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Introduction

The Ninth Conference on Machine Translation (WMT 2024) took place on Friday, November 15 and
Saturday, November 16, 2024, immediately following the 2024 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2024) in Miami, Florida, USA.

This is the ninth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, the
third time at EMNLP 2028 in Brussels, Belgium, the fourth time at ACL 2019 in Florence, Italy, the fifth
time at EMNLP-2020, which was held as an online event due to the COVID-19 pandemic, the sixth time
at EMNLP 2021 at Punta Cana, Dominican Republic, the seventh time at EMNLP 2022 in Abu Dhabi,
United Arab Emirates, and the eight time at EMNLP 2023 in Singapore. Prior to being a conference,
WMT was held 10 times as a workshop. WMT was held for the first time at HLT-NAACL 2006 in New
York City, USA. In the following years the Workshop on Statistical Machine Translation was held at
ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio, USA, EACL 2009 in Athens, Gree-
ce, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh, Scotland, NAACL 2012 in Montreal,
Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore, USA, EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 12 shared tasks. These consisted of 8 translation tasks: General Translation, Translation
into Low-Resource Languages of Spain, Low-Resource Indic Language Translation, Chat Translation,
Biomedical Translation, MultiIndic22MT, Non-Repetitive Translation, English-to-Lowres Multi-Modal
Translation, three evaluation tasks: Metrics, MT Test Suites, Quality Estimation, and finally the Open
Language Data Initiative.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2024 has received 54 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2024 featured 25 full research paper presentations and 96 shared task
presentations.

The invited talk entitled “What makes MT research special in the LLM age?was given by Ricardo Rei
and Nuno M. Guerreiro from Unbabel, Portugal.

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with
the evaluations.

Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz

Co-Organizers
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Abstract

This overview paper presents the results of the
General Machine Translation Task organised
as part of the 2024 Conference on Machine
Translation (WMT). In the general MT task,
participants were asked to build machine trans-
lation systems for any of 11 language pairs,
to be evaluated on test sets consisting of three
to five different domains. In addition to par-
ticipating systems, we collected translations
from 8 different large language models (LLMs)
and 4 online translation providers. We evaluate
system outputs with professional human anno-
tators using a new protocol called Error Span
Annotations (ESA).

1 Introduction

The Ninth Conference on Machine Translation
(WMT24)1 was held at EMNLP 2024 and hosted
a number of shared tasks on various aspects of
machine translation (MT). This conference built
on 18 previous editions as a workshop or a con-
ference (Koehn and Monz, 2006; Callison-Burch
et al., 2007, 2008, 2009, 2010, 2011, 2012; Bojar
et al., 2013, 2014, 2015, 2016, 2017, 2018; Barrault
et al., 2019, 2020; Akhbardeh et al., 2021; Kocmi
et al., 2022, 2023).

1www2.statmt.org/wmt24/

The goal of the General Machine Translation
shared task is to explore the translation capabilities
of current systems in diverse settings. We assess
MT systems’ ability to handle a broad range of
translation and language use. How to test general
MT performance is a research question in itself.
Countless phenomena could be evaluated, the most
important being:

• variety of domain (news, medicine, IT, patents,
legal, social, gaming, etc.)

• style of text (formal or spoken language, fiction,
technical reports, etc.)

• non-standard user-generated content (grammati-
cal errors, code-switching, abbreviations, etc.)

• source modalities (text, speech, image)

Evaluating all phenomena is nearly impossible
and creates numerous unforeseen problems. There-
fore, we decided to simplify the problem and tackle
only a selection of the phenomena.

We choose to evaluate different domains, this
year focusing on the following ones: news,
social/user-generated content, speech, literary, and
educational. They were chosen to represent top-
ics with different content styles and to be under-
standable for humans without specialist in-domain
knowledge, thus not requiring specialized transla-
tors or human raters for evaluation. Due to limited
access to monolingual data across all languages,

1

http://www2.statmt.org/wmt24/


the test set for each language direction contains at
most four of the domains (Czech-Ukrainian uses
different domains).
We evaluate a diverse set of languages pairs:

Czech→Ukrainian,
Japanese→Chinese – new,
English→Chinese,
English→Czech,
English→German,
English→Hindi,
English→Icelandic – new,
English→Japanese,
English→Russian,
English→Spanish (Latin America) – new,
English→Ukrainian,

We newly test an audio modality as an additional
source in the speech domain. Participants in this
domain were provided with audio files and auto-
matic speech recognized (ASR) text. Submission
could use the original audio as an additional cleaner
source modality instead of the provided ASR text.

In contrast to previous years, we adopt the Error
Span Annotation protocol (Kocmi et al., 2024b),
ESA for evaluation. This protocol, described in
Section 6, combines aspects of DA (Graham et al.,
2013) and MQM (Lommel et al., 2014).

In a shift towards document-level evaluation, we
no longer provide source texts segmented into indi-
vidual sentences. Instead, we keep all paragraphs
intact and evaluated together.

Finally, this year’s shared task included an
increased number of test suites (Section 8) un-
der the motto “Help us break the LLMs”, focus-
ing on revealing issues in the LLM translations
from different perspectives, including a range of
linguistic phenomena, idiomatic expressions and
proper names, complex sentence structures, multi-
ple domains, translation isochrony, speaker-listener
gender resolution, prompt injection attacks, and
gender-diverse, queer-inclusive content.

All General MT task submissions, sources, ref-
erences and human judgements are available in the
dedicated Github repository.2 The interactive visu-
alization and comparison of differences between
systems can be browsed online on an interactive
leaderboard3 using MT-ComparEval (Klejch et al.,
2015; Sudarikov et al., 2016).

The structure of the paper is as follows. We de-
scribe the process of collecting, cleaning and trans-

2github.com/wmt-conference/wmt24-news-systems
3wmt.ufal.cz

lating the test sets in Section 2 followed by a sum-
mary of the permitted training data and pretrained
models for the constrained track in Section 3. We
list all submitted systems in Section 4. Automatic
evaluation is described in Section 5. The human
evaluation approach of ESA is described in Sec-
tion 6. The main results can be found in Section 7
and their extended version in Appendix D. Finally,
Section 8 describes the test suites and summarises
their conclusions.

Findings of the WMT2024 General MT Task
Across the evaluation conditions, we observe the
following:
• The best systems for English→Spanish produced

close to flawless translations making it the easiest
language pair (Section 6.4).

• The speech domain is the most challenging do-
main (likely due to the ASR) while the other
three domains (news, literary, social) are simi-
larly difficult (Section 6.4).

• Human references are in the winning cluster in
7 out of 11 language pairs. For one of the re-
maining 4 pairs (English→Hindi), we know the
reference quality was suboptimal. This suggest
that ESA protocol works well in our setting.

• ESA produced 37% more clusters than DA+SQM
while using only half the number of human anno-
tations (Section 6.5).

• The best performing system in the open and
constrained system category is IOL-Research
(wins 10 language pairs in this category). The
best performing participating system is Unbabel-
Tower70B, which wins in 8 language pairs. And
the best performing system in general is Claude-
3.5-Sonnet winning in 9 language pairs.

• Automatic scores are biased; although Unbabel-
Tower70B placed first across all languages in
automatic ranking it didn’t perform as the win-
ning system across the board of human evalua-
tion. This is likely because we used the same
metric (COMET) for automatic ranking as the
system used during MBR highlighting the issue
of hill-climbing on automatic metrics.

• We got a total of 28 participants, which nearly
50% more than last year. Most of the participants
use an LLM as a part of their system, generally
by fine-tuning it.
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• Quality estimation metrics with fixed score for
perfect translation and interpretable delta are
promising for checking the quality of standalone
human references.

2 Test Data

In this section, we describe the data collection pro-
cess (Section 2.1), and the production of human
reference translations (Section 2.3).

2.1 Collecting test data

As in previous years, the test sets consist of un-
seen translations created specifically for the shared
task and released publicly to be used as translation
benchmarks. Our aim was to collect public domain
or open-licence source data covering a range of
domains, and we also focused on using as recent
data as possible to limit possible contamination
(particularly relevant when using LLMs).

We chose four main domains from which to col-
lect data (news, literary, speech and social), al-
though we were not able to collect data in all do-
mains for all three source languages (no social do-
main data is provided for Japanese→Chinese and
Czech→Ukrainian data was collected separately,
comprising news data and four other separate do-
mains). For all language pairs, the test sets are
“source-original”, meaning that the text was origi-
nally written in the source language, which is then
manually translated into the target languages. This
is important to avoid “translationese” in the source
texts, which can have a negative impact on eval-
uation accuracy (Toral et al., 2018; Freitag et al.,
2019; Läubli et al., 2020; Graham et al., 2020). We
aimed for a certain number of tokens4 in each do-
main rather than a certain number of sentences
(as in previous years) to better balance the do-
mains and also because the document-level focus
this year allowed avoid manual sentence splitting.
We aimed for approximately 10,000 tokens per do-
main, adjusting this figure in cases where not all
domains could be covered (this is notably the case
for Japanese→Chinese, where the other domains
are up-sampled to account for us not being able to
provide data in the social domain). Basic statistics
of each subdomain are given in Table 1.5

4For Japanese source texts, we choose to use a certain
number of characters, since words are not space-separated.

5Texts are sentence-segmented and tokenised using the
language-specific Spacy models (Honnibal and Montani,
2017) optimised for accuracy where available. For Czech,
we use the multilingual Spacy model, as a language-specific

Note that by default, when languages are men-
tioned in this section, this refers to the source lan-
guage of the texts.

News domain This domain contains data pre-
pared in the same way as in previous years (Kocmi
et al., 2023). We collected news articles from Jan-
uary 2024 extracted from online news sites, pre-
serving document boundaries. We expect that news
domain text will generally be of high quality.

For Japanese, the total amount of text data was
determined by the number of characters since
Japanese does not put spaces between words. Us-
ing the WMT23 Japanese test set and its translation
into English, we found the ratio of the number of
Japanese characters to English words was 2 to 1.
Since the English news test set consisted of 8K
words, we started making a Japanese news test set
with a goal of 16K characters. After discovering
that the Japanese social domain was unavailable,
we set this goal to 24K characters.

Literary Domain The English source texts were
manually selected from Archive of Our Own,6 fo-
cusing on recent, high-quality stories.7 The stories
were divided into 1000-word segments, ensuring
the preservation of entire paragraphs. In total, we
obtained data from four stories (8K words).8

For the Japanese source texts, we selected five
novels recently made public on Aozora Bunko,9 a
website that digitizes and publishes Japanese liter-
ary works whose copyright has expired. To main-
tain consistency with the English dataset, we tok-
enized the Japanese novels using MeCab (Kudo,
2005) and divided them into segments of up to
1000 tokens, while preserving paragraph bound-
aries. The final size of the Japanese literary test set
was 15 chunks (22K characters).

Speech domain The speech data corpus was
compiled from a diverse range of YouTube videos
licensed under Creative Commons. These sources
encompassed various domains, including documen-
taries, instructional (DIY) videos, tutorials, travel
blogs, and film content. For this part of the test
set, segments from 166 videos were selected and
processed through automated speech recognition
(ASR) systems. For the English-language source

one is not available. Note that statistics, particularly for this
language, are approximate.

6archiveofourown.org
7Texts were published between February and April 2024.
8For each, we select first two chunks of up to 1000 words.
9aozora.gr.jp
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Language pair News Literary Speech Social Education Official Personal Voice

#tokens

English→* 9,268 9,601 9,611 9,829 - - - -
Japanese→Chinese 14,896 14,541 11,025 - - - - -
Czech→Ukrainian 7,996 - - - 7,825 6,029 6,846 5,305

#segs (% of total #segs for language pair)

English→* 149 (14.9) 206 (20.7) 111 (11.1) 531 (53.3) - - - -
Japanese→Chinese 269 (37.3) 316 (43.8) 136 (18.9) - - - - -
Czech→Ukrainian 175 (7.6) - - - 1160 (50.1) 243 (10.5) 323 (13.9) 415 (17.9)

#docs (#segments/doc)

English→* 17 (8.8) 8 (25.8) 111 (1.0) 34 (15.6) - - - -
Japanese→Chinese 45 (6.0) 15 (21.1) 136 (1.0) - - - - -
Czech→Ukrainian 23 (7.6) - - - 166 (7.0) 23 (10.6) 29 (11.1) 61 (6.8)

#sents (#sents/doc)

English→* 333 (19.6) 607 (75.9) 685 (6.2) 759 (22.3) - - - -
Japanese→Chinese 634 (14.1) 875 (58.3) 332 (2.4) - - - - -
Czech→Ukrainian 439 (19.1) - - - 1166 (7.0) 412 (17.9) 571 (19.7) 462 (7.6)

Type-token ratio of source texts

English→* 0.30 0.23 0.24 0.27 - - - -
Japanese→Chinese 0.22 0.20 0.19 - - - - -
Czech→Ukrainian 0.46 - - - 0.39 0.45 0.34 0.37

Table 1: Basic statistics concerning the subdomains of each test set. Statistics are calculated on the source side. Sentence
segmentation and tokenisation are carried out automatically as described in Footnote 5.

material, we used the proprietary Dubformer en-
gine developed in-house. Japanese-language con-
tent was processed using the Whisper ASR system
(Radford et al., 2022).

For Japanese, We selected 136 segments from 56
YouTube videos. They include both monologues
and dialogues, as well as a variety of speakers, both
men and women, adults and children. Video con-
tent includes press conferences, interviews, cook-
ing recipes, travel vlogs, DIY videos, tutorials,
product reviews, etc. We decided the total amount
of speech data based on the number of characters
transcribed. We started creating the data with a
target of 16K characters and eventually ended up
with 18K characters.

Social domain The social domain data is sourced
using the Mastodon Social API.10 Mastodon is a
federated social network that is compatible with the
W3C standard ActivityPub (Webber et al., 2018).
Users publish short-form content known as “toots”,
with the possibility of replying to other toots to
form threads. We decided to use the original server,
mastodon.social because of its large commu-
nity and publicly available toots.

We collected data in the first four months of
2024, using the reported language ID label to target
the source languages of interest. Unfortunately,

10mastodon.social/api/v1/timelines/public

there were too few good quality posts for Czech
and Japanese, and we therefore only release social
domain data for English.

Given the document-level nature of the task this
year, our aim was to collect threads comprising
multiple toots. Our sourcing therefore involved
regularly scraping random toots from the previous
hour but also identifying and scraping any missing
toots that made up threads only partially sourced
(identified using the ‘in_reply_to_id’ attribute of
already sourced toots). To avoid spam and uninfor-
mative toots, we removed empty toots, texts that
appeared several times (probable spam), texts from
accounts that produced a large number of toots
overall (we set this to 100 for a total of 1.5M toots
scraped) and from accounts we heuristically identi-
fied as being news outlets or bots (containing the
keywords ‘bot’, ‘news’, ‘weather’, ‘sports’, ‘feeds’
or ‘press’ in their handle). We created threads from
the individual toots and manually selected threads
of interest from threads of minimum 2 and maxi-
mum 100 toots. Our selection was based on having
a diverse range of topics and targeting those char-
acteristic of non-standard user-generated content.

The selected documents contain between 5 and
76 segments of text, each segment corresponding
either to a whole toot or a line of text within a toot
(depending on whether the toot contained newlines,
i.e. there is no distinction between newlines indi-
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cating a boundary between two toots and a newline
within a toot). Each segment can therefore contain
one or several sentences, depending on the original
composition of the toots.

Czech and Ukrainian source texts Source texts
for Czech→Ukrainian translation included the
news domain as described above, Educational do-
main collected from online exercises and three do-
mains (Personal, Official and Voice) from texts col-
lected through Charles Translator.11 The Charles
Translator mobile app supports voice input, which
is converted to text using Google ASR. The texts
collected this way were marked as the Voice do-
main. The remaining Czech inputs from the
Charles Translator service were classified either as
Official (formal communication) or Personal (per-
sonal communication, usually between a Czech
and Ukrainian speaker).

The texts were filtered and pseudonymized in
the same way as in the last two years (Kocmi et al.,
2022). For example we asked the annotators not
to delete or fix noisy inputs as long as they are
comprehensible. The only exception was the voice
domain, where the source texts were post-edited to
fix ASR errors, including punctuation and casing.

The Educational domain includes selected exer-
cises from an online portal Škola s nadhledem12

for elementary-school students from various sub-
jects (chemistry, geography, Czech language, etc.).
Some segments are not full sentences but short
phrases. The reference translations for this domain
were created by professional translators within the
EdUKate project.

2.2 Comparison between Domains

Due to the change to document-level translation
this year, for each language direction, we measured
the amount of text per domain by counting tokens,
aiming for approximately the same number of to-
kens per domain (see Table 1 for statistics of the
different domains). In one sense, this means that
the amount of textual content is roughly balanced
per domain, as opposed to taking the same number
of sentences per domain, which would result in
domains with longer sentence lengths (e.g. news
or literary) being over-represented with respect to
domains with shorter sentences (e.g. social). How-
ever, it is worth noting that the nature of documents,
in terms of their length and structure, differs greatly

11translator.cuni.cz
12skolasnadhledem.cz

depending on the domain. This can be exemplified
at its most extreme by a comparison between the lit-
erary, social and speech domains for from-English
language directions.

The literary domain has only 8 documents, each
one containing a large number of segments (25.8
on average), with each segment containing an aver-
age of 75.9 sentences. A document represents an
extract from a longer literary text and each segment
represents a paragraph of text.

The speech domain is represented by a larger
number of documents (111), each one containing
a single segment, composed of an average of 6.2
sentences. Each document in this case corresponds
to a short dialogue, provided without segmentation
into dialogue turns.

The social domain is represented by a fair num-
ber of documents (34 in total), but the composition
is very different from the other domains, as we
made a choice to preserve the structure of the ini-
tial posts (new-line separated text is represented by
multiple segments) and of the thread itself (sepa-
rate posts are separate segments). This has the ad-
vantage of preserving post boundaries and format-
ting choices, but has the disadvantage of creating a
large number of individual segments (531 in total,
compared to 206 for the literary domain and 111
for the speech domain), each containing few sen-
tences. This has two main consequences: (i) if seg-
ments are handled individually by systems, most
sentences will be handled with little context, since
the other sentences appear in separate segments,
(ii) in terms of the overall number of segments
evaluated in the human evaluation (see Section 6),
the social domain represents over half of the total
number of evaluated segments (53.3% compared
to 20% for the literary domain and only 11.1%
for the speech domain). This has consequences
for the calculation of macro-average scores when
computing human rankings, as discussed in Sec-
tion 7.1. The formatting choice could be rethought
for future years, although would have to take into
account the particularities of non-standard text in
order to not introduce extra noise (e.g. concatenat-
ing newline-separated sentences would have to take
into account the potential lack of end-of-sentence
punctuation, but it would also have to take into
account instances where newlines are used with a
single sentence for purely visualisation purposes.
A possible solution would be to allow a linebreak
symbol such as <br/> to appear in the segments.
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2.3 Human References

The test sets were translated by professional trans-
lation agencies, according to the translation brief
shown in Appendix C. Different partners sponsored
each language pair and various translation agencies
were therefore used, which could affect the differ-
ences and quality of translations.

The quality of human references is critical es-
pecially for reference-based metrics (Freitag et al.,
2023), and getting high quality translations is chal-
lenging despite the use of professional translators.
Therefore, we propose to use a quality estimation
metric to assess the quality of translation. We need
a metric whose score is interpretable in an abso-
lute way, i.e. a metric that generates a fixed score
for perfect translations (such as 0) and has an un-
derstandable delta (for example -1 means a single
minor error as in MQM-based metrics). For that
reason, we chose a GPT-4-based implementation
of GEMBA-MQM (Kocmi and Federmann, 2023).

Table 2 shows the GEMBA scores for individual
domains together with the ESA human cluster that
was obtained a few months later in our official
manual evaluation.

The two target languages with the lowest
GEMBA scores were Russian and Hindi. The ven-
dor providing Russian translations improved the
initial quality of translations after being presented
with the GEMBA scores. On the other hand, the
vendor providing Hindi translators claimed that the
translations were flawless.

When we compare the average GEMBA score to
human rank in Table 2, we can see that human ref-
erence is ranked in the top cluster for all languages
except of Hindi, Ukrainian, and Chinese. While
the GEMBA score did not reflect lower quality of
Ukrainian, its low score for Hindi was confirmed
by ESA. This shows that using quality estimation
metrics is a possible way of assessing the quality
of human translations, although better approaches
needs to be developed.

2.4 Test Suites

In addition to the test sets of the regular domains,
the test sets given to the system participants were
augmented with several test suites, i.e. custom-
made test sets focusing on particular aspects of
MT translation. The test suites were contributed
and evaluated by test suite providers as part of a de-
centralized sub-task, detailed in Section 8. Across
all language pairs of the shared task, test suites

Literary News Social Speech Avg. Hum.

En.→Czech -2.4 -2.0 -1.9 -1.8 -2.03 1
En.→GermanA -2.1 -2.0 -2.3 -2.3 -2.18 1
En.→GermanB -2.7 -0.8 -1.7 -2.0 -1.80 1
En.→Spanish -1.1 -1.6 -1.2 -1.6 -1.38 1
En.→Hindi -3.4 -4.5 -2.5 -2.9 -3.33 3
En.→Icelandic -2.6 -0.8 -1.9 -1.4 -1.68 1
En.→Japanese -1.7 -1.6 -1.7 -1.7 -1.68 1
En.→Russian -2.6 -2.8 -2.5 -2.3 -2.55 1
En.→Ukrainian -1.8 -1.0 -2.0 -2.3 -1.78 3
En.→Chinese -3.1 -1.7 -2.8 -2.2 -2.45 2

Table 2: GEMBA-MQM score for human references. The
first four columns are scores for individual domains, the fifth
column is the average. The last column is the human clus-
ter assigned with ESA protocol. Czech→Ukrainian is not
included because of different domains and source data.

contributed 718,598 source test segments (detailed
numbers can be found in Table 9).

3 Training Data

Similar to the previous years, we provide a se-
lection of parallel and monolingual corpora for
model training. The provenance and statistics of
the selected parallel datasets are provided in the
appendix in Table 10 and Table 11. Specifically,
our parallel data selection include large multilin-
gual corpora such as Europarl-v10 (Koehn, 2005),
Paracrawl-v9 (Bañón et al., 2020), CommonCrawl,
NewsCommentary-v18.1, WikiTitles-v3, WikiMa-
trix (Schwenk et al., 2021), TildeCorpus (Rozis
and Skadin, š, 2017), OPUS (Tiedemann, 2012),
CCAligned (El-Kishky et al., 2020), UN Paral-
lel Corpus (Ziemski et al., 2016), and language-
specific corpora such as CzEng v2.0 (Kocmi
et al., 2020), YandexCorpus,13 ELRC EU Acts,
JParaCrawl (Morishita et al., 2020), Japanese-
English Subtitle Corpus (Pryzant et al., 2018),
KFTT(Neubig, 2011), TED (Cettolo et al., 2012),
and back-translated news.

Links for downloading these datasets were pro-
vided on the task web page. In addition, we
have automated the data preparation pipeline us-
ing MTDATA (Gowda et al., 2021).14 MTDATA

downloads all the mentioned datasets, except
CzEng v2.0, which required user authentication.
This year’s monolingual data include the following:
News Crawl, News Discussions, News Commen-
tary, CommonCrawl, Europarl-v10 (Koehn, 2005),
Extended CommonCrawl (Conneau et al., 2020),
Leipzig Corpora (Goldhahn et al., 2012), UberText
and Legal Ukrainian.

13github.com/mashashma/WMT2022-data
14statmt.org/wmt24/mtdata
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System Language pairs Architecture Strategy

AIST-AIRC (Rikters and Miwa, 2024) en�de, en�ja dec, enc-dec, MEGA sentence
AMI (Jasonarson et al., 2024) en�is enc-dec hybrid
BJFU-LPT cs�uk – –
CUNI-DOCTRANSFORMER (Hrabal et al., 2024) en�cs enc-dec paragraph
CUNI-TRANSFORMER (Hrabal et al., 2024) cs�uk, en�cs enc-dec sentence
CUNI-DS (Semin and Bojar, 2024) en�ru dec sentence
CUNI-GA (Hrabal et al., 2024) en�cs enc-dec sentence
CUNI-MH (Hrabal et al., 2024) en�cs dec sentence
CUNI-NL (Hrabal et al., 2024) en�de dec sentence
CYCLEL (Dreano et al., 2024) All language pairs CycleGAN –
CYCLEL2 (Dreano et al., 2024) en�cs, en�de, en�ru, en�zh CycleGAN –
DLUT-GTCOM (Zong et al., 2024) en�ja, ja�zh enc-dec –
DUBFORMER en�de, en�es, en�is, en�ru, en�uk – –
HW-TSC (Wu et al., 2024) en�zh hybrid sentence
IKUN (Liao et al., 2024) All language pairs dec sentence
IKUN-C (Liao et al., 2024) All language pairs dec sentence
IOL-RESEARCH (Zhang, 2024) All language pairs dec paragraph
MSLC (Larkin et al., 2024) en�de, en�es, ja�zh enc-dec sentence
NTTSU (Kondo et al., 2024) en�ja, ja�zh hybrid paragraph
NVIDIA-NEMO All except cs�uk, en�is and ja�zh dec paragraph
OCCIGLOT (Avramidis et al., 2024) en�de, en�es dec –
SCIR-MT (Li et al., 2024) en�cs dec –
TEAM-J (Kudo et al., 2024) en�ja, ja�zh hybrid hybrid
TRANSSIONMT All except en�ja, en�zh and ja�zh enc-dec –
TSU-HITS (Mynka and Mikhaylovskiy, 2024) en�cs, en�de, en�es, en�is, en�ru ddm sentence
UNBABEL-TOWER70B (Rei et al., 2024) All language pairs dec paragraph
UVA-MT (Tan et al., 2024) en�ja, en�zh, ja�zh hybrid hybrid
YANDEXSUBTITLES (Elshin et al., 2024) en�ru dec paragraph

AYA23 (Aryabumi et al., 2024) All language pairs dec paragraph
CLAUDE-3.5 All language pairs dec paragraph
COMMANDR+ All language pairs dec paragraph
GPT-4 (OpenAI, 2024) All language pairs dec paragraph
GEMINI-1.5-PRO (Team, 2024a) All except en�is dec paragraph
LLAMA3-70B (Team, 2024b) All language pairs dec paragraph
MISTRAL-LARGE (Jiang et al., 2023) All language pairs dec paragraph
PHI-3-MEDIUM (Team, 2024c) All language pairs dec paragraph

ONLINE-A All language pairs – –
ONLINE-B All language pairs – –
ONLINE-G All language pairs – –
ONLINE-W All except en�is and en�hi – –

Table 3: Participating submissions in the General MT shared task. The top section covers the externally contributed submissions,
the middle section lists the language models added by us and the lower section covers the online systems. Online system
translations were not submitted by their respective companies but were obtained by us, and are therefore anonymized in a
fashion consistent with previous editions of the task. Row coloring shows closed-track (dark gray), open-track (light gray)
and constrained (white background) submissions. The Architecture column shows whether the submission used decoder-only
language models (dec), sequence-to-sequence (enc-dec), hybrid between dec and enc-dec or other architectures. The Strategy
column shows the approach used to handling paragraph-level test data: sentence-level training and translation (sentence),
paragraph-level training and translation (paragraph), hybrid between both (hybrid). Some values are unknown (–) due to missing
information or submission papers.
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4 System Submissions

This year, we received a total of 105 primary sub-
missions from 28 participants. The increase in
number of participants from last year’s 19 can be
explained by the shift in the field and the ease with
which LLMs can be fine-tuned. The increased num-
ber of primary submissions can be explained by the
fact that most submissions are multilingual and
therefore cover many translation directions.

In the same manner as previous years, we also
collected translations from online MT systems
for all language pairs. Online system outputs
come from four public MT services and were
anonymized as ONLINE-{A,B,G,W}, which re-
sulted in further 42 system outputs. Finally, we
added contrastive translations by 8 LLMs, which
included closed commercial products (such as GPT-
4) and open models (such as Llama3). This resulted
in 95 more submissions, with the total number of
submissions being 242.

All participating systems are listed in Table 3.
Appendix B provides more detailed short descrip-
tions of the submitted systems, as provided by
the authors at submission time. Section 4.1 dis-
cusses the general trends in chosen architectures
and approaches to paragraph-level translation. Sec-
tion 4.2 presents details on LLM benchmark us-
age in the task. Section 4.3 describes the different
tracks to which participants could submit outputs:
constrained, open and closed track. Section 4.4
describes the submission system setup.

4.1 Architectures and Strategies

In addition to a reference to a description paper
(if one was provided), the submission name and
the list of language pairs covered, Table 3 includes
columns for the architecture and strategy used to
approach the task of paragraph-level translation.
If we compare the frequency of usage of differ-
ent architectures between the external participants
(i.e,. excluding benchmarking LLMs and online
systems), we can see that:

• 11 participants train decoder-only language mod-
els (dec in Table 3)

• 7 participants train encoder-decoder seq2seq
transformer models (enc-dec)

• 4 participants use a hybrid of the decoder-only
and encoder-decoder architectures (hybrid)

• 3 alternative architectures were used: MEGA
(Ma et al., 2023) in AIST-AIRC, CycleGAN (Zhu
et al., 2017) in CycleL and discrete diffusion
models in TSU-HITs.

Not all description papers specified the strategy
used to translate the test set paragraphs. Of those
who did, 5 submissions approached it by explic-
itly training paragraph-level translation systems,
while 11 submissions translated single sentences
after sentence-splitting the paragraph. 3 submis-
sions described a hybrid approach of, for example,
translating single sentences but automatically post-
editing at the paragraph level. Several papers do
not mention the strategy at all. We plan to address
this lack of information in future WMT editions
by requesting that the information be provided at
submission time.

Interestingly, the paragraph-level approach is
not limited to a single architecture: for instance,
the CUNI-DocTransformer team uses an encoder-
decoder approach, but trains it on paragraph-level
parallel data, which includes synthetic data. There
are examples to the contrary: several submissions
fine-tune a decoder-only language model, but apply
it to translate single sentences (IKUN, AIST-AIRC,
several CUNI submissions).

Finally, almost all submissions used an LLM as
a part of their setup. The most common use is fine-
tuning of a pretrained model, most often LLama.
Other uses of LLMs are for generating or cleaning
up training data with an LLM (Jasonarson et al.,
2024) or using an LLM for automatic post-editing
(Tan et al., 2024).

4.2 LLM Benchmark
Over the last year, many new LLMs claimed multi-
lingual and translation capabilities. However, there
is no systematic and reliable MT evaluation of the
most popular LLMs using the same setup on blind
test sets. We therefore decided to collect the trans-
lations of LLMs ourselves.

We design unified code for collecting the trans-
lations in an identical setup for all LLMs. We used
a 3-shot approach, where three fixed examples are
taken from the past WMT test sets. We set the tem-
perature to zero to avoid introducing randomness
into the process.15

We evaluated most of the popular LLMs,
both closed-source models and those with open

15The code for collecting translations is available at:
github.com/wmt-conference/wmt-collect-translations
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Language model Input tok. Output tok. Cost

Aya23 4.4 M 0.7 M 4.1 $
Claude-3.5 5.5 M 1.0 M 31.9 $
CommandR-plus 4.4 M 0.7 M 23.4 $
Gemini-1.5-Pro 3.9 M 0.6 M 40.3 $
GPT-4 5.9 M 1.0 M 240.4 $
Llama3-70B 5.0 M 0.7 M 5.1 $
Mistral-Large 6.0 M 1.1 M 37.0 $
Phi-3-Medium 5.9 M 1.1 M 4.5 $

Table 4: Number of input and output tokens and estimated
pricing for translating the full WMT24 test set without test
suites. The Gemini model refused to translate Icelandic, and
the estimate is therefore lower. Pricing for the open models
Aya23 and Llama3 was estimated via together.ai.

weights. Specifically, we collect translations from
Aya23, Claude-3.5-Sonnet, Command R+, GPT-
4, Gemini-1.5-Pro, Llama3-70B, Mistral-Large,
Nvidia-NeMo and Phi-3-Medium. As most of the
models do not claim multilingual capabilities for
all languages covered, we looked into the original
reports for these LLMs to see which languages are
claimed to be supported. We check if both source
and target language are mentioned or evaluated in
any of their multilingual settings. We mark LLMs
that do not officially claim a support for a given
language with the § symbol in the tables. However,
to avoid selection bias, we collect translations for
all languages for all LLMs, even those not officially
claimed to be supported.

We collect all translations via the API of the re-
spective services, and all data was collected during
the submission week. Table 4 shows the number
of input and output tokens as segmented via the
models’ internal tokenizers. The estimated cost
is for the whole test set without test suites. Note
that the prices for more recent GPT models are
significantly lower.

4.3 Constrained, Open, and Closed Tracks

We distinguish three types of MT systems partic-
ipating in the shared task: constrained, open and
closed systems. The main idea is to level the field
for different setups. For the constrained setup, we
only allow specific training data and pretrained
models from a specified list. Open systems are
those developed using publicly available data or
models. The final group of closed systems corre-
sponds to all other systems that are built at least
partly with a non-replicable setup.

• Constrained systems are those using only the
specifically allowed training data (see Section 3)
and the following pretrained models: Llama-2-

7B, Llama-2-13B, Mistral-7B, mBART, BERT,
RoBERTa, XLM-RoBERTa, sBERT, LaBSE.
Constrained systems may use any publicly avail-
able metric that was evaluated in past WMT Met-
rics shared tasks (e.g. COMET or Bleurt) and
any basic linguistic tools (e.g. taggers, parsers,
morphology analyzers).

• Open systems (marked in tables with a light gray
background) are limited to using software, data
and models that are freely available for research
purposes, so that the subsequent work could be
replicated by a research group.

• Closed systems (marked with dark gray) cor-
respond to all the remaining (fully automatic)
systems, with no limitations imposed on their
training data (all ONLINE systems and LLMs
released without binaries fit into this category).

4.4 OCELoT
We used the open-source OCELoT platform16 to
collect system submissions again this year. As in
previous years, only registered and verified teams
with correct contact information were allowed to
submit their system outputs and each verified team
was limited to 7 submissions per test set. Sub-
missions on leaderboards with BLEU (Papineni
et al., 2002) and CHRF (Popović, 2015) scores from
SacreBLEU (Post, 2018) were displayed anony-
mously to avoid publishing rankings based on au-
tomatic scores during the submission period. Un-
til one week after the submission period, teams
could select a single primary submission per test
set, specify if the primary submission followed a
constrained, open or closed system setting, and sub-
mit a system description paper abstract. These were
mandatory for a system submission to be included
in the human evaluation campaign.

5 Automatic Evaluation

This year, we received an unusually high number of
submitted systems and we were not able to provide
manual evaluation for all of them. Therefore, we
decided to use automatic metrics to preselect the
best performing systems with a method we call
AutoRank, which is based on two different metrics:

• MetricX-23-XL (Juraska et al., 2023), a
reference-based metric built on top of the mT5
model (Xue, 2020).
16github.com/AppraiseDev/OCELoT
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(a) Excerpt of two segments from a larger document. In the first
segment, the name “Kayel” is omitted which is a major error. In
the second segment, there are many minor errors.

(b) Example of a video to text translation with several minor
errors. The annotator can control the video player.

Figure 1: Two screenshots of ESA (Kocmi et al., 2024b) and the annotator instructions. ESA shows multiple segments within a
document at once as well as video sources. After marking the individual error spans, the annotator assigns the final segment
score from 0 to 100. The tool is implemented in Appraise (Federmann, 2018).

• CometKiwi-DA-XL (Rei et al., 2023), a quality
estimation metric built on the XLM-R XL model
(Conneau, 2019).

Both metrics are top performing metrics (Freitag
et al., 2023), and we intentionally select two dis-
tinct metrics (different underlying pretrained sys-
tems and architectures) to minimize their bias and
potential problems. Although quality estimation
is on average slightly worse than reference-based
evaluation, it helps us to avoid a potential reference
bias when human references are suboptimal (Fre-
itag et al., 2023). Multilingual quality estimation
can be fooled when the translation is in the incor-
rect language, which the reference-based metric
will penalize.

To compute MetricX, we used the official imple-
mentation17 and the “google/metricx-23-xl-v2p0”
model. MetricX produces scores at the segment
level. To obtain scores at the system level, we aver-
aged the segment scores. To compute CometKiwi
scores, we used the official implementation18 with
the “Unbabel/wmt23-cometkiwi-da-xl” model, a
reference-free model, taking the translation hypoth-
esis and the source segment as inputs. COMET
can produce system-level scores so we use them
directly.

To merge the two metrics, we first linearly scale
the scores of each metric to a range between 1 and

17github.com/google-research/metricx
18github.com/Unbabel/COMET

the number of systems for a given language pair.
We then average both normalized scores to reach
the final automatic ranking, which we refer to as
AutoRank. We provide a Jupyter notebook in the
WMT24 repository to reproduce the scores.19

5.1 Selecting Systems for Human Evaluation

When selecting the systems for human evaluation,
we prioritize open and constrained systems while
penalizing closed systems. We select a subset of
10 to 15 systems per language pair based on Au-
toRank and following two rules. First, we exclude
closed systems that are not among the first third
of all systems and we exclude open systems that
are not among the top two thirds of all systems.
Second, motivated by several very low-performing
systems, we also define a hard cutoff point. Af-
ter this point we do not evaluate any system from
any category. The cutoff point is selected as the
first gap between two neighboring system’s ranks
larger than 1.5 of AutoRank. This decision was
discussed and published in more detail in Kocmi
et al. (2024a).

6 Human Evaluation

This year’s human evaluation features Error Span
Annotation (ESA; Kocmi et al., 2024b) for
most languages. For Japanese→Chinese and

19github.com/wmt-conference/wmt24-news-
systems/blob/main/Automatic_Evaluation.ipynb
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Language pairs Annotators’ profile Tool

English→Chinese/Japanese/
Hindi/Spanish

Microsoft annotators — bilingual target-language native speak-
ers, professional translators or linguists, experienced in machine
translation evaluation.

Appraise ESA

Czech→Ukrainian
English→Czech

ÚFAL Charles University annotators — linguists, annota-
tors, researchers, and students who were native speakers in
the target language and had a very high proficiency in En-
glish (for English→Czech) and good knowledge of Czech (for
Czech→Ukrainian).

Appraise ESA

English→Ukrainian/
Russian/Spanish

Toloka AI paid expert crowd — Bilingual native target-language
speakers who were high-performing on the platform.

Appraise ESA

English→Icelandic
The Árni Magnússon Institute for Icelandic Studies annotators —
bilingual target-language native speakers, paid translators with
10–25 years of experience in Icelandic↔English translation.

Appraise ESA

English↔German
Japanese→Chinese Campaign managed by the 2024 metrics shared task.

Google MQM

Table 5: Annotators’ profiles and annotation tools for each language pair in the human evaluation. English→Spanish was split
between Microsoft and Toloka AI. All annotators were paid a fair wage in their respective countries.

English→German, we rely on the evaluation cam-
paign from the metrics shared task 2024 (Freitag
et al., 2024), which uses Multidimensional Quality
Metrics (MQM; Lommel et al., 2014).

Annotation Protocol. ESA is based on highlight-
ing/marking errors without classifying them into
different error types (Kreutzer et al., 2020; Popović,
2020) and represents a compromise between over-
all scoring (such as direct assessment, DA; Graham
et al. 2013) and error classification (such as MQM;
Lommel et al. 2014).

The annotators (professional translators but not
experts in MQM/ESA-style annotations) were
asked to mark each error as well as its severity,
“Minor” or “Major”, as in Kocmi et al. (2024b);
Popović (2020). In addition, the annotators were
also asked to assign a score from 0 to 100, similar
to DA, to the whole annotation segments (usually a
sentence or a paragraph). However, the ESA score
should be more robust than DA alone because the
annotators are primed by the highlighted errors at
the time of the scoring.

The interface is shown in Figure 1 with annota-
tor instructions and other changes from the original
implementation by Kocmi et al. (2024b) given in
Appendix A. At the start of annotation, each anno-
tator was exposed to an interactive tutorial where
they were asked to interact with the system. The
length of the context given to the annotators varies
depending on the domain, ranging from one to ten
sentences, as discussed in Section 6.1. The source
for the speech domain is a video which is shown in

Systems Annotators
Language pair Duplication Assess./system

Cs→Uk 11 1.0 14 1299
En→Czech 15 1.3 20 751
En→Spanish 13 1.0 14 370
En→Hindi 10 1.3 15 775
En→Icelandic 10 1.0 4 376
En→Japanese 12 1.5 14 1212
En→Russian 13 1.0 7 370
En→Ukrainian 10 1.0 8 376
En→Chinese 12 1.5 12 1217

Table 6: Number systems, annotators, and number of as-
sessments per system in a language pair. Duplication of d
means that each segment is annotated by d annotators. All
language pairs had 649 segments over 170 documents except
for Czech→Ukrainian which had 1954 segments over 302
documents. In total we collected 57k segment-level annota-
tions. English→German and Japanese→Chinese are managed
by the metrics shared task 2024.

a native HTML video player.
The output of the ESA annotation is a list of

errors and their severity (minor or major) and the
final score from 0 to 100 for each segment.

Human Annotators Campaigns for different lan-
guage pairs were managed by various vendors, as
described in Table 6. In all cases, professional
translators-cum-annotators are used. This is an in-
creasingly strict requirement given the high quality
of MT systems, which requires more expert anno-
tators.

6.1 Data Preparation
Document Filtering. In our setup, all systems
for a given language pair are evaluated on the same
set of segments. On average, we start with 1092
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lines per system, encompassing 184 documents.
However, the distribution of document lengths is
unbalanced. The majority of the documents (104)
consist of just a single line, which is almost ex-
clusively due to video translation segments (103),
where each “document” contains strictly one seg-
ment. On average, 33 documents per language
contain more than 10 segments. We limit these doc-
uments to the first 10 segments, motivated by the
difficulty of annotating very long documents while
maintaining relevant context in mind. After this
adjustment, we arrive at an average of 744 lines per
system. An overview is shown in Table 6.

Workload balancing We use the term “task” as
a contained unit of 100 annotation segments. Each
annotator is usually assigned to multiple tasks. This
100-segment constraint was kept for historical rea-
sons and will be dropped in future iterations. In
order to make it so that each task contains a com-
parable amount of work, we attempt to balance the
number of words in each task to be as constant as
possible.

For each task, we show a tutorial at the begin-
ning consisting of 2 documents with 6 segments in
total. The tutorial is for German→English transla-
tion but does not require any knowledge of German.
Finally, we reserve 12 segments for quality control
(Section 6.2) in each task. The resulting 82 seg-
ments are filled with full documents as much as
possible. If that is not possible (i.e., because the
next document is too long), a random document is
drawn that is either duplicated or incomplete, in
order to fill the 100 segments.

Annotation waves In order for a segment to be
useful in the evaluation, we require that translations
by all systems are evaluated. We therefore split (at
the document level) the translated data for each
language into two “waves”, each of which covers
a distinct set of source segments. The vendors are
instructed to start the second campaign only after
the first one is fully complete.

For some language pairs, the vendors finished
early. In this case, we prepared an extra two waves,
with a different coverage split of the same data,
which they annotated afterwards. As a result, some
language pairs have multiple annotations per source
segment, was shown in Table 6. This is useful to
compute inter-annotator agreement but also pro-
vides less noisy annotations.

6.2 Quality Control
Each task (100 segments) includes 12 quality con-
trol segments to ensure the high quality of the an-
notations. The tasks are created as follows:

1. The task (a maximum of 100 segments) is filled
with machine-translated documents to be evalu-
ated.

2. A random document is selected from the task.
3. Segments within the sampled document are per-

turbed.
4. The perturbed document is shuffled within the

task at the document-level.
5. Steps 2-4 are repeated until 12 quality control

segments are included in the task.

The segment perturbation is done by randomly sam-
pling a span from the segment and replacing it with
random text sampled from the entire corpus in the
correct language. Since segment lengths vary and
a single perturbation could be lost in a very large
paragraph, we apply as many perturbations as there
are sentences in the output. See Figure 2 for an
example.

Source: Sie haben gestern das Treffen wieder verschoben.
Original: He postponed the meeting again yesterday.
Perturbed: He postponed the meeting squirrels are never.

Figure 2: An example of a perturbed translation based on the
original system translation. In addition to the original error
(the correct pronoun here is They and not He), we introduce
the perturbed part.

After each task is completed, we check whether
the perturbed segments received lower scores.
Specifically, we compare the distribution of 12 orig-
inal and 12 perturbed segments with a one-sided
Mann-Whitney U test (Mann and Whitney, 1947).
If the task fails to pass quality control (p>0.05),
it is reset and reassigned to another annotator.20

In the final data, 96% of perturbed segments have
lower scores than their original counterparts.

6.3 Human Data Analysis
We briefly analyze the data from a broader perspec-
tive. The scores given by the annotators are largely
concentrated near 100, with a small peak around
0 (see Figure 3). Most languages consistently had
very few errors per segment, resulting in higher
overall scores (see Table 7). For instance, for the
Czech→Ukrainian, an average of 0.2 minor errors

20Task generation code: github.com/wmt-conference/
ErrorSpanAnnotations/tree/main/preparation/wmt24
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and 0.1 major errors per segment means there is ap-
proximately one minor error for every 5 segments
and one major error for every 10 segments.

