the pairs according to their cosine similarities,
and measuring the correlation (Spearmans p) with
the human ratings.

We excluded the word pairs of the similarity test
from the original vocabulary and trained word2vec
with the associated reduced vocabulary on sev-
eral corpora. We then added the test words us-
ing the three competing methods (SOWE, FOUN,
and FOUN+anneal). The fourth algorithm "Ideal"
amounts to evaluating the test on the generic pre-

We used code and data from https://github.com/k-
kawakami/embedding-evaluation
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trained word embeddings from the web. The results
on the word similarity task are shown in Table 4.
Our method obtains the best performance on four
out of five word similarity tasks.

Word analogy tests consists of questions of the
form “a is to a* as b is to b*”, where b* must be
completed (Mikolov et al., 2013b). We performed
such word analogy tests; our results are reported
in Table 5. We observe that SOWE outperform
FOUN-based methods in two out of four cases.

Word Analogy Analysis with Varying Number
of Folds We further split the corpus into folds to
evaluate the word analogy task, where we varied
the size of the folds. Here, we choose the most
frequent 20,000 words in text8 and then split the
vocabulary into k£ € {5, 10, 20} folds. All folds but
one were considered as base vocabulary, and one
fold was considered as new vocabulary. We used
implicit matrix factorization on all but one fold, and
added the last fold’s vocabulary using the different
methods under comparison (FOUN, FOUN+anneal
and SOWE). We repeated this procedure k times
and report means and standard deviations in Table 6.
Our method achieves results comparable with the
baselines.

5 Conclusion

We proposed a deterministic spectral algorithm for
inserting new words into a pre-trained word embed-
ding model. The approach is based on a small cor-
pus (containing the new words) and the pre-trained
word embedding vectors. Under well-specified as-
sumptions, this vocabulary extension can be for-
mulated as an online matrix factorization problem.
This scheme scales linearly with the original vocab-
ulary size, and quadratically with the embedding
dimensions. Compared to baselines that involve
optimizing the original word2vec loss with the old
word vectors fixed, our method is parameter-free,
does not suffer from optimization problems such
as local optima, and as such easier to handle. We
further provided an analysis on the involved ap-
proximation error and showed that it is bounded.
While we found only slight improvements over the
baseline methods in terms of quality of the word
vectors, more work needs to be done to explore
tradeoffs of the involved approaches.
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Abstract

Recent deep learning models have shown im-
proving results to natural language generation
(NLG) irrespective of providing sufficient an-
notated data. However, a modest training data
may harm such models’ performance. Thus,
how to build a generator that can utilize as
much of knowledge from a low-resource set-
ting data is a crucial issue in NLG. This paper
presents a variational neural-based generation
model to tackle the NLG problem of having
limited labeled dataset, in which we integrate a
variational inference into an encoder-decoder
generator and introduce a novel auxiliary auto-
encoding with an effective training procedure.
Experiments showed that the proposed meth-
ods not only outperform the previous models
when having sufficient training dataset but also
show strong ability to work acceptably well
when the training data is scarce.

1 Introduction

Natural language generation (NLG) plays an crit-
ical role in Spoken dialogue systems (SDSs) with
the NLG task is mainly to convert a meaning
representation produced by the dialogue manager,
i.e., dialogue act (DA), into natural language re-
sponses. SDSs are typically developed for various
specific domains, i.e., flight reservations (Levin
et al., 2000), buying a tv or a laptop (Wen et al.,
2015b), searching for a hotel or a restaurant (Wen
et al., 2015a), and so forth. Such systems often
require well-defined ontology datasets that are ex-
tremely time-consuming and expensive to collect.
There is, thus, a need to build NLG systems that
can work acceptably well when the training data
is in short supply.

There are two potential solutions for above-
mentioned problems, which are domain adapta-
tion training and model designing for low-resource
training. First, domain adaptation training which
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aims at learning from sufficient source domain a
model that can perform acceptably well on a dif-
ferent target domain with a limited labeled target
data. Domain adaptation generally involves two
different types of datasets, one from a source do-
main and the other from a target domain. Despite
providing promising results for low-resource set-
ting problems, the methods still need an adequate
training data at the source domain site.

Second, model designing for low-resource set-
ting has not been well studied in the NLG litera-
ture. The generation models have achieved very
good performances irrespective of providing suf-
ficient labeled datasets (Wen et al., 2015b,a; Tran
et al., 2017; Tran and Nguyen, 2017). However,
small training data easily result in worse genera-
tion models in the supervised learning methods.
Thus, this paper presents an explicit way to con-
struct an effective low-resource setting generator.

In summary, we make the following contribu-
tions, in which we: (i) propose a variational ap-
proach for an NLG problem which benefits the
generator to not only outperform the previous
methods when there is a sufficient training data
but also perform acceptably well regarding low-
resource data; (ii) present a variational generator
that can also adapt faster to a new, unseen domain
using a limited amount of in-domain data; (iii) in-
vestigate the effectiveness of the proposed method
in different scenarios, including ablation studies,
scratch, domain adaptation, and semi-supervised
training with varied proportion of dataset.

2 Related Work

Recently, the RNN-based generators have shown
improving results in tackling the NLG problems
in task oriented-dialogue systems with varied pro-
posed methods, such as HLSTM (Wen et al.,
2015a), SCLSTM (Wen et al., 2015b), or espe-
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cially RNN Encoder-Decoder models integrating
with attention mechanism, such as Enc-Dec (Wen
et al., 2016b), and RALSTM (Tran and Nguyen,
2017). However, such models have proved to work
well only when providing a sufficient in-domain
data since a modest dataset may harm the models’
performance.

In this context, one can think of a potential so-
lution where the domain adaptation learning is uti-
lized. The source domain, in this scenario, typ-
ically contains a sufficient amount of annotated
data such that a model can be efficiently built,
while there is often little or no labeled data in the
target domain. A phrase-based statistical genera-
tor (Mairesse et al., 2010) using graphical models
and active learning, and a multi-domain procedure
(Wen et al., 2016a) via data counterfeiting and dis-
criminative training. However, a question still re-
mains as how to build a generator that can directly
work well on a scarce dataset.

Neural variational framework for generative
models of text have been studied extensively.
Chung et al. (2015) proposed a recurrent latent
variable model for sequential data by integrating
latent random variables into hidden state of an
RNN. A hierarchical multi scale recurrent neu-
ral networks was proposed to learn both hierar-
chical and temporal representation (Chung et al.,
2016), while Bowman et al. (2015) presented a
variational autoencoder for unsupervised genera-
tive language model. Sohn et al. (2015) proposed
a deep conditional generative model for structured
output prediction, whereas Zhang et al. (2016) in-
troduced a variational neural machine translation
that incorporated a continuous latent variable to
model underlying semantics of sentence pairs. To
solve the exposure-bias problem (Bengio et al.,
2015) Zhang et al. (2017); Shen et al. (2017) pro-
posed a seq2seq purely convolutional and decon-
volutional autoencoder, Yang et al. (2017) pro-
posed to use a dilated CNN decoder in a latent-
variable model, or Semeniuta et al. (2017) pro-
posed a hybrid VAE architecture with convolu-
tional and deconvolutional components.

3 Dual Latent Variable Model

3.1 Variational Natural Language Generator

We make an assumption about the existing of a
continuous latent variable z from a underlying
semantic space of DA-Utterance pairs (d,u), so
that we explicitly model the space together with
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(a) VNLG (b) DualVAE
Figure 1: Illustration of proposed variational mod-

els as a directed graph. (a) VNLG: joint learn-
ing both variational parameters ¢ and generative
model parameters 6. (b) DualVAE: red and blue
arrows form a standard VAE (parameterized by ¢/’
and ¢’) as an auxiliary auto-encoding to the VNLG
model denoted by red and black arrows.

variable d to guide the generation process, i.e.,
p(ulz,d). The original conditional probability
p(y|d) modeled by a vanilla encoder-decoder net-
work is thus reformulated as follows:

p(uld) = / p(u, 2|d)d, = / p(ulz, d)p(z|d)d.
(1)

This latent variable enables us to model the under-
lying semantic space as a global signal for genera-
tion. However, the incorporating of latent variable
into the probabilistic model arises two difficulties
in (i) modeling the intractable posterior inference
p(z|d,u) and (ii) whether or not the latent vari-
ables z can be modeled effectively in case of low-
resource setting data.

To address the difficulties, we propose an
encoder-decoder based variational model to nat-
ural language generation (VNLG) by integrating
a variational autoencoder (Kingma and Welling,
2013) into an encoder-decoder generator (Tran
and Nguyen, 2017). Figure 1-(a) shows a graph-
ical model of VNLG. We then employ deep neu-
ral networks to approximate the prior p(z|d), true
posterior p(z|d,u), and decoder p(u|z,d). To
tackle the first issue, the intractable posterior is
approximated from both the DA and utterance in-
formation ¢, (2|d, u) under the above assumption.
In contrast, the prior is modeled to condition on
the DA only pg(z|d) due to the fact that the DA
and utterance of a training pair usually share the
same semantic information, i.e., a given DA in-
form(name=‘ABC’; area=‘XYZ’) contains key in-
formation of the corresponding utterance “The ho-
tel ABC is in XYZ area”. The underlying semantic
space with having more information encoded from
both the prior and the posterior provides the gener-
ator a potential solution to tackle the second issue.
Lastly, in generative process, given an observation



DA d the output u is generated by the decoder net-
work pg(u|z,d) under the guidance of the global
signal z which is drawn from the prior distribu-
tion pg(z|d). According to (Sohn et al., 2015), the
variational lower bound can be recomputed as:

L(0,0,d,u) = —KL(qy(2|d,u)||pe(z|d)) 2
+Eq, (z1au) [log po(u]z,d)] < log p(uld)
3.1.1 Variational Encoder Network

The encoder consists of two networks: (i) a Bidi-
rectional LSTM (BiLSTM) which encodes the se-
quence of slot-value pairs {svi}g’f by separate
parameterization of slots and values (Wen et al.,
2016b); and (i) a shared CNN/RNN Utterance
Encoder which encodes the corresponding utter-
ance. The encoder network, thus, produces both
the DA representation hp and the utterance repre-
sentation hy vectors which flow into the inference
and decoder networks, and the posterior approxi-
mator, respectively (see Suppl. 1.1).

3.1.2 Variational Inference Network

This section models both the prior py(z|d) and the
posterior g4(z|d, u) by utilizing neural networks.

Neural Posterior Approximator: We approx-
imate the intractable posterior distribution of z
to simplify the posterior inference, in which we
first projects both DA and utterance representa-
tions onto the latent space:

b, = g(W-[hp; hy] +b.) 3)
where W, € R%*(dptdng) p ¢ RA= are matrix
and bias parameters respectively, d is the dimen-
sionality of the latent space, and we set g(.) to be
ReLU in our experiments. We then approximate
the posterior as:

qs(z|d,u) = N'(z; pa (W), o7 (W) (4)

with mean p; and standard variance o are the out-
puts of the neural network as follows:

p1 =W, b + b, ,loga? = Wy b, + b, (5)

where p1, log a% are both d, dimension vectors.
Neural Prior: We model the prior as follows:

po(21d) = N'(z; 1y (@), ' H(A))  (6)

01

where 4} and o) of the prior are neural mod-
els only based on the Dialogue Act representa-
tion, which are the same as those of the poste-
rior gg(z|d,w) in Eq. 3 and 5, except for the ab-
sence of hy. To obtain a representation of the la-
tent variable z, we re-parameterize it as follows:
h, =y + 01 © e where e ~ N(0,1).
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(iii) Variational Decoder Network |

Utterance u

Deconvolutional CNN
Decoder

RNN Decoder

RNN/CNN
Utterance Encoder RNN DA Encoder

00000 OO0

Utterance u (i) variational Encoder Network Dialogue Act d

Figure 2: The Dual latent variable model consists
of two VAE models: (i) a VNLG (red-dashed
box) is to generate utterances and (ii) a Variational
CNN-DCNN is an auxiliary auto-encoding model
(left side). The RNN/CNN Utterance Encoder is
shared between the two VAEs.

Note here that the parameters for the prior and
the posterior are independent of each other. More-
over, during decoding we set h, to be the mean of
the prior pg(z|d), i.e., 1} due to the absence of the
utterance u. In order to integrate the latent variable
h, into the decoder, we use a non-linear transfor-
mation to project it onto the output space for gen-
eration: h, = g(W.h,, + b.)(7), where h, € R%.

3.1.3 Variational Decoder Network

Given a DA d and the latent variable z, the decoder
calculates the probability over the generation u as
a joint probability of ordered conditionals:
Ty
p(ulz,d) = Hp(ut|u<t, z,d)
t=1

where p(u¢|ucy, z,d)=¢'(RALSTM (uy, hy_1,dy).
The RALSTM cell (Tran and Nguyen, 2017) is
slightly modified in order to integrate the repre-
sentation of latent variable, i.e., h., into the com-
putational cell (see Suppl. 1.3), in which the la-
tent variable can affect the hidden representation
through the gates. This allows the model can in-
directly take advantage of the underlying semantic
information from the latent variable z. In addi-
tion, when the model learns unseen dialogue acts,
the semantic representation h, can benefit the gen-
eration process (see Table 1).

We finally obtain the VNLG model with RNN
Utterance Encoder (R-VNLG) or with CNN Utter-
ance Encoder (C-VNLG).

®)



3.2 Variational CNN-DCNN Model

This standard VAE model (left side in Figure 2)
acts as an auxiliary auto-encoding for utterance
(used at training time) to the VNLG generator.
The model consists of two components. While the
shared CNN Utterance Encoder with the VNLG
model is to compute the latent representation vec-
tor hy (see Suppl. 1.1.3), a Deconvolutional CNN
Decoder to decode the latent representation he
back to the source text (see Suppl. 2.1). Specifi-
cally, after having the vector representation hy, we
apply another linear regression to obtain the distri-
bution parameter 5 = W,,,hy+b,, and log o5 =
W,,hy + bs,. We then re-parameterize them to
obtain a latent representation h,,, = s + 03 © €,
where € ~ N(0,I). In order to integrate the la-
tent variable h,,, into the DCNN Decoder, we use
the shared non-linear transformation as in Eq. 7
(denoted by the black-dashed line in Figure 2) as:
h, = g(Wehzu + be)-

The entire resulting model, named DualVAE,
by incorporating the VNLG with the Variational
CNN-DCNN model, is depicted in Figure 2.

4 Training Dual Latent Variable Model

4.1 Training VNLG Model

Inspired by work of Zhang et al. (2016), we also
employ the Monte-Carlo method to approximate
the expectation of the posterior in Eq. 2, i.e.
E%(dd,u)[.] ~ ﬁzﬂm/lzl logpg(u\d,h,(zm)) where
M is the number of samples. In this work, the
joint training objective Lynrg for a training in-
stance pair (d, u) is formulated as:

L(0,6,d,u) ~ —K L(qy(z|d, u)||pp(z]d))

1 M Ty . (9)
m
Hmz::l;bgpe(ut‘u<t’d’hz )

where h{"™ = ;1 + 0 @ (™), and (™ ~ N(0,1),

and 0 and ¢ denote decoder and encoder param-
eters, respectively. The first term is the KL di-
vergence between two Gaussian distribution, and
the second term is the approximation expectation.
We simply set M = 1 which degenerates the sec-
ond term to the objective of conventional genera-
tor. Since the objective function in Eq. 9 is dif-
ferentiable, we can jointly optimize the parame-
ter 6 and variational parameter ¢ using standard
gradient ascent techniques. However, the KL di-
vergence loss tends to be significantly small dur-
ing training (Bowman et al., 2015). As a results,
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the decoder does not take advantage of informa-
tion from the latent variable z. Thus, we apply
the KL cost annealing strategy that encourages the
model to encode meaningful representations into
the latent vector z, in which we gradually anneal
the KL term from O to 1. This helps our model to
achieve solutions with non-zero KL term.

4.2 Training Variational CNN-DCNN Model

The objective function Lcenn.penn of the Varia-
tional CNN-DCNN model is the standard VAE
lower bound and maximized as follows:

L0, ¢',u) = —KL(qy (2|u)l|py (2))

(10)
+ IEq(b/ (z|w) [logPG’ (IJ’Z)] < Ing(u)

where 6’ and ¢’ denote decoder and encoder
parameters, respectively. During training, we
also consider a denoising autoencoder where we
slightly modify the input by swapping some arbi-
trary word pairs.

4.3 Joint Training Dual VAE Model

To allow the model explore and balance maximiz-
ing the variational lower bound between the Vari-
ational CNN-DCNN model and VNLG model, an
objective is joint training as follows:

(11)

where « controls the relative weight between two
variational losses. During training, we anneal the
value of o from 1 to 0, so that the dual latent
variable learned can gradually focus less on re-
construction objective of the CNN-DCNN model,
only retain those features that are useful for the
generation objective.

LpuavAE = LYNLG + @LCNN-DCNN

4.4 Joint Cross Training Dual VAE Model

To allow the dual VAE model explore and en-
code useful information of the Dialogue Act into
the latent variable, we further take a cross train-
ing between two VAEs by simply replacing the
RALSTM Decoder of the VNLG model with the
DCNN Utterance Decoder and its objective train-

ing Lpa-pCNN as:
L0, ¢.d,u) ~ —KL(gy(2|d, u)||py (2(d))

+ Eqg, (z1,0) [l0g por (u] 2, )],
12)
and a joint cross training objective is employed:

ECrossVAE = EVNLG (13)
+ a(LeNN-DeNN + LDA-DCNN)



5 Experiments

We assessed the proposed models on four different
original NLG domains: finding a restaurant and
hotel (Wen et al., 2015a), or buying a laptop and
television (Wen et al., 2016b).

5.1 Evaluation Metrics and Baselines

The generator performances were evaluated us-
ing the two metrics: the BLEU and the slot error
rate ERR by adopting code from an NLG toolkit*.
We compared the proposed models against strong
baselines which have been recently published as
NLG benchmarks of those datasets, including
(i) gating models such as HLSTM (Wen et al.,
2015a), and SCLSTM (Wen et al., 2015b); and
(i1) attention models such as Enc-Dec (Wen et al.,
2016b), RALSTM (Tran and Nguyen, 2017).

5.2 Experimental Setups

In this work, the CNN Utterance Encoder con-
sists of L = 3 layers, which for a sentence of
length T" = 73, embedding size d = 100, stride
length s {2,2,2}, number of filters k
{300,600, 100} with filter sizes h = {5,5,16},
results in feature maps V of sizes {35 x 300, 16 x
600, 1 x 100}, in which the last feature map cor-
responds to latent representation vector hy.

The hidden layer size and beam width were set
to be 100 and 10, respectively, and the models
were trained with a 70% of keep dropout rate. We
performed 5 runs with different random initializa-
tion of the network, and the training process is ter-
minated by using early stopping. For the varia-
tional inference, we set the latent variable size to
be 300. We used Adam optimizer with the learn-
ing rate is initially set to be 0.001, and after 5
epochs the learning rate is decayed every epoch
using an exponential rate of 0.95.

6 Results and Analysis

We performed the models in different scenarios as
follows: (i) scratch training where models trained
from scratch using 10% (scri0), 30% (scr30),
and 100% (scrl00) amount of in-domain data;
and (ii) domain adaptation training where mod-
els pre-trained from scratch using all source do-
main data, then fine-tuned on the target domain us-
ing only 10% amount of the target data. Overall,
the proposed models can work well in scenarios

*https://github.com/shawnwun/RNNLG
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Figure 3: Performance on Laptop domain with var-
ied limited amount, from 1% to 7%, of the adap-
tation training data when adapting models pre-
trained on [Restaurant+Hotel] union dataset.

of low-resource setting data. The proposed mod-
els obtained state-of-the-art performances regard-
ing both the evaluation metrics across all domains
in all training scenarios.

6.1 Integrating Variational Inference

We compare the encoder-decoder RALSTM
model to its modification by integrating with
variational inference (R-VNLG and C-VNLGQG) as
demonstrated in Figure 3 and Table 1.

It clearly shows that the variational generators
not only provide a compelling evidence on adapt-
ing to a new, unseen domain when the target do-
main data is scarce, i.e., from 1% to 7% (Figure 3)
but also preserve the power of the original RAL-
STM on generation task since their performances
are very competitive to those of RALSTM (Ta-
ble 1, scr100). Table 1, scriO further shows the
necessity of the integrating in which the VNLGs
achieved a significant improvement over the RAL-
STM in scrl0 scenario where the models trained
from scratch with only a limited amount of train-
ing data (10%). These indicate that the proposed
variational method can learn the underlying se-
mantic of the existing DA-utterance pairs, which
are especially useful information for low-resource
setting.

Furthermore, the R-VNLG model has slightly
better results than the C-VNLG when provid-
ing sufficient training data in scr/00. In con-
trast, with a modest training data, in scrl0, the
latter model demonstrates a significant improve-
ment compared to the former in terms of both the
BLEU and ERR scores by a large margin across
all four dataset. Take Hotel domain, for exam-
ple, the C-VNLG model (79.98 BLEU, 8.67%
ERR) has better results in comparison to the R-
VNLG (73.78 BLEU, 15.43% ERR) and RAL-



Model Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

HLSTM 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%
SCLSTM 0.8469 3.12% 0.7543 0.57% 0.5235 241% 0.5109 0.89%
ENCDEC 0.8537 4.78% 0.7358 298% 0.5142 338% 0.5101 4.24%

§ RALSTM 0.8965 0.58% 0.7779 0.20% 0.5373 0.49% 0.5231 0.50%
; R-VNLG (Ours) 0.8851 0.57% 0.7709 0.36% 0.5356 0.73% 0.5210 0.59%
C-VNLG (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%
DualVAE (Ours) 0.8813  0.33% 0.7695 0.29% 0.5359 0.81% 0.5211 091%
CrossVAE (Ours) 0.8926 0.72% 0.7786 0.54% 0.5383 0.48% 0.5240 0.50%
HLSTM 0.7483 8.69% 0.6586 6.93% 0.4819 9.39% 04813 7.37%
SCLSTM 0.7626 17.42% 0.6446 16.93% 0.4290 31.87% 0.4729 15.89%
ENCDEC 0.7370 23.19% 0.6174 23.63% 0.4570 21.28% 0.4604 29.86%
S RALSTM 0.6855 22.53% 0.6003 17.65% 0.4009 2237% 0.4475 24.47%
E R-VNLG (Ours) 0.7378 1543% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%
C-VNLG (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%
DualVAE (Ours) 0.8022 6.61% 0.6926 7.69% 0.5110 3.90% 0.5016 2.44%
CrossVAE (Ours) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%
HLSTM 0.8104 6.39% 0.7044 2.13% 0.5024 5.82% 0.4859 6.70%
SCLSTM 0.8271 6.23% 0.6825 4.80% 04934 797% 0.5001 3.52%
- ENCDEC 0.7865 9.38% 0.7102 13.47% 0.5014 9.19% 0.4907 10.72%
'g RALSTM 0.8334  423% 0.7145 2.67% 0.5124 3.53% 0.5106 2.22%
#| C-VNLG (Ours) 0.8553 2.64% 0.7256 0.96% 0.5265 0.66% 0.5117 2.15%
DualVAE (Ours) 0.8534 1.54% 0.7301 232% 0.5288 1.05% 0.5107 0.93%
CrossVAE (Ours) 0.8585 1.37% 0.7479 0.49% 0.5307 0.82% 0.5154 0.81%

Table 1: Results evaluated on four domains by training models from scratch with 10%, 30%, and 100%
in-domain data, respectively. The results were averaged over 5 randomly initialized networks. The bold
and italic faces denote the best and second best models in each training scenario, respectively.

STM (68.55 BLEU, 22.53% ERR). Thus, the rest
experiments focus on the C-VNLG since it shows
obvious sign for constructing a dual latent variable
models dealing with low-resource in-domain data.
We leave the R-VNLG for future investigation.

6.2 Ablation Studies

The ablation studies (Table 1) demonstrate the
contribution of each model components, in which
we incrementally train the baseline RALSTM, the
C-VNLG (= RALSTM + Variational inference),
the DualVAE (= C-VNLG + Variational CNN-
DCNN), and the CrossVAE (= DualVAE + Cross
training) models. Generally, while all models
can work well when there are sufficient training
datasets, the performances of the proposed models
also increase as increasing the model components.
The trend is consistent across all training cases no
matter how much the training data was provided.
Take, for example, the scr/00 scenario in which
the CrossVAE model mostly outperformed all the
previous strong baselines with regard to the BLEU
and the slot error rate ERR scores.

On the other hand, the previous methods
showed extremely impaired performances regard-
ing low BLEU score and high slot error rate ERR
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when training the models from scratch with only
10% of in-domain data (scr/0). In contrast, by
integrating the variational inference, the C-VNLG
model, for example in Hotel domain, can signif-
icantly improve the BLEU score from 68.55 to
79.98, and also reduce the slot error rate ERR by a
large margin, from 22.53 to 8.67, compared to the
RALSTM baseline. Moreover, the proposed mod-
els have much better performance over the previ-
ous ones in the scrl0 scenario since the Cross-
VAE, and the DualVAE models mostly obtained
the best and second best results, respectively. The
CrossVAE model trained on scr/0 scenario, in
some cases, achieved results which close to those
of the HLSTM, SCLSTM, and ENCDEC mod-
els trained on all training data (scr/00) scenario.
Take, for example, the most challenge dataset Lap-
top, in which the DualVAE and CrossVAE ob-
tained competitive results regarding the BLEU
score, at 50.16 and 50.85 respectively, which
close to those of the HLSTM (51.30 BLEU),
SCLSTM (51.09 BLEU), and ENCDEC (51.01
BLEU), while the results regardless the slot er-
ror rate ERR scores are also close to those of the
previous or even better in some cases, for exam-
ple DualVAE (2.44 ERR), CrossVAE (2.39 ERR),
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Figure 4: Performance comparison of the models trained on Laptop domain.

and ENCDEC (4.24 ERR). There are also some
cases in TV domain where the proposed models
(in scr10) have results close to or better over the
previous ones (trained on scr/00). These indicate
that the proposed models can encode useful infor-
mation into the latent variable efficiently to better
generalize to the unseen dialogue acts, addressing
the second difficulty with low-resource data.

The scr30 section further confirms the effective-
ness of the proposed methods, in which the Cross-
VAE and DualVAE still mostly rank the best and
second-best models compared with the baselines.
The proposed models also show superior ability in
leveraging the existing small training data to ob-
tain very good performances, which are in many
cases even better than those of the previous meth-
ods trained on 100% of in-domain data. Take
Tv domain, for example, in which the CrossVAE
in scr30 achieves a good result regarding BLEU
and slot error rate ERR score, at 53.07 BLEU
and 0.82 ERR, that are not only competitive to
the RALSTM (53.73 BLEU, 0.49 ERR), but also
outperform the previous models in scr/00 train-
ing scenario, such as HLSTM (52.40 BLEU, 2.65
ERR), SCLSTM (52.35 BLEU, 2.41 ERR), and
ENCDEC (51.42 BLEU, 3.38 ERR). This further
indicates the need of the integrating with vari-
ational inference, the additional auxiliary auto-
encoding, as well as the joint and cross training.

6.3 Model comparison on unseen domain

In this experiment, we trained four models
(ENCDEC, SCLSTM, RALSTM, and CrossVAE)
from scratch in the most difficult unseen Laptop
domain with an increasingly varied proportion of
training data, start from 1% to 100%. The re-
sults are shown in Figure 4. It clearly sees that
the BLEU score increases and the slot error ERR
decreases as the models are trained on more data.
The CrossVAE model is clearly better than the pre-
vious models (ENCDEC, SCLSTM, RALSTM) in
all cases. While the performance of the Cross-
VAE, RALSTM model starts to saturate around
30% and 50%, respectively, the ENCDEC model
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seems to continue getting better as providing more
training data. The figure also confirms that the
CrossVAE trained on 30% of data can achieve a
better performance compared to those of the pre-
vious models trained on 100% of in-domain data.

6.4 Domain Adaptation

We further examine the domain scalability of
the proposed methods by training the CrossVAE
and SCLSTM models on adaptation scenarios,
in which we first trained the models on out-of-
domain data, and then fine-tuned the model pa-
rameters by using a small amount (10%) of in-
domain data. The results are shown in Table 2.

Both SCLSTM and CrossVAE models can take
advantage of “close” dataset pairs, i.e., Restau-
rant <> Hotel, and Tv < Laptop, to achieve better
performances compared to those of the “different”
dataset pairs, i.e. Latop <+ Restaurant. Moreover,
Table 2 clearly shows that the SCLSTM (denoted
by b) is limited to scale to another domain in terms
of having very low BLEU and high ERR scores.
This adaptation scenario along with the scr/0 and
scr30 in Table 1 demonstrate that the SCLSTM
can not work when having a low-resource setting
of in-domain training data.

