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Introduction

The Ninth Conference on Machine Translation (WMT 2024) took place on Friday, November 15 and
Saturday, November 16, 2024, immediately following the 2024 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2024) in Miami, Florida, USA.

This is the ninth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, the
third time at EMNLP 2028 in Brussels, Belgium, the fourth time at ACL 2019 in Florence, Italy, the fifth
time at EMNLP-2020, which was held as an online event due to the COVID-19 pandemic, the sixth time
at EMNLP 2021 at Punta Cana, Dominican Republic, the seventh time at EMNLP 2022 in Abu Dhabi,
United Arab Emirates, and the eight time at EMNLP 2023 in Singapore. Prior to being a conference,
WMT was held 10 times as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New
York City, USA. In the following years the Workshop on Statistical Machine Translation was held at
ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Gree-
ce, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal,
Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore, USA, EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 12 shared tasks. These consisted of 8 translation tasks: General Translation, Translation
into Low-Resource Languages of Spain, Low-Resource Indic Language Translation, Chat Translation,
Biomedical Translation, Multilndic22MT, Non-Repetitive Translation, English-to-Lowres Multi-Modal
Translation, three evaluation tasks: Metrics, MT Test Suites, Quality Estimation, and finally the Open
Language Data Initiative.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2024 has received 54 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2024 featured 25 full research paper presentations and 96 shared task
presentations.

The invited talk entitled “What makes MT research special in the LLM age?was given by Ricardo Rei
and Nuno M. Guerreiro from Unbabel, Portugal.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with
the evaluations.

Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz
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08:45 - 09:00

09:00 - 10:30

10:30 - 11:00

11:00 - 12:00

11:00 - 12:00

Opening Remarks
Session 1 — Shared Task Overview Papers |

Findings of the WMT24 General Machine Translation Shared Task: The LLM Era
Is Here but MT Is Not Solved Yet

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondrej Bojar, Anton Dvo-
rkovich, Christian Federmann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena Karpinska, Philipp Koehn, Be-
njamin Marie, Christof Monz, Kenton Murray, Masaaki Nagata, Martin Popel,
Maja Popovié, Mariya Shmatova, Steinthdr Steingrimsson and Vilém Zouhar

Are LLMs Breaking MT Metrics? Results of the WMT24 Metrics Shared Task

Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-Kiu Lo, Eleftherios Avra-
midis, Ricardo Rei, Brian Thompson, Frederic Blain, Tom Kocmi, Jiayi Wang,
David Ifeoluwa Adelani, Marianna Buchicchio, Chrysoula Zerva and Alon Lavie

Findings of the Quality Estimation Shared Task at WMT 2024: Are LLMs Closing
the Gap in QE?

Chrysoula Zerva, Frederic Blain, José G. C. De Souza, Diptesh Kanojia, Soura-
bh Deoghare, Nuno M. Guerreiro, Giuseppe Attanasio, Ricardo Rei, Constantin
Orasan, Matteo Negri, Marco Turchi, Rajen Chatterjee, Pushpak Bhattacharyya,
Markus Freitag and André Martins

Findings of the WMT 2024 Shared Task of the Open Language Data Initiative
Jean Maillard, Laurie Burchell, Antonios Anastasopoulos, Christian Federmann,
Philipp Koehn and Skyler Wang

Results of the WAT/WMT 2024 Shared Task on Patent Translation
Shohei Higashiyama

Findings of the WMT 2024 Biomedical Translation Shared Task: Test Sets on
Abstract Level

Mariana Neves, Cristian Grozea, Philippe Thomas, Roland Roller, Rachel Baw-
den, Aurélie Névéol, Steffen Castle, Vanessa Bonato, Giorgio Maria Di Nunzio,
Federica Vezzani, Maika Vicente Navarro, Lana Yeganova and Antonio Jimeno
Yepes

Coffee Break
Session 1 — Shared Task Overview Papers |
General Translation Task

MSLC24 Submissions to the General Machine Translation Task
Samuel Larkin, Chi-Kiu Lo and Rebecca Knowles

IOL Research Machine Translation Systems for WMT24 General Machine Tran-
slation Shared Task
Wenbo Zhang XVi
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Choose the Final Translation from NMT and LLM Hypotheses Using MBR Deco-
ding: HW-TSC’s Submission to the WMT24 General MT Shared Task

Zhanglin Wu, Daimeng Wei, Zongyao Li, Hengchao Shang, Jiaxin Guo, Shaojun
Li, Zhigiang Rao, Yuanchang Luo, Ning Xie and Hao Yang

CycleGN: A Cycle Consistent Approach for Neural Machine Translation
Soren Dreano, Derek Molloy and Noel Murphy

UvA-MT’s Participation in the WMT24 General Translation Shared Task
Shaomu Tan, David Stap, Seth Aycock, Christof Monz and Di Wu

Tower v2: Unbabel-IST 2024 Submission for the General MT Shared Task
Ricardo Rei, Jose Pombal, Nuno M. Guerreiro, Joao Alves, Pedro Henrique Mar-
tins, Patrick Fernandes, Helena Wu, Tania Vaz, Duarte Alves, Amin Farajian,
Sweta Agrawal, Antonio Farinhas, José G. C. De Souza and André Martins

TSU HITS’s Submissions to the WMT 2024 General Machine Translation Shared
Task
Vladimir Mynka and Nikolay Mikhaylovskiy

Document-level Translation with LLM Reranking: Team-J at WMT 2024 General
Translation Task

Keito Kudo, Hiroyuki Deguchi, Makoto Morishita, Ryo Fujii, Takumi Ito, Shin-
taro Ozaki, Koki Natsumi, Kai Sato, Kazuki Yano, Ryosuke Takahashi, Subaru
Kimura, Tomomasa Hara, Yusuke Sakai and Jun Suzuki

DLUT and GTCOM’s Neural Machine Translation Systems for WMT24
Hao Zong, Chao Bei, Huan Liu, Conghu Yuan, Wentao Chen and Degen Huang

CUNI at WMT24 General Translation Task: LLMs, (Q)LoRA, CPO and Model
Merging

Miroslav Hrabal, Josef Jon, Martin Popel, Nam Luu, Danil Semin and Ondfej
Bojar

From General LLM to Translation: How We Dramatically Improve Translation
Quality Using Human Evaluation Data for LLM Finetuning
Denis Elshin, Nikolay Karpachev, Boris Gruzdev, Ilya Golovanov, Georgy Iva-
nov, Alexander Antonov, Nickolay Skachkov, Ekaterina Latypova, Vladimir Lay-
ner, Ekaterina Enikeeva, Dmitry Popov, Anton Chekashev, Vladislav Negodin,
Vera Frantsuzova, Alexander Chernyshev and Kirill Denisov

Cogs in a Machine, Doing What They’re Meant to Do — the AMI Submission to
the WMT24 General Translation Task

Atli Jasonarson, Hinrik Hafsteinsson, Bjarki Armannsson and Steinthor Steingri-
msson

IKUN for WMT24 General MT Task: LLMs Are Here for Multilingual Machine

Translation
Baohao Liao, Christian Herold, Shahram Khadivi and Christof Monz
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11:00 - 12:00

NTTSU at WMT2024 General Translation Task
Minato Kondo, Ryo Fukuda, Xiaotian Wang, Katsuki Chousa, Masato Nishimura,
Kosei Buma, Takatomo Kano and Takehito Utsuro

SCIR-MT'’s Submission for WMT24 General Machine Translation Task
Baohang Li, Zekai Ye, Yichong Huang, Xiaocheng Feng and Bing Qin

AIST AIRC Systems for the WMT 2024 Shared Tasks
Matiss Rikters and Makoto Miwa

Occiglot at WMT24: European Open-source Large Language Models Evaluated
on Translation

Eleftherios Avramidis, Annika Griitzner-Zahn, Manuel Brack, Patrick Schra-
mowski, Pedro Ortiz Suarez, Malte Ostendorff, Fabio Barth, Shushen Manakhi-
mova, Vivien Macketanz, Georg Rehm and Kristian Kersting

Test Suites

CoST of breaking the LLMs
Ananya Mukherjee, Saumitra Yadav and Manish Shrivastava

WMT24 Test Suite: Gender Resolution in Speaker-Listener Dialogue Roles
Hillary Dawkins, Isar Nejadgholi and Chi-Kiu Lo

The GenderQueer Test Suite
Steinunn Rut Friidhriksdéttir

Domain Dynamics: Evaluating Large Language Models in English-Hindi Tran-
slation
Soham Bhattacharjee, Baban Gain and Asif Ekbal

Investigating the Linguistic Performance of Large Language Models in Machine
Translation

Shushen Manakhimova, Vivien Macketanz, Eleftherios Avramidis, Ekaterina
Lapshinova-Koltunski, Sergei Bagdasarov and Sebastian Moller

IsoChronoMeter: A Simple and Effective Isochronic Translation Evaluation Me-

tric
Nikolai Rozanov, Vikentiy Pankov, Dmitrii Mukhutdinov and Dima Vypirailenko
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12:30 - 13:30
12:30 - 13:30
12:30 - 13:30

A Test Suite of Prompt Injection Attacks for LLM-based Machine Translation
Antonio Valerio Miceli Barone and Zhifan Sun

Killing Two Flies with One Stone: An Attempt to Break LLMs Using English-
Icelandic Idioms and Proper Names

Bjarki Armannsson, Hinrik Hafsteinsson, Atli Jasonarson and Steinthor Steingri-
msson

Session 3 — Shared Task Posters 11

Metrics Task

MetaMetrics-MT: Tuning Meta-Metrics for Machine Translation via Human Pre-

ference Calibration

David Anugraha, Garry Kuwanto, Lucky Susanto, Derry Tanti Wijaya and Genta
Winata

chrF-S: Semantics Is All You Need
Ananya Mukherjee and Manish Shrivastava

MSLC24: Further Challenges for Metrics on a Wide Landscape of Translation

Quality
Rebecca Knowles, Samuel Larkin and Chi-Kiu Lo

MetricX-24: The Google Submission to the WMT 2024 Metrics Shared Task
Juraj Juraska, Daniel Deutsch, Mara Finkelstein and Markus Freitag

Evaluating WMT 2024 Metrics Shared Task Submissions on AfriMTE (the African
Challenge Set)
Jiayi Wang, David Ifeoluwa Adelani and Pontus Stenetorp

Machine Translation Metrics Are Better in Evaluating Linguistic Errors on LLMs
than on Encoder-Decoder Systems

Eleftherios Avramidis, Shushen Manakhimova, Vivien Macketanz and Sebastian
Moller

Quality Estimation Task
TMU-HIT’s Submission for the WMT24 Quality Estimation Shared Task: Is GPT-
4 a Good Evaluator for Machine Translation?

Ayako Sato, Kyotaro Nakajima, Hwichan Kim, Zhousi Chen and Mamoru Koma-
chi
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HW-TSC 2024 Submission for the Quality Estimation Shared Task
Weiqgiao Shan, Ming Zhu, Yuang Li, Mengyao Piao, Xiaofeng Zhao, Chang Su,
Min Zhang, Hao Yang and Yanfei Jiang

HW-TSC’s Participation in the WMT 2024 QEAPE Task
Jiawei Yu, Xiaofeng Zhao, Min Zhang, Zhao Yanqing, Yuang Li, Su Chang,
Xiaosong Qiao, Ma Miaomiao and Hao Yang

Open Language Data Initiative

Expanding the FLORES+ Multilingual Benchmark with Translations for Arago-
nese, Aranese, Asturian, and Valencian

Juan Antonio Perez-Ortiz, Felipe Sanchez-Martinez, Victor M. Sanchez-
Cartagena, Miquel Espla-Gomis, Aaron Galiano Jimenez, Antoni Oliver, Claudi
Aventin-Boya, Alejandro Pardos, Cristina Valdés, Jusep Lois Sans Socasau and
Juan Pablo Martinez

The Bangla/Bengali Seed Dataset Submission to the WMT24 Open Language Da-
ta Initiative Shared Task
Firoz Ahmed, Nitin Venkateswaran and Sarah Moeller

A High-quality Seed Dataset for Italian Machine Translation
Edoardo Ferrante

Correcting FLORES Evaluation Dataset for Four African Languages

Idris Abdulmumin, Sthembiso Mkhwanazi, Mahlatse Mbooi, Shamsuddeen Has-
san Muhammad, Ibrahim Said Ahmad, Neo Putini, Miehleketo Mathebula, Ma-
timba Shingange, Tajuddeen Gwadabe and Vukosi Marivate

Expanding FLORES+ Benchmark for More Low-Resource Settings: Portuguese-
Emakhuwa Machine Translation Evaluation
Felermino Dario Mario Ali, Henrique Lopes Cardoso and Rui Sousa-Silva

Enhancing Tuvan Language Resources through the FLORES Dataset
Ali Kuzhuget, Airana Mongush and Nachyn-Enkhedorzhu Oorzhak

Machine Translation Evaluation Benchmark for Wu Chinese: Workflow and Ana-
lysis
Hongjian Yu, Yiming Shi, Zherui Zhou and Christopher Haberland

Open Language Data Initiative: Advancing Low-Resource Machine Translation

for Karakalpak
Mukhammadsaid Mamasaidov and Abror Shopulatov
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12:30 - 13:30
12:30 - 13:30
14:00 - 15:00
15:00 - 15:30
15:30 - 17:00

FLORES+ Translation and Machine Translation Evaluation for the Erzya Lan-

guage
Isai Gordeev, Sergey Kuldin and David Dale

Spanish Corpus and Provenance with Computer-Aided Translation for the
WMT24 OLDI Shared Task
Jose Cols

Patent Translation Task

Efficient Terminology Integration for LLM-based Translation in Specialized Do-
mains
Sejoon Kim, Mingi Sung, Jeonghwan Lee, Hyunkuk Lim and Jorge Gimenez
Perez

Rakuten’s Participation in WMT 2024 Patent Translation Task
Ohnmar Htun and Alberto Poncelas

Biomedical Translation Task

The SETU-ADAPT Submission for WMT 24 Biomedical Shared Task
Antonio Castaldo, Maria Zafar, Prashanth Nayak, Rejwanul Haque, Andy Way
and Johanna Monti

Session 4 — Invited Talk by Ricardo Rei and Nuno M. Guerreiro. What Makes
MT Research Special in the LLM Age?"

Coffee Break

Session 5 — Featured Research Papers Oral Presentations

Translating Step-by-Step: Decomposing the Translation Process for Improved
Translation Quality of Long-Form Texts

Eleftheria Briakou, Jiaming Luo, Colin Cherry and Markus Freitag

Is Preference Alignment Always the Best Option to Enhance LLM-Based Transla-
tion? An Empirical Analysis

Hippolyte Gisserot-Boukhlef, Ricardo Rei, Emmanuel Malherbe, Céline Hude-

lot, Pierre Colombo and Nuno M. Guerreiro

On Instruction-Finetuning Neural Machine Translation Models
Vikas Raunak, Roman Grundkiewicz and Marcin Junczys-Dowmunt
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Quality or Quantity? On Data Scale and Diversity in Adapting Large Language
Models for Low-Resource Translation

Vivek lyer, Bhavitvya Malik, Pavel Stepachev, Pinzhen Chen, Barry Haddow and
Alexandra Birch

Post-edits Are Preferences Too
Nathaniel Berger, Stefan Riezler, Miriam Exel and Matthias Huck

Benchmarking Visually-Situated Translation of Text in Natural Images
Elizabeth Salesky, Philipp Koehn and Matt Post
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09:00 - 10:30
10:30 - 11:00
11:00 - 12:00
11:00 - 12:00

Session 6 — Shared Task Overview Papers 11

Findings of WMT 2024 Shared Task on Low-Resource Indic Languages Transla-
tion

Partha Pakray, Santanu Pal, Advaitha Vetagiri, Reddi Krishna, Arnab Kumar Ma-
ji, Sandeep Dash, Lenin Laitonjam, Lyngdoh Sarah and Riyanka Manna

Findings of WMT 2024’s Multilndic22MT Shared Task for Machine Translation
of 22 Indian Languages
Raj Dabre and Anoop Kunchukuttan

Findings of WMT2024 English-to-Low Resource Multimodal Translation Task
Shantipriya Parida, Ondfej Bojar, Idris Abdulmumin, Shamsuddeen Hassan Mu-
hammad and Ibrahim Said Ahmad

Findings of the WMT 2024 Shared Task Translation into Low-Resource Langua-
ges of Spain: Blending Rule-Based and Neural Systems

Felipe Sanchez-Martinez, Juan Antonio Perez-Ortiz, Aaron Galiano Jimenez and
Antoni Oliver

Findings of the WMT 2024 Shared Task on Discourse-Level Literary Translation
Longyue Wang, Siyou Liu, Chenyang Lyu, Wenxiang Jiao, Xing Wang, Jiahao
Xu, Zhaopeng Tu, Yan Gu, Weiyu Chen, Minghao Wu, Liting Zhou, Philipp
Koehn, Andy Way and Yulin Yuan

Findings of the WMT 2024 Shared Task on Chat Translation
Wafaa Mohammed, Sweta Agrawal, Amin Farajian, Vera Cabarrao, Bryan Eike-

ma, Ana C Farinha and José G. C. De Souza

Findings of the WMT 2024 Shared Task on Non-Repetitive Translation
Kazutaka Kinugawa, Hideya Mino, Isao Goto and Naoto Shirai

Coffee Break

Session 7 — Shared Task Posters 111

Low-Resource Indic Language Translation Task

A3-108 Controlling Token Generation in Low Resource Machine Translation Sy-

stems
Saumitra Yadav, Ananya Mukherjee and Manish Shrivastava
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Samsung R&D Institute Philippines @ WMT 2024 Indic MT Task
Matthew Theodore Roque, Carlos Rafael Catalan, Dan John Velasco, Manuel
Antonio Rufino and Jan Christian Blaise Cruz

DLUT-NLP Machine Translation Systems for WMT24 Low-Resource Indic Lan-
guage Translation
Chenfei Ju, Junpeng Liu, Kaiyu Huang and Degen Huang

SRIB-NMT'’s Submission to the Indic MT Shared Task in WMT 2024
Pranamya Patil, Raghavendra Hr, Aditya Raghuwanshi and Kushal Verma

MTNLP-IIITH: Machine Translation for Low-Resource Indic Languages
Abhinav P M, Ketaki Shetye and Parameswari Krishnamurthy

Exploration of the CycleGN Framework for Low-Resource Languages
Soren Dreano, Derek Molloy and Noel Murphy

The SETU-ADAPT Submissions to the WMT24 Low-Resource Indic Language
Translation Task
Neha Gajakos, Prashanth Nayak, Rejwanul Haque and Andy Way

SPRING Lab IITM’s Submission to Low Resource Indic Language Translation
Shared Task
Adpvait Joglekar, Hamees Ul Hasan Sayed and Srinivasan Umesh

Machine Translation Advancements of Low-Resource Indian Languages by
Transfer Learning

Bin Wei, Zheng Jiawei, Zongyao Li, Zhanglin Wu, Jiaxin Guo, Daimeng Wei,
Zhiqgiang Rao, Shaojun Li, Yuanchang Luo, Hengchao Shang, Jinlong Yang, Yu-
hao Xie and Hao Yang

NLIP_Lab-IITH Low-Resource MT System for WMT24 Indic MT Shared Task
Pramit Sahoo, Maharaj Brahma and Maunendra Sankar Desarkar

Yes-MT’s Submission to the Low-Resource Indic Language Translation Shared
Task in WMT 2024

Yash Bhaskar and Parameswari Krishnamurthy

Multilndic22MT Task
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System Description of BV-SLP for Sindhi-English Machine Translation in Mul-
tilndic22MT 2024 Shared Task
Nisheeth Joshi, Pragya Katyayan, Palak Arora and Bharti Nathani

WMT24 System Description for the Multilndic22MT Shared Task on Manipuri
Language

Ningthoujam Justwant Singh, Kshetrimayum Boynao Singh, Ningthoujam Avi-
chandra Singh, Sanjita Phijam and Thoudam Doren Singh

NLIP-Lab-1ITH Multilingual MT System for WAT24 MT Shared Task
Maharaj Brahma, Pramit Sahoo and Maunendra Sankar Desarkar

English-to-Lowres Multi-Modal Translation Task

DCU ADAPT at WMT24: English to Low-resource Multi-Modal Translation Task
Sami Haq, Rudali Huidrom and Sheila Castilho

English-to-Low-Resource Translation: A Multimodal Approach for Hindi, Ma-
layalam, Bengali, and Hausa

Ali Hatami, Shubhanker Banerjee, Mihael Arcan, Bharathi Chakravarthi, Paul
Buitelaar and John Mccrae

OdiaGenAl’s Participation in WMT2024 English-to-Low Resource Multimodal
Translation Task

Shantipriya Parida, Shashikanta Sahoo, Sambit Sekhar, Upendra Jena, Sushovan
Jena and Kusum Lata

Arewa NLP’s Participation at WMT24
Mahmoud Ahmad, Auwal Khalid, Lukman Aliyu, Babangida Sani and Mariya
Abdullahi

Multimodal Machine Translation for Low-Resource Indic Languages: A Chain-
of-Thought Approach Using Large Language Models
Pawan Rajpoot, Nagaraj Bhat and Ashish Shrivastava

Chitranuvad: Adapting Multi-lingual LLMs for Multimodal Translation
Shaharukh Khan, Ayush Tarun, Ali Faraz, Palash Kamble, Vivek Dahiya, Praveen
Pokala, Ashish Kulkarni, Chandra Khatri, Abhinav Ravi and Shubham Agarwal

Brotherhood at WMT 2024: Leveraging LLM-Generated Contextual Conversa-

tions for Cross-Lingual Image Captioning
Siddharth Betala and Ishan Chokshi
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12:30 - 13:30

12:30 - 13:30

Session 8 — Shared Task Posters IV
Translation into Low-Resource Languages of Spain Task

TIM-UNIGE Translation into Low-Resource Languages of Spain for WMT24
Jonathan Mutal and Lucia Ormaechea

TAN-IBE Participation in the Shared Task: Translation into Low-Resource Lan-
guages of Spain
Antoni Oliver

Enhaced Apertium System: Translation into Low-Resource Languages of Spain
Spanish—Asturian
Sofia Garcia

Universitat d’Alacant’s Submission to the WMT 2024 Shared Task on Translation
into Low-Resource Languages of Spain

Aaron Galiano Jimenez, Victor M. Sanchez-Cartagena, Juan Antonio Perez-Ortiz
and Felipe Sanchez-Martinez

Samsung R&D Institute Philippines @ WMT 2024 Low-resource Languages of
Spain Shared Task
Dan John Velasco, Manuel Antonio Rufino and Jan Christian Blaise Cruz

Back to the Stats: Rescuing Low Resource Neural Machine Translation with Sta-
tistical Methods

Menan Velayuthan, Dilith Jayakody, Nisansa De Silva, Aloka Fernando and Su-
rangika Ranathunga

Hybrid Distillation from RBMT and NMT: Helsinki-NLP’s Submission to the Sha-
red Task on Translation into Low-Resource Languages of Spain
Ona De Gibert, Mikko Aulamo, Yves Scherrer and Jorg Tiedemann

Robustness of Fine-Tuned LLMs for Machine Translation with Varying Noise Le-
vels: Insights for Asturian, Aragonese and Aranese
Martin Bir, Elisa Forcada Rodriguez and Maria Garcia-Abadillo

Training and Fine-Tuning NMT Models for Low-Resource Languages Using
Apertium-Based Synthetic Corpora

Aleix Sant, Daniel Bardanca, Jos¢é Ramom Pichel Campos, Francesca De Lu-
ca Fornaciari, Carlos Escolano, Javier Garcia Gilabert, Pablo Gamallo, Audrey
Mash, Xixian Liao and Maite Melero

Vicomtech@WMT 2024: Shared Task on Translation into Low-Resource Langua-

ges of Spain
David Ponce, Harritxu Gete and Thierry Etchegoyhen
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12:30 - 13:30

SJTU System Description for the WMT24 Low-Resource Languages of Spain Task
Tianxiang Hu, Haoxiang Sun, Ruize Gao, Jialong Tang, Pei Zhang, Baosong
Yang and Rui Wang

Multilingual Transfer and Domain Adaptation for Low-Resource Languages of
Spain

Yuanchang Luo, Zhanglin Wu, Daimeng Wei, Hengchao Shang, Zongyao Li,
Jiaxin Guo, Zhigiang Rao, Shaojun Li, Jinlong Yang, Yuhao Xie, Zheng Jiawei,
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The LLM Era is Here but MT is Not Solved Yet
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Abstract

This overview paper presents the results of the
General Machine Translation Task organised
as part of the 2024 Conference on Machine
Translation (WMT). In the general MT task,
participants were asked to build machine trans-
lation systems for any of 11 language pairs,
to be evaluated on test sets consisting of three
to five different domains. In addition to par-
ticipating systems, we collected translations
from 8 different large language models (LLMs)
and 4 online translation providers. We evaluate
system outputs with professional human anno-
tators using a new protocol called Error Span
Annotations (ESA).

1 Introduction

The Ninth Conference on Machine Translation
(WMT24)! was held at EMNLP 2024 and hosted
a number of shared tasks on various aspects of
machine translation (MT). This conference built
on 18 previous editions as a workshop or a con-
ference (Koehn and Monz, 2006; Callison-Burch
et al., 2007, 2008, 2009, 2010, 2011, 2012; Bojar
etal., 2013, 2014, 2015, 2016, 2017, 2018; Barrault
et al., 2019, 2020; Akhbardeh et al., 2021; Kocmi
et al., 2022, 2023).

'www2.statmt.org/wmt24/
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The goal of the General Machine Translation
shared task is to explore the translation capabilities
of current systems in diverse settings. We assess
MT systems’ ability to handle a broad range of
translation and language use. How to test general
MT performance is a research question in itself.
Countless phenomena could be evaluated, the most
important being:

e variety of domain (news, medicine, IT, patents,
legal, social, gaming, etc.)

* style of text (formal or spoken language, fiction,
technical reports, etc.)

* non-standard user-generated content (grammati-
cal errors, code-switching, abbreviations, etc.)

* source modalities (text, speech, image)

Evaluating all phenomena is nearly impossible
and creates numerous unforeseen problems. There-
fore, we decided to simplify the problem and tackle
only a selection of the phenomena.

We choose to evaluate different domains, this
year focusing on the following ones: news,
social/user-generated content, speech, literary, and
educational. They were chosen to represent top-
ics with different content styles and to be under-
standable for humans without specialist in-domain
knowledge, thus not requiring specialized transla-
tors or human raters for evaluation. Due to limited
access to monolingual data across all languages,

Proceedings of the Ninth Conference on Machine Translation, pages 1-46
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the test set for each language direction contains at
most four of the domains (Czech-Ukrainian uses
different domains).
We evaluate a diverse set of languages pairs:
Czech—Ukrainian,
Japanese—Chinese — new,
English—Chinese,
English—Czech,
English—German,
English—Hindi,
English—Icelandic — new,
English—Japanese,
English—Russian,
English—Spanish (Latin America) — new,
English—Ukrainian,

We newly test an audio modality as an additional
source in the speech domain. Participants in this
domain were provided with audio files and auto-
matic speech recognized (ASR) text. Submission
could use the original audio as an additional cleaner
source modality instead of the provided ASR text.

In contrast to previous years, we adopt the Error
Span Annotation protocol (Kocmi et al., 2024b),
ESA for evaluation. This protocol, described in
Section 6, combines aspects of DA (Graham et al.,
2013) and MQM (Lommel et al., 2014).

In a shift towards document-level evaluation, we
no longer provide source texts segmented into indi-
vidual sentences. Instead, we keep all paragraphs
intact and evaluated together.

Finally, this year’s shared task included an
increased number of test suites (Section 8) un-
der the motto “Help us break the LLMs”, focus-
ing on revealing issues in the LLM translations
from different perspectives, including a range of
linguistic phenomena, idiomatic expressions and
proper names, complex sentence structures, multi-
ple domains, translation isochrony, speaker-listener
gender resolution, prompt injection attacks, and
gender-diverse, queer-inclusive content.

All General MT task submissions, sources, ref-
erences and human judgements are available in the
dedicated Github repository.> The interactive visu-
alization and comparison of differences between
systems can be browsed online on an interactive
leaderboard® using MT-ComparEval (Klejch et al.,
2015; Sudarikov et al., 2016).

The structure of the paper is as follows. We de-
scribe the process of collecting, cleaning and trans-

2github.com/wmt-conference/wmt24-news-systems
*wmt.ufal.cz

lating the test sets in Section 2 followed by a sum-
mary of the permitted training data and pretrained
models for the constrained track in Section 3. We
list all submitted systems in Section 4. Automatic
evaluation is described in Section 5. The human
evaluation approach of ESA is described in Sec-
tion 6. The main results can be found in Section 7
and their extended version in Appendix D. Finally,
Section 8 describes the test suites and summarises
their conclusions.

Findings of the WMT2024 General MT Task

Across the evaluation conditions, we observe the

following:

* The best systems for English— Spanish produced
close to flawless translations making it the easiest
language pair (Section 6.4).

* The speech domain is the most challenging do-
main (likely due to the ASR) while the other
three domains (news, literary, social) are simi-
larly difficult (Section 6.4).

* Human references are in the winning cluster in
7 out of 11 language pairs. For one of the re-
maining 4 pairs (English—Hindi), we know the
reference quality was suboptimal. This suggest
that ESA protocol works well in our setting.

* ESA produced 37% more clusters than DA+SQM
while using only half the number of human anno-
tations (Section 6.5).

* The best performing system in the open and
constrained system category is IOL-Research
(wins 10 language pairs in this category). The
best performing participating system is Unbabel-
Tower70B, which wins in 8 language pairs. And
the best performing system in general is Claude-
3.5-Sonnet winning in 9 language pairs.

* Automatic scores are biased; although Unbabel-
Tower70B placed first across all languages in
automatic ranking it didn’t perform as the win-
ning system across the board of human evalua-
tion. This is likely because we used the same
metric (COMET) for automatic ranking as the
system used during MBR highlighting the issue
of hill-climbing on automatic metrics.

* We got a total of 28 participants, which nearly
50% more than last year. Most of the participants
use an LL.M as a part of their system, generally
by fine-tuning it.


https://github.com/wmt-conference/wmt24-news-systems
http://wmt.ufal.cz

* Quality estimation metrics with fixed score for
perfect translation and interpretable delta are
promising for checking the quality of standalone
human references.

2 Test Data

In this section, we describe the data collection pro-
cess (Section 2.1), and the production of human
reference translations (Section 2.3).

2.1 Collecting test data

As in previous years, the test sets consist of un-
seen translations created specifically for the shared
task and released publicly to be used as translation
benchmarks. Our aim was to collect public domain
or open-licence source data covering a range of
domains, and we also focused on using as recent
data as possible to limit possible contamination
(particularly relevant when using LLMs).

We chose four main domains from which to col-
lect data (news, literary, speech and social), al-
though we were not able to collect data in all do-
mains for all three source languages (no social do-
main data is provided for Japanese—Chinese and
Czech—Ukrainian data was collected separately,
comprising news data and four other separate do-
mains). For all language pairs, the test sets are
“source-original”’, meaning that the text was origi-
nally written in the source language, which is then
manually translated into the target languages. This
is important to avoid “translationese” in the source
texts, which can have a negative impact on eval-
uation accuracy (Toral et al., 2018; Freitag et al.,
2019; Laubli et al., 2020; Graham et al., 2020). We
aimed for a certain number of tokens* in each do-
main rather than a certain number of sentences
(as in previous years) to better balance the do-
mains and also because the document-level focus
this year allowed avoid manual sentence splitting.
We aimed for approximately 10,000 tokens per do-
main, adjusting this figure in cases where not all
domains could be covered (this is notably the case
for Japanese— Chinese, where the other domains
are up-sampled to account for us not being able to
provide data in the social domain). Basic statistics
of each subdomain are given in Table 1.

“For Japanese source texts, we choose to use a certain
number of characters, since words are not space-separated.

>Texts are sentence-segmented and tokenised using the
language-specific Spacy models (Honnibal and Montani,
2017) optimised for accuracy where available. For Czech,
we use the multilingual Spacy model, as a language-specific

Note that by default, when languages are men-
tioned in this section, this refers to the source lan-
guage of the texts.

News domain This domain contains data pre-
pared in the same way as in previous years (Kocmi
et al., 2023). We collected news articles from Jan-
uary 2024 extracted from online news sites, pre-
serving document boundaries. We expect that news
domain text will generally be of high quality.

For Japanese, the total amount of text data was
determined by the number of characters since
Japanese does not put spaces between words. Us-
ing the WMT?23 Japanese test set and its translation
into English, we found the ratio of the number of
Japanese characters to English words was 2 to 1.
Since the English news test set consisted of 8K
words, we started making a Japanese news test set
with a goal of 16K characters. After discovering
that the Japanese social domain was unavailable,
we set this goal to 24K characters.

Literary Domain The English source texts were
manually selected from Archive of Our Own,® fo-
cusing on recent, high-quality stories.” The stories
were divided into 1000-word segments, ensuring
the preservation of entire paragraphs. In total, we
obtained data from four stories (8K words).’

For the Japanese source texts, we selected five
novels recently made public on Aozora Bunko,’ a
website that digitizes and publishes Japanese liter-
ary works whose copyright has expired. To main-
tain consistency with the English dataset, we tok-
enized the Japanese novels using MeCab (Kudo,
2005) and divided them into segments of up to
1000 tokens, while preserving paragraph bound-
aries. The final size of the Japanese literary test set
was 15 chunks (22K characters).

Speech domain The speech data corpus was
compiled from a diverse range of YouTube videos
licensed under Creative Commons. These sources
encompassed various domains, including documen-
taries, instructional (DIY) videos, tutorials, travel
blogs, and film content. For this part of the test
set, segments from 166 videos were selected and
processed through automated speech recognition
(ASR) systems. For the English-language source
one is not available. Note that statistics, particularly for this
language, are approximate.

barchiveofourown.org

"Texts were published between February and April 2024.

8For each, we select first two chunks of up to 1000 words.
%aozora.gr.jp


https://archiveofourown.org/
https://www.aozora.gr.jp/

Language pair News Literary Speech Social  Education Official Personal Voice
#tokens
English—* 9,268 9,601 9,611 9,829 - - - -
Japanese—Chinese 14,896 14,541 11,025 - - - - -
Czech— Ukrainian 7,996 - - - 7,825 6,029 6,846 5,305
#segs (% of total #segs for language pair)
English—* 149 (14.9) 206(20.7) 111 (11.1) 531 (53.3) - - - -
Japanese—Chinese 269 (37.3) 316 (43.8) 136 (18.9) - - - - -
Czech—Ukrainian 175 (7.6) - - - 1160 (50.1) 243 (10.5) 323(13.9) 415(17.9)
#docs (#segments/doc)
English—* 17 (8.8) 8 (25.8) 111 (1.0) 34 (15.6) - - - -
Japanese—Chinese 45 (6.0) 15 (21.1) 136 (1.0) - - - - -
Czech—Ukrainian 23 (7.6) - - - 166 (7.0) 23 (10.6) 29 (11.1) 61 (6.8)
#sents (#sents/doc)
English—* 333(19.6) 607 (75.9) 685 (6.2) 759 (22.3) - - - -
Japanese—Chinese 634 (14.1) 875 (58.3) 332 (2.4) - - - - -
Czech—Ukrainian 439 (19.1) - - - 1166 (7.0) 412 (17.9) 571 (19.7) 462 (7.6)
Type-token ratio of source texts
English—* 0.30 0.23 0.24 0.27 - - - -
Japanese—Chinese 0.22 0.20 0.19 - - - - -
Czech— Ukrainian 0.46 - - - 0.39 0.45 0.34 0.37

Table 1: Basic statistics concerning the subdomains of each test set. Statistics are calculated on the source side. Sentence
segmentation and tokenisation are carried out automatically as described in Footnote 5.

material, we used the proprietary Dubformer en-
gine developed in-house. Japanese-language con-
tent was processed using the Whisper ASR system
(Radford et al., 2022).

For Japanese, We selected 136 segments from 56
YouTube videos. They include both monologues
and dialogues, as well as a variety of speakers, both
men and women, adults and children. Video con-
tent includes press conferences, interviews, cook-
ing recipes, travel vlogs, DIY videos, tutorials,
product reviews, etc. We decided the total amount
of speech data based on the number of characters
transcribed. We started creating the data with a
target of 16K characters and eventually ended up
with 18K characters.

Social domain The social domain data is sourced
using the Mastodon Social APL ! Mastodon is a
federated social network that is compatible with the
W3C standard ActivityPub (Webber et al., 2018).
Users publish short-form content known as “toots”,
with the possibility of replying to other toots to
form threads. We decided to use the original server,
mastodon.social because of its large commu-
nity and publicly available toots.

We collected data in the first four months of
2024, using the reported language ID label to target
the source languages of interest. Unfortunately,

"% mastodon.social/api/v1/timelines/public

there were too few good quality posts for Czech
and Japanese, and we therefore only release social
domain data for English.

Given the document-level nature of the task this
year, our aim was to collect threads comprising
multiple toots. Our sourcing therefore involved
regularly scraping random toots from the previous
hour but also identifying and scraping any missing
toots that made up threads only partially sourced
(identified using the ‘in_reply_to_id’ attribute of
already sourced toots). To avoid spam and uninfor-
mative toots, we removed empty toots, texts that
appeared several times (probable spam), texts from
accounts that produced a large number of toots
overall (we set this to 100 for a total of 1.5M toots
scraped) and from accounts we heuristically identi-
fied as being news outlets or bots (containing the
keywords ‘bot’, ‘news’, ‘weather’, ‘sports’, ‘feeds’
or ‘press’ in their handle). We created threads from
the individual toots and manually selected threads
of interest from threads of minimum 2 and maxi-
mum 100 toots. Our selection was based on having
a diverse range of topics and targeting those char-
acteristic of non-standard user-generated content.

The selected documents contain between 5 and
76 segments of text, each segment corresponding
either to a whole toot or a line of text within a toot
(depending on whether the toot contained newlines,
i.e. there is no distinction between newlines indi-
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cating a boundary between two toots and a newline
within a toot). Each segment can therefore contain
one or several sentences, depending on the original
composition of the toots.

Czech and Ukrainian source texts Source texts
for Czech—Ukrainian translation included the
news domain as described above, Educational do-
main collected from online exercises and three do-
mains (Personal, Official and Voice) from texts col-
lected through Charles Translator.!! The Charles
Translator mobile app supports voice input, which
is converted to text using Google ASR. The texts
collected this way were marked as the Voice do-
main. The remaining Czech inputs from the
Charles Translator service were classified either as
Official (formal communication) or Personal (per-
sonal communication, usually between a Czech
and Ukrainian speaker).

The texts were filtered and pseudonymized in
the same way as in the last two years (Kocmi et al.,
2022). For example we asked the annotators not
to delete or fix noisy inputs as long as they are
comprehensible. The only exception was the voice
domain, where the source texts were post-edited to
fix ASR errors, including punctuation and casing.

The Educational domain includes selected exer-
cises from an online portal Skola s nadhledem"?
for elementary-school students from various sub-
jects (chemistry, geography, Czech language, etc.).
Some segments are not full sentences but short
phrases. The reference translations for this domain
were created by professional translators within the
EdUKate project.

2.2 Comparison between Domains

Due to the change to document-level translation
this year, for each language direction, we measured
the amount of text per domain by counting tokens,
aiming for approximately the same number of to-
kens per domain (see Table 1 for statistics of the
different domains). In one sense, this means that
the amount of textual content is roughly balanced
per domain, as opposed to taking the same number
of sentences per domain, which would result in
domains with longer sentence lengths (e.g. news
or literary) being over-represented with respect to
domains with shorter sentences (e.g. social). How-
ever, it is worth noting that the nature of documents,
in terms of their length and structure, differs greatly

"translator.cuni.cz
125kolasnadhledem.cz

depending on the domain. This can be exemplified
at its most extreme by a comparison between the lit-
erary, social and speech domains for from-English
language directions.

The literary domain has only 8 documents, each
one containing a large number of segments (25.8
on average), with each segment containing an aver-
age of 75.9 sentences. A document represents an
extract from a longer literary text and each segment
represents a paragraph of text.

The speech domain is represented by a larger
number of documents (111), each one containing
a single segment, composed of an average of 6.2
sentences. Each document in this case corresponds
to a short dialogue, provided without segmentation
into dialogue turns.

The social domain is represented by a fair num-
ber of documents (34 in total), but the composition
is very different from the other domains, as we
made a choice to preserve the structure of the ini-
tial posts (new-line separated text is represented by
multiple segments) and of the thread itself (sepa-
rate posts are separate segments). This has the ad-
vantage of preserving post boundaries and format-
ting choices, but has the disadvantage of creating a
large number of individual segments (531 in total,
compared to 206 for the literary domain and 111
for the speech domain), each containing few sen-
tences. This has two main consequences: (i) if seg-
ments are handled individually by systems, most
sentences will be handled with little context, since
the other sentences appear in separate segments,
(>i1) in terms of the overall number of segments
evaluated in the human evaluation (see Section 6),
the social domain represents over half of the total
number of evaluated segments (53.3% compared
to 20% for the literary domain and only 11.1%
for the speech domain). This has consequences
for the calculation of macro-average scores when
computing human rankings, as discussed in Sec-
tion 7.1. The formatting choice could be rethought
for future years, although would have to take into
account the particularities of non-standard text in
order to not introduce extra noise (e.g. concatenat-
ing newline-separated sentences would have to take
into account the potential lack of end-of-sentence
punctuation, but it would also have to take into
account instances where newlines are used with a
single sentence for purely visualisation purposes.
A possible solution would be to allow a linebreak
symbol such as <br/> to appear in the segments.
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2.3 Human References

The test sets were translated by professional trans-
lation agencies, according to the translation brief
shown in Appendix C. Different partners sponsored
each language pair and various translation agencies
were therefore used, which could affect the differ-
ences and quality of translations.

The quality of human references is critical es-
pecially for reference-based metrics (Freitag et al.,
2023), and getting high quality translations is chal-
lenging despite the use of professional translators.
Therefore, we propose to use a quality estimation
metric to assess the quality of translation. We need
a metric whose score is interpretable in an abso-
lute way, i.e. a metric that generates a fixed score
for perfect translations (such as 0) and has an un-
derstandable delta (for example -1 means a single
minor error as in MQM-based metrics). For that
reason, we chose a GPT-4-based implementation
of GEMBA-MQM (Kocmi and Federmann, 2023).

Table 2 shows the GEMBA scores for individual
domains together with the ESA human cluster that
was obtained a few months later in our official
manual evaluation.

The two target languages with the lowest
GEMBA scores were Russian and Hindi. The ven-
dor providing Russian translations improved the
initial quality of translations after being presented
with the GEMBA scores. On the other hand, the
vendor providing Hindi translators claimed that the
translations were flawless.

When we compare the average GEMBA score to
human rank in Table 2, we can see that human ref-
erence is ranked in the top cluster for all languages
except of Hindi, Ukrainian, and Chinese. While
the GEMBA score did not reflect lower quality of
Ukrainian, its low score for Hindi was confirmed
by ESA. This shows that using quality estimation
metrics is a possible way of assessing the quality
of human translations, although better approaches
needs to be developed.

2.4 Test Suites

In addition to the test sets of the regular domains,
the test sets given to the system participants were
augmented with several fest suites, i.e. custom-
made test sets focusing on particular aspects of
MT translation. The test suites were contributed
and evaluated by test suite providers as part of a de-
centralized sub-task, detailed in Section 8. Across
all language pairs of the shared task, test suites

Literary News Social Speech Avg. Hum.

En.—Czech 24 20 -19 -1.8 |-2.03 1
En.—Germana -2.1 20 23 23 |-2.18 1
En.—Germang -2.7 0.8  -1.7 20 |-1.80 1
En.—Spanish  -1.1 -1.6  -1.2 -1.6 [-1.38 1
En.—Hindi 34 45 -25 29 |-333 3
En.—Icelandic -26 -0.8 -19 -14 |-1.68 1
En.—Japanese -1.7 -1.6 -1.7 -1.7 |-1.68 1
En.—Russian -2.6 28 25 23 |-255 1
En.—Ukrainian -1.8 -1.0  -2.0 23 |-1.78 3
En.—Chinese -3.1 -1.7 2.8 22 |-245 2

Table 2: GEMBA-MQM score for human references. The
first four columns are scores for individual domains, the fifth
column is the average. The last column is the human clus-
ter assigned with ESA protocol. Czech— Ukrainian is not
included because of different domains and source data.

contributed 718,598 source test segments (detailed
numbers can be found in Table 9).

3 Training Data

Similar to the previous years, we provide a se-
lection of parallel and monolingual corpora for
model training. The provenance and statistics of
the selected parallel datasets are provided in the
appendix in Table 10 and Table 11. Specifically,
our parallel data selection include large multilin-
gual corpora such as Europarl-v10 (Koehn, 2005),
Paracrawl-v9 (Bafién et al., 2020), CommonCrawl,
NewsCommentary-v18.1, WikiTitles-v3, WikiMa-
trix (Schwenk et al., 2021), TildeCorpus (Rozis
and Skadins, 2017), OPUS (Tiedemann, 2012),
CCAligned (El-Kishky et al., 2020), UN Paral-
lel Corpus (Ziemski et al., 2016), and language-
specific corpora such as CzEng v2.0 (Kocmi
et al., 2020), YandexCorpus,'> ELRC EU Acts,
JParaCrawl (Morishita et al., 2020), Japanese-
English Subtitle Corpus (Pryzant et al., 2018),
KFTT(Neubig, 2011), TED (Cettolo et al., 2012),
and back-translated news.

Links for downloading these datasets were pro-
vided on the task web page. In addition, we
have automated the data preparation pipeline us-
ing MTDATA (Gowda et al., 2021).'"* MTDATA
downloads all the mentioned datasets, except
CzEng v2.0, which required user authentication.
This year’s monolingual data include the following:
News Crawl, News Discussions, News Commen-
tary, CommonCrawl, Europarl-v10 (Koehn, 2005),
Extended CommonCrawl (Conneau et al., 2020),
Leipzig Corpora (Goldhahn et al., 2012), UberText
and Legal Ukrainian.

B github.com/mashashma/WMT2022-data
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System Language pairs Architecture Strategy

AIST-AIRC (Rikters and Miwa, 2024) en-de, en»ja dec, enc-dec, MEGA sentence
AMI (Jasonarson et al., 2024) en-is enc-dec hybrid
BJFU-LPT cs~uk - -
CUNI-DOCTRANSFORMER (Hrabal et al., 2024) en-cs enc-dec paragraph
CUNI-TRANSFORMER (Hrabal et al., 2024) cs»uk, en-cs enc-dec sentence
CUNI-DS (Semin and Bojar, 2024) en-ru dec sentence
CUNI-GA (Hrabal et al., 2024) en-cs enc-dec sentence
CUNI-MH (Hrabal et al., 2024) en-cs dec sentence
CUNI-NL (Hrabal et al., 2024) en-de dec sentence
CYCLEL (Dreano et al., 2024) All language pairs CycleGAN -
CYCLEL2 (Dreano et al., 2024) en-»cs, en-»de, en-ru, en-zh CycleGAN -
DLUT-GTCOM (Zong et al., 2024) en-ja, jaszh enc-dec =
DUBFORMER en-de, en»es, en»is, en-ru, en-uk — -
HW-TSC (Wu et al., 2024) en-zh hybrid sentence
IKUN (Liao et al., 2024) All language pairs dec sentence
IKUN-C (Liao et al., 2024) All language pairs dec sentence
IOL-RESEARCH (Zhang, 2024) All language pairs dec paragraph
MSLC (Larkin et al., 2024) en-»de, en-es, jaszh enc-dec sentence
NTTSU (Kondo et al., 2024) en-ja, jaszh hybrid paragraph
NVIDIA-NEMo All except cs-uk, en+is and jazh dec paragraph
OCCIGLOT (Avramidis et al., 2024) en-de, en-es dec -
SCIR-MT (Li et al., 2024) en-cs dec -
TEAM-J (Kudo et al., 2024) en-ja, ja»zh hybrid hybrid
TRANSSIONMT All except en-~ja, en-zh and ja-zh enc-dec -
TSU-HITs (Mynka and Mikhaylovskiy, 2024) en-»cs, en-»de, en-es, en~is, en>ru  ddm sentence
UNBABEL-TOWER70B (Rei et al., 2024) All language pairs dec paragraph
UVA-MT (Tan et al., 2024) en-ja, en-zh, ja+zh hybrid hybrid
YANDEXSUBTITLES (Elshin et al., 2024) en-ru dec paragraph
AYA23 (Aryabumi et al., 2024) All language pairs dec paragraph
CLAUDE-3.5 All language pairs dec paragraph
COMMANDR+ All language pairs dec paragraph
GPT-4 (OpenAl, 2024) All language pairs dec paragraph
GEMINI-1.5-PRO (Team, 2024a) All except en-is dec paragraph
LLAMA3-70B (Team, 2024b) All language pairs dec paragraph
MISTRAL-LARGE (Jiang et al., 2023) All language pairs dec paragraph
PHI-3-MEDIUM (Team, 2024c) All language pairs dec paragraph
ONLINE-A All language pairs - -
ONLINE-B All language pairs - -
ONLINE-G All language pairs - -
ONLINE-W All except en-+is and en-hi - -

Table 3: Participating submissions in the General MT shared task. The top section covers the externally contributed submissions,
the middle section lists the language models added by us and the lower section covers the online systems. Online system
translations were not submitted by their respective companies but were obtained by us, and are therefore anonymized in a
fashion consistent with previous editions of the task. Row coloring shows closed-track (dark gray), open-track (light gray)
and constrained (white background) submissions. The Architecture column shows whether the submission used decoder-only
language models (dec), sequence-to-sequence (enc-dec), hybrid between dec and enc-dec or other architectures. The Strategy
column shows the approach used to handling paragraph-level test data: sentence-level training and translation (sentence),
paragraph-level training and translation (paragraph), hybrid between both (hybrid). Some values are unknown (-) due to missing
information or submission papers.



4 System Submissions

This year, we received a total of 105 primary sub-
missions from 28 participants. The increase in
number of participants from last year’s 19 can be
explained by the shift in the field and the ease with
which LLMs can be fine-tuned. The increased num-
ber of primary submissions can be explained by the
fact that most submissions are multilingual and
therefore cover many translation directions.

In the same manner as previous years, we also
collected translations from online MT systems
for all language pairs. Online system outputs
come from four public MT services and were
anonymized as ONLINE-{A,B,G,W}, which re-
sulted in further 42 system outputs. Finally, we
added contrastive translations by 8 LLMs, which
included closed commercial products (such as GPT-
4) and open models (such as Llama3). This resulted
in 95 more submissions, with the total number of
submissions being 242.

All participating systems are listed in Table 3.
Appendix B provides more detailed short descrip-
tions of the submitted systems, as provided by
the authors at submission time. Section 4.1 dis-
cusses the general trends in chosen architectures
and approaches to paragraph-level translation. Sec-
tion 4.2 presents details on LLM benchmark us-
age in the task. Section 4.3 describes the different
tracks to which participants could submit outputs:
constrained, open and closed track. Section 4.4
describes the submission system setup.

4.1 Architectures and Strategies

In addition to a reference to a description paper
(if one was provided), the submission name and
the list of language pairs covered, Table 3 includes
columns for the architecture and strategy used to
approach the task of paragraph-level translation.
If we compare the frequency of usage of differ-
ent architectures between the external participants
(i.e,. excluding benchmarking LL.Ms and online
systems), we can see that:

* 11 participants train decoder-only language mod-
els (dec in Table 3)

* 7 participants train encoder-decoder seq2seq
transformer models (enc-dec)

* 4 participants use a hybrid of the decoder-only
and encoder-decoder architectures (hybrid)

¢ 3 alternative architectures were used: MEGA
(Maetal., 2023) in AIST-AIRC, CycleGAN (Zhu
et al., 2017) in CycleL and discrete diffusion
models in TSU-HITs.

Not all description papers specified the strategy
used to translate the test set paragraphs. Of those
who did, 5 submissions approached it by explic-
itly training paragraph-level translation systems,
while 11 submissions translated single sentences
after sentence-splitting the paragraph. 3 submis-
sions described a hybrid approach of, for example,
translating single sentences but automatically post-
editing at the paragraph level. Several papers do
not mention the strategy at all. We plan to address
this lack of information in future WMT editions
by requesting that the information be provided at
submission time.

Interestingly, the paragraph-level approach is
not limited to a single architecture: for instance,
the CUNI-DocTransformer team uses an encoder-
decoder approach, but trains it on paragraph-level
parallel data, which includes synthetic data. There
are examples to the contrary: several submissions
fine-tune a decoder-only language model, but apply
it to translate single sentences (IKUN, AIST-AIRC,
several CUNI submissions).

Finally, almost all submissions used an LLM as
a part of their setup. The most common use is fine-
tuning of a pretrained model, most often LLama.
Other uses of LLMs are for generating or cleaning
up training data with an LLM (Jasonarson et al.,
2024) or using an LLLM for automatic post-editing
(Tan et al., 2024).

4.2 LLM Benchmark

Over the last year, many new LL.Ms claimed multi-
lingual and translation capabilities. However, there
is no systematic and reliable MT evaluation of the
most popular LLMs using the same setup on blind
test sets. We therefore decided to collect the trans-
lations of LLMs ourselves.

We design unified code for collecting the trans-
lations in an identical setup for all LLMs. We used
a 3-shot approach, where three fixed examples are
taken from the past WMT test sets. We set the tem-
perature to zero to avoid introducing randomness
into the process.!?

We evaluated most of the popular LLMs,
both closed-source models and those with open

5The code for collecting translations is available at:
github.com/wmt-conference/wmt-collect-translations
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Language model Input tok. Output tok. Cost
Aya23 44 M 0.7M 418
Claude-3.5 55M 1.0M 319%
CommandR-plus 44 M 07M 23439
Gemini-1.5-Pro 39M 0.6M 4039
GPT-4 59M 1.OM 2404 $
Llama3-70B 5.0M 0.7M 51%
Mistral-Large 6.0 M 1.IM  3708%$
Phi-3-Medium 59M 1.1 M 45%

Table 4: Number of input and output tokens and estimated
pricing for translating the full WMT?24 test set without test
suites. The Gemini model refused to translate Icelandic, and
the estimate is therefore lower. Pricing for the open models
Aya23 and Llama3 was estimated via together.ai.

weights. Specifically, we collect translations from
Aya23, Claude-3.5-Sonnet, Command R+, GPT-
4, Gemini-1.5-Pro, Llama3-70B, Mistral-Large,
Nvidia-NeMo and Phi-3-Medium. As most of the
models do not claim multilingual capabilities for
all languages covered, we looked into the original
reports for these LLMs to see which languages are
claimed to be supported. We check if both source
and target language are mentioned or evaluated in
any of their multilingual settings. We mark LLMs
that do not officially claim a support for a given
language with the § symbol in the tables. However,
to avoid selection bias, we collect translations for
all languages for all LLMs, even those not officially
claimed to be supported.

We collect all translations via the API of the re-
spective services, and all data was collected during
the submission week. Table 4 shows the number
of input and output tokens as segmented via the
models’ internal tokenizers. The estimated cost
is for the whole test set without test suites. Note
that the prices for more recent GPT models are
significantly lower.

4.3 Constrained, Open, and Closed Tracks

We distinguish three types of MT systems partic-
ipating in the shared task: constrained, open and
closed systems. The main idea is to level the field
for different setups. For the constrained setup, we
only allow specific training data and pretrained
models from a specified list. Open systems are
those developed using publicly available data or
models. The final group of closed systems corre-
sponds to all other systems that are built at least
partly with a non-replicable setup.

* Constrained systems are those using only the
specifically allowed training data (see Section 3)
and the following pretrained models: Llama-2-

7B, Llama-2-13B, Mistral-7B, mBART, BERT,
RoBERTa, XLM-RoBERTa, sBERT, LaBSE.
Constrained systems may use any publicly avail-
able metric that was evaluated in past WMT Met-
rics shared tasks (e.g. COMET or Bleurt) and
any basic linguistic tools (e.g. taggers, parsers,
morphology analyzers).

* Open systems (marked in tables with a light gray
background) are limited to using software, data
and models that are freely available for research
purposes, so that the subsequent work could be
replicated by a research group.

* Closed systems (marked with dark gray) cor-
respond to all the remaining (fully automatic)
systems, with no limitations imposed on their
training data (all ONLINE systems and LLMs
released without binaries fit into this category).

44 OCELo0T

We used the open-source OCELoT platform'® to
collect system submissions again this year. As in
previous years, only registered and verified teams
with correct contact information were allowed to
submit their system outputs and each verified team
was limited to 7 submissions per test set. Sub-
missions on leaderboards with BLEU (Papineni
et al., 2002) and CHRF (Popovic, 2015) scores from
SacreBLEU (Post, 2018) were displayed anony-
mously to avoid publishing rankings based on au-
tomatic scores during the submission period. Un-
til one week after the submission period, teams
could select a single primary submission per test
set, specify if the primary submission followed a
constrained, open or closed system setting, and sub-
mit a system description paper abstract. These were
mandatory for a system submission to be included
in the human evaluation campaign.

5 Automatic Evaluation

This year, we received an unusually high number of
submitted systems and we were not able to provide
manual evaluation for all of them. Therefore, we
decided to use automatic metrics to preselect the
best performing systems with a method we call
AutoRank, which is based on two different metrics:

e MetricX-23-XL. (Juraska et al.,, 2023), a
reference-based metric built on top of the mT5
model (Xue, 2020).

1github.com/AppraiseDev/OCELo0T
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"It's not that bad, right, Kayel?"

Neni to tak hrozné, ne?* |[M]

Reset

« Completed

Kayel clearly didn't agree with Nyssi, he looked less black than normal and his claws had dug into
Thassalin's back to the point that he'd made the Thraki bleed, but Thassalin clearly didn't seem
to care. That being said, Thassalin had realized he had scared his new friends and found a
clearing to land in.

Kayel jasné nesouhlasil s Nyssim, vypadal méné ¢erné nez obvykle a jeho drapy
se zabodly do zady Thassalina tak, Ze mu zpUsobily krvaceni, ale Thassalin
jasn& nevypadal, Ze by se mu to nelibilo. Reknéme, Ze Thassalin si uvédomil, ze
vydésil své nové ptétele a nagel misto, kde mohl pistat. [MISSING]

Most meaning preserv 100%: Perfect

Reset « Completed

(a) Excerpt of two segments from a larger document. In the first
segment, the name “Kayel” is omitted which is a major error. In

the second segment, there are many minor errors.

Pred ticeti miliony let se v krajiné potulovalo monstrum. pravdépodobné tu
mluvime o jednom z nejdivocejsich zvitat, které kdy chodilo po Zemi... Byla to
nejvétsi Selma Zijici v Severni Americe od dob dinosaurti. Podivej se na
velikost té tu lebky. Podivej se na véechny ty zuby. Zadné zvite takové

neexistuje. Nikde. [MISSING]

0%: No meaning 33%: Some meaning preserved 86%: Most meaning preserved 100%: Perfect
preser

Reset « Completed

(b) Example of a video to text translation with several minor
errors. The annotator can control the video player.

Figure 1: Two screenshots of ESA (Kocmi et al., 2024b) and the annotator instructions. ESA shows multiple segments within a
document at once as well as video sources. After marking the individual error spans, the annotator assigns the final segment
score from O to 100. The tool is implemented in Appraise (Federmann, 2018).

* CometKiwi-DA-XL (Rei et al., 2023), a quality
estimation metric built on the XLM-R XL model
(Conneau, 2019).

Both metrics are top performing metrics (Freitag
et al., 2023), and we intentionally select two dis-
tinct metrics (different underlying pretrained sys-
tems and architectures) to minimize their bias and
potential problems. Although quality estimation
is on average slightly worse than reference-based
evaluation, it helps us to avoid a potential reference
bias when human references are suboptimal (Fre-
itag et al., 2023). Multilingual quality estimation
can be fooled when the translation is in the incor-
rect language, which the reference-based metric
will penalize.

To compute MetricX, we used the official imple-
mentation'” and the “google/metricx-23-x1-v2p0”
model. MetricX produces scores at the segment
level. To obtain scores at the system level, we aver-
aged the segment scores. To compute CometKiwi
scores, we used the official implementation'® with
the “Unbabel/wmt23-cometkiwi-da-x1” model, a
reference-free model, taking the translation hypoth-
esis and the source segment as inputs. COMET
can produce system-level scores so we use them
directly.

To merge the two metrics, we first linearly scale
the scores of each metric to a range between 1 and

17 github.com/google-research/metricx
18github.com/Unbabel/COMET
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the number of systems for a given language pair.
We then average both normalized scores to reach
the final automatic ranking, which we refer to as
AutoRank. We provide a Jupyter notebook in the
WMT24 repository to reproduce the scores. '

5.1 Selecting Systems for Human Evaluation

When selecting the systems for human evaluation,
we prioritize open and constrained systems while
penalizing closed systems. We select a subset of
10 to 15 systems per language pair based on Au-
toRank and following two rules. First, we exclude
closed systems that are not among the first third
of all systems and we exclude open systems that
are not among the top two thirds of all systems.
Second, motivated by several very low-performing
systems, we also define a hard cutoff point. Af-
ter this point we do not evaluate any system from
any category. The cutoff point is selected as the
first gap between two neighboring system’s ranks
larger than 1.5 of AutoRank. This decision was
discussed and published in more detail in Kocmi
et al. (2024a).

6 Human Evaluation

This year’s human evaluation features Error Span
Annotation (ESA; Kocmi et al.,, 2024b) for
most languages. For Japanese—Chinese and

1 github.com/wmt-conference/wmt24-news-
systems/blob/main/Automatic_Evaluation.ipynb
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Language pairs

Annotators’ profile

Tool

Chinese/Japanese/

English— =7~ .
Hindi/Spanish

Czech—Ukrainian
English—Czech

English _yUkrainian/
Russian/Spanish

English—Icelandic

English<»German

Microsoft annotators — bilingual target-language native speak-
ers, professional translators or linguists, experienced in machine
translation evaluation.

UFAL Charles University annotators — linguists, annota-
tors, researchers, and students who were native speakers in
the target language and had a very high proficiency in En-
glish (for English—Czech) and good knowledge of Czech (for
Czech—Ukrainian).

Toloka Al paid expert crowd — Bilingual native target-language
speakers who were high-performing on the platform.

The Arni Magniisson Institute for Icelandic Studies annotators —

bilingual target-language native speakers, paid translators with
10-25 years of experience in Icelandic<+English translation.

Campaign managed by the 2024 metrics shared task.

Appraise ESA

Appraise ESA

Appraise ESA

Appraise ESA

Google MQM

Japanese—Chinese

Table 5: Annotators’ profiles and annotation tools for each language pair in the human evaluation. English— Spanish was split
between Microsoft and Toloka Al. All annotators were paid a fair wage in their respective countries.

English—German, we rely on the evaluation cam-
paign from the metrics shared task 2024 (Freitag
et al., 2024), which uses Multidimensional Quality
Metrics (MQM; Lommel et al., 2014).

Annotation Protocol. ESA is based on highlight-
ing/marking errors without classifying them into
different error types (Kreutzer et al., 2020; Popovic,
2020) and represents a compromise between over-
all scoring (such as direct assessment, DA; Graham
et al. 2013) and error classification (such as MQM;
Lommel et al. 2014).

The annotators (professional translators but not
experts in MQM/ESA-style annotations) were
asked to mark each error as well as its severity,
“Minor” or “Major”, as in Kocmi et al. (2024b);
Popovié¢ (2020). In addition, the annotators were
also asked to assign a score from O to 100, similar
to DA, to the whole annotation segments (usually a
sentence or a paragraph). However, the ESA score
should be more robust than DA alone because the
annotators are primed by the highlighted errors at
the time of the scoring.

The interface is shown in Figure 1 with annota-
tor instructions and other changes from the original
implementation by Kocmi et al. (2024b) given in
Appendix A. At the start of annotation, each anno-
tator was exposed to an interactive tutorial where
they were asked to interact with the system. The
length of the context given to the annotators varies
depending on the domain, ranging from one to ten
sentences, as discussed in Section 6.1. The source
for the speech domain is a video which is shown in
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Systems Annotators
Language pair Duplication Assess./system
Cs—Uk 11 1.0 14 1299
En—Czech 15 1.3 20 751
En—Spanish 13 1.0 14 370
En—Hindi 10 1.3 15 775
En—Icelandic 10 1.0 4 376
En—Japanese 12 1.5 14 1212
En—Russian 13 1.0 7 370
En—Ukrainian 10 1.0 8 376
En—Chinese 12 1.5 12 1217

Table 6: Number systems, annotators, and number of as-
sessments per system in a language pair. Duplication of d
means that each segment is annotated by d annotators. All
language pairs had 649 segments over 170 documents except
for Czech— Ukrainian which had 1954 segments over 302
documents. In total we collected 57k segment-level annota-
tions. English—German and Japanese—Chinese are managed
by the metrics shared task 2024.

a native HTML video player.

The output of the ESA annotation is a list of
errors and their severity (minor or major) and the
final score from 0 to 100 for each segment.

Human Annotators Campaigns for different lan-
guage pairs were managed by various vendors, as
described in Table 6. In all cases, professional
translators-cum-annotators are used. This is an in-
creasingly strict requirement given the high quality
of MT systems, which requires more expert anno-
tators.

6.1 Data Preparation

Document Filtering. In our setup, all systems
for a given language pair are evaluated on the same
set of segments. On average, we start with 1092



lines per system, encompassing 184 documents.
However, the distribution of document lengths is
unbalanced. The majority of the documents (104)
consist of just a single line, which is almost ex-
clusively due to video translation segments (103),
where each “document” contains strictly one seg-
ment. On average, 33 documents per language
contain more than 10 segments. We limit these doc-
uments to the first 10 segments, motivated by the
difficulty of annotating very long documents while
maintaining relevant context in mind. After this
adjustment, we arrive at an average of 744 lines per
system. An overview is shown in Table 6.

Workload balancing We use the term “task’ as
a contained unit of 100 annotation segments. Each
annotator is usually assigned to multiple tasks. This
100-segment constraint was kept for historical rea-
sons and will be dropped in future iterations. In
order to make it so that each task contains a com-
parable amount of work, we attempt to balance the
number of words in each task to be as constant as
possible.

For each task, we show a tutorial at the begin-
ning consisting of 2 documents with 6 segments in
total. The tutorial is for German—English transla-
tion but does not require any knowledge of German.
Finally, we reserve 12 segments for quality control
(Section 6.2) in each task. The resulting 82 seg-
ments are filled with full documents as much as
possible. If that is not possible (i.e., because the
next document is too long), a random document is
drawn that is either duplicated or incomplete, in
order to fill the 100 segments.

Annotation waves In order for a segment to be
useful in the evaluation, we require that translations
by all systems are evaluated. We therefore split (at
the document level) the translated data for each
language into two “waves”, each of which covers
a distinct set of source segments. The vendors are
instructed to start the second campaign only after
the first one is fully complete.

For some language pairs, the vendors finished
early. In this case, we prepared an extra two waves,
with a different coverage split of the same data,
which they annotated afterwards. As a result, some
language pairs have multiple annotations per source
segment, was shown in Table 6. This is useful to
compute inter-annotator agreement but also pro-
vides less noisy annotations.
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6.2 Quality Control

Each task (100 segments) includes 12 quality con-
trol segments to ensure the high quality of the an-
notations. The tasks are created as follows:

1. The task (a maximum of 100 segments) is filled
with machine-translated documents to be evalu-
ated.

A random document is selected from the task.
Segments within the sampled document are per-
turbed.

The perturbed document is shuffled within the
task at the document-level.

. Steps 2-4 are repeated until 12 quality control

segments are included in the task.

The segment perturbation is done by randomly sam-
pling a span from the segment and replacing it with
random text sampled from the entire corpus in the
correct language. Since segment lengths vary and
a single perturbation could be lost in a very large
paragraph, we apply as many perturbations as there
are sentences in the output. See Figure 2 for an
example.

Source: Sie haben gestern das Treffen wieder verschoben.
Original: He postponed the meeting again yesterday.
Perturbed: He postponed the meeting squirrels are never.

Figure 2: An example of a perturbed translation based on the
original system translation. In addition to the original error
(the correct pronoun here is They and not He), we introduce
the perturbed part.

After each task is completed, we check whether
the perturbed segments received lower scores.
Specifically, we compare the distribution of 12 orig-
inal and 12 perturbed segments with a one-sided
Mann-Whitney U test (Mann and Whitney, 1947).
If the task fails to pass quality control (p>0.05),
it is reset and reassigned to another annotator.?’
In the final data, 96% of perturbed segments have
lower scores than their original counterparts.

6.3 Human Data Analysis

We briefly analyze the data from a broader perspec-
tive. The scores given by the annotators are largely
concentrated near 100, with a small peak around
0 (see Figure 3). Most languages consistently had
very few errors per segment, resulting in higher
overall scores (see Table 7). For instance, for the
Czech— Ukrainian, an average of (.2 minor errors

2Task generation code: github.com/wmt-conference/
ErrorSpanAnnotations/tree/main/preparation/wmt24
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https://github.com/wmt-conference/ErrorSpanAnnotations/tree/main/preparation/wmt24

and 0.1 major errors per segment means there is ap-
proximately one minor error for every 5 segments
and one major error for every 10 segments.

The annotation time, which is the primary focus
of the analysis in Kocmi et al. (2024b), is simi-
lar across most languages with the exception of
English—Icelandic. This could be caused either
by more meticulous annotators or lower quality of
submitted systems, which would require more an-
notation. The average time per segment is just 22
seconds (see Figure 4).
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Figure 3: Distribution of final human segment-level scores.
The ratings are dominated by the score close to 100.

Language pair Minor Major Score Time
Czech— Ukrainian 0.2 0.1 87.1 15.8s
English—Czech 0.6 0.2 86.2 253s
English— Spanish 0.7 0.4 87.1 22.0s
English—Hindi 0.5 0.2 87.3 25.7s
English—Icelandic 1.4 0.8 723 37.8s
English—Japanese 0.2 0.1 89.2  1809s
English—Russian 0.5 0.3 834 23.0s
English—Ukrainian 0.4 0.3 844 21.8s
English—Chinese 0.2 0.1 87.6  16.8s

Table 7: Average number of minor and major errors per seg-
ment, average score and annotation time. Despite different
annotation crowds, the statistics are balanced.

o
w
1

Frequency
©
N

©
=
1

0.0- T T T T T
25 50 75 100 125 150 175

Annotation time (seconds per segment)

Figure 4: Distribution of annotation times per segment. The
vast majority of segments is annotated under one minute.
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6.4 Domain Difficulty across Languages

In Table 8 we present the maximal obtained score
per domain per language. Although absolute scores
are not comparable due to different sets of systems
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Literary News Social Speech Average

En.—Czech 93.1 949 933 92.1 93.3
En.—Spanish 963 962 955 94.1 95.5
En.—Hindi 954 936 913 88.3 922
En.—Icelandic 922 926 950 92.4 93.1
En.—Japanese 924 937 913 92.4 92.5
En.—Russian 941 931 921 86.6 91.5
En.—Ukrainian 932 939 943 85.9 91.8
En.—Chinese 92.0 925 90.7 88.4 90.9
Average 93.6 938 93.0 90.0 92.6

Table 8: Maximal obtained score per language and per do-
main across languages evaluated with the same source data
(English).

and different groups of annotators, we observe that,
across the table, the speech domain obtains the low-
est scores for nearly all language pairs suggesting
it is the most difficult domain. This is reflected by
the fact that the top-performing systems achieve
lower scores in the speech domain compared to
other domains. This difficulty likely arises from
the reliance on ASR text rather than the original
audio. This finding is consistent with MQM results
from Freitag et al. (2024).

Secondly, we observe that the English— Spanish
language pair receives the highest scores, suggest-
ing that either the pair itself or the specific tested
domains are relatively easy for top systems, which
provide almost flawless translations. These results
are consistent with the MQM results from Freitag
et al. (2024) where the best system got only -0.12
MQM score, which is close to perfect, while the
best German system got -1.58 MQM and the best
Japanese-Chinese system an MQM score of -1.22.

Separate scores for each domain, system and
language pair are presented in Appendix D.

6.5 Clustering of ESA compared to DA+SQM

This year, we revised the human evaluation proto-
col, ultimately moving from DA+SQM to ESA. In
this section, we briefly compare several aspects of
both methods. However, due to the absence of a
direct head-to-head comparison on the same data
and the many changes introduced since last year,
this analysis cannot attribute all the improvements
solely to the ESA protocol.

ESA produced 59 clusters across 114 systems.
This compares to only 37 clusters produces by last
year’s DA+SQM approach for the same number
of systems. In other words, ESA formed a cluster
for every 1.9 systems, while DA+SQM created a
cluster for every 3.1 systems. This increased clus-
tering efficiency was achieved despite a decrease in



the number of collected samples. With DA+SQM,
we collected an average of 1400 annotations per
system, whereas ESA required only an average
of 750 annotations per system to achieve greater
discriminative power.

7 Official Ranking Results

We now describe how we compute the final ranking,
then discuss the final results and some potential
issues with our ranking method. The results are
shown on the following two pages in tabular form.

7.1 Human Ranking Computation

We calculate three different scores: the human ESA
score, rank, and the cluster.

The human ESA score is the macro-average
of the segment-level ESA scores grouped over the
domains. This represents a change compared to
previous years, since we used to calculate a simple
average over all data. However, with the change to-
wards paragraph-level test sets, the average number
of segments per domain is imbalanced and the so-
cial domain represents almost half of all segments
(see Table 1). To circumvent this imbalance, we
use the macro-average as the main human score.

For the statistical analysis and clustering, we
use the Wilcoxon signed-rank test, a paired non-
parametric test (Wilcoxon, 1945), as suggested by
Kocmi et al. (2024b). However, given the domain-
level imbalanced distribution, we adapted our ap-
proach by combining the results from independent
domain-level experiments via Stouffer’s Z-score
method (Stouffer et al., 1949), which combines
p-values from individual domain-level Wilcoxon
tests. The method produces almost identical clus-
tering as if we had used Wilcoxon over the whole
dataset whilst ignoring the imbalance.

Rank ranges indicate the number of systems a
particular system underperforms or outperforms:
the top end of the rank range is [ + 1, where [ is
the number of losses, while the bottom is n — w,
where n is the total number of systems and w is
the number of systems against which the system in
question significantly wins.

Systems are grouped into ranks that are sepa-
rated by thick lines, such that systems within the
same group do not strictly outperform other sys-
tems within the group. In other words, it is not
possible to clearly say which system in the cluster
is better than the all others. The ranks and clusters
are computed with p < 0.05.
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We say that a system is winning if it ranks in the
first cluster, while ignoring the human reference.

The official rankings shown in Section 7.4 are
generated on the basis of the ESA scores. Tables
with head-to-head comparisons between all sys-
tems are included in Appendix E.

7.2 Verbosity of LLMs

As pointed out by Briakou et al. (2024), some
LLMs produce verbose outputs, including an at-
tempt to explain the translation or a refusal to trans-
late. This creates an issue for both automatic and
human evaluation of how to treat such outputs.

During the collection of LLM outputs, we asked
the LLM to wrap the translation in a particular
type of quotes (* * ) and post-edited LLM outputs
removing all extra details outside of these quotes
(keeping the whole answer if no quotes have been
found). Therefore LLMs that did not follow the
expected output format and produced additional
output were not considered in the evaluation.

For future work, we should instruct humans to
penalize verbose outputs and strengthen the prompt
used for collecting LLM translations.

7.3 Human Ranking Discussion

When investigating the official results in Sec-
tion 7.4, we can make several observations.

The best performing system in the open and con-
strained systems category is IOL-Research, win-
ning 10 LPs in this category.

The Unbabel-Tower70B system is the best per-
forming participating system winning in 8 LPs. In
contrast, this system was ranked the first in all LPs
in the automatic evaluation.This highlights that sys-
tems can overfit on automatic scores, especially
when using Minimum Bayes Risk (MBR; Freitag
et al., 2022) with testing metric.

Over all, the best performing system in general
seems to be Claude-3.5-Sonnet (wins in 9 LPs); it
even outperforms GPT-4 (wins in 5 LPs), which is
much more expensive model. Human references
are ranked in the first place for 5 language pairs
and in the winning cluster for 8 language pairs,
suggesting that the reference quality is high and
ESA is robust to our setting.

For English—Icelandic, it was almost the case
that each system belonged to its own statistically
significant cluster. This could be put down to a
greater diversity in the quality of systems (also
highlighted by more diverse AutoRank scores).