The annotation time, which is the primary focus
of the analysis in Kocmi et al. (2024b), is simi-
lar across most languages with the exception of
English→Icelandic. This could be caused either
by more meticulous annotators or lower quality of
submitted systems, which would require more an-
notation. The average time per segment is just 22
seconds (see Figure 4).
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Figure 3: Distribution of final human segment-level scores.
The ratings are dominated by the score close to 100.

Language pair Minor Major Score Time

Czech→Ukrainian 0.2 0.1 87.1 15.8s
English→Czech 0.6 0.2 86.2 25.3s
English→Spanish 0.7 0.4 87.1 22.0s
English→Hindi 0.5 0.2 87.3 25.7s
English→Icelandic 1.4 0.8 72.3 37.8s
English→Japanese 0.2 0.1 89.2 18.9s
English→Russian 0.5 0.3 83.4 23.0s
English→Ukrainian 0.4 0.3 84.4 21.8s
English→Chinese 0.2 0.1 87.6 16.8s

Table 7: Average number of minor and major errors per seg-
ment, average score and annotation time. Despite different
annotation crowds, the statistics are balanced.
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Figure 4: Distribution of annotation times per segment. The
vast majority of segments is annotated under one minute.

6.4 Domain Difficulty across Languages

In Table 8 we present the maximal obtained score
per domain per language. Although absolute scores
are not comparable due to different sets of systems

Literary News Social Speech Average

En.→Czech 93.1 94.9 93.3 92.1 93.3
En.→Spanish 96.3 96.2 95.5 94.1 95.5
En.→Hindi 95.4 93.6 91.3 88.3 92.2
En.→Icelandic 92.2 92.6 95.0 92.4 93.1
En.→Japanese 92.4 93.7 91.3 92.4 92.5
En.→Russian 94.1 93.1 92.1 86.6 91.5
En.→Ukrainian 93.2 93.9 94.3 85.9 91.8
En.→Chinese 92.0 92.5 90.7 88.4 90.9
Average 93.6 93.8 93.0 90.0 92.6

Table 8: Maximal obtained score per language and per do-
main across languages evaluated with the same source data
(English).

and different groups of annotators, we observe that,
across the table, the speech domain obtains the low-
est scores for nearly all language pairs suggesting
it is the most difficult domain. This is reflected by
the fact that the top-performing systems achieve
lower scores in the speech domain compared to
other domains. This difficulty likely arises from
the reliance on ASR text rather than the original
audio. This finding is consistent with MQM results
from Freitag et al. (2024).

Secondly, we observe that the English→Spanish
language pair receives the highest scores, suggest-
ing that either the pair itself or the specific tested
domains are relatively easy for top systems, which
provide almost flawless translations. These results
are consistent with the MQM results from Freitag
et al. (2024) where the best system got only -0.12
MQM score, which is close to perfect, while the
best German system got -1.58 MQM and the best
Japanese-Chinese system an MQM score of -1.22.

Separate scores for each domain, system and
language pair are presented in Appendix D.

6.5 Clustering of ESA compared to DA+SQM

This year, we revised the human evaluation proto-
col, ultimately moving from DA+SQM to ESA. In
this section, we briefly compare several aspects of
both methods. However, due to the absence of a
direct head-to-head comparison on the same data
and the many changes introduced since last year,
this analysis cannot attribute all the improvements
solely to the ESA protocol.

ESA produced 59 clusters across 114 systems.
This compares to only 37 clusters produces by last
year’s DA+SQM approach for the same number
of systems. In other words, ESA formed a cluster
for every 1.9 systems, while DA+SQM created a
cluster for every 3.1 systems. This increased clus-
tering efficiency was achieved despite a decrease in
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the number of collected samples. With DA+SQM,
we collected an average of 1400 annotations per
system, whereas ESA required only an average
of 750 annotations per system to achieve greater
discriminative power.

7 Official Ranking Results

We now describe how we compute the final ranking,
then discuss the final results and some potential
issues with our ranking method. The results are
shown on the following two pages in tabular form.

7.1 Human Ranking Computation

We calculate three different scores: the human ESA
score, rank, and the cluster.

The human ESA score is the macro-average
of the segment-level ESA scores grouped over the
domains. This represents a change compared to
previous years, since we used to calculate a simple
average over all data. However, with the change to-
wards paragraph-level test sets, the average number
of segments per domain is imbalanced and the so-
cial domain represents almost half of all segments
(see Table 1). To circumvent this imbalance, we
use the macro-average as the main human score.

For the statistical analysis and clustering, we
use the Wilcoxon signed-rank test, a paired non-
parametric test (Wilcoxon, 1945), as suggested by
Kocmi et al. (2024b). However, given the domain-
level imbalanced distribution, we adapted our ap-
proach by combining the results from independent
domain-level experiments via Stouffer’s Z-score
method (Stouffer et al., 1949), which combines
p-values from individual domain-level Wilcoxon
tests. The method produces almost identical clus-
tering as if we had used Wilcoxon over the whole
dataset whilst ignoring the imbalance.

Rank ranges indicate the number of systems a
particular system underperforms or outperforms:
the top end of the rank range is l + 1, where l is
the number of losses, while the bottom is n − w,
where n is the total number of systems and w is
the number of systems against which the system in
question significantly wins.

Systems are grouped into ranks that are sepa-
rated by thick lines, such that systems within the
same group do not strictly outperform other sys-
tems within the group. In other words, it is not
possible to clearly say which system in the cluster
is better than the all others. The ranks and clusters
are computed with p < 0.05.

We say that a system is winning if it ranks in the
first cluster, while ignoring the human reference.

The official rankings shown in Section 7.4 are
generated on the basis of the ESA scores. Tables
with head-to-head comparisons between all sys-
tems are included in Appendix E.

7.2 Verbosity of LLMs
As pointed out by Briakou et al. (2024), some
LLMs produce verbose outputs, including an at-
tempt to explain the translation or a refusal to trans-
late. This creates an issue for both automatic and
human evaluation of how to treat such outputs.

During the collection of LLM outputs, we asked
the LLM to wrap the translation in a particular
type of quotes (```) and post-edited LLM outputs
removing all extra details outside of these quotes
(keeping the whole answer if no quotes have been
found). Therefore LLMs that did not follow the
expected output format and produced additional
output were not considered in the evaluation.

For future work, we should instruct humans to
penalize verbose outputs and strengthen the prompt
used for collecting LLM translations.

7.3 Human Ranking Discussion
When investigating the official results in Sec-
tion 7.4, we can make several observations.

The best performing system in the open and con-
strained systems category is IOL-Research, win-
ning 10 LPs in this category.

The Unbabel-Tower70B system is the best per-
forming participating system winning in 8 LPs. In
contrast, this system was ranked the first in all LPs
in the automatic evaluation.This highlights that sys-
tems can overfit on automatic scores, especially
when using Minimum Bayes Risk (MBR; Freitag
et al., 2022) with testing metric.

Over all, the best performing system in general
seems to be Claude-3.5-Sonnet (wins in 9 LPs); it
even outperforms GPT-4 (wins in 5 LPs), which is
much more expensive model. Human references
are ranked in the first place for 5 language pairs
and in the winning cluster for 8 language pairs,
suggesting that the reference quality is high and
ESA is robust to our setting.

For English→Icelandic, it was almost the case
that each system belonged to its own statistically
significant cluster. This could be put down to a
greater diversity in the quality of systems (also
highlighted by more diverse AutoRank scores).
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7.4 Official Ranking Results Tables
Results tables legend

The human score is the macro-average of human judge-
ments, grouped by domain. The rank takes into considera-
tion head-to-head wins and losses. AutoRank is calculated
from automatic metrics.
Ranking and clustering on human scores is done using
Wilcoxon signed rank test for each domain separately and
final p-value is combined via Stouffer’s Z-score method to
align with macro average for human score.
Systems are either constrained (white), open-track (light
gray), or closed-track (dark gray).
LLMs that do not officially claim a support a language pair
are marked with §.

Czech→Ukrainian
Rank System Human AutoRank

1-2 Claude-3.5 § 93.0 1.7
2-2 HUMAN-A 92.7 -
3-3 Gemini-1.5-Pro 92.6 2.0
3-4 Unbabel-Tower70B 92.2 1.0

5-5 IOL-Research 90.2 1.9

6-7 CommandR-plus § 89.7 1.9
6-8 ONLINE-W 88.7 2.3
7-9 GPT-4 § 88.6 2.0
8-9 IKUN 87.1 2.3

10-10 Aya23 86.6 2.5

11-11 CUNI-Transformer 85.3 3.0

12-12 IKUN-C 82.6 3.0

English→Czech
Rank System Human AutoRank

1-2 HUMAN-A 92.9 -
2-2 Unbabel-Tower70B 91.6 1.0
2-3 Claude-3.5 § 91.2 2.1

4-5 ONLINE-W 89.0 2.8
4-6 CUNI-MH 88.4 2.1
6-6 Gemini-1.5-Pro 88.2 2.6
6-8 GPT-4 § 87.7 2.6
8-8 CommandR-plus § 86.9 2.9
8-9 IOL-Research 86.5 2.8

10-11 SCIR-MT 85.4 3.2
10-11 CUNI-DocTransformer 84.3 4.4

12-12 Aya23 84.2 4.3

13-13 CUNI-GA 82.1 2.3

14-14 IKUN 81.7 3.9

15-15 Llama3-70B § 77.4 4.1

16-16 IKUN-C 75.4 4.7

English→German
Rank System Human AutoRank

1-11 GPT-4 -1.6 1.8
1-7 Dubformer -1.8 1.8

2-10 ONLINE-B -1.9 1.8
2-10 TranssionMT -1.9 1.8
2-9 Unbabel-Tower70B -1.9 1.0
1-9 HUMAN-B -2.0 -

2-12 Mistral-Large -2.1 2.0
4-11 CommandR-plus -2.3 2.0
8-10 ONLINE-W -2.3 2.2
2-12 Claude-3.5 -2.4 1.9
3-13 HUMAN-A -2.5 -
10-12 IOL-Research -2.5 2.3
5-13 Gemini-1.5-Pro -2.8 2.2

14-15 Aya23 -3.2 2.7
14-17 ONLINE-A -3.5 3.0
15-17 Llama3-70B § -4.3 2.5
15-17 IKUN -4.3 3.0

18-18 IKUN-C -6.1 3.8

19-19 MSLC -15.5 11.9

English→Spanish
Rank System Human AutoRank

1-1 HUMAN-A 95.3 -

2-2 Dubformer 93.4 2.0

3-4 GPT-4 91.9 1.9
4-7 IOL-Research 91.4 2.3
5-8 Mistral-Large 89.3 2.2
5-9 Unbabel-Tower70B 88.9 1.0
3-8 Claude-3.5 88.8 2.1
5-8 Gemini-1.5-Pro 88.8 2.4
7-9 CommandR-plus 88.3 2.1

9-10 Llama3-70B § 87.2 2.6

11-11 ONLINE-B 85.6 2.7

12-13 IKUN 84.7 2.8
12-13 IKUN-C 80.4 3.4

14-14 MSLC 63.9 7.4

English→Hindi
Rank System Human AutoRank

1-3 TranssionMT 91.3 1.3
1-4 Unbabel-Tower70B 90.5 1.0
3-3 Claude-3.5 § 90.2 1.2
3-4 ONLINE-B 90.1 1.4
3-5 Gemini-1.5-Pro § 90.0 1.6

6-6 GPT-4 § 88.5 2.1

7-8 HUMAN-A 88.5 -
8-8 IOL-Research 87.2 2.1
8-9 Llama3-70B § 86.7 2.1

10-10 Aya23 84.7 3.2

11-11 IKUN-C 70.7 5.5
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English→Icelandic
Rank System Human AutoRank

1-1 HUMAN-A 93.1 -

2-3 Dubformer 84.3 2.5
2-3 Claude-3.5 § 81.9 2.3

4-4 Unbabel-Tower70B 80.2 1.0

5-5 AMI 73.3 3.7

6-6 IKUN 71.0 3.2

7-7 ONLINE-B 68.0 4.2

8-9 GPT-4 66.3 3.4
8-9 IKUN-C 65.2 3.7

10-10 IOL-Research 58.0 4.3

11-11 Llama3-70B § 41.0 6.7

English→Japanese
Rank System Human AutoRank

1-1 HUMAN-A 91.8 -

2-4 ONLINE-B 91.1 1.4
3-4 CommandR-plus 91.0 1.9
4-4 GPT-4 90.8 1.7
4-5 Claude-3.5 90.8 1.5
4-7 Gemini-1.5-Pro 90.0 1.7
7-7 Unbabel-Tower70B 89.7 1.0
8-8 IOL-Research 89.7 2.3
8-9 Aya23 89.7 2.3

10-10 NTTSU 89.4 1.9

11-11 Team-J 88.5 1.9

12-12 Llama3-70B § 86.8 2.6

13-13 IKUN-C 81.7 3.9

English→Russian
Rank System Human AutoRank

1-1 HUMAN-A 89.2 -

2-3 Dubformer 89.1 1.9
3-4 Claude-3.5 88.2 2.0
3-5 Unbabel-Tower70B 88.1 1.0
3-7 Yandex 87.0 1.9
6-8 Gemini-1.5-Pro 85.5 2.3
6-9 GPT-4 85.0 2.3
6-9 ONLINE-G 84.6 2.2
5-9 CommandR-plus § 84.3 2.4

10-10 IOL-Research 82.1 2.6

11-11 IKUN 79.2 3.2

12-12 Aya23 78.6 3.3

13-13 Llama3-70B § 75.7 3.1

14-14 IKUN-C 69.8 3.9

English→Ukrainian
Rank System Human AutoRank

1-2 Claude-3.5 90.5 2.0
1-2 Unbabel-Tower70B 89.8 1.0

3-3 Dubformer 89.0 1.8

4-6 HUMAN-A 87.3 -
4-6 Gemini-1.5-Pro 87.1 2.2
5-8 ONLINE-W 86.0 2.1
5-9 GPT-4 84.6 2.3
6-9 CommandR-plus § 83.2 2.3
7-9 IOL-Research 83.2 2.4

10-10 IKUN 78.4 2.8

11-11 IKUN-C 67.9 3.9

English→Chinese
Rank System Human AutoRank

1-1 GPT-4 89.6 2.0

2-4 Unbabel-Tower70B 89.6 1.0
2-4 HUMAN-A 89.4 -
4-4 Gemini-1.5-Pro 89.3 1.8
5-6 ONLINE-B 89.3 1.7
6-6 IOL-Research 89.0 1.8
6-7 Claude-3.5 88.9 1.7
6-8 CommandR-plus 88.3 2.2

9-9 Llama3-70B § 86.5 2.8

10-10 HW-TSC 86.2 2.3

11-11 IKUN 85.3 3.1

12-12 Aya23 85.2 3.0

13-13 IKUN-C 82.1 3.5

Japanese→Chinese
Rank System Human AutoRank

1-3 Claude-3.5 -1.4 1.7
1-3 HUMAN-A -1.5 -
3-5 GPT-4 -1.7 2.1
2-5 DLUT-GTCOM -1.7 2.0
4-8 Unbabel-Tower70B -1.9 1.0
3-6 Gemini-1.5-Pro -2.1 1.9
6-8 CommandR-plus -2.2 2.8
6-8 IOL-Research -2.4 2.2

9-10 Llama3-70B § -3.4 3.1
9-10 Aya23 -3.5 3.7

11-12 Team-J -4.5 2.8
11-12 NTTSU -5.1 3.7

13-13 ONLINE-B -5.8 5.2

14-14 IKUN-C -7.7 5.5

15-15 MSLC -10.7 8.9
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8 Test Suites Sub-task:
“Help us break LLMs”

The results in the previous tables indicate that the
current evaluation methods, despite being more
detailed and sophisticated, have difficulties in dis-
tinguishing MT output from human translations,
or distinguishing the performance among different
systems. Additionally, the appearance of LLMs has
made it even more clear that generated translations,
even those which seem to be fluent and surrounded
by seemingly perfect content, can contain serious
flaws. The increased interest in this new technol-
ogy and the use of LLMs for translation, prompted
us to set the theme of this year’s test suite sub-
task as “Help us break LLMs”. This was intended
as a broader invitation to the NLP community to
expose the weaknesses of LLM translations that
are hidden behind the apparent overall high qual-
ity generation, but also to propose new innovative
evaluation methods that may be of high interest
for specific use cases. We are thrilled that this
year’s participation exceeded every precedent, with
11 test suites providing their valuable conclusions,
which are presented below.

8.1 Setup of the sub-task

Each test suite is a customised extension of the
standard test sets, focusing on specific aspects of
the MT output. The evaluation of the MT output
takes place in a decentralized manner, where test
suite providers were invited to submit their cus-
tomized test sets, following the setup introduced at
the Third Conference on Machine Translation (Bo-
jar et al., 2018). Each test suite provider submitted
a source-side test set, which was appended by the
organisers of the General MT Shared Task to its
standard test sets. The corresponding outputs from
the systems of the General MT Shared Task were
returned to the test suite providers, who were re-
sponsible for carrying out the evaluation based on
their own individual evaluation concept. The re-
sults of each test suite evaluation, together with
the relevant analysis, appear in separate description
papers, while a summary is given below.

This year’s timeline gave the test suite contribu-
tors more time. We offered a pre-run in April, when
test suite providers were given the opportunity to
submit the current version of their corpus in order
to receive translation output from online systems,
which could help them to carry out the individual
(often manual) evaluation in a more timely manner.

8.2 Submissions

The test suite sub-task received 11 submissions, out
of which 9 completed the entire evaluation cycle.
An overview of the test suites can be seen in Table 9.
The descriptions of each submission and their main
findings are given below.

Árni Magnússon Institute for Icelandic Studies
(AMI; Ármannsson et al., 2024) The submission of
the Árni Magnússon Institute’s team to the WMT24
test suite subtask focuses on idiomatic expressions
and proper names for the English→Icelandic trans-
lation direction. Intuitively and empirically, idioms
and proper names are known to be a significant
challenge for neural translation models. They cre-
ate two different test suites. The first evaluates the
competency of MT systems in translating common
English idiomatic expressions, as well as testing
whether systems can distinguish between those ex-
pressions and the same phrases when used in a lit-
eral context. The second test suite consists of place
names that should be translated into their Icelandic
exonyms (and correctly inflected) and pairs of Ice-
landic names that share a surface form between the
male and female variants, so that incorrect trans-
lations impact meaning as well as readibility. The
scores reported are relatively low, especially for id-
iomatic expressions and place names, and indicate
considerable room for improvement.

Complex Sentence Structure Testset (CoST;
vIIT_HYD; Mukherjee et al., 2024) This test suite
presents an evaluation of 16 machine translation
systems submitted to the Shared Task for the
English-Hindi using our Complex Structures Test
suite. Aligning with this year’s test suite sub-task
theme, “Help us break LLMs", the authors curated
a comprehensive test suite encompassing diverse
datasets across various categories, including autobi-
ography, poetry, legal, conversation, play, narration,
technical, and mixed genres. The evaluation reveals
that all the systems struggle significantly with the
archaic style of text like legal and technical writ-
ings or text with creative twist like conversation and
poetry datasets, highlighting their weaknesses in
handling complex linguistic structures and stylistic
nuances inherent in these text types. This evalua-
tion identifies the strengths and limitations of the
models, pointing to specific areas where further
research is needed to enhance their performance.21

21github.com/AnanyaCoder/CoST-WMT-24-Test-Suite-
Task
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Test suite Institution Focus Language pair Segments

AMI (Ármannsson et al., 2024) AMI idiomatic expressions,
proper names

en�is 3,082

COST (Mukherjee et al., 2024) IIIT_HYD complex sentence structure en�hi 3,908
DFKI (Manakhimova et al., 2024) DFKI 110 linguistic phenomena en�de, en�ru 54,736
GenderQueer (Friðriksdóttir, 2024) UI gender-diverse,

queer-inclusive content
en�is 672

IITP (Bhattacharjee et al., 2024) IITP multi-domain dynamics en�hi 4,198
Isochrony (Rozanov et al., 2024) RaskAI, IC isochrony of translations en�de, en�es, en�ja, en�ru, en�zh 10,730
NRCC (Dawkins et al., 2024) NRCC speaker-listener gender

resolution
en�cs, en�de, en�es, en�is 53,560

PIA_TQA (Miceli Barone and Sun, 2024) UEDIN prompt injection attacks cs�uk, en�cs, en�de, en�es, en�hi,
en�is, en�ja, en�ru, en�uk, en�zh,
ja�zh

250,744

RoCS-MT (Bawden and Sagot, 2023) Inria robustness to non-standard
user-generated texts

en�cs, en�de, en�es, en�hi, en�is,
en�ja, en�ru, en�uk, en�zh

7883

Table 9: Overview of the participating test suites.

DFKI (Manakhimova et al., 2023b) This test
suite offers a fine-grained linguistically motivated
analysis of the shared task MT outputs for English–
German and English–Russian, based on more than
11,500 manually devised test items, which cover
up to 110 phenomena in 14 categories per language
direction. Extending their previous test suite sub-
missions (e.g. Avramidis et al., 2020; Macketanz
et al., 2021, 2022; Manakhimova et al., 2023a),
the submission of this year includes a considerable
effort of manual linguistic annotation for the eval-
uation on 39 MT systems submitted at the Shared
Task. Based on the results, LLMs are inferior to
NMT in English–German when translating a few
linguistic phenomena, though they show quite a
competitive performance in English-Russian. Ad-
ditionally, some LLMs generate very verbose or
empty outputs, posing challenges to the evaluation
process. Looking more closely at specific phenom-
ena of English-German, LLMs seem to perform
worse than the two best performing NMT systems
in terms of punctuation, future verb tenses and strip-
ping. For English-Russian, Yandex is weaker in
named entities and terminology, Claude in function
words, while Unbabel is weaker in verb valency.
GPT-4 into Russian performs even worse than sev-
eral commercial NMT-based systems.

Indian Institute of Technology Patna (IITP; do-
main dynamics; Bhattacharjee et al., 2024) LLMs
have demonstrated impressive capabilities in ma-
chine translation, leveraging extensive pretraining
on vast amounts of data. However, this generalist
training often overlooks domain-specific nuances,
leading to potential difficulties when translating

specialized texts. This study presents a multi-
domain dataset designed to challenge and evalu-
ate the translation abilities of LLMs. The dataset
encompasses diverse domains such as judicial, ed-
ucation, literature (specifically religious texts), and
noisy user-generated content from online product
reviews and forums like Reddit. Each domain con-
sists of approximately 250–300 sentences, carefully
curated and randomized in the final compilation.
This English-to-Hindi dataset aims to evaluate and
expose the limitations of LLM-based translation
systems, offering valuable insights into areas re-
quiring further research and development.

Inria (RoCS-MT; Bawden and Sagot, 2023), Ro-
bust Challenge Set for Machine Translation, is de-
signed to test MT systems’ ability to translate user-
generated content with non-standard characteris-
tics, such as spelling errors, devowelling, acronymi-
sation, etc. The original English Reddit texts are
associated with manual normalisations and trans-
lations in five languages (French, German, Czech,
Ukrainian and Russian). RoCS-MT was first sub-
mitted to the 2023 task, showing that many non-
standard phenomena still pose problems for most
systems, although more common phenomena are
better handled by the larger, closed-source mod-
els, presumably due to the large quantity of web-
based seen during training. This year’s version is
largely the same as last year but with some improve-
ments, including modifications to normalisations
and to the annotation typology used (all modifica-
tions are documented in the GitHub repository).22

Systems varied greatly in terms of their handling of

22github.com/rbawden/RoCS-MT
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non-standard sentences, with marked differences
depending on the type of system. Constrained sys-
tems inevitably struggling most, particularly with
phenomena affecting the spelling of words (result-
ing in frequent copying of non-standard source
words), a problem also affecting online systems.
LLMs exhibited some of the best quality transla-
tions, although behaviour varied between translat-
ing standard and non-standard input, and additional
issues such as refusal to translate and usage notes
pose new technical challenges.

Isochrony Translation (Rask AI, Imperial Col-
lege; Rozanov et al., 2024) MT has come a long
way and is readily employed in production sys-
tems to serve millions of users daily. With the
recent advances in generative AI, a new form of
translation is becoming possible – video dubbing.
This work motivates the importance of isochronic
translation, especially in the context of automatic
dubbing, and introduces ‘IsoChronoMeter’ (ICM).
ICM is a simple yet effective metric to measure
isochrony of translations in a scalable and resource
efficient way without the need for gold data, based
on state-of-the-art text-to-speech (TTS) duration
predictors. The authors motivate IsoChronoMe-
ter and demonstrate its effectiveness. Using ICM,
they demonstrate the short-comings of state-of-the-
art translation systems and show the need for new
methods. The code has been released.

National Research Council Canada (Speaker-
Listener Gender Resolution; gender-res; Dawkins
et al., 2024) This test suite assesses the gender
resolution tendencies of MT systems in literary di-
alogue settings. That is, each instance contains
dialogue interleaved with additional meta-context.
The spoken dialogue refers to either the speaker
or listener such that the gender of the referent, if
known, must be inferred from the meta-context
and informs the correct translation. They find that
stereotype factors within the meta-context, such
as character descriptions and manner of speak-
ing, affect the gender agreement choices of words
within the dialogue. Regression analysis is per-
formed to evaluate the relative influence of these
contextual factors compared to structural factors
and known stereotype influences (e.g., the internal
gender stereotype of an adjective).

University of Edinburgh Prompt Injection,
TruthfulQA (PIA; Miceli Barone and Sun, 2024)
LLM-based systems typically work by embedding

their input data into prompt templates which con-
tain instructions and/or in-context examples, cre-
ating queries which are submitted to a LLM, then
parse the LLM response in order to generate the
system outputs. Prompt Injection Attacks (PIAs)
are a type of subversion of these systems where a
malicious user crafts special inputs which interfere
with the prompt templates, causing the LLM to re-
spond in ways unintended by the system designer.
Recently, Sun and Miceli Barone (2024) proposed
a class of PIAs against LLM-based machine trans-
lation. Specifically, the task is to translate questions
from the TruthfulQA test suite, where an adversar-
ial prompt is prepended to the questions, instructing
the system to ignore the translation instruction and
answer the questions instead. In this test suite, the
authors extend this approach to all the language
pairs of the WMT 2024 General Machine Transla-
tion task. Moreover, they include additional attack
formats in addition to the one originally studied.

University of Iceland (GenderQueer; Friðriks-
dóttir, 2024) This paper introduces the Gen-
derQueer Test Suite, a novel evaluation set for
assessing MT systems’ capabilities in handling
gender-diverse and queer-inclusive content, focus-
ing on English to Icelandic translation. As MT qual-
ity improves, there is an increasing need for special-
ized evaluation methods that address nuanced as-
pects of language and identity. The suite evaluates
MT systems on various aspects of gender-inclusive
translation, including pronoun and adjective agree-
ment, LGBTQIA+ terminology accuracy, and the
impact of explicit gender specifications. Its authors
evaluated 18 MT systems submitted to the WMT24
English-Icelandic track. Key findings reveal signif-
icant performance differences between large lan-
guage model-based systems and smaller models in
handling context for gender agreement. Challenges
in translating singular “they” were widespread,
while most systems performed well in translating
LGBTQIA+ terminology. Accuracy in adjective
gender agreement varies, with some models strug-
gling particularly with feminine forms. This eval-
uation set contributes to the ongoing discussion
about inclusive language in MT and natural lan-
guage processing. By providing a tool for assessing
MT systems’ handling of gender-diverse content, it
aims to enhance the inclusivity of language technol-
ogy. The methodology and evaluation scripts are
made available for adaptation to other languages,
promoting further research in this critical area.
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9 Conclusions

The WMT 2024 General Machine Transla-
tion Task covered 11 translation pairs, two of
which are non-English: Czech→Ukrainian and
Japanese→Chinese. We introduced ESA (Error
Span Annotations) as the main human protocol
for assessing the translation quality, which enabled
more efficient collection of human judgements than
MQM while keeping high quality of annotations.
In total, 108 human (semi-)professional annotators
contributed more than 57,000 judgments.

We received 105 primary submissions from 28
participants, 4 online systems and 8 production
large language models, which is a large increase
from last year’s task. The majority of participants
already use LLMs in their systems.

The best performing open system is IOL-
Research (wins 10 LPs in it’s category), the
best performing participating system is Unbabel-
Tower70B (wins 8 LPs), and the best performing
system in general is Claude-3.5-Sonnet (wins 9
LPs).

While the best performing system based on auto-
matic metrics is Unbabel-Tower70B, it was not the
winner across the board in the human evaluation,
with the mismatch between the results likely due
to metric bias (Kovacs et al., 2024) in MBR. This
shows that human evaluation should be used as the
final judge of translation quality.

Lastly, we showed promising results in the mul-
timodal evaluation of the speech domain, proving
to be a challenging domain for MT systems. On
the opposite side, systems were able to produce
near-perfect translations in English→Spanish, for
the domains that we tested.

10 Limitations

We tested the general capabilities of MT systems.
However, we have simplified this approach and
only used three to five domains. Out of various
modalities, we used audio and text.

Although we use human judgements as the gold
standard, giving us more reliable signal than au-
tomatic metrics, we should mention that human
annotations are noisy (Wei and Jia, 2021) and their
performance is affected by the quality of other eval-
uated systems (Mathur et al., 2020). Lastly, dif-
ferent annotators use different ranking strategies,
which may have an effect on the system ranking.

Some models may have used Comet or MetricX
during their training, for example, using Minimum

Bayes Risk. Our automatic evaluation of such mod-
els will be biased, giving them artificially higher
scores.

Automatic metrics are limited and biased
(Karpinska et al., 2022; Moghe et al., 2024), es-
pecially in novel domains (Zouhar et al., 2024a),
which motivates them being superseded by hu-
man evaluation. Another potential problem may
have been that test sets we use are paragraph-level;
automatic metrics have usually been tested in a
sentence-level scenario.

The ESA annotation interface implemented in
Appraise is in English only with a tutorial in
German→English. This caused difficulties to some
of the Czech→Ukrainian annotators we hired, who
could not understand English. One such annotator
did not pass the initial tutorial and therefore did
not participate in the annotation campaign. Next
year, we plan to translate the annotation interface
to either the source or target language for each
translation direction.

11 Ethical Considerations

Inappropriate, controversial, and explicit content
was filtered out prior to translation, keeping in mind
the translators and not exposing them to such con-
tent or obliging them to translate it.

Human evaluation using Appraise for the collec-
tion of human judgements was fully anonymous.
Automatically generated accounts associated with
annotation tasks with single-sign-on URLs were
distributed randomly among pools of annotators
and we do not store any personal information. We
do store the mapping between which annotator
(with pseudonym) annotated which account. Anno-
tators received standard professional translator’s or
evaluator’s wage with respect to their countries.

Sentences in the Czech→Ukrainian dataset (in
Personal, Official and Voice domains) were col-
lected with users’ opt-in consent, and any personal
data related to people other than well-known people
was pseudonymized (using random first names and
surnames). Sentences where such pseudonymiza-
tion would not be enough to preserve reasonable
anonymity of the users (e.g., describing events
uniquely identifying the persons involved) were
not included in the test set.
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Ondřej Bojar acknowledges the support of the
National Recovery Plan funded project MPO
60273/24/21300/21000 CEDMO 2.0 NPO. The
manual evaluations were also supported by the
InCroMin FSTP under the HE grant UTTER
(101070631 – HE, 0039436 – UKRI).

This work has been using data and tools provided
by the LINDAT/CLARIAH-CZ Research Infras-
tructure (https://lindat.cz), supported by the Min-
istry of Education, Youth and Sports of the Czech
Republic (Project No. LM2023062).

References
Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
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Popović, Mrinmaya Sachan, and Mariya Shmatova.
2024b. Error span annotation: A balanced approach
for human evaluation of machine translation. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, USA. Association for Computational Linguis-
tics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–
86.

Philipp Koehn and Christof Monz. 2006. Proceedings
on the workshop on statistical machine translation.
New York, USA. Association for Computational Lin-
guistics.

Minato Kondo, Ryo Fukuda, Xiaotian Wang, Katsuki
Chousa, Masato Nishimura, Kosei Buma, Takatomo
Kano, and Takehito Utsuro. 2024. NTTSU at
WMT2024 general translation task. In Proceedings
of the Ninth Conference on Machine Translation,
USA. Association for Computational Linguistics.

Geza Kovacs, Daniel Deutsch, and Markus Freitag.
2024. Mitigating metric bias in minimum bayes risk

24

https://doi.org/10.18653/v1/2020.emnlp-main.6
https://doi.org/10.18653/v1/2020.emnlp-main.6
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2022.emnlp-main.649
https://doi.org/10.18653/v1/2022.emnlp-main.649
https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf
https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf
https://ufal.mff.cuni.cz/pbml/104/art-klejch-et-al.pdf
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.64
https://doi.org/10.18653/v1/2023.wmt-1.64
https://doi.org/10.18653/v1/2023.wmt-1.64
http://arxiv.org/abs/2007.03006
http://arxiv.org/abs/2007.03006
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/W06-3100
https://aclanthology.org/W06-3100


decoding. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Julia Kreutzer, Nathaniel Berger, and Stefan Riezler.
2020. Correct me if you can: Learning from error
corrections and markings. In Proceedings of the
22nd Annual Conference of the European Association
for Machine Translation, pages 135–144. European
Association for Machine Translation.

Keito Kudo, Hiroyuki Deguchi, Makoto Morishita, Ryo
Fujii, Takumi Ito, Shintaro Ozaki, Koki Natsumi,
Kai Sato, Kazuki Yano, Ryosuke Takahashi, Subaru
Kimura, Tomomasa Hara, Yusuke Sakai, and Jun
Suzuki. 2024. Document-level translation with LLM
reranking: Team-j at WMT 2024 general translation
task. In Proceedings of the Ninth Conference on
Machine Translation, USA. Association for Compu-
tational Linguistics.

Taku Kudo. 2005. Mecab: Yet another part-of-speech
and morphological analyzer. https://taku910.
github.io/mecab/. Accessed: 2023-10-02.

Samuel Larkin, Chi-kiu Lo, and Rebecca Knowles.
2024. MSLC24 submissions to the general machine
translation task. In Proceedings of the Ninth Confer-
ence on Machine Translation, USA. Association for
Computational Linguistics.

Baohang Li, Zekai Ye, yichong huang, Xiaocheng Feng,
and Bing Qin. 2024. SCIR-MT’s submission for
WMT24 general machine translation task. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, USA. Association for Computational Linguis-
tics.

Baohao Liao, Christian Herold, Shahram Khadivi, and
Christof Monz. 2024. IKUN for WMT24 general
MT task: Llms are here for multilingual machine
translation. In Proceedings of the Ninth Conference
on Machine Translation, USA. Association for Com-
putational Linguistics.

Arle Lommel, Aljoscha Burchardt, Maja Popović, Kim
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A Error Span Annotation Miscellaneous

A.1 Annotation Guidelines
Higlighting errors: Highlight the text fragment where you have identified a translation error (drag or click start
& end). Click repeatedly on the highlighted fragment to increase its severity level or to remove the selection.
• Minor Severity: Style/grammar/lexical choice could be better/more natural.
• Major Severity: Seriously changed meaning, difficult to read, decreases usability.
If something is missing from the text, mark it as an error on the [MISSING] word. The highlights do not have to
have character-level precision. It’s sufficient if you highlight the word or rough area where the error appears. Each
error should have a separate highlight.

Score: After highlighting all errors, please set the overall segment translation scores. The quality levels associated
with numerical scores on the slider:
• 0%: No meaning preserved: Nearly all information is lost in the translation.
• 33%: Some meaning preserved: Some of the meaning is preserved but significant parts are missing. The narrative

is hard to follow due to errors. Grammar may be poor.
• 66%: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning. It may

have some grammar mistakes or minor inconsistencies.
• 100%: Perfect meaning and grammar: The meaning and grammar of the translation is completely consistent with

the source.

A.2 Changes to Interface

Figure 5: Interacting with the score slider shows the exact score
to the annotator in the updated ESA interface.

Since the original study of Kocmi et al. (2024b),
we used an updated version of the interface.
Apart from minor quality of life changes, a no-
ticeable change is the addition of a pop-up bubble
that shows the exact score of the segment (see
Figure 5). While it appears as a minor change, it
might change the annotator behavior that prefer
for example certain numbers, as annotators did
in translation evaluation study of Zouhar et al.
(2024b).
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Dataset Segments Tokens Characters

Source Target Source Target

Czech→Ukrainian Segs Czech Ukrainian Czech Ukrainian
OPUS 9.8M 103.0M 102.9M 752.0M 1.3B
Facebook-wikimatrix-1 849.0k 10.4M 10.1M 76.0M 127.3M
ELRC 130.0k 2.5M 2.6M 19.6M 35.3M
(Total) 10.8M 115.9M 115.6M 847.6M 1.4B

English→Czech Segs English Czech English Czech
ParaCrawl-paracrawl-9 50.6M 692.1M 626.3M 4.3B 4.7B
Facebook-wikimatrix-1 2.1M 33.6M 29.7M 206.8M 216.6M
Tilde 2.1M 42.3M 38.3M 276.5M 303.7M
Statmt-europarl-10 644.4k 15.6M 13.0M 94.3M 98.1M
Statmt-wikititles-3 410.9k 1.0M 965.6k 7.5M 7.6M
Statmt-news_commentary-18.1 265.4k 5.7M 5.2M 36.2M 39.8M
Statmt-commoncrawl_wmt13-1 161.8k 3.3M 2.9M 20.7M 20.7M
(Total) 56.3M 793.7M 716.3M 5.0B 5.4B

English→German Segs English German English German
ParaCrawl-paracrawl-9 278.3M 4.3B 4.0B 26.4B 29.5B
Facebook-wikimatrix-1 6.2M 100.5M 97.0M 623.7M 701.2M
Tilde 5.2M 107.4M 102.7M 698.6M 822.1M
Statmt-commoncrawl_wmt13-1 2.4M 51.4M 47.0M 314.2M 340.5M
Statmt-europarl-10 1.8M 45.5M 42.4M 272.9M 312.1M
Statmt-wikititles-3 1.5M 3.6M 3.1M 26.5M 25.5M
Statmt-news_commentary-18.1 437.5k 9.6M 9.8M 61.2M 74.3M
(Total) 295.9M 4.6B 4.3B 28.4B 31.7B

English→Hindi Segs English Hindi English Hindi
AllenAi-nllb-1 33.2M 327.0M 311.6M 1.8B 3.8B
OPUS 12.1M 147.6M 165.7M 919.3M 2.2B
AI4Bharath-samananthar-0.2 8.5M 135.8M 152.3M 819.0M 2.0B
Statmt-ccaligned-1 8.2M 114.5M 129.8M 724.3M 1.7B
Anuvaad 3.0M 58.5M 61.6M 359.5M 836.2M
IITB-hien_train-1.5 1.6M 19.8M 21.4M 114.7M 283.6M
Facebook-wikimatrix-1 696.1k 12.0M 13.5M 74.0M 182.4M
Statmt-pmindia-1 56.8k 1.1M 1.2M 6.7M 16.6M
JoshuaDec-indian_training-1 37.7k 562.6k 659.1k 3.4M 8.9M
Neulab-tedtalks_train-1 18.8k 372.6k 491.2k 1.9M 4.4M
Statmt-news_commentary-18.1 4.9k 149.7k 167.7k 963.6k 2.3M
ELRC 245 4.9k 6.3k 31.6k 85.7k
(Total) 67.3M 817.3M 858.4M 4.9B 11.1B

English→Icelandic Segs English Icelandic English Icelandic
OPUS 16.4M 174.9M 166.5M 1.0B 1.1B
ParaCrawl-paracrawl-9 3.0M 45.1M 42.7M 266.1M 292.2M
ParIce-eea_train-20.05 1.7M 26.7M 24.2M 170.4M 179.5M
Statmt-ccaligned-1 1.2M 18.6M 17.8M 115.6M 124.4M
Tilde 420.7k 6.3M 6.1M 41.7M 45.3M
ParIce-ema_train-20.05 399.1k 6.1M 5.9M 40.4M 43.9M
Facebook-wikimatrix-1 313.9k 5.7M 4.8M 34.5M 34.0M
Statmt-wikititles-3 50.2k 99.0k 88.4k 722.2k 763.3k
EU 4.7k 54.4k 52.3k 369.0k 398.5k
(Total) 23.4M 283.7M 268.2M 1.7B 1.8B

English→Russian Segs English Russian English Russian
Statmt-backtrans_ruen-wmt20 39.4M 746.5M 596.3M 4.5B 7.8B
OPUS 25.2M 563.8M 520.7M 3.7B 7.3B
ParaCrawl-paracrawl-1_bonus 5.4M 101.3M 80.4M 632.5M 1.1B
Facebook-wikimatrix-1 5.2M 86.8M 76.5M 537.7M 1.0B
Statmt-wikititles-3 1.2M 3.1M 2.9M 22.8M 39.3M
Statmt-yandex-wmt22 1.0M 21.3M 18.7M 131.0M 250.8M
Statmt-commoncrawl_wmt13-1 878.4k 18.8M 17.4M 116.2M 214.6M
Statmt-news_commentary-18.1 377.7k 8.7M 8.1M 55.7M 112.1M
Tilde 34.3k 752.7k 702.8k 4.8M 10.0M
(Total) 78.6M 1.6B 1.3B 9.7B 17.7B

Table 10: Statistics for parallel training data provided for General/News Translation Task. Suffixes, k, M, and B, are short for
thousands, millions, and billions, respectively.
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Dataset Segments Tokens Characters

Source Target Source Target

English→Spanish Segs English Spanish English Spanish
ParaCrawl-paracrawl-9 269.4M 4.4B 4.8B 26.7B 30.0B
OPUS 223.4M 4.1B 4.6B 26.3B 30.0B
Statmt-ccaligned-1 98.4M 1.2B 1.3B 7.7B 8.6B
LinguaTools-wikititles-2014 16.6M 41.3M 46.0M 304.8M 335.2M
Facebook-wikimatrix-1 6.5M 120.1M 137.4M 742.9M 854.5M
Tilde 3.8M 80.0M 92.9M 521.0M 603.4M
EU 3.7M 70.7M 80.6M 457.1M 519.6M
Statmt-europarl-7 2.0M 49.1M 51.6M 294.5M 324.6M
Statmt-commoncrawl_wmt13-1 1.8M 40.8M 43.5M 248.8M 272.8M
Statmt-news_commentary-18.1 500.2k 11.1M 13.1M 71.1M 83.5M
Neulab-tedtalks_train-1 196.0k 4.1M 3.9M 20.4M 20.6M
(Total) 626.2M 10.2B 11.2B 63.4B 71.6B

English→Ukrainian Segs English Ukrainian English Ukrainian
ParaCrawl-paracrawl-1_bonus 13.4M 505.8M 487.5M 3.3B 6.0B
Statmt-ccaligned-1 8.5M 119.4M 104.1M 755.4M 1.3B
Facebook-wikimatrix-1 2.6M 41.5M 35.6M 257.6M 447.3M
ELRC 129.9k 3.0M 2.6M 19.6M 35.7M
Tilde 1.6k 36.1k 34.2k 238.0k 477.9k
(Total) 24.6M 669.8M 629.8M 4.3B 7.8B

English→Japanese Segs English English Japanese
KECL-paracrawl-3 25.7M 599.0M 3.7B 4.6B
Facebook-wikimatrix-1 3.9M 61.6M 379.1M 455.0M
StanfordNLP-jesc_train-1 2.8M 19.3M 104.0M 119.6M
Statmt-wikititles-3 757.0k 1.9M 14.0M 18.7M
Phontron-kftt_train-1 440.3k 9.7M 59.9M 49.1M
Statmt-ted-wmt20 241.7k 4.0M 23.0M 27.3M
Statmt-news_commentary-18.1 1.9k 40.3k 253.2k 318.5k
(Total) 33.9M 695.7M 4.3B 5.2B

English→Chinese Segs English English Chinese
Statmt-backtrans_enzh-wmt20 19.8M 364.2M 2.2B 2.0B
OPUS 17.5M 417.3M 2.7B 2.1B
ParaCrawl-paracrawl-1_bonus 14.2M 217.6M 1.3B 1.2B
Facebook-wikimatrix-1 2.6M 49.9M 311.1M 277.8M
Statmt-wikititles-3 922.0k 2.4M 17.8M 16.3M
Statmt-news_commentary-18.1 442.9k 9.8M 62.7M 55.2M
(Total) 55.3M 1.1B 6.6B 5.6B

Japanese→Chinese Segs Japanese Chinese
OPUS 19.6M 1.4B 1.1B
KECL-paracrawl-2wmt24 4.6M 1.0B 705.0M
LinguaTools-wikititles-2014 1.7M 35.2M 27.5M
Facebook-wikimatrix-1 1.3M 145.1M 113.6M
KECL-paracrawl-2 83.9k 18.9M 14.1M
Neulab-tedtalks_train-1 5.2k 490.9k 376.0k
Statmt-news_commentary-18.1 1.6k 272.8k 197.3k
(Total) 27.2M 2.6B 1.9B

Table 11: Training dataset statistics (continued from Table 10 on previous page).
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B System Submission Summaries

This section lists all the submissions to the translation task and provides the authors’ descriptions of their
submission.

B.1 AIST-AIRC (Rikters and Miwa, 2024)

At WMT 2024 AIST AIRC participated in the General Machine Translation shared task and the Biomedical
Translation task (Neves et al., 2024). We trained constrained track models for translation between English,
German, and Japanese. Before training the final models, we first filtered the parallel data, then performed
iterative back-translation as well as parallel data distillation. We experimented with training baseline
Transformer models, Mega models, and fine-tuning open-source T5 and Gemma model checkpoints using
the filtered parallel data. Our primary submissions contain translations from ensembles of two Mega
model checkpoints and our contrastive submissions are generated by our fine-tuned T5 model checkpoints.

