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Abstract
Whether neural-net models can learn minority-
default patterns has been a matter of some con-
troversy. Results based on modeling real hu-
man language data are hard to interpret due to
their complexity. Therefore, we examine the
learning of a simple artificial language pattern
involving defaults using three computational
models: an Encoder-Decoder RNN, a Trans-
former Encoder, and a Logistic Regression.
Overall, we find that the models have the hard-
est time with minority defaults, but can eventu-
ally learn them and apply them to novel words
(although not always extend them to completely
novel segments or novel CV-sequences). Type-
frequency has the largest effect on learning in
all models, trumping the effect of distribution.
We examine the weights of two models to pro-
vide further insights into how defaults are rep-
resented inside the models.

1 Introduction

Some linguistic patterns (e.g., English past tense
regular inflection) are best stated using default rules
– rules for a heterogeneous category that apply as a
last resort when more specific rules are not applica-
ble.

An early connectionist model of morphological
learning by Rumelhart and McClelland (1986) was
criticized by proponents of rule-based approaches
for its inability to appropriately handle defaults
(Pinker and Prince, 1988). In particular, it was
claimed that the default behavior of the model
could only hold under the condition of high fre-
quency of the default (regular) category (although
see work by Hare et al. (1995)).

More recent work by Kirov and Cotterell (2018)
using an Encoder-Decoder (ED) RNN model also
focused on the English past tense problem. How-
ever, Corkery et al. (2019) found that this model
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tianyiniu/Min_Default.

was unstable across simulations and the averaged
aggregated performance still did not provide a good
fit to human data. Similarly, McCurdy et al. (2020),
using the same model as Kirov and Cotterell (2018)
investigated the learning of the German plural allo-
morphy, which has been claimed to involve a mi-
nority default pattern (Marcus et al., 1995). They
found that while their model achieved 88.8% accu-
racy on the held-out dataset, it did not match human
performance in a few critical ways. In particular,
unlike humans, it failed to generalize the two appar-
ent default suffixes -en and -s (where -s is the least
frequent suffix) to unusual novel words. Another
study compared the behavior of an ED model and a
Transformer model on both the English past tense
(majority default) and the German plural (minority
default) (Beser, 2021). The fit to human data was
still weak, and the models were susceptible to some
analogical errors.

The modeling work described above involving
actual languages is hard to interpret since so many
factors play a role: for example, it is controver-
sial to what extent the German -s suffix is in fact
a default (Zaretsky et al., 2016), the specific pat-
terns are often lexically idiosyncratic and the fac-
tors conditioning the suffixes range from semantics
to phonology and not all of them are included in
models’ training. In this work, we aim to address
these problems by focusing instead on artificial lan-
guages designed to isolate the specific patterns of
interest. Our goal is to abstract away from the irrel-
evant complexities of natural language and focus
on understanding how default patterns (including
minority defaults) are represented and learned in a
neural net model. We define “default” to be a cate-
gory whose distribution cannot be described with
a simple conjunction of features, but can be stated
either as (a) a complement of other conjunctive cat-
egories or (b) a complement of the distribution of a
set of idiosyncratic lexical items (exceptions). Note
that this is a definition of what a default distribution
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looks like in the data, not how it is represented in
the mind/model. In this paper, we focus on testing
case (a) above. Our research questions are:

1. Under what conditions are defaults general-
ized to a wider set of contexts than the trained
contexts and what does this tell us about how
they are represented?

2. How does frequency interact with “default-
ness”? E.g., what is the difference in learning
defaults when they are most frequent, least fre-
quent, and have the same frequency as other
categories? Does the default status (e.g., het-
erogeneous distribution wrt. to other cate-
gories) trump frequency or the reverse?