On the other hand, the CrossVAE model again
show ability in leveraging the out-of-domain data
to better adapt to a new domain. Especially in
the case where Laptop, which is a most difficult
unseen domain, is the target domain the Cross-
VAE model can obtain good results irrespective of
low slot error rate ERR, around 1.90%, and high
BLEU score, around 50.00 points. Surprisingly,
the CrossVAE model trained on scr/0 scenario in
some cases achieves better performance compared
to those in adaptation scenario first trained with
30% out-of-domain data (denoted by #) which is
also better than the adaptation model trained on
100% out-of-domain data (denoted by &).

Preliminary experiments on semi-supervised
training were also conducted, in which we trained
the CrossVAE model with the same 10% in-
domain labeled data as in the other scenarios and



Target Hotel Restaurant Tv Laptop
Source BLEU ERR BLEU ERR BLEU ERR BLEU ERR

Hotel’ - - 0.6243 11.20% 0.4325 29.12% 0.4603 22.52%
Restaurant’ 0.7329 29.97% - - 0.4520 24.34% 0.4619 21.40%
v’ 0.7030 25.63% 0.6117 12.78% - - 0.4794 11.80%

Laptop’ 0.6764 39.21% 0.5940 28.93% 0.4750 14.17% - -
Hotel? - - 0.7138  291% 05012 5.83% 0.4949 197%
Restaurant? 0.7984  4.04% - - 0.5120 3.26% 0.4947 1.87%
TvF 0.7614  5.82% 0.6900 5.93% - - 0.4937 191%

Laptop® 0.7804 5.87% 0.6565 6.97% 0.5037 3.66% - -
Hotel® - - 0.6926 3.56% 0.4866 11.99% 0.5017 3.56%
Restaurant® 0.7802  3.20% - - 0.4953 3.10% 0.4902 4.05%
Tvé 0.7603  8.69%  0.6830 5.73% - - 0.5055 2.86%

Laptop® 0.7807 8.20% 0.6749 5.84% 0.4988 5.53% - -
CrossVAE (scrl10) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%
CrossVAE (semi-U50-L10) 0.8144  6.12% 0.6946 3.94% 0.5158 2.95% 0.5086 1.31%

Table 2: Results evaluated on Target domains by adaptation training SCLSTM model from 100% (de-
noted as b) of Source data, and the CrossVAE model from 30% (denoted as £), 100% (denoted as &) of
Source data. The scenario used only 10% amount of the Target domain data. The last two rows show
results by training the CrossVAE model on the scr/0 and semi-supervised learning, respectively.

50% in-domain unlabeled data by keeping only
the utterances u in a given input pair of dialogue
act-utterance (d, u), denoted by semi-U50-LI0.
The results showed CrossVAE’s ability in lever-
aging the unlabeled data to achieve slightly better
results compared to those in scratch scenario. All
these stipulate that the proposed models can per-
form acceptably well in training cases of scratch,
domain adaptation, and semi-supervised where
the in-domain training data is in short supply.

6.5 Comparison on Generated Outputs

We present top responses generated for different
scenarios from TV (Table 3) and Laptop (Table 4),
which further show the effectiveness of the pro-
posed methods.

On the one hand, previous models trained on
scrl0, scr30 scenarios produce a diverse range
of the outputs’ error types, including missing,
misplaced, , wrong slots, or spelling
mistake information, resulting in a very high
score of the slot error rate ERR. The ENCDEC,
HLSTM and SCLSTM models in Table 3-DA 1,
for example, tend to generate outputs with redun-
dant slots (i.e.,

’ ’

), missing slots (i.e., [17 family],
[4 hdmi port -s]), or even in some cases produce ir-
relevant slots (i.e., SLOT_AUDIO, eco rating), re-
sulting in inadequate utterances.

On the other hand, the proposed models can ef-
fectively leverage the knowledge from only few
of the existing training instances to better gener-
alize to the unseen dialogue acts, leading to sat-
isfactory responses. For example in Table 3, the
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proposed methods can generate adequate number
of the required slots, resulting in fulfilled utter-
ances (DualVAE-10, CrossVAE-10, Dual VAE-30,
CrossVAE-30), or acceptable outputs with much
fewer error information, i.e., mis-ordered slots in
the generated utterances (C-VNLG-30).

For a much easier dialogue act in Table 3-DA 2,
previous models still produce some error outputs,
whereas the proposed methods seem to form some
specific slots into phrase in concise outputs. For
example, instead of generating “the proteus 73 is
a television” phrase, the proposed models tend to
concisely produce “the proteus 73 television”. The
trend is mostly consistent to those in Table 4.

7 Conclusion and Future Work

We present an approach to low-resource NLG by
integrating the variational inference and introduc-
ing a novel auxiliary auto-encoding. Experiments
showed that the models can perform acceptably
well using a scarce dataset. The ablation stud-
ies demonstrate that the variational generator con-
tributes to learning the underlying semantic of
DA-utterance pairs, while the variational CNN-
DCNN plays an important role of encoding useful
information into the latent variable. In the future,
we further investigate the proposed models with
adversarial training, semi-supervised, or unsuper-
vised training.
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Model

Generated Responses from TV Domain

DA 1
Reference 1

compare(name=‘typhon 45°; hdmiport=°2"; family="12"; name="‘hades 48’; hdmiport="4"; family="17")
Compared to typhon 45 which has 2 hdmi port -s and is in the L2 product family, hades 48 has 4 hdmi port -s and is in the L7
product family. Which one do you prefer ?

ENCDEC-10 the typhon 45 is in the I2 product family and has 2 hdmi port -s and is in the [7 product family with 4 hdmi port -s, the hades 48 is
in the product family with a SLOT_AUDIO.

HLSTM-10 the ryphon 45 is a great eco rating, the hades 48 is in the [2 family with 2 hdmi port -s. [17 family] [4 hdmi port -s]

SCLSTM-10 the typhon 45 is the hades 48 with 2 hdmi port in the 12 family, the has 4 hdmi port -s and hdmi
port. [17 family]

C-VNLG-10 the ryphon 45 has 2 hdmi port -s and the hades 48 is in the [2 family and has 4 hdmi port -s. [17 family]

DualVAE-10 the typhon 45 has 2 hdmi port -s and is in the [2 family while the hades 48 has 4 hdmi port -s and is in the [7 family. [OK]

CrossVAE-10 the typhon 45 is in the [2 family with 2 hdmi port -s while the hades 48 has 4 hdmi port -s and is in the [7 family. [OK]

ENCDEC-30 the typhon 45 has 2 hdmi port -s, the hades 48 has 4 hdmi port -s, the has hdmi port. [12 family]
[17 family]

HLSTM-30 the ryphon 45 is in the [2 product family with 2 hdmi port -s, whereas the hades 48 has 4 hdmi port. [17 family]

SCLSTM-30 the ryphon 45 has 2 hdmi port -s, the hades 48 is in the [2 product family. [17 family] [4 hdmi port -s]

C-VNLG-30 the ryphon 45 has 2 hdmi port -s, the hades 48 is in the [2 product family and has 4 hdmi port -s in 17 family.

DualVAE-30 which do you prefer, the typhon 45 in the I2 product family with 2 hdmi port -s . the hades 48 is in the [7 family with 4 hdmi port

CrossVAE-30

-s. [OK]
the typhon 45 has 2 hdmi port -s and in the [2 family while the hades 48 has 4 hdmi port -s and is in the [7 family. which item do
you prefer. [OK]

DA 2 recommend(name="proteus 73; type="‘television’; price=‘1500 dollars’; audio="nicam stereo’; hdmiport=°2")
Reference 2 proteus 73 is a nice television. its price is 1500 dollars, its audio is nicam stereo, and it has 2 hdmi port -s.
ENCDEC-10 the proteus 73 is a great television with a nicam stereo and 2 hdmi port -s [1500 dollars]

HLSTM-10 the proteus 73 is a television with 2 hdmi port -s and comes with a nicam stereo and costs 1500 dollars [OK]
SCLSTM-10 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s [1500 dollars]

C-VNLG-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]

DualVAE-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]

CrossVAE-10 the proteus 73 television has 2 hdmi port -s and a nicam stereo and costs 1500 dollars [OK]

ENCDEC-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio for 1500 dollars [OK]

HLSTM-30 the proteus 73 television has a nicam stereo and 2 hdmi port -s and is priced at 1500 dollars [OK]
SCLSTM-30 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s . it is priced at 1500 dollars [OK]
C-VNLG-30 the proteus 73 television has 2 hdmi port -s , nicam stereo audio , and costs 1500 dollars [OK]

Dual VAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]

CrossVAE-30

the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]

Table 3: Comparison of top Tv responses generated for different models in different scenarios. Errors are
marked in colors ([missing], misplaced, , wrong, spelling mistake information). [OK] denotes
successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.

Model Generated Responses from Laptop Domain
DA compare(name=‘satellite pallas 21’; battery="4 hour’; drive="500 gb’; name="satellite dinlas 18’; battery="3.5 hour’; drive="‘1
)
Reference compared to satellite pallas 21 which can last 4 hour and has a 500 gb drive , satellite dinlas 18 can last 3.5 hour and has a I tb
drive . which one do you prefer
Enc-Dec-10 the satellite pallas 21 has a 500 gb drive , the satellite dinlas 18 has a 4 hour battery life and a 3.5 hour battery life and a
battery life and a / b drive
HLSTM-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive . which one do you prefer [satellite pallas 18] [3.5 hour battery]
[1 tb drive]
SCLSTM-10 the satellite pallas 21 has a 4 hour battery , and has a 3.5 hour battery life and a 500 gb drive and a I tb drive [satellite dinlas 18]
C-VNLG-10 the satellite pallas 21 has a 500 gb drive and a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour battery life and a
battery life [1 tb drive]
DualVAE-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive and the satellite dinlas 18 with a 3.5 hour battery life and is good

for business computing . which one do you prefer [1 tb drive]

CrossVAE-10 the satellite pallas 21 with 500 gb and a 1 tb drive . the satellite dinlas 18 with a 4 hour battery and a drive . which
one do you prefer [3.5 hour battery]

Enc-Dec-30 the satellite pallas 21 has a 500 gb drive with a I tb drive and is the satellite dinlas 18 with a drive for 4 hour -s .
which one do you prefer [3.5 hour battery]

HLSTM-30 the satellite pallas 21 is a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour battery life . which one do
you prefer [1 tb drive]

SCLSTM-30 the satellite pallas 21 has a 500 gb drive . the satellite dinlas 18 has a 4 hour battery life . the has a 3.5 hour battery
life . which one do you prefer [1 tb drive]

C-VNLG-30 which one do you prefer the satellite pallas 21 with a 4 hour battery life , the satellite dinlas 18 has a 500 gb drive and a 3.5 hour
battery life and a 1 tb drive . which one do you prefer

Dual VAE-30 satellite pallas 21 has a 500 gb drive and a 4 hour battery life while the satellite dinlas 18 with a 3.5 hour battery life and a I tb

CrossVAE-30

drive . [OK]
the satellite pallas 21 has a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a I tb drive and a 3.5 hour battery
life . which one do you prefer [OK]

Table 4: Comparison of top Laptop responses generated for different models in different scenarios. Er-
rors are marked in colors ([missing], misplaced, , wrong, spelling information). [OK] denotes
successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.
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A Trio Neural Model for Dynamic Entity Relatedness Ranking

Tu Ngoc Nguyen
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Abstract

Measuring entity relatedness is a fundamen-
tal task for many natural language processing
and information retrieval applications. Prior
work often studies entity relatedness in static
settings and an unsupervised manner. How-
ever, entities in real-world are often involved
in many different relationships, consequently
entity-relations are very dynamic over time.
In this work, we propose a neural network-
based approach for dynamic entity relatedness,
leveraging the collective attention as supervi-
sion. Our model is capable of learning rich
and different entity representations in a joint
framework. Through extensive experiments
on large-scale datasets, we demonstrate that
our method achieves better results than com-
petitive baselines.

1 Introduction

Measuring semantic relatedness between entities
is an inherent component in many text mining ap-
plications. In search and recommendation, the
ability to suggest most related entities to the
entity-bearing query has become a standard fea-
ture of popular Web search engines (Blanco et al.,
2013). In natural language processing, entity re-
latedness is an important factor for various tasks,
such as entity linking (Hoffart et al., 2012) or word
sense disambiguation (Moro et al., 2014).
However, prior work on semantic relatedness
often neglects the time dimension and consider
entities and their relationships as static. In prac-
tice, many entities are highly ephemeral (Jiang
et al., 2016), and users seeking information re-
lated to those entities would like to see fresh infor-
mation. For example, users looking up the entity
Taylor Lautner during 2008-2012 might want to
be recommended with entities such as The Twi-
light Saga, due to Lautner’s well-known perfor-
mance in the film series; however the same query
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in August 2016 should be served with entities re-
lated to his appearances in more recent films such
as “Scream Queens”, “Run the Tide”. In addition,
much of previous work resorts to deriving seman-
tic relatedness from co-occurrence -based compu-
tations or heuristic functions without direct opti-
mization to the final goal. We believe that desir-
able framework should see entity semantic relat-
edness as not separate but an integral part of the
process, for instance in a supervised manner.

In this work, we address the problem of en-
tity relatedness ranking, that is, designing the se-
mantic relatedness models that are optimized for
ranking systems such as top-k entity retrieval or
recommendation. In this setting, the goal is not
to quantify the semantic relatedness between two
entities based on their occurrences in the data,
but to optimize the partial order of the related
entities in the top positions. This problem dif-
fers from traditional entity ranking (Kang et al.,
2015) in that the entity rankings are driven by
user queries and are optimized to their (ad-hoc) in-
formation needs, while entity relatedness ranking
also aims to uncover the meanings of the the relat-
edness from the data. In other words, while con-
ventional entity semantic relatedness learns from
data (editors or content providers’ perspectives),
and entity ranking learns from the user’s perspec-
tive, the entity relatedness ranking takes the trade-
off between these views. Such a hybrid approach
can benefit applications such as exploratory entity
search (Miliaraki et al., 2015), where users have
a specific goal in mind, but at the same time are
opened to other related entities.

We also tackle the issue of dynamic ranking and
design the supervised-learning model that takes
into account the temporal contexts of entities, and
proposes to leverage collective attention from pub-
lic sources. As an illustration, when one looks into
the Wikipedia page of Taylor Lautner, each navi-
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Figure 1: The dynamics of collective attention for
related entities of Taylor Lautner in 2016.

gation to other Wikipedia pages indicates the user
interest in the corresponding target entity given her
initial interest in Lautner. Collectively, the naviga-
tion traffic observed over time is a good proxy to
the shift of public attention to the entity (Figure 1).
In addition, while previous work mainly focuses
on one aspect of the entities such as textual profiles
or linking graphs , we propose a trio neural model
that learns the low level representations of entities
from three different aspects: Content, structures
and time aspects. For the time aspect, we pro-
pose a convolutional model to embed and attend
to local patterns of the past temporal signals in the
Euclidean space. Experiments show that our trio
model outperforms traditional approaches in rank-
ing correlation and recommendation tasks. Our
contributions are summarized as follows.

* We present the first study of dynamic en-
tity relatedness ranking using collective at-
tention.

* We introduce an attention-based convolu-
tional neural networks (CNN) to capture the
temporal signals of an entity.

* We propose a joint framework to incorporate
multiple views of the entities, both from con-
tent provider and from user’s perspectives,
for entity relatedness ranking.

2 Related Work

2.1 Entity Relatedness and Recommendation

Most of existing semantic relatedness measures
(e.g. derived from Wikipedia) can be divided into
the following two major types: (1) fext-based,
(2) graph-based. For the first, traditional meth-
ods mainly focus on a high-dimensional semantic
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space based on occurrences of words ( Gabrilovich
and Markovitch (2007, 2009)) or concepts ( Ag-
garwal and Buitelaar (2014)). In recent years, em-
bedding methods that learn low-dimensional word
representations have been proposed. Hu et al.
(2015) leverages entity embedding on knowledge
graphs to better learn the distributional seman-
tics. Ni et al. (2016) use an adapted version of
Word2Vec, where each entity in a Wikipedia page
is considered as a term. For the graph-based ap-
proaches, these measures usually take advantage
of the hyperlink structure of entity graph (Wit-
ten and Milne, 2008; Guo and Barbosa, 2014).
Recent graph embedding techniques (e.g., Deep-
Walk (Perozzi et al., 2014)) have not been directly
used for entity relatedness in Wikipedia, yet its
performance is studied and shown very compet-
itive in recent related work (Zhao et al., 2015;
Ponza et al., 2017).

Entity relatedness is also studied in connec-
tion with the entity recommendation task. The
Spark (Blanco et al., 2013) system firstly intro-
duced the task for Web search, Yu et al. (2014);
Zhang et al. (2016a) exploit user click logs and
entity pane logs for global and personalized en-
tity recommendation. However, these approaches
are optimized to user information needs, and also
does not target the global and temporal dimension.
Recently, Zhang et al. (2016b); Tran et al. (2017)
proposed time-aware probabilistic approaches that
combine ‘static’ entity relatedness with tempo-
ral factors from different sources. Nguyen et al.
(2018) studied the task of time-aware ranking for
entity aspects and propose an ensemble model to
address the sub-features competing problem.

2.2 Neural Network Models

Neural Ranking. Deep neural ranking among
IR and NLP can be generally divided into two
groups: representation-focused and interaction-
focused models. The representation-focused ap-
proach (Huang et al., 2013) independently learns
a representation for each ranking element (e.g.,
query and document) and then employ a similar-
ity function. On the other hand, the interaction-
focused models are designed based on the early
interactions between the ranking pairs as the input
of network. For instance, Lu and Li (2013); Guo
et al. (2016) build interactions (i.e., local match-
ing signals) between two pieces of text and trains a
feed-forward network for computing the matching
score. This enables the model to capture various



interactions between ranking elements, while with
former, the model has only the chance of isolated
observation of input elements.

Attention networks. In recent years, attention-
based NN architectures, which learn to focus their
“attention” to specific parts of the input, have
shown promising results on various NLP tasks.
For most cases, attentions are applied on sequen-
tial models to capture global context (Luong et al.,
2015). An attention mechanism often relies on a
context vector that facilitates outputting a “sum-
mary” over all (deterministic soft) or a sample
(stochastic hard) of input states. Recent work
proposed a CNN with attention-based framework
to model local context representations of textual
pairs (Yin et al., 2016), or to combine with LSTM
to model time-series data (Ordonez and Roggen,
2016; Lin et al., 2017) for classification and trend
prediction tasks.

3 Problem

3.1 Preliminaries

We denote as named entities any real-world ob-
jects registered in a database. Each entity has a
textual document (e.g. content of a home page),
and a sequence of references to other entities (e.g.,
obtained from semantic annotations), called the
entity link profile. All link profiles constitute an
entity linking graph. In addition, two types of in-
formation are included to form the entity collec-
tive attention.

Temporal signals. Each entity can be asso-
ciated with a number of properties such as view
counts, content edits, etc. Given an entity e and
a time point n, given D properties, the temporal
signals set, in the form of a (univariate or multi-
variate) time series X € RP*T consists of T real-
valued vector x,,_7,--- , X, , where x, € RP cap-
tures the past signals of e at time point ¢.

Entity Navigation. In many systems, the user
navigation between two entities is captured, e.g.,
search engines can log the total click-through of
documents of the target entity presented in search
results of a query involving the source entity. Fol-
lowing learning to rank approaches (Kang et al.,
2015), we use this information as the ground truth
in our supervised models. Given two entities
e1,e;, the navigation signal from e to e, at time
point ¢ is denoted by yf{ erer}
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3.2 Problem Definition

In our setting, it is not required to have a pre-
defined, static function quantifying the semantic
relatedness between two entities. Instead, it can
capture a family of functions F where the prior
distribution relies on time parameter. We formal-
ize the concepts below.

Dynamic Entity Relatedness between two en-
tities ey, e;, where e, is the source entity and e; is
the target entity, in a given time ¢, is a function (de-
noted by fi(ey,e,)) with the following properties.

* asymmetric: f;(e;,e;) # fi(ej,ei)
* non-negativity: f(e;,e;) >0

* indiscernibility of identicals:

f(ei’ej) =1

Dynamic Entity Relatedness Ranking. Given
a source entity e; and time point #, rank the candi-
date entities e;’s by their semantic relatedness.

e = ej —

4 Approach Overview

4.1 Datasets and Their Dynamics

In this work we use Wikipedia data as the case
study for our entity relatedness ranking problem
due to its rich knowledge and dynamic nature.
It is worth noting that despite experimenting on
Wikipedia, our framework is universal can be ap-
plied to other sources of entity with available
temporal signals and entity navigation. We use
Wikipedia pages to represent entities and page
views as the temporal signals (details in sec-
tion 6.1).

Clickstream. For entity navigation, we use the
clickstream dataset generated from the Wikipedia
webserver logs from February until September,
2016. These datasets contain an accumulation of
transitions between two Wikipedia articles with
their respective counts on a monthly basis. We
study only actual pages (e.g. excluding disam-
biguation or redirects). In the following, we pro-
vide the first analysis of the clickstream data to
gain insights into the temporal dynamics of the en-
tity collective attention in Wikipedia.

Figure 2a illustrates the distribution of entities
by click frequencies, and the correlation of top
popular entities (measured by total navigations)
across different months is shown in Figure 2b. In
general, we observe that the user navigation activ-
ities in the top popular entities are very dynamic,
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Figure 2: Click (navigation) times distribution and ranking correlation of entities in September 2016.

% new % with new % W. new # new e,

e e ¢; in top-30 (avg.)
08-2016 2431 71.18 15.54 18.25
04-2016 30.61 66.72 53.44 42.20

Table 1: Statistics on the dynamic of clickstream,
e, denote source entities, ¢; related entities.

and changes substantially with regard to time. Fig-
ure 2c visualizes the dynamics of related entities
toward different ranking sections (e.g., from rank
0 to rank 20) of different months, in terms of their
correlation scores. It can be interpreted that the
entities that stay in top-20 most related ones tend
to be more correlated than entities in bottom-20
when considering top-100 related entities.

As we show in Table 1, there are 24.31% of en-
tities in top-10,000 most active entities of Septem-
ber 2006 do not appear in the same list the previ-
ous month. And 30.61% are new compared with
5 months before. In addition, there are 71% of
entities in top-10,000 having navigations to new
entities compared to the previous month, with ap-
prox. 18 new entities are navigated to, on aver-
age. Thus, the datasets are naturally very dynamic
and sensitive to change. The substantial amount of
missing past click logs on the newly-formed rela-
tionships also raises the necessity of an dynamic
measuring approach.

Figure 3 shows the overall architecture of our
framework, which consists of three major compo-
nents: time-, graph- and content-based networks.
Each component can be considered as a separate
sub-ranking network. Each network accepts a tu-
ple of three elements/representations as an input
in a pair-wise fashion, i.e., the source entity ey, the
target entity e, with higher rank (denoted as e(,))
and the one with lower rank (denoted as e(-). For
the content network, each element is a sequence
of terms, coming from entity textual representa-
tion. For the graph network, we learn the embed-
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Figure 3: The trio neural model for entity ranking.

dings from the entity linking graph. For the time
network, we propose a new convolutional model
learning from the entity temporal signals. More
detailed are described as follows.

4.2 Neural Ranking Model Overview

The entity relatedness ranking can be handled by
a point-wise ranking model that learns to predict
relatedness score directly. However, as the navi-
gational frequency distribution is often skewed at
top, supervisions guided by long-tail navigations
would be prone to errors. Hence instead of learn-
ing explicitly a calibrated scoring function, we opt
for a pair-wise ranking approach. When apply-
ing to ranking top-k entities, this approach has
the advantage of correctly predicting partial orders
of different relatedness functions f; at any time
points regardless of their non-transitivity (Cheng
et al., 2012).

This work builds upon the idea of interaction-
based deep neural models, i.e. learning soft se-
mantic matches from the source-target entity pairs.
Note that, we do not aim for a Siamese archi-
tecture (Chopra et al., 2005) (i.e., in representa-
tion-based models), where the weight parameters



are shared across networks. The reason is that,
the conventional kind of network produces a sym-
metric relation, violating the asymmetric prop-
erty of the relatedness function f; (section 3.2).
Concretely, each deep network y consists of an
input layer zg, n — 1 hidden layers and an out-
put layer z,. Each hidden layer z; is a fully-
connected network that computes the transforma-
tion: z; = o(W;-zi—1 + b;), where w; and b; are
the weight matrix and bias at hidden layer i, o is
a non-linear function such as the rectified linear
unit(ReL.U). The final score under the trio setup is
summed from multiple networks.

¢ (< €s, e(+) 3 e(,) >) = (Pt[me + ¢graph + (pconlent
(1
In the next section we describe the input repre-
sentations zg for each network.

5 Entity Relatedness Ranking

5.1 Content-based representation learning

To learn the entity representation from its content,
we rely on entity textual document (word-based)
as well as its link profile (entity-based) (sec-
tion 3.1). Since the vocabulary size of entities and
words is often very large, conventional one-hot
vector representation becomes expensive. Hence,
we adopt the word hashing technique from (Huang
et al., 2013), that breaks a term into character fri-
graphs and thus can dramatically reduce the size
of the vector dimensionality. We then rely on em-
beddings to learn the distributed representations
and build up the soft semantic interactions via in-
put concatenation. Let E : ¥ — R™ be the em-
bedding function, ¥ is the vocabulary and m is
the embedding size. w: ¥ — R, is the weight-
ing function that learns the global term impor-
tance and a weighted element-wise sum of word
embedding vectors -compositionality function &,
the word-based representation for entity e is hence
@le:”l‘ (E(w;i),w(w;)). For entity-based representa-
tion, we break down the surface form of a linked
entity into bag-of-words and apply analogously.
The concatenation of the two representations for
the tuple < ey, e(),e(_) > is then input to the deep
feed-forward network.

5.2 Graph-based representation

To obtain the graph embedding for each entity, we
adopt the idea of DeepWalk (Perozzi et al., 2014),
which learns the embedding by predicting the ver-
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tex sequence generated by random walk. Con-
cretely, given an entity e, we learn to predict the
sequence of entity references S, — which can be
considered as the graph-wise context in the Skip-
gram model. We then adopt the matching his-
togram mapping in (Guo et al., 2016) for the soft
interaction of the ranking model. Specifically, de-
note the bag of entities representation of e; as C,,
and that of ¢, as C,,; we discretize the soft match-
ing (calculated by cosine similarity of the embed-
ding vectors) of each entity pair in (C, ,C,,) into
different bins. The logarithmic numbers of the
count values of each bin then constitute the in-
teraction vector. This soft-interaction in a way is
similar in the idea with the traditional link-based
model (Witten and Milne, 2008), where the relat-
edness measure is based on the overlapping of in-
coming links.

5.3 Attention-based CNN for temporal
representation

For learning representation from entity temporal
signals, the intuition is to model the low-level tem-
poral correlation between two multivariate time
series. Specifically, we learn to embed these time
series of equal size T into an Euclidean space,
such that similar pairs are close to each other. Our
embedding function takes the form of a convolu-
tional neural network (CNN), shown in Figure 4.
The architecture rests on four basic layers: a 1-
D convolutional (that restricts the slide only along
the time window dimension, following (Zheng
et al.,, 2014)), a batch-norm, an attention-based
and a fully connected layer.

Convolution layer: A 1-D convolution opera-
tion involves applying a filter w; € RP>*"*P (ie., a
matrix of weight parameters) to each subsequence
X! of window size m to produce a new abstraction.

i =WsL'tim—1,0+b; s5i=BN(q;); hi = ReLU (s;)
| 2)
where L';;4,,—1,p denotes the concatenation of
w vectors in the lookup layer representing the sub-
sequence Xé, b is a bias term. The convolutional
layer is followed by a batch normalization (BN)
layer (Ioffe and Szegedy, 2015), to speed up the
convergence and help improve generalization.
Attention Mechanism: We apply an atten-
tion layer on the convolutional outputs. Con-
ceptually, attention mechanisms allow NN mod-
els to focus selectively on only the important fea-
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Figure 4: The attentional CNN for time series rep-
resentation.

tures, based on the attention weights that often
derived from the interaction with the target or
within the input itself (self-attention) (Vaswani
et al., 2017). We adopt the former approach, with
the intuition that the time-spatial patterns should
not be treated equally, but the ones near the stud-
ied time should gain more focus. To ensure that
each feature in I that associates with different
timestamps are rewarded differently, the attention
weights are guided by a time-decay weight func-
tion, in a recency-favor fashion. More formally,
let A € RT="+1x1 be the time context vector and
F¢ € R"(T=%+1) the output of convolution for X.
Then the k' column of the re-weighted feature
map F” is derived by:

FiL k) =AK]-F[ k), k=1---T—w+1 (3)

The time context vector a is generated by a
decay weight function, since each column k in
the vector is associated with a time #; which is
T — k+ w time units away from studied time ¢.