B.2 AMI (Jasonarson et al., 2024)

This paper presents the submission of the Arni Magnusson Institute’s team to the WMT24 General
translation task. We work on the English→Icelandic translation direction. Our system comprises four
translation models and a grammar correction model. For training our systems we carefully curate our
datasets, aggressively filtering out sentence pairs that may detrimentally affect the quality of our systems
output. Some of our data are collected from human translations and some are synthetically generated. A
part of the synthetic data is generated using an LLM, and we find that it increases the translation capability
of our system significantly.

B.3 CUNI-DS (Semin and Bojar, 2024)

We present a naive transfer learning approach for English-to-Russian translation, leveraging English-
to-Czech data within the constrained track of WMT24. Utilizing the Mistral-7B-0.1 model in its 4-bit
quantized variant, we employ QLoRA adapter training. The approach involves two phases: first, training
the adapters on the English-to-Czech CzEng 2.0 dataset, followed by fine-tuning the adapters further for
English-to-Russian translation with additional corpora. The training spans a total of 48 hours. Evaluation
is performed using WMT22 and WMT23 datasets, including the paragraph-level version of the latter.
Phase 1: Training on English-to-Czech Data

Dataset: CzEng 2.0, with examples packed into chunks of sequence length 2048.
Parameters: Warmup Steps: 20, Learning Rate: 2e-5, Weight Decay: 1e-2, Cumulative Batch Size: 32
Instructions: Alpaca-like instructions
Duration: 24 hours on a single A100 GPU, using the Unsloth library.

Phase 2: Fine-Tuning for English-to-Russian
Data: Yandex Corpus and News Commentary v18.1, with the latter divided into chunks of 10 sentences.
Regimen: Training with parameters similar to Phase 1.
Duration: An additional 24 hours, totaling 48 hours of training.

B.4 CUNI-{Transformer, DocTransformer, GA, MH, NL} (Hrabal et al., 2024)

This paper presents the contributions of Charles University teams to the WMT24 General Translation
task (English to Czech, German and Russian, and Czech to Ukrainian), and the WMT24 Translation into
Low-Resource Languages of Spain task.

Our most elaborate submission, CUNI-MH for English→Czech, is the result of fine-tuning Mistral
7B v0.1 for translation using a three-stage process: Supervised fine-tuning using QLoRA, Contrastive
Preference Optimization, and merging of model checkpoints. We also describe the CUNI-GA, CUNI-
Transformer and CUNI-DocTransformer submissions, which are based on our systems from the previous
year.

Our en2ru system CUNI-DS uses a similar first stage as CUNI-MH (QLoRA for English→Czech) and
follows with transferring to en2ru.
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For en2de (CUNI-NL), we experimented with a LLM-based speech translation system, to translate
without the speech input.

For the Translation into Low-Resource Languages of Spain task, we performed QLoRA fine-tuning of
a large LLM on a small amount of synthetic (backtranslated) data.

B.5 CycleL and CycleL2 (Dreano et al., 2024)
CycleGN is a fully self-supervised Neural Machine Translation framework relying on the Transformer
architecture that does not require parallel data. Its approach is similar to a Discriminator-less CycleGAN,
hence the "non-adversarial" name, specifically tailored for non-parallel text datasets. The foundational
concept of our research posits that in an ideal scenario, retro-translations of generated translations should
revert to the original source sentences. Consequently, a pair of models can be trained using a Cycle
Consistency Loss (CCL) only, with one model translating in one direction and the second model in the
opposite direction.

In the context of this research, two sub-categories of non-parallel datasets are introduced. A "permuted"
dataset is defined as a parallel dataset wherein the sentences of one language have been systematically
rearranged. Consequently, this results in a non-parallel corpus where it is guaranteed that each sentence
has a corresponding translation located at an unspecified index within the dataset. A "non-intersecting"
dataset is a non-parallel dataset for which it is guaranteed that no sentence has an exact translation.

Masked Language Modeling (MLM) is a pre-training strategy implemented in BERT, where a specified
proportion of the input tokens are substituted with a unique mask token. The objective of the neural
network under this paradigm is to accurately reconstruct the original sentence from this degraded input.

In inference mode, Transformers are able to generate sentences without labels. Thus, the first step is to
generate pseudo-labels in inference, that are then used as labels during training. However, the models
consistently converge towards a trivial solution in which the input, the generated pseudo-labels and the
output are identical, achieving an optimal outcome on the CCL function, registering a value of zero.
CycleGN demonstrates how MLM pre-training can be leveraged to move away from this trivial path and
perform actual text translation.

As a contribution to the WMT24 challenge, this study explores the efficacy of the CycleGN architectural
framework in learning translation tasks across eleven language pairs under the permuted condition and
four under the non-intersecting condition.

Moreover, two additional language pairs from the previous WMT edition were trained and the evalua-
tions demonstrate the robust adaptability of CycleGN in learning translation tasks.

B.6 DLUT-GTCOM (Zong et al., 2024)
This paper presents the submission from Global Tone Communication Co., Ltd. and Dalian University of
Technology for the WMT24 shared general Machine Translation (MT) task at the Conference on Empirical
Methods in Natural Language Processing (EMNLP). Our participation encompasses two language pairs:
English to Japanese and Japanese to Chinese. The systems are developed without particular constraints or
requirements, facilitating extensive research in machine translation. We emphasize back-translation, utilize
multilingual translation models, and apply fine-tuning strategies to improve performance. Additionally, we
integrate both human-generated and machine-generated data to fine-tune our models, leading to enhanced
translation accuracy. The automatic evaluation results indicate that our system ranks first in terms of
BLEU score for the Japanese to Chinese translation.

B.7 HW-TSC (Wu et al., 2024)
This paper presents the submission of Huawei Translate Services Center (HW-TSC) to the WMT24 general
machine translation (MT) shared task, where we participate in the English to Chinese (en→zh) language
pair. Similar to previous years’ work, we use training strategies such as regularized dropout, bidirectional
training, data diversification, forward translation, back translation, alternated training, curriculum learning,
and transductive ensemble learning to train the neural machine translation (NMT) model based on the
deep Transformer-big architecture. The difference is that we also use continue pre-training, supervised
fine-tuning, and contrastive preference optimization to train the large language model (LLM) based MT
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model. By using Minimum Bayesian risk (MBR) decoding to select the final translation from multiple
hypotheses for NMT and LLM-based MT models, our submission receives competitive results in the final
evaluation.

B.8 IKUN and IKUN-C (Liao et al., 2024)
This paper introduces two multilingual systems, IKUN and IKUN-C, developed for the general machine
translation task in WMT24. IKUN and IKUN-C represent an open system and a constrained system,
respectively, built on Llama-3-8b and Mistral-7B-v0.3. Both systems are designed to handle all 11
language directions using a single model. According to automatic evaluation metrics, IKUN-C achieved
6 first-place and 3 second-place finishes among all constrained systems, while IKUN secured 1 first-
place and 2 second-place finishes across both open and constrained systems. These encouraging results
suggest that large language models (LLMs) are nearing the level of proficiency required for effective
multilingual machine translation. The systems are based on a two-stage approach: first, continuous
pre-training on monolingual data in 10 languages, followed by fine-tuning on high-quality parallel data
for 11 language directions. The primary difference between IKUN and IKUN-C lies in their monolingual
pre-training strategy. IKUN-C is pre-trained using constrained monolingual data, whereas IKUN leverages
monolingual data from the OSCAR dataset. In the second phase, both systems are fine-tuned on parallel
data sourced from NTREX, Flores, and WMT16-23 for all 11 language pairs.

B.9 IOL-Research (Zhang, 2024)
This paper illustrates the submission system of the IOL Research team for the WMT24 General Machine
Translation shared task. We submitted translations for all translation directions in the general machine
translation task. According to the official track categorization, our system qualifies as an open system due
to the utilization of open-source resources in developing our machine translation model. With the growing
prevalence of large language models (LLMs) as a conventional approach for managing diverse NLP tasks,
we have developed our machine translation system by leveraging the capabilities of LLMs. Overall, We
first performed continued pretraining using the open-source LLMs with tens of billions of parameters to
enhance the model’s multilingual capabilities. Subsequently, we employed open-source Large Language
Models, equipped with hundreds of billions of parameters, to generate synthetic data. This data was then
blended with a modest quantity of additional open-source data for precise supervised fine-tuning. In the
final stage, we also used ensemble learning to improve translation quality.

B.10 MSLC (Larkin et al., 2024)
The MSLC (Metric Score Landscape Challenge) submissions for English–German, English–Spanish,
and Japanese–Chinese are constrained systems built using Transformer models for the purpose of better
evaluating metric performance in the WMT24 Metrics Task. They are intended to be representative of
the performance of systems that can be built relatively simple using constrained data and with minimal
modifications to the translation training pipeline.

B.11 NTTSU (Kondo et al., 2024)
The NTTSU team’s submission leverages several large language models developed through a training
procedure that includes continual pre-training and supervised fine-tuning. For paragraph-level translation,
we generated synthetic paragraph-aligned data and utilized this data for training.

In the task of translating Japanese to Chinese, we particularly focused on the speech domain translation.
Specifically, we built Whisper models for Japanese automatic speech recognition (ASR). We used YODAS
dataset for Whisper training. Since this data contained many noisy data pairs, we combined the Whisper
outputs using ROVER for polishing the transcriptions. Furthermore, to enhance the robustness of the
translation model against errors in the transcriptions, we performed data augmentation by forward
translation from audio, using both ASR and base translation models.

To select the best translation from multiple hypotheses of the models, we applied Minimum Bayes
Risk decoding + reranking, incorporating scores such as COMET-QE, COMET, and cosine similarity by
LaBSE.
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B.12 Occiglot (Avramidis et al., 2024)
This document describes the submission of the very first version of the Occiglot open-source large language
model to the General MT Shared Task of the 9th Conference of Machine Translation (WMT24). Occiglot
is an open-source, community-based LLM based on Mistral-7B, which went through language-specific
continual pre-training and subsequent instruction tuning, including instructions relevant to machine
translation. We examine the automatic metric scores for translating the WMT24 test set and provide a
detailed linguistically-motivated analysis.

Despite Occiglot performing worse than many of the other system submissions, we observe that it
performs better than Mistral7B, which has been based upon, which indicates the positive effect of the
language specific continual-pretraining and instruction tuning.

We see the submission of this very early version of the model as a motivation to unite community forces
and pursue future LLM research on the translation task.

B.13 SCIR-MT (Li et al., 2024)
This paper introduces the submission of SCIR research center of Harbin Institute of Technology partic-
ipating in the WMT24 machine translation evaluation task of constrained track for English to Czech.
Our approach involved a rigorous process of cleaning and deduplicating both monolingual and bilingual
data, followed by a three-stage model training recipe. During the testing phase, we used the beam
serach decoding method to generate a large number of candidate translations. Furthermore, we employed
COMET-MBR decoding to identify optimal translations.

B.14 Team-J (Kudo et al., 2024)
We participated in the constrained track for English-Japanese and Japanese-Chinese translations at the
WMT 2024 General Machine Translation Task. Our approach was to generate a large number of sentence-
level translation candidates and select the most probable translation using minimum Bayes risk (MBR)
decoding and document-level large language model (LLM) re-ranking. We first generated hundreds of
translation candidates from multiple translation models and retained the top 30 candidates using MBR
decoding. In addition, we continually pre-trained LLMs on the target language corpora to leverage
document-level information. We utilized LLMs to select the most probable sentence sequentially in
context from the beginning of the document.

B.15 TranssionMT
Hyper-SNMT represents a cutting-edge approach in the field of machine translation. Hyper-SNMT is
based on embedding sentences in a hyperbolic space, where distances naturally reflect language hierarchy
and dependencies. This novel embedding space enables the model to achieve more accurate translations,
especially for languages with complex grammatical structures and rich morphology. Both speed and
accuracy are significantly improved compared to existing models. This submission is highlighting the
portential of Hyper-SNMT to revolutionize the field of neural machine translation.

B.16 TSU-HITs (Mynka and Mikhaylovskiy, 2024)
This paper describes the TSU HITS team’s submission system for the WMT’24 general translation task.
We focused on exploring the capabilities of discrete diffusion models for the English-to-Russian, German,
Czech, Spanish translation tasks in the constrained track. Our submission system consists of a set of
discrete diffusion models for each language pair. The main advance is using a separate length regression
model to determine the length of the output sequence more precisely.

B.17 Unbabel-Tower70B (Rei et al., 2024)
In this work, we present Tower v2, an improved iteration of the state-of-the-art open-weight Tower models,
and the backbone of our submission to the WMT24 General Translation shared task. Tower v2 introduces
key improvements including expanded language coverage, enhanced data quality, and increased model
capacity up to 70B parameters. Our final submission combines these advancements with quality-aware
decoding strategies, selecting translations based on multiple translation quality signals. The resulting
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system demonstrates significant improvement over previous versions, outperforming closed commercial
systems like GPT-4o, Claude 3.5, and DeepL even at a smaller 7B scale.

B.18 UvA-MT (Tan et al., 2024)
Fine-tuning Large Language Models (FT-LLMs) with parallel data has emerged as a promising paradigm
in recent machine translation research. In this paper, we explore the effectiveness of FT-LLMs and
compare them to traditional encoder-decoder Neural Machine Translation (NMT) systems under the
WMT24 general MT shared task across three high-resource directions: English to Chinese, English to
Japanese, and Japanese to Chinese. We implement several techniques, including Quality Estimation
(QE) data filtering, supervised fine-tuning, and post-editing that integrate NMT systems with LLMs. We
demonstrate that fine-tuning LLaMA2 on a high-quality but relatively small bitext dataset (100K) yields
COMET results comparable to much smaller encoder-decoder NMT systems trained on over 22 million
bitexts. However, this approach largely underperforms on surface-level metrics like BLEU and ChrF. We
further control the data quality using the COMET-based quality estimation method. Our experiments
show that 1) filtering low COMET scores largely improves encoder-decoder systems, but 2) no clear gains
are observed for LLMs when further refining the fine-tuning set. Finally, we show that combining NMT
systems with LLMs via post-editing generally yields the best performance in our experiments.

B.19 Yandex (Elshin et al., 2024)
In this paper, we present the methodology employed by the NLP team at Yandex LLC for participating in
the WMT 2024 General MT Translation track, focusing on English-to-Russian translation. Our approach
involves training a YandexGPT LLM-based model for translation tasks using a multi-stage process to
ensure high-quality and contextually accurate translations.

Initially, we utilize a pre-trained model, trained on a large corpus of high-quality monolingual texts in
various languages, crawled from various open sources, not limited to English and Russian. This extensive
pre-training allows the model to capture a broad spectrum of linguistic nuances and structures. Following
this, the model is fine-tuned on a substantial parallel corpus of high-quality texts collected from diverse
open sources, including websites, books, and subtitles. These texts are meticulously aligned at both the
sentence and paragraph levels to enhance the model’s contextual understanding and translation accuracy.

In the subsequent stage, we employ p-tuning on an internal high-quality corpus of paragraph-aligned
data. This step ensures that the model is finely adjusted to handle complex paragraph-level translations
with greater fluency and coherence.

Next, we apply the Contrastive Pretraining Objective (CPO) method, as described in the paper CPO,
using a human-annotated translation corpus. This stage focuses on refining the model’s performance
based on metrics evaluated at the paragraph level, emphasizing both the accuracy of the translation and
the fluency of the resulting texts. The CPO method helps the model to better distinguish between subtle
contextual differences, thereby improving translation quality.

In the final stage, we address the importance of preserving the content structure in translations, which is
crucial for the General MT test set. To achieve this, we introduce a synthetic corpus based on web pages
and video subtitles, and use it during HE markup finetune training. This encourages the model to maintain
the original text’s tag structure. This step ensures that the translated output retains the structural integrity
of the source web pages, providing a seamless user experience.

Our multi-stage approach, combining extensive pre-training, targeted fine-tuning, advanced p-tuning,
and structure-preserving techniques, ensures that our model delivers high-quality, fluent, and structurally
consistent translations suitable for practical applications and competitive benchmarks.
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C Translator Brief

In this project we wish to translate data from several domains for use in evaluation of Machine Translation
(MT). The translations produced by you will be compared against the translations produced by a variety
of different MT systems. They will be released to the research community to provide a benchmark,
or “gold-standard” measure for translation quality. The translation therefore needs to be a high-quality
rendering of the source text into the target language, as if it was originally written directly in the target
language. However, there are some constraints imposed by the intended usage:

• All translations must be “from scratch”, without post-editing from machine translation or usage of CAT
tools. Using post-editing would bias the evaluation, so we need to avoid it. We can detect post-editing
and will reject translations that are post-edited.

• Translation should preserve the paragraph boundaries but may change number of sentences per paragraph.
The source texts contain one paragraph per line and the translations should be the same.

• Translators should avoid inserting parenthetical explanations into the translated text and obviously avoid
losing any pieces of information from the source text. We will check the translations for quality and
will reject translations that contain errors.

• If the original data contain errors, typos, or other problems, do not change the source sentences, instead
try to prepare correct translation as if the error wouldn’t be in the source.

• The data contain several domains, each folder containing one domain source.

The source files will be delivered as text files (sometimes known as “notepad” files), with one paragraph
per line. We need the translations to be returned in the same format. The translation file needs to have the
same name as the original file.

Speech Domain The texts are the transcriptions of audio, edited by native speakers. Each file represents
one segment of audio (you are also provided with correspondent audio in WAW format). Phrases said by
different speakers are located on different lines. Audios correspond to different domains, they differ in
formality, style, topics and number of speakers. The idea is to translate using the most similar language in
the target language, matching as best as possible the characteristics of the source text.

Social domain The texts are from the social network Mastodon (similar to Twitter). Each file represents
a thread or part of a thread from one or several users. Different posts within a thread are presented on
different lines in the file, although individual posts can also span several lines. The sentences have been
selected so that they do not contain offensive or sensitive content (hate speech, taking-drugs, suicide,
politically sensitive topics, etc.). However, profanities were kept as they were taken to be illustrative of the
sociolect of online language. If however, you do not feel comfortable with translating something, please
leave the whole line blank and let us know that you have not translated it. The texts are particular in that
they may contain spelling errors, slang, acronyms, marks of expressivity, etc. The idea is to translate using
the most natural language in the target language, matching as best as possible the style and familiarity of
the source text.

• Spelling mistakes should not be preserved in their translations, i.e. the translation should be spelt
correctly

• Marks of expressivity (e.g. asterisks *wow*, capitals letters WOW) should be conserved as best as
possible. However, we recommend not to attempt to reproduce repeated characters (e.g. woooow) in
translation, as the choice as to which character to repeat is often arbitrary.

• There will be abbreviations and acronyms (e.g. btw -> by the way, fwiw -> for what it’s worse). These
do not need to be translated using abbreviation or acronyms unless an abbreviation/acronym is the best
translation choice in the target language.
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• Users have been pseudo-anonymised (e.g. @user1, @user2). These should be left as they are, i.e. not
translated.

• Platform-specific elements such as hashtags should be translated as hashtags, but the content should be
translated as appropriate into the target language.

• Punctuation can be added if it necessary to avoid comprehension difficulties. Otherwise we recommend
following the punctuation of the source text.

A file entitled README-social-domain-translation-notes.pdf has been distributed with the texts to
translate. This file should not be translated. It contains some notes to provide additional context on the
topic and terms used in some of the texts.
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D Official Ranking Results (extends Section 7.4)

Results tables legend

The human score is the macro-average of human judgements, grouped by domain. The rank takes into consideration head-to-head
wins and losses. AutoRank is calculated from automatic metrics.
Ranking and clustering on human scores is done using Wilcoxon signed rank test for each domain separately and final p-value is
combined via Stouffer’s Z-score method to align with macro average for human score.
Systems are either constrained (white), open-track (light gray), or closed-track (dark gray).
LLMs that do not officially claim a support a language pair are marked with §.

Human scores for individual domains are marked by an up arrow ↑ if their difference from the system domain score is larger
than the standard deviation over all domains for given system (row) and down arrow ↓ indicates that the domain score is worse
than the overall score.
Underlined domain scores indicate that the domain score is better than the domain score of system above it (of a better ranked
system).

Czech→Ukrainian
Rank System Human AutoRank CometKiwi MetricX education news official personal voice

1-2 Claude-3.5 § 93.0 1.7 -0.7 1.0 ↓ 90.4 91.7 ↑ 95.3 ↑ 95.4 92.2
2-2 HUMAN-A 92.7 - - - 92.6 93.0 92.0 ↑ 94.9 ↓ 91.1
3-3 Gemini-1.5-Pro 92.6 2.0 -0.7 1.2 ↓ 88.6 94.7 94.5 93.6 91.9
3-4 Unbabel-Tower70B 92.2 1.0 -0.7 0.9 ↓ 86.8 93.5 94.8 94.1 91.8

5-5 IOL-Research 90.2 1.9 -0.7 1.3 ↓ 80.8 89.9 92.7 94.6 93.0

6-7 CommandR-plus § 89.7 1.9 -0.7 1.3 ↓ 83.4 89.6 ↑ 93.8 92.1 89.4
6-8 ONLINE-W 88.7 2.3 -0.7 1.4 ↓ 84.4 89.4 87.9 ↑ 91.3 90.4
7-9 GPT-4 § 88.6 2.0 -0.7 1.4 ↓ 83.2 87.9 89.0 ↑ 92.4 90.3
8-9 IKUN 87.1 2.3 -0.7 1.6 ↓ 77.6 86.8 89.7 91.2 90.3

10-10 Aya23 86.6 2.5 -0.7 1.9 ↓ 77.4 91.1 88.5 87.6 88.3

11-11 CUNI-Transformer 85.3 3.0 -0.6 2.0 ↓ 83.2 85.2 84.8 ↑ 88.0 85.3

12-12 IKUN-C 82.6 3.0 -0.6 2.4 79.6 ↓ 70.0 87.2 88.4 87.8

Mistral-Large § - 2.3 - - - - - - -
TranssionMT - 2.6 - - - - - - -
ONLINE-B - 2.6 - - - - - - -
ONLINE-A - 2.6 - - - - - - -
Llama3-70B § - 2.6 - - - - - - -
ONLINE-G - 2.8 - - - - - - -
Phi-3-Medium § - 9.1 - - - - - - -
BJFU-LPT - 11.5 - - - - - - -
CycleL - 21.0 - - - - - - -
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English→Czech
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-2 HUMAN-A 92.9 - - - 93.1 ↑ 94.5 92.0 92.1
2-2 Unbabel-Tower70B 91.6 1.0 -0.7 1.8 91.7 94.1 93.3 ↓ 87.5
2-3 Claude-3.5 § 91.2 2.1 -0.7 2.4 91.2 ↑ 94.9 91.6 ↓ 87.2

4-5 ONLINE-W 89.0 2.8 -0.7 2.8 91.0 ↑ 92.1 88.2 ↓ 84.9
4-6 CUNI-MH 88.4 2.1 -0.7 2.3 89.7 ↑ 91.9 88.0 ↓ 84.1
6-6 Gemini-1.5-Pro 88.2 2.6 -0.7 2.8 88.6 89.3 ↓ 85.2 89.6
6-8 GPT-4 § 87.7 2.6 -0.7 2.9 ↓ 85.2 89.5 ↑ 90.1 86.1
8-8 CommandR-plus § 86.9 2.9 -0.7 2.9 ↓ 85.2 87.5 ↑ 88.6 86.2
8-9 IOL-Research 86.5 2.8 -0.7 3.0 84.7 ↑ 90.4 86.3 84.5

10-11 SCIR-MT 85.4 3.2 -0.7 3.3 85.0 ↑ 92.4 82.2 82.1
10-11 CUNI-

DocTransformer
84.3 4.4 -0.6 4.0 83.1 ↑ 90.7 80.9 82.4

12-12 Aya23 84.2 4.3 -0.6 4.0 81.6 ↑ 89.9 84.9 ↓ 80.3

13-13 CUNI-GA 82.1 2.3 -0.7 3.7 82.8 ↑ 88.5 81.7 ↓ 75.3

14-14 IKUN 81.7 3.9 -0.6 3.7 80.2 ↑ 87.0 82.2 ↓ 77.5

15-15 Llama3-70B § 77.4 4.1 -0.6 4.0 ↓ 65.4 83.0 82.4 78.8

16-16 IKUN-C 75.4 4.7 -0.6 4.3 ↓ 70.5 77.7 77.5 75.7

TranssionMT - 3.5 - - - - - -
ONLINE-A - 3.6 - - - - - -
Mistral-Large § - 3.7 - - - - - -
ONLINE-B - 4.0 - - - - - -
CUNI-Transformer - 4.7 - - - - - -
ONLINE-G - 5.7 - - - - - -
NVIDIA-NeMo - 7.6 - - - - - -
Phi-3-Medium § - 15.0 - - - - - -
TSU-HITs - 19.5 - - - - - -
CycleL2 - 24.2 - - - - - -
CycleL - 27.0 - - - - - -

English→German
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-11 GPT-4 -1.6 1.8 -0.7 1.4 -0.7 -1.4 -0.9 ↓ -3.6
1-7 Dubformer -1.8 1.8 -0.7 1.2 -1.2 -1.3 -0.6 ↓ -4.2

2-10 ONLINE-B -1.9 1.8 -0.7 1.4 -1.3 -1.5 -1.2 ↓ -3.6
2-10 TranssionMT -1.9 1.8 -0.7 1.4 -1.3 -1.2 -1.2 ↓ -3.9
2-9 Unbabel-Tower70B -1.9 1.0 -0.7 1.1 -1.4 -2.0 ↑ -0.8 ↓ -3.5
1-9 HUMAN-B -2.0 - - - -0.8 -1.4 -0.8 ↓ -4.9

2-12 Mistral-Large -2.1 2.0 -0.7 1.5 -1.5 -1.9 -1.1 ↓ -3.9
4-11 CommandR-plus -2.3 2.0 -0.7 1.4 -1.7 -2.4 ↑ -1.1 ↓ -3.9
8-10 ONLINE-W -2.3 2.2 -0.7 1.5 -2.1 -1.3 -1.7 ↓ -4.1
2-12 Claude-3.5 -2.4 1.9 -0.7 1.4 -1.1 -1.0 -1.2 ↓ -6.0
3-13 HUMAN-A -2.5 - - - -2.0 -1.8 -1.0 ↓ -5.0

10-12 IOL-Research -2.5 2.3 -0.7 1.6 -2.0 -1.7 -1.6 ↓ -4.9
5-13 Gemini-1.5-Pro -2.8 2.2 -0.7 1.5 ↓ -5.0 ↑ -1.3 -1.9 -2.9

14-15 Aya23 -3.2 2.7 -0.7 1.8 -2.3 -2.7 -2.2 ↓ -5.7
14-17 ONLINE-A -3.5 3.0 -0.7 1.8 -2.8 -1.9 -2.3 ↓ -6.9
15-17 Llama3-70B § -4.3 2.5 -0.7 1.7 -4.8 -2.9 ↑ -2.3 ↓ -7.1
15-17 IKUN -4.3 3.0 -0.7 1.8 -3.5 -4.3 ↑ -2.4 ↓ -7.1

18-18 IKUN-C -6.1 3.8 -0.6 2.0 -7.6 -3.4 -3.3 ↓ -9.9

19-19 MSLC -15.5 11.9 -0.4 4.4 -15.3 -11.5 ↑ -8.2 ↓
-26.8

Phi-3-Medium § - 3.4 - - - - - -
ONLINE-G - 3.5 - - - - - -
CUNI-NL - 4.2 - - - - - -
AIST-AIRC - 7.2 - - - - - -
NVIDIA-NeMo - 7.4 - - - - - -
Occiglot - 8.2 - - - - - -
TSU-HITs - 13.3 - - - - - -
CycleL2 - 27.0 - - - - - -
CycleL - 27.0 - - - - - -
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English→Spanish
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-1 HUMAN-A 95.3 - - - 95.2 ↑ 96.2 95.5 ↓ 94.1

2-2 Dubformer 93.4 2.0 -0.7 2.2 95.3 94.5 94.4 ↓ 89.4

3-4 GPT-4 91.9 1.9 -0.7 2.5 93.5 94.0 93.2 ↓ 87.0
4-7 IOL-Research 91.4 2.3 -0.7 2.8 ↑ 96.3 92.5 90.9 ↓ 86.0
5-8 Mistral-Large 89.3 2.2 -0.7 2.7 90.5 90.4 91.0 ↓ 85.2
5-9 Unbabel-Tower70B 88.9 1.0 -0.7 1.9 86.2 ↑ 93.7 91.1 ↓ 84.6
3-8 Claude-3.5 88.8 2.1 -0.7 2.6 91.5 92.8 90.4 ↓ 80.5
5-8 Gemini-1.5-Pro 88.8 2.4 -0.7 2.8 89.6 ↑ 92.3 87.0 ↓ 86.2
7-9 CommandR-plus 88.3 2.1 -0.7 2.6 88.2 89.3 ↑ 90.8 ↓ 84.8

9-10 Llama3-70B § 87.2 2.6 -0.7 3.0 ↑ 89.4 87.1 87.9 ↓ 84.2

11-11 ONLINE-B 85.6 2.7 -0.7 3.1 87.4 88.6 86.8 ↓ 79.4

12-13 IKUN 84.7 2.8 -0.7 3.3 85.4 ↑ 92.4 82.8 ↓ 78.3
12-13 IKUN-C 80.4 3.4 -0.7 3.5 83.3 ↑ 85.6 79.0 ↓ 73.6

14-14 MSLC 63.9 7.4 -0.5 6.4 59.3 ↑ 78.8 55.9 61.7

ONLINE-W - 2.7 - - - - - -
TranssionMT - 2.8 - - - - - -
Phi-3-Medium § - 3.0 - - - - - -
ONLINE-A - 3.0 - - - - - -
Aya23 - 3.1 - - - - - -
ONLINE-G - 3.2 - - - - - -
NVIDIA-NeMo - 4.5 - - - - - -
Occiglot - 5.9 - - - - - -
TSU-HITs - 16.3 - - - - - -
CycleL - 24.0 - - - - - -

English→Hindi
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-3 TranssionMT 91.3 1.3 -0.6 3.3 ↑ 94.0 93.0 89.8 ↓ 88.2
1-4 Unbabel-Tower70B 90.5 1.0 -0.7 3.1 90.9 ↑ 92.7 90.7 ↓ 87.7
3-3 Claude-3.5 § 90.2 1.2 -0.6 3.3 95.4 93.6 91.0 ↓ 81.1
3-4 ONLINE-B 90.1 1.4 -0.6 3.3 91.8 90.4 91.3 ↓ 86.9
3-5 Gemini-1.5-Pro § 90.0 1.6 -0.6 3.6 90.3 ↑ 91.9 89.4 ↓ 88.3

6-6 GPT-4 § 88.5 2.1 -0.6 4.5 89.9 90.4 89.2 ↓ 84.4

7-8 HUMAN-A 88.5 - - - 88.8 ↓ 88.1 ↑ 88.9 88.2
8-8 IOL-Research 87.2 2.1 -0.6 4.3 87.2 ↑ 88.9 87.7 ↓ 84.9
8-9 Llama3-70B § 86.7 2.1 -0.6 4.6 86.4 87.1 ↓ 86.1 87.1

10-10 Aya23 84.7 3.2 -0.6 5.4 83.3 ↑ 86.9 ↓ 83.1 85.7

11-11 IKUN-C 70.7 5.5 -0.5 7.1 71.2 ↓ 59.2 ↑ 80.2 72.4

CommandR-plus § - 2.3 - - - - - -
ONLINE-A - 3.5 - - - - - -
ONLINE-G - 4.2 - - - - - -
Mistral-Large § - 5.0 - - - - - -
NVIDIA-NeMo - 5.8 - - - - - -
Phi-3-Medium § - 7.4 - - - - - -
IKUN - 7.7 - - - - - -
ONLINE-empty - 15.3 - - - - - -
CycleL - 20.0 - - - - - -
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English→Icelandic
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-1 HUMAN-A 93.1 - - - 92.2 92.6 ↑ 95.0 92.4

2-3 Dubformer 84.3 2.5 -0.7 3.4 84.1 83.1 ↑ 87.5 82.5
2-3 Claude-3.5 § 81.9 2.3 -0.7 3.6 80.2 83.9 ↑ 87.2 ↓ 76.4

4-4 Unbabel-Tower70B 80.2 1.0 -0.7 2.5 ↓ 76.6 80.6 ↑ 84.3 79.2

5-5 AMI 73.3 3.7 -0.7 4.9 ↑ 75.2 72.8 74.1 ↓ 71.1

6-6 IKUN 71.0 3.2 -0.7 4.3 ↓ 66.8 ↑ 74.7 73.6 69.1

7-7 ONLINE-B 68.0 4.2 -0.7 5.5 70.5 ↓ 59.4 ↑ 74.0 67.9

8-9 GPT-4 66.3 3.4 -0.7 4.7 66.5 65.5 ↑ 69.5 ↓ 63.9
8-9 IKUN-C 65.2 3.7 -0.7 4.9 ↓ 59.6 68.2 ↑ 69.3 63.8

10-10 IOL-Research 58.0 4.3 -0.7 5.7 ↓ 49.4 59.6 61.4 61.4

11-11 Llama3-70B § 41.0 6.7 -0.6 8.0 39.8 40.0 ↑ 44.0 40.3

TranssionMT - 4.2 - - - - - -
ONLINE-A - 5.5 - - - - - -
ONLINE-G - 6.9 - - - - - -
CommandR-plus § - 9.8 - - - - - -
Mistral-Large § - 10.4 - - - - - -
Aya23 § - 15.2 - - - - - -
Phi-3-Medium § - 16.2 - - - - - -
ONLINE-empty - 18.1 - - - - - -
TSU-HITs - 19.2 - - - - - -
CycleL - 21.0 - - - - - -

English→Japanese
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-1 HUMAN-A 91.8 - - - 92.4 93.0 ↓ 89.5 92.4

2-4 ONLINE-B 91.1 1.4 -0.8 2.4 91.7 ↑ 92.6 91.1 ↓ 88.9
3-4 CommandR-plus 91.0 1.9 -0.7 2.7 92.2 ↑ 93.7 89.5 ↓ 88.5
4-4 GPT-4 90.8 1.7 -0.7 2.7 ↑ 91.9 91.3 ↓ 89.9 90.1
4-5 Claude-3.5 90.8 1.5 -0.7 2.3 91.4 ↑ 92.8 91.3 ↓ 87.6
4-7 Gemini-1.5-Pro 90.0 1.7 -0.7 2.5 91.1 ↑ 92.2 ↓ 88.1 88.7
7-7 Unbabel-Tower70B 89.7 1.0 -0.8 2.0 ↓ 88.2 ↑ 91.6 89.8 89.2
8-8 IOL-Research 89.7 2.3 -0.7 3.1 91.0 90.6 90.3 ↓ 86.9
8-9 Aya23 89.7 2.3 -0.7 3.1 90.1 ↑ 92.1 88.4 ↓ 87.9

10-10 NTTSU 89.4 1.9 -0.7 2.6 90.0 ↑ 93.2 88.4 ↓ 86.2

11-11 Team-J 88.5 1.9 -0.7 2.9 ↓ 85.0 90.1 ↑ 91.3 87.5

12-12 Llama3-70B § 86.8 2.6 -0.7 3.5 89.3 ↑ 89.8 85.2 ↓ 82.7

13-13 IKUN-C 81.7 3.9 -0.7 4.3 ↓ 77.5 ↑ 88.5 81.2 79.8

DLUT-GTCOM - 2.6 - - - - - -
Phi-3-Medium § - 2.8 - - - - - -
ONLINE-W - 2.9 - - - - - -
Mistral-Large § - 2.9 - - - - - -
ONLINE-A - 3.0 - - - - - -
IKUN - 3.1 - - - - - -
ONLINE-G - 6.4 - - - - - -
AIST-AIRC - 6.6 - - - - - -
UvA-MT - 6.7 - - - - - -
NVIDIA-NeMo - 6.9 - - - - - -
CycleL - 24.0 - - - - - -
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English→Russian
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-1 HUMAN-A 89.2 - - - ↑ 94.0 88.3 87.7 86.6

2-3 Dubformer 89.1 1.9 -0.7 2.8 90.7 88.5 ↑ 92.1 ↓ 84.9
3-4 Claude-3.5 88.2 2.0 -0.7 3.0 ↑ 94.1 93.1 85.7 ↓ 80.0
3-5 Unbabel-Tower70B 88.1 1.0 -0.7 2.4 87.5 91.2 90.6 ↓ 83.2
3-7 Yandex 87.0 1.9 -0.7 2.9 89.6 ↑ 91.8 84.5 ↓ 82.0
6-8 Gemini-1.5-Pro 85.5 2.3 -0.7 3.2 ↑ 90.7 84.9 83.4 82.9
6-9 GPT-4 85.0 2.3 -0.7 3.4 ↑ 89.3 85.4 84.6 ↓ 80.7
6-9 ONLINE-G 84.6 2.2 -0.7 3.3 88.3 88.8 84.6 ↓ 76.6
5-9 CommandR-plus § 84.3 2.4 -0.7 3.4 86.7 84.5 85.7 ↓ 80.5

10-10 IOL-Research 82.1 2.6 -0.7 3.7 84.8 86.4 84.2 ↓ 73.1

11-11 IKUN 79.2 3.2 -0.7 4.1 80.2 ↑ 87.2 78.5 ↓ 70.9

12-12 Aya23 78.6 3.3 -0.7 4.2 77.8 ↑ 82.9 78.5 ↓ 75.3

13-13 Llama3-70B § 75.7 3.1 -0.7 4.1 77.0 ↑ 80.1 76.3 ↓ 69.5

14-14 IKUN-C 69.8 3.9 -0.6 4.7 65.1 ↑ 78.3 72.9 ↓ 62.6

ONLINE-W - 2.6 - - - - - -
Mistral-Large § - 2.7 - - - - - -
ONLINE-B - 3.1 - - - - - -
TranssionMT - 3.1 - - - - - -
ONLINE-A - 3.4 - - - - - -
Phi-3-Medium § - 3.9 - - - - - -
CUNI-DS - 5.9 - - - - - -
NVIDIA-NeMo - 7.2 - - - - - -
TSU-HITs - 10.8 - - - - - -
CycleL - 24.3 - - - - - -
CycleL2 - 25.0 - - - - - -

English→Ukrainian
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-2 Claude-3.5 90.5 2.0 -0.7 3.0 93.2 93.9 92.2 ↓ 82.7
1-2 Unbabel-Tower70B 89.8 1.0 -0.7 2.2 92.5 92.8 91.1 ↓ 82.9

3-3 Dubformer 89.0 1.8 -0.7 2.7 ↓ 84.4 91.3 ↑ 94.3 85.9

4-6 HUMAN-A 87.3 - - - 89.6 ↑ 91.5 ↓ 83.8 84.1
4-6 Gemini-1.5-Pro 87.1 2.2 -0.7 3.0 ↑ 90.1 88.8 85.3 ↓ 84.4
5-8 ONLINE-W 86.0 2.1 -0.7 2.8 86.7 ↑ 88.9 86.8 ↓ 81.8
5-9 GPT-4 84.6 2.3 -0.7 3.3 81.2 ↑ 90.3 84.5 82.4
6-9 CommandR-plus § 83.2 2.3 -0.7 3.2 79.6 ↑ 89.1 83.6 80.4
7-9 IOL-Research 83.2 2.4 -0.7 3.4 80.6 ↑ 90.2 83.1 ↓ 78.8

10-10 IKUN 78.4 2.8 -0.7 3.7 83.2 ↑ 88.2 72.7 ↓ 69.7

11-11 IKUN-C 67.9 3.9 -0.6 4.7 ↓ 65.2 69.0 68.3 69.2

ONLINE-G - 2.3 - - - - - -
Mistral-Large § - 2.4 - - - - - -
ONLINE-B - 3.1 - - - - - -
TranssionMT - 3.1 - - - - - -
Llama3-70B § - 3.2 - - - - - -
Aya23 - 3.3 - - - - - -
ONLINE-A - 3.3 - - - - - -
NVIDIA-NeMo - 6.2 - - - - - -
Phi-3-Medium § - 11.1 - - - - - -
CycleL - 21.0 - - - - - -
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English→Chinese
Rank System Human AutoRank CometKiwi MetricX literary news social speech

1-1 GPT-4 89.6 2.0 -0.7 3.3 88.7 ↑ 91.2 90.3 ↓ 88.4

2-4 Unbabel-Tower70B 89.6 1.0 -0.7 2.3 90.0 ↑ 92.3 90.2 ↓ 85.8
2-4 HUMAN-A 89.4 - - - 89.9 90.1 90.7 ↓ 86.8
4-4 Gemini-1.5-Pro 89.3 1.8 -0.7 3.1 92.0 ↑ 92.5 ↓ 85.2 87.5
5-6 ONLINE-B 89.3 1.7 -0.7 2.9 ↑ 91.9 89.7 90.3 ↓ 85.0
6-6 IOL-Research 89.0 1.8 -0.7 3.1 91.0 90.8 88.3 ↓ 86.1
6-7 Claude-3.5 88.9 1.7 -0.7 3.0 92.0 90.8 89.5 ↓ 83.4
6-8 CommandR-plus 88.3 2.2 -0.7 3.3 85.9 ↑ 90.8 90.4 85.9

9-9 Llama3-70B § 86.5 2.8 -0.7 3.9 87.5 86.8 87.0 ↓ 84.6

10-10 HW-TSC 86.2 2.3 -0.7 3.4 87.1 ↑ 91.5 84.9 ↓ 81.4

11-11 IKUN 85.3 3.1 -0.6 4.0 88.6 ↑ 89.1 82.1 ↓ 81.5

12-12 Aya23 85.2 3.0 -0.7 4.1 85.4 ↑ 88.3 85.5 ↓ 81.7

13-13 IKUN-C 82.1 3.5 -0.6 4.2 81.0 ↑ 85.9 83.1 ↓ 78.6

ONLINE-W - 2.2 - - - - - -
Mistral-Large § - 2.8 - - - - - -
Phi-3-Medium § - 3.1 - - - - - -
ONLINE-A - 3.3 - - - - - -
UvA-MT - 4.3 - - - - - -
ONLINE-G - 4.8 - - - - - -
NVIDIA-NeMo - 7.3 - - - - - -
CycleL - 20.1 - - - - - -
CycleL2 - 22.0 - - - - - -

Japanese→Chinese
Rank System Human AutoRank CometKiwi MetricX literary news speech

1-3 Claude-3.5 -1.4 1.7 -0.6 3.5 -0.5 -0.8 ↓ -3.0
1-3 HUMAN-A -1.5 - - - -0.7 -0.8 ↓ -3.2
3-5 GPT-4 -1.7 2.1 -0.6 3.8 -1.0 -0.8 ↓ -3.2
2-5 DLUT-GTCOM -1.7 2.0 -0.6 3.3 -0.5 -1.1 ↓ -3.7
4-8 Unbabel-Tower70B -1.9 1.0 -0.6 3.2 -1.0 -1.2 ↓ -3.5
3-6 Gemini-1.5-Pro -2.1 1.9 -0.6 3.5 -1.6 -0.8 ↓ -3.8
6-8 CommandR-plus -2.2 2.8 -0.6 4.1 -0.7 -1.3 ↓ -4.6
6-8 IOL-Research -2.4 2.2 -0.6 3.9 -1.4 -1.1 ↓ -4.8

9-10 Llama3-70B § -3.4 3.1 -0.6 4.7 -2.0 -2.2 ↓ -6.2
9-10 Aya23 -3.5 3.7 -0.6 5.0 -2.1 -1.9 ↓ -6.4

11-12 Team-J -4.5 2.8 -0.6 4.0 -3.1 -2.0 ↓ -8.5
11-12 NTTSU -5.1 3.7 -0.6 5.3 -2.8 -2.1 ↓

-10.5

13-13 ONLINE-B -5.8 5.2 -0.5 5.5 -4.2 -3.7 ↓ -9.5

14-14 IKUN-C -7.7 5.5 -0.5 6.2 -5.1 -3.4 ↓
-14.4

15-15 MSLC -10.7 8.9 -0.5 8.8 -9.1 ↑ -4.0 ↓
-19.0

Mistral-Large § - 3.5 - - - - -
Phi-3-Medium § - 4.0 - - - - -
IKUN - 4.4 - - - - -
UvA-MT - 5.2 - - - - -
ONLINE-W - 5.3 - - - - -
ONLINE-A - 6.8 - - - - -
ONLINE-G - 10.3 - - - - -
CycleL - 23.0 - - - - -
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E Head to head comparisons

Following tables show differences in average human scores for each language pair. The number in each of
cell shows the difference in average human scores for the systems in the column and row.

Because there are many systems and data conditions, the significance of each pairwise comparison
needs to be quantified. We apply Wilcoxon signed-rank test to measure the likelihood that such differences
could occur simply by chance. In the following tables ⋆ indicates statistical significance at p < 0.05, †
indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at p < 0.001.

Each table contains final rows showing the macro-average score achieved by that system and the rank
range. Gray lines separate clusters based on non-overlapping rank ranges.