7.4 Official Ranking Results Tables English—German

Results tables legend Rank  System Human  AutoRank
The human score is the macro-average of human judge- 11' 171 ng;4 'ig }g
ments, grouped by domain. The rank takes into considera- 2 '1 0 OuNL;)lilr]ge]rB - 1' 9 1' 3
tion head-to-head wins and losses. AutoRank is calculated 2' 10 Transsion-MT - 1' 9 1’ g
f b . . - 1. .
yom automatic metrics , , 29 Unbabel-Tower70B 1.9 1.0
Ranking and clustering on human scores is done using 1-9 HUMAN-B 0
Wilcoxon signed rank test for each domain separately and ) _1 > Mistral L_ _2' ] 2_0
final p-value is combined via Stouffer’s Z-score method to 4' 11 c el ;rgel - 2' 3 2‘ 0
align with macro average for human score. 8- 10 O(Iilnli?ll\?]g é{V-p us - 2' 3 2' )
Systems are either constrained (white), open-track (light 2' 2 Cland 3'5 - 2' 4 1‘ 9
gray), or closed-track (dark gray). 3:13 Hl?li/If‘:N'- A :2' 5 )
LLMs tlliatd do 'I:}?t é)fﬁClally claim a support a language pair 10-12  IOL-Research 25 23
are marked with 3. 513 Gemini-1.5-Pro 2.8 22
14-15  Aya23 -3.2 2.7
14-17 ONLINE-A -3.5 3.0
15-17  Llama3-70B § -4.3 2.5
15-17 IKUN -4.3 3.0
Czech— Ukrainian 18-18  IKUN-C 6.1 3.8
Rank  System Human  AutoRank 19-19 MSLC -15.5 11.9
1-2 Claude-3.5 § 93.0 1.7
2-2 HUMAN-A 92.7 -
3-3 Gemini-1.5-Pro 92.6 2.0
3-4 Unbabel-Tower70B 922 1.0
5-5 IOL-Research 90.2 1.9 English—Spanish
6.7 DRI T 0 [ 29.7 19 Rank  System Human AutoRank
6-8 ONLINE-W 88.7 23 1-1 HUMAN-A 95.3 -
7-9 GPT-4 § 88.6 2.0
8-9 IKUN 7.1 23 2-2 Dubformer 93.4 2.0
3-4 GPT-4 91.9 1.9
10°10 Aya23 86.6 = 47  IOL-Research 91.4 23
11-11  CUNI-Transformer 85.3 3.0 5-8 Mistral-Large 89.3 22
5-9 Unbabel-Tower70B 88.9 1.0
12-12 IKUN-C 826 30 3-8 Claude-3.5 888 21
5-8 Gemini-1.5-Pro 88.8 24
7-9 CommandR-plus 88.3 2.1
9-10  Llama3-70B § 87.2 2.6
11-11  ONLINE-B 85.6 2.7
12-13 IKUN 84.7 2.8
English—Czech 12-13  IKUN-C 80.4 34
Rank  System Human  AutoRank 14-14  MSLC 63.9 74
1-2 HUMAN-A 92.9 -
2-2 Unbabel-Tower70B 91.6 1.0
2-3 Claude-3.5 § 91.2 2.1
4-5 ONLINE-W 89.0 2.8
4-6 CUNI-MH 88.4 2.1 : S
e English— Hindi
g'g g;r%n‘r‘nél 5-Pro 25% %g Rank  System Human  AutoRank
88  CommandR-plus § 869 29 1-3  TranssionMT 913 13
8-9 IOL-Research 86.5 2.8 1-4 Unbabel-Tower70B 90.5 1.0
3-3 Claude-3.5 90.2 1.2
10-11  SCIR-MT 854 32 T3 oudeas 001 14
10-11 CUNI-DocTransformer 84.3 4.4 3-5 Gemini-1.5-Pro § 900 16
13-13 CUNI-GA 82.1 2.3 7.8 HUMAN-A 88.5 -
14-14 IKUN 81.7 39 8-8 IOL-Research 87.2 2.1
8-9 Llama3-70B § 86.7 2.1
15-15 Llama3-70B § 77.4 4.1
10-10  Aya23 84.7 32
16-16 IKUN-C 75.4 4.7
11-11  IKUN-C 70.7 55
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English—Icelandic English— Ukrainian

Rank  System Human AutoRank Rank  System Human  AutoRank
1-1 HUMAN-A 93.1 - 1-2 Claude-3.5 90.5 2.0
23 Dubformer 343 25 1-2 Unbabel-Tower70B 89.8 1.0
2-3 Claude-3.5 § 81.9 2.3 33 Dubformer 89.0 1.8
4-4 Unbabel-Tower70B 80.2 1.0 4-6 HUMAN-A 87.3 -

4-6 Gemini-1.5-Pro 87.1 2.2
e (S .7 58  ONLINE-W 86.0 2.1
6-6 IKUN 71.0 32 5-9 GPT-4 84.6 2.3
6-9 CommandR-plus § 83.2 2.3
77 ONLINE-B 68.0 42 79 IOL-Research 83.2 24
89  GPT4 66.3 3.4 10-10  IKUN 78.4 2.8
8-9 IKUN-C 65.2 3.7
11-11 IKUN-C 67.9 39
10-10  IOL-Research 58.0 43
11-11  Llama3-70B § 41.0 6.7
English— Chinese
Rank  System Human  AutoRank
English— Japanese

Rank  System Human AutoRank 1-1 GPT-4 89.6 2.0

1-1 HUMAN-A 91.8 - 2-4 Unbabel-Tower70B 89.6 1.0

2-4 HUMAN-A 89.4 -

24 ONLINE-B 91.1 L4 4-4  Gemini-1.5-Pro 89.3 1.8
3-4 CommandR—plus 91.0 1.9 5-6 ONLINE-B 893 1.7
4-4  GPT4 90.8 L7 6-6  IOL-Research 89.0 1.8
4-5 Claude-3.5 90.8 1.5 6-7 Claude-3.5 88.9 1.7
4-7 Gemini-1.5-Pro 90.0 1.7 6-8 CommandR-plus 88.3 2.2
7-7 Unbabel-Tower70B 89.7 1.0

8-8  IOL-Research 89.7 2.3 9-9  Llama3-70B § 86.5 2.8
89  Aya23 89.7 23 10-10  HW-TSC 86.2 2.3

10-10 NTTSU 89.4 1.9 11-11 IKUN 853 3.1

11-11  Team-J 88.5 1.9 12-12 Aya23 852 3.0

13-13  IKUN-C 81.7 3.9

. . Japanese— Chinese
English— Russian Rank  System Human AutoRank
Rank  System Human AutoRank

1-3 Claude-3.5 -1.4 1.7
1-1 HUMAN-A 89.2 - 1-3 HUMAN-A 15 -
2-3  Dubformer 89.1 1.9 3-5  GPT-4 -1.7 2.1
3-4  Claude-3.5 88.2 2.0 25 DLUT-GTCOM -1.7 20
3-5  Unbabel-Tower70B 88.1 1.0 4-8  Unbabel-Tower70B -1.9 1.0
37 Yandex 87.0 1.9 3-6 Gemini-1.5-Pro 2.1 1.9
6-8  Gemini-1.5-Pro 85.5 2.3 6-8  CommandR-plus 2.2 2.8
6-9 GPT-4 85.0 23 6-8 IOL-Research 2.4 2.2
e NN 8.6 2o 9-10  Llama3-70B § 34 3.1
5-9 CommandR—plus § 84.3 2.4 9-10 Aya23 35 37

10-10 IOL-Research 82.1 2.6 11-12 Team-J 4.5 28

11-11  IKUN 79.2 3.2 11-12 NTTSU -S.1 3.7

12-12 Aya23 78.6 33 13-13  ONLINE-B -5.8 52

13-13  Llama3-70B § 75.7 3.1 14-14  IKUN-C <17 5.5

14-14  IKUN-C 69.8 3.9 15-15  MSLC -10.7 8.9
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8 Test Suites Sub-task:
“Help us break LLMs”

The results in the previous tables indicate that the
current evaluation methods, despite being more
detailed and sophisticated, have difficulties in dis-
tinguishing MT output from human translations,
or distinguishing the performance among different
systems. Additionally, the appearance of LLMs has
made it even more clear that generated translations,
even those which seem to be fluent and surrounded
by seemingly perfect content, can contain serious
flaws. The increased interest in this new technol-
ogy and the use of LLMs for translation, prompted
us to set the theme of this year’s test suite sub-
task as “Help us break LLMs”. This was intended
as a broader invitation to the NLP community to
expose the weaknesses of LLM translations that
are hidden behind the apparent overall high qual-
ity generation, but also to propose new innovative
evaluation methods that may be of high interest
for specific use cases. We are thrilled that this
year’s participation exceeded every precedent, with
11 test suites providing their valuable conclusions,
which are presented below.

8.1 Setup of the sub-task

Each test suite is a customised extension of the
standard test sets, focusing on specific aspects of
the MT output. The evaluation of the MT output
takes place in a decentralized manner, where test
suite providers were invited to submit their cus-
tomized test sets, following the setup introduced at
the Third Conference on Machine Translation (Bo-
jar et al., 2018). Each test suite provider submitted
a source-side test set, which was appended by the
organisers of the General MT Shared Task to its
standard test sets. The corresponding outputs from
the systems of the General MT Shared Task were
returned to the test suite providers, who were re-
sponsible for carrying out the evaluation based on
their own individual evaluation concept. The re-
sults of each test suite evaluation, together with
the relevant analysis, appear in separate description
papers, while a summary is given below.

This year’s timeline gave the test suite contribu-
tors more time. We offered a pre-run in April, when
test suite providers were given the opportunity to
submit the current version of their corpus in order
to receive translation output from online systems,
which could help them to carry out the individual
(often manual) evaluation in a more timely manner.
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8.2 Submissions

The test suite sub-task received 11 submissions, out
of which 9 completed the entire evaluation cycle.
An overview of the test suites can be seen in Table 9.
The descriptions of each submission and their main
findings are given below.

Arni Magniisson Institute for Icelandic Studies
(AMI; Armannsson et al., 2024) The submission of
the Arni Magntsson Institute’s team to the WMT24
test suite subtask focuses on idiomatic expressions
and proper names for the English—Icelandic trans-
lation direction. Intuitively and empirically, idioms
and proper names are known to be a significant
challenge for neural translation models. They cre-
ate two different test suites. The first evaluates the
competency of MT systems in translating common
English idiomatic expressions, as well as testing
whether systems can distinguish between those ex-
pressions and the same phrases when used in a lit-
eral context. The second test suite consists of place
names that should be translated into their Icelandic
exonyms (and correctly inflected) and pairs of Ice-
landic names that share a surface form between the
male and female variants, so that incorrect trans-
lations impact meaning as well as readibility. The
scores reported are relatively low, especially for id-
iomatic expressions and place names, and indicate
considerable room for improvement.

Complex Sentence Structure Testset (CoST;
vIIT_HYD; Mukherjee et al., 2024) This test suite
presents an evaluation of 16 machine translation
systems submitted to the Shared Task for the
English-Hindi using our Complex Structures Test
suite. Aligning with this year’s test suite sub-task
theme, “Help us break LLMs", the authors curated
a comprehensive test suite encompassing diverse
datasets across various categories, including autobi-
ography, poetry, legal, conversation, play, narration,
technical, and mixed genres. The evaluation reveals
that all the systems struggle significantly with the
archaic style of text like legal and technical writ-
ings or text with creative twist like conversation and
poetry datasets, highlighting their weaknesses in
handling complex linguistic structures and stylistic
nuances inherent in these text types. This evalua-
tion identifies the strengths and limitations of the
models, pointing to specific areas where further
research is needed to enhance their performance.?!

2 github.com/AnanyaCoder/CoST-WMT-24-Test-Suite-
Task
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Test suite Institution Focus Language pair Segments
AMI (Armannsson et al., 2024) AMI idiomatic expressions, en-is 3,082
proper names
COST (Mukherjee et al., 2024) INIT_HYD complex sentence structure en-hi 3,908
DFKI (Manakhimova et al., 2024) DFKI 110 linguistic phenomena en-de, en-ru 54,736
GenderQueer (Fridriksdottir, 2024) Ul gender-diverse, en-is 672
queer-inclusive content
IITP (Bhattacharjee et al., 2024) TP multi-domain dynamics en-hi 4,198
Isochrony (Rozanov et al., 2024) RaskALl, IC isochrony of translations  en-»de, en-~es, en-ja, en-ru, en-zh 10,730
NRCC (Dawkins et al., 2024) NRCC speaker-listener gender en-cs, en-de, en-es, en-+is 53,560
resolution
PIA_TQA (Miceli Barone and Sun, 2024) UEDIN prompt injection attacks  cs-uk, en+cs, en+de, en-es, en-hi, 250,744
en-is, en»ja, en-ru, en-uk, en-zh,
ja-zh
RoCS-MT (Bawden and Sagot, 2023) Inria robustness to non-standard en-cs, en>de, en-es, en-hi, en-is, 7883

user-generated texts

en-ja, en-ru, en»uk, en-zh

Table 9: Overview of the participating test suites.

DFKI (Manakhimova et al., 2023b) This test
suite offers a fine-grained linguistically motivated
analysis of the shared task MT outputs for English—
German and English—Russian, based on more than
11,500 manually devised test items, which cover
up to 110 phenomena in 14 categories per language
direction. Extending their previous test suite sub-
missions (e.g. Avramidis et al., 2020; Macketanz
et al., 2021, 2022; Manakhimova et al., 2023a),
the submission of this year includes a considerable
effort of manual linguistic annotation for the eval-
uation on 39 MT systems submitted at the Shared
Task. Based on the results, LLMs are inferior to
NMT in English—-German when translating a few
linguistic phenomena, though they show quite a
competitive performance in English-Russian. Ad-
ditionally, some LLMs generate very verbose or
empty outputs, posing challenges to the evaluation
process. Looking more closely at specific phenom-
ena of English-German, LLMs seem to perform
worse than the two best performing NMT systems
in terms of punctuation, future verb tenses and strip-
ping. For English-Russian, Yandex is weaker in
named entities and terminology, Claude in function
words, while Unbabel is weaker in verb valency.
GPT-4 into Russian performs even worse than sev-
eral commercial NMT-based systems.

Indian Institute of Technology Patna (IITP; do-
main dynamics; Bhattacharjee et al., 2024) LLMs
have demonstrated impressive capabilities in ma-
chine translation, leveraging extensive pretraining
on vast amounts of data. However, this generalist
training often overlooks domain-specific nuances,
leading to potential difficulties when translating
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specialized texts. This study presents a multi-
domain dataset designed to challenge and evalu-
ate the translation abilities of LLMs. The dataset
encompasses diverse domains such as judicial, ed-
ucation, literature (specifically religious texts), and
noisy user-generated content from online product
reviews and forums like Reddit. Each domain con-
sists of approximately 250-300 sentences, carefully
curated and randomized in the final compilation.
This English-to-Hindi dataset aims to evaluate and
expose the limitations of LLM-based translation
systems, offering valuable insights into areas re-
quiring further research and development.

Inria (RoCS-MT; Bawden and Sagot, 2023), Ro-
bust Challenge Set for Machine Translation, is de-
signed to test MT systems’ ability to translate user-
generated content with non-standard characteris-
tics, such as spelling errors, devowelling, acronymi-
sation, etc. The original English Reddit texts are
associated with manual normalisations and trans-
lations in five languages (French, German, Czech,
Ukrainian and Russian). RoCS-MT was first sub-
mitted to the 2023 task, showing that many non-
standard phenomena still pose problems for most
systems, although more common phenomena are
better handled by the larger, closed-source mod-
els, presumably due to the large quantity of web-
based seen during training. This year’s version is
largely the same as last year but with some improve-
ments, including modifications to normalisations
and to the annotation typology used (all modifica-
tions are documented in the GitHub repository).?>
Systems varied greatly in terms of their handling of

2 github.com/rbawden/RoCS-MT
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non-standard sentences, with marked differences
depending on the type of system. Constrained sys-
tems inevitably struggling most, particularly with
phenomena affecting the spelling of words (result-
ing in frequent copying of non-standard source
words), a problem also affecting online systems.
LLMs exhibited some of the best quality transla-
tions, although behaviour varied between translat-
ing standard and non-standard input, and additional
issues such as refusal to translate and usage notes
pose new technical challenges.

Isochrony Translation (Rask Al Imperial Col-
lege; Rozanov et al., 2024) MT has come a long
way and is readily employed in production sys-
tems to serve millions of users daily. With the
recent advances in generative Al, a new form of
translation is becoming possible — video dubbing.
This work motivates the importance of isochronic
translation, especially in the context of automatic
dubbing, and introduces ‘IsoChronoMeter’ (ICM).
ICM is a simple yet effective metric to measure
isochrony of translations in a scalable and resource
efficient way without the need for gold data, based
on state-of-the-art text-to-speech (TTS) duration
predictors. The authors motivate IsoChronoMe-
ter and demonstrate its effectiveness. Using ICM,
they demonstrate the short-comings of state-of-the-
art translation systems and show the need for new
methods. The code has been released.

National Research Council Canada (Speaker-
Listener Gender Resolution; gender-res; Dawkins
et al., 2024) This test suite assesses the gender
resolution tendencies of MT systems in literary di-
alogue settings. That is, each instance contains
dialogue interleaved with additional meta-context.
The spoken dialogue refers to either the speaker
or listener such that the gender of the referent, if
known, must be inferred from the meta-context
and informs the correct translation. They find that
stereotype factors within the meta-context, such
as character descriptions and manner of speak-
ing, affect the gender agreement choices of words
within the dialogue. Regression analysis is per-
formed to evaluate the relative influence of these
contextual factors compared to structural factors
and known stereotype influences (e.g., the internal
gender stereotype of an adjective).

University of Edinburgh Prompt Injection,
TruthfulQA (PIA; Miceli Barone and Sun, 2024)
LLM-based systems typically work by embedding
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their input data into prompt templates which con-
tain instructions and/or in-context examples, cre-
ating queries which are submitted to a LLM, then
parse the LLM response in order to generate the
system outputs. Prompt Injection Attacks (PIAs)
are a type of subversion of these systems where a
malicious user crafts special inputs which interfere
with the prompt templates, causing the LLM to re-
spond in ways unintended by the system designer.
Recently, Sun and Miceli Barone (2024) proposed
a class of PIAs against LLM-based machine trans-
lation. Specifically, the task is to translate questions
from the Truthful QA test suite, where an adversar-
ial prompt is prepended to the questions, instructing
the system to ignore the translation instruction and
answer the questions instead. In this test suite, the
authors extend this approach to all the language
pairs of the WMT 2024 General Machine Transla-
tion task. Moreover, they include additional attack
formats in addition to the one originally studied.

University of Iceland (GenderQueer; Fridriks-
dottir, 2024) This paper introduces the Gen-
derQueer Test Suite, a novel evaluation set for
assessing MT systems’ capabilities in handling
gender-diverse and queer-inclusive content, focus-
ing on English to Icelandic translation. As MT qual-
ity improves, there is an increasing need for special-
ized evaluation methods that address nuanced as-
pects of language and identity. The suite evaluates
MT systems on various aspects of gender-inclusive
translation, including pronoun and adjective agree-
ment, LGBTQIA+ terminology accuracy, and the
impact of explicit gender specifications. Its authors
evaluated 18 MT systems submitted to the WMT24
English-Icelandic track. Key findings reveal signif-
icant performance differences between large lan-
guage model-based systems and smaller models in
handling context for gender agreement. Challenges
in translating singular “they” were widespread,
while most systems performed well in translating
LGBTQIA+ terminology. Accuracy in adjective
gender agreement varies, with some models strug-
gling particularly with feminine forms. This eval-
uation set contributes to the ongoing discussion
about inclusive language in MT and natural lan-
guage processing. By providing a tool for assessing
MT systems’ handling of gender-diverse content, it
aims to enhance the inclusivity of language technol-
ogy. The methodology and evaluation scripts are
made available for adaptation to other languages,
promoting further research in this critical area.



9 Conclusions

The WMT 2024 General Machine Transla-
tion Task covered 11 translation pairs, two of
which are non-English: Czech— Ukrainian and
Japanese—Chinese. We introduced ESA (Error
Span Annotations) as the main human protocol
for assessing the translation quality, which enabled
more efficient collection of human judgements than
MQM while keeping high quality of annotations.
In total, 108 human (semi-)professional annotators
contributed more than 57,000 judgments.

We received 105 primary submissions from 28
participants, 4 online systems and 8 production
large language models, which is a large increase
from last year’s task. The majority of participants
already use LLMs in their systems.

The best performing open system is IOL-
Research (wins 10 LPs in it’s category), the
best performing participating system is Unbabel-
Tower70B (wins 8 LPs), and the best performing
system in general is Claude-3.5-Sonnet (wins 9
LPs).

While the best performing system based on auto-
matic metrics is Unbabel-Tower70B, it was not the
winner across the board in the human evaluation,
with the mismatch between the results likely due
to metric bias (Kovacs et al., 2024) in MBR. This
shows that human evaluation should be used as the
final judge of translation quality.

Lastly, we showed promising results in the mul-
timodal evaluation of the speech domain, proving
to be a challenging domain for MT systems. On
the opposite side, systems were able to produce
near-perfect translations in English—Spanish, for
the domains that we tested.

10 Limitations

We tested the general capabilities of MT systems.
However, we have simplified this approach and
only used three to five domains. Out of various
modalities, we used audio and text.

Although we use human judgements as the gold
standard, giving us more reliable signal than au-
tomatic metrics, we should mention that human
annotations are noisy (Wei and Jia, 2021) and their
performance is affected by the quality of other eval-
uated systems (Mathur et al., 2020). Lastly, dif-
ferent annotators use different ranking strategies,
which may have an effect on the system ranking.

Some models may have used Comet or MetricX
during their training, for example, using Minimum
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Bayes Risk. Our automatic evaluation of such mod-
els will be biased, giving them artificially higher
scores.

Automatic metrics are limited and biased
(Karpinska et al., 2022; Moghe et al., 2024), es-
pecially in novel domains (Zouhar et al., 2024a),
which motivates them being superseded by hu-
man evaluation. Another potential problem may
have been that test sets we use are paragraph-level;
automatic metrics have usually been tested in a
sentence-level scenario.

The ESA annotation interface implemented in
Appraise is in English only with a tutorial in
German—English. This caused difficulties to some
of the Czech— Ukrainian annotators we hired, who
could not understand English. One such annotator
did not pass the initial tutorial and therefore did
not participate in the annotation campaign. Next
year, we plan to translate the annotation interface
to either the source or target language for each
translation direction.

11 Ethical Considerations

Inappropriate, controversial, and explicit content
was filtered out prior to translation, keeping in mind
the translators and not exposing them to such con-
tent or obliging them to translate it.

Human evaluation using Appraise for the collec-
tion of human judgements was fully anonymous.
Automatically generated accounts associated with
annotation tasks with single-sign-on URLs were
distributed randomly among pools of annotators
and we do not store any personal information. We
do store the mapping between which annotator
(with pseudonym) annotated which account. Anno-
tators received standard professional translator’s or
evaluator’s wage with respect to their countries.

Sentences in the Czech—Ukrainian dataset (in
Personal, Official and Voice domains) were col-
lected with users’ opt-in consent, and any personal
data related to people other than well-known people
was pseudonymized (using random first names and
surnames). Sentences where such pseudonymiza-
tion would not be enough to preserve reasonable
anonymity of the users (e.g., describing events
uniquely identifying the persons involved) were
not included in the test set.



Acknowledgments

This task would not have been possible without
the partnership with Microsoft, Charles Univer-
sity, Dubformer, Toloka, NTT, Google, Arni Mag-
nusson Institute for Icelandic Studies, Custom.mt,
Cohere, Together.ai, Unbabel and the German Re-
search Center for AI (DFKI).

Additionally, we would like to thank Nikolay
Bogoychev, Konstantin Dranch and many others
who provided help, feedback, and recommenda-
tions, as well as all shared task participants, for
their participation and for providing their system
descriptions for the paper.

We would also like to thank Toshiaki Nakazawa,
Yoshimasa Tsuruoka, Jun Suzuki, and Takehito Ut-
suro for their help and recommendations in creating
the Japanese test set.

Barry Haddow’s participation was funded by UK
Research and Innovation (UKRI) under the UK
government’s Horizon Europe funding guarantee
[grant number 10052546 — HPLT].

Rachel Bawden’s participation was funded by
her chair position in the PRAIRIE institute funded
by the French national agency ANR under the
project MaTOS - “ANR-22-CE23-0033-03" and as
part of the “Investissements d’avenir” programme
under the reference ANR-19-P3IA-0001.

Maja Popovic’s participation was funded by the
ADAPT SFI Centre for Digital Media Technology,
funded by Science Foundation Ireland through the
SFI Research Centres Programme and co-funded
under the European Regional Development Fund
(ERDF) through Grant 13/RC/2106.

Martin Popel’s participation was funded by
TACR grant EdUKate (TQ01000458).

Ondfej Bojar acknowledges the support of the
National Recovery Plan funded project MPO
60273/24/21300/21000 CEDMO 2.0 NPO. The
manual evaluations were also supported by the
InCroMin FSTP under the HE grant UTTER
(101070631 — HE, 0039436 — UKRI).

This work has been using data and tools provided
by the LINDAT/CLARIAH-CZ Research Infras-
tructure (https://lindat.cz), supported by the Min-
istry of Education, Youth and Sports of the Czech
Republic (Project No. LM2023062).

References

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
dalena Biesialska, Ondfej Bojar, Rajen Chatterjee,

21

Vishrav Chaudhary, Marta R. Costa-jussa, Cristina
Espa

textasciitilde na-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1-88. Association for Computational Linguistics.

Bjarki Armannsson, Hinrik Hafsteinsson, Atli Jasonar-
son, and Steinthor Steingrimsson. 2024. Killing two
flies with one stone: An attempt to break llms us-
ing english—icelandic idioms and proper names. In
Proceedings of the Ninth Conference on Machine
Translation, USA. Association for Computational
Linguistics.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Jon Ander Campos,
Yi Chern Tan, Kelly Marchisio, Max Bartolo, Se-
bastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick
Frosst, Aidan Gomez, Phil Blunsom, Marzieh Fadaee,
Ahmet Ustiin, and Sara Hooker. 2024. Aya 23: Open
Weight Releases to Further Multilingual Progress.

Eleftherios Avramidis, Annika Griitzner-Zahn, Manuel
Brack, Patrick Schramowski, Pedro Ortiz Suarez,
Malte Ostendorff, Fabio Barth, Shushen Manakhi-
mova, Vivien Macketanz, Georg Rehm, and Kristian
Kersting. 2024. Occiglot at WMT24: European open-
source large language models evaluated on transla-
tion. In Proceedings of the Ninth Conference on
Machine Translation, USA. Association for Compu-
tational Linguistics.

Eleftherios Avramidis, Vivien Macketanz, Ursula
Strohriegel, Aljoscha Burchardt, and Sebastian
Moller. 2020. Fine-grained linguistic evaluation
for state-of-the-art machine translation. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 346-356. Association for Computational Lin-
guistics.

Marta Bafién, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Espla-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramirez-Sanchez, Elsa Sarrias, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale ac-
quisition of parallel corpora. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4555-4567. Association
for Computational Linguistics.


https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
http://arxiv.org/abs/2405.15032
http://arxiv.org/abs/2405.15032
https://aclanthology.org/2020.wmt-1.38
https://aclanthology.org/2020.wmt-1.38
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417

Loic Barrault, Magdalena Biesialska, Ondfej Bo-
jar, Marta R. Costa-jussa, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubesi¢, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT?20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1-55. Association for Computational Linguistics.

Loic Barrault, Ondiej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1-61. Association for
Computational Linguistics.

Rachel Bawden and Benoit Sagot. 2023. RoCS-MT:
Robustness challenge set for machine translation. In
Proceedings of the Eighth Conference on Machine
Translation, pages 198-216. Association for Compu-
tational Linguistics.

Soham Bhattacharjee, Baban Gain, and Asif Ekbal.
2024. Domain dynamics: Evaluating large language
models in english-hindi translation. In Proceedings
of the Ninth Conference on Machine Translation,
USA. Association for Computational Linguistics.

Ondfej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp Koehn,
Christof Monz, Matt Post, Radu Soricut, and Lucia
Specia. 2013. Findings of the 2013 Workshop on
Statistical Machine Translation. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 1-44. Association for Computational
Linguistics.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ale§ Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58. Association for Computational Linguis-
tics.

Ondfej Bojar, Rajen Chatterjee, Christian Federmann,

Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 conference on machine
translation (WMT17). In Proceedings of the Second
Conference on Machine Translation, pages 169-214.
Association for Computational Linguistics.

22

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Proceedings of the First Conference
on Machine Translation: Volume 2, Shared Task Pa-
pers, pages 131-198. Association for Computational
Linguistics.

Ondfej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation. In
Proceedings of the Tenth Workshop on Statistical
Machine Translation, pages 1-46. Association for
Computational Linguistics.

Ondfej Bojar, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp
Koehn, and Christof Monz. 2018. Findings of the
2018 conference on machine translation (WMT18).
In Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 272-303.
Association for Computational Linguistics.

Eleftheria Briakou, Zhongtao Liu, Colin Cherry, and
Markus Freitag. 2024. On the implications of ver-
bose 1lm outputs: A case study in translation evalua-
tion.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2007. (meta-)
evaluation of machine translation. In Proceedings of
the Second Workshop on Statistical Machine Transla-
tion, pages 136—158. Association for Computational
Linguistics.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2008. Further
meta-evaluation of machine translation. In Proceed-
ings of the Third Workshop on Statistical Machine
Translation, pages 70-106. Association for Compu-
tational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and Metrics-
MATR, pages 17-53. Association for Computational
Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 workshop on statistical machine
translation. In Proceedings of the Seventh Workshop
on Statistical Machine Translation, pages 10-51. As-
sociation for Computational Linguistics.


https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/2023.wmt-1.21
https://doi.org/10.18653/v1/2023.wmt-1.21
https://aclanthology.org/W13-2201
https://aclanthology.org/W13-2201
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W16-2301
https://doi.org/10.18653/v1/W15-3001
https://doi.org/10.18653/v1/W15-3001
https://doi.org/10.18653/v1/W18-6401
https://doi.org/10.18653/v1/W18-6401
http://arxiv.org/abs/2410.00863
http://arxiv.org/abs/2410.00863
http://arxiv.org/abs/2410.00863
https://aclanthology.org/W07-0718
https://aclanthology.org/W07-0718
https://aclanthology.org/W08-0309
https://aclanthology.org/W08-0309
https://aclanthology.org/W10-1703
https://aclanthology.org/W10-1703
https://aclanthology.org/W10-1703
https://aclanthology.org/W12-3102
https://aclanthology.org/W12-3102

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1-28. Association for
Computational Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar Zaidan. 2011. Findings of the 2011 work-
shop on statistical machine translation. In Proceed-
ings of the Sixth Workshop on Statistical Machine
Translation, pages 22—64. Association for Computa-
tional Linguistics.

Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. WIT3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Annual
Conference of the European Association for Machine
Translation, pages 261-268. European Association
for Machine Translation.

A Conneau. 2019. Unsupervised cross-lingual rep-
resentation learning at scale.  arXiv preprint
arXiv:1911.02116.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 8440-8451.
Association for Computational Linguistics.

Hillary Dawkins, Isar Nejadgholi, and Chi-kiu Lo. 2024.
WMT24 test suite: Gender resolution in speaker-
listener dialogue roles. In Proceedings of the Ninth
Conference on Machine Translation, USA. Associa-
tion for Computational Linguistics.

Soren Dreano, Derek Molloy, and Noel Murphy. 2024.
Cyclegn: a cycle consistent approach for neural ma-
chine translation. In Proceedings of the Ninth Con-
ference on Machine Translation, USA. Association
for Computational Linguistics.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzman, and Philipp Koehn. 2020. CCAligned: A
massive collection of cross-lingual web-document
pairs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5960-5969. Association for Com-
putational Linguistics.

Denis Elshin, Nikolay Karpachev, Boris Gruzdev, Ilya
Golovanov, Georgy Ivanov, Alexander Antonov,
Nickolay Skachkov, Ekaterina Latypova, Vladimir
Layner, Ekaterina Enikeeva, Dmitry Popov, Anton
Chekashev, Vladislav Negodin, Vera Frantsuzova,
Alexander Chernyshev, and Kirill Denisov. 2024.
From general LLM to translation: How we dramati-
cally improve translation quality using human eval-
uation data for LLM finetuning. In Proceedings of
the Ninth Conference on Machine Translation, USA.
Association for Computational Linguistics.

23

Christian Federmann. 2018. Appraise evaluation frame-
work for machine translation. In Proceedings of the
27th International Conference on Computational Lin-
guistics: System Demonstrations, pages 86—88. As-
sociation for Computational Linguistics.

Markus Freitag, Isaac Caswell, and Scott Roy. 2019.
APE at scale and its implications on MT evaluation
biases. In Proceedings of the Fourth Conference on
Machine Translation (Volume 1: Research Papers),
pages 34-44. Association for Computational Linguis-
tics.

Markus Freitag, David Grangier, Qijun Tan, and Bowen
Liang. 2022. High quality rather than high model
probability: Minimum Bayes risk decoding with neu-
ral metrics. Transactions of the Association for Com-
putational Linguistics, 10:811-825.

Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-
kiu Lo, Eleftherios Avramidis, Ricardo Rei, Brian
Thompson, Frederic Blain, Tom Kocmi, Jiayi Wang,
David Ifeoluwa Adelani, Marianna Buchicchio,
Chrysoula Zerva, and Alon Lavie. 2024. Are llms
breaking mt metrics? results of the wmt24 metrics
shared task. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Markus Freitag, Nitika Mathur, Chi-kiu Lo, Elefthe-
rios Avramidis, Ricardo Rei, Brian Thompson, Tom
Kocmi, Frederic Blain, Daniel Deutsch, Craig Stew-
art, Chrysoula Zerva, Sheila Castilho, Alon Lavie,
and George Foster. 2023. Results of WMT23 met-
rics shared task: Metrics might be guilty but refer-
ences are not innocent. In Proceedings of the Eighth
Conference on Machine Translation, pages 578-628.
Association for Computational Linguistics.

Steinunn Rut Fridriksdéttir. 2024. The genderqueer test
suite. In Proceedings of the Ninth Conference on
Machine Translation, USA. Association for Compu-
tational Linguistics.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at the
Leipzig corpora collection: From 100 to 200 lan-
guages. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12), pages 759-765. European Language Re-
sources Association (ELRA).

Thamme Gowda, Zhao Zhang, Chris Mattmann, and
Jonathan May. 2021. Many-to-English machine
translation tools, data, and pretrained models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 306-316.
Association for Computational Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop


https://aclanthology.org/W09-0401
https://aclanthology.org/W09-0401
https://aclanthology.org/W11-2103
https://aclanthology.org/W11-2103
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.emnlp-main.480
https://doi.org/10.18653/v1/2020.emnlp-main.480
https://doi.org/10.18653/v1/2020.emnlp-main.480
https://aclanthology.org/C18-2019
https://aclanthology.org/C18-2019
https://doi.org/10.18653/v1/W19-5204
https://doi.org/10.18653/v1/W19-5204
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
https://doi.org/10.18653/v1/2021.acl-demo.37
https://doi.org/10.18653/v1/2021.acl-demo.37
https://aclanthology.org/W13-2305
https://aclanthology.org/W13-2305

and Interoperability with Discourse, pages 33—41.
Association for Computational Linguistics.

Yvette Graham, Barry Haddow, and Philipp Koehn.
2020. Statistical power and translationese in ma-
chine translation evaluation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 72—-81. Asso-
ciation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Miroslav Hrabal, Josef Jon, Martin Popel, Nam Luu,
Danil Semin, and Ondfej Bojar. 2024. CUNI at
WMT24 general translation task: Llms, (q)lora, CPO
and model merging. In Proceedings of the Ninth Con-
ference on Machine Translation, USA. Association
for Computational Linguistics.

Atli Jasonarson, Hinrik Hafsteinsson, Bjarki Armanns-
son, and Steinp6r Steingrimsson. 2024. Cogs in a
machine, doing what they’re meant to do — the AMI
submission to the WMT24 general translation task.
In Proceedings of the Ninth Conference on Machine
Translation, USA. Association for Computational
Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B.

Juraj Juraska, Mara Finkelstein, Daniel Deutsch, Aditya
Siddhant, Mehdi Mirzazadeh, and Markus Freitag.
2023. MetricX-23: The Google submission to the
WMT 2023 metrics shared task. In Proceedings
of the Eighth Conference on Machine Translation,
pages 756-767. Association for Computational Lin-
guistics.

Marzena Karpinska, Nishant Raj, Katherine Thai, Yix-
iao Song, Ankita Gupta, and Mohit Iyyer. 2022.
DEMETR: Diagnosing evaluation metrics for trans-
lation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 9540-9561. Association for Computational
Linguistics.

Ondrej Klejch, Eleftherios Avramidis, Aljoscha Bur-
chardt, and Martin Popel. 2015. MT-ComparEval:
Graphical evaluation interface for machine transla-
tion development. Prague Bull. Math. Linguistics,
104:63-74.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Fed-
ermann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow,
Philipp Koehn, Benjamin Marie, Christof Monz,

24

Makoto Morishita, Kenton Murray, Makoto Nagata,
Toshiaki Nakazawa, Martin Popel, Maja Popovi¢,
and Mariya Shmatova. 2023. Findings of the 2023
conference on machine translation (WMT23): LLMs
are here but not quite there yet. In Proceedings of the
Eighth Conference on Machine Translation, pages
1-42. Association for Computational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, et al. 2024a. Preliminary
WMT?24 Ranking of General MT Systems and LLMs.
arXiv preprint arXiv:2407.19884.

Tom Kocmi, Rachel Bawden, Ondfej Bojar, Anton
Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Rebecca Knowles, Philipp
Koehn, Christof Monz, Makoto Morishita, Masaaki
Nagata, Toshiaki Nakazawa, Michal Novak, Martin
Popel, and Maja Popovi¢. 2022. Findings of the
2022 conference on machine translation (WMT22).
In Proceedings of the Seventh Conference on Ma-
chine Translation (WMT), pages 1-45. Association
for Computational Linguistics.

Tom Kocmi and Christian Federmann. 2023. GEMBA-
MQM: Detecting translation quality error spans with
GPT-4. In Proceedings of the Eighth Conference on
Machine Translation, pages 768—775. Association
for Computational Linguistics.

Tom Kocmi, Martin Popel, and Ondrej Bojar. 2020.
Announcing CzEng 2.0 Parallel Corpus with over 2
Gigawords. CoRR, abs/2007.03006.

Tom Kocmi, Vilém Zouhar, Eleftherios Avramidis,
Roman Grundkiewicz, Marzena Karpinska, Maja
Popovié, Mrinmaya Sachan, and Mariya Shmatova.
2024b. Error span annotation: A balanced approach
for human evaluation of machine translation. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, USA. Association for Computational Linguis-
tics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79—
86.

Philipp Koehn and Christof Monz. 2006. Proceedings
on the workshop on statistical machine translation.
New York, USA. Association for Computational Lin-
guistics.

Minato Kondo, Ryo Fukuda, Xiaotian Wang, Katsuki
Chousa, Masato Nishimura, Kosei Buma, Takatomo
Kano, and Takehito Utsuro. 2024. NTTSU at
WMT2024 general translation task. In Proceedings
of the Ninth Conference on Machine Translation,
USA. Association for Computational Linguistics.

Geza Kovacs, Daniel Deutsch, and Markus Freitag.
2024. Mitigating metric bias in minimum bayes risk


https://doi.org/10.18653/v1/2020.emnlp-main.6
https://doi.org/10.18653/v1/2020.emnlp-main.6
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2022.emnlp-main.649
https://doi.org/10.18653/v1/2022.emnlp-main.649
https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf
https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf
https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.64
https://doi.org/10.18653/v1/2023.wmt-1.64
https://doi.org/10.18653/v1/2023.wmt-1.64
http://arxiv.org/abs/2007.03006
http://arxiv.org/abs/2007.03006
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/W06-3100
https://aclanthology.org/W06-3100

decoding. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Julia Kreutzer, Nathaniel Berger, and Stefan Riezler.
2020. Correct me if you can: Learning from error
corrections and markings. In Proceedings of the
22nd Annual Conference of the European Association
for Machine Translation, pages 135-144. European
Association for Machine Translation.

Keito Kudo, Hiroyuki Deguchi, Makoto Morishita, Ryo
Fujii, Takumi Ito, Shintaro Ozaki, Koki Natsumi,
Kai Sato, Kazuki Yano, Ryosuke Takahashi, Subaru
Kimura, Tomomasa Hara, Yusuke Sakai, and Jun
Suzuki. 2024. Document-level translation with LLM
reranking: Team-j at WMT 2024 general translation
task. In Proceedings of the Ninth Conference on
Machine Translation, USA. Association for Compu-
tational Linguistics.

Taku Kudo. 2005. Mecab: Yet another part-of-speech
and morphological analyzer. https://taku910.
github.io/mecab/. Accessed: 2023-10-02.

Samuel Larkin, Chi-kiu Lo, and Rebecca Knowles.
2024. MSLC24 submissions to the general machine
translation task. In Proceedings of the Ninth Confer-
ence on Machine Translation, USA. Association for
Computational Linguistics.

Baohang Li, Zekai Ye, yichong huang, Xiaocheng Feng,
and Bing Qin. 2024. SCIR-MT’s submission for
WMT24 general machine translation task. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, USA. Association for Computational Linguis-
tics.

Baohao Liao, Christian Herold, Shahram Khadivi, and
Christof Monz. 2024. IKUN for WMT24 general
MT task: Llms are here for multilingual machine
translation. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Arle Lommel, Aljoscha Burchardt, Maja Popovié, Kim
Harris, Eleftherios Avramidis, and Hans Uszkoreit.
2014. Using a new analytic measure for the anno-
tation and analysis of MT errors on real data. In
Proceedings of the 17th Annual Conference of the Eu-
ropean Association for Machine Translation, pages
165—172. European Association for Machine Trans-
lation.

Samuel Laubli, Sheila Castilho, Graham Neubig, Rico
Sennrich, Qinlan Shen, and Antonio Toral. 2020.
A Set of Recommendations for Assessing Hu-
man—Machine Parity in Language Translation. Jour-
nal of Artificial Intelligence Research (JAIR), 67.

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He,
Liangke Gui, Graham Neubig, Jonathan May, and
Luke Zettlemoyer. 2023. Mega: Moving average
equipped gated attention. In The Eleventh Interna-
tional Conference on Learning Representations.

25

Vivien Macketanz, Eleftherios Avramidis, Aljoscha
Burchardt, He Wang, Renlong Ai, Shushen Man-
akhimova, Ursula Strohriegel, Sebastian Moller, and
Hans Uszkoreit. 2022. A linguistically motivated
test suite to semi-automatically evaluate German—
English machine translation output. In Proceedings
of the Thirteenth Language Resources and Evalua-
tion Conference, pages 936-947. European Language
Resources Association.

Vivien Macketanz, Eleftherios Avramidis, Shushen
Manakhimova, and Sebastian Moller. 2021. Linguis-
tic evaluation for the 2021 state-of-the-art machine
translation systems for German to English and En-
glish to German. In Proceedings of the Sixth Con-
ference on Machine Translation, pages 1059-1073.
Association for Computational Linguistics.

Shushen Manakhimova, Eleftherios Avramidis, Vivien
Macketanz, Ekaterina Lapshinova-Koltunski, Sergei
Bagdasarov, and Sebastian Moller. 2023a. Linguisti-
cally motivated evaluation of the 2023 state-of-the-
art machine translation: Can ChatGPT outperform
NMT? In Proceedings of the Eighth Conference on
Machine Translation, pages 224-245. Association
for Computational Linguistics.

Shushen Manakhimova, Eleftherios Avramidis, Vivien
Macketanz, Ekaterina Lapshinova-Koltunski, Sergei
Bagdasarov, and Sebastian Moller. 2023b. Linguisti-
cally motivated Evaluation of the 2023 State-of-the-
art Machine Translation: Can ChatGPT Outperform
NMT? In Proceedings of the Eighth Conference on
Machine Translation (WMT), Singapore, Singapore
(Hybrid). Association for Computational Linguistics.

Shushen Manakhimova, Vivien Macketanz, Eleftherios
Avramidis, Ekaterina Lapshinova-Koltunski, Sergei
Bagdasarov, and Sebastian Moller. 2024. Investi-
gating the linguistic performance of large language
models in machine translation. In Proceedings of
the Ninth Conference on Machine Translation, USA.
Association for Computational Linguistics.

H. B. Mann and D. R. Whitney. 1947. On a test of
whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical
Statistics, 18(1):50—-60.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2020. Tangled up in BLEU: Reevaluating the eval-
uation of automatic machine translation evaluation
metrics. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4984-4997. Association for Computational
Linguistics.

Antonio Valerio Miceli Barone and Zhifan Sun. 2024. A
test suite of prompt injection attacks for LLM-based
machine translation. In Proceedings of the Ninth
Conference on Machine Translation, USA. Associa-
tion for Computational Linguistics.

Nikita Moghe, Arnisa Fazla, Chantal Amrhein, Tom
Kocmi, Mark Steedman, Alexandra Birch, Rico Sen-
nrich, and Liane Guillou. 2024. Machine Translation


https://aclanthology.org/2020.eamt-1.15
https://aclanthology.org/2020.eamt-1.15
https://taku910.github.io/mecab/
https://taku910.github.io/mecab/
https://aclanthology.org/2014.eamt-1.38
https://aclanthology.org/2014.eamt-1.38
https://jair.org/index.php/jair/article/view/11371
https://jair.org/index.php/jair/article/view/11371
https://openreview.net/forum?id=qNLe3iq2El
https://openreview.net/forum?id=qNLe3iq2El
https://aclanthology.org/2022.lrec-1.99
https://aclanthology.org/2022.lrec-1.99
https://aclanthology.org/2022.lrec-1.99
https://aclanthology.org/2021.wmt-1.115
https://aclanthology.org/2021.wmt-1.115
https://aclanthology.org/2021.wmt-1.115
https://aclanthology.org/2021.wmt-1.115
https://doi.org/10.18653/v1/2023.wmt-1.23
https://doi.org/10.18653/v1/2023.wmt-1.23
https://doi.org/10.18653/v1/2023.wmt-1.23
https://doi.org/10.18653/v1/2023.wmt-1.23
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.1162/coli_a_00537

Meta Evaluation through Translation Accuracy Chal-
lenge Sets. Computational Linguistics, pages 1-60.

Makoto Morishita, Jun Suzuki, and Masaaki Nagata.
2020. JParaCrawl: A large scale web-based English-
Japanese parallel corpus. In Proceedings of the
Twelfth Language Resources and Evaluation Con-
ference, pages 3603-3609. European Language Re-
sources Association.

Ananya Mukherjee, Saumitra Yadav, and Manish Shri-
vastava. 2024. Cost of breaking the llms. In Proceed-
ings of the Ninth Conference on Machine Translation,
USA. Association for Computational Linguistics.

Vladimir Aleksandrovich Mynka and Nikolay
Mikhaylovskiy. 2024. TSU HITS’s submissions
to the WMT 2024 general machine translation
shared task. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for
Computational Linguistics.

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

Mariana Neves, Cristian Grozea, Philippe Thomas,
Roland Roller, Rachel Bawden, Aurélie Névéol, Stef-
fen Castle, Vanessa Bonato, Giorgio Maria Di Nun-
zio, Federica Vezzani, Maika Vicente Navarro, Lana
Yeganova, and Antonio Jimeno Yepes. 2024. Find-
ings of the WMT 2024 Biomedical Translation
Shared Task: Test Sets on Abstract Level. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, USA. Association for Computational Linguis-
tics.

OpenAl. 2024. GPT-4 Technical Report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318. Association for
Computational Linguistics.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395. Association for Computational Lin-
guistics.

Maja Popovié. 2020. Informative manual evaluation of
machine translation output. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 5059-5069. International Committee
on Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191. Association for Computational Linguistics.

Reid Pryzant, Youngjoo Chung, Dan Jurafsky, and
Denny Britz. 2018. JESC: Japanese-English subtitle
corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation

26

(LREC 2018). European Language Resources Asso-
ciation (ELRA).

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

Ricardo Rei, Nuno M. Guerreiro, Jos

textasciitilde A© Pombal, Daan van Stigt, Mar-
cos Treviso, Luisa Coheur, José G. C. de Souza,
and André Martins. 2023. Scaling up CometKiwi:
Unbabel-IST 2023 submission for the quality esti-
mation shared task. In Proceedings of the Eighth
Conference on Machine Translation, pages 841-848.
Association for Computational Linguistics.

Ricardo Rei, Jose Maria Pombal, Nuno M. Guerreiro,
Jodo Alves, Pedro Henrique Martins, Patrick Fer-
nandes, Helena Wu, Tania Vaz, Duarte Alves, Amin
Farajian, Sweta Agrawal, Antonio Farinhas, José G.
C. de Souza, and André Martins. 2024. Tower v2:
Unbabel-IST 2023 submission for the general MT
shared task. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Matiss Rikters and Makoto Miwa. 2024. AIST AIRC
systems for the WMT 2024 shared tasks. In Proceed-
ings of the Ninth Conference on Machine Translation,
USA. Association for Computational Linguistics.

Nikolai Rozanov, Vikentiy Pankov, Dmitrii Mukhutdi-
nov, and Dima Vypirailenko. 2024. Isochronometer:
A simple and effective isochronic translation evalua-
tion metric. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Roberts Rozis and Raivis Skadins. 2017. Tilde MODEL
- multilingual open data for EU languages. In Pro-
ceedings of the 21st Nordic Conference on Compu-
tational Linguistics, pages 263-265. Association for
Computational Linguistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzman. 2021. Wiki-
Matrix: Mining 135M parallel sentences in 1620 lan-
guage pairs from Wikipedia. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1351-1361. Association for Computational
Linguistics.

Danil Semin and Ondfej Bojar. 2024. CUNI-DS sub-
mission: A naive transfer learning setup for english-
to-russian translation utilizing english-to-czech data.
In Proceedings of the Ninth Conference on Machine
Translation, USA. Association for Computational
Linguistics.

Samuel A Stouffer, Edward A Suchman, Leland C
DeVinney, Shirley A Star, and Robin M Williams Jr.
1949. The american soldier: Adjustment during army
life.(studies in social psychology in world war ii), vol.
1.


https://doi.org/10.1162/coli_a_00537
https://doi.org/10.1162/coli_a_00537
https://aclanthology.org/2020.lrec-1.443
https://aclanthology.org/2020.lrec-1.443
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/2020.coling-main.444
https://doi.org/10.18653/v1/2020.coling-main.444
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://aclanthology.org/L18-1182
https://aclanthology.org/L18-1182
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://aclanthology.org/W17-0235
https://aclanthology.org/W17-0235
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115

Roman Sudarikov, Martin Popel, Ondfej Bojar,
Aljoscha Burchardt, and Ondfej Klejch. 2016. Using
MT-ComparEval. In Translation Evaluation: From
Fragmented Tools and Data Sets to an Integrated
Ecosystem, pages 76-82.

Zhifan Sun and Antonio Valerio Miceli Barone. 2024.
Scaling behavior of machine translation with large
language models under prompt injection attacks. In
Proceedings of the First edition of the Workshop
on the Scaling Behavior of Large Language Mod-
els (SCALE-LLM 2024), pages 9-23, St. Julian’s,
Malta. Association for Computational Linguistics.

Shaomu Tan, David Stap, Seth Aycock, Christof Monz,
and Di Wu. 2024. Uva-MT’s participation in the
WMT24 general translation shared task. In Proceed-
ings of the Ninth Conference on Machine Translation,
USA. Association for Computational Linguistics.

Gemini Team. 2024a. Gemini: A family of highly
capable multimodal models.

Llama-3 Team. 2024b. The Llama 3 Herd of Models.

Phi-3 Team. 2024c. Phi-3 Technical Report: A Highly
Capable Language Model Locally on Your Phone.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214-2218. European
Language Resources Association (ELRA).

Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way.
2018. Attaining the unattainable? reassessing claims
of human parity in neural machine translation. In
Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 113—123. Asso-
ciation for Computational Linguistics.

Christopher Lemmer Webber, Jessica Tallon, Erin Shep-
herd, Amy Guy, and Evan Prodromou. 2018. Ac-
tivityPub, W3C Recommendation. Technical report,
W3C.

Johnny Wei and Robin Jia. 2021. The statistical advan-
tage of automatic NLG metrics at the system level.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6840—
6854. Association for Computational Linguistics.

Frank Wilcoxon. 1945. Individual comparisons by rank-
ing methods.

Zhanglin Wu, Daimeng Wei, Zongyao Li, Hengchao
Shang, Jiaxin GUO, Shaojun Li, Zhigiang Rao, Yuan-
chang Luo, Ning Xie, and Hao Yang. 2024. Choose
the final translation from NMT and LLM hypotheses
using MBR decoding: HW-TSC’s submission to the
WMT24 general MT shared task. In Proceedings of
the Ninth Conference on Machine Translation, USA.
Association for Computational Linguistics.

27

L Xue. 2020. mt5: A massively multilingual pre-
trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Wenbo Zhang. 2024. IOL research machine transla-
tion systems for WMT24 general machine translation
shared task. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. 2017. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on
computer vision, pages 2223-2232.

Michat Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3530-3534. European Language
Resources Association (ELRA).

Hao Zong, Chao Bei, Huan Liu, Conghu Yuan, Wen-
tao Chen, and Degen Huang. 2024. DLUT and
GTCOM’s neural machine translation systems for
WMT?24. In Proceedings of the Ninth Conference on
Machine Translation, USA. Association for Compu-
tational Linguistics.

Vilém Zouhar, Shuoyang Ding, Anna Currey, Tatyana
Badeka, Jenyuan Wang, and Brian Thompson. 2024a.
Fine-tuned machine translation metrics struggle in
unseen domains. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 488-500,
Bangkok, Thailand. Association for Computational
Linguistics.

Vilém Zouhar, Véra Kloudov4, Martin Popel, and
Ondfej Bojar. 2024b. Evaluating optimal reference
translations. Natural Language Processing, page
1-24.


http://www.cracking-the-language-barrier.eu/wp-content/uploads/Sudarikov-etal.pdf
http://www.cracking-the-language-barrier.eu/wp-content/uploads/Sudarikov-etal.pdf
https://aclanthology.org/2024.scalellm-1.2
https://aclanthology.org/2024.scalellm-1.2
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2404.14219
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://doi.org/10.18653/v1/W18-6312
https://doi.org/10.18653/v1/W18-6312
https://www.w3.org/TR/activitypub/
https://www.w3.org/TR/activitypub/
https://doi.org/10.18653/v1/2021.acl-long.533
https://doi.org/10.18653/v1/2021.acl-long.533
https://aclanthology.org/L16-1561
https://aclanthology.org/L16-1561
https://doi.org/10.18653/v1/2024.acl-short.45
https://doi.org/10.18653/v1/2024.acl-short.45
https://doi.org/10.1017/nlp.2024.3
https://doi.org/10.1017/nlp.2024.3

A Error Span Annotation Miscellaneous

A.1 Annotation Guidelines

Higlighting errors: Highlight the text fragment where you have identified a translation error (drag or click start
& end). Click repeatedly on the highlighted fragment to increase its severity level or to remove the selection.

* Minor Severity: Style/grammar/lexical choice could be better/more natural.

* Major Severity: Seriously changed meaning, difficult to read, decreases usability.

If something is missing from the text, mark it as an error on the [MISSING] word. The highlights do not have to
have character-level precision. It’s sufficient if you highlight the word or rough area where the error appears. Each
error should have a separate highlight.

Score: After highlighting all errors, please set the overall segment translation scores. The quality levels associated

with numerical scores on the slider:

* 0%: No meaning preserved: Nearly all information is lost in the translation.

* 33%: Some meaning preserved: Some of the meaning is preserved but significant parts are missing. The narrative
is hard to follow due to errors. Grammar may be poor.

* 66%: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning. It may
have some grammar mistakes or minor inconsistencies.

* 100%: Perfect meaning and grammar: The meaning and grammar of the translation is completely consistent with
the source.

A.2 Changes to Interface

Since the original study of Kocmi et al. (2024b),

we used an updated version of the interface. S ——

Apart from minor quality of life changes, a no- Neni 1o tak hrozn, no?* |[HESSTNG]
ticeable change is the addition of a pop-up bubble
that shows the exact score of the segment (see
Figure 5). While it appears as a minor change, it Rz + Completed

might change the annofator behavior that prefer Figure 5: Interacting with the score slider shows the exact score
for example certain numbers, as annotators did (o the annotator in the updated ESA interface.

in translation evaluation study of Zouhar et al.

(2024b).

3% Some meaning (SN 66%: Most meaning preserved 00%: Perfect
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Dataset Segments Tokens Characters

Source Target  Source Target
Czech— Ukrainian Segs Czech  Ukrainian Czech  Ukrainian
OPUS 9.8M 103.0M 1029M  752.0M 1.3B
Facebook-wikimatrix-1 849.0k 10.4M 10.1M 76.0M 127.3M
ELRC 130.0k 2.5M 2.6M 19.6M 35.3M
(Total) 10.8M  115.9M 115.6M  847.6M 1.4B
English—Czech Segs  English Czech  English Czech
ParaCrawl-paracrawl-9 50.6M  692.1M 626.3M 4.3B 4.7B
Facebook-wikimatrix-1 2.1M 33.6M 29.7M  206.8M 216.6M
Tilde 2.IM  423M 383M  276.5M 303.7M
Statmt-europarl-10 644.4k 15.6M 13.0M 94.3M 98.1M
Statmt-wikititles-3 410.9k 1.0M 965.6k 7.5M 7.6M
Statmt-news_commentary-18.1 265.4k 5.7M 5.2M 36.2M 39.8M
Statmt-commoncrawl_wmt13-1 161.8k 3.3M 2.9M 20.7M 20.7M
(Total) 56.3M  793.7M 716.3M 5.0B 54B
English—German Segs  English German  English German
ParaCrawl-paracrawl-9 278.3M 4.3B 4.0B 26.4B 29.5B
Facebook-wikimatrix-1 62M 100.5M 97.0M  623.7M 701.2M
Tilde 52M  107.4M 102.7M  698.6M 822.1M
Statmt-commoncrawl_wmt13-1 2.4M 51.4M 47.0M 314.2M 340.5M
Statmt-europarl-10 1.8M  45.5M 424M  272.9M 312.1M
Statmt-wikititles-3 1.5M 3.6M 3.1M 26.5M 25.5M
Statmt-news_commentary-18.1 437.5k 9.6M 9.8M 61.2M 74.3M
(Total) 295.9M 4.6B 4.3B 28.4B 31.7B
English— Hindi Segs  English Hindi  English Hindi
AllenAi-nllb-1 332M  327.0M 311.6M 1.8B 3.8B
OPUS 12.IM  147.6M 165.7M  919.3M 2.2B
Al4Bharath-samananthar-0.2 8.5M 135.8M 1523M  819.0M 2.0B
Statmt-ccaligned-1 82M 114.5M 129.8M  724.3M 1.7B
Anuvaad 3.0M 58.5M 61.6M 359.5M 836.2M
IITB-hien_train-1.5 1.6M 19.8M 214M  1147M 283.6M
Facebook-wikimatrix-1 696.1k 12.0M 13.5M 74.0M 182.4M
Statmt-pmindia-1 56.8k 1.IM 1.2M 6.7M 16.6M
JoshuaDec-indian_training-1 377k 562.6k 659.1k 3.4M 8.9M
Neulab-tedtalks_train-1 18.8k  372.6k 491.2k 1.9M 4.4M
Statmt-news_commentary-18.1 4.9k 149.7k 167.7k  963.6k 2.3M
ELRC 245 4.9k 6.3k 31.6k 85.7k
(Total) 67.3M 817.3M 858.4M 4.9B 11.1B
English—Icelandic Segs English  Icelandic  English  Icelandic
OPUS 164M  1749M 166.5M 1.0B 1.1B
ParaCrawl-paracrawl-9 3.0M 45.1M 427M  266.1M 292.2M
Parlce-eea_train-20.05 1.7M 26.7TM 242M  170.4M 179.5M
Statmt-ccaligned-1 1.2M 18.6M 17.8M  115.6M 124.4M
Tilde 420.7k 6.3M 6.IM  41.7M 45.3M
Parlce-ema_train-20.05 399.1k 6.1M 5.9M 40.4M 43.9M
Facebook-wikimatrix-1 313.9k 5.7M 4.8M 34.5M 34.0M
Statmt-wikititles-3 50.2k 99.0k 88.4k 7222k 763.3k
EU 4.7k 54.4k 52.3k  369.0k 398.5k
(Total) 234M  283.7M 268.2M 1.7B 1.8B
English— Russian Segs  English Russian  English Russian
Statmt-backtrans_ruen-wmt20 394M  746.5M 596.3M 4.5B 7.8B
OPUS 252M  563.8M 520.7M 3.7B 7.3B
ParaCrawl-paracrawl-1_bonus 54M 101.3M 80.4M  632.5M 1.1B
Facebook-wikimatrix-1 5.2M 86.8M 76.5M  537.7M 1.0B
Statmt-wikititles-3 1.2M 3.1M 2.9M 22.8M 39.3M
Statmt-yandex-wmt22 1.0M 21.3M 18.7M  131.0M 250.8M
Statmt-commoncrawl_wmt13-1 878.4k 18.8M 17.4M  116.2M 214.6M
Statmt-news_commentary-18.1 377.7k 8. "M 8.1IM 55.7M 112.1M
Tilde 343k 7527k 702.8k 4.8M 10.0M
(Total) 78.6M 1.6B 1.3B 9.7B 17.7B

Table 10: Statistics for parallel training data provided for General/News Translation Task. Suffixes, k, M, and B, are short for
thousands, millions, and billions, respectively.
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Dataset Segments Tokens Characters
Source Target Source Target
English—Spanish Segs  English Spanish English Spanish
ParaCrawl-paracrawl-9 269.4M 4.4B 4.8B 26.7B 30.0B
OPUS 223.4M 4.1B 4.6B 26.3B 30.0B
Statmt-ccaligned-1 98.4M 1.2B 1.3B 7.7B 8.6B
LinguaTools-wikititles-2014 16.6M 41.3M 46.0M  304.8M 335.2M
Facebook-wikimatrix-1 6.5M  120.1M 137.4M  742.9M 854.5M
Tilde 3.8M 80.0M 929M  521.0M 603.4M
EU 3. M 70.7M 80.6M  457.1M 519.6M
Statmt-europarl-7 2.0M 49.1M 51.6M  294.5M 324.6M
Statmt-commoncrawl_wmt13-1 1.8M 40.8M 43.5M 248.8M 272.8M
Statmt-news_commentary-18.1 500.2k 11.1M 13.1M 71.1M 83.5M
Neulab-tedtalks_train-1 196.0k 4.1M 3.9M 20.4M 20.6M
(Total) 626.2M 10.2B 11.2B 63.4B 71.6B
English— Ukrainian Segs  English  Ukrainian English  Ukrainian
ParaCrawl-paracrawl-1_bonus 13.4M  505.8M 487.5M 3.3B 6.0B
Statmt-ccaligned-1 8.5M  119.4M 104.1M  7554M 1.3B
Facebook-wikimatrix-1 2.6M 41.5M 35.6M  257.6M 447.3M
ELRC 129.9k 3.0M 2.6M 19.6M 35. M
Tilde 1.6k 36.1k 34.2k 238.0k 477.9k
(Total) 24.6M  669.8M 629.8M 4.3B 7.8B
English— Japanese Segs  English English ~ Japanese
KECL-paracrawl-3 257M  599.0M 3.7B 4.6B
Facebook-wikimatrix-1 3.9M 61.6M 379.1M 455.0M
StanfordNLP-jesc_train-1 2.8M 19.3M 104.0M 119.6M
Statmt-wikititles-3 757.0k 1.9M 14.0M 18.7M
Phontron-kftt_train-1 440.3k 9.7M 59.9M 49.1M
Statmt-ted-wmt20 241.7k 4.0M 23.0M 27.3M
Statmt-news_commentary-18.1 1.9k 40.3k 253.2k 318.5k
(Total) 339M  695.7M 4.3B 5.2B
English— Chinese Segs  English English Chinese
Statmt-backtrans_enzh-wmt20 19.8M  364.2M 2.2B 2.0B
OPUS 17.5M  417.3M 2.7B 2.1B
ParaCrawl-paracrawl-1_bonus 142M 217.6M 1.3B 1.2B
Facebook-wikimatrix-1 2.6M 49.9M 311.1M 277.8M
Statmt-wikititles-3 922.0k 2.4M 17.8M 16.3M
Statmt-news_commentary-18.1 442 9k 9.8M 62.7M 55.2M
(Total) 55.3M 1.1B 6.6B 5.6B
Japanese— Chinese Segs Japanese Chinese
OPUS 19.6M 1.4B 1.1B
KECL-paracrawl-2wmt24 4.6M 1.0B 705.0M
LinguaTools-wikititles-2014 1.7M 35.2M 27.5M
Facebook-wikimatrix-1 1.3M 145.1M 113.6M
KECL-paracrawl-2 83.9k 18.9M 14.1M
Neulab-tedtalks_train-1 5.2k 490.9k 376.0k
Statmt-news_commentary-18.1 1.6k 272.8k 197.3k
(Total) 27.2M 2.6B 1.9B

Table 11: Training dataset statistics (continued from Table 10 on previous page).
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B System Submission Summaries

This section lists all the submissions to the translation task and provides the authors’ descriptions of their
submission.

B.1 AIST-AIRC (Rikters and Miwa, 2024)

At WMT 2024 AIST AIRC participated in the General Machine Translation shared task and the Biomedical
Translation task (Neves et al., 2024). We trained constrained track models for translation between English,
German, and Japanese. Before training the final models, we first filtered the parallel data, then performed
iterative back-translation as well as parallel data distillation. We experimented with training baseline
Transformer models, Mega models, and fine-tuning open-source T5 and Gemma model checkpoints using
the filtered parallel data. Our primary submissions contain translations from ensembles of two Mega
model checkpoints and our contrastive submissions are generated by our fine-tuned T5 model checkpoints.

B.2 AMI (Jasonarson et al., 2024)

This paper presents the submission of the Arni Magnusson Institute’s team to the WMT24 General
translation task. We work on the English—Icelandic translation direction. Our system comprises four
translation models and a grammar correction model. For training our systems we carefully curate our
datasets, aggressively filtering out sentence pairs that may detrimentally affect the quality of our systems
output. Some of our data are collected from human translations and some are synthetically generated. A
part of the synthetic data is generated using an LLLM, and we find that it increases the translation capability
of our system significantly.

B.3 CUNI-DS (Semin and Bojar, 2024)

We present a naive transfer learning approach for English-to-Russian translation, leveraging English-
to-Czech data within the constrained track of WMT24. Utilizing the Mistral-7B-0.1 model in its 4-bit
quantized variant, we employ QLoRA adapter training. The approach involves two phases: first, training
the adapters on the English-to-Czech CzEng 2.0 dataset, followed by fine-tuning the adapters further for
English-to-Russian translation with additional corpora. The training spans a total of 48 hours. Evaluation
is performed using WMT22 and WMT23 datasets, including the paragraph-level version of the latter.
Phase 1: Training on English-to-Czech Data

Dataset: CzEng 2.0, with examples packed into chunks of sequence length 2048.

Parameters: Warmup Steps: 20, Learning Rate: 2e-5, Weight Decay: le-2, Cumulative Batch Size: 32

Instructions: Alpaca-like instructions

Duration: 24 hours on a single A100 GPU, using the Unsloth library.
Phase 2: Fine-Tuning for English-to-Russian

Data: Yandex Corpus and News Commentary v18.1, with the latter divided into chunks of 10 sentences.

Regimen: Training with parameters similar to Phase 1.

Duration: An additional 24 hours, totaling 48 hours of training.

B.4 CUNI-{Transformer, DocTransformer, GA, MH, NL} (Hrabal et al., 2024)

This paper presents the contributions of Charles University teams to the WMT24 General Translation
task (English to Czech, German and Russian, and Czech to Ukrainian), and the WMT24 Translation into
Low-Resource Languages of Spain task.

Our most elaborate submission, CUNI-MH for English—Czech, is the result of fine-tuning Mistral
7B v0.1 for translation using a three-stage process: Supervised fine-tuning using QLoRA, Contrastive
Preference Optimization, and merging of model checkpoints. We also describe the CUNI-GA, CUNI-
Transformer and CUNI-DocTransformer submissions, which are based on our systems from the previous
year.

Our en2ru system CUNI-DS uses a similar first stage as CUNI-MH (QLoRA for English—Czech) and
follows with transferring to en2ru.
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For en2de (CUNI-NL), we experimented with a LLM-based speech translation system, to translate
without the speech input.

For the Translation into Low-Resource Languages of Spain task, we performed QLoRA fine-tuning of
a large LLM on a small amount of synthetic (backtranslated) data.

B.S CycleL and CycleL2 (Dreano et al., 2024)

CycleGN is a fully self-supervised Neural Machine Translation framework relying on the Transformer
architecture that does not require parallel data. Its approach is similar to a Discriminator-less CycleGAN,
hence the "non-adversarial" name, specifically tailored for non-parallel text datasets. The foundational
concept of our research posits that in an ideal scenario, retro-translations of generated translations should
revert to the original source sentences. Consequently, a pair of models can be trained using a Cycle
Consistency Loss (CCL) only, with one model translating in one direction and the second model in the
opposite direction.

In the context of this research, two sub-categories of non-parallel datasets are introduced. A "permuted"
dataset is defined as a parallel dataset wherein the sentences of one language have been systematically
rearranged. Consequently, this results in a non-parallel corpus where it is guaranteed that each sentence
has a corresponding translation located at an unspecified index within the dataset. A "non-intersecting"
dataset is a non-parallel dataset for which it is guaranteed that no sentence has an exact translation.

Masked Language Modeling (MLM) is a pre-training strategy implemented in BERT, where a specified
proportion of the input tokens are substituted with a unique mask token. The objective of the neural
network under this paradigm is to accurately reconstruct the original sentence from this degraded input.

In inference mode, Transformers are able to generate sentences without labels. Thus, the first step is to
generate pseudo-labels in inference, that are then used as labels during training. However, the models
consistently converge towards a trivial solution in which the input, the generated pseudo-labels and the
output are identical, achieving an optimal outcome on the CCL function, registering a value of zero.
CycleGN demonstrates how MLM pre-training can be leveraged to move away from this trivial path and
perform actual text translation.

As a contribution to the WMT24 challenge, this study explores the efficacy of the CycleGN architectural
framework in learning translation tasks across eleven language pairs under the permuted condition and
four under the non-intersecting condition.

Moreover, two additional language pairs from the previous WMT edition were trained and the evalua-
tions demonstrate the robust adaptability of CycleGN in learning translation tasks.

B.6 DLUT-GTCOM (Zong et al., 2024)

This paper presents the submission from Global Tone Communication Co., Ltd. and Dalian University of
Technology for the WMT24 shared general Machine Translation (MT) task at the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Our participation encompasses two language pairs:
English to Japanese and Japanese to Chinese. The systems are developed without particular constraints or
requirements, facilitating extensive research in machine translation. We emphasize back-translation, utilize
multilingual translation models, and apply fine-tuning strategies to improve performance. Additionally, we
integrate both human-generated and machine-generated data to fine-tune our models, leading to enhanced
translation accuracy. The automatic evaluation results indicate that our system ranks first in terms of
BLEU score for the Japanese to Chinese translation.

B.7 HW-TSC (Wu et al., 2024)

This paper presents the submission of Huawei Translate Services Center (HW-TSC) to the WMT?24 general
machine translation (MT) shared task, where we participate in the English to Chinese (en—zh) language
pair. Similar to previous years’ work, we use training strategies such as regularized dropout, bidirectional
training, data diversification, forward translation, back translation, alternated training, curriculum learning,
and transductive ensemble learning to train the neural machine translation (NMT) model based on the
deep Transformer-big architecture. The difference is that we also use continue pre-training, supervised
fine-tuning, and contrastive preference optimization to train the large language model (LLM) based MT

32



model. By using Minimum Bayesian risk (MBR) decoding to select the final translation from multiple
hypotheses for NMT and LLM-based MT models, our submission receives competitive results in the final
evaluation.

B.8 IKUN and IKUN-C (Liao et al., 2024)

This paper introduces two multilingual systems, IKUN and IKUN-C, developed for the general machine
translation task in WMT24. IKUN and IKUN-C represent an open system and a constrained system,
respectively, built on Llama-3-8b and Mistral-7B-v0.3. Both systems are designed to handle all 11
language directions using a single model. According to automatic evaluation metrics, IKUN-C achieved
6 first-place and 3 second-place finishes among all constrained systems, while IKUN secured 1 first-
place and 2 second-place finishes across both open and constrained systems. These encouraging results
suggest that large language models (LLMs) are nearing the level of proficiency required for effective
multilingual machine translation. The systems are based on a two-stage approach: first, continuous
pre-training on monolingual data in 10 languages, followed by fine-tuning on high-quality parallel data
for 11 language directions. The primary difference between IKUN and IKUN-C lies in their monolingual
pre-training strategy. IKUN-C is pre-trained using constrained monolingual data, whereas IKUN leverages
monolingual data from the OSCAR dataset. In the second phase, both systems are fine-tuned on parallel
data sourced from NTREX, Flores, and WMT16-23 for all 11 language pairs.

B.9 IOL-Research (Zhang, 2024)

This paper illustrates the submission system of the IOL Research team for the WMT24 General Machine
Translation shared task. We submitted translations for all translation directions in the general machine
translation task. According to the official track categorization, our system qualifies as an open system due
to the utilization of open-source resources in developing our machine translation model. With the growing
prevalence of large language models (LLMs) as a conventional approach for managing diverse NLP tasks,
we have developed our machine translation system by leveraging the capabilities of LLMs. Overall, We
first performed continued pretraining using the open-source LLMs with tens of billions of parameters to
enhance the model’s multilingual capabilities. Subsequently, we employed open-source Large Language
Models, equipped with hundreds of billions of parameters, to generate synthetic data. This data was then
blended with a modest quantity of additional open-source data for precise supervised fine-tuning. In the
final stage, we also used ensemble learning to improve translation quality.

B.10 MSLC (Larkin et al., 2024)

The MSLC (Metric Score Landscape Challenge) submissions for English—-German, English—Spanish,
and Japanese—Chinese are constrained systems built using Transformer models for the purpose of better
evaluating metric performance in the WMT24 Metrics Task. They are intended to be representative of
the performance of systems that can be built relatively simple using constrained data and with minimal
modifications to the translation training pipeline.

B.11 NTTSU (Kondo et al., 2024)

The NTTSU team’s submission leverages several large language models developed through a training
procedure that includes continual pre-training and supervised fine-tuning. For paragraph-level translation,
we generated synthetic paragraph-aligned data and utilized this data for training.

In the task of translating Japanese to Chinese, we particularly focused on the speech domain translation.
Specifically, we built Whisper models for Japanese automatic speech recognition (ASR). We used YODAS
dataset for Whisper training. Since this data contained many noisy data pairs, we combined the Whisper
outputs using ROVER for polishing the transcriptions. Furthermore, to enhance the robustness of the
translation model against errors in the transcriptions, we performed data augmentation by forward
translation from audio, using both ASR and base translation models.

To select the best translation from multiple hypotheses of the models, we applied Minimum Bayes
Risk decoding + reranking, incorporating scores such as COMET-QE, COMET, and cosine similarity by
LaBSE.
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B.12 Occiglot (Avramidis et al., 2024)

This document describes the submission of the very first version of the Occiglot open-source large language
model to the General MT Shared Task of the 9th Conference of Machine Translation (WMT24). Occiglot
is an open-source, community-based LLM based on Mistral-7B, which went through language-specific
continual pre-training and subsequent instruction tuning, including instructions relevant to machine
translation. We examine the automatic metric scores for translating the WMT24 test set and provide a
detailed linguistically-motivated analysis.

Despite Occiglot performing worse than many of the other system submissions, we observe that it
performs better than Mistral7B, which has been based upon, which indicates the positive effect of the
language specific continual-pretraining and instruction tuning.

We see the submission of this very early version of the model as a motivation to unite community forces
and pursue future LLM research on the translation task.

B.13 SCIR-MT (Li et al., 2024)

This paper introduces the submission of SCIR research center of Harbin Institute of Technology partic-
ipating in the WMT24 machine translation evaluation task of constrained track for English to Czech.
Our approach involved a rigorous process of cleaning and deduplicating both monolingual and bilingual
data, followed by a three-stage model training recipe. During the testing phase, we used the beam
serach decoding method to generate a large number of candidate translations. Furthermore, we employed
COMET-MBR decoding to identify optimal translations.

B.14 Team-J (Kudo et al., 2024)

We participated in the constrained track for English-Japanese and Japanese-Chinese translations at the
WMT 2024 General Machine Translation Task. Our approach was to generate a large number of sentence-
level translation candidates and select the most probable translation using minimum Bayes risk (MBR)
decoding and document-level large language model (LLM) re-ranking. We first generated hundreds of
translation candidates from multiple translation models and retained the top 30 candidates using MBR
decoding. In addition, we continually pre-trained LLMs on the target language corpora to leverage
document-level information. We utilized LLMs to select the most probable sentence sequentially in
context from the beginning of the document.

B.15 TranssionMT

Hyper-SNMT represents a cutting-edge approach in the field of machine translation. Hyper-SNMT is
based on embedding sentences in a hyperbolic space, where distances naturally reflect language hierarchy
and dependencies. This novel embedding space enables the model to achieve more accurate translations,
especially for languages with complex grammatical structures and rich morphology. Both speed and
accuracy are significantly improved compared to existing models. This submission is highlighting the
portential of Hyper-SNMT to revolutionize the field of neural machine translation.

B.16 TSU-HITs (Mynka and Mikhaylovskiy, 2024)

This paper describes the TSU HITS team’s submission system for the WMT’24 general translation task.
We focused on exploring the capabilities of discrete diffusion models for the English-to-Russian, German,
Czech, Spanish translation tasks in the constrained track. Our submission system consists of a set of
discrete diffusion models for each language pair. The main advance is using a separate length regression
model to determine the length of the output sequence more precisely.

B.17 Unbabel-Tower70B (Rei et al., 2024)

In this work, we present Tower v2, an improved iteration of the state-of-the-art open-weight Tower models,
and the backbone of our submission to the WMT24 General Translation shared task. Tower v2 introduces
key improvements including expanded language coverage, enhanced data quality, and increased model
capacity up to 70B parameters. Our final submission combines these advancements with quality-aware
decoding strategies, selecting translations based on multiple translation quality signals. The resulting
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system demonstrates significant improvement over previous versions, outperforming closed commercial
systems like GPT-40, Claude 3.5, and DeepL even at a smaller 7B scale.

B.18 UvA-MT (Tan et al., 2024)

Fine-tuning Large Language Models (FT-LLMs) with parallel data has emerged as a promising paradigm
in recent machine translation research. In this paper, we explore the effectiveness of FI-LLMs and
compare them to traditional encoder-decoder Neural Machine Translation (NMT) systems under the
WMT24 general MT shared task across three high-resource directions: English to Chinese, English to
Japanese, and Japanese to Chinese. We implement several techniques, including Quality Estimation
(QE) data filtering, supervised fine-tuning, and post-editing that integrate NMT systems with LLMs. We
demonstrate that fine-tuning LLaMA?2 on a high-quality but relatively small bitext dataset (100K) yields
COMET results comparable to much smaller encoder-decoder NMT systems trained on over 22 million
bitexts. However, this approach largely underperforms on surface-level metrics like BLEU and ChrF. We
further control the data quality using the COMET-based quality estimation method. Our experiments
show that 1) filtering low COMET scores largely improves encoder-decoder systems, but 2) no clear gains
are observed for LLMs when further refining the fine-tuning set. Finally, we show that combining NMT
systems with LLMs via post-editing generally yields the best performance in our experiments.

B.19 Yandex (Elshin et al., 2024)

In this paper, we present the methodology employed by the NLP team at Yandex LLC for participating in
the WMT 2024 General MT Translation track, focusing on English-to-Russian translation. Our approach
involves training a YandexGPT LLM-based model for translation tasks using a multi-stage process to
ensure high-quality and contextually accurate translations.

Initially, we utilize a pre-trained model, trained on a large corpus of high-quality monolingual texts in
various languages, crawled from various open sources, not limited to English and Russian. This extensive
pre-training allows the model to capture a broad spectrum of linguistic nuances and structures. Following
this, the model is fine-tuned on a substantial parallel corpus of high-quality texts collected from diverse
open sources, including websites, books, and subtitles. These texts are meticulously aligned at both the
sentence and paragraph levels to enhance the model’s contextual understanding and translation accuracy.

In the subsequent stage, we employ p-tuning on an internal high-quality corpus of paragraph-aligned
data. This step ensures that the model is finely adjusted to handle complex paragraph-level translations
with greater fluency and coherence.

Next, we apply the Contrastive Pretraining Objective (CPO) method, as described in the paper CPO,
using a human-annotated translation corpus. This stage focuses on refining the model’s performance
based on metrics evaluated at the paragraph level, emphasizing both the accuracy of the translation and
the fluency of the resulting texts. The CPO method helps the model to better distinguish between subtle
contextual differences, thereby improving translation quality.

In the final stage, we address the importance of preserving the content structure in translations, which is
crucial for the General MT test set. To achieve this, we introduce a synthetic corpus based on web pages
and video subtitles, and use it during HE markup finetune training. This encourages the model to maintain
the original text’s tag structure. This step ensures that the translated output retains the structural integrity
of the source web pages, providing a seamless user experience.

Our multi-stage approach, combining extensive pre-training, targeted fine-tuning, advanced p-tuning,
and structure-preserving techniques, ensures that our model delivers high-quality, fluent, and structurally
consistent translations suitable for practical applications and competitive benchmarks.
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C Translator Brief

In this project we wish to translate data from several domains for use in evaluation of Machine Translation
(MT). The translations produced by you will be compared against the translations produced by a variety
of different MT systems. They will be released to the research community to provide a benchmark,
or “gold-standard” measure for translation quality. The translation therefore needs to be a high-quality
rendering of the source text into the target language, as if it was originally written directly in the target
language. However, there are some constraints imposed by the intended usage:

* All translations must be “from scratch”, without post-editing from machine translation or usage of CAT
tools. Using post-editing would bias the evaluation, so we need to avoid it. We can detect post-editing
and will reject translations that are post-edited.

* Translation should preserve the paragraph boundaries but may change number of sentences per paragraph.
The source texts contain one paragraph per line and the translations should be the same.

* Translators should avoid inserting parenthetical explanations into the translated text and obviously avoid
losing any pieces of information from the source text. We will check the translations for quality and
will reject translations that contain errors.

* If the original data contain errors, typos, or other problems, do not change the source sentences, instead
try to prepare correct translation as if the error wouldn’t be in the source.

* The data contain several domains, each folder containing one domain source.

The source files will be delivered as text files (sometimes known as “notepad” files), with one paragraph
per line. We need the translations to be returned in the same format. The translation file needs to have the
same name as the original file.

Speech Domain The texts are the transcriptions of audio, edited by native speakers. Each file represents
one segment of audio (you are also provided with correspondent audio in WAW format). Phrases said by
different speakers are located on different lines. Audios correspond to different domains, they differ in
formality, style, topics and number of speakers. The idea is to translate using the most similar language in
the target language, matching as best as possible the characteristics of the source text.