Decay weight function: we leverage the Poly-
nomial Curve for the function. PD(t;,t) =
UTI)QH, whereas o defines the decay rate. It is
worth noting that when « is increased, the atten-
tion layer acts just like a pooling one !. Stacking
up multiple convolutional layers is possible, in this
case |A| is the size of the previous layer. The at-
tention layer is only applied to the last convolution
layer in our architecture. The output of the atten-
tion layer is then passed to a fully-connected layer
with non-linear activation to obtain the temporal
representation.

Note that, for clear visualization, we put flattening before
attention layer in Figure 4
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5.4 Learning and Optimization

Finally, we describe the optimization and training
procedure of our network. We use a Logarithmic
loss that can lead to better probability estimation
at the cost of accuracy 2. Our network minimizes
the cross-entropy loss function as follows:

1
L=

™=

[P{eg,el ,82},' logyi
1

*P{es,el,ez}i)log(l *}71')] +A|9’% 4)

_Ni
+(1

where N is the training size, y is the output
of the sigmoid layer on the predicted label. 6
contains all the parameters of the network and
11613 is the L2 regularization. Pleyeiyeyh is the

probability that e(,) is ranked higher than e _

derived from entity navigation, P{e.v.,em,e(,)},- =
1(i)

Y'{(e’fm)}/(y’{(e’fﬁem} + y{e,y,e(,)})’ where 7(i) is the
observed time point of the training instance i. The
network parameters are updated using Adam opti-
mizer (Kingma and Ba, 2014).

6 Experiments

6.1 Dataset

To recap from Section 4.1, we use the click stream
datasets in 2016. We also use the corresponding
Wikipedia article dumps, with over 4 million enti-
ties represented by actual pages. Since the length
of the content of an Wikipedia article is often long,
in this work, we make use of only its abstract sec-
tion. To obtain temporal signals of the entity, we
use page view statistics of Wikipedia articles and
aggregate the counts by month. We fetch the data
from June, 2014 up until the studied time, which
results in the length of 27 months.

Seed entities and related candidates. To ex-
tract popular and trending entities, we extract from
the clickstream data the top 10,000 entities based
on the number of navigations from major search
engines (Google and Bing), at the studied time.
Getting the subset of related entity candidates —
for efficiency purposes— has been well-addressed
in related work (Guo and Barbosa, 2014; Ponza
et al., 2017). In this work, we do not leverage a
method and just assume the use of an appropriate
one. In the experiment, we resort to choose only

2Qther ranking-based loss such as Hinge loss favours over
sparsity and accuracy (in the sense of direct punishing mis-
classification via margins) at the cost of probability estima-
tion. The logistic loss distinguishes better between examples
whose supervision scores are close.



Counts
Total seed entities 10,000
Total entities 1,420,819
Candidate per entities (avg.) | 142
Training seed entities 8,000
Dev. seed entities 1,000
Test seed entities 1,000
Training pairs 100,650K
Dev. pairs 12,420K
Test pairs 12,590K

Table 2: Statistics of the dataset.

candidates which are visited from the seed entities
at studied time. We filtered out entity-candidate
pairs with too few navigations (less than 10) and
considered the top-100 candidates.

6.2 Models for Comparison

In this paper, we compare our models against the
following baselines.

Wikipedia Link-based (WLM): Witten and
Milne (2008) proposed a low-cost measure of
semantic relatedness based on Wikipedia entity
graph, inspired by Normalized Google Distance.

DeepWalk (DW): DeepWalk (Perozzi et al.,
2014) learned representations of vertices in a
graph with a random walk generator and language
modeling. We chose not to compare with the ma-
trix factorization approach in (Zhao et al., 2015),
as even though it allows the incorporation of dif-
ferent relation types (i.e., among entity, category
and word), the iterative computation cost over
large graphs is very expensive. When consider
only entity-entity relation, the performance is re-
ported rather similar to DW.

Entity2Vec Model (E2V): or entity embedding
learning using Skip-Gram (Mikolov et al., 2013)
model. E2V utilizes textual information to capture
latent word relationships. Similar to Zhao et al.
(2015); Ni et al. (2016), we use Wikipedia arti-
cles as training corpus to learn word vectors and
reserved hyperlinks between entities.

ParaVecs (PV): Le and Mikolov (2014); Dai
et al. (2015) learned document/entity vectors via
the distributed memory (ParaVecs-DM) and dis-
tributed bag of words (ParaVecs-DBOW) models,
using hierarchical softmax. We use Wikipedia ar-
ticles as training corpus to learn entity vectors.

RankSVM: Ceccarelli et al. (2013) learned
entity relatedness from a set of 28 handcrafted
features, using the traditional learning-to-rank
method, RankSVM. We put together additional
well-known temporal features (Kanhabua et al.,
2014; Zhang et al., 2016b) (i.e., time series cross
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correlation, trending level and predicted popular-
ity based on page views) and report the results of
the extended feature set.

For our approach, we tested different combina-
tions of content (denoted as Contentgmy), graph,
(Graphgp) and time (TS-CNN-Att) networks.
We also test the content and graph networks with
pretrained entity representations (i.e., ParaVecs-
DM and DeepWalk).

6.3 Experimental Setup

Evaluation procedures. The time granularity is
set to months. The studied time 7, of our experi-
ments is September 2016. From the seed queries,
we use 80% for training, 10% for development and
10% for testing, as shown in Table 2. Note that, for
the time-aware setting and to avoid leakage and
bias as much as possible, the data for training and
development (including supervision) are up until
time f, — 1. In specific, for content and graph data,
only t, — 1 is used.

Metrics. We use 2 correlation coefficient meth-
ods, Pearson and Spearman, which have been used
often throughout literature, cf. (Dallmann et al.,
2016; Ponza et al., 2017). The Pearson index
focuses on the difference between predicted-vs-
correct relatedness scores, while Spearman fo-
cuses on the ranking order among entity pairs. Our
work studies on the strength of the dynamic re-
latedness between entities, hence we focus more
on Pearson index. Howeyver, traditional correlation
metrics do not consider the positions in the ranked
list (correlations at the top or bottom are treated
equally). For this reason, we adjust the metric to
consider the rankings at specific top-k positions,
which consequently can be used to measure the
correlation for only top items in the ranking (based
to the ground truth). In addition, we use Normal-
ized Discounted Cumulative Gain (NDCG) mea-
sure to evaluate the recommendation tasks.

Implementation details. All neural models
are implemented in TensorFlow. Initial learning
rate is tuned amongst {1.e-2, 1.e-3, l.e-4, l.e-5}.
The batch size is tuned amongst {50, 100, 200}.
The weight matrices are initialized with samples
from the uniform distribution (Glorot and Ben-
gio, 2010). Models are trained for maximum 25
epochs. The hidden layers for each network are
among {2, 3, 4}, while for hidden nodes are {128,
256, 512}. Dropout rate is set from {0.2, 0.3,
0.5}. The pretrained DW is empirically set to 128
dimensions, and 200 for PV. For CNN, the filter



number are in {10, 20, 30}, window size in {4,
5, 6}, convolutional layers in {1, 2, 3} and decay
rate & in {1.0, 1.5,---,7.5}. 2 conv- layers with
window size 5 and 4, number of filters of 20 and
25 respectively are used for decay hyperparameter
analysis.

6.4 Experimental Tasks

We evaluate our proposed method in two differ-
ent scenarios: (1) Relatedness ranking and (2) En-
tity recommendation. The first task evaluates how
well we can mimic the ranking via the entity nav-
igation. Here we use the raw number of naviga-
tions in Wikipedia clickstream. The second task
is formulated as: given an entity, suggest the top-k
most related entities to it right now. Since there
is no standard ground-truth for this temporal task,
we constructed two relevance ground-truths. The
first one is the proxy ground-truth, with relevance
grade is automatically assigned from the (top-100)
most navigated target entities. The graded rele-
vance score is then given as the reversed rank or-
der. For this, all entities in the test set are used.
The second one is based on the human judgments
with 5-level graded relevance scale, i.e., from 4
- highly relevant to O - not (temporally) relevant.
Two human experts evaluate on the subset of 20
entities (randomly sampled from the test set), with
600 entity pairs (approx. 30 per seed, using pool-
ing method). The ground-truth size is comparable
the widely used ground-truth for static relatedness
assessment, KORE (Hoffart et al., 2012). The Co-
hen’s Kappa agreement is 0.72. Performance of
the best-performed models on this dataset is then
tested with paired #-test against the WLM baseline.

6.5 Results on Relatedness Ranking

We report the performance of the relatedness rank-
ing on the left side of Table 3, with the Pear-
son and Spearman metrics. Among existing base-
lines, we observe that link-based approaches i.e.,
WLM and DeepWalk perform better than others
for top-k correlation. Whereas, temporal mod-
els yield substantial improvement overall. Specif-
ically, the TS-CNN-Att performs better than the
no-attention model in most cases, improves 11%
for Pearson@ 10, and 3% when considering the to-
tal rank. Our trio model performs well overall,
gives best results for total rank. The duo models
(combine base with either pretrained DW or PV)
also deliver improvements over the sole tempo-
ral ones. We also observer additional gains while
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combining of temporal base with pretrained DW
and PV altogether.

6.6 Results on Entity Recommendation

Here we report the results on the nDCG metrics.
Table 3 (right-side) demonstrates the results for
two ground-truth settings (proxy and human). We
can observe the good performance of the baselines
for this task over conventional temporal models,
significantly for proxy setting. It can be explained
that, ‘static’ entity relations are ranked high in
the non time-aware baselines, hence are still re-
warded when considering a fine-grained grading
scale (100 level). The margin becomes smaller
when comparing in human setting, with the stan-
dard 5-level scale. All the models with pretrained
representations perform poorly. It shows that for
this task, early interaction-based approach is more
suitable than purely based on representation.

6.7 Additional Analysis

We present an anecdotic example of top-selected
entities for Kingsman: The Golden Circle in
Table 4. While the content-based model favors
old relations like the preceding movies, TS-CNN
puts popular actress Halle Berry or the recent re-
leased X-men: Apocalypse on top. The latter
is not ideal as there is not a solid relationship be-
tween the two movies. One implication is that the
two entities are ranked high is more because of the
popularity of themself than the strength of the rela-
tionship toward the source entity. The Trio model
addresses the issue by taking other perspectives
into account, and also balances out the recency
and long-term factors, gives the best ranking per-
formance.

Analysis on decay hyper-parameter. We give
a study on the effect of decay parameter on per-
formance. Figure 5a illustrates the results on
Pearson,; and nDCG@10 for the #rio model. It
can be seen that while nDCG slightly increases,
Pearson score peaks while o in the range [1.5,3.5].
Additionally, we show the convergence analysis
on o for TS-CNN-Att in Figure 6. Bigger o tends
to converge faster, but to a significant higher loss
when o is over 5.5 (omitted from the Figure).

Performances on different entity types. We
demonstrate in Figures 5b and Sc the model per-
formances on the person and event types. WLM
performs poorer for the latter, that can be inter-
preted as link-based methods tend to slowly adapt



Model Pearson x 100 p x 100 | nDCG (proxy) nDCG (human)
@10 | @30 | @50 [ all all @3 [ @I0 [ @20 | @3 [ @I0 | @20
WLM 27.6 283 240 194 121 063 059 062 050 0.46 0.52
£ RankSVM 285 347 314 207 275 065 061 064 052 0.61 0.65
£ Entity2Vec 186 220 21.8 205 187 062 060 061 054 0.53 0.54
% DeepWalk 313 309 214 17.6 10.1 041 043 047 034 0.38 0.45
& ParaVecs-DBOW 186 220 218 205 16.0 062 060 061 050 0.50 0.55
ParaVecs-DM 190 230 232 223 183 066 063 063 049 0.52 0.58
TS-CNN 519 51.0 430 358 265 041 043 047 040 0.43 0.48
£ TS-CNN-Att (Base) 579 497 447 371 2409 043 044 049 038 0.45 0.50
% Base+PV 60.6 442 414 364 112 041 043 047 049 0.51 0.55
2 Base+DW 435 365 357 327 310 044 048 053 047 0.51 0.52
; Base+PV+DW 569 46.1 434 329 284 041 044 048 049 0.54 0.57
E Contentgp+Graphg,,, 489 40.1 499 375 279 067 062 070 0.61 0.69 0.65
= Base+Contentg,,;, 67.1 542 534 437 265 0.67 0.69 071 0.61 0.72 0.74
Base+Graphg 552 502 413 315 355 071 075 078 0.657 0.78F 0.81F
Trio 586 543 502 454 435 075 0.78 0.83 0.747 0.82T 0.85T

Table 3: Performance of different models on task (1) Pearson, Spearman’s p ranking correlation, and
task (2) recommendation (measured by nDCG). Bold and underlined numbers indicate best and second-
to-best results. = shows statistical significant over WLM (p < 0.05).
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Figure 5: Performance results for variation of decay parameter and different entity types.
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Figure 6: Convergence of decay parameters.

for recent trending entities. The temporal models
seem to capture these entites better.

7 Conclusion

In this work, we presented a trio neural model to
solve the dynamic entity relatedness ranking prob-
lem. The model jointly learns rich representations
of entities from textual content, graph and tempo-
ral signals. We also propose an effective CNN-
based attentional mechanism for learning the tem-
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Models
PV-DM TS-CNN-Att Temp+PV Trio
Secret Service Halle Berry Elton John Mark Strong
Spider-Man X-Men Taron Egerton Jeff Bridges
Taron Egerton Jeff Bridges Edward Holcroft ~ Julianne More

Table 4: Different top-k rankings for entity Kings-
man. The Golden Circle. Italic means irrelevance.

poral representation of an entity. Experiments
on ranking correlations and top-k recommenda-
tion tasks demonstrate the effectiveness of our ap-
proach over existing baselines. For future work,
we aim to incorporate more temporal signals, and
investigate on different ‘trainable’ attention mech-
anisms to go beyond the time-based decay, for in-
stance by incorporating latent topics.

Acknowledgments. This work is funded by the
ERC Advanced Grant ALEXANDRIA (grant no.
339233). We thank the reviewers for the sugges-
tions on the content and structure of the paper.



References

Nitish Aggarwal and Paul Buitelaar. 2014. Wikipedia-
based distributional semantics for entity relatedness.
In 2014 AAAI Fall Symposium Series.

Roi Blanco, Berkant Barla Cambazoglu, Peter Mika,
and Nicolas Torzec. 2013. Entity recommendations
in web search. In ISWC, pages 33—48. Springer.

Diego Ceccarelli, Claudio Lucchese, Salvatore Or-
lando, Raffaele Perego, and Salvatore Trani. 2013.
Learning relatedness measures for entity linking. In
Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management,
pages 139-148. ACM.

Weiwei Cheng, Eyke Hiillermeier, Willem Waegeman,
and Volkmar Welker. 2012. Label ranking with
partial abstention based on thresholded probabilistic
models. InF. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 2501-2509.
Curran Associates, Inc.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
539-546. IEEE.

Andrew M Dai, Christopher Olah, and Quoc V Le.
2015. Document embedding with paragraph vec-
tors. arXiv preprint arXiv:1507.07998.

Alexander Dallmann, Thomas Niebler, Florian Lem-
merich, and Andreas Hotho. 2016. Extracting se-
mantics from random walks on wikipedia: Compar-
ing learning and counting methods.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of
the 20th International Joint Conference on Artifical
Intelligence, IJICAT’07, pages 1606—1611, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Evgeniy Gabrilovich and Shaul Markovitch. 20009.
Wikipedia-based semantic interpretation for natural
language processing. Journal of Artificial Intelli-
gence Research, 34:443-498.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and
statistics, pages 249-256.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model
for ad-hoc retrieval. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 55-64. ACM.

40

Zhaochen Guo and Denilson Barbosa. 2014. Robust
entity linking via random walks. In Proceedings of
the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management,
pages 499-508. ACM.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
Kore: keyphrase overlap relatedness for entity dis-
ambiguation. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge
management, pages 545-554. ACM.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,
and Eric Xing. 2015. Entity hierarchy embedding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), vol-
ume 1, pages 1292-1300.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Conference on informa-
tion & knowledge management, pages 2333-2338.
ACM.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
Conference on Machine Learning, pages 448—456.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao
Chang, Sujian Li, and Zhifang Sui. 2016. Towards
time-aware knowledge graph completion. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1715-1724.

Changsung Kang, Dawei Yin, Ruigiang Zhang, Nico-
las Torzec, Jianzhang He, and Yi Chang. 2015.
Learning to rank related entities in web search. Neu-
rocomputing, 166:309-318.

Nattiya Kanhabua, Tu Ngoc Nguyen, and Claudia
Niederée. 2014. What triggers human remember-
ing of events? a large-scale analysis of catalysts
for collective memory in wikipedia. In Digital Li-
braries (JCDL), 2014 IEEE/ACM Joint Conference
on, pages 341-350. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning, pages

1188-1196.

Tao Lin, Tian Guo, and Karl Aberer. 2017. Hybrid neu-
ral networks for learning the trend in time series.



Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Advances in Neural
Information Processing Systems, pages 1367—1375.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Iris Miliaraki, Roi Blanco, and Mounia Lalmas. 2015.
From selena gomez to marlon brando: Understand-
ing explorative entity search. In Proceedings of the
24th International Conference on World Wide Web,
pages 765—775. International World Wide Web Con-
ferences Steering Committee.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231—
244.

Tu Ngoc Nguyen, Nattiya Kanhabua, and Wolfgang
Nejdl. 2018. Multiple models for recommending
temporal aspects of entities. In The Semantic Web
- 15th International Conference, ESWC 2018, Her-
aklion, Crete, Greece, June 3-7, 2018, Proceedings,
pages 462—480.

Yuan Ni, Qiong Kai Xu, Feng Cao, Yosi Mass, Dafna
Sheinwald, Hui Jia Zhu, and Shao Sheng Cao.
2016. Semantic documents relatedness using con-
cept graph representation. In Proceedings of the
Ninth ACM International Conference on Web Search
and Data Mining, WSDM 16, pages 635-644, New
York, NY, USA. ACM.

Francisco Javier Ordéfiez and Daniel Roggen. 2016.
Deep convolutional and Istm recurrent neural net-
works for multimodal wearable activity recognition.
Sensors, 16(1):115.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 701-710. ACM.

Marco Ponza, Paolo Ferragina, and Soumen
Chakrabarti. 2017. A two-stage framework for
computing entity relatedness in wikipedia. In
Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
"17, pages 1867-1876, New York, NY, USA. ACM.

Nam Khanh Tran, Tuan Tran, and Claudia Niederée.
2017. Beyond time: Dynamic context-aware entity
recommendation. In European Semantic Web Con-
ference, pages 353-368. Springer.

41

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998—-6008.

Tan H Witten and David N Milne. 2008. An effective,
low-cost measure of semantic relatedness obtained
from wikipedia links.

Wenpeng Yin, Hinrich Schiitze, Bing Xiang, and
Bowen Zhou. 2016. Abcnn: Attention-based convo-
Iutional neural network for modeling sentence pairs.
Transactions of the Association of Computational
Linguistics, 4(1):259-272.

Xiao Yu, Hao Ma, Bo-June Paul Hsu, and Jiawei Han.
2014. On building entity recommender systems us-
ing user click log and freebase knowledge. In Pro-
ceedings of WSDM, pages 263-272. ACM.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing
Xie, and Wei-Ying Ma. 2016a.  Collaborative
knowledge base embedding for recommender sys-
tems. In Proceedings of the 22nd ACM SIGKDD in-
ternational conference on knowledge discovery and
data mining, pages 353-362. ACM.

Lei Zhang, Achim Rettinger, and Ji Zhang. 2016b.
A probabilistic model for time-aware entity recom-
mendation. In International Semantic Web Confer-
ence, pages 598—614. Springer.

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015. Rep-
resentation learning for measuring entity relatedness
with rich information. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon
Zhao. 2014. Time series classification using multi-
channels deep convolutional neural networks. In
International Conference on Web-Age Information
Management, pages 298-310. Springer.



A Unified Neural Network Model for Geolocating Twitter Users

Mohammad Ebrahimi, Elaheh ShafieiBavani, Raymond Wong, Fang Chen
University of New South Wales, Sydney, Australia
Data61 CSIRO, Sydney, Australia
{mohammade, elahehs, wong, fang}@cse .unsw.edu.au

Abstract

Locations of social media users are impor-
tant to many applications such as rapid disas-
ter response, targeted advertisement, and news
recommendation. However, many users do
not share their exact geographical coordinates
due to reasons such as privacy concerns. The
lack of explicit location information has mo-
tivated a growing body of research in recent
years looking at different automatic ways of
determining the user’s primary location. In
this paper, we propose a unified user geoloca-
tion method which relies on a fusion of neural
networks. Our joint model incorporates dif-
ferent types of available information includ-
ing tweet text, user network, and metadata to
predict users’ locations. Moreover, we uti-
lize a bidirectional LSTM network augmented
with an attention mechanism to identify the
most location indicative words in textual con-
tent of tweets. The experiments demonstrate
that our approach achieves state-of-the-art per-
formance over two Twitter benchmark geolo-
cation datasets. We also conduct an abla-
tion study to evaluate the contribution of each
type of information in user geolocation perfor-
mance.

1 Introduction

Knowing physical locations involved in social me-
dia data helps us to understand what is happening
in real life, to bridge the online and offline worlds,
and to develop applications for supporting real-life
demands. For example, we can monitor public
health of residents (Cheng et al., 2010), recom-
mend local events (Yuan et al., 2013) or attractive
places (Noulas et al., 2012) to tourists, identify
locations of emergency (Ao et al., 2014) or even
disasters (Lingad et al., 2013), and summarize re-
gional topics (Rakesh et al., 2013). Even though
platforms such as Twitter allow users to geolocate
their posts to reveal their locations either manually
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or with the help of GPS, it is reported that less than
1% of Twitter data has geo-coordinates provided
(Jurgens, 2013). Moreover, location information
on Twitter is far from being complete and accu-
rate. For instance, self-declared home information
in many user profiles is inaccurate or even invalid
(Hecht et al., 2011). The lack of explicit location
information in the majority of tweets has moti-
vated a growing body of research in recent years
looking at different automatic ways of determining
the user’s primary location (i.e.,user geolocation)
and/or - as a proxy for the former - the location
from which tweets have been posted (Ajao et al.,
2015).

Geolocation methods usually train a model on
a small set of users whose locations are known
(e.g., through GPS-based geotagging), and pre-
dict locations of other users using the resulting
model. These models broadly fall into three cat-
egories: text-based (Eisenstein et al., 2010; Wing
and Baldridge, 2011; Roller et al., 2012), network-
based (Jurgens, 2013; Compton et al., 2014; Jur-
gens et al., 2015), and hybrid methods that com-
bine text, user network, and metadata information
(Rahimi et al., 2015b,a; Jayasinghe et al., 2016;
Miura et al., 2016) with the aim of achieving state-
of-the-art performance.

In this paper, we present a neural network-based
system that we developed for user geolocation in
Twitter. Our model combines different sources
of information including tweet text, metadata, and
user network. We employ a neural network model
to generate a dense vector representation for each
field and then use the concatenation of these rep-
resentations as the feature for classification. Our
main contributions can be summarized as follows:

1. We propose a unified user geolocation
method that relies on a fusion of neural net-
works, incorporating different types of avail-
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able information: tweet message, users’ so-
cial relationships, and metadata fields embed-
ded in tweets and profiles.

. For modeling the tweet text (and textual
metadata fields), we use bidirectional Long
Short-Term Memory (LSTM) networks aug-
mented with a context-aware attention mech-
anism (Yang et al., 2016), which helps to
identify the most location indicative words.

Through the empirical studies on two stan-
dard Twitter datasets, we demonstrate that the
proposed method outperforms other state-of-
the-art approaches in addressing the problem
of user geolocation.

We train an individual model for each infor-
mation field, and analyze the contribution of
each component in the geolocation process.

The rest of the paper is organized as follows.
We review the related work in Section 2. Utilized
data is described in Section 3. Section 4 explains
the proposed approach. The experimental results
are given in Section 5, and finally, we conclude
the paper and outline possible future work in Sec-
tion 6.

2 Related Work
2.1 Text-based Methods

Text-based methods utilize the geographical bias
of language use in social media for geolocation.
These methods have widely used probability dis-
tributions of words over locations. Maximum
likelihood estimation approaches (Cheng et al.,
2010, 2013) and language modeling approaches
minimizing KL-divergence (Roller et al., 2012)
have succeeded in predicting user locations using
word distributions. Topic modeling approaches
to extract latent topics with geographical regions
(Eisenstein et al., 2010; Hong et al., 2012; Ahmed
et al., 2013; Yuan et al., 2013) have also been ex-
plored considering word distributions.

Supervised learning methods with word fea-
tures are also popular in text-based geoinfer-
ence. Multinomial Naive Bayes (Han et al.,
2012, 2014; Wing and Baldridge, 2011), logis-
tic regression (Wing and Baldridge, 2014; Han
etal., 2014), hierarchical logistic regression (Wing
and Baldridge, 2014), and multi-layer neural net-
work with stacked denoising autoencoder (Liu and
Inkpen, 2015) have realized geolocation predic-
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tion from text. A semi-supervised learning ap-
proach has been proposed by Cha et al. (2015)
using a sparse-coding and dictionary learning.
Hulden et al. (2015) have used a kernel-based
method to smooth linguistic features over very
small grid sizes and consequently alleviate data
sparseness. Chi et al. (2016) have employed
Multinomial Naive Bayes and focused on the use
of textual features (i.e., location indicative words,
GeoNames gazetteers, user mentions, and hash-
tags) for geolocation inference. More recently,
Rahimi et al. (2017b) have proposed a neural
network-based geolocation approach. They used
the parameters of the hidden layer of the neural
network as word and phrase embeddings, and per-
formed a nearest neighbor search on a sample of
city names and dialect terms.

While having good results, text-based ap-
proaches are often limited to those users who gen-
erate text that contains geographic references (Ju-
rgens, 2013).

2.2 Network-based Methods

Network-based methods rely on the geospatial ho-
mophily of interactions (of several kinds) between
users. An early work by Davis Jr et al. (2011)
proposed an approach in which the location of a
given user is inferred by simply taking the most-
frequently seen location among its social network.
Jurgens (2013) have extended the idea of loca-
tion inference as label propagation over some form
of friendship graph by interpreting location labels
spatially. Locations are then inferred using an iter-
ative, multi-pass procedure. This method has been
further extended by Compton et al. (2014) to take
into account edge weights in the social network,
and to limit the propagation of noisy locations.
They weigh locations as a function of how many
times users interacted there, hence favoring loca-
tions of friends with evidence of a close relation-
ship. Jurgens et al. (2015) have released a frame-
work for nine network-based geolocation methods
targeting Twitter.

The main limitation of network-based models
is that they completely fail to geolocate users who
are not connected to geolocated components of the
graph (i.e., isolated users).

2.3 Hybrid Methods

Several attempts have been made to combine dif-
ferent sources of information for geolocating so-
cial media users. Li et al. (2012) have proposed a



geolocation method by integrating both friendship
and content information in a probabilistic model.

Rahimi et al. (2015b) showed that geolocation
predictions from text can effectively be used as
a back-off for disconnected users in a network-
based approach. In another work by Rahimi et al.
(2015a), a hybrid approach has been proposed by
propagating information on a graph built from user
mentions in Twitter messages, together with don-
gle nodes corresponding to the results of a text-
based geolocation method. Ebrahimi et al. (2017,
2018b) have presented a hybrid approach by in-
corporating both text and network information,
and shown that the filtering of highly mentioned
users in the social graph can improve the geolo-
cation performance. Rahimi et al. (2017b) have
proposed a text geoloation method based on neu-
ral network and incorporated it into their network-
based approach (Rahimi et al., 2015a). Wang et al.
(2017) have introduced a collective geographical
embedding algorithm to embed multiple informa-
tion sources into a low dimensional space, such
that the distance in the embedding space reflects
the physical distance in the real world.

Metadata such as location fields have also been
used as effective clues to predict the user’s location
(Hecht et al., 2011). Different geoinference ap-
proaches have been proposed to consider text and
metadata information simultaneously, such as dy-
namically weighted ensemble method (Mahmud
et al., 2012), and stacking approach (Han et al.,
2014). Jayasinghe et al. (2016) have proposed
a cascade ensemble approach by combining text-
based, metadata-based, and network-based ge-
olocation methods. Additionally, their approach
makes use of several dedicated services, such
as GeoNames gazetteers, time zone to GeoName
mappings, IP country resolver and customized
scrapers for social media websites.

Miura et al. (2016) have trained a neural net-
work utilizing the fastText n-gram model (Joulin
et al., 2016) on tweet text, user location, user de-
scription, and user timezone. They have utilized
several mapping services using external resources,
such as GeoNames and time zone boundaries for
feature preprocessing. This model has been fur-
ther extended by Miura et al. (2017) to also con-
sider user network information for geolocation.

Thomas and Hennig (2017) have proposed a ge-
olocation method that relies on the combination
of individual neural networks trained on text and
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metadata fields. Ebrahimi et al. (2018a) have pro-
posed a word embedding-based approach to pre-
dict the geographic proximity of connected users
in the social graph based on their linguistic simi-
larities. The calculated similarity scores have been
used for weighting edges between users in the
graph. Tweet content and metadata is also com-
bined with an ensemble learning method to geolo-
cate isolated users in the graph.