Head to head comparison for Czech→Ukrainian systems
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Claude-3.5 – 0.3† 0.4‡ 0.8 2.8‡ 3.3‡ 4.3‡ 4.4‡ 5.9‡ 6.4‡ 7.7‡ 10.4‡
refA – – 0.1‡ 0.5† 2.5‡ 3.0‡ 4.0‡ 4.2‡ 5.6‡ 6.1‡ 7.4‡ 10.1‡

Gemini-1.5-Pro – – – 0.4⋆ 2.4‡ 3.0‡ 4.0‡ 4.1‡ 5.5‡ 6.1‡ 7.3‡ 10.1‡
Unbabel-Tower70B – – – – 2.0‡ 2.5‡ 3.5‡ 3.6‡ 5.1‡ 5.6‡ 6.9‡ 9.6‡

IOL-Research – – – – – 0.5† 1.5‡ 1.6‡ 3.1‡ 3.6‡ 4.9‡ 7.6‡
CommandR-plus – – – – – – 1.0 1.1⋆ 2.5‡ 3.1‡ 4.4‡ 7.1‡

ONLINE-W – – – – – – – 0.1 1.6‡ 2.1‡ 3.4‡ 6.1‡
GPT-4 – – – – – – – – 1.4 2.0‡ 3.3‡ 6.0‡
IKUN – – – – – – – – – 0.6‡ 1.8‡ 4.5‡
Aya23 – – – – – – – – – – 1.3‡ 4.0†

CUNI-Transformer – – – – – – – – – – – 2.7‡
IKUN-C – – – – – – – – – – – –

Scores 93.0 92.7 92.6 92.2 90.2 89.7 88.7 88.6 87.1 86.6 85.3 82.6
Ranks 1-2 2-2 3-3 3-4 5-5 6-7 6-8 7-9 8-9 10-10 11-11 12-12

Head to head comparison for English→Czech systems
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refA – 1.3‡ 1.7 3.9‡ 4.5‡ 4.7‡ 5.2‡ 6.0‡ 6.4‡ 7.5‡ 8.7‡ 8.8‡ 10.8‡ 11.2‡ 15.5‡ 17.5‡
Unbabel-Tower70B – – 0.4† 2.6† 3.2‡ 3.4‡ 3.9‡ 4.7‡ 5.2‡ 6.2‡ 7.4‡ 7.5‡ 9.5‡ 9.9‡ 14.2‡ 16.3‡

Claude-3.5 – – – 2.2‡ 2.8‡ 3.0‡ 3.5‡ 4.3‡ 4.7‡ 5.8‡ 6.9‡ 7.0‡ 9.1‡ 9.5‡ 13.8‡ 15.8‡
ONLINE-W – – – – 0.6 0.8‡ 1.3† 2.1‡ 2.6‡ 3.6‡ 4.8‡ 4.9‡ 6.9‡ 7.3‡ 11.6‡ 13.7‡

CUNI-MH – – – – – 0.2‡ 0.7 1.5‡ 2.0† 3.0‡ 4.2‡ 4.3‡ 6.3‡ 6.7‡ 11.0‡ 13.1‡
Gemini-1.5-Pro – – – – – – 0.4‡ 1.3‡ 1.7‡ 2.8‡ 3.9‡ 4.0‡ 6.1‡ 6.5‡ 10.8‡ 12.8‡

GPT-4 – – – – – – – 0.9⋆ 1.3 2.3‡ 3.5‡ 3.6‡ 5.7‡ 6.0‡ 10.3‡ 12.4‡
CommandR-plus – – – – – – – – 0.4‡ 1.5‡ 2.6‡ 2.7‡ 4.8‡ 5.2‡ 9.5‡ 11.5‡

IOL-Research – – – – – – – – – 1.0† 2.2† 2.3⋆ 4.4‡ 4.7‡ 9.1‡ 11.1‡
SCIR-MT – – – – – – – – – – 1.2 1.3‡ 3.3‡ 3.7‡ 8.0‡ 10.1‡

CUNI-DocTransformer – – – – – – – – – – – 0.1‡ 2.2‡ 2.5‡ 6.9‡ 8.9‡
Aya23 – – – – – – – – – – – – 2.1‡ 2.4† 6.8‡ 8.8‡

CUNI-GA – – – – – – – – – – – – – 0.4† 4.7‡ 6.7‡
IKUN – – – – – – – – – – – – – – 4.3‡ 6.4‡

Llama3-70B – – – – – – – – – – – – – – – 2.0‡
IKUN-C – – – – – – – – – – – – – – – –

Scores 92.9 91.6 91.2 89.0 88.4 88.2 87.7 86.9 86.5 85.4 84.3 84.2 82.1 81.7 77.4 75.4
Ranks 1-2 2-2 2-3 4-5 4-6 6-6 6-8 8-8 8-9 10-11 10-11 12-12 13-13 14-14 15-15 16-16

Head to head comparison for English→German systems
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GPT-4 – 0.2 0.3 0.3 0.3 0.3 0.5 0.6 0.7† 0.7 0.8 0.9‡ 1.1 1.6‡ 1.8‡ 2.6‡ 2.7‡ 4.4‡ 13.8‡
Dubformer – – 0.1⋆ 0.1⋆ 0.1 0.2 0.3 0.5† 0.5⋆ 0.5 0.6 0.7‡ 1.0⋆ 1.4‡ 1.7‡ 2.4‡ 2.5‡ 4.2‡ 13.7‡

ONLINE-B – – – 0.0 0.0 0.1 0.2 0.4⋆ 0.4⋆ 0.5 0.6 0.6‡ 0.9 1.3‡ 1.6‡ 2.4‡ 2.4‡ 4.2‡ 13.6‡
TranssionMT – – – – 0.0† 0.1 0.2 0.4 0.4‡ 0.4 0.6 0.6‡ 0.9 1.3‡ 1.6‡ 2.4‡ 2.4‡ 4.2‡ 13.6‡

Unbabel-Tower70B – – – – – 0.1 0.2 0.4 0.4† 0.4 0.6⋆ 0.6‡ 0.9⋆ 1.3‡ 1.6‡ 2.3‡ 2.4‡ 4.2‡ 13.6‡
refB – – – – – – 0.1⋆ 0.3‡ 0.3‡ 0.4 0.5 0.6‡ 0.8 1.2‡ 1.5‡ 2.3‡ 2.3‡ 4.1‡ 13.5‡

Mistral-Large – – – – – – – 0.2 0.2 0.2 0.4 0.4⋆ 0.7 1.1‡ 1.4‡ 2.1‡ 2.2‡ 3.9‡ 13.4‡
CommandR-plus – – – – – – – – 0.0⋆ 0.1 0.2 0.3⋆ 0.5 0.9‡ 1.2‡ 2.0‡ 2.0‡ 3.8‡ 13.2‡

ONLINE-W – – – – – – – – – 0.0† 0.1⋆ 0.2 0.5‡ 0.9‡ 1.2‡ 1.9‡ 2.0‡ 3.7‡ 13.1‡
Claude-3.5 – – – – – – – – – – 0.1 0.2‡ 0.4 0.9‡ 1.1‡ 1.9‡ 2.0‡ 3.7‡ 13.1‡

refA – – – – – – – – – – – 0.1 0.3 0.8‡ 1.0‡ 1.8‡ 1.9‡ 3.6‡ 13.0‡
IOL-Research – – – – – – – – – – – – 0.2‡ 0.7⋆ 0.9⋆ 1.7‡ 1.8‡ 3.5‡ 12.9‡

Gemini-1.5-Pro – – – – – – – – – – – – – 0.4‡ 0.7‡ 1.5‡ 1.5‡ 3.3‡ 12.7‡
Aya23 – – – – – – – – – – – – – – 0.3 1.0⋆ 1.1† 2.8‡ 12.3‡

ONLINE-A – – – – – – – – – – – – – – – 0.8 0.8 2.6‡ 12.0‡
Llama3-70B – – – – – – – – – – – – – – – – 0.1 1.8‡ 11.2‡

IKUN – – – – – – – – – – – – – – – – – 1.7‡ 11.1‡
IKUN-C – – – – – – – – – – – – – – – – – – 9.4‡

MSLC – – – – – – – – – – – – – – – – – – –
Scores -1.6 -1.8 -1.9 -1.9 -1.9 -2.0 -2.1 -2.3 -2.3 -2.4 -2.5 -2.5 -2.8 -3.2 -3.5 -4.3 -4.3 -6.1 -15.5
Ranks 1-11 1-7 2-10 2-10 2-9 1-9 2-12 4-11 8-10 2-12 3-13 10-12 5-13 14-15 14-17 15-17 15-17 18-18 19-19

44



Head to head comparison for English→Spanish systems
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refA – 1.9† 3.3‡ 3.8‡ 6.0‡ 6.3‡ 6.5‡ 6.5‡ 7.0‡ 8.1‡ 9.7‡ 10.5‡ 14.9‡ 31.3‡
Dubformer – – 1.5⋆ 2.0† 4.1‡ 4.5‡ 4.6‡ 4.6‡ 5.1‡ 6.2‡ 7.8‡ 8.7‡ 13.0‡ 29.5‡

GPT-4 – – – 0.5‡ 2.7† 3.0† 3.1 3.2⋆ 3.6‡ 4.8‡ 6.4‡ 7.2‡ 11.6‡ 28.0‡
IOL-Research – – – – 2.2† 2.5 2.7 2.7 3.2† 4.3‡ 5.9‡ 6.7‡ 11.1‡ 27.5‡
Mistral-Large – – – – – 0.4⋆ 0.5 0.5⋆ 1.0 2.1 3.7† 4.5‡ 8.9‡ 25.4‡

Unbabel-Tower70B – – – – – – 0.1 0.1 0.6 1.7† 3.3‡ 4.2‡ 8.5‡ 25.0‡
Claude-3.5 – – – – – – – 0.0 0.5⋆ 1.6† 3.2‡ 4.0‡ 8.4‡ 24.9‡

Gemini-1.5-Pro – – – – – – – – 0.5⋆ 1.6† 3.2‡ 4.0‡ 8.4‡ 24.9‡
CommandR-plus – – – – – – – – – 1.1‡ 2.7† 3.5‡ 7.9‡ 24.4‡

Llama3-70B – – – – – – – – – – 1.6⋆ 2.4‡ 6.8‡ 23.2‡
ONLINE-B – – – – – – – – – – – 0.8⋆ 5.2‡ 21.7‡

IKUN – – – – – – – – – – – – 4.4 20.8‡
IKUN-C – – – – – – – – – – – – – 16.4‡

MSLC – – – – – – – – – – – – – –
Scores 95.3 93.4 91.9 91.4 89.3 88.9 88.8 88.8 88.3 87.2 85.6 84.7 80.4 63.9
Ranks 1-1 2-2 3-4 4-7 5-8 5-9 3-8 5-8 7-9 9-10 11-11 12-13 12-13 14-14

Head to head comparison for English→Hindi systems
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TranssionMT – 0.7 1.0‡ 1.1‡ 1.3 2.7‡ 2.8‡ 4.1‡ 4.6‡ 6.5‡ 20.5‡
Unbabel-Tower70B – – 0.3‡ 0.4 0.5 2.0† 2.0‡ 3.4‡ 3.8‡ 5.8‡ 19.8‡

Claude-3.5 – – – 0.1‡ 0.3‡ 1.7‡ 1.8‡ 3.1‡ 3.6‡ 5.5‡ 19.5‡
ONLINE-B – – – – 0.1† 1.6‡ 1.6‡ 3.0‡ 3.4‡ 5.4‡ 19.4‡

Gemini-1.5-Pro – – – – – 1.5⋆ 1.5‡ 2.8‡ 3.3‡ 5.2‡ 19.3‡
GPT-4 – – – – – – 0.0‡ 1.3† 1.8‡ 3.8‡ 17.8‡

refA – – – – – – – 1.3⋆ 1.8 3.7‡ 17.7‡
IOL-Research – – – – – – – – 0.5† 2.4‡ 16.4‡

Llama3-70B – – – – – – – – – 1.9† 16.0‡
Aya23 – – – – – – – – – – 14.0‡

IKUN-C – – – – – – – – – – –
Scores 91.3 90.5 90.2 90.1 90.0 88.5 88.5 87.2 86.7 84.7 70.7
Ranks 1-3 1-4 3-3 3-4 3-5 6-6 7-8 8-8 8-9 10-10 11-11

Head to head comparison for English→Icelandic systems
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refA – 8.8‡ 11.1‡ 12.9‡ 19.8‡ 22.0‡ 25.1‡ 26.7‡ 27.9‡ 35.1‡ 52.0‡
Dubformer – – 2.3 4.1‡ 11.0‡ 13.2‡ 16.3‡ 17.9‡ 19.1‡ 26.3‡ 43.3‡
Claude-3.5 – – – 1.8‡ 8.7‡ 10.9‡ 14.0‡ 15.6‡ 16.7‡ 24.0‡ 40.9‡

Unbabel-Tower70B – – – – 6.9‡ 9.1‡ 12.2‡ 13.8‡ 15.0‡ 22.2‡ 39.1‡
AMI – – – – – 2.2⋆ 5.3‡ 6.9‡ 8.1‡ 15.3‡ 32.3‡

IKUN – – – – – – 3.1† 4.7‡ 5.9‡ 13.1‡ 30.0‡
ONLINE-B – – – – – – – 1.6‡ 2.8‡ 10.0‡ 26.9‡

GPT-4 – – – – – – – – 1.2 8.4‡ 25.3‡
IKUN-C – – – – – – – – – 7.2‡ 24.2‡

IOL-Research – – – – – – – – – – 16.9‡
Llama3-70B – – – – – – – – – – –

Scores 93.1 84.3 81.9 80.2 73.3 71.0 68.0 66.3 65.2 58.0 41.0
Ranks 1-1 2-3 2-3 4-4 5-5 6-6 7-7 8-9 8-9 10-10 11-11

Head to head comparison for English→Japanese systems
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refA – 0.7‡ 0.9⋆ 1.0‡ 1.0‡ 1.8† 2.1‡ 2.1‡ 2.2‡ 2.4‡ 3.3‡ 5.1‡ 10.1‡
ONLINE-B – – 0.1† 0.3‡ 0.3 1.1 1.4‡ 1.4‡ 1.4⋆ 1.7‡ 2.6‡ 4.3‡ 9.3‡

CommandR-plus – – – 0.1‡ 0.2† 0.9 1.2‡ 1.3‡ 1.3‡ 1.5‡ 2.5‡ 4.2‡ 9.2‡
GPT-4 – – – – 0.0‡ 0.8† 1.1‡ 1.1‡ 1.2† 1.4‡ 2.3‡ 4.0‡ 9.1‡

Claude-3.5 – – – – – 0.8⋆ 1.1‡ 1.1‡ 1.1‡ 1.4‡ 2.3‡ 4.0‡ 9.1‡
Gemini-1.5-Pro – – – – – – 0.3‡ 0.3‡ 0.4 0.6‡ 1.5‡ 3.2‡ 8.3‡

Unbabel-Tower70B – – – – – – – 0.0‡ 0.1‡ 0.3‡ 1.2‡ 2.9‡ 8.0‡
IOL-Research – – – – – – – – 0.1† 0.3† 1.2‡ 2.9‡ 8.0‡

Aya23 – – – – – – – – – 0.2⋆ 1.2‡ 2.9‡ 7.9‡
NTTSU – – – – – – – – – – 0.9‡ 2.7‡ 7.7‡
Team-J – – – – – – – – – – – 1.7‡ 6.8‡

Llama3-70B – – – – – – – – – – – – 5.0‡
IKUN-C – – – – – – – – – – – – –

Scores 91.8 91.1 91.0 90.8 90.8 90.0 89.7 89.7 89.7 89.4 88.5 86.8 81.7
Ranks 1-1 2-4 3-4 4-4 4-5 4-7 7-7 8-8 8-9 10-10 11-11 12-12 13-13
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Head to head comparison for English→Russian systems
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refA – 0.1‡ 0.9⋆ 1.0‡ 2.2† 3.7⋆ 4.1‡ 4.6† 4.8‡ 7.1‡ 10.0‡ 10.5‡ 13.4‡ 19.4‡
Dubformer – – 0.8‡ 0.9 2.1† 3.6‡ 4.0‡ 4.5‡ 4.7‡ 6.9‡ 9.8‡ 10.4‡ 13.3‡ 19.3‡
Claude-3.5 – – – 0.1‡ 1.3 2.8† 3.2‡ 3.7† 3.9† 6.1‡ 9.0‡ 9.6‡ 12.5‡ 18.5‡

Unbabel-Tower70B – – – – 1.1 2.7‡ 3.1‡ 3.6‡ 3.8‡ 6.0‡ 8.9‡ 9.5‡ 12.4‡ 18.4‡
Yandex – – – – – 1.5⋆ 1.9⋆ 2.4 2.6 4.9‡ 7.8‡ 8.3‡ 11.2‡ 17.2‡

Gemini-1.5-Pro – – – – – – 0.4 0.9† 1.1 3.3‡ 6.2‡ 6.8‡ 9.7‡ 15.7‡
GPT-4 – – – – – – – 0.5 0.7 2.9† 5.8‡ 6.4‡ 9.3‡ 15.3‡

ONLINE-G – – – – – – – – 0.2 2.5⋆ 5.3‡ 5.9‡ 8.8‡ 14.8‡
CommandR-plus – – – – – – – – – 2.2† 5.1‡ 5.7‡ 8.6‡ 14.6‡

IOL-Research – – – – – – – – – – 2.9† 3.5‡ 6.4‡ 12.4‡
IKUN – – – – – – – – – – – 0.6⋆ 3.5⋆ 9.5‡
Aya23 – – – – – – – – – – – – 2.9⋆ 8.9‡

Llama3-70B – – – – – – – – – – – – – 6.0‡
IKUN-C – – – – – – – – – – – – – –

Scores 89.2 89.1 88.2 88.1 87.0 85.5 85.0 84.6 84.3 82.1 79.2 78.6 75.7 69.8
Ranks 1-1 2-3 3-4 3-5 3-7 6-8 6-9 6-9 5-9 10-10 11-11 12-12 13-13 14-14

Head to head comparison for English→Ukrainian systems
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Claude-3.5 – 0.6 1.5† 3.2‡ 3.3† 4.4‡ 5.9‡ 7.3‡ 7.3‡ 12.1‡ 22.6‡
Unbabel-Tower70B – – 0.8⋆ 2.6† 2.7⋆ 3.8† 5.2‡ 6.7‡ 6.7‡ 11.4‡ 21.9‡

Dubformer – – – 1.7‡ 1.8‡ 2.9† 4.4‡ 5.8‡ 5.8‡ 10.6‡ 21.1‡
refA – – – – 0.1 1.2⋆ 2.7 4.1⋆ 4.1⋆ 8.8‡ 19.4‡

Gemini-1.5-Pro – – – – – 1.1 2.5⋆ 4.0⋆ 4.0‡ 8.7‡ 19.2‡
ONLINE-W – – – – – – 1.4 2.9 2.9⋆ 7.6‡ 18.1‡

GPT-4 – – – – – – – 1.4 1.4 6.2‡ 16.7‡
CommandR-plus – – – – – – – – 0.0 4.8‡ 15.3‡

IOL-Research – – – – – – – – – 4.7‡ 15.3‡
IKUN – – – – – – – – – – 10.5‡

IKUN-C – – – – – – – – – – –
Scores 90.5 89.8 89.0 87.3 87.1 86.0 84.6 83.2 83.2 78.4 67.9
Ranks 1-2 1-2 3-3 4-6 4-6 5-8 5-9 6-9 7-9 10-10 11-11

Head to head comparison for English→Chinese systems
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GPT-4 – 0.0‡ 0.3⋆ 0.3‡ 0.4‡ 0.6‡ 0.7† 1.4⋆ 3.2‡ 3.4‡ 4.3‡ 4.4‡ 7.5‡
Unbabel-Tower70B – – 0.2 0.3‡ 0.3‡ 0.6‡ 0.7‡ 1.3 3.1‡ 3.4‡ 4.3‡ 4.4‡ 7.5‡

refA – – – 0.1‡ 0.1‡ 0.3‡ 0.5⋆ 1.1 2.9‡ 3.1‡ 4.1‡ 4.2‡ 7.2‡
Gemini-1.5-Pro – – – – 0.1‡ 0.3† 0.4‡ 1.1‡ 2.9‡ 3.1‡ 4.0‡ 4.1‡ 7.2‡

ONLINE-B – – – – – 0.2⋆ 0.3 1.0† 2.8‡ 3.0‡ 3.9‡ 4.0‡ 7.1‡
IOL-Research – – – – – – 0.1⋆ 0.8‡ 2.6‡ 2.8‡ 3.7‡ 3.8‡ 6.9‡

Claude-3.5 – – – – – – – 0.6† 2.5‡ 2.7‡ 3.6‡ 3.7‡ 6.8‡
CommandR-plus – – – – – – – – 1.8‡ 2.0‡ 2.9‡ 3.0‡ 6.1‡

Llama3-70B – – – – – – – – – 0.2‡ 1.1‡ 1.2† 4.3‡
HW-TSC – – – – – – – – – – 0.9‡ 1.0‡ 4.1‡

IKUN – – – – – – – – – – – 0.1‡ 3.2‡
Aya23 – – – – – – – – – – – – 3.1‡

IKUN-C – – – – – – – – – – – – –
Scores 89.6 89.6 89.4 89.3 89.3 89.0 88.9 88.3 86.5 86.2 85.3 85.2 82.1
Ranks 1-1 2-4 2-4 4-4 5-6 6-6 6-7 6-8 9-9 10-10 11-11 12-12 13-13

Head to head comparison for Japanese→Chinese systems
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Claude-3.5 – 0.1 0.3⋆ 0.3 0.5‡ 0.7⋆ 0.8‡ 1.0‡ 2.0‡ 2.0‡ 3.1‡ 3.7‡ 4.4‡ 6.2‡ 9.3‡
refA – – 0.1⋆ 0.2 0.4‡ 0.5⋆ 0.7‡ 0.9‡ 1.9‡ 1.9‡ 3.0‡ 3.6‡ 4.3‡ 6.1‡ 9.2‡

GPT-4 – – – 0.1⋆ 0.2 0.4 0.5‡ 0.8† 1.7‡ 1.8‡ 2.9‡ 3.4‡ 4.1‡ 6.0‡ 9.0‡
DLUT-GTCOM – – – – 0.2⋆ 0.3 0.5† 0.7‡ 1.7‡ 1.7‡ 2.8‡ 3.4‡ 4.1‡ 5.9‡ 9.0‡

Unbabel-Tower70B – – – – – 0.2 0.3 0.5 1.5‡ 1.6‡ 2.6‡ 3.2‡ 3.9‡ 5.7‡ 8.8‡
Gemini-1.5-Pro – – – – – – 0.1‡ 0.4† 1.4‡ 1.4‡ 2.5‡ 3.1‡ 3.8‡ 5.6‡ 8.7‡

CommandR-plus – – – – – – – 0.3 1.2‡ 1.3‡ 2.3‡ 2.9‡ 3.6‡ 5.5‡ 8.5‡
IOL-Research – – – – – – – – 1.0‡ 1.0‡ 2.1‡ 2.7‡ 3.4‡ 5.2‡ 8.3‡

Llama3-70B – – – – – – – – – 0.0 1.1† 1.7‡ 2.4‡ 4.2‡ 7.3‡
Aya23 – – – – – – – – – – 1.1‡ 1.7⋆ 2.4‡ 4.2‡ 7.3‡

Team-J – – – – – – – – – – – 0.6 1.3‡ 3.1‡ 6.2‡
NTTSU – – – – – – – – – – – – 0.7‡ 2.5‡ 5.6‡

ONLINE-B – – – – – – – – – – – – – 1.8† 4.9‡
IKUN-C – – – – – – – – – – – – – – 3.1‡

MSLC – – – – – – – – – – – – – – –
Scores -1.4 -1.5 -1.7 -1.7 -1.9 -2.1 -2.2 -2.4 -3.4 -3.5 -4.5 -5.1 -5.8 -7.7 -10.7
Ranks 1-3 1-3 3-5 2-5 4-8 3-6 6-8 6-8 9-10 9-10 11-12 11-12 13-13 14-14 15-15

46



Proceedings of the Ninth Conference on Machine Translation, pages 47–81
November 15-16, 2024 ©2024 Association for Computational Linguistics

Are LLMs Breaking MT Metrics?
Results of the WMT24 Metrics Shared Task

Markus Freitag(1), Nitika Mathur(2), Daniel Deutsch(1), Chi-kiu Lo羅致翹(3),
Eleftherios Avramidis(4), Ricardo Rei(5), Brian Thompson(6), Frédéric Blain(7), Tom Kocmi(8),

Jiayi Wang(9), David I. Adelani(10,11), Marianna Buchicchio(5), Chrysoula Zerva(12,13), Alon Lavie(14)
(1)Google Research (2)Oracle (3)National Research Council Canada

(4)German Research Center for Artificial Intelligence (DFKI) (5)Unbabel (6)Amazon (7)Tilburg University
(8)Microsoft (9)University College London (10)McGill University (11)Mila - Quebec AI Institute

(12)Instituto Superior Técnico (13)Instituto de Telecomunicações (14)Phrase
wmt-metrics@googlegroups.com

Abstract

The WMT24 Metrics Shared Task evaluated
the performance of automatic metrics for ma-
chine translation (MT), with a major focus on
LLM-based translations that were generated as
part of the WMT24 General MT Shared Task.
As LLMs become increasingly popular in MT,
it is crucial to determine whether existing eval-
uation metrics can accurately assess the output
of these systems.

To provide a robust benchmark for this eval-
uation, human assessments were collected us-
ing Multidimensional Quality Metrics (MQM),
continuing the practice from recent years. Fur-
thermore, building on the success of the previ-
ous year, a challenge set subtask was included,
requiring participants to design contrastive test
suites that specifically target a metric’s abil-
ity to identify and penalize different types of
translation errors.

Finally, the meta-evaluation procedure was re-
fined to better reflect real-world usage of MT
metrics, focusing on pairwise accuracy at both
the system- and segment-levels.

We present an extensive analysis on how
well metrics perform on three language
pairs: English→Spanish (Latin America),
Japanese→Chinese, and English→German.
The results strongly confirm the results reported
last year, that fine-tuned neural metrics con-
tinue to perform well, even when used to evalu-
ate LLM-based translation systems.

1 Introduction

The Metrics Shared Task1 has been a key compo-
nent of WMT since 2008, serving as a way to val-
idate the use of automatic MT evaluation metrics
and drive the development of new metrics. We eval-
uate reference-based automatic metrics that score
MT output by comparing the translations with a

1https://www2.statmt.org/wmt24/
metrics-task.html

metric avg corr

MetaMetrics-MT 1 0.725
MetricX-24-Hybrid 1 0.721
XCOMET 1 0.719
MetricX-24-Hybrid-QE* 2 0.714
gemba_esa* 2 0.711
XCOMET-QE* 3 0.695
COMET-22 3 0.688
BLEURT-20 3 0.686
MetaMetrics-MT-QE* 3 0.684
bright-qe* 4 0.681
BLCOM_1 4 0.664
sentinel-cand-mqm* 5 0.650
PrismRefMedium 5 0.646
PrismRefSmall 5 0.642
CometKiwi* 5 0.640
damonmonli 5 0.635
YiSi-1 6 0.630
BERTScore 7 0.617
MEE4 7 0.609
chrF 8 0.608
chrfS 8 0.606
spBLEU 9 0.593
BLEU 9 0.589
XLsimMqm* 10 0.515
sentinel-src-mqm* 10 0.513
sentinel-ref-mqm 10 0.513

Table 1: Official ranking of primary submissions to the
WMT24 Metric Task. The final score is the weighted av-
erage correlation over 6 different tasks. Starred metrics
are reference-free, and underlined metrics are baselines.
See Table 14 for the pairwise comparisons from which
the ranks were derived.

reference translation generated by human transla-
tors, who are instructed to translate “from scratch”
without post-editing from MT. In addition, we also
invited submissions of reference-free metrics (qual-
ity estimation metrics or QE metrics) that compare
MT outputs directly with the source segments. All
metrics are evaluated based on their agreement with
human ratings when scoring MT systems and hu-
man translations at the system and sentence level.
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The final ranking of this year’s submitted primary
metrics is shown in Table 1. Below are some of
the key details and changes implemented for this
year’s Metrics Shared Task:

• Language Pairs: For this year, we fo-
cus on three language pairs, all on the
paragraph-level: (i) English→German (en→de),
English→Spanish (Latin America) (en→es), and
Japanese→Chinese (ja→zh).

• Human Evaluation: Like last year, we collected
our own human quality ratings for our three lan-
guage pairs leveraging professional translators
performing MQM annotations (Lommel et al.,
2014; Freitag et al., 2021). We released and up-
loaded2 all MQM annotations, and we recom-
mend using Marot3 for looking into this data.

• Meta Evaluation: This year, we designed the
meta-evaluation to evaluate metrics on how they
are used in practice, by focusing on pairwise
accuracy at the system- and segment-levels and
removing Pearson correlation. At the system-
level, we use a new statistic called soft pairwise
accuracy (Thompson et al., 2024), and, like last
year, we use pairwise accuracy with tie calibra-
tion (Deutsch et al., 2023) at the segment-level.

• Challenge Sets Subtask: The submission for-
mat of the challenge sets changed to provide for
more flexibility on how the participants could
challenge the metrics. In contrast to previous
years, when the challenge items were evaluated
in a rigid pairwise manner on whether the met-
ric scores can distinguish between a good and
a bad translation, this year’s participants could
provide single translations and then employ an
evaluation concept of their own. This year’s sub-
task features 4 submissions that test the ability
of the metrics to evaluate MT outputs on African
languages, the biomedical domain, on more than
a hundred linguistically-motivated phenomena,
as well as on low- to mid-quality outputs and
specific challenges (empty strings, wrong/mixed
language output and language variants).

• Understand Magnitude of Score Difference:
Similar to last year, we include two analyses to
understand the meaning of the score differences

2https://github.com/google/
wmt-mqm-human-evaluation

3https://github.com/google-research/
google-research/tree/master/marot

that metrics present with respect to the statistical
significance of MT system rankings according
to human annotations and metric scores. These
analyses provide additional assistance for MT re-
searchers to build an intuition on the relationship
between the magnitude of metric score differ-
ences and the reliability of the improved transla-
tion quality.

• MTME: Similar to last year, all the data has been
uploaded to MTME4, and all results in this pa-
per are calculated with this analysis tool. We
encourage every metric developer to use MTME
to calculate contrastive scores to enhance consis-
tency and comparability going forward.

Our main findings are:

• Two metametrics (which are both ensemble
metrics), MetricX-24-Hybrid and XCOMET,
are the winners of the WMT24 Metrics Shared
Task (Table 1);

• Fine-tuned neural metrics continue to be
strong in performance and are effective quality
estimators, even for LLM-based translations;

• Results from the challenge sets independently
suggest that it is important for metric re-
searchers to test the performance of metrics
in diverse collections of linguistic phenom-
ena, languages and domains, including low-
resource languages, mixed languages and ir-
regular outputs, and on a wide range of trans-
lation quality, in order to minimize anomalous
and unexpected behaviours of metrics (Sec-
tion 9).

The rest of the paper is organized as follows: Sec-
tion 2 describes the test data. Section 3 presents
an overview of the conducted expert-based human
evaluation. Section 4 describes the metrics evalu-
ated this year (baselines and participants). Sec-
tion 5 describes the conducted meta-evaluation.
Section 6 reports our main results. Section 7 inter-
prets and evaluates metrics’ scores beyond corre-
lations. Section 8 summarizes our results for the
WMT24 General MT Shared Task language-pairs
based on their new ESA human evaluation method-
ology (Kocmi et al., 2024c). Section 9 presents a
description of the submitted challenge sets along
with their findings. Finally, Section 10 summarizes
our most important conclusions.

4https://github.com/google-research/
mt-metrics-eval
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2 Translation Systems

Similar to previous years’ editions, the source, ref-
erence texts, and MT system outputs for the metrics
task are mainly derived from the WMT24 General
MT Shared Task (Kocmi et al., 2024a). The do-
mains cover news, literary, speech, and social. We
do not provide any sentence splitting, thus many
segments contain multiple sentences. Each lan-
guage pair contains a comparable number of sen-
tences from each domain, resulting in reasonably
balanced test sets. Data statistics can be seen in
Table 2. The language pairs en→de and en→es
have the same source segments; ja→zh consists of
segments from only 3 different domains.

news literary speech social

#tokens

en→{de,es} 9,268 9,601 9,611 9,829
ja→zh 14,896 14,541 11,025

#docs (#segments/doc)

en→{de,es} 17 (8.8) 8 (25.8) 111 (1.0) 34 (15.6)
ja→zh 45 (6.0) 15 (21.1) 136 (1.0)

#sents (#sents/doc)

en→{de,es} 333 (19.6) 607 (75.9) 685 (6.2) 759 (22.3)
ja→zh 634 (14.1) 875 (58.3) 332 (2.4)

Table 2: Test set statistics split by domain. Statistics
are calculated on the source side.

The reference translations provided for the test sets
are produced by professional translators.

For more details regarding the test sets, we refer
the reader to the WMT24 General MT Shared Task
findings paper (Kocmi et al., 2024a). All data has
been released and can be downloaded5.

3 MQM Human Evaluation

Automatic metrics are commonly evaluated by mea-
suring correlations with corresponding human rat-
ings. The quality of these human ratings is criti-
cal, and recent findings (Freitag et al., 2021) have
shown that crowdsourced human ratings are not
sufficiently reliable for evaluating high quality MT
outputs. Furthermore, an evaluation schema based
on MQM (Lommel et al., 2014), which requires
explicit error annotation is more effective than an
evaluation schema that only asks raters for a sin-
gle scalar value per translation. Similar to last
year, we decided to conduct our own MQM-based

5https://github.com/wmt-conference/
wmt24-news-systems

human evaluation on a subset of translation sys-
tem submissions and language pairs which we be-
lieve are most interesting for evaluating current
metrics. Instead of evaluating all MT system sub-
missions, we restrict our human evaluation to the
top scoring submissions, as determined based on
baseline automatic scores. MQM is a general
framework that provides a hierarchy of translation
errors which can be tailored to specific applica-
tions. Google and Unbabel sponsored the human
evaluation for this year’s metrics task for a subset
of language pairs using either professional trans-
lators (English→German, Japanese→Chinese) or
trusted and trained raters (English→Spanish). The
error annotation typology and guidelines used by
Google’s and Unbabel’s annotators differ slightly
and are described in the following two sections.

3.1 English→German & Japanese→Chinese

Annotations for en→de and ja→zh were sponsored
and executed by Google, using 18 professional
translators (10 for en→de, 8 for ja→zh) having
access to the full document context. Each segment
gets annotated by a single rater. Instead of assign-
ing a scalar value to each translation, annotators
were instructed to label error spans within each
segment in a document, paying particular attention
to document context. Each error was highlighted
in the text, and labelled with an error category and
a severity. Segments that are too badly garbled
to permit reliable identification of individual er-
rors are assigned a special Non-translation error.
Error severities are assigned independent of cat-
egory, and consist of Major, Minor, and Neutral
levels, corresponding respectively to actual transla-
tion or grammatical errors, smaller imperfections
and purely subjective opinions about the transla-
tion. Since we are ultimately interested in scoring
segments, we adopt the weighting scheme shown
in Table 3.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 3: Google’s MQM error weighting.

Recent research demonstrated that rater assign-
ment is crucial for reliable human evaluation and
we adopted the suggested Pseudo-Side-by-Side
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(pSxS) rater assignment as suggested in (Riley
et al., 2024). For more details, exact annotator
instructions and a list of error categories, we refer
the reader to Freitag et al. (2021) as the exact same
setup was used for the previous three metrics tasks.

3.2 English→Spanish (Latin America)

The annotations for the en→es (Latin America)6

language pair were sourced from Unbabel, who en-
gaged four professional native language annotators
possessing extensive translation experience. Much
like Google’s approach, these annotators were pro-
vided with the full document context, comprising
up to ten segments. Their task was to identify and
classify errors by highlighting them, following Un-
babel’s MQM 3.0 typology7.

The annotators were instructed to classify the
errors based on severity, with Unbabel’s classifica-
tion encompassing not only “Minor” and “Major”
error severities (analogous to Google’s criteria) but
also a “Critical” error severity. However, to ensure
consistency in our evaluation process, we opted
to align with the Google methodology outlined
previously. Specifically, we treated all annotated
“Critical” errors as “Major” errors, and we applied
a weighting scheme for punctuation errors, as de-
tailed in Table 3.

3.3 Human Evaluation Results

Due to the fact that we ran our own human evalua-
tion, we were only able to evaluate a subset of the
test segments. In Table 4, you can see the number
of segments and documents for each language pair
and test set that we used for human evaluation. In
all cases, the MQM score for a segment is the sum
of the scores for the errors in that segment, and
the MQM score for a test set is the average of the
MQM scores of the segments that were annotated.

The results of the MQM human evaluation can
be seen in Table 5. It’s important to note a non-
intentional, but important difference in our human
evaluation setting for the speech domain between
the three language pairs. For English→German
and English→Spanish, we asked human annota-
tors to compare translations against the ASR out-
put, which inadvertently disadvantaged participants
who used audio input, including those providing
human translations, as these translations rely on an

6Since the testset is for Spanish from Mexico rather than
Spanish from Spain, the conducted annotations were collected
taking that variant in consideration.

7see Unbabel Annotation Guidelines - Typology 3.0

error-free input. This is evident in the higher MQM
scores for the speech domain for both language
pairs for human translations and the dubformer sys-
tem (which also utilizes audio input). However,
for Japanese→Chinese, the human annotators com-
pared against the cleaned human transcription. This
mismatch was not intentional and we will discuss
the impact on the correlation numbers in Section 6.

4 Baselines and Submissions

We computed scores for several baseline metrics
in order to compare submissions against previous
well-studied metrics. We will start by describing
those baselines, and then we will describe the sub-
missions from participating teams. An overview of
the evaluated metrics can be seen in Table 6.

4.1 Baselines

SacreBLEU baselines We use the following met-
rics from SacreBLEU (Post, 2018) as baselines:

• BLEU (Papineni et al., 2002) is based
on the precision of n-grams between the
MT output and its reference, weighted by
a brevity penalty. Using SacreBLEU we
obtained sentence-BLEU values using the
sentence_bleu Python function and for
corpus-level BLEU we used corpus_bleu
(both with default arguments8).

• SPBLEU (NLLB Team et al., 2022) are
BLEU scores computed with subword tok-
enization by the standardized FLORES-200
Sentencepiece models. We used the command
line SacreBLEU to compute the sentence level
SPBLEU9 and we averaged the segment-level
scores to obtain a corpus-level score.

• CHRF (Popović, 2015) uses character
n-grams instead of word n-grams to compare
the MT output with the reference. For CHRF
we used the SacreBLEU sentence_chrf
function (with default arguments10) for
segment-level scores and we average those
scores to obtain a corpus-level score.

8lnrefs.1|case.mixed|lang.LANGPAIR|tok.13a|smooth.exp|
version.2.3.0. For to-zh and to-ja language pairs, we use
tok.zh and tok.ja-mecab

9nrefs:1|case:mixed|eff:yes|tok:flores200|smooth:exp| ver-
sion:2.3.0

10chrF2|lang.LANGPAIR|nchars.6|space.false|version.2.3.0
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language news social speech literary

en→de 90/149 (17/17) 258/531 (34/34) 111/111 (1/1) 27/206 (8/8)
en→es 124/149 (14/17) 281/531 (20/34) 107/111 (1/1) 110/206 (5/8)
ja→zh 255/269 (45/45) n/a 136/136 (1/1) 168/316 (15/15)

Table 4: Numbers of MQM-annotated segments per domain (number of docs in brackets).

BERTSCORE (Zhang et al., 2020) leverages
contextual embeddings from pre-trained transform-
ers to create soft-alignments between words in can-
didate and reference sentences using cosine similar-
ity. Based on the alignment matrix, BERTSCORE

returns a precision, recall and F1 score. We used
F1 without TF-IDF weighting.

BLEURT (Sellam et al., 2020) is a learned metric
fine-tuned on Direct Assessments (DA). Unlike
COMET, BLEURT encodes the translation and the
reference together and utilizes the [CLS] token as
an embedding to represent the pair. We employed
the BLEURT20 checkpoint (Pu et al., 2021), which
was trained on top of RemBERT using DA data
from previous shared tasks spanning from 2015 to
2019, along with additional synthetic data created
from Wikipedia articles.

COMET-22 (Rei et al., 2022a) is a learned met-
ric fine-tuned using DA from previous WMT Trans-
lation shared tasks. This metric relies on sentence
embeddings from the source, translation, and ref-
erence to produce a final score. We utilized the de-
fault model wmt22-comet-da provided in ver-
sion 2.0.2 of the Unbabel/COMET framework.
This model employs XLM-R large as its backbone
model and is trained on data from the 2017 to 2019
WMT shared tasks, in combination with the MLQE-
PE corpus (Fomicheva et al., 2022).

COMETKIWI (Rei et al., 2022b) is a reference-
free learned metric that functions similarly to
BLEURT, but instead of encoding the transla-
tion along with its reference, it uses the source.
We utilized the wmt22-cometkiwi-da model,
which was a top-performing reference-free met-
ric from the WMT22 shared task. This reference-
free metric is fine-tuned on the same data as
wmt22-comet-da using the version 2.0.2 of the
Unbabel/COMET framework.

PRISMREFSMALL AND PRISMREFMEDIUM
(Thompson and Post, 2020a,b) are both reference-
based PRISM that uses a multilingual MT model
in zero-shot paraphrase model to score the candi-
date translation conditioned on the reference, and

the reference conditioned on the candidate transla-
tion, and averages the two scores. As LLMs have
become quite capable multi-lingual MT models,
we opted to use Llama3.1 (Llama Team, 2024) as
the underlying MT model this year. PRISMREF-
SMALL corresponds to Llama3.1 8B and PRISM-
REFMEDIUM corresponds to Llama3.1 70B. The
long context window of LLMs allows us to com-
pute scores for entire documents, while still averag-
ing scores for each sentence to produce sentence-
level scores (Vernikos et al., 2022). We chunked
longer documents into sub-documents of up to 10
sentences, and added a penalty for producing no
output.

YISI-1 (Lo, 2019) is an MT evaluation metric
that measures the semantic similarity between a ma-
chine translation and human references by aggre-
gating the IDF-weighted lexical semantic similari-
ties based on the contextual embeddings extracted
from pre-trained language models (e.g. RoBERTa,
CamemBERT, XLM-RoBERTa, etc.).

4.2 Metric Submissions

The rest of this section summarizes the participat-
ing metrics.

BLCOM_1 and BLCOM Unfortunately, we
have no information about these submission.

BRIGHT-QE is a referenceless metric, which
uses the XLM-XL encoder to perform multi-stage
fine-tuning according to the XCOMET framework.
In the first stage of training, we used DA 2017 2022
corpus, and gradually reduced the weight of REF-
based loss with the idea of curriculum learning,
trying to reduce the model’s dependence on refer-
ence and better align the semantics of the transla-
tion and source text; in the second stage, we used
batch softmax to normalize scores, and introduced
KL divergence loss to learn to modify the minor
rank error that MSE loss cannot solve, so as to ob-
tain better Pearson correlation; finally, we further
fine-tuned on high-quality MQM corpus to achieve
better consistency with human expert MQM.
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English→German ↓
System all news social speech literary

Dubformer 1.58 1.29 0.60 4.22 1.15
GPT-4 1.58 1.39 0.88 3.60 0.69
Unbabel-Tower70B 1.65 1.99 0.78 3.46 1.41
ONLINE-B 1.81 1.48 1.22 3.59 1.30
TranssionMT 1.81 1.24 1.18 3.87 1.33
refB 1.84 1.38 0.80 4.92 0.81
Mistral-Large 1.93 1.95 1.12 3.91 1.46
CommandR-plus 2.01 2.40 1.07 3.95 1.74
refA 2.12 1.84 1.01 4.96 2.04
Gemini-1.5-Pro 2.20 1.29 1.93 2.90 4.97
ONLINE-W 2.22 1.32 1.75 4.09 2.12
Claude-3.5 2.28 1.00 1.23 6.04 1.13
IOL_Research 2.39 1.66 1.61 4.91 2.01
Aya23 3.09 2.69 2.20 5.71 2.26
ONLINE-A 3.30 1.93 2.29 6.88 2.85
Llama3-70B 3.62 2.91 2.28 7.08 4.76
IKUN 3.86 4.35 2.36 7.09 3.48
IKUN-C 5.07 3.39 3.34 9.87 7.63
MSLC 13.46 11.54 8.24 26.80 15.29

English→Spanish ↓
System all news social speech literary

GPT-4 0.12 0.03 0.14 0.24 0.03
Unbabel-Tower70B 0.20 0.21 0.04 0.68 0.14
Claude-3.5 0.26 0.06 0.21 0.60 0.29
Mistral-Large 0.26 0.16 0.28 0.50 0.12
Gemini-1.5-Pro 0.39 0.18 0.56 0.54 0.06
Dubformer 0.43 0.29 0.07 2.00 0.01
Llama3-70B 0.52 0.10 0.28 2.17 0.02
refA 0.55 0.20 0.12 2.42 0.20
IOL_Research 0.57 0.44 0.33 1.39 0.56
CommandR-plus 0.62 0.50 0.34 0.52 1.55
ONLINE-W 0.64 0.17 0.27 2.36 0.46
IKUN 0.94 0.86 0.74 1.01 1.46
ONLINE-B 1.08 1.01 0.59 1.76 1.77
Aya23 1.52 1.52 1.09 2.03 2.12
MSLC 6.80 4.09 4.63 10.99 11.36

Japanese→Chinese ↓
System all news speech literary

Claude-3.5 1.22 0.76 2.96 0.76
refA 1.32 0.77 3.15 0.77
GPT-4 1.45 0.82 3.25 0.82
DLUT_GTCOM 1.52 1.06 3.66 1.06
Unbabel-Tower70B 1.69 1.16 3.53 1.16
Gemini-1.5-Pro 1.78 0.84 3.80 0.84
CommandR-plus 1.91 1.28 4.61 1.28
IOL_Research 2.10 1.14 4.82 1.14
Aya23 3.03 1.86 6.44 1.86
Llama3-70B 3.07 2.16 6.16 2.16
Team-J 3.91 2.02 8.46 2.02
NTTSU 4.34 2.11 10.51 2.11
ONLINE-B 5.27 3.72 9.52 3.72
IKUN-C 6.60 3.45 14.41 3.45
MSLC 9.19 4.01 19.04 4.01

Table 5: MQM human evaluations for generalMT2024.
Lower average error counts represent higher MT quality.
Systems above any solid line are significantly better
than those below, based on all domains with p < 0.05.