Social domain The texts are from the social network Mastodon (similar to Twitter). Each file represents
a thread or part of a thread from one or several users. Different posts within a thread are presented on
different lines in the file, although individual posts can also span several lines. The sentences have been
selected so that they do not contain offensive or sensitive content (hate speech, taking-drugs, suicide,
politically sensitive topics, etc.). However, profanities were kept as they were taken to be illustrative of the
sociolect of online language. If however, you do not feel comfortable with translating something, please
leave the whole line blank and let us know that you have not translated it. The texts are particular in that
they may contain spelling errors, slang, acronyms, marks of expressivity, etc. The idea is to translate using
the most natural language in the target language, matching as best as possible the style and familiarity of
the source text.

* Spelling mistakes should not be preserved in their translations, i.e. the translation should be spelt
correctly

* Marks of expressivity (e.g. asterisks *wow?*, capitals letters WOW) should be conserved as best as
possible. However, we recommend not to attempt to reproduce repeated characters (e.g. woooow) in
translation, as the choice as to which character to repeat is often arbitrary.

* There will be abbreviations and acronyms (e.g. btw -> by the way, fwiw -> for what it’s worse). These
do not need to be translated using abbreviation or acronyms unless an abbreviation/acronym is the best
translation choice in the target language.
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» Users have been pseudo-anonymised (e.g. @userl, @user2). These should be left as they are, i.e. not
translated.

* Platform-specific elements such as hashtags should be translated as hashtags, but the content should be
translated as appropriate into the target language.

* Punctuation can be added if it necessary to avoid comprehension difficulties. Otherwise we recommend
following the punctuation of the source text.

A file entitled README-social-domain-translation-notes.pdf has been distributed with the texts to
translate. This file should not be translated. It contains some notes to provide additional context on the
topic and terms used in some of the texts.
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D Official Ranking Results (extends Section 7.4)

Results tables legend

The human score is the macro-average of human judgements, grouped by domain. The rank takes into consideration head-to-head
wins and losses. AutoRank is calculated from automatic metrics.

Ranking and clustering on human scores is done using Wilcoxon signed rank test for each domain separately and final p-value is
combined via Stouffer’s Z-score method to align with macro average for human score.

Systems are either constrained (white), open-track (light gray), or closed-track (dark gray).

LLMs that do not officially claim a support a language pair are marked with §.

Human scores for individual domains are marked by an up arrow 7 if their difference from the system domain score is larger
than the standard deviation over all domains for given system (row) and down arrow |, indicates that the domain score is worse
than the overall score.

Underlined domain scores indicate that the domain score is better than the domain score of system above it (of a better ranked
system).

Czech— Ukrainian

Rank  System Human AutoRank CometKiwi MetricX education news official personal voice
1-2 Claude-3.5 § 93.0 1.7 -0.7 1.0 1904 91.7 1953 1954 922
2-2 HUMAN-A 92.7 - - - 92.6 93.0 920 1949 1911
3-3 Gemini-1.5-Pro 92.6 2.0 -0.7 1.2 1 88.6 94.7 94.5 93.6 91.9
3-4 Unbabel-Tower70B 922 1.0 -0.7 0.9 1 86.8 93.5 94.8 94.1 91.8
5-5 IOL-Research 90.2 1.9 -0.7 1.3 1 80.8 89.9 92.7 94.6 93.0
6-7 CommandR-plus § 89.7 1.9 -0.7 1.3 1834 89.6 193.8 92.1 89.4
6-8 ONLINE-W 88.7 2.3 -0.7 1.4 1 84.4 89.4 879 1913 90.4
7-9 GPT-4 § 88.6 2.0 -0.7 1.4 1832 87.9 89.0 1924 90.3
8-9 IKUN 87.1 2.3 -0.7 1.6 177.6 86.8 89.7 91.2 90.3
10-10  Aya23 86.6 2.5 -0.7 1.9 1774 91.1 88.5 87.6 88.3
11-11  CUNI-Transformer 85.3 3.0 -0.6 2.0 183.2 85.2 84.8 188.0 85.3
12-12 IKUN-C 82.6 3.0 -0.6 2.4 79.6 170.0 87.2 88.4 87.8
Mistral-Large § - 23 - - - - - - -
TranssionMT - 2.6 - - - - - - -
ONLINE-B - 2.6 - - - = = - -
ONLINE-A - 2.6 - - - - - - -
Llama3-70B § - 2.6 - - - - - - -
ONLINE-G - 2.8 - - - - - - -
Phi-3-Medium § - 9.1 - - - - - - -
BJFU-LPT - 11.5 - - - - - - -

CycleL - 21.0 - - - - - - -
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English—Czech

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-2 HUMAN-A 92.9 - - - 93.1 1945 92.0 92.1
2-2 Unbabel-Tower70B 91.6 1.0 -0.7 1.8 91.7 94.1 933 875
2-3 Claude-3.5 § 91.2 2.1 -0.7 24 912 1949 91.6 | 872
4-5 ONLINE-W 89.0 2.8 -0.7 2.8 91.0 1921 88.2 | 849
4-6 CUNI-MH 88.4 2.1 -0.7 2.3 89.7 1919 88.0 | 84.1
6-6 Gemini-1.5-Pro 88.2 2.6 -0.7 2.8 88.6 893 [852 89.6
6-8 GPT-4 § 87.7 2.6 -0.7 29 1852 89.5 190.1 86.1
8-8 CommandR-plus § 86.9 29 -0.7 29 1852 875 188.6 86.2
8-9 IOL-Research 86.5 2.8 -0.7 3.0 84.7 1904 86.3 84.5

10-11  SCIR-MT 854 32 -0.7 33 850 1924 82.2 82.1

10-11  CUNI- 843 44 -0.6 4.0 83.1 1907 80.9 82.4

DocTransformer

12-12  Aya23 84.2 4.3 -0.6 4.0 81.6 1899 849 1803

13-13 CUNI-GA 82.1 2.3 -0.7 3.7 82.8 1885 817 |753

14-14 IKUN 81.7 39 -0.6 3.7 80.2 1870 822 |7715

15-15 Llama3-70B § 77.4 4.1 -0.6 4.0 1654 83.0 824 78.8

16-16 IKUN-C 75.4 4.7 -0.6 4.3 170.5 77.7 77.5 75.7

TranssionMT - 3.5 - - - - - -
ONLINE-A - 3.6 - - = - - -
Mistral-Large § - 3.7 - - - - - -
ONLINE-B - 4.0 - - - - - -
CUNI-Transformer - 4.7 - - - - - -
ONLINE-G - 5.7 - - - - - -
NVIDIA-NeMo - 7.6 - - - - - -
Phi-3-Medium § - 15.0 - - = - - -
TSU-HITs - 19.5 - - - - - -
CycleL2 - 24.2 - - - - - -
CycleLl - 27.0 - - - - - -
English—German

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-11  GPT4 -1.6 1.8 -0.7 1.4 -0.7 -1.4 -0.9  |-3.6
1-7 Dubformer -1.8 1.8 -0.7 1.2 -1.2 -1.3 -0.6 |42
2-10 ONLINE-B -1.9 1.8 -0.7 1.4 -1.3 -1.5 -1.2 | -3.6
2-10  TranssionMT -1.9 1.8 -0.7 14 -1.3 -1.2 -1.2 -39
2-9 Unbabel-Tower70B -1.9 1.0 -0.7 1.1 -1.4 20 1-08 |-35
1-9 HUMAN-B -2.0 - - - -0.8 -1.4 -0.8 |49
2-12  Mistral-Large 2.1 2.0 -0.7 1.5 -1.5 -1.9 -1.1 1-39
4-11  CommandR-plus -2.3 2.0 -0.7 14 -1.7 24 1-11  |-39
8-10 ONLINE-W -2.3 22 -0.7 1.5 -2.1 -1.3 -1.7 | -41
2-12  Claude-3.5 24 1.9 -0.7 1.4 -1.1 -1.0 -1.2  1-6.0
3-13 HUMAN-A -2.5 - - - -2.0 -1.8 -1.0  1-5.0

10-12  IOL-Research -2.5 2.3 -0.7 1.6 -2.0 -1.7 -1.6 |1 -49
5-13  Gemini-1.5-Pro -2.8 22 -0.7 1.5 $-50 1-13 -1.9 -2.9

14-15  Aya23 -3.2 2.7 -0.7 1.8 -2.3 -2.7 22 |57

14-17 ONLINE-A -3.5 3.0 -0.7 1.8 -2.8 -1.9 23 1-69

15-17  Llama3-70B § -4.3 2.5 -0.7 1.7 -4.8 29 1-23 [|-71

15-17 IKUN -4.3 3.0 -0.7 1.8 -3.5 43 1-24  |-71

18-18 IKUN-C -6.1 3.8 -0.6 2.0 -7.6 -3.4 33 199

19-19  MSLC -15.5 11.9 -0.4 4.4 -15.3 -11.5 1-8.2 +

-26.8
Phi-3-Medium § - 3.4 - - - - - -
ONLINE-G - 3.5 - - - - - -
CUNI-NL - 4.2 - - - - - -
AIST-AIRC - 7.2 - - - - - -
NVIDIA-NeMo - 7.4 - - - - - -
Occiglot - 8.2 - - - - - -
TSU-HITs - 133 - - - - - -
CycleL2 - 27.0 - - - - - -
CycleL - 27.0 - - - - - -
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English—Spanish

Rank  System Human  AutoRank CometKiwi MetricX literary = news social  speech
1-1 HUMAN-A 95.3 - - - 952 196.2 955 194.1
2-2 Dubformer 934 2.0 -0.7 2.2 95.3 94.5 944 | 894
3-4 GPT-4 91.9 1.9 -0.7 2.5 93.5 94.0 932 [ 87.0
4-7 IOL-Research 914 2.3 -0.7 2.8 196.3 92.5 909 | 86.0
5-8 Mistral-Large 89.3 2.2 -0.7 2.7 90.5 90.4 91.0 [ 852
5-9 Unbabel-Tower70B 88.9 1.0 -0.7 1.9 86.2 1937 91.1 [ 84.6
3-8 Claude-3.5 88.8 2.1 -0.7 2.6 91.5 92.8 904 [ 80.5
5-8 Gemini-1.5-Pro 88.8 2.4 -0.7 2.8 89.6 1923 87.0 |86.2
7-9 CommandR-plus 88.3 2.1 -0.7 2.6 88.2 893 190.8 |84.8

9-10 Llama3-70B § 87.2 2.6 -0.7 3.0 1 89.4 87.1 879 |84.2

11-11 ONLINE-B 85.6 2.7 -0.7 3.1 87.4 88.6 86.8 794

12-13 IKUN 84.7 2.8 -0.7 3.3 854 1924 82.8 |783

12-13  IKUN-C 80.4 34 -0.7 3.5 83.3 1856 79.0 | 73.6

14-14 MSLC 63.9 7.4 -0.5 6.4 593 178.8 55.9 61.7

ONLINE-W - 2.7 - - - - - -
TranssionMT - 2.8 - - - - - -
Phi-3-Medium § - 3.0 - - - - - -
ONLINE-A - 3.0 - - - - - -
Aya23 - 3.1 - - - - - -
ONLINE-G - 3.2 - - - - - -
NVIDIA-NeMo - 4.5 - - - - - -
Occiglot - 5.9 - - - - - -
TSU-HITs - 16.3 - - - - - -
CycleL. - 24.0 - - - - - -
English— Hindi

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-3 TranssionMT 91.3 1.3 -0.6 3.3 194.0 93.0 89.8 | 882
1-4 Unbabel-Tower70B 90.5 1.0 -0.7 3.1 909 192.7 90.7 | 87.7
3-3 Claude-3.5 § 90.2 1.2 -0.6 3.3 95.4 93.6 91.0 | 8I.1
3-4 ONLINE-B 90.1 1.4 -0.6 3.3 91.8 90.4 91.3 | 86.9
3-5 Gemini-1.5-Pro § 90.0 1.6 -0.6 3.6 90.3 191.9 89.4 | 883
6-6 GPT-4 § 88.5 2.1 -0.6 4.5 89.9 90.4 89.2 | 844
7-8 HUMAN-A 88.5 - - - 88.8 | 88.1 1889 88.2
8-8 IOL-Research 87.2 2.1 -0.6 43 872 1889 877 1849
8-9 Llama3-70B § 86.7 2.1 -0.6 4.6 86.4 87.1 | 86.1 87.1

10-10  Aya23 84.7 3.2 -0.6 5.4 833 1869 |83.1 85.7

11-11 IKUN-C 70.7 5.5 -0.5 7.1 712 [ 592 1802 72.4

CommandR-plus § - 23 - - - - - -
ONLINE-A - 3.5 - - - - - -
ONLINE-G - 4.2 - - - - - -
Mistral-Large § - 5.0 - - - - - -
NVIDIA-NeMo - 5.8 - - - - - -
Phi-3-Medium § - 7.4 - - - - - -
IKUN - 7.7 - - - - - -
ONLINE-empty - 15.3 - - - - - -
CycleL - 20.0 - - - - - -
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English—Icelandic

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-1 HUMAN-A 93.1 - - - 92.2 926 1950 92.4
2-3 Dubformer 84.3 2.5 -0.7 3.4 84.1 83.1 1875 82.5
2-3 Claude-3.5 § 81.9 2.3 -0.7 3.6 80.2 839 1872 |764
4-4 Unbabel-Tower70B 80.2 1.0 -0.7 2.5 176.6 80.6 1843 79.2
5-5 AMI 73.3 3.7 -0.7 49 175.2 72.8 74.1 | 71.1
6-6 IKUN 71.0 32 -0.7 4.3 1668 174.7 73.6 69.1
7-7 ONLINE-B 68.0 4.2 -0.7 5.5 70.5 1594 174.0 67.9
8-9 GPT-4 66.3 34 -0.7 4.7 66.5 655 1695 639
8-9 IKUN-C 65.2 3.7 -0.7 49 159.6 68.2 1693 63.8

10-10  IOL-Research 58.0 43 -0.7 5.7 149.4 59.6 61.4 61.4

11-11  Llama3-70B § 41.0 6.7 -0.6 8.0 39.8 40.0 144.0 40.3

TranssionMT - 4.2 - - - - - -
ONLINE-A - 5.5 - - - - - -
ONLINE-G - 6.9 - - - - - -
CommandR-plus § - 9.8 - - - - - -
Mistral-Large § - 10.4 - - - - - -
Aya23 § - 15.2 - - - - - -
Phi-3-Medium § - 16.2 - - - - - -
ONLINE-empty - 18.1 - - - - - -
TSU-HITs - 19.2 - - - - - -
CycleLL - 21.0 - - - - - -
English— Japanese

Rank  System Human  AutoRank CometKiwi MetricX literary news  social  speech
1-1 HUMAN-A 91.8 - - - 92.4 93.0 [89.5 92.4
2-4 ONLINE-B 91.1 1.4 -0.8 2.4 91.7 192.6 91.1 | 88.9
3-4 CommandR-plus 91.0 1.9 -0.7 2.7 922 1937 89.5 | 885
4-4 GPT-4 90.8 1.7 -0.7 2.7 191.9 91.3 [ 89.9 90.1
4-5 Claude-3.5 90.8 1.5 -0.7 2.3 914 1928 913 | 87.6
4-7 Gemini-1.5-Pro 90.0 1.7 -0.7 2.5 91.1 1922 |88.1 88.7
7-7 Unbabel-Tower70B 89.7 1.0 -0.8 2.0 1882 191.6 89.8 89.2
8-8 IOL-Research 89.7 2.3 -0.7 3.1 91.0 90.6 90.3 | 86.9
8-9 Aya23 89.7 2.3 -0.7 3.1 90.1 192.1 88.4 | 879

10-10  NTTSU 89.4 1.9 -0.7 2.6 90.0 1932 88.4 | 86.2

11-11  Team-J 88.5 1.9 -0.7 2.9 185.0 90.1 1913 87.5

12-12  Llama3-70B § 86.8 2.6 -0.7 3.5 89.3 189.8 852 | 82.7

13-13  IKUN-C 81.7 3.9 -0.7 4.3 1775 1885 81.2 79.8

DLUT-GTCOM - 2.6 - - - - - -
Phi-3-Medium § - 2.8 - - - - - -
ONLINE-W - 2.9 - - - - - -
Mistral-Large § - 2.9 - - - - - -
ONLINE-A - 3.0 - - - - - -
IKUN - 3.1 - - - - - -
ONLINE-G - 6.4 - - - - - -
AIST-AIRC - 6.6 - - - - - -
UvA-MT - 6.7 - - - - - -
NVIDIA-NeMo - 6.9 - - - - - -
CycleL. - 24.0 - - - - - -
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English—Russian

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-1 HUMAN-A 89.2 - - - 194.0 88.3 87.7 86.6
2-3 Dubformer 89.1 1.9 -0.7 2.8 90.7 88.5 192.1 849
34 Claude-3.5 88.2 2.0 -0.7 3.0 194.1 93.1 85.7 180.0
3-5 Unbabel-Tower70B 88.1 1.0 -0.7 2.4 87.5 91.2 90.6 | 832
3-7 Yandex 87.0 1.9 -0.7 2.9 89.6 191.8 84.5 |82.0
6-8 Gemini-1.5-Pro 85.5 2.3 -0.7 3.2 190.7 84.9 83.4 82.9
6-9 GPT-4 85.0 2.3 -0.7 3.4 1 89.3 85.4 84.6 | 80.7
6-9 ONLINE-G 84.6 2.2 -0.7 3.3 88.3 88.8 84.6 |76.6
5-9 CommandR-plus § 84.3 2.4 -0.7 3.4 86.7 84.5 85.7 |80.5

10-10  IOL-Research 82.1 2.6 -0.7 3.7 84.8 86.4 842 | 73.1

11-11 IKUN 79.2 3.2 -0.7 4.1 80.2 1872 78.5 ] 70.9

12-12  Aya23 78.6 3.3 -0.7 4.2 77.8 1829 785 | 753

13-13  Llama3-70B § 75.7 3.1 -0.7 4.1 77.0 180.1 763 1695

14-14 IKUN-C 69.8 3.9 -0.6 4.7 65.1 1783 729 1 62.6

ONLINE-W - 2.6 - - = - - -
Mistral-Large § - 2.7 - - - - - -
ONLINE-B - 3.1 - - - - - -
TranssionMT - 3.1 - - - - - -
ONLINE-A - 34 - - - - - -
Phi-3-Medium § - 3.9 - - - - - -
CUNI-DS - 5.9 - - - - - -
NVIDIA-NeMo - 7.2 - - - - - -
TSU-HITs - 10.8 - - - - - -
CycleL - 243 - - - - - -
CycleL2 - 25.0 - - - - - -
English— Ukrainian

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-2 Claude-3.5 90.5 2.0 -0.7 3.0 93.2 93.9 922 | 827
1-2 Unbabel-Tower70B 89.8 1.0 -0.7 2.2 92.5 92.8 91.1 | 829
33 Dubformer 89.0 1.8 -0.7 2.7 1 84.4 913 19423 85.9
4-6 HUMAN-A 87.3 - - - 89.6 191.5 /838 84.1
4-6 Gemini-1.5-Pro 87.1 2.2 -0.7 3.0 190.1 88.8 853 | 844
5-8 ONLINE-W 86.0 2.1 -0.7 2.8 86.7 188.9 86.8 | 81.8
5-9 GPT-4 84.6 2.3 -0.7 3.3 81.2 190.3 84.5 82.4
6-9 CommandR-plus § 83.2 2.3 -0.7 3.2 79.6 1 89.1 83.6 80.4
7-9 IOL-Research 83.2 2.4 -0.7 3.4 80.6 190.2 83.1 | 788

10-10 IKUN 78.4 2.8 -0.7 3.7 832 188.2 727 1 69.7

11-11 IKUN-C 67.9 3.9 -0.6 4.7 165.2 69.0 68.3 69.2

ONLINE-G - 2.3 - - - - - -
Mistral-Large § - 2.4 - - - - - -
ONLINE-B - 3.1 - - - - - -
TranssionMT - 3.1 - - - - - -
Llama3-70B § - 32 - - - - - -
Aya23 - 3.3 - - - - - -
ONLINE-A - 33 - - - - - -
NVIDIA-NeMo - 6.2 - - - - - -
Phi-3-Medium § - 11.1 - - - - - -
CycleL - 21.0 - - - - - -
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English— Chinese

Rank  System Human AutoRank CometKiwi MetricX literary news  social speech
1-1 GPT-4 89.6 2.0 -0.7 33 88.7 1912 90.3 | 884
2-4 Unbabel-Tower70B 89.6 1.0 -0.7 23 90.0 1923 90.2 | 85.8
2-4 HUMAN-A 89.4 - - - 89.9 90.1 90.7 |86.8
4-4 Gemini-1.5-Pro 89.3 1.8 -0.7 3.1 92.0 1925 [852 87.5
5-6 ONLINE-B 89.3 1.7 -0.7 2.9 1919 89.7 90.3 |85.0
6-6 IOL-Research 89.0 1.8 -0.7 3.1 91.0 90.8 88.3 | 86.1
6-7 Claude-3.5 88.9 1.7 -0.7 3.0 92.0 90.8 89.5 |834
6-8 CommandR-plus 88.3 22 -0.7 33 859 190.8 90.4 85.9
9-9 Llama3-70B § 86.5 2.8 -0.7 3.9 87.5 86.8 87.0 | 84.6

10-10  HW-TSC 86.2 23 -0.7 34 87.1 1915 849 |814

11-11  IKUN 85.3 3.1 -0.6 4.0 88.6 189.1 82.1 [ 815

12-12  Aya23 85.2 3.0 -0.7 4.1 854 1883 855 | 817

13-13  IKUN-C 82.1 35 -0.6 4.2 81.0 1859 83.1 | 786

ONLINE-W - 22 - - - - - -
Mistral-Large § - 2.8 - - - - - -
Phi-3-Medium § - 3.1 - - - - - -
ONLINE-A - 33 - - - - - -
UvA-MT - 4.3 - - - - - -
ONLINE-G - 4.8 - - - - - -
NVIDIA-NeMo - 7.3 - - - - - -
CycleL - 20.1 - - - - - -
CycleL2 - 22.0 - - - - - -
Japanese— Chinese
Rank  System Human AutoRank CometKiwi MetricX literary news  speech
1-3 Claude-3.5 -1.4 1.7 -0.6 3.5 -0.5 -0.8  1-3.0
1-3 HUMAN-A -1.5 - - - -0.7 -0.8 | -32
3-5 GPT-4 -1.7 2.1 -0.6 3.8 -1.0 -0.8  |-32
2-5 DLUT-GTCOM -1.7 2.0 -0.6 3.3 -0.5 -1 37
4-8 Unbabel-Tower70B -1.9 1.0 -0.6 32 -1.0 -1.2 | -35
3-6 Gemini-1.5-Pro 2.1 1.9 -0.6 3.5 -1.6 -0.8 |-338
6-8 CommandR-plus 2.2 2.8 -0.6 4.1 -0.7 -1.3 |46
6-8 IOL-Research 2.4 22 -0.6 3.9 -1.4 -1.1 | -48
9-10  Llama3-70B § -3.4 3.1 -0.6 4.7 -2.0 22 ]-62
9-10  Aya23 -3.5 3.7 -0.6 5.0 2.1 -19 |-64
11-12  Team-J -4.5 2.8 -0.6 4.0 -3.1 20 -85
11-12  NTTSU -5.1 3.7 -0.6 53 -2.8 2.1 +
-10.5
13-13 ONLINE-B -5.8 52 -0.5 5.5 -4.2 37 195
14-14 IKUN-C =17 5.5 -0.5 6.2 -5.1 -34 +
-14.4
15-15 MSLC -10.7 8.9 -0.5 8.8 9.1 1-4.0 +
-19.0
Mistral-Large § - 3.5 - - - - -
Phi-3-Medium § - 4.0 - - - - -
IKUN - 4.4 - - - - -
UvA-MT - 52 - - - - -
ONLINE-W - 53 - - - - -
ONLINE-A - 6.8 - - - - -
ONLINE-G - 10.3 - - - - -
CycleL - 23.0 - - - - -
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E Head to head comparisons

Following tables show differences in average human scores for each language pair. The number in each of
cell shows the difference in average human scores for the systems in the column and row.

Because there are many systems and data conditions, the significance of each pairwise comparison
needs to be quantified. We apply Wilcoxon signed-rank test to measure the likelihood that such differences
could occur simply by chance. In the following tables x indicates statistical significance at p < 0.05, }
indicates statistical significance at p < 0.01, and I indicates statistical significance at p < 0.001.

Each table contains final rows showing the macro-average score achieved by that system and the rank
range. Gray lines separate clusters based on non-overlapping rank ranges.

Head to head comparison for Czech— Ukrainian systems
[2a]

a o)
e 3 £ 5
& z ﬁ = Z
0 it & g 5 = g
; FAN N B N A
s : E\L|lE 2 & B8]858
o 2 ] 5 e S o ] M < O M
Claude-3.5 = 03f 04 08 281 | 33% 43% 441 597 641 771 10.4%
refA - 0.1f 05t | 25f | 30 40f 42f  56% 6.1% 74% 10.1%
Gemini-1.5-Pro - - - 04% | 24% | 30t 40f 41%  55% 6.1% 73% 10.1%
Unbabel-Tower70B - - - - 20f | 25% 35 36%f 5.1 5.6% 6.9 9.6
IOL-Research - - - - - 0.57 1.51 1.61 3.1 3.61 4.9 7.6
CommandR-plus - - - - - - 1.0 JIEY 2.5 3.1% 4.4 7.1
ONLINE-W - - - - - - - 0.1 1.63 2.1% 3.4% 6.1%
GPT4 - - - - - - - - 1.4 2.0% 3.3% 6.0%
IKUN — — — — — — — — — 0.63 1.8% 4.5
Aya23 - - - - - - - - - - 13} 4.0
CUNI-Transformer - - - - - - - - - - - 2.7
TKUN-C - - - - - - - - - - - -

Scores 93.0 92.7 92.6 922 90.2 89.7 88.7 88.6 87.1 86.6 853 82.6
Ranks 1-2 2-2 3-3 34 5-5 6-7 6-8 79 8-9 10-10 11-11 12-12
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Head to head comparison for English— Spanish systems
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Head to head comparison for English— Russian systems
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Head to head comparison for English— Ukrainian systems
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Abstract

The WMT24 Metrics Shared Task evaluated
the performance of automatic metrics for ma-
chine translation (MT), with a major focus on
LLM-based translations that were generated as
part of the WMT24 General MT Shared Task.
As LLMs become increasingly popular in MT,
it is crucial to determine whether existing eval-
uation metrics can accurately assess the output
of these systems.

To provide a robust benchmark for this eval-
uation, human assessments were collected us-
ing Multidimensional Quality Metrics (MQM),
continuing the practice from recent years. Fur-
thermore, building on the success of the previ-
ous year, a challenge set subtask was included,
requiring participants to design contrastive test
suites that specifically target a metric’s abil-
ity to identify and penalize different types of
translation errors.

Finally, the meta-evaluation procedure was re-
fined to better reflect real-world usage of MT
metrics, focusing on pairwise accuracy at both
the system- and segment-levels.

We present an extensive analysis on how
well metrics perform on three language
pairs: English—Spanish (Latin America),
Japanese—Chinese, and English—German.
The results strongly confirm the results reported
last year, that fine-tuned neural metrics con-
tinue to perform well, even when used to evalu-
ate LLM-based translation systems.

1 Introduction

The Metrics Shared Task! has been a key compo-
nent of WMT since 2008, serving as a way to val-
idate the use of automatic MT evaluation metrics
and drive the development of new metrics. We eval-
uate reference-based automatic metrics that score
MT output by comparing the translations with a

"https://www2.statmt.org/wmt24/
metrics-task.html
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metric avg corr
MetaMetrics-MT 1 0.725
MetricX-24-Hybrid 1 0.721
XCOMET 1 0.719
MetricX-24-Hybrid-QE* | 2 0.714
gemba_esa* 2 0.711
XCOMET-QE* 3 0.695
COMET-22 3 0.688
BLEURT-20 3 0.686
MetaMetrics-MT-QE* 3 0.684
bright-qe* 4 0.681
BLCOM._1 4 0.664
sentinel-cand-mgqm* 5 0.650
PrismRefMedium 5 0.646
PrismRefSmall 5 0.642
CometKiwi* 5 0.640
damonmonli 5 0.635
YiSi-1 6 0.630
BERTScore 7 0.617
MEE4 7 0.609
chrF 8 0.608
chrfS 8 0.606
spBLEU 9 0.593
BLEU 9 0.589
XLsimMgm* 10 0.515
sentinel-src-mqm* 10 0.513
sentinel-ref-mgqm 10 0.513

Table 1: Official ranking of primary submissions to the
WMT?24 Metric Task. The final score is the weighted av-
erage correlation over 6 different tasks. Starred metrics
are reference-free, and underlined metrics are baselines.
See Table 14 for the pairwise comparisons from which
the ranks were derived.

reference translation generated by human transla-
tors, who are instructed to translate “from scratch”
without post-editing from MT. In addition, we also
invited submissions of reference-free metrics (qual-
ity estimation metrics or QE metrics) that compare
MT outputs directly with the source segments. All
metrics are evaluated based on their agreement with
human ratings when scoring MT systems and hu-
man translations at the system and sentence level.
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The final ranking of this year’s submitted primary
metrics is shown in Table 1. Below are some of
the key details and changes implemented for this
year’s Metrics Shared Task:

* Language Pairs: For this year, we fo-
cus on three language pairs, all on the
paragraph-level: (i) English—German (en—de),
English— Spanish (Latin America) (en—es), and
Japanese—Chinese (ja—zh).

* Human Evaluation: Like last year, we collected
our own human quality ratings for our three lan-
guage pairs leveraging professional translators
performing MQM annotations (Lommel et al.,
2014; Freitag et al., 2021). We released and up-
loaded? all MQM annotations, and we recom-
mend using Marot® for looking into this data.

Meta Evaluation: This year, we designed the
meta-evaluation to evaluate metrics on how they
are used in practice, by focusing on pairwise
accuracy at the system- and segment-levels and
removing Pearson correlation. At the system-
level, we use a new statistic called soft pairwise
accuracy (Thompson et al., 2024), and, like last
year, we use pairwise accuracy with tie calibra-
tion (Deutsch et al., 2023) at the segment-level.

Challenge Sets Subtask: The submission for-
mat of the challenge sets changed to provide for
more flexibility on how the participants could
challenge the metrics. In contrast to previous
years, when the challenge items were evaluated
in a rigid pairwise manner on whether the met-
ric scores can distinguish between a good and
a bad translation, this year’s participants could
provide single translations and then employ an
evaluation concept of their own. This year’s sub-
task features 4 submissions that test the ability
of the metrics to evaluate MT outputs on African
languages, the biomedical domain, on more than
a hundred linguistically-motivated phenomena,
as well as on low- to mid-quality outputs and
specific challenges (empty strings, wrong/mixed
language output and language variants).

Understand Magnitude of Score Difference:

Similar to last year, we include two analyses to

understand the meaning of the score differences
https://github.com/google/

wmt —mgm-human-evaluation

*https://github.com/google-research/
google—-research/tree/master/marot
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that metrics present with respect to the statistical
significance of MT system rankings according
to human annotations and metric scores. These
analyses provide additional assistance for MT re-
searchers to build an intuition on the relationship
between the magnitude of metric score differ-
ences and the reliability of the improved transla-
tion quality.

MTME: Similar to last year, all the data has been
uploaded to MTME*, and all results in this pa-
per are calculated with this analysis tool. We
encourage every metric developer to use MTME
to calculate contrastive scores to enhance consis-
tency and comparability going forward.

Our main findings are:

e Two metametrics (which are both ensemble
metrics), MetricX-24-Hybrid and XCOMET,
are the winners of the WMT24 Metrics Shared
Task (Table 1);

Fine-tuned neural metrics continue to be
strong in performance and are effective quality
estimators, even for LLM-based translations;

Results from the challenge sets independently
suggest that it is important for metric re-
searchers to test the performance of metrics
in diverse collections of linguistic phenom-
ena, languages and domains, including low-
resource languages, mixed languages and ir-
regular outputs, and on a wide range of trans-
lation quality, in order to minimize anomalous
and unexpected behaviours of metrics (Sec-
tion 9).

The rest of the paper is organized as follows: Sec-
tion 2 describes the test data. Section 3 presents
an overview of the conducted expert-based human
evaluation. Section 4 describes the metrics evalu-
ated this year (baselines and participants). Sec-
tion 5 describes the conducted meta-evaluation.
Section 6 reports our main results. Section 7 inter-
prets and evaluates metrics’ scores beyond corre-
lations. Section 8 summarizes our results for the
WMT24 General MT Shared Task language-pairs
based on their new ESA human evaluation method-
ology (Kocmi et al., 2024c¢). Section 9 presents a
description of the submitted challenge sets along
with their findings. Finally, Section 10 summarizes
our most important conclusions.

*https://github.com/google-research/
mt-metrics-eval
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2 Translation Systems

Similar to previous years’ editions, the source, ref-
erence texts, and MT system outputs for the metrics
task are mainly derived from the WMT24 General
MT Shared Task (Kocmi et al., 2024a). The do-
mains cover news, literary, speech, and social. We
do not provide any sentence splitting, thus many
segments contain multiple sentences. Each lan-
guage pair contains a comparable number of sen-
tences from each domain, resulting in reasonably
balanced test sets. Data statistics can be seen in
Table 2. The language pairs en—de and en—es
have the same source segments; ja—zh consists of
segments from only 3 different domains.

news literary  speech social
#tokens
en— {de,es} 9,268 9,601 9,611 9,829
ja—zh 14,896 14,541 11,025
#docs (#segments/doc)
en—{de,es} 17 (8.8) 8(25.8) 111(1.0) 34(15.6)
ja—zh 45(6.0) 15 (21.1) 136 (1.0)

#sents (#sents/doc)

en—{de,es} 333(19.6) 607 (75.9) 685(6.2) 759 (22.3)
ja—zh 634 (14.1) 875 (58.3) 332 (2.4)

Table 2: Test set statistics split by domain. Statistics
are calculated on the source side.

The reference translations provided for the test sets
are produced by professional translators.

For more details regarding the test sets, we refer
the reader to the WMT24 General MT Shared Task
findings paper (Kocmi et al., 2024a). All data has
been released and can be downloaded”.

3 MQM Human Evaluation

Automatic metrics are commonly evaluated by mea-
suring correlations with corresponding human rat-
ings. The quality of these human ratings is criti-
cal, and recent findings (Freitag et al., 2021) have
shown that crowdsourced human ratings are not
sufficiently reliable for evaluating high quality MT
outputs. Furthermore, an evaluation schema based
on MQM (Lommel et al., 2014), which requires
explicit error annotation is more effective than an
evaluation schema that only asks raters for a sin-
gle scalar value per translation. Similar to last
year, we decided to conduct our own MQM-based

Shttps://github.com/wnt-conference/
wmt24-news-systems
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human evaluation on a subset of translation sys-
tem submissions and language pairs which we be-
lieve are most interesting for evaluating current
metrics. Instead of evaluating all MT system sub-
missions, we restrict our human evaluation to the
top scoring submissions, as determined based on
baseline automatic scores. MQM is a general
framework that provides a hierarchy of translation
errors which can be tailored to specific applica-
tions. Google and Unbabel sponsored the human
evaluation for this year’s metrics task for a subset
of language pairs using either professional trans-
lators (English—German, Japanese—Chinese) or
trusted and trained raters (English— Spanish). The
error annotation typology and guidelines used by
Google’s and Unbabel’s annotators differ slightly
and are described in the following two sections.

3.1 English—German & Japanese— Chinese

Annotations for en—de and ja—zh were sponsored
and executed by Google, using 18 professional
translators (10 for en—de, 8 for ja—zh) having
access to the full document context. Each segment
gets annotated by a single rater. Instead of assign-
ing a scalar value to each translation, annotators
were instructed to label error spans within each
segment in a document, paying particular attention
to document context. Each error was highlighted
in the text, and labelled with an error category and
a severity. Segments that are too badly garbled
to permit reliable identification of individual er-
rors are assigned a special Non-translation error.
Error severities are assigned independent of cat-
egory, and consist of Major, Minor, and Neutral
levels, corresponding respectively to actual transla-
tion or grammatical errors, smaller imperfections
and purely subjective opinions about the transla-
tion. Since we are ultimately interested in scoring
segments, we adopt the weighting scheme shown
in Table 3.

Severity | Category | Weight
Major Non-translation 25

all others 5
Minor Fluency/Punctuation | 0.1

all others 1
Neutral | all | 0

Table 3: Google’s MQM error weighting.

Recent research demonstrated that rater assign-
ment is crucial for reliable human evaluation and
we adopted the suggested Pseudo-Side-by-Side
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(pSxS) rater assignment as suggested in (Riley
et al., 2024). For more details, exact annotator
instructions and a list of error categories, we refer
the reader to Freitag et al. (2021) as the exact same
setup was used for the previous three metrics tasks.

3.2 English—Spanish (Latin America)

The annotations for the en—es (Latin America)®
language pair were sourced from Unbabel, who en-
gaged four professional native language annotators
possessing extensive translation experience. Much
like Google’s approach, these annotators were pro-
vided with the full document context, comprising
up to ten segments. Their task was to identify and
classify errors by highlighting them, following Un-
babel’s MQM 3.0 typology’.

The annotators were instructed to classify the
errors based on severity, with Unbabel’s classifica-
tion encompassing not only “Minor” and “Major”
error severities (analogous to Google’s criteria) but
also a “Critical” error severity. However, to ensure
consistency in our evaluation process, we opted
to align with the Google methodology outlined
previously. Specifically, we treated all annotated
“Critical” errors as “Major” errors, and we applied
a weighting scheme for punctuation errors, as de-
tailed in Table 3.

3.3 Human Evaluation Results

Due to the fact that we ran our own human evalua-
tion, we were only able to evaluate a subset of the
test segments. In Table 4, you can see the number
of segments and documents for each language pair
and test set that we used for human evaluation. In
all cases, the MQM score for a segment is the sum
of the scores for the errors in that segment, and
the MQM score for a test set is the average of the
MQM scores of the segments that were annotated.

The results of the MQM human evaluation can
be seen in Table 5. It’s important to note a non-
intentional, but important difference in our human
evaluation setting for the speech domain between
the three language pairs. For English—German
and English—Spanish, we asked human annota-
tors to compare translations against the ASR out-
put, which inadvertently disadvantaged participants
who used audio input, including those providing
human translations, as these translations rely on an

8Since the testset is for Spanish from Mexico rather than
Spanish from Spain, the conducted annotations were collected
taking that variant in consideration.

’see Unbabel Annotation Guidelines - Typology 3.0

error-free input. This is evident in the higher MQM
scores for the speech domain for both language
pairs for human translations and the dubformer sys-
tem (which also utilizes audio input). However,
for Japanese—Chinese, the human annotators com-
pared against the cleaned human transcription. This
mismatch was not intentional and we will discuss
the impact on the correlation numbers in Section 6.

4 Baselines and Submissions

We computed scores for several baseline metrics
in order to compare submissions against previous
well-studied metrics. We will start by describing
those baselines, and then we will describe the sub-
missions from participating teams. An overview of
the evaluated metrics can be seen in Table 6.

4.1 Baselines

SacreBLEU baselines We use the following met-
rics from SacreBLEU (Post, 2018) as baselines:

* BLEU (Papineni et al.,, 2002) is based
on the precision of n-grams between the
MT output and its reference, weighted by
a brevity penalty. Using SacreBLEU we
obtained sentence-BLEU values using the
sentence_bleu Python function and for
corpus-level BLEU we used corpus_bleu
(both with default argumentsg).

* SPBLEU (NLLB Team et al., 2022) are
BLEU scores computed with subword tok-
enization by the standardized FLORES-200
Sentencepiece models. We used the command
line SacreBLEU to compute the sentence level
SPBLEU” and we averaged the segment-level
scores to obtain a corpus-level score.

 CHRF (Popovi¢, 2015) uses character
n-grams instead of word n-grams to compare
the MT output with the reference. For CHRF
we used the SacreBLEU sentence_chrf
function (with default arguments'®) for
segment-level scores and we average those
scores to obtain a corpus-level score.

8Inrefs.1lcase.mixedllang. LANGPAIRItok. 13alsmooth.expl
version.2.3.0. For to-zh and to-ja language pairs, we use
tok.zh and tok.ja-mecab

“nrefs: 1lcase:mixedleff:yesltok:flores200lsmooth:expl ver-
sion:2.3.0

10¢chrF2llang. LANGPAIRInchars.6lspace.falselversion.2.3.0
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language | news | social | speech | literary

en—de 90/149 (17/17) 258/531 (34/34) | 111/111 (1/1) | 27/206 (8/8)
en—es 124/149 (14/17) | 281/531 (20/34) | 107/111 (1/1) | 110/206 (5/8)
ja—zh 255/269 (45/45) | n/a 136/136 (1/1) | 168/316 (15/15)

Table 4: Numbers of MQM-annotated segments per domain (number of docs in brackets).

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained transform-
ers to create soft-alignments between words in can-
didate and reference sentences using cosine similar-
ity. Based on the alignment matrix, BERTSCORE
returns a precision, recall and F1 score. We used
F1 without TF-IDF weighting.

BLEURT (Sellam et al., 2020) is a learned metric
fine-tuned on Direct Assessments (DA). Unlike
COMET, BLEURT encodes the translation and the
reference together and utilizes the [CLS] token as
an embedding to represent the pair. We employed
the BLEURT20 checkpoint (Pu et al., 2021), which
was trained on top of RemBERT using DA data
from previous shared tasks spanning from 2015 to
2019, along with additional synthetic data created
from Wikipedia articles.

COMET-22 (Rei et al., 2022a) is a learned met-
ric fine-tuned using DA from previous WMT Trans-
lation shared tasks. This metric relies on sentence
embeddings from the source, translation, and ref-
erence to produce a final score. We utilized the de-
fault model wmt 22-comet -da provided in ver-
sion 2.0.2 of the Unbabel/COMET framework.
This model employs XLM-R large as its backbone
model and is trained on data from the 2017 to 2019
WMT shared tasks, in combination with the MLQE-
PE corpus (Fomicheva et al., 2022).

COMETKIWI (Rei et al., 2022b) is a reference-
free learned metric that functions similarly to
BLEURT, but instead of encoding the transla-
tion along with its reference, it uses the source.
We utilized the wmt 22—cometkiwi—da model,
which was a top-performing reference-free met-
ric from the WMT22 shared task. This reference-
free metric is fine-tuned on the same data as
wmt 22-comet—da using the version 2.0.2 of the
Unbabel/COMET framework.

PRISMREFSMALL AND PRISMREFMEDIUM
(Thompson and Post, 2020a,b) are both reference-
based PRISM that uses a multilingual MT model
in zero-shot paraphrase model to score the candi-
date translation conditioned on the reference, and

51

the reference conditioned on the candidate transla-
tion, and averages the two scores. As LLMs have
become quite capable multi-lingual MT models,
we opted to use Llama3.1 (Llama Team, 2024) as
the underlying MT model this year. PRISMREF-
SMALL corresponds to Llama3.1 8B and PRISM-
REFMEDIUM corresponds to Llama3.1 70B. The
long context window of LLMs allows us to com-
pute scores for entire documents, while still averag-
ing scores for each sentence to produce sentence-
level scores (Vernikos et al., 2022). We chunked
longer documents into sub-documents of up to 10
sentences, and added a penalty for producing no
output.

YI1S1-1 (Lo, 2019) is an MT evaluation metric
that measures the semantic similarity between a ma-
chine translation and human references by aggre-
gating the IDF-weighted lexical semantic similari-
ties based on the contextual embeddings extracted
from pre-trained language models (e.g. RoOBERTa,
CamemBERT, XLLM-RoBERTHj, etc.).

4.2 Metric Submissions

The rest of this section summarizes the participat-
ing metrics.

BLCOM_1 and BLCOM Unfortunately, we
have no information about these submission.

BRIGHT-QE is areferenceless metric, which
uses the XLM-XL encoder to perform multi-stage
fine-tuning according to the XCOMET framework.
In the first stage of training, we used DA 2017 2022
corpus, and gradually reduced the weight of REF-
based loss with the idea of curriculum learning,
trying to reduce the model’s dependence on refer-
ence and better align the semantics of the transla-
tion and source text; in the second stage, we used
batch softmax to normalize scores, and introduced
KL divergence loss to learn to modify the minor
rank error that MSE loss cannot solve, so as to ob-
tain better Pearson correlation; finally, we further
fine-tuned on high-quality MQM corpus to achieve
better consistency with human expert MQM.



English—German |

System ‘ all news social speech literary
Dubformer 1.58 129 0.60 4.22 1.15
GPT-4 1.58 139 088 3.60 0.69
Unbabel-Tower70B | 1.65 1.99 0.78 3.46 1.41
ONLINE-B 1.81 148 122 3.59 1.30
TranssionMT 1.81 124 1.18 3.87 1.33
refB 1.84 138 080 492 0.1
Mistral-Large 193 195 1.12 391 1.46
CommandR-plus 2.01 240 1.07 3.95 1.74
refA 2.12 184 1.01 496 204
Gemini-1.5-Pro 220 129 193 290 497
ONLINE-W 222 132 175 4.09 212
Claude-3.5 228 1.00 1.23 6.04 1.13
IOL_Research 239 166 1.61 4091 2.01
Aya23 3.09 269 220 571 2.26
ONLINE-A 330 193 229 688 285
Llama3-70B 362 291 228 7.08 4.76
IKUN 386 435 236 7.09 348
IKUN-C 507 339 334 987 7.63
MSLC 13.46 11.54 824 2680 15.29
English— Spanish |,
System ‘ all  news social speech literary
GPT-4 0.12 0.03 0.14 024 0.03
Unbabel-Tower70B | 0.20 0.21 0.04 0.68  0.14
Claude-3.5 0.26 0.06 0.21 0.60 0.29
Mistral-Large 026 0.16 0.28 050 0.12
Gemini-1.5-Pro 0.39 0.18 0.56 054  0.06
Dubformer 043 029 0.07 200 0.01
Llama3-70B 0.52 0.10 0.28 2.17 0.02
refA 0.55 020 0.12 242  0.20
IOL_Research 0.57 0.44 033 139 0.56
CommandR-plus 0.62 050 0.34 0.52 1.55
ONLINE-W 0.64 0.17 0.27 236 0.46
IKUN 0.94 086 0.74 1.01 1.46
ONLINE-B 1.08 1.01 0.59 1.76 1.77
Aya23 1.52 1.52 1.09 2.03 212
MSLC 6.80 4.09 4.63 1099 11.36
Japanese—Chinese |
System ‘ all  news speech literary
Claude-3.5 122 076 296 0.76
refA 1.32 077 3.15  0.77
GPT-4 145 082 325 0.82
DLUT_GTCOM 1.52 1.06 3.66 1.06
Unbabel-Tower70B | 1.69 1.16 3.53 1.16
Gemini-1.5-Pro 1.78 0.84 3.80 0.84
CommandR-plus 191 1.28 4.61 1.28
IOL_Research 210 1.14 4.82 1.14
Aya23 3.03 1.86 644 1.86
Llama3-70B 3.07 2.16 6.16 2.16
Team-J 391 2.02 846 2.02
NTTSU 434 211 1051 211
ONLINE-B 527 372 952 3.2
IKUN-C 6.60 345 1441 3.45
MSLC 9.19 4.01 19.04 4.01

Table 5: MQM human evaluations for generalMT2024.
Lower average error counts represent higher MT quality.

Systems above any solid line are significantly better
than those below, based on all domains with p < 0.05.

CHRFS (Mukherjee and Shrivastava, 2024) is
an unsupervised reference-based metric, a semantic
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version of CHRF++ that integrates sentence embed-
dings to evaluate translation quality more compre-
hensively. By combining traditional character and
word n-gram analysis with semantic information
derived from embeddings, CHRFS captures both
syntactic accuracy and sentence-level semantics.

DAMONMONLI and MONMONLI is a proof-of-
concept of multiple ideas. A multi-lingual NLI
model is used to extract embeddings for (mt, src)
and (mt, ref) pairs, based on findings of Chen and
Eger (2023). A multi-task learning approach is
employed where different human annotations from
WMT?22 and WMT?23 are used as different tasks.
For each task, it uses a separate regression head
that learns a monotonic function of the metric’s
score(Runje and Shankaranarayana, 2023). The
main metric "DAMONMONLI" also includes a do-
main adversarial loss (Ganin and Lempitsky, 2015)
to make metric representations robust against shifts
in MT systems and language pairs.

GEMBA-ESA (Kocmi and Federmann, 2023)
is an extension of previous work on an LLM-based
metric, with an updated prompt to reflect the new
human evaluation protocol ESA (Kocmi et al.,
2024c) used at WMT General MT task. It con-
tains a two-step approach where in the first step,
MQM error spans are collected and in a second
step, the final score is assigned.

MEE4 (Mukherjee and Shrivastava, 2023a) is
an unsupervised, reference-based metric (an im-
proved version of MEE) focusing on computing
contextual and syntactic equivalences, along with
lexical, morphological, and semantic similarity.
The goal is to comprehensively evaluate the fluency
and adequacy of MT outputs while also consider-
ing the surrounding context. Fluency is determined
by analysing syntactic correlations, while context
is evaluated by comparing sentence similarities us-
ing sentence embeddings. The ultimate score is
derived from a weighted amalgamation of three
distinct similarity measures: a) Syntactic similarity,
which is established using a modified BLEU score.
b) Lexical, morphological, and semantic similar-
ity, quantified through explicit unigram matching.
c¢) Contextual similarity, gauged by sentence simi-
larity scores obtained from the Language-Agnostic
BERT model.

METAMETRICS-MT  (Anugraha et al., 2024;
Winata et al., 2024) is a machine translation
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(MT) metric developed from our METAMET-
RICS (Winata et al., 2024), specifically designed to
better align with human preferences using Bayesian
optimization with Gaussian Processes (GP). By sys-
tematically integrating multiple existing metrics,
we create a sparse allocation that only includes met-
rics enhancing the overall correlation score. We
optimize this metric by maximizing Kendall scores
from the WMT shared task (MQM) 2020-2022.
METAMETRICS-MT achieves state-of-the-art per-
formance for reference-based metrics, while its
reference-free variant, METAMETRICS-MT-QE,
demonstrates competitive correlation with human
scores in the WMT24 metric shared task. By strate-
gically assigning weights to combined metrics,
METAMETRICS-MT aims to be as competitive
as, if not superior to, any individual metric. To ad-
dress missing values when reference data is unavail-
able, we propose a hybrid variant, METAMETRICS-
MT-HYBRID, which utilizes both metrics to com-
pensate for the absence of reference data in the
reference-based setting.

METRICX-24 (Juraska et al., 2024) is a
learned regression-based metric that builds on top
of its predecessor from 2023. Similar to METRICX-
23, it is based on the mT5-XXL pretrained lan-
guage model, which is fine-tuned in two stages on
DA and MQM scores from WMT 2015-22, and
it implements three major design improvements.
First, the training data in both stages is augmented
with synthetic examples to make the metric more
robust to several common failure modes, such as
fluent but unrelated translation, or undertranslation.
Second, a small proportion of DA data is mixed in
during the second stage of fine-tuning in order to
preserve the performance on non-MQM language
pairs. Finally, the model’s training is done on a
mixture of examples that include the source only,
the reference only, or both, which allows the model
to operate in both a QE and a reference-based mode
(and the latter either with or without the source in-
cluded). Hence, both METRICX-24-HYBRID and
METRICX-24-HYBRID-QE submission are in fact
the exact same model, only with the references
excluded from the input in the latter case.

SENTINEL-CAND-MQM, SENTINEL-REF-MQM
and SENTINEL-SRC-MQM (Perrella et al., 2024)
are designed explicitly to scrutinize the accuracy,
robustness, and fairness of the meta-evaluation pro-
cess. The three sentinel metrics are trained only
on the candidate, reference and source sentence re-
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spectively on DA and MQM data from WMT 2017
to 2022.

XCOMET AND XCOMET-QE (Guerreiro
et al.,, 2023) models are trained using both a
sentence-level signal and span-level supervision
coming from MQM data from previous years,
along with some synthetic data that mimics hal-
lucinations. We ensemble XCOMET-XXL and
XCOMET-XL to give a single unified score.

XLSIMMQM (Mukherjee and Shrivastava,
2023b) is an enhanced version of XLSIM, a su-
pervised reference-based evaluation metric, which
we have transformed into a reference-free model
to improve its applicability across multiple lan-
guage pairs. Unlike the original XLSIM, which
was limited to the English-German language pair,
XLSIMMQM is trained on a filtered comprehen-
sive dataset curated from WMT-MQM (2020-22),
ensuring broader applicability and robustness. The
filtered datasets (train, dev and test) contains uni-
form distribution across good, medium and poor-
quality sentences; this careful balancing of the
dataset leads to a better, reliable and robust metric.

5 Meta Evaluation

The goal of metric meta-evaluation is to quantify
how well automatic metrics agree with human rat-
ings of translation quality. There are a multitude
of ways to approach this problem, as evidenced
by the variety of solutions proposed by previous
years’ editions of the shared task. For instance—
to name just a few possible design decisions—the
agreement can be measured at the system or seg-
ment level; the agreement function can be Pearson,
Spearman, Kendall, pairwise agreement, or Lo loss;
the agreement can be computed per domain or on
the full dataset. None of these approaches are nec-
essarily right or wrong, but rather each method
evaluates a different property of the metric.
Because there is no one way to evaluate a metric,
the past two iterations of the Metrics Shared Task
defined a variety of “tasks” (or different configu-
rations of meta-evaluations) that evaluated some
aspect of a metric, then calculated an overall qual-
ity score by averaging the individual task scores.
Implicitly, this approach defines a “high-quality”
metric as one that performs well across the tasks on
average. In 2022, there were 201 tasks that varied
along dimensions such as language pair, domain,
correlation granularity, correlation statistic, etc. In



2023, the number of tasks was reduced to 10, mea-
suring only pairwise accuracy and Pearson at both
the system and segment levels.

For this year’s meta-evaluation, we follow the
same approach of averaging performance across
tasks, but focus the tasks to better align with how
evaluation metrics are used in practice. The two
main use cases that we targeted were using metrics
to rank a set of MT systems and using a metric
to rank a set of translations for the same source
segment. The former setting is widely used by
academics and practitioners in industry to deter-
mine whether one model produces better transla-
tions than another, and the latter setting has ap-
plications in Minimum Bayes Risk Decoding and
Quality Estimation Reranking either directly as
decoding method (Fernandes et al., 2022; Freitag
et al., 2022) or to further fine-tune models (Finkel-
stein and Freitag, 2024; Finkelstein et al., 2024).
The latter one is getting more popular and can in-
troduce metric biases (Kovacs et al., 2024) that is
an emerging challenge for metrics. As such, we
defined one task to quantify how well metrics work
for each of these two use cases separately for all
three language pairs, resulting in a total of six tasks.

At the system-level, we use the recently pro-
posed metric called soft pairwise accuracy, or SPA
(Thompson et al., 2024). One of the drawbacks
of standard pairwise accuracy (or the very related
Kendall’s 7) that has been used in previous years’
shared tasks is that it does not account for the un-
certainty of the system ranking. For example, if the
human ranking of two systems is almost arbitrary
(e.g, a statistical tie) but the metric ranking is quite
certain, standard pairwise accuracy will either re-
ward or penalize the metric nearly randomly. The
reverse case—a certain human ranking and uncer-
tain metric ranking—also nearly arbitrarily rewards
or penalizes metrics. If both rankings are uncertain,
the metric will again be rewarded nearly randomly,
and the penalty for an incorrect ranking is equal to
when the metric was very certain but also wrong.

SPA addresses this problem by using p-values
as a proxy for certainty, calculating p-values be-
tween two systems using both the metric and hu-
man scores, then taking 1.0 minus the absolute
difference between the two p-values as the metric’s
score for that pair. This rewards metrics that re-
sult in the same statistical conclusion as the human
scores. Now, statistical ties do not randomly reward
or penalize metrics, but instead the score is propor-
tional to whether or not the metric and human have
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language | refused scored ref
en—de B A
en—es A -
ja—zh A -

Table 7: Use of reference translations.

task lang level correlation wt
1 en—de  system SPA 1
2 en—de segment accg, 1
3 en—es  system SPA 1
4 en—es segment accg, 1
5 ja—zh  system SPA 1
6 ja—zh segment accy, 1

Table 8: For each language pair, soft pairwise accuracy
(SPA) was used at the system-level and acc, at the
segment-level. Each task was given equal weight in the
overall average. See §5 for explanations of SPA and
acc?

eq*
the same level of certainty in the ranking.

At the segment-level, we follow last year’s meta-
evaluation and meta-evaluate metrics using “group-
by-item” segment-level accuracy with tie calibra-
tion (Deutsch et al., 2023) denoted accy,.

The six tasks (shown in Table 8) receive equal
weighting in the overall average, which is the final
score for the metric.

Removing Pearson’s Correlation: Notably, the
meta-evaluation this year only focuses on evaluat-
ing rankings and does not include any correlation
that evaluates the absolute value of the scores pre-
dicted by metrics, like Pearson’s correlation. This
decision was made because using metrics to rank
systems or translations is much more common in
practice than using a metric to approximate the ab-
solute quality score as derived by humans, which
is more similar to a Pearson correlation.

Limitations: Like previous years, we acknowl-
edge that this approach is not perfect. One problem
is that we need to combine correlations and ac-
curacies that may have different dynamic ranges,
which could result in certain tasks carrying more
weight than others in the overall ranking. However,
to simplify the implementation, we assigned equal
weight to all tasks, which worked well in last year’s
evaluation.

5.1 Rank Assignment

For each task, we assign ranks to metrics based on
their significance clusters in the same way that we



did last year, detailed below.

We compare all pairs of metrics and determine
whether the difference in their correlation scores is
significant, according to the PERM-BOTH hypoth-
esis test of Deutsch et al. (2021). We use 1000 re-
sampling runs and set p = 0.05. As advocated by
Wei et al. (2022), we divide the sample into blocks
of 100, compute significance after each block (cu-
mulative over all blocks sampled so far), and stop
early if the p-value is < 0.02 or > 0.50.

The accy,, statistic creates a problem for signifi-
cance testing because it optimizes a latent tie thresh-
old for each metric on each test set (just one thresh-
old for all item-wise score vectors). Since the per-
mutation test for comparing two metrics creates
two new vectors by randomly swapping elements
of the original vectors on each draw, this necessi-
tates the very expensive step of finding two new tie
thresholds for each draw. To reduce the expense,
we used the following approximate procedure. First
find an optimal threshold for each input metric on
the current test set, then create all pairs of item-wise
scores and assign a correct/incorrect status to each
pair by examining whether the metric’s ranking
matches the human ranking. Then perform the per-
mutation test on these pairwise status vectors rather
than the original score vectors. This approximation
has more degrees of freedom than the original test,
and can sample pairs that would never result from
swapping the original score vectors, but our experi-
ments showed that it is a reasonable proxy for the
correct procedure.

To compute overall p-values based on weighted
average scores of two metrics across all tasks, we
cache the results of the draws for the per-task sig-
nificance tests. In all cases, these are vectors of K
pairs of correlation or accuracy statistics. Where
K <1000 due to early stopping, we duplicate ele-
ments to get 1000 examples. Then for ¢ in 1..1000
we compare the weighted average of the pairs from
the 7th draw across all tasks, and record the results
to produce an overall p-value.

Clustering. Given significance results (p-values)
for all pairs of metrics, we assign ranks as follows.
Starting with the highest-scoring metric, we move
down the list of metrics in descending order by
score, and assign rank 1 to all metrics until we en-
counter the first metric that is significantly different
from any that have been visited so far. That met-
ric is assigned rank 2, and the process is repeated.
This continues until all metrics have been assigned
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a rank. Note that this is a greedy algorithm, and
hence it can place two metrics that are statistically
indistinguishable in different clusters.

5.2 Implementation Details

The code for running the meta-evaluation is avail-
able in the MT Metrics Eval library.!!

To calculate p-values for SPA, we use a paired
permutation test (Noreen, 1989) with 1k resamples.

In previous years’ shared tasks, tasks were cate-
gorized based on whether they included additional
reference translations in the overall system ranking.
Following last year’s proposal, we always include
the additional reference in the overall ranking. This
year, this only applies to en—de which is the only
language pair with more than one reference trans-
lation (see Table 7).

Out of all the submitted MT systems, MSLC
consistently scores well below the other systems for
all language pairs and was identified as an outlier
and removed from the correlation calculation.

6 Main Results

As we have described in Section 5, the final statistic
used to rank the metrics is defined as the average
of the results from the six main tasks (system-level
and segment-level tasks in different language pairs).
Table 1 shows the official scores and rankings of
all baselines and primary submissions. Table 9
shows the scores and rankings of each individ-
ual task at system level and segment level, respec-
tively. Similar to last year’s results, neural metrics
perform significantly better than lexical metrics.
Of the 26 evaluated metrics, BLEU, SPBLEU and
CHRF are ranked 23rd, 22nd and 20th respectively.
Fine-tuned neural metrics, like XCOMET and
METRICX-23 are the highest ranked non-ensemble
metrics. The ensemble submission METAMET-
RIC_MT is in the same significance cluster as
XCOMET and METRICX-24-HYBRID, but re-
lies heavily on the 2023 version of METRICX-
24-HYBRID. Like last year, QE metrics perform
very well, with METRICX-24-HYBRID-QE and
GEMBA_ESA sharing the second significance clus-
ter.

Figure 1 shows the correlation scores split by lan-
guage pair. Interestingly, GEMBA_ESA is perform-
ing very well for en—es and ja—zh, while ranked
below many metrics for en—de. GEMBA_ESA is

"https://github.com/google-research/
mt-metrics-eval
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en-de en-de en-es en-es ja-zh ja-zh

sys seg sys seg sys seg

SPA acc SPA accy, SPA accy,
Metric avg-corr task1 task2 task3 task4 task5 task6
MetaMetrics-MT 1 0725 |2 0883 | 1 0542 |1 0.804 |2 0686|2 0873 | 1 0.561
MetricX-24-Hybrid 1 0721 |2 0874 | 2 05322 0799 |3 068 |1 0897 | 2 0.539
XCOMET 1 0719 |1 0905| 2 05302 0791 |1 068 |1 0890 | 5 0.510
MetricX-24-Hybrid-QE* | 2 0.714 | 2 0.878 | 3 0526 |2 0789 |4 0.685 |2 0.875| 3 0.530
gemba_esa* 2 071114 0793 | 5 0507 |1 0838 |5 0.683 |1 0908 | 2 0.539
XCOMET-QE* 3 06951 088 | 4 05201 0801 |2 0.687 |4 0.808| 10 0.463
COMET-22 3 0688 |2 0879 | 8 0482 |2 0778 |5 0.683 |4 0813 | 6 0.496
BLEURT-20 3 068 |2 0881 | 7 04863 0.695|6 0.681 |1 0.887 | 8 0.484
MetaMetrics-MT-QE* 3 0684 |2 0860 | 6 0497 |3 0.711 |2 0.68 | 3 0837 | 4 0516
bright-qe* 4 0681 |3 0816 6 05002 0792 |1 0.689 | 4 0.805| 8 0484
BLCOM_1 4 0664 |3 0840 | 10 04553 0680 |6 0.681 |3 0.843| 7 0488
sentinel-cand-mqm* 5 0650 |3 0822 | 4 0517 |2 0785 |4 0683 |7 0.610| 8 0481
PrismRefMedium 5 0646 | 4 0776 | 14 0434 |3 0.652 |7 0.680 | 2 0.872 | 10 0.462
PrismRefSmall 5 0642 |4 0772 |14 0433 |4 0634 |8 0.680 |2 0.875| 11 0457
CometKiwi* 5 0640 |5 0732 | 9 0467 |3 0693 |4 0.684 |5 0776 | 7 0.490
damonmonli 5 06355 069 | 12 0443 |4 0607 |6 0682 |1 0911 | 9 0472
YiSi-1 6 06304 0759 |13 0436 |4 0609 |7 0.681 |3 0.835| 11 0458
BERTScore 7 0617 |4 0749 | 14 0435 |4 0587 |6 0.682 |4 0.799 | 12 0451
MEE4 7 0609 |5 0731 |13 0437 |7 0504 |4 0.683 |2 0.855 | 13 0.446
chrF 8 0.608 |4 0750 |15 0431 |5 0581 |8 0.680 |5 0.767 | 16 0.436
chrfS 8 0606 |4 0742 |14 0434 |6 0549 |6 0.682 |4 0.788 | 14 0.444
spBLEU 9 0593 4 0741 |17 0431 |6 0523 |7 0.680 |6 0744 | 16 0.436
BLEU 9 0589 |4 0736 |16 0431 |6 05128 0.680 |6 0.740 | 17 0435
XLsimMgm* 10 05156 0612 |11 0450 |8 0359 |7 0681 |7 0548 |15 0438
sentinel-src-mgqm* 10 0513 |7 0406 |18 0429 |5 0580 | 8 0.680 | 8 0.546 | 17 0.435
sentinel-ref-mqm 10 0513 |7 0405 |18 0429 |4 0581 |8 0.680 |8 0.545 |17 0435

Table 9: Correlation results per task for the main language pairs. See §5 for descriptions of soft pairwise accuracy
(SPA) and accg,. Rows are sorted by the overall average correlation across all 6 tasks (leftmost column). Starred
metrics are reference-free, and underlined metrics are baselines.

a prompt-based metric and not fine-tuned for any
metric task. Both en—es and ja—zh are new lan-
guage pairs, and no fine-tuning data exists which
might have played in disadvantage for all fine-tuned
metrics.

We continue to be interested in metrics’ abili-
ties to generalise across domains. In Figure 2, we
present the performance of each metric across dif-
ferent domains. Similar to last year, we observe
that neural metrics perform better than lexical over-
lap metrics across all four domains. Figure 3 shows
the average correlations of metrics when grouped
separately by system-level and segment-level tasks.
There is a high correlation between the rankings of
both granularities.

7 Beyond accuracy and correlation

Last year, we conducted two additional analyses
beyond correlation with human scores to find the

threshold of metrics’ score differences correspond
to statistical significance of MT system rankings
demonstrated by human annotators and the metrics
themselves. Despite the better correlation with hu-
man judgements achieved by new neural metrics,
BLEU remains as the most used metric in the MT
research community. One of the reasons is that
MT researchers have established some “shared un-
derstanding” about the relationship between BLEU
and the actual translation quality, and similar in-
tuitions about new metrics have yet to crystallize.
Our analyses beyond correlation provided an inter-
pretation of the metrics’ score differences. Hence,
we are continuing such analyses to support build-
ing an intuitive sense of metric score meanings
and encourage broader adoption of new automatic
MT evaluation metrics. As a reminder, our results
should NOT be used as arguments to forego signifi-
cance tests or appropriate human evaluation.
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Figure 1: Average metrics’ meta-evaluation scores in
tasks grouped by language pair.
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Figure 2: Average metrics’ correlation with human in
tasks grouped by domain.
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Figure 3: Average metrics’ correlation with human in
tasks grouped by granularity level.

7.1 Correspondence to MQM scores
significance

We first study the relationship between statistically
significant differences in human scores and the
magnitude of metric differences as in Lo et al.
(2023a). We run a two-sided paired t-test with
an equal variance assumption for each system pair
on segment-level MQM scores. After that, we fit
the corresponding metric score differences and the
p-values of the t-test on the MQM scores to an
isotonic regression (Robertson et al., 1988), that
predicts whether the human MQM score differ-
ence will be significant given the metric’s score
difference. Isotonic regression produces a non-
decreasing function where the classifier output can
be interpreted as a confidence level.'”> We set
Pmgm < 0.05 as the significance level of MQM
scores. Thus, the output of the isotonic regression
function can be viewed as Pr(pgm < 0.05|AM)
where prqm 18 the p-value of the t-test on the MQM
scores for each system pair and AM is the metric
score difference.

Figure 4 shows the (log) p-value of two-sided
paired t-test on the MQM scores against the corre-

Phttps://scikit-learn.org/stable/
modules/isotonic.html


https://scikit-learn.org/stable/modules/isotonic.html
https://scikit-learn.org/stable/modules/isotonic.html

sponding BLEU and COMET-22 score difference
for each system pair in en—de. Figures 6-10 in
appendix D, show the same analyses for all metrics
and language pairs. For each metric, we can choose
a particular level of confidence (i.e., a point along
the y-axis on the right) to give metric score differ-
ence cut-offs (i.e., a point along the x-axis) that this
metric difference reflects significant MQM score
differences. Drawing a horizontal line from the
confidence level, say 80%, to the red line enables
us to find the minimum metric difference cut-off
required at the corresponding x-value down from
the red line, i.e. 5.4 for BLEU in Figure 4. Using
this lookup method, Table 10 shows the cut-offs
of AM when Pr(pmgm < 0.05|/AM) = 0.8 for
each metric and language pair.

We run the leave-one-system-out cross vali-
dation and Table 10 shows that the range of
precision in the cross validation are consis-
tently high across metrics, except for BLEU,
BRIGHT-QE, COMETKIWI, MEE4, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, SPBLEU
and XLSIMMOQM. This means the metric cut-offs
we find using the regression model are reliable.

Contrary to the shared understanding that 2
BLEU improvement represents “significant” or “no-
table by human” improvement in the actual trans-
lation quality, our analyses show that 5.4 BLEU
improvement is required to be confident (80%) that
the MQM scores would be different with statistical
significance for en—de and that threshold would
be as high as 11 BLEU for en—es. Table 10 serves
as a reference between BLEU differences and dif-
ferences in some of the modern metrics and assists
metric users in understanding scores provided by
modern metrics. For example, when evaluating
ja—zh translation quality, we see that a BLEU dif-
ference of 1.4 corresponds to 80% confidence that
the metric’s ranking of the two MT systems will
match the decision made by human annotators with
a significant difference. Meanwhile, a COMET-22
score difference of 0.021 would have the same 80%
chance of human judged significant difference.

7.2 Correspondence to metric scores
significance

We run a study similar to that in the previous sub-
section but on the relations between statistically
significant differences in metric scores and the mag-
nitude of metric differences as inspired by Marie
(2022). Instead of the two-sided t-test on MQM,
the p-values are now obtained by running statis-
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tical significance tests with bootstrap resampling
on the metric scores for each system pair. We fit
the corresponding metric score differences and the
p-values of the significance test to an isotonic re-
gression for predicting whether the translation qual-
ity improvement as indicated by the metric will be
significant given the metric score difference. We
set pas < 0.05 and thus, the output of the isotonic
regression function is now Pr(py; < 0.05|AM),
where pjy is the p-value of the significance test on
the metric scores for each system pair and AM is
the metric score difference.

Figure 5 shows the (log) p-value of the signifi-
cance test with bootstrap resampling on the metric
scores for BLEU and COMET-22 score difference
of each system pair in en—de. Additional figures
(Figures 11-15 in appendix Appendix D) show the
same analyses for all metrics and language pairs.
Using the same lookup method described in the
previous subsection, Table 11 shows the cut-offs of
AM when Pr(py < 0.05|]AM) = 0.8 for each
metric and language pair.

We run the leave-one-system-out cross valida-
tion, and Table 11 shows that the range of precision
in the cross validation are consistently high across
metrics. This means the metric cut-offs we find
using the regression model are reliable.

Table 11 serves as a reference of metric dif-
ferences that correspond to statistical significance
with high confidence. For example, when evaluat-
ing en—de translation quality, we see that a BLEU
difference of 0.97 corresponds to 80% confidence
the difference is statistically significant. Mean-
while, a COMET-22 score difference of 0.0043
would have the same 80% chance of statistical
significance. Our results, agreeing with Marie
(2022), show that to claim significant differences
(par < 0.05) in BLEU with high confidence (80%),
the differences should be much higher than the
shared understanding of 0.5 BLEU, ranging from
0.89 to 0.97 for the three language pairs.

Closely related to this analysis, Kocmi et al.
(2024b) investigated the agreement between hu-
man evaluations and metric differences, employ-
ing pairwise accuracy as the meta-evaluation met-
ric. Assuming an 80% agreement rate with human
judgments, their findings align closely with ours
for pretrained metrics but not for metrics such as
BLEU or ChrF. For instance, COMET-22 requires
a score difference of 0.0056 to achieve 80% ac-
curacy with humans, compared to our range of
0.0043-0.0055. Similarly, CometKiwi requires a
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en—de en—es ja—zh
Metric min AM  c.v. precision | min AM  c.v. precision | min AM  c.v. precision
BERTSCORE 0.0099 [50-100%] 0.018 [50-100%] 0.013 [64-100%]
BLCOM_1 0.022 [75-100%] 0.034 [50-100%] 0.021 [62-100%]
BLEU 54 [67-100%] 11 [0-100%] 1.4 [50-100%]
BLEURT-20 0.021 [62-100%] 0.014 [60-100%] 0.029 [80-100%]
BRIGHT-QE 0.018 [20-100%] 0.049 [50-100%] 0.061 [62-100%]
CHRF 3.0 [67-100%] 2.1 [57-100%] 35 [78-100%]
CHRFS 0.023 [50-100%] 0.043 [50-100%] 0.021 [60-100%]
COMET-22 0.018 [50-100%] 0.017 [60-100%] 0.021 [60-100%]
COMETKIWI 0.024 [17-100%] 0.027 [33-100%] 0.050 [67-100%]
DAMONMONLI 0.84 [27-100%] 0.064 [50-100%] 0.51 [88-100%]
GEMBA_ESA 4.5 [70-100%] 1.5 [67-100%] 4.8 [86-100%]
MEE4 0.019 [25-100%] 0.028 [33-100%] 0.019 [55-100%]
metametrics_mt_mqm_hybrid_kendall 0.029 [53-100%] 0.066 [60-100%] 0.066 [70-100%]
metametrics_mt_mqm_qe_kendall.seg.s 0.016 [14-100%] 0.025 [50-100%] 0.031 [67-100%]
METRICX-24-HYBRID 0.52 [73-100%] 0.95 [62-100%] 0.60 [75-100%]
METRICX-24-HYBRID-QE 0.44 [62-100%] 0.39 [67-100%] 0.63 [78-100%]
PRISMREFMEDIUM 0.073 [67-100%] 0.12 [50-100%] 0.14 [56-100%]
PRISMREFSMALL 0.10 [67-100%] 0.15 [50-100%] 0.15 [56-100%]
SENTINEL-CAND-MQM 0.066 [50-100%] 0.13 [50-100%] 0.088 [55-100%]
SENTINEL-REF-MQM — — — — — —
SENTINEL-SRC-MQM — — — — — —
SPBLEU 4.3 [50-100%] 9.1 [0-100%] 4.0 [75-100%]
XCOMET 0.022 [53-100%] 0.025 [67-100%] 0.046 [78-100%]
XCOMET-QE 0.013 [50-100%] 0.029 [50-100%] 0.062 [67-100%]
XLSIMMQM 0.018 [100-100%] 0.0012 [57-100%] 0.004 [43-100%]
YiSi-1 0.0063 [60-100%] 0.0098 [56-100%] 0.012 [75-100%]

Table 10: Minimum AM when Pr(pyqm < 0.05|AM) = 0.8 for each metric in different language pairs round to
2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out cross

validation.

difference of 0.0053, while our results range from
0.0037 to 0.0056. Conversely, for BLEU, their
analysis suggests an expected improvement of 2.34
BLEU points for 80% agreement, whereas our anal-
ysis indicates a need for an improvement of 0.89—
0.97 BLEU points. However, it is important to note
that we are comparing distinct metrics, and that
confidence levels are not directly comparable to
agreement rates.
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We have to emphasize again that our result
should NOT be interpreted as evidence to forego
significance tests or appropriate human evaluation.
Instead, we are only providing assistance to build
an intuition on the meaning of the scores provided
by the new metrics to encourage the transition
away from lexical metrics towards more recent and
stronger metrics.
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en—de en—es ja—zh
Metric min AM  c.v. precision | min AM  c.v. precision | min AM  c.v. precision
BERTSCORE 0.0028 [92-100%] 0.0028 [100-100%] 0.0044 [100-100%]
BLCOM_1 0.0039 [100-100%] 0.0055 [100-100%] 0.0044 [100-100%]
BLEU 0.97 [100-100%] 0.93 [100-100%] 0.89 [91-100%]
BLEURT-20 0.0056 [96-100%] 0.0053 [94-100%] 0.0068 [95-100%]
BRIGHT-QE 0.0041 [89-100%] 0.0078 [94-100%] 0.024 [95-100%]
CHRF 0.83 [96-100%] 0.77 [94-100%] 0.89 [100-100%]
CHRFS 0.0051 [91-100%] 0.0054 [95-100%] 0.0055 [95-100%]
COMET-22 0.0043 [96-100%] 0.0055 [86-100%] 0.0046 [95-100%]
COMETKIWI 0.0037 [100-100%] 0.0048 [82-100%] 0.0056 [100-100%]
DAMONMONLI 0.20 [94-100%] 0.17 [82-100%] 0.41 [90-100%]
GEMBA_ESA 0.82 [92-100%] 0.85 [91-100%] 1.4 [100-100%]
MEE4 0.0042 [95-100%] 0.0051 [86-100%] 0.0057 [95-100%]
metametrics_mt_mqm_hybrid_kendall 0.0067 [92-100%] 0.0081 [89-100%] 0.013 [90-100%]
metametrics_mt_mqm_qe_kendall.seg.s 0.0038 [89-100%] 0.0050 [80-100%] 0.0089 [95-100%]
METRICX-24-HYBRID 0.11 [100-100%] 0.15 [100-100%] 0.14 [95-100%]
METRICX-24-HYBRID-QE 0.087 [90-100%] 0.14 [100-100%] 0.12 [100-100%]
SENTINEL-CAND-MQM 0.011 [96-100%] 0.013 [95-100%] 0.030 [95-100%]
SENTINEL-REF-MQM — — — — — —
SENTINEL-SRC-MQM — — — — — —
SPBLEU 0.96 [96-100%] 1.1 [95-100%] 1.0 [100-100%]
PRISMREFMEDIUM 0.019 [95-100%] 0.02 [100-100%] 0.036 [90-100%]
PRISMREFSMALL 0.023 [96-100%] 0.022 [100-100%] 0.042 [95-100%]
XCOMET 0.0051 [100-100%] 0.0065 [86-100%] 0.010 [95-100%]
XCOMET-QE 0.0044 [96-100%] 0.0058 [94-100%] 0.0099 [100-100%]
XLsIMMQM 0.0036 [82-100%] 0.0013 [90-100%] 0.0019 [79-100%]
YiSi-1 0.0010 [91-100%] 0.0014 [90-100%] 0.0051 [100-100%]

Table 11: Minimum AM when Pr(pyr < 0.05|/AM) = 0.8 for each metric in different language pairs round to
2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out cross

validation.

8 ESA Human Evaluation

In addition to our MQM annotations and as a con-
trastive evaluation to cover more language pairs,
we look into the performance of metrics when com-
pared to the human evaluation campaign conducted
by the WMT24 General MT Shared Task (Kocmi
et al., 2024a), which ran human evaluation for nine
language pairs.

In contrast to previous years, WMT24 redefined
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their human evaluation process and developed a
new method called Error Span Analysis (ESA,
Kocmi et al. (2024c¢)), a method that simplifies
MQM by asking annotators only to mark error
spans and classify them either as minor or major
severity. In addition to that, the annotator is asked
to mark the whole segment with a score of 0—100
in the SQM fashion. As Kocmi et al. (2024¢) claim,
the method is cheaper than MQM to annotate, yet



it produces closer human judgment to MQM anno-
tations than the formerly used DA+SQM (Kocmi
et al., 2023) due to being less affected by fluency.

We present system-level accuracy results for
both MQM and ESA in Table 15. There are many
factors that could affect the ranking. Apart from
using a different human annotation protocol, MQM
compares 3 language pairs whereas ESA compares
9 language pairs, containing also two low-resource
pairs: Czech— Ukrainian and English—Icelandic.
There is an overlap of only one language pair be-
tween the two: English— Spanish.