3 Data

We have used two benchmark Twitter geolocation
datasets in our experiments:

e TWITTERUS is a dataset compiled by
(Roller et al., 2012), which contains 38M
tweets from 450K users in the United States.
Out of 450K users, 10K are reserved for the
development set and another 10K for the test
set. The ground truth location of each user is
set to its first geotag in the dataset. To make
city prediction possible in this dataset, we
additionally assigned city centers to ground
truth geotags using the city category of Han
et al. (2012).

WNUT is a user-level dataset from the ge-
olocation prediction shared task of WNUT
2016 (Han et al., 2016). The dataset covers
13M tweets from 3362 cities worldwide, and
consists of 1M training users, 10K develop-
ment users, and 10K test users. The ground
truth location of a user is decided by majority
voting of the closest city center.

Note that the metadata of a tweet includes not
only the tweet message (text) but also a variety
of information such as tweet publication time, and
user account data such as location and timezone.
The organizers have provided full metadata for the
test sets but only the tweet IDs for training and
development sets. We collect metadata for train-
ing/development tweets using the Twitter API',

4 The Proposed Approach

Figure 1 illustrates an overview of the proposed
model for user geolocation. We make use of
the following sources of information to train our
model: 1) Tweet text; 2) User network; and 3)

'We were able to obtain approximately 71-75% of the
full datasets. The remaining tweets are no longer available,
mainly because users deleted these messages and/or accessi-
bility changes in Twitter.



Metadata including user-declared location, user
description, user name, timezone, user language,
tweet creation time, user UTC offset, links (URL
domains), and application source.

Each field is processed by a separate sub-
network to generate a feature vector representation
R;. These feature vectors are then concatenated
to build a final user representation R which is fed
into a linear classification layer:

R=Ri|..| Ry (1)

r = softmaz(W,R + b,) (2)

where N is the number of features (11 in total),
r € R is the hidden representation at the penul-
timate layer. W, is a weight matrix and b, is a
bias vector. r is fully connected to the output layer
and activated by softmax to generate a probabil-
ity distribution over the classes. We employ the
cross-entropy loss as the objective function. Let
M be the number of examples (i.e., users) and c
be the number of classes (i.e., regions), then the
cross-entropy loss is defined by:

M ¢
L==>"> ylog(ii})

i=1 j=1

3)

where y;,i = 1,..., M is the ground-truth vec-
tor, ; is the predicted probability vector, and 7] is
the probability that user ¢ resides in region j. We
minimize the objective function through Stochas-
tic Gradient Descent (SGD) over shuffled mini-
batches with Adam (Kingma and Ba, 2014).

We design several sub-networks to provide vec-
torized representation for each raw field. For
processing the tweet text, we utilize word em-
beddings (Mikolov et al., 2013) and bidirectional
Long Short-Term Memory (LSTM) unit (Hochre-
iter and Schmidhuber, 1997) augmented with a
context-aware attention mechanism (Yang et al.,
2016) (Section 4.1). We construct a @-mention
graph as a representation of users’ interactions,
and utilize this graph to extract the user network.
We then use an embedding layer with attention
mechanism to create the final user network rep-
resentation (Section 4.2).

We divide metadata fields into two classes: tex-
tual, and categorical. For representing textual
metadata fields (i.e., location, description, user
name, and timezone), we use word embeddings
and bidirectional LSTM networks with attention
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mechanism. We treat other metadata fields (lan-
guage, tweet time, UTC offset, links, and source)
as categorical features, and convert them to one-
hot encodings which are then fed forward to a
dense layer (Section 4.3). In the following sub-
sections, we describe details of each component.

4.1 Text Component

Figure 2(a) demonstrates the architecture of text
sub-network. It takes the sequence of words in
the tweet T {wi,wa,...,w,} as input. An
embedding layer is used to project the words to
a low-dimensional vector space RY, where F is
the size of the embedding layer. We initialize
the weights of the embedding layer using our pre-
trained word embeddings (Section 5.1). The em-
beddings of tweet words are then forwarded to
an LSTM layer. An LSTM takes as input the
words of a tweet and produces the word annota-
tions H = (hy, ha, ..., hy,), where h; is the hidden
state of the LSTM at time-step 4, summarizing all
the information of the sentence up to w;. We use
bidirectional LSTM (BiLSTM) in order to get an-
notations for each word that summarize the infor-
mation from both directions of the message. A
bidirectional LSTM consists of a forward LSTM,

, that reads the sentence from w; to wp, and a
backward LSTM, ?, that reads the sentence from
wr to wi. We obtain the final annotation for each
word w;, by concatenating the annotations from
both directions:

hi = by || b, hi € R2E @)

where || denotes the concatenation operation and
L the size of each LSTM. In order to amplify
the contribution of important words in the final
representation, we use a context-aware attention
mechanism (Yang et al., 2016), that aggregates all
the intermediate hidden states using their relative
importance. An attention mechanism assigns a
weight a; to each word annotation, which reflects
its importance. We compute the representation of
the tweet text, Rc.t, as the weighted sum of all the
word annotations using the attention weights. This
attention mechanism introduces a context vector
up, that helps to identify the informative words and
it is randomly initialized and jointly learned with
the rest of the attention layer weights. Formally,
Ryert 1s defined as:

IT|
L
Ricwt = Zaihi7 Rieat € RZ

i=1

(&)



(

Output layer

)

r (000000000 00) Dense + softrmax

R (0000000000000 0000) Merge

User Network sub-network

g Attention

2 LSTM

2

]

<

-§ word network
k4 embedding embedding
)

-

user network

Metadata sub-network

O O O O R categorical
7'y

one-hot
encoding

000000

word Y

embedding

« language

« tweet time
« UTC offset
« links

categorical fields
e Source

« location
« description
« user name

« timezone
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where W}, by, and uy, are the layer’s weights.

We use batch normalization (Ioffe and Szegedy,
2015) for normalizing inputs in order to reduce
internal covariate shift. The risk of overfitting
by co-adapting units is reduced by implementing
dropout (Srivastava et al., 2014) between individ-
ual neural network layers.

4.2 User Network Component

As a representation of users’ social relationships,
we construct an undirected graph from interac-
tions among Twitter users based on @-mentions in
their tweets (Rahimi et al., 2015b). In this graph,
nodes are all users in the dataset (train and test),
as well as other external users mentioned in their
tweets, and undirected edges are created between
two users if either user mentioned the other. This
unidirectional setting results in large numbers of
edges. To make the process more tractable, we
remove all nodes corresponding to external users
with degree less than 3 (i.e., external users who
have been mentioned by less than 3 different users
in a training set).
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Figure 2(b) illustrates an overview of the user
network component. After filtering the graph, we
consider the adjacent nodes (i.e., immediate linked
users) of each training user as its network. The
user network N = {uq,ug, ..., u,} is given as in-
put to an embedding layer. Embedding of user
network En = (ey,ea,...,ey) is then fed to an
attention layer to compute the final representation
of user network, R,,ctwork:

T
o R2L
Ruetwork = a;€q, Ryctwork € (8
i=1

where a; is the weight assigned to embedding e;
by the attention mechanism (Equation 6).

4.3 Metadata Component

According to (Guo and Berkhahn, 2016), the em-
beddings of categorical variables can reduce the
network size while capturing the intrinsic proper-
ties of the categorical variables. Hence, we con-
vert metadata fields with a finite set of elements
(UTC offset, links, user language, tweet publi-
cation time, and application source) to one-hot
encodings, which are then forwarded to a dense
layer with Rectified Linear Units (ReLLU) activa-
tion function.

The user UTC offset is an integer in seconds
representation (e.g., —18000), and the tweet publi-
cation time is given in UTC time , e.g., Fri Mar 02
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Figure 2: Architectures of the proposed sub-networks for (a) Tweet text, and (b) User network

element-wise addition.

12:19:40 +0000 2012. We convert user UTC offset
into hours representation (e.g., —18000/3600 =
—5). For tweet publication time, we use only time
of the day information (e.g., 12:19) and split it into
multiple bins. Specifically, we interpret every 10
minutes as a bin (144 bins in total). The intuition
is that tweets originated from a particular location
(e.g., Germany) favor certain bins, and this prefer-
ence of bins should be different to tweets from a
distant location (e.g., Japan) (Lau et al., 2017).
For metadata fields containing texts (i.e., user
description, user location, user name, and time-
zone), we use an embedding layer and conse-
quently forward the results to an LSTM layer. The
attention mechanism is also employed to provide
the final representation of textual metadata fields.
Again batch normalization and dropout is applied
between individual layers to avoid overfitting.

5 Experimental Results

5.1 Experiment Settings

In the text sub-network, words are input to the
model as n-dimensional word embeddings. We
pre-trained word embeddings using word2vec
(Mikolov et al., 2013) over tweet text of the full
training data. The model was trained using the
Skip-gram architecture and negative sampling (k
= 5) for five iterations, with a context window
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of 5 and subsampling factor of 0.001. It is note-
worthy that to be part of the vocabulary, words
should occur at least five times in the corpus. We
chose word embeddings of size 200/300 for TWIT-
TERUS/WNUT datasets because smaller embed-
dings experimentally showed to capture not as
much detail and resulted in a lower accuracy.
Larger word embeddings, on the other hand, made
the model too complex to train. In the preprocess-
ing step, we used replacement tokens for URLs,
mentions and numbers. However, we did not re-
place hashtags as doing so experimentally demon-
strated to decrease the accuracy.

The layers and the embeddings in our sub-
networks have parameters like embedding dimen-
sion, LSTM unit size, and attention context vector
size. We chose optimal values for these parame-
ters in terms of accuracy with a grid search using
the development sets of TwitterUS and WNUT.
The selected parameters values are reported in Ta-
ble 1. It should be noted that the main reason
for selecting smaller values for the TWITTERUS
dataset is its larger size (in terms of tweet num-
ber) comparing to the WNUT dataset. We set the
hyper-parameters of our final model as follows:
batch size = 256, learning rate = 0.001, epochs =
5. The dropout rate between layers is set to 0.2.



Model Embedding size LSTM unit size Attention vector size
TwittertUS ~ WNUT TwittertUS ~ WNUT TwitterUS WNUT
Tweet text 200 300 100 200 200 400
User network 200 400 100 200 200 400
Location 100 200 100 200 200 400
Description 100 200 100 200 200 400
User name 100 200 100 200 200 400
Timezone 100 200 100 200 200 400

Table 1: Parameter settings of the proposed models.

5.2 Evaluation Metrics

We evaluate our approach in the following three
commonly used metrics for user geolocation:

e Acc@]61: The percentage of predicted loca-
tions which are within a 161km (100 mile)
radius of the actual location (Cheng et al.,
2010). This metric is a proxy for accuracy
within a metro area.

Mean error: The mean value of error
distances in predicted locations (Eisenstein
etal., 2010).

e Median error: The median value of error dis-
tances in predictions (Eisenstein et al., 2010).

Note that higher numbers are better for Acc@161
but lower numbers are better for mean and median
erTors.

5.3 Results

Table 2 presents the performance of user geolo-
cation methods over TWITTERUS and WNUT?
datasets.

The results show that our proposed method
achieves the best performance in terms of all eval-
uation metrics. The main reason is the effective
representation of text, metadata, and network in-
formation, and unifying them through a fusion of
neural networks.

5.4 Ablation Study

To evaluate the contribution of each component in
indicating the user’s location, we train an individ-
ual neural network model for each field. To this
end, we feed the final representation of each sub-
network to a fully-connected dense layer, activated

2For WNUT, we have reported the results of participating
teams in user-level location prediction task.
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by softmax function. We use stochastic gradi-
ent descent over shuffled mini-batches with Adam
(Kingma and Ba, 2014) and cross-entropy loss as
objective function for classification. The parame-
ters of all models are set as follows: batch size =
256, epochs = 5, dropout=0.2, and learning rate =
0.001. Table 3 shows the performance breakdown
for each model over the WNUT dataset.

The results conclude that user-declared loca-
tion in tweet metadata is the most informative
field for geolocating users, and model trained on
this source achieves the best single source perfor-
mance. This model can correctly geolocate 44.9%
of users with a median error of 41.0km.

Using only tweet text, our model can predict
the correct location for 34.9% of all users with a
median error of 169.3km. It is noteworthy that
this model outperforms the text-based approach
IBM.1 (Chi et al., 2016) in terms of all metrics
by a large margin.

User network model can correctly geolocate
only 18.4% of users. However, our experiments
show that excluding user network information de-
clines the performance of the final model in terms
of accuracy by 5.1%. Models using other meta-
data fields provide an accuracy between 2.7% to
10.6%, with description field being the most in-
formative one. Tweet publication time, on the
other hand, has the minimum accuracy in predict-
ing user’s location. However, mining the tempo-
ral patterns of users’ posting habits can potentially
provide useful information for geolocation infer-
ence.

We have also reported the results of our model
when it takes only the metadata fields as inputs.
The metadata-based model can correctly geolocate
46.1% of the users with a mean error of 1318.3km,
and a median error of 37.9km. It shows the ef-



TwWITTERUS

WNUT

Category Acc@161 Mean Median Accuracy Acc@161 Mean Median

WB-UNIFORM (Wing and Baldridge, 2014)  TB 49 703 170 - - - -
WB-KDTREE (Wing and Baldridge, 2014) TB 48 686 191 - - - -
MDN-SHARED (Rahimi et al., 2017a) TB 42 655 216 - - - -
MLP+KDTREE (Rahimi et al., 2017b) TB 54 562 121 - - - -
MLP+K-MEAN (Rahimi et al., 2017b) TB 55 581 91 - - - -
LP-RAHIMI (Rahimi et al., 2015b) NB 37 747 431 - - - -
LP-NA (Rahimi et al., 2016) NB 50 610 144 - - -
MADCELB (Rahimi et al., 2015a) NB 54 709 117 - - - -
MADCELW (Rahimi et al., 2015a) NB 54 705 116 - - - -
LP-LR (Rahimi et al., 2015b) Hyb 50 620 157 - - - -
MADCELW-LR (Rahimi et al., 2015a) Hyb 60 529 78 - - - -
MADCELW-MLP (Rahimi et al., 2017b) Hyb 61 515 77 - - - -
GEOCEL-BK (Ebrahimi et al., 2017) Hyb 66 438 56 - - - -
DREXEL.2 ? - - - 7.9 - 6161.4 4000.2
DREXEL.1 ? - - - 8.0 - 6053.3 5714.9
AIST ? - - - 9.8 - 4002.4 1711.1
IBM.1 (Chi et al., 2016) TB - - - 22.5 - 2860.2 630.2
DREXEL.3 ? - - - 352 - 31244 2627
FuJIXEROX.3 (Miura et al., 2016) Hyb - - - 45.1 - 10843 28.2
FUJIXEROX.1 (Miura et al., 2016) Hyb - - - 46.4 - 963.8 21.0
FUIIXEROX.2 (Miura et al., 2016) Hyb - - - 47.6 - 1122 16.1
CSIRO.3 (Jayasinghe et al., 2016) Hyb - - - 50.1 - 22424  30.6
CSIRO.2 (Jayasinghe et al., 2016) Hyb - - - 52.0 - 2071.5 23.1
CSIRO.1 (Jayasinghe et al., 2016) Hyb - - - 52.6 - 1929  21.7
THOMAS (Thomas and Hennig, 2017) Hyb - - - 53.0 - 839 14.9
PROPOSED APPROACH Hyb 70.8 313.2 40.1 56.7 72.3 731.5 0

Table 2: Performance of Text-based (TB), Network-based (NB), and Hybrid (Hyb) geolocation methods
over TWITTERUS and WNUT datasets (- signifies that no results were published for the given dataset,
and ”?” signifies that the participant team has not provided descriptions of the proposed system). We have
also reported the Accuracy of our proposed approach on WNUT dataset to make our results comparable

with the existing methods.

fectiveness of utilized metadata fields for user ge-
olocation. Meanwhile, a deeper analysis of meta-
data fields can further improve the performance
of user location prediction. As an example, cus-
tomized scrapers for social media websites like
FourSquare, Swarm, Path, Facebook, and Insta-
gram can be employed as described by (Jayas-
inghe et al., 2016) to increase the geolocation ac-
curacy.

5.5 Error Analysis

As reported in Table 2, our proposed approach
achieves quite low median errors over the TWIT-
TERUS and WNUT datasets (i.e., 40.1km and
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Okm, respectively). However, there are some cases
with large error distances, which make the mean
errors much larger than median errors. Our analy-
sis shows that some notable error distances are re-
lated to the following cases: (1) Users from remote
areas for which less supervisions are available;
(2) Users from small cities/states are misclassi-
fied to be in the neighboring larger cities/states; (3)
Users from some neighboring cities/states are also
misclassified between the two cities/states, which
might be the result of business and entertainment
connections between them.

Our ablation study demonstrates that the loca-
tion field highly contributes to the geolocation per-



Model Accuracy Mean Median
Tweet text 34.9 1674.1 169.3
User network 18.4 2551.7 789.8
Metadata fields 46.1 1318.3 37.9
- Location 449 3515.0 41.0
- Description 10.6 5540.7  3005.4
- Timezone 6.4 5203.6  5181.0
- User name 6.1 5836.1  3966.7
- UTC offset 53 63059 37278
- User language 4.6 9077.1 8585.4
- Links 4.5 65432  6691.6
- Source application 4.4 6950.3  6937.7
- Tweet time 2.7 11138.3 10165.5

Table 3: Performance breakdown for each compo-
nent over WNUT dataset

formance. However, some prediction errors arise
when location fields are incorrect. We found two
main cases that result in incorrect location fields:
(1) Users who move to a new place (i.e., house) but
do not update their locations; (2) Users who visit a
new place (e.g., as tourists) and temporarily update
their locations. Our proposed model cannot handle
these types of errors, since it only supports single
location field. A future direction is to extend the
current architecture to track location changes and
deal with temporal states such as traveling.

Previous network-based methods (Jurgens,
2013; Compton et al., 2014) have demonstrated
the effectiveness of users’ social relationships for
geolocation inference. However, our ablation
study shows relatively low accuracy for the user
network component. One main reason is that our
model is less sophisticated (but more scalable)
comparing to the mentioned network-based meth-
ods, since it only considers the immediate con-
nected nodes as the network for each user. As
a future work of this study, node/graph embed-
dings such as DeepWalk (Perozzi et al., 2014) can
be employed to provide better representation of
users’ social relationships, and consequently im-
prove the accuracy of network component.

6 Conclusion and Future Work

In this paper, we have proposed a unified user ge-
olocation method which relies on a fusion of neu-
ral networks. Our joint model effectively utilizes
different sources of information including tweet
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message, users’ social relationships, and metadata
fields embedded in tweets and profiles. In par-
ticular, we employed a neural network model to
generate a dense vector representation for each in-
formation field and then used the concatenation
of these representations as the feature for classi-
fication. For modeling tweet message and textual
metadata fields, we utilized a bidirectional LSTM
network augmented with an attention mechanism
to identify the most location indicative words.

We have conducted comprehensive experiments
on two standard Twitter geolocation datasets, and
demonstrated that our method achieves the best
performance in terms of all three evaluation met-
rics. In an ablation study, we have also trained
individual models to investigate the usefulness of
each information field in predicting the locations
of Twitter users.

As a future work, it would be intriguing to uti-
lize customized scrapers for social media websites
(Jayasinghe et al., 2016) to further improve the
performance of our geolocation model. It is note-
worthy that the proposed model could be modified
to infer other user demographic attributes such as
gender and age.

Tweet publication time include both date and
time, however, only time information is exploited
in this work to infer users’ geolocations. A fu-
ture direction is to leverage tweeting behavior
over dates for user geolocation. The intuition is
that local residents would occasionally post tweets
about their home city in a long-term manner, while
tourists tend to tweet a lot while visiting the city.
Hence, their different tweeting patterns can be
easily revealed using date information from their
tweet timestamps.
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Abstract

Thematic role hierarchy is a linguistic tool
used to describe interactions between semantic
roles and their syntactic realizations. Despite
decades of dedicated research and numerous
thematic hierarchy suggestions in the litera-
ture, this concept has not been used in NLP so
far due to incompatibility and limited scope of
existing hierarchies. We introduce an empir-
ical framework for thematic hierarchy induc-
tion and evaluate several role ranking strate-
gies on English and German corpus data. We
hypothesize that inducing a thematic hierar-
chy is feasible, that a hierarchy can be induced
from small amounts of data and that resulting
hierarchies apply cross-lingually. We evaluate
these assumptions empirically.

1 Introduction

Semantic roles are one of the core concepts in
NLP, and automatic semantic role labeling (SRL)
is a major task with applications in question an-
swering (Shen and Lapata, 2007), machine trans-
lation (Liu and Gildea, 2010) and information ex-
traction (Christensen et al., 2010). The goal of
SRL is to label the semantic arguments of a pred-
icate (e.g. a verb) with roles from a pre-defined
role inventory. Conceptually, role assignment in
SRL can be split in two steps: local labeling es-
timates the likelihood of a certain semantic argu-
ment bearing a certain role; global optimization
takes context-dependent role interactions into ac-
count and enforces certain theoretically motivated
constraints (e.g. “each role must appear only once
per predication”).

State of the art in SRL is held by the systems
based on deep neural networks (Marcheggiani and
Titov, 2017; He et al., 2017). While achieving
remarkable quality on benchmark datasets, mod-
ern systems show a considerable ~10-point per-
formance drop when applied out-of-domain. This
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issue is aggravated by the fact that deep neural net-
works require significant amounts of training data,
and SRL annotations are expensive to produce.
While local role assignment can be augmented us-
ing unlabeled data (e.g. via pre-trained word and
character embeddings), context-dependent role in-
teraction is an SRL-specific phenomenon and can
only be learned from annotated SRL corpora.

Aiming to reduce the training data requirements
for SRL, we revisit the notion of thematic hierar-
chy (TH), a compact delexicalized way to model
context-dependent role interactions. Thematic hi-
erarchies assume that given a syntactic hierarchy
(e.g. subject <! object < oblique) semantic roles
can be ranked in a way that higher ranked roles
take higher ranked syntactic positions. One exam-
ple of phenomena captured by THs is the choice
of subject: given a thematic hierarchy Agent <

. < Instrument, an Instrument can only
become subject if the Agent is not present, e.g.
“[John]ag broke the window with a [hammer]y,”
— “A [hammer], broke the window”.

THs have received considerable attention in lin-
guistic literature, but were so far impractical for
use in NLP and SRL due to incompatibility and
limited scope of the existing hierarchies. As a first
step towards including THs into the NLP tool in-
ventory we suggest an empirical framework for in-
ducing THs from role-annotated corpora. Since
VerbNet (Schuler, 2006) is the only SRL frame-
work that operates with thematic roles, we choose
it as our basis and perform experiments on the
PropBank corpus (Palmer et al., 2005) enriched
with VerbNet role labels via SemLink (Bonial
etal., 2013).

The contributions of this paper are as follows:

e We suggest a method for global thematic hi-
erarchy induction from corpus data;

'"We use < for rank precedence, and / for ties
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e We propose several thematic and syntactic
ranking models and evaluate them on English
and German data;

We show that thematic hierarchies can be in-
duced and applied cross-lingually while leav-
ing room for improvement; we further show
that thematic hierarchy induction is data-
efficient and can produce a high-quality hi-
erarchy using just a fraction of training data.

2 Related work

2.1 Semantic roles and the Lexicon

Semantic roles in the modern sense have been in-
troduced in 1960s as a way to account for variation
in syntactic behavior of verbs which can not be ex-
plained by purely syntactic means (Gruber, 1965;
Fillmore, 1968). A commonly used motivational
example contrasts the use of verbs hit and break:
while both are regular transitive verbs, hit does not
allow construction (4); and construction (5) is un-
grammatical in both cases.

(1) [John]x broke/hit the [window]y with a
[stone]z.

(2) [John]x broke/hit the [window]y.

(3) A [stone]z broke/hit the [window]y.

(4) The [window]y broke/*hit.

(5) The [window]y *broke/*hit with a [stone].

There exist several principled ways to describe
the syntactic behavior of arguments in the lexicon.
Available constructions can be defined individu-
ally on verb sense basis. This strategy is pre-
cise but highly redundant, since verbs show sub-
stantial similarities in syntactic behavior; besides,
it does not generalize to the out-of-vocabulary
(OOV) predicates.

A step towards a more general representation is
verb class grouping (Levin, 1993): verbs senses
can be grouped into verb classes with syntactic be-
havior shared among the members of the class. For
example, syntactically break behaves like crash,
shred and split, while hit behaves like bash and
whack in the corresponding verb senses. This sig-
nificantly reduces the lexicon redundancy and al-
lows treatment of the OOV verbs if the verb class
can be determined. A similar level of granularity
is used by the major SRL frameworks: FrameNet
SRL (Das et al., 2010) and, to some extent, Prop-
Bank SRL (Roth and Woodsend, 2014).

Semantic arguments share similarities across
verb classes, giving rise to the notion of gen-
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eral semantic roles. While there exists no con-
sensus on the inventory of semantic roles, a sub-
set shared by the most theoretical approaches in-
cludes roles such as Agent (the active sentient
initiator of the event), Theme (the most affected
participant), Result (the outcome of the event),
Instrument (the instrument used) etc. Seman-
tic roles show similar behavior across languages
and can be thought of as grammatically relevant
universal categories humans use to conceptual-
ize real-world events. Following common ter-
minology, we further refer to general, predicate-
independent semantic roles as thematic roles.
This level of granularity is, for example, used by
VerbNet (Schuler, 2006).

Thematic roles’ syntactic behavior depends on
the presence of other thematic roles in the sen-
tence: as our example above demonstrates, an
Instrument can only take the subject posi-
tion if the Agent is not present (3); and Theme
can only become subject if both Agent and
Instrument are not expressed (4-5). A widely
used modeling tool to account for context de-
pendency is the thematic hierarchy (TH): given
a syntactic prominence scale (e.g. subject <
oblique... < object), one can assume that there ex-
ists a universal ranking of thematic roles, which
is homomorphic to the syntactic ranking (e.g.
Agent < Instrument < Theme). The top-
ranking semantic argument gets assigned to the
highest available syntactic position, the second-
ranking gets the second-highest position, etc.

THs are a compact delexicalized way to de-
scribe semantic roles’ syntactic behavior at the
grammar level, which could reduce data require-
ments and improve generalization capability of
SRL systems. However, THs from the literature
come from varying theoretical backgrounds, are
based on different syntactic formalisms and oper-
ate with different role inventories. Most of these
THs are justified via basic (often synthetic) lan-
guage examples, aiming to verify a certain the-
ory cross-lingually rather than to describe the lan-
guage use in a compact way.

2.2 Major SRL Frameworks

The choice of linguistic theory in SRL is mostly
dictated by the availability of training data. Prop-
Bank SRL is based on the PropBank corpus
(Palmer et al., 2005) which utilizes a set of
predicate-specific core roles (A0-5) and a set



of general, predicate-independent adjunct roles
(AM-TMP, AM-LOC etc.). Core roles are defined
on verb sense level. An effort is made to en-
sure consistency in assigning A0 (Agent-like) and
Al (Patient-like). The rest of the core arguments
(A2-5) are verb sense-specific; no finer-grained
distinctions between roles are made.

PropBank annotation is closely tied to syntax.
FrameNet (Baker et al., 1998) takes a different
stance and focuses on accurate and detailed rep-
resentation of event semantics. Verbs (as well as
lexemes from other categories) are grouped into
frames so that members of the same frame share
a set of fine-grained frame-specific semantic roles
(e.g. Impactee, Force, Buyer, Goods).

Both PropBank and FrameNet SRL operate
on the verb sense/verb class generalization level.
VerbNet (Schuler, 2006) groups verbs into Levin-
inspired verb classes and defines sets of general,
lexicon-level thematic roles and constructions for
each class. It is the only SRL formalism that
operates with a thematic role set. VerbNet role
sets and verb class information are mapped to the
PropBank corpus annotations via SemLink (Bo-
nial et al., 2013).

2.3 Thematic roles in SRL

So far only few studies have considered VerbNet-
level granularity in SRL and we are not aware
of SRL systems specifically designed to exploit
the thematic role generalizations. Zapirain et al.
(2008) compare PropBank and VerbNet perfor-
mance using a simple SRL system and conclude
that PropBank labels generally perform better;
however, they do not use any additional mod-
eling possibilities offered by VerbNet’s general,
predicate-independent role set. Loper et al. (2007)
show that replacing verb-specific PropBank roles
A2-5 with the corresponding VerbNet roles im-
proves the SRL performance. Merlo and van der
Plas (2009) report a statistical analysis of Prop-
Bank and VerbNet annotations and conclude that
while PropBank role inventory better correlates
with syntax and is therefore easier to learn, Verb-
Net thematic roles are more informative and bet-
ter generalize to new verb instances. Finally, a
recent comparison on German data by Hartmann
et al. (2017) positions VerbNet inventory above
FrameNet and below PropBank in terms of com-
plexity and generalization capabilities; however,
the experiment is again based on the mateplus sys-
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tem (Roth and Woodsend, 2014) designed with
PropBank generalization level in mind.