CHRFS (Mukherjee and Shrivastava, 2024) is
an unsupervised reference-based metric, a semantic

version of CHRF++ that integrates sentence embed-
dings to evaluate translation quality more compre-
hensively. By combining traditional character and
word n-gram analysis with semantic information
derived from embeddings, CHRFS captures both
syntactic accuracy and sentence-level semantics.

DAMONMONLI and MONMONLI is a proof-of-
concept of multiple ideas. A multi-lingual NLI
model is used to extract embeddings for (mt, src)
and (mt, ref) pairs, based on findings of Chen and
Eger (2023). A multi-task learning approach is
employed where different human annotations from
WMT22 and WMT23 are used as different tasks.
For each task, it uses a separate regression head
that learns a monotonic function of the metric’s
score(Runje and Shankaranarayana, 2023). The
main metric "DAMONMONLI" also includes a do-
main adversarial loss (Ganin and Lempitsky, 2015)
to make metric representations robust against shifts
in MT systems and language pairs.

GEMBA-ESA (Kocmi and Federmann, 2023)
is an extension of previous work on an LLM-based
metric, with an updated prompt to reflect the new
human evaluation protocol ESA (Kocmi et al.,
2024c) used at WMT General MT task. It con-
tains a two-step approach where in the first step,
MQM error spans are collected and in a second
step, the final score is assigned.

MEE4 (Mukherjee and Shrivastava, 2023a) is
an unsupervised, reference-based metric (an im-
proved version of MEE) focusing on computing
contextual and syntactic equivalences, along with
lexical, morphological, and semantic similarity.
The goal is to comprehensively evaluate the fluency
and adequacy of MT outputs while also consider-
ing the surrounding context. Fluency is determined
by analysing syntactic correlations, while context
is evaluated by comparing sentence similarities us-
ing sentence embeddings. The ultimate score is
derived from a weighted amalgamation of three
distinct similarity measures: a) Syntactic similarity,
which is established using a modified BLEU score.
b) Lexical, morphological, and semantic similar-
ity, quantified through explicit unigram matching.
c) Contextual similarity, gauged by sentence simi-
larity scores obtained from the Language-Agnostic
BERT model.

METAMETRICS-MT (Anugraha et al., 2024;
Winata et al., 2024) is a machine translation
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(MT) metric developed from our METAMET-
RICS (Winata et al., 2024), specifically designed to
better align with human preferences using Bayesian
optimization with Gaussian Processes (GP). By sys-
tematically integrating multiple existing metrics,
we create a sparse allocation that only includes met-
rics enhancing the overall correlation score. We
optimize this metric by maximizing Kendall scores
from the WMT shared task (MQM) 2020-2022.
METAMETRICS-MT achieves state-of-the-art per-
formance for reference-based metrics, while its
reference-free variant, METAMETRICS-MT-QE,
demonstrates competitive correlation with human
scores in the WMT24 metric shared task. By strate-
gically assigning weights to combined metrics,
METAMETRICS-MT aims to be as competitive
as, if not superior to, any individual metric. To ad-
dress missing values when reference data is unavail-
able, we propose a hybrid variant, METAMETRICS-
MT-HYBRID, which utilizes both metrics to com-
pensate for the absence of reference data in the
reference-based setting.

METRICX-24 (Juraska et al., 2024) is a
learned regression-based metric that builds on top
of its predecessor from 2023. Similar to METRICX-
23, it is based on the mT5-XXL pretrained lan-
guage model, which is fine-tuned in two stages on
DA and MQM scores from WMT 2015-22, and
it implements three major design improvements.
First, the training data in both stages is augmented
with synthetic examples to make the metric more
robust to several common failure modes, such as
fluent but unrelated translation, or undertranslation.
Second, a small proportion of DA data is mixed in
during the second stage of fine-tuning in order to
preserve the performance on non-MQM language
pairs. Finally, the model’s training is done on a
mixture of examples that include the source only,
the reference only, or both, which allows the model
to operate in both a QE and a reference-based mode
(and the latter either with or without the source in-
cluded). Hence, both METRICX-24-HYBRID and
METRICX-24-HYBRID-QE submission are in fact
the exact same model, only with the references
excluded from the input in the latter case.

SENTINEL-CAND-MQM, SENTINEL-REF-MQM
and SENTINEL-SRC-MQM (Perrella et al., 2024)
are designed explicitly to scrutinize the accuracy,
robustness, and fairness of the meta-evaluation pro-
cess. The three sentinel metrics are trained only
on the candidate, reference and source sentence re-

spectively on DA and MQM data from WMT 2017
to 2022.

XCOMET AND XCOMET-QE (Guerreiro
et al., 2023) models are trained using both a
sentence-level signal and span-level supervision
coming from MQM data from previous years,
along with some synthetic data that mimics hal-
lucinations. We ensemble XCOMET-XXL and
XCOMET-XL to give a single unified score.

XLSIMMQM (Mukherjee and Shrivastava,
2023b) is an enhanced version of XLSIM, a su-
pervised reference-based evaluation metric, which
we have transformed into a reference-free model
to improve its applicability across multiple lan-
guage pairs. Unlike the original XLSIM, which
was limited to the English-German language pair,
XLSIMMQM is trained on a filtered comprehen-
sive dataset curated from WMT-MQM (2020-22),
ensuring broader applicability and robustness. The
filtered datasets (train, dev and test) contains uni-
form distribution across good, medium and poor-
quality sentences; this careful balancing of the
dataset leads to a better, reliable and robust metric.

5 Meta Evaluation

The goal of metric meta-evaluation is to quantify
how well automatic metrics agree with human rat-
ings of translation quality. There are a multitude
of ways to approach this problem, as evidenced
by the variety of solutions proposed by previous
years’ editions of the shared task. For instance—
to name just a few possible design decisions—the
agreement can be measured at the system or seg-
ment level; the agreement function can be Pearson,
Spearman, Kendall, pairwise agreement, or L2 loss;
the agreement can be computed per domain or on
the full dataset. None of these approaches are nec-
essarily right or wrong, but rather each method
evaluates a different property of the metric.

Because there is no one way to evaluate a metric,
the past two iterations of the Metrics Shared Task
defined a variety of “tasks” (or different configu-
rations of meta-evaluations) that evaluated some
aspect of a metric, then calculated an overall qual-
ity score by averaging the individual task scores.
Implicitly, this approach defines a “high-quality”
metric as one that performs well across the tasks on
average. In 2022, there were 201 tasks that varied
along dimensions such as language pair, domain,
correlation granularity, correlation statistic, etc. In
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2023, the number of tasks was reduced to 10, mea-
suring only pairwise accuracy and Pearson at both
the system and segment levels.

For this year’s meta-evaluation, we follow the
same approach of averaging performance across
tasks, but focus the tasks to better align with how
evaluation metrics are used in practice. The two
main use cases that we targeted were using metrics
to rank a set of MT systems and using a metric
to rank a set of translations for the same source
segment. The former setting is widely used by
academics and practitioners in industry to deter-
mine whether one model produces better transla-
tions than another, and the latter setting has ap-
plications in Minimum Bayes Risk Decoding and
Quality Estimation Reranking either directly as
decoding method (Fernandes et al., 2022; Freitag
et al., 2022) or to further fine-tune models (Finkel-
stein and Freitag, 2024; Finkelstein et al., 2024).
The latter one is getting more popular and can in-
troduce metric biases (Kovacs et al., 2024) that is
an emerging challenge for metrics. As such, we
defined one task to quantify how well metrics work
for each of these two use cases separately for all
three language pairs, resulting in a total of six tasks.

At the system-level, we use the recently pro-
posed metric called soft pairwise accuracy, or SPA
(Thompson et al., 2024). One of the drawbacks
of standard pairwise accuracy (or the very related
Kendall’s τ ) that has been used in previous years’
shared tasks is that it does not account for the un-
certainty of the system ranking. For example, if the
human ranking of two systems is almost arbitrary
(e.g, a statistical tie) but the metric ranking is quite
certain, standard pairwise accuracy will either re-
ward or penalize the metric nearly randomly. The
reverse case—a certain human ranking and uncer-
tain metric ranking—also nearly arbitrarily rewards
or penalizes metrics. If both rankings are uncertain,
the metric will again be rewarded nearly randomly,
and the penalty for an incorrect ranking is equal to
when the metric was very certain but also wrong.

SPA addresses this problem by using p-values
as a proxy for certainty, calculating p-values be-
tween two systems using both the metric and hu-
man scores, then taking 1.0 minus the absolute
difference between the two p-values as the metric’s
score for that pair. This rewards metrics that re-
sult in the same statistical conclusion as the human
scores. Now, statistical ties do not randomly reward
or penalize metrics, but instead the score is propor-
tional to whether or not the metric and human have

language ref used scored ref

en→de B A
en→es A –
ja→zh A –

Table 7: Use of reference translations.

task lang level correlation wt

1 en→de system SPA 1
2 en→de segment acc∗eq 1
3 en→es system SPA 1
4 en→es segment acc∗eq 1
5 ja→zh system SPA 1
6 ja→zh segment acc∗eq 1

Table 8: For each language pair, soft pairwise accuracy
(SPA) was used at the system-level and acc∗eq at the
segment-level. Each task was given equal weight in the
overall average. See §5 for explanations of SPA and
acc∗eq .

the same level of certainty in the ranking.
At the segment-level, we follow last year’s meta-

evaluation and meta-evaluate metrics using “group-
by-item” segment-level accuracy with tie calibra-
tion (Deutsch et al., 2023) denoted acc∗eq.

The six tasks (shown in Table 8) receive equal
weighting in the overall average, which is the final
score for the metric.

Removing Pearson’s Correlation: Notably, the
meta-evaluation this year only focuses on evaluat-
ing rankings and does not include any correlation
that evaluates the absolute value of the scores pre-
dicted by metrics, like Pearson’s correlation. This
decision was made because using metrics to rank
systems or translations is much more common in
practice than using a metric to approximate the ab-
solute quality score as derived by humans, which
is more similar to a Pearson correlation.

Limitations: Like previous years, we acknowl-
edge that this approach is not perfect. One problem
is that we need to combine correlations and ac-
curacies that may have different dynamic ranges,
which could result in certain tasks carrying more
weight than others in the overall ranking. However,
to simplify the implementation, we assigned equal
weight to all tasks, which worked well in last year’s
evaluation.

5.1 Rank Assignment

For each task, we assign ranks to metrics based on
their significance clusters in the same way that we
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did last year, detailed below.
We compare all pairs of metrics and determine

whether the difference in their correlation scores is
significant, according to the PERM-BOTH hypoth-
esis test of Deutsch et al. (2021). We use 1000 re-
sampling runs and set p = 0.05. As advocated by
Wei et al. (2022), we divide the sample into blocks
of 100, compute significance after each block (cu-
mulative over all blocks sampled so far), and stop
early if the p-value is < 0.02 or > 0.50.

The acc∗eq statistic creates a problem for signifi-
cance testing because it optimizes a latent tie thresh-
old for each metric on each test set (just one thresh-
old for all item-wise score vectors). Since the per-
mutation test for comparing two metrics creates
two new vectors by randomly swapping elements
of the original vectors on each draw, this necessi-
tates the very expensive step of finding two new tie
thresholds for each draw. To reduce the expense,
we used the following approximate procedure. First
find an optimal threshold for each input metric on
the current test set, then create all pairs of item-wise
scores and assign a correct/incorrect status to each
pair by examining whether the metric’s ranking
matches the human ranking. Then perform the per-
mutation test on these pairwise status vectors rather
than the original score vectors. This approximation
has more degrees of freedom than the original test,
and can sample pairs that would never result from
swapping the original score vectors, but our experi-
ments showed that it is a reasonable proxy for the
correct procedure.

To compute overall p-values based on weighted
average scores of two metrics across all tasks, we
cache the results of the draws for the per-task sig-
nificance tests. In all cases, these are vectors of K
pairs of correlation or accuracy statistics. Where
K < 1000 due to early stopping, we duplicate ele-
ments to get 1000 examples. Then for i in 1..1000
we compare the weighted average of the pairs from
the ith draw across all tasks, and record the results
to produce an overall p-value.

Clustering. Given significance results (p-values)
for all pairs of metrics, we assign ranks as follows.
Starting with the highest-scoring metric, we move
down the list of metrics in descending order by
score, and assign rank 1 to all metrics until we en-
counter the first metric that is significantly different
from any that have been visited so far. That met-
ric is assigned rank 2, and the process is repeated.
This continues until all metrics have been assigned

a rank. Note that this is a greedy algorithm, and
hence it can place two metrics that are statistically
indistinguishable in different clusters.

5.2 Implementation Details

The code for running the meta-evaluation is avail-
able in the MT Metrics Eval library.11

To calculate p-values for SPA, we use a paired
permutation test (Noreen, 1989) with 1k resamples.

In previous years’ shared tasks, tasks were cate-
gorized based on whether they included additional
reference translations in the overall system ranking.
Following last year’s proposal, we always include
the additional reference in the overall ranking. This
year, this only applies to en→de which is the only
language pair with more than one reference trans-
lation (see Table 7).

Out of all the submitted MT systems, MSLC
consistently scores well below the other systems for
all language pairs and was identified as an outlier
and removed from the correlation calculation.

6 Main Results

As we have described in Section 5, the final statistic
used to rank the metrics is defined as the average
of the results from the six main tasks (system-level
and segment-level tasks in different language pairs).
Table 1 shows the official scores and rankings of
all baselines and primary submissions. Table 9
shows the scores and rankings of each individ-
ual task at system level and segment level, respec-
tively. Similar to last year’s results, neural metrics
perform significantly better than lexical metrics.
Of the 26 evaluated metrics, BLEU, SPBLEU and
CHRF are ranked 23rd, 22nd and 20th respectively.
Fine-tuned neural metrics, like XCOMET and
METRICX-23 are the highest ranked non-ensemble
metrics. The ensemble submission METAMET-
RIC_MT is in the same significance cluster as
XCOMET and METRICX-24-HYBRID, but re-
lies heavily on the 2023 version of METRICX-
24-HYBRID. Like last year, QE metrics perform
very well, with METRICX-24-HYBRID-QE and
GEMBA_ESA sharing the second significance clus-
ter.

Figure 1 shows the correlation scores split by lan-
guage pair. Interestingly, GEMBA_ESA is perform-
ing very well for en→es and ja→zh, while ranked
below many metrics for en→de. GEMBA_ESA is

11https://github.com/google-research/
mt-metrics-eval
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en-de en-de en-es en-es ja-zh ja-zh
sys seg sys seg sys seg
SPA acc∗eq SPA acc∗eq SPA acc∗eq

Metric avg-corr task1 task2 task3 task4 task5 task6

MetaMetrics-MT 1 0.725 2 0.883 1 0.542 1 0.804 2 0.686 2 0.873 1 0.561
MetricX-24-Hybrid 1 0.721 2 0.874 2 0.532 2 0.799 3 0.685 1 0.897 2 0.539
XCOMET 1 0.719 1 0.905 2 0.530 2 0.791 1 0.688 1 0.890 5 0.510
MetricX-24-Hybrid-QE* 2 0.714 2 0.878 3 0.526 2 0.789 4 0.685 2 0.875 3 0.530
gemba_esa* 2 0.711 4 0.793 5 0.507 1 0.838 5 0.683 1 0.908 2 0.539
XCOMET-QE* 3 0.695 1 0.889 4 0.520 1 0.801 2 0.687 4 0.808 10 0.463
COMET-22 3 0.688 2 0.879 8 0.482 2 0.778 5 0.683 4 0.813 6 0.496
BLEURT-20 3 0.686 2 0.881 7 0.486 3 0.695 6 0.681 1 0.887 8 0.484
MetaMetrics-MT-QE* 3 0.684 2 0.860 6 0.497 3 0.711 2 0.686 3 0.837 4 0.516
bright-qe* 4 0.681 3 0.816 6 0.500 2 0.792 1 0.689 4 0.805 8 0.484
BLCOM_1 4 0.664 3 0.840 10 0.455 3 0.680 6 0.681 3 0.843 7 0.488
sentinel-cand-mqm* 5 0.650 3 0.822 4 0.517 2 0.785 4 0.683 7 0.610 8 0.481
PrismRefMedium 5 0.646 4 0.776 14 0.434 3 0.652 7 0.680 2 0.872 10 0.462
PrismRefSmall 5 0.642 4 0.772 14 0.433 4 0.634 8 0.680 2 0.875 11 0.457
CometKiwi* 5 0.640 5 0.732 9 0.467 3 0.693 4 0.684 5 0.776 7 0.490
damonmonli 5 0.635 5 0.696 12 0.443 4 0.607 6 0.682 1 0.911 9 0.472
YiSi-1 6 0.630 4 0.759 13 0.436 4 0.609 7 0.681 3 0.835 11 0.458
BERTScore 7 0.617 4 0.749 14 0.435 4 0.587 6 0.682 4 0.799 12 0.451
MEE4 7 0.609 5 0.731 13 0.437 7 0.504 4 0.683 2 0.855 13 0.446
chrF 8 0.608 4 0.750 15 0.431 5 0.581 8 0.680 5 0.767 16 0.436
chrfS 8 0.606 4 0.742 14 0.434 6 0.549 6 0.682 4 0.788 14 0.444
spBLEU 9 0.593 4 0.741 17 0.431 6 0.523 7 0.680 6 0.744 16 0.436
BLEU 9 0.589 4 0.736 16 0.431 6 0.512 8 0.680 6 0.740 17 0.435
XLsimMqm* 10 0.515 6 0.612 11 0.450 8 0.359 7 0.681 7 0.548 15 0.438
sentinel-src-mqm* 10 0.513 7 0.406 18 0.429 5 0.580 8 0.680 8 0.546 17 0.435
sentinel-ref-mqm 10 0.513 7 0.405 18 0.429 4 0.581 8 0.680 8 0.545 17 0.435

Table 9: Correlation results per task for the main language pairs. See §5 for descriptions of soft pairwise accuracy
(SPA) and acc∗eq. Rows are sorted by the overall average correlation across all 6 tasks (leftmost column). Starred
metrics are reference-free, and underlined metrics are baselines.

a prompt-based metric and not fine-tuned for any
metric task. Both en→es and ja→zh are new lan-
guage pairs, and no fine-tuning data exists which
might have played in disadvantage for all fine-tuned
metrics.

We continue to be interested in metrics’ abili-
ties to generalise across domains. In Figure 2, we
present the performance of each metric across dif-
ferent domains. Similar to last year, we observe
that neural metrics perform better than lexical over-
lap metrics across all four domains. Figure 3 shows
the average correlations of metrics when grouped
separately by system-level and segment-level tasks.
There is a high correlation between the rankings of
both granularities.

7 Beyond accuracy and correlation

Last year, we conducted two additional analyses
beyond correlation with human scores to find the

threshold of metrics’ score differences correspond
to statistical significance of MT system rankings
demonstrated by human annotators and the metrics
themselves. Despite the better correlation with hu-
man judgements achieved by new neural metrics,
BLEU remains as the most used metric in the MT
research community. One of the reasons is that
MT researchers have established some “shared un-
derstanding” about the relationship between BLEU

and the actual translation quality, and similar in-
tuitions about new metrics have yet to crystallize.
Our analyses beyond correlation provided an inter-
pretation of the metrics’ score differences. Hence,
we are continuing such analyses to support build-
ing an intuitive sense of metric score meanings
and encourage broader adoption of new automatic
MT evaluation metrics. As a reminder, our results
should NOT be used as arguments to forego signifi-
cance tests or appropriate human evaluation.
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Figure 1: Average metrics’ meta-evaluation scores in
tasks grouped by language pair.

Figure 2: Average metrics’ correlation with human in
tasks grouped by domain.

Figure 3: Average metrics’ correlation with human in
tasks grouped by granularity level.

7.1 Correspondence to MQM scores
significance

We first study the relationship between statistically
significant differences in human scores and the
magnitude of metric differences as in Lo et al.
(2023a). We run a two-sided paired t-test with
an equal variance assumption for each system pair
on segment-level MQM scores. After that, we fit
the corresponding metric score differences and the
p-values of the t-test on the MQM scores to an
isotonic regression (Robertson et al., 1988), that
predicts whether the human MQM score differ-
ence will be significant given the metric’s score
difference. Isotonic regression produces a non-
decreasing function where the classifier output can
be interpreted as a confidence level.12 We set
pmqm < 0.05 as the significance level of MQM
scores. Thus, the output of the isotonic regression
function can be viewed as Pr(pmqm < 0.05|∆M)
where pmqm is the p-value of the t-test on the MQM
scores for each system pair and ∆M is the metric
score difference.

Figure 4 shows the (log) p-value of two-sided
paired t-test on the MQM scores against the corre-

12https://scikit-learn.org/stable/
modules/isotonic.html
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sponding BLEU and COMET-22 score difference
for each system pair in en→de. Figures 6-10 in
appendix D, show the same analyses for all metrics
and language pairs. For each metric, we can choose
a particular level of confidence (i.e., a point along
the y-axis on the right) to give metric score differ-
ence cut-offs (i.e., a point along the x-axis) that this
metric difference reflects significant MQM score
differences. Drawing a horizontal line from the
confidence level, say 80%, to the red line enables
us to find the minimum metric difference cut-off
required at the corresponding x-value down from
the red line, i.e. 5.4 for BLEU in Figure 4. Using
this lookup method, Table 10 shows the cut-offs
of ∆M when Pr(pmqm < 0.05|∆M) = 0.8 for
each metric and language pair.

We run the leave-one-system-out cross vali-
dation and Table 10 shows that the range of
precision in the cross validation are consis-
tently high across metrics, except for BLEU,
BRIGHT-QE, COMETKIWI, MEE4, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, SPBLEU

and XLSIMMQM. This means the metric cut-offs
we find using the regression model are reliable.

Contrary to the shared understanding that 2
BLEU improvement represents “significant” or “no-
table by human” improvement in the actual trans-
lation quality, our analyses show that 5.4 BLEU

improvement is required to be confident (80%) that
the MQM scores would be different with statistical
significance for en→de and that threshold would
be as high as 11 BLEU for en→es. Table 10 serves
as a reference between BLEU differences and dif-
ferences in some of the modern metrics and assists
metric users in understanding scores provided by
modern metrics. For example, when evaluating
ja→zh translation quality, we see that a BLEU dif-
ference of 1.4 corresponds to 80% confidence that
the metric’s ranking of the two MT systems will
match the decision made by human annotators with
a significant difference. Meanwhile, a COMET-22
score difference of 0.021 would have the same 80%
chance of human judged significant difference.

7.2 Correspondence to metric scores
significance

We run a study similar to that in the previous sub-
section but on the relations between statistically
significant differences in metric scores and the mag-
nitude of metric differences as inspired by Marie
(2022). Instead of the two-sided t-test on MQM,
the p-values are now obtained by running statis-

tical significance tests with bootstrap resampling
on the metric scores for each system pair. We fit
the corresponding metric score differences and the
p-values of the significance test to an isotonic re-
gression for predicting whether the translation qual-
ity improvement as indicated by the metric will be
significant given the metric score difference. We
set pM < 0.05 and thus, the output of the isotonic
regression function is now Pr(pM < 0.05|∆M),
where pM is the p-value of the significance test on
the metric scores for each system pair and ∆M is
the metric score difference.

Figure 5 shows the (log) p-value of the signifi-
cance test with bootstrap resampling on the metric
scores for BLEU and COMET-22 score difference
of each system pair in en→de. Additional figures
(Figures 11-15 in appendix Appendix D) show the
same analyses for all metrics and language pairs.
Using the same lookup method described in the
previous subsection, Table 11 shows the cut-offs of
∆M when Pr(pM < 0.05|∆M) = 0.8 for each
metric and language pair.

We run the leave-one-system-out cross valida-
tion, and Table 11 shows that the range of precision
in the cross validation are consistently high across
metrics. This means the metric cut-offs we find
using the regression model are reliable.

Table 11 serves as a reference of metric dif-
ferences that correspond to statistical significance
with high confidence. For example, when evaluat-
ing en→de translation quality, we see that a BLEU

difference of 0.97 corresponds to 80% confidence
the difference is statistically significant. Mean-
while, a COMET-22 score difference of 0.0043
would have the same 80% chance of statistical
significance. Our results, agreeing with Marie
(2022), show that to claim significant differences
(pM < 0.05) in BLEU with high confidence (80%),
the differences should be much higher than the
shared understanding of 0.5 BLEU, ranging from
0.89 to 0.97 for the three language pairs.

Closely related to this analysis, Kocmi et al.
(2024b) investigated the agreement between hu-
man evaluations and metric differences, employ-
ing pairwise accuracy as the meta-evaluation met-
ric. Assuming an 80% agreement rate with human
judgments, their findings align closely with ours
for pretrained metrics but not for metrics such as
BLEU or ChrF. For instance, COMET-22 requires
a score difference of 0.0056 to achieve 80% ac-
curacy with humans, compared to our range of
0.0043–0.0055. Similarly, CometKiwi requires a
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Figure 4: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the metric (left: BLEU, right:
COMET-22) score difference for each system pair in en→de. The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.

en→de en→es ja→zh
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.0099 [50-100%] 0.018 [50-100%] 0.013 [64-100%]
BLCOM_1 0.022 [75-100%] 0.034 [50-100%] 0.021 [62-100%]
BLEU 5.4 [67-100%] 11 [0-100%] 1.4 [50-100%]
BLEURT-20 0.021 [62-100%] 0.014 [60-100%] 0.029 [80-100%]
BRIGHT-QE 0.018 [20-100%] 0.049 [50-100%] 0.061 [62-100%]
CHRF 3.0 [67-100%] 2.1 [57-100%] 3.5 [78-100%]
CHRFS 0.023 [50-100%] 0.043 [50-100%] 0.021 [60-100%]
COMET-22 0.018 [50-100%] 0.017 [60-100%] 0.021 [60-100%]
COMETKIWI 0.024 [17-100%] 0.027 [33-100%] 0.050 [67-100%]
DAMONMONLI 0.84 [27-100%] 0.064 [50-100%] 0.51 [88-100%]
GEMBA_ESA 4.5 [70-100%] 1.5 [67-100%] 4.8 [86-100%]
MEE4 0.019 [25-100%] 0.028 [33-100%] 0.019 [55-100%]
metametrics_mt_mqm_hybrid_kendall 0.029 [53-100%] 0.066 [60-100%] 0.066 [70-100%]
metametrics_mt_mqm_qe_kendall.seg.s 0.016 [14-100%] 0.025 [50-100%] 0.031 [67-100%]
METRICX-24-HYBRID 0.52 [73-100%] 0.95 [62-100%] 0.60 [75-100%]
METRICX-24-HYBRID-QE 0.44 [62-100%] 0.39 [67-100%] 0.63 [78-100%]
PRISMREFMEDIUM 0.073 [67-100%] 0.12 [50-100%] 0.14 [56-100%]
PRISMREFSMALL 0.10 [67-100%] 0.15 [50-100%] 0.15 [56-100%]
SENTINEL-CAND-MQM 0.066 [50-100%] 0.13 [50-100%] 0.088 [55-100%]
SENTINEL-REF-MQM — — — — — —
SENTINEL-SRC-MQM — — — — — —
SPBLEU 4.3 [50-100%] 9.1 [0-100%] 4.0 [75-100%]
XCOMET 0.022 [53-100%] 0.025 [67-100%] 0.046 [78-100%]
XCOMET-QE 0.013 [50-100%] 0.029 [50-100%] 0.062 [67-100%]
XLSIMMQM 0.018 [100-100%] 0.0012 [57-100%] 0.004 [43-100%]
YISI-1 0.0063 [60-100%] 0.0098 [56-100%] 0.012 [75-100%]

Table 10: Minimum ∆M when Pr(pmqm < 0.05|∆M) = 0.8 for each metric in different language pairs round to
2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out cross
validation.

difference of 0.0053, while our results range from
0.0037 to 0.0056. Conversely, for BLEU, their
analysis suggests an expected improvement of 2.34
BLEU points for 80% agreement, whereas our anal-
ysis indicates a need for an improvement of 0.89–
0.97 BLEU points. However, it is important to note
that we are comparing distinct metrics, and that
confidence levels are not directly comparable to
agreement rates.

We have to emphasize again that our result
should NOT be interpreted as evidence to forego
significance tests or appropriate human evaluation.
Instead, we are only providing assistance to build
an intuition on the meaning of the scores provided
by the new metrics to encourage the transition
away from lexical metrics towards more recent and
stronger metrics.
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Figure 5: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (left: BLEU, right: COMET-22) score difference for each system pair in en→de. The red line is the
isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are
rounded up to 0.0001 when they are less than 0.0001.

en→de en→es ja→zh
Metric min ∆M c.v. precision min ∆M c.v. precision min ∆M c.v. precision
BERTSCORE 0.0028 [92-100%] 0.0028 [100-100%] 0.0044 [100-100%]
BLCOM_1 0.0039 [100-100%] 0.0055 [100-100%] 0.0044 [100-100%]
BLEU 0.97 [100-100%] 0.93 [100-100%] 0.89 [91-100%]
BLEURT-20 0.0056 [96-100%] 0.0053 [94-100%] 0.0068 [95-100%]
BRIGHT-QE 0.0041 [89-100%] 0.0078 [94-100%] 0.024 [95-100%]
CHRF 0.83 [96-100%] 0.77 [94-100%] 0.89 [100-100%]
CHRFS 0.0051 [91-100%] 0.0054 [95-100%] 0.0055 [95-100%]
COMET-22 0.0043 [96-100%] 0.0055 [86-100%] 0.0046 [95-100%]
COMETKIWI 0.0037 [100-100%] 0.0048 [82-100%] 0.0056 [100-100%]
DAMONMONLI 0.20 [94-100%] 0.17 [82-100%] 0.41 [90-100%]
GEMBA_ESA 0.82 [92-100%] 0.85 [91-100%] 1.4 [100-100%]
MEE4 0.0042 [95-100%] 0.0051 [86-100%] 0.0057 [95-100%]
metametrics_mt_mqm_hybrid_kendall 0.0067 [92-100%] 0.0081 [89-100%] 0.013 [90-100%]
metametrics_mt_mqm_qe_kendall.seg.s 0.0038 [89-100%] 0.0050 [80-100%] 0.0089 [95-100%]
METRICX-24-HYBRID 0.11 [100-100%] 0.15 [100-100%] 0.14 [95-100%]
METRICX-24-HYBRID-QE 0.087 [90-100%] 0.14 [100-100%] 0.12 [100-100%]
SENTINEL-CAND-MQM 0.011 [96-100%] 0.013 [95-100%] 0.030 [95-100%]
SENTINEL-REF-MQM — — — — — —
SENTINEL-SRC-MQM — — — — — —
SPBLEU 0.96 [96-100%] 1.1 [95-100%] 1.0 [100-100%]
PRISMREFMEDIUM 0.019 [95-100%] 0.02 [100-100%] 0.036 [90-100%]
PRISMREFSMALL 0.023 [96-100%] 0.022 [100-100%] 0.042 [95-100%]
XCOMET 0.0051 [100-100%] 0.0065 [86-100%] 0.010 [95-100%]
XCOMET-QE 0.0044 [96-100%] 0.0058 [94-100%] 0.0099 [100-100%]
XLSIMMQM 0.0036 [82-100%] 0.0013 [90-100%] 0.0019 [79-100%]
YISI-1 0.0010 [91-100%] 0.0014 [90-100%] 0.0051 [100-100%]

Table 11: Minimum ∆M when Pr(pM < 0.05|∆M) = 0.8 for each metric in different language pairs round to
2 significant figures, and the range of precision for the isotonic regression model in leave-one-system-out cross
validation.

8 ESA Human Evaluation

In addition to our MQM annotations and as a con-
trastive evaluation to cover more language pairs,
we look into the performance of metrics when com-
pared to the human evaluation campaign conducted
by the WMT24 General MT Shared Task (Kocmi
et al., 2024a), which ran human evaluation for nine
language pairs.

In contrast to previous years, WMT24 redefined

their human evaluation process and developed a
new method called Error Span Analysis (ESA,
Kocmi et al. (2024c)), a method that simplifies
MQM by asking annotators only to mark error
spans and classify them either as minor or major
severity. In addition to that, the annotator is asked
to mark the whole segment with a score of 0–100
in the SQM fashion. As Kocmi et al. (2024c) claim,
the method is cheaper than MQM to annotate, yet
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it produces closer human judgment to MQM anno-
tations than the formerly used DA+SQM (Kocmi
et al., 2023) due to being less affected by fluency.

We present system-level accuracy results for
both MQM and ESA in Table 15. There are many
factors that could affect the ranking. Apart from
using a different human annotation protocol, MQM
compares 3 language pairs whereas ESA compares
9 language pairs, containing also two low-resource
pairs: Czech→Ukrainian and English→Icelandic.
There is an overlap of only one language pair be-
tween the two: English→Spanish.

Most of the metrics have a similar ranking for
both MQM and ESA; however, there are two met-
rics with largely different rankings: GEMBA_ESA

and metametrics_mt_mqm_qe_kendall.seg.s,
whose rankings are significantly lower under
ESA than for MQM. The likely explanation
for GEMBA_ESA is that ESA doesn’t produce
ties, in contrast to MQM, whereas GEMBA_ESA

produces them regularly. As for the latter metric,
we don’t see any clear pattern except for having
low performance for Czech→Ukrainian.

9 Challenge Sets Sub-task

For the third year, the Metrics Shared Task included
a sub-task involving challenge sets. This sub-task
is inspired by the Build it or break it: The Lan-
guage Edition shared task (Ettinger et al., 2017)
which aimed at testing the generalizability of NLP
systems beyond the distributions of their training
data. Whereas the standard evaluation of the shared
task is conducted on test sets containing generic
text from real-world content, the challenge set eval-
uation is based on test sets designed with the aim of
revealing the abilities or the weaknesses of the met-
rics or evaluating particular translation phenomena.
In order to shed light on different perspectives on
evaluation, the sub-task takes place in a decentral-
ized manner, since contrary to the main metric task,
the test sets are not provided by the organizers but
by different research teams, who are also responsi-
ble for analysing and presenting the results.

This subtask is made of three consecutive phases;
1) the Breaking Round, 2) the Scoring Round and
3) the Analysis Round:

1. In the Breaking Round, every challenge set
participant (Breaker) submits their challenge
set S composed of examples for different phe-
nomena, where every example (s, t, r) ∈ S

contains one source sentence s, one transla-
tion hypothesis t and one reference r.

2. In the Scoring Round, The metrics participants
from the main task (the Builders) are asked to
score with their metrics the translations in the
given test set. Also, in this phase, the metrics
task organizers score all data with the baseline
metrics.

3. Finally, after having gathered all metric scores,
the organizers return the respective scored
translations to the Breakers for the Analysis
round, where they employ their own evalua-
tion for the performance of the metrics with
regard to the phenomena they intended to test.

This year there were 4 submissions, covering a
wide range of phenomena and 23 different language
pairs, which supersede the official language pairs
of the Metrics Shared Task. An overview of the
submitted challenge sets can be seen in Table 12.
A short description of every submission follows:

AfriMTE Challenge Set The AFRIMTE chal-
lenge set (Wang et al., 2024b) aims to evaluate the
capabilities of metrics for machine translation on
low-resource languages, primarily assessing cross-
lingual transfer learning and generalization across
a wide range of under-resourced African languages.
The challenge set concentrates on the subsets
of the FLORES-200 dataset (NLLB-Team et al.,
2022) and covers 13 language pairs. Specifically,
there are Darija-French, English-Egyptian Ara-
bic, English-French, English-Hausa, English-Igbo,
English-Kikuyu, English-Luo, English-Somali,
English-Swahili, English-Twi, English-isiXhosa,
English-Yoruba, and Yoruba-English. Originally,
AFRIMTE (Wang et al., 2024a) provides both fine-
grained word-level error annotations and sentence-
level Direct Assessment scoring for translation
adequacy and fluency. For this year’s challenge
set sub-task, we utilize the translation adequacy
test set from AFRIMTE as the African Challenge
set to evaluate the sentence-level scoring perfor-
mance of metrics. The analysis of the task sub-
missions (Wang et al., 2024b) has yielded sev-
eral insights. First, language-specific adaptation,
cross-lingual transfer learning, and larger language
model sizes significantly enhance metric perfor-
mance. Second, moderately-sized supervised mod-
els can attain robust performance when augmented
with language adaptation techniques tailored to
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Challenge Set Directions Phenomena Items Citation Link (https://github.com/)

AfriMTE 13 African languages 2,815 Wang et al. (2024b) masakhane-io/africomet

BioMQM 11 biomedical domain 4,641 Zouhar et al. (2024) thompsonb/bio-mqm-dataset

DFKI 2 linguistic phenomena 137,000 Avramidis et al. (2024) DFKI-NLP/mt-testsuite

MSLC24 3 low quality MT 964 Knowles et al. (2024) nrc-cnrc/MSLC

Table 12: Overview of the participation at the metrics challenge sets sub-task.

low-resource African languages during pretrain-
ing. Last, submissions demonstrate promising out-
comes for language pairs such as Darija-French,
English-Egyptian Arabic, and English-Swahili.
However, considerable challenges remain for ex-
tremely low-resource languages like English-Luo
and English-Twi, underscoring critical areas for
future research and improvement in machine trans-
lation metrics for African languages.

BioMQM Recent work (Zouhar et al., 2024) has
compared trained versus untrained metric perfor-
mance on the WMT domains compared to the
biomedical domain and shown that trained metrics
appear to be over-fitting on the domains used in the
WMT Metrics Shared Tasks. This is likely due to
trained metrics using prior WMT metrics datasets,
and then being evaluated on very similar data in
the latest WMT Metrics Shared Task. Zouhar et al.
(2024) released a biomedical dataset (BioMQM)
consisting of source sentences and translations
from Yeganova et al. (2021) along with new trans-
lations and MQM annotations. We produce scores
on the BioMQM for the latest metrics (all those
submitted to this Metrics Shared Task, plus the
baseline metrics) and release them for future analy-
sis.13

DFKI Challenge Set This year’s submission by
DFKI (Avramidis et al., 2024) expands the linguis-
tically motivated challenge set of previous years
(Avramidis et al., 2023; Avramidis and Macke-
tanz, 2022), including 137,000 items in overall,
extracted from 100 MT systems for the two lan-
guage directions (en→de, en→ru), covering more
than 100 linguistically-motivated phenomena or-
ganized in 14 linguistic categories. The metrics
with the statistically significant best performance
with regard to our linguistically motivated analy-
sis are METRICX-24-HYBRID and METRICX-24
for en→de and METRICX-24 for en→ru, whereas
METAMETRICS and XCOMET are in the next rank-

13https://github.com/thompsonb/
bio-mqm-dataset/tree/main/data/WMT24_
Metrics_ChallengeSet

ing positions in both language pairs. Metrics are
more accurate in detecting linguistic errors among
LLM translations than in translations based on the
encoder-decoder NMT architecture. Some of the
most difficult phenomena for the metrics to score
are the transitive past progressive, the multiple con-
nectors, the ditransitive simple future I for en→de
and pseudogapping, contact clause and cleft sen-
tences for en→ru. The LLM-based metric GEMBA,
despite the overall low performance, has the best
performance on scoring German negation errors.

MSLC24 Challenge Set Building on the Metric
Score Landscape Challenge (MSLC23; Lo et al.,
2023b), which aims to provide a view of metric
performance on a broader range of MT quality,
MSLC24 includes a collection of low- to medium-
quality MT systems’ output on the news portion of
the WMT24 General MT Shared Task test set, as
well as some specific phenomena that may result
in unexpected behaviors from some metrics, such
as empty strings in source/reference/hypothesis,
wrong/mixed language output and different lan-
guage variants. MSLC24 focuses on three lan-
guage pairs (English→German, English→Spanish
and Japanese→Chinese). The authors also submit
the top system in this challenge set to the General
Translation task in order to obtain human evalu-
ation. Together with the high quality systems by
other participants submitted to the General MT
Shared Task, this enables better interpretation of
metric scores across a range of different levels
of translation quality and analyse metric charac-
teristics beyond just correlation. The results of
MSLC24 highlight the importance of examining
real-word corner cases and issues of reproducibility
in order to more responsibly introduce new metrics
to the research community.

10 Conclusion

This paper summarizes the results of the WMT24
shared task on automated machine translation eval-
uation, the Metrics Shared Task. We presented an
extensive analysis on how well metrics perform on
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our three main language pairs: English→German,
English→Spanish and Japanese→Chinese. The re-
sults, based on 6 different tasks, confirm the superi-
ority of neural-based learned metrics over overlap-
based metrics like BLEU, SPBLEU or CHRF. These
results are confirmed with ESA human judgement.
Overall, we did not find any issues for neural fine-
tuned metrics when evaluating LLM-based trans-
lations. In addition, we continued the challenge
set subtask, where participants had to create con-
trastive test suites for evaluating metrics’ ability to
capture and penalise specific types of translation
errors.

11 Ethical Considerations

MQM annotations in this paper are done by profes-
sional translators. They are all paid at professional
rates.