Most of the metrics have a similar ranking for
both MQM and ESA; however, there are two met-
rics with largely different rankings: GEMBA_ESA
and metametrics_mt_mqm_qge_kendall.seg.s,
whose rankings are significantly lower under
ESA than for MQM. The likely explanation
for GEMBA_ESA is that ESA doesn’t produce
ties, in contrast to MQM, whereas GEMBA_ESA
produces them regularly. As for the latter metric,
we don’t see any clear pattern except for having
low performance for Czech— Ukrainian.

9 Challenge Sets Sub-task

For the third year, the Metrics Shared Task included
a sub-task involving challenge sets. This sub-task
is inspired by the Build it or break it: The Lan-
guage Edition shared task (Ettinger et al., 2017)
which aimed at testing the generalizability of NLP
systems beyond the distributions of their training
data. Whereas the standard evaluation of the shared
task is conducted on test sets containing generic
text from real-world content, the challenge set eval-
uation is based on test sets designed with the aim of
revealing the abilities or the weaknesses of the met-
rics or evaluating particular translation phenomena.
In order to shed light on different perspectives on
evaluation, the sub-task takes place in a decentral-
ized manner, since contrary to the main metric task,
the test sets are not provided by the organizers but
by different research teams, who are also responsi-
ble for analysing and presenting the results.

This subtask is made of three consecutive phases;
1) the Breaking Round, 2) the Scoring Round and
3) the Analysis Round:

1. In the Breaking Round, every challenge set
participant (Breaker) submits their challenge
set S composed of examples for different phe-
nomena, where every example (s,t,7) € S
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contains one source sentence s, one transla-
tion hypothesis ¢ and one reference r.

In the Scoring Round, The metrics participants
from the main task (the Builders) are asked to
score with their metrics the translations in the
given test set. Also, in this phase, the metrics
task organizers score all data with the baseline
metrics.

. Finally, after having gathered all metric scores,
the organizers return the respective scored
translations to the Breakers for the Analysis
round, where they employ their own evalua-
tion for the performance of the metrics with
regard to the phenomena they intended to test.

This year there were 4 submissions, covering a
wide range of phenomena and 23 different language
pairs, which supersede the official language pairs
of the Metrics Shared Task. An overview of the
submitted challenge sets can be seen in Table 12.
A short description of every submission follows:

AfriMTE Challenge Set The AFRIMTE chal-
lenge set (Wang et al., 2024b) aims to evaluate the
capabilities of metrics for machine translation on
low-resource languages, primarily assessing cross-
lingual transfer learning and generalization across
a wide range of under-resourced African languages.
The challenge set concentrates on the subsets
of the FLORES-200 dataset (NLLB-Team et al.,
2022) and covers 13 language pairs. Specifically,
there are Darija-French, English-Egyptian Ara-
bic, English-French, English-Hausa, English-Igbo,
English-Kikuyu, English-Luo, English-Somali,
English-Swahili, English-Twi, English-isiXhosa,
English-Yoruba, and Yoruba-English. Originally,
AFRIMTE (Wang et al., 2024a) provides both fine-
grained word-level error annotations and sentence-
level Direct Assessment scoring for translation
adequacy and fluency. For this year’s challenge
set sub-task, we utilize the translation adequacy
test set from AFRIMTE as the African Challenge
set to evaluate the sentence-level scoring perfor-
mance of metrics. The analysis of the task sub-
missions (Wang et al., 2024b) has yielded sev-
eral insights. First, language-specific adaptation,
cross-lingual transfer learning, and larger language
model sizes significantly enhance metric perfor-
mance. Second, moderately-sized supervised mod-
els can attain robust performance when augmented
with language adaptation techniques tailored to



Challenge Set  Directions Phenomena Items  Citation Link (ttps://github.com/)
AfriMTE 13 African languages 2,815  Wang et al. (2024b) masakhane-io/africomet
BioMQM 11  biomedical domain 4,641 Zouhar et al. (2024) thompsonb/bio-maqm-dataset
DFKI 2 linguistic phenomena 137,000  Avramidis et al. (2024)  prkI-nLP/mt-testsuite
MSLC24 3 low quality MT 964  Knowles et al. (2024) nre-cnrc/MSLC

Table 12: Overview of the participation at the metrics challenge sets sub-task.

low-resource African languages during pretrain-
ing. Last, submissions demonstrate promising out-
comes for language pairs such as Darija-French,
English-Egyptian Arabic, and English-Swahili.
However, considerable challenges remain for ex-
tremely low-resource languages like English-Luo
and English-Twi, underscoring critical areas for
future research and improvement in machine trans-
lation metrics for African languages.

BioMQM Recent work (Zouhar et al., 2024) has
compared trained versus untrained metric perfor-
mance on the WMT domains compared to the
biomedical domain and shown that trained metrics
appear to be over-fitting on the domains used in the
WMT Metrics Shared Tasks. This is likely due to
trained metrics using prior WMT metrics datasets,
and then being evaluated on very similar data in
the latest WMT Metrics Shared Task. Zouhar et al.
(2024) released a biomedical dataset (BioMQM)
consisting of source sentences and translations
from Yeganova et al. (2021) along with new trans-
lations and MQM annotations. We produce scores
on the BioMQM for the latest metrics (all those
submitted to this Metrics Shared Task, plus the
baseline metrics) and release them for future analy-
sis. 13

DFKI Challenge Set This year’s submission by
DFKI (Avramidis et al., 2024) expands the linguis-
tically motivated challenge set of previous years
(Avramidis et al., 2023; Avramidis and Macke-
tanz, 2022), including 137,000 items in overall,
extracted from 100 MT systems for the two lan-
guage directions (en—de, en—ru), covering more
than 100 linguistically-motivated phenomena or-
ganized in 14 linguistic categories. The metrics
with the statistically significant best performance
with regard to our linguistically motivated analy-
sis are METRICX-24-HYBRID and METRICX-24
for en—de and METRICX-24 for en—ru, whereas
METAMETRICS and XCOMET are in the next rank-

Bhttps://github.com/thompsonb/
bio-mgm-dataset/tree/main/data/WMT24_
Metrics_ChallengeSet
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ing positions in both language pairs. Metrics are
more accurate in detecting linguistic errors among
LLM translations than in translations based on the
encoder-decoder NMT architecture. Some of the
most difficult phenomena for the metrics to score
are the transitive past progressive, the multiple con-
nectors, the ditransitive simple future I for en—de
and pseudogapping, contact clause and cleft sen-
tences for en—ru. The LLM-based metric GEMBA,
despite the overall low performance, has the best
performance on scoring German negation errors.

MSLC24 Challenge Set Building on the Metric
Score Landscape Challenge (MSLC23; Lo et al.,
2023b), which aims to provide a view of metric
performance on a broader range of MT quality,
MSLC24 includes a collection of low- to medium-
quality MT systems’ output on the news portion of
the WMT24 General MT Shared Task test set, as
well as some specific phenomena that may result
in unexpected behaviors from some metrics, such
as empty strings in source/reference/hypothesis,
wrong/mixed language output and different lan-
guage variants. MSLC24 focuses on three lan-
guage pairs (English—German, English— Spanish
and Japanese—Chinese). The authors also submit
the top system in this challenge set to the General
Translation task in order to obtain human evalu-
ation. Together with the high quality systems by
other participants submitted to the General MT
Shared Task, this enables better interpretation of
metric scores across a range of different levels
of translation quality and analyse metric charac-
teristics beyond just correlation. The results of
MSLC24 highlight the importance of examining
real-word corner cases and issues of reproducibility
in order to more responsibly introduce new metrics
to the research community.

10 Conclusion

This paper summarizes the results of the WMT24
shared task on automated machine translation eval-
uation, the Metrics Shared Task. We presented an
extensive analysis on how well metrics perform on


https://github.com/masakhane-io/africomet
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
https://github.com/DFKI-NLP/mt-testsuite
https://github.com/nrc-cnrc/MSLC23
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet
https://github.com/thompsonb/bio-mqm-dataset/tree/main/data/WMT24_Metrics_ChallengeSet

our three main language pairs: English—German,
English— Spanish and Japanese—Chinese. The re-
sults, based on 6 different tasks, confirm the superi-
ority of neural-based learned metrics over overlap-
based metrics like BLEU, SPBLEU or CHRF. These
results are confirmed with ESA human judgement.
Overall, we did not find any issues for neural fine-
tuned metrics when evaluating LLM-based trans-
lations. In addition, we continued the challenge
set subtask, where participants had to create con-
trastive test suites for evaluating metrics’ ability to
capture and penalise specific types of translation
eITors.

11 Ethical Considerations

MQM annotations in this paper are done by profes-
sional translators. They are all paid at professional
rates.

Organizers from the National Research Coun-
cil Canada, Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi
and COMET) dated before this year’s shared task
and publicly available. Newer versions of MetricX
were developed without using any of the test set,
test suite or challenge sets. We ensured that the
metrics co-authored by Tom Kocmi were imple-
mented without using any privileged test sets or
insider information.
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A Correlations with MQM for all metrics

Table 13 contains the results for all metrics (including contrastive submissions) on the 6 standard tasks
described in Table 8.

en-de en-de en-es en-es ja-zh ja-zh

sys seg sys seg sys seg

SPA acc, SPA accg, SPA accg,
Metric avg-corr task1 task2 task3 task4 task5 task6
MetricX-24 1 0725 |2 0873 | 2 05342 0789 |3 0685 | 1 0921 | 2 0.547
MetaMetrics-MT 1 0725 |2 0882 | 1 05422 0805|2 068 | 3 0872 | 1 0.561
metametrics_mt_mgm_kendall 1 0.724 | 2 0.882 1 0542 |2 0804 |2 0.686 3 0.871 1 0.561
metametrics_mt_mgm_same_source_targ 2 0723 |1 0.883 1 0542 |2 0.803 |2 0.686 3 0874 2 0.550
MetricX-24-Hybrid 2 07202 0873 | 2 0532|2 079 |3 0.685| 2 0.895| 3 0539
XCOMET 2 071911 0906 | 3 05302 0788 |1 0.688 | 2 0.890 | 7 0510
MetricX-24-Hybrid-QE* 3 071412 0880 | 4 05262 0.790 |4 0.685| 3 0.875| 4 0530
gemba_esa* 3 071214 0793 | 6 0507 |1 0.838 |5 0683 1 0909 | 3 0539
MetricX-24-QF* 3 07102 0880 | 3 05283 0772 |3 0.685| 3 0875| 5 0522
CometKiwi-XXL* 3 07033 0839 9 0481 |1 0.843 |8 0.680| 2 0.881 | 8 049%
XCOMET-QE* 4 06951 0890 | 5 05202 0.801 |2 0.687 | 5 0.809 | 12 0.463
COMET-22 4 0689 |2 0877 9 0482 |2 0782 |5 0.683| 5 0.815| 8 0.496
metametrics_mt_mgm_ge_same_source_t* | 4 0.688 | 2 0.860 | 7 0497 |4 0.709 | 2 068 | 4 0853 | 5 0.524
BLEURT-20 4 0686 |2 0879 | 8 0486 |4 0.69 |6 0.681 | 2 0.888 | 10 0.484
MetaMetrics-MT-QE* 5 06852 0859 | 7 0497 |4 07102 068 | 5 0839 | 6 0516
bright-qe* 5 06823 0817 | 7 0500 |2 0794 |1 0.689 | 5 0.806 | 10 0.484
BLCOM._1 6 0664 |3 0842 |11 0455 |4 0.679 |6 0.681 | 4 0840 | 9 0.488
sentinel-cand-mgm* 7 0649 |3 0820 | 5 05172 0.786 |4 0.683 | 9 0.609 | 10 0.481
PrismRefMedium 7 0646 |4 0776 | 15 0434 |4 0.651 |8 0.680 | 3 0.872 |12 0462
PrismRefSmall 7 0643 |4 0774 |15 0433 |5 0.635|8 0.680| 3 0.874 | 13 0457
CometKiwi* 7 0640 |5 0731 |10 0467 |4 0.695 |4 0.684 | 6 0.775| 9 0.490
damonmonli 7 06355 0695 |13 0443 |5 0.607 |6 0.682| 1 0912 | 11 0472
YiSi-1 8 0.630 |4 0.758 | 14 0436 |5 0.610|7 0681 | 5 0836 |13 0458
monmonli 8 0.624 |5 0.681 | 14 0437 |5 0583 |7 0681 | 2 0891 |11 0470
BERTScore 9 0617 |4 0749 |15 0435|5 0585|6 0.682| 6 0.798 | 14 0.451
MEE4 9 0609 |5 0731 |14 0437 |7 0498 |4 0.683 | 3 0.856 |15 0446
chrF 10 0.607 | 4 0.751 | 17 0431 |5 0579 |9 0.680 | 7 0.765 | 18 0.436
chrfS 10 0.606 | 4 0.742 |15 0434 |6 0549 |6 0682 | 6 0.788 | 16 0.444
spBLEU 11 0593 |4 0741 |19 0431 |6 0524 |8 0.680| 8 0.745| 18 0.436
BLEU 11 0589 |4 0736 | 18 0431 |7 05139 0.680| 8 0.739 | 19 0435
BLCOM 12 0537 |6 0619 |16 0433 |3 0.730 |8 0.680 | 10 0.325 | 19 0435
sentinel-ref-mqm 12 0523 |6 049520 0429 |6 05149 0.680| 9 0.583 |19 0435
sentinel-src-mqm* 12 0522 16 0496 |20 0429 |7 05129 0680 | 9 0581 |19 0.435
XLsimDA* 12 0514 |6 0614 |12 0450 |8 0357 |7 0.681 | 9 0.548 | 17 0.438
XLsimMgm* 12 0514 |6 0614 | 12 0450 |8 0357 |7 0.681 | 9 0.547 | 17 0438

Table 13: Soft pairwise accuracy (SPA) and accg, results for all metrics for main language pairs. See §5 for
descriptions of SPA and acc;,. Rows are sorted by the overall average correlation across all 6 tasks (leftmost
column). Starred metrics are reference-free, underlined metrics are baselines, and italicized metrics are contrastive
submissions.
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Metric avg corr |p-values

MetaMetrics-MT 1 0.725]. 19 07 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-24-Hybrid 1 0.721}. . 31 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET 10.719|.. . 1510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-24-Hybrid-QE*| 2 0.714|.. . . 36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
gemba_esa* 20711.. . . . 0100010000 00 000000 000000 00 000000 000000 00 00
XCOMET-QE* 30695(.. . . . . 2214140200 00 00 00 00 0000 00 00 00 00 00 00 00 00 00
COMET-22 30688.. . . . . . 20342000 00000000 000000 000000000000 00 00
BLEURT-20 30686(.. . . . . . . 43280000 000000000000 000000000000 0000
MetaMetrics-MT-QE* 30684(.. . . . . . . . 3402000000 00000000 000000000000 0000
bright-qe* 40681.. . . . . . . . . 060000000000 00000000 000000000000
BLCOM_1 40664|.. . . . . . . . . . 0402000001 00000000 000000000000
sentinel-cand-mqm* 50650(.. . . . . . . . . . . 412521130601 000000 00 0000 00 00
PrismRefMedium 50646(.. . . . . . . . . . . . 11351901 0000 0000 0000 00 00 00
PrismRefSmall 50642(.. . . . . . . . . . . . . 433003000000 000000000000
CometKiwi* 50640(.. . . . . . . . . . . . . . 3317030001 000000000000
damonmonli 50635(.. . . . . . . . . . . . . . . 340601020100 00 000000
YiSi-1 60630.. . . . . . . . . . . . . . . . 01000000 0000000000
BERTScore 70617(.. . . . . . . . . . . . . . . . . 140403000000 0000
MEE4 70609.. . . . . . . . . . . . . . . . . . 4126000100 0000
chrF 80608.. . . . . . . . . . . . . . . . . . . 360000000000
chrfS 80606(.. . . . . . . . . . . . . . . . . . . . 0001000000
spBLEU 90593|.. . . . . . . . . . . . . . . . . . . . . 25000000
BLEU 90589.. . . . . . . . . . . . . . . . . . . . . . 000000
XLsimMgm* 100515« « . . . L . ... ... ... 454
sentinel-src-mgm* 100513).. . . . . . . . . . . L ... ... .. . .. .5
sentinel-ref-mgm 10 0.513]. .

Table 14: Results of pairwise metric significance tests for primary submissions using permutation resampling. Each
value gives the 100 x estimated probability of the null hypothesis that the average correlation of the metric in the
current row is < the average correlation of the metric in the current column. Starred metrics are reference-free, and
underlined metrics are baselines.

B Significance comparisons for main results

Table 14 contains the results of pairwise comparisons for the results in Table 1.

C Correlations with WMT ESA for all metrics

Table 15 shows the correlations of the metrics to the ESA scores (see Section 8 for which those scores are
available). The overall ranking is sorted by the average correlation, which is the average over all tasks
across all language pairs. Metrics that did not participate in all tasks do not have an average correlation,
and are displayed at the end of the table.

The system-level ESA scores that were used to calculate SPA here differ slightly from those in the
General MT Shared Task. Namely, the General Task calculates scores by macro-averaging over domains
(each domain receives equal weight), whereas we perform a standard micro-average (each segment
receives equal weight).
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D Additional figures

Figures 6-10 show the (log) p-value of two-sided paired t-test on the MQM scores against the score
difference of each metric for each system pair in each language pair. Figures 11-15 show the (log) p-value
of significance test with bootstrap resampling on the metric scores against the score difference of that
metric for each system pair in each language pair.

10 10° 1.0 10° 10
v B B
088 101 08g 10t 08 S
2 2 2
— = —~ = — =
g- 0.6 @ %— 0.6 @ g— 0.6 @
£ 3 S 102 = £ 102 3
s 3 s 3 S ]
5 S S S > S
k) 04y k) 04y S 04y
£ £ E
g 102 g 102 §
= 2 =
02 % 02 % 02F
107%{ ecwvo amesevem @ ® © 00 00 memomw 107 { emoo ememmw c@ce® © emoo o > © 104 me o wenememo © o commo o o em
0.0 0.0 0.0
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ABERTScore ABERTScore ABERTScore
10 10° 1.0 10° 1.0
:I :\ :I
08 ! 101 08 ¢! 101 08 2
I=} o o
- S - S - S
3 063 3 063 g 063
s 3 g ] g w7 5
5 S k=S S S S
ks 04V k) 04V k] 04V
§ 5 5
-3 -
§ 10 3 10 g
02& 02& 02&
©oe e e 1074 - aseses > v e x 1074 ee: one amoo x oo ® w . °
0.0 0.0 0.0
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 000 002 004 006 008 010 012 000 002 004 006 008 010 012
ABLCOM_1 ABLCOM_1 ABLCOM_1
10 10° 1.0 10° 1.0
085 0835 - 0835
2 107! 2 10! 2
=1 = =
g 0y 3 sy 13 05
s S g 107 s g 107 S
> v k=) v k=) v
o 04 § K] 04 § oS 04 §
s S s
= 10-* 10~
& & &
0.2 0.2 0.2
104 [oome cmmsmm wmooo® ® oo o o 104 poveoman o cweo cme . 104 omass comoomsoms 00 swo® ® o o
0.0 - 0.0 0.0
00 25 50 75 100 125 150 175 00 25 50 75 100 125 150 175 00 05 10 15 20 25 30 35
ABLEU ABLEU ABLEU
10 10° 1.0 10°9 g 1.0
g 2 g
]
0.8 ¢ . 0.8+ - 0.8«
I3 10-1 £ 10 4
=3 =1 =1
& 4 E =] E |
@ @ @
g 06 g s oo 06 El g o 06 g
< 3] 2 8 ~ 8
9 04§ S 04§ S 04§
E £ E
g 10°? - 102 s
s s s
0.2 £ 0.2 £ 0.2 £
® 00w o@ceo o 1074 1074 |2 0 0 o esemem ® o oo® o e o ° o
0.0 0.0 0.0
0.10 0.15 0.20 0.25 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
ABLEURT-20 ABLEURT-20 ABLEURT-20
10 10° 1.0 10° 10
3 , 3 2
08 5 10 085 10 08z
2 o 2 2
~ ° ~ ° ~ k)
§ 069 § 069 § 069
a 8 gQ 107 o 8 g 07 8
S o > ° =] > ]
o 04 V. ks) .’ 04 V. Ks) 04V
s 10 I 1077 g
02& 02& 02&
o ®
o 107 | com—o® o ® womwo 10! | wecsmo@occss o000 ®om cwes ® >
0.0 0.0 0.0
0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 015 0.20 0.25 0.30
Abright-ge Abright-qe Abright-qe

Figure 6: Log p-value of two-sided paired t-test on MQM scores (py,qm) against the score difference of each metric
(top to bottom: BERTSCORE, BLCOM_1, BLEU, BLEURT-20, BRIGHT-QE) for each system pair in each language
pair (left to right: en—de, en—es, ja—zh). The red line is the isotonic regression fit to all data points, representing
Pr(pmgm < 0.05]AM). Note: for readability, values of p,,qm, are rounded up to 0.0001 when they are less than
0.0001.
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Figure 7: Log p-value of two-sided paired t-test on MQM scores (ppqm) against the score difference of each metric
(top to bottom: CHRF, CHRFS, COMET-22, COMETKIWI, DAMONMONLI, GEMBA_ESA) for each system pair in
each language pair (left to right: en—de, en—es, ja—zh). The red line is the isotonic regression fit to all data points,
representing Pr(ppmqm < 0.05|AM). Note: for readability, values of p,y,qm are rounded up to 0.0001 when they
are less than 0.0001.
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Figure 8: Log p-value of two-sided paired t-test on MQM scores (Ppgm) against the score differ-
ence of each metric (top to bottom: MEE4, METAMETRICS_MT_MQM_HYBRID_KENDALL, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, METRICX-24-HYBRID, METRICX-24-HYBRID-QE) for each system pair
in eachlanguage pair (left to right: en—de, en—es, ja—zh). The red line is the isotonic regression fit to all data
points, representing Pr(pyqm < 0.05|AM). Note: for readability, values of p,qm are rounded up to 0.0001 when
they are less than 0.0001.
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Figure 9: Log p-value of two-sided paired t-test on MQM scores (pmgm) against the score difference of each
metric (top to bottom: PRISMREFMEDIUM, PRISMREFSMALL, SENTINEL-CAND-MQM, SENTINEL-REF-MQM,
SENTINEL-SRC-MQM, SPBLEU) for each system pair in eachlanguage pair (left to right: en—de, en—es, ja—zh).
The red line is the isotonic regression fit to all data points, representing Pr(pyqgm < 0.05|/AM). Note: for
readability, values of p,y, 4, are rounded up to 0.0001 when they are less than 0.0001.
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Figure 12: Log p-value of significance test with bootstrap resampling (p,s) on system-level metric scores against
each metric (top to bottom: CHRFS, COMET-22, COMETKIWI, DAMONMONLI, GEMBA_ESA, MEE4) score
difference for each system pair in each language pair (left to right: en—de, en—es, ja—zh). The red line is the
isotonic regression fit to all data points, representing Pr(pys < 0.05]AM). Note: for readability, values of py; are
rounded up to 0.0001 when they are less than 0.0001.
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Figure 13: Log p-value of significance test with bootstrap resampling (pjs) on system-level metric
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ja—zh). The red line is the isotonic regression fit to all data points, representing Pr(pas < 0.05|/AM). Note: for
readability, values of p,; are rounded up to 0.0001 when they are less than 0.0001.
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Figure 14: Log p-value of significance test with bootstrap resampling (p,s) on system-level metric scores against
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XCOMET, XCOMET-QE) score difference for each system pair in each language pair (left to right: en—de,
en—es, ja—zh). The red line is the isotonic regression fit to all data points, representing Pr(py; < 0.05|AM).
Note: for readability, values of py, are rounded up to 0.0001 when they are less than 0.0001.
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Abstract

We report the results of the WMT 2024 shared
task on Quality Estimation, in which the chal-
lenge is to predict the quality of the output
of neural machine translation systems without
access to reference translations. In this edi-
tion, we continue to focus both on predicting
sentence-level scores and on detecting error
spans. Further, we expanded our scope to as-
sess the potential for quality estimation to help
in the correction of translated outputs, hence in-
cluding an automated post-editing (APE) task.

We publish new test sets with human annota-
tions that target two directions: providing new
Multidimensional Quality Metrics (MQM) an-
notations for three multi-domain language pairs
(English to German, Spanish and Hindi) and
extending the annotations on Indic languages,
providing direct assessments and post edits for
translation from English into Hindi, Gujarati,
Tamil and Telugu. We also perform a detailed
analysis of the behaviour of different models
with respect to different phenomena, including
gender bias, idiomatic language, and numerical
and entity perturbations. We received submis-
sions based on both traditional encoder-based
approaches and large language models (LLMs)
and attempted to draw some comparisons in
terms of performance and robustness to differ-
ent phenomena.

1

This edition of the shared task on Quality Esti-
mation (QE) for machine translation builds upon
previous iterations and findings, to further bench-
mark methods for estimating the quality of neu-
ral Machine Translation (MT) output at run-time,
i.e. without relying on reference translations. The
shared task introduces (sub)tasks that assess trans-
lation quality from multiple perspectives, examin-
ing errors both at a higher level (segment scores)
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and with a more fine-grained view (error spans).
Additionally, we expand our scope to generating
corrected outputs through Automatic Post-Editing
(APE).

Recently we have observed a gradual shift in
the QE paradigms and methodologies, enabled by
the advancement of neural metrics as well as large
language models. Specifically, we have seen consis-
tently strong performance across different language
pairs and setups at sentence-level QE (Specia et al.,
2021; Zerva et al., 2022; Blain et al., 2023), along-
side increased efforts towards more finer-grained,
explainable, and actionable evaluation of transla-
tions that focusses on error identification and expla-
nation (Blain et al., 2023; Fernandes et al., 2023b;
Guerreiro et al., 2023). The proliferation of LLM
applications has led to significant performance im-
provements in MT, elevating the importance of ad-
vancing methodologies for quality estimation, and
at the same time, it has allowed for novel perspec-
tives and tasks related to quality estimation (Fabbri
et al., 2022).

In light of the above, in this edition, we em-
phasise —beyond multilingual quality estimation—
the analysis of the behaviour and abilities of sub-
mitted models with respect to different linguistic
phenomena as well as their robustness to different
error types and biases. Furthermore, we attempt to
explore the degree to which quality estimation sig-
nals can be leveraged to improve translation quality
via downstream automatic post-editing (Chatter-
jee et al., 2018b; Deoghare et al., 2023). We thus
bring APE under the QE umbrella to make it eas-
ier for participants to develop QE systems and ex-
plore different techniques to apply it in APE shared
task. These considerations collectively contribute
to progress toward trustworthy and dependable QE
systems that could facilitate real-time, reliable as-
sessments of translation quality, as well as inform
APE systems towards generating a corrected trans-
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lation.

In this edition of the shared task, we further ex-
pand the provided resources for sentence-level and
fine-grained QE, providing new test sets and ex-
panding to new language pairs. Following the pre-
vious editions, we provide annotations for direct
assessments (DA; English-Tamil, English-Hindi,
English-Telugu and English-Gujarati), post-edits
(PE; English-Tamil and English-Hindi) and Multidi-
mensional Quality Metrics (MQM; English-Hindi,
English-Spanish and English-German) (Lommel
et al., 2014). We describe in detail the annotation
process and provide statistics for the new resources
in Section 3.

Overall, in addition to advancing the state-of-the-
art at all prediction levels, our main goals are:

* To extend the languages covered in our
datasets and provide new test sets emphasis-
ing low- and medium-resource languages and
zero-shot approaches;

* To continue investigating the potential of fine-
grained quality estimation;

* To study the robustness of QE approaches to
different linguistic phenomena, error types
and biases;

* To continue monitoring the computational ef-
ficiency of proposed approaches for sustain-
ability purposes; and

* To study whether we can leverage QE signals
to improve translation quality via downstream
APE task.

We thus designed three tasks this year:

Task 1 The core QE task, which consists of separate

sentence-level sub-tasks for different language
pairs (§??). The goal is to predict a qual-
ity score for each segment in a given test set,
which can be a variant of DA (§3.2) or MQM
(8§3.3).

Task 2 The fine-grained error prediction task, where

participants were asked to detect error spans
alongside error severities (Major versus Mi-
nor) (§2.2).

Task 3 A newly introduced task, which requires par-

ticipants to combine quality estimation and
automatic post-editing in order to correct the
output of machine translation. (§2.3).

&3

The tasks make use of large datasets annotated
by professional translators with either 0 — 100 DA
scoring, post-editing or MQM annotations. We
provide new training, development and test data for
Task 3 as well as fresh new test sets for Tasks 1 and
2. The datasets and models released are publicly
available'.

Besides the data made available through the QE
shared task, participants were also allowed to ex-
plore any additional data and resources deemed
relevant, across tasks. In addition, LLMs could
also be used both to extend resources and to com-
plement predictions.

The shared task uses CodaBench as a submission
platform, where each sub-task corresponds to a sep-
arate competition instance. Participants (Section 5)
could submit up to a total of 10 submissions per
sub-task. Results for all tasks, evaluated according
to standard metrics, are given in Section 6. Base-
line systems were trained by the task organisers
and entered into the platform to provide a basis
for comparison (Section 4). We provide an addi-
tional evaluation focussed on robustness against
different phenomena and biases in Section 7. A
discussion on the main findings from this year’s
task is presented in Section 8.

2 Quality Estimation tasks

In what follows, we briefly describe each sub-task,
including the datasets provided for them.

2.1 Task 1: Predicting translation quality

The ability to accurately estimate the quality of
translations on-the-fly, i.e., without access to hu-
man references, is at the core of the QE shared
task. This year, we focus on sentence-level quality,
attempting to disentangle finer-grained analysis or
post-edits that are tackled in Tasks 2 and 3.

Similar to the last edition, the data was produced
as follows:

1. DA sentence level scores: The quality of each
source-translation pair is annotated by at least
3 independent expert annotators, using DA on
a scale 0-100.

MQM annotation: Each source-translation
pair is evaluated by at least 1 expert annotator,
and errors identified in texts are highlighted

"https://github.com/WMT-QE-Task/
wmt-ge-2023-data
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and classified in terms of severity (minor, ma-
jor, critical) and type (grammar correctness,
omission, style, mistranslation, among oth-
ers).

The DA and MQM sentence level annotations
were further processed to obtain normalised quality
scores that have the same direction between high
and low quality. We provide more details on the
required pre-processing in §2.1.1.

2.1.1 Sentence-level quality prediction

Similarly to the previous year, we used a sin-
gle competition instance both for DA and MQM-
derived annotations aiming to motivate the submis-
sion of models that are robust to both annotation
formats. Hence, we also aligned the scores by pro-
cessing and normalising them as follows:

* For the DA scores we standardize the scores
with respect to each annotator and then com-
pute the mean average of standardized scores
for each sentence.

For the MQM scores we need to first compute
the overall score from the individual errors.
Hence for each annotator, we first compute
the sentence-level score as:

100 — ) severity(e)
echyp

sent _
MQM*™ (hyp) )
(1

where hyp is a hypothesis sentence repre-
sented as a sequence of tokens, e is an error
annotated in that sentence and the severity is

computed but adding:

+ 1 point for minor errors
+ 5 points for major errors
+ 10 points for critical errors

To align with DA annotations, we subtract the
summed penalties from 100 (perfect score)
and we then divide by the sentence length
(computed as number of words). We then
normalise per annotator as in the DA case
and compute the mean average in the case of
multiple annotators.

Regarding evaluation, systems in this task (both
for DA and MQM) are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient p as the primary
metric. This is what was used for ranking system
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submissions. Pearson’s correlation coefficient, r,
and Kendall 7 were also computed as secondary
metrics but not used for the final ranking of sys-
tems.

2.1.2 Finer-grained Evaluation and Challenge
Sets

To assess the robustness and capabilities of auto-
matic machine translation evaluation systems, we
created a challenge set focusing on five different
phenomena for the En-De and En-Es language
pairs. Each category tests a particular aspect of
translation quality that may have impact in real-
world applications. The challenge set aims to deter-
mine whether evaluation systems can distinguish
between correct translations—which we designate
as hyp—and those containing subtle but relevant
variations—which we designate as con.

Currency and date formatting This set tests the
detection of format changes in currency symbols
and date expressions. The hyp preserves the origi-
nal source format (e.g., keeping "$100" or "MM/D-
D/YYYY"), while the con presents localized ver-
sions (e.g., "100 USD" or "DD/MM/YYYY").
Note that here it is the case that con is also a good-
quality translation.

Word order This category examines the han-
dling of word order variations. The hyp consists
of monotonic translations that closely follow the
source sentence order, while the con presents non-
monotonic translations that rearrange words while
preserving meaning. Evaluation models might have
a preference towards one or the other, even though
both preserve the meaning of the source.

Detached translations and omissions This set
focuses on critical divergences from the source text.
The hyp provides accurate and complete transla-
tions of the source. In contrast, the con includes
examples where translations start correctly but then
veer into unrelated topics or omit substantial por-
tions of the source text. Evaluation systems are
expected to detect these critical errors.

Idiomatic translations This category tests the
handling of idiomatic expressions. The hyp
presents idiomatic renderings that accurately con-
vey the meaning in the target language, while the
con offers literal word-for-word translations that
may render the target text non-sensical. Evaluation
systems should appropriately score translations that



prioritize conveying the correct meaning over strict
word-for-word translation.

We generated data for all the phenomena listed
above using GPT-3.5 (gpt-3.5-turbo-0125) and
GPT-4 (gpt-4-1106-preview). Then, we con-
ducted a human annotation study to discard erro-
neous triples.

Gender Subset The gender subset of the chal-
lenge set aims to study QE metrics and gender
inflection in grammatical gender languages.

Following Zaranis et al. (2024), we collected un-
modified instances from the counterfactual subsets
(Es and De) of MT-GenEval (Currey et al., 2022),
an evaluation set for sentence-level gender bias in
machine translation. In these examples, sources
from English Wikipedia mention exactly one hu-
man entity and contain intra-sentence lexical clues
that help disambiguate the entity’s gender identity.?
Each source is provided with a masculine (M) and a
feminine (F) variant (e.g., “She/He is a graduate of
Harvard, but rarely applies such skills.”). Human
references are included as well.

We compiled the gender subset by constructing
contrastive pairs as follows. First, we sampled 150
instances from the original MT-GenEval’s subset.
Fifty unique sources have a female referent and
fifty a male referent. From each instance, we cre-
ated a triplet with the source, the reference with
correct gender inflection used as hypothesis, and
the reference with wrong gender inflection used as
contrast. Then, to isolate the impact of the source
content, we created two triplets for each of the re-
maining fifty instances. The source in the triples is
identical except for the gender identity of the entity.
This step yields 100 more examples. The gender
subset hence counts 200 contrastive triplets in total.

2.2 Task 2: Fine-grained error detection

For this task, we focus on finer-grained quality
predictions, taking advantage of the detailed infor-
mation provided in the MQM annotation schema.
Specifically, each error span is annotated with error
severity (minor, major, critical) as well as error
type (see also Figure 1). Following the findings of
the previous edition, we focus on the severity an-
notations and do not use the other error categories
annotated in the MQM schema. As a result, we
aimed to (1) identify error spans and (2) classify

*We acknowledge a notion of gender identity beyond the
binary. However, we include only masculine and feminine
examples as they are provided in the original dataset.
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said error spans as either minor or major. We note
that we merge the critical and major categories,
since in this edition we noticed particularly sparse
occurrences of critical errors (even less than the
previous year). Additionally, in this edition, the
annotations included a neutral category, which was
ignored as it was (1) not occurring for all language
pairs and (2) they correspond to subjective opinion-
s/preferences about translation. > We point readers
to Figure 3 for some statistics on error severity
distribution per language pair and domain.

The information used for this task consists of: i)
start and end index positions for each error span;
and i7) the simplified error severity. The error spans
are identified as continuous sequences of characters
within a target hypothesis, allowing for annotations
of single white spaces and punctuation marks in or-
der to account for omission and punctuation errors,
respectively. Aiming to mimic the human annota-
tions and simplify the task, overlapping error spans
are allowed and count towards recall of different
errors, but overlapping annotations are flattened
for both gold and system annotations (see below).
Figure 1 shows an example of annotations.

For the evaluation, the primary metric is the
F1-score, computed on the character level and
weighted to allow for half points for correctly iden-
tified span but misclassified severity. Precision and
recall were also provided as complementary met-
rics. With respect to overlapping annotations, we
allow for multiple character level annotations* and
consider the best matching annotation per character
position. As such, for each segment, we compute
recall for the characters in gold annotation text
spans by computing the ratio between the overlap
with system error spans and the gold error span
length and weighting severity mismatches by 0.5.
Respectively, we compute precision with respect
to the system error span length and apply the same
weighting convention (down-weighting by 0.5 for
mismatched error severities). Figure 1 and Table 1

show an example of the aforementioned process °.

*Note that the neural errors are also not considered when
computing an MQM score.

*The gold data was processed to remove identical segments
that correspond to the same span but have different error cat-
egories, but it preserved any partially overlapping segments
that correspond to different error categories and/or severities.

5The link to evaluation scripts can be found at:
https://github.com/WMT-QE-Task/qe-eval-scripts/
blob/main/wmt24/
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Systems | Precision Recall F1-score
System A | LTEaESt00:0 — 79 L8000 — 083 (.81
System B | 00x124 12840060 — g g 1eZELs840.550 — 080 0.80

Table 1: Example of Precision and Recall computations for each annotation in the example of Figure 1.

Original (gold) annotation:

major minor

According to Erza Proctor, a B.Sc. clinical optometrist, "there are ten times as many visits to
the clinic from remote peripheral areas, especially the southern area, as the center.”

minor
wrong named entity

unnatural flow
omission

System A prediction:

minor

major minor

According to Erza Proctor, a B.Sc. clinical optometrist, "there are ten times as many visits to
the clinic from remote periphieral areas, especially the southern area, as the center,”

major
System B prediction:

minor minor minor

According to Erza Proctor, a B.Sc. clinical optometrist, "there are ten times as many visits to
the clinic from remote peripheral areas, especially the southern area, as the center."

minor

Figure 1: Example of gold annotations (MQM) for Task
2 (top) and respective prediction examples (bottom).
Example taken from He-En test set.

2.3 Task 3: QE-informed APE

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by Chatterjee et al.
(2015), from the application point of view, the task
is motivated by its possible uses to:

* Enhance MT output by harnessing informa-
tion that is not available to the decoder or by
conducting deeper text analysis, which may
be prohibitively expensive during the decod-
ing phase.

* Address systematic errors stemming from an
MT system whose decoding process is inac-
cessible for focused modifications.

Provide professional translators with im-
proved MT output quality, thereby reducing
the need for subsequent human post-editing.

* Tailor the output of a general-purpose MT sys-
tem to align with the lexicon and style require-
ments of a specific application domain.

Building on the work of Chatterjee et al. (2018b);
Deoghare et al. (2023), which demonstrated the
potential of QE to enhance APE systems, this edi-
tion of the WMT QE shared task introduced the
new QE-informed APE subtask. In this subtask,
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we focus on a unified evaluation and correction
paradigm, taking advantage of the additional infor-
mation provided by the human post-edits. Partici-
pants were encouraged to incorporate signals from
QE systems to improve APE performance. The
evaluation setup remained consistent with the previ-
ous rounds WMT APE shared tasks, requiring par-
ticipants to automatically correct translations gen-
erated by a generic, domain-unadapted “black-box”
NMT system. The training data consisted of human
post-edits of translations produced by this system.
While TER (Snover et al., 2006) and BLEU (Pa-
pineni et al., 2002) continued as the primary and
secondary evaluation metrics, this year also intro-
duced chrF (Popovié, 2015) and COMET® for a
more comprehensive automatic evaluation of the
submitted APE systems.

For this year, English-Hindi and English-Tamil
were the selected language pairs, with Hindi and
Tamil as the target languages for post-editing. The
training, development, and test data encompassed a
wide range of domains, including education, legal,
healthcare, culture, tourism, reviews, subtitles, and
general/news.

3 Datasets

Below, we describe the datasets provided to par-
ticipants for development and testing. Specifically,
this year, we provided training data only for Task
3, which was newly introduced (see §3.4).

3.1 Training Resources

Overall, participants were encouraged to employ
training data from a wide range of sources, includ-
ing datasets from previous competitions, as well as
synthetic or proprietary data.

Proposed training data for DA annotations, fol-
lowing the previous editions, includes the language
pairs from the MLQE-PE dataset (Fomicheva et al.,
2022), as well as the data from the previous QE
editions (Zerva et al., 2022; Blain et al., 2023).
Similarly, for the MQM data, we encouraged par-
ticipants to refer to data from previous editions that

https://github.com/Unbabel/COMET .
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cover translation into German (En-De), Russian
(En-Ru), Hebrew (En-He) and out of Chinese (Zh-
En) (Freitag et al., 2021a,b), as well as the Indic-
MT eval dataset (Sai B et al., 2023). However, we
emphasise that in this edition, we introduce no new
training data, treating the translations into Spanish
(En-Es) and Hindi (En-Hi) as zero-shot tasks, and
only En-De as supervised.

3.2 Direct Assessment (DA) Data

For all language pairs, the data provided is selected
from publicly available resources.

We expand the Indic language pairs introduced
in previous years, providing new unseen test sets of
approx 1K segments each for Hindi (Hi; 1000 seg-
ments) and Gujarati (Gu; 1012 segments) as target
languages from the Indo-Aryan language family as
well as Tamil (Ta; 1000 segments) and Telugu (Te;
1000 segments) from the Dravidian language fam-
ily. Following the previous edition, dataset curation
and annotation were performed with the help of
professional translators who were native speakers
of the target language. The annotators were pro-
vided with guidelines which discussed DA score
ranges with various error types. Additionally, par-
allel segments were curated from the following par-
allel corpora: i) Anuvaad parallel corpus’ (General,
Healthcare and Legal domain; ii) IITB English-
Hindi parallel corpus® (Kunchukuttan et al., 2018)
(Culture/Tourism domain), and parallel segments
scraped from NPTEL?; and iii) SpokenTutorials'”
(Education domain). The curated segments were
selected from the above-mentioned domains to en-
sure cross-domain impact and performance.

From the Anuvaad parallel corpus, we filter par-
allel segments using LaBSE, and select source
sentences with varying token lengths, while the
translation was obtained using 1.3B parameter
NLLB model (Costa-jussa et al., 2022), as dis-
cussed in (Blain et al., 2023). During the an-
notation, weekly validation of randomly selected
instances was performed by an unbiased native
speaker who provided feedback to further improve
annotations during the data curation. After all three
annotators performed the DA annotations, we sepa-
rated the data into training, development, and test

"https://github.com/project-anuvaad/
anuvaad-parallel-corpus

8Unreleased parallel segments, to be released here in v3.2:
https://www.cfilt.iitb.ac.in/iitb_parallel/

9https://nptel.ac. in/

10https ://spoken-tutorial.org/
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Figure 2: Distribution of DA scores for the Indic lan-
guage pairs.

sets while filtering for a balanced distribution of
DA scores across all sets. We provide the distribu-
tion of DA scores for each language pair in Figure
2, where we can see that for all language pairs,
we have similar distributions skewed towards high-
quality scores. We can also observe that for Tamil,
we have fewer segments of very low quality (DA
< 20), but instead, we have larger counts of seg-
ments of moderate quality (20 < DA < 60).

3.3 MQM Data

As test data, we annotated new evaluation sets for
three language directions: English-German (En-
De), English-Spanish (En-Es) and English-Hindi
(En-Hi). The evaluation sets were annotated by
professional translators following a MQM typology
(Burchardt, 2013) and specific guidelines'!.

The documents used for the evaluation sets are
shared with the WMT General MT task and follow
the same distribution of domains in that data (e.g.,
news, social, literary and speech). The full docu-
ments were translated using the 548 parameters
NLLB model (Team et al., 2022)'? without sen-
tence splitting. We subsequently split segments for
annotation and annotated a total of 1511 segments
for each translation direction.

The test data distribution according to error
severities is shown in Figure 3. The NLLB model
used to translate the evaluation sets is clearly
stronger for En-De, with less than 100 major and
minor errors for each content type. The distribu-

11http: //bit.ly/mgm-guidelines
2Model identifier FACEBOOK/NLLB-MOE-54B
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Figure 3: Distribution of error severities across language pairs and domains/content types.
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Figure 4: Distribution of average length (character count) for different severities across language pairs and

domains/content types.

tion of major and minor errors changes drastically
for En-Es and En-Hi, in particular the number of
minor errors for the literary, social and speech do-
mains, with more than 200 minor errors each. In
addition, we can see that we have fewer errors for
the news domain across all three language pairs,
both in terms of minor and major errors. Contrary
to frequency, however, Figure 4 shows that error
spans identified for En-De are significantly longer
on average for both identified error categories.

3.4 QE-APE Data

This year we introduce two new language pairs for
the APE task: English-Hindi (En-Hi) and English-
Tamil (En-Ta). For each language pair, the train,
dev, and test sets respectively consist of 7,000,
1,000, and 1, 000 (source, target, human post-edir)
triplets, where:

* The source (SRC) is an English sentence;

e The target (TGT) is a Hindi/Tamil translation
of the source produced by a generic, black-
box NMT system unknown to participants.

* The human post-edit (PE) is a manually re-
vised version of the target, which was pro-
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duced by native Hindi/Tamil speakers.

The English-Hindi train, dev, and test sets span
culture, education, health, tourism, and general
domains. Similarly, English-Tamil APE datasets
contain sentences from legal, literacy, reviews, sub-
titles, news, health, and general domains.

We also provide a corpus of artificially generated
data as additional training material. It consists of
2.5 million triplets for each language pair derived
from the Anuvaad parallel corpus. Specifically,
the source, target, and post-edit instances of this
synthetic corpus are respectively obtained by com-
bining: i) the original English source sentence from
the Anuvaad corpus, ii) its automatic translation
into Marathi, iii) the original Marathi target sen-
tence from the Anuvaad corpus. Furthermore, we
provide the DA scores for all samples in both train
and dev sets. Additionally, the participants were en-
couraged to use the DA data released in the earlier
iteration of the QE shared task for these language
pairs.

To get an idea of the task difficulty, we focused
on three aspects of the released data, which pro-
vided us with information about the possibility
of learning useful correction patterns during APE



Lang. Domain MT type || RR_src | RR_tgt | RR_pe || Basel. BLEU | Basel. TER | § TER
2015 | en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 | en-de 1T PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 | en-de 1T PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 | de-en Medical PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 | en-de IT PBSMT 7.14 9.47 8.93 62.99 24.24 -6.24
2018 | en-de 1T NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 | en-de 1T NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 | en-ru 1T NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 | en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 | en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 | en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77
2022 | en-mr | health/tourism/news NMT 1.46 0.89 0.72 67.55 20.28 -3.49
2023 | en-mr | health/tourism/news NMT 1.85 1.24 1.12 70.66 26.60 +1.13
2024 | en-hi | health/tourism/news NMT 2.7 3.55 3.32 39.28 46.36 -19.29
2024 | en-ta | health/tourism/news NMT 1.97 1.49 1.1 70.16 24.71 -0.47

Table 2: Basic information about the APE shared task data released since 2015- languages, domain, type of MT
technology, repetition rate and initial translation quality (TER/BLEU of TGT). The last column (§ TER) indicates,
for each evaluation round, the difference in TER between the baseline (i.e., the “do-nothing” system) and the

top-ranked official submission.

model training and successfully applying them at
test time. These are: i) repetition rate, ii) MT qual-
ity, and iii) TER distribution in the test set. For
the sake of comparison across the nine rounds of
the APE task (2015-2023), Table 2 reports, for
each dataset, information about the first two as-
pects. The third aspect, however, will be discussed
by referring to Figure 5 and Figure 6.

3.4.1 Repetition Rate

The repetition rate (RR), measures the repetitive-
ness inside a text by looking at the rate of non-
singleton n-gram types (n = 1...4) and combining
them using the geometric mean. Larger values in-
dicate a higher text repetitiveness that may suggest
a higher chance of learning from the training set
correction patterns that are also applicable to the
test set. However, over the years, the influence of
repetition rate in the data on system performance
was found to be marginal.'?

As shown in Table 2, in this edition, the RR
for English-Hindi ranges between 2.7-3.3, and for
English-Tamil RR ranges between 1.1-2.0. This
difference may contribute to motivating the signifi-
cantly different APE results observed for the two
languages, as evidenced by a substantial TER re-
duction for English-Hindi (—19.29 “0 TER”) com-
pared to the “do-nothing” the baseline (see §4.3).
Reviewing previous rounds of the APE task, how-
ever, suggests that RR remains only a partially in-

3The analyses carried out over the years produced mixed
outcomes, with impressive final results obtained in spite of low
repetition rates (Chatterjee et al., 2020) and vice-versa (Chat-
terjee et al., 2018a, 2019; Akhbardeh et al., 2021).
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formative indicator of task difficulty due to its vari-
able correlation with final results, which may also
depend on other factors or on the interaction of
multiple factors that are yet to be fully understood.

3.4.2 MT Quality

Another complexity indicator is MT quality, which
is the initial quality of the machine-translated
(TGT) texts to be corrected. We measure it by com-
puting the TER (}) and BLEU (1) scores (Basel.
TER/BLEU rows in Table 2) using the human post-
edits as reference. In principle, higher quality of
the original translations leaves the APE systems
with less room for improvement since they have, at
the same time, less to learn during training and less
to correct at the test stage. On one side, training
on good (or near-perfect) automatic translations
can drastically reduce the number of learned cor-
rection patterns. On the other side, testing on sim-
ilarly good translations can i) drastically reduce
the number of corrections required and the applica-
bility of the learned patterns, and ii) increase the
chance of introducing errors, especially when post-
editing near-perfect translations. The findings of
all previous rounds of the task support this obser-
vation, which is corroborated by the high correla-
tion (>0.78) between the initial MT quality (“Basel.
TER” in Table 2) and the TER difference between
the baseline and the top-ranked submission (“§
TER” in Table 2).

As discussed in Section 6.3, this year seems
to confirm the trends observed in the past. For
English-Hindi, the baseline TER is quite high
(46.36 points), leaving more room for improvement.




Whereas English-Tamil falls in medium-high dif-
ficulty (20.0<TER<25.0), making the task more
challenging. The final gains (“6 TER” in Table 2)
confirm the correlation between the quality of the
initial translations and the actual potential of APE.
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Figure 5: TER distribution in the APE 2024 English-
Hindi test set.
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Figure 6: TER distribution in the APE 2024 English-
Tamil test set.

3.4.3 TER Distribution

A third complexity indicator is the TER distribution
(computed against human references) for the trans-
lations present in the test sets. Although TER dis-
tribution and MT quality can be seen as two sides
of the same coin, it’s worth remarking that, even at
the same level of overall quality, more/less peaked
distributions can result in very different testing con-
ditions. Indeed, as shown by previous analyses,
harder rounds of the task were typically charac-
terised by TER distributions particularly skewed
towards low values (i.e., a larger percentage of test
items having a TER between 0 and 10). On one
side, the higher the proportion of (near-)perfect test
instances requiring few edits or no corrections at
all, the higher the probability that APE systems will
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perform unnecessary corrections penalised by au-
tomatic evaluation metrics. On the other side, less
skewed distributions can be expected to be easier to
handle as they give automatic systems larger room
for improvement (i.e., more test items requiring -
at least minimal - revision). In the lack of more fo-
cused analyses on this aspect, we can hypothesise
that in ideal conditions from the APE standpoint,
the peak of the distribution would be observed for
“post-editable” translations containing enough er-
rors that leave some margin for focused corrections
but not too many errors to be so unintelligible to
require a whole re-translation from scratch. '

As shown in Figure 5, for English-Hindi the TER
distribution follows more or less uniform distribu-
tion. The distribution is not too skewed towards
near-perfect translation (which would have made it
harder to further improve), nor towards the higher
end of TER (which would have made it harder
to learn error-correction patterns due to too noisy
data). These characteristics make it easier to im-
prove translation, which is reflected in the final
evaluation results. On the other hand, as shown
in Figure 6, for English-Tamil the TER distribu-
tion is highly skewed towards near-perfect transla-
tions. Around half of the test set falls in 0-5 TER
points, making it prone to over-correction, which
can be penalised by automatic evaluation metrics.
This characteristic makes the English-Tamil test set
much more challenging when it comes to gaining
further translation quality improvements.

4 Baselines

In this edition, we opted to use publicly available,
existing models without further tuning. Hence, we
use a more unified architecture for Tasks 1 and 2,
where all models use a large XLM-RoBERTa pre-
trained encoder without additional language tuning
(see also Appendix A for hyperparameter details).
The specific hyperparameters used are presented
in Table 7. For Task 3, we opted for a simple “do
nothing" approach as discussed in Section 4.3.

4.1 Task 1: Quality Estimation

For the sentence-level sub-task, we opted for us-
ing CometKiwi 2022 (Rei et al., 2022) which was
trained on data from the Metrics and QE shared
tasks (combining data from previous years up to

“For instance, based on the empirical findings reported
in (Turchi et al., 2013), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.



2022). Models are publicly available for down-
load®.

4.2 Task 2: Fine-grained Error Detection

For Task 2 we also used a CometKiwi model,
specifically one trained on the multi-task setting, to
produce both sentence-level scores and word-level
quality estimates. The model, trained on 2022 QE
data is publicly available. '® The word-level esti-
mates are in the form of OK/BAD tags, and for this
reason it is necessary to convert the original output
to the one required by the Task 2 format. As such
we process the word-level predictions as follows:

¢ Detokenize the sentence

* Annotate continuous BAD tokens as a single
text span

* Assume all errors are major

4.3 Task 3: QE-informed APE

The official baseline results for Task 3 are the
TER/BLEU/chrF/COMET scores calculated by
comparing the raw MT output with human post-
edits. This corresponds to the score achieved by
a “do-nothing” APE system that leaves all the test
segments unmodified.

5 Participants

In this section, we present a brief system descrip-
tion gathered from each participant. For each
team, we indicate the task(s) and sub-task(s) (i.e.
language-pair(s)) they participated in, and point to
relevant publications, if any.

Unbabel (T1; all): The submission for Task 1 fol-
lows their work from the previous competi-
tion (Rei et al., 2023), which corresponds to
an ensemble of multiple checkpoints for the
sentence-level subtask, using a weighted av-
eraging of the predicted scores, optimised by
language pair. The emphasis is on scaling the
size of the pre-trained encoder from InfoXLM
to XLM-R XL and XXL.

Pister Labs (T1; all): The team opted for an ap-
proach where they generated a set of reading
comprehension questions and scored each hy-
pothetical translation by evaluating how well

Bhttps://huggingface.co/Unbabel/
wmt22-cometkiwi-da

Yhttps://huggingface.co/Unbabel/
WMT24-QE-task2-baseline

it could answer the comprehension question
when compared with the reference transla-
tion. The overall score for a hypothetical is
then a simple average across the questions
asked of it. Answers are generated by pro-
viding the question and the hypothetical trans-
lation to Llama3.1-8B (Dubey et al., 2024).
The initial set of reading comprehension ques-
tions is generated through few-shot prompting
of Llama3.1-70B, and evaluating results on
a subsample of 100 training En-De transla-
tion pairs with Llama3.1-70B. The four ques-
tions with the highest Spearman correlation
were then used for final testing. To improve
question generation quality, they use tech-
niques from OpenAl and Anthropic’s prompt-
ing guides, as well as the self-consistency
technique.

HW-TSC (T1; En-Hi, En-Ta, En-Te, En-Gu): The
team employed the CROSS-QE approach (Li
et al., 2023) as the basis for further tuning and
opted for tuning separate models for each lan-
guage pair. They used encoder-based models,
experimenting with different encoders, which
were trained on different combinations of
source and translation vectors as input. They
focused on improving model performance
both in terms of training by employing
different data augmentation methods and in
terms of inference, exploring better strategies
for ensembling checkpoints. In terms of
data augmentation, they use a combination
of LLMs with specific prompts to generate

pseudo-data as well as text editing methods.
17

HW-TSC (T2; all): The team employs a combi-
nation of LLLMs, hypothesising that the rea-
soning abilities of large models may be help-
ful in the fine-grained task. They use the
TowerInstruct-7B-v0.2 (Alves et al., 2024)
model and the GPT-40-mini (Islam and
Moushi, 2024) model, using prompt engineer-
ing and in-context learning to obtain the pre-
dictions. Additionally, they employ data aug-
mentation techniques mentioned for Task 1
and find that they can rely on pseudo-data for
tuning the models. '

"We consider submissions from users s50042889 and
zhaoxf4 mentioned in the results page as one submission

%We consider submissions from users zhuming, zhaoxf4
and mengyao mentioned in the results page as one submission


https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/WMT24-QE-task2-baseline
https://huggingface.co/Unbabel/WMT24-QE-task2-baseline
https://www2.statmt.org/wmt24/quality-estimation-task_results.html
https://www2.statmt.org/wmt24/quality-estimation-task_results.html

TMU-HIT (T1; En-Hi, En-Ta, En-Te, En-Gu): The
team submitted predictions that rely on LLMs,
inspired by (Liu et al., 2023; Enomoto et al.,
2024). They designed custom prompts for
quality estimation and employed GPT-40 mini
(Achiam et al., 2023) to sample assessment
scores multiple times using the same prompt.
They then experimented with combining the
generated scores to compute the final score
using either their average or their weighted
sum, employing the generation probabilities
as weights for the latter. They conducted
evaluation experiments in both zero-shot
and three-shot settings. Further, they also
attempted fine-tuning GPT-40 mini using
the training data released for the WMT23
Machine Translation task (Kocmi et al.,
2023).

HW-TSC (T3; all): (Yu et al., 2024) The team
explored two distinct approaches for devel-
oping APE systems. For the En-Hi pair,
they leveraged the Llama3-8B-Instruct model
through continual pre-training on the collected
data and then supervised fine-tuning it on
the real APE data. For the En-Ta pair, they
trained a transformer model from scratch, first
focusing on the MT (Machine Translation)
task using web-collected data, followed by
training on APE data. External MT candi-
dates were incorporated during the training to
boost performance further. To prevent over-
correction, Sentence-level QE models were
employed to select between MT and APE out-
puts. Both users (HW-TSC_yjwsss and HW-
TSC_zhaoxf4) from this team made the same
submissions for En-Ta, but different submis-
sions for En-Hi.

IT-Unbabel (T3; all): IT-Unbabel submission
leveraged xTower (Treviso et al., 2024), a
model built on top of TowerLLM (Alves
et al., 2024), which is designed to provide
free-text explanations for translation errors
to guide the generation of an improved
translation. The system was trained on
material that includes the xTower dataset
(GPT-4 generated explanations for translation
correction), TowerBlocks, and additional
training datasets provided by the WMT24!°
organizers for English-Hindi and English-

Phttps://www2.statmt.org/wmt24/
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Tamil, augmented with error span annotations
from xCOMET (Guerreiro et al., 2023). A
hybrid approach is used to dynamically select
between the original translation and the
corrected version produced by the xTower
model using a quality estimation model.

6 Results

In this section, we present and discuss the results
of our shared task. Please note that for all the three
sub-tasks we used statistical significance testing
with p = 0.05.

6.1 Task1

As described in the Task 1 overview (§2.1.1),
sentence-level submissions are evaluated against
the true z-normalised sentence scores using Spear-
man’s rank correlation coefficient p along with the
following secondary metrics: Pearson’s correlation
coefficient, r, and Kendall’s 7. Nonetheless, the
final ranking between systems is calculated using
the primary metric only (Spearman’s p). Statisti-
cal significance was computed using William’s test.
The results are shown in Table 3.

Looking at the obtained scores, we observe an
overall performance increase for the sentence-level
scores compared to previous years for all language
pairs (that have been previously tested) except for
En-Ta, where we observe a small drop. We note,
that while the domains and sources in the En-De
MQM test-set are different, all DA test-sets are
drawn from the same sources and observe similar
score distributions to previous years, thus facilitat-
ing comparisons.

It should be noted that there is no clear winner
across language pairs. Instead, different systems
rank first for each language.

6.2 Task2

For Task 2, the submissions are scored using the
F1-score, computed at character level for the anno-
tated error spans, as described in Section 2.2. Pre-
cision and Recall scores are also provided as com-
plementary information to help contextualise the
performance observed. Statistical significance was
computed using randomisation tests (Yeh, 2000)
with Bonferroni correction (Abdi, 2007) for each
language pair. The results for Task 2 are described
in Table 4.

This year, the fine-grained annotation task (Task
2) had a lower participation rate compared to the



Multidimensional Quality Metric (MQM)

Direct Assessment (DA)

Model Multi En-De En-Es En-Hi En-Hi En-Gu En-Te En-Ta
Unbabel 0.553 0512 t 0.345 0.412 0.714 0.703 0.510 0.675 1
Pister Labs  0.452 0.513 t 0.242 0.363 0.564 0.587 0.379 0.478
HW-TSC - - - - 0.719 0.757 t 0.482 0.6837
TMU-HIT - - - - 0.739 t 0.713 0.482 0.603
BASELINE 0.520 0.514 1 0.340 0.441 1 0.678 0.661 0.414 0.592

Table 3: Spearman correlation for the official submissions to WMT24 Quality Estimation Task 1 Sentence-level.
Baseline systems are highlighted in grey. For each language pair, results marked with T correspond to the winning
submissions, as they are not significantly outperformed by any other system according to the Williams Significance

Test (Williams, 1959).

Multidimensional Quality Metric (MQM)

Model Multi En-De En-Es En-Hi
BASELINE 0.278 0.192+ 0.161F 0.481 ¢
HW-TSC 0.227 0.178 0.151 0.362

Table 4: Fl-score for the official submissions to
WMT24 Quality Estimation Task 2 Error Span De-
tection. Baseline systems are highlighted in grey. For
each language pair, results marked with | correspond to
the best system (not significantly outperformed by any
other system) according to randomized paired t-test.

previous edition, and we can also see that the ob-
tained scores remained particularly low, indicating
that the task remains challenging and difficult to
address.

Specifically, if we focus on confusion matrices
shown in Figure 7 for the submission received, we
can see that the Baseline is over-predicting Major
error spans, which gives a slight advantage regard-
ing the F1 score since it leads to higher recall. This
finding is consistent with higher precision obtained
by HW-TSC submission as seen in the Appendix
C, Table 17. We provide the confusion matrices for
all language pairs in Appendix E.

Despite this, it is important to note that the meth-
ods submitted for Task 1 still seem to benefit from
a multi-task approach that considers word-level in-
formation. Taking both these observations into ac-
count and looking towards future editions, it might
be useful to redesign the task, aiming either at a
different span representation that would perhaps
attempt a better normalisation over different span
lengths or deviate from the character level repre-
sentation. Another alternative view would be to en-
courage methods that use error spans to support or
interpret sentence-level quality (Leiter et al., 2023)
or concentrate only on specific error types.
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Figure 7: Confusion matrices for Task 2 English-
German, comparing Minor and Major predictions be-
tween the Baseline system and the HWTSC one.

6.3 Task3

6.3.1 Automatic Evaluation

Automatic Post-Editing evaluation results are
shown in Table 5. The submitted runs are ranked
based on the average TER (case-sensitive) com-
puted using human post-edits of the MT segments
as a reference, which is the APE task’s primary
evaluation metric. To provide a broader view of the
systems’ performance, BLEU, chrF, and COMET
results computed using the same references are also
reported. As can be seen from the table, all submis-
sions for English-Hindi outperform the baseline by
a significant margin across all metrics, with TER re-
ductions that are always statistically significant. the
baseline. The best system is able to improve trans-



TER BLEU CHRF COMET

En-Hi IT-Unbabel 27.08 5838 73.45 0.8646
HW-TSC_yjwsss  30.37 54.50 71.06 0.8514
HW-TSC_zhaoxf4 31.32 5274 69.83 0.8517
BASELINE (MT) 46.36 39.28 59.48 0.8084

En-Ta HW-TSC 2424 69.64 8236 09186
IT-Unbabel 24.54 70.05 8230 0.9163
BASELINE (MT) 24.71 70.16 81.80 0.9137

Table 5: Official results for the WMT24 Quality Esti-
mation Task 3 QE-informed APE English-Hindi and
English-Tamil shared task — average TER (|), BLEU
(1), chrF (1), COMET (7). Statistical significance test
is computed for the primary metric (TER) wrt. the base-
line and the significant results are highlighted in bold.
Baseline systems are highlighted in grey.

lation quality by nearly 20.0 TER points. However,
for English-Tamil, we observe that while all sub-
missions performed slightly better than the baseline
in terms of absolute scores across all metrics ex-
cept BLEU, none of the systems show statistically
significant gains compared to the baseline. As dis-
cussed in Section 3.4, this can be attributed to the
combined effect of less repetitive data (between
1.1-2.0) compared to English-Hindi (between 2.7-
3.3) and a stronger baseline (24.7 vs 46.4 TER),
leaving less room for improvement.

6.3.2 Analysis: Systems’ Behaviour

Modified, improved and deteriorated sentences.
To better understand the behaviour of each APE sys-
tem, we now turn toward the changes made by each
system to the test instances. To this end, Table 6
shows, for each submitted run, the number of mod-
ified, improved and deteriorated sentences, as well
as the overall system’s precision (i.e., the propor-
tion of improved sentences out of the total number
of modified instances for which improvement/de-
terioration is observed). It’s worth noting that, as
in the previous rounds, the number of sentences
modified by each system is higher than the sum
of the improved and the deteriorated ones. This
difference is represented by modified sentences for
which the corrections do not yield any TER varia-
tions.

As can be seen from Table 6, for English-Hindi,
all submissions perform aggressive post-editing,
with the top submission modifying 96.5% of the
translations, where most of the modifications lead
to improving the translation quality with a precision
score of 84.56%. In contrast, for English-Tamil, all
submissions adopt a conservative approach, limit-
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Figure 8: Distribution of edit operations (insertions,
deletions, substitutions and shifts) performed by the
three primary submissions to the WMT24 APE English-
Hindi shared task.

ing edits to 3.8%-4.8% of the test set. This aligns
with our previous observations on task difficulty,
driven by the higher MT baseline and the skewed
TER distribution, with samples concentrated in the
near-perfect translation range. In this challenging
scenario, all submissions are able to improve the
majority of modified translations with a precision
score between 54%-59%.

Edit operations. Similar to previous rounds, we
analysed systems’ behaviour also in terms of the
distribution of edit operations (insertions, deletions,
substitutions and shifts) done by each system. This
fine-grained analysis of how systems corrected the
test set instances is obtained by computing the TER
between the original MT output and the output of
each primary submission taken as reference. As
shown in Figures 8 and 9, similar to last year, dif-
ferences in systems’ behaviour are minimal. All
of them are characterised by a large number of
deletions, followed by insertions, shifts and substi-
tutions. For English-Tamil, we observe a relatively
lower proportion of shifts and substitutions com-
pared to English-Hindi. This might indicate that
English-Tamil might have more diverse APE out-
puts, which might be more challenging to evaluate
with reference-based automatic metrics.

7 Evaluation on challenge sets

We received two submissions that we could eval-
uate on challenge sets: Pister Lab’s submission,
based on prompting Llama 3.1, and Unbabel’s,
based on CometKiwi. In Figure 10, we report the
percentage of samples where the hyp translation is



Systems Modified Improved | Deteriorated , Prec.
En-Hi | IT-Unbabel 965 (96.5%) | 756 (78.35%) | 138 (14.30%) | 84.56
HW-TSC_yjwsss | 952 (95.2%) | 688 (72.27%) | 171 (17.96%) | 80.09
HW-TSC_zhaoxf4 | 665 (66.5%) | 532 (80.00%) | 85 (12.78%) | 86.22
En-Ta | HW-TSC 48 (4.8%) 25 (52.08%) | 18 (37.50%) | 58.14
IT-Unbabel 38 (3.8%) 19 (50.00%) | 16 (42.11%) | 54.29

Table 6: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted
to the APE 2024 English-Hindi and English-Tamil sub-task. The “Prec.” column shows systems’ precision as the
ratio between the number of improved sentences and the number of modified instances for which improvement/dete-

rioration is observed (i.e., Improved + Deteriorated).

Figure 9: Distribution of edit operations (insertions,
deletions, substitutions and shifts) performed by the
three primary submissions to the WMT24 APE English-
Tamil shared task.
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scored higher, lower, or is tied to the con hypoth-
esis.”’ Please refer to Section 2.2 for details on
constructing these translation pairs for each phe-
nomenon.

Detached translations and omissions Out of all
the phenomena studied, these two constitute the
most critical errors. It is thus highly encouraging
that both models perform perfectly across the two
language pairs in consistently scoring the correct
hyp translation higher than the erroneous con trans-
lation.

Currency and date formatting This category re-
veals interesting differences between the two mod-
els. Llama 3.1 shows a high tie rate, indicating

OTnspired by the analysis in Kocmi et al. (2024), we con-
sider a tie with CometKiwi when the absolute difference be-
tween the scores of the hyp and con hypotheses is lower or
equal to 0.1 points. For the Llama-based submission, for its
more coarse-grained scoring range (more akin to a categorical
distribution), we consider a tie when both translations receive
the same score.
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it often does not distinguish between original and
localized formats. This suggests a more neutral
stance towards formatting choices. In contrast,
CometKiwi is more sensitive to these formats, be-
having less predictably. Although, in most cases, it
either prefers the source format or is indifferent to
the localized format, there are some cases, in par-
ticular for en-es translations, where it does prefer
the localized format that does not lexically match
that found in the source text.

Idioms Llama 3.1 predominantly shows ties or
a slight preference for non-literal, idiomatic ren-
derings (hyp) that accurately convey the meaning
in the target language. In contrast, CometKiwi’s
behavior is more varied and, perhaps surprisingly,
often favors literal translations (con) even when
they may not preserve the source text’s meaning
in the target language. This tendency towards lit-
eralness can be quite problematic in the context of
idioms and other figurative texts, where meaning of-
ten diverges from word-for-word translations. One
potential way to alleviate these trends is to train
neural metrics with more diverse data that includes
idiomatic and figurative language to improve their
robustness.

Word order Here, Llama 3.1 shows a high rate
of ties, suggesting that, similarly to what we found
for the currency and date formatting phenomenon,
it does not distinguish between monotonic trans-
lations that closely follow the source sentence or-
der and non-monotonic translations that rearrange
words while preserving meaning. This suggests
that Llama 3.1’s scoring may be more tied to
the overall meaning of the translation. In con-
trast, CometKiwi demonstrates more preference for
monotonic translations (hyp) across both language
pairs, particularly for en-de. As such, CometKiwi
appears to be more sensitive to word order, poten-
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Figure 10: Share of instances in challenge sets where participant systems ranked the hypothesis translation higher
than (green), lower than (salmon), or equal to (grey) the contrast. Results on en-de (top) and en-es (bottom).

tially favouring translations that maintain a struc-
ture closer to the source text. As a learned metric,
this behaviour might be attributed to CometKiwi’s
training data, which may have contained more
monotonic translations (more common among clas-
sical encoder-decoder NMT models that constitute
most of the translations that the model has seen dur-
ing training) than paraphrastic or non-literal ones
(more prevalent among the more novel LLM-based
translation approaches (Raunak et al., 2023)).

Gender subset In most instances, both systems
score the hypothesis with the correct gender inflec-
tion higher. However, we noticed that some cases
have ties, which we consider as errors: the model
does not capture the difference in gender forms and
wrongly assigns equal scores to the hypothesis and
the contrast. Expectedly, this phenomenon is more
present in Pister Lab’s scores, as Llama 3.1 tends to
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assign more coarse-grained assessments. In analyz-
ing sources with non-overlapping content, Llama
3.1 exhibits a higher frequency of errors for male
sources in en—de translation while demonstrating
increased error rates for female sources in en-es.
Conversely, CometKiwi maintains a comparable
error rate across genders in both language pairs,
with an elevated error rate in en-es translation
overall. When examining sources with identical
content differentiated only by gender (categorized
as “overlapping”), we observed higher errors for
female sources across all configurations, except for
CometKiwi’s performance in en-es.

Closing remarks Our analysis of Llama 3.1 and
CometKiwi on various challenge sets reveals dis-
tinct behaviours and potential areas for improve-
ment. Both models excel at identifying critical
errors like detached translations and omissions.



However, they differ in their handling of format-
ting, idioms, and word order, with Llama 3.1—
perhaps for the more discrete nature of its quality
assessments—often showing neutrality (manifested
through a large number of ties) and CometKiwi
demonstrating more varied preferences, some of
which are problematic (e.g., preference towards lit-
eralness in the translation of idiomatic expressions).
Gender-related evaluations suggest potential biases
in both systems, mainly due to scoring masculine
and feminine gender inflections equally despite
only one being correct. When controlling for the
source content, we notice more errors for the in-
stances mentioning a feminine referent in specific
contexts. These findings indicate that both mod-
els display gender-dependent behaviour in source
processing, warranting further investigation into
potential model biases.

8 Discussion

In the following, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Large language models in Quality Estimation
In this edition, we observed an increased use of
LLMs, not only in order to generate pseudo-data
for training or as a complementary system —which
was the trend in the previous year— but rather as
the primary model to address a task. Indeed, across
tasks, it was possible to observe the performance
of encoder-based models that follow the predictor-
estimator architecture (Kim et al., 2017), as well
as models that relied on large decoder-based ap-
proaches, where the emphasis was more on prompt
engineering or instruction tuning. This is in line
with recent works (Huang et al., 2023; Fernandes
et al., 2023a; Kocmi and Federmann, 2023; Vu
et al., 2024; Hada et al., 2024) that suggest that
multilingual LLMs can be prompted to predict the
quality of a translation, given some tuning or in-
context learning.

Looking at the results for Tasks 1 and 2, how-
ever, we can see that the methods that rely on LLMs
are still outperformed by predictor-estimator-based
systems, especially when it comes to predicting
sentence-level scores. One key disparity, in this
case, relates to the fact that methods relying on
scores generated by such models lack the granu-
larity of predictor-estimator architectures that treat
the QE task as a regression and, hence, can dif-
ferentiate better between different translations and
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quality levels. Instead, LLMs tend to default to
a smaller range of values (as we can also see in
the ties detected in the analysis of Section 7 and
Figures 10a and 10b. However, we can see that the
LLM-based methods are closing the gap in terms
of performance when compared to the predictor-
estimator-based model for Task 2, which involves
error detection. More importantly, LLM-based ap-
proaches perform on par and even outperform other
methods for Task 3, which focuses on translation
correction (APE). Thus, it seems that in the MT
evaluation and correction family of tasks, there is
potential for both LLMs and “traditional” neural
systems. Potentially, more hybrid methods, i.e.
methods that employ sentence-level quality scores
predicted from encoder-based models to inform
LLM decisions on error detection and correction,
would lead to improved performance and could
take the lead in future editions for the shared task.

Role of QE signals in APE Both participants
in Task 3 used QE information to perform APE
in alignment with the task objectives. Their ap-
proaches share similarities, as they both involve a
final QE-driven selection step to choose between
the original MT output and the generated APE hy-
pothesis. One participant (HW-TSC) exploited QE
information only for this final selection step, while
the other (IT-Unbabel) integrated the two technolo-
gies more tightly by generating APE outputs with
an LLM informed by free-text explanations for
translation errors, which can be considered as prox-
ies for QE predictions. Overall, despite being ob-
tained with different degrees of QE integration, the
evaluation results reinforce previous findings re-
garding the effectiveness of combined QEAPE and
approaches for enhancing MT output (Chatterjee
et al., 2017; Deoghare et al., 2023).

9 Conclusions

This year’s edition of the QE Shared Task intro-
duced two key new elements besides fresh test sets:
(1) A new task on QE-informed APE, motivating
participants to consider the QE scores to improve
the generated MT corrections and (2) an updated
challenge set for En-De and En-Es language pairs
to help analyse the behaviour and robustness of
submitted models for different phenomena such
as gender bias, idiomatic expressions, handling of
numerical entities, hallucinations, and word order
changes.

We found that overall QE performance is consis-



tently high across languages on the sentence level.
Still, there is ample room for improvement regard-
ing fine-grained error span detection. The addition
of quality informed APE sub-task made it easier
for participants to leverage their QE system for
the APE task, achieving significant gains for en-hi
and marginal (non-significant) gains on en-ta lan-
guage pairs. In addition, we found that approaches
that employ LLMs still have some way to go in
competing on correlations with human scores at
the sentence level but can provide competitive so-
lutions for error span detection and QE-informed
APE tasks.

In future iterations, we aim to redefine meaning-
ful fine-grained QE tasks, targeting attainable error
detection that can help detect critical errors, explain
predicted quality, and better inform APE systems.
Additionally, we intend to expand further the pro-
vided resources to aid the finer grained analysis of
model behaviour, as it was discussed in Section 7.

10 Ethical Considerations

Post-editing, MQM, and DA annotations in this
paper are carried out by professional translators.
They are all paid at professional rates. In creating
the gender subset, we drew examples from MT-
GenEval (Currey et al., 2022), a corpus where gen-
der is treated as a binary variable. We recognize
that gender identities exist on a spectrum, going be-
yond just the masculine-feminine dichotomy. Our
intention is to expand the evaluation of gender-
related aspects to include more inclusive forms of
machine translation.

Organisers from Unbabel and IT have submitted
to this task without using prior access to test sets
or any insider information.
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A Hyper-parameters of pre-trained baseline models for Task 1 and Task 2 Quality

Estimation

T1 Sentence-level T2 Fine-grained
Hyper-parameter COMETKIWI-DA-22 COMETKIWI-MULTITASK-22
Encoder Model XLM-RoBERTa (large) XLM-RoBERTa (large)
Optimizer Adam (default parameters) Adam (default parameters)
n frozen epochs 0.3 0.3
Keep embeddings frozen True True
Learning rate 3e-05 and 1e-05 3e-06 and 1e-05
Batch size 4 4
Loss function MSE and CE MSE and CE
Dropout 0.15 0.1
FP precision 32 32
Feed-Forward hidden units [2048, 1024] [3072, 1024]
Word weights [0.3, 0.7] [0.1, 0.9]
Feed-Forward activation Tanh -
Language prefix False False

Table 7: Hyper-parameters of both the CometKiwi models used as baselines for Task 1 Quality Estimation.
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B Official Results of the WMT24 Quality Estimation Task 1 Sentence-level

Tables 8, 9, 10, 11, 12, 13, 14 and 15 show the results for all language pairs and the multilingual variants,
ranking participating systems best to worst using Spearman correlation as primary key for each of these
cases.