What we find is that all of the models we tested
are able to learn and represent default patterns, in-
cluding the minority default. However, minority
defaults are learned slower compared to any other
category. For all of our models frequency has the
largest effect on learning: low-frequency categories
are learned slower compared to high-frequency
ones. However, the effect of the distribution also
plays a role, albeit a smaller one: patterns that
have a wide heterogeneous distribution (defaults)
are learned slower compared to those with a more
narrow distribution. These results are in line with
human learning as we will discuss later. Addition-
ally, the models made some errors on novel stimuli
that included segments not seen in the training or
CV-combinations not seen in the training. The rule-
based models predict that true defaults should occur
in all unusual circumstances, or when the learner
does not know what to do. From the three models
we tested, the Transformer model was the closest
to this type of behavior (but more testing is re-
quired). Overall, we conclude that neural networks
can represent minority defaults, but these patterns
are difficult to learn both because they have low
frequency and because they are more variable by
having wider distribution.

2 The artificial language stimuli

2.1 The general pattern

Our artificial language pattern was modeled on the
allomorphy of the English regular plural suffix -/z/
which has the following general structure:

1. If a word ends in a sibilant, use suffix A (nat-
ural class “conjunctive” category)

2. ELSE if a word ends in a voiceless consonant,
use suffix B (intermediate default)

3. ELSE use suffix C (global default)

However, unlike English, where A, B, C are
phonological variants of each other, we used three
phonologically distinct strings [wa] (suffix A), [ji]
(suffix B), and [lej] (suffix C), as though this was an
instance of phonologically conditioned suppletive
allomorphy.

We then generated several versions of this pat-
tern varying the frequency of the global default
category. In the Equal Frequency condition, each
suffix was equally frequent, in the Majority De-
fault condition, 90% of words had suffix C, and in
the Minority Default condition, suffix C occurred
10% of the time. Table 1 summarizes the number
of items and item types in each condition during
training.

2.2 The stimuli
The stimuli were generated using a bigram model
trained on the CMU pronouncing dictionary. The
words were restricted to the following inventory of
segments: consonants [p, t, tS, k, b, d, Z, g, f, s, S,
v, z, dZ, m, n, N, l, h] and vowels [i, I, u, U, ej, E, o,
A]. The templates for the words came from this list:
CVC, CVCVC, VCVC, CVCV, VC, CVCC, CCV
(where C=consonant and V=vowel).

We used several different types of stimuli to test
the models’ generalization behavior: novel words
of the same types seen in training (same segments
and syllable templates), novel words of unseen tem-
plates (VC, CVCC, and CCV shapes were with-
held from training), novel words ending in unseen
segments (words ending in [l] and [h] were with-
held from training), and novel words which we
call “mutants”– these were derived by taking words
from the training and changing their last segment
to a different segment that categorized the word
into a different suffix-class. These stimuli were de-
signed to tease apart several possible generalization
strategies a model could use. The stimuli ending
in novel segments were meant to test whether the
model would generalize based on phonetic similar-
ity of these segments to those seen during training.
The novel templates were included to test whether
the model learned to generalize based on the last
segment alone, or whether it was taking the word-
shape into account. Mutants were included to test
whether overall similarity (not just last-segment
features) would play a role.



Condition Category A (natural class) Category B (default 1) Category C (default 2)
Equal frequency 132 of each cvc, cvcvc, 132 of each cvc, cvcvc, 99 of each cvc, cvcvc,

33.3% each vcvc (total 396) vcvc (total 396) vcvc, cvcv (total 396)
Majority default 39 of each cvc, cvcvc, 39 of each cvc, cvcvc, 238 of each cvc, cvcvc,

default: 90% vcvc (total 117) vcvc (total 117) vcvc, cvcv (total 952)
Minority default 177 of each cvc, cvcvc, 177 of each cvc, cvcvc, 31 of each cvc, cvcvc,

default: 10% vcvc (total 531) vcvc (total 531) vcvc, cvcv (total 124)

Table 1: Distribution of training stimuli.

3 The models

We used three classification models, an Encoder-
Decoder RNN, a Transformer Encoder and a multi-
class logistic regression.