2.4 Semantic Proto-Roles

A related line of work is Semantic Proto Role
Labeling (SPRL) (Reisinger et al., 2015; White
et al., 2017) which, following Dowty (1991), dis-
cards the notion of atomic semantic role inven-
tory and replaces it with Proto-Agent and
Proto—-Patient property sets. While our
study utilizes traditional atomic role inventories,
we see SPRL as a compatible parallel line of work
and believe that additional benefits can be gained
by combining the two views on syntax-semantics
interface. In particular, Reisinger et al. (2015)
investigate the alignment between Dowty-style
role properties and VerbNet thematic roles and
show that VerbNet Agent s tend to bear Dowty’s
instigated, awareness and volitional
properties, while Themes are more likely to
change posession, change state, etc.

2.5 Thematic hierarchies

Numerous THs have been proposed in the linguis-
tic literature, e.g. Agent < Instrument <
Theme (Fillmore, 1968); see (Levin and Rappa-
port Hovav, 2005) for an overview. These hierar-
chies are rarely applicable for NLP since they orig-
inate from different theoretical backgrounds and
are usually focused on a narrow set of linguistic
phenomena (e.g. subject selection), aiming to pro-
vide a cross-linguistically valid hierarchy based on
a set of manually constructed examples. In con-
trast, our approach is data-driven and aims to de-
scribe the general syntactic behavior of thematic
roles. While an optimal TH that would success-
fully describe semantic roles’ behavior across lan-
guages might not exist (and would imply the exis-
tence of a universal role inventory and grammar),
our evidence suggests that this concept is at least
partially applicable.

To the best of our knowledge, there exists
no prior work explicitly aiming at discovering
thematic hierarchies in corpora. However, the
hierarchy-related effects are reported in some
studies. For example, White et al. (2017) observe
on a reduced role set that VerbNet roles dispre-
fer the violations of thematic/syntactic hierarchy
alignment. Sun et al. (2009) experiment on the-
matic rank prediction for PropBank A0 and A1,
but extend their analysis neither to VerbNet the-
matic roles, nor to the PropBank A2-5.



2.6 Syntactic formalisms

Cross-lingual applicability has traditionally been
a strong component in semantic role theory, and
universality is one of the common desiderata for a
thematic hierarchy. This, however, implies the ex-
istence of a universal syntactic prominence scale.
From the NLP perspective, the closest to uni-
versal syntactic representation for which auto-
matic parsers are available is the Universal De-
pendencies (UD) representation. Universal De-
pendencies (Nivre et al., 2016) is a recent initia-
tive aimed at creating a single dependency-based
formalism suited for describing syntactic structure
in a language-independent way. It encompasses
freely available treebanks for more than 60 lan-
guages, and universal dependency parsing is an ac-
tive research area (Zeman et al., 2017). Based on
that, we make an effort to ground our study in UD
syntax for English. Since neither gold UD anno-
tations, nor a deterministic converter are available,
for German we use the TIGER dependency syntax
representation (Dipper et al., 2001).

3 Hierarchical Linking model

3.1 Model

We suggest a simple model to describe the inter-
face between syntactic and thematic rankings. An
SRL corpus can be seen as a collection of sen-
tences with corresponding predications, where
each predication has a target (e.g. verb) and a set
of arguments labeled with semantic roles.

Let a;...a, € A be the set of arguments in the
predication p; r(a;) be the role label af the argu-
ment a;, and d(a;) be the path between the predi-
cate and the argument in the dependency parse tree
of the sentence. A syntactic ranker S provides a
syntactic rank s; = S(d(a;)) for each argument a;
in A based on the path, and a thematic ranker 7'
provides a thematic rank ¢; = T'(r(a;)) based on
the argument’s role. For each pair of arguments
(ai,aj) we expect their syntactic ranks to align
with their thematic ranks, i.e.

Vi # j : sign(t; —t;) = sign(s; — s;)

The model per se does not imply the existence of
a global ranking and allows flexible ranker defini-
tion. It allows ties in both syntactic and thematic
rankings.

We use accuracy to assess how well a given
syntactic-semantic ranker pair reflects the actual
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Th Pa In

Va

Figure 1: Preference matrix

argument ranks found in data. Given a set of test
predications p1,p2...px € P with the argument
sets A, A%...A* we measure the correspondence
between syntactic and semantic ranking over the

argument pairs (af, af) via accuracy defined as

#(sign(tf —tF) = sign(sF — s%))
F#total _pairs

To avoid the majority class bias, we measure ac-
curacy for each role pair and use macro-averaged
accuracy over pairs as the final score. A straight-
forward alternative to our evaluation metric would
be the Kendall rank correlation coefficient, which,
based on our preliminary experiments, tends to
overemphasize the performance on most frequent
role pairs.

4 Thematic Hierarchy Induction

This paper investigates several thematic rank-
ing strategies. As a running example we use
a small role set: Agent (Ag), Patient (Pa),
Instrument (In), Theme (Th) and Value
(Va). For now we assume the following syntac-
tic hierarchy: subj < iobj < nmod < obj < other.

Local ranker The simplest way to model role
ranking is to extract the average syntactic rank for
each role based on the data, and then, given a test
pair, assign ranks based on average syntactic rank.

Pa
2.58

Th
3.95

Va
3.74

In
1.72

role
mean(s)

Ag
1.01

Table 1: Mean syntactic rank per role (1-5)

Pairwise ranker Given that roles often strongly
prefer a certain syntactic position (also see (White



Pa

Figure 2: Preference graph

et al., 2016)), local ranking is a reasonable base-
line strategy. However, it fails to account for the
context dependency of thematic roles’ syntactic
realization. The next step is to construct a pair-
wise preference matrix: for each pair of roles
encountered in training data we calculate the pro-
portion of times role 7; receives a higher syntactic
rank than role r;. For our role set this results in
the matrix shown on Fig. 1.

The preference matrix, for example, shows
that Agent clearly dominates all the roles,
Instrument ranks over Theme, and Value is
below Theme.

Global ranker The pairwise ranking approach
takes context into account. However, some role
pairs only co-occur rarely. In such cases no pair-
wise ranking information is available to the model.
Finding a global TH based on pairwise prefer-
ences is an example of a rank aggregation prob-
lem which can be solved via constrained ILP op-
timization on a preference graph (Conitzer et al.,
2006). We represent the pairwise preference ma-
trix as a graph G = (v,e) where each vertex v
represents a role, the edge weight is the preference
strength measured as #(r; < 7;)/#(r4,7;). The
edge direction is from higher- to lower-ranking
role. If we assume a global ordering of the roles,
we can induce the global ranking via transitivity
relations. For example (Fig. 2), Instrument
never appears with Value in our training data;
however, by transitivity via Theme we can assume
that Inst rument ranks over Value.

Given the preference graph G = (v, e), let w;;
be the weight of the edge between v; and v;. Let
z;j € 0,1 denote that we rank vertice v; above v;.
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The goal is then to maximize ZZ ; TijWij subject
to two groups of constraints. First, we prohibit two
nodes to rank above each other, but allow ties, by
enforcing V; ; : x;; +x;; < 1. Second, we enforce
transitivity, i.e. if r; is ranked above r;, and r; is
ranked above 7, then r; must be ranked above 7,
formally V; j 1,7 # j # k : @i + x5, — i < 1.
We solve the ILP problem using the off-the-shelf
pulp optimizer (Mitchell et al., 2011).

For our restricted example, optimization pro-
duces the following global hierarchy: Ag < In <
Th < Va/Pa. This hierarchy ranks Inst rument
above Value by transitivity, however, in case of
Patient and Value no preference can be in-
ferred from the graph, so they receive the same
thematic rank.

5 Experiments

5.1 Datasets and Restrictions

For our experiments on English, we use SemLink
(Bonial et al., 2013), a manually constructed re-
source that enriches PropBank’s (Palmer et al.,
2005) semantic role annotations with VerbNet’s
(Schuler, 2006) thematic role labels. We use the
Universal Dependencies converter (Schuster and
Manning, 2016) to transform original PropBank
syntactic annotation to UD. PropBank semantic
role annotation and the corresponding SemLink
reference are constituents-based. However, UD is
a dependency formalism, and we employ a number
of heuristics to align original PropBank annota-
tions with the CoNLL-2009 datasets (Hajic et al.,
2009) to recover the head node positions. We em-
ploy additional transformations, filtering out the
predications in which not all PropBank core roles
got aligned to the VerbNet thematic roles.

For German, we use the recently introduced
SR3de dataset (Mudjdricza-Maydt et al., 2016;
Hartmann et al., 2017) which explicitly provides
VerbNet annotations on top of SALSA corpus
(Burchardt et al., 2006). There exist no gold UD
annotations for the SALSA corpus, and we use
the SALSA’s default TIGER syntactic formalism
(Dipper et al., 2001) in our experiments.

Following previous work, we employ certain re-
strictions on our data. Since thematic roles in both
VerbNet and SR3de are only defined for verbal
predicates, we restrict the scope of our study to
verbs. We only consider direct dependents of the
verbs in active voice, and since having access to
the full argument set is important to study con-



dataset \ #sent #tok \ #pred \ #arg synt || glob | pair | loc || RND | UB
EN (PropBank—SemlLink) EN | SE1 || .869 | .887 | .867 || .509 | .927

train | 16 603 | 446 641 | 21 276 | 44 333 EN | SE2 || 930 | .929 | 913 || .500 | .932
test 1031 | 27751 1336 | 2761 DE | SDI1 || .655 | .726 | .637 || 471 | .818
dev 550 15 157 684 1422 DE | SD2 || .790 | .820 | .820 || .456 | .920

DE (SR3de VerbNet) . .

rain 398 20277 903 1992 Table 3: Thematic ranker evaluation, incl. random
test 240 4738 245 532 ranker (RND) and upper bound (UB); bold - best
dev 117 2 429 119 266 result over syntactic rankers, underlined - best re-

Table 2: Dataset statistics

text dependency, we only consider the predica-
tions where all arguments are direct dependents
of the verb in the UD dependency tree. Since we
are interested in relative ranking, only predications
that contain more than one semantic argument are
considered in the study.

Dataset statistics for English and German (after
filtering) are summarized in Table 2. In all exper-
iments we induce a TH and related statistics from
the training data and evaluate it on the test data,
using the split from the CoNLL SRL shared tasks.

5.2 Syntactic ranker

For simplicity in this paper we only experiment
with two syntactic rankers per language. A com-
mon syntactic prominence scale assumed in lin-
guistic literature is subject < object < indirect ob-
ject < oblique. This scale has to be adapted to
the UD and TIGER labeling schemes. For each
language we evaluate two syntactic rankings: one
that positions objects above indirect objects and
obliques, and one that positions objects below.

For English, we rank the UD syntactic relations
as follows (SE1): nsubj / csubj < iobj < nmod
< ccomp | dobj < other; where nmod corresponds
to oblique and other is used for any other syntac-
tic relation. An alternative ranking positions dobj
directly after the subject (SE2): nsubj / csubj <
ccomp | dobj < iobj < nmod < other.

For German, the following ranking of TIGER
syntactic relations is employed (SD1): SB < DA
< OP / MO 7/ OG/ OC < OA/OA2/CVC <
other; where SB is the subject, DA is dative ob-
ject, OP / MO / OG / OC correspond to oblique
relations, and OA / OA2 / CVC to direct object re-
lations (see (Dipper et al., 2001) for detailed de-
scription). Similarly, we evaluate the performance
of the ranking that positions the direct object after
the subject (SD2): SB < OA/OA2/CVC < DA <
OP/MO/0OG/OC < other.
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sult over thematic rankers

5.3 Bounds

We construct the upper bound for the hierarchy
induction by evaluating a global ranker trained on
the test dataset. The upper bound reflects the data
properties, as well as the maximal alignment ac-
curacy that can be achieved with the selected syn-
tactic ranker. The lower bound is constructed
by evaluating 100 random thematic rankers which
rank roles according to a random (but consistent)
hierarchy, and averaging the result.

5.4 Data utilization setup

To evaluate how effective the proposed rankers use
the training data, we conduct a series of experi-
ments with reduced dataset sizes using the follow-
ing protocol. The training dataset is shuffled and
splitinto n = 100 slices. A ranker is consecutively
trained on the first m € 1..n slices and evaluated
against the full test dataset. The procedure is re-
peated £k = 100 times to eliminate the effect of
data order, and the results per slice are averaged.

6 Results

6.1 General Accuracy and Syntactic Ranker

To get an overall impression of the ranking qual-
ity, we first compare the performance of thematic
rankers with respect to syntactic rankers and avail-
able datasets. The results of this comparison are
summarized in Table 3 and show that syntactic
rankers positioning the object second in the hier-
archy (SE2 and SD2) lead to better alignment on
both datasets and have a higher upper bound. We
report the results on these rankers for the rest of
the paper.

For English the global hierarchy-based ranker
approaches the upper bound, closely followed by
the pairwise ranker. The accuracy on German data
is lower and the pairwise and local rankers outper-
form the global hierarchy-based ranker. We revisit
this observation in 6.5.



EN | Agent < Cause/Instrument/Experiencer < Pivot < Theme < Patient < Ma-
terial/Source/Asset <  Product <  Recipient/Beneficiary/Destination/Location <
Value/Stimulus/Topic/Result/Predicate/Goal/InitialLocation/Attribute/Extent

DE | Agent < Experiencer < Stimulus/Pivot < Cause < Theme < Patient < Topic < Instrument <

Beneficiary/InitialLocation < Result < Product/Goal < Destination/Attribute < Recipient <

Value/Time/CoAgent/Locus/Manner/Source/Trajectory/Location/Duration/Path/Extent

Table 4: Induced hierarchies

EN-test || DE-test
UB 932 .920
EN-train 930 787
DE-train .852 .790
RND .500 456

Table 5: Cross-lingual evaluation, global ranker

6.2 Qualitative analysis

The result of hierarchy induction is a global rank-
ing of thematic roles. Table 4 shows full rank-
ings extracted for English and German data. While
some correspondence to the hierarchies proposed
in literature is evident (e.g. for English Agent
< Instrument < Theme, similar to (Fillmore,
1968)), a direct comparison is impossible due to
the differences in role definitions and underlying
syntactic formalisms. Notice the high number of
ties: some roles never co-occur (either by chance
or by design) or occur on the same syntactic rank
(e.g. oblique) so there is no evidence for prefer-
ence even if we enforce transitivity.

6.3 Cross-lingual hierarchy induction

The induced hierarchies for English and German
bear certain similarities, which raises the question
on cross-lingual applicability of the hierarchies.
This analysis is only possible because the VerbNet
and SR3de role inventories are mostly compati-
ble with few exceptions (Mujdricza-Maydt et al.,
2016). Table 5 contrasts the performance of THs
induced from English and German training data,
and evaluated on German and English test data re-
spectively. While the cross-lingual performance
is expectedly lower than the monolingual perfor-
mance, it outperforms the random baseline by a
large margin, suggesting the potential for cross-
lingual hierarchy induction.

6.4 Data utilization

One can assume that constructing a global hierar-
chy should require less training data due to the ef-
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Role pair score | #(train)
Recipient - Topic 0.35 338
Source - Theme 0.46 246
Location - Theme 0.53 400
Material - Product 0.67 29
Result - Theme 0.67 30
Experiencer - Stimulus | 0.74 922
Destination - Theme 0.86 401
Instrument - Theme 0.88 110
Recipient - Theme 0.89 419
Attribute - Experiencer | 0.90 166

Table 6: Global ranker accuracy, English

fective utilisation of transitivity. We evaluate this
assumption empirically. Fig. 3 reports the perfor-
mance of rankers with access to different amounts
of training data for English and German. The re-
sults on English data show that global hierarchy-
based ranker effectively utilizes the training data
and can be trained using just fractions of the orig-
inal training dataset.

The accuracy measurements on German are less
conclusive: the local ranker generally performs
best and learns fastest. We attribute this to the
fact that filtered SR3de is an order of magnitude
smaller than the PropBank/SemLink dataset. For
pairwise and global rankers as many role pairs as
possible should be observed at least once to es-
tablish the pairwise preference. This holds for
PropBank/SemLink (all role pairs from test data
seen at least once after observing 20% of the train-
ing data, on average), however, for filtered SR3de,
even given the full training data, only 83% of role
pairs from the test set have been seen at least once.

6.5 Error analysis

Our evaluation procedure allows detailed insights
into the performance of the models. To illustrate,
we extract the role pairs from English and German
data with ranking accuracy below 1.0.

Table 6 lists the ranking inconsistencies pro-
duced by the global ranker for English. We can
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Figure 3: Data utilization for English (left) and German (right) along with max/min values
Role pair score | #(train) 7 Discussion
Attribute - Source 0.00 0 .
Beneficiary - Manner | 0.00 0 7.1 Importance of the syntactic ranker
Beneficiary - Value 0.00 1 The choice of syntactic ranking has a drastic ef-
Extent - Goal 0.00 2 fect on the resulting TH and the alignment quality,
Goal - Recipient 0.00 12 even if only direct syntactic dependents and a lim-
Instrument - Result 0.00 3 ited set of relations are taken into account. Real-
Locus - Topic 0.12 3 istically there might exist an arbitrary set of paths
Recipient - Theme 0.40 26 connecting arguments to predicates. UD as syn-
Recipient - Topic 0.50 5 tactic formalism is also subject to rapid change.
Pivot - Theme 0.67 57 Inducing a joint syntactic and thematic hierar-

Table 7: Global ranker accuracy, German

see that false ranking might be caused by the
lack of training examples (e.g. Material vs.
Product, Theme vs. Result). We also ob-
serve complications with positioning the Theme
on the hierarchy. In many cases the misalign-
ment is due to non-standard use of thematic roles,
e.g. Location as subjectin wsj_2322:7 [the
delayy,. resulted from difficulties;]. Another
common reason for false alignments is the syn-
tactic ranker. For example, in wsj_2372:1
[the Senatesg voted 87-7Res to approvery,...] the
Result is connected to the predicate via an ad-
vmod relation, and Theme is xcomp, both ranked
equally (other) by our syntactic ranker.

Error analysis on the much smaller German
dataset (Table 7) reveals the sparsity-related is-
sues: most of the role pairs that tend to get mis-
aligned do not, or only rarely appear in the training
data, heavily influencing the score. As on English
data, many misalignments are due to simplicity of
the syntactic ranker.
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chy that maximizes the overall alignment quality
is a crucial direction for future work with potential
benefits for SRL and syntactic parsing. Although
we show that THs can be induced with an arbitrary
dependency formalism, a cross-lingual UD-based
study would be another extension to our work.

7.2 SRL integration

To utilize and evaluate the potential of thematic
hierarchies for role interaction modeling, SRL in-
tegration is necessary. This, however, is not a
trivial task: the absolute majority of semantic role
labeling systems are designed with PropBank or
FrameNet SRL formalism in mind and are not
tailored to general VerbNet-style semantic roles
and verb class-level disambiguation. A dedicated
VerbNet SRL system would enable this assess-
ment, and applying THs to such a system is an
important future work direction.

7.3 Robustness to parsing errors

This paper focuses on TH induction using pre-
defined syntactic annotation: a corpus annotated
with semantic roles without an underlying syntac-
tic layer is a rare occurence. However, for prac-



tical applications and for the cases when an SRL
corpus is provided without syntactic annotations,
it would be important to evaluate how effectively
THs can be induced given parsing errors in train-
ing and in test data.

7.4 Data selection

We have demonstrated that THs can be induced
from small portions of training data. The large dis-
crepancy in the scores on the first data slices seen
on Fig. 3 suggests that some data instances are
more informative for TH induction. This raises
the question whether it is possible to automati-
cally select useful training instances, supported
by the evidence from previous work in SRL (Pe-
terson et al., 2014). One obvious strategy would
be to make sure that the hierarchy inducer is pre-
sented as many role pairs as early as possible. Ap-
proximating this objective in an unsupervised way
would reduce the amount of data needed to induce
a high-quality thematic hierarchy.

7.5 The need for a global hierarchy

Our results regarding the necessity of a global hi-
erarchy which ranks all the roles are inconclusive.
While global ranking reaches the best quality for
English, on the German data pairwise and local
ranking approaches perform best. Although we
attribute the latter to sparsity, more German data
would be needed to evaluate this hypothesis. In
particular, this can be achieved by relaxing some
of the constraints we impose on the data.

8 Conclusion

This paper has presented an empirical framework
for thematic hierarchy induction and evaluation.
We have suggested several syntactic and thematic
ranking strategies and a method to induce global
thematic hierarchies from corpus data. Analysis
on English and German data shows that hierarchy
induction is feasible, data-efficient and has poten-
tial for cross-lingual applications. Promising di-
rections for future work include joint modeling of
syntactic and thematic ranking, selecting informa-
tive training instances and evaluating the utility of
global hierarchies on extended language material.
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Abstract

Adversarial examples are inputs to machine
learning models designed to cause the model
to make a mistake. They are useful for under-
standing the shortcomings of machine learn-
ing models, interpreting their results, and for
regularisation. In NLP, however, most ex-
ample generation strategies produce input text
by using known, pre-specified semantic trans-
formations, requiring significant manual ef-
fort and in-depth understanding of the prob-
lem and domain. In this paper, we investi-
gate the problem of automatically generating
adversarial examples that violate a set of given
First-Order Logic constraints in Natural Lan-
guage Inference (NLI). We reduce the prob-
lem of identifying such adversarial examples
to a combinatorial optimisation problem, by
maximising a quantity measuring the degree
of violation of such constraints and by using a
language model for generating linguistically-
plausible examples. Furthermore, we propose
a method for adversarially regularising neu-
ral NLI models for incorporating background
knowledge. Our results show that, while the
proposed method does not always improve
results on the SNLI and MultiNLI datasets,
it significantly and consistently increases the
predictive accuracy on adversarially-crafted
datasets — up to a 79.6% relative improve-
ment — while drastically reducing the num-
ber of background knowledge violations. Fur-
thermore, we show that adversarial examples
transfer among model architectures, and that
the proposed adversarial training procedure
improves the robustness of NLI models to ad-
versarial examples.

1 Introduction

An open problem in Artificial Intelligence is quan-
tifying the extent to which algorithms exhibit in-
telligent behaviour (Levesque, 2014). In Machine
Learning, a standard procedure consists in esti-
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mating the generalisation error, i.e. the predic-
tion error over an independent test sample (Hastie
et al., 2001). However, machine learning models
can succeed simply by recognising patterns that
happen to be predictive on instances in the test
sample, while ignoring deeper phenomena (Rimell
and Clark, 2009; Paperno et al., 2016).

Adversarial examples are inputs to machine
learning models designed to cause the model to
make a mistake (Szegedy et al., 2014; Goodfel-
low et al., 2014). In Natural Language Processing
(NLP) and Machine Reading, generating adversar-
ial examples can be really useful for understanding
the shortcomings of NLP models (Jia and Liang,
2017; Kannan and Vinyals, 2017) and for regular-
isation (Minervini et al., 2017).

In this paper, we focus on the problem of gener-
ating adversarial examples for Natural Language
Inference (NLI) models in order to gain insights
about the inner workings of such systems, and reg-
ularising them. NLI, also referred to as Recog-
nising Textual Entailment (Fyodorov et al., 2000;
Condoravdi et al., 2003; Dagan et al., 2005), is a
central problem in language understanding (Katz,
1972; Bos and Markert, 2005; van Benthem, 2008;
MacCartney and Manning, 2009), and thus it is es-
pecially well suited to serve as a benchmark task
for research in machine reading. In NLI, a model
is presented with two sentences, a premise p and a
hypothesis h, and the goal is to determine whether
p semantically entails h.

The problem of acquiring large amounts of la-
belled data for NLI was addressed with the cre-
ation of the SNLI (Bowman et al.,, 2015) and
MultiNLI (Williams et al., 2017) datasets. In
these processes, annotators were presented with
a premise p drawn from a corpus, and were re-
quired to generate three new sentences (hypothe-
ses) based on p, according to the following crite-
ria: a) Entailment — & is definitely true given p (p
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entails h); b) Contradiction — h is definitely not
true given p (p contradicts h); and c¢) Neutral — h
might be true given p. Given a premise-hypothesis
sentence pair (p, h), a NLI model is asked to clas-
sify the relationship between p and h — i.e. either
entailment, contradiction, or neutral. Solving NLI
requires to fully capture the sentence meaning by
handling complex linguistic phenomena like lexi-
cal entailment, quantification, co-reference, tense,
belief, modality, and lexical and syntactic ambigu-
ities (Williams et al., 2017).

In this work, we use adversarial examples for:
a) identifying cases where models violate existing
background knowledge, expressed in the form of
logic rules, and b) training models that are robust
to such violations.

The underlying idea in our work is that NLI
models should adhere to a set of structural con-
straints that are intrinsic to the human reasoning
process. For instance, contradiction is inherently
symmetric: if a sentence p contradicts a sentence
h, then h contradicts p as well. Similarly, entail-
ment is both reflexive and transitive. It is reflexive
since a sentence a is always entailed by (i.e. is true
given) a. It is also transitive, since if a is entailed
by b, and b is entailed by c, then a is entailed by ¢
as well.

Example 1 (Inconsistency). Consider three sen-
tences a, b and c each describing a situation, such
as: a) “The girl plays”, b) “The girl plays with a
ball”, and c) “The girl plays with a red ball”. Note
that if a is entailed by b, and b is entailed by c, then
also a is entailed by c. If a NLI model detects that
b entails a, c entails b, but ¢ does not entail a, we
know that it is making an error (since its results are
inconsistent), even though we may not be aware of
the sentences a, b, and ¢ and the true semantic re-
lationships holding between them. A

Our adversarial examples are different from
those used in other fields such as computer vi-
sion, where they typically consist in small, seman-
tically invariant perturbations that result in dras-
tic changes in the model predictions. In this pa-
per, we propose a method for generating adver-
sarial examples that cause a model to violate pre-
existing background knowledge (Section 4), based
on reducing the generation problem to a combina-
torial optimisation problem. Furthermore, we out-
line a method for incorporating such background
knowledge into models by means of an adversar-
ial training procedure (Section 5).
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Our results (Section 8) show that, even though
the proposed adversarial training procedure does
not sensibly improve accuracy on SNLI and
MultiNLI, it yields significant relative improve-
ment in accuracy (up to 79.6%) on adversarial
datasets. Furthermore, we show that adversarial
examples transfer across models, and that the pro-
posed method allows training significantly more
robust NLI models.

2 Background

Neural NLI Models. In NLI, in particu-
lar on the Stanford Natural Language In-
ference (SNLI) (Bowman et al.,, 2015) and
MultiNLI (Williams et al., 2017) datasets, neu-
ral NLI models — end-to-end differentiable models
that can be trained via gradient-based optimisation
— proved to be very successful, achieving state-
of-the-art results (Rocktischel et al., 2016; Parikh
etal., 2016; Chen et al., 2017).

Let S denote the set of all possible sentences,
and let a (a1,...,ap,) € S and b
(b1,...,by,) € S denote two input sentences —
representing the premise and the hypothesis — of
length ¢, and ¢, respectively. In neural NLI mod-
els, all words a; and b; are typically represented
by k-dimensional embedding vectors a;, b; € R¥.
As such, the sentences a and b can be encoded by
the sentence embedding matrices a € R¥*%a and
b € R**%, where the columns a; and b; respec-
tively denote the embeddings of words a; and b;.

Given two sentences a, b € S, the goal of a NLI
model is to identify the semantic relation between
a and b, which can be either entailment, contra-
diction, or neutral. For this reason, given an in-
stance, neural NLI models compute the following
conditional probability distribution over all three
classes:

ey

po(- |a,b) = softmax(scoreg(a, b))
where scoreg : RF*fe x RF*6 —y R3 is a model-
dependent scoring function with parameters O,
and softmax(x); = exp{z;}/>_;exp{z;} de-
notes the softmax function.

Several scoring functions have been proposed in
the literature, such as the conditional Bidirectional
LSTM (cBiLSTM) (Rocktéschel et al., 2016), the
Decomposable Attention Model (DAM) (Parikh
et al., 2016), and the Enhanced LSTM model
(ESIM) (Chen et al., 2017). One desirable qual-
ity of the scoring function scoreg is that it should



be differentiable with respect to the model param-
eters ©, which allows the neural NLI model to be
trained from data via back-propagation.

Model Training. Let D {(z1,91), ..,
(Tm, Ym)} represent a NLI dataset, where x; de-
notes the i-th premise-hypothesis sentence pair,
and y; € {1,...,K} their relationship, where
K € N is the number of possible relationships —
in the case of NLI, K = 3. The model is trained
by minimising a cross-entropy loss Jp on D:

m

JIp(D,0)=->"

=1

K
> 1{y: = k}Hlog (k) (2)

k=1

where y; , = pe(y; = k | x;) denotes the proba-
bility of class k on the instance x; inferred by the
neural NLI model as in Eq. (1).