Model Spearman Pearson Kendall
Unbabel 0.553 0.438 0.410
BASELINE 0.520 0.474 0.382
Pister Labs 0.452 0.378 0.354

Table 8: Official results of the WMT24 Quality Estimation Task 1 Sentence-level Multilingual (average over all
language pairs). Teams marked with "e" are the winners, as they are not significantly outperformed by any other
system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
BASELINE o 0.514 0.050 0.397 2,260,734,705 569,330,715 1
Pister Labs e 0.513 0.114 0.455 1,400,000,000  70,000,000,000 1
Unbabel o 0.512 0.037 0.393 42,868,104,221  10,716,932,147 6

Table 9: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for Engligh-German (MQM).
Teams marked with "e" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel o 0.345 0.116 0.257 42,868,104,221  10,716,932,147 6
BASELINE o 0.340 0.197 0.253 2,260,734,705 569,330,715 1
Pister Labs 0.282 0.104 0.215 1,400,000,000  70,000,000,000 1

Table 10: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for English-Spanish (MQM).
Teams marked with "e" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
BASELINE o 0.441 0.223 0.328 2,260,734,705 569,330,715 1
Unbabel 0.412 0.065 0.318 42,868,104,221  10,716,932,147 6
Pister Labs 0.363 0.142 0.300 1,400,000,000  70,000,000,000 1

Table 11: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for English-Hindi (MQM).
Teams marked with "e" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
TMU-HIT e 0.739 0.760 0.547 - - 1
HW-TSC o 0.719 0.783 0.531 2,387,827,161 596,896,035 8
Unbabel 0.714 0.679 0.524 42,868,104,221  10,716,932,147 6
BASELINE 0.678 0.771 0.497 2,260,734,705 569,330,715 1
Pister Labs 0.564 0.536 0.443 1,400,000,000  70,000,000,000 1

Table 12: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for English-Hindi (DA). Teams
marked with "e" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble

TMU-HIT e 0.713 0.808 0.531 - - 1
Unbabel o 0.703 0.751 0.514 42,868,104,221  10,716,932,147 6
HW-TSC 0.686 0.757 0.500 2,387,827,161 596,896,035 8
BASELINE 0.661 0.776 0.486 2,260,734,705 569,330,715 1
Pister Labs 0.587 0.716 0.366 1,400,000,000  70,000,000,000 1

Table 13: Official results of the WMT24 Quality Estimation Task 1 Sentence-level English-Gujarati (DA). Teams
marked with "e" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel o 0.510 0.719 0.363 42,868,104,221  10,716,932,147 6
HW-TSC o 0.482 0.643 0.340 2,387,827,161 596,896,035 8
TMU-HIT 0.465 0.550 0.329 - - 1
BASELINE 0.414 0.716 0.294 2,260,734,705 569,330,715 1
Pister Labs 0.379 0.535 0.304 1,400,000,000  70,000,000,000 1

Table 14: Official results of the WMT24 Quality Estimation Task 1 Sentence-level English-Telugu (DA). Teams
marked with "e" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC o 0.683 0.719 0.506 2,387,827,161 596,896,035 8
Unbabel o 0.675 0.702 0.499 42,868,104,221  10,716,932,147 6
TMU-HIT 0.603 0.664 0.445 - - 1
BASELINE 0.592 0.584 0.419 2,260,734,705 569,330,715 1
Pister Labs 0.478 0.503 0.366 1,400,000,000  70,000,000,000 1

Table 15: Official results of the WMT24 Quality Estimation Task 1 Sentence-level English-Tamil (DA). Teams
marked with "e" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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C Official Results of the WMT24 Quality Estimation Task 2 Fine grained Error
Detection

Tables 16, 17, 18 and 19 show the results for all language pairs and the multilingual variant, ranking
participating systems best to worst using F1-score as primary key for each of these cases.

Model F1-score Precision Recall
BASELINE 0.278 0.220 0.427
HW-TSC 0.227 0.203 0.268

Table 16: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection Multilingual
(average over all language pairs). The winning submission is indicated by a e. Baseline systems are highlighted in

grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
BASELINE 0.192 0.127 0.394 2,260,743,915 569,309,780 1
HW-TSC 0.178 0.175 0.181 2,409,244,995 2,280,000,000 1

Table 17: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection English-German
(MQM). The winning submission is indicated by a e. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
BASELINE | 0.161 0.106 0.337 2,260,743,915 569,309,780 1
HW-TSC 0.151 0.106 0.261 2,409,244,995 2,280,000,000 1

Table 18: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection English-Spanish
(MQM). The winning submission is indicated by a e. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
BASELINE | 0.481 0.428 0.551 2,260,743,915 569,309,780 1
HW-TSC 0.362 0.329 0.401 2,409,244,995 2,280,000,000 1

Table 19: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection English-Hindi
(MQM). The winning submission is indicated by a e. Baseline systems are highlighted in grey.
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D Official Results of the WMT24 Quality Estimation Task 3 Quality-informed APE

Tables 20 and 21 show the results for all language pairs, ranking participating systems from best to worst
using TER as the primary key for each of these cases.

Model TER BLEU ChrF COMET Disk footprint (B) # Model params Ensemble
IT-Unbabel o | 27.08 58.38 7345  0.8646 28,991,029,248 7,000,000,000 1
HW-TSC o 31.32 52774 69.83  0.8517 1,265,490,783 99,388,416 1
BASELINE | 46.36 39.28 59.48 0.8084 - - -

Table 20: Official results of the WMT24 Quality Estimation Task 3 Quality-informed APE English-Hindi (DA).
The winning submission is indicated by a e. Baseline systems are highlighted in grey.

Model TER BLEU ChrF COMET Disk footprint (B) # Model params Ensemble
HW-TSC 2424  69.64 8236 0.9186 1,265,490,783 99,388,416 1
IT-Unbabel | 24.54 70.05 82.30 0.9163 28,991,029,248 7,000,000,000 1
BASELINE | 2471 70.16 81.80 0.9137 - - -

Table 21: Official results of the WMT24 Quality Estimation Task 3 Quality-informed APE English-Tamil (DA).
The winning submission is indicated by a e. Baseline systems are highlighted in grey.

E Confusion Matrices for Task 2

We present below the confusion matrices for Major and Minor error span prediction between HW-TSC
and the Baseline, for each language pair. We can see that overall HW-TSC targets precision, being more
conservative in error span prediction, while the Baseline model greedily predicts major errors.
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Figure 11: Confusion matrices for Task 2 English-German, comparing Minor and Major predictions between the

Baseline system and the HWTSC one.
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Figure 12: Confusion matrices for Task 2 English-Spanish, comparing Minor and Major predictions between the

Baseline system and the HWTSC one.
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Abstract quired all contributions to be released under open

We present the results of the WMT 2024 shared
task of the Open Language Data Initiative. Par-
ticipants were invited to contribute to the FLO-
RES+ and MT Seed multilingual datasets, two
foundational open resources that facilitate the
organic expansion of language technology’s
reach. We accepted ten submissions covering
16 languages, which extended the range of lan-
guages included in the datasets and improved
the quality of existing data.

1 Introduction

Machine translation research has advanced at break-
neck speed in recent years (Kocmi et al., 2023).
That said, progress made in translation quality has
largely been directed at high-resource languages,
leaving many languages behind. More recently, the
focus has shifted towards under-served languages
(also called low-resource) (Haddow et al., 2022).
Foundational, high-coverage datasets have made it
easier to develop and evaluate language technolo-
gies for a growing number of languages. Given the
high impact of these components, extending such
datasets becomes imperative.

The aim of the WMT 2024 shared task of the
Open Language Data Initiative (OLD]) is to em-
power language communities to contribute such
key datasets. In particular, we solicited contri-
butions to the MT evaluation dataset FLORES+
and the MT Seed dataset. Additionally, we
also solicited other high-quality, human-verified
monolingual text datasets in under-resource lan-
guages. This builds on previous work to create
these datasets and extend machine translation (MT)
models and evaluation tools to more languages
(Guzman et al., 2019; Goyal et al., 2022; NLLB
Team et al., 2024; Maillard et al., 2023).

We accepted ten submissions to the task, and
the data contributed covered 16 languages. We re-

"Equal contribution

licenses so that they can be useful to as many com-
munity members as possible. We make the data
available online and encourage future work to build
on these foundational datasets even further.'

2 Related Work

In recent years, there has been a growing recog-
nition of the need for high-quality, representative
datasets to broaden access to language technologies
across a more diverse range of languages. Several
initiatives have emerged to address this need.

In machine translation, the FLORES family of
datasets (Guzmadn et al., 2019; Goyal et al., 2022;
NLLB Team et al., 2024) and NTREX-128 (Fed-
ermann et al., 2022) have provided the research
community with massively multilingual, profes-
sionally translated benchmark data that is open
source; while NLLB-Seed (Maillard et al., 2023;
NLLB Team et al., 2024) played a similar role but
focused on training data. Since the release of these
resources, several authors have provided coverage
for new languages (Gala et al., 2023; Doumbouya
et al., 2023; Aepli et al., 2023) or even extended
the datasets to the speech modality (Conneau et al.,
2022).

Thanks to the availability of higher-quality data
for an increasingly larger number of languages, re-
cent language identification models have been able
to expand coverage. Projects such as AfroLID
(Adebara et al., 2022) and OpenLID (Burchell
et al., 2023) improved upon pre-existing models
by a careful curation and auditing of existing data
sources; while LIMIT (Agarwal et al., 2023) fur-
ther expanded data coverage and performance by
creating and releasing a new high-quality corpus.

Several crowdsourced projects have proven in-
valuable as a source of knowledge for under-served

"https://huggingface.co/openlanguagedata
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languages. The Tatoeba project,” not designed ex-
plicitly for language technologies but as a language
learning aid, provides a large database of aligned
multilingual sentences. Mozilla Common Voice
(Ardila et al., 2020) has enabled communities to
build open-source ASR corpora for their own lan-
guage and counts over 160 languages to date. The
Aya initiative (Singh et al., 2024) has created the
largest instruction finetuning dataset for large lan-
guage models.

3 Datasets: FLORES+ and MT Seed

3.1 FLORES+

One of the biggest challenges in extending effec-
tive natural language processing (NLP) to under-
served languages is a lack of high-quality, high-
coverage evaluation benchmarks. In particular, few
benchmarks are suitable for evaluating multilingual
translation, since this requires many-to-many align-
ment between different languages in the evaluation
dataset.

The FLORES family of datasets was released to
address this problem. While the first iteration of
this dataset covered only three languages (Guzmén
et al., 2019), following iterations increased cover-
age to 101 languages (FLORES-101, Goyal et al.,
2022) and finally to over 200 languages as part of
the “No Language Left Behind” project (FLORES-
200, NLLB Team et al., 2024). The current itera-
tion of this dataset set is managed by OLDI, and
we refer to it as FLORES+ to disambiguate be-
tween the original datasets and this new actively
developed version.

FLORES+ consists of sentences extracted from
English Wikinews, Wikijunior, and Wikivoyage:
997 for the dev split and 1012 for the devtest split.>
These were then professionally translated into each
language (almost universally from English) and un-
derwent quality assessment and adjustment as nec-
essary. The fact that all sentences in all languages
are translations of each other means that they can
be used for any-way multilingual evaluation.

3.2 MT Seed

The MT Seed dataset (previously NLLB Seed) was
created as a source of “starter data” for languages
without publicly-available high-quality bitext in
sufficient quantity for training NLP models (NLLB

2https ://www.tatoeba.org
3The separate blind test set, originally developed by Meta,
is not managed by OLDI and is not part of FLORES+.

Team et al., 2024, p.23). Previous work showed
that employing the relatively small amount of high-
quality data in MT Seed for training models had
a significant impact on performance even when
larger but lower quality corpora are used (Maillard
et al., 2023). By extending MT Seed, OLDI aims to
improve the quality of NLP applications for under-
served languages by providing an initial source of
reliable training data.

MT Seed consists of around 6000 sentences
sampled from the Wikipedia articles listed in En-
glish Wikimedia’s “List of articles every Wikipedia
should have”. These were professionally translated
into each of the 38 languages covered by the first
iteration of this dataset (39 if including English).
Since this dataset is intended as a source of train-
ing data rather than evaluation, it did not undergo
the quality assurance as the FLORES family of
datasets.

4 Shared Task Definition

The goal of this shared task was to expand the
open datasets managed by OLDI. Primarily, we
solicited contributions to FLORES+ and MT Seed
(described in Section 3), which could be either fixes
to existing data or entirely new translations. It also
accepted other high-quality, human-verified mono-
lingual text datasets in under-resource languages.

4.1 Contributing to FLORES+ and MT Seed

To contribute to FLORES+ and MT Seed, we en-
couraged participants to translate from English into
the target language so as to follow the original stan-
dard FLORES-200 workflow (NLLB Team et al.,
2024, p.21). We required that translations were
performed by qualified, native speakers of the tar-
get language and that translators acknowledged our
translation guidelines (Appendix A). We strongly
encouraged the verification of the data by at least
one additional native speaker.

The acceptability of machine-translated content
varied between the two datasets. Since the FLO-
RES+ dataset is used to evaluate MT systems, new
contributions must be entirely human-translated.
Using or even referencing MT output was not
allowed, including post-editing. However, post-
edited MT content was allowed for contributions
to MT Seed, provided all content was verified man-
ually. This was done because MT Seed is intended
for training rather than evaluation and, therefore,
has less stringent translation requirements.
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Participants were encouraged to provide exper-
imental validation to demonstrate the quality of
their submitted datasets. Due to the heterogeneous
nature of submissions, we left the exact nature of
the experimental validation up to the participants,
though we gave some suggestions. For example,
MT Seed data contributions could train a simple
MT model and evaluate it on FLORES+.

All submissions were labeled with the same stan-
dardized language codes used throughout OLDI.
These are made up of three parts, separated by un-
derscores:

* An ISO 639-3 language code. Macrolanguage
codes must not be used if a more specific code
is possible: e.g., cmn, yue, wuu, etc., rather
than zho.

* An ISO 15924 script code

* A Glottocode identifying the specific language
variety.

For example, apc_Arab_sout3123 indicates South
Levantine Arabic written in the Arabic script.

All submissions were accompanied by a dataset
card summarizing key facts about the data and
how it was created. This is critical to foster in-
formed and responsible use of the submitted data
(Pushkarna et al., 2022). Submitted datasets were
required to be released under the open CC BY-SA
4.0 license to match FLORES+ and MT Seed.

4.2 Contributing other monolingual data

Contributions of monolingual data had similar re-
quirements to those for FLORES+ or MT Seed.
The aim was to collect high-quality, human-verified
monolingual text in multiple under-served lan-
guages for training NLP tools and systems. Syn-
thetic data of any kind was not allowed. Parallel
datasets were excluded from the scope of the shared
task to not conflict with existing corpus-building
efforts like Opus (Tiedemann, 2009).

For FLORES+ and MT Seed, submissions were
encouraged to be manually verified by native speak-
ers of the target language. All submissions needed
to be accompanied by a data card and released un-
der an open license (allowing free research use as
a minimum).

5 Submissions

There were 24 expressions of interest in the shared
task, and we ultimately accepted 10 papers. Table 1

summarizes the data submitted. We describe each
submission in the following section.

Abdulmumin et al. (2024) contributed an im-
proved version of the FLORES+ datasets for Hausa,
Northern Sotho (Sepedi), Xitsonga, and isiZulu.
They carried out error analysis of the datasets for
the four languages and found problems such as
poor translation of named entities, incorrect han-
dling of morphological changes, a lack of consis-
tency in vocabulary, and poor handling of borrowed
terms. The Hausa dataset was particularly weak,
with evidence that it was built upon Google Trans-
late outputs. The participants corrected the transla-
tions following the guidelines in the shared task de-
scription and evaluated the alterations to the dataset
using a range of metrics.

Ahmed et al. (2024) contributed a translation of
MT Seed into the Bangla variety of Bangla/Bengali,
an Indo-Aryan language that is the official language
of Bangladesh and the state of West Bengal in India
(as well as others). The dataset was translated by a
native speaker with translation experience, per the
OLDI translation guidelines. They validated the
quality of their dataset by fine-tuning a range of
pre-trained multilingual models on their generated
translations and compared performance with the
same pre-trained models fine-tuned on different but
comparable datasets. They found that the models
pre-trained on their translation of MT Seed showed
the best performance after controlling for dataset
size.

Ali et al. (2024) produced a translation of the
FLORES+ dataset into the Central variety of
Emakhuwa, a Bantu language spoken primarily in
Mozambique. They verified their translation by us-
ing a second translator to revise the work of the first,
followed by quality assessment involving three
raters using a Direct Assessment pipeline. The par-
ticipants conducted several experiments to bench-
mark current progress in Emakhuwa—Portuguese
MT. They found that a lack of standardized or-
thography remains a challenge for Emakhuwa MT,
though multiple reference translations can help
with this issue.

Cols (2024) released Seed-CAT, an open-source
web application specifically designed to assist hu-
man translators in translating MT Seed dataset
files.* Using Seed-CAT, they produced a trans-

*https://github.com/josecols/seed-cat
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Contributors

Type of contribution

Languages(s)

Abdulmumin et al. (2024) FLORES+ (corrected) Hausa, Northern Sotho (Sepedi), Xitsonga, isiZulu.
Ahmed et al. (2024) MT Seed Bangla/Bengali
Ali et al. (2024) FLORES+ (new) Emakhuwa
Cols (2024) MT Seed (new) and CAT tool Spanish (Latin American)
Ferrante (2024) MT Seed (new) Italian
Gordeev et al. (2024) FLORES+ (new) Erzya
Kuzhuget et al. (2024) FLORES+ (new) Tuvan
Mamasaidov and Shopulatov (2024) FLORES+ devtest (new) Karakalpak
Perez-Ortiz et al. (2024) FLORES+ (new and corrected) Aragonese, Aranese, Asturian, Valencian
Yu et al. (2024) FLORES+ (new) Wu Chinese

Table 1: A summary of all accepted contributions to the WMT 2024 Shared Task of the Open Language Data

Initiative.

lation of MT Seed into Latin American Spanish.
To validate their dataset’s quality, they trained an
English—Spanish MT model using the MT Seed
data and compared its performance to models
trained to translate between English and three Italic
languages using existing MT Seed data. They
found similar performance, suggesting that quality
was similar to existing data in MT Seed.

Ferrante (2024) contributed a translation of MT
Seed into Italian, building on a previous translation
by Haberland et al. (2024). For this submission,
the existing post-edited machine translation was
reviewed and amended by two native speakers. The
dataset was verified by training an Italian—-Ligurian
MT system and finding comparable results to those
of Haberland et al. (2024).

Gordeev et al. (2024) contributed a translation of
FLORES+ into Erzya, a Finno-Ugric language spo-
ken primarily in Russia. As part of their work, they
created a set of neologisms to aid future translators
working in the digital space. They used their FLO-
RES+ translation to evaluate the quality of existing
English-Erzya and Russian—Erzya MT systems and
train new competitive models for translating these
language pairs.

Kuzhuget et al. (2024) translated the FLORES+
dataset from Russian into the Central dialect of
Tuvan, a Turkic language primarily spoken in the
Republic of Tuva in South Central Siberia, Russia.
The team of translators worked from guidelines
prepared in Russian to ensure consistent and high-
quality translation.

Mamasaidov and Shopulatov (2024) con-
tributed a translation of FLORES+ devtest split
into Karakalpak, a Turkic language primarily spo-
ken in the Republic of Karakalpakstan, which is

an autonomous region within Uzbekistan. In addi-
tion, they also released a training dataset contain-
ing 100,000 sentence pairs for each of the language
pairs: Uzbek—Karakalpak, Russian—Karakalpak,
and English—Karakalpak. They carried out MT ex-
periments using their datasets, releasing the trained
models for further research.

Perez-Ortiz et al. (2024) contributed translations
of FLORES+ into four Romance languages spoken
in Spain: specifically new datasets for Aragonese,
Aranese, and Valencian, and a corrected dataset
for Asturian. The datasets were used as part of
the evaluation of a shared task on MT from Span-
ish to low-resource languages of Spain (Sdnchez-
Martinez et al., 2024). Even though post-edited MT
was used in the creation of these datasets, they were
exceptionally accepted due to their use in a major
shared task with the use of post-editing flagged in
the metadata.

Yu et al. (2024) contributed a translation of FLO-
RES+ into the Chongming dialect of Wu Chinese.
The translation was done by two native speakers
and checked by a third. Since Wu Chinese is typ-
ically colloquial while FLORES+ contains rela-
tively formal text, the translators examined online
written content and asked for community guidance
about translations on fora to arrive at the best trans-
lations. To validate their dataset, the participants
ran a three-way language identification task be-
tween Wu Chinese, Mandarin Chinese, and Yue
Chinese. Their language identification model could
distinguish between the three language varieties
with high accuracy, though there was some confu-
sion between Mandarin and Wu Chinese.
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6 Discussion

Despite recent releases of state-of-the-art large-
scale models (NLLB Team et al., 2024) and the
growing attention directed at speech and sign lan-
guage translations (Seamless Communication et al.,
2023a,b; Rust et al., 2024), the work on text-based
MT remains ongoing. This is particularly true for
many of the world’s under-served languages, which
compete with their higher-resource counterparts
for research attention. Without sustained interest
and contributions to key evaluation and seed data
sets, the delta between high and low-resource lan-
guages will continue to expand, exacerbating al-
ready prominent technical divides.

Covering 16 languages spanning five continents,
the papers in this shared task present a rigorous
effort to improve the quality and scope of such data
sets. Taken collectively, the authors developed pro-
tocols and tools to both refine and introduce new
languages to existing FLORES+ and MT Seed data
sets. Beyond their technical attributes, the work
presented here also aligns with one of OLDI’s core
commitments: to be community-centric. Every
paper in this shared task involves engaging with
speakers of the languages of interest, with many
authors being native speakers themselves. The lin-
guistics expertise and cultural nuances these re-
searchers brought, alongside the personal convic-
tions many may have, culminated in a body of work
that is both scientifically and socially meaningful.
It is our hope that the papers showcased in this
shared task are the first of a long series designed to
consolidate the building blocks needed to advance
language technologies for under-served linguistics
communities across the world.

7 Conclusion

We presented the results of the WMT 2024 OLDI
shared task. We accepted ten submissions covering
16 languages, which extend the range of languages
included in the foundational datasets FLORES+
and MT Seed. We thank all participants for their
contributions and hope that this shared task en-
courages further efforts towards improved language
technologies for more language varieties.
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A Translation Guidelines

These translation guidelines must be acknowledged
by all translators who will be contributing data.

Important note

Your translations will be used to help train or eval-
uate machine translation engines. For this reason,
this project requires human translation.

* If you are translating data for evaluation pur-
poses, such as for FLORES+, using or even
referencing machine translation output is not
allowed (this includes post-editing).

* Note that some machine translation services —
including DeepL, Google Translate, and Chat-
GPT - prohibit the use of their output for train-
ing other translation or Al models, so their use
is not permitted.

General Guidelines

1. You will be translating sentences coming from
different sources. Please refer to the source
document if available.

2. Do not convert any units of measurement.
Translate them exactly as noted in the source
content.

3. When translating, please maintain the same
tone used in the source document. For ex-
ample, encyclopedic content coming from
sources like Wikipedia should be translated
using a formal tone.

4. Provide fluent translations without deviating
too much from the source structure. Only
allow necessary changes.

5. Do not expand or replace information com-
pared to what is present in the source docu-
ments. Do not add any explanatory or paren-
thetical information, definitions, etc.

6. Do not ignore any meaningful text present in
the source.

7. In case of multiple possible translations,
please pick the one that makes the most sense
(e.g., for gender concordance, cultural fit in
the target language, level of formality, etc.).

8. Translations must be faithful to the source in
terms of pragmatics such as (if applicable)

level of hedging/modality, sentiment and its
intensity, negation, speech effects (disfluen-
cies), etc.

9. For proper nouns and common abbreviations,
please see the guidelines on Named Entities
below.

10. Idiomatic expressions should not be translated
word for word. Use an equivalent idiom if one
exists. If no equivalent idiom exists, use an
idiom of similar meaning. If no similar expres-
sions exist in the target language, paraphrase
the idiom such that the meaning is retained in
the target language.

11. When a pronoun to be translated is ambigu-
ous (for instance, when it could be interpreted
as either him/her or he/she), opt for gender-
neutral pronouns (such as them/they) if those
exist in the target language. However, when a
pronoun to be translated is clearly marked for
gender, you should follow the source material
and continue to mark for gender.

12. Foreign words and phrases used in the text
should be kept in their original language when
necessary to preserve the meaning of the sen-
tence (e.g., if given as an example of a foreign
word).

Named entities

Named entities are people, places, organizations,
etc., commonly referred to using a proper noun.
This section provides guidance on how to handle
named entities. Please review the following guide-
lines carefully:

1. If there is a commonly used term in the target
language for the Named Entity:

(a) If the most commonly used term is the
same as in the source language, keep it
as it is.

(b) If the most commonly used term is a
translation or a transliteration, use that.

2. If there is no commonly used term:

(a) If possible, a transliteration of the origi-
nal term should be used.

(b) If a transliteration would not be com-
monly understood in the context, and the
source term would be more acceptable,
you may retain the original term.
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Abstract

This paper presents the results of the patent
translation shared task at the 11th Workshop
on Asian Translation and 9th Conference on
Machine Translation. Two teams participated
in this task, and their submitted translation re-
sults for one or more of the six language direc-
tions were automatically and manually evalu-
ated. The evaluation results demonstrate the
strong performance of large language model-
based systems from both participants.

1 Introduction

The patent translation task using the JPO Patent
Corpus has been held under the Workshop on Asian
Translation (WAT) in 2015-2023 (Nakazawa et al.,
2023) and under the Conference on Machine Trans-
lation (WMT) this year.! Due to the high demand
for patent translation, this task has attracted many
participants particularly in the early WAT work-
shops: a total of 30 teams over the past 10 years as
in Table 1.

This year, two teams participated in this task;
one participant submitted translation results for two
language directions, and the other for six out of six
language directions, that is, Chinese<+Japanese,
Korean<+Japanese, and English<+Japanese. Both
teams employed large language model (LLM)-
based systems, and the submitted translation re-
sults were evaluated by both automatic and human
evaluation metrics. In this paper, we describe the
evaluation dataset and procedure, and report the
evaluation results for the submitted outputs.

2 Dataset

The JPO Patent Corpus (JPC)> was constructed by
the Japan Patent Office (JPO) in collaboration with

'Similarly to other WAT shared tasks, this task is organized
by WAT organizers but is held under WMT this year due to
the collaboration between the workshop and conference.

2https ://lotus.kuee.kyoto-u.ac. jp/WAT/patent/

Year # of teams

2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

Total

NOODWND WM O

(O8]
o

Table 1: The number of participant teams for the patent
task over the years.

National Institute of Information and Communica-
tions Technology (NICT). The corpus consists of
Chinese-Japanese (zh-ja), Korean-Japanese (ko-ja),
and English-Japanese (en-ja) parallel sentences of
patent descriptions. Most sentences were extracted
from documents with one of four International
Patent Classification sections: chemistry, elec-
tricity, mechanical engineering, and physics. As
shown in Table 2, the dataset for each language pair
consists of training, development, development-
test, and multiple test sets. These datasets were
constructed from patent families using automatic
sentence alignment (Utiyama and Isahara, 2007),
except for the test-N4 set where target sentences
were manual translated from the source sentences.

A characteristic of the corpus is the use of fixed
training and test datasets over the years, which
allows for the comparison of new systems with
past systems. The possible issue of data leakage is
minimized: the data is provided only to applicants
who have committed to participating in each annual
workshop, and participants are required to delete
the data after the workshop concludes.
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Set # of Sentences Published Years Introduced Event
zh-ja ko-ja en-ja
Train 1,000,000 1,000,000 1,000,000 2011-2013 WAT 2015-2016
Dev 2,000 2,000 2,000 20112013 WAT 2015-2016
DevTest 2,000 2,000 2,000 2011-2013 WAT 2015-2016
Test-N1 2,000 2,000 2,000 2011-2013 WAT 2015-2016
Test-N2 3,000 - 3,000 20162017 WAT 2018
Test-N3 204 230 668 20162017 WAT 2018
Test-N4 5,000 5,000 5,000 2019-2020 WAT 2022
Test-2022 \ 10,204 7,230 10,668 \ 2011-2020 WAT 2022

Table 2: Statistics of the JPO Corpus. The published years column represents the years for the source sentences.
The introduced event column indicates the events for which each dataset was first introduced.

3 Evaluation Procedure

3.1 Automatic Evaluation

Task participants were required to submit transla-
tion results via the WAT Submission site.> For the
results submitted with the “publish” checkbox se-
lected, automatic evaluation scores were calculated
and displayed in the WAT Evaluation site.* As the
automatic evaluation metrics, we used BLEU (Pa-
pineni et al., 2002) with multi-bleu.perl in the
Moses toolkit (Koehn et al., 2007) version 2.1.1°
and RIBES (Isozaki et al., 2010) with RIBES. py
version 1.02.4.°

Prior to calculating scores, reference sentences
and output translation sentences were tokenized
with the tokenization tools for each language: Ju-
man 7.0 (Kurohashi et al., 1994), KyTea 0.4.6 (Neu-
big et al., 2011) with the full SVM model’ and
MeCab 0.996 (Kudo et al., 2004) with IPA dictio-
nary 2.7.0% for Japanese, KyTea 0.4.6 with the full
SVM Model (MSR model) and Stanford Word Seg-
menter (Tseng, 2005) version 2014-06-16 with the
CTB and PKU models® for Chinese, mecab-ko'?
for Korean, and tokenizer.perl'! in the Moses

3https://lotus.kuee.kyoto—u.ac.jp/WAT/
submission/index.php
*https://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html
5https://github.com/moses-smt/mosesdecoder/
tree/RELEASE-2.1.1
6http://www.kecl.ntt.co.jp/icl/lirg/ribes/
index.html
7http://www.phontron.com/kytea/model.html
8http://code.google.com/p/mecab/downloads/
detail?name=mecab-ipadic-2.7.0-20070801.tar.gz
9http://nlp.stanford.edu/software/segmenter.
shtml
Ohttps://bitbucket.org/eunjeon/mecab-ko/
11https://github.com/moses—smt/mosesdecoder/
tree/RELEASE-2.1.1/scripts/tokenizer/tokenizer.
perl

5  All important information is transmitted correctly.
(100%)

4 Almost all important information is transmitted cor-
rectly. (80%-)

3 More than half of important information is transmit-
ted correctly. (50%-)

2 Some of important information is transmitted cor-
rectly. (20%-)

1 Almost all important information is NOT transmitted
correctly. (—20%)

Table 3: Ratings and their descriptions in the JPO ade-
quacy criterion.

toolkit for English. The detailed procedures are
shown on the WAT Evaluation site.'?

3.2 Human Evaluation

We conducted human evaluation for selected trans-
lation results based on the JPO adequacy evalua-
tion criterion, which is originally defined by JPO
to assess the quality of translated patent documents.
For this evaluation, we used the test-N3 set for
each language direction for the following reasons:
(1) parallel sentences have been manually aligned
(translations were manually created from the origi-
nal sentences), and (2) both participants submitted
results for this test set.

The evaluation was performed by two annotators
(translation experts) for each system as follows.
First, 200 sentences for evaluation were randomly
selected from the test-N3 set in advance (the same
200 sentences were used for all systems). (2) The
200 pairs of the source sentences and translated sen-
tences by the system were shown to each annotator,
and the ratings between 1 and 5 were assigned to
each sentence by the annotator as shown in Table 3.

2http://1lotus.kuee.kyoto-u.ac. jp/WAT/
evaluation/index.html

119


https://lotus.kuee.kyoto-u.ac.jp/WAT/submission/index.php
https://lotus.kuee.kyoto-u.ac.jp/WAT/submission/index.php
https://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html
https://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html
https://github.com/moses-smt/mosesdecoder/tree/RELEASE-2.1.1
https://github.com/moses-smt/mosesdecoder/tree/RELEASE-2.1.1
http://www.kecl.ntt.co.jp/icl/lirg/ribes/index.html
http://www.kecl.ntt.co.jp/icl/lirg/ribes/index.html
http://www.phontron.com/kytea/model.html
http://code.google.com/p/mecab/downloads/detail?name=mecab-ipadic-2.7.0-20070801.tar.gz
http://code.google.com/p/mecab/downloads/detail?name=mecab-ipadic-2.7.0-20070801.tar.gz
http://nlp.stanford.edu/software/segmenter.shtml
http://nlp.stanford.edu/software/segmenter.shtml
https://bitbucket.org/eunjeon/mecab-ko/
https://github.com/moses-smt/mosesdecoder/tree/RELEASE-2.1.1/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/tree/RELEASE-2.1.1/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/tree/RELEASE-2.1.1/scripts/tokenizer/tokenizer.perl
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html

Parameter Value
encoder_type brnn
brnn_merge concat
src_seq_length 150
tgt_seq_length 150
src_vocab_size 100,000
tgt_vocab_size 100,000
src_words_min_frequency 1
tgt_words_min_frequency 1

Table 4: The configuration used for the baseline model.
For other parameters, tge default values were used.

4 Baseline System

The organizers built a baseline system, a recur-
rent neural network (RNN) encoder-decoder model
with attention (Bahdanau et al., 2014) using Open-
NMT (Klein et al., 2017) with the configuration
shown in Table 4 and the same tokenizers for au-
tomatic evaluation explained in §3.1. This base-
line system uses the old neural machine trans-
lation (NMT) model built for WAT 2018 and
serves as a weak baseline for comparison. How-
ever, as shown in §6, many past participants have
adopted Transformer-based systems, allowing for
the performance comparison with Transformer
models (Vaswani et al., 2017) for recent partici-
pants.

5 Participant Systems

Two teams participated in the patent translation
task: GenAl (Yonsei University) and sakura
(Rakuten Institute of Technology). The details on
the submitted systems are as follows.

sakura wused an LLM-based system fine-tuned
with simple translation prompt on the JPC train-
ing set for the corresponding language pair. As
their backbone model, they adopted RakutenAl-
7B-chat,'® which had been pretrained on English
and Japanese texts.

GenAlI used an LLM-based system fine-tuned
on only 1,000 sentences from the JPC training set.
Their backbone model is Mistral-Nemo-Instruct-
2407 (12B),'* which had been pretrained on multi-
lingual texts. During both fine-tuning and testing,
their system identified domain-specific terms in
each input source sentence by matching them with

Bhttps://huggingface.co/Rakuten/
RakutenAI-7B-chat

“https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

their bilingual terminology dictionary, and then
generated the translation based on prompt that re-
quired the use of the specified term pairs.

6 Evaluation Results

6.1 Main Results

For the same reasons mentioned in §3.2, we only
present the results for the test-N3 set; results for
other test sets can be found at the WAT Evaluation
site.!> Table 5, 6, 7, 8, 9, and 10 show the perfor-
mance of evaluated system for each language direc-
tion (systems with “xr” indicate they used external
resources). The tables present the automatic and
human evaluation scores of the two participants’
systems (one system per participant, selected based
on the BLEU score), as well as the organizer’s base-
line and the best participant systems from previous
years. The model type columns indicate whether
the system employed statistical machine transla-
tion (SMT), RNN-based NMT, or Transformer
(TF)-based NMT, and whether it corresponds to
a decoder-only model (Dec) or an encoder-decoder
model (EncDec). The BLEU/RIBES scores for the
translation tasks into Japanese and Chinese rep-
resent the average BLEU/RIBES scores based on
three different tokenizers.'® The JPO adequacy
scores (Adeq) represent the average of the scores
assigned by two annotators.

We observed the following findings. (1) Un-
surprisingly, both participants’ systems as well as
all previous best systems outperformed the base-
line for all language directions in terms of auto-
matic metrics. (2) The LLM-based systems by the
two participants achieved strong results in terms of
automatic metrics; GenAl’s system outperformed
the previous systems for ko—ja and ja—ko and
sakura’s system outperformed the previous sys-
tems for ja—ko and ja—en. However, the previous
systems maintained the highest scores for zh—ja,
ja—zh, and en—ja. (3) Both participants’ systems
achieved high adequacy scores of over 4. However,
importantly, a system with a higher automatic eval-
uation score did not necessarily achieved a higher
human evaluation score. Specifically, sakura’s sys-
tem yielded lower automatic evaluation scores than
GenATI’s system (e.g., BLEU of 52.77 vs. 67.10
for ja—ko and 68.00 vs. 70.60 for ja—ko), but

15ht’cps: //lotus.kuee.kyoto-u.ac. jp/WAT/
evaluation/index.html

1%Three tokenizers indicate Juman, KyTea, and MeCab for
Japanese, and KyTea and Stanford Word Segmenter (CTB and
PKU models) for Chinese.
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System Model Type BLEU RIBES Adeq
GenAl best TF Dec 67.10 0.9225 4.66
2018 best SMT 54.63  0.9056 -
2019 best TF EncDec 5442  0.9012 -
2020 best TF EncDec 53.77 0.9044 -

2021 best™™
sakura best

TF EncDec 5348 0.9014 -
TF Dec 52.77 0.8982  4.67

Baseline RNN EncDec  52.65  0.8975 -
Table 5: Results on the ko—ja test-N3 set.
System Model Type BLEU RIBES Adeq
GenAl best TF Dec 70.60  0.9391 4.39
sakura best TF Dec 68.00 0.9268 4.76

2021 best TF EncDec 66.25  0.9252 -
2019 best TF EncDec 65.74  0.9228 -
2020 best TF EncDec 64.30 0.9223 -
Baseline RNN EncDec 6243 09153 -
Table 6: Results on the ja—ko test-N3 set.
System Model Type BLEU RIBES Adeq
2020 best TF EncDec 40.51 0.7568 -
2019 best TF EncDec 2496  0.7639 -
2018 best TF EncDec 24.87  0.7492 -

2021 best™"
sakura best

TF EncDec 22.67 0.7716 -
TF Dec 20.83 0.7615 4.24

Baseline RNN EncDec  17.28  0.7322 -
Table 7: Results on the zh—ja test-N3 set.
System Model Type BLEU RIBES Adeq
2020 best TF EncDec 4434 0.8340 -
2021 best™  TF EncDec 31.09 0.8550 -
2019 best TF EncDec 29.82  0.8390 -
sakura best  TF EncDec 26.60 0.8245  4.33
2018 best TF EncDec 24.66  0.8261 -
Baseline RNN EncDec  23.68  0.7886 -
Table 8: Results on the ja—zh test-N3 set.
System Model Type BLEU RIBES Adeq
2019 best™  TF Enc-Dec 5532 0.8827 -
sakura best  TF Dec 5393 0.8803 4.44
2021 best™™  TF Enc-Dec 53.34  0.8753 -
2018 best™  SMT 52.07 0.8643 -
2020 best TF Enc-Dec 5095 0.8665 -
Baseline RNN Enc-Dec  46.39  0.8438 -
Table 9: Results on the en—ja test-N3 set.
System Model Type BLEU RIBES Adeq

sakura best
2019 best™™
2021 best™™
2020 best
Baseline

TF Dec 4320 0.8505 4.08
TF Enc-Dec 41.37  0.8499 -
TF Enc-Dec 40.73  0.8546 -
TF Enc-Dec 39.94 0.8413 -
RNN Enc-Dec  35.01 0.8230 -

Table 10: Results on the ja—en test-N3 set.
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achieved similar or better adequacy scores (4.67
vs. 4.66 for ja—ko and 4.76 vs. 4.39 for ja—ko).
This result highlights the need for using a variety
of evaluation metrics, such as neural-based metrics,
which have been demonstrated to correlate well
with human judgement (Freitag et al., 2023).

6.2 Detailed Human Evaluation Results

Table 11 shows the detailed results of the JPO ade-
quacy evaluation for a total of eight participant sys-
tems, which were selected from among the same
participant’s systems based on the BLEU score.
The “Adequacy Score” column represents the av-
erage of ratings assigned to 200 sentences by each
annotator for the Annotator="A"/B” rows and the
average and standard deviation of the average score
by the two annotators (A and B) for the Annota-
tor=""Both” row, which is shown as the adequacy
score (Adeq) in Table 5-10.

We observed the following findings. First, most
sentences were assigned scores over 4 (75% or
more sentences for each translation result, except
for sakura’s ja-en result evaluated by Annotator B).
This indicates that there were many high-quality
translation overall, but more accurate systems have
room for development, considering that the trans-
lations with a score lower than 5 account for more
than 20-50% in most cases of annotator-level eval-
uation results.

Second, the difference of sentence-level scores
between two annotators (“Diff Score”) was 0 or 1
in most cases, and there were only nine sentences
with the difference score of 2 over all translation re-
sults. As a result, the adequacy scores between two
annotators were close in many cases, but relatively
large standard deviation (close to or greater than
0.2) was observed in three cases, i.e., sakura ja-zh,
GenAl ja-ko, and sakura ja-en results. In the lat-
ter cases, there were somewhat many mismatches;
each translation result included over 100 sentences
with a score difference of 1 from the two annotators
and/or a few sentences with a score difference of 2.

For the nine sentences with a score difference of
2, we conducted a meta-review by a third evaluator,
distinct from the two annotators. We found that
which annotator provided the more appropriate rat-
ing varied depending on the example. In some ex-
amples, one annotator overlooked a mistranslation
and assigned a higher rating. In other examples,
there were no mistranslations, but one annotator
still assigned a lower rating. Additionally, in cases



Lang Team  DatalD | Annotator | Adequacy Score Distribution of Ratings Diff Score

(Avg. = SD) 1 2 3 4 5 0 1 2

A 4.24 4 4 24 76 92

zh-ja  sakura 7302 B 4.24 2 6 26 74 92
Both 42440 130 70 0

A 4.50 2 5 17 43 133

ja-zh  sakura 7257 B 4.15 7 10 30 52 101
Both 4.33+£0.18 120 80 2

A 4.79 1 1 7 21 170

ko-ja  sakura 7311 B 4.55 2 0 9 65 124
Both 4.67+0.12 137 63 O

A 4.84 0 0 1 37 162

ko-ja  GenAl 7180 B 4.51 0 0 0 99 101
Both 4.66+0.15 124 76 0

A 4.64 0o 4 4 52 140

ja-ko  sakura 7224 B 4.87 0 1 4 15 180
Both 476 £0.12 148 52 0

A 4.16 0 7 38 71 84

ja-ko  GenAl 7267 B 4.61 0 o 9 60 131
Both 4.39+0.23 98 102 0

A 4.49 0 4 15 61 120

en-ja  sakura 7278 B 4.40 0 3 35 41 121
Both 4.44+0.04 123 73 0

A 3.83 22 59 43 74

ja-en  sakura 7309 B 4.33 1 5 26 64 104
Both 4.08 +0.25 79 144 7

Table 11: Detailed results of the JPO adequacy evaluation for the test-N3 set. The “Distribution of Ratings” column
shows the number of sentences with each rating of 1-5. The “Diff Score” represents the number of sentences with
each difference score, which means the difference of ratings between two annotators.

where the translation contained garbled characters,
one annotator assigned a lower rating.

7 Conclusion

This paper summarizes the results of the
WAT/WMT 2024 shared task on patent translation.
The patent translation task using the JPO Patent
Corpus has been held for ten years, and this will be
the last time.!” We believe that extensive develop-
ment efforts by task participants over the past 10
years have contributed to advance machine transla-
tion technologies for the patent domain.
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Abstract

We present the results of the ninth edition of
the Biomedical Translation Task at WMT’24.
We released test sets for six language pairs,
namely, French, German, Italian, Portuguese,
Russian, and Spanish, from and into English.
Each test set consists of 50 abstracts from
PubMed. Differently from previous years, we
did not split abstracts into sentences. We re-
ceived submissions from five teams, and for
almost all language directions. We used a base-
line/comparison system based on Llama 3.1
and share the source code at https://github.
com/cgrozea/wmt24biomed-ref.

1 Introduction

In this paper, we present a description and the
findings of the ninth edition of the Biomedical
Translation Task,! which took place at the ninth
edition of the Conference for Machine Transla-
tion (WMT’24). The shared task aims to sup-
port advances in Machine Translation (MT) in the

* The contributions of the authors are the following:
MN prepared the MEDLINE test sets, performed manual
validation, and organized the shared task; CG developed
the baseline system; PT, RR, RB, AN, SC, VB, GMN,
FV, MVN, LY performed manual validation; AJY per-
formed manual validation and the automatic evaluation, as
well as co-organized the shared task; All authors approved
the final version of the manuscript. E-mail for contact:
mariana.lara-neves@bfr.bund.de

lhttp://www2.s’catmt.org/wmt24/
biomedical-translation-task.html

biomedical domain, especially for scientific litera-
ture. Previous editions of the shared task addressed
up to seven language pairs and included the re-
lease of training and test sets (Bojar et al., 2016;
Jimeno Yepes et al., 2017; Neves et al., 2018; Baw-
den et al., 2019, 2020; Yeganova et al., 2021; Neves
et al., 2022, 2023). All previous data is available
in the shared task repository.

Similar to previous years, our test sets consist
of biomedical abstracts, which have been included
to PubMed? just before publishing the test set, to
decrease the likelihood of data contamination. We
prepared test sets for six languages from and into
English, namely, French (fr2en, en2fr), German
(de2en, en2de), Italian (it2en, en2it), Portuguese
(pt2en, en2pt), Russian (ru2en, en2ru), and Span-
ish (es2en, en2es). The test sets consist of 50 ab-
stract pairs for each of the 12 language directions
above. Some of the test sets were also released as
test suites in the General Task of WMT (Kocmi
et al., 2024). After the release of the test sets, the
participants had around two weeks to submit their
automatic translations. For this year’s shared task,
the following features were introduced:

* The selection of the articles for the test sets
was based on topics of interest to the task
organizers (Section 2);

2https: //github.com/biomedical-translation-corpora/

corpora
*https://pubmed.ncbi.nlm.nih.gov/
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* The test sets consist of paragraphs comprising
the papers’ title and the abstract, i.e. no sen-
tence splitting and alignment were carried out
(Section 2);

» Consequently, we only performed a manual
evaluation on the abstract level (cf. Section 6);

* We used as a baseline/comparison a local large
language model, Llama 3.1 (cf. Section 3);

* We performed the automatic evaluation also
based on COMET (Rei et al., 2020), besides
BLEU (Papineni et al., 2002).

2 Test sets

We downloaded the daily update files from
PubMed* around mid-April for the preparation of
the test sets. As usual, we first identify all arti-
cles that are available in English as well as one of
the non-English languages that we address in the
shared task. Subsequently, we selected 100 pairs
of articles for each language pair, which were later
split into two sets, i.e., from and into English.

This year, we aimed to prioritize three topics’
in our test sets. While selecting the articles, we
restricted each topic to around a third of the total.
Still, this limit was frequently not reached because
too few articles included any of the three selected
topics. The three topics are listed below:

* Animals: D0O00818
* SARS-CoV-2: D000086402
* Pancreatic Neoplasms: D010190

Subsequently, the 100 selected articles for each
language pair were split between the two test set
directions. Test set statistics are shown in Table 1.
No further processing was performed on the test
sets, and these were released as a plain text file,
one for each language pair, each with 50 lines, and
one for each article. Each line is composed of the
title and abstract of the article.

3 Baseline/Comparison system

While we used GPT 3.5 as a comparative model
last year, we decided to use a self-hosted open-
weight large language model this year. Several

4https ://ftp.ncbi.nlm.nih.gov/pubmed/
updatefiles/

Sdefined as Medical Subject Headings, MeSH terms, used
for MEDLINE indexing

such models are available of various sizes, licenses,
and performance levels in the MT task. Based on
the previously accumulated hands-on experience
in informally evaluating several open-weight mod-
els in multiple tasks, including translation, we se-
lected one of the best performing models, namely
Llama 3.1 (Dubey et al., 2024).

The Llama models are open in the sense that
their weights and supporting code are freely avail-
able, but the usage is limited by a relatively liberal
license. In the case of the model used here, the
precise licenses are “LLAMA 3.1 COMMUNITY
LICENSE AGREEMENT” and “Llama 3.1 Accept-
able Use Policy”. The last one prohibits using the
model to violate the law or the rights of others, to
activities related to bodily harm, including mili-
tary, to generate false information, and includes a
clause making it compulsory to report “risky con-
tent generated by the model”. This risky content
can arise when used for medical texts in the form
of mistranslated medical procedures.

To interact with the model, we used ollama,’
through which the model can be queried (i.e. we
can programmatically perform tasks with the se-
lected LLM and retrieve the response to those tasks,
e.g. from a program written in the Python program-
ming language). In addition, ollama provides a
command line interface that can be used to pull
further models or to interact with a model in a text-
based chat interface.

Implementation decisions We used ‘“Meta
Llama 3.1 70B Instruct”® (known in ollama as
llama3.1:70b), which means the approximate num-
ber of parameters is 70 * 10°. Such an LLM is run
fully accelerated by a GPU only when the parame-
ters fit into the video RAM of the GPU. Since we
used a Nvidia A6000 ADA, a 48 GB RAM GPU
card, we used the quantization Q4_0 (4 bits per
parameter). This makes the actual size of such a
model 37.22 GiB and fits in the 48 GB VRAM of
the GPU. With the other temporary data needed in
the same memory during processing, the occupa-
tion of the VRAM went up to 41.2 GB (85%). To
evaluate the impact of using the same model with a
smaller card, we also tested a 24 GB VRAM card,
Nvidia A5000. This raised the CPU usage to 28
cores (from 2) and processing was slower.

https://ai.meta.com/blog/meta-1lama-3-1/

"https://ollama.com/

%Instruct” indicates that the model was further trained to
follow instructions and not just to predict the next text tokens
that could follow after a given text prefix.
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topics | fr2en de2en it2en pt2en ru2en es2en | en2fr en2de en2it en2pt en2ru enes
SARS-CoV-2 15 18 - 5 11 17 9 15 - - 13 16
Pancr. Neopl. 2 15 1 - 3 2 - 15 2 1 4 1
Animals 15 17 5 17 14 22 20 17 5 18 20 13
other 19 - 44 28 22 9 21 4 43 31 14 20

Table 1: Statistics of the topics in the test sets. The topic “other” refers to articles that do not contain any of the
three selected topics. The sum of the values for one language pair might be higher than 50 because some articles

contain more than one topic.

Prompt used Choosing the right prompt is im-
portant for instruction-tuned LLMs and is still
rather an art than a science. We started with the
prompt “You are a helpful assistant specialised in
biomedical translation. You will be provided with
a text in {src}, and your task is to translate it into
{dest].” where src is the name of the source lan-
guage and dest is the name of the target language.

Visual examination of one text entry (out of the
50 in the test set) per language pair showed the
following undesirable behaviour in the MT output
generated by the LLM, which we tried to fix by
changes to the prompt:

* in one case some additional text, with the
meaning “this is the translation into German”,
which was fixed by adding “You will add noth-
ing and comment nothing, just produce the
accurate translation of the text in specialist
language.” to the prompt;

additional formatting of the output text
through the insertion of newlines, which was
almost entirely fixed by adding “Keep the for-
matting as close as possible to the source and
especially do not insert any newline.” to the
prompt.

* the occasional replacement of digits by their
names. We decided not to try to fix this.

After a complete run, we noticed that the LLM
still failed to respect the original format of the
source texts (it still sometimes produced multiple
lines per source text). Visual inspection showed
that in a few cases it still attempted to format
the subsections of the translated test despite be-
ing asked to refrain from doing that. Therefore,
explicit postprocessing was carried out to eliminate
the line breaks from the LLM’s outputs.

Some good features of the translated texts were
also noticed, such as localized acronyms e.g. trans-
lating English Real-time functional magnetic reso-
nance imaging (fMRI) to French L’imagerie fonc-

tionnelle par résonance magnétique (IRMf). Quite
impressive was how well the translation retained
the quantitative results in the fairly long source
texts, while simultaneously applying number lo-
calization transformations, such as swapping the
decimal point with the decimal comma.

Run-time Statistics Measured duration in sec-
onds with an A6000 in each case for 50 texts:

en2de 1232 | en2es 1065 | en2fr 1202
de2en 728 | es2en 902 | fr2en 859
en2it 1413 | en2pt 1098 | en2ru 1110
it2en 810 | pt2en 748 | ruzen 641

With an A5000, the speed was about 10 times
slower. A GPU-free execution is also possible, but
it can be too slow to be practical.

Energy consumption, CO, emissions For the
A6000 card, a total of 11,607 seconds at about
1 kW (300W the GPU itself) equals an amount
of 3.22 kWh and an equivalent CO3 emission of
1.16 kg — at the average 360 g CO2/kWh in Ger-
many, equivalent to the emission of an ICE (internal
combustion engine) car driven for about 9.5km. For
the slower card, which totalled 131, 898 execution
seconds, the figures are 36.64 kWh and therefore
13.2kg COs.

4 Teams and systems

We followed similar dates to the WMT General
Translation Shared Task, releasing the test sets on
June 27th, 2024 and allowing submission until July
12th, 2024 (after an extension). We released all test
sets both in our submission system (Google Form)
and the OCELoT tool.” We also included our test
sets for en2de, en2es, and en2ru as test suites in the
General Task!® in OCELoT. These were the only
language pairs that overlapped with the ones from
the General Task.

9https://ocelot-west—europe.azurewebsites.
net/

10http://www2.statmt.org/wmt24/
translation-task.html
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Team ID  Institution

Publication

(Castaldo et al., 2024)

ADAPT Dublin City University, Ireland

AIST National Institute of Advanced Industrial Sci-
ence and Technology, Japan

DCU Dublin City University, Ireland

HW-TSC Huawei Translation Service Center, China

Unbabel  Unbabel, Portugal

Table 2: List of the participating teams and systems.

We received submissions from five teams that di-
rectly registered to our task. We list them in Table 2
and present details about their systems below.

ADAPT (Castaldo et al., 2024). For the submis-
sions identified as “runl” for de2en, en2de, fr2en,
and en2fr, the participants relied on NLLB-200’s
distilled 600M variant (NLLB Team et al., 2022),
which was fine-tuned on around 10k parallel seg-
ments from in-domain training data in the respec-
tive language pair. Run2 for en2de, in addition
to the above approach, included post-edition by
LLM agents powered by GPT-40.!! Finally, for
run3 for de2en, they relied on LLama-3-8B'? fine-
tuned on around 10k parallel sentences and few-
shot prompting using fuzzy matches retrieved by
similarity search from the training dataset.

AIST. For runl of de2en, the team relied on a
Mega model (Ma et al., 2023) trained from scratch
and fine-tuned on parallel biomedical data from
MEDLINE. For run2 for both en2de and de2en,
they used a Mega model, an ensemble of four
checkpoints trained from scratch and fine-tuned
on the same data. For all submissions, they esti-
mate the following sizes of training data used: 3M
from in-domain, SM from open domain, and 3M
monolingual.

DCU. We do not have much information about
the system behind the submissions for this team,
except for a short description citing the Mistra-7B
language model'? for ru2en and fr2en.

HW-TSC. For all submissions to en2de and
de2en, the team relied on a system based on Trans-
formers that was trained from scratch on in-domain
and open-domain parallel and monolingual data
(Wu et al., 2023). It is not clear which changes
were carried out for the distinct runs.
11https://platform.openai.com/docs/models/

gpt-4o

12https://huggingface.co/meta—llama/
Meta-Llama-3-8B

Bmistralai/Mistral-7B-ve.1

Unbabel The submissions for all language pairs
consisted of a new version of the Tower LLM
(Alves et al., 2024), either with Greedy (runl) or
MBR (run2) decoding. The LLLM has 70B param-
eters, was built on top of Llama3, and its contin-
ued pre-training phase used 25B tokens for 15 lan-
guages, followed by fine-tuning with instructions
for all the languages in a variety of tasks, including
MT.

5 Automatic evaluation

We ran automatic evaluation based on BLEU (Pap-
ineni et al., 2002) and COMET (Rei et al., 2020).
We present the results for the submissions to the
biomedical translation task using our form in Ta-
bles 3 (from English) and 4 (into English), as well
as the ones from OCELOT for our task in Table 5
and for our test suites submitted to the General Task
in Table 6. All scores were multiplied by 100.

5.1 Biomedical Task submission system

Among all submissions, including our baseline sys-
tem, the highest BLEU score was 55.63 for pt2en
(Unbabel runl) and the highest COMET score was
of 89.71 for en2ru (Unbabel run2). The submis-
sions that scored better were the ones from Unba-
bel and our baseline system, e.g., for en2de, en2fr,
en2it, en2pt, and en2ru, with some few exceptions
where another system also obtained a high score,
e.g., AIST for en2de and DCU for en2ru. The
submissions from Unbabel usually scored slightly
higher than our baseline, with a few exceptions,
e.g., en2pt, fr2en, and es2en.

We observed that the two types of metric score
were rather equivalent and that submissions that
scored high for BLEU also did so for COMET.
However, some submissions had very different
BLEU scores for similar COMET scores. For in-
stance, the baseline system obtained the BLEU
scores of 31.67 and 51.65 for en2de and en2pt, re-
spectively, but around 87.00 for the COMET score
in both cases. Overall, the scores from this year’s
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Team Run Metric en2de en2fr en2it en2pt en2es en2ru
BLEU 25.03 29.92
ADAPT ! COMET 84.31 78.14
BLEU *30.16
ADAPT 2 cOMET 8530
BLEU 33.80
AIST 2 COMET 8559
DCU BLEU 16.46 29.12 38.97 31.28
) COMET 64.78 80.39 74.17 87.00
BLEU *28.77
HW-TSC 1 COMET 82.92
BLEU 28.46
HW-TSC 2 CcoMET 8283
BLEU 28.32
LA S COMET 83.14
Unbabel 1 BLEU 34.22 53.54 34.84 50.35 35.76
COMET 87.48 87.26 85.17 87.03 88.97
Unbabel ) BLEU *32.13  *49.76  *32.06 *48.47 *32 35
COMET 88.09 87.60 86.04 87.55 89.71
Baseline - BLEU 31.67 45.98 31.64 51.65 4795 30.92
COMET 87.00 87.03 85.00 87.02 85.37 87.55

Table 3: BLEU and COMET scores for submissions to the Biomedical Task submission system, for translation from
English. The runs marked with a star (*) were the ones selected for manual validation. For the submissions from
Unbabel, runs “1” are the ones identified as “Greedy”, and runs “2” are the ones for “MBR”.

Team Run Metric de2en fr2en it2en pt2en es2en ru2en
BLEU %3224 1881

ADAPT 1 COMET 8304 7214
BLEU 36.93

ADAPT 3 COMET  78.84
BLEU 4586

AIST I COMET  84.65
BLEU #4592

AIST 2 COMET 8484

U ] BLEU 3260 3147 2840 3132 2802 2576
COMET 7899 7874 7963 7956 8090 700l
BLEU  *45.79

HW-TSC 1 COMET  83.98
BLEU 4568

HW-TSC 2 coMET 8386
BLEU 4543

HW-TSC 3 COMET  84.08

Unbabel 1 BLEU 4905 5329 3891 5563 5132 4728
COMET 8667 8605 8532 8511 8699 8382

Unbabel 2 BLEU #4672 #5167 3891 #5353 #5228 %45l
COMET 8697 8639 8532 8547 8725 83.95

Baseline - BLEU 4585 5479 3749 5138 5354 4370
COMET 8639 8611 8528 8508 8718 8337

Table 4: BLEU and COMET scores for submissions to the Biomedical Task submission system, for translation into
English. The runs marked with a star (*) were the ones selected for manual validation. For the submissions from
Unbabel, runs “1” are the ones identified as “Greedy”, and runs “2” are the ones for “MBR”.

submissions are not directly comparable to the ones 5.2 OCELoT Biomedical Translation task
from the previous year since, for the first time, we

) Only one team (AIST) submitted to the biomedical
ran an evaluation on the abstract level.

task in OCELOT, but also for the same language
pairs in our submission system and for our test
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Team Run Metric en2de de2en
517 BLEU 28.30
COMET  83.75
542 BLEU 39.68
AIST COMET 82.55
544 BLEU 39.68
COMET 82.55
BLEU 28.30
M5 COMET 8375

Table 5: BLEU scores for submissions to OCELoT for
the Biomedical Translation Task.

suites in the general task. While their results as
shown in Table 5 were similar to the ones in Ta-
ble 6, they were slightly inferior to the ones that the
same team obtained for the runs to our submission
system, e.g., for en2de, a BLEU score of 28.30
versus 33.80, and a COMET score of 85.59 versus
83.75.

5.3 OCELo0T General Machine Translation
task

We included test suites only for the language pairs
in our task that overlap with the ones considered in
the general task, namely, en2de, en2es, and en2ru.
The scores for the submissions to the general task
(cf. Table 6) varied much more than the ones sub-
mitted directly to the biomedical task (cf. Table 3),
from very low to high, e.g., BLEU scores of 1.63
(certainly due to mistakes in the system) to 52.56.
It is safe to assume that most systems were not
trained especially for the biomedical domain. In
spite of this, we observed some submissions with
scores even higher than the ones for the biomed-
ical task. Amongst the submissions to the gen-
eral task, the highest scores for en2de were 38.07
BLEU (ONLINE-W) and 88.25 COMET (Trans-
sionMT), as opposed to a BLEU score of 34.22
(Unbabel runl) and a COMET score 88.09 (Un-
babel run2) in the biomedical task. For en2ru, the
highest scores in the general task were 41.25 BLEU
(Claude-3.5) and 89.88 COMET (Claude-3.5 and
Unbabel-Tower70B), as opposed to 35.76 BLEU
(Unbabel runl) and 89.71 COMET (Unbabel run2).
Therefore, submissions from the same team (Unba-
bel) scored slightly higher in the general task than
in the biomedical task.

6 Manual evaluation

Similar to previous years, we performed manual
validation of a sample of the submissions for most
of the language pairs. The number of abstracts that

we considered for each language was of either 10
or 20 depending on the availability of the human
evaluators. We used the three-way function of the
Appraise tool (Federmann, 2018), which includes
the following elements:

* the abstract in the original language (e.g., En-
glish for en2fr);

* translation A: first translation in the target lan-
guage (e.g. French for en2fr);

* translation B: second translation in the target
language (e.g. French for en2fr).

The task consists of validating whether a transla-
tion is better than the other (i.e., A>B or A<B), or
whether they are of similar quality (A=B). In cases
where the evaluators notice that an error might have
occurred, e.g., translation from another text or a
translation shorter than it should be, it is possible
to skip the validation of this particular pair.

For all language pairs, we considered the best
run from each of the team that submitted directly
to the biomedical task. The best run was the one
identified by the participants during the submission
process. Otherwise, we selected the best perform-
ing one. We evaluated pairs of either two trans-
lations from the teams, or one translation from a
team and the reference translation. We present the
results for submissions from English in Table 7 and
for submission into English in Table 8.

We present below a summary of the mistakes
that we observed during manual evaluation.

en2fr Translation quality was uneven, as sug-
gested by the 20 point difference in BLEU scores
obtained by the systems. While some translations
were of very high quality, others exhibited serious
issues including conveying meaning drastically dif-
ferent from the original sentence. In example 1,
numerical values are erroneous and inconsistent
with the corresponding percentages. In Example 2
the resulting translation is medically unacceptable.

(1) en: Of the 273 patients, 164 (60.1%)
required invasive mechanical ventilation.
One hundred and forty-two patients (52.0%)
survived their hospital stay.
fr*: Sur les 273 patients, 104 (60,1%) ont né-
cessité une ventilation mécanique invasive et
164 (52,0%) ont survécu a leur séjour a I’USL
fr: Parmi les 273 patient-es, 164 (60,1 %) ont
nécessité une ventilation mécanique invasive.
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en2de en2es en2ru

Teams BLEU COMET BLEU COMET BLEU COMET
AIST-AIRC 28.28 84.85

Aya23 30.77 87.11  49.49 8532 31.90 86.69
CUNI-DS 27.93 86.96
CUNI-NL 20.06 83.38

Claude-3.5 3503 87.86  52.08 8593  41.25 89.88
CommandR-plus 32.44 87.67  49.84 8578  34.33 88.64
CycleL 1.32 3835  3.00 4517 032 34.65
CycleL2 1.32 38.35 0.10 28.49
Dubformer 31.19 83.49 40.65 78.58 1.94 39.58
GPT-4 35.80 87.93  51.53 85.85  34.00 88.45
IKUN-C 10.82 7834 2218 7823 12.69 81.74
IKUN 11.07 79.14  12.67 7402 1328 82.98
[OL_Research 30.86 87.17  48.90 8556  32.30 87.68
Llama3-70B 31.43 87.01  47.86 8530  32.18 88.05
MSLC 25.17 8224 4630 84.27

NVIDIA-NeMo 15.91 8021  30.00 7932 2037 83.28
ONLINE-A 36.09 87.34 5256 85.62  40.20 89.23
ONLINE-B 36.48 8821  51.56 85.13 4023 88.73
ONLINE-G 34.86 87.08 5098 8534 3722 89.44
ONLINE-W 38.07 88.04 5247 8578  39.77 89.52
Occiglot 6.33 70.19  31.93 78.52

TSU-HITs 1.63 37.00  17.23 6020  2.80 52.36
TranssionMT 36.57 8825 5267 85.67  40.07 88.76
Unbabel-Tower70B  32.37 87.89  47.93 86.12  32.61 89.88
Yandex 35.09 89.81

Table 6: BLEU scores for submissions to OCELoT for the General Machine Translation Task.

Languages Systems Abstracts .
A>B A=B A<B skipped
en2de AIST vs. ADAPT 3 3 12 2
AIST vs. HW-TSC 13 2 4 1
AIST vs. DCU 10 3 4 3
AIST vs. reference 2 7 10 1
AIST vs. Unbabel 2 5 12 1
ADAPT vs. HW-TSC 16 2 0 2
ADAPT vs. DCU 10 5 1 4
ADAPT vs. reference 0 8 10 2
ADAPT vs. Unbabel 2 10 6 2
HW-TSC vs. DCU 6 2 9 3
HW-TSC vs. reference 0 0 19 1
HW-TSC vs. Unbabel 0 1 18 1
DCU vs. reference 0 3 14 3
DCU vs. Unbabel 0 2 15 3
reference vs. Unbabel 2 10 7 1
en2fr reference vs. Unbabel 14 0 5
reference vs. ADAPT 17 0 2
Unbabel vs. ADAPT 18 0 1 1
en2it reference vs. DCU 5 1 13 1
reference vs. Unbabel 1 1 18 0
DCU vs. Unbabel 4 6 9 1
en2pt DCU vs. Unbabel 0 6 8 6
DCU vs. reference 4 7 3 6
Unbabel vs. reference 7 10 3 0
en2ru reference vs. Unbabel 4 2 4 0
reference vs. DCU 3 3 4 0
Unbabel vs. DCU 7 2 1 0

Table 7: Pairwise manual evaluation results for the test set (from English).
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Languages Systems

Abstracts

A>B A=B A<B skipped

DCU vs.
DCU vs.
DCU vs.

AIST
Unbabel
reference
DCU vs. HW-TSC
DCU vs. ADAPT
AIST vs. Unbabel
AIST vs. reference
AIST vs. HW-TSC
AIST vs. ADAPT
Unbabel vs. reference

de2en

Unbabel vs. HW-TSC

Unbabel vs. ADAPT

reference vs. HW-TSC

reference vs. ADAPT
HW-TSC vs. ADAPT

2

—_ =
R OONOWNDOOoOOoOMNND

DCU vs. ADAPT
DCU vs. reference
DCU vs. Unbabel
ADAPT vs. reference
ADAPT vs. Unbabel
reference vs. Unbabel

fr2en

—_

—O OO, A WUNMAOAANODDO0O PR WO\ DN W
—_

reference vs. Unbabel
reference vs. DCU
Unbabel vs. DCU

it2en

— 0N QAN OO IR [P DWLWODOONDWULNO DWW

—_ W O

DCU vs. reference
DCU vs. Unbabel
reference vs. Unbabel

es2en

SQUUNI AR OO | DO WLWWLWWLWWLW

reference vs. Unbabel
reference vs. DCU
Unbabel vs. DCU

ru2en

WON[ AR APLUNILONDONO
N —

AR UL
— AU |\Oowo

Table 8: Pairwise manual evaluation results for the test set (into English).

Cent quarante-deux personnes (52,0 %) ont
survécu a leur séjour a I’hdpital.

(2) en: Deaths by mechanical asphyxiation con-
stitute a social drama
fr*: La prévention constitue un drame social
fr: Les morts par asphyxies mécaniques con-
stituent un drame social

In both cases, the translation errors likely re-
sult from mixing information contained in differ-
ent parts of the original texts. Arguably, this is
very concerning because users of such a translation
system could conclude that the erroneous transla-
tions are correct by checking that the information
is present in the original text. Other issues are
more easily detected, such as the interruption of
the translation by a loop repetition of a set of tokens
(e.g., une mobilité allant de 5,6% a 5,6% a 5,6%
al2ll% al2ll% a1211% a 1211% a 1211% a
1211% a 1211% a 1211% a 1211%...).

The choice of having full abstract translation in-
stead of sentence-by-sentence translation this year

seems to have both a positive impact on the overall
consistency of translations (e.g., overall consistent
use of terms and acronyms throughout a document)
and a negative impact on the end of translation for
some systems, where translation quality was de-
creasing as the text unfolded and sometimes just
interrupted (with or without loop repetitions).

Specialized term translation was sometimes er-
roneous, in particular with terms referring to ani-
mal species (for example, translating waterfowl by
oiseaux d’eau instead of sauvagine), which were
more frequent this year due to the selection method
for the test documents. Polysemous terms were
also a source of erroneous translations (e.g., hood
translated as capot — car context instead of capuche,
which is correct in a clothing context).

In addition to the manual evaluation through ap-
praise, a complementary assessment of the best sys-
tem submission outputs was conducted, with a fo-
cus on Acronyms and Lab Values, consistently with
the evaluations conducted in the two previous years.
Overall, 31 out of 50 test documents contained
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acronyms and none contained lab values. Acronym
translations were considered correct when the sys-
tem translation was identical to the reference trans-
lation or consisted of an attested acronym use in
a similar context. Correct acronym translations
(79%) included frequent acronyms such as USI
(Unité de Soins Intensifs — Itensive Care Unit) or
IC (Intervalle de Confiance — confidence interval).
In other cases, acronyms were either untranslated
(16%) or erroneous (5%). Some of the acronym
translation strategies used by human translators and
not by machine translation consist of explicitly stat-
ing that an English acronym is used, for example:
la santé mentale du nourrisson (IMH en anglais).
This is sometimes combined with a strategy of us-
ing the long form of a term in French, when an
acronym was used in English. These strategies are
often used with acronyms that stand for infrequent
terms.

It is also interesting to notice that reference trans-
lations contain idiomatic linguistic traits not used in
machine-translated text, such as inclusive writing
(as seen in Example 1).

en2pt All translations into Portuguese were of
very good quality, except for some empty transla-
tions from one submission and the remains of the
prompt used, which were included in the transla-
tions of the same submission. Therefore, the deci-
sion of whether one translation was better than the
other was generally based on small details, often
one single mistake.

Small mistakes that we found were the following:
(a) lack of capitalization at the start of the sentence
(e.g., “...profunda (TVP). o sangue . ..”); (b) nom-
inal concordance (e.g., “o febre p6s-anestésica”);
(c) missing words (e.g., “com uma [for¢a] mé-
dia de 526N”); (d) words that remained in En-
glish (e.g., “odds ratio”) (e) typos (“registe” in-
stead of “registre”); (f) and grammatical mistakes
(e.g., “acompanhou [por] mais de 18 meses”).

As in previous years, we found mistakes related
to the non-translation of acronyms. For easier or
more common terms, e.g., Artificial intelligence
(AID), the translations were all correct, i.e., “in-
teligéncia artificial (IA)”. However, mistakes were
often found for other terms, as in Example 3 below
in which only the translation pts3 is correct and has
the right acronym:

(3) en: Computer vision (CV)
pti: vis@o por computador (CV)

pt2: visdo computacional (CV)
pt3: visdo computacional (VC)

Often we observed a copy of the English
acronym for much more complex terms, as in Ex-
ample 4:

(4) en: hydrogenated castor oil (HCO ethoxy-
lates)
pti: Oleo de castor hidrogenado polioxi-
etileno (etoxilagdes de HCO)
pt2: 6leo de ricino hidrogenado de polioxi-
etileno (HCO-etoxilados)
pts3: hydrogenated castor oil (HCO ethoxy-
lates)

However, we had some difficult examples in
which the translation and acronym were correct,
e.g. ptz: in Example 5:

(5) en: hospital standardized mortality ratio
(HSMR)
pt:: taxa de mortalidade hospitalar
padronizada (HSMR, na sigla em inglés)
pta:  razdo de mortalidade hospitalar
padronizada (RMHP)

Finally, we observed many examples in which
we favored some translation over others because
they either sounded better or more correct, namely,
translations pty: in Examples 6, 7, 8, and 9:

(6) en: was highly expressed in CTCs
pt;: foi altamente expresso em CTCs
pt2: tinha uma expressao elevada nas CTCs

(7) en: A quasi-experimental study, which
compared
pti: Estudo quase-experimental, que com-
parou
pt2:  Um estudo quase experimental, que
comparou

(8) en: Case signalment
pti: Fatores de identificagdo do caso
pt2: O sinalamento do caso

(9) en: axis of the femoral neck
pti: eixo do colo do fémur
pta: eixo do colo femoral

132



fr2en With the change in protocol this year (from
sentence-level to paragraph-level translation and
evaluation), there were several differences in the
observed quality of translations.

Translation issues brought up in previous years
remained present, namely the copying or wrong
translation of acronyms and specialised terms (Ex-
ample 10), the wrong translation of personal pro-
nouns (e.g. son ‘his/her/their’ in Example 11) and
errors linked to the ambiguity of source terms
(e.g. taille ‘height or waist’ in Example 12).

(10) fr: la thérapie de substitution de la nicotine
(TSN)
en: nicotine replacement companies (NTS)
en*: nicotine replacement therapy (NRT)

(11) fr: ...la capacité d’un individu a rechercher
des soins ... pour son animal de compagnie
en: an individual’s ability to seek ... care for
their companion animal
en*: an individual’s ability to seek . .. care for
his companion animal

(12) fr: la circonférence de la taille (CT)
en: waist circumference (WC)
en*: circumference of height (CT)

However, the overall quality of the translations
was visibly lower than in previous years, due to
the use of LLMs and the translation of whole para-
graphs rather than individual sentences. LLMs
tended to exhibit more volatile behaviour, often
copying the source document instead of translating,
and also including the initial prompt in the output.
The consequence of the longer documents to trans-
late was mostly seen in skipping sentences within
the documents or (more commonly) at the end of
documents (i.e. translation finishing too early or re-
peating the final sentence multiple times). We also
observed the merging of multiple sentences/clauses
into a single one and the negative influence of pre-
vious sentences on later translations, resulting in
the repetition of terms in inappropriate places and
errors in the translation of numbers (both problems
illustrated in Example 13).

(13) fr:  Cent six médecins ont répondu au
sondage et 12 ont participé a un entretien
en:  One hundred and six physicians re-
sponded to the survey and 12 participated in
an interview
en*: One hundred and twelve respondents

participated in the survey

The consequence of the appearance of these
more serious errors (i.e. non-translation, missing
parts of the translation etc.) meant that they often
formed the basis of the evaluation rather than dis-
tinctions being based on errors more traditionally
resulting from the translation of scientific texts (ter-
minology, acronyms, etc.). Not evaluating on the
sentence level meant that an improved translation
on the sentence level was easily overridden by a
more technical problem, such as a missing sentence
at the end of the document. It could be useful in
the following years to consider evaluation via er-
ror analysis to get more detailed insights into the
strengths and weaknesses of different systems on a
more granular level.

es2en Contrary to past years, the Spanish to En-
glish language pair had very few contributions, to-
talling 30 examples from two different MT models
both compared between each other and against a
reference human translation.

In the past, sentence-to-sentence translation has
provided good results in terms of translation qual-
ity at sentence level. However, the trade-off was
inconsistency in the usage of medical terminology
and medical specific acronyms. This year however,
the use of full abstracts for translation led to greater
consistency in the translation of terminology and
acronyms specific to medicine.

When working well, the MT output has a good
quality, sometimes producing a result that was com-
parable to human translation in terms of quality, as
shown in Table 8, where the MT system Unbabel
had very good results compared against DCU and
the reference translation.

However, the MT output still lacks the fluency
of a human translation, as the systems had a ten-
dency to replicate the structure of the original Span-
ish source text, resulting in translations that can
be considered “literal translations”. In many in-
stances, the MT output would require copy editing
and rewriting by a native English speaker to render
the text more fluent and increase the overall quality
of the output.

Despite the good quality level of some trans-
lations, the overall quality of the outputs for this
year’s challenge is very uneven, with some very
good abstracts in English and some abstracts that
were not translated or still contained Spanish words
in them.
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At least one of the system used LLMs to pro-
duce the output in English, with this prompt: “I.
While being factual, accurate and not missing out
any detail, translate the given Spanish text into the
specified English language. Spanish Text:”. The
use of the prompt ensured the output did not miss
information from the original source text, as has
sometimes been the case in past years. Neverthe-
less, the LLLM system was not very robust.

As shown in the example below, the LLM system
sometimes did not translate the text in English as
requested. The text remained in Spanish. That is
considered a missing translation and is considered
a major error.

(14) en: While being factual, accurate and not
missing out any detail, translate the given
Spanish text into the specified English lan-
guage. La prevalencia de alergia alimentaria
ha aumentado en algunas regiones del mundo,
y con ello la incidencia, segin la variabilidad
geografica, en el fenotipo y manifestaciones
clinicas...

Another error the LLM system made was the
inclusion of the prompt used to generate the trans-
lated output as part of the response. This add super-
fluous information to the English translation and
breaks the readability and fluency of the text (see
previous example).

As mentioned before, fluent translation was still
an issue for the machine translation system, in par-
ticular for the DCU system. This system sometimes
generated sentences that were clunky or ungram-
matical in English.

(15) es: Se registraron 4 casos de morbilidad
post puncién (2 dolores epigdstricos y 2
hematomas de pared abdominal

en: Were registered 4 cases of morbidity post
puncture (2 pain epigastric and 2 hematomas
of abdominal wall).

In conclusion, LL.Ms systems still seem to have
an unreliable performance when it comes to ma-
chine translation, producing very good quality
translations, missing translations or ungrammatical
translations at the same time. A better out-of-box
LLM or refine the prompting techniques might ob-
tain better results with these systems.

It must be noted, however, that there were very
few examples for the Spanish to English translation
to reach an indisputable conclusion.

en2de Similar to previous years, a generally high
level of translation quality was seen for English
to German translation. The strongest models pro-
duced translations that not only conveyed the con-
tent well but also maintained consistency in terms
of style and structure. However, certain systems
exhibited notable flaws. In particular, one model
consistently omitted portions of the text, often trun-
cating the translation towards the end of the doc-
ument or, at times, even mid-sentence. Another
system struggled with basic capitalization, failing
to begin sentences with an uppercase letter, which
detracted from the overall readability of the output.

Numerical translations were also an issue, with
Eighty-nine frequently mistranslated as either
Achtundachtzig “eighty-eight” or Achtundneunzig
“ninety-eight”, revealing inaccuracies in number
handling. The translation of abbreviations varied
across systems, with some attempting to expand
or translate them, occasionally resulting in errors.
For example, the European Commission (EC) was
incorrectly translated as EG (Europdische Gemein-
schaft) instead of EU. Furthermore, specialized
terminology presented additional challenges, with
terms like compulsory elective rendered awkwardly
as obligatorische elektive Veranstaltung rather than
the more appropriate Wahlpflichtkurs.

Grammatical errors also persisted in some trans-
lations, indicating that while overall quality was
high, there is still room for improvement in han-
dling both sentence structure and more nuanced
linguistic elements.

de2en Overall, results varied for the German-to-
English translation task. While at least one system
was able to provide a human-level translation for
each source sample, there was generally also at
least one translation that was either incomplete or
difficult to understand.

The most serious mistakes included omission
of whole sentences, or synthesis of text that was
not present in the original. This was especially
evident in cases where the sample text ended in
an incomplete sentence, which caused some sys-
tems to generate a completion to the sentence. In
the most egregious example of this phenomenon,
an incomplete sentence at the end of a description
of an animal’s skin condition after an insect bite
led to more than one translation mentioning eu-
thanasia, when no such language was present in the
source. In some instances, text would be translated
to nonexistent words, e.g. translation of pords to
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the nonexistent word sporeous. Other mistransla-
tions included rendering mittleren Werte as median
instead of mean values as was intended in the text.

The most frequently occurring mistakes were re-
lated to the capitalization of words at the beginning
of sentences. Other formatting mistakes failed to
take into account the structure of the text, omitting
paragraph headings. These mistakes did not affect
the overall intelligibility of the text.

All in all, the majority of the systems were able
to provide a translation that, while not perfect, was
understandable and correctly conveyed important
information.

en2it The quality of the translation was higher
than in previous years, even more so than last year,
which set a new threshold in the accuracy of the
translation from English to Italian and vice versa.
The quality of most of the abstract was almost iden-
tical and fluent in terms of the quality of language.
The terminology and the syntax was of very high
quality in both translation directions. There were
rarely major issues with the choice of terms or the
construction of the sentences.

One mistake was the addition of parts of the text
that were not present in the original version. For
example, the original version is “Among those diag-
nosed with COVID-19 during follow-ups between
March 2020 and March 2021 [...]”

While the Italian translation: “MATERIALE E
METODO: TRA marzo 2020 e maggio 2021, sono
stati analizzati [...]”

Where there is the addition of “MATERIALE E
METODO”. There is also some minor issue with
the punctuation (the semicolon between “rene” and
“0 dobbiamo farlo” should not be there) as well as
uppercase letters (“TRA” instead of “tra”).