For all of these models, the inputs was a se-
quence of numerical feature vectors representing
sequences of sounds. For example, the sound [t]
corresponds to a vector that includes a value of -1
for the feature corresponding to its voicing, a value
of +1 for the feature consonantal, a 0 for the feature
corresponding to its roundness (since that feature is
only relevant to vowels), and so on (see Appendix
for the features we used). Outputs used a single
vector of three numerical features, each of which
corresponded to one of the suffixes. An output
value of 1 in training indicated that that feature’s
suffix was being assigned to the input stem.1

3.1 Encoder-decoder neural network

Following Kirov and Cotterell (2018) and McCurdy
et al. (2020), we used an ED neural network, imple-
mented using Keras (Chollet et al., 2015). These
differ from the kind of feed-forward networks used
by Rumelhart and McClelland (1986) in two crucial
ways: (1) they have recurrent connections, which
act as a kind of memory, allowing the model to
process data sequentially, and (2) they are made
up of two separate networks (the encoder and the
decoder). The encoder processes an input into an
intermediate representation that is passed through
recurrent connections to the decoder, which process
that into an appropriate output.

Due to the fact that we were using a simpler
artificial language and a categorization task, our
ED model needed fewer parameters than the ones
used by Kirov and Cotterell (2018) and McCurdy
et al. (2020). The encoder and decoder had only a

1Early results suggest that the models’ learning trajectories
are sensitive to this output representation. However, we leave
a proper search over potential output representations to future
work.

single layer each, with 32 nodes in each layer.
For training, we used a learning rate of 0.0005,

the algorithm RMSProp (Hinton et al., 2012), batch
sizes of 32, 100 epochs, no attention, and hyper-
bolic tangent as the activation function for all lay-
ers.2 We ran our model for 10 separate runs in each
condition, with each run using a unique, randomly
sampled set of starting weights. Performance on
test data was evaluated after each epoch to track
the model’s generalization throughout learning.

3.2 Transformer Encoder neural network

We also explored whether the Transformer archi-
tecture proposed in Vaswani et al. (2017) can suc-
cessfully learn various default conditions. Since
we currently frame our experiment as a classifica-
tion problem, we use only the encoder. The Trans-
former architecture differs from the ED network
significantly in that it does not rely on recurrent
connections. Instead, using self-attention allows
the model to attend to all positions in the input si-
multaneously. Consequently, the Transformer uses
positional encoding to represent order, rather than
relying on the inherent sequential nature of the in-
put sequence.

For comparability of results, we match the hy-
perparameters of the Transformer encoder model
and the ED model as closely as possible. The
model contains only 1 layer, with 1 attention head.
We use a 32-dimensional internal representation
and a 64-dimensional hidden layer for the feed-
forward block. Using these hyperparameters, the
Transformer encoder model contains 8.5K param-
eters, which is comparable to the 10K of the ED
model. During training, we used the Adam opti-
mizer (Kingma and Ba, 2015) with a default learn-
ing rate of 0.001, a batch size of 32, and 100 epochs.

2After running models with and without attention (Bah-
danau et al., 2014) in all conditions, we found no significant
effects on the tasks explored here. Other hyperparameters
were not exhaustively tested (due to limited resources) and
were chosen based on a small amount of pilot testing.



We trained our model for five separate runs in
each condition, using a randomized set of starting
weights. Similar to the ED model, we evaluated
performance on test data after each epoch.

3.3 Logistic regression

Since complex neural networks can be difficult
to interpret, we also ran a multi-class logistic re-
gression classifier (LR) on the same pattern. LR
models are closely related to Maximum Entropy
Grammars (Goldwater and Johnson, 2003; More-
ton et al., 2017), a common theoretical approach to
morphological and phonological learning, and are
relatively easy to interpret because of the straight-
forward relationship between the weights they learn
and the patterns those weights represent.