In the following, we analyse the behaviour of
neural NLI models by means of adversarial exam-
ples — inputs to machine learning models designed
to cause the model to commit mistakes. In com-
puter vision models, adversarial examples are cre-
ated by adding a very small amount of noise to
the input (Szegedy et al., 2014; Goodfellow et al.,
2014): these perturbations do not change the se-
mantics of the images, but they can drastically
change the predictions of computer vision mod-
els. In our setting, we define an adversary whose
goal is finding sets of NLI instances where the
model fails to be consistent with available back-
ground knowledge, encoded in the form of First-
Order Logic (FOL) rules. In the following sec-
tions, we define the corresponding optimisation
problem, and propose an efficient solution.

3 Background Knowledge

For analysing the behaviour of NLI models, we
verify whether they agree with the provided back-
ground knowledge, encoded by a set of FOL rules.
Note that the three NLI classes — entailment, con-
tradiction, and neutrality — can be seen as binary
logic predicates, and we can define FOL formulas
for describing the formal relationships that hold
between them.

In the following, we denote the predicates asso-
ciated with entailment, contradiction, and neutral-
ity as ent, con, and neu, respectively. By doing so,
we can represent semantic relationships between
sentences via logic atoms. For instance, given
three sentences si, s2,53 € S, we can represent
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NLI Rules
R, T:>ent(X1,X1)
Rz con(Xy, X3) = con(Xa, X1)
Rs ent(Xp, X2) = —con(Xs, X1)
R4y neu(Xl,Xg) = _‘COH(XQ,Xl)
Rs ent(X1, X2) Aent(Xo, X3) = ent(X1, X3)

Table 1: First-Order Logic rules defining desired
properties of NLI models: X; are universally
quantified variables, and operators A, =, and T de-
note logic conjunction, negation, and tautology.

the fact that s; entails sg and sy contradicts s3 by
using the logic atoms ent(s1, s2) and con(sg, s3).

Let X1,...,X,, be a set of universally quanti-
fied variables. We define our background knowl-
edge as a set of FOL rules, each having the follow-
ing body = head form:

body (X1, ..., X,) = head(X1,...,X,), 3)
where body and head represent the premise and
the conclusion of the rule — if body holds, head
holds as well. In the following, we consider the
rules Ry, ..., Rj5 outlined in Table 1. Rule R;
enforces the constraint that entailment is reflex-
ive; rule Ry that contradiction should always be
symmetric (if s; contradicts s3, then s2 contra-
dicts sq as well); rule Ry that entailment is tran-
sitive; while rules Rg and R4 describe the formal
relationships between the entailment, neutral, and
contradiction relations.

In Section 4 we propose a method to automat-
ically generate sets of sentences that violate the
rules outlined in Table 1 — effectively generating
adversarial examples. Then, in Section 5 we show
how we can leverage such adversarial examples by
generating them on-the-fly during training and us-
ing them for regularising the model parameters, in
an adversarial training regime.

4 Generating Adversarial Examples

In this section, we propose a method for efficiently
generating adversarial examples for NLI models
— i.e. examples that make the model violate the
background knowledge outlined in Section 3.

4.1 Inconsistency Loss

We cast the problem of generating adversarial ex-
amples as an optimisation problem. In particular,
we propose a continuous inconsistency loss that



measures the degree to which a set of sentences
causes a model to violate a rule.

Example 2 (Inconsistency Loss). Consider the
rule R in Table 1, ie. con(Xp,X2) =
con(Xa, X1). Let s1,s9 € S be two sentences:
this rule is violated if, according to the model, a
sentence s; contradicts sy, but sy does not con-
tradict s;. However, if we just use the final deci-
sion made by the neural NLI model, we can sim-
ply check whether the rule is violated by two given
sentences, without any information on the degree
of such a violation.

Intuitively, for the rule being maximally vi-
olated, the conditional probability associated to
con(sy, s2) should be very high (~ 1), while the
one associated to con(ss, si) should be very low
(= 0). We can measure the extent to which the rule
is violated — which we refer to as inconsistency
loss J1 — by checking whether the probability of
the body of the rule is higher than the probability
of its head:

jI(S = {X1 — 51,X2 —> 82})

= [pe(con | s1,s2) — pe(con | s2, 1),

where S is a substitution set that maps the vari-
ables X; and X5 in Rs to the sentences s; and
s2, [z]+ = max(0, ), and pg(con | s;, s;) is the
(conditional) probability that s; contradicts s; ac-
cording to the neural NLI model. Note that, in
accordance with the logic implication, the incon-
sistency loss reaches its global minimum when the
probability of the body is close to zero — i.e. the
premise is false — and when the probabilities of
both the body and the head are close to one — i.e.
the premise and the conclusion are both true. A

We now generalise the intuition in Ex. 2 to any
FOL rule. Let r = (body = head) denote an
arbitrary FOL rule in the form described in Eq. (3),
and let vars(r) = {Xy,..., X,,} denote the set of
universally quantified variables in the rule .

Furthermore, let S = {X; — s1,...,X,, —
sp } denote a substitution set, i.e. a mapping from
variables in vars(r) to sentences $i,...,S, € S.
The inconsistency loss associated with the rule r
on the substitution set S can be defined as:

4)

where p(S;body) and p(S;head) denote the
probability of body and head of the rule, after re-
placing the variables in r with the corresponding

Jz(S) = [p(S;body) — p(S;head)]

68

sentences in S. The motivation for the loss in
Eq. (4) is that logic implications can be understood
as “whenever the body is true, the head has to be
true as well”. In terms of NLI models, this trans-
lates as “the probability of the head should at least
be as large as the probability of the body™.

For calculating the inconsistency loss in Eq. (4),
we need to specify how to calculate the probabil-
ity of head and body. The probability of a single
ground atom is given by querying the neural NLI
model, as in Eq. (1). The head contains a single
atom, while the body can be a conjunction of mul-
tiple atoms. Similarly to Minervini et al. (2017),
we use the Godel t-norm, a continuous generali-
sation of the conjunction operator in logic (Gupta
and Qi, 1991), for computing the probability of the
body of a clause:

pe(ar A az) = min{pe(a1),pe(az)}

where a1 and ay are two clause atoms.

In this work, we cast the problem of generating
adversarial examples as an optimisation problem:
we search for the substitution set S = {X; —
S1y...,Xp > Sy} that maximises the inconsis-
tency loss in Eq. (4), thus (maximally) violating
the available background knowledge.

4.2 Constraining via Language Modelling

Maximising the inconsistency loss in Eq. (4) may
not be sufficient for generating meaningful adver-
sarial examples: they can lead neural NLI mod-
els to violate available background knowledge, but
they may not be well-formed and meaningful.

For such a reason, in addition to maximising the
inconsistency loss, we also constrain the perplex-
ity of generated sentences by using a neural lan-
guage model (Bengio et al., 2000). In this work,
we use a LSTM (Hochreiter and Schmidhuber,
1997) neural language model p, (w1, ..., w;) for
generating low-perplexity adversarial examples.

4.3 Searching in a Discrete Space

As mentioned earlier in this section, we cast the
problem of automatically generating adversarial
examples — i.e. examples that cause NLI models
to violate available background knowledge — as an
optimisation problem. Specifically, we look for
substitutions sets S = { X7 + s1,..., Xy, — sp}
that jointly: @) maximise the inconsistency loss
described in Eq. (4), and b) are composed by sen-
tences with a low perplexity, as defined by the neu-
ral language model in Section 4.2.



The search objective can be formalised by the
following optimisation problem:

maximise Jz(.5)
s (5)

subjectto  logp,(S) <7

where log p(.5) denotes the log-probability of the
sentences in the substitution set .S, and 7 is a
threshold on the perplexity of generated sentences.

For generating low-perplexity adversarial ex-
amples, we take inspiration from Guu et al. (2017)
and generate the sentences by editing prototypes
extracted from a corpus. Specifically, for search-
ing substitution sets whose sentences jointly have
a high probability and are highly adversarial, as
measured the inconsistency loss in Eq. (4), we
use the following procedure, also described in Ap-
pendix A.4: a) we first sample sentences close to
the data manifold (i.e. with a low perplexity), by
either sampling from the training set or from the
language model; b) we then make small variations
to the sentences — analogous to adversarial images,
which consist in small perturbations of training ex-
amples — so to optimise the objective in Eq. (5).

When editing prototypes, we consider the fol-
lowing perturbations: a) change one word in one
of the input sentences; b) remove one parse sub-
tree from one of the input sentences; c¢) insert one
parse sub-tree from one sentence in the corpus in
the parse tree of one of the input sentences.

Note that the generation process can easily lead
to ungrammatical or implausible sentences; how-
ever, these will be likely to have a high perplexity
according to the language model (Section 4.2), and
thus they will be ruled out by the search algorithm.

5 Adversarial Regularisation

We now show one can use the adversarial exam-
ples to regularise the training process. We propose
training NLI models by jointly: @) minimising the
data loss (Eq. (2)), and ) minimising the incon-
sistency loss (Eq. (4)) on a set of generated adver-
sarial examples (substitution sets).

More formally, for training, we jointly minimise
the cross-entropy loss defined on the data Jp(©)
and the inconsistency loss on a set of generated
adversarial examples maxg Jz7(5; ©), resulting in
the following optimisation problem:

minimise Jp (D, O) + Amax Jz(S; O)
(S} S (6)

subjectto  logp,(S) <7
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Premise
Hypothesis
Type

Premise
Hypothesis

Type
Premise
Hypothesis
Type
Premise
Hypothesis
Type

A man in a suit walks through a train station.
Two boys ride skateboard.
Contradiction

Two boys ride skateboard.
A man in a suit walks through a train station.
Contradiction

Two people are surfing in the ocean.
There are people outside.
Entailment

There are people outside.
Two people are surfing in the ocean.
Neutral

Table 2: Sample sentences from an Adversarial
NLI Dataset generated using the DAM model, by
maximising the inconsistency loss J7.

where A € R, is a hyperparameter specifying the
trade-off between the data loss Jp (Eq. (2)), and
the inconsistency loss J7 (Eq. (4)), measured on
the generated substitution set S.

In Eq. (6), the regularisation term
maxg J7(5;0) has the task of generating
the adversarial substitution sets by maximising
the inconsistency loss. Furthermore, the con-
straint logp,(S) < 7 ensures that the perplexity
of generated sentences is lower than a threshold
7. For this work, we used the max aggregation
function. However, other functions can be used
as well, such as the sum or mean of multiple
inconsistency losses.

For minimising the regularised loss in Eq. (6),
we alternate between two optimisation processes —
generating the adversarial examples (Eq. (5)) and
minimising the regularised loss (Eq. (6)). The al-
gorithm is outlined in Appendix A.4: at each itera-
tion, after generating a set of adversarial examples
S, it computes the gradient of the regularised loss
in Eq. (6), and updates the model parameters via a
gradient descent step.

6 Creating Adversarial NLI Datasets

We crafted a series of datasets for assessing the ro-
bustness of the proposed regularisation method to
adversarial examples. Starting from the SNLI test
set, we proceeded as follows. We selected the &
instances in the SNLI test set that maximise the in-
consistency loss in Eq. (4) with respect to the rules
in R1, Ro, Rg, and R4 in Table 1. We refer to the
generated datasets as AF, where m identifies the
model used for selecting the sentence pairs, and &
denotes number of examples in the dataset.



For generating each of the AF datasets,
we proceeded as follows. Let D
{(x1,9i),...,(Tn,yn)} be a NLI dataset (such
as SNLI), where each instance x; = (p;, h;) is a
premise-hypothesis sentence pair, and y; denotes
the relationship holding between p; and h;. For
each instance x; = (p;, h;), we consider two
substitution sets: S; = {X; — p;, Xo — h;} and
S = {X1 — hj, X2 — p;}, each corresponding
to a mapping from variables to sentences.

We compute the inconsistency score associated
to each instance z; in the dataset D as Jz(.5;) +
Jz(S}). Note that the inconsistency score only de-
pends on the premise p; and hypothesis h; in each
instance x;, and it does not depend on its label y;.

After computing the inconsistency scores for all
sentence pairs in D using a model m, we select the
k instances with the highest inconsistency score,
we create two instances x; = (p;, h;) and ©; =
(hi,p;), and add both (z;,y;) and (Z;, ;) to the
dataset A . Note that, while y; is already known
from the dataset D, g; is unknown. For this reason,
we find ¢j; by manual annotation.

7 Related Work

Adversarial examples are receiving a considerable
attention in NLP; their usage, however, is consid-
erably limited by the fact that semantically invari-
ant input perturbations in NLP are difficult to iden-
tify (Buck et al., 2017).

Jia and Liang (2017) analyse the robustness of
extractive question answering models on exam-
ples obtained by adding adversarially generated
distracting text to SQuAD (Rajpurkar et al., 2016)
dataset instances. Belinkov and Bisk (2017) also
notice that character-level Machine Translation
are overly sensitive to random character manipu-
lations, such as typos. Hosseini et al. (2017) show
that simple character-level modifications can dras-
tically change the toxicity score of a text. lyyer
et al. (2018) proposes using paraphrasing for gen-
erating adversarial examples. Our model is fun-
damentally different in two ways: a) it does not
need labelled data for generating adversarial ex-
amples — the inconsistency loss can be maximised
by just making an NLI model produce inconsistent
results, and b) it incorporates adversarial examples
during the training process, with the aim of train-
ing more robust NLI models.

Adversarial examples are also used for as-
sessing the robustness of computer vision mod-
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Model Original Regularised

Valid. Test Valid. Test

E cBiLSTM  61.52 63.95 66.98 66.68
E= DAM 72.78 73.28 73.57 73.51
= ESIM  73.66 75.22 75.72 75.80
— cBILSTM  81.41 80.99 82.27 81.12
g DAM  86.96 86.29 87.08 86.43
ESIM  87.83 87.25 87.98 87.55

Table 3: Accuracy on the SNLI and MultiNLI
datasets with different neural NLI models before
(left) and after (right) adversarial regularisation.

Model  Rule |B| |BA—-H| Violations (%)
Ri 1,098,734 261,064 23.76 %
. R, 174902 80,748 46.17 %
CBILSTM - g 197.697 24204 12.29 %
Ry 176768 33,435 18.91 %
Ry 1098734 956 00.09 %
R, 171728 28,680 16.70 %
DAM " Ry 196042 11599 05.92 %
Ry, 181,597 29,635 16.32 %
R, 1098734 10,985 01.00 %
R, 177950 17,518 09.84 %
ESIM Rl 200852 6482 03.23 %
R, 170,565 17,190 10.08 %

Table 4: Violations (%) of rules R1,R2,R3, R4
from Table 1 on the SNLI training set, yield by
cBiLSTM, DAM, and ESIM.

els (Szegedy et al., 2014; Goodfellow et al., 2014;
Nguyen et al., 2015), where they are created by
adding a small amount of noise to the inputs that
does not change the semantics of the images, but
drastically changes the model predictions.

8 Experiments

We trained DAM, ESIM and cBiLSTM on the
SNLI corpus using the hyperparameters provided
in the respective papers. The results provided by
such models on the SNLI and MultiNLI validation
and tests sets are provided in Table 3. In the case
of MultiNLI, the validation set was obtained by
removing 10,000 instances from the training set
(originally composed by 392,702 instances), and
the test set consists in the matched validation set.

Background Knowledge Violations. As a first
experiment, we count the how likely our model is
to violate rules R, R2, R3, R4 in Table 1.

In Table 4 we report the number sentence pairs
in the SNLI training set where DAM, ESIM and
cBILSTM violate R3,R2,R3,R4. In the |B|
column we report the number of times the body



Dataset 5 5

m AbXM APAM ABAM ESY AR ARtu Asistv ABisty ABitstv

DAMAR 83.33 79.15 79.37 71.35 72.19 70.05 93.00 88.99 86.00

DAM 47.40 47.93 51.66 55.73 60.94 60.88 81.50 71.37 75.28

ESIMAR 89.06 86.00 85.08 78.12 76.04 73.32 96.50 91.92 88.52

ESIM 72.40 74.59 76.92 52.08 58.65 60.78 87.00 84.34 82.05

cBILSTMAR 85.42 80.39 78.74 73.96 70.52 65.39 92.50 88.38 83.62

cBiLSTM 56.25 59.96 61.75 47.92 53.23 53.73 51.50 52.83 53.24

Table 5: Accuracy of unregularised and regularised neural NLI models DAM, cBiLSTM, and ESIM, and

their adversarially regularised versions DAM“A®, ¢cBiLSTM“%, and ESIMA%R, on adversarial datasets

Ak

of the rule holds, according to the model. In the

Number of violations (%) made by ESIM

|B A —H]| column we report the number of times - | ®** ... @ conly,xa)=con(Xa,X1)
where the body of the rule holds, but the head does < . Te., ¥ enti, Xa) = mconlXe, Xa)
. . . . . 2] ~ @q neut(Xy, Xz) = —~con(X, X1)
not — which is clearly a violation of available rules. IS5 5 e b Tment(X)
We can see that, in the case of rule Rq (reflex- % \\
ivity of entailment), DAM and ESIM make a rel- >

atively low number of violations — namely 0.09
and 1.00 %, respectively. However, in the case of
cBiLSTM, we can see that, each sentence s € S
in the SNLI training set, with a 23.76 % chance,
s does not entail itself — which violates our back-
ground knowledge.

With respect to Ra (symmetry of contradic-
tion), we see that none of the models is completely
consistent with the available background knowl-
edge. Given a sentence pair s1,s2 € S from the
SNLI training set, if — according to the model — s;
contradicts sg, a significant number of times (be-
tween 9.84% and 46.17%) the same model also
infers that so does not contradict s;. This phe-
nomenon happens 16.70 % of times with DAM,
9.84 % of times with ESIM, and 46.17 % with
cBiLSTM: this indicates that all considered mod-
els are prone to violating R in their predictions,
with ESIM being the more robust.

In Appendix A.2 we report several examples of
such violations in the SNLI training set. We se-
lect those that maximise the inconsistency loss de-
scribed in Eq. (4), violating rules Rs and Rg3. We
can notice that the presence of inconsistencies is
often correlated with the length of the sentences.
The model tends to detect entailment relationships
between longer (i.e., possibly more specific) and
shorter (i.e., possibly more general) sentences.

8.1 Generation of Adversarial Examples

In the following, we analyse the automatic gen-
eration of sets of adversarial examples that make
the model violate the existing background knowl-
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Figure 1: Number of violations (%) to rules in Ta-
ble 1 made by ESIM on the SNLI test set.

edge. We search in the space of sentences by ap-
plying perturbations to sampled sentence pairs, us-
ing a language model for guiding the search pro-
cess. The generation procedure is described in
Section 4.

The procedure was especially effective in gen-
erating adversarial examples — a sample is shown
in Table 6. We can notice that, even though
DAM and ESIM achieve results close to human
level performance on SNLI, they are likely to fail
when faced with linguistic phenomena such as
negation, hyponymy, and antonymy. Gururangan
et al. (2018) recently showed that NLI datasets
tend to suffer from annotation artefacts and lim-
ited linguistic variations: this allows NLI mod-
els to achieve nearly-human performance by cap-
turing repetitive patterns and idiosyncrasies in a
dataset, without being able of effectively captur-
ing textual entailment. This is visible, for instance,
in example 5 of Table 6, where the model fails
to capture the hyponymy relation between “male”
and “man”, incorrectly predicting an entailment in
place of a neutral relationship. Furthermore, it is
clear that models lack commonsense knowledge,
such as the relation between “pushing” and “car-
rying” (example 1), and being outside and swim-
ming (example 2). Generating such adversarial



Adversarial Example Prediction Inconsistency
s1 A man in uniform is pushing a medical bed. s S
| S pushing L= 01 ~ .92
s aman is pushing carrying something. Sg——rS1
s1 A dog swims in the water s B
o ¢ L0099
s2 A dog is swimming outside. Sg——>81
. . . 0.98
s1 A young man is sledding down a snow covered hill on a green sled. §1——8
p 1 Ayouns ¢ & 00~ 07
s1 A man is sledding down to meet his daughter. S9——>81
. . .94
3 51 A woman sleeps on the ground. A boy and girl play in a pool. 51&52 00 ~ .82
. . . L 0.85 ' ’
s Two kids are happily playing in a swimming pool. S3——81
4 S The school is having a special event in order to show the american culture on how other cultures are dealt with in parties.  s; U'!-”\sz o1 63
B e d
s2 A seheel dog is hosting an event. 52%51
s1 A boy is drinking out of a water fountain shaped like a woman. s1 So
5 s3 A maleis getting a drink of water. S92 s3 .00 ~ .94
. . . . 97
s3 A male man is getting a drink of water. S1 L)s;;

Table 6: Inconsistent results produced by DAM on automatically generated adversarial examples. The
notation segment-one segment two denotes that the corruption process removes “segment one” and intro-
duced “segment two” in the sentence, and s; 532 indicates that DAM classifies the relation between s;
and sg as contradiction, with probability p. We use different colours for representing the contradiction,
and neutral classes. Examples 1, 2, 3, and 4 violate the rule Ro, while example 5 violates the
rule Rs. .00 ~» .99 indicates that the corruption process increases the inconsistency loss from .00 to .99,
and the are used for indicating mistakes made by the model on the adversarial examples.

examples provides us with useful insights on the
inner workings of neural NLI models, that can be
leveraged for improving the robustness of state-of-
the-art models.

8.2 Adversarial Regularisation

We evaluated whether our approach for integrat-
ing logical background knowledge via adversar-
ial training (Section 5) is effective at reducing
the number of background knowledge violations,
without reducing the predictive accuracy of the
model. We started with pre-trained DAM, ESIM,
and cBiLSTM models, trained using the hyperpa-
rameters published in their respective papers.

After training, each model was then fine-tuned
for 10 epochs, by minimising the adversarially
regularised loss function introduced in Eq. (6). Ta-
ble 3 shows results on the SNLI and MultiNLI
development and test set, while Fig. 1 shows the
number of violations for different values of )\,
where regularised models are much more likely to
make predictions that are consistent with the avail-
able background knowledge.

We can see that, despite the drastic reduc-
tion of background knowledge violations, the im-
provement may not be significant, supporting the
idea that models achieving close-to-human per-
formance on SNLI and MultiNLI may be captur-
ing annotation artefacts and idiosyncrasies in such
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datasets (Gururangan et al., 2018).

Evaluation on Adversarial Datasets. We eval-
uated the proposed approach on 9 adversarial
datasets A%, with & € {100,500,1000}, gen-
erated following the procedure described in Sec-
tion 6 — results are summarised in Table 5. We
can see that the proposed adversarial training
method significantly increases the accuracy on
the adversarial test sets. For instance, consider
ALS: prior to regularising (A 0), DAM
achieves a very low accuracy on this dataset — i.e.
47.4%. By increasing the regularisation parameter
A€ {107%,1073,1072,10 1}, we noticed sensi-
ble accuracy increases, yielding relative accuracy
improvements up to 75.8% in the case of DAM,
and 79.6% in the case of cBiLSTM.

From Table 5 we can notice that adversarial ex-
amples transfer across different models: an unreg-
ularised model is likely to perform poorly also on
adversarial datasets generated by using different
models, with ESIM being the more robust model
to adversarially generated examples. Furthermore,
we can see that regularised models are generally
more robust to adversarial examples, even when
those were generated using different model archi-
tectures. For instance we can see that, while cBiL-
STM is vulnerable also to adversarial examples
generated using DAM and ESIM, its adversari-



ally regularised version cBiLSTM“® is generally
more robust to any sort of adversarial examples.

9 Conclusions

In this paper, we investigated the problem of auto-
matically generating adversarial examples that vi-
olate a set of given First-Order Logic constraints in
NLI. We reduced the problem of identifying such
adversarial examples to an optimisation problem,
by maximising a continuous relaxation of the vio-
lation of such constraints, and by using a language
model for generating linguistically-plausible ex-
amples. Furthermore, we proposed a method for
adversarially regularising neural NLI models for
incorporating background knowledge.

Our results showed that the proposed method
consistently yields significant increases to the pre-
dictive accuracy on adversarially-crafted datasets
— up to a 79.6% relative improvement — while
drastically reducing the number of background
knowledge violations. Furthermore, we showed
that adversarial examples transfer across model
architectures, and the proposed adversarial train-
ing procedure produces generally more robust
models.  The source code and data for re-
producing our results is available online, at
https://github.com/uclmr/adversarial-nli/.

Acknowledgements

We are immensely grateful to Jeff Mitchell, Jo-
hannes Welbl, and the whole UCL Machine Read-
ing research group for all useful discussions, in-
puts, and ideas. This work has been supported by
an Allen Distinguished Investigator Award, and a
Marie Curie Career Integration Award.

References

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. CoRR, abs/1711.02173.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A neural probabilistic language model. In
Advances in Neural Information Processing Systems
13, Papers from Neural Information Processing Sys-
tems (NIPS) 2000, pages 932-938. MIT Press.

Johan van Benthem. 2008. A brief history of natural
logic. In M. Chakraborty, B. Lowe, M. Nath Mi-
tra, and S. Sarukki, editors, Logic, Navya-Nyaya
and Applications: Homage to Bimal Matilal. Col-
lege Publications.

73

Johan Bos and Katja Markert. 2005. Recognis-
ing textual entailment with logical inference. In
HLT/EMNLP 2005, Human Language Technology
Conference and Conference on Empirical Methods
in Natural Language Processing, Proceedings of the
Conference, pages 628—635. The Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2015, pages 632—642. The Association for Compu-
tational Linguistics.

Christian Buck, Jannis Bulian, Massimiliano Cia-
ramita, Andrea Gesmundo, Neil Houlsby, Wojciech
Gajewski, and Wei Wang. 2017. Ask the right ques-
tions: Active question reformulation with reinforce-
ment learning. CoRR, abs/1705.07830.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2017, pages 1657—-1668.
Association for Computational Linguistics.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Rein-
hard Stolle, and Daniel G. Bobrow. 2003. Entail-
ment, intensionality and text understanding. In Pro-
ceedings of the HLT-NAACL 2003 Workshop on Text
Meaning, pages 38—45.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Clas-
sification and Recognizing Textual Entailment, First
PASCAL Machine Learning Challenges Workshop,
MLCW 2005, volume 3944 of LNCS, pages 177-
190. Springer.

Yaroslav Fyodorov, Yoad Winter, and Nissim Francez.
2000. A natural logic inference system. In Proceed-
ings of the of the 2nd Workshop on Inference in Com-
putational Semantics.

Tan J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. CoRR, abs/1412.6572.

M. M. Gupta and J. Qi. 1991.
and fuzzy inference methods.
40(3):431-450.

Theory of t-norms
Fuzzy Sets Syst.,

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. 2018. Annotation artifacts in natu-
ral language inference data. CoRR, abs/1803.02324.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren,
and Percy Liang. 2017. Generating sentences by
editing prototypes. CoRR, abs/1709.08878.



Trevor Hastie, Robert Tibshirani, and Jerome Fried-
man. 2001. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Hossein Hosseini, Baicen Xiao, and Radha Pooven-
dran. 2017. Deceiving google’s cloud video intel-
ligence API built for summarizing videos. In 2017
IEEE Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops, pages
1305-1309. IEEE Computer Society.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
CoRR, abs/1804.06059.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, pages 2011-2021. Association for Computa-
tional Linguistics.

Anjuli Kannan and Oriol Vinyals. 2017.
sarial evaluation of dialogue models.
abs/1701.08198.

Adver-
CoRR,

J.J. Katz. 1972. Semantic theory. Studies in language.
Harper & Row.

Hector J. Levesque. 2014. On our best behaviour. Ar-
tif. Intell., 212:27-35.

Bill MacCartney and Christopher D Manning. 2009.
An extended model of natural logic. In Proceed-
ings of the of the Eighth International Conference
on Computational Semantics, Tilburg, Netherlands.

Pasquale Minervini, Thomas Demeester, Tim Rock-
tdaschel, and Sebastian Riedel. 2017. Adversarial
sets for regularising neural link predictors. In Pro-
ceedings of the Thirty-Third Conference on Uncer-
tainty in Artificial Intelligence, UAI 2017. AUAI
Press.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune.
2015. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images.
In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, pages 427-436. IEEE
Computer Society.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Ferndndez. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016.
The Association for Computer Linguistics.

74

Ankur P. Parikh, Oscar Téckstrom, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In (Su et al.,
2016), pages 2249-2255.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In (Su et al., 2016),
pages 2383-2392.

Laura Rimell and Stephen Clark. 2009. Port-
ing a lexicalized-grammar parser to the biomedi-

cal domain. Journal of Biomedical Informatics,
42(5):852-865.

Tim Rocktidschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In International Conference on Learning Represen-
tations (ICLR).

Jian Su et al., editors. 2016. Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2016. The Association
for Computational Linguistics.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In International Conference on Learning
Representations.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for

sentence understanding through inference. CoRR,
abs/1704.05426.