There were two problems concerning the cause
effect or correlation among pathologies. For exam-
ple, in the original English version: "Chronic rhi-
nosinusitis with nasal polyps is a common disease
with still unclear pathophysiologic mechanisms."
The "Chronic rhinosinusitis with nasal polyps" are
one thing all together that is documented to be a
common disease.

On the other hand, the Italian version: "La rinos-
inusite cronica e la poliposi nasale sono patologie
frequenti” the "Rinusite cronica" ("Chronic rhinos-
inusitis) and "poliposi nasale" ("nasal polyps") are
considered as two distinct pathologies.

The other example happens with the following
sentence: "The airway epithelial barrier has been

shown to be involved in different chronic disorders,
including rhinitis, nasal polyposis and asthma" and
its Italian translation: "La barriera epiteliale delle
vie respiratorie sembra essere coinvolta in diverse
patologie croniche come la rinite, la poliposi nasale
e ’asma"

In this case, the translation gives a slightly dif-
ferent interpretation of the fact that, in the original
version, "airway epithelial barrier has been shown
to be [...]" as in "it has been demonstrated that",
while the Italian "sembra essere coinvolta" ("seems
to be involved") shoes a less strong connection
between the entities (airway epithelial barrier and
chronic disorders).

it2en For the Italian to English translation direc-
tion, we observe an opposite problem compared to
the English one that is removing a part of the text.

For example, in the original "Conclusione:
sebbene non abbiamo riscontrato differenze sig-
nificative tra i pazienti sottoposti a gastrectomia
standard e quelli sottoposti a NACT prima della
gastrectomia, [...]" we have "Conlusione:" as the
initial part of this sentence.

In the English version, we have "Although we
found no significant difference between the patients
undergoing standard gastrectomy and those under-
going NACT before gastrectomy," Where "Conclu-
sions" ("conclusione") is missing.

From Italian to English, there was a missing
agreement in gender for the translation of the fol-
lowing sentence: "A total of 192 female feral
cats were investigated for a large-scale trap-neuter-
release program.”" One of the Italian translations
overlooked the female gender with: "Un totale di
192 gatti selvatici sono stati studiati per un ampio
programma di trappola, sterilizzazione e rilascio."
Where "gatti" is the masculine plural of a cat which,
in this case, is wrong.

Another type of wrong accordance was found
in the translation of the following sentence: "La
gangrena di Fournier ¢ una fascite necrotizzante a
rapida progressione che coinvolge il perineo, le re-
gioni perianale e genitali e costituisce una vera
emergenza chirurgica con un tasso di mortalita
potenzialmente elevato" where the English version:
"Fournier’s gangrene is a rapidly progressing necro-
tizing fasciitis involving the perineal, perianal, or
genital regions and constitutes a true surgical emer-
gency with a potentially high mortality rate." con-
siders the "perineal [...] region" instead of the "per-
ineum" alone.
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en2ru and ru2en This year, two systems, Un-
babel and DCU, participated in the Biomedical
Machine Translation task. Generally, the transla-
tions to and from English were of high quality. We
did not encounter examples that were completely
unacceptable, aside from a few cases where text
boundaries were mapped incorrectly. Compared to
previous years, we observed a general improvement
in how the systems handled abbreviations, which
is a notable challenge in biomedical translation.

This year translations were evaluated at the ab-
stract level, and at times determining which trans-
lation was superior often came down to small de-
tails. In some instances, we preferred one transla-
tion over another purely due to stylistic differences.
There were only a handful of cases where the sys-
tems diverged significantly in quality. Overall, Un-
babel outperformed DCU, as reflected by manual
evaluation (Table 7 and 8) and better BLEU and
COMET scores (Tables 3 and 4).

7 Conclusions

We presented the results for this year’s edition of
the Biomedical Translation Task at WMT, in which
we considered 12 language pairs. In this paper, we
described the development of the test sets, the sub-
missions we received, our baseline system, and the
details about the automatic and manual evaluation.
Different from previous years, we did not split and
align the sentences, instead we had the test sets
simply composed of the title and abstracts of the
articles.

Limitations

Concerning the quality of the extracted test sets, the
passage from sentence to paragraph level is likely
to require additional post-processing in future years.
Whereas in previous years, sentence alignment re-
sulted in additional validation of the extraction pro-
cess, a number of errors were present in the test
sets this year, resulting in more skipped evalua-
tions. These included (i) missing or additional
sentences in the reference translations with respect
to the source texts, (ii) the truncation of certain sen-
tences after special characters and subscript text,
the inconsistent inclusion of headers (e.g. Methods,
Results) in the abstracts and the non-capitalised
of accented characters in the headers (e.g. French
RéSUMé “‘Abstract’ instead of RESUME), a conse-
quence of the original source text, but which could
be corrected in a post-processing step.

Ethics Statement

Our test sets were derived from PubMed, a database
of biomedical citations. These publications are
used in many areas of medicine, including deci-
sions about the diagnosis and treatment of patients.
Machine translation in this domain should be used
as part of a larger framework that should include
human experts for the interpretation of translations
and, if necessary, the correction and adaptation of
the generated text.
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Abstract

The MSLC (Metric Score Landscape Chal-
lenge) submissions for English—-German,
English—Spanish, and Japanese—Chinese are
constrained systems built using Transformer
models for the purpose of better evaluating
metric performance in the WMT24 Metrics
Task. They are intended to be representative of
the performance of systems that can be built
relatively simply using constrained data and
with minimal modifications to the translation
training pipeline.

1 Introduction

Lo et al. (2023) introduced the Metric Score Land-
scape Challenge (MSLC) dataset for the WMT23
Metrics Task, with the goal of examining automatic
MT evaluation metric performance across a wider
range of quality. That work found unexpected be-
haviours in several MT metrics, by examining per-
formance across a wide range of quality and by
analyzing metric characteristics other than corre-
lation. A major limitation of that work was that
there was no human evaluation of the medium- to
low-quality MT outputs that were included in the
MSLC dataset. To resolve this disconnect between
the high-quality WMT systems and the core MSLC
systems, we submit the higher performing end of
the MSLC systems to the WMT General MT task
for human evaluation. The systems described here
are not highly-competitive systems, and are useful
primarily for their purpose in evaluating metrics.
We build MSLC models for three language pairs:
English—German (eng—deu), English— Spanish
(eng—spa), and Japanese—Chinese (jpn—zho).
All models are sentence-level models that handle
paragraph- or document-level translation by per-
forming sentence splitting, translation, and then
concatenating the translated sentences. They are
built without any additional modifications to the
Transformer architecture and without additional
components like backtranslation, tagging, factors,

or domain-specific features (with one exception
for preprocessing input in the Japanese—Chinese
speech domain). The English—German model
is the same model described in Lo et al
(2023). The English—Spanish model uses lan-
guage identification for training data filtering. The
Japanese—Chinese model incorporates additional
postprocessing.

In the remainder of this system description paper,
we describe the data used (Section 2), the prepro-
cessing and postprocessing performed (Section 3),
and the models trained (Section 4) for our submis-
sions for the three language pairs. Using the human
evaluations produced by the Metrics task, we use
the MSLC systems as a case study of some risks
of the new automatic metric-based pre-selection of
systems for human annotation at the General MT
task (Section 5).

2 Data

We retrieved the corpora using the provided tool
mtdata==0.4.1 (Gowda, 2024) for eng—spa and
jpn—zho and reused what we had downloaded
(without the use of the tool) from the 2023 data
download table for eng—deu.

2.1 English—German

We re-used the English—German model from Lo
et al. (2023), and refer the reader to that paper for
full details of the training data used. The new-
stest2020 data was used for validation, and the
training corpora were downloaded from the WMT
2023 General Machine Translation download ta-
ble.!

"https://www2.statmt.org/wmt23/
translation-task.html#download. Note that this in-
cludes News Commentary v18.1 rather than v16, which the
download tool delivered. By email communication with the
organizers, we confirmed that both versions were permitted
for the constrained track.
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2.2 English—Spanish

We used some of the available corpora for the
General Machine Translation constrained track®
and filtered based on language ID (due to large
amounts of target-side English in some training cor-
pora). We opted not to use OPUS-multiccaligned-
vl, ParaCrawl-paracrawl-9, Statmt-ccaligned-1
and Statmt-commoncrawl_wmtl3-1, due to known
issues of noise in web-crawled corpora; for more
discussion see, i.a., Khayrallah and Koehn (2018);
Lo et al. (2018); Kreutzer et al. (2022). The full set
of corpora used is shown in Table 1.

As a first filtering step, we kept sentence
pairs where sentences have less than or equal
to 4000 characters and less or equal to 200
words.  We then proceeded with a second
filtering step.  For each corpora, we used
lingua-language-detector==2.0.2 (M. Stahl,
2023) in two ways. First, we ran lingua in a con-
strained bilingual mode, limiting the available lan-
guages to only English and Spanish. Second, we
ran it again but this time in an unconstrained mode
where it had to guess the language using all of its
supported languages. We then did the final filtering
by dropping sentence pairs if any of the following
were true:

1. the source English sentence wasn’t detected
as English by both modes of 1ingua

2. the target Spanish sentence wasn’t detected as
Spanish by both modes of 1ingua

3. both sentences were identical

While we did not perform ablation experiments
to compare these steps for filtering by language ID,
we note that this process of filtering was introduced
due to the observation of English output observed
(by manual inspection) in our preliminary systems.
Introducing this filtering resulted in output that was
qualitatively observed to contain much less English
text.

Finally, with a restricted subset of the initially
chosen corpora, we sampled 20,000,000 sentence
pairs from the corpora listed in Table 1 using the
implementation of reservoir sampling in Larkin
(2024) with 2024 as the seed.

We used  Statmt-newstest-2012-eng-spa
as our validation set, as suggested by
mtdata.recipes.wmt24-constrained.yml.

’mtdata get-recipe -i wmt24-eng-spa -0
wmt24-eng-spa —compress —no-merge

2.3 Japanese— Chinese

We fetched all jpn—zho corpora available for
WMT24’s General Machine Translation.> We sam-
pled 2000 sentence pairs for validation and 2000
sentence pairs for fest (unused) from Facebook-
wikimatrix-1, Neulab-tedtalks train-1, OPUS-
wikimedia-v202 10402, Statmt-news_commentary-
18.1. The remaining sentence pairs and all sentence
pairs listed in the corpora of the second part of Ta-
ble 2 were included in train.

3 Preprocessing and Postprocessing

There are two main types of preprocessing per-
formed: subword segmentation (Section 3.1),
which is perfomed on both the training data and the
test data, and sentence splitting (Section 3.2) which
is performed only on the WMT test data (as our
models are trained primarily as sentence-level sys-
tems and should thus be applied to sentences rather
than the full paragraphs and documents supplied at
test time). We also describe the postprocessing that
we performed (Section 3.3).

3.1 Subword Segmentation (Train and Test)

For details on our subword segmentation ap-
proach for eng—deu, see Lo et al. (2023). Our
subword segmentation approach for eng—spa
and jpn—zho is described here. To seg-
ment the corpora, a separate bilingual tokenizer
(SentencePieceUnigramTokenizer) for each lan-
guage pair was trained using HuggingFace’s to-
kenizers (Moi and Patry, 2022), library version
0.14.1. For each language pair, the vocabulary
size was set to 32k tokens. Each tokenizer per-
forms:

* control character and white space normaliza-
tions through HuggingFace’s Nmt*

* NFKC normalization using HuggingFace’s
NFKC>

* and also applies a few normalizations done
by Portage (Larkin et al., 2022). Some of
these may overlap with the other normaliza-
tion steps; see Appendix A.

3mtdata get-recipe -i  wmt24-jpn-zho -o
wmt24-jpn-zho —compress —no-merge

*https://huggingface.co/docs/tokenizers/
api/normalizers#tokenizers.normalizers.Nmt and
https://github.com/huggingface/tokenizers/blob/
main/tokenizers/src/normalizers/unicode.rs#L44

Shttps://huggingface.co/docs/tokenizers/api/
normalizers#tokenizers.normalizers.NFKC
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corpus original stepl step2 | ratio (%)

EU-dcep-1 3,710,534 3,708,524 2,570,271 69.3
Facebook-wikimatrix-1 6,452,177 6,448,669 4,854,605 75.2
LinguaTools-wikititles-2014 16,598,519 16,598,519 1,144,423 6.9
OPUS-dgt-v2019 5,127,624 5,126,271 3,432,757 66.9
OPUS-dgt-v4 3,168,368 3,167,629 2,138,218 67.5
OPUS-elrc_emea-vl 777,371 777,262 596,733 76.8
OPUS-eubookshop-v2 5,215,515 5,212,657 4,651,096 89.2
OPUS-europarl-v8 2,009,073 2,008,951 1,928,793 96.0
OPUS-europat-v3 51,352,279 51,352,021 48,077,464 93.6
OPUS-multiun-vl 11,350,967 11,339,127 9,864,021 86.9
OPUS-unpc-v1.0 25,227,001 25,209,933 19,437,858 77.1
OPUS-wikimatrix-v1 3,377,911 3,377,355 2,708,923 80.2
OPUS-wikimedia-v20210402 1,275,296 1,272,410 910,544 71.4
OPUS-wikipedia-v1.0 1,811,428 1,808,866 1,196,239 66.0
OPUS-xlent-vi.1 9,251,728 9,251,728 830,623 9.0
Statmt-news_commentary-18.1 500,180 500,173 481,628 96.3
Tilde-eesc-2017 2,531,892 2,531,718 2,209,249 87.3
Tilde-rapid-2016 684,260 684,202 599,462 87.6

total | 150,422,123 150,376,015 107,632,907 71.6

Table 1: Number of sentence pairs left after each filtering step for English— Spanish. The ratio column indicates the
percentage of sentences pairs left from the original corpora after been filtered.

corpus | # sentence pairs
Facebook-wikimatrix-1 1,325,674
Neulab-tedtalks_train-1 5,159
OPUS-wikimedia-v20210402 23,132
Statmt-news_commentary-18.1 1,625
KECL-paracrawl-2-zho 83,892
LinguaTools-wikititles-2014 1,661,283
OPUS-bible_uedin-v1 124,260
OPUS-ccmatrix-vl 12,403,136
OPUS-gnome-vl 50
OPUS-kde4-v2 118,258
OPUS-multiccaligned-vl 4,280,695
OPUS-openoffice-v3 68,952
OPUS-opensubtitles-v2018 1,091,295
OPUS-php-vl 12,214
OPUS-ged-v2.0a 18,098
OPUS-tanzil-vl 12,472
OPUS-ted2020-v1 15,982
OPUS-ubuntu-vi4.10 226
OPUS-ubuntu-vi4.10 34
OPUS-xlent-vi.1 1,396,116

total 21,316,879

Table 2: Number of sentence pairs in each jpn—zho
corpus. Corpora in the first part (Facebook-wikimatrix-1
to Statmt-news_commentary-18.1) were used to sample
validation and test. All corpora, except for the sentence
pairs in validation and test were use for train.

The Neural Machine Translation (NMT) vocab-
ulary is also augmented with 25 generic tokens
(unused in these experiments); this yields a final
vocabulary of 32029 tokens.

To train the eng—rspa tokenizer, we used all
training corpora provided except for Facebook-
wikimatrix-1, LinguaTools-wikititles-2014,
OPUS-multiccaligned-vl, OPUS-wikimatrix-vl,
OPUS-wikimedia-v20210402, OPUS-wikipedia-
v1.0, OPUS-xlent-vl.1, ParaCrawl-paracrawl-9,
Statmt-ccaligned-1.

We used all 40 corpora available to train the
jpn—zho subtokenizer model.

3.2 Sentence Splitting (Test-Only)

This year’s General News Task test segments con-
sist of paragraphs. To match our system’s training
configuration, we first split the paragraphs and doc-
uments into sentences before performing subword
segmentation and translation for all language pairs.
We do this for both the official test set and the
test suites. We used utokenize.pl from Larkin
et al. (2022) to sentence split the English segments
of eng—deu and eng— spa. Since utokenize.pl
doesn’t support Japanese, we used ersatz (Wicks
and Post, 2021) for jpn—zho. The speech docu-
ments in jpn—zho contain some punctuation but,
in some cases, utterances appear to be separated
only by spaces. For this domain only, we first split
sentences using ersatz then followed this with a
heuristic of splitting on spaces. We kept track of
each sentence’s segment and document ID to later
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enable us to reconstruct the translations into their
corresponding segment.

After sentence splitting is complete, we apply
the subword segmenters described in Section 3.1
and perform translation at the level of the sen-
tence. Since we perform sentence splitting of
the source, the original source segments (para-
graphs and documents) have to be reconstructed.
We take this sentence-level output and concate-
nate the sentences belonging to a given input seg-
ment back together; for English—German and
English—Spanish, we insert a space between sen-
tences, while for Japanese—Chinese we concate-
nate without spaces.

3.3 Postprocessing (Test-Only)

In two cases, we performed additional postprocess-
ing to handle issues specific to a language pair
and/or a domain (as our training and validation
data is more news-focused).

3.3.1 English—Spanish

Our eng—spa translations contained some <unk>
that clearly aligned to an emoji in the source (likely
due to our training data not having strong coverage
of social media domains). As a custom postprocess-
ing step for eng—spa, we replaced the first <unk>
with the first emoji in the source, the second <unk>
with the second emoji and so on. For <unk> that
did not have an emoji, they were considered spuri-
ous and were simply removed. Any extra emojis
that couldn’t be matched to a <unk> were simply
added at the end of that translation. This was done
because we noticed that our system would produce
a single <unk> for multiple consecutive emojis.

3.3.2 Japanese— Chinese

We noted some recurrent deficiencies in our Chi-
nese translations. To fix those, we applied the fol-
lowing postprocessing steps:

* remove spaces between two Chinese charac-
ters

* remove spaces surrounding Chinese punctua-
tion : 3 v o 7|

» when a Chinese character is repeated three or
more times in a row, replace this with a single
instance of that character

* fold repeating quotation marks onto a single
quotation mark

4 MT System

We train all NMT models using Sockeye version
3.1.31 (Hieber et al., 2022), commit 13c63be5,
with PyTorch 1.13.1 (Paszke et al., 2019). Train-
ing was performed on 4 Tesla V100-SXM2-32GB
GPUs. Table 3 lists the parameter settings in our
experiments that differ from the Sockeye defaults.

We train the models until convergence which
is defined as no improvement in BLEU (Papineni
et al., 2002; Post, 2018) for 32 checkpoints (when a
model reaches this definition of convergence, train-
ing stops). The jpn—zho model trained for 390
checkpoints yielding its best checkpoint at update
358 and a BLEU score of 34.3 as reported on
OCELOT over the WMT General Test Set. The
eng— spa model trained for 832 checkpoints yield-
ing its best checkpoint at update 800 and a BLEU
score of 17.6 as reported on OCELoT over the
WMT General Test Set. The eng—deu model had
a score of 20.1 as reported on OCELoT over the
WMT General Test Set.

5 Risks of Automatic System Selection for
Human Evaluation

We submitted these systems with the intent of hav-
ing them evaluated by human annotators, based
on the understanding that “All submitted systems
will be scored and ranked by human judgement.”®
Unfortunately, the task included a larger number of
submissions than anticipated (Kocmi et al., 2024),
resulting in the decision to remove some systems
from human evaluation, as per the note in the eval-
uation section of the task page: “In the unlikely
event of an unprecedented number of system sub-
missions that we couldn’t evaluate, we may decide
to preselect the best performing systems for hu-
man evaluation with automatic metrics (such as
COMET), we will primarily remove closed sys-
tems from the evaluation. However, we believe
this won’t be applied and all primary systems will
be evaluated by humans.” Among these, our sub-
mitted eng—deu and jpn—zho systems were re-
moved from human evaluation, leaving only the
eng—spa system to receive human evaluation by
the General Task evaluation process.

However, all three of our submitted systems
were evaluated using MQM (Multidimensional
Quality Metrics; Lommel et al., 2013) by the Met-

6https: //www2.statmt.org/wmt24/
translation-task.html, most recently accessed Sept. 24,
2024.
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Name Value Default

amp True False
grading clipping type abs None
max sequence length  200:200 95:95
attention heads  /6:/6 8:8
shared vocabulary  True False
transformer FFN  4096:4096 2048:2048
transformer model size  1024:1024 512:512
weight tying  True False
batch size  §/92 4096
batch type  max-word word
cache last best params 2 0
cache metric BLEU perplexity
checkpoint interval 10 4000
decode and evaluate -/ (entire validation) 500
initial learning rate  0.06325 0.0002
learning rate scheduler type inv-sqrt-decay plateau-reduce
learning rate warmup 4000 0
max num checkpoint not improved 32 None
max num epochs 7000 None
metrics  perplexity & accuracy  undefined
optimized metric BLEU perplexity
optimizer Betas 0.9, 0.98 0.9, 0.999
update interval 2 1

Table 3: Differences between Sockeye’s default parameters and our eng— spa/jpn—zho configuration.
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Figure 1: MQM scores on the News portion of the General MT test data, produced by the Metrics Task over a subset
of the submitted WMT systems. Error bars represent bootstrap resampling, 1000 times, for p < 0.05. In all cases,
our MSLC system appears at the far left of the plots, which are ordered by mean segment-level MQM score.
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rics Shared Task. This offers a rare opportunity to
examine the risks of selecting a subset of systems
for human evaluation by using automatic metrics.
In Fig. 1, we observe that the human rankings pro-
duced by MQM differ enough from the predicted
rankings that they arguably demonstrate exactly
the two types of errors one might be concerned
about making: including a poorer quality system in
human evaluation and, worse, failing to include a
system with substantial confidence interval overlap
with a system that was included for evaluation. In
the first case, our eng—spa system, which was in-
cluded for evaluation, appears substantially worse
than other systems evaluated by MQM (Fig. 1a);
however, we do note that IKUN-C, which could
conceivably bridge the gap, was not included for
evaluation by the Metrics Task, so it is possible
that this does not represent an error. Unfortunately,
without either human evaluation containing both, it
is unlikely we can reach a definitive answer. In the
second case, our jpn—zho system was excluded
from human evaluation by the General MT task but
IKUN-C was included for General MT task evalu-
ation. In Fig. 1b, we can see that there is substan-
tial confidence interval overlap between the MQM
scores for the MSLC jpn—zho system and the
IKUN-C system. We note that there are stronger
ways to more definitively make this comparison
(e.g., to do pairwise significance tests), but we pri-
marily provide these examples for discussion and
consideration. Finally, the eng—deu appears to
represent the successful intended result of this ap-
proach to filtering sytems (Fig. 1c).

This highlights the risks of the mismatches be-
tween automatic evaluation and human evaluation;
it may be better to perform some sort of smaller-
scale initial human evaluation to separate systems
rather than doing so based on automatic metrics.

6 Conclusion

We have built simple Transformer NMT models,
primarily for the purpose of the MSLC dataset at
the Metrics Task. We submit them to the WMT
General Task to enable human evaluation, which
will be useful to better understand how metrics per-
form and compare to human evaluation on a wider
range of MT output quality. Of the three submitted
systems, only one was included for human evalua-
tion in the shared task.

Limitations

As described, we submit extremely simple mod-
els, with minimal additional modifications. As our
focus for MSLC is on news data, we expend only
minimal effort on additional domains. We submit
only three language pairs. We would not recom-
mend the use of these MT systems outside of their
intended uses for metric evaluation in MSLC.

Ethics Statement

We build constrained MT systems, using the per-
mitted training data from WMT24. Since our goal
in this work is to build systems to be used to eval-
uate metrics across a wider range of translation
quality, we expect that these systems may have a
number of problems, including but not limited to:
producing errors in translation, producing output
in dialects (or languages) other than the desired
ones, or otherwise produced biased output. We do
not recommend their use for purposes other than
the intended purpose of MSLC; their limitations
for that purpose are discussed in more depth in the
corresponding Metrics Task submission.
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A Portage’s Normalization

Table 4 describes the normalization steps done by
Portage.

B Software Snapshots

For the three additional pieces of software, namely
mtdata (Gowda, 2024), 1lingua (M. Stahl, 2023),
and reservoir_sampling (Larkin, 2024), snap-
shots from September 24, 2024 are available on
WaybackMachine (http://web.archive.org/),
should their current URLs become unavailable.

e lingua is available at https://github.
com/pemistahl/lingua-py; its snapshot
is available at https://web.archive.
org/web/20240924170712/https:
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Textual Description | Code

Convert various non-breaking hyphens to — | [\u001E\u00AD\u2011] — —
Strip out the MS Word discretional hyphen | \z1F
Replace special purpose spaces by regular spaces | [\u2060\uF EF F\u00A0\u2007\u202F\1u2028\u2029] — L
Replace remaining control characters by spaces | [\z01 — \z09\z0B\z0C\z0E — \z1F\27F] — U
convert DOS newlines to Linux ones | \z0d
Collapse multiple spaces to a single space | \s+ — U

Table 4: Portage normalizations

//github.com/pemistahl/lingua-py/
archive/refs/tags/v2.0.2.tar.gz

e reservoir_sampling is available at
https://github.com/Samuellarkin/
reservoir_sampling; its snapshot is
available at https://web.archive.org/
web/20240924170941/https://github.
com/Samuellarkin/reservoir_sampling/
archive/refs/tags/0.1.tar.gz

e mtdata is available at https://github.
com/thammegowda/mtdata; its snapshot
is available at  https://web.archive.
org/web/20240924171242/https:
//github.com/thammegowda/mtdata/
archive/refs/tags/v0.4.1.tar.gz
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IOL Research Machine Translation Systems for WMT24 General Machine
Translation Shared Task

Wenbo Zhang, Qiaobo Deng, Zeyu Yan, and Hongbao Mao
Transn IOL Research, Wuhan, China

Abstract

This paper illustrates the submission system of
the IOL Research team for the WMT24 General
Machine Translation shared task. We submitted
translations for all translation directions in the
general machine translation task. According
to the official track categorization, our system
qualifies as an open system due to the utiliza-
tion of open-source resources in developing our
machine translation model. With the growing
prevalence of large language models (LLMs) as
a conventional approach for managing diverse
NLP tasks, we have developed our machine
translation system by leveraging the capabili-
ties of LLMs. Overall, we first performed con-
tinued pretraining using the open-source LLMs
with tens of billions of parameters to enhance
the model’s multilingual capabilities. Subse-
quently, we employed open-source Large Lan-
guage Models, equipped with hundreds of bil-
lions of parameters, to generate synthetic data.
This data was then blended with a modest quan-
tity of additional open-source data for precise
supervised fine-tuning. In the final stage, we
also used ensemble learning to improve trans-
lation quality. Based on the official automated
evaluation metrics, our system excelled by se-
curing the top position in 8 out of the total 11
translation directions, spanning both open and
constrained system categories.

1 Introduction

In the current year’s WMT General Machine Trans-
lation shared task, our team, IOL Research, took
partin all 11 translation tasks, which involved trans-
lating text between various language pairs such as
Czech to Ukrainian (cs->uk), Japanese to Chinese
(ja->zh), English to Chinese (en->zh), English to
Czech (en->cs), English to German (en->de), En-
glish to Hindi (en->hi), English to Icelandic (en-
>is), English to Japanese (en->ja), English to Rus-
sian (en->ru), English to Spanish (en->es), and
English to Ukrainian (en->uk). One notable dif-
ference in this year’s task compared to previous

years is that participants were required to translate
paragraph-level texts, with one paragraph equating
to one line. This change has significantly increased
the length of the text to be translated. While tradi-
tional neural machine translation systems (Vaswani
et al., 2017) based on encoder-decoder structures
may struggle with processing long texts due to the
lack of enough document parallel data. However,
the large language models (LLMs) do not neces-
sitate a large amount of lengthy text data for fine-
tuning, making them more effective in handling
long texts. As a result, we meticulously trained
an LLM with 20 billion parameters to successfully
address all translation tasks in the competition.

Our main strategy is to explore using LLMs
to build machine translation systems. This in-
cludes fine-tuning the translation task on founda-
tional LLMs and leveraging advanced open-source
instruction-tuned LLMs to generate high-quality
translation data for further enhancement. Before
supervised fine-tuning, we also performed contin-
ued pretraining, which has been proven to be very
beneficial for translation tasks (Xu et al., 2023),
because many open-source LLMs such as LLaMA
(Touvron et al., 2023) are usually pretrained on
English monolingual data, lacking the necessary
knowledge of other languages required for trans-
lation tasks. Moreover, we experimented with en-
semble learning, a technique known to be effec-
tive for neural machine translation models. We
discovered that it provided some degree of assis-
tance for machine translation tasks based on LLMs.
In the end, our billion-parameter machine transla-
tion system achieved comparable performance to
hundred billion parameter LLMs in high-resource
languages and even outperformed them in certain
low-resource languages.

The subsequent paper is designed as follows. We
introduce the data source and processing strategy
in Section 2; Section 3 describes the details of our
training procedure; Section 4 presents the experi-
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mental settings and results.

2 System Overview

2.1 Model Architecture

We selected the Qwenl.5 model (Bai et al., 2023)
as our foundational model because of its outstand-
ing performance and considerable multilingual ca-
pabilities. Specifically, we utilized the Qwen1.5-
14B! as our starting point, which has 40 layers
and 14 billion parameters. To enhance the model’s
capacity within our hardware constraints, we con-
catenated the first 32 layers with the last 32 layers,
resulting in duplication of the middle 24 layers, fol-
lowing the approach used in SOLAR (Kim et al.,
2023). This fusion led to a scaled-up model with
64 layers and 21 billion parameters. Since this ap-
proach alters the structure of the pretrained model,
continual pretraining becomes a necessary step to
recover its performance.

2.2 Continual Pretraining

Continual pretraining is an effective method to
enhance the knowledge embedded within LLMs.
This method has been extensively utilized to adapt
LLMs from English to various other languages, as
well as to augment the domain-specific knowledge
inherent in these models. In the context of using
LLMs for translation tasks, it has been substanti-
ated that the continuous pretraining of LLMs with
multilingual monolingual data, encompassing lan-
guages involved in all the translation directions,
is crucial (Xu et al., 2023). This year’s WMT24
general machine translation task includes 11 trans-
lation directions, involving 10 distinct languages.
Therefore, our continued pretraining is carried out
on monolingual data in these 10 languages.

We sampled the required multilingual mono-
lingual data from the mC4 (Raffel et al., 2019)
and OSCAR (Jansen et al., 2022) datasets, then
proceeded to refine the chosen data. For refine-
ment processes, we employed fastText (Joulin et al.,
2017) for language identification, the minLL.SH al-
gorithm for document deduplication, and KenLM
(Heafield, 2011) tool for filtering the documents
with high perplexity. Many studies (Lin et al.,
2020; Yang et al., 2021) have shown that inte-
grating bilingual data with monolingual data in
the pretraining stage can help the model achieve
better cross-lingual proficiency. Therefore, we
also incorporated a portion of the CC-Aligned

"https://huggingface.co/Qwen/Qwen1.5-14B

parallel data (El-Kishky et al., 2019) into our
continuous pretraining stage. This data includes
language pairs such as English-Czech, English-
Ukrainian, English-Japanese, English-Chinese,
English-German, English-Hindi, English-Icelandic,
English-Russian, and English-Spanish. Specifi-
cally, we randomly swapped the order of the two
articles in the bilingual document, and then merged
them into a new document as the pretraining docu-
ment. The distribution of the number of documents
in all languages in the pretraining dataset is shown
in Table 1.

Language Rate(%)
en 21.99
ja 15.02
de 12.48
cs 11.60
es 10.35
zh 9.32
uk 7.98
ru 7.2
hi 3.53
is 0.47

Table 1: The distribution of the number of documents
in all languages in the pretraining dataset.

2.3 Supervised Fine-tuning

Through supervised Fine-tuning, we can unlock
the capabilities of LLMs using only a minimal
amount of aligned data. Many fine-tuning LLMs
experiences (Zhou et al., 2024; Xia et al., 2024)
have demonstrated that the quality and diversity
of fine-tuning data are far more important than its
quantity. In the context of translation tasks, high-
quality parallel data is the ideal fine-tuning data
for LLMs. However, obtaining such high-quality
parallel data is challenging. Usually, we need to in-
vest significant effort and undergo numerous steps
to clean publicly available parallel data, aiming to
achieve high-quality data. However, this process
does not always guarantee the quality of filtered
data due to its inherent complexity. On the other
hand, start-of-the-art machine translation systems
have shown competitive performance comparable
to human translators. Consequently, we opted to
employ LLMs to generate parallel data as the su-
pervised fine-tuning data.

We used the c4ai-command-r-plus®> and

“https://huggingface.co/CohereForAl/c4ai-command-r-
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Qwenl.5-110B-Chat®, these two instruction
fine-tuned models, to generate synthetic parallel
data for all languages, with the exception of
Icelandic. Specifically, when the task requires
generating Chinese content, our go-to model is
the Qwen1.5-110B-Chat. However, for English
content generation, we make a random selection
between the Qwenl.5-110B-Chat and c4ai-
command-r-plus models. For all other scenarios,
we consistently utilize the c4ai-command-r-plus
model. The selection of models in different
languages is based on our evaluation of these
two models in translation tasks. Please refer to
Table 3 for specific comparison. Considering the
lack of proficiency of both c4ai-command-r-plus
and Qwenl1.5-110B-Chat in generating Icelandic
content, we adopted an alternative strategy. We
leveraged our supervised fine-tuning model, which
has been fine-tuned on synthetic data of all other
languages, to produce the synthetic data for
Icelandic. Therefore, our model only utilized
Icelandic monolingual data for pre-training,
and the Icelandic bilingual synthesis data was
generated by unsupervised method.

We have tried two synthetic data generation
methods commonly used in traditional neural ma-
chine translation systems, forward translation (Kim
and Rush, 2016) and back translation (Sennrich
et al., 2016). Forward translation refers to using
the established translation model to translate real
source language sentences into target language sen-
tences, and then combining the translated target
language sentences with the real source language
sentences to form synthetic parallel sentence pairs.
Back translation refers to translating real target
language sentences back into the source language
using another established reverse translation model,
and then combining the real target language sen-
tences with the translated source language sen-
tences to form synthetic parallel sentence pairs.
In the process of generating back translation data
based on real target language data, we found that
the real target language data has many problems
such as incoherence, fluency deficits, and even
grammatical errors. To address these problems, we
utilized automatic post-editing technology. This
approach involves taking the translated source lan-
guage sentences and the real target language sen-
tences as inputs, and subsequently producing su-

plus
*https://huggingface.co/Qwen/Qwen1.5-110B-Chat

perior quality target language sentences. These
improved sentences are then used to replace the
real target language sentences in the back transla-
tion synthetic data. Lastly, we also utilized LL.Ms
to filter all the generated synthetic data, including
both forward and back translation data, to ensure
higher quality fine-tuning data. All the prompts
we use to generate synthetic data are shown in the
table 2. For each language pair, after filtering, we
retained around 100,000 FT and BT sentence pairs
respectively.

In addition to synthetic data, we also incorpo-
rated document parallel data from News Com-
mentary v18.14, which assists the model in trans-
lating long text, and instruction fine-tuning data
TowerBlocks-v0.2 (Alves et al., 2024) to help the
model follow more diverse instructions. The News
Commentary v18.1 data we used includes sections
ja-zh, en-zh, en-de, en-hi, en-ja, en-ru, en-es, en-
cs, cs-ru, cs-de, cs-es, cs-hi, cs-ja, cs-zh, and ja-ru.
We also excluded the data from TowerBlocks-v0.2
that includes FLoRes (Goyal et al., 2021), and the
NTREX-128 (Federmann et al., 2022) sections, as
we used these two datasets as our test sets to verify
the performance of the model.

2.4 Ensemble Learning

The ensemble learning approach has demonstrated
significant efficacy in a wide range of machine
learning tasks. In machine translation tasks, en-
semble learning completes the generation of the
entire translation by using multiple different ma-
chine translation models to autoregressively vote
for the probability distribution of the next word.
However, for LLMs, this method implies a huge
memory occupancy and computational resource
consumption, so we use transductive ensemble
learning (Wang et al., 2020) to replace this way
of generating with multiple models simultaneously.
Transductive ensemble learning first utilizes multi-
ple different translation models to generate trans-
lations for the same test set separately, then aggre-
gates all translations as fine-tuning data. The final
translation is generated by one translation model
after fine-tuning on this data. Ensemble learning
conventionally entails training diverse models via
different random initializations. However, this ap-
proach proves inefficient in our context, as we are
mandated to employ the identical pre-trained model
for supervised fine-tuning. Therefore, we used dif-

*https://data.statmt.org/news-commentary/v18.1/
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Task Prompt

Forward and back translation SRC_CONTENT

Translate the following text from SRC_LANG to TGT_LANG.

Given a source SRC_LANG sentence and its TGT_LANG translation,
please modify and correct the TGT_LANG translation to get a more

Automatic post-editing

accurate and fluent TGT_LANG translation.
Source (SRC_LANG): SRC_CONTENT

Translation (TGT_LANG): TGT_CONTENT
Corrected translation (TGT_LANG):

Source (SRC_LANG): SRC_CONTENT

Synthetic data filtering

Translation (TGT_LANG): TGT_CONTENT
Please check if the above translation is an accurate and fluent translation

of its source text? Please only answer "yes" or "no"

Table 2: All the prompts we use to generate synthetic data.

ferent fine-tuning data to train multiple models for
ensemble learning. Different fine-tuning data is
obtained by randomly sampling synthesized data
from different parts.

3 Experiments

3.1 Experiment Settings

For continual pretraining phase, we trained the
scaled-up model with 21 billion parameters on 8
NVIDIA H800 GPUs. For the optimization pro-
cess, we employed the Adam optimizer (Kingma
and Ba, 2014), with 81 = 0.9,52 = 0.99. We
adopted a learning rate scheduling strategy that re-
mained constant after warmup phase, setting the
number of warmup steps to 200, the maximum
learning rate at 0.00001 and weight decay to 0.1.
The batch size was set to 3.14 million tokens, the
length of each sequence was set to 4096, and a total
of 56 billion tokens have been trained.

For supervised fine-tuning phase, we fine-tuned
the continual pretrained model on 16 NVIDIA
H800 GPUs. We leveraged the Adam optimizer for
the optimization process, setting 81 = 0.9, 52 =
0.99. We employed a cosine learning rate schedul-
ing strategy, with a warmup ratio of 0.01, a peak
learning rate at 0.000007, and a weight decay of
0.1. Configuring the batch size to 480 sentences,
we trained the model for a single epoch encompass-
ing approximately 1.5 million sentences.

When conducting transductive ensemble learn-
ing, we increased the batch size to 800 sentences,
adopted a fixed learning rate, and reduced the learn-
ing rate to 0.000001. Similarly, we only fine-tune
for one epoch on the ensemble data.

3.2 Results

The FLoRes (Goyal et al., 2021) and NTREX-128
(Federmann et al., 2022) test sets were utilized as
our evaluation benchmarks. The performance of
the machine translation system was assessed using
SacreBLEUpost-2018-call and COMET (Rei et al.,
2022)° metrics. We uesed vVLLM (Kwon et al.,
2023) to infer all LLMs. We chose c4ai-command-
r-plus and Qwen1.5-110B-Chat as our baselines for
comparison, and all results were obtained through
zero-shot evaluation.

Test results on the FLoRes test set for all trans-
lation directions are shown in Table 3. We used
greedy decoding and beam search with beam size
= 5 to generate translations for our model, and pro-
vided the ensemble effect on this test set. It is clear
that, just like traditional neural machine translation
models, beam search performs better than greedy
decoding in terms of BLUE and COMET scores
across all translation directions. Ensemble learning
has a steady improvement on BLEU scores, but the
overall change in COMET scores is not significant.
Compared with the two baseline systems CMD-R-
P and Qwen1.5-L, our model achieved equivalent
or better performance in the seven directions of
cs—uk, en—zh, en—de, en—hi, en—is, en—uk,
and en—cs. The performance outcomes presented
in Table 4 are based on evaluations conducted us-
ing the NTREX-128 test set. These results mirror
those observed in the FLoRes test set, indicating a
consistent performance trend across both datasets.

Shttps://huggingface.co/Unbabel/wmt22-comet-da

150



our model our model our model

CMD-R-P  Qwenl.5-L greedy decoding beam search ensemble learning

csuk BLEU 24.1 20.5 23.9 24.4 24.6
COMET 90.47 87.96 90.18 90.41 90.47
jaszh BLEU 31.6 34.1 34.8 35.3 35.0
COMET 87091 88.10 87.99 88.11 87.98
BLEU 39.9 44.0 46.9 47.5 47.6
en—zh
COMET 88.71 89.08 89.22 89.28 89.26
BLEU 41.1 339 40.5 41.1 41.6
en—de
COMET 88.84 87.37 88.60 88.73 88.84
en—hi BLEU 27.3 19.9 27.6 28.5 28.7
COMET 80.47 75.01 79.99 80.75 80.67
en—sis BLEU 12.1 9.8 19.8 20.5 20.7
COMET 71.41 63.82 82.77 83.66 84.02
en—sja BLEU 49.8 422 494 50.1 50.4
COMET 91.70 89.88 91.50 91.59 91.61
en—sru BLEU 324 27.6 31.3 31.9 324
COMET 90.70 87.98 90.09 90.32 90.28
enses BLEU 30.4 27.1 294 294 29.5
COMET 87.29 86.64 87.01 87.06 86.98
BLEU 304 24.6 31.2 32.0 32.2
en—uk
COMET 90.88 88.19 90.56 90.83 90.92
enscs BLEU 32.7 26.6 32.8 34.3 344
COMET 92.09 90.04 91.78 92.15 92.13

Table 3: Test results on the FLoRes test set for all translation directions. CMD-R-P represents c4ai-command-r-plus,
and Qwen1.5-L represents Qwen1.5-110B-Chat.
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Table 4: Test results on the NTREX-128 test set for all translation directions. CMD-R-P represents c4ai-command-r-

CMD-R-P Qwenl.5-L

our model

our model

greedy decoding beam search

csuk BLEU 209 16.8 204 20.8

COMET 88.26 84.57 87.80 88.00

jaszh BLEU 25.6 28.7 28.7 29.0

COMET 84.42 84.84 84.83 84.85

en—zh BLEU 31.7 36.6 39.0 39.5

COMET 85.60 86.41 86.76 86.83

en—de BLEU 33.9 27.1 33.2 339

COMET 87.05 84.64 86.63 86.78

en—shi BLEU 22.2 16.8 23.3 24.1

COMET 78.07 72.23 77.96 78.58

. BLEU 14.8 11.2 23.4 24.1
en—is

COMET 70.14 62.32 82.75 83.67

en—sja BLEU 41.3 35.0 413 424

COMET 89.51 87.40 89.37 89.45

ensru BLEU 29.9 23.8 30.4 31.5

COMET 88.13 84.47 87.47 87.88

enses BLEU 42.5 38.2 42.4 42.7

COMET 87.06 85.82 86.69 86.85

en—uk BLEU 26.2 20.5 26.3 26.9

COMET 88.86 85.42 88.51 88.73

enscs BLEU 29.0 22.6 29.1 30.4

COMET 89.90 87.06 89.73 90.19

plus, and Qwenl.5-L represents Qwen1.5-110B-Chat.

cs—uk ja—zh en—zh en—de en—hi en—is en—ja en—ru en—es en—uk en—cs
FT 90.32  87.79 89.21 88.55 80.48 8337 91.55 90.11 8694 90.64 9193
BT 9043 88.18 89.24 8877 8145 84.12 91.64 9043 8720 9099  92.38
MIX 9032 88.12 89.26 88.63 80.76 84.08 9150 90.19 87.06 90.63 91.93

Table 5: COMET scores of models fine-tuned on different data on the Flores test set. FT is fine-tuned on forward
translation data. BT is fine-tuned on back translation data. MIX is fine-tuned on both forward and back translation

data.
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3.3 Forward Translation vs Back Translation

To determine the effectiveness of forward trans-
lation versus back translation, we separately fine-
tuned the continual pretrained model using forward
translation data, back translation data, and a com-
bination of both. For each approach, we randomly
chose 80,000 data samples per language translation
direction. For the combined dataset, we selected
40,000 samples from both the forward translation
and back translation pools. The results are pre-
sented in Table 5, all of which were generated using
beam search. We can see that the back translation
yields better performance, whereas mixed data does
not result in significant improvement. Due to time
constraints, we used mixed data in the WMT24
competition, this conclusion will guide us to fur-
ther improve our model in the future.

4 Conclusion

In this paper, we present IOL Research’s contribu-
tions to the WMT24 General Translation shared
task, covering all translation aspects. Our ap-
proach utilizes LLMs to develop an effective trans-
lation system. Experimental results demonstrate
that our model, which contains 21 billion param-
eters, achieves competitive results comparable to
models with 100 billion parameters. According to
the official automatic evaluation metrics (Kocmi
et al., 2024), our system achieved 8 first places in
11 translation directions spanning both open and
constrained system categories, including Czech to
Ukrainian, English to German, English to Span-
ish, English to Hindi, English to Russian, English
to Ukrainian, English to Chinese, and Japanese to
Chinese.
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Abstract

This paper presents the submission of Huawei
Translate Services Center (HW-TSC) to the
WMT24 general machine translation (MT)
shared task, where we participate in the English
to Chinese (en—zh) language pair. Similar to
previous years’ work, we use training strategies
such as regularized dropout, bidirectional train-
ing, data diversification, forward translation,
back translation, alternated training, curriculum
learning, and transductive ensemble learning
to train the neural machine translation (NMT)
model based on the deep Transformer-big archi-
tecture. The difference is that we also use con-
tinue pre-training, supervised fine-tuning, and
contrastive preference optimization to train the
large language model (LLM) based MT model.
By using Minimum Bayesian risk (MBR) de-
coding to select the final translation from mul-
tiple hypotheses for NMT and LLM-based MT
models, our submission receives competitive
results in the final evaluation.

1 Introduction

Machine translation (MT) (Brown et al., 1990) pre-
dominantly utilizes transformer encoder-decoder
architectures (Vaswani et al., 2017), which is ev-
ident in prominent models such as NLLB-200
(Costa-jussa et al., 2022), M2M100 (Fan et al.,
2021), and MT5 (Xue et al., 2021). Significant re-
search effort has been devoted to task-specific neu-
ral machine translation (NMT) models (Wei et al.,
2022; Wu et al., 2023b) trained in a fully supervised
manner with large volumes of parallel data. Their
performance has been enhanced through techniques
such as regularized dropout (Wu et al., 2021), bidi-
rectional training (Ding et al., 2021), data diversi-
fication (Nguyen et al., 2020), forward translation
(Abdulmumin, 2021), back translation (Sennrich
et al., 2016), alternated training (Jiao et al., 2021),
curriculum learning (Zhang et al., 2019), and trans-
ductive ensemble learning (Wang et al., 2020b).

The emergence of decoder-only large language
models (LLMs) such as the GPT series (Wu et al.,
2023a; Achiam et al., 2023), Mistral (Jiang et al.,
2023), and LLaMA (Touvron et al., 2023a,b) shows
remarkable efficacy in various NLP tasks, provid-
ing a fresh perspective on the MT task. Recent
studies (Hendy et al., 2023; Jiao et al., 2023) indi-
cate that larger LLMs such as GPT-3.5 (175B) and
GPT-4 exhibit strong translation abilities. How-
ever, the performance of smaller-sized LLMs (7B
or 13B) still falls short when compared to con-
ventional NMT models (Zhu et al., 2024). There-
fore, there are studies (Yang et al., 2023; Zeng
et al., 2024) intend to enhance the translation per-
formance for these smaller LLLMs, but their im-
provements are relatively modest, primarily due to
the predominant pre-training of LLMs on English-
centric datasets, resulting in limited linguistic di-
versity. Addressing this limitation, Xu et al. (Xu
et al., 2023) initially continue pre-training (CPT)
LLaMA-2 (Touvron et al., 2023b) with extensive
non-English monolingual data to enhance their mul-
tilingual abilities, and then perform supervised fine-
tuning (SFT) with high-quality parallel data to in-
struct the model to generate translations. Nonethe-
less, the performance still lags behind leading trans-
lation models such as GPT-4 and WMT competi-
tion winners. Subsequently, Xu et al. (Xu et al.,
2024) bridged this gap by further fine-tuning the
LLM-based MT model using contrast preference
optimization (CPO).

Ensembling (Zhou et al., 2002) has a long his-
tory in machine learning, being well known for
leveraging multiple complementary systems to im-
prove performance on a given task and provide
good/robust generalization. Minimum Bayesian
risk (MBR) (Finkelstein and Freitag, 2023; Far-
inhas et al., 2023) decoding has successfully im-
proved translation quality using task-specific NMT
models, and subsequently it has also been shown
to be suitable for LLM-based MT models.
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CPT data
template

<English sentence 1>\n...\n<English sentence k>
<Chinese sentence 1>\n...\n<Chinese sentence k>

SFT data
template

Translate this from English to Chinese:
English: <English sentence>
Chinese: <Chinese sentence>

[/CPO data\
\\template /

Translate this from English to Chinese:
English: <English sentence>

Preferred Chinese: <Chinese sentence 1>
Dis-Preferred Chinese: <Chinese sentence 2>

Figure 1: CPT, SFT and CPO data templates used for LLM-based MT training.

For the WMT24 general MT shared task, we
participate in the en—zh language pair. Similar
to previous years’ work (Wei et al., 2021, 2022;
Wu et al., 2023b), we use training strategies such
as regularized dropout (Wu et al., 2021), bidirec-
tional training (Ding et al., 2021), data diversifi-
cation (Nguyen et al., 2020), forward translation
(Abdulmumin, 2021), back translation (Sennrich
et al., 2016), alternated training (Jiao et al., 2021),
curriculum learning (Zhang et al., 2019), and trans-
ductive ensemble learning (Wang et al., 2020b) to
train NMT models based on the deep transformer-
big architecture. In addition, we use CPT, SFT
and CPO methods to train LLM-based MT models.
Finally, we use MBR decoding to select the final
translation from multiple hypotheses of NMT and
LLM-based MT models.

2 Data
2.1 Data Source

We obtain bilingual and monolingual data from
ParaCrawl v9, News Commentary v18.1, Wiki Ti-
tles v3, UN Parallel Corpus V1.0, CCMT Corpus,
WikiMatrix, News Crawl and Common Crawl data
sources. The amount of data we used for training
NMT and LLM-based MT models is shown in Ta-
ble 1. It should be noted that in order to obtain
better translation performance in the general do-
main, we mix the monolingual data from Common
Crawl and News Crawl.

2.2 NMT Data Pre-processing
Our data pre-processing methods for NMT include:

bitext data
25M

monolingual data
en: 50M, zh: SO0M

language pairs
en—zh

Table 1: Bilingual and monolingual used for training
NMT and LLM-based MT models.

* Remove duplicate sentences or sentence pairs.
* Convert full-width symbols to half-width.

« Use fasttext' (Joulin et al., 2016) to filter other
language sentences.

« Use jieba” to pre-segment Chinese sentences.

 Use mosesdecoder® (Koehn et al., 2007) to
normalize English punctuation.

« Filter out sentences with more than 150 words.

» Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

. Sentencepiece4 (SPM) (Kudo and Richardson,
2018) is used to perform subword segmenta-
tion, and the vocabulary size is set to 32K.

Since there may be some semantically dissimilar
sentence pairs in bilingual data, we use LaBSE?

"https://github.com/facebookresearch/fastText

Zhttps://github.com/fxsjy/jieba

3https://github.com/moses—smt/mosesdecoder

4https://github.com/google/sentencepiece

Shttps://huggingface.co/sentence-transformers/
LaBSE
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(Feng et al., 2022) to calculate the semantic similar-
ity of each bilingual sentence pair, and exclude
bilingual sentence pairs with a similarity score
lower than 0.7 from our training corpus.

2.3 LLM-based MT Data Pre-processing

The training of the LLM-based MT model requires
three stages: CPT, SFT and CPO. As shown in
Figure 1, the training data templates of the LLM-
based MT model in these three stages are different.

In the CPT stage, considering that most LLMs
are trained on English-dominated data, we using
Chinese and English monolinguals for CPT to im-
prove LLM’s proficiency in Chinese. To preserve
the long-context modeling capability of LLM, we
concatenate multiple sentences into a long text with
no more than 4096 words, and preferentially con-
catenate sentences from the same document.

In the SFT stage, drawing inspiration from the
recognized significance of data quality in other ap-
plications (Zhou et al., 2024; Maillard et al., 2023),
we fine-tune the model with high-quality parallel
data. In order to obtain high-quality parallel data,
we use cometkiwi model © (Rei et al., 2022) to
calculate the score of bilingual data on the en—zh
language pair, and then retain bilingual data with a
cometkiwi score greater than 0.8.

In the CPO stage, to learn an objective that fos-
ters superior translations and rejects inferior ones,
access to labeled preference data is essential, yet
such data is scarce in machine translation. The
following describes our process of constructing
the triplet preference data required for CPO train-
ing. First, we randomly sample 50,000 data from
high-quality bilingual data. Then, we use the NMT
model to obtain N-best (N=10) hypotheses based
on beam search decoding, and then use the comet-
da model’ (Rei et al., 2020) to calculate the score
of each hypothesis, select the hypothesis with the
highest score as the preferred translation, and se-
lect the hypothesis with the lowest score as the
dis-preferred translation.

3 NMT System

3.1 System Overview

Transformer is the state-of-the-art model struc-
ture in recent NMT evaluations. There are two

®https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

"https://huggingface.co/Unbabel/
wmt20-comet-da

[ BiT
l
— DD, FT & BT
l
R-Drop }7% AT
l
— CL
J
— TEL

Figure 2: The overall training flow of NMT system.

parts of research to improve this kind: the first
part uses wide networks (eg: Transformer-Big
(Vaswani et al., 2017)), and the other part uses
deeper language representations (eg: Deep Trans-
former (Wang et al., 2019)). For the WMT24 gen-
eral MT shared task, we combine these two im-
provements, adopting the Deep Transformer-Big
(Wei et al., 2022; Wu et al., 2023b) model struc-
ture to train the NMT system. Deep Transformer-
Big uses pre-layer normalization, features 25-
layer encoder, 6-layer decoder, 16-heads self-
attention, 1024-dimensional word embedding and
4096-dimensional FFN embedding.

Fig. 2 shows the overall training flow of NMT
system. We use training strategies such as regu-
larized dropout (R-Drop) (Wu et al., 2021), bidi-
rectional training (BiT) (Ding et al., 2021), data
diversification (DD) (Nguyen et al., 2020), forward
translation FT) (Abdulmumin, 2021), back transla-
tion (BT) (Sennrich et al., 2016), alternated training
(AT) (Jiao et al., 2021), curriculum learning (CL)
(Zhang et al., 2019), and transductive ensemble
learning (TEL) (Wang et al., 2020b) for training.

3.2 Regularized Dropout

Regularized Dropout (R—Drop)8 (Wuetal., 2021)
is a simple yet more effective alternative to regular-
ize the training inconsistency induced by dropout
(Srivastava et al., 2014). Concretely, in each mini-
batch training, each data sample goes through the
forward pass twice, and each pass is processed by
a different sub model by randomly dropping out
some hidden units. R-Drop forces the two distri-
butions for the same data sample outputted by the
two sub models to be consistent with each other,
through minimizing the bidirectional Kullback-
Leibler (KL) divergence (Van Erven and Harremos,
2014) between the two distributions. That is, R-
Drop regularizes the outputs of two sub models ran-

8https://github.com/dropreg/R—Drop
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domly sampled from dropout for each data sample
in training. In this way, the inconsistency between
the training and inference stage can be alleviated.

3.3 Bidirectional Training

Many studies have shown that pre-training can
transfer the knowledge and data distribution, hence
improving the model generalization. Bidirectional
training (BiT) (Ding et al., 2021) is a simple and
effective pre-training method for NMT. Bidirec-
tional training is divided into two stages: (1) bidi-
rectionally updates model parameters, and (2) tune
the model. To achieve bidirectional updating, we
only need to reconstruct the training samples from
"src—tgt" to "src—tgt & tgt—src" without any
complicated model modifications. Notably, BiT
does not require additional parameters or training
steps and only uses parallel data.

3.4 Data Diversification

Data Diversification (DD) (Nguyen et al., 2020) is
a data augmentation method to boost NMT perfor-
mance. It diversifies the training data by using the
predictions of multiple forward and backward mod-
els and then merging them with the original dataset
which the final NMT model is trained on. DD is
applicable to all NMT models. It does not require
extra monolingual data, nor does it add more pa-
rameters. To conserve training resources, we only
use one forward model and one backward model to
diversify the training data.

3.5 Forward Translation

Forward translation (FT) (Abdulmumin, 2021),
also known as self-training, is one of the most com-
monly used data augmentation methods. FT has
proven effective for improving NMT performance
by augmenting model training with synthetic paral-
lel data. Generally, FT is performed in three steps:
(1) randomly sample a subset from the large-scale
source monolingual data; (2) use a “teacher” NMT
model to translate the subset data into the target
language to construct the synthetic parallel data;
(3) combine the synthetic and authentic parallel
data to train a “student” NMT model.

3.6 Back Translation

An effective method to improve NMT with tar-
get monolingual data is to augment the parallel
training data with back translation (BT) (Sennrich
et al., 2016; Wei et al., 2023). There are many

works expand the understanding of BT and inves-
tigates a number of methods to generate synthetic
source sentences. Edunov et al. (2018) find that
back translations obtained via sampling or noised
beam outputs are more effective than back transla-
tions generated by beam or greedy search in most
scenarios. Caswell et al. (2019) show that the
main role of such noised beam outputs is not to
diversify the source side, but simply to tell the
model that the given source is synthetic. There-
fore, they propose a simpler alternative strategy:
Tagged BT. This method uses an extra token to
mark back translated source sentences, which gen-
erally outperforms noised BT (Edunov et al., 2018).
For better joint use with FT, we use sampling back
translation (ST) (Edunov et al., 2018).

3.7 Alternated Training

While synthetic bilingual data have demonstrated
their effectiveness in NMT, adding more synthetic
data often deteriorates translation performance
since the synthetic data inevitably contains noise
and erroneous translations. Alternated training
(AT) (Jiao et al., 2021) introduce authentic data
as guidance to prevent the training of NMT models
from being disturbed by noisy synthetic data. AT
describes the synthetic and authentic data as two
types of different approximations for the distribu-
tion of infinite authentic data, and its basic idea is
to alternate synthetic and authentic data iteratively
during training until the model converges.

3.8 Curriculum Learning

A practical curriculum learning (CL) (Zhang et al.,
2019) method should address two main questions:
how to rank the training examples, and how to mod-
ify the sampling procedure based on this ranking.
For ranking, we choose to estimate the difficulty of
training samples according to their domain feature
(Wang et al., 2020a). The calculation formula of do-
main feature is as follows, where 6;,, represents an
in-domain NMT model, and 6,,,; represents a out-
of-domain NMT model. One thing to note is that
we treat domains including news, user-generated
(social), conversational, and e-commerce domains
as in-domain, and others as out-of-domain. Specif-
ically, we use the WMT22 test set to fine-tune a
baseline model, and then use the baseline model
and the fine-tuned model as the out-of-domain
model and the in-domain model respectively.
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For sampling, we adopt a probabilistic CL strat-

egy that leverages the concept of CL in a nonde-

terministic fashion without discarding the original

standard training practice, such as bucketing and
mini-batching.

3.9 Transductive Ensemble Learning

Ensemble learning (Garmash and Monz, 2016),
which aggregates multiple diverse models for in-
ference, is a common practice to improve the per-
formance of machine learning models. However,
it has been observed that the conventional ensem-
ble methods only bring marginal improvement for
NMT when individual models are strong or there
are a large number of individual models. Trans-
ductive Ensemble Learning (TEL) (Zhang et al.,
2019) studies how to effectively aggregate multiple
NMT models under the transductive setting where
the source sentences of the test set are known. TEL
uses all individual models to translate the source
test set into the target language space and then fine-
tune a strong model on the translated synthetic data,
which significantly boosts strong individual models
and benefits a lot from more individual models.

4 LLM-based MT System

4.1 System Overview

There is recently a surge in research interests in
Transformer-based LLMs, such as ChatGPT (Wu
et al., 2023a), GPT-4 (Achiam et al., 2023), and
LLaMA (Touvron et al., 2023a,b). Benefiting
from the giant model size and oceans of training
data, LLMs can understand better the language
structures and semantic meanings behind raw text,
thereby showing excellent performance in a wide
range of natural language processing (NLP) tasks.
Although the training methodology of LLMs is sim-
ple, high computational requirements have limited
the development of LLMs to a few players. In order
to avoid training LLM from scratch, we chose to
conduct research work on the open source Llama?2-
13b° (Touvron et al., 2023b) model. Llama2-13b
is an autoregressive language model using an opti-
mized transformer architecture that is pre-trained
on 2 trillion tokens of data from publicly available

https://huggingface.co/meta-1lama/
Llama-2-13b-hf

| cro  [Loka A |
Triplet Data

‘/ SFT LoRA Adapter l
Bilingual Data

‘\ CPT J
Monolingual Data

{ » meta-1lama/Llama-2-13b-hf ‘

Figure 3: The training flow of LLM-based MT system.

sources. As shown in Figure 3, we train Llama2-
13b into a powerful LLM-based MT model through
three-stage training of CPT, SFT and CPO.

4.2 Continue Pre-training

LLMs like LLaMA are pre-trained on English-
dominated corpora. This potentially explains their
inadequate translation performance which necessi-
tates cross-lingual capabilities. To ameliorate this,
our first stage is to perform continue pre-training
(CPT) on LLM with Chinese and English mono-
lingual data to improve proficiency in Chinese and
prevent forgetting of English knowledge. Previ-
ous studies also offer some clues that monolingual
data help in translation. For instance, guo et al.
(Guo et al., 2024) proposed a three-stage training
method, which proved that using CPT can improve
the performance of MT task in the SFT stage. Note
that we use full fine-tuning at this stage.

4.3 Supervised Fine-tuning

LLMs have shown remarkable performance on a
wide range of NLP tasks by leveraging in-context
learning (Brown et al., 2020). However, this ap-
proach exhibits several drawbacks: performance is
highly dependent on the quality of examples (Vilar
et al., 2023), outputs are plagued by overgenera-
tion (Bawden and Yvon, 2023), and inference cost
are greatly increased by processing all input pairs.
When parallel data is available, LLMs can perform
supervised fine-tuning (SFT) on translation instruc-
tions (Li et al., 2024). Drawing inspiration from the
recognized significance of data quality in other ap-
plications (Zhou et al., 2024),we use the cometkiwi
model (Rei et al., 2022) to filter out large amounts
of high-quality parallel data. Here, we use effi-
cient lightweight low-rank adaptation (LoRA) fine-
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Figure 4: Choose the Final Translation from NMT and LLM hypotheses Using MBR Decoding.

tuning, where we apply LoRA to all modules of
feed-forward network.

4.4 Contrastive Preference Optimization

Contrastive Preference Optimization (CPO) (Xu
et al., 2024) aims to mitigate two fundamental
shortcomings of SFT. First, SFT’s methodology of
minimizing the discrepancy between predicted out-
puts and gold-standard references inherently caps
model performance at the quality level of the train-
ing data. This limitation is significant, as even
human-written data, traditionally considered high-
quality, is not immune to quality issues. Secondly,
SFT lacks a mechanism to prevent the model from
rejecting mistakes in translations. While strong
translation models can produce high-quality trans-
lations, they occasionally exhibit minor errors, such
as omitting parts of the translation. Preventing
the production of these near-perfect but ultimately
flawed translation is essential. To overcome these
issues, we introduce CPO to train the LLM-based
MT model using specially curated triplet prefer-
ence data. Here, we construct a high-quality pref-
erence data for the WMT24 general MT task, and
like the SFT stage, only update the weights of the
added LoRA parameters.

4.5 Minimum Bayes Risk Decoding

Minimum Bayesian Risk (MBR) (Kumar and
Byrne, 2004; Eikema and Aziz, 2020) decoding

aims to find the output that maximizes the expected
utility function, which measures the similarity be-
tween the hypothesis and the reference. For MT,
this could be an automated evaluation metric such
as COMET (Rei et al., 2020). Garcia et al. (Gar-
cia et al., 2023) train their own language mod-
els, sample multiple hypotheses and choose a final
translation using MBR decoding, which has been
shown to improve the translation capabilities of
task-specific models (Fernandes et al., 2022). Sub-
sequently, Farinhas et al. (Farinhas et al., 2023)
find that MBR is also suitable for LLM-based MT.
They provide a comprehensive study on ensem-
bling translation hypotheses, proving that MBR
decoding is a very effective method and can im-
prove translation quality using a small number of
samples. As shown in Figure 4, we simultane-
ously collect the N-best translations generated by
the NMT system based on beam search and the
N-best translations generated by the LLM-based
MT system based on temperature and nucleus sam-
pling (with t=0.8 and p=0.95), and then use MBR
Decoding selects the final translation.

S Experiment

5.1 Setup

We use the open-source fairseq (Ott et al., 2019)
to train NMT models, and then use SacreBLEU
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(Post, 2018)' and wmt20-comet-da model (Rei
et al., 2020) to measure system performance. The
main parameters are as follows: each model is
trained using 8 GPUs, batch size is 6144, parameter
update frequency is 2, and learning rate is Se-4.
The number of warmup steps is 4000, and model is
saved every 1000 steps. The architecture we used is
described in section 3.1. We adopt dropout, and the
rate varies across different training phases. R-Drop
is used in model training, and we set A to 5.

We use Llama2-13B as the backbone model of
our LLM-based MT system. In our three-stage
training process, the first stage uses full fine-tuning,
and the last two stages use LoRA fine-tuning.
If LoRA is used, lora_rank is 32, lora_alpha is
64, lora_dropout is 0.05, and lora_modules are
"q_proj", " _proj", "o_proj", "gate_proj",
"down_proj", "up_proj". Furthermore, in the first
and third stages, we use open-source ALMA !! for
training, while in the second stage, we use open-
source llama-recipes '? for training. The parame-
ters during training are the default configurations
of the corresponding codes.

v_proj -,

5.2 Results

Tables 2 shows the evaluation results of en—zh
NMT systems and LLM-based MT systems on
WMT23 general test sets. On NMT systems, we
use BiT and R-Drop to build a strong baseline, then
use DD, FT and ST for data enhancement, and use
AT and CL for more efficient training, and finally
use TEL to ensemble multiple models ability. On
LLM-based MT systems, we use CPT and SFT to
build a strong baseline, and use CPO for further
optimization. To ensemble two different types of
translation systems, we use MBR decoding to se-
lect the final translation, which has been shown to
be better than MBR decoding of a single translation
system in terms of COMET scores.

5.3 Pre-processing and Post-processing

On the WMT?24 general test set, we observe that
there are some emoticons and URLs in the source
text. To prevent the model from translating them in-
correctly, we replace the emoticons and URLs with
”Do Not Translate* (DNT) labels in pre-processing,
and then restore the DNT labels back in post-
processing. By doing so, we can reduce some
translation errors for emoticons and URLs.
Ohttps://github.com/mjpost/sacrebleu

Uhttps://github.com/felixxu/ALMA
12https ://github.com/meta-1lama/llama-recipes
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WMT23 general test set BLEU COMET
NMT baseline (BiT & R-Drop) 5424  0.6289
+ DD, FT & ST 56.33  0.6580
+ AT 57.03  0.6648
+CL 58.58  0.6830
+ TEL 59.34  0.6928
+ NMT MBR 58.88  0.7178
LLM-based MT baseline (CPT & SFT) 52.18  0.6553
+ CPO 53.09  0.6907
+ LLM-based MT MBR 52.16  0.7102
+ NMT & LLM-based MT MBR 56.41  0.7234

Table 2: BLEU and COMET scores of en—zh NMT
systems and LLM-based MT systems.

6 Conclusion

This paper presents the submission of HW-TSC to
the WMT24 general MT Task. On the one hand,
we use training strategies such as R-Drop, BiT, DD,
FT, BT, AT, CL, and TEL to train the NMT system
based on the deep Transformer-big architecture.
On the other hand, we use CPT, SFT, and CPO
to train the LLM-based MT system. Finally, we
use MBR decoding to select the final translation
result from the hypotheses generated by these two
systems. By using these enhancement strategies,
our submission achieved a competitive result in the
final evaluation. Relevant experimental results also
demonstrate the effectiveness of our strategies.
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Abstract

CycleGN is a Neural Machine Translation
framework relying on the Transformer architec-
ture. Its approach is similar to a Discriminator-
less CycleGAN, specifically tailored for non-
parallel text datasets.

The foundational concept of our research posits
that in an ideal scenario, retro-translations of
generated translations should revert to the orig-
inal source sentences. Consequently, a pair of
models can be trained using a Cycle Consis-
tency Loss only, with one model translating
in one direction and the second model in the
opposite direction.

As a contribution to the WMT24 challenge,
this study explores the efficacy of the CycleGN
architectural framework in learning transla-
tion tasks across two language pairs, English-
Chinese and German-English, under two dis-
tinct non-parallel dataset conditions: permuted
and non-intersecting. Our findings demonstrate
the robust adaptability of CycleGN in learning
translation tasks, irrespective of the language
pair.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a significant advance-
ment in the field of Machine Translation, witness-
ing widespread adoption since its inception. Al-
though self-attention mechanisms were not novel
and had been investigated in prior studies (Bah-
danau et al., 2016), the Transformer model demon-
strated its formidable capabilities within Natural
Language Processing (NLP). Characterized by its
parallelized structure, the Transformer architec-
ture facilitated computational efficiency, enabling
the incorporation of a larger number of param-
eters. This enhancement has been exemplified
in NLP systems like Charles University Block-
Backtranslation-Improved Transformer Translation
(cubbitt) (Popel et al., 2020), which have surpassed

the performance levels of human professionals in
certain contexts.

Neural Machine Translation (NMT) datasets ne-
cessitate substantial text corpora, structured as
aligned pairs. This alignment implies the require-
ment for sentences with equivalent meaning to be
present in a minimum of two distinct languages,
enabling the initiation of model training to forge
linguistic linkages. Ongoing initiatives, includ-
ing OPUS (Tiedemann and Thottingal, 2020) and
Tatoeba (Tiedemann, 2012), are committed to fa-
cilitating public access to these datasets. Parallel
datasets comprise a small subset of the volume of
data in monolingual datasets.

Despite the widespread availability of large par-
allel corpora for numerous language pairs, the
capacity to employ solely monolingual datasets
would substantially expand the pool of training
data. This approach is particularly beneficial for
languages with scarce parallel text corpora.

Regardless of the remarkable efficacy exhibited
by Large Language Models (LLM) in NMT with-
out the necessity of exclusive training on parallel
data (Zhu et al., 2023), their considerable magni-
tude renders them costly in terms of both training
and operation. This economic burden consequently
restricts their widespread availability.

Back-translation (Sennrich et al., 2016) is a tech-
nique leveraging a trained MT (Machine Transla-
tion) model to translate sentences from a mono-
lingual dataset to produce corresponding pairs,
thereby synthetically augmenting the training data.
Our research is founded on the premise that the
process of translating a sentence from a source
language to a target language, followed by its retro-
translation from the target language back to the
source language, allows for the measurement of
the disparity between the original and the machine-
retro-translated sentences. This disparity serves as
a metric to assess the efficacy of the models and
facilitates the backpropagation of gradients within
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the networks. Notably, this methodology has been
previously implemented in the realm of Image-to-
Image Translation, as evidenced in the renowned
CycleGAN framework from Zhu et al. (2017).

2 Previous work

The TextCycleGAN model (Lorandi et al., 2023),
while not utilizing the Transformer architecture nor
operating within the MT field, introduced an inno-
vative strategy for text style transfer. This approach
employed a CycleGAN on the Yelp dataset to fa-
cilitate the learning of mappings between positive
and negative textual styles, notably in the absence
of paired examples.

Shen et al. (2017) exemplified the feasibility of
training two encoder-decoder networks in an unsu-
pervised manner that enables the sharing of a latent
space, thereby permitting style transfer. Lample
et al. (2018), adopting a similar technique within
the MT context, substantiated that the use of paral-
lel datasets is not a prerequisite for effective trans-
lation.

3 Definitions

Machine Translation models are most commonly
trained using “parallel” datasets, which are struc-
tured collections of text pairs. Each pair comprises
a segment of text in a source language and its
translation in the target language. By providing
direct translations, models learn correspondences
between text units to map the source language to
the target language.

A non-parallel dataset on the other hand does
not consist in pairs of text segments, consequently
the source and target sentences do not share any
explicit correspondence. Such a dataset can be cre-
ating by combining any two monolingual datasets
of two distinct languages and adjusting for the num-
ber of samples. In the context of this research, two
sub-categories of non-parallel datasets are intro-
duced.

3.1 Permuted dataset

A “permuted” dataset is defined as a parallel dataset
wherein the sentences of one language have been
systematically rearranged. Consequently, this re-
sults in a non-parallel corpus where it is guaranteed
that each sentence has a corresponding translation
located at an unspecified index within the dataset.
The authors postulate that when employing suffi-
ciently large monolingual datasets, which are not

derived from permuted parallel corpora, it is likely
that most sentences will possess an accurate trans-
lation “somewhere” within the dataset.

3.2 Non-intersecting dataset

A “non-intersecting” dataset is a non-parallel
dataset for which it is guaranteed that no sentence
has an exact translation. A non-intersecting dataset
is derived from a meticulously curated parallel
dataset devoid of duplicate entries. Two unique
sets of natural integers are produced, each function-
ing as an index list of phrases to retain for each
respective language.

4 Datasets

The datasets employed in this study are the English-
German and Chinese-English language pairs from
the WMT?23 challenge (Kocmi et al., 2023). The
data released for the WMT23 General MT task can
be freely used for research purposes. Due to the
current implementation’s high computational de-
mands, the models were not trained for the entirety
of an epoch. Specifically, only 10% of the English-
German dataset was used, while about half of the
Chinese-English dataset in the non-intersecting
condition.

Type ‘ English-German Chinese-English
Permuted 27,801,496 27,801,496
Non-intersecting 27,801,496 17,676,442
Original dataset 295,805,439 35,452,884

Table 1: Number of sentences used during training de-
pending on the dataset type

5 Training

For greater clarity, the mathematical notations from
the original CycleGAN work will be employed in
the present study. Given two languages X and )
with appropriate datasets, the objective is to obtain
two NMT models G : X — Yand F : Y — X
such that if the translations are perfect, G(F(y)) =
yand F(G(z)) = z, withx € X and fory € ).

By using the Cross-Entropy Loss (CEL) (Zhang
and Sabuncu, 2018) in the role of the Cycle Consis-
tency Loss (CCL), we can determine the distance
between the original sentence and its double trans-
lation in order to compute the gradients.

As in the original CycleGAN work, our current
study also implements an Identity Loss (IL), which
also relies on the CEL, to help with the training
stability. As G consists in a mapping X — ), if
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given an input y € ), the input should remain
unchanged such that G(y) = y. The same loss is
applied to F between F(x) and z, as displayed in
Figure 1.

5.1 Model architecture

The architecture used for both models, G and F,
is the Marian framework (Junczys-Dowmunt et al.,
2018) implemented by Huggingface’s Transform-
ers library (Wolf et al., 2020), which is licensed
under the Apache Licence. While most parameters
follow the default configuration, Table 2 references
the changes that were made in order to reduce the
computational cost of the architecture.

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6
Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLLU

Table 2: Non-default parameters in the configuration of
Marian Transformer models

5.2 Vocabulary organization

NMT models usually employ either a unified tok-
enizer or two distinct tokenizers. In the case of a
single tokenizer, it is trained using sentences from
both the source and target distributions, avoiding
any duplicates. This approach facilitates the shar-
ing of the encoder and decoder embedding layers,
thereby diminishing computational demands and
enhancing model accuracy (Press and Wolf, 2017).

Conversely, the alternative approach entails train-
ing one tokenizer on the source distribution and
another one on the target distribution. While this
method restricts the possibility of tying embed-
dings, it can potentially double the vocabulary size
without increasing the dimensions of the embed-
dings. The overall vocabulary size of the model
in this scenario, is the cumulative total of the two
individual vocabularies, barring shared tokens like
punctuation symbols.

While contemporary Transformer models like
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) and Genera-
tive Pre-trained Transformers (GPT) (Radford et al.,
2018) typically utilize a single tokenizer, this study

introduces a novel vocabulary methodology that
amalgamates the aforementioned approaches. This
method involves training two tokenizers, each for
a respective language and with half the vocabulary
size. Subsequently, the identifiers of one tokenizer
are adjusted to prevent overlap, yielding a result
analogous to a single tokenizer that includes dupli-
cates across languages. It is important to note that
special tokens such as < eos > (End of Sentence)
and < pad > (Padding) are shared and not dupli-
cated. This strategy is designed to simplify model
analysis during development, albeit at the expense
of a reduced vocabulary.

5.3 Obtaining labels

In the training process of a Transformer model, it is
imperative to have prior knowledge of the labels, as
the decoder predicts tokens sequentially. Each to-
ken prediction, barring the initial one, is contingent
upon all preceding predictions. By possessing prior
knowledge of the reference translation, it becomes
feasible to contrast each predicted token against the
ground truth, enabling the calculation of the loss at
every step.

Nevertheless, in the case of non-parallels
datasets, the labels are by definition not known
in advance. It is therefore not possible to calculate
the loss after each predicted token. Furthermore,
the act of selecting the most probable token for
each prediction constitutes a non-differentiable op-
eration, thus precluding the possibility of backprop-
agation once the sentence is fully generated.

Naturally, in inference mode, Transformers are
able to generate sentences without labels. Thus,
the first step is to generate the pseudo-labels & and
1, where Z is used as the label of y and ¢ as the
label of z. Even though this step cannot be used
to compute the gradients, it is crucial for the entire
process.

Z is computed from from F(g) with z as the
label, and ¢ is computed from G(#) with y as the
label. The CCL is applied between 7 and x, and be-
tween 3 and y to compute the gradients and update
the weights of G and F.

5.4 A Discriminator-less GAN

The CycleGAN methodology, as indicated by its
nomenclature, is predicated on the Generative
Adversarial Network (GAN) framework, initially
introduced in Goodfellow et al. (2014). This
paradigm involves the training of a Generator
model in conjunction with another model, termed
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Figure 1: CycleGN training process

the Discriminator. The Discriminator is specifically
trained to distinguish between authentic samples
drawn from the dataset and synthetic samples pro-
duced by the Generator. In the CycleGAN train-
ing process, the Discriminators intervene after the
generation of & and g, helping the training of the
Generators. However, as mentioned in Section 5.3,
there can be no gradient computation during the
generation of Z and ¢ in a Transformer and as such,
Discriminators cannot be used in the present work.
This is why CycleGN is not an “Adversarial” ap-
proach, hence the name.

6 Pre-training

During the development of CycleGN, a critical is-
sue became clear, which prevented the model’s
ability to converge and learn effectively. As de-
scribed in Section 5.3, the first step of the CycleGN
framework is to generate £ and y. During the first
initialisations, these pseudo-labels will be gener-
ated randomly and will depend only on the initial-
ization of the weights of G and F. However, the
models consistently converge towards a trivial solu-
tion wherein by merely reproducing the input, they
satistisfy the loss function criteria without achiev-
ing any meaningful learning or transformation of
the data.

6.1 Absence of intermediate evaluation

As there is no Discriminator to ensure that  be-
longs to X and ¢ belongs to ), G and F converge
towards x = § = z and y = & = ¢, as this ap-
proach achieves an optimal outcome on the CCL
function, registering a value of zero, as schematised

in Figure 2.

Cycle
I \

Loss

Figure 2: In the absence of a Discriminator y € ) and
pre-training is not employed, the CycleGN architecture
will converge towards a state where no translation hap-
pens and still perfectly satisfy the CCL function

6.2 Moving away from the easiest path

Masked Language Modeling (MLM) is a pre-
training strategy implemented in BERT, where a
specified proportion of the input tokens are sub-
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stituted with a unique < mask > token. The ob-
jective of the neural network under this paradigm
is to accurately reconstruct the original sentence
from this degraded input. This process enables the
model to discern intricate relationships between
words and to develop a profound representation of
the language. This pre-training has revealed excel-
lent performances in diverse NLP application such
as sentiment analysis (Alaparthi and Mishra, 2021),
text classification (Sun et al., 2020), Named Entity
Recognition (NER) (Souza et al., 2020) (Chang
et al., 2021) (Akhtyamova, 2020) and paraphrase
detection (Khairova et al., 2022).