Organizers from the National Research Coun-
cil Canada, Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi
and COMET) dated before this year’s shared task
and publicly available. Newer versions of MetricX
were developed without using any of the test set,
test suite or challenge sets. We ensured that the
metrics co-authored by Tom Kocmi were imple-
mented without using any privileged test sets or
insider information.
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A Correlations with MQM for all metrics

Table 13 contains the results for all metrics (including contrastive submissions) on the 6 standard tasks
described in Table 8.

en-de en-de en-es en-es ja-zh ja-zh
sys seg sys seg sys seg
SPA acc∗eq SPA acc∗eq SPA acc∗eq

Metric avg-corr task1 task2 task3 task4 task5 task6

MetricX-24 1 0.725 2 0.873 2 0.534 2 0.789 3 0.685 1 0.921 2 0.547
MetaMetrics-MT 1 0.725 2 0.882 1 0.542 2 0.805 2 0.686 3 0.872 1 0.561
metametrics_mt_mqm_kendall 1 0.724 2 0.882 1 0.542 2 0.804 2 0.686 3 0.871 1 0.561
metametrics_mt_mqm_same_source_targ 2 0.723 1 0.883 1 0.542 2 0.803 2 0.686 3 0.874 2 0.550
MetricX-24-Hybrid 2 0.720 2 0.873 2 0.532 2 0.796 3 0.685 2 0.895 3 0.539
XCOMET 2 0.719 1 0.906 3 0.530 2 0.788 1 0.688 2 0.890 7 0.510
MetricX-24-Hybrid-QE* 3 0.714 2 0.880 4 0.526 2 0.790 4 0.685 3 0.875 4 0.530
gemba_esa* 3 0.712 4 0.793 6 0.507 1 0.838 5 0.683 1 0.909 3 0.539
MetricX-24-QE* 3 0.710 2 0.880 3 0.528 3 0.772 3 0.685 3 0.875 5 0.522
CometKiwi-XXL* 3 0.703 3 0.839 9 0.481 1 0.843 8 0.680 2 0.881 8 0.494
XCOMET-QE* 4 0.695 1 0.890 5 0.520 2 0.801 2 0.687 5 0.809 12 0.463
COMET-22 4 0.689 2 0.877 9 0.482 2 0.782 5 0.683 5 0.815 8 0.496
metametrics_mt_mqm_qe_same_source_t* 4 0.688 2 0.860 7 0.497 4 0.709 2 0.686 4 0.853 5 0.524
BLEURT-20 4 0.686 2 0.879 8 0.486 4 0.696 6 0.681 2 0.888 10 0.484
MetaMetrics-MT-QE* 5 0.685 2 0.859 7 0.497 4 0.710 2 0.686 5 0.839 6 0.516
bright-qe* 5 0.682 3 0.817 7 0.500 2 0.794 1 0.689 5 0.806 10 0.484
BLCOM_1 6 0.664 3 0.842 11 0.455 4 0.679 6 0.681 4 0.840 9 0.488
sentinel-cand-mqm* 7 0.649 3 0.820 5 0.517 2 0.786 4 0.683 9 0.609 10 0.481
PrismRefMedium 7 0.646 4 0.776 15 0.434 4 0.651 8 0.680 3 0.872 12 0.462
PrismRefSmall 7 0.643 4 0.774 15 0.433 5 0.635 8 0.680 3 0.874 13 0.457
CometKiwi* 7 0.640 5 0.731 10 0.467 4 0.695 4 0.684 6 0.775 9 0.490
damonmonli 7 0.635 5 0.695 13 0.443 5 0.607 6 0.682 1 0.912 11 0.472
YiSi-1 8 0.630 4 0.758 14 0.436 5 0.610 7 0.681 5 0.836 13 0.458
monmonli 8 0.624 5 0.681 14 0.437 5 0.583 7 0.681 2 0.891 11 0.470
BERTScore 9 0.617 4 0.749 15 0.435 5 0.585 6 0.682 6 0.798 14 0.451
MEE4 9 0.609 5 0.731 14 0.437 7 0.498 4 0.683 3 0.856 15 0.446
chrF 10 0.607 4 0.751 17 0.431 5 0.579 9 0.680 7 0.765 18 0.436
chrfS 10 0.606 4 0.742 15 0.434 6 0.549 6 0.682 6 0.788 16 0.444
spBLEU 11 0.593 4 0.741 19 0.431 6 0.524 8 0.680 8 0.745 18 0.436
BLEU 11 0.589 4 0.736 18 0.431 7 0.513 9 0.680 8 0.739 19 0.435
BLCOM 12 0.537 6 0.619 16 0.433 3 0.730 8 0.680 10 0.325 19 0.435
sentinel-ref-mqm 12 0.523 6 0.495 20 0.429 6 0.514 9 0.680 9 0.583 19 0.435
sentinel-src-mqm* 12 0.522 6 0.496 20 0.429 7 0.512 9 0.680 9 0.581 19 0.435
XLsimDA* 12 0.514 6 0.614 12 0.450 8 0.357 7 0.681 9 0.548 17 0.438
XLsimMqm* 12 0.514 6 0.614 12 0.450 8 0.357 7 0.681 9 0.547 17 0.438

Table 13: Soft pairwise accuracy (SPA) and acc∗eq results for all metrics for main language pairs. See §5 for
descriptions of SPA and acc∗eq. Rows are sorted by the overall average correlation across all 6 tasks (leftmost
column). Starred metrics are reference-free, underlined metrics are baselines, and italicized metrics are contrastive
submissions.
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Metric avg corr p-values

MetaMetrics-MT 1 0.725 . 19 07 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-24-Hybrid 1 0.721 . . 31 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET 1 0.719 . . . 15 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetricX-24-Hybrid-QE* 2 0.714 . . . . 36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
gemba_esa* 2 0.711 . . . . . 01 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
XCOMET-QE* 3 0.695 . . . . . . 22 14 14 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
COMET-22 3 0.688 . . . . . . . 20 34 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BLEURT-20 3 0.686 . . . . . . . . 43 28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
MetaMetrics-MT-QE* 3 0.684 . . . . . . . . . 34 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
bright-qe* 4 0.681 . . . . . . . . . . 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
BLCOM_1 4 0.664 . . . . . . . . . . . 04 02 00 00 01 00 00 00 00 00 00 00 00 00 00
sentinel-cand-mqm* 5 0.650 . . . . . . . . . . . . 41 25 21 13 06 01 00 00 00 00 00 00 00 00
PrismRefMedium 5 0.646 . . . . . . . . . . . . . 11 35 19 01 00 00 00 00 00 00 00 00 00
PrismRefSmall 5 0.642 . . . . . . . . . . . . . . 43 30 03 00 00 00 00 00 00 00 00 00
CometKiwi* 5 0.640 . . . . . . . . . . . . . . . 33 17 03 00 01 00 00 00 00 00 00
damonmonli 5 0.635 . . . . . . . . . . . . . . . . 34 06 01 02 01 00 00 00 00 00
YiSi-1 6 0.630 . . . . . . . . . . . . . . . . . 01 00 00 00 00 00 00 00 00
BERTScore 7 0.617 . . . . . . . . . . . . . . . . . . 14 04 03 00 00 00 00 00
MEE4 7 0.609 . . . . . . . . . . . . . . . . . . . 41 26 00 01 00 00 00
chrF 8 0.608 . . . . . . . . . . . . . . . . . . . . 36 00 00 00 00 00
chrfS 8 0.606 . . . . . . . . . . . . . . . . . . . . . 00 01 00 00 00
spBLEU 9 0.593 . . . . . . . . . . . . . . . . . . . . . . 25 00 00 00
BLEU 9 0.589 . . . . . . . . . . . . . . . . . . . . . . . 00 00 00
XLsimMqm* 10 0.515 . . . . . . . . . . . . . . . . . . . . . . . . 45 49
sentinel-src-mqm* 10 0.513 . . . . . . . . . . . . . . . . . . . . . . . . . 53
sentinel-ref-mqm 10 0.513 . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 14: Results of pairwise metric significance tests for primary submissions using permutation resampling. Each
value gives the 100 × estimated probability of the null hypothesis that the average correlation of the metric in the
current row is ≤ the average correlation of the metric in the current column. Starred metrics are reference-free, and
underlined metrics are baselines.

B Significance comparisons for main results

Table 14 contains the results of pairwise comparisons for the results in Table 1.

C Correlations with WMT ESA for all metrics

Table 15 shows the correlations of the metrics to the ESA scores (see Section 8 for which those scores are
available). The overall ranking is sorted by the average correlation, which is the average over all tasks
across all language pairs. Metrics that did not participate in all tasks do not have an average correlation,
and are displayed at the end of the table.

The system-level ESA scores that were used to calculate SPA here differ slightly from those in the
General MT Shared Task. Namely, the General Task calculates scores by macro-averaging over domains
(each domain receives equal weight), whereas we perform a standard micro-average (each segment
receives equal weight).
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Table 15: Correlations of metrics to the ESA annotations that were collected as part of the General MT Shared Task.
The metrics are sorted by the average correlation across all of the correlations and language pairs. Metrics in italics
are contrastive submissions and underlined metrics are baselines. QE metrics are marked by an asterisk.
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D Additional figures

Figures 6-10 show the (log) p-value of two-sided paired t-test on the MQM scores against the score
difference of each metric for each system pair in each language pair. Figures 11-15 show the (log) p-value
of significance test with bootstrap resampling on the metric scores against the score difference of that
metric for each system pair in each language pair.

en→de en→es ja→zh

Figure 6: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: BERTSCORE, BLCOM_1, BLEU, BLEURT-20, BRIGHT-QE) for each system pair in each language
pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing
Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when they are less than
0.0001.
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en→de en→es ja→zh

Figure 7: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each metric
(top to bottom: CHRF, CHRFS, COMET-22, COMETKIWI, DAMONMONLI, GEMBA_ESA) for each system pair in
each language pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points,
representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when they
are less than 0.0001.
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en→de en→es ja→zh

Figure 8: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score differ-
ence of each metric (top to bottom: MEE4, METAMETRICS_MT_MQM_HYBRID_KENDALL, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, METRICX-24-HYBRID, METRICX-24-HYBRID-QE) for each system pair
in eachlanguage pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data
points, representing Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when
they are less than 0.0001.

74



en→de en→es ja→zh

Figure 9: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: PRISMREFMEDIUM, PRISMREFSMALL, SENTINEL-CAND-MQM, SENTINEL-REF-MQM,
SENTINEL-SRC-MQM, SPBLEU) for each system pair in eachlanguage pair (left to right: en→de, en→es, ja→zh).
The red line is the isotonic regression fit to all data points, representing Pr(pmqm < 0.05|∆M). Note: for
readability, values of pmqm are rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 10: Log p-value of two-sided paired t-test on MQM scores (pmqm) against the score difference of each
metric (top to bottom: XCOMET, XCOMET-QE. XLSIMMQM, YISI-1) for each system pair in eachlanguage
pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing
Pr(pmqm < 0.05|∆M). Note: for readability, values of pmqm are rounded up to 0.0001 when they are less than
0.0001.
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en→de en→es ja→zh

Figure 11: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: BERTSCORE, BLCOM_1, BLEU, BLEURT-20, BRIGHT-QE, CHRF) score difference
for each system pair in each language pair (left to right: en→de, en→es, ja→zh). The red line is the isotonic
regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded
up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 12: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: CHRFS, COMET-22, COMETKIWI, DAMONMONLI, GEMBA_ESA, MEE4) score
difference for each system pair in each language pair (left to right: en→de, en→es, ja→zh). The red line is the
isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for readability, values of pM are
rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 13: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric
scores against each metric (top to bottom: METAMETRICS_MT_MQM_HYBRID_KENDALL, METAMET-
RICS_MT_MQM_QE_KENDALL.SEG.S, METRICX-24-HYBRID, METRICX-24-HYBRID-QE, PRISMREFMEDIUM,
PRISMREFSMALL) score difference for each system pair in each language pair (left to right: en→de, en→es,
ja→zh). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M). Note: for
readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 14: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: SENTINEL-CAND-MQM, SENTINEL-REF-MQM, SENTINEL-SRC-MQM, SPBLEU,
XCOMET, XCOMET-QE) score difference for each system pair in each language pair (left to right: en→de,
en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing Pr(pM < 0.05|∆M).
Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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en→de en→es ja→zh

Figure 15: Log p-value of significance test with bootstrap resampling (pM ) on system-level metric scores against
each metric (top to bottom: XLSIMMQM, YISI-1) score difference for each system pair in each language pair
(left to right: en→de, en→es, ja→zh). The red line is the isotonic regression fit to all data points, representing
Pr(pM < 0.05|∆M). Note: for readability, values of pM are rounded up to 0.0001 when they are less than 0.0001.
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Abstract

We report the results of the WMT 2024 shared
task on Quality Estimation, in which the chal-
lenge is to predict the quality of the output
of neural machine translation systems without
access to reference translations. In this edi-
tion, we continue to focus both on predicting
sentence-level scores and on detecting error
spans. Further, we expanded our scope to as-
sess the potential for quality estimation to help
in the correction of translated outputs, hence in-
cluding an automated post-editing (APE) task.

We publish new test sets with human annota-
tions that target two directions: providing new
Multidimensional Quality Metrics (MQM) an-
notations for three multi-domain language pairs
(English to German, Spanish and Hindi) and
extending the annotations on Indic languages,
providing direct assessments and post edits for
translation from English into Hindi, Gujarati,
Tamil and Telugu. We also perform a detailed
analysis of the behaviour of different models
with respect to different phenomena, including
gender bias, idiomatic language, and numerical
and entity perturbations. We received submis-
sions based on both traditional encoder-based
approaches and large language models (LLMs)
and attempted to draw some comparisons in
terms of performance and robustness to differ-
ent phenomena.

1 Introduction

This edition of the shared task on Quality Esti-
mation (QE) for machine translation builds upon
previous iterations and findings, to further bench-
mark methods for estimating the quality of neu-
ral Machine Translation (MT) output at run-time,
i.e. without relying on reference translations. The
shared task introduces (sub)tasks that assess trans-
lation quality from multiple perspectives, examin-
ing errors both at a higher level (segment scores)

*Main organisers

and with a more fine-grained view (error spans).
Additionally, we expand our scope to generating
corrected outputs through Automatic Post-Editing
(APE).

Recently we have observed a gradual shift in
the QE paradigms and methodologies, enabled by
the advancement of neural metrics as well as large
language models. Specifically, we have seen consis-
tently strong performance across different language
pairs and setups at sentence-level QE (Specia et al.,
2021; Zerva et al., 2022; Blain et al., 2023), along-
side increased efforts towards more finer-grained,
explainable, and actionable evaluation of transla-
tions that focusses on error identification and expla-
nation (Blain et al., 2023; Fernandes et al., 2023b;
Guerreiro et al., 2023). The proliferation of LLM
applications has led to significant performance im-
provements in MT, elevating the importance of ad-
vancing methodologies for quality estimation, and
at the same time, it has allowed for novel perspec-
tives and tasks related to quality estimation (Fabbri
et al., 2022).

In light of the above, in this edition, we em-
phasise –beyond multilingual quality estimation–
the analysis of the behaviour and abilities of sub-
mitted models with respect to different linguistic
phenomena as well as their robustness to different
error types and biases. Furthermore, we attempt to
explore the degree to which quality estimation sig-
nals can be leveraged to improve translation quality
via downstream automatic post-editing (Chatter-
jee et al., 2018b; Deoghare et al., 2023). We thus
bring APE under the QE umbrella to make it eas-
ier for participants to develop QE systems and ex-
plore different techniques to apply it in APE shared
task. These considerations collectively contribute
to progress toward trustworthy and dependable QE
systems that could facilitate real-time, reliable as-
sessments of translation quality, as well as inform
APE systems towards generating a corrected trans-
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lation.
In this edition of the shared task, we further ex-

pand the provided resources for sentence-level and
fine-grained QE, providing new test sets and ex-
panding to new language pairs. Following the pre-
vious editions, we provide annotations for direct
assessments (DA; English-Tamil, English-Hindi,
English-Telugu and English-Gujarati), post-edits
(PE; English-Tamil and English-Hindi) and Multidi-
mensional Quality Metrics (MQM; English-Hindi,
English-Spanish and English-German) (Lommel
et al., 2014). We describe in detail the annotation
process and provide statistics for the new resources
in Section 3.

Overall, in addition to advancing the state-of-the-
art at all prediction levels, our main goals are:

• To extend the languages covered in our
datasets and provide new test sets emphasis-
ing low- and medium-resource languages and
zero-shot approaches;

• To continue investigating the potential of fine-
grained quality estimation;

• To study the robustness of QE approaches to
different linguistic phenomena, error types
and biases;

• To continue monitoring the computational ef-
ficiency of proposed approaches for sustain-
ability purposes; and

• To study whether we can leverage QE signals
to improve translation quality via downstream
APE task.

We thus designed three tasks this year:

Task 1 The core QE task, which consists of separate
sentence-level sub-tasks for different language
pairs (§??). The goal is to predict a qual-
ity score for each segment in a given test set,
which can be a variant of DA (§3.2) or MQM
(§3.3).

Task 2 The fine-grained error prediction task, where
participants were asked to detect error spans
alongside error severities (Major versus Mi-
nor) (§2.2).

Task 3 A newly introduced task, which requires par-
ticipants to combine quality estimation and
automatic post-editing in order to correct the
output of machine translation. (§2.3).

The tasks make use of large datasets annotated
by professional translators with either 0− 100 DA
scoring, post-editing or MQM annotations. We
provide new training, development and test data for
Task 3 as well as fresh new test sets for Tasks 1 and
2. The datasets and models released are publicly
available1.

Besides the data made available through the QE
shared task, participants were also allowed to ex-
plore any additional data and resources deemed
relevant, across tasks. In addition, LLMs could
also be used both to extend resources and to com-
plement predictions.

The shared task uses CodaBench as a submission
platform, where each sub-task corresponds to a sep-
arate competition instance. Participants (Section 5)
could submit up to a total of 10 submissions per
sub-task. Results for all tasks, evaluated according
to standard metrics, are given in Section 6. Base-
line systems were trained by the task organisers
and entered into the platform to provide a basis
for comparison (Section 4). We provide an addi-
tional evaluation focussed on robustness against
different phenomena and biases in Section 7. A
discussion on the main findings from this year’s
task is presented in Section 8.

2 Quality Estimation tasks

In what follows, we briefly describe each sub-task,
including the datasets provided for them.

2.1 Task 1: Predicting translation quality

The ability to accurately estimate the quality of
translations on-the-fly, i.e., without access to hu-
man references, is at the core of the QE shared
task. This year, we focus on sentence-level quality,
attempting to disentangle finer-grained analysis or
post-edits that are tackled in Tasks 2 and 3.

Similar to the last edition, the data was produced
as follows:

1. DA sentence level scores: The quality of each
source-translation pair is annotated by at least
3 independent expert annotators, using DA on
a scale 0-100.

2. MQM annotation: Each source-translation
pair is evaluated by at least 1 expert annotator,
and errors identified in texts are highlighted

1https://github.com/WMT-QE-Task/
wmt-qe-2023-data
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and classified in terms of severity (minor, ma-
jor, critical) and type (grammar correctness,
omission, style, mistranslation, among oth-
ers).

The DA and MQM sentence level annotations
were further processed to obtain normalised quality
scores that have the same direction between high
and low quality. We provide more details on the
required pre-processing in §2.1.1.

2.1.1 Sentence-level quality prediction
Similarly to the previous year, we used a sin-
gle competition instance both for DA and MQM-
derived annotations aiming to motivate the submis-
sion of models that are robust to both annotation
formats. Hence, we also aligned the scores by pro-
cessing and normalising them as follows:

• For the DA scores we standardize the scores
with respect to each annotator and then com-
pute the mean average of standardized scores
for each sentence.

• For the MQM scores we need to first compute
the overall score from the individual errors.
Hence for each annotator, we first compute
the sentence-level score as:

MQM sent(hyp) =

100− ∑
e∈hyp

severity(e)

|hyp| ,

(1)
where hyp is a hypothesis sentence repre-
sented as a sequence of tokens, e is an error
annotated in that sentence and the severity is
computed but adding:

+ 1 point for minor errors
+ 5 points for major errors
+ 10 points for critical errors

To align with DA annotations, we subtract the
summed penalties from 100 (perfect score)
and we then divide by the sentence length
(computed as number of words). We then
normalise per annotator as in the DA case
and compute the mean average in the case of
multiple annotators.

Regarding evaluation, systems in this task (both
for DA and MQM) are evaluated against the true
z-normalised sentence scores using Spearman’s
rank correlation coefficient ρ as the primary
metric. This is what was used for ranking system

submissions. Pearson’s correlation coefficient, r,
and Kendall τ were also computed as secondary
metrics but not used for the final ranking of sys-
tems.

2.1.2 Finer-grained Evaluation and Challenge
Sets

To assess the robustness and capabilities of auto-
matic machine translation evaluation systems, we
created a challenge set focusing on five different
phenomena for the En-De and En-Es language
pairs. Each category tests a particular aspect of
translation quality that may have impact in real-
world applications. The challenge set aims to deter-
mine whether evaluation systems can distinguish
between correct translations—which we designate
as hyp—and those containing subtle but relevant
variations—which we designate as con.

Currency and date formatting This set tests the
detection of format changes in currency symbols
and date expressions. The hyp preserves the origi-
nal source format (e.g., keeping "$100" or "MM/D-
D/YYYY"), while the con presents localized ver-
sions (e.g., "100 USD" or "DD/MM/YYYY").
Note that here it is the case that con is also a good-
quality translation.

Word order This category examines the han-
dling of word order variations. The hyp consists
of monotonic translations that closely follow the
source sentence order, while the con presents non-
monotonic translations that rearrange words while
preserving meaning. Evaluation models might have
a preference towards one or the other, even though
both preserve the meaning of the source.

Detached translations and omissions This set
focuses on critical divergences from the source text.
The hyp provides accurate and complete transla-
tions of the source. In contrast, the con includes
examples where translations start correctly but then
veer into unrelated topics or omit substantial por-
tions of the source text. Evaluation systems are
expected to detect these critical errors.

Idiomatic translations This category tests the
handling of idiomatic expressions. The hyp
presents idiomatic renderings that accurately con-
vey the meaning in the target language, while the
con offers literal word-for-word translations that
may render the target text non-sensical. Evaluation
systems should appropriately score translations that
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prioritize conveying the correct meaning over strict
word-for-word translation.

We generated data for all the phenomena listed
above using GPT-3.5 (gpt-3.5-turbo-0125) and
GPT-4 (gpt-4-1106-preview). Then, we con-
ducted a human annotation study to discard erro-
neous triples.

Gender Subset The gender subset of the chal-
lenge set aims to study QE metrics and gender
inflection in grammatical gender languages.

Following Zaranis et al. (2024), we collected un-
modified instances from the counterfactual subsets
(Es and De) of MT-GenEval (Currey et al., 2022),
an evaluation set for sentence-level gender bias in
machine translation. In these examples, sources
from English Wikipedia mention exactly one hu-
man entity and contain intra-sentence lexical clues
that help disambiguate the entity’s gender identity.2

Each source is provided with a masculine (M) and a
feminine (F) variant (e.g., “She/He is a graduate of
Harvard, but rarely applies such skills.”). Human
references are included as well.

We compiled the gender subset by constructing
contrastive pairs as follows. First, we sampled 150
instances from the original MT-GenEval’s subset.
Fifty unique sources have a female referent and
fifty a male referent. From each instance, we cre-
ated a triplet with the source, the reference with
correct gender inflection used as hypothesis, and
the reference with wrong gender inflection used as
contrast. Then, to isolate the impact of the source
content, we created two triplets for each of the re-
maining fifty instances. The source in the triples is
identical except for the gender identity of the entity.
This step yields 100 more examples. The gender
subset hence counts 200 contrastive triplets in total.

2.2 Task 2: Fine-grained error detection

For this task, we focus on finer-grained quality
predictions, taking advantage of the detailed infor-
mation provided in the MQM annotation schema.
Specifically, each error span is annotated with error
severity (minor, major, critical) as well as error
type (see also Figure 1). Following the findings of
the previous edition, we focus on the severity an-
notations and do not use the other error categories
annotated in the MQM schema. As a result, we
aimed to (1) identify error spans and (2) classify

2We acknowledge a notion of gender identity beyond the
binary. However, we include only masculine and feminine
examples as they are provided in the original dataset.

said error spans as either minor or major. We note
that we merge the critical and major categories,
since in this edition we noticed particularly sparse
occurrences of critical errors (even less than the
previous year). Additionally, in this edition, the
annotations included a neutral category, which was
ignored as it was (1) not occurring for all language
pairs and (2) they correspond to subjective opinion-
s/preferences about translation. 3 We point readers
to Figure 3 for some statistics on error severity
distribution per language pair and domain.

The information used for this task consists of: i)
start and end index positions for each error span;
and ii) the simplified error severity. The error spans
are identified as continuous sequences of characters
within a target hypothesis, allowing for annotations
of single white spaces and punctuation marks in or-
der to account for omission and punctuation errors,
respectively. Aiming to mimic the human annota-
tions and simplify the task, overlapping error spans
are allowed and count towards recall of different
errors, but overlapping annotations are flattened
for both gold and system annotations (see below).
Figure 1 shows an example of annotations.

For the evaluation, the primary metric is the
F1-score, computed on the character level and
weighted to allow for half points for correctly iden-
tified span but misclassified severity. Precision and
recall were also provided as complementary met-
rics. With respect to overlapping annotations, we
allow for multiple character level annotations4 and
consider the best matching annotation per character
position. As such, for each segment, we compute
recall for the characters in gold annotation text
spans by computing the ratio between the overlap
with system error spans and the gold error span
length and weighting severity mismatches by 0.5.
Respectively, we compute precision with respect
to the system error span length and apply the same
weighting convention (down-weighting by 0.5 for
mismatched error severities). Figure 1 and Table 1
show an example of the aforementioned process 5.

3Note that the neural errors are also not considered when
computing an MQM score.

4The gold data was processed to remove identical segments
that correspond to the same span but have different error cat-
egories, but it preserved any partially overlapping segments
that correspond to different error categories and/or severities.

5The link to evaluation scripts can be found at:
https://github.com/WMT-QE-Task/qe-eval-scripts/
blob/main/wmt24/
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Systems Precision Recall F1-score

System A 1∗7+1∗28+0.5∗6
7+28+13 = 0.79 1∗7+1∗28+0.5∗6

12+28+6 = 0.83 0.81

System B 0.5∗12+1∗28+0.5∗6
12+28+6 = 0.80 1∗12+1∗28+0.5∗6

12+28+6 = 0.80 0.80

Table 1: Example of Precision and Recall computations for each annotation in the example of Figure 1.

Figure 1: Example of gold annotations (MQM) for Task
2 (top) and respective prediction examples (bottom).
Example taken from He-En test set.

2.3 Task 3: QE-informed APE
MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by Chatterjee et al.
(2015), from the application point of view, the task
is motivated by its possible uses to:

• Enhance MT output by harnessing informa-
tion that is not available to the decoder or by
conducting deeper text analysis, which may
be prohibitively expensive during the decod-
ing phase.

• Address systematic errors stemming from an
MT system whose decoding process is inac-
cessible for focused modifications.

• Provide professional translators with im-
proved MT output quality, thereby reducing
the need for subsequent human post-editing.

• Tailor the output of a general-purpose MT sys-
tem to align with the lexicon and style require-
ments of a specific application domain.

Building on the work of Chatterjee et al. (2018b);
Deoghare et al. (2023), which demonstrated the
potential of QE to enhance APE systems, this edi-
tion of the WMT QE shared task introduced the
new QE-informed APE subtask. In this subtask,

we focus on a unified evaluation and correction
paradigm, taking advantage of the additional infor-
mation provided by the human post-edits. Partici-
pants were encouraged to incorporate signals from
QE systems to improve APE performance. The
evaluation setup remained consistent with the previ-
ous rounds WMT APE shared tasks, requiring par-
ticipants to automatically correct translations gen-
erated by a generic, domain-unadapted “black-box”
NMT system. The training data consisted of human
post-edits of translations produced by this system.
While TER (Snover et al., 2006) and BLEU (Pa-
pineni et al., 2002) continued as the primary and
secondary evaluation metrics, this year also intro-
duced chrF (Popović, 2015) and COMET6 for a
more comprehensive automatic evaluation of the
submitted APE systems.

For this year, English-Hindi and English-Tamil
were the selected language pairs, with Hindi and
Tamil as the target languages for post-editing. The
training, development, and test data encompassed a
wide range of domains, including education, legal,
healthcare, culture, tourism, reviews, subtitles, and
general/news.

3 Datasets

Below, we describe the datasets provided to par-
ticipants for development and testing. Specifically,
this year, we provided training data only for Task
3, which was newly introduced (see §3.4).

3.1 Training Resources
Overall, participants were encouraged to employ
training data from a wide range of sources, includ-
ing datasets from previous competitions, as well as
synthetic or proprietary data.

Proposed training data for DA annotations, fol-
lowing the previous editions, includes the language
pairs from the MLQE-PE dataset (Fomicheva et al.,
2022), as well as the data from the previous QE
editions (Zerva et al., 2022; Blain et al., 2023).
Similarly, for the MQM data, we encouraged par-
ticipants to refer to data from previous editions that

6https://github.com/Unbabel/COMET .
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cover translation into German (En-De), Russian
(En-Ru), Hebrew (En-He) and out of Chinese (Zh-
En) (Freitag et al., 2021a,b), as well as the Indic-
MT eval dataset (Sai B et al., 2023). However, we
emphasise that in this edition, we introduce no new
training data, treating the translations into Spanish
(En-Es) and Hindi (En-Hi) as zero-shot tasks, and
only En-De as supervised.

3.2 Direct Assessment (DA) Data

For all language pairs, the data provided is selected
from publicly available resources.

We expand the Indic language pairs introduced
in previous years, providing new unseen test sets of
approx 1K segments each for Hindi (Hi; 1000 seg-
ments) and Gujarati (Gu; 1012 segments) as target
languages from the Indo-Aryan language family as
well as Tamil (Ta; 1000 segments) and Telugu (Te;
1000 segments) from the Dravidian language fam-
ily. Following the previous edition, dataset curation
and annotation were performed with the help of
professional translators who were native speakers
of the target language. The annotators were pro-
vided with guidelines which discussed DA score
ranges with various error types. Additionally, par-
allel segments were curated from the following par-
allel corpora: i) Anuvaad parallel corpus7 (General,
Healthcare and Legal domain; ii) IITB English-
Hindi parallel corpus8 (Kunchukuttan et al., 2018)
(Culture/Tourism domain), and parallel segments
scraped from NPTEL9; and iii) SpokenTutorials10

(Education domain). The curated segments were
selected from the above-mentioned domains to en-
sure cross-domain impact and performance.

From the Anuvaad parallel corpus, we filter par-
allel segments using LaBSE, and select source
sentences with varying token lengths, while the
translation was obtained using 1.3B parameter
NLLB model (Costa-jussà et al., 2022), as dis-
cussed in (Blain et al., 2023). During the an-
notation, weekly validation of randomly selected
instances was performed by an unbiased native
speaker who provided feedback to further improve
annotations during the data curation. After all three
annotators performed the DA annotations, we sepa-
rated the data into training, development, and test

7https://github.com/project-anuvaad/
anuvaad-parallel-corpus

8Unreleased parallel segments, to be released here in v3.2:
https://www.cfilt.iitb.ac.in/iitb_parallel/

9https://nptel.ac.in/
10https://spoken-tutorial.org/

(a) En-Gu (b) En-Hi

(c) En-Ta (d) En-Te

Figure 2: Distribution of DA scores for the Indic lan-
guage pairs.

sets while filtering for a balanced distribution of
DA scores across all sets. We provide the distribu-
tion of DA scores for each language pair in Figure
2, where we can see that for all language pairs,
we have similar distributions skewed towards high-
quality scores. We can also observe that for Tamil,
we have fewer segments of very low quality (DA
≤ 20), but instead, we have larger counts of seg-
ments of moderate quality (20 ≤ DA ≤ 60).

3.3 MQM Data

As test data, we annotated new evaluation sets for
three language directions: English-German (En-
De), English-Spanish (En-Es) and English-Hindi
(En-Hi). The evaluation sets were annotated by
professional translators following a MQM typology
(Burchardt, 2013) and specific guidelines11.

The documents used for the evaluation sets are
shared with the WMT General MT task and follow
the same distribution of domains in that data (e.g.,
news, social, literary and speech). The full docu-
ments were translated using the 54B parameters
NLLB model (Team et al., 2022)12 without sen-
tence splitting. We subsequently split segments for
annotation and annotated a total of 1511 segments
for each translation direction.

The test data distribution according to error
severities is shown in Figure 3. The NLLB model
used to translate the evaluation sets is clearly
stronger for En-De, with less than 100 major and
minor errors for each content type. The distribu-

11http://bit.ly/mqm-guidelines
12Model identifier FACEBOOK/NLLB-MOE-54B
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Figure 3: Distribution of error severities across language pairs and domains/content types.

Figure 4: Distribution of average length (character count) for different severities across language pairs and
domains/content types.

tion of major and minor errors changes drastically
for En-Es and En-Hi, in particular the number of
minor errors for the literary, social and speech do-
mains, with more than 200 minor errors each. In
addition, we can see that we have fewer errors for
the news domain across all three language pairs,
both in terms of minor and major errors. Contrary
to frequency, however, Figure 4 shows that error
spans identified for En-De are significantly longer
on average for both identified error categories.

3.4 QE-APE Data
This year we introduce two new language pairs for
the APE task: English-Hindi (En-Hi) and English-
Tamil (En-Ta). For each language pair, the train,
dev, and test sets respectively consist of 7, 000,
1, 000, and 1, 000 (source, target, human post-edit)
triplets, where:

• The source (SRC) is an English sentence;

• The target (TGT) is a Hindi/Tamil translation
of the source produced by a generic, black-
box NMT system unknown to participants.

• The human post-edit (PE) is a manually re-
vised version of the target, which was pro-

duced by native Hindi/Tamil speakers.

The English-Hindi train, dev, and test sets span
culture, education, health, tourism, and general
domains. Similarly, English-Tamil APE datasets
contain sentences from legal, literacy, reviews, sub-
titles, news, health, and general domains.

We also provide a corpus of artificially generated
data as additional training material. It consists of
2.5 million triplets for each language pair derived
from the Anuvaad parallel corpus. Specifically,
the source, target, and post-edit instances of this
synthetic corpus are respectively obtained by com-
bining: i) the original English source sentence from
the Anuvaad corpus, ii) its automatic translation
into Marathi, iii) the original Marathi target sen-
tence from the Anuvaad corpus. Furthermore, we
provide the DA scores for all samples in both train
and dev sets. Additionally, the participants were en-
couraged to use the DA data released in the earlier
iteration of the QE shared task for these language
pairs.

To get an idea of the task difficulty, we focused
on three aspects of the released data, which pro-
vided us with information about the possibility
of learning useful correction patterns during APE

88



Lang. Domain MT type RR_src RR_tgt RR_pe Basel. BLEU Basel. TER δ TER
2015 en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 en-de IT PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 en-de IT PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 de-en Medical PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 en-de IT PBSMT 7.14 9.47 8.93 62.99 24.24 -6.24
2018 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 en-ru IT NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77
2022 en-mr health/tourism/news NMT 1.46 0.89 0.72 67.55 20.28 -3.49
2023 en-mr health/tourism/news NMT 1.85 1.24 1.12 70.66 26.60 +1.13
2024 en-hi health/tourism/news NMT 2.7 3.55 3.32 39.28 46.36 -19.29
2024 en-ta health/tourism/news NMT 1.97 1.49 1.1 70.16 24.71 -0.47

Table 2: Basic information about the APE shared task data released since 2015- languages, domain, type of MT
technology, repetition rate and initial translation quality (TER/BLEU of TGT). The last column (δ TER) indicates,
for each evaluation round, the difference in TER between the baseline (i.e., the “do-nothing” system) and the
top-ranked official submission.

model training and successfully applying them at
test time. These are: i) repetition rate, ii) MT qual-
ity, and iii) TER distribution in the test set. For
the sake of comparison across the nine rounds of
the APE task (2015–2023), Table 2 reports, for
each dataset, information about the first two as-
pects. The third aspect, however, will be discussed
by referring to Figure 5 and Figure 6.

3.4.1 Repetition Rate
The repetition rate (RR), measures the repetitive-
ness inside a text by looking at the rate of non-
singleton n-gram types (n = 1...4) and combining
them using the geometric mean. Larger values in-
dicate a higher text repetitiveness that may suggest
a higher chance of learning from the training set
correction patterns that are also applicable to the
test set. However, over the years, the influence of
repetition rate in the data on system performance
was found to be marginal.13

As shown in Table 2, in this edition, the RR
for English-Hindi ranges between 2.7-3.3, and for
English-Tamil RR ranges between 1.1-2.0. This
difference may contribute to motivating the signifi-
cantly different APE results observed for the two
languages, as evidenced by a substantial TER re-
duction for English-Hindi (−19.29 “δ TER”) com-
pared to the “do-nothing” the baseline (see §4.3).
Reviewing previous rounds of the APE task, how-
ever, suggests that RR remains only a partially in-

13The analyses carried out over the years produced mixed
outcomes, with impressive final results obtained in spite of low
repetition rates (Chatterjee et al., 2020) and vice-versa (Chat-
terjee et al., 2018a, 2019; Akhbardeh et al., 2021).

formative indicator of task difficulty due to its vari-
able correlation with final results, which may also
depend on other factors or on the interaction of
multiple factors that are yet to be fully understood.

3.4.2 MT Quality
Another complexity indicator is MT quality, which
is the initial quality of the machine-translated
(TGT) texts to be corrected. We measure it by com-
puting the TER (↓) and BLEU (↑) scores (Basel.
TER/BLEU rows in Table 2) using the human post-
edits as reference. In principle, higher quality of
the original translations leaves the APE systems
with less room for improvement since they have, at
the same time, less to learn during training and less
to correct at the test stage. On one side, training
on good (or near-perfect) automatic translations
can drastically reduce the number of learned cor-
rection patterns. On the other side, testing on sim-
ilarly good translations can i) drastically reduce
the number of corrections required and the applica-
bility of the learned patterns, and ii) increase the
chance of introducing errors, especially when post-
editing near-perfect translations. The findings of
all previous rounds of the task support this obser-
vation, which is corroborated by the high correla-
tion (>0.78) between the initial MT quality (“Basel.
TER” in Table 2) and the TER difference between
the baseline and the top-ranked submission (“δ
TER” in Table 2).

As discussed in Section 6.3, this year seems
to confirm the trends observed in the past. For
English-Hindi, the baseline TER is quite high
(46.36 points), leaving more room for improvement.
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Whereas English-Tamil falls in medium-high dif-
ficulty (20.0<TER<25.0), making the task more
challenging. The final gains (“δ TER” in Table 2)
confirm the correlation between the quality of the
initial translations and the actual potential of APE.

Figure 5: TER distribution in the APE 2024 English-
Hindi test set.

Figure 6: TER distribution in the APE 2024 English-
Tamil test set.

3.4.3 TER Distribution
A third complexity indicator is the TER distribution
(computed against human references) for the trans-
lations present in the test sets. Although TER dis-
tribution and MT quality can be seen as two sides
of the same coin, it’s worth remarking that, even at
the same level of overall quality, more/less peaked
distributions can result in very different testing con-
ditions. Indeed, as shown by previous analyses,
harder rounds of the task were typically charac-
terised by TER distributions particularly skewed
towards low values (i.e., a larger percentage of test
items having a TER between 0 and 10). On one
side, the higher the proportion of (near-)perfect test
instances requiring few edits or no corrections at
all, the higher the probability that APE systems will

perform unnecessary corrections penalised by au-
tomatic evaluation metrics. On the other side, less
skewed distributions can be expected to be easier to
handle as they give automatic systems larger room
for improvement (i.e., more test items requiring -
at least minimal - revision). In the lack of more fo-
cused analyses on this aspect, we can hypothesise
that in ideal conditions from the APE standpoint,
the peak of the distribution would be observed for
“post-editable” translations containing enough er-
rors that leave some margin for focused corrections
but not too many errors to be so unintelligible to
require a whole re-translation from scratch.14

As shown in Figure 5, for English-Hindi the TER
distribution follows more or less uniform distribu-
tion. The distribution is not too skewed towards
near-perfect translation (which would have made it
harder to further improve), nor towards the higher
end of TER (which would have made it harder
to learn error-correction patterns due to too noisy
data). These characteristics make it easier to im-
prove translation, which is reflected in the final
evaluation results. On the other hand, as shown
in Figure 6, for English-Tamil the TER distribu-
tion is highly skewed towards near-perfect transla-
tions. Around half of the test set falls in 0-5 TER
points, making it prone to over-correction, which
can be penalised by automatic evaluation metrics.
This characteristic makes the English-Tamil test set
much more challenging when it comes to gaining
further translation quality improvements.

4 Baselines

In this edition, we opted to use publicly available,
existing models without further tuning. Hence, we
use a more unified architecture for Tasks 1 and 2,
where all models use a large XLM-RoBERTa pre-
trained encoder without additional language tuning
(see also Appendix A for hyperparameter details).
The specific hyperparameters used are presented
in Table 7. For Task 3, we opted for a simple “do
nothing" approach as discussed in Section 4.3.

4.1 Task 1: Quality Estimation
For the sentence-level sub-task, we opted for us-
ing CometKiwi 2022 (Rei et al., 2022) which was
trained on data from the Metrics and QE shared
tasks (combining data from previous years up to

14For instance, based on the empirical findings reported
in (Turchi et al., 2013), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.
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2022). Models are publicly available for down-
load15.

4.2 Task 2: Fine-grained Error Detection
For Task 2 we also used a CometKiwi model,
specifically one trained on the multi-task setting, to
produce both sentence-level scores and word-level
quality estimates. The model, trained on 2022 QE
data is publicly available. 16 The word-level esti-
mates are in the form of OK/BAD tags, and for this
reason it is necessary to convert the original output
to the one required by the Task 2 format. As such
we process the word-level predictions as follows:

• Detokenize the sentence

• Annotate continuous BAD tokens as a single
text span

• Assume all errors are major

4.3 Task 3: QE-informed APE
The official baseline results for Task 3 are the
TER/BLEU/chrF/COMET scores calculated by
comparing the raw MT output with human post-
edits. This corresponds to the score achieved by
a “do-nothing” APE system that leaves all the test
segments unmodified.

5 Participants

In this section, we present a brief system descrip-
tion gathered from each participant. For each
team, we indicate the task(s) and sub-task(s) (i.e.
language-pair(s)) they participated in, and point to
relevant publications, if any.

Unbabel (T1; all): The submission for Task 1 fol-
lows their work from the previous competi-
tion (Rei et al., 2023), which corresponds to
an ensemble of multiple checkpoints for the
sentence-level subtask, using a weighted av-
eraging of the predicted scores, optimised by
language pair. The emphasis is on scaling the
size of the pre-trained encoder from InfoXLM
to XLM-R XL and XXL.

Pister Labs (T1; all): The team opted for an ap-
proach where they generated a set of reading
comprehension questions and scored each hy-
pothetical translation by evaluating how well

15https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

16https://huggingface.co/Unbabel/
WMT24-QE-task2-baseline

it could answer the comprehension question
when compared with the reference transla-
tion. The overall score for a hypothetical is
then a simple average across the questions
asked of it. Answers are generated by pro-
viding the question and the hypothetical trans-
lation to Llama3.1-8B (Dubey et al., 2024).
The initial set of reading comprehension ques-
tions is generated through few-shot prompting
of Llama3.1-70B, and evaluating results on
a subsample of 100 training En-De transla-
tion pairs with Llama3.1-70B. The four ques-
tions with the highest Spearman correlation
were then used for final testing. To improve
question generation quality, they use tech-
niques from OpenAI and Anthropic’s prompt-
ing guides, as well as the self-consistency
technique.

HW-TSC (T1; En-Hi, En-Ta, En-Te, En-Gu): The
team employed the CROSS-QE approach (Li
et al., 2023) as the basis for further tuning and
opted for tuning separate models for each lan-
guage pair. They used encoder-based models,
experimenting with different encoders, which
were trained on different combinations of
source and translation vectors as input. They
focused on improving model performance
both in terms of training by employing
different data augmentation methods and in
terms of inference, exploring better strategies
for ensembling checkpoints. In terms of
data augmentation, they use a combination
of LLMs with specific prompts to generate
pseudo-data as well as text editing methods.
17

HW-TSC (T2; all): The team employs a combi-
nation of LLMs, hypothesising that the rea-
soning abilities of large models may be help-
ful in the fine-grained task. They use the
TowerInstruct-7B-v0.2 (Alves et al., 2024)
model and the GPT-4o-mini (Islam and
Moushi, 2024) model, using prompt engineer-
ing and in-context learning to obtain the pre-
dictions. Additionally, they employ data aug-
mentation techniques mentioned for Task 1
and find that they can rely on pseudo-data for
tuning the models. 18

17We consider submissions from users s50042889 and
zhaoxf4 mentioned in the results page as one submission

18We consider submissions from users zhuming, zhaoxf4
and mengyao mentioned in the results page as one submission
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TMU-HIT (T1; En-Hi, En-Ta, En-Te, En-Gu): The
team submitted predictions that rely on LLMs,
inspired by (Liu et al., 2023; Enomoto et al.,
2024). They designed custom prompts for
quality estimation and employed GPT-4o mini
(Achiam et al., 2023) to sample assessment
scores multiple times using the same prompt.
They then experimented with combining the
generated scores to compute the final score
using either their average or their weighted
sum, employing the generation probabilities
as weights for the latter. They conducted
evaluation experiments in both zero-shot
and three-shot settings. Further, they also
attempted fine-tuning GPT-4o mini using
the training data released for the WMT23
Machine Translation task (Kocmi et al.,
2023).

HW-TSC (T3; all): (Yu et al., 2024) The team
explored two distinct approaches for devel-
oping APE systems. For the En-Hi pair,
they leveraged the Llama3-8B-Instruct model
through continual pre-training on the collected
data and then supervised fine-tuning it on
the real APE data. For the En-Ta pair, they
trained a transformer model from scratch, first
focusing on the MT (Machine Translation)
task using web-collected data, followed by
training on APE data. External MT candi-
dates were incorporated during the training to
boost performance further. To prevent over-
correction, Sentence-level QE models were
employed to select between MT and APE out-
puts. Both users (HW-TSC_yjwsss and HW-
TSC_zhaoxf4) from this team made the same
submissions for En-Ta, but different submis-
sions for En-Hi.

IT-Unbabel (T3; all): IT-Unbabel submission
leveraged xTower (Treviso et al., 2024), a
model built on top of TowerLLM (Alves
et al., 2024), which is designed to provide
free-text explanations for translation errors
to guide the generation of an improved
translation. The system was trained on
material that includes the xTower dataset
(GPT-4 generated explanations for translation
correction), TowerBlocks, and additional
training datasets provided by the WMT2419

organizers for English-Hindi and English-
19https://www2.statmt.org/wmt24/

Tamil, augmented with error span annotations
from xCOMET (Guerreiro et al., 2023). A
hybrid approach is used to dynamically select
between the original translation and the
corrected version produced by the xTower
model using a quality estimation model.

6 Results

In this section, we present and discuss the results
of our shared task. Please note that for all the three
sub-tasks we used statistical significance testing
with p = 0.05.

6.1 Task 1

As described in the Task 1 overview (§2.1.1),
sentence-level submissions are evaluated against
the true z-normalised sentence scores using Spear-
man’s rank correlation coefficient ρ along with the
following secondary metrics: Pearson’s correlation
coefficient, r, and Kendall’s τ . Nonetheless, the
final ranking between systems is calculated using
the primary metric only (Spearman’s ρ). Statisti-
cal significance was computed using William’s test.
The results are shown in Table 3.

Looking at the obtained scores, we observe an
overall performance increase for the sentence-level
scores compared to previous years for all language
pairs (that have been previously tested) except for
En-Ta, where we observe a small drop. We note,
that while the domains and sources in the En-De
MQM test-set are different, all DA test-sets are
drawn from the same sources and observe similar
score distributions to previous years, thus facilitat-
ing comparisons.

It should be noted that there is no clear winner
across language pairs. Instead, different systems
rank first for each language.

6.2 Task 2

For Task 2, the submissions are scored using the
F1-score, computed at character level for the anno-
tated error spans, as described in Section 2.2. Pre-
cision and Recall scores are also provided as com-
plementary information to help contextualise the
performance observed. Statistical significance was
computed using randomisation tests (Yeh, 2000)
with Bonferroni correction (Abdi, 2007) for each
language pair. The results for Task 2 are described
in Table 4.