As logistic regression requires all inputs to be
flattened into a one-dimensional vector, a pooling
function is required. We tested two versions of the
LR model, one pool-concat (LR-PC), in which the
data was presented as a concatenation of feature-
vectors for each segment. We also introduced a
padding segment (where all features values are set
to 0) to pad the length of each word to 5 segments
(the longest word in our corpus). Additionally,
we trained a simpler model, pool-last (LR-PL),
that was trained only on the last segment of each
word. Since the default pattern we are examining
is solely dependent on the final character, this pool-
ing method directed the model to look only at the
relevant features making the task easier (at the cost
of being less analogous to the other models’ input).

Each LR model was randomly initialized and
trained for 3 epochs, using a batch size of 10 and
a fixed learning rate of 0.013. Because the model
performs a step of gradient descent after being ex-
posed to a batch of 10 random words, there is no
guarantee that all three suffixes are represented in
a single batch. For reliability and robustness, 10
models were trained in parallel. Accuracy for each
suffix was calculated using the held-out test stimuli
after each batch of training. We then averaged the
accuracy for each of the 10 models to create the
plots discussed in §4. This procedure was repeated
for all three conditions.

3The current learning rate selected to balance between
learning the suffix pattern efficiently and obtaining a gradual
enough learning curve to differentiate between the different
default conditions.
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Figure 1: ED network’s average performance on the test
data for the first 30 epochs of learning, broken down by
condition and the correct suffix for each word.

4 Results

The accuracy at the end of learning for the three
models (omitting LR-PC) is summarized in Table
2. The performance of all models is very high in
all conditions. Note that this high performance is
not indicative of overfitting as the model was tested
on different stimuli than the stimuli in the training.
The perfect performance on the regular test stimuli
(the column “Test”) shows that all models learned
the relationship between the suffix and the features
of the last segment. This relationship was for the
most part successfully generalized to novel seg-
ments (‘h’ and ‘l’) not present in the training and
to novel templates with a few exceptions discussed
below. Novel words, templates, and segments rep-
resent the levels of generalization that have been
demonstrated in humans for this kind of task (for
more discussion on the scopes of generalization
in morphology, see Prickett et al., 2022; Berent,
2013).

4.1 ED model results
After about 25 epochs of training, the ED model
performs perfectly except when tested on new tem-
plates (which will be discussed below).

4.1.1 Performance over the course of learning
Figure 1 shows the ED model’s generalization over
time to novel words that were made up of the same
segments and templates as the training data. These
results demonstrate the model’s sensitivity to suffix
frequency. Within each condition, the most fre-
quent suffix is always the one that’s learned the
quickest (where ‘learned’ is defined as having a
test accuracy close to 1). There’s also an effect of



Model Language Train Test Mutant New Template [h]-final [l]-final
ED Maj. Def. 1.00 1.00 0.97 0.86 0.96 1.00
ED Equal Freq. 1.00 1.00 0.98 0.81 1.00 0.99
ED Min. Def. 1.00 1.00 1.00 0.83 1.00 0.89

Transformer Encoder Maj. Def. 1.00 1.00 1.00 0.82 0.73 0.96
Transformer Encoder Equal Freq. 1.00 1.00 1.00 0.76 1.00 0.97
Transformer Encoder Min. Def. 1.00 1.00 1.00 0.83 1.00 0.84

LR (pool-last) Maj. Def. 1.00 1.00 n/a n/a 1.00 1.00
LR (pool-last) Equal Freq. 1.00 1.00 n/a n/a 1.00 1.00
LR (pool-last) Min. Def. 1.00 1.00 n/a n/a 1.00 0.00

Table 2: Accuracy results, by model and condition. The “Test” column refers to testing data that used novel
words with the same segments and templates seen in training. The “Mutant” and “New Template” statistics for LR
(pool-last) is n/a due to the pooling function cropping out all but the last segment, making these two tests irrelevant.

distribution—when frequency doesn’t play a role
(e.g., in the equal frequency condition), the default
suffix is still at a disadvantage compared to the
suffixes with more narrow distributions. However,
the model is eventually able to learn the minority
default and correctly generalize it to novel words.

Another aspect of the ED model’s generalization
that is not shown in the graph is that, at the end
of learning, it tends to do worse on novel items
that end in the unseen last segment [l] than it does
on novel items that end in the similarly unseen
segment [h] in the Minority Default condition. The
other models show similar behavior which we will
discuss later.