From Strings to Other Things:
Linking the Neighborhood and Transposition effects in Word Reading

Stéphan Tulkens and Dominiek Sandra and Walter Daelemans
CLiPS - Computational Linguistics Group
Department of Linguistics
University of Antwerp
{stephan.tulkens,dominiek.sandra,walter.daelemans}@uantwerpen.be

Abstract

We investigate the relation between the trans-
position and deletion effects in word read-
ing, i.e., the finding that readers can success-
fully read “SLAT” as “SALT”, or “WRK”
s “WORK?”, and the neighborhood effect.
In particular, we investigate whether lexi-
cal orthographic neighborhoods take into ac-
count transposition and deletion in determin-
ing neighbors. If this is the case, it is more
likely that the neighborhood effect takes place
early during processing, and does not solely
rely on similarity of internal representations.
We introduce a new neighborhood measure,
rd20, which can be used to quantify neigh-
borhood effects over arbitrary feature spaces.
We calculate the rd20 over large sets of words
in three languages using various feature sets
and show that feature sets that do not allow
for transposition or deletion explain more vari-
ance in Reaction Time (RT) measurements.
We also show that the rd20 can be calculated
using the hidden state representations of an
Multi-Layer Perceptron, and show that these
explain less variance than the raw features. We
conclude that the neighborhood effect is un-
likely to have a perceptual basis, but is more
likely to be the result of items co-activating
after recognition. All code is available at:
www.github.com/clips/conl12018

1 Introduction

Despite their many disagreements and differences,
a common thread among many models of word
reading is that they attempt to explain differ-
ences in reading speeds by assuming that sim-
ilarity between words modulate reading speed.
There is good reason for this assumption; many
experiments have shown that responses on tri-
als are modulated by a word’s similarity to other
words, be it semantic (Rodd et al., 2002, 2004),
orthographic (Andrews, 1997; Perea and Pollat-
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Figure 1: This diagram shows the two positions con-
trasted in this paper. The left model is the early model,
in which the neighborhood effect arises before percep-
tual uncertainty is resolved; this causes transposition
and substitution neighbors to count as neighbors. In
the late model, the neighborhood effect only arises af-
ter perceptual uncertainty is resolved, and transposi-
tion and substitution neighbors do not count towards
the neighborhood.

sek, 1998), or phonological similarity (Van Orden,
1987; Rastle and Brysbaert, 2006).

In psycholinguistic research on word reading,
this has led to the common practice of including
a measure of orthographic neighborhood similar-
ity as a control variable, as these neighborhood
measures explain variance in word reading even
when controlling for frequency and length (Colt-
heart, 1977; Yarkoni et al., 2008).

Orthographic neighborhood measures are usu-
ally operationalized using edit distance metrics,
such as the Levenshtein distance (Levenshtein,
1966). The most well-known measure of neigh-
borhood size is Coltheart’s N (Coltheart, 1977),
which is the number of types within a substitution
distance of 1. Yarkoni et al. (2008) show that NV
is nearly always O for longer words, as long words
tend are less frequent, and present an alternative
to N, called 01d20, which is the mean Levenshtein
distance to the 20 closest neighbors. 0ld20 corre-
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lates well with reaction time (RT) measures on two
experiments, and explains more variance than N
after accounting for length and frequency, and is
therefore considered superior to IV, and often used
as a de facto replacement for N (Yarkoni et al.,
2008).

Despite its ubiquity as a control variable, the
cause for the neighborhood effect is unknown or
disputed (Perea, 2015). One aspect, which we ex-
plore in the current work, is that it is currently un-
known whether the neighborhood effect is early
or late. If the neighborhood effect is early, it is
caused by the visual stimulus co-activating mul-
tiple representations. If it is late, the effect is
caused by an already activated representation co-
activating similar representations.

Of particular interest regarding this question
is the finding that skilled readers are remarkably
proficient in reading words that contain trans-
posed letters, e.g. “SLAT” versus “SALT” (Davis
and Bowers, 2006; Grainger, 2008), or words
from which letters are deleted, e.g. “WRK” and
“WORK” (Schoonbaert and Grainger, 2004). In
this work, we refer to these two effects in tandem
as flexible letter encoding. Examples of models
that try to explain flexible letter encoding include
the open bigram family of models (Whitney, 2001;
Grainger and Van Heuven, 2004; Schoonbaert and
Grainger, 2004; Whitney and Cornelissen, 2008),
the SOLAR model (Davis, 2001), the overlap
model (Gomez et al., 2008), and, most recently,
the spatial coding model (Davis, 2010b).

Taking into consideration both the neighbor-
hood effect and flexible letter encoding, we define
the following research question: are the neighbor-
hoods also defined using flexible letter encoding?
That is, if we know that readers activate “SALT”
upon reading “SLAT”, does this also imply that
the lexical neighborhood of “THREE” includes
“THERE”?

To answer this question, we calculate the neigh-
borhood density using a variety of feature sets, in-
cluding features that do not allow for flexible let-
ter encoding, and those that do. If lexical neigh-
borhoods calculated using flexible letter encod-
ings account for less variance in word reading
times than neighborhoods based on slot-based fea-
tures, we can surmise that it is more likely that
the neighborhood effect is late in origin. This fol-
lows from the fact that flexible letter encodings are
most likely to be an intermediate encoding step to-
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wards a concrete internal representation. Hence, if
neighborhoods with flexible letter encodings ex-
plain less variance, flexible letter encoding most
likely does not play a role in the neighborhood ef-
fect. This, in turn implies that the neighborhood
effect is likely a late effect, and is caused by con-
crete representations co-activating similar repre-
sentations. These two positions are contrasted in
Figure 1.

2 Main Contributions

To quantify the effect of different forms of repre-
sentations and their respective neighborhoods, we
introduce the Representation Distance 20 (rd20),
a generalization of 0ld20 which operates on arbi-
trary feature spaces.

We first replicate the original findings of
Yarkoni et al. (2008) regarding old20 and N
on Dutch, British English, and French lexical
databases. As old20 uses the Levenshtein met-
ric, which encodes flexible letter position by al-
lowing deletions and transpositions, the neighbor-
hoods defined by 0ld20 in principle support the
idea of flexible letter encoding.

Comparing to 0ld20 and N, we show that rd20
can be used to create neighborhood measures for
various feature sets. Furthermore, we use regres-
sion models to quantify the relation between word
length, frequency and rd20 on the one hand, and
Reaction Times (RT) in lexical decision exper-
iments on the other. We do this for four dif-
ferent feature sets on all aforementioned lexical
databases. Two of the four feature sets are slot-
based feature sets used in older models of com-
putational psycholinguistics, and two of them are
used by models that assume some kind of flexible
letter encoding. We can therefore use rd20 to as-
sess the effect of the representational assumptions
in models of flexible letter encoding, as well as
provide a direct comparison to old20.

We show that rd20 using one hot encoded let-
ter features explains slightly more variance in lex-
ical decision experiments than o0ld20. The fact that
rd20 takes much less time to compute and is more
flexible in the choice of inputs shows that it is a
practical alternative to old20. Additionally, we
show that the rd20 of feature sets which specifi-
cally encode letters in a flexible manner explains
far less variance in RT than the rd20 of encod-
ings which do not support flexible letter encoding.
This leads us to hypothesize that lexical neighbor-



hoods are not defined using flexible letter encod-
ing, and that, consequently, the neighborhood ef-
fect itself is a late effect, that is, an effect caused
by co-activation of similar representations, and not
caused by the visual likeness of stimuli.

To provide additional evidence regarding the
statement that the neighborhood effect follows
from internal representations, we perform an ex-
periment using Multi-Layer Perceptrons. After
training the network on each feature set, we cal-
culate rd20 of the hidden states of these networks,
and use these distances as a predictor in a linear
regression experiment

2.1 Representation Distance 20

Representation Distance 20 (rd20) is a measure
that does not assume a particular representational
format, and thus applies to any kind of vector rep-
resentation. It is therefore well-suited to quantify-
ing the effect feature sets have on lexical decision
experiments.

The rd20 for a featurized word x given a set of
featurized words X, where x € X, is defined as
follows:

s(z, X) = sort(cos(z, X)) (1)

Where sort is a sorting operator, cos is the co-
sine distance, x is featurized item, and X is the set
of featurized items. We then take the mean of the
20 first items, excluding the item itself.

Z?il S(:C, X)z

rd20(z, X) = 50

2
We use the 20 closest neighbors to be able to
compare to old20, which also uses 20 neighbors.
As Yarkoni et al. (2008) note, the value of 20 is
quite arbitrary, and values between 5 and 50 seem
to work well for most experiments. Because rd20
uses the cosine distance, it directly applies to any
vector representation. It is therefore suitable for
inspecting both external phenomena, i.e. featur-
ized string representations, and internal represen-
tations, e.g. weight matrices of neural networks.

3 Materials

This section describes the materials used in the pa-
per: the corpora, reaction time datasets, and the
various feature sets.
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3.1 Corpora

Throughout the paper we use three different lex-
ical databases derived from subtitle corpora as
the source of our words and frequency counts.
For Dutch we use SUBTLEX-NL (Keuleers
et al., 2010a), for English we use SUBTLEX-
UK (Van Heuven et al., 2014), and for French
we use Lexique 3 (New et al., 2007). Frequency
counts from subtitle corpora account for sub-
stantially more variance in Reaction Time mea-
surements, and are based on far larger corpora,
than previously available databases (Brysbaert and
New, 2009; Brysbaert and Cortese, 2011), such as
CELEX (Baayen et al., 1993) and previous ver-
sions of Lexique (New et al., 2001).

For all three languages, we use reaction times
(RT) from megastudies (Seidenberg and Waters,
1989). For Dutch we extract the reaction times
from the Dutch Lexicon Project 2 (DLP) (Keuleers
et al., 2010b; Brysbaert et al., 2016), for En-
glish we use the British Lexicon project (BLP)
(Keuleers et al., 2012), and for French we use
the French Lexicon project (FLP) (Ferrand et al.,
2010). As with the subtitle corpora, these megas-
tudies provide us with a more accurate estimate
of Reaction Times than previous studies with a
smaller number of participants and a smaller set
of items.

We extract a subset of these corpora accord-
ing to the following procedure: for each lan-
guage, we take all words from the SUBTLEX cor-
pora and lexicon projects, removing any words
which were shorter than 2 characters, or words
which contained non-alphabetic characters, such
as ‘# and ‘-’. We then remove any words from
the lexicon project database which are not in the
SUBTLEZX database, such that the words extracted
from the lexicon project were a subset of those in
the SUBTLEX database.

Additionally, for all languages we remove any
diacritic markers, transforming e.g. the French
word ‘tres’ to ‘tres’. This was done because not all
feature sets can appropriately featurize these dia-
critic markers.

For each language, this leaves us with a set of
SUBTLEX words, for which we only have fre-
quency counts, and a set of words from the lexicon
project, for which we have both frequency counts
and Reaction Time measurements. The sizes of
the resulting corpora are listed in Table 1.



‘ Dutch English French

SUBTLEX
Lexicon project

117,789 157,378 115,550
24,908 28,530 36,677

Table 1: The number of words left over in the
SUBTLEX and Lexicon projects after filtering. Note
that we removed any words from the Lexicon project
which were not in the SUBTLEX database, so that the
words from the lexicon project are an exact subset of
those in the SUBTLEX database.

3.2 Features

We use four different orthographic feature sets.
All the feature sets were previously implemented
in wordkit (Tulkens et al., 2018).

3.2.1 Slots

The two slot-based feature encodings are cre-
ated by left-justifying strings, padding them with
spaces to the length of the longest word in our cor-
pus, and then replacing each letter in each result-
ing slot by a feature vector. These feature vec-
tors are then concatenated to create a final fea-
ture vector. As noted in the introduction, these
types of encodings are thought to be unrealistic
(Grainger and Van Heuven, 2004; Davis and Bow-
ers, 2006), as they predict that words which are not
aligned have low similarity. The words “STAR”
and “TAR”, for example, have a similarity of O ac-
cording to a naive slot-based encoding. Despite
this shortcoming, the influence of slot-based en-
codings on contemporary models of word reading
can not be understated (Miikkulainen, 1997; Mc-
Clelland and Rumelhart, 1981; Harm and Seiden-
berg, 2004; Coltheart et al., 2001).

One hot encoded characters One hot encoded
character featurization assigns a single orthogonal
vector to each character, and hence assumes that
there is no underlying similarity, visual or other-
wise, between letters. This encoding is closest to
the encoding implicitly used by the Levenshtein
distance, and used by o0ld20. In this encoding we
treat the space character as a separate character,
and not as a zero vector.

Fourteen segment encoding The fourteen seg-
ment encoding was first introduced by Rumelhart
and Siple (1974), and is used in the original ver-
sion of the Interactive Activation model (McClel-
land and Rumelhart, 1981). As its name implies,
it uses fourteen binary segments, each of which
denotes a specific vertical, horizontal, or diago-
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nal line segment. Because the encoding is sub-
symbolic, words with different letters in the same
slot might still have some overlap in their similar-
ity. In this encoding, we treat the space character
as a zero vector.

3.2.2 Wickelgraphs

Wickelgraphs were first introduced as Wickel-
phones in the context of phonological representa-
tions (Seidenberg and McClelland, 1989) and are
named after, and based on the work of, Wickelgren
(1969). As we saw above, slot-based encodings
predict that words which are not aligned are com-
pletely dissimilar. Wickelgraphs attempt to over-
come this downside by representing words as sets
of contiguous ngrams, where n is usually set to
3, and n — 1 padding characters are added to the
start and end of each word. For example, the word
“SALT” has the following wickelgraph represen-
tation: {##S, #SA, SAL, ALT, LT#, T##}.

3.2.3 Weighted Open bigrams

Another way of representing flexible letter cod-
ing in reading is the open bigram family of fea-
ture encodings. Open bigrams were first pro-
posed by Whitney (2001) to account for read-
ers’ resilience to letter transposition effects, al-
though earlier accounts of transposition-like en-
codings can be found in work by Mozer (1987).
For a criticism of open bigrams, see work by Davis
(2010a) and Kinoshita and Norris (2013).

Open bigrams are constructed by taking the or-
dered set of 2-combinations of all letters in a word.
For example, the word ‘SALT’ becomes {SA, SL,
ST, AL, AT, LT} in an open bigram encoding
scheme. This scheme can account for transpo-
sition and deletion effects because most bigrams
survive the transposition or deletion of two letters.

The weighted open bigram scheme attaches a
weight to each bigram combination depending on
the distance between the constituent letters of the
bigram in the word (Schoonbaert and Grainger,
2004; Whitney and Cornelissen, 2008; Whitney,
2001). This encoding scheme was introduced to
account for the observation that participants expe-
rience more inhibition to transpositions which are
further apart. Following Whitney et al. (2012) we
used weights of 1.0, .7, and .2 for bigrams with 0,
1, or 2 intervening letters in all our experiments.
Bigrams with more than 2 intervening letters get
a weight of 0, and are therefore discarded in the
distance computation.
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Figure 2: rd20, N and o0ld20, plotted against word
length for three languages. The figure shows the mea-
sures behave the same across languages. The y-axes
denote the scaled quantities, as the 0ld20 and N mea-
sures are expressed on a different scale than the various
rd20 measures.

4 Experiment 1: empirical validation of
rd20

Using the materials defined in Section 3, we carry
out comparative experiments of 0ld20, IV, and the
rd20 of the four feature sets described above.
Figure 2 shows the word length versus the mean
distance for each of the measures for all three
languages. The figure shows that 0ld20 and the
measures based on slot-based encodings correlate
strongly with length, while flexible encodings do
not correlate with length. We observe the same
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Dutch

1. rd 20 - fourteen -
2.rd 20 - one hot 1
3. rd 20 - bigrams A
4. rd 20 - wickel 1
5. old 20 -

6. N 1

7. freq 1

8. length
9. RT 1

English
1. rd 20 - fourteen A
2.rd 20 - one hot 1
3. rd 20 - bigrams 1
4. rd 20 - wickel 1
5. old 20 -

6. N -

7. freq

8. length A

9. RT 1

French
1. rd 20 - fourteen A
2.rd 20 - one hot A
3. rd 20 - bigrams A
4. rd 20 - wickel 1
5. old 20 -

6. N

7. freq 1

8. length
9. RT A

Figure 3: The correlations between the control vari-
ables (length and frequency), the various distance mea-
sures, and RT. All correlations are significant (p < .05).

pattern of performance for all three languages. As
a similar pattern of performance was observed in
Yarkoni et al. (2008), we consider this to be an
empirical validation of our datasets.

Figure 3 shows the Spearman correlations be-
tween the different predictor variables (length, fre-
quency), and the various measures for all lan-
guages. As the figure indicates, the pattern of
correlations is consistent across all surveyed lan-
guages, and only differs in magnitude, not di-
rection. Additionally, because the results corre-



Dutch English French
Predictor | 3 R, AR.,| S Rl AR, | B R., ARl
base length 025 252 .0 .083 344 0| 263 314 .0
freq -.494 -.558 -414
rd20 - fourteen | length -.058 .270 018 | .053 .346 .002 | 209 .339 .025
freq -472 -.553 -421
score .161 .059 164
rd20 - one hot | length -305 .292 040 | -.066 .353 011 | 003 .353 039
freq -.459 -.552 -417
score 397 181 .326
rd20 - bigrams | length .044 273 .021 | .079 .349 005 | 292 342 .028
freq -.438 -.536 -.401
score 154 .076 167
rd20 - wickel length .006 .289 .037 | .096 .351 .007 | 333 .350 .036
freq -417 -.533 -.397
score .206 .088 .200
0ld20 length -240 283 .022 | -.051 .352 .008 | .035 .349 .035
freq -457 -.550 -412
score .329 .166 295
N length .087 .259 .007 | .078 344 .000 | 261 314 .0
freq -.510 -.557 -414
score 110 -.007 -.005

Table 2: The coefficients, explained variance, and change in explained variance of the regression analyses. The
rd20 measure using one hot features explains the most variance across all languages, although the difference is not

significant for English.

spond with those from Yarkoni et al. (2008), this
provides additional evidence for 0ld20 and our
datasets. Given that 0ld20 is considered to be a
good neighborhood measure, and the various rd20
measures show the same type of effects, i.e., ef-
fects in the same direction, this indirectly validates
rd20 as a good measure.

As an aside, while we see the same direction
of effects as in Yarkoni et al. (2008), we do see
that the magnitude of the correlations between the
scores and RT are lower for all corpora, which was
reported to be .612 for the English Lexicon Project
stimuli used in Yarkoni et al. (2008).

4.1 Regression analyses

In addition to the zero-order correlations above,
we also conduct stepwise regression analyses.
We use the RT values from the various lexicon
projects, as explained in Section 3 as dependent
variables, and consider the length, frequency, and
the distance measures as independent variables.
We first start by adding the control variables,
length and frequency in this case. Then, for each
defined measure, we add the score predictor as an
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additional variable, while measuring the effect this
addition has on model fit.

The difference between the adjusted R-squared,
or R?ldj from here on, of the model with the con-
trol variables and the model with the extra predic-
tor is called the ARidj, and explains how much
additional variance is explained by the added pre-
dictor. Because all measures were calculated using
the same data, we can simply compare the Adej
of each of the regression models to determine the

effect of that particular measure.

The results of the regression analyses are shown
in Table 2. The rows above the horizontal line
show the base model, i.e. the model with only
the control variables as predictors, while the rows
below the line denote the various statistics of the
different models with respect to the base model.

All score predictors for each model but the N
model show positive effect of score on RT, indicat-
ing that words in denser neighborhoods, i.e. words
with a lower average distance to nearest neighbors,
have shorter Reaction Times. These scores thus
predict a positive effect of neighborhood density.

For N we expect a negative correlation, as the



measure is inverted, i.e. words with denser neigh-
borhoods have higher figures. Nevertheless we see
a positive effect of NV for Dutch, which is unex-
pected.

In all three corpora the one hot encoded features
explain the most variance out of all the measures,
with the wickelfeatures following in second place
for Dutch and French, and OLD20 following in
second place for English. To see if these differ-
ence were significant, we bootstrapped the differ-
ence between the Rgdj estimates of one hot en-
coded rd20 and other feature sets with an « of
.05. For Dutch, we bootstrapped the differences
between the one hot encoded and wickelfeatures;
which led to intervals of [0.0004, 0.0058], indicat-
ing a significant, albeit really small, difference be-
tween the one hot encoded and wickelfeatures. For
English and French, we compared 0ld20 to both
the rd20 of the one hot and the wickelfeatures.
Because of multiple comparisons, we used Bon-
ferroni correction to correct our o of .05 to .025.
For English, the confidence interval of the boot-
strapped differences between the one hot encoding
and wickelgraphs was [-0.0028, -.0003], indicat-
ing significance, while the same confidence inter-
val for one hot encoding and o0ld20 was [0.0003,
0.0020], again indicating a significant difference.
For French, the confidence intervals for the dif-
ferences between one hot encoding and wickel-
graphs were [-0.0011, 0.0032], indicating a non-
significant difference, while the confidence inter-
val for the differences between one hot encoding
and old20 was [0.0029, 0.0061], again indicating
significance.

In a practical sense, the significance is not that
important: as all of these values are really small,
there seems to be little reason to prefer one of the
metrics over the other. That is, even though the
difference between old 20 and the rd20 of a one
hot encoded representation is significant, the dif-
ference in explained variance is so small to not re-
ally matter.

Theoretically, these results point towards a
smaller role for transposition effects than previ-
ously assumed, for two reasons:

First, given that the main difference between
the one-hot encoded features and the Levenshtein-
based o0ld20 is that the Levenshtein metric allows
for transpositions and deletions, we can view the
difference in explained variance between these
two measures as the net transposition effect. 1If
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Dutch

1. rd 20 - fourteen - ~26

2. rd 20 - one hot =23

3. rd 20 - bigrams -24

4. rd 20 - wickel -11

5. freq 1

6. length 1

7. RT A

English

44 -17 20

1. rd 20 - fourteen -

.44 -15 .20

2.rd 20 - one hot 1

.36 -.16

.38

3. rd 20 - bigrams 18

-.02 QeSS .09

.24

4. rd 20 - wickel
5. freq - =21
6. length -

7. RT A

French

.45 -31 B39

1. rd 20 - fourteen -

43 -29 .39

2.rd 20 - one hot A

.35 -28 .47 .29

3. rd 20 - bigrams A

-24 44 2

.38

4. rd 20 - wickel 1
5. freq 1 -30
6. length 1

7. RT A

Figure 4: The correlations between the control vari-
ables, length and frequency, and the various distance
measures for representations learned by the MLP.

transpositions and deletions played a large role
during lexical access, then we would expect to see
a large positive net transposition effect. In our ex-
periments, we see exactly the opposite: a small
but significant negative net transposition effect in
all corpora. Second, we observe that the bigrams,
the feature set specifically constructed for model-
ing transposition effects during word reading, ex-
plains less variance than the slot-based encodings
in all cases.

Both of these results lead us to hypothesize that



Dutch English French

Predictor | 3 R, AR.,| S5 Rl AR, | B R., ARl

base length 025 252 .0 .08 .344 0| 263 315 .0
freq -.493 -.55 -414

fourteen length -.054 257 .005 | .031 .348 004 | 143 327 012
freq -.484 -.556 -.400
score 110 .083 .168

one hot length -.068 274 022 | .041 356 012 | 144 347 032
freq -475 -.551 -.390
score 179 119 221

bigrams length 020 .252 0] .061 .346 .002 23 319 .004
freq -.492 -.554 -.403
score .008 .051 .075

wickel  length .008 254 .002 | .067 .345 .001 | 256 315 .000
freq -.493 -.560 -412
score .041 .047 .016

Table 3: The coefficients, adjusted explained variance, and change in adjusted explained variance of the regression
analyses on the hidden state representations learned by an MLP.

transposition and deletions play a smaller role in
defining lexical neighborhoods than previously as-
sumed.

5 Experiment 2: internal
Representations

In the previous experiment, we showed that rd20
can be used to assess the neighborhood of featur-
ized words. Calculating the rd20 over the raw fea-
tures, however, assumes that our internal represen-
tations are exemplars instead of learned abstract
representations, such as those found in a neural
network. To assess whether rd20 can also be used
with hidden state representations, we performed
an additional experiment using a Multi-Layer Per-
ceptron (MLP).

For each feature set, we trained an MLP to pre-
dict the identity of the word based on the input fea-
tures, which is similar to experiments conducted
by Dandurand et al. (2010). Each MLP had one
hidden layer with 500 hidden units and a Sigmoid
activation function, while the output layer had a
softmax activation function, and a dimensionality
of the vocabulary size. We used cross-entropy as a
loss function, and optimized using Adam (Kingma
and Ba, 2014). Our training regime was as fol-
lows: we shuffled before each epoch, and then
presented all featurized words to the MLP. As in
the previous experiment, we used the whole cor-
pus for each language during training. We trained
each model until convergence, where we defined
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convergence as there being no change in the loss
for 20 epochs in a row. After convergence, we cal-
culated the accuracy score for each of the models
in each language. Each of the models achieved an
accuracy of .95 or higher, showing that each model
has correctly learned to predict nearly every word.

We then presented the words for which we
had RTs (i.e. the words which were both in the
SUBTLEX database and in the Lexicon Project for
each language) to the network again, and stored
the hidden unit activations in response to the in-
put. Following the neural network literature (e.g.
(Elman, 1991)), we assume these internal repre-
sentations are the representations learned during
the task of attempting to predict the word identity.
We then calculated rd20 for each representation,
and used these as input to the same analyses as the
previous experiment.

Comparing the MLP results in Figure 4 to the
results from Figure 3, we see that the MLP has
a normalizing effect; as far as these statistics
are concerned, the differences between the differ-
ent feature sets have become smaller. The most
prominent change is that all rd20 measures now
correlate with length, whereas before only the
rd20 based on slot-based values correlated with
length. Similarly, the rd20 based on the one hot
features did not correlate with the rd20 based on
the bigram and wickelgraphs in experiment 1, but
does correlate in the present experiment.

We also conducted regression analyses, using



the distances between the hidden layer represen-
tations as a predictor, as in experiment 1. Table
3 shows the results of these regression analyses.
These analyses confirm that the MLP has a nor-
malizing effect; whereas the effect of frequency
and length differed in magnitude and sign between
feature sets in Experiment 1, nearly all feature sets
see a positive effect of length and a negative effect
of frequency. The regression analysis shows that
the Ridj was generally lower for the representa-
tions in the MLP, with the wickelgraphs especially
suffering in comparison to Experiment 1.

6 Discussion and conclusion

Jointly, our experiments show that one hot en-
coded characters outperform other feature rep-
resentations in explaining variance beyond fre-
quency and length. In Experiment 1, we showed
that transposition effects play a smaller role than
previously thought; rd20 over a one hot encoded
character representation explains significantly, al-
beit small amounts, more variance than 0ld20. The
rd20 of open bigrams, a feature set specifically
constructed for a representation which takes into
account transposition effects, does not explain a
lot of variance. Returning to the main research
question of this paper, i.e. whether the neighbor-
hood effect is influenced by transposition neigh-
bors, our evidence shows that it more likely the
case that they do not.

Counter to what we found, experiments have
shown that human subjects do take into account
transposition neighbors in their neighborhoods
(Davis et al., 2009; Acha and Perea, 2008). This
raises an interesting conundrum, and shows that
more research is required.

Furthermore, while the effect of denser neigh-
borhoods was uniformly positive throughout all
experiments and measures, this is not the case
in human processing, where dense neighborhoods
can sometimes have an inhibitory effect due to
competition (Perea, 2015).

This leads us to another point of concern: the
theoretical status of the neighborhood metric, be
it 0ld20, N, or rd20. Should these metrics be
conceived of as purely diagnostic instruments, or
as full-fledged, albeit limited, models of word
processing? As our research shows, varying the
neighborhood metric allows us to advance theo-
retical claims, like any model would allow us to
do. In the future, we would like to investigate how
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much of a model one can build out of the neigh-
borhood metric.

Experiment 2 shows the validity of using rd20
on internal representations learned by a neural net-
work. This opens up new avenues for research,
and allows us to quantitatively determine the ef-
fect of neighborhood density in neural networks
on behavioral measures.

7 Implementation details

All statistical analyses were carried out us-
ing R (Team et al.,, 2013), some of the Fig-
ures were made in ggplot2 (Wickham et al.,
2008). rd20, o0ld20 and N were implemented in
Python (Van Rossum and Drake Jr, 1995), us-
ing Numpy (Walt et al., 2011), while the MLP
was implemented using PyTorch (Paszke et al.,
2017). Some Figures were made inMatplotlib
(Hunter, 2007).
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Abstract

Many name tagging approaches use local con-
textual information with much success, but fail
when the local context is ambiguous or lim-
ited. We present a new framework to improve
name tagging by utilizing local, document-
level, and corpus-level contextual informa-
tion. We retrieve document-level context from
other sentences within the same document and
corpus-level context from sentences in other
topically related documents. We propose a
model that learns to incorporate document-
level and corpus-level contextual informa-
tion alongside local contextual information via
global attentions, which dynamically weight
their respective contextual information, and
gating mechanisms, which determine the in-
fluence of this information. Extensive exper-
iments on benchmark datasets show the ef-
fectiveness of our approach, which achieves
state-of-the-art results for Dutch, German, and
Spanish on the CoNLL-2002 and CoNLL-
2003 datasets. .