This year, the fine-grained annotation task (Task
2) had a lower participation rate compared to the

92



Multidimensional Quality Metric (MQM) Direct Assessment (DA)

Model Multi En-De En-Es En-Hi En-Hi En-Gu En-Te En-Ta

Unbabel 0.553 0.512 † 0.345 † 0.412 0.714 0.703 † 0.510 † 0.675 †
Pister Labs 0.452 0.513 † 0.242 0.363 0.564 0.587 0.379 0.478
HW-TSC - - - - 0.719 † 0.757 † 0.482 † 0.683†
TMU-HIT - - - - 0.739 † 0.713 0.482 0.603
BASELINE 0.520 0.514 † 0.340 † 0.441 † 0.678 0.661 0.414 0.592

Table 3: Spearman correlation for the official submissions to WMT24 Quality Estimation Task 1 Sentence-level.
Baseline systems are highlighted in grey. For each language pair, results marked with † correspond to the winning
submissions, as they are not significantly outperformed by any other system according to the Williams Significance
Test (Williams, 1959).

.

Multidimensional Quality Metric (MQM)

Model Multi En-De En-Es En-Hi

BASELINE 0.278 0.192 † 0.161 † 0.481 †
HW-TSC 0.227 0.178 0.151 0.362

Table 4: F1-score for the official submissions to
WMT24 Quality Estimation Task 2 Error Span De-
tection. Baseline systems are highlighted in grey. For
each language pair, results marked with † correspond to
the best system (not significantly outperformed by any
other system) according to randomized paired t-test.

previous edition, and we can also see that the ob-
tained scores remained particularly low, indicating
that the task remains challenging and difficult to
address.

Specifically, if we focus on confusion matrices
shown in Figure 7 for the submission received, we
can see that the Baseline is over-predicting Major
error spans, which gives a slight advantage regard-
ing the F1 score since it leads to higher recall. This
finding is consistent with higher precision obtained
by HW-TSC submission as seen in the Appendix
C, Table 17. We provide the confusion matrices for
all language pairs in Appendix E.

Despite this, it is important to note that the meth-
ods submitted for Task 1 still seem to benefit from
a multi-task approach that considers word-level in-
formation. Taking both these observations into ac-
count and looking towards future editions, it might
be useful to redesign the task, aiming either at a
different span representation that would perhaps
attempt a better normalisation over different span
lengths or deviate from the character level repre-
sentation. Another alternative view would be to en-
courage methods that use error spans to support or
interpret sentence-level quality (Leiter et al., 2023)
or concentrate only on specific error types.

(a) HWTSC - Major (b) HWTSC -Minor

(c) Baseline - Major (d) Baseline - Minor

Figure 7: Confusion matrices for Task 2 English-
German, comparing Minor and Major predictions be-
tween the Baseline system and the HWTSC one.

6.3 Task 3

6.3.1 Automatic Evaluation

Automatic Post-Editing evaluation results are
shown in Table 5. The submitted runs are ranked
based on the average TER (case-sensitive) com-
puted using human post-edits of the MT segments
as a reference, which is the APE task’s primary
evaluation metric. To provide a broader view of the
systems’ performance, BLEU, chrF, and COMET
results computed using the same references are also
reported. As can be seen from the table, all submis-
sions for English-Hindi outperform the baseline by
a significant margin across all metrics, with TER re-
ductions that are always statistically significant. the
baseline. The best system is able to improve trans-
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TER BLEU CHRF COMET

En-Hi IT-Unbabel 27.08 58.38 73.45 0.8646
HW-TSC_yjwsss 30.37 54.50 71.06 0.8514
HW-TSC_zhaoxf4 31.32 52.74 69.83 0.8517
BASELINE (MT) 46.36 39.28 59.48 0.8084

En-Ta HW-TSC 24.24 69.64 82.36 0.9186
IT-Unbabel 24.54 70.05 82.30 0.9163
BASELINE (MT) 24.71 70.16 81.80 0.9137

Table 5: Official results for the WMT24 Quality Esti-
mation Task 3 QE-informed APE English-Hindi and
English-Tamil shared task – average TER (↓), BLEU
(↑), chrF (↑), COMET (↑). Statistical significance test
is computed for the primary metric (TER) wrt. the base-
line and the significant results are highlighted in bold.
Baseline systems are highlighted in grey.

lation quality by nearly 20.0 TER points. However,
for English-Tamil, we observe that while all sub-
missions performed slightly better than the baseline
in terms of absolute scores across all metrics ex-
cept BLEU, none of the systems show statistically
significant gains compared to the baseline. As dis-
cussed in Section 3.4, this can be attributed to the
combined effect of less repetitive data (between
1.1-2.0) compared to English-Hindi (between 2.7-
3.3) and a stronger baseline (24.7 vs 46.4 TER),
leaving less room for improvement.

6.3.2 Analysis: Systems’ Behaviour
Modified, improved and deteriorated sentences.
To better understand the behaviour of each APE sys-
tem, we now turn toward the changes made by each
system to the test instances. To this end, Table 6
shows, for each submitted run, the number of mod-
ified, improved and deteriorated sentences, as well
as the overall system’s precision (i.e., the propor-
tion of improved sentences out of the total number
of modified instances for which improvement/de-
terioration is observed). It’s worth noting that, as
in the previous rounds, the number of sentences
modified by each system is higher than the sum
of the improved and the deteriorated ones. This
difference is represented by modified sentences for
which the corrections do not yield any TER varia-
tions.

As can be seen from Table 6, for English-Hindi,
all submissions perform aggressive post-editing,
with the top submission modifying 96.5% of the
translations, where most of the modifications lead
to improving the translation quality with a precision
score of 84.56%. In contrast, for English-Tamil, all
submissions adopt a conservative approach, limit-

Figure 8: Distribution of edit operations (insertions,
deletions, substitutions and shifts) performed by the
three primary submissions to the WMT24 APE English-
Hindi shared task.

ing edits to 3.8%-4.8% of the test set. This aligns
with our previous observations on task difficulty,
driven by the higher MT baseline and the skewed
TER distribution, with samples concentrated in the
near-perfect translation range. In this challenging
scenario, all submissions are able to improve the
majority of modified translations with a precision
score between 54%-59%.

Edit operations. Similar to previous rounds, we
analysed systems’ behaviour also in terms of the
distribution of edit operations (insertions, deletions,
substitutions and shifts) done by each system. This
fine-grained analysis of how systems corrected the
test set instances is obtained by computing the TER
between the original MT output and the output of
each primary submission taken as reference. As
shown in Figures 8 and 9, similar to last year, dif-
ferences in systems’ behaviour are minimal. All
of them are characterised by a large number of
deletions, followed by insertions, shifts and substi-
tutions. For English-Tamil, we observe a relatively
lower proportion of shifts and substitutions com-
pared to English-Hindi. This might indicate that
English-Tamil might have more diverse APE out-
puts, which might be more challenging to evaluate
with reference-based automatic metrics.

7 Evaluation on challenge sets

We received two submissions that we could eval-
uate on challenge sets: Pister Lab’s submission,
based on prompting Llama 3.1, and Unbabel’s,
based on CometKiwi. In Figure 10, we report the
percentage of samples where the hyp translation is
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Systems Modified Improved Deteriorated Prec.

En-Hi IT-Unbabel 965 (96.5%) 756 (78.35%) 138 (14.30%) 84.56
HW-TSC_yjwsss 952 (95.2%) 688 (72.27%) 171 (17.96%) 80.09
HW-TSC_zhaoxf4 665 (66.5%) 532 (80.00%) 85 (12.78%) 86.22

En-Ta HW-TSC 48 (4.8%) 25 (52.08%) 18 (37.50%) 58.14
IT-Unbabel 38 (3.8%) 19 (50.00%) 16 (42.11%) 54.29

Table 6: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted
to the APE 2024 English-Hindi and English-Tamil sub-task. The “Prec.” column shows systems’ precision as the
ratio between the number of improved sentences and the number of modified instances for which improvement/dete-
rioration is observed (i.e., Improved + Deteriorated).

Figure 9: Distribution of edit operations (insertions,
deletions, substitutions and shifts) performed by the
three primary submissions to the WMT24 APE English-
Tamil shared task.

scored higher, lower, or is tied to the con hypoth-
esis.20 Please refer to Section 2.2 for details on
constructing these translation pairs for each phe-
nomenon.

Detached translations and omissions Out of all
the phenomena studied, these two constitute the
most critical errors. It is thus highly encouraging
that both models perform perfectly across the two
language pairs in consistently scoring the correct
hyp translation higher than the erroneous con trans-
lation.

Currency and date formatting This category re-
veals interesting differences between the two mod-
els. Llama 3.1 shows a high tie rate, indicating

20Inspired by the analysis in Kocmi et al. (2024), we con-
sider a tie with CometKiwi when the absolute difference be-
tween the scores of the hyp and con hypotheses is lower or
equal to 0.1 points. For the Llama-based submission, for its
more coarse-grained scoring range (more akin to a categorical
distribution), we consider a tie when both translations receive
the same score.

it often does not distinguish between original and
localized formats. This suggests a more neutral
stance towards formatting choices. In contrast,
CometKiwi is more sensitive to these formats, be-
having less predictably. Although, in most cases, it
either prefers the source format or is indifferent to
the localized format, there are some cases, in par-
ticular for en-es translations, where it does prefer
the localized format that does not lexically match
that found in the source text.

Idioms Llama 3.1 predominantly shows ties or
a slight preference for non-literal, idiomatic ren-
derings (hyp) that accurately convey the meaning
in the target language. In contrast, CometKiwi’s
behavior is more varied and, perhaps surprisingly,
often favors literal translations (con) even when
they may not preserve the source text’s meaning
in the target language. This tendency towards lit-
eralness can be quite problematic in the context of
idioms and other figurative texts, where meaning of-
ten diverges from word-for-word translations. One
potential way to alleviate these trends is to train
neural metrics with more diverse data that includes
idiomatic and figurative language to improve their
robustness.

Word order Here, Llama 3.1 shows a high rate
of ties, suggesting that, similarly to what we found
for the currency and date formatting phenomenon,
it does not distinguish between monotonic trans-
lations that closely follow the source sentence or-
der and non-monotonic translations that rearrange
words while preserving meaning. This suggests
that Llama 3.1’s scoring may be more tied to
the overall meaning of the translation. In con-
trast, CometKiwi demonstrates more preference for
monotonic translations (hyp) across both language
pairs, particularly for en-de. As such, CometKiwi
appears to be more sensitive to word order, poten-
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(a) en-de

(b) en-es

Figure 10: Share of instances in challenge sets where participant systems ranked the hypothesis translation higher
than (green), lower than (salmon), or equal to (grey) the contrast. Results on en-de (top) and en-es (bottom).

tially favouring translations that maintain a struc-
ture closer to the source text. As a learned metric,
this behaviour might be attributed to CometKiwi’s
training data, which may have contained more
monotonic translations (more common among clas-
sical encoder-decoder NMT models that constitute
most of the translations that the model has seen dur-
ing training) than paraphrastic or non-literal ones
(more prevalent among the more novel LLM-based
translation approaches (Raunak et al., 2023)).

Gender subset In most instances, both systems
score the hypothesis with the correct gender inflec-
tion higher. However, we noticed that some cases
have ties, which we consider as errors: the model
does not capture the difference in gender forms and
wrongly assigns equal scores to the hypothesis and
the contrast. Expectedly, this phenomenon is more
present in Pister Lab’s scores, as Llama 3.1 tends to

assign more coarse-grained assessments. In analyz-
ing sources with non-overlapping content, Llama
3.1 exhibits a higher frequency of errors for male
sources in en-de translation while demonstrating
increased error rates for female sources in en-es.
Conversely, CometKiwi maintains a comparable
error rate across genders in both language pairs,
with an elevated error rate in en-es translation
overall. When examining sources with identical
content differentiated only by gender (categorized
as “overlapping”), we observed higher errors for
female sources across all configurations, except for
CometKiwi’s performance in en-es.

Closing remarks Our analysis of Llama 3.1 and
CometKiwi on various challenge sets reveals dis-
tinct behaviours and potential areas for improve-
ment. Both models excel at identifying critical
errors like detached translations and omissions.
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However, they differ in their handling of format-
ting, idioms, and word order, with Llama 3.1—
perhaps for the more discrete nature of its quality
assessments—often showing neutrality (manifested
through a large number of ties) and CometKiwi
demonstrating more varied preferences, some of
which are problematic (e.g., preference towards lit-
eralness in the translation of idiomatic expressions).
Gender-related evaluations suggest potential biases
in both systems, mainly due to scoring masculine
and feminine gender inflections equally despite
only one being correct. When controlling for the
source content, we notice more errors for the in-
stances mentioning a feminine referent in specific
contexts. These findings indicate that both mod-
els display gender-dependent behaviour in source
processing, warranting further investigation into
potential model biases.

8 Discussion

In the following, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

Large language models in Quality Estimation
In this edition, we observed an increased use of
LLMs, not only in order to generate pseudo-data
for training or as a complementary system –which
was the trend in the previous year– but rather as
the primary model to address a task. Indeed, across
tasks, it was possible to observe the performance
of encoder-based models that follow the predictor-
estimator architecture (Kim et al., 2017), as well
as models that relied on large decoder-based ap-
proaches, where the emphasis was more on prompt
engineering or instruction tuning. This is in line
with recent works (Huang et al., 2023; Fernandes
et al., 2023a; Kocmi and Federmann, 2023; Vu
et al., 2024; Hada et al., 2024) that suggest that
multilingual LLMs can be prompted to predict the
quality of a translation, given some tuning or in-
context learning.

Looking at the results for Tasks 1 and 2, how-
ever, we can see that the methods that rely on LLMs
are still outperformed by predictor-estimator-based
systems, especially when it comes to predicting
sentence-level scores. One key disparity, in this
case, relates to the fact that methods relying on
scores generated by such models lack the granu-
larity of predictor-estimator architectures that treat
the QE task as a regression and, hence, can dif-
ferentiate better between different translations and

quality levels. Instead, LLMs tend to default to
a smaller range of values (as we can also see in
the ties detected in the analysis of Section 7 and
Figures 10a and 10b. However, we can see that the
LLM-based methods are closing the gap in terms
of performance when compared to the predictor-
estimator-based model for Task 2, which involves
error detection. More importantly, LLM-based ap-
proaches perform on par and even outperform other
methods for Task 3, which focuses on translation
correction (APE). Thus, it seems that in the MT
evaluation and correction family of tasks, there is
potential for both LLMs and “traditional” neural
systems. Potentially, more hybrid methods, i.e.
methods that employ sentence-level quality scores
predicted from encoder-based models to inform
LLM decisions on error detection and correction,
would lead to improved performance and could
take the lead in future editions for the shared task.

Role of QE signals in APE Both participants
in Task 3 used QE information to perform APE
in alignment with the task objectives. Their ap-
proaches share similarities, as they both involve a
final QE-driven selection step to choose between
the original MT output and the generated APE hy-
pothesis. One participant (HW-TSC) exploited QE
information only for this final selection step, while
the other (IT-Unbabel) integrated the two technolo-
gies more tightly by generating APE outputs with
an LLM informed by free-text explanations for
translation errors, which can be considered as prox-
ies for QE predictions. Overall, despite being ob-
tained with different degrees of QE integration, the
evaluation results reinforce previous findings re-
garding the effectiveness of combined QEAPE and
approaches for enhancing MT output (Chatterjee
et al., 2017; Deoghare et al., 2023).

9 Conclusions

This year’s edition of the QE Shared Task intro-
duced two key new elements besides fresh test sets:
(1) A new task on QE-informed APE, motivating
participants to consider the QE scores to improve
the generated MT corrections and (2) an updated
challenge set for En-De and En-Es language pairs
to help analyse the behaviour and robustness of
submitted models for different phenomena such
as gender bias, idiomatic expressions, handling of
numerical entities, hallucinations, and word order
changes.

We found that overall QE performance is consis-
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tently high across languages on the sentence level.
Still, there is ample room for improvement regard-
ing fine-grained error span detection. The addition
of quality informed APE sub-task made it easier
for participants to leverage their QE system for
the APE task, achieving significant gains for en-hi
and marginal (non-significant) gains on en-ta lan-
guage pairs. In addition, we found that approaches
that employ LLMs still have some way to go in
competing on correlations with human scores at
the sentence level but can provide competitive so-
lutions for error span detection and QE-informed
APE tasks.

In future iterations, we aim to redefine meaning-
ful fine-grained QE tasks, targeting attainable error
detection that can help detect critical errors, explain
predicted quality, and better inform APE systems.
Additionally, we intend to expand further the pro-
vided resources to aid the finer grained analysis of
model behaviour, as it was discussed in Section 7.

10 Ethical Considerations

Post-editing, MQM, and DA annotations in this
paper are carried out by professional translators.
They are all paid at professional rates. In creating
the gender subset, we drew examples from MT-
GenEval (Currey et al., 2022), a corpus where gen-
der is treated as a binary variable. We recognize
that gender identities exist on a spectrum, going be-
yond just the masculine-feminine dichotomy. Our
intention is to expand the evaluation of gender-
related aspects to include more inclusive forms of
machine translation.

Organisers from Unbabel and IT have submitted
to this task without using prior access to test sets
or any insider information.
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and Mariya Shmatova. 2023. Findings of the 2023
conference on machine translation (WMT23): LLMs
are here but not quite there yet. In Proceedings of the
Eighth Conference on Machine Translation, pages
1–42, Singapore. Association for Computational Lin-
guistics.

Tom Kocmi and Christian Federmann. 2023. Gemba-
mqm: Detecting translation quality error spans with
gpt-4. In Proceedings of the Eighth Conference on
Machine Translation, pages 768–775.

Tom Kocmi, Vilém Zouhar, Christian Federmann, and
Matt Post. 2024. Navigating the metrics maze: Rec-
onciling score magnitudes and accuracies.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and

Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Christoph Leiter, Juri Opitz, Daniel Deutsch, Yang Gao,
Rotem Dror, and Steffen Eger. 2023. The Eval4NLP
2023 shared task on prompting large language models
as explainable metrics. In Proceedings of the 4th
Workshop on Evaluation and Comparison of NLP
Systems, pages 117–138, Bali, Indonesia. Association
for Computational Linguistics.

Yuang Li, Chang Su, Ming Zhu, Mengyao Piao, Xinglin
Lyu, Min Zhang, and Hao Yang. 2023. Hw-tsc 2023
submission for the quality estimation shared task. In
Proceedings of the Eigth Conference on Machine
Translation, Singapore. Association for Computa-
tional Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Arle Lommel, Aljoscha Burchardt, Maja Popović, Kim
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A Hyper-parameters of pre-trained baseline models for Task 1 and Task 2 Quality
Estimation

T1 Sentence-level T2 Fine-grained
Hyper-parameter COMETKIWI-DA-22 COMETKIWI-MULTITASK-22

Encoder Model XLM-RoBERTa (large) XLM-RoBERTa (large)
Optimizer Adam (default parameters) Adam (default parameters)
n frozen epochs 0.3 0.3
Keep embeddings frozen True True
Learning rate 3e-05 and 1e-05 3e-06 and 1e-05
Batch size 4 4
Loss function MSE and CE MSE and CE
Dropout 0.15 0.1
FP precision 32 32
Feed-Forward hidden units [2048, 1024] [3072, 1024]
Word weights [0.3, 0.7] [0.1, 0.9]
Feed-Forward activation Tanh –
Language prefix False False

Table 7: Hyper-parameters of both the CometKiwi models used as baselines for Task 1 Quality Estimation.
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B Official Results of the WMT24 Quality Estimation Task 1 Sentence-level

Tables 8, 9, 10, 11, 12, 13, 14 and 15 show the results for all language pairs and the multilingual variants,
ranking participating systems best to worst using Spearman correlation as primary key for each of these
cases.

Model Spearman Pearson Kendall
Unbabel 0.553 0.438 0.410
BASELINE 0.520 0.474 0.382
Pister Labs 0.452 0.378 0.354

Table 8: Official results of the WMT24 Quality Estimation Task 1 Sentence-level Multilingual (average over all
language pairs). Teams marked with "•" are the winners, as they are not significantly outperformed by any other
system according to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
BASELINE • 0.514 0.050 0.397 2,260,734,705 569,330,715 1
Pister Labs • 0.513 0.114 0.455 1,400,000,000 70,000,000,000 1
Unbabel • 0.512 0.037 0.393 42,868,104,221 10,716,932,147 6

Table 9: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for Engligh-German (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel • 0.345 0.116 0.257 42,868,104,221 10,716,932,147 6
BASELINE • 0.340 0.197 0.253 2,260,734,705 569,330,715 1
Pister Labs 0.282 0.104 0.215 1,400,000,000 70,000,000,000 1

Table 10: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for English-Spanish (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
BASELINE • 0.441 0.223 0.328 2,260,734,705 569,330,715 1
Unbabel 0.412 0.065 0.318 42,868,104,221 10,716,932,147 6
Pister Labs 0.363 0.142 0.300 1,400,000,000 70,000,000,000 1

Table 11: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for English-Hindi (MQM).
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
TMU-HIT • 0.739 0.760 0.547 - - 1
HW-TSC • 0.719 0.783 0.531 2,387,827,161 596,896,035 8
Unbabel 0.714 0.679 0.524 42,868,104,221 10,716,932,147 6
BASELINE 0.678 0.771 0.497 2,260,734,705 569,330,715 1
Pister Labs 0.564 0.536 0.443 1,400,000,000 70,000,000,000 1

Table 12: Official results of the WMT24 Quality Estimation Task 1 Sentence-level for English-Hindi (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
TMU-HIT • 0.713 0.808 0.531 - - 1
Unbabel • 0.703 0.751 0.514 42,868,104,221 10,716,932,147 6
HW-TSC 0.686 0.757 0.500 2,387,827,161 596,896,035 8
BASELINE 0.661 0.776 0.486 2,260,734,705 569,330,715 1
Pister Labs 0.587 0.716 0.366 1,400,000,000 70,000,000,000 1

Table 13: Official results of the WMT24 Quality Estimation Task 1 Sentence-level English-Gujarati (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
Unbabel • 0.510 0.719 0.363 42,868,104,221 10,716,932,147 6
HW-TSC • 0.482 0.643 0.340 2,387,827,161 596,896,035 8
TMU-HIT 0.465 0.550 0.329 - - 1
BASELINE 0.414 0.716 0.294 2,260,734,705 569,330,715 1
Pister Labs 0.379 0.535 0.304 1,400,000,000 70,000,000,000 1

Table 14: Official results of the WMT24 Quality Estimation Task 1 Sentence-level English-Telugu (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.

Model Spearman Pearson Kendall Disk footprint (B) # Model params Ensemble
HW-TSC • 0.683 0.719 0.506 2,387,827,161 596,896,035 8
Unbabel • 0.675 0.702 0.499 42,868,104,221 10,716,932,147 6
TMU-HIT 0.603 0.664 0.445 - - 1
BASELINE 0.592 0.584 0.419 2,260,734,705 569,330,715 1
Pister Labs 0.478 0.503 0.366 1,400,000,000 70,000,000,000 1

Table 15: Official results of the WMT24 Quality Estimation Task 1 Sentence-level English-Tamil (DA). Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey.
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C Official Results of the WMT24 Quality Estimation Task 2 Fine grained Error
Detection

Tables 16, 17, 18 and 19 show the results for all language pairs and the multilingual variant, ranking
participating systems best to worst using F1-score as primary key for each of these cases.

Model F1-score Precision Recall
BASELINE 0.278 0.220 0.427
HW-TSC 0.227 0.203 0.268

Table 16: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection Multilingual
(average over all language pairs). The winning submission is indicated by a •. Baseline systems are highlighted in
grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
BASELINE 0.192 0.127 0.394 2,260,743,915 569,309,780 1
HW-TSC 0.178 0.175 0.181 2,409,244,995 2,280,000,000 1

Table 17: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection English-German
(MQM). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
BASELINE 0.161 0.106 0.337 2,260,743,915 569,309,780 1
HW-TSC 0.151 0.106 0.261 2,409,244,995 2,280,000,000 1

Table 18: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection English-Spanish
(MQM). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model F1-score Precision Recall Disk footprint (B) # Model params Ensemble
BASELINE 0.481 0.428 0.551 2,260,743,915 569,309,780 1
HW-TSC 0.362 0.329 0.401 2,409,244,995 2,280,000,000 1

Table 19: Official results of the WMT24 Quality Estimation Task 2 Fine grained Error Detection English-Hindi
(MQM). The winning submission is indicated by a •. Baseline systems are highlighted in grey.

105



D Official Results of the WMT24 Quality Estimation Task 3 Quality-informed APE

Tables 20 and 21 show the results for all language pairs, ranking participating systems from best to worst
using TER as the primary key for each of these cases.

Model TER BLEU ChrF COMET Disk footprint (B) # Model params Ensemble
IT-Unbabel • 27.08 58.38 73.45 0.8646 28,991,029,248 7,000,000,000 1
HW-TSC • 31.32 52.74 69.83 0.8517 1,265,490,783 99,388,416 1
BASELINE 46.36 39.28 59.48 0.8084 - - -

Table 20: Official results of the WMT24 Quality Estimation Task 3 Quality-informed APE English-Hindi (DA).
The winning submission is indicated by a •. Baseline systems are highlighted in grey.

Model TER BLEU ChrF COMET Disk footprint (B) # Model params Ensemble
HW-TSC 24.24 69.64 82.36 0.9186 1,265,490,783 99,388,416 1
IT-Unbabel 24.54 70.05 82.30 0.9163 28,991,029,248 7,000,000,000 1
BASELINE 24.71 70.16 81.80 0.9137 - - -

Table 21: Official results of the WMT24 Quality Estimation Task 3 Quality-informed APE English-Tamil (DA).
The winning submission is indicated by a •. Baseline systems are highlighted in grey.

E Confusion Matrices for Task 2

We present below the confusion matrices for Major and Minor error span prediction between HW-TSC
and the Baseline, for each language pair. We can see that overall HW-TSC targets precision, being more
conservative in error span prediction, while the Baseline model greedily predicts major errors.
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(a) HWTSC - Major (b) HWTSC -Minor

(c) Baseline - Major (d) Baseline - Minor

Figure 11: Confusion matrices for Task 2 English-German, comparing Minor and Major predictions between the
Baseline system and the HWTSC one.
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(a) HWTSC - Major (b) HWTSC -Minor

(c) Baseline - Major (d) Baseline - Minor

Figure 12: Confusion matrices for Task 2 English-Spanish, comparing Minor and Major predictions between the
Baseline system and the HWTSC one.
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(a) HWTSC - Major (b) HWTSC -Minor

(c) Baseline - Major (d) Baseline - Minor

Figure 13: Confusion matrices for Task 2 English-Hindi, comparing Minor and Major predictions between the
Baseline system and the HWTSC one.
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Abstract

We present the results of the WMT 2024 shared
task of the Open Language Data Initiative. Par-
ticipants were invited to contribute to the FLO-
RES+ and MT Seed multilingual datasets, two
foundational open resources that facilitate the
organic expansion of language technology’s
reach. We accepted ten submissions covering
16 languages, which extended the range of lan-
guages included in the datasets and improved
the quality of existing data.

1 Introduction

Machine translation research has advanced at break-
neck speed in recent years (Kocmi et al., 2023).
That said, progress made in translation quality has
largely been directed at high-resource languages,
leaving many languages behind. More recently, the
focus has shifted towards under-served languages
(also called low-resource) (Haddow et al., 2022).
Foundational, high-coverage datasets have made it
easier to develop and evaluate language technolo-
gies for a growing number of languages. Given the
high impact of these components, extending such
datasets becomes imperative.

The aim of the WMT 2024 shared task of the
Open Language Data Initiative (OLDI) is to em-
power language communities to contribute such
key datasets. In particular, we solicited contri-
butions to the MT evaluation dataset FLORES+
and the MT Seed dataset. Additionally, we
also solicited other high-quality, human-verified
monolingual text datasets in under-resource lan-
guages. This builds on previous work to create
these datasets and extend machine translation (MT)
models and evaluation tools to more languages
(Guzmán et al., 2019; Goyal et al., 2022; NLLB
Team et al., 2024; Maillard et al., 2023).

We accepted ten submissions to the task, and
the data contributed covered 16 languages. We re-

*Equal contribution

quired all contributions to be released under open
licenses so that they can be useful to as many com-
munity members as possible. We make the data
available online and encourage future work to build
on these foundational datasets even further.1

2 Related Work

In recent years, there has been a growing recog-
nition of the need for high-quality, representative
datasets to broaden access to language technologies
across a more diverse range of languages. Several
initiatives have emerged to address this need.

In machine translation, the FLORES family of
datasets (Guzmán et al., 2019; Goyal et al., 2022;
NLLB Team et al., 2024) and NTREX-128 (Fed-
ermann et al., 2022) have provided the research
community with massively multilingual, profes-
sionally translated benchmark data that is open
source; while NLLB-Seed (Maillard et al., 2023;
NLLB Team et al., 2024) played a similar role but
focused on training data. Since the release of these
resources, several authors have provided coverage
for new languages (Gala et al., 2023; Doumbouya
et al., 2023; Aepli et al., 2023) or even extended
the datasets to the speech modality (Conneau et al.,
2022).

Thanks to the availability of higher-quality data
for an increasingly larger number of languages, re-
cent language identification models have been able
to expand coverage. Projects such as AfroLID
(Adebara et al., 2022) and OpenLID (Burchell
et al., 2023) improved upon pre-existing models
by a careful curation and auditing of existing data
sources; while LIMIT (Agarwal et al., 2023) fur-
ther expanded data coverage and performance by
creating and releasing a new high-quality corpus.

Several crowdsourced projects have proven in-
valuable as a source of knowledge for under-served

1https://huggingface.co/openlanguagedata
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languages. The Tatoeba project,2 not designed ex-
plicitly for language technologies but as a language
learning aid, provides a large database of aligned
multilingual sentences. Mozilla Common Voice
(Ardila et al., 2020) has enabled communities to
build open-source ASR corpora for their own lan-
guage and counts over 160 languages to date. The
Aya initiative (Singh et al., 2024) has created the
largest instruction finetuning dataset for large lan-
guage models.

3 Datasets: FLORES+ and MT Seed

3.1 FLORES+

One of the biggest challenges in extending effec-
tive natural language processing (NLP) to under-
served languages is a lack of high-quality, high-
coverage evaluation benchmarks. In particular, few
benchmarks are suitable for evaluating multilingual
translation, since this requires many-to-many align-
ment between different languages in the evaluation
dataset.

The FLORES family of datasets was released to
address this problem. While the first iteration of
this dataset covered only three languages (Guzmán
et al., 2019), following iterations increased cover-
age to 101 languages (FLORES-101, Goyal et al.,
2022) and finally to over 200 languages as part of
the “No Language Left Behind” project (FLORES-
200, NLLB Team et al., 2024). The current itera-
tion of this dataset set is managed by OLDI, and
we refer to it as FLORES+ to disambiguate be-
tween the original datasets and this new actively
developed version.

FLORES+ consists of sentences extracted from
English Wikinews, Wikijunior, and Wikivoyage:
997 for the dev split and 1012 for the devtest split.3

These were then professionally translated into each
language (almost universally from English) and un-
derwent quality assessment and adjustment as nec-
essary. The fact that all sentences in all languages
are translations of each other means that they can
be used for any-way multilingual evaluation.

3.2 MT Seed

The MT Seed dataset (previously NLLB Seed) was
created as a source of “starter data” for languages
without publicly-available high-quality bitext in
sufficient quantity for training NLP models (NLLB

2https://www.tatoeba.org
3The separate blind test set, originally developed by Meta,

is not managed by OLDI and is not part of FLORES+.

Team et al., 2024, p.23). Previous work showed
that employing the relatively small amount of high-
quality data in MT Seed for training models had
a significant impact on performance even when
larger but lower quality corpora are used (Maillard
et al., 2023). By extending MT Seed, OLDI aims to
improve the quality of NLP applications for under-
served languages by providing an initial source of
reliable training data.

MT Seed consists of around 6000 sentences
sampled from the Wikipedia articles listed in En-
glish Wikimedia’s “List of articles every Wikipedia
should have”. These were professionally translated
into each of the 38 languages covered by the first
iteration of this dataset (39 if including English).
Since this dataset is intended as a source of train-
ing data rather than evaluation, it did not undergo
the quality assurance as the FLORES family of
datasets.

4 Shared Task Definition

The goal of this shared task was to expand the
open datasets managed by OLDI. Primarily, we
solicited contributions to FLORES+ and MT Seed
(described in Section 3), which could be either fixes
to existing data or entirely new translations. It also
accepted other high-quality, human-verified mono-
lingual text datasets in under-resource languages.

4.1 Contributing to FLORES+ and MT Seed

To contribute to FLORES+ and MT Seed, we en-
couraged participants to translate from English into
the target language so as to follow the original stan-
dard FLORES-200 workflow (NLLB Team et al.,
2024, p.21). We required that translations were
performed by qualified, native speakers of the tar-
get language and that translators acknowledged our
translation guidelines (Appendix A). We strongly
encouraged the verification of the data by at least
one additional native speaker.

The acceptability of machine-translated content
varied between the two datasets. Since the FLO-
RES+ dataset is used to evaluate MT systems, new
contributions must be entirely human-translated.
Using or even referencing MT output was not
allowed, including post-editing. However, post-
edited MT content was allowed for contributions
to MT Seed, provided all content was verified man-
ually. This was done because MT Seed is intended
for training rather than evaluation and, therefore,
has less stringent translation requirements.
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Participants were encouraged to provide exper-
imental validation to demonstrate the quality of
their submitted datasets. Due to the heterogeneous
nature of submissions, we left the exact nature of
the experimental validation up to the participants,
though we gave some suggestions. For example,
MT Seed data contributions could train a simple
MT model and evaluate it on FLORES+.

All submissions were labeled with the same stan-
dardized language codes used throughout OLDI.
These are made up of three parts, separated by un-
derscores:

• An ISO 639-3 language code. Macrolanguage
codes must not be used if a more specific code
is possible: e.g., cmn, yue, wuu, etc., rather
than zho.

• An ISO 15924 script code

• A Glottocode identifying the specific language
variety.

For example, apc_Arab_sout3123 indicates South
Levantine Arabic written in the Arabic script.

All submissions were accompanied by a dataset
card summarizing key facts about the data and
how it was created. This is critical to foster in-
formed and responsible use of the submitted data
(Pushkarna et al., 2022). Submitted datasets were
required to be released under the open CC BY-SA
4.0 license to match FLORES+ and MT Seed.

4.2 Contributing other monolingual data
Contributions of monolingual data had similar re-
quirements to those for FLORES+ or MT Seed.
The aim was to collect high-quality, human-verified
monolingual text in multiple under-served lan-
guages for training NLP tools and systems. Syn-
thetic data of any kind was not allowed. Parallel
datasets were excluded from the scope of the shared
task to not conflict with existing corpus-building
efforts like Opus (Tiedemann, 2009).

For FLORES+ and MT Seed, submissions were
encouraged to be manually verified by native speak-
ers of the target language. All submissions needed
to be accompanied by a data card and released un-
der an open license (allowing free research use as
a minimum).

5 Submissions

There were 24 expressions of interest in the shared
task, and we ultimately accepted 10 papers. Table 1

summarizes the data submitted. We describe each
submission in the following section.

Abdulmumin et al. (2024) contributed an im-
proved version of the FLORES+ datasets for Hausa,
Northern Sotho (Sepedi), Xitsonga, and isiZulu.
They carried out error analysis of the datasets for
the four languages and found problems such as
poor translation of named entities, incorrect han-
dling of morphological changes, a lack of consis-
tency in vocabulary, and poor handling of borrowed
terms. The Hausa dataset was particularly weak,
with evidence that it was built upon Google Trans-
late outputs. The participants corrected the transla-
tions following the guidelines in the shared task de-
scription and evaluated the alterations to the dataset
using a range of metrics.

Ahmed et al. (2024) contributed a translation of
MT Seed into the Bangla variety of Bangla/Bengali,
an Indo-Aryan language that is the official language
of Bangladesh and the state of West Bengal in India
(as well as others). The dataset was translated by a
native speaker with translation experience, per the
OLDI translation guidelines. They validated the
quality of their dataset by fine-tuning a range of
pre-trained multilingual models on their generated
translations and compared performance with the
same pre-trained models fine-tuned on different but
comparable datasets. They found that the models
pre-trained on their translation of MT Seed showed
the best performance after controlling for dataset
size.

Ali et al. (2024) produced a translation of the
FLORES+ dataset into the Central variety of
Emakhuwa, a Bantu language spoken primarily in
Mozambique. They verified their translation by us-
ing a second translator to revise the work of the first,
followed by quality assessment involving three
raters using a Direct Assessment pipeline. The par-
ticipants conducted several experiments to bench-
mark current progress in Emakhuwa–Portuguese
MT. They found that a lack of standardized or-
thography remains a challenge for Emakhuwa MT,
though multiple reference translations can help
with this issue.

Cols (2024) released Seed-CAT, an open-source
web application specifically designed to assist hu-
man translators in translating MT Seed dataset
files.4 Using Seed-CAT, they produced a trans-

4https://github.com/josecols/seed-cat
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Contributors Type of contribution Languages(s)

Abdulmumin et al. (2024) FLORES+ (corrected) Hausa, Northern Sotho (Sepedi), Xitsonga, isiZulu.
Ahmed et al. (2024) MT Seed Bangla/Bengali

Ali et al. (2024) FLORES+ (new) Emakhuwa
Cols (2024) MT Seed (new) and CAT tool Spanish (Latin American)

Ferrante (2024) MT Seed (new) Italian
Gordeev et al. (2024) FLORES+ (new) Erzya
Kuzhuget et al. (2024) FLORES+ (new) Tuvan

Mamasaidov and Shopulatov (2024) FLORES+ devtest (new) Karakalpak
Perez-Ortiz et al. (2024) FLORES+ (new and corrected) Aragonese, Aranese, Asturian, Valencian

Yu et al. (2024) FLORES+ (new) Wu Chinese

Table 1: A summary of all accepted contributions to the WMT 2024 Shared Task of the Open Language Data
Initiative.

lation of MT Seed into Latin American Spanish.
To validate their dataset’s quality, they trained an
English–Spanish MT model using the MT Seed
data and compared its performance to models
trained to translate between English and three Italic
languages using existing MT Seed data. They
found similar performance, suggesting that quality
was similar to existing data in MT Seed.

Ferrante (2024) contributed a translation of MT
Seed into Italian, building on a previous translation
by Haberland et al. (2024). For this submission,
the existing post-edited machine translation was
reviewed and amended by two native speakers. The
dataset was verified by training an Italian–Ligurian
MT system and finding comparable results to those
of Haberland et al. (2024).

Gordeev et al. (2024) contributed a translation of
FLORES+ into Erzya, a Finno-Ugric language spo-
ken primarily in Russia. As part of their work, they
created a set of neologisms to aid future translators
working in the digital space. They used their FLO-
RES+ translation to evaluate the quality of existing
English–Erzya and Russian–Erzya MT systems and
train new competitive models for translating these
language pairs.

Kuzhuget et al. (2024) translated the FLORES+
dataset from Russian into the Central dialect of
Tuvan, a Turkic language primarily spoken in the
Republic of Tuva in South Central Siberia, Russia.
The team of translators worked from guidelines
prepared in Russian to ensure consistent and high-
quality translation.

Mamasaidov and Shopulatov (2024) con-
tributed a translation of FLORES+ devtest split
into Karakalpak, a Turkic language primarily spo-
ken in the Republic of Karakalpakstan, which is

an autonomous region within Uzbekistan. In addi-
tion, they also released a training dataset contain-
ing 100,000 sentence pairs for each of the language
pairs: Uzbek–Karakalpak, Russian–Karakalpak,
and English–Karakalpak. They carried out MT ex-
periments using their datasets, releasing the trained
models for further research.

Perez-Ortiz et al. (2024) contributed translations
of FLORES+ into four Romance languages spoken
in Spain: specifically new datasets for Aragonese,
Aranese, and Valencian, and a corrected dataset
for Asturian. The datasets were used as part of
the evaluation of a shared task on MT from Span-
ish to low-resource languages of Spain (Sánchez-
Martínez et al., 2024). Even though post-edited MT
was used in the creation of these datasets, they were
exceptionally accepted due to their use in a major
shared task with the use of post-editing flagged in
the metadata.

Yu et al. (2024) contributed a translation of FLO-
RES+ into the Chongming dialect of Wu Chinese.
The translation was done by two native speakers
and checked by a third. Since Wu Chinese is typ-
ically colloquial while FLORES+ contains rela-
tively formal text, the translators examined online
written content and asked for community guidance
about translations on fora to arrive at the best trans-
lations. To validate their dataset, the participants
ran a three-way language identification task be-
tween Wu Chinese, Mandarin Chinese, and Yue
Chinese. Their language identification model could
distinguish between the three language varieties
with high accuracy, though there was some confu-
sion between Mandarin and Wu Chinese.
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6 Discussion

Despite recent releases of state-of-the-art large-
scale models (NLLB Team et al., 2024) and the
growing attention directed at speech and sign lan-
guage translations (Seamless Communication et al.,
2023a,b; Rust et al., 2024), the work on text-based
MT remains ongoing. This is particularly true for
many of the world’s under-served languages, which
compete with their higher-resource counterparts
for research attention. Without sustained interest
and contributions to key evaluation and seed data
sets, the delta between high and low-resource lan-
guages will continue to expand, exacerbating al-
ready prominent technical divides.

Covering 16 languages spanning five continents,
the papers in this shared task present a rigorous
effort to improve the quality and scope of such data
sets. Taken collectively, the authors developed pro-
tocols and tools to both refine and introduce new
languages to existing FLORES+ and MT Seed data
sets. Beyond their technical attributes, the work
presented here also aligns with one of OLDI’s core
commitments: to be community-centric. Every
paper in this shared task involves engaging with
speakers of the languages of interest, with many
authors being native speakers themselves. The lin-
guistics expertise and cultural nuances these re-
searchers brought, alongside the personal convic-
tions many may have, culminated in a body of work
that is both scientifically and socially meaningful.
It is our hope that the papers showcased in this
shared task are the first of a long series designed to
consolidate the building blocks needed to advance
language technologies for under-served linguistics
communities across the world.

7 Conclusion

We presented the results of the WMT 2024 OLDI
shared task. We accepted ten submissions covering
16 languages, which extend the range of languages
included in the foundational datasets FLORES+
and MT Seed. We thank all participants for their
contributions and hope that this shared task en-
courages further efforts towards improved language
technologies for more language varieties.
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A Translation Guidelines

These translation guidelines must be acknowledged
by all translators who will be contributing data.

Important note

Your translations will be used to help train or eval-
uate machine translation engines. For this reason,
this project requires human translation.

• If you are translating data for evaluation pur-
poses, such as for FLORES+, using or even
referencing machine translation output is not
allowed (this includes post-editing).

• Note that some machine translation services –
including DeepL, Google Translate, and Chat-
GPT – prohibit the use of their output for train-
ing other translation or AI models, so their use
is not permitted.

General Guidelines

1. You will be translating sentences coming from
different sources. Please refer to the source
document if available.

2. Do not convert any units of measurement.
Translate them exactly as noted in the source
content.

3. When translating, please maintain the same
tone used in the source document. For ex-
ample, encyclopedic content coming from
sources like Wikipedia should be translated
using a formal tone.

4. Provide fluent translations without deviating
too much from the source structure. Only
allow necessary changes.

5. Do not expand or replace information com-
pared to what is present in the source docu-
ments. Do not add any explanatory or paren-
thetical information, definitions, etc.

6. Do not ignore any meaningful text present in
the source.

7. In case of multiple possible translations,
please pick the one that makes the most sense
(e.g., for gender concordance, cultural fit in
the target language, level of formality, etc.).

8. Translations must be faithful to the source in
terms of pragmatics such as (if applicable)

level of hedging/modality, sentiment and its
intensity, negation, speech effects (disfluen-
cies), etc.

9. For proper nouns and common abbreviations,
please see the guidelines on Named Entities
below.

10. Idiomatic expressions should not be translated
word for word. Use an equivalent idiom if one
exists. If no equivalent idiom exists, use an
idiom of similar meaning. If no similar expres-
sions exist in the target language, paraphrase
the idiom such that the meaning is retained in
the target language.

11. When a pronoun to be translated is ambigu-
ous (for instance, when it could be interpreted
as either him/her or he/she), opt for gender-
neutral pronouns (such as them/they) if those
exist in the target language. However, when a
pronoun to be translated is clearly marked for
gender, you should follow the source material
and continue to mark for gender.

12. Foreign words and phrases used in the text
should be kept in their original language when
necessary to preserve the meaning of the sen-
tence (e.g., if given as an example of a foreign
word).

Named entities
Named entities are people, places, organizations,
etc., commonly referred to using a proper noun.
This section provides guidance on how to handle
named entities. Please review the following guide-
lines carefully:

1. If there is a commonly used term in the target
language for the Named Entity:

(a) If the most commonly used term is the
same as in the source language, keep it
as it is.

(b) If the most commonly used term is a
translation or a transliteration, use that.

2. If there is no commonly used term:

(a) If possible, a transliteration of the origi-
nal term should be used.

(b) If a transliteration would not be com-
monly understood in the context, and the
source term would be more acceptable,
you may retain the original term.
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Abstract

This paper presents the results of the patent
translation shared task at the 11th Workshop
on Asian Translation and 9th Conference on
Machine Translation. Two teams participated
in this task, and their submitted translation re-
sults for one or more of the six language direc-
tions were automatically and manually evalu-
ated. The evaluation results demonstrate the
strong performance of large language model-
based systems from both participants.