4.1.2 Performance on Mutants
The so-called “mutants” were the words that were
generated by mutating the final segment in one of
the training words. These items were included to
test whether the model was driven by the overall
similarity to the training data (which should be high
for the mutant words), or by the relevant proper-
ties of the last segment. Given high performance
on these items, we conclude that the ED model
was not significantly affected by the overall seg-
mental similarity to the training data and made its
decisions based on the last segment.

4.1.3 Performance on Novel Templates
Table 2 shows that, in general, the ED model per-
forms relatively well, but not perfectly on words
that consist of unseen shapes/templates (that is,
new orderings of consonants and vowels). When
we investigated the model’s performance on this
set of test data, we saw that the model performed
perfectly on the novel templates VC and CCV. The
only template the model struggled to correctly clas-

sify was CVCC. At the end of the learning, the
model’s output for CVCC inputs was seemingly
random. We could find no simple explanation for
why the model had trouble with this specific kind
of test datum, and leave further investigation of this
to future work. It is possible that the model’s gener-
alizations were based not just on the last segment,
but last two segments.

4.2 Transformer Encoder results

The accuracy results for the Transformer Encoder
model at the end of learning and the learning curves
are similar to the ED model (see Figure 2). The
default suffix (suffix C) is overgeneralized in the
Majority Default condition at the early stages of
learning. In the other two conditions, Suffix A and
B are learned first, equally well and relatively fast.
Thus, this model also shows a very pronounced
frequency effect: the suffixes that have the lowest
frequency (suffix C in the minority default and suf-
fixes A and B in the majority default conditions)
are learned the slowest. Likewise, suffixes with the
highest frequency (suffix C in the majority default
and suffixes A and B in the minority default) are
learned the fastest. However, the effect of distri-
bution is also present: it can be seen in the Equal
Frequency condition, where the global default Suf-
fix C is learned a little bit slower compared to the
other two suffixes.

4.2.1 Performance on Novel Templates
The Transformer Encoder model, like the ED
model, makes some mistakes when exposed to
novel word templates. In all three stimuli con-
ditions, the VC template results in the most fre-
quent mistakes. Interestingly, this is different from
the ED model for which the CVCC template was



Figure 2: Transformer Encoder’s performance on the
test data after the first 15 epochs of training, broken
down by condition and the correct suffix for each word.

more problematic. Thus, the presence of consonant
clusters not seen in the training did not present a
problem for the Transformer. These differences
between the models might be due to how they treat
inputs: Transformer encoders are able to process
all input segments at once, while the ED model
processes inputs sequentially.

The most common mistake the model made on
the VC templates was classifying words that should
get Suffix A or Suffix B as suffix C stems (the
global default). Summing over conditions and runs,
we see 127, 169, 120 incorrect predictions in the
new template test items in the Maj Def, Equal Freq,
and Min Def conditions, correspondingly. Within
these, 80%, 86%, 83% are due to incorrectly pre-
dicting the default suffix C. (All of these incorrect
predictions occur when the input template is VC.)
This result suggests a tendency of the model to
overgeneralize the default when exposed to certain
types of novel data. Note that the VC template not
only was absent in the training, it also presented a
new word-length: none of the words in the training
were shorter than 3 segments. Our current guess
is that this fact is responsible for why the model
struggled with this template (see more on this in
section 4.4.1).

4.2.2 Performance on Mutants

The model achieves perfect accuracy on the mu-
tant test stimuli in all default conditions. This sug-
gests that similar to the results obtained from the
ED model, the Transformer does not seem to be
affected by segmental similarity. Rather, it has
learned to correctly identify suffix based on the
final segment.

Figure 3: LR-PL average performance on the test data
after each batch, broken down by condition and the
correct suffix for each word.