1 Introduction

Name tagging, the task of automatically identify-
ing and classifying named entities in text, is often
posed as a sentence-level sequence labeling prob-
lem where each token is labeled as being part of a
name of a certain type (e.g., location) or not (Chin-
chor and Robinson, 1997; Tjong Kim Sang and
De Meulder, 2003). When labeling a token, lo-
cal context (i.e., surrounding tokens) is crucial be-
cause the context gives insight to the semantic
meaning of the token. However, there are many in-
stances in which the local context is ambiguous or
lacks sufficient content. For example, in Figure 1,
the query sentence discusses “Zywiec” selling a

The programs are publicly available for research pur-
pose: https://github.com/boliangz/global__
attention_ner
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product and profiting from these sales, but the lo-
cal contextual information is ambiguous as more
than one entity type could be involved in a sale.
As a result, the baseline model mistakenly tags
“zZywiec” as a person (PER) instead of the cor-
rect tag, which is organization (ORG). If the model
has access to supporting evidence that provides ad-
ditional, clearer contextual information, then the
model may use this information to correct the mis-
take given the ambiguous local context.

Baseline:

So far this year [PER Zywiec], whose full name
is Zaklady Piwowarskie w Zywcu SA, has netted six
million zlotys on sales of 224 million zlotys.

Our model (Document-level + Corpus-level Attention):

So far this year [ORG Zywiec], whose full name
is Zaklady Piwowarskie w Zywcu SA, has netted six
million zlotys on sales of 224 million zlotys.

Document-level Supporting Evidence:
Van Boxmeer also said [ORG Zywiec] would be boosted
by its recent shedding of soft drinks which only
accounted for about three percent of the firm's
overall sales and for which 7.6 million zlotys in
provisions had already been made.

Polish brewer [ORG Zywiec]'s 1996 profit slump may
last into next year due in part to hefty
depreciation charges, but recent high investment
should help the firm defend its 10-percent market
share, the firm's chief executive said.

Corpus-level Supporting Evidence:
The [ORG Zywiec] logo includes all of the most
important historical symbols of the brewery and
Poland itself.

is a town in south-central
Poland 32,242 inhabitants (as of November 2007).

Figure 1: Example from the baseline and our model
with some supporting evidence.

Additional context may be found from other
sentences in the same document as the query sen-
tence (document-level). In Figure 1, the sentences
in the document-level supporting evidence provide
clearer clues to tag “Zywiec” as ORG, such as
the references to “Zywiec” asa “firm”. A con-
cern of leveraging this information is the amount
of noise that is introduced. However, across all the
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data in our experiments (Section 3.1), we find that
an average of 35.43% of named entity mentions in
each document are repeats and, when a mention
appears more than once in a document, an aver-
age of 98.78% of these mentions have the same
type. Consequently, one may use the document-
level context to overcome the ambiguities of the
local context while introducing little noise.

Although a significant amount of named en-
tity mentions are repeated, 64.57% of the men-
tions are unique. In such cases, the sentences at
the document-level cannot serve as a source of
additional context. Nevertheless, one may find
additional context from sentences in other doc-
uments in the corpus (corpus-level). Figure 1
shows some of the corpus-level supporting evi-
dence for “Zywiec”. In this example, similar
to the document-level supporting evidence, the
first sentence in this corpus-level evidence dis-
cusses the branding of “Zywiec”, corroborating
the ORG tag. Whereas the second sentence intro-
duces noise because it has a different topic than
the current sentence and discusses the Polish town
named “Zywiec”, one may filter these noisy con-
texts, especially when the noisy contexts are ac-
companied by clear contexts like the first sentence.

We propose to utilize local, document-level, and
corpus-level contextual information to improve
name tagging. Generally, we follow the one sense
per discourse hypothesis introduced by Yarowsky
(2003). Some previous name tagging efforts ap-
ply this hypothesis to conduct majority voting for
multiple mentions with the same name string in
a discourse through a cache model (Florian et al.,
2004) or post-processing (Hermjakob et al., 2017).
However, these rule-based methods require man-
ual tuning of thresholds. Moreover, it’s challeng-
ing to explicitly define the scope of discourse.
We propose a new neural network framework
with global attention to tackle these challenges.
Specifically, for each token in a query sentence,
we propose to retrieve sentences that contain the
same token from the document-level and corpus-
level contexts (e.g., document-level and corpus-
level supporting evidence for “Zywiec” in Fig-
ure 1). To utilize this additional information, we
propose a model that, first, produces representa-
tions for each token that encode the local context
from the query sentence as well as the document-
level and corpus-level contexts from the retrieved
sentences. Our model uses a document-level at-
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tention and corpus-level attention to dynamically
weight the document-level and corpus-level con-
textual representations, emphasizing the contex-
tual information from each level that is most rel-
evant to the local context and filtering noise such
as the irrelevant information from the mention
“[LOC Zywiec]” in Figure 1. The model learns
to balance the influence of the local, document-
level, and corpus-level contextual representations
via gating mechanisms. Our model predicts a tag
using the local, gated-attentive document-level,
and gated-attentive corpus-level contextual repre-
sentations, which allows our model to predict the
correct tag, ORG, for “Zywiec” in Figure 1.

The major contributions of this paper are: First,
we propose to use multiple levels of contextual
information (local, document-level, and corpus-
level) to improve name tagging. Second, we
present two new attentions, document-level and
corpus-level, which prove to be effective at ex-
ploiting extra contextual information and achieve
the state-of-the-art.

2 Model

We first introduce our baseline model. Then, we
enhance this baseline model by adding document-
level and corpus-level contextual information to
the prediction process via our document-level and
corpus-level attention mechanisms, respectively.

2.1 Baseline

We consider name tagging as a sequence label-
ing problem, where each token in a sequence is
tagged as the beginning (B), inside (I) or out-
side (O) of a name mention. The tagged names
are then classified into predefined entity types.
In this paper, we only use the person (PER), or-
ganization (ORG), location (LOC), and miscel-
laneous (MISC) types, which are the predefined
types in CoNLL-02 and CoNLL-03 name tagging
dataset (Tjong Kim Sang and De Meulder, 2003).

Our baseline model has two parts: 1) En-
coding the sequence of tokens by incorporat-
ing the preceding and following contexts us-
ing a bi-directional long short-term memory (Bi-
LSTM) (Graves et al., 2013), so each token is as-
signed a local contextual embedding. Here, fol-
lowing Ma and Hovy (2016a), we use the con-
catenation of pre-trained word embeddings and
character-level word representations composed by
a convolutional neural network (CNN) as input



to the Bi-LSTM. 2) Using a Conditional Random
Fields (CRFs) output layer to render predictions
for each token, which can efficiently capture de-
pendencies among name tags (e.g., “I-LOC” can-
not follow “B-ORG”).

The Bi-LSTM CREF network is a strong baseline
due to its remarkable capability of modeling con-
textual information and label dependencies. Many
recent efforts combine the Bi-LSTM CRF net-
work with language modeling (Liu et al., 2017;
Peters et al., 2017, 2018) to boost the name tag-
ging performance. However, they still suffer from
the limited contexts within individual sequences.
To overcome this limitation, we introduce two at-
tention mechanisms to incorporate document-level
and corpus-level supporting evidence.

2.2 Document-level Attention

Many entity mentions are tagged as multiple types
by the baseline approach within the same docu-
ment due to ambiguous contexts (14.43% of the
errors in English, 18.55% in Dutch, and 17.81% in
German). This type of error is challenging to ad-
dress as most of the current neural network based
approaches focus on evidence within the sentence
when making decisions. In cases where a sentence
is short or highly ambiguous, the model may ei-
ther fail to identify names due to insufficient in-
formation or make wrong decisions by using noisy
context. In contrast, a human in this situation
may seek additional evidence from other sentences
within the same document to improve judgments.

In Figure 1, the baseline model mistak-
enly tags “Zywiec” as PER due to the am-
biguous context “whose full name is..”,
which frequently appears around a person’s
name. However, contexts from other sentences
in the same document containing “Zywiec”
(e.g., sq and s, in Figure 2), such as “’s
1996 profit..” and “would be boosted
by its recent shedding..”, indicate that
“zZywiec” ought to be tagged as ORG. Thus,
we incorporate the document-level supporting
evidence with the following attention mecha-
nism (Bahdanau et al., 2015).

Formally, given a document D = {sy, s2, ...},
where s; {wi1,wi2, ...} is a sequence of
words, we apply a Bi-LSTM to each word in s;,
generating local contextual representations h; =
{h;1,h;2, ...}. Next, for each w;;, we retrieve the
sentences in the document that contain w;; (e.g.,
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54 and s, in Figure 2) and select the local contex-
tual representations of w;; from these sentences as

o) (e.g by
and h,, in Figure 2), where hi; and ﬁij are ob-
tained with the same Bi-LSTM. Since each repre-
sentation in the supporting evidence is not equally
valuable to the final prediction, we apply an atten-
tion mechanism to weight the contextual represen-

tations of the supporting evidence:

— vT tanh (Whhij + Wihy; + be> :

(eh) -

where h;; is the local contextual representation of

supporting evidence, ﬁij = {ﬁ

k

afj = Softmax

word j in sentence s; and flf] is the k-th support-
ing contextual representation. Wy, W; and b, are
learned parameters. We compute the weighted av-
erage of the supporting representations by

~ k ~k
Hj =) afhi;,
k=1

where ﬁij denotes the contextual representation of
the supporting evidence for w;.

For each word wj;, its supporting evidence rep-
resentation, ﬁij, provides a summary of the other
contexts where the word appears. Though this ev-
idence is valuable to the prediction process, we
must mitigate the influence of the supporting ev-
idence since the prediction should still be made
primarily based on the query context. Therefore,
we apply a gating mechanism to constrain this in-
fluence and enable the model to decide the amount
of the supporting evidence that should be incorpo-
rated in the prediction process, which is given by

rij = o(Wg, Hij + Wi hij +b,),
z;j = U(WI:I,ZI:IU + Wh@,hij + bz) ,
g;; = tanh(Wighij +2;; © (W Hij +bg)) ,

Dij =1 Ohj + (1 — 1) © g;;
where all W, b are learned parameters and D;; is

the gated supporting evidence representation for
wij.

2.3 Topic-aware Corpus-level Attention

The document-level attention fails to generate sup-
porting evidence when the name appears only
once in a single document. In such situations,
we analogously select supporting sentences from
the entire corpus. Unfortunately, different from
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Sq Polish brewer Zywiec 's 1996 profit slump may last into next year due in part to
hefty depreciation charges' , but recent high investment should help the firm defend
its 00-percent market share , the firm 's chief executive said
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Bidirectional LSTM Encoder
S, Van Boxmeer also said Zywiec would be boosted by its recent shedding of soft drinks
which only accounted for about three percent of the firm 's overall sales and for
which 0.0 million zlotys in provisions had already been made

Figure 2: Document-level Attention Architecture. (Within-sequence context in red incorrectly indicates
the name as PER, and document-level context in green correctly indicates the name as ORG.)

the sentences that are naturally topically relevant  section 2.2. We use another gating mechanism to
within the same documents, the supporting sen-  combine I:Iij and the local contextual representa-
tences from the other documents may be about  tion, h;;, to obtain the corpus-level gated support-
distinct topics or scenarios, and identical phrases  ing evidence representation, C;;, for each w;;.
may refer to various entities with different types,
as in the example in Figure 1. To narrow down
the search scope from the entire corpus and avoid

unnecessary noise, we introduce a topic-aware (®) Attentive Summation () Gated Summation
corpus-level attention which clusters the docu- Sy So far this year Zywiec, whose full name is
ments by topic and carefully selects topically re- | 271238 Pirovarsiic w vien b hee neced obs
lated sentences to use as supporting evidence. Bidirectional LSTM Encoder

We first apply Latent Dirichlet allocation SRS ¢ S ‘3”'51‘1"‘ _
(LDA) (Blei et al., 2003) to model the topic dis- 68 Al )
tribution of each document and separate the doc- i hr e x
uments into N clusters based on their topic dis- L~ -

© contextual representaions of Zywiec from

tributions.? As in Figure 3, we retrieve supporting

topically related documents

(13 . 2
sentences for each word, such as “Zywiec”, from T v Tme—

the topically related documents and employ an- §x The Zywiec logo includes all of the most
. . important historical symbols of the brewery and
other attention mechanism (Bahdanau et al., 2015) Poland itself.
to the supporting contextual representations, h;; = ‘ Bidisectional LSTM Encoder
1 A2 ~ -
h: . h . .. e.o.. h.. and h,,; in Fieure 3). This Sy Zywiec is a town in south-central Poland 32,242
{ 177770 } ( & Nai yr g ) inhabitants (as of November 2007) .

yields a weighted contextual representation of the

Corpus-level supporting sentences

corpus-level supporting evidence, I:Iij, for each
wj;, which is similar to the document-level sup-

) . . - ; i Figure 3: Corpus-level Attention Architecture.
porting evidence representation, H;;, described in

2N = 20 in our experiments.

&9



2.4 Tag Prediction

For each word w;; of sentence s;, we concatenate
its local contextual representation h;;, document-
level gated supporting evidence representation
D;;, and corpus-level gated supporting evidence
representation C;; to obtain its final representa-
tion. This representation is fed to another Bi-
LSTM to further encode the supporting evidence
and local contextual features into an unified repre-
sentation, which is given as input to an affine-CRF
layer for label prediction.

3 Experiments

3.1 Dataset

We evaluate our methods on the CoNLL-2002
and CoNLL-2003 name tagging datasets (Tjong
Kim Sang and De Meulder, 2003). The CoNLL-
2002 dataset contains name tagging annotations
for Dutch (NLD) and Spanish (ESP), while the
CoNLL-2003 dataset contains annotations for En-
glish (ENG) and German (DEU). Both datasets
have four pre-defined name types: person (PER),
organization (ORG), location (LOC) and miscel-
laneous (MISC).?

Code | Train Dev. Test

NLD |202,931 (13,344) | 37,761 (2,616) | 68,994 (3,941)
ESP [264,715 (18,797) | 52,923 (4,351) | 51,533 (3,558)
ENG 204,567 (23,499) | 51,578 (5,942) | 46,666 (5,648)
DEU | 207,484 (11,651) | 51,645 (4,669) | 52,098 (3,602)

Table 1: # of tokens in name tagging datasets statis-
tics. # of names is given in parentheses.

We select at most four document-level sup-
porting sentences and five corpus-level support-
ing sentences.* Since the document-level attention
method requires input from each individual docu-
ment, we do not evaluate it on the CoNLL-2002
Spanish dataset which lacks document delimiters.
We still evaluate the corpus-level attention on the
Spanish dataset by randomly splitting the dataset
into documents (30 sentences per document). Al-
though randomly splitting the sentences does not
yield perfect topic modeling clusters, experiments
show the corpus-level attention still outperforms
the baseline (Section 3.3).

3The miscellaneous category consists of names that do not
belong to the other three categories.

*Both numbers are tuned from 1 to 10 and selected when
the model performs best on the development set.
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Hyper-parameter Value

CharCNN Filter Number 25

CharCNN Filter Widths [2,3,4]

Lower Bi-LSTM Hidden Size 100

Lower Bi-LSTM Dropout Rate | 0.5

Upper Bi-LSTM Hidden Size 100

Learning Rate 0.005

Batch Size N/A*

Optimizer SGD (Bottou, 2010)

* Each batch is a document. The batch size varies as the
different document length.

Table 2: Hyper-parameters.

3.2 Experimental Setup

For word representations, we use 100-dimensional
pre-trained word embeddings and 25-dimensional
randomly initialized character embeddings. We
train word embeddings using the word2vec pack-
age.’ English embeddings are trained on the En-
glish Giga-word version 4, which is the same cor-
pus used in (Lample et al., 2016). Dutch, Span-
ish, and German embeddings are trained on corre-
sponding Wikipedia articles (2017-12-20 dumps).
Word embeddings are fine-tuned during training.

Table 2 shows our hyper-parameters. For
each model with an attention, since the Bi-
LSTM encoder must encode the local, document-
level, and/or corpus-level contexts, we pre-train
a Bi-LSTM CRF model for 50 epochs, add our
document-level attention and/or corpus-level at-
tention, and then fine-tune the augmented model.
Additionally, Reimers and Gurevych (2017) report
that neural models produce different results even
with same hyper-parameters due to the variances
in parameter initialization. Therefore, we run each
model ten times and report the mean as well as the
maximum F1 scores.

3.3 Performance Comparison

We compare our methods to three categories of
baseline name tagging methods:

e Vanilla Name Tagging Without any additional
resources and supervision, the current state-of-
the-art name tagging model is the Bi-LSTM-
CREF network reported by Lample et al. (2016)
and Ma and Hovy (2016b), whose difference
lies in using a LSTM or CNN to encode char-
acters. Our methods fall in this category.

Multi-task Learning Luo et al. (2015); Yang
et al. (2017) apply multi-task learning to boost

Shttps://github.com/tmikolov/word2vec
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Figure 4: Average F1 score for each epoch of the ten runs of our model with both document-level and
corpus-level attentions. Epochs 1-50 are the pre-training phase and 51-100 are the fine-tuning phase.

name tagging performance by introducing ad-
ditional annotations from related tasks such as
entity linking and part-of-speech tagging.

Join-learning with Language Model Peters
et al. (2017); Liu et al. (2017); Peters et al.
(2018) leverage a pre-trained language model
on a large external corpus to enhance the se-
mantic representations of words in the local cor-
pus. Peters et al. (2018) achieve a high score on
the CoNLL-2003 English dataset using a giant
language model pre-trained on a 1 Billion Word
Benchmark (Chelba et al., 2013).

Table 3 presents the performance comparison
among the baselines, the aforementioned state-
of-the-art methods, and our proposed methods.
Adding only the document-level attention offers a
F1 gain of between 0.37% and 1.25% on Dutch,
English, and German. Similarly, the addition of
the corpus-level attention yields a F1 gain be-
tween 0.46% to 1.08% across all four languages.
The model with both attentions outperforms our
baseline method by 1.60%, 0.56%, and 0.79% on
Dutch, English, and German, respectively. Using
a paired t-test between our proposed model and
the baselines on 10 randomly sampled subsets, we
find that the improvements are statistically signifi-
cant (p < 0.015) for all settings and all languages.
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By incorporating the document-level and
corpus-level attentions, we achieve state-of-the-art
performance on the Dutch (NLD), Spanish (ESP)
and German (DEU) datasets. For English, our
methods outperform the state-of-the-art methods
in the “Vanilla Name Tagging” category. Since
the document-level and corpus-level attentions in-
troduce redundant and topically related informa-
tion, our models are compatible with the language
model enhanced approaches. It is interesting to
explore the integration of these two methods, but
we leave this to future explorations.

Figure 4 presents, for each language, the learn-
ing curves of the full models (i.e., with both
document-level and corpus-level attentions). The
learning curve is computed by averaging the F1
scores of the ten runs at each epoch. We first pre-
train a baseline Bi-LSTM CRF model from epoch
1 to 50. Then, starting at epoch 51, we incor-
porate the document-level and corpus-level atten-
tions to fine-tune the entire model. As shown in
Figure 4, when adding the attentions at epoch 51,
the F1 score drops significantly as new parameters
are introduced to the model. The model gradually
adapts to the new information, the F1 score rises,
and the full model eventually outperforms the pre-
trained model. The learning curves strongly prove
the effectiveness of our proposed methods.



Code | Model F1 (%)
(Gillick et al., 2015) reported | 82.84
(Lample et al., 2016) reported | 81.74
(Yang et al., 2017) reported | 85.19

. mean 85.43
Our Baseline hax ]5.30

NLD . mean 86.82

Doc-1vl Attention hax R705
. mean 86.41

Corpus-lvl Attention hax 3683
mean 87.14

Both max 87.40
A +1.60

(Gillick et al., 2015) reported | 82.95
(Lample et al., 2016) reported | 85.75
(Yang et al., 2017) reported | 85.77
ESP Our Baseline mean 85.33
max 85.51

. mean 85.77

Corpus-1vl Attention X 86.01
A +0.50

(Luo et al., 2015) reported | 91.20
(Lample et al., 2016) reported | 90.94
(Ma and Hovy, 2016b) | reported | 91.21
(Liu et al., 2017) reported | 91.35
(Peters et al., 2017) reported | 91.93

ENG (Peters et al., 2018) reported | 92.22

Our Baseline mean 90.97
max 91.23

. mean 91.43

Doc-1vl Attention hax 91.60
. mean 91.41

Corpus-lvl Attention hax el
mean 91.64

Both max 91.81
A +0.58

(Gillick et al., 2015) reported | 76.22
(Lample et al., 2016) reported | 78.76
. mean 78.15

Our Baseline X CWD)

DEU . mean 78.90

Doc-1vl Attention hax 7919
. mean 78.53

Corpus-lvl Attention X RS
mean 78.83

Both max 79.21
A +0.79

Table 3: Performance of our methods versus the
baseline and state-of-the-art models.

We also compare our approach with a sim-
ple rule-based propagation method, where we use
token-level majority voting to make labels con-
sistent on document-level and corpus-level. The
score of document-level propagation on English is
90.21% (F1), and the corpus-level propagation is
89.02% which are both lower than the BiLSTM-
CREF baseline 90.97%.

3.4 Qualitative Analysis

Table 5 compares the name tagging results from
the baseline model and our best models. All ex-
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amples are selected from the development set.

In the Dutch example, “Granada” is the name
of a city in Spain, but also the short name of
“Granada Media”. Without ORG related con-
text, “Granada” is mistakenly tagged as LOC by
the baseline model. However, the document-level
and corpus-level supporting evidence retrieved by
our method contains the ORG name “Granada
Media”, which strongly indicates “Granada” to
be an ORG in the query sentence. By adding the
document-level and corpus-level attentions, our
model successfully tags “Granada” as ORG.

In example 2, the OOV word “Kaczmarek” is
tagged as ORG in the baseline output. In the re-
trieved document-level supporting sentences, PER
related contextual information, such as the pro-
noun “he”, indicates “Kaczmarek” to be a PER.
Our model correctly tags “Kaczmarek” as PER
with the document-level attention.

In the German example, “Griinen” (Greens) is
an OOV word in the training set. The character
embedding captures the semantic meaning of the
stem “Grin” (Green) which is a common non-
name word, so the baseline model tags “Griinen”
as O (outside of a name). In contrast, our model
makes the correct prediction by incorporating the
corpus-level attention because in the related sen-
tence from the corpus “Bundesvorstandes
der Grunen” (Federal Executive of the Greens)
indicates “Griinen” to be a company name.

3.5 Remaining Challenges

By investigating the remaining errors, most of the
named entity type inconsistency errors are elimi-
nated, however, a few new errors are introduced
due to the model propagating labels from negative
instances to positive ones. Figure 5 presents a neg-
ative example, where our model, being influenced
by the prediction “[B-ORG Indianapolis]”
in the supporting sentence, incorrectly predicts
“Indianapolis” as ORG in the query sen-
tence. A potential solution is to apply sentence
classification (Kim, 2014; Ji and Smith, 2017)
to the documents, divide the document into fine-
grained clusters of sentences, and select support-
ing sentences within the same cluster.

In morphologically rich languages, words may
have many variants. When retrieving supporting
evidence, our exact query word match criterion
misses potentially useful supporting sentences that
contain variants of the word. Normalization and



#1 Dutch

concern nu van af.

Baseline overwoog vervolgens een bod op Carlton uit te brengen, maar daar ziet het
concern nu van af.
Granada then considered 1is g a bid for Car n, but the concern now sees 1it.

Our model [B-ORG Granada] overwoog vervolgens een bod op Carlton uit te brengen, maar daar ziet het

D-lvl sentences

[B-ORG Granada]

[I-ORG Media] neemt belangen in United News.

C-1vl sentences

Het Britse concern [B-ORG Granada]
miljard Belgische frank)

[I-ORG Media] heeft voor 1,75 miljard pond sterling
aandelen gekocht wvan United News Media.

(111

tender and offered a minority stake with an option to

#2 English

Baseline Initially Poland offered up to 75 percent of Ruch but in March [ORG Kaczmarek] cancelled the
tender and offered a minority stake with an option to increase the equity.

Our model Initially Poland offered up to 75 percent of Ruch but in March [PER Kaczmarek] cancelled the

increase the equity.

D-lvl sentences

[PER Kaczmarek] said in May he was unhappy that only one investor ended up bidding for Ruch.

Frage.

#3 German
Baseline Diese Diskussion werde ausschlaggebend sein fiir die Stellungnahme derGrinen in dieser Frage.
Our model Diese Diskussion werde ausschlaggebend sein fiir die Stellungnahme der [B-ORG Griinen] in dieser

C-Ivl sentences
Berufsheer au.

Auch das Mitglied des Bundesvorstandes der [B-ORG Griinen],

Helmut Lippelt, sprach sich fir ein

#4 Negative Example
Reference 1996-12-06
Our model [B-ORG Indianapolis] 1996-12-06

D-lvl sentence The injury-plagued [B-ORG Indianapolis]

showdown of playoff contenders.

[I-ORG Colts] lost another quarterback on Thursday but
last year's AFC finalists rallied together to shoot down the Philadelphia Eagles 37-10 in a

* D-lvl sentences: document-level supporting sentences.
* C-1vl sentences: corpus-level supporting sentences.

Figure 5: Comparison of name tagging results between the baseline and our methods.

morphological analysis can be applied in this case
to help fetch supporting sentences.

4 Related Work

Name tagging methods based on sequence label-
ing have been extensively studied recently. Huang
et al. (2015) and Lample et al. (2016) proposed
a neural architecture consisting of a bi-directional
long short-term memory network (Bi-LSTM) en-
coder and a conditional random field (CRF) out-
put layer (Bi-LSTM CRF). This architecture has
been widely explored and demonstrated to be ef-
fective for sequence labeling tasks. Efforts incor-
porated character level compositional word em-
beddings, language modeling, and CRF re-ranking
into the Bi-LSTM CRF architecture which im-
proved the performance (Ma and Hovy, 2016a;
Liu et al., 2017; Sato et al., 2017; Peters et al.,
2017, 2018). Similar to these studies, our ap-
proach is also based on a Bi-LSTM CRF archi-
tecture. However, considering the limited contexts
within each individual sequence, we design two
attention mechanisms to further incorporate top-
ically related contextual information on both the
document-level and corpus-level.
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There have been efforts in other areas of infor-
mation extraction to exploit features beyond indi-
vidual sequences. Early attempts (Mikheev et al.,
1998; Mikheev, 2000) on MUC-7 name tagging
dataset used document centered approaches. A
number of approaches explored document-level
features (e.g., temporal and co-occurrence pat-
terns) for event extraction (Chambers and Juraf-
sky, 2008; Ji and Grishman, 2008; Liao and Gr-
ishman, 2010; Do et al., 2012; McClosky and
Manning, 2012; Berant et al., 2014; Yang and
Mitchell, 2016). Other approaches leveraged fea-
tures from external resources (e.g., Wiktionary or
FrameNet) for low resource name tagging and
event extraction (Li et al., 2013; Huang et al.,
2016; Liu et al., 2016; Zhang et al., 2016; Cotterell
and Duh, 2017; Zhang et al., 2017; Huang et al.,
2018). Yaghoobzadeh and Schiitze (2016) aggre-
gated corpus-level contextual information of each
entity to predict its type and Narasimhan et al.
(2016) incorporated contexts from external infor-
mation sources (e.g., the documents that contain
the desired information) to resolve ambiguities.
Compared with these studies, our work incorpo-
rates both document-level and corpus-level con-



textual information with attention mechanisms,
which is a more advanced and efficient way to cap-
ture meaningful additional features. Additionally,
our model is able to learn how to regulate the in-
fluence of the information outside the local context
using gating mechanisms.

5 Conclusions and Future Work

We propose document-level and corpus-level at-
tentions for name tagging. The document-level
attention retrieves additional supporting evidence
from other sentences within the document to en-
hance the local contextual information of the
query word. When the query word is unique in
the document, the corpus-level attention searches
for topically related sentences in the corpus. Both
attentions dynamically weight the retrieved con-
textual information and emphasize the information
most relevant to the query context. We present
gating mechanisms that allow the model to reg-
ulate the influence of the supporting evidence on
the predictions. Experiments demonstrate the ef-
fectiveness of our approach, which achieves state-
of-the-art results on benchmark datasets.

We plan to apply our method to other tasks,
such as event extraction, and explore integrating
language modeling into this architecture to further
boost name tagging performance.
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