As MLM does not require any labels, as the la-
bels are generated from the dataset, it is perfectly
adapted to the CycleGN approach. A single model
‘H is trained on the non-parallel dataset to recon-
struct both languages, with 15% of the input tokens
masked. This model H has the exact same archi-
tecture as G and F. When training the CycleGN,
rather than randomly initializing G and F, the pa-
rameters from 7 are directly transferred to both
G and F. Indeed, as H learns to reconstruct both
language X and ), it can be used to initialize both
networks. Figure 3 shows the training process of

H.

] ] Cros-Entro
CT}» mask p: 0.15 —»@—

Figure 3: Masked Language Modeling training process

7 Training stability

It is crucial for the CycleGN framework that the
two models exhibit approximately equivalent levels
of performance. Given the interdependent nature
of these models, where the output of one serves as
the input for the other, maintaining consistency be-
tween them during training is imperative. Without
a strategy in place to prevent the performance of
the models from diverging, it is possible for one
model to gain the “upper hand” over the other.

7.1 Divergence between the Generators

Figure 4 presents the evolution of the CCL of an
early prototype of CycleGN and it can clearly be
seen that one of the two generators, F, ends up per-
forming much better than its counterpart G, which
blocks any future training.
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Figure 4: Evolution of the Cross-Entropy Loss dur-
ing the training of an early prototype on the permuted
German-English dataset

7.2 Gradient Clipping

Gradient clipping is a technique utilized in the train-
ing of Deep Learning (DL) models, to address the
problem of “exploding” gradients. This issue oc-
curs when gradients escalate to excessively high
values during training, leading to numerical insta-
bility and impeding the model’s convergence to an
optimal solution.

Gradient clipping can be implemented through
two primary methods: norm clipping and value
clipping. Norm clipping involves establishing a
threshold on the overall magnitude of the gradient
vector. On the other hand, value clipping involves
individually adjusting elements of the gradient vec-
tor that exceed the specified threshold.

By clipping the gradients by norm, with a thresh-
old of 1.0, as advised by the Huggingface library,
the training stabilizes and the divergence between
G and F disappears.

Figure 5 demonstrates how the addition of gradi-
ent clipping helps with training stability during the
training of the permuted German-English model.

7.3 Batch size

The original CycleGAN research mentions using
a batch size of 1, and while they did not state the
reason in the research paper, one of the authors
explained it in a GitHub issue (Junyanz, 2017) as a
lack of GPU memory.

Rajput et al. (2021) examined the impact of batch
size within the CycleGAN architecture, observing
a significant decline in performance the more the
batch size is increased. This deterioration was evi-
dent both through the example images presented in
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Figure 5: Evolution of the Cross-Entropy Loss during
the training of the permuted German-English models

that study and through the calculated cosine dissim-
ilarity, indicating inferior model performance with
larger batch sizes. However, quality was achieved
at the expense of computational efficiency, as the
training duration to achieve 200 epochs was 8 hours
with a batch size of 1, but this was reduced to just
2 hours with a batch size of 64.

In the context of this research, however, the trade-
off between quality improvement and computing
resource, as observed in the aforementioned study,
does not hold true. Utilizing a batch size of 1 in
the CycleGN experiments hindered any form of
convergence. Consequently, a batch size of 32 was
selected, as it represents the maximum capacity
that could be accommodated within the available
24GB of GPU memory of the NVidia 4090 used
for this work.

7.4 One large epoch or multiple smaller ones?

The CycleGAN framework is recognized for its
computational expense due to several inherent fac-
tors. Primarily, as CycleGAN operates on the prin-
ciple of cycle consistency, it necessitates the train-
ing of two GANs simultaneously — one for each
direction of the transformation. This structure re-
quires substantial computational resources, as each
GAN consists of both a Generator and a Discrimi-
nator.

The resource-intensiveness of the CycleGAN
process, thus limits the size of the dataset that can
be used in a reasonable time. This necessitated a
decision between training for a single epoch on a
large dataset, or training for multiple epochs on a
smaller corpus arose.

The CycleGN framework was compared on the

permuted German-English dataset under four dif-
ferent conditions:

1. One epoch containing 1% of the dataset
2. Five epochs containing 0.2% of the dataset
3. One epoch containing 2% of the dataset
4. Five epochs containing 0.4% of the dataset

The Crosslingual Optimised Metric for Evalu-
ation of Translation (COMET) score (Rei et al.,
2020) was selected as our comparison criterion, as
this metric has proven to be one of the most ef-
fective in recent WMT competitions, according to
Kocmi et al. (2022), due to its strong correlation
with human judgment, aligning well with our goal
of mirroring human evaluative standards. Multiple
COMET models have been made available and the
default “wmt22-comet-da” model was chosen. The
average scores obtained on 10,000 test sentences
that were not part of the model training set are
presented in Table 3.

Condition ‘ English->German German->English

1 0.2727 0.2715
2 0.2411 0.2635
3 0.2741 0.2665
4 0.2258 0.2658

Table 3: COMET scores of CycleGN models depending
on the permuted German-English dataset condition

Models exposed to a larger portion of the to-
tal dataset demonstrate superior performance com-
pared to those limited to a smaller, repetitive subset,
especially when the dataset encompasses over half
a million to a million sentences. The authors extrap-
olate this result to larger datasets and thus chose
to train the CycleGN models for a single epoch on
the largest dataset possible.

8 Results

Even if tracking the CCL is an inexpensive man-
ner to estimate the progress of the training of the
CycleGN architecture, a low loss value can also
hide an absence of translation, as mentioned in Sec-
tion 6.1. This is why an evaluation metric such as
COMET is crucial to assess the progression of the
CycleGN framework.

170



8.1 Evolution of COMET score during
training

To measure the performances of CycleGN, every
1,000 batch the CCL was averaged and 1,000 sen-
tences from the test set were translated to compute
the COMET score.

Figures 6, 7, 8 and 9 demonstrate that the ac-
tual quality of translation, as measured by the
COMET metric, increases with time. Figures 6
through 9 illustrate a progressive enhancement in
the translation quality over time, as quantified by
the COMET metric. This enhancement is observed
respectively in the permuted and non-intersecting
German-English models (Figures 6 and 7), as well
as in the permuted and non-intersecting English-
Chinese models (Figures 8 and 9). Figures 6 and
7 exhibit a sudden drop in the increase of accu-
racy, which is acknowledged by the authors. This
anomaly will be thoroughly examined and dis-
cussed in a subsequent academic study.
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Figure 6: Evolution of the COMET score during the
training of the permuted German-English models

8.2 COMET Scores post-training completion

After the end of the training, a test set of 10,000
sentences per language were translated and the
COMET scores are displayed in Table 4. In order to
give a point of comparison, architecture-matched
models using the original parallel datasets were
trained. As in the case of the CycleGN training,
these parallel models were only trained for a single
epoch on the exact same number of sentences as
the permuted models were.

The authors expected the COMET score of the
CycleGN to be inferior to architecture-matched
models trained using parallel corpora, as informa-
tion is by definition lost during the permutation of
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Figure 7: Evolution of the COMET score during the
training of the non-intersecting German-English models
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Figure 8: Evolution of the COMET score during the
training of the permuted Chinese-English models
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Figure 9: Evolution of the COMET score during the
training of the non-intersecting Chinese-English models

the parallel datasets. However, the authors argue
that the differences between the scores is likely
smaller with larger datasets.
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English — German German — English
Permuted 0.505 0.537
Non-intersecting 0.556 0.579
Parallel 0.780 0.775

Table 4: COMET score of the German-English models

English — Chinese Chinese — English
Permuted 0.425 0.537
Non-intersecting 0.382 0.448
Parallel 0.000 0.749

Table 5: COMET score of the Chinese-English models

9 Future Work

Further investigations will benefit from the incor-
poration of a more extensive dataset and an explo-
ration of larger model architectures.

9.1 Larget dataset

The current work has been trained on a small
dataset compared to MT standards. Future work
should try to see how convergence progresses with
more iterations. Further computational optimiza-
tions are probably necessary to shorten the training
time required.

9.2 Larger models

The current architecture relies on a total of
158,769,152 parameters, which is only about a
third of the size of the default in the Huggingface
library. Although Tables 4 and 5 demonstrate that
the current number of parameters, when trained
using a parallel dataset, is capable of producing
better translations than when exposed to permuted
and non-intersecting datasets, an increase in both
the number of epochs and the size of the dataset
should be prioritized, larger models being common
in NMT.

10 Source Code

The source code of CycleGN is available at
https://github.com/SorenDreano/CycleGN.

Limitations

The investigation acknowledges certain inherent
limitations which may impact the generalizability
and applicability of the findings.

Language diversity

Another issue that arises from the computing cost
of CycleGN is the lack in language diversity. In-
deed, our current work only used the English-

German and Chinese-English language pairs. Con-
sequently, it cannot be certain that the approach
presented can be applied to other languages and all
alphabets. This is why CycleGN is taking part in
WMT24, to explore the framework’s performance
on a wide range of language pairs.

Training limitations

Since training a CycleGN model is particularly
costly, there is a trade-off between training models
on all language pairs, or choosing a subset of these
pairs to train fewer models with more iterations
and on a greater number of examples. In order
to demonstrate the effectiveness of CycleGN on a
wide range of language pairs, the first choice was
made, i.e. to train models on all pairs, even if this
means obtaining inferior results.

Unused models

Unlike the previous edition (Kocmi, 2023), where
most language pairs were bidirectional, i.e. the
evaluations were to and from, the 2024 General
Translation task is unidirectional. This means that
for each language pair, it is sufficient to train a
model that translates from the source to the target.

This is not a change that is favourable to Cy-
cleGN, since it is a bidirectional training architec-
ture. Indeed, its cyclical nature means that one
model must be trained from one language to an-
other, and another model must complete the cycle,
i.e. from this second language to the first. In other
words, half the time spent training CycleGN is
spent training a model which only serves to train
the first, but which will never be evaluated in the
contest.

This change has been accompanied by an in-
crease in the number of language pairs, from 6
bidirectional and 2 unidirectional in 2023 to 11
unidirectional in 2024.

Monolingual datasets

During the WMT challenge, teams are provided
with monolingual datasets. Although this dataset
format is perfectly suited to CycleGN training, they
have been discarded for two reasons. The first is
that for the majority of language pairs, the paral-
lel datasets supplied have been truncated in order
to reduce training time. The second is related to
the construction of permuted and non-intersecting
datasets, since it is preferable to build them from
non-parallel datasets, as detailed in Section 3.
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Reduced dataset sizes

The datasets were truncated to obtain a maximum
of 27,801,496 sentences for training and 100,000
sentences for the development set. The final size
of the datasets used and the number of epochs is
shown in Table 6 for permuted models and Table 7
for non-intersecting models. While the permuted
models have all been trained, this was not the case
for the non-intersecting models, due to lack of time.

Training time

To make it possible to train so many models, sev-
eral machines were used, with different technical
characteristics, in particular different GPUs. How-
ever, by estimating the training time according to
the number of sentences in the dataset and the
GPU used, the total training time for all the models
trained on the WMT24 datasets represents approxi-
mately 3,700 hours on an NVidia 4090.
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Sentences used Number of epochs

Language pair Parallel sentences in WMT24 dataset
Czech-Ukrainian 10,757,756
English-Chinese 55,216,751

English-Czech 56,288,239
English-German 295,805,439

English-Hindi 315,070
English-Icelandic 23,434,361
English-Japanese 33,875,119
English-Russian 75,961,169
English-Spanish 626,076,911

English-Ukrainian 16,062,359
Japanese-Chinese 22,642,571

10,657,756 1
27,801,496 1
27,801,496 1
27,801,496 1
314,070 10
23,334,361 1
27,801,496 1
27,801,496 1
27,801,496 1
15,962,359 1
22,542,571 1

Table 6: Comparison between the number of sentences available in the WMT24 dataset and the number of sentences
used to train the permuted models depending on the language pair

Language pair

Parallel sentences in WMT24 dataset

Sentences used Number of epochs

English-Chinese 55,216,751

English-Czech 56,288,239
English-German 295,805,439
English-Russian 75,961,169

17,676,442 1
27,801,496 1
27,801,496 1
27,801,496 1

Table 7: Comparison between the number of sentences available in the WMT24 dataset and the number of sentences
used to train the non-intersecting models depending on the language pair
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Abstract

Fine-tuning Large Language Models (FT-
LLMs) with parallel data has emerged as a
promising paradigm in recent machine trans-
lation research. In this paper, we explore the
effectiveness of FT-LLMs and compare them
to traditional encoder-decoder Neural Machine
Translation (NMT) systems under the WMT24
general MT shared task for English to Chinese
direction. We implement several techniques,
including Quality Estimation (QE) data filter-
ing, supervised fine-tuning, and post-editing
that integrate NMT systems with LLMs.

We demonstrate that fine-tuning LLaMA?2 on a
high-quality but relatively small bitext dataset
(100K) yields COMET results comparable to
much smaller encoder-decoder NMT systems
trained on over 22 million bitexts. However,
this approach largely underperforms on surface-
level metrics like BLEU and ChrF. We fur-
ther control the data quality using the COMET-
based quality estimation method. Our experi-
ments show that 1) filtering low COMET scores
largely improves encoder-decoder systems, but
2) no clear gains are observed for LLMs when
further refining the fine-tuning set. Finally, we
show that combining NMT systems with LLMs
via post-editing generally yields the best per-
formance for the WMT?24 official test set.

1 Introduction

Generative Large Language Models (LLMs) have
demonstrated significant capabilities across vari-
ous English-centric NLP tasks (Zhang et al., 2022;
Touvron et al., 2023a,b). However, they often un-
derperform in multilingual contexts, particularly
with low-resource languages (Hendy et al., 2023;
Stap and Araabi, 2023; Wang et al., 2023). To en-
hance the multilingual proficiency of LLMs, recent
studies have explored several strategies, including
vocabulary expansion (Lin et al., 2022; Liang et al.,
2023; Yang et al., 2023), continual training on mul-
tilingual data (Le Scao et al., 2023; Dubey et al.,

2024; Xu et al., 2024a), and instruction tuning (Zhu
et al., 2023; Alves et al., 2024; Stap et al., 2024).
These approaches have collectively improved LLM
performance on a variety of multilingual tasks,
such as understanding (Lai et al., 2023), reason-
ing (Ponti et al., 2020; Shi et al., 2022), summariza-
tion (Hasan et al., 2021; Bhattacharjee et al., 2023),
and machine translation (Kocmi et al., 2023).

Fine-tuning Large Language Models (FT-LLMs)
with parallel data largely enhances translation ca-
pabilities, but such approach relies heavily on high-
quality parallel data. For instance, prior research
often uses development and test datasets like WMT
and Flores (Alves et al., 2023; Xu et al., 2024a; Li
et al., 2024) for the training, limiting the scalabil-
ity to a broader range of languages. In this paper,
we explore the feasibility of mining high-quality
bi-texts from open-source corpora like OPUS. We
utilize COMET (Rei et al., 2020), an automated
Quality Estimation (QE) tool, to score sentences in
the WMT-24 Constraint track. Unlike Peter et al.
(2023), who found that selecting the highest quality
sentences using COMET improves translation qual-
ity, our findings show that while this QE-based data
filtering does not provide clear benefits for LLMs
when refining fine-tuning datasets, it significantly
enhances the performance of NMT systems when
applied to filter training samples with low COMET
scores.

Recent studies show that LLMs fine-tuned with
MT data can rival state-of-the-art NMT models
like NLLB (Costa-jussa et al., 2022). However,
such comparisons may be unfair, as NMT models
like NLLB typically support a broader range of
languages. For example, ALMA-13b (Xu et al.,,
2024a) outperforms NLLB-54b (Costa-jussa et al.,
2022) despite targeting only eight language pairs
versus 200. Additionally, expanding languages in
multilingual models often causes interference that
degrades performance (Tan et al., 2024; Shaham
et al., 2023). In this paper, we focus exclusively on
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the English-to-Chinese translation direction', inves-
tigating how FT-LLMs compare to NMT models
trained from scratch using the same parallel data
source. Specifically, we use the full WMT-24 con-
straint track data to train an encoder-decoder NMT
model, and we fine-tune LLaMA2-7B on a selected
high-quality subset of up to 300K sentences. we
found that, despite fine-tuned LLama2-7B being 17
times larger, it yields comparable COMET scores
and worse scores for BLEU and ChrF.

While small NMT systems are resource-efficient
in production, LLMs in practice, generate less lit-
eral translations (Vilar et al., 2023). In this paper,
we integrate NMT and LLM systems by prompting
LLMs to post-edit (PED) NMT outputs. Addition-
ally, we implement a QE-guided PED system that
selects the final outputs based on the higher QE
score, as determined by COMET, between NMT
and post-edited outputs. Our experiments show
that the QE-guided PED system delivers the best
performance on the WMT?24 en-zh official test set,
improving ChrF up to +3.7 over pure NMT outputs
and +2.1 than direct translations by LLMs. Surpris-
ingly, this approach brings negative performance
gains on the Flores-devtest and Ntrex.

2 Data Preprocessing

In this section, we provide an overview of the data
sources and the cleaning strategy. We use all the
available data from the constrained track of the
WMT-24 shared task for all three directions in
which we participate, including English—Chinese,
English—Japanese, and Japanese—Chinese. Fol-
lowing Wu et al. (2023), we perform a thorough
preprocessing phase involving three key steps to
enhance the data quality, as outlined below.

* Character-level Cleaning

— Deescaping special characters in XML.
— Removing non-printable characters.

— Segmenting Chinese sentences with
Jieba? and tokenizing Japanese data using
KyTea (Neubig et al., 2011).

* Sentence-level Cleaning

— Filtering out sentences longer than 256 to-
kens.

'We investigate FT-LLM for en-zh, and explore the data
filtering for en-zh, en-ja, and ja-zh diretcions.
*https://github.com/fxsjy/jicba

— Eliminating sentences where over 75% of
the words on both the source and target sides
are identical.

— Removing sentences with a source-to-target
token ratio exceeding 3.0.

— Eliminating duplicated sentences.

* Language-level Cleaning

— Removing off-target sentences using the
FastText language identification tool (Joulin
etal., 2016).

— Excluding sentences exhibiting one-to-
many or many-to-one mappings, for exam-
ple, a single source sentence having multi-
ple different target sentences.

In specific, we use the Moses toolkit®(Koehn
et al., 2007) for all procedures in cleaning step 1
and use FastText (Joulin et al., 2016) for the lan-
guage identification step. As shown in Table 1
(Cleaned), we removed 29%, 22%, and 45% of the
data for en—zh, en—ja, and ja—zh directions.

Directions ‘ Raw Cleaned QE-filtered
en—zh | 55,346,004 39,354,051 22,606,804
en—ja 33,875,162 26,415,631 14,507,351
ja—zh 22,642,553 12,560,471 6,679,265

Table 1: Number of parallel sentences for three datasets.

3 Systems
3.1 NMT Systems

MMT baseline In this section, we describe the
backbone architecture and adjustments made to
our baseline systems. We train a multilingual-
Transformer-large (mT-large) model for all three
en—zh, en—ja, ja—zh directions. The mT-large is
a 12-layer Transformer (Vaswani et al., 2017) archi-
tecture with specific modifications, including pre-
norm for both the encoder and decoder, and layer-
norm for embedding. To enhance stability and
performance, we tie the parameters of encoder em-
bedding, decoder embedding, and decoder output.
We also introduce dropout and attention dropout
with a probability of 0.1, along with label smooth-
ing at a rate of 0.1. In addition, to specify the
translation directions, we prepend the source lan-
guage tags in the source, and target language tags
in the target side, e.g.: en2zh.

3https://github.com/moses-smt/mosesdecoder/
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Similar to the approach described by Vaswani
et al. (2017), we employ the Adam optimizer
with a learning rate of 5e-4, implementing an in-
verse square root learning rate schedule with 4,000
warmup steps. We set the maximum number of
tokens to 10,240, with gradient accumulation every
21 steps to facilitate large-batch training in Tang
et al. (2021). We train all of our systems with 4
NVIDIA A6000 Gpus, and to expedite the training
process, we conducted all experiments using half-
precision training (FP16). Additionally, we save
checkpoints every 2000 steps and implement early
stopping based on perplexity, with a patience of 5
epochs.

Quality-Estimation Filtering. Due to data
scarcity in the machine translation community, a
large amount of Machine Translation data is mined
from web-crawled data such as CCAligned (El-
Kishky et al., 2020). Nonetheless, recent research
found that there are many misaligned data exist in
such web-crawled datasets, which impair perfor-
mance when training models on it (Khayrallah and
Koehn, 2018; Ranathunga et al., 2024). In addi-
tion, incorrect language and non-linguistic contents
could affect the model in generating off-target or
hallucinated outputs (Kreutzer et al., 2022). Sim-
ilarly, recent studies on instruction fine-tuning of
LLMs have shown that increasing data quality is
more effective than data quantity (Du et al., 2023;
Pan et al., 2024; Zhou et al., 2024), especially in
inducing instruction-related capabilities (Xia et al.,
2024). Additionally, Peter et al. (2023) shows that
using QE metrics is not as effective at detecting
translation noises like untranslated sentences, but is
much better at identifying more fine-grained prob-
lems in the data, like small translation or grammat-
ical errors.

Motivated by that, we investigate the feasibil-
ity of extracting high-quality parallel data using
an automated Quality Estimation (QE) tool. We
utilize the COMETKiwi model and apply this data-
filtering phase to the cleaned data that we discussed
in Section 2. Figure 1 presents the COMET score
distributions for three directions. We found that
for both English—Chinese and English—Japanese,
the distributions are quite similar, that is, nearly
half of the data falls into the poor quality range
(0-80% Comet scores). For Japanese— Chinese,
approximately half dataset ranges from 0% to 65%
of COMET score. According to this observation,
we filtered out parallel data that has smaller than

80% Comet scores for both English— Chinese and
English—Japanese, and set the threshold at 65%
for Japanese—Chinese. As a result, we show the
number of parallel sentences after Quality Estima-
tion filtering in Table 1.

Directional Fine-tuning. Lastly, to encourage
the MMT model to gradually narrow down the data
distribution to focus on task-specific data, we fur-
ther fine-tune the MMT model on direction-specific
data. Note that the direction-specific data, i.e., En
— Zh, En — Ja, and Ja — Zh are the same data
that included in the MMT baseline training data.

3.2 LLM Systems

We use LLaMA2-7B as the backbone because it is
permitted for the constraint track of WMT24. We
reuse the framework of ALMA (Xu et al., 2023) to
conduct fine-tuning, however, we discard their first
stage of monolingual continue training.

We set the training batch as 32 and accumulated
4-step gradients. The learning rate is set as 2e-5.
The model was trained for one epoch using bf16
precision. The beam size is set as 5 for inference.

For the fine-tuning dataset, we further apply the
quality estimation method described in Section 3.1
to filter out data with a QE score below a certain
threshold. Then, we sample a certain number of
bitext from the filter dataset. For example, in Ta-
ble 4, the number of samples with a score above 89
is 53k, all of which are used for fine-tuning. Addi-
tionally, we sample data with scores higher than 87
at various levels, such as 53k, 100k, and 300k. We
fine-tune LLaMA?2 with different kinds of data to
show the impact of data qualities.

3.3 NMT+LLM Systems

Previous studies have shown that leveraging Large
Language Models (LLMs) to post-edit the out-
puts of supervised Neural Machine Translation
(NMT) models can reduce translationese and en-
hance translation quality (Chen et al., 2023). This
strategy has proven effective with LLMs such
as ChatGPT (Chen et al., 2023), GPT-4 (Rau-
nak et al., 2023), PaLM (Xu et al., 2024b), and
LLaMA-2 (Ki and Carpuat, 2024). Specifically,
post-editing utilizes LLMs either to refine the out-
puts of supervised NMT models or to perform
"Self-Refinement" on their own outputs. Further-
more, Ki and Carpuat (2024) demonstrate that tun-
ing LLMs with error-annotated translations can
further enhance performance.
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Figure 1: Comet score distributions for WMT-24 constraint training data on en—zh, en—ja, and ja—zh directions.

In this paper, we explore the effectiveness of
Post-Editing (PED) in improving translation qual-
ity for the English-to-Chinese direction. We fo-
cus on a training-free PED approach due to com-
putational constraints, utilizing pre-trained open
LLMs to edit the outputs of our supervised NMT
models. Given the limited Chinese capability of
LLaMA?2, we employ Tower-LLMs (Alves et al.,
2024) (Tower-Instruct 7B and 13B), which have
been continuously pre-trained on monolingual cor-
pora including Chinese. Additionally, we imple-
ment a Quality Estimation-guided Post-Editing
(QE-based PED) approach, where the NMT out-
puts and post-edited outputs are selected based on
the higher QE score using COMETKiwi (wmt22-
cometkiwi-da).

4 Experimental Setups

4.1 Systems

In this section, we briefly describe the systems we
implemented. It is important to note that some
of our implementations were focused only on the
English-to-Chinese direction, specifically for FT-
LLaMA2, Tower-Instruct, the PED system, and the
QE-based PED system.

mT-large. A multilingual Transformer-large
model trained in many-to-many directions using
the "Cleaned" data (see Table 1 and Section 3.1 for
details). It consists of 12 layers with 16 attention
heads, d = 1,024, and dg = 4,096.

mT-large + QE. This model shares the same ar-
chitecture and hyper-parameter settings as the m7-
large model but is trained using the "QE-filtered"
data outlined in Table 1.

mT-large + QE + FT. The mT-large + QF model
was further fine-tuned on direction-specific data.

FT-LLaMA2. We use supervised fine-tuning to
fine-tune LLaMA?2. Detailed settings can be found
in Section 3.2.

Tower-Instruct. We directly evaluate the perfor-
mance of the Tower-Instruct models for compari-
son with our systems.

Self-Refined PED. We prompt the Tower-
Instruct model to post-edit the translations they
originally generated.

PED system. We prompt Tower-Instruct models
to post-edit the outputs generated by our supervised
NMT system (m71-large + QE + FT).

QE-guided PED system. We determined the fi-
nal outputs by selecting between the NMT outputs
and the post-edited outputs, based on the higher
QE score as determined by COMETKiwi.

4.2 Data

For training, we utilize both the "Cleaned" and
"QE-filtered" datasets, see details in section 2. For
evaluation, we employ previous WMT validation
and test sets as our validation set, and Flores, Ntrex
as our test set.

4.3 Implementation and Evaluation

For our Neural Machine Translation (NMT) sys-
tems, we utilize the Fairseq toolkit (Ott et al., 2019)
for both training and inference. For Large Lan-
guage Model systems, we employ the Transform-
ers toolkit for training and inference. To evaluate
our models, we report detokenized SacreBLEU?,
ChrF++(Popovié, 2017), and COMET (Rei et al.,
2020) (wmt22-comet-da) scores.

*nrefs: 1 lcase:mixedleff:noltok: 1 3alsmooth:explversion:2.3.1
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D Methods #Param | FLORES-Devtest NTREX | WMT-24 Official
| BLEU ChrF COMET BLEU ChrF COMET | BLEU ChrF
English— Japanese (NMT Systems Only)
(1D mTlarge 419M | 359 390 8948 269 338 8579 | 298 262
@ (O+QE 419M | 366 398 90.00 273 345 8695 | 342 296
3 @+FT 419M | 37.1 403 9024 283 351  87.18 347 30.1
Japanese— Chinese (NMT Systems Only)
(4) mT-large 419M | 339 292  86.64 275 249 8226 | 225 216
B @+QE 419M | 340 291 87.04 276 250 8277 | 227 220
® ()+FT 419M | 340 29.1 87.00 278 250 8253 | 229 216

Table 2: Translation quality on NTREX, FLORES, and WMT test sets for the English—Japanese and
Japanese—Chinese directions. 'FT” denotes directional Fine-Tuning, and 'QE’ represents using QE-filtered

training data. We use percentage for COMET scores.

D Methods #param | FILORES-Devtest NTREX | WMT-24 Official
| BLEU ChrfF COMET BLEU ChifF COMET | BLEU ChrF

NMT Systems

(1 mT-large 419M | 422 350 8494 333 287  79.20 -

@ @DO+QE 419M | 438 360 8621 347 297 8121 - -

3 @+QE+FT 419M | 439 362 8612 350 297 8095 | 335 316
LLM Systems

(4) FT-LLama2 7B | 346 312  86.60 - - - - -

(5) Tower-Instruct 7B | 423 374 8809 352 31.1 8542 | 362 332

(6) Tower-Instruct 13B | 432 380 8812 362 320 8536 | 385 353

NMT + LLM Systems

(D Self-Refined PED ((5)) 7B | 403 361 8561 341 304 8379 | 360 33.0

PED (3)+(5) 742B | 397 358 8368  31.3 283 7880 | 381 349

(© QE-based PED (3)+(5) 7.42B | 407 361 8622 325 292 8140 | 382 353

Table 3: Translation quality on NTREX, FLORES-200, and WMT-24 test sets for the English—Chinese direction.
For WMT-24, we report BLEU and ChrF scores as returned by the OCELoT submission system.

5 Results and Analyses

In this section, we present the final results of our
experiments and discuss the findings. Table 3
and 2 show the results of English—Chinese and the
other two directions (en—ja and ja—zh) on Flores-
devtest, Ntrex, and WMT24 official test sets.

5.1 Quality-Estimation Filtering improves
NMT systems

Our key finding is that implementing Quality-
Estimation (QE) Filtering effectively reduces low-
quality data samples, leading to improved NMT
system performance. Specifically, we observed
BLEU score improvements of +4.4 and +0.2 for
the English—Japanese and Japanese—Chinese di-
rections, respectively, on the WMT?24 official test
sets. For the English—Chinese direction, we ob-

served BLEU gains of +1.6 on the Flores-devtest
and +1.4 on the Ntrex test sets. Similar positive
performance improvements were also noted across
other metrics, such as ChrF and COMET. These
results indicate that filtering training samples with
low COMET scores enables our supervised NMT
system to generate higher-quality translations.

5.2 Fine-tuned LLaMA2 and Data Quality

We conduct experiments on LLaMA2-7B in En-
glish to Chinese translation direction, where we
collect 300K parallel samples from the training
set, controlling the QE scores are all higher than
87. In Table 3, (4) shows the results. It is easy
to see that the fine-tuned LLaMA?2 results in the
best COMET performance (86.60) on the Flores
benchmark. However, the results on surface-level
metrics, such as BLEU and ChrF, significantly lag
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Language ‘ Data ‘ BLEU COMET
LLama2-7B 10k (Cleaned) 28.0 82.7
LLama2-7B 100k (Cleaned) 35.7 85.6
LLama2-7B | 53k (COMET >87) | 36.1 86.1
LLama2-7B | 53k (COMET > 89) 335 84.3
LLama2-7B | 100k (COMET >87) | 35.5 85.7
LLama2-7B | 300k (COMET >87) | 34.6 86.6

Table 4: Evaluation results of fine-tuned LLama2-
7B models for the English—Chinese direction on the
Flores-devtest set. *Cleaned’ indicates random sampling
from the *Cleaned’ training dataset, while ’‘COMET>x’
refers to the sampling of data with COMET scores
greater than x.

behind encoder-decoder-based NMT systems by
7.6 and 3.8 points, respectively.

We further control the fine-tuning data quality to
show the impact. We select 10K and 100K samples
from the cleaned dataset (See Table 1). To further
improve the quality of parallel semantic alignment,
we score all of the 39M cleaned training samples
using COMET, and then we construct fine-tuning
sets under the following settings:

* We selected all 53k samples with very high
COMET scores, using a threshold of 89.

¢ We then lowered the score threshold to 87 and
selected another 53k samples.

* We extend the number of samples with scores
higher than 87 to 100k and 300k.

Table 4 shows the corresponding results after
fine-tuning using datasets with different qualities.
We observe that: 1) Simply extending the fine-
tuning set from 10k to 100k largely improves the
resulting performance. 2) However, no clear im-
provements can be observed when further raising
the fine-tuning data QE quality. E.g., using 100k
trivial samples (after data cleaning, QE score lower
than 80) achieves comparable performance to that
of using 100k samples with a QE score higher than
87. Additionally, fine-tuning with samples that
have extremely high QE scores (COMET > 89)
even resulted in a decline in translation quality com-
pared to using 53k samples with relatively lower
QE scores (COMET > 87). 3) Further extending
the fine-tuning size from 100k to 300k yields no
clear improvements.

Our experiments suggest that simply enhancing
the quality of fine-tuning data for LLMs, at least
when using COMET as the central measure of qual-
ity, is not a promising approach.

5.3 Post-Editing Enhances Translation
Quality

As shown in Table 3, using the Tower-Instruct 7B
LLM to post-edit the outputs of our strongest su-
pervised NMT model (PED (@ + @)) resulted in
large improvements, with BLEU and ChrF gains of
+4.6 and +3.3, respectively, over the NMT model
alone on the WMT24 official test set. Notably,
this post-editing approach also outperformed di-
rect translation with Tower-Instruct 7B, achieving
additional gains of +1.9 BLEU and +1.7 ChrF. In
contrast, applying the Tower-Instruct model to post-
edit its own generated translations (self-refined
PED) resulted in negative improvements across
all test sets. These findings suggest that integrating
supervised NMT models with LLMs is a promis-
ing strategy for enhancing translation quality by
leveraging the strengths of both systems.

Furthermore, Table 3 demonstrates that the QE-
guided PED system (QE-based PED ((3) +(5))) can
further improve translation quality, as evidenced by
the positive performance gains across the Flores-
devtest, Ntrex, and WMT24 official test sets. In
particular, the QE-guided PED system, utilizing
Tower-Instruct 7B as the LLM backbone, achieved
performance on par with Tower-Instruct 13B in the
ChrF metric on the WMT24 official test set.

Despite the promising results on the WMT-24
Official test set, we found this Post-Editing ap-
proach delivered negative performance improve-
ments on Flores and Ntrex sets (Table 3).

6 Conclusions

In this paper, we investigate three aspects of us-
ing LLMs for translation: 1) Comparison with
Encoder-Decoder NMT Systems: directly fine-
tuning LLaMA?2 on a relatively small bitext dataset
(100K) yields COMET results comparable to those
of strong encoder-decoder NMT systems trained
on over 50 million parallel sentence pairs. How-
ever, this approach significantly underperforms in
surface-level metrics such as BLEU and ChrF. 2)
Impact of Data Quality: properly filtering samples
with low COMET scores largely improves encoder-
decoder systems, however, no clear improvements
can be observed for LLMs when further controlling
the fine-tuning set with higher COMET scores. 3)
Combining NMT Systems with LLMs: lastly, we
show that combining NMT systems with LLMs via
post-editing generally yields the best performance
in our experiments.
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Abstract

In this work, we present TOWER-V2, an im-
proved iteration of the state-of-the-art open-
weight TOWER models, and the backbone of
our submission to the WMT24 General Trans-
lation shared task. TOWER-V2 introduces key
improvements including expanded language
coverage, enhanced data quality, and increased
model capacity up to 70B parameters. Our final
submission combines these advancements with
quality-aware decoding strategies, selecting
translations based on multiple translation qual-
ity signals. The resulting system demonstrates
significant improvement over previous versions,
outperforming closed commercial systems like
GPT-40, CLAUDE-SONNET-3.5, and DEEPL
even at a smaller 7B scale.

1 Introduction

Large Language Models (LLMs) are making
strides towards becoming the de facto solution for
multilingual machine translation (MMT). Many
works have shown that it is possible to adapt
LLMs for translation and achieve state-of-the-art
results (Zhang et al., 2023; Wei et al., 2023; Alves
et al., 2023; Reinauer et al., 2023; Zhu et al., 2024).

One such example is our recent work on
TOWER (Alves et al., 2024), which demonstrates
that open NMT models like NLLB200 can be
outperformed by adapting an LLM to transla-
tion. Specifically, we continue the pre-training of
LLaMA-2 (Touvron et al., 2023) on both monolin-
gual and parallel data, and fine-tune the resulting
model on high-quality instructions covering several
MT-related tasks. This approach requires much
less parallel training data than traditional NMT and
preserves the general capabilities of the LLM to
respond to various prompts.

For the WMT24 General Translation
task (Kocmi et al., 2024a), we enhance TOWER
by significantly improving its training data, by

*Core Contributor. DX ai-research@unbabel.com

extending its language support from 10 to 15
languages — including low-resource ones like
Icelandic —, and by scaling the underlying model
to 70 billion parameters. Furthermore, because
the WMT24 General Translation task focuses on
paragraph-level translation instead of sentence-
level, we also experiment with full-document
translation and longer contexts, where TOWER
originally struggled. These key improvements
result in TOWER-V2 7B and 70B.

For our primary submission, we combine
TOWER-V2 70B with Quality-Aware Decoding
(QAD) strategies (Fernandes et al., 2022), such as
Minimum Bayes Risk decoding (MBR) and Tuned
Reranking (TRR). These techniques use reward
models during inference to select the best candi-
date from a set of generated samples, enhancing
the overall output quality.

We report our results, including the human eval-
uation and final submission, in Section 5. By out-
performing strong commercial systems like GPT-
4, CLAUDE-SONNET-3.5, and DEEPL across the
board, TOWER-V2 — even at 7B parameters —
challenges the belief that in MMT there must be
a trade-off in performance between high- and low-
resource language pairs (Fernandes et al., 2023).

Our contributions are:

* We show that expanding from 10 to 15 lan-
guages maintains the quality of translations
for the initial 10 and significantly improves
the newly added languages.

* We significantly improve the paragraph- and
document-level translation capabilities of the
previous TOWER.

* We demonstrate that scaling the model from 7
to 70B parameters yields improvements, indi-
cating that increased capacity benefits not only
general LLM abilities but also task-specific
performance.
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* We analyze the impact of QAD on larger
models than those studied by Fernandes et al.
(2022), showing that MBR decoding outper-
forms TRR according to both automatic met-
rics and human evaluation.

2 Overview of the Shared Task

The primary aim of the general machine transla-
tion shared task is to evaluate the ability of vari-
ous models to translate across different domains,
genres, and possibly modalities (e.g., speech).
This year’s shared task, compared to previous
editions, emphasizes English—X (en—xx) and
Non-English—Non-English (xx—yy) language
pairs.!

The WMT24 test sets include source sentences
from four domains: news articles, social media
posts, speech (machine-generated transcripts), and
literary texts. Additionally, all test sets from this
year are focusing on the paragraph level rather than
sentence-level.

Throughout this paper we will evaluate several of
our models using both automatic and human eval-
uation; yet, for the shared task only primary sub-
missions are evaluated, and final results are based
solely on human evaluation using the ESA proto-
col (Kocmi et al., 2024c¢).

3 TOWER-V2: A New Translation LLM

We create TOWER-V2 by improving upon the orig-
inal TOWER recipe: continued pre-training of a
base model on a multilingual dataset with billions
of tokens and subsequent supervised fine-tuning
for translation-related tasks.

We focus on three key areas: 1) careful refine-
ment of the training data; 2) expansion of language
coverage to support all of the shared task’s lan-
guages; 3) scaling up model capacity.

Improving the training data. To enhance the
general translation capabilities of TOWER, we
mainly focus on improving the quality of its train-
ing data, be it for translation, post-translation, or
general instructions.

For continued pre-training (CPT), we train on
monolingual data from sources of superior quality,
and apply more aggressive quality and length filters
on the parallel data.

'The complete list of language pairs for this year’s task
includes: Czech—Ukrainian, Japanese—Chinese, and En-
glish—Chinese, Czech, German, Hindi, Icelandic, Japanese,
Russian, Spanish (Latin America), Ukrainian

Regarding the supervised fine-tuning (SFT)
phase, we use data created by humans — similarly
to the previous version of TOWER— and introduce
high-quality synthetic data. Human translations are
sourced from well-known translation benchmarks.
We go beyond simple sentence-level translation by
transforming sentence-level to document-level data
or into multi-parallel translation data (translating
a single source sentence into multiple languages).
When language variants are available, we include
them in the training prompt (e.g. Chinese (sim-
plified) vs Chinese (Taiwan)). All datasets were
carefully filtered” and converted to instructions us-
ing a diverse set of templates.

Improving post-translation data and general
instructions. Data from tasks like APE, MQM
evaluation, and translation ranking are carefully
filtered using several quality signals. Similarly to
XTOWER (Treviso et al., 2024), APE and MQM
evaluation always expect the model to return a
“translation correction,” so we always ensure that
the post-edition (PE) is deemed better than the orig-
inal translation according to several metrics. For
translation ranking, we choose only samples where
there is significant alignment between human an-
notations and automatic metrics.

Like in the previous TOWER version, we aim to
build a model that adheres to different prompts and
can work as a general multilingual LLM. Thus, we
include filtered and adapted multilingual general-
purpose instruction data from publicly available
high quality datasets such as AYA (Singh et al.,
2024).

Going from 10 to 15 Languages. We extend
the language support of TOWER-V2 to Czech, Ice-
landic, Hindi, Ukrainian, and Japanese by adding
training data of these languages to both CPT and
SFT stages. For CPT, we add monolingual and par-
allel training data, increasing the total number of
training tokens considerably. Aside from to-/from-
English language pairs, we also include Czech-
Ukrainian and Japanese-Chinese (and vice-versa)
parallel data. In the SFT stage, we mostly add
translation data for the new language pairs.

More Paragraphs/Documents. In addition to
the sentence-level parallel data we also add parallel
documents to the CPT stage. For SFT, we sam-
ple high quality monolingual documents and per-

*We found low-quality translations even on datasets built
by professionals.
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WMT24

Model en—de en—es en—cs en—ru en—uk en—is en—ja en—zh en—hi cs—uk ja—zh
Baselines

NLLB-54B 7239 7059 8639 7519 8428 9669 5468 10.188 4316 4.167 11339
GPT-40 1416 1577 1486 1396 1426 2317 1.045 1.655 1194 0944 3426
CLAUDE-SONNET-3.5 1335 1526 1345 1275 1305 2196 0954 1534 1.143 0863 3.114
DEEPL 1.818 2109 1717 2218 1446 — 3957 2227 — 1405 17369
TOWER

TOWER-V1 13B 1.617 1.678 — 1647 — — — 1.826 — — —
TOWER-V2 7B 1416 1425 1395 1416 1365 1905 1.105 1715 1575 0.823 3.667
TOWER-V2 70B 1264 1334 1274 1.184 1164 1704 0934 1524 1555 0813 3275
TOWER + QAD

TOWER-V2 70B+MBR 0932 0962 0.832 0.802 0.722 1202 0.712 1202 0972 0612 2.642
TOWER-vV2 70B+TRR 1.073 1.053 0963 0913 0.873 1273 0823 1273 1073 0591 2883
TOWER-V2 70B 2-step 0.91(L) 0.94(L 0.77(1) 0.761) 0.70( 1.14[ 0.6811 1.171] 0.94[L 0.571) 2.5911

Table 1: Translation quality (via METRICX-QE-XXL) on the WMT24 test set. TOWER-V2 with MBR/TRR ranks
first across all language pairs. Even with Greedy decoding TOWER-V2-70B still ranks above other strong systems
like CLAUDE-SONNET-3.5, GPT-40 and DEEPL except in en—hi and ja—zh where CLAUDE-SONNET-3.5 has

similar scores.

formed full document translations using previous
TOWER models while controlling for translation
quality using COMETKIWI (Rei et al., 2022). At
the end, we are left with more data for document-
level than segment-level, further contributing to im-
proved performance on paragraph- and document-
level translation.

Model suite. TOWER-V2 now comes in two
sizes: a 7B parameter model based on MISTRAL-
7B (Jiang et al., 2023) and a larger 70B model
based on LLAMA-3-70B (Al@Meta, 2024).

4 Quality-aware decoding with
TOWER-V2

On LLM-based MT, translations are typically gen-
erated through lightweight decoding strategies such
as greedy or nucleus sampling. Nevertheless, strate-
gies informed by quality metrics such as Minimum
Bayes Risk Decoding (MBR) and Tuned Rerank-
ing (TRR) consistently perform better compared
to other methods (Fernandes et al., 2022; Freitag
et al., 2022; Nowakowski et al., 2022; Farinhas
et al., 2023). As such for our submission, we ex-
periment with MBR and TRR. For both methods,
we use a candidate pool of 100 samples and e-
sampling (Freitag et al., 2023a) with ¢ = 0.02, and
COMET?22 as the target objective. For TRR, we use

the WMT23 test set for tuning the weights®. The
translation quality features used include: model
log probabilities, COMET-QE-20, COMETKIWI22,
COMETKIWI-XL, and XCOMET-QE-XL.

To leverage the strengths of both approaches, we
also experiment with a second step of refinement.
After obtaining translations from both MBR and
TRR, we select the TRR translation only if all qual-
ity features (except the model log probabilities)
agree that the TRR translation is better than the
MBR translation; otherwise, we retain the MBR
translation®.

5 Experimental Setup

5.1 Evaluation Setup

During the development of TOWER-V2, we used
WMT23 as our validation set. For our final analy-
sis, we use WMT?24 test set source sentences and
report only QE metrics: COMETKIWI-XXL (Rei
et al., 2023), METRICX-QE-XXL (Juraska et al.,
2023), and XCOMET-QE-XXL (Guerreiro et al.,
2023). Additionally, we add the official preliminary
results to the Appendix which include METRICX
(reference-based) (Kocmi et al., 2024b).

We use evaluation metrics to develop and op-

3We sample 5000 sentences from the WMT23 test set to
train the weights more efficiently.

*According to both automatic and human evaluation (Table
2 and Table 3 respectively) results of MBR translations are
generally better.
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en—Xxx XX—Yy
Models METRICX | XCOMETT COMETKIWI 1 METRICX | XCOMETT COMETKIWI T
Baselines
NLLB-54B 7.617 66.90 7 57.017 7.74 8 48.216 56.147
GPT-40 1.50 6 83.74 6 77.04 5 2.185 70.4412 76.19 4
CLAUDE-SONNET-3.5 1405 84.855 78.09 4 1.98 4 69.7312 76.77 4
DEEPL — — — 4386 56.19 4 68.33 6
TOWER
TOWER-V2 7B 1485 83.775 77.02 5 2245 67.44 4 75.86 4
TOWER-V2 70B 1.324 84.87 4 78.29 4 2.04 4 69.203 76.70 4
TOWER + QAD
TOWER-V2 70B+MBR 0.9212 88.7812 81.393 1.6212 69.8812 78.2812
TOWER-V2 70B+TRR 1.033 87.953 82.1312 1.7312 71.95(1 79.3812
TOWER-V2 70B 2-step 0.89(1 89.25(1 82.54(1 1.58(1 70.8512 79.69(1

Table 2: Translation quality aggregated by language pairs on the WMT24 test set (without testsuites). We omit
DEEPL from the en—xx averages because it does not support two language pairs. All metrics are their XXL variant.

timize our models (e.g., using MBR and/or TRR
during inference), with the exception of metrics of
the METRICX family. Thus, to mitigate potential
biases, we report METRICX-QE-XXL as our main
evaluation metric and conduct human evaluation
for English—German and English—Chinese. For
the human evaluation, we use SQM quality levels
with full document context. The annotators are in-
house expert linguists familiar with evaluating MT
outputs.

On Table 1, we report performance clusters
based on statistically significant performance gaps
at a 95% confidence threshold. On Table 2, we
create per-language groups for systems with simi-
lar performance, following Freitag et al. (2023b),
and obtain system-level rankings using a normal-
ized Borda count (Colombo et al., 2022), which is
defined as an average of the obtained clusters.

Regarding baselines, we report three commer-
cial systems, GPT-40, CLAUDE-SONNET-3.5, and
DEEPL, along with an open-source NMT model,
NLLB 54B. While little is known about the com-
mercial systems, they show top performance on
the WMT?23. All models are evaluated in a 0-shot
setting, unless stated otherwise.

5.2 Main Results

Table 1 shows our main results on English—X lan-
guage pairs according to METRICX-QE-XXL (J).
Table 2 shows aggregated scores for English—X
and X—Y according to different metrics. From
Table 1, we observe that even the 7B model
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Figure 1: Improvement in MT quality after adding new
languages to TOWER-V2; measured in negative MET-
RICX-XXL-QE so taller bars equate to better quality.

with greedy decoding outperforms, or is on par,
with the best baseline, CLAUDE-SONNET-3.5, for
English—X. Scaling to 70B brings consistent im-
provements across all language pairs, and both
TRR and MBR decoding bring METRICX-QE-
XXL further down. Our final submission (2-step)
ranks first for all language pairs with statistical
significance.

5.3 Impact of Adding 5 Languages

To evaluate the impact of adding 5 languages, we
train two 7B models: one with the initial 10 lan-
guages of TOWER; another with the 10 languages
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Figure 2: Win rates margin by length of the tokenized
source of TOWER-V2-7B (squares) and TOWER-V2-
70B (triangles) against an older iteration that was not
trained on long-context translation training data. All
language pairs of the WMT?23 dataset that intersect with
WMT?24 are considered. We define a (sentence-level)
win if the delta between two systems is superior to
1 x 10~3 METRICX-XXL points

plus Hindi, Japanese, Ukrainian, Czech, and Ice-
landic. The data distribution for CPT remains un-
changed, but we increase the number of training
tokens of the second model to accommodate the ad-
ditional languages. For SFT, we extend the dataset
by incorporating human-translated data from sev-
eral sources.

Figure 1 illustrates the absolute difference in O-
shot translation quality between the two models.
As expected, the model with additional support per-
forms considerably better on the new languages’.
Perhaps more interestingly, its performance on the
initially supported languages — which is already
state-of-the-art (Table 1) — remains largely un-
changed.

5.4 Beyond sentence by sentence translation

Figure 2 compares the new versions of TOWER-V2
(7B and 70B) with an older TOWER version that
had yet to be trained on data specifically tailored
to improve long-context translation. Not only do
TOWER-V2 models vastly outperform the older
version, but the quality gap widens as source length
increases.

Further to this point, we created a paragraph-
level version of the WMT?23 dataset, by joining

SWe note that the initial version of TOWER has ability to
translate to other languages outside the supported ones, espe-
cially when given few-shot examples (Richburg and Carpuat,
2024) Still, their zero-shot performance is weak for languages
like Hindi or Icelandic, which are less represented in the pre-
training of the base models like LLaMA-2.

Decoding en—de en—zh

Batch 1

Greedy 8543 84.11
TRR 87.16 85.55*
MBR 88.50* 85.47*
Batch 2

TRR — 68.55
MBR — 72.76*

Table 3: SQM quality evaluation for three different
decoding methods using TOWER-V2 70B. Numbers
marked with an asterisk (*) are statistically significant.
For English—Chinese, since the results of the first batch
were not significant, we conducted a second batch com-
parison between TRR and MBR.

segments of the same document into paragraphs
with at most 4 sentences. Results in Table 4 show
that our final models are considerably better at
translating paragraphs than their older counterpart.

5.5 Putting all together into 70B parameters

The gains from scaling up the number of parame-
ters are clear from Tables 1 and 2, where we show
that TOWER-V2-70B consistently outperforms all
baselines in all language pairs, except ja—zh. Cou-
pling TOWER-V2-70B with QAD methods yields
state-of-the-art results for all languages and met-
rics considered. Remarkably, Figure 2 shows that
the 70B model considerably improves upon its 7B
counterpart suggesting that the benefits of scal-
ing up are particularly noticeable when translating
longer sources.

5.6 Human Evaluation: Greedy vs TRR vs
MBR

To validate our findings with automatic metrics,
we conducted a small-scale human evaluation
for English—German and English—Chinese (Ta-
ble 3). In a first phase, linguists annotated 100
samples from TOWER-V2-70B with different de-
coding strategies on the WMT24 test. For both
language pairs, annotators scored greedy decoding
lower than the other two methods. While there was
a noticeable quality difference between MBR and
TRR for English—German, this distinction was
not evident for English—Chinese, with both de-
coding strategies achieving similar results. There-
fore, we conducted a second round of annotations
for English—Chinese, comparing only TRR with
MBR. This provided more concrete results that
favored MBR outputs.
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WMT23-Paragraphs

en—xx XX—Yy
Models METRICX | COMET 1T CHRF 1 METRICX | COMET?T CHRF 1
TOWER (older) 5.14 79.11 50.93 6.99 75.45 53.29
TOWER-V2-7B 2.72 84.45 54.35 1.87 87.57 61.36
TOWER-V2-70B 2.40 84.87 55.06 1.72 87.75 62.29

Table 4: Performance of different TOWER versions on our paragraph-level version of WMT23 (measured by
METRICX-XXL, COMET-22, and CHRF). TOWER (older) is a version prior to the interventions we ultimately made
on the training data of TOWER-V2 to make it better at translating longer sources. These changes led to major
improvements in paragraph-level translation for TOWER-V2-7B, which are further realized with TOWER-V2-70B.

5.7 Context-aware translation

en—Xx
Models METRICX | XCOMET?T
TOWER-V2-70B 0-shot 0.510 96.96
TOWER-V2-70B 5-shot 0.495 96.89
XX—en
TOWER-V2-70B 0-shot 1.051 94.84
TOWER-V2-70B 5-shot 0.766 95.54

Table 5: Translation quality of TOWER-V2-70B on the
development set of the WMT24 Chat Shared Task. Us-
ing a prompt that incorporates conversational context
(see Appendix A), the model provides high-quality trans-
lations, especially with examples (5-shot).

To evaluate TOWER-V2 in a different domain,
we tested it on chat translation data. In this domain,
the model translates a segment based on the con-
text of previous conversation turns. Ignoring this
context can result in subpar translations with pro-
noun mistakes and lexical inconsistencies (Laubli
et al., 2018; Toral et al., 2018). Table 5 shows that
TOWER-V2-70B excels at chat translation, even
without specific training for this task. Using the
prompt in Appendix A, which includes the con-
versation context, the model provides high-quality
translations, especially when given domain-specific
examples.

6 Conclusion

In this paper, we describe the joint submission
from Unbabel and IST to the WMT24 General MT
shared task. Our new model, TOWER-V2, signifi-
cantly improves upon previous versions by expand-
ing language coverage from 10 to 15 languages

and enhancing translation quality for longer para-
graphs. Our largest model, with 70 billion parame-
ters, combined with QAD strategies, achieved first
place on the WMT24 test set according to both
reference-free automatic evaluation, which we em-
ployed, and reference-based evaluation, as reported
in the preliminary results from the WMT24 orga-
nizers (Kocmi et al., 2024b).

Limitations

This paper highlights the key improvements in
TOWER-V2 compared to previous versions and
benchmarks it against other commercial state-of-
the-art systems like GPT-40, CLAUDE-SONNET-
3.5, and DEEPL. However, our submission is "un-
constrained and closed," meaning the information
provided is not sufficient for full system replica-
tion. Furthermore, our comparisons primarily focus
on translation quality and do not consider factors
like inference speed, training budget, or model effi-
ciency.

We also disclose the number of parameters in
our models, from the 7B version to the final 70B
version, to facilitate a clearer understanding of their
scale. However, these comparisons with other sys-
tems do not account for differences in model pa-
rameters and other operational metrics.
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A Appendix
A.1 Metrics for QAD

The translation quality features used include:
model log probabilities, COMET-QE-20°,
CoMETKIwWI227, CoMETKIWI-XL® and
XCOMET-QE-XL?.

A.2 Chat Translation Prompt

Given a source (SRC) to be translated from
SRC_LANG to TGT_LANG, and previous turns

6Unbabe1/wmt20—comet—qe—da
"Unbabel /wmt22-cometkiwi-da
8Unbabel /wmt23-cometkiwi-da-x1
°Unbabel/XCOMET-XL
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in a conversation between two agents (TURN_1i),
the 0-shot prompt used was:

Context: <TURN_1>\n <TURN_2>...\n
<TURN_k>.\n\nTranslate the
<SRC_LANG>source text to <TGT_LANG>,
given the context.\n<SRC_LANG>:
<SRC>\n<TGT_LANG>:

When using five in-context examples, the prompt
is repeated six times separated by two new lines;
five times with a reference translation at the end,
and one times exactly as written above.

A.3 Further analysis on long-context
translation

Compared to the first version of TOWER, the ability
of TOWER-V2 to translate long sources has greatly
improved. Whereas the translation quality of latter
fell behind GPT-4 for longer sources, TOWER-V2-
70B is superior across the board compared to the
current best closed model for translation, CLAUDE-
SONNET-3.5. In fact, the performance gap tends to
widen as source length increases. TOWER-V2-7B
is also competitive for the first 4 quantiles of length,
but falls slightly behind on the last one.

WMT23
10 -

7-
5- ATOWER WINS
9-

0

-2 -
-5-
-7 -

-10 -

VTOWER LOSES

0-20th length
percentile ~20 tokens ~60 tokens
v v v
qi q2 qs qa qs
Source Length (in tokens) Quantile (q)

Win Margin (%) vs Claude-Sonnet-3.5

Figure 3: Win rates margin by length of the tokenized
source of TOWER-V2-7B (squares) and TOWER-V2-
70B (triangles) against CLAUDE-SONNET-3.5. All lan-
guage pairs of the WMT?23 dataset that intersect with
WMT?24 are considered. We define a (sentence-level)
win if the delta between two systems is superior to
1 x 10~3 METRICX-XXL points

A.4 Preliminary Results from Kocmi et al.
(2024b)

See Tables 6 to 16 for the official automatic eval-
uation conducted by WMT 24 organizers. Our
submission, Unbabel-Tower70B, ranks first on all
language pairs and metrics.
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Czech-Ukrainian

System Name AutoRank | MetricX| CometKiwi{ Human evaluation?

IOL-Research

IKUN 2 3 1 6 0.664 E

Aya23 0.665

Llama3-70B § 0.661
CUNI-Transformer 3 0 2 0 0.639 !

IKUN-C 0.648

CycleL 0.146

Table 6: Preliminary WMT24 General MT automatic ranking for Czech-Ukrainian.
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English-Czech

System Name AutoRank | MetricX| CometKiwi1t Human evaluation?

Unbabel-Tower70B 1.0 1.8 0.732
Claude-3.5 § 2.1 2.4 0.693
CUNI-MH 2.1 23 0.690
CUNI-GA 2.3 3.7 0.726
Gemini-1.5-Pro 2.6 2.8 0.678
GPT-4 § 2.6 2.9 0.682
IOL-Research 2.8 3.0 0.676
ONLINE-W 2.8 2.8 0.669
CommandR-plus § 2.9 2.9 0.669
SCIR-MT 3.2 3.3 0.664
TranssionMT 3.5 3.5 0.655
ONLINE-A 3.6 3.4 0.648
Mistral-Large § 3.7 3.6 0.647
IKUN 3.9 3.7 0.638
ONLINE-B 4.0 3.9 0.640
Llama3-70B § 4.1 4.0 0.640
Aya23 4.3 4.0 0.630
CUNI-DocTransformer 44 4.0 0.621
IKUN-C 4.7 4.3 0.618
CUNI-Transformer 4.7 4.3 0.614
ONLINE-G 5.7 5.2 0.592
NVIDIA-NeMo f 7.6 6.5 0.536
Phi-3-Medium § 15.0 11.4 0.305
TSU-HITs 19.5 16.6 0.235
CycleL2 24.2 19.5 0.077
CycleL 27.0 22.5 0.031

Table 7: Preliminary WMT24 General MT automatic ranking for English-Czech.
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English-German

System Name AutoRank | MetricX| CometKiwi{ Human evaluation?

Unbabel-Tower70B 1.0 1.1 0.723
Dubformer 1.8 1.2 0.694
TranssionMT 1.8 1.4 0.699
GPT-4 1.8 1.4 0.700
ONLINE-B 1.8 1.4 0.698
Claude-3.5 1.9 1.4 0.695
CommandR-plus 2.0 1.4 0.696
Mistral-Large 2.0 1.5 0.694
Gemini-1.5-Pro 2.2 1.5 0.688
ONLINE-W 2.2 15 0.689
IOL-Research 2.3 1.6 0.692
Llama3-70B § 2.5 1.7 0.686
Aya23 2.7 1.8 0.680
IKUN 3.0 1.8 0.668
ONLINE-A 3.0 1.8 0.667
Phi-3-Medium § 3.4 2.0 0.657
ONLINE-G 3.5 2.1 0.662
IKUN-C 3.8 2.0 0.641
CUNI-NL 4.2 2.1 0.624
AIST-AIRC 7.2 3.3 0.551
NVIDIA-NeMo t 74 3.5 0.558
Occiglot 8.2 3.8 0.539
MSLC 11.9 4.4 0.390
TSU-HITs 133 5.6 0.395
CycleL2 27.0 11.5 0.091
CycleL 27.0 115 0.091

Table 8: Preliminary WMT24 General MT automatic ranking for English-German.
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English-Spanish

System Name AutoRank | MetricX| CometKiwi7T Human evaluation?

IOL-Research

Llama3-70B § 0.693 E

IKUN 2.8 3.3 0.687 I

Aya23 3.1 3.5 0.681
IKUN-C 3.4 0.666
Occiglot 0.583
MSLC 7.4 6.4 0.532
TSU-HITs 16.3 14.2 0.289
CycleL 24.0 20.9 0.072

Table 9: Preliminary WMT24 General MT automatic ranking for English-Spanish.
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English-Hindi

System Name AutoRank | MetricX| CometKiwi7T Human evaluation?

IOL-Research
Llama3-70B §

Table 10: Preliminary WMT24 General MT automatic ranking for English-Hindi.
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English-Icelandic

System Name AutoRank | MetricX| CometKiwi 1T Human evaluation?

IOL-Research 4. 5
8

3 i
Llama3-70B § 6.7 .0 0.586 !

Aya23 § 15.2 14.9 0.311

TSU-HITs 19.2 18.4 0.192
CycleL 21.0 20.2 0.148

Table 11: Preliminary WMT24 General MT automatic ranking for English-Icelandic.
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English-Japanese

System Name AutoRank | MetricX| CometKiwi7T Human evaluation?

Team-J
NTTSU

IOL-Research
Aya23
Llama3-70B §

IKUN 3.1 3.7 0.696
IKUN-C 3.9 4.3 0.669

AIST-AIRC

CycleL 24.0 22.4 0.101

Table 12: Preliminary WMT24 General MT automatic ranking for English-Japanese.
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English-Russian

System Name AutoRank | MetricX| CometKiwi{ Human evaluation?

IOL-Research

Llama3-70B §

IKUN-C 39 4.7 0.649

CUNI-DS 59 6.2 0.584
TSU-HITs 10.8 9.8 0.421
CycleL 243 22.2 0.062
CycleL2 25.0 22.4 0.027

Table 13: Preliminary WMT?24 General MT automatic ranking for English-Russian.
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English-Ukrainian

System Name AutoRank | MetricX| CometKiwi 7T Human evaluation?

IOL-Research

IKUN 0.661 !

Llama3-70B § 0.647
Aya23 0.642
IKUN-C 0.622
CycleL 0.037

Table 14: Preliminary WMT24 General MT automatic ranking for English-Ukrainian.
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English-Chinese

System Name AutoRank | MetricX| CometKiwi 1T Human evaluation?

IOL-Research

HW-TSC

Llama3-70B §
Aya23 3.0 4.1 0.655
IKUN

IKUN-C 3.5 4.2 0.624
CycleL 20.1 20.1 0.086
CycleL2 22.0 22.1 0.030

Table 15: Preliminary WMT24 General MT automatic ranking for English-Chinese.
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Japanese-Chinese

System Name AutoRank | MetricX| CometKiwi{ Human evaluation?

IOL-Research
Team-J 0.570 a

Llama3-70B § 0.578

Aya23 0.563

NTTSU 0.566

Table 16: Preliminary WMT24 General MT automatic ranking for Japanese-Chinese.
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Abstract

This paper describes the TSU HITS team’s
submission system for the WMT’24
general translation task. We focused on
exploring the capabilities of discrete
diffusion models for the English-to-
{Russian, German, Czech, Spanish}
translation tasks in the constrained track.
Our submission system consists of a set of
discrete diffusion models for each language
pair. The main advance is using a separate
length regression model to determine the
length of the output sequence more
precisely.

1 Introduction

This report gives an overview of TSU HITS
submissions in the WMT 2024 general machine
translation tasks. We focused on exploring the
capabilities of discrete diffusion models for the
English-to- {Russian, German, Czech, Spanish}
translation tasks in the constrained track. Our main
contributions are
1. the use of regression-based output length
prediction model
2. the use of the input length as a key feature
for the output length prediction
The report is organized as follows. In the Section
2, we provide a general description of the discrete
diffusion approach to machine translation, as it is
not yet very widespread. In the Section 3, we
describe the experimental setting and training
processes. Section 4 discusses the results.

nickm@ntrlab.com

2 Discrete Diffusion
Machine Translation

Approach to

2.1 Diffusion: Preliminaries

Diffusion approaches (Sohl-Dickstein et al., 2015,
Ho et al, 2020) to generating objects (for example
images) include forward (data to noise) and reverse
(noise to data) diffusion processes. In the forward
process, a small amount of noise is gradually added
to the data. In the classical direct diffusion process,
the original object x, is repeatedly and additively
perturbed by a small Gaussian random noise, and
in a fixed number of steps T goes into state x with
a normal distribution (and thus is converted to
noise):

q(xelxe—1) = N(xt; Xe-1y/1— Be .Bt): (D

where vt=1..T B, € (0;1] are the
hyperparameters that regulate the diffusion rate.

During the reverse diffusion process, the
machine learning model step by step reconstructs
the object's states from x7 to xg, and this denoising
restores an object from the original distribution:
Po(xr—q |xt)~N(xt—1i po(xe, t), 09 (xy, t)); ()
where 0 are the model’s trainable weights.

Texts in typical representations do not have the
property of continuity and are a sequence of tokens
with discrete values that do not have an order
relation and correspond to the categorical data type.
Thus, we follow the path of adapting the diffusion
processes to categorical data - such approaches are
called discrete diffusion.

2.2 Discrete Diffusion for Text Generation

Diffusion models with discrete state spaces were
first introduced by Sohl-Dickstein et al. (2015),
who considered a diffusion process over binary
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input concatenated 9

with output

Pretrained
Encoder (MLM)

Figure 1: Overview of the system

random variables. Hoogeboom et al. (2021)
extended the model class to categorical random
variables with transition matrices characterized by
uniform transition probabilities. We follow Austin
etal. (2021) to define a discrete diffusion model for
texts.

Namely, we consider each text token x; to be a
discrete random variable with K categories. For
text data, K = |V] is the size of the vocabulary.
(He et al., 2023). The forward transition
probabilities can be represented by matrices:
[Q]ij = q(x¢ = jlx¢—q = i). The process of

adding noise can then be written as

q(x¢lxe—1) = Cat(xy; p = x21Q,)  (3)
where Cat(-) is a category distribution (Austin et
al., 2021).

2.3 Masked Language Models and Discrete
Diffusion

He et al. (2023) noted the relationship between the

discrete diffusion process and the task of
pretraining of masked language modeling (MLM)
encoder models. Namely, they suggested
incorporating an absorbing state, e.g., [MASK] for
BERT, into the Markov process of diffusion. In
particular, each token in the sequence either stays
the same or transitions to [MASK] with some
probability. Formally, each entry of the transition
matrix at step t is as follows,

1 ifi=j=[M]
[Qc]ij =4 B ifj=[MLi#[M @)
1—-p4; ifi =j # [M]

where [M] is short for [MASK].

Hallo, [m] geht es dir

output when tin 1..(T-1)

Such a Markov process converges to a stationary
distribution q(xr) that places all the probability
mass on the sequence with all [MASK] tokens.

The most common transformer (Vasvani et al.,
2017) models pre-trained for the MLM task are
models from the BERT family (Devlin et al, 2019).
He et al. (2023) suggested DiffusionBERT that
uses a pretrained BERT model as an encoder due to
the similarity of the tasks. The length of the output
sequence of the DiffusionBERT model is fixed and
is set to different values depending on the problem
solved.

2.4 Discrete Diffusion for Translation

Reid et al. (2023) suggested a diffusion model
using Levenstein operations for machine
translation. They have tested the model on WMT 14
EN-DE dataset. It is unclear from the paper how do
the authors determine the target length of the output
sequence.

Zheng et al. (2023) suggest a reparameterized
discrete diffusion (RDM) approach to text
generation, and report results for the machine
translation task on the IWSLT14 DE-EN, WMT14
EN-DE and WMTI16 EN-RO datasets. To
determine the translation length, the authors of
RDM trained a separate model similar to the one of
Ghazvininejad et al. (2020). They pose the problem
of determining the length of the output sequence as
a classification problem, selecting k best options
out of N possible, where N is the maximum text
length that the model used can process. Similarly
to Gao et al. (2024), several options are selected
and the best one is chosen based on the metrics of
the overall text quality.
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Ye et al. (2023) explore the possibilities of
increasing applicability domain of discrete
diffusion approaches, while considering an
approach similar to DiffusionBERT, except that
instead of the BERT encoder, the authors use the
RoBERTa model (Liu et al., 2019). The quality of
machine translation is assessed on the IWSLT14
DE-EN and WMT14 EN-DE data sets, using the
same quality metrics and the same idea for
determining the length as in the RDM approach.

3 System Overview

3.1 General Translation Process

The general translation process is presented on
Figure 1. Our system consists of a discrete
diffusion model and an output length prediction
model.

On each diffusion step, a concatenation of the
source text and output is used as the input to the
generative model, but the absorbing tokens are
distributed only within the output part. We do not
use any special separation tokens, but just use the
prompt "{Source Language}: {Source Text} \n
{Target Language}: {x;}".

Since we use XLM-RoBERTa’s (Conneau et al,
2020) positional embedding model as an encoder
and are forced to fit the input sequence of the model
into 512 tokens, we apply punctuation splitting of
the source texts, limiting the maximum size of the
source text to 200 tokens, and then glue the results
back. We also do not use the extended context to
improve translation; this is left for the future work.

We take a fixed number of the diffusion steps T
equal to 50. Tokens that were unmasked in the
previous steps are likely to be replaced with
subsequent ones, just like in DiffusionBERT (He et
al., 2023). The standard argmax approach is used
as a sampling method. We do not use temperature
and do not limit the number of tokens to choose
from.

3.2 Generative Model

We largely follow Ye et al. (2023) and use XLM-
RoBERTa (Conneau et al, 2020) family pre-trained
model that includes a multilayer transformer
encoder and a single-layer MLM head.

We fine-tune both the encoder and the head for
discrete diffusion text generation that differs from
MLM mainly by the percentage of the masked
tokens. We use the cross-entropy weighted relative

to the diffusion step t loss proposed by Zheng et al.
(2023):

N
Le= =1 ) yilogp, (5)
i

Generative Model

Architecture XLM-RoBERTa-Large
Optimizer AdamW(B; = 0.9, 8, = 0.98)
Weights decay 0.01
Learning Rate Schedule Cosine
Max learning rate 5E-05
Batch size 16
Accumulation step 8
Steps 30000
Warmup ratio 0.01
Loss (Section 3.2)
Number format FP16
Length Model
Hidden size 1024
Optimizer AdamW(B; = 0.9, 8, = 0.999)
Learning Rate Schedule OneCycleLR (Smith et al, 2017),
two phases
Max learning rate 7E-07
Batch size 8/16
Steps 30000
Embedding calculation Mean pooling
Activation ELU
Loss function MSE
Number format FP16

Table 1: Hyperparameters of the models

where y; is the true probability (0 or 1) of token
with index i in model dictionary, p; is the predicted
probability, N is the size of the dictionary, A;_1 is
the parameter that depends on the percentage of the
masked tokens at the steps t and t — 1.

Following Chang et al. (2022), we use the cosine
noise schedule:

e = cosC (6)

3.3 Length Predictor

Our length predictor also consists of an encoder
and a task-specific head. Although our length
prediction model is based on the same XLM-
RoBERTa, physically these two models are
completely separate. We tried not to fine-tune the
encoder for the length problem and to use the
standard XLM-RoBERTa, but we got worse
metrics on the test data.

We use a regression predictor of the output
length, unlike other works that use classifiers with
the number of categories equal to the length of the
context, for example, 512 tokens. Our regression
head is a two-layer perceptron with ELU-
activation. Standard MSE loss is used when the
length predictor is trained.
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#tokens #model parameters
EN-DE 68,333 444,158,849
EN-RU 91,932 492,511,151
EN-ES 31,380 368,444,201
EN-CS 65,514 438,382,718

Table 2: Numbers of tokens and model
parameters after pruning the tokenizer

The main improvement in length prediction is
because of the use of the input length. There is a
fairly strong relationship between the length of the
text in the source language and the length of its
translation, which, in general, is almost linear. We
suggest taking this into account when the target is
defined. Our model predicts the ratio of the input
and output lengths, normalized by the average ratio
for the training set. We employ standard mean
pooling to convert the matrix of token embeddings
obtained from the encoder into a common
embedding of text, which will be used as features
for the length head.

3.4 Training Data

The WikiMatrix dataset (Schwenk et al., 2021)
was used as a train dataset for EN-DE, EN-RU,
EN-CS  language pairs; Neulab-TedTalks
(Tiedemann, 2012) was used for EN-ES. The
training sets were trimmed to 480 thousand
examples when training the generation model and
to 240 thousand when training a length prediction
model.

3.5 Pruning the tokenizer

Due to the computational limitations we reduce the
token set of our models for each pair of languages
to the minimum required (all the other tokens are
replaced with [UNK]). The effect of reduction on
the number of model parameters is demonstrated in
Table 2. According to our observations, it increases
the quality of models when tested on validation
datasets for the selected language pair, but may
degrade the quality of general translation when
tested on complex examples.

Pruning the tokenizer was made before
trimming the training sets to keep as much tokens
as possible.

4 Results

The official automatic scores of our system on the
test data are presented in the Table 3. The gap

AutoRank  MetricX CometKiwi
EN-DE 133 5.6 0.395
EN-RU 10.8 9.8 0.421
EN-ES 163 14.2 0.289
EN-CS 19.5 16.6 0.235

Table 3: System official scores

between our results and the leading system is
significant.

4.1 Model size

We used XLM-Roberta-Large with 561 million
parameters as the main model for generating
translation, while other systems participating in the
competition this and last years had tens of billions
of parameters. This makes our model largely
uncompetitive. Unfortunately, today there are no
pretrained  open-weight  encoder  models
comparable to leading open-weight decoder
models in terms of parameters number and pretrain
token count.

4.2  Quantity and quality of training data

Due to technical limitations, we used only a small
part of the translation datasets provided, no more
than 480 thousand examples for each language
pair. Increasing the training set and better cleaning
should significantly improve the quality, especially
when using a larger pretrained model.
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Abstract

We participated in the constrained track for
English-Japanese and Japanese-Chinese trans-
lations at the WMT 2024 General Machine
Translation Task. Our approach was to gen-
erate a large number of sentence-level transla-
tion candidates and select the most probable
translation using minimum Bayes risk (MBR)
decoding and document-level large language
model (LLM) re-ranking. We first generated
hundreds of translation candidates from multi-
ple translation models and retained the top 30
candidates using MBR decoding. In addition,
we continually pre-trained LLMs on the target
language corpora to leverage document-level
information. We utilized LLMs to select the
most probable sentence sequentially in context
from the beginning of the document.

1 Introduction

This paper details Team-J’s system submission
for the WMT 2024 Shared Task: General Ma-
chine Translation. We participated in the English-
Japanese (En—Ja) and Japanese-Chinese (Ja—Zh)
translation tasks under the constrained track.

As with last year’s competition, the use of pub-
licly available pre-trained models and metrics eval-
uated in the WMT Metrics shared tasks, such as
COMET (Rei et al., 2020), was permitted. Fol-
lowing the Kudo et al.’s (2023) system, we em-
ployed multiple machine translation (MT) models
to generate numerous candidate sentences for each
source text. We then applied minimum Bayes risk
(MBR) decoding (Fernandes et al., 2022) using the
COMET metric to select the optimal translations.

Additionally, contrary to the previous years, the
use of large language models (LLMs) was also
permitted this year. Our primary objective was to
use these LLMs to achieve consistent document-
level machine translation. Specifically, we aimed

*: Equal contributions.

SNAIST

“Future Corporation °Langsmith Inc.

to develop models based on LLMs and also imple-
mented a reranking system. Figure 1 provides an
overview of our system. The following sections
describe its components in detail.

2 Dataset Construction

In this section, we describe the training data, the
process of synthetic data generation, and the data
cleaning methodologies.

2.1 Provided Data

Since we participated in the constrained track, we
solely used the data officially provided by the orga-
nizer.

Bitext data. We used all the provided bitext
data. For English to Japanese translation, we
used JParaCrawl v3.0 (Morishita et al., 2022a),
News Commentary v18, Wiki Titles v3, Wiki-
Matrix (Schwenk et al., 2021), Japanese-English
Subtitle Corpus (JESC) (Pryzant et al., 2018),
The Kyoto Free Translation Task (KFTT) Cor-
pus (Neubig, 2011), and TED Talks (Cettolo et al.,
2012). For Japanese to Chinese translation, we
used JParaCrawl Chinese (Nagata et al., 2024),
News Commentary v18, Linguatools Wiki Titles,
WikiMatrix, OPUS, and Neulab TED Talks (Tiede-
mann, 2012).

Monolingual data. We also used the follow-
ing provided monolingual data for Japanese
and Chinese: News Crawl, News Commentary,
Leipzig Corpora (Goldhahn et al., 2012), Common
Crawl (Buck et al., 2014), and Extended Common
Crawl (Conneau et al., 2020; Wenzek et al., 2020).
For the continual pre-training of the language mod-
els, we only used the Common Crawl and Extended
Common Crawl due to the limited availability of
document-level data beyond these two datasets.

Development data. We used NTREX-128 (Fed-
ermann et al., 2022), Flores-200 (Team et al., 2022;
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Goyal et al., 2022; Guzman et al., 2019) and the
past WMT test sets as development data. These
datasets were also employed to fine-tune the mod-
els.

2.2 Synthetic Data

We constructed synthetic data to augment the train-
ing dataset. We used the synthetic data created by
Kudo et al. (2023) for the En—Ja task, and newly
created data for the Ja—Zh task as follows. For pre-
processing, we tokenized the bitext (Section 2.1)
into truecased' subwords using a unigram language
model with Sentencepiece (Kudo and Richardson,
2018), with “byte_fallback™, and “split_digits” op-
tions enabled following Touvron et al. (2023);
Dubey et al. (2024); Kudo et al. (2023). After
that, we created a back translation model (Sennrich
et al., 2016), which we call an initial translation
model using the training configurations in Table 7
(Appendix C) and trained it on the bitext. Then,
we translated the Chinese monolingual data (Sec-
tion 2.1) with a beam size of 10 and a length penalty
of 1.0.

2.3 Data Cleaning

We conducted data cleaning on the corpus. Specif-
ically, we applied several rules to clean and fil-
ter out noisy sequences using HojiChar (Shinzato,
2023). HojiChar is a text preprocessing tool that
mainly supports monolingual corpus in Japanese

"https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

and English, with typical filters preinstalled. We
first extended HojiChar to make it work with paral-
lel corpus and implemented a variety of rules with
careful investigation of the provided data. Table 1
shows the list of data cleaning methods we applied
on the bitext and monolingual data. Table 2 shows
the amount of data after filtering.

The following provides a detailed explanation of
the cleaning rules that were mainly implemented
using tools other than HojiChar.

Character count-based filtering. We qualita-
tively examined the Common Crawl and Extended
Common Crawl datasets. Our analysis revealed
that shorter sequences tend to be noisy. Therefore,
we discarded sequences that were less than or equal
to 200 characters for Japanese and 100 characters
for Chinese, respectively (see (26) in Table 1).
This threshold also helps us retain document-level
data that is suitable for the continual pre-training of
LLMs. To efficiently filter out shorter sequences,
we used the awk command.