4.2.3 Performance on Novel Segments

The model can consistently generalize to novel
segments when trained in the Equal Frequency con-
dition. However, the model fails to consistently
predict the correct suffix for some novel segments
in the Majority Default and Minority default condi-
tions. In the Minority Default condition, the model
sometimes predicts suffix A for [l], which should
be classified as suffix C (since it is a voiced non-
strident). This behavior is explained in the next sec-
tion when we examine a more transparent logistic
regression model. In the Majority Default condi-
tion, the model makes mistakes by predicting suffix
C for [h], which should belong to low-frequency
category B (since [h] is a voiceless non-strident).
Again, this suggests that the default suffix is over-
generalized in a situation that is novel or unusual.

4.3 Logistic regression results

LR-PC with left padding correctly identified that
the final segment determines the suffix. Moreover,
LR-PC with either left or right padding identified
the same feature patterns for distinguishing be-
tween suffixes as LR-PL (see Figure 4). For this
reason (and for reasons of space) we will focus on
LR-PL here, the model trained on the last segment
only. All references to LR will exclusively refer to
LR-PL.

LR generalization proceeds mostly in the order
of frequency (as shown in Figure 3). One difference
between the neural net models and the LR model
is the relatively slow acquisition of suffix A in the
Majority default condition by the LR model. In the
LR model suffix B is learned a lot faster compared
to suffix A, despite the fact that they have equal
frequency and suffix A forms a natural class.



4.3.1 Performance on Novel Segments
The LR completely fails to correctly categorize the
novel segment [l] in the minority default condi-
tion despite successful generalization in the equal
frequency and majority default conditions. This
section analyzes this phenomenon, which may also
shed light onto how training-data distribution af-
fects learning in neural-based models. Recall that
those models also made mistakes with [l] in the
minority default condition (although they still per-
formed over 80%).

The aforementioned inability to correctly clas-
sify [l] is due to slight differences in learned
weights across the three default conditions, as well
as the unique phonological features of [l]. The seg-
ment [l] is underspecified for [voice] and [strid],
the two most significant features identified by the
model (as discussed in the next section). Although
two other features are highly weighted, [son] and
[cor], with [+cor] being strongly correlated with
suffix A and [+son] strongly correlated with suffix
C. As [l] is positive for both features, the model
must make a classification based on minute differ-
ences between the weights. In the Minority Default
condition, the conflict is not resolved correctly be-
cause the weight of [son] is lower (+1.4) than the
weight of [cor] (+1.8). This difference is due to the
model not seeing as many sonorant sounds in the
minority default condition, so the weight for this
feature does not move as fast.

Interestingly, the model does not make the same
misclassification for the segment [n] despite it also
being [+son, +cor]. We believe this is expected as
[n] was present in the training data (unlike [l]), and
hence the composite effects of all learned features
allows [n] to overcome the lower suffix C weight
for [+son]. On the other hand, in both equal and
majority default distributions, [nas] has a medium-
strong positive weight for suffix C (0.65), thus con-
tributing to the correct classification between suffix
A and suffix C.

Since this model was trained on the last segment
only, we did not have the novel template and the
mutant test-conditions.

4.4 Model Analysis

4.4.1 Learned Representation Across Models
We propose two methods for understanding how the
different models learned the phonological patterns.
Since the weight matrix of LR is easily extractable
and interpretable, we plot the learned weights as a

heat map (see Figure 4). However, the same cannot
be done for the neural net models. Instead, we
plot a saliency map from the Transformer encoder,
which is obtained by calculating the gradient of a
particular output class with respect to an input. In
figure 5, we first separate all test inputs into their
ground truth suffix class. For each suffix class,
we then calculate the saliency map of all input-
features and average the gradient matrix. Because
all training inputs are comprised of either 3, 4, or 5
segments, we do not see any meaningful patterns
in the saliency map in time steps 0 and 1. This is
most likely why the Transformer model fails on the
novel template VC which is 2 segments long. In
effect, the model cannot represent the concept “last
segment".

It must be noted that while the weight matrix
from the LR model and the saliency maps from the
Transformer encoder model are not obtained by the
same mechanism, they are comparable in the sense
because they both offer insights into which features
are relevant to their respective predictions.

These plots reveal that both models learned sim-
ilar patterns. For words that used suffix A, a large
positive weight is assigned to [strid] and [cor] (that
is, “strident” and “coronal”). This is expected,
since the natural class of sibilants is defined as
[+strident], and all stridents happen to also be
[+coronal] (although, as in English, not all coro-
nals are strident). For the default suffixes B and C,
[voice] determines which class they are assigned
to. Consequently, we see that [voice] ends up with
a high negative weight for class B and a high posi-
tive weight for class C. Moreover, a strong positive
weight is assigned to [son] in Class C due to the
fact that vowels which are sonorants, but are under-
specified for voice, also belong to the default class
C.

Importantly, these graphs show that the LR
model and the neural networks capture a default pat-
tern through competition among multiple classes.
For example, take a segment like [s], which is both
voiceless (so could potentially fit into class B) and
sibilant (which means it fits into class A). As long
as the cumulative weight of [strid] and [cor] is
greater than the weight of [voice], this segment
will be assigned to the correct class, A.

5 Discussion

It appears that all models we looked at were able
to learn the simple artificial language pattern they



Figure 4: Final weights for pool-last in the Equal Fre-
quency condition. A deeper shade of blue suggests a
large negative weight, and a deeper shade of red sug-
gests a large positive weight.

Figure 5: The averaged saliency map for inputs of each
suffix class. A deeper shade of blue suggests higher
sensitivity of the output to a negative change in the
features, and a deeper shade of yellow suggests a higher
sensitivity of the output to a positive change.

were trained on, and successfully generalize to
novel items that looked similar to training data.
However, when tested on items that contained
novel word-final segments, or novel CV-templates,
the models produced some errors. In particular, all
models struggled with the novel segment ‘l’ in the
Minority Default condition, because this segment
is expected to belong to the default pattern which
was exemplified only by 10% of the data and be-
cause this segment is featurally similar to segments
in the sibilant class (by being a coronal consonant).
When the default class is more frequent, the models
are able to overcome this difficulty and correctly
categorize inputs ending in ‘l’. The Transformer
model also had some difficulties with the novel
segment ‘h’ in a condition in which the category to
which it belongs (suffix B) is low frequency. An-
other source of errors were words from different

templates: the ED model struggled with the novel
CVCC template, while the transformer model strug-
gled with the VC template. We hypothesize that
the humans would not have difficulties with such
novel templates and would generalize based on the
features of the last segment. However, the current
models are either not abstracting away the concept
“last", or are making their decisions based on the
shape of seen words, and not just the features of
the last segment.

Our analysis of the two models’ weights revealed
that different categories have different assignment
of feature weights so as to maximize the probability
of an input falling into a specific class if it shares
more highly weighted features with that class com-
pared to all the other classes. This inherent compe-
tition among classes is important for creating the
apparent default structure. The networks find such
weight configurations so as to ensure that inputs
sharing features with both a default and a narrow
class, will be more likely to be assigned to the nar-
row class (capturing the principle that the more
specific classes “block" to the more general ones).
This typically means that the cumulative weight
of all relevant features in the default class will be
lower than the cumulative weight of features in the
non-default class.

Overall, we also see that the frequency of a pat-
tern has the largest effect on learning: unsurpris-
ingly the more frequent the pattern, the faster it is
learned. When frequency is held constant, patterns
that have a more narrow distribution in the phono-
logical space are learned better. This is consistent
with human data. For example, studies on category
learning in the domain of visual perception report
that more diverse categories with a wide distribu-
tion are learned worse than those with a narrow,
clustered distribution (Fried and Holyoak, 1984;
Hahn et al., 2005). Artificial language learning
studies that investigated the effects of frequency
and distribution on learning defaults find the same
thing (Nevat et al., 2018; Pertsova et al., 2024). The
reliance of network models on both frequency and
distribution has also been found before, including
in work on modeling minority defaults. In partic-
ular, Feldman (2005) found that testing a simple
three-layer perceptron trained on German plural
with inputs that had all features removed produced
responses that were either -n (the most frequent
suffix) or -s (the most widely distributed suffix).