Toxic content cleaning. Qualitative analysis of
the Common Crawl data revealed a significant
amount of low-quality toxic contents, such as adult
material, are included in the corpus. To address
this, we applied a toxic content filter to exclude
such samples from our training data ( (9) in Ta-
ble 1). For the Japanese data, we used filters origi-
nally implemented in HojiChar.? For the Chinese
corpus, we defined a list of toxic words based on

’pDiscardAdultContentJa in HojiChar.
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Filter & Cleaner Ja. Zh En-Ja Ja-Zh
(1) Discard content having identical source and target v v
(2) Discard content with invalid unicode characters v v v
(3) Remove non-printable unicode characters v v v v
(4) Apply NFKC normalization v v v v
(5) Normalize space-like characters to half-width spaces v v v v
(6) Restore escaped HTML symbols v v v v
(7) Discard content like progress bars v v v v
(8) Discard content having many square brackets v v v v
(9) Discard content containing keywords for porn contents v v
(10) Discard content containing keywords for online bulletin boards v v
(11) Discard content containing part of sequences like word lists v v v v
(12) Discard content containing having many punctuations v v v v
(13) Discard content containing having many numbers v v v v
(14) Reduce repeated space and punctuation characters v v v v
(15) Discard content having many same consecutive characters v v v v
(16) Discard content having many same consecutive N-grams v v v v
(17) Discard content having less punctuations v v
(18) Discard content having no punctuations in a sliding window of specified length v v
(19) Discard content having low compression ratio with zlib compression v v
(20) Discard content not in expected languages v v v v
(21) Remove ellipsis symbols v v v v
(22) Remove open bracket end symbols at the end of the sentence v v v v
(23) Remove parentheses with no content inside v VY v Ve
(24) Remove Unicode control characters v v Vv v
(25) Remove content starts with "&" v VY v v
(26) Discard too short content v v
(27) Convert traditional Chinese to simplified Chinese Ve
(28) Exact deduplication v v v v
(29) Fuzzy deduplication v
(30) Discard too long content v v
(31) Discard content having too large source/target token ratio v v
(32) Discard content having too large token/char ratio v v
(33) Discard semantically irrelevant translations v Ve

Table 1: List of data cleaning rules.

those used for the ChineseWebText (Chen et al.,
2023) dataset.

Compression rate-based cleaning. We used a
cleaning method based on the compression rate to
remove non-textual data ( (19) in Table 1).> Sam-
ples with a high compression rate typically con-
tain excessive repetitions, while those with a low
compression rate often consist of random strings.
Specifically, we calculated the compression rate for
each sample and removed those that did not fall
within a specified range.

Language detection. To ensure the collection of
data in the target language, we used language detec-
tion (20) in Table 1. Simple heuristic language
detection methods are implemented in Hojichar,
such as a method that checks for the presence of
hiragana or katakana. Alongside these simple
methods, we also used FastText-based language
detection (Joulin et al., 2017b,a).

3We referred to has_good_compression_ratioin

https://github.com/11lm-jp/llm-Jjp-corpus/
blob/main/scripts/filters.py

Conversion of traditional Chinese to simplified
Chinese. We converted Chinese data written in
traditional characters to simplified characters to
augment the bitext data ((27) in Table 1). We
used OpenCC* for these conversions.

Deduplication. Duplicate data in training sets
can negatively impact the performance of language
models (Lee et al., 2022). To mitigate this, we per-
formed exact deduplication using the sort com-
mand ( (28) in Table 1) and fuzzy deduplication
using MinHash (Broder, 1997) ((29) in Table 1).
We used the text-dedup tool (Mou et al., 2023)
for implementation.

Bitext similarity cleaning. We performed clean-
ing based on bitext similarity using LaBSE (Feng
et al., 2022) to filter out semantically irrelevant
pairs ( (33) in Table 1). We set the lenient thresh-
old of 0.5 for bitext and more strict threshold of 0.7
to synthetic data.

*https://github.com/BYVoid/OpenCC
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# samples # tokens

LLMs
Monolingual Ja 88.4M  35.8B
Monolingual Zh  137.4M  29.9B
Parallel En-Ja 29.8M 4.0B
Parallel Ja-Zh 3.8M 506.3M
Encoder-Decoder
Synthetic En-Ja 58T  12.9B
Synthetic Ja-Zh 291M  10.3B
Parallel En-Ja 28.2M 730.0M
Parallel Ja-Zh 6.3M 163.6M

Table 2: The amount of training data used for LLMs
and Encoder-Decoder MT models. The token count for
LLMs is based on the tokenizer of Mistral-7B, and the
count for Encoder-Decoder MT models is based on the
subwords on the target side.

3 Primary Translation Models

We developed translation models using two ar-
chitectures: Encoder-Decoder and Decoder-only
(LLMs).

3.1 Encoder-Decoder MT Models

For En—Ja, we used the existing translation mod-
els created by Morishita et al. (2022b); Kudo et al.
(2023). For Ja—Zh, we newly constructed transla-
tion models through pre-training and fine-tuning.

Pre-training. We trained the pre-training model
using the pre-training configuration in Table 7 (Ap-
pendix C). For the training data, we used the bitext
(Section 2.1) and the synthetic data (Section 2.2)
after applying data cleaning (Section 2.3). We
performed upsampling to achieve a 1 : 4.7 ratio
between the bitext and the synthetic data. More-
over, we applied the tagged back-translation tech-
nique (Caswell et al., 2019), adding a special token
<BT> at the beginning of the source sentences in
the synthetic data and storing this tag in the vocab-
ulary dictionary.

Fine-tuning. After pre-training, we conducted
fine-tuning using the development data (Sec-
tion 2.1) with the fine-tuning configuration in Ta-
ble 7 (Appendix C).

3.2 LLM-based MT Models

We used the Llama2-13B (Touvron et al., 2023) and
Mistral-7B (Jiang et al., 2023), which are permitted
for use in the constrained track. These LLMs were
used only for the En—Ja direction and not for the
Ja—Zh direction. For Mistral-7B, we also prepared
a variant with an expanded vocabulary to improve

its Japanese generation capability. For more details
on vocabulary expansion, please refer to Section B.

Continual pre-training. Although the datasets
used for training Llama2 and Mistral are not pub-
licly disclosed, it is generally believed that they
are predominantly in English. Consequently, con-
tinual pre-training has been conducted to enhance
performance on Japanese tasks (Fujii et al., 2024a;
Okazaki et al., 2024). This approach has been re-
ported to improve English-Japanese translation per-
formance. To further boost Japanese language ca-
pability, we also performed continual pre-training
using the cleaned monolingual corpus detailed in
Section 2.3. The training configurations are shown
in Table 8, 9, and 10.

Supervised fine-tuning After continual pre-
training, we conducted supervised fine-tuning for
the translation task. In this phase, we used the
cleaned bitext corpus and development data de-
scribed in Section 2. Initially, we fine-tuned the
model using the bitext corpus, followed by addi-
tional fine-tuning with the development data which
is relatively clean. To prepare for the Stepwise
MBR-Enhanced LLM decoding detailed in Sec-
tion 4.2, we used all combinations of the first n sen-
tences from each document as training samples for
the development data fine-tuning. Figure 2 shows
the prompt template, and Table 8, 9, and 10 shows
hyperparameters used in the training process.

Preference learning. To align the translation re-
sults with human preferences, we conducted prefer-
ence learning for Mistral-7B. > We used Contrastive
Preference Optimization (CPO) (Xu et al., 2024)
as the preference learning algorithm. In prelimi-
nary experiments, we also tried Direct Preference
Optimization (DPO) (Rafailov et al., 2023) as an
alternative to CPO. However, despite the decrease
in loss during training, we observed that the DPO
often resulted in output collapse (complete loss
of input-output correspondence) during decoding.
Therefore, we selected CPO as our preference learn-
ing.

Let Ly (mp) and Lyyer (7g) be the negative log-
likelihood of g and preference of output given by

>Due to computational resource limitations, we applied
LoRA fine-tuning (Hu et al., 2022).
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Figure 2: The general prompt for supervised fine-tuning. {src} denotes the source sentence. {tgt} denotes the target

sentence.

g, respectively, that is:

(s,r)~D [IOg 7T9(T | S)}
) (s8,r,yr)~D [lOg U(ﬁd)] , (D
d = log Tre(r | 5) —logmg(y | )

Lyt (mg) =

pref (7’[’

where ¢ is the Sigmoid function. Then, CPO mini-
mizes the following objective function during train-
ing:

mein [Lpret(m9) + aLniL(me)] . (2)

Here, D = {(s,r(®, 5®) }iil represents the
dataset. 7y denotes a parameterized policy, and «
and [ are hyperparameters. We used the develop-
ment data for training in preference learning. In
this context, s corresponds to the source text from
the development data, r to the reference text from
the development data, and ¢ to the output of the
model before preference learning.

To prevent the model output from collapsing, we
introduced a minor modification to the CPO ob-
jective function. Specifically, we implemented a
warm-up phase to reduce the impact of the prefer-
ence learning loss at the beginning of training. This
approach is formulated as follows:

min [min (1, ZZ> Lpret(mg) + aLnwr (7o)
" 3)

Here, ¢ represents the number of training steps, and
iw denotes the number of warm-up steps for the
preference learning loss.

4 Decoding

This year’s test set consists of segments with mul-
tiple sentences in context. Since most bitext cor-
pora are at the sentence level, translating larger
segments in one shot is not preferable. Thus, we
initially divided each segment in the test set into
individual sentences using spaCy (Honnibal et al.,
2020).° In case the resulting split was overly short,
we combined texts from its adjacent splits.

%We used “en_core_web_lg” model for English and
“ja_core_news_lg” model for Japanese.

hypotheses pseudo-references
top-p sampling epsilon sampling
En—Ja 1272.15 3288.5 3421.99
Ja—Zh 261.84 884.11 3108

Table 3: The average number of hypotheses and pseudo
references for each source sentence generated by the
Encoder-Decoder MT models. Note that due to errors
during decoding, the number of hypotheses and pseudo-
references generated for a single source sentence varies.

4.1 MBR Decoding

We apply minimum Bayes risk (MBR) decod-
ing (Eikema and Aziz, 2020) to select high-quality
translations from the set of hypotheses gener-
ated by the multiple translation models using
MBRS (Deguchi et al., 2024). Let Y be the out-
put space of translation models. We use the
Monte Carlo method to estimate the expected util-
ity (Eikema and Aziz, 2022), as follows:

yMBR = argmax E [u(h,?)],
heH +€R
1
= argmax —— u(h, ), @)
heH |R| Z (h,7)
TER
where yMBR is the selected translation by MBR

decoding, H C Y is the hypotheses set, and R
is the multiset (a.k.a bag) of translation samples’,
called “pseudo-references”. u: Y x Y — R is
the utility function that returns scores of the trans-
lation quality of the hypothesis under the given
pseudo-references, which is formally defined as
h=n < wu(h, ) > u(l,7) where = de-
notes the preference relation. We employ COMET-
228 (Rei et al., 2020, 2022) for the utility function
u. Therefore, the MBR decoding using COMET-22

is formulated as follows:
yMBR = argmax ——

ZCOMET 22(s, h, 7).
heH

TE
(5
Note that COMET-22 also takes the source sen-
tence s as input.

7The support set is a subset of the output space, i.e.,

Supp(R) C ¥
$https://huggingface.co/Unbabel/
wmt22-comet-da
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In our system, we select the 30-best translations
using MBR decoding instead of selecting the 1-
best translation as shown in Equation 4 to deter-
mine the final decision using another algorithm
than MBR decoding. In other words, MBR decod-
ing is used to prune translation hypotheses. We
generate hypotheses for each source sentence using
an ensemble of Encoder-Decoder MT models with
beam search decoding. In addition, we prepare two
types of pseudo-references by decoding with top-p
sampling (p = 0.9) and epsilon sampling (Freitag
etal., 2023) (e = 0.02). The number of hypotheses
and pseudo-references used in MBR decoding is
presented in Table 3.

4.2 Stepwise MBR-Enhanced LLM Decoding

Algorithm 1: Stepwise MBR-Enhanced
LLM decoding
Input: Dg.c = {S0,51,---,8n}
Output: Dy, = {ho, h1,..., hp}
1 Dtgt < {},
2 Shist — {},
3 fori < Otondo
// Generate candidates for

Si
H < LLMswmt(Si, Shist, Digt):
hi < MBR(H, H);
Dtgt — Dhyp U {hz},
| Shist < Shist U {si};

s return Dy,

N & &

During our preliminary experiments with fine-
tuned LLMs, we observed frequent issues where
some sentences were skipped during decoding.
This led to discrepancies in the number of sen-
tences between the source and the translated
output.  Additionally, we observed samples
where the same token was generated repeatedly.
To address these issues, we propose a decod-
ing method called Stepwise MBR-Enhanced
LLM Decoding (Algorithm 4.2). This method
translates documents sentence by sentence, consid-
ering the overall document context (see Figure 3).
This approach resolves the issue of mismatched
sentence counts between the source and hypoth-
esis. Furthermore, we applied MBR decoding
to achieve high-quality sentence-level translation
without repeated tokens or other errors (line 5 of
Algorithm 4.2). We used the outputs of four LLMs
for this method. Specifically, we used four LLMs

with different settings: Mistral-7B with and without
vocab expansion and with and without preference
learning.

5 LLM Reranking

As mentioned in Section 3 and Section 4, primary
translation models decode at the sentence level. To
improve the overall document-level consistency of
the translation results, we performed reranking us-
ing LLMs. We used the top 30 highest-scoring
hypotheses from MBR decoding as the candidate
pool and reranked them based on context-aware
scoring. Specifically, we used the LLMs fine-tuned
for the translation task described in Section 3.2
to calculate the likelihood of each hypothesis with
context information. We repeated this process to se-
lect hypotheses with the highest likelihood scores,
resulting in the final translation output. The details
are described in Algorithm 2. In our system, we use
supervised fine-tuned Mistral-7B as the reranker,
and we set the beam size to b = 2.

Algorithm 2: LLM Reranking Algorithm
Input: Dy = {s0,S1,...,5n}

Input: Dy, = {Ho, Hi,..., Hy}
Input: b: Beam size
Olltpllt: Dhyp = {ho, hl, ey hn}

1 Coeam {(@, _OO)};
2 P« 0
3 for H € Dyyps do
for (c, ) € Cpeam do
for h € H do
L ph 4 LLMyT(Dsre, €U {h}):
P — PU{(c.h, pn)}:

DN - LY I

o

Ty < Top, (P, with respect to pp,);
9 Coeam
{(cU{h}, pn) | (c.h, pr) € To}:

k% .
10 (c*,pl) < arg MAX (¢, p.)EChoan P
11 Dy, < €,
12 return Dy,

6 Post processing

Finally, we applied the following postprocessing
rules to the selected translations. The rules are
designed based on alignment errors commonly seen
in the model translations of the development sets.

* Apply NFKC normalization
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BRX: {src0} {srcl} {src2} ERX:

{hypO}

{hypl}

Figure 3: The prompt for stepwise MBR-enhanced LLM decoding from English to Japanese. This is an example
for translating {src2}. {srcO} and {srcl} correspond to Sp;s; in Algorithm 1, and {src2} corresponds to s; in
Algorithm 1. Line breaks are added for readability; there are no them in the actual prompt.

* Append an emoji to the end of the hypotheses
if it’s present at the end of the source sentence

« Replace Japanese brackets ( [] ) to its Chi-
nese counterparts ( ) (Ja—Zh only)

* Replace Japanese commas (. ) to its Chinese
counterparts (,) (Ja—Zh only)

* Remove whitespaces before and after paren-
theses

* Remove whitespaces before and after com-
mas, periods, exclamations, and question
marks

* Fix letter case of alphabets in the hypotheses
to match its counterparts in the source sen-
tence

* Fix punctuations in the hypotheses to match
their counterparts in the source sentence

7 Post Evaluation

We evaluated the performance of our system using
automatic evaluation metrics. Specifically, using
this year’s test set as the evaluation data, we con-
ducted the evaluation using COMET-22° (Rei et al.,
2022), MetricX-XL!'° (Juraska et al., 2023), and
CometKiwi-XL!' (Rei et al., 2023) as the evalu-
ation metrics. Note that, since several segments
in this year’s WMT test set contain multiple sen-
tences, the scores could not be computed at the
sentence level.

The results of the post-evaluation from En—Ja
are presented in Table 4, while those for the Ja—Zh
direction are shown in Table 5. In these tables,
“VE” refers to the vocabulary-expanded model, and
“CPO” refers to the model where Contrastive Pref-
erence Optimization was performed. Addition-
ally, “EncDec” represents outputs from Encoder-
Decoder MT models, “MBR (top-p)” refers to the
case where MBR decoding was performed using
pseudo references generated by top-p sampling,
and “MBR (epsilon)” refers to the case where ep-
silon sampling was used.

‘https://huggingface.co/Unbabel/
wmt22-comet—da

Yhttps://huggingface.co/google/
metricx—-23-x1-v2p0

Uhttps://huggingface.co/Unbabel/
wmt23-cometkiwi-da-x1

Performance of the LLM-based MT models.
Table 4 shows that the translation performance of
Llama2-13B is lower than that of Mistral-7B. One
potential reason for this is the limited amount of
data used for continual pre-training of Llama2-13B
due to constraints in computational resources.

Efficiency of vocabulary expansion. Compar-
ing the models with and without vocabulary ex-
pansion ((b) vs. (d)), there is no significant
difference in performance. However, as shown in
Table 13, the model with vocabulary expansion re-
quires fewer training tokens than the model without
it in our settings. The generation speed is also faster
for the model with vocabulary expansion compared
to the one without it. Thus, we believe vocabulary
expansion could be a good option for improved
inference efficiency.

CPO is effective but challenging. Comparing
the performance before and after preference learn-
ing, the model with vocabulary expansion shows
improvement across all evaluation metrics ( (d) vs.
(e)). On the other hand, the model without vocab-
ulary expansion exhibits a significant decrease in
performance for COMET-22 and CometKiwi-XL
((b) vs. (c)), leading to inconsistent results.

Qualitative analysis of outputs from the model
without vocabulary expansion (i.e., (c) ) revealed
instances where decoding of byte-fallbacked text
failed, resulting in text being replaced with replace-
ment characters. This may be due to insufficient
adjustment of the hyperparameters during CPO
training.

Difference in pseudo references for MBR decod-
ing. Comparing settings (A) vs. (B) and (C),
we observe that the performance improves when
using MBR decoding compared to the 1-best out-
put from the ensemble of models'?. The difference
in performance with regard to the pseudo-reference
generation algorithms ( (i) vs. (J) and (B) vs.
(C) ) was not significant.

’In the En—Ja, we use results from multiple models with
different vocabularies for MBR decoding; hence we cannot

compare the performance with the 1-best output from the
ensemble of all transformers.
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COMET-221 MetricX-XL] CometKiwi-XL1

(a) Llama2-13B 0.820 3.050 0.677
(b) Mistral-7B 0.841 2.806 0.711
(c) Mistral-CPO-7B 0.651 2.254 0.557
(d) Mistral-VE-7B 0.836 2.881 0.695
(e) Mistral-VE-CPO-7B 0.866 2.254 0.732
(£) NT5 (Morishita et al., 2022b) 0.847 2.697 0.718
(g) Stepwise MBR-Enhanced LLM Decoding 0.882 2.052 0.729
(1) EncDec — MBR (top-p) 0.885 2.263 0.737
(3) EncDec — MBR (epsilon) 0.884 2.264 0.743
(k) EncDec — MBR (top-p) — LLM Reranking 0.881 2.269 0.740

Table 4: Results of post evaluation in En—Ja.

COMET-221 MetricX-XL| CometKiwi-XL1

(A) EncDec ensemble 0.818 3.550 0.548
(B) EncDec — MBR (top-p) 0.841 3.168 0.570
(C) EncDec — MBR (epsilon) 0.841 3.230 0.566

Table 5: Results of post evaluation in Ja—Zh.

Performance of stepwise MBR-enhanced LLM
decoding. Stepwise MBR-Enhanced
LLM Decoding achieves the highest score on
MetricX-XL. Additionally, compared to using
a single LLM, the scores of COMET-22 and
MetricX-XL improved. This improvement is likely
because generating hypotheses at each step with
MBR decoding helps eliminate obvious errors,
such as repeated tokens.

Effectiveness of LLM reranking. LLM Rerank-
ing did not result in any significant improvements
according to automatic evaluation metrics. How-
ever, we noted improved consistency within seg-
ments qualitatively. We intend to evaluate perfor-
mance through human evaluation as part of future
work.

8 Submission System

For the final submission system, we adopted system

(k) for the En—Ja direction and system (B) for
the Ja—Zh direction. However, particularly in the
En—Ja direction, different systems ranked highest
across various automatic evaluation metrics, leav-
ing us uncertain about which system to select even
after post-evaluation. Thus, further refinement of
automatic evaluation metrics is essential to develop
a superior system.

9 Negative Results and Discarded Trials

Poor performance of LLMs for Japanese-to-
Chinese translation. We conducted continual
pre-training and supervised fine-tuning of LLMs
for Ja—Zh translation. However, the translation
performance did not meet our expectations, leading
us to exclude it from the submission system (see
Table 5 for post evaluation results). This shortfall
likely resulted from our computational resource
constraints, which limited continual pre-training to
Chinese datasets only. For further details, please
refer to Section A.

Use of LLM outputs as candidates for MBR de-
coding. We also explored the inclusion of LLM
outputs in the candidate pool for MBR Decoding.
However, we observed a decrease in translation
quality when these outputs were included, leading
us to exclude this approach from the final system.
This decline in quality can be attributed to two
main factors: i). a substantial difference in the dis-
tribution between the outputs generated by LLMs
and the pseudo references produced by Encoder-
Decoder MT models, and ii). inadequate tuning of
hyperparameters during decoding with LLMs.

10 Conclusion

This paper described our systems for the con-
strained track of the WMT 2024 Shared Task: Gen-
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eral Machine Translation. We developed transla-
tion systems for En—Ja and Ja—Zh. To achieve
consistent document-level machine translation, we
concentrated on investigating the application of
LLMs, which have become available for use this
year, employing methods such as LLM Reranking
and Stepwise MBR-Enhanced LLM Decoding.

Our submitted system consists of the following
steps: i) First, we generate translations using mul-
tiple Encoder-Decoder MT models. ii) Next, we
narrow down the generated candidates by selecting
the optimal translation through MBR decoding. iii)
Finally, we apply LLM reranking to incorporate
contextual information in order to determine the
final output (only for En—Ja). The results from the
post-evaluation did not provide quantitative con-
firmation of the final submission system’s effec-
tiveness. However, we did observe a qualitative
improvement in consistency within the documents.
We hope for future research on better automatic
evaluation metrics that can assess these document-
level translation performances.
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WGP EAM A —EE LUT B BRI -
JFE3C: {sre} B {tgt)

Figure 4: The general prompt for supervised fine-tuning.
{src} denotes the source sentence. {tgt} denotes the
target sentence. Line breaks are added for readability;
there are no them in the actual prompt.

COMET-221 MetricX]| CometKiwi{

Llama2-13B 0.754 4.763 0.503
Mistral-7B 0.795 4.410 0.547
EncDec ensemble 0.818 3.550 0.548

Table 6: Post evaluation results of the LLM trained
for Ja—Zh translation. Compared to the ensemble of
Encoder-Decoder MT models, the performance of the
LLM for Ja—Zh translation was not sufficient.

A Japanese-Chinese LLM

Training configurations. We trained LLMs for
Ja—Z7h translation, although these were not in-
cluded in the final system. Due to time and com-
putational resource constraints, we only conducted
continual pre-training and supervised fine-tuning
on Chinese monolingual corpora. During super-
vised fine-tuning, we used the template shown in
Figure 4. Table 12, 13 lists the hyperparameters
used for training in the Ja—Zh direction.

Post evaluation. We conducted evaluations for
the LLMs trained for the Ja—Zh translation. Ta-
ble 6 presents the results. The performance of the
LLMs in the Ja—Zh translation was insufficient
compared to the ensemble of Encoder-Decoder MT
models. This is likely because we were limited to
continual pre-training using only Chinese corpora
due to computational resource constraints.

B Vocabulary Expansion for LLM

As described in Section 3.2, we aimed to improve
the Japanese language generation capability of
Mistral-7B by expanding the model’ s vocabu-
lary. Here, we provide details on the vocabulary
expansion.

Construction of additional vocabulary. We
first constructed a Japanese vocabulary using
the unigram algorithm of the Sentencepiece
tool (Kudo and Richardson, 2018). This vocabu-
lary was trained on a subset of 30,000,000 samples
from the Japanese Monolingual Corpus. We set
the vocabulary size to 27,000. During vocabulary

training, we enabled the options "byte_fallback"
and "split_digits".

Vocabulary initialization. We initialized the em-
beddings for the additional vocabulary using the
weighted average of the original Mistral embed-
dings. The weights were determined based on the
similarity scores between the new and original Mis-
tral vocabularies, computed by LaBSE (Feng et al.,
2022). The process is described by the following
equation:

o exp(w;)

N
= Z softmax (w; )v;
i=1

Here, vy represents the embedding for the ad-
ditional vocabulary, w; is the similarity score be-
tween the additional vocabulary and vocabulary
entry ¢ as calculated by LaBSE, v; is the vector of
the existing vocabulary entry ¢, and n is the size of
the original vocabulary. This method was also used
to initialize the language modeling head.

Given our focus on the English-to-Japanese
translation task, vocabularies other than English
and Japanese are considered less critical. There-
fore, we replaced any vocabulary not identified as
Japanese, English, or special tokens with the new
additional vocabulary. The determination of the
language for each token followed these rules:

(6)

Japanese: Tokens consisting of hiragana,
katakana, common-use kanji, symbols, JIS
level 1 kanji, and ASCII characters

English: Tokens consisting solely of ASCII char-
acters

Special tokens: Tokens split by byte fallback, as
well as bos, eos tokens, etc.

Consequently, we expanded the vocabulary to
51,200.

Vocabulary warmup training. To address incon-
sistencies introduced by adding new vocabulary,
prior research has proposed gradually training the
model while fixing specific parameters after adding
the vocabulary (Kim et al., 2024). We adopted
a similar method to resolve these inconsistencies.
Initially, we fixed the parameters of all transformer
layers except for the embedding layer and the lan-
guage modeling head and conducted the training.
The hyperparameters used during this initial train-
ing phase are detailed in Table 11.
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C Training Hyperparameters

The hyperparameters during the training of each
model are shown in Table 7- 13.

Initial Translation Model

Subword Size
Architecture

Optimizer

Learning Rate Schedule
Warmup Steps

Max Learning Rate
Dropout

Gradient Clip

Batch Size

Max Number of Updates
Averaging

Implementation

32,000
Transformer (big) with 6 layers,
Encoder and Decoder FFEN size of

8,192

Adam
61 =0.9, B2 = 0.98,
e=1x1078,

weight_decay = 0.0
Inverse square root decay, Cosine
4,000
0.001
0.1
1.0
1,048,576 tokens
50,000 steps
Save a checkpoint every 500 steps
and average the last ten
fairseq (Ottetal., 2019)

Pre-training Configuration

Subword Size
Architecture 1

Architecture 2

Optimizer

Learning Rate Schedule
Warmup Steps

Max Learning Rate
Dropout

Gradient Clip

Batch Size

Max Number of Updates
Averaging

Implementation

16,000

Transformer (big) with 9 layers,
Encoder FEN size of 16,384, and
Decoder FEN size of 4,096
Transformer (big) with 9 layers,
Encoder and Decoder FEN size of
8,192

Adam
B1 =0.9, B2 = 0.98,
e=1x1078,

weight_decay = 0.0
Inverse square root decay, Cosine
4,000
0.001
0.1
0.1
1,048,576 tokens
50,000 steps
Save a checkpoint every 500 steps
and average the last ten
fairseq (Ottet al., 2019)

Fine-tuning Configuration

Learning Rate Schedule
Warmup Steps

Max Learning Rate
Dropout

Gradient Clip

Batch Size

Max Number of Updates
Averaging

Fixed

N/A

1x107°

0.2

1.0

14,400 tokens

1,000 steps

Save a checkpoint every ten steps
and average the last ten

Table 7: List of hyper-parameters. We used the initial
translation model to generate synthetic data, the pre-
training configuration to build the models described in
Section 3.1, and the fine-tuning configuration to develop
the models for submission. We created two models for
pre-training and fine-tuning, labeled as “Architecture 1”
or “Architecture 2,” and used them for ensembling. The
hyperparameters listed in the fine-tuning configuration
represent only the differences from the pre-training con-

figuration.
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Llama2-13B Pretraining

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000

10,000

1,572,864 tokens

Cosine (Loshchilov and Hutter,

2017)

250

2x107°

1x107°

Adam
B1=0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 100 steps
and average the last five
Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Llama2-13B Supervised Finetuning

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000

3,500

1,310,720 tokens

Cosine (Loshchilov and Hutter,

2017)

175

3x107¢

3x107"

Adam
61 =0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 100 steps
and average the last three
Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Table 8: A list of hyperparameters used when training

Llama2-13B on the En—Ja task.

Mistral-7B Pretraining

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000

20,000

1,310,720 tokens

Cosine (Loshchilov and Hutter,

2017)

500

2x 1075

1x1076

Adam
51 =0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 200 steps
and average the last five
Transformers (Wolf et al.,
2020), 1lm-recipies (Fujii
et al., 2024b)

Mistral-7B Supervised Finetuning

Vocab Size 32,000
Train Steps 3,100
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,
2017)
Warmup Steps 155
Max Learning Rate 1x107°
Min Learning Rate 1x107°
Optimizer Adam
B1=0.9, B2 =0.95,
e=1x107°%,
weight_decay = 0.1
Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps
and average the last three
Implementation Transformers (Wolf et al.,
2020), 1lm-recipies (Fujii
et al., 2024b)
Mistral-7B Preference Learning
Vocab Size 32,000
Train Steps 250
Batch Size 144 samples
Learning Rate Schedule Constant
Learning Rate 1x107°
Optimizer Adam
B1 = 0.9, B2 = 0.999,
e=1x1078%,
weight_decay = 0.1
Gradient Clip 1.0
CPO 8 0.1
CPO o 1.5
iw (See Section 3.2) 740
Lorar 16
Lora o 32
Lora Dropout 0.1
Lora Target Layetr All linear layer
Implementation Transformers (Wolf et al.,

2020), TRL (von Werra et al.,
2020)

Table 9: A list of hyperparameters used when training
Mistral-7B on the En—Ja task.
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Mistral-7B (vocab expanded) Pretraining

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

51,200

12,283

1,376,256 tokens

Cosine (Loshchilov and Hutter,

2017)

300

2x107°

1x107°

Adam
61 =0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 200 steps
and average the last five
Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B (vocab expanded) Supervised Finetuning

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

51,200

2,000

1,310,720 tokens

Cosine (Loshchilov and Hutter,

2017)

100

1x107°

1x107°

Adam
51 =0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 200 steps
and average the last two
Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B (vocab expanded) Preference Learning

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Learning Rate
Optimizer

Gradient Clip

CPO

CPO «

iw (See Section 3.2)
Lorar

Lora o

Lora Dropout

Lora Target Layer
Implementation

51,200

250

144 samples

Fixed

1x107°

Adam
B1 = 0.9, B2 = 0.999,
e=1x10758,
weight_decay = 0.1

0.1

All linear layers
Transformers (Wolf et al.,
2020), TRL (von Werra et al.,
2020)

Mistral-7B (vocab extended) Vocabulary Warmup

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Implementation

51,200

1800

1,376,256 tokens

Cosine (Loshchilov and Hutter,

2017)

50

2x107*

6.6 x 1077

Adam
B1=0.9, B2 = 0.95,
e=1x10"°,
weight_decay = 0.1

1.0

Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Table 11: A list of hyperparameters used when training
Mistral-7B with vocabulary expansion for vocabulary
warmup on the En—Ja task.

Llama2-13B Pretraining

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000

10,000

1,572,864 tokens

Cosine (Loshchilov and Hutter,

2017)

250

2x107°

1x1076

Adam
61 =0.9, B2 = 0.95,
e=1x107°,
weight_decay = 0.1

1.0

Save a checkpoint every 100 steps
and average the last five
Transformers (Wolf et al.,
2020), 1lm-recipies (Fujii
et al., 2024b)

Llama2-13B Supervised Finetuning

Vocab Size
Train Steps
Batch Size

Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000
500
1,310,720 tokens
Cosine (Loshchilov and Hutter,
2017)
25
3x10°°
3x 1077
Adam
61 =0.9, B2 = 0.95,
e=1x107°,
weight_decay = 0.1
1.0
Save a checkpoint every 25 steps
and average the last three
Transformers (Wolf et al.,
2020), llm-recipies (Fujii

Table 10: A list of hyperparameters used when training etal,, 2024b)

Mistral-7B with vocabulary expansion on the En—Ja
task.

Table 12: A list of hyperparameters used when training
Llama2-13B on the Ja—Zh task.
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Mistral-7B Pretraining

Vocab Size
Train Steps
Batch Size
Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000

20,000

1,310,720 tokens

Cosine (Loshchilov and Hutter,

2017)

500

2x107°

1x107°

Adam
B1=0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 200 steps
and average the last five
Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Supervised Finetuning

Vocab Size
Train Steps
Batch Size
Learning Rate Schedule

Warmup Steps
Max Learning Rate
Min Learning Rate
Optimizer

Gradient Clip
Averaging

Implementation

32,000

420

1,310,720 tokens

Cosine (Loshchilov and Hutter,

2017)

25

1x107°

1x10°¢

Adam
61 =0.9, B2 = 0.95,
e=1x1075,
weight_decay = 0.1

1.0

Save a checkpoint every 10 steps
and average the last five
Transformers (Wolf et al.,
2020), llm-recipies (Fujii
et al., 2024b)

Table 13: A list of hyperparameters used when training
Mistral-7B on the Ja—Zh task.
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Abstract

This paper presents the submission from Global
Tone Communication Co., Ltd. and Dalian Uni-
versity of Technology for the WMT24 shared
general Machine Translation (MT) task at the
Conference on Empirical Methods in Natural
Language Processing (EMNLP). Our partici-
pation encompasses two language pairs: En-
glish to Japanese and Japanese to Chinese. The
systems are developed without particular con-
straints or requirements, facilitating extensive
research in machine translation. We emphasize
back-translation, utilize multilingual transla-
tion models, and apply fine-tuning strategies
to improve performance. Additionally, we in-
tegrate both human-generated and machine-
generated data to fine-tune our models, leading
to enhanced translation accuracy. The auto-
matic evaluation results indicate that our sys-
tem ranks first in terms of BLEU score for the
Japanese to Chinese translation.

1 Introduction

In this study, we employ fairseq (Ott et al., 2019)
as our development framework and adopt the trans-
former (Vaswani et al., 2017) as the main architec-
ture. The primary ranking index for the submitted
systems is BLEU (Papineni et al., 2002), which
also serves as the evaluation metric for our transla-
tion system via sacreBLEU!, consistent with our
methodology from the previous year.

For data preprocessing, we conduct punctuation
normalization, tokenization, and Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015) across all lan-
guages involved. Furthermore, we applied a true-
case model for English, tailored to the specific lin-
guistic features of each language. Regarding tok-
enization, we utilize Jieba? for Chinese, Mecab’
for Japanese, and the Moses tokenizer.perl (Koehn

*Corresponding Author

"https://github.com/mjpost/sacrebleu

“https://github.com/fxsjy/jicba

*https://github.com/taku910/mecab

et al., 2007) for English. Additionally, we incorpo-
rate knowledge-based rules along with a language
model to cleanse parallel data, monolingual data,
and synthetic data.

For the multilingual translation model, we con-
solidate all languages into a single model and en-
hance it with an English to Chinese parallel corpus
to enrich the language information.

The remainder of this paper is structured as fol-
lows: Section 2 discusses the translation task and
provides dataset statistics. Section 3 describes
our baseline systems and introduces the proposed
multilingual translation model. The data selection
methodology is elaborated in Section 4. Section 5
presents experiments conducted on all translation
directions, addressing data filtering, model archi-
tectures, back-translation, joint training strategies,
adaptations of the multilingual model, fine-tuning,
data selection, and ensemble decoding. Section
6 analyzes the results, offering insights into the
efficacy of various techniques. Finally, Section 7
concludes the paper.

2 Task Description

This task focuses on bilingual text translation, with
the provided data elaborated in Table 1, which in-
cludes both parallel and monolingual data. For the
English-Japanese directions, the primary sources
of parallel data include WikiMatrix (Schwenk et al.,
2019), CCAligned (Rozis and Skadin$, 2017),
JESC (Pryzant et al., 2017), JParaCrawl v3.0 (Mor-
ishita et al., 2022), LinguaTools-WikiTitles (Tiede-
mann, 2012), News Commentary v16, and XLEnt
(Tiedemann, 2012). For the Japanese-Chinese di-
rection, the main parallel data is sourced from
CCAligned, JParaCrawl, LinguaTools-WikiTitles,
News Commentary v16, WikiMatrix, and XLEnt.
Monolingual data comprises News Crawl (Kocmi
et al., 2022) in English, Japanese, and Chinese;
News Commentary in English, Japanese, and
Chinese; and Europarl v10 in English. We uti-
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Language Number of Sentences
en-ja parallel data 85.2M

ja-zh parallel data 14.4M

en monolingual data 168M

ja monolingual data 22.8M

zh monolingual data 23.9M

en-ja development set 1000

ja-zh development set 1012

Table 1: Task Description

lized the provided development set from new-
stest2020 for English-Japanese and the FLoRes101
(NLLB Team, 2022) dataset for Japanese-Chinese.

3 Bilingual Baseline Model and
Multilingual Translation Model

To establish a robust baseline for comparison
with the multilingual model, we utilize the
transformer_wmt_en_de as our bilingual baseline
model, consisting of 24 encoder layers and 24 de-
coder layers. The multilingual translation model
is designed to closely resemble the GTCOM?2023
(Zong, 2023) model, referred to as the X to X
model. To achieve superior translation quality,
we include the English-Chinese parallel corpus as
the primary auxiliary language pair to enhance lin-
guistic information. We train a single multilingual
model that encompasses all translation directions
while applying joint Byte Pair Encoding (BPE) sep-
arately for all languages.

4 Data Selection

Similar to the last year, we use source test sets to
train a text classification model based on RoOBERTa
(Liu et al., 2019). Specifically, we treat the in-
domain test set as positive examples and select an
equivalent amount of sentence pairs from the out-
of-domain test set as negative examples. We fine-
tune RoBERTa on this labeled dataset to develop a
binary classifier capable of effectively distinguish-
ing between in-domain and out-of-domain data.
This classifier aids in selecting domain-specific
training data from the general training corpus, with
the chosen in-domain training data subsequently
used to fine-tune the multilingual neural machine
translation model.

Additionally, we also use prompt learning to
explore an alternative data selection method. We
develop a prompt template and leverage the gen-

erative capabilities of Meta-Llama-3-8B-Instruct *
to create a domain classifier using loRA (Hu et al.,
2021). The prompt template mirrors that used in
GTCOM?2023 from the last year, shows in Table
2. Specifically, we extract 800 sentences from the
development set which belong to the news, social,
e-commerce, or conversation domains. We manu-
ally select 200 sentences from the training set that
do not match these domains or are of inferior qual-
ity, categorizing them as "other." We then utilize
these 1,000 labeled examples to fine-tune the Meta-
Llama-3-8B-Instruct model in loRA. The resulting
prompt-based classifier effectively differentiates
between domains in the training data. Sentences
predicted as "News," "Social," "E-commerce," and
"Conversation" are classified as in-domain data,
while those labeled as "Other" are considered out-
of-domain data.

5 Experiment

This section outlines the step-by-step experiments
we conducted, with the entire workflow depicted in
Figure 1.

* Data Filtering: The data filtering techniques
largely replicate those utilized last year, incor-
porating human rules, language models, and
repetition cleaning.

* Baseline: Our baseline is constructed using
the transformer big architecture, which com-
prises 24 encoder layers and 24 decoder lay-
ers.

* Back-translation: We employ the best trans-
lation model to translate target sentences back
to the source side, cleaning synthetic data us-
ing a language model. This process includes
translating each language pair featured in the
multilingual translation model. We combine
the cleaned back-translation data with parallel
sentences and train the multilingual transla-
tion model accordingly.

* Joint Training: We repeat the back-
translation step using the optimal model until
no further improvements are observed.

* Multilingual Translation Model: A single
model is trained for all translation directions,
with each direction utilizing joint BPE and a

*https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct
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following criteria.

Instructions

Please determine the domain to which the given sentence belongs based on the

1. Sentence Correctness: If the sentence is incomplete, incoherent, or grammatically
incorrect, label it as "Other" domain. If the sentence is complete, fluent, and
grammatically correct, proceed to the next step.

2. Domain Identification: Analyze the content of the sentence to identify the possible
domain it belongs to. Consider the following domains: News, Social, E-commerce,
Conversation, and Other. If the sentence shows clear indications of being from a
specific domain, label it accordingly, otherwise label it as "Other" domain.

Please label the sentence with the appropriate domain:

- If the sentence is from the News domain, label it as "News".

- If the sentence is from the Social domain, label it as "Social".

- If the sentence is from the E-commerce domain, label it as "E-commerce".

- If the sentence is from the Conversation domain, label it as "Conversation".

- If the sentence does not fit any specific domain or is incorrect, label it as "Other".

Sentence | Sunday Best: Enter 1880s New York in HBO’s "The Gilded Age"

Domain News

Table 2: Prompt Template.

Back-translation
Parallel Baseli and clean by Back- Joint
sentences aseline language model | translation training
Ensemble Data selection I\fr::'sl;gﬁgsl
decoding and fine-tuning
model

Figure 1: The work flow of GTCOM machine translation competition systems

shared vocabulary. The multilingual transla-
tion model consists of 24 encoder layers and
24 decoder layers, employing the transformer
big architecture.

* Fine-tuning: The multilingual translation
model is fine-tuned for each direction and bi-
direction separately. For instance, we fine-
tuned en2ja and ja2en on the multilingual
translation model and fine-tuned en2ja on the
multilingual translation model for English to
Japanese separately.

* Data Selection: The model described in the
Data Selection section is employed to choose
a domain-specific training dataset, which is
then fine-tuned on the multilingual translation

model.

* Ensemble Decoding: We utilize the GMSE
Algorithm (Deng et al., 2018) to select models,
aiming for optimal performance.

6 Results and Analysis

Table 3 displays the BLEU scores evaluated on
the development set for English to Japanese and
Japanese to Chinese. As indicated in the table,
back-translation remains the most effective data
augmentation technique for enhancing translation
quality from a data perspective. The multilingual
translation model also demonstrates significant im-
provements across all translation directions. As
shown in Table 4, our prompt learning strategy is
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Model en2ja ja2zh
Baseline 26.36  15.07
+ Back-translation 2726 20.75
Multilingual Translation Model  26.50 15.20
+ Back-translation 2740 21.24
+ Bilingual Fine-tuning 27.51 21.34
+ Single Fine-tuning 27.22  20.98
Ensemble Decoding 2795 2221

Table 3: BLEU scores for English to Japanese and
Japanese to Chinese. Values are calculated based on
word counts.

Direction BLEU BLEU with DS
39.2 39.7
32.9 32.3

en-ja
ja-zh

Table 4: The final online automatic evaluation BLEU
with/without prompt learning in data selection.

still able to improve the BLEU score on the direc-
tion of English to Japanese, but there was some
decline in the Japanese-to-Chinese direction.

7 Conclusion

This paper introduces the neural machine transla-
tion systems developed by GTCOM and DLUT
for the WMT24 shared general MT task. We ap-
ply three primary techniques to enhance translation
quality: back-translation, a multilingual translation
model, and fine-tuning accompanied by data selec-
tion. Through these methods, we achieve notable
improvements in automatic evaluation metrics, as
illustrated in Table 5.
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Abstract

This paper presents the contributions of Charles
University teams to the WMT24 General Trans-
lation task (English to Czech, German and Rus-
sian, and Czech to Ukrainian) and the WMT24
Translation into Low-Resource Languages of
Spain task. Our most elaborate submission,
CUNI-MH for en2cs, is the result of fine-tuning
Mistral 7B vO0.1 for translation using a three-
stage process: Supervised fine-tuning using
QLoRA, Contrastive Preference Optimization,
and merging of model checkpoints. We also de-
scribe the CUNI-GA, CUNI-Transformer and
CUNI-DocTransformer submissions, which are
based on our systems from the previous year.

Our en2ru system CUNI-DS uses a similar first
stage as CUNI-MH (QLoRA for en2cs) and
follows with transfer learning for en2ru.

For en2de (CUNI-NL), we experimented with
an LL.M-based speech translation system, to
translate without the speech input.

For the Translation into Low-Resource Lan-
guages of Spain task, we performed QLoRA
fine-tuning of a large LLM on a small amount
of synthetic (backtranslated) data.

1 Introduction

This paper describes the CUNI submissions to the
WMT?24 General Translation task (from English to
Czech, German and Russian, and from Czech to
Ukrainian) and the Translation into Low-Resource
Languages of Spain task.

Our underlying goal for this year was to test the
applicability of primarily small open-source LLMs
to the languages of interest, and we also provide
our English-to-Czech systems from the previous
years for comparison.

The setups for the various target languages differ
considerably in the methods used. Table 1 provides
an overview of the individual system highlights. In
Section 2, we detail the basic building steps and
methods across our systems (not all setups use all

of them). Section 3 describes the training and de-
velopment data used across the target languages.
In Section 4, we evaluate the systems and com-
pare their results with various available baselines
and benchmarks. Section 5 summarizes our future
plans, and we conclude in Section 6.

2 Methods

For the CUNI-MH submission, we fine-tuned Mis-
tral 7B v0.1 (Jiang et al., 2023) using three stages:

1. Supervised fine-tuning on CzEng 2.0 training
dataset (Kocmi et al., 2020)', see Section 2.3.

2. Contrastive Preference Optimization (Xu
et al., 2024b), see Section 2.4.

3. Averaging model checkpoints (Utans, 1996;
Wortsman et al., 2022; Gueta et al., 2023), see
Section 2.5.

CUNI-Transformer and CUNI-DocTransformer
are the same systems as submitted last year (Jon
et al., 2023), relying on standard NMT training
with Block backtranslation (Section 2.1) and op-
tionally document-level training (Section 2.2).

For CUNI-GA, in English-to-Czech, we used
outputs from CUNI-Transformer and a genetic al-
gorithm to combine and modify them, again in the
same way as previous year (Section 2.8; Jon et al.,
2023; Jon and Bojar, 2023). For coincidentally
identically called CUNI-GA submission in Trans-
lation into Low-Resource Languages of Spain task,
we fine-tune larger LLMs (Command-R and Aya-
23), without applying the genetic algorithm.

For the CUNI-NL system, we fine-tuned Llama 2
7B (Touvron et al., 2023) for the speech translation
task, while also adapting it for text-only translation
at the same time; see Section 2.6.

Finally CUNI-DS starts as step 1 of CUNI-MH
but continues with transfer learning to target Rus-
sian instead of Czech, see Section 2.7.

1http: //ufal.mff.cuni.cz/czeng/

232

Proceedings of the Ninth Conference on Machine Translation, pages 232-246
November 15-16, 2024 ©2024 Association for Computational Linguistics


http://ufal.mff.cuni.cz/czeng/

Task  CUNI-* Model Initial LLM SFT Data SFT Highlights (§2.3)  Final Stages
cs2uk  Transformer - Opus, CzEng BlockBT §2.1 -
en2cs  DocTransformer - CzEng 2.0 BlockBT §2.1, doc- -
level §2.2
en2cs GA - - - GA §2.8
en2cs MH Mistral 7B v0.1 ~ CzEng 2.0 QLOoRA, Packing, CPO §2.4; Checkpoint
AdamW Merging §2.5
spa GA Command-R, PILAR BT QLoRA -
Aya
en2de NL HuBERT, MuST-C Text-only use of a speech translation system §2.6
Llama-2-7b
en2ru DS Mistral 7B v0.1 ~ CzEng, Yandex, Transfer from en2cs -

News Commen-

tary

§2.7

Table 1: Overview of CUNI systems in WMT24 General Translation task and Translation into Low-Resource
Languages of Spain task (spa). Systems in the upper part of the table are our last year’s baselines. §- refer to the

methods in Section 2.

2.1 BlockBT

For training CUNI-Transformer and CUNI-
DocTransformer, we used iterated Block backtrans-
lation (BlockBT) (Popel, 2018; Popel et al., 2020;
Gebauer et al., 2021; Jon et al., 2022) in a standard
Transformer (Vaswani et al., 2017) NMT training
from scratch. The BlockBT method organizes the
training data, so that the model can optimize the bal-
ance between authentic English-to-Czech parallel
texts (exhibiting more translationese artifacts) and
synthetic data created by back-translating Czech-
only texts) by averaging eight checkpoints reflect-
ing more of the former or the latter domain. The use
of eight checkpoints for averaging is derived from
the original paper (Popel, 2018) and a study on
hyperparametrs for training Transformers (Popel
and Bojar, 2018).

2.2 Document-level training

The approach for training CUNI-DocTransformer
is described in Popel et al. (2019). Starting with the
initial sentence-level model (CUNI-Transformer),
we continued training on sequences of consecu-
tive sentences coming from a coherent text with
at most 3000 characters, where both sides (en and
cs) have the same number of sentences. The sen-
tences are separated by a special token in each of
the languages.

2.3 Supervised fine-tuning (SFT)

For the CUNI-MH submission, we used 4-bit
QLoRA (Dettmers et al., 2023) with a large LoRA
rank of » = 512. We used a batch size of 32, a
learning rate of 2e — 5, 20 warm-up steps, 8-bit
AdamW (Loshchilov and Hutter, 2019) optimizer

and weight decay of 0.01. We also used a scheduler
with linear learning rate decay. Starting from the
freely available Mistral 7B v0.1 model, we trained
in a language modeling fashion on individual sen-
tences, calculating the loss on each token. To re-
duce the number of padding tokens, we also used
packing: examples are concatenated with the EOS
token as a separator to achieve a total sequence
length of 1000. In Appendix A, we present our
translation prompt template and example of its pro-
cessed form with packing as used during training.

We trained for a single epoch on the authentic
part of CzEng 2.0. In Figure 1, we show how the
performance of the model develops during the first
stage, starting from 100 steps. A notable observa-
tion is that the COMET22 and COMETKIWI22
scores seem to plateau relatively early, despite the
evaluation loss steadily decreasing, while BLEU
seems to be steadily increasing. This appears to be
consistent with the results presented by Xu et al.
(2024a), although we suspect it could also be the
result of insufficient regularization.

For training, we used the HuggingFace Trans-
formers and TRL libraries by Wolf et al. (2020)
and von Werra et al. (2020). We also used the Un-
sloth library,” which provides speed and VRAM
optimizations to Transformers and TRL libraries.

Another of our submissions that made use of a
pre-trained LLM and SFT was CUNI-GA in the
Translation into Low-Resource Languages of Spain
task. We used 4-bit QLoRA with the rank of = 16
and the learning rate of 4e — 4 for fine-tuning the
pretrained Command-R model, and 1e — 3 for fine-
tuning the Aya model, with an effective batch size

2https: //github.com/unslothai/unsloth/
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Figure 1: CUNI-MH Stage 1 — metrics during training.

of 32 and an AdamW optimizer with the weight
decay value of 0.001.

2.4 Contrastive Preference Optimization
(CPO)

CPO is a fine-tuning method introduced by Xu et al.
(2024b) as an approximation of Direct Preference
Optimization (Rafailov et al., 2024).

The goal of CPO is to fine-tune the model to
directly optimize for preferences between trans-
lation candidates, rather than just optimizing the
likelihood of the reference translations.

From a high-level point of view, the main differ-
ence between using SFT and CPO for translation
is that for a given source text, we need two transla-
tions: preferred and dis-preferred. This means that
the training dataset consists of triplets, rather than
pairs as is typical for supervised training of NMT.
For a more detailed description of the dataset we
used and how it was created, see Section 3.2.

To apply CPO during the second stage of CUNI-
MH training, we started two separate training runs
from models we created during the first stage. One

of the runs starts from model (3) and the other from
model (4) in Table 2.

We selected these models because they had
the best COMET22 and COMETKIWI22 scores
among the models we had available at the time,
when evaluated on the sentence-level WMT?22 vali-
dation set.

Because we wanted to use a smaller LoRA rank
size comparable to those used in the original paper
(Xu et al., 2024b), we merged LoRA adapters with
the quantized model into a 16-bit model and added
new, smaller adapters.

We trained for two epochs with the following pa-
rameters: LoRA rank » = 32, LoRA o = 64, CPO
B = 0.1. We trained two separate runs, starting
from the checkpoints mentioned earlier. Similarly
to the SFT stage, we used 8-bit AdamW, this time
without learning rate decay. Our GPU memory
capacity was limiting us to the batch size of 4, so
to compensate, we used 64 gradient accumulation
steps to simulate a larger effective batch size of
256.
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Stage ID Model Checkpoint COMET22 COMETKIWI22 BLEU

(0) Mistral 7B v0.1 5-shot 67.16 59.79 17.35
1 © 16000 85.59 79.04 33.46
1 (2) SFT from (0) 24000 86.10 79.40 34.35
1 3 103000 85.80 78.85 35.32
1 (4) SLERP merge of (1) and 2) 86.16 79.44 35.15
2 (5) CPO from (4) 150 89.76 82.71 32.56
2 (6) CPO from (3) 100 89.93 83.04 34.43
2 (7 CPO from (0) 400 83.21 76.54 18.33
3 Linear merge of (5) and (6) 90.21 83.16 36.52

Table 2: CUNI-MH’s training stages, models and their sentence-level scores on WMT23 (test set). The final

CUNI-MH submission (8) is in bold.

Checkpoints were saved every 50 steps’
and evaluated on the validation test set using
COMETKIWI22. The performance peaked around
checkpoint 150 for the first run, leading us to con-
clude that further training beyond 2 epochs was
unnecessary. However, we acknowledge that the
training parameters may not be optimal and could
potentially be tweaked further for better results.

2.5 Checkpoint merging

To further improve the performance of the CUNI-
MH model, we experimented with two methods
for merging model weights: linear interpolation
(Utans, 1996) and spherical linear interpolation
(SLERP, Shoemake, 1985) in different training
stages.

In particular, after the SFT stage, we merged two
promising checkpoints from the same training run
using SLERP, which led to a small improvement in
all metrics, as can be seen by looking at model (4)
in Table 2.

After the CPO stage, we once again experi-
mented with model merging, this time we merged
the best performing checkpoints from two different
CPO training runs. This led to a further modest im-
provement in all COMET22, COMETKIWI22 and
BLEU metrics, as shown by model (8) in Table 2.

For model merging using both SLERP and lin-
ear interpolation, we used the mergekit library by
Goddard et al. (2024).

2.6 SFT from Speech Translation System
(SFTSpeech)

The CUNI-NL system was adapted from a speech
translation system, which features a frozen Hu-

3Resulting in total of 7 checkpoints for each of the two
runs.

BERT component (Hsu et al., 2021) and the Llama
2 7B (Touvron et al., 2023) LLM.

The original speech translation system applied
the CTC collapsing strategy to extract the speech
hidden features; these features would subsequently
be given as the prompt to a LLM to generate the
ASR transcription and its corresponding translation
simultaneously.

For the purposes of the General Translation Task,
we avoid any audio features during inference and
directly prompt the LLM with the source language
text. We expect the LLM to translate using that only
information. The motivation for this experiment
was to check if a LLM-based speech translation
system remains versatile enough to support text-
only translation.

The original speech translation system was a
fine-tuned LLM using 4-bit QLoRA (Dettmers
et al., 2023) adapters, with the rank of » = 8 and
alpha of o = 8. Other training hyperparameters
included the batch size of 1, the learning rate of
le — 4 with 10 warmup steps, and an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a cosine
scheduler (Loshchilov and Hutter, 2017).

2.7 SFT for Transfer Learning

We used transfer learning across languages in the
CUNI-DS system for English-to-Russian, transfer-
ring from English-to-Czech system.

2.7.1 Phase 1: en2cs Training

In the first phrase, we proceeded very similarly as
described in Section 2.3. We started with the 4-
bit quantized Mistral 7B v0.1 model (Jiang et al.,
2023) and trained it using QLoRA (Dettmers et al.,
2023) with a rank of 64 and an alpha of 128. The
training followed Alpaca-like (Taori et al., 2023)
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instructions, with 20 warmup steps, a learning rate
of 2e — 5, weight decay of 1e — 2, and a cumulative
batch size of 32.

The model was trained on CzEng 2.0 for 24
hours, with segments packed into chunks of 2048
tokens. The final checkpoint was selected for the
next phase.

2.7.2 Phase 2: en2ru Fine-Tuning

The model was then fine-tuned for en2ru transla-
tion using the Yandex Corpus for sentence-level
data and the News Commentary v18.1 dataset for
paragraph-level data. The datasets were shuffled
and concatenated, and fine-tuning was conducted
under the same conditions as the first stage, lasting
24 hours.

2.8 Genetic algorithm

For the CUNI-GA submission in English-to-Czech,
we used a genetic algorithm to combine and mod-
ify n-best lists (Jon and Bojar, 2023) produced
by CUNI-Transformer (at the sentence level), in
the same manner as in Jon et al. (2023). We
combined 5 metrics for the fitness function by a
weighted average: BLEU (Papineni et al., 2002),
chrF (Popovi¢, 2015), wmt22-comet-da (Rei et al.,
2022a), wmt22-cometkiwi-da (Rei et al., 2022b)
and wmt23-cometkiwi-da-xI (Rei et al., 2023). The
reference-based metrics use MBR decoding (Fre-
itag et al., 2022) in place of the unknown reference.

3 Data

This section details the dataset used across the vari-
ous training steps and language pairs.

3.1 SFT dataset
3.1.1 English-Czech

For the first stage of the CUNI-MH training, we
used the authentic part CzEng 2.0. We did not use
any preprocessing, except for applying the prompt
template and packing described in Appendix A.

3.1.2 English-German

The CUNI-NL system was trained using the MuST-
C dataset (Cattoni et al., 2021), a large multilingual
corpus built from English TED Talks, containing
the audio data, the English transcription of such
audio, with its translation in multiple languages.
Specifically, we used the en2de subset, consisting
of approximately 400 hours of speech data.
During training, we randomly took 25% of the
dataset, in which the input was the source transcript

itself, instead of the audio features, so that the sys-
tem could know how to translate from text-only
data.

We trained the system for two epochs, both
checkpoints of which were then used for evaluating
against the WMT?23 test set.

3.1.3 English-Russian

The initial phase of CUNI-DS system training
(en2cs) utilized the first million segments from the
CzEng 2.0 (Kocmi et al., 2020) dataset. In the sec-
ond phase (en2ru), a combination of the Yandex
Corpus* and the News Commentary v18.13 dataset
was used, with the latter segmented into chunks of
10 sentences each.

3.1.4 Translation into Low-Resource
Languages of Spain

For the Translation into Low-Resource Languages
of Spain task, we backtranslated the literary part
(literary.txt) of the PILAR dataset (Galiano-
Jiménez et al., 2024) into Spanish using Apertium
(Forcada and Tyers, 2016), resulting in 230k, 25k
and 24k sentence pairs for Aranese, Aragonese
and Asturian, respectively. For Aranese, we also
backtranslated the Aranese side of the parallel part
of the corpus, while keeping the paragraphs whole
up to the length of 30 sentences, resulting in 726k
sentences in 4329 documents. To make use of the
paragraph-level context, we employed a context-
aware prompt shown in Appendix B.

3.2 CPO dataset

To create a dataset for CPO (Section 2.4), we need
triplets: source segment, preferred output and dis-
preferred output. We construct these triplets at
the paragraph level (i.e. several sentences con-
catenated into a single segment) but sentence-level
processing, inspired by the approach of (Xu et al.,
2024b), is used in the preparation as described be-
low.

Given a source segment, we select both preferred
and dis-preferred translation from three candidates:
our stage 1 output, our last year’s constrained sys-
tem and human reference. Our approach ensures
that we still satisfy the requirements for a con-
strained submission.

Our CPO source segments (and their corre-
sponding manual reference translations) are ran-

4https: //translate.yandex.ru/corpus?lang=en
Shttps://data.statmt.org/news-commentary/v18.
1/
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Source text

Preferred translation

Dis-preferred translation

E6 goes further north along the west
coast and through Norway to the
Norwegian town Kirkenes at Barents
Sea.

E6 pokracuje dale na sever podél
zapadniho pobreZi a pes Norsko do
norského mésta Kirkenes u Barentsova
more.

E6 pokracuje dale na sever podél
zapadniho pobfeZi a pies Norsko do
norského mésta Kirkenes v Barentsové
mofi.

He became seriously ill in October
1914 and retired.

V fijnu 1914 vazné onemocnél a
odesel do dichodu.

V Fjnu 1914 @ onemocnél a odeSel do
dtichodu.

This was published in June 1925, in a
special issue of Poetry magazine.

Tato basen byla publikovédna v ¢ervnu
1925 ve specidlnim vydani ¢asopisu
Poetry.

Ta vysla v ¢ervnu 1925 ve zvlasStnim
Cisle Casopisu Poezie.

This convention has been ratified and

Tuto dmluvu ratifikovala a pfistoupila

Tato imluva byla ratifikovdna a

acceded to by Ghana. k ni Ghana.

pfistoupena k ni Ghana.

Table 3: Short examples from the CPO dataset. Errors (underlined) are, resp.: Kirkenes located in Barents Sea;
missed the adverb seriously; and grammatically inacceptable form of passivization mentioning the subject Ghana.
The third example’s dis-preferred translation does not mention the detail that we are referring to a poem (“basent”),
although this fact is not explicit in the source either; other lexical variations are minor.

domly sampled documents from CzEng 2.0, a
total of 47257 documents containing 200k sen-
tences. We then used the best checkpoint from
stage 1 (see model (4) in Table 2) together with our
constrained model from the previous year, CUNI-
DocTransformer, to generate translations for the
samples.®

Because we want to consider the manual transla-
tion as one of the candidates for the (dis-)preferred
translation, we cannot use it as the reference to
select the better candidate. Therefore, we use the
reference-free wmt20-comet-qe-da’ model to rank
the translations, selecting the one with the highest
score as the preferred one and the one with the
lowest score as the dis-preferred one.

Note that wmt20-comet-ge-da scores individual
sentences, not complete paragraphs, so we do this
for each sentence in the sampled dataset, while
giving all preceding sentences in the corresponding
document (as translated by the given system) as a
context (DocCOMET, Vernikos et al., 2022).

Since this DocCOMET approach is currently
not supported by the COMET project® for newer
model architectures, such as those used by
COMETKIWI22 and XCOMET, we have not tried
to build the data set using these newer models.

To arrive back at paragraph-level segments for
CPO, we concatenate all the sentences in each orig-
inal document. The result is a dataset consisting of
47k paragraph-level triplets for CPO. Each triplet
consists of the paragraph in source language and

SFor clarity, we note that we create only one CPO dataset,
using translations by @ and we apply the CPO method using
this dataset three times, starting from three different models,
see Table 2.

"https://huggingface.co/Unbabel/
wmt20-comet-ge-da

8https://github.com/Unbabel/COMET

two translations: preferred’ and dis-preferred.'’
Due to the sentence-level selection, both preferred
and dis-preferred translations may actually mix sen-
tences from each of the three seed translations: hu-
man, our CUNI-DocTransformer and CUNI-MH
Stage 1. We leave the analysis of document-level
errors that arise in this process for future.

In Figure 2, we show which sentences were se-
lected as preferred and dis-preferred. Note that
this comparison is done on sentence-level, because
the resulting paragraph-level examples can be com-
posed of sentences from different sources. Interest-
ingly, reference sentences were scored lowest by
wmt20-comet-ge-da most frequently. We also show
a few short examples from our dataset in Table 3.
During training, the source sentences are formatted
with the prompt template shown in Appendix A,
similarly to how they are handled in the SFT stage
Section 2.3.

We are aware that there are several potential is-
sues with our method of preparing the dataset. First,
there is a reason to be concerned about potential
overfitting to a given metric (wmt20-comet-qe-da
in our case) used to select the sentences. Second,
our stage 1 CUNI-MH model did the translation
in sentence-level fashion, potentially disregarding
the relevant context. Third, we select sentences for
preferred vs. dis-preferred class considering their
preceding source-side context and their preceding
target-side context as translated by the candidate
system, not as selected so far within the document.
This leaves document-level properties both in the
positive and negative cases unhandled. Ideally, the
preferred paragraph would avoid also any contex-
tual errors, and for the dis-preferred paragraph, we

?Sometimes also called chosen or positive example.
10Sometimes also called rejected or negative example.
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Model COMET22 COMETKIWI22 BLEU
CUNI-Transformer 87.19 80.45 41.44
CUNI-DocTransformer 88.29 81.32 42.47
CUNI-GA 90.78 84.43 43.27
GPT4-5shot 89.36 82.82 37.76
CUNI-MH 90.21 83.16 36.52

Table 4: CUNI-MH'’s sentence-level scores on the en2cs WMT23 test set. Other systems’ scores are taken from

WMT23’s automatic evaluation results.

Model COMET22 COMETKIWI22 BLEU
CUNI-Transformer 81.13 68.24 42.27
CUNI-DocTransformer 83.52 70.69 43.29
CUNI-GA 86.15 73.56 43.83
GPT4-5shot 85.45 72.57 38.45
CUNI-MH k =1 87.35 73.30 37.47
CUNI-MH k = 8 87.73 74.82 35.42

Table 5: CUNI-MH’s document-level scores on the en2cs WMT23-para test set. k& denotes how many sentences at
most are translated together in one chunk. The CUNI-MH final submission is in bold.

Preferred Dis-preferred

100000
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60000 -

40000 -

20000 ~

et <
g% &0 < e&e‘e(\
W7 x
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Figure 2: CPO dataset - sources of preferred and dis-
preferred translations.

could construct worse translations in two ways: (1)
using worse individual segments, as we do, and (2)
combining better or worse individual segments in a
way that purposefully damages paragraph context.
Fourth, because we sampled uniformly from the
CzEng 2.0 documents, our final dataset actually has
a large number of documents, namely 24744 out of
41835, that only consist of a single sentence. We
opted for a trivial sampling because we were con-
cerned that naive solutions aiming at having more
longer documents could potentially have a negative
impact on the diversity of the dataset, however this
is something we would like to address in the future.

All in all, we believe that there is potential to

make subsequent iterations of the dataset higher
quality by alleviating some of these concerns.

3.3 Validation and test datasets

During training of CUNI-MH, we used the
WMT?22 test set as the validation data set and the
WMT?23 test set as the test data set. In particular,
we used WMT22 when selecting the best check-
points and hyperparameters and only used WMT23
to estimate the final performance compared to base-
lines.

To prepare for paragraph-level evaluation, we
also concatenated all the sentences in each docu-
ment to a long paragraph, creating what we call
WMT22-para and WMT23-para data sets. For
CUNI-GA in English-to-Czech, we did not use
validation sets, we did not compare the possible
configurations on validation set, we chose the pa-
rameters based on our experience. For CUNI-GA
in Translation into Low-Resource Languages of
Spain, we use FLORES+ validation set (NLLB
Team et al., 2022).

4 Evaluation

4.1 English-Czech

We show the sentence-level metrics on the WMT23
test set for the CUNI-MH system in Table 4 and the
document-level metrics on the WMT?23 test set in
Table 5. We used greedy decoding for this system.

Since our preliminary experiments on WMT22-
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Submission

WBLEU WCHRF WC[\/[TQQ WQEQQ WQE237XL CHRF BLEU QEZZ QE23-XL MetricX

CUNI-Transformer - - -
0.4

0.4

CUNI-GA 0.1 0.1
CUNI-GA 0 0 0.5 0.5
CUNI-GA 0 0 0.5 0

- 573 293 X 0.614 43
0 564 295 0.819 0.658 -
0 555 265 0.827 0.650 -
0.5 548 25.6 0.797 0.726 3.7

Table 6: Paragraph-level scores on WMT24 test set for the CUNI-GA submission, primary submission in bold.
CUNI-Transfomer was used to produce the n-best lists which are combined and modified for the CUNI-GA

submission.
Model COMET22 COMETKIWI22 BLEU
Baseline 24.04 28.55 0.20
CUNI-NL (epoch=1) 81.07 77.23 29.61
CUNI-NL (epoch=2) 80.90 77.51 30.75

Table 7: CUNI-NL’s sentence-level scores on the en2de WMT?23 test set.

para showed that our model did not handle longer
paragraphs or documents well, we used sentence-
splitter from Moses'! to split segments into sen-
tences. We then concatenate these sentences into
chunks of up &, which we translate together as a
whole. We then concatenate all the chunks to the
original segments.

By testing our model on the WMT22-para vali-
dation dataset, we chose to use k = 8 for our final
submission to optimize for the highest COMET?22
and COMETKIWI22 scores. This can also be seen
in Table 5, where the model with £ = 8 has better
COMET?22 and COMETKIWI22 scores than the
one with k = 1, at the cost of worse BLEU score.

The submitted CUNI-MH system also seems to
perform well according to the preliminary auto-
matic rankings, where it surpasses most of our sys-
tems from previous years and closely matching the
performance of another of our systems, CUNI-GA.
These results are shown in Table 8.

However, since both systems use COMET or
COMETKIWI metrics during either training or in-
ference, raising potential concerns about overfit-
ting, we are also awaiting the results of human
evaluation (Kocmi et al., 2024).

We also tried to use CPO with our new dataset
to train the base Mistral model directly, skipping
the supervised fine-tuning stage. The results are
shown in Table 2, see (7), which is the best perform-
ing checkpoint of the training run, according to its
COMETKIWI22 score on the validation dataset. It
can be seen that the performance of this model is
significantly worse in all metrics, so the SFT stage

"Wrapped
mosestokenizer/

by https://pypi.org/project/

seems necessary in our setting.

We have also submitted CUNI-Transformer and
CUNI-DocTransformer systems from previous year
to provide reasonable constrained baselines for our
newer models.

The CUNI-GA in this task submission combines
hypotheses from CUNI-Transformer n-best lists
created with beam sizes 4, 10 and 25 for each sen-
tence. The resulting 39 translation candidates were
processed by the genetic algorithm. The fitness (ob-
jective) function was a weighted combination of 5
metrics: BLEU, chrF, wmt22-comet-da (CMT22 in
Table 6), wmt22-cometkiwi-da (QE22) and wmt23-
cometkiwi-da-x1 (QE23-XL). The weights and the
obtained scores (chrF, BLEU, QE22, QE23-XL and
MetricX (Juraska et al., 2023)) on the WMT?24 test
set are shown in Table 6. We did not use a develop-
ment set due to high computational requirements
of this approach, the weights are chosen based on
our previous experience. An expected conclusion
is that our approach allows us to easily optimize
for the fitness metrics, which can be seen by com-
paring the QE23-XL scores of baseline translations
(first row) and the score of the translations directly
optimized for this metric (last row).

4.2 Czech-Ukrainian

We will add results for the Czech-Ukrainian sub-
mission in the camera-ready version.

4.3 English-German

For the CUNI-NL submission, we performed in-
ference using the beam search algorithm, with the
beam size of 2 for both checkpoints. We evaluated
the performance of the two checkpoints of this sys-
tem (as trained for speech translation), after epoch
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English-Czech

System Name AutoRank | MetricX] CometKiwi{ Human evaluation?

Unbabel-Tower70B 1.0 1.8 0.732
Claude-3.5 § 2.1 24 0.693
CUNI-MH 2.1 2.3 0.690
CUNI-GA 2.3 3.7 0.726
Gemini-1.5-Pro 2.6 2.8 0.678
GPT-4 § 2.6 2.9 0.682
IOL-Research 2.8 3.0 0.676
ONLINE-W 2.8 2.8 0.669
CommandR-plus § 2.9 2.9 0.669
SCIR-MT 3.2 3.3 0.664
TranssionMT 3.5 3.5 0.655
ONLINE-A 3.6 3.4 0.648
Mistral-Large § 3.7 3.6 0.647
IKUN 3.9 3.7 0.638
ONLINE-B 4.0 3.9 0.640
Llama3-70B § 4.1 4.0 0.640
Aya23 4.3 4.0 0.630
CUNI-DocTransformer 4.4 4.0 0.621
IKUN-C 4.7 4.3 0.618
CUNI-Transformer { 4.7 4.3 0.614
ONLINE-G 5.7 52 0.592
NVIDIA-NeMo t 7.6 6.5 0.536
Phi-3-Medium § 15.0 11.4 0.305
TSU-HITs 19.5 16.6 0.235
CycleL2 24.2 19.5 0.077
CycleL 27.0 225 0.031

Table 8: Preliminary WMT24 General MT automatic ranking for English-Czech. Closed systems are highlighted
with a dark gray background, open systems with a light gray background, and constrained systems are shown on a
white background.
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1 and after epoch 2 of en2de MuST-C corpus, with
the latter performing better, so we chose it for the
final evaluation against the test set this year. The
results of the evaluation on the WMT?23 test set are
shown in Table 7.

4.4 English-Russian

For the CUNI-DS submission, we ran the evalua-
tion on the paragraph level, i.e. the model needed
to output the translation of the whole input at once.
We used greedy decoding due to frequent emission
of repeated tokens (sometimes called “spasm” by
NMT practitioners) we observed with beam search.
The outcomes of the CUNI-DS system’s two-stage
training are presented in Tables 9 and 10.

4.5 Translation into Low-Resource Languages
of Spain

We compare Apertium and two open-source LLMs
— Aya-23-8B and Command-R (35B version, quan-
tized to 4 bits) — in translation from Spanish into
the other languages of the task. We show the scores
in Table 11. We fine-tuned both LLMs as a sin-
gle joint model for all the languages on the back-
translated literary data described in Section 3. We
present BLEU, chrF and COMET-22 scores of the
best-performing checkpoints after fine-tuning in
Table 12. We submitted the translations produced
using the Aya-23 model fine-tuned for 5000 steps.
While the results are at best comparable to Aper-
tium scores, we note that we only did a very light-
weight fine-tuning on synthetic (backtranslated)
data, which shows the potential of LLMs for trans-
lation into previously unsupported low-resource
languages related to a language present in the train-
ing data. For instance, we obtained improvement
from 46.7 to 70.2 ChrF (12.4 to 39.0 BLEU) in
Aragonese by fine-tuning on 24k backtranslated
sentence pairs from a different (literary) domain.

5 Future work

We have several ideas to improve the performance
of the future iterations of our CUNI-MH model:

* Longer sequences: During our SFT stage, we
trained on short sequences, mostly single sen-
tences. In the future, we would like to exper-
iment with training on larger sequences, so
that the model is able to handle longer inputs
in end-to-end fashion.
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* Better CPO dataset: Our current dataset for
CPO (Section 3.2) was created without includ-
ing any filtering steps. The Stage 1 model we
used to create one kind of translation candi-
dates also translated in sentence-level fashion
only. We think there is potential to create a
higher quality dataset by using our final model,
ensuring all translations are done with para-
graph or document level context and possibly
investigating means of filtering out lower qual-
ity examples.

Better QLoRA initialization: During our SFT
stage, we used the default initialization from
the original LoRA paper (Hu et al., 2021).
There are other initialization methods specif-
ically for the combination of LoRA adapters
and quantization, such as LoftQ (Li et al.,
2023) which seems to consistently perform
better for QLoRA. In the future, we would like
to evaluate using this initialization method.

Monolingual pretraining stage: Xu et al.
(2024a) have shown promising results by in-
cluding a stage where they continue pretrain-
ing Llama 2 7B and Llama 2 13B models
on monolingual data covering their target lan-
guages. We think including such a stage be-
fore our SFT stage is worth considering in our
future models.

Optimization of model merging: Our experi-
ments with checkpoint merging (Section 2.5)
were extremely sparse. In the future, we
would also like to evaluate SLERP and lin-
ear interpolation in comparable settings and
a broader range of possible combined models
(checkpoints from a single run vs. checkpoints
across different run branches).

6 Conclusion

In this paper, we presented the CUNI submissions
for the WMT?24 General Translation task and the
Translation into Low-Resource Languages of Spain
task. Our primary focus was on using small open-
source language models for various language pairs
and providing comparisons with our systems from
previous years.

The CUNI-MH system for English-to-Czech
translation, based on Mistral 7B, showed promising
results, possibly because of its CPO stage which
led to a significant improvement of COMET and



Dataset COMET22 COMETKIWI22 BLEU
WMT22 84.24 78.21 24.30
WMT23 75.33 74.81 21.63
WMT23-para 75.33 74.81 25.89

Table 9: CUNI-DS’s segment-level scores for the first stage (en2cs training and en2cs evaluation) across different

test datasets.

Dataset COMET22 COMETKIWI22 BLEU
WMT22 85.81 80.97 24.45
WMT23 85.89 81.02 22.30
WMT23-para 72.27 78.21 21.63

Table 10: CUNI-DS’s segment-level scores for the second stage (en2ru fine-tuning and en2ru evaluation) across

different test datasets.

Model COMET BLEU chrF Model COMET BLEU chrF
Apertium Command-R 4-bit (240)

Aragonese* 0.788 653 82.0 Aragonese 0.779 379 69.7
Aranese 0.623  37.8 599 Aranese 0.634 33.1 574
Asturian 0.652 169 50.6 Asturian 0.699 153 49.0
Command-R 4-bit Aya-23 (5000)

Aragonese 0.702 159 495 Aragonese 0.780 39.0 70.2
Aranese 0.576 45 333 Aranese 0.632 35.0 58.1
Asturian 0.680 145 46.7 Asturian 0.686 152 48.8
Aya-23 Table 12: Scores of the fine-tuned models on FLORES+
Aragonese 0.685 124 46.7 dev set in translation from Spanish into the given lan-
Aranese 0.535 4.1 31.8 guage. Number of fine-tuning steps in the parentheses.
Asturian 0.645 9.0 40.3

Table 11: Scores of the baseline models on FLORES+
dev set in translation from Spanish into the given lan-
guage. We note that the Aragonese part of the test set
was created by post-editing Apertium translation, which
is marked by the asterisk.

COMETKIWI scores, surpassing our previous sys-
tems. The model weights are available on Hugging-
face!?.

Our other submissions explored various tech-
niques, such as transfer learning (CUNI-DS on
en2ru), adaptation from speech translation (CUNI-
NL on en2de) and creation of synthetic data using
backtranslation to evaluate the feasibility of using
LLMs for low-resource languages in the Transla-
tion into Low-Resource Languages of Spain task.

12https ://huggingface.co/wmt24-cuni/CUNI-MH
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A CUNI-MH Model Prompt Template
and Packing

We used the following prompt template for the
model, inspired by the one used in Alpaca (Taori
et al., 2023):

### Instruction:
Translate Input from English to Czech
### Glossary:

### Previous text:

### Input:

{source_text}
### Response:
{target_text}

The Glossary and Previous text sections were
not used for the current task, so we left them empty.
Since we trained only a single translation direction
this time, the instruction remains constant.

Below is a shortened example of the packed!?
and tokenized training data, where <s> stands for
the beginning of sequence token, </s> stands for
the end of sequence token and \n stands for new-
line, the tokens are separated by spaces:

<s> __### _ Inst ruction : \n Trans late
__Input _ from _ English _ to __ Czech
\n ### _ Gl oss ary \n \n ##H _ Pre
vious __text : \n \n ### _ Input : \n It
__had __been __bad __enough , _ calling
__Brother __ when _ she _ was __ with
__him \n ### _ Response : \n By lo
__dost __z1é _ priv ol at _ Br atra
, _kdy z byla s _nim </s>
<s> _ ### _ Inst ruction : \n Trans late
__Input _ from _ English _ to __ Czech
\n ### _ Gl oss ary \n \n ### _ Pre
vious __ text : \n \n ### _ Input : \n To
__do it _ now ? \n ### _ Response

\n Ale ted ? </s><s> ### _ Inst
ruction : \n Trans late _ Input _ from
__English __to __ Czech \n ### _ Gl oss
ary \n \n ### _ Pre vious __text

\n \n ##H# _ Input \n Here ? \n d###

__Response : \n T ady ? </s>
BThe  packing itself is  implemented by
TRL’s ConstantLengthDataset, see https:

//github.com/huggingface/trl/blob/
e3fe28ee1a8bfab9739f849759c93d56776376e2/trl/
trainer/utils.py#L431
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