We are pursuing several directions for extend-
ing this work. First, we are considering alternative



ideas for testing the “across-the-board" property of
defaults that are predicted by some rule-based mod-
els. In particular, it has been argued that regular
inflection (of the default type) will automatically
apply to abbreviations, acronyms, proper names,
non-native sounds, quotations, and when memory
or processing fail (Marcus et al., 1995). It is not
obvious what the best analog of such circumstances
would be for our models. But one idea we are pur-
suing is testing our models on some words with
an entirely new subset of features which were set
to 0 in the training, but which are contrastive in
the testing. In our current setup, the closest test
for generalization to "unusual" cases are the novel
templates and novel segments. As previously men-
tioned, the ED model produced seemingly random
behavior when tested on CVCC templates, affected
by the absence of word-final clusters in the training
data. On the other hand, the Transformer model
struggled with the novel VC words and ‘h’-final
words in one of the conditions. Interestingly, this
model tended to use the default suffix when making
errors (although not always), which is more similar
to the default-behavior one would expect from a
rule-based model.

Thus, we take this as preliminary evidence that
global defaults (those that would apply to any new
or unusual situation) can arise in a non-symbolic
system. More testing (along the lines suggested
above) would be required to confirm this claim.

Another extension of our work is to make the
target pattern gradually more complex, and there-
fore more realistic. Instead of a structure where
the “exceptions" (the more narrow categories) are
deterministically defined, we’d like to test a situa-
tion that is more similar to the English past tense,
namely when the exceptions do not form a natural
class and partially overlap with the default cate-
gory (e.g., monosyllabic verbs ending in coronal
stops are typically irregular like put, but can also
be regular like bat).

Finally, in our experiments we only varied type-
frequency, while the token-frequency of each word
was the same (=1). In the future, we would like to
also investigate how the models respond to changes
in both type and token frequencies as these are
known to play different roles in language acquisi-
tion.
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Appendix

cons syll son approx voice cont nas strid lab cor ant dist dor
p + 0 - 0 - - 0 0 + - 0 0 -
b + 0 - 0 + - 0 0 + - 0 0 -
t + 0 - 0 - - 0 - - + + - -
d + 0 - 0 + - 0 - - + + - -
k + 0 - 0 - - 0 0 - - 0 0 +
g + 0 - 0 + - 0 0 - - 0 0 +
N + 0 + - 0 0 + 0 - - 0 0 +
m + 0 + - 0 0 + 0 + - 0 0 -
n + - + - 0 0 + 0 - + + - -
l + - + + 0 0 0 0 - + + - -
f + 0 - 0 - + 0 0 + - 0 0 -
v + 0 - 0 + + 0 0 + - 0 0 -
s + 0 - 0 - + 0 + - + + - -
z + 0 - 0 + + 0 + - + + - -
S + 0 - 0 - + 0 + - + - + -
Z + 0 - 0 + + 0 + - + - + -
tS + 0 - 0 - - 0 + - + - + -
dZ + 0 - 0 + - 0 + - + - + -
h + 0 - 0 - + 0 - - - 0 - -

Table 3: Feature values, for the first 14 features. Vowels and features that were only relevant to vowels (high, back,
tense, diphthong, and main stress) are not given here, since they did not play a role in the patterns we used.


	Introduction
	The artificial language stimuli
	The general pattern
	The stimuli

	The models
	Encoder-decoder neural network
	Transformer Encoder neural network
	Logistic regression

	Results
	ED model results
	Performance over the course of learning
	Performance on Mutants
	Performance on Novel Templates

	Transformer Encoder results
	Performance on Novel Templates
	Performance on Mutants
	Performance on Novel Segments

	Logistic regression results
	Performance on Novel Segments

	Model Analysis
	Learned Representation Across Models


	Discussion