1 Introduction

The patent translation task using the JPO Patent
Corpus has been held under the Workshop on Asian
Translation (WAT) in 2015–2023 (Nakazawa et al.,
2023) and under the Conference on Machine Trans-
lation (WMT) this year.1 Due to the high demand
for patent translation, this task has attracted many
participants particularly in the early WAT work-
shops: a total of 30 teams over the past 10 years as
in Table 1.

This year, two teams participated in this task;
one participant submitted translation results for two
language directions, and the other for six out of six
language directions, that is, Chinese↔Japanese,
Korean↔Japanese, and English↔Japanese. Both
teams employed large language model (LLM)-
based systems, and the submitted translation re-
sults were evaluated by both automatic and human
evaluation metrics. In this paper, we describe the
evaluation dataset and procedure, and report the
evaluation results for the submitted outputs.

2 Dataset

The JPO Patent Corpus (JPC)2 was constructed by
the Japan Patent Office (JPO) in collaboration with

1Similarly to other WAT shared tasks, this task is organized
by WAT organizers but is held under WMT this year due to
the collaboration between the workshop and conference.

2https://lotus.kuee.kyoto-u.ac.jp/WAT/patent/

Year # of teams

2015 8
2016 6
2017 4
2018 2
2019 3
2020 2
2021 3
2022 0
2023 0
2024 2

Total 30

Table 1: The number of participant teams for the patent
task over the years.

National Institute of Information and Communica-
tions Technology (NICT). The corpus consists of
Chinese-Japanese (zh-ja), Korean-Japanese (ko-ja),
and English-Japanese (en-ja) parallel sentences of
patent descriptions. Most sentences were extracted
from documents with one of four International
Patent Classification sections: chemistry, elec-
tricity, mechanical engineering, and physics. As
shown in Table 2, the dataset for each language pair
consists of training, development, development-
test, and multiple test sets. These datasets were
constructed from patent families using automatic
sentence alignment (Utiyama and Isahara, 2007),
except for the test-N4 set where target sentences
were manual translated from the source sentences.

A characteristic of the corpus is the use of fixed
training and test datasets over the years, which
allows for the comparison of new systems with
past systems. The possible issue of data leakage is
minimized: the data is provided only to applicants
who have committed to participating in each annual
workshop, and participants are required to delete
the data after the workshop concludes.
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Set # of Sentences Published Years Introduced Event
zh-ja ko-ja en-ja

Train 1,000,000 1,000,000 1,000,000 2011–2013 WAT 2015–2016
Dev 2,000 2,000 2,000 2011–2013 WAT 2015–2016
DevTest 2,000 2,000 2,000 2011–2013 WAT 2015–2016

Test-N1 2,000 2,000 2,000 2011–2013 WAT 2015–2016
Test-N2 3,000 – 3,000 2016–2017 WAT 2018
Test-N3 204 230 668 2016–2017 WAT 2018
Test-N4 5,000 5,000 5,000 2019–2020 WAT 2022

Test-2022 10,204 7,230 10,668 2011–2020 WAT 2022

Table 2: Statistics of the JPO Corpus. The published years column represents the years for the source sentences.
The introduced event column indicates the events for which each dataset was first introduced.

3 Evaluation Procedure

3.1 Automatic Evaluation

Task participants were required to submit transla-
tion results via the WAT Submission site.3 For the
results submitted with the “publish” checkbox se-
lected, automatic evaluation scores were calculated
and displayed in the WAT Evaluation site.4 As the
automatic evaluation metrics, we used BLEU (Pa-
pineni et al., 2002) with multi-bleu.perl in the
Moses toolkit (Koehn et al., 2007) version 2.1.15

and RIBES (Isozaki et al., 2010) with RIBES.py
version 1.02.4.6

Prior to calculating scores, reference sentences
and output translation sentences were tokenized
with the tokenization tools for each language: Ju-
man 7.0 (Kurohashi et al., 1994), KyTea 0.4.6 (Neu-
big et al., 2011) with the full SVM model7 and
MeCab 0.996 (Kudo et al., 2004) with IPA dictio-
nary 2.7.08 for Japanese, KyTea 0.4.6 with the full
SVM Model (MSR model) and Stanford Word Seg-
menter (Tseng, 2005) version 2014-06-16 with the
CTB and PKU models9 for Chinese, mecab-ko10

for Korean, and tokenizer.perl11 in the Moses

3https://lotus.kuee.kyoto-u.ac.jp/WAT/
submission/index.php

4https://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

5https://github.com/moses-smt/mosesdecoder/
tree/RELEASE-2.1.1

6http://www.kecl.ntt.co.jp/icl/lirg/ribes/
index.html

7http://www.phontron.com/kytea/model.html
8http://code.google.com/p/mecab/downloads/

detail?name=mecab-ipadic-2.7.0-20070801.tar.gz
9http://nlp.stanford.edu/software/segmenter.

shtml
10https://bitbucket.org/eunjeon/mecab-ko/
11https://github.com/moses-smt/mosesdecoder/

tree/RELEASE-2.1.1/scripts/tokenizer/tokenizer.
perl

5 All important information is transmitted correctly.
(100%)

4 Almost all important information is transmitted cor-
rectly. (80%–)

3 More than half of important information is transmit-
ted correctly. (50%–)

2 Some of important information is transmitted cor-
rectly. (20%–)

1 Almost all important information is NOT transmitted
correctly. (–20%)

Table 3: Ratings and their descriptions in the JPO ade-
quacy criterion.

toolkit for English. The detailed procedures are
shown on the WAT Evaluation site.12

3.2 Human Evaluation

We conducted human evaluation for selected trans-
lation results based on the JPO adequacy evalua-
tion criterion, which is originally defined by JPO
to assess the quality of translated patent documents.
For this evaluation, we used the test-N3 set for
each language direction for the following reasons:
(1) parallel sentences have been manually aligned
(translations were manually created from the origi-
nal sentences), and (2) both participants submitted
results for this test set.

The evaluation was performed by two annotators
(translation experts) for each system as follows.
First, 200 sentences for evaluation were randomly
selected from the test-N3 set in advance (the same
200 sentences were used for all systems). (2) The
200 pairs of the source sentences and translated sen-
tences by the system were shown to each annotator,
and the ratings between 1 and 5 were assigned to
each sentence by the annotator as shown in Table 3.

12http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html
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Parameter Value

encoder_type brnn
brnn_merge concat
src_seq_length 150
tgt_seq_length 150
src_vocab_size 100,000
tgt_vocab_size 100,000
src_words_min_frequency 1
tgt_words_min_frequency 1

Table 4: The configuration used for the baseline model.
For other parameters, tge default values were used.

4 Baseline System

The organizers built a baseline system, a recur-
rent neural network (RNN) encoder-decoder model
with attention (Bahdanau et al., 2014) using Open-
NMT (Klein et al., 2017) with the configuration
shown in Table 4 and the same tokenizers for au-
tomatic evaluation explained in §3.1. This base-
line system uses the old neural machine trans-
lation (NMT) model built for WAT 2018 and
serves as a weak baseline for comparison. How-
ever, as shown in §6, many past participants have
adopted Transformer-based systems, allowing for
the performance comparison with Transformer
models (Vaswani et al., 2017) for recent partici-
pants.

5 Participant Systems

Two teams participated in the patent translation
task: GenAI (Yonsei University) and sakura
(Rakuten Institute of Technology). The details on
the submitted systems are as follows.

sakura used an LLM-based system fine-tuned
with simple translation prompt on the JPC train-
ing set for the corresponding language pair. As
their backbone model, they adopted RakutenAI-
7B-chat,13 which had been pretrained on English
and Japanese texts.

GenAI used an LLM-based system fine-tuned
on only 1,000 sentences from the JPC training set.
Their backbone model is Mistral-Nemo-Instruct-
2407 (12B),14 which had been pretrained on multi-
lingual texts. During both fine-tuning and testing,
their system identified domain-specific terms in
each input source sentence by matching them with

13https://huggingface.co/Rakuten/
RakutenAI-7B-chat

14https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

their bilingual terminology dictionary, and then
generated the translation based on prompt that re-
quired the use of the specified term pairs.

6 Evaluation Results

6.1 Main Results
For the same reasons mentioned in §3.2, we only
present the results for the test-N3 set; results for
other test sets can be found at the WAT Evaluation
site.15 Table 5, 6, 7, 8, 9, and 10 show the perfor-
mance of evaluated system for each language direc-
tion (systems with “∗r” indicate they used external
resources). The tables present the automatic and
human evaluation scores of the two participants’
systems (one system per participant, selected based
on the BLEU score), as well as the organizer’s base-
line and the best participant systems from previous
years. The model type columns indicate whether
the system employed statistical machine transla-
tion (SMT), RNN-based NMT, or Transformer
(TF)-based NMT, and whether it corresponds to
a decoder-only model (Dec) or an encoder-decoder
model (EncDec). The BLEU/RIBES scores for the
translation tasks into Japanese and Chinese rep-
resent the average BLEU/RIBES scores based on
three different tokenizers.16 The JPO adequacy
scores (Adeq) represent the average of the scores
assigned by two annotators.

We observed the following findings. (1) Un-
surprisingly, both participants’ systems as well as
all previous best systems outperformed the base-
line for all language directions in terms of auto-
matic metrics. (2) The LLM-based systems by the
two participants achieved strong results in terms of
automatic metrics; GenAI’s system outperformed
the previous systems for ko→ja and ja→ko and
sakura’s system outperformed the previous sys-
tems for ja→ko and ja→en. However, the previous
systems maintained the highest scores for zh→ja,
ja→zh, and en→ja. (3) Both participants’ systems
achieved high adequacy scores of over 4. However,
importantly, a system with a higher automatic eval-
uation score did not necessarily achieved a higher
human evaluation score. Specifically, sakura’s sys-
tem yielded lower automatic evaluation scores than
GenAI’s system (e.g., BLEU of 52.77 vs. 67.10
for ja→ko and 68.00 vs. 70.60 for ja→ko), but

15https://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

16Three tokenizers indicate Juman, KyTea, and MeCab for
Japanese, and KyTea and Stanford Word Segmenter (CTB and
PKU models) for Chinese.
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System Model Type BLEU RIBES Adeq

GenAI best TF Dec 67.10 0.9225 4.66
2018 best SMT 54.63 0.9056 –
2019 best TF EncDec 54.42 0.9012 –
2020 best TF EncDec 53.77 0.9044 –
2021 best∗r TF EncDec 53.48 0.9014 –
sakura best TF Dec 52.77 0.8982 4.67
Baseline RNN EncDec 52.65 0.8975 –

Table 5: Results on the ko→ja test-N3 set.

System Model Type BLEU RIBES Adeq

GenAI best TF Dec 70.60 0.9391 4.39
sakura best TF Dec 68.00 0.9268 4.76
2021 best TF EncDec 66.25 0.9252 –
2019 best TF EncDec 65.74 0.9228 –
2020 best TF EncDec 64.30 0.9223 –
Baseline RNN EncDec 62.43 0.9153 –

Table 6: Results on the ja→ko test-N3 set.

System Model Type BLEU RIBES Adeq

2020 best TF EncDec 40.51 0.7568 –
2019 best TF EncDec 24.96 0.7639 –
2018 best TF EncDec 24.87 0.7492 –
2021 best∗r TF EncDec 22.67 0.7716 –
sakura best TF Dec 20.83 0.7615 4.24
Baseline RNN EncDec 17.28 0.7322 –

Table 7: Results on the zh→ja test-N3 set.

System Model Type BLEU RIBES Adeq

2020 best TF EncDec 44.34 0.8340 –
2021 best∗r TF EncDec 31.09 0.8550 –
2019 best TF EncDec 29.82 0.8390 –
sakura best TF EncDec 26.60 0.8245 4.33
2018 best TF EncDec 24.66 0.8261 –
Baseline RNN EncDec 23.68 0.7886 –

Table 8: Results on the ja→zh test-N3 set.

System Model Type BLEU RIBES Adeq

2019 best∗r TF Enc-Dec 55.32 0.8827 –
sakura best TF Dec 53.93 0.8803 4.44
2021 best∗r TF Enc-Dec 53.34 0.8753 –
2018 best∗r SMT 52.07 0.8643 –
2020 best TF Enc-Dec 50.95 0.8665 –
Baseline RNN Enc-Dec 46.39 0.8438 –

Table 9: Results on the en→ja test-N3 set.

System Model Type BLEU RIBES Adeq

sakura best TF Dec 43.20 0.8505 4.08
2019 best∗r TF Enc-Dec 41.37 0.8499 –
2021 best∗r TF Enc-Dec 40.73 0.8546 –
2020 best TF Enc-Dec 39.94 0.8413 –
Baseline RNN Enc-Dec 35.01 0.8230 –

Table 10: Results on the ja→en test-N3 set.

achieved similar or better adequacy scores (4.67
vs. 4.66 for ja→ko and 4.76 vs. 4.39 for ja→ko).
This result highlights the need for using a variety
of evaluation metrics, such as neural-based metrics,
which have been demonstrated to correlate well
with human judgement (Freitag et al., 2023).

6.2 Detailed Human Evaluation Results

Table 11 shows the detailed results of the JPO ade-
quacy evaluation for a total of eight participant sys-
tems, which were selected from among the same
participant’s systems based on the BLEU score.
The “Adequacy Score” column represents the av-
erage of ratings assigned to 200 sentences by each
annotator for the Annotator=“A”/“B” rows and the
average and standard deviation of the average score
by the two annotators (A and B) for the Annota-
tor=“Both” row, which is shown as the adequacy
score (Adeq) in Table 5–10.

We observed the following findings. First, most
sentences were assigned scores over 4 (75% or
more sentences for each translation result, except
for sakura’s ja-en result evaluated by Annotator B).
This indicates that there were many high-quality
translation overall, but more accurate systems have
room for development, considering that the trans-
lations with a score lower than 5 account for more
than 20–50% in most cases of annotator-level eval-
uation results.

Second, the difference of sentence-level scores
between two annotators (“Diff Score”) was 0 or 1
in most cases, and there were only nine sentences
with the difference score of 2 over all translation re-
sults. As a result, the adequacy scores between two
annotators were close in many cases, but relatively
large standard deviation (close to or greater than
0.2) was observed in three cases, i.e., sakura ja-zh,
GenAI ja-ko, and sakura ja-en results. In the lat-
ter cases, there were somewhat many mismatches;
each translation result included over 100 sentences
with a score difference of 1 from the two annotators
and/or a few sentences with a score difference of 2.

For the nine sentences with a score difference of
2, we conducted a meta-review by a third evaluator,
distinct from the two annotators. We found that
which annotator provided the more appropriate rat-
ing varied depending on the example. In some ex-
amples, one annotator overlooked a mistranslation
and assigned a higher rating. In other examples,
there were no mistranslations, but one annotator
still assigned a lower rating. Additionally, in cases
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Lang Team Data ID Annotator Adequacy Score Distribution of Ratings Diff Score
(Avg.± SD) 1 2 3 4 5 0 1 2

zh-ja
A 4.24 4 4 24 76 92

sakura 7302 B 4.24 2 6 26 74 92
Both 4.24± 0 130 70 0

ja-zh
A 4.50 2 5 17 43 133

sakura 7257 B 4.15 7 10 30 52 101
Both 4.33± 0.18 120 80 2

ko-ja
A 4.79 1 1 7 21 170

sakura 7311 B 4.55 2 0 9 65 124
Both 4.67± 0.12 137 63 0

ko-ja
A 4.84 0 0 1 37 162

GenAI 7180 B 4.51 0 0 0 99 101
Both 4.66± 0.15 124 76 0

ja-ko
A 4.64 0 4 4 52 140

sakura 7224 B 4.87 0 1 4 15 180
Both 4.76± 0.12 148 52 0

ja-ko
A 4.16 0 7 38 71 84

GenAI 7267 B 4.61 0 0 9 60 131
Both 4.39± 0.23 98 102 0

en-ja
A 4.49 0 4 15 61 120

sakura 7278 B 4.40 0 3 35 41 121
Both 4.44± 0.04 123 73 0

ja-en
A 3.83 2 22 59 43 74

sakura 7309 B 4.33 1 5 26 64 104
Both 4.08± 0.25 79 144 7

Table 11: Detailed results of the JPO adequacy evaluation for the test-N3 set. The “Distribution of Ratings” column
shows the number of sentences with each rating of 1–5. The “Diff Score” represents the number of sentences with
each difference score, which means the difference of ratings between two annotators.

where the translation contained garbled characters,
one annotator assigned a lower rating.

7 Conclusion

This paper summarizes the results of the
WAT/WMT 2024 shared task on patent translation.
The patent translation task using the JPO Patent
Corpus has been held for ten years, and this will be
the last time.17 We believe that extensive develop-
ment efforts by task participants over the past 10
years have contributed to advance machine transla-
tion technologies for the patent domain.
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Abstract

We present the results of the ninth edition of
the Biomedical Translation Task at WMT’24.
We released test sets for six language pairs,
namely, French, German, Italian, Portuguese,
Russian, and Spanish, from and into English.
Each test set consists of 50 abstracts from
PubMed. Differently from previous years, we
did not split abstracts into sentences. We re-
ceived submissions from five teams, and for
almost all language directions. We used a base-
line/comparison system based on Llama 3.1
and share the source code at https://github.
com/cgrozea/wmt24biomed-ref.

1 Introduction

In this paper, we present a description and the
findings of the ninth edition of the Biomedical
Translation Task,1 which took place at the ninth
edition of the Conference for Machine Transla-
tion (WMT’24). The shared task aims to sup-
port advances in Machine Translation (MT) in the

* The contributions of the authors are the following:
MN prepared the MEDLINE test sets, performed manual
validation, and organized the shared task; CG developed
the baseline system; PT, RR, RB, AN, SC, VB, GMN,
FV, MVN, LY performed manual validation; AJY per-
formed manual validation and the automatic evaluation, as
well as co-organized the shared task; All authors approved
the final version of the manuscript. E-mail for contact:
mariana.lara-neves@bfr.bund.de

1http://www2.statmt.org/wmt24/
biomedical-translation-task.html

biomedical domain, especially for scientific litera-
ture. Previous editions of the shared task addressed
up to seven language pairs and included the re-
lease of training and test sets (Bojar et al., 2016;
Jimeno Yepes et al., 2017; Neves et al., 2018; Baw-
den et al., 2019, 2020; Yeganova et al., 2021; Neves
et al., 2022, 2023). All previous data is available
in the shared task repository.2

Similar to previous years, our test sets consist
of biomedical abstracts, which have been included
to PubMed3 just before publishing the test set, to
decrease the likelihood of data contamination. We
prepared test sets for six languages from and into
English, namely, French (fr2en, en2fr), German
(de2en, en2de), Italian (it2en, en2it), Portuguese
(pt2en, en2pt), Russian (ru2en, en2ru), and Span-
ish (es2en, en2es). The test sets consist of 50 ab-
stract pairs for each of the 12 language directions
above. Some of the test sets were also released as
test suites in the General Task of WMT (Kocmi
et al., 2024). After the release of the test sets, the
participants had around two weeks to submit their
automatic translations. For this year’s shared task,
the following features were introduced:

• The selection of the articles for the test sets
was based on topics of interest to the task
organizers (Section 2);

2https://github.com/biomedical-translation-corpora/
corpora

3https://pubmed.ncbi.nlm.nih.gov/
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• The test sets consist of paragraphs comprising
the papers’ title and the abstract, i.e. no sen-
tence splitting and alignment were carried out
(Section 2);

• Consequently, we only performed a manual
evaluation on the abstract level (cf. Section 6);

• We used as a baseline/comparison a local large
language model, Llama 3.1 (cf. Section 3);

• We performed the automatic evaluation also
based on COMET (Rei et al., 2020), besides
BLEU (Papineni et al., 2002).

2 Test sets

We downloaded the daily update files from
PubMed4 around mid-April for the preparation of
the test sets. As usual, we first identify all arti-
cles that are available in English as well as one of
the non-English languages that we address in the
shared task. Subsequently, we selected 100 pairs
of articles for each language pair, which were later
split into two sets, i.e., from and into English.

This year, we aimed to prioritize three topics5

in our test sets. While selecting the articles, we
restricted each topic to around a third of the total.
Still, this limit was frequently not reached because
too few articles included any of the three selected
topics. The three topics are listed below:

• Animals: D000818

• SARS-CoV-2: D000086402

• Pancreatic Neoplasms: D010190

Subsequently, the 100 selected articles for each
language pair were split between the two test set
directions. Test set statistics are shown in Table 1.
No further processing was performed on the test
sets, and these were released as a plain text file,
one for each language pair, each with 50 lines, and
one for each article. Each line is composed of the
title and abstract of the article.

3 Baseline/Comparison system

While we used GPT 3.5 as a comparative model
last year, we decided to use a self-hosted open-
weight large language model this year. Several

4https://ftp.ncbi.nlm.nih.gov/pubmed/
updatefiles/

5defined as Medical Subject Headings, MeSH terms, used
for MEDLINE indexing

such models are available of various sizes, licenses,
and performance levels in the MT task. Based on
the previously accumulated hands-on experience
in informally evaluating several open-weight mod-
els in multiple tasks, including translation, we se-
lected one of the best performing models, namely
Llama 3.1 (Dubey et al., 2024).6

The Llama models are open in the sense that
their weights and supporting code are freely avail-
able, but the usage is limited by a relatively liberal
license. In the case of the model used here, the
precise licenses are “LLAMA 3.1 COMMUNITY
LICENSE AGREEMENT” and “Llama 3.1 Accept-
able Use Policy”. The last one prohibits using the
model to violate the law or the rights of others, to
activities related to bodily harm, including mili-
tary, to generate false information, and includes a
clause making it compulsory to report “risky con-
tent generated by the model”. This risky content
can arise when used for medical texts in the form
of mistranslated medical procedures.

To interact with the model, we used ollama,7

through which the model can be queried (i.e. we
can programmatically perform tasks with the se-
lected LLM and retrieve the response to those tasks,
e.g. from a program written in the Python program-
ming language). In addition, ollama provides a
command line interface that can be used to pull
further models or to interact with a model in a text-
based chat interface.

Implementation decisions We used “Meta
Llama 3.1 70B Instruct”8 (known in ollama as
llama3.1:70b), which means the approximate num-
ber of parameters is 70 ∗ 109. Such an LLM is run
fully accelerated by a GPU only when the parame-
ters fit into the video RAM of the GPU. Since we
used a Nvidia A6000 ADA, a 48 GB RAM GPU
card, we used the quantization Q4_0 (4 bits per
parameter). This makes the actual size of such a
model 37.22 GiB and fits in the 48 GB VRAM of
the GPU. With the other temporary data needed in
the same memory during processing, the occupa-
tion of the VRAM went up to 41.2 GB (85%). To
evaluate the impact of using the same model with a
smaller card, we also tested a 24 GB VRAM card,
Nvidia A5000. This raised the CPU usage to 28
cores (from 2) and processing was slower.

6https://ai.meta.com/blog/meta-llama-3-1/
7https://ollama.com/
8“Instruct” indicates that the model was further trained to

follow instructions and not just to predict the next text tokens
that could follow after a given text prefix.
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topics fr2en de2en it2en pt2en ru2en es2en en2fr en2de en2it en2pt en2ru en2es

SARS-CoV-2 15 18 - 5 11 17 9 15 - - 13 16
Pancr. Neopl. 2 15 1 - 3 2 - 15 2 1 4 1
Animals 15 17 5 17 14 22 20 17 5 18 20 13
other 19 - 44 28 22 9 21 4 43 31 14 20

Table 1: Statistics of the topics in the test sets. The topic “other” refers to articles that do not contain any of the
three selected topics. The sum of the values for one language pair might be higher than 50 because some articles
contain more than one topic.

Prompt used Choosing the right prompt is im-
portant for instruction-tuned LLMs and is still
rather an art than a science. We started with the
prompt “You are a helpful assistant specialised in
biomedical translation. You will be provided with
a text in {src}, and your task is to translate it into
{dest}.” where src is the name of the source lan-
guage and dest is the name of the target language.

Visual examination of one text entry (out of the
50 in the test set) per language pair showed the
following undesirable behaviour in the MT output
generated by the LLM, which we tried to fix by
changes to the prompt:

• in one case some additional text, with the
meaning “this is the translation into German”,
which was fixed by adding “You will add noth-
ing and comment nothing, just produce the
accurate translation of the text in specialist
language.” to the prompt;

• additional formatting of the output text
through the insertion of newlines, which was
almost entirely fixed by adding “Keep the for-
matting as close as possible to the source and
especially do not insert any newline.” to the
prompt.

• the occasional replacement of digits by their
names. We decided not to try to fix this.

After a complete run, we noticed that the LLM
still failed to respect the original format of the
source texts (it still sometimes produced multiple
lines per source text). Visual inspection showed
that in a few cases it still attempted to format
the subsections of the translated test despite be-
ing asked to refrain from doing that. Therefore,
explicit postprocessing was carried out to eliminate
the line breaks from the LLM’s outputs.

Some good features of the translated texts were
also noticed, such as localized acronyms e.g. trans-
lating English Real-time functional magnetic reso-
nance imaging (fMRI) to French L’imagerie fonc-

tionnelle par résonance magnétique (IRMf). Quite
impressive was how well the translation retained
the quantitative results in the fairly long source
texts, while simultaneously applying number lo-
calization transformations, such as swapping the
decimal point with the decimal comma.

Run-time Statistics Measured duration in sec-
onds with an A6000 in each case for 50 texts:

en2de 1232 en2es 1065 en2fr 1202
de2en 728 es2en 902 fr2en 859
en2it 1413 en2pt 1098 en2ru 1110
it2en 810 pt2en 748 ru2en 641

With an A5000, the speed was about 10 times
slower. A GPU-free execution is also possible, but
it can be too slow to be practical.

Energy consumption, CO2 emissions For the
A6000 card, a total of 11, 607 seconds at about
1 kW (300W the GPU itself) equals an amount
of 3.22 kWh and an equivalent CO2 emission of
1.16 kg – at the average 360 g CO2/kWh in Ger-
many, equivalent to the emission of an ICE (internal
combustion engine) car driven for about 9.5km. For
the slower card, which totalled 131, 898 execution
seconds, the figures are 36.64 kWh and therefore
13.2 kg CO2.

4 Teams and systems

We followed similar dates to the WMT General
Translation Shared Task, releasing the test sets on
June 27th, 2024 and allowing submission until July
12th, 2024 (after an extension). We released all test
sets both in our submission system (Google Form)
and the OCELoT tool.9 We also included our test
sets for en2de, en2es, and en2ru as test suites in the
General Task10 in OCELoT. These were the only
language pairs that overlapped with the ones from
the General Task.

9https://ocelot-west-europe.azurewebsites.
net/

10http://www2.statmt.org/wmt24/
translation-task.html
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Team ID Institution Publication

ADAPT Dublin City University, Ireland (Castaldo et al., 2024)
AIST National Institute of Advanced Industrial Sci-

ence and Technology, Japan
DCU Dublin City University, Ireland
HW-TSC Huawei Translation Service Center, China
Unbabel Unbabel, Portugal

Table 2: List of the participating teams and systems.

We received submissions from five teams that di-
rectly registered to our task. We list them in Table 2
and present details about their systems below.

ADAPT (Castaldo et al., 2024). For the submis-
sions identified as “run1” for de2en, en2de, fr2en,
and en2fr, the participants relied on NLLB-200’s
distilled 600M variant (NLLB Team et al., 2022),
which was fine-tuned on around 10k parallel seg-
ments from in-domain training data in the respec-
tive language pair. Run2 for en2de, in addition
to the above approach, included post-edition by
LLM agents powered by GPT-4o.11 Finally, for
run3 for de2en, they relied on LLama-3-8B12 fine-
tuned on around 10k parallel sentences and few-
shot prompting using fuzzy matches retrieved by
similarity search from the training dataset.

AIST. For run1 of de2en, the team relied on a
Mega model (Ma et al., 2023) trained from scratch
and fine-tuned on parallel biomedical data from
MEDLINE. For run2 for both en2de and de2en,
they used a Mega model, an ensemble of four
checkpoints trained from scratch and fine-tuned
on the same data. For all submissions, they esti-
mate the following sizes of training data used: 3M
from in-domain, 5M from open domain, and 3M
monolingual.

DCU. We do not have much information about
the system behind the submissions for this team,
except for a short description citing the Mistra-7B
language model13 for ru2en and fr2en.

HW-TSC. For all submissions to en2de and
de2en, the team relied on a system based on Trans-
formers that was trained from scratch on in-domain
and open-domain parallel and monolingual data
(Wu et al., 2023). It is not clear which changes
were carried out for the distinct runs.

11https://platform.openai.com/docs/models/
gpt-4o

12https://huggingface.co/meta-llama/
Meta-Llama-3-8B

13mistralai/Mistral-7B-v0.1

Unbabel The submissions for all language pairs
consisted of a new version of the Tower LLM
(Alves et al., 2024), either with Greedy (run1) or
MBR (run2) decoding. The LLM has 70B param-
eters, was built on top of Llama3, and its contin-
ued pre-training phase used 25B tokens for 15 lan-
guages, followed by fine-tuning with instructions
for all the languages in a variety of tasks, including
MT.

5 Automatic evaluation

We ran automatic evaluation based on BLEU (Pap-
ineni et al., 2002) and COMET (Rei et al., 2020).
We present the results for the submissions to the
biomedical translation task using our form in Ta-
bles 3 (from English) and 4 (into English), as well
as the ones from OCELoT for our task in Table 5
and for our test suites submitted to the General Task
in Table 6. All scores were multiplied by 100.

5.1 Biomedical Task submission system

Among all submissions, including our baseline sys-
tem, the highest BLEU score was 55.63 for pt2en
(Unbabel run1) and the highest COMET score was
of 89.71 for en2ru (Unbabel run2). The submis-
sions that scored better were the ones from Unba-
bel and our baseline system, e.g., for en2de, en2fr,
en2it, en2pt, and en2ru, with some few exceptions
where another system also obtained a high score,
e.g., AIST for en2de and DCU for en2ru. The
submissions from Unbabel usually scored slightly
higher than our baseline, with a few exceptions,
e.g., en2pt, fr2en, and es2en.

We observed that the two types of metric score
were rather equivalent and that submissions that
scored high for BLEU also did so for COMET.
However, some submissions had very different
BLEU scores for similar COMET scores. For in-
stance, the baseline system obtained the BLEU
scores of 31.67 and 51.65 for en2de and en2pt, re-
spectively, but around 87.00 for the COMET score
in both cases. Overall, the scores from this year’s
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Team Run Metric en2de en2fr en2it en2pt en2es en2ru

ADAPT 1 BLEU 25.03 29.92
COMET 84.31 78.14

ADAPT 2 BLEU *30.16
COMET 85.30

AIST 2 BLEU 33.80
COMET 85.59

DCU - BLEU 16.46 29.12 38.97 31.28
COMET 64.78 80.39 74.17 87.00

HW-TSC 1 BLEU *28.77
COMET 82.92

HW-TSC 2 BLEU 28.46
COMET 82.83

HW-TSC 3 BLEU 28.32
COMET 83.14

Unbabel 1 BLEU 34.22 53.54 34.84 50.35 35.76
COMET 87.48 87.26 85.17 87.03 88.97

Unbabel 2 BLEU *32.13 *49.76 *32.06 *48.47 *32.35
COMET 88.09 87.60 86.04 87.55 89.71

Baseline - BLEU 31.67 45.98 31.64 51.65 47.95 30.92
COMET 87.00 87.03 85.00 87.02 85.37 87.55

Table 3: BLEU and COMET scores for submissions to the Biomedical Task submission system, for translation from
English. The runs marked with a star (*) were the ones selected for manual validation. For the submissions from
Unbabel, runs “1” are the ones identified as “Greedy”, and runs “2” are the ones for “MBR”.

Team Run Metric de2en fr2en it2en pt2en es2en ru2en

ADAPT 1 BLEU *32.24 18.81
COMET 83.04 72.14

ADAPT 3 BLEU 36.93
COMET 78.84

AIST 1 BLEU 45.86
COMET 84.65

AIST 2 BLEU *45.92
COMET 84.84

DCU - BLEU 32.60 31.47 28.40 31.32 28.02 25.76
COMET 78.99 78.74 79.63 79.56 80.90 70.01

HW-TSC 1 BLEU *45.79
COMET 83.98

HW-TSC 2 BLEU 45.68
COMET 83.86

HW-TSC 3 BLEU 45.43
COMET 84.08

Unbabel 1 BLEU 49.05 53.29 38.91 55.63 51.32 47.28
COMET 86.67 86.05 85.32 85.11 86.99 83.82

Unbabel 2 BLEU *46.72 *51.67 *38.91 *53.53 *52.28 *45.11
COMET 86.97 86.39 85.32 85.47 87.25 83.95

Baseline - BLEU 45.85 54.79 37.49 51.38 53.54 43.70
COMET 86.39 86.11 85.28 85.08 87.18 83.37

Table 4: BLEU and COMET scores for submissions to the Biomedical Task submission system, for translation into
English. The runs marked with a star (*) were the ones selected for manual validation. For the submissions from
Unbabel, runs “1” are the ones identified as “Greedy”, and runs “2” are the ones for “MBR”.

submissions are not directly comparable to the ones
from the previous year since, for the first time, we
ran an evaluation on the abstract level.

5.2 OCELoT Biomedical Translation task

Only one team (AIST) submitted to the biomedical
task in OCELoT, but also for the same language
pairs in our submission system and for our test
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Team Run Metric en2de de2en

AIST

517 BLEU 28.30
COMET 83.75

542 BLEU 39.68
COMET 82.55

544 BLEU 39.68
COMET 82.55

545 BLEU 28.30
COMET 83.75

Table 5: BLEU scores for submissions to OCELoT for
the Biomedical Translation Task.

suites in the general task. While their results as
shown in Table 5 were similar to the ones in Ta-
ble 6, they were slightly inferior to the ones that the
same team obtained for the runs to our submission
system, e.g., for en2de, a BLEU score of 28.30
versus 33.80, and a COMET score of 85.59 versus
83.75.

5.3 OCELoT General Machine Translation
task

We included test suites only for the language pairs
in our task that overlap with the ones considered in
the general task, namely, en2de, en2es, and en2ru.
The scores for the submissions to the general task
(cf. Table 6) varied much more than the ones sub-
mitted directly to the biomedical task (cf. Table 3),
from very low to high, e.g., BLEU scores of 1.63
(certainly due to mistakes in the system) to 52.56.
It is safe to assume that most systems were not
trained especially for the biomedical domain. In
spite of this, we observed some submissions with
scores even higher than the ones for the biomed-
ical task. Amongst the submissions to the gen-
eral task, the highest scores for en2de were 38.07
BLEU (ONLINE-W) and 88.25 COMET (Trans-
sionMT), as opposed to a BLEU score of 34.22
(Unbabel run1) and a COMET score 88.09 (Un-
babel run2) in the biomedical task. For en2ru, the
highest scores in the general task were 41.25 BLEU
(Claude-3.5) and 89.88 COMET (Claude-3.5 and
Unbabel-Tower70B), as opposed to 35.76 BLEU
(Unbabel run1) and 89.71 COMET (Unbabel run2).
Therefore, submissions from the same team (Unba-
bel) scored slightly higher in the general task than
in the biomedical task.

6 Manual evaluation

Similar to previous years, we performed manual
validation of a sample of the submissions for most
of the language pairs. The number of abstracts that

we considered for each language was of either 10
or 20 depending on the availability of the human
evaluators. We used the three-way function of the
Appraise tool (Federmann, 2018), which includes
the following elements:

• the abstract in the original language (e.g., En-
glish for en2fr);

• translation A: first translation in the target lan-
guage (e.g. French for en2fr);

• translation B: second translation in the target
language (e.g. French for en2fr).

The task consists of validating whether a transla-
tion is better than the other (i.e., A>B or A<B), or
whether they are of similar quality (A=B). In cases
where the evaluators notice that an error might have
occurred, e.g., translation from another text or a
translation shorter than it should be, it is possible
to skip the validation of this particular pair.

For all language pairs, we considered the best
run from each of the team that submitted directly
to the biomedical task. The best run was the one
identified by the participants during the submission
process. Otherwise, we selected the best perform-
ing one. We evaluated pairs of either two trans-
lations from the teams, or one translation from a
team and the reference translation. We present the
results for submissions from English in Table 7 and
for submission into English in Table 8.

We present below a summary of the mistakes
that we observed during manual evaluation.

en2fr Translation quality was uneven, as sug-
gested by the 20 point difference in BLEU scores
obtained by the systems. While some translations
were of very high quality, others exhibited serious
issues including conveying meaning drastically dif-
ferent from the original sentence. In example 1,
numerical values are erroneous and inconsistent
with the corresponding percentages. In Example 2
the resulting translation is medically unacceptable.

(1) en: Of the 273 patients, 164 (60.1%)
required invasive mechanical ventilation.
One hundred and forty-two patients (52.0%)
survived their hospital stay.
fr*: Sur les 273 patients, 104 (60,1%) ont né-
cessité une ventilation mécanique invasive et
164 (52,0%) ont survécu à leur séjour à l’USI.
fr: Parmi les 273 patient·es, 164 (60,1 %) ont
nécessité une ventilation mécanique invasive.

129



Teams en2de en2es en2ru
BLEU COMET BLEU COMET BLEU COMET

AIST-AIRC 28.28 84.85
Aya23 30.77 87.11 49.49 85.32 31.90 86.69
CUNI-DS 27.93 86.96
CUNI-NL 20.06 83.38
Claude-3.5 35.23 87.86 52.08 85.93 41.25 89.88
CommandR-plus 32.44 87.67 49.84 85.78 34.33 88.64
CycleL 1.32 38.35 3.00 45.17 0.32 34.65
CycleL2 1.32 38.35 0.10 28.49
Dubformer 31.19 83.49 40.65 78.58 1.94 39.58
GPT-4 35.80 87.93 51.53 85.85 34.00 88.45
IKUN-C 10.82 78.34 22.18 78.23 12.69 81.74
IKUN 11.07 79.14 12.67 74.02 13.28 82.98
IOL_Research 30.86 87.17 48.90 85.56 32.30 87.68
Llama3-70B 31.43 87.01 47.86 85.30 32.18 88.05
MSLC 25.17 82.24 46.30 84.27
NVIDIA-NeMo 15.91 80.21 30.00 79.32 20.37 83.28
ONLINE-A 36.09 87.34 52.56 85.62 40.20 89.23
ONLINE-B 36.48 88.21 51.56 85.13 40.23 88.73
ONLINE-G 34.86 87.08 50.98 85.34 37.22 89.44
ONLINE-W 38.07 88.04 52.47 85.78 39.77 89.52
Occiglot 6.33 70.19 31.93 78.52
TSU-HITs 1.63 37.00 17.23 60.20 2.80 52.36
TranssionMT 36.57 88.25 52.67 85.67 40.07 88.76
Unbabel-Tower70B 32.37 87.89 47.93 86.12 32.61 89.88
Yandex 35.09 89.81

Table 6: BLEU scores for submissions to OCELoT for the General Machine Translation Task.

Languages Systems Abstracts
A>B A=B A<B skipped

en2de AIST vs. ADAPT 3 3 12 2
AIST vs. HW-TSC 13 2 4 1
AIST vs. DCU 10 3 4 3
AIST vs. reference 2 7 10 1
AIST vs. Unbabel 2 5 12 1
ADAPT vs. HW-TSC 16 2 0 2
ADAPT vs. DCU 10 5 1 4
ADAPT vs. reference 0 8 10 2
ADAPT vs. Unbabel 2 10 6 2
HW-TSC vs. DCU 6 2 9 3
HW-TSC vs. reference 0 0 19 1
HW-TSC vs. Unbabel 0 1 18 1
DCU vs. reference 0 3 14 3
DCU vs. Unbabel 0 2 15 3
reference vs. Unbabel 2 10 7 1

en2fr reference vs. Unbabel 14 0 5 1
reference vs. ADAPT 17 0 2 1
Unbabel vs. ADAPT 18 0 1 1

en2it reference vs. DCU 5 1 13 1
reference vs. Unbabel 1 1 18 0
DCU vs. Unbabel 4 6 9 1

en2pt DCU vs. Unbabel 0 6 8 6
DCU vs. reference 4 7 3 6
Unbabel vs. reference 7 10 3 0

en2ru reference vs. Unbabel 4 2 4 0
reference vs. DCU 3 3 4 0
Unbabel vs. DCU 7 2 1 0

Table 7: Pairwise manual evaluation results for the test set (from English).
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Languages Systems Abstracts
A>B A=B A<B skipped

de2en DCU vs. AIST 3 2 2 3
DCU vs. Unbabel 2 2 3 3
DCU vs. reference 2 2 3 3
DCU vs. HW-TSC 5 0 2 3
DCU vs. ADAPT 6 0 1 3
AIST vs. Unbabel 1 0 9 0
AIST vs. reference 3 2 5 0
AIST vs. HW-TSC 4 3 3 0
AIST vs. ADAPT 8 0 2 0
Unbabel vs. reference 8 2 0 0
Unbabel vs. HW-TSC 10 0 0 0
Unbabel vs. ADAPT 10 0 0 0
reference vs. HW-TSC 6 1 3 0
reference vs. ADAPT 6 2 2 0
HW-TSC vs. ADAPT 5 1 4 0

fr2en DCU vs. ADAPT 6 0 4 0
DCU vs. reference 1 2 7 0
DCU vs. Unbabel 0 0 10 0
ADAPT vs. reference 0 2 8 0
ADAPT vs. Unbabel 0 0 10 0
reference vs. Unbabel 1 3 6 0

it2en reference vs. Unbabel 0 5 15 0
reference vs. DCU 5 3 8 4
Unbabel vs. DCU 11 4 1 4

es2en DCU vs. reference 4 2 9 5
DCU vs. Unbabel 3 4 8 5
reference vs. Unbabel 5 6 9 0

ru2en reference vs. Unbabel 2 2 5 1
reference vs. DCU 4 0 4 2
Unbabel vs. DCU 4 3 1 2

Table 8: Pairwise manual evaluation results for the test set (into English).

Cent quarante-deux personnes (52,0 %) ont
survécu à leur séjour à l’hôpital.

(2) en: Deaths by mechanical asphyxiation con-
stitute a social drama
fr*: La prévention constitue un drame social
fr: Les morts par asphyxies mécaniques con-
stituent un drame social

In both cases, the translation errors likely re-
sult from mixing information contained in differ-
ent parts of the original texts. Arguably, this is
very concerning because users of such a translation
system could conclude that the erroneous transla-
tions are correct by checking that the information
is present in the original text. Other issues are
more easily detected, such as the interruption of
the translation by a loop repetition of a set of tokens
(e.g., une mobilité allant de 5,6% à 5,6% à 5,6%
à 1211% à 1211% à 1211% à 1211% à 1211% à
1211% à 1211% à 1211% à 1211%...).

The choice of having full abstract translation in-
stead of sentence-by-sentence translation this year

seems to have both a positive impact on the overall
consistency of translations (e.g., overall consistent
use of terms and acronyms throughout a document)
and a negative impact on the end of translation for
some systems, where translation quality was de-
creasing as the text unfolded and sometimes just
interrupted (with or without loop repetitions).

Specialized term translation was sometimes er-
roneous, in particular with terms referring to ani-
mal species (for example, translating waterfowl by
oiseaux d’eau instead of sauvagine), which were
more frequent this year due to the selection method
for the test documents. Polysemous terms were
also a source of erroneous translations (e.g., hood
translated as capot – car context instead of capuche,
which is correct in a clothing context).

In addition to the manual evaluation through ap-
praise, a complementary assessment of the best sys-
tem submission outputs was conducted, with a fo-
cus on Acronyms and Lab Values, consistently with
the evaluations conducted in the two previous years.
Overall, 31 out of 50 test documents contained
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acronyms and none contained lab values. Acronym
translations were considered correct when the sys-
tem translation was identical to the reference trans-
lation or consisted of an attested acronym use in
a similar context. Correct acronym translations
(79%) included frequent acronyms such as USI
(Unité de Soins Intensifs – Itensive Care Unit) or
IC (Intervalle de Confiance – confidence interval).
In other cases, acronyms were either untranslated
(16%) or erroneous (5%). Some of the acronym
translation strategies used by human translators and
not by machine translation consist of explicitly stat-
ing that an English acronym is used, for example:
la santé mentale du nourrisson (IMH en anglais).
This is sometimes combined with a strategy of us-
ing the long form of a term in French, when an
acronym was used in English. These strategies are
often used with acronyms that stand for infrequent
terms.

It is also interesting to notice that reference trans-
lations contain idiomatic linguistic traits not used in
machine-translated text, such as inclusive writing
(as seen in Example 1).

en2pt All translations into Portuguese were of
very good quality, except for some empty transla-
tions from one submission and the remains of the
prompt used, which were included in the transla-
tions of the same submission. Therefore, the deci-
sion of whether one translation was better than the
other was generally based on small details, often
one single mistake.

Small mistakes that we found were the following:
(a) lack of capitalization at the start of the sentence
(e.g., “. . . profunda (TVP). o sangue . . . ”); (b) nom-
inal concordance (e.g., “o febre pós-anestésica”);
(c) missing words (e.g., “com uma [força] mé-
dia de 526N”); (d) words that remained in En-
glish (e.g., “odds ratio”) (e) typos (“registe” in-
stead of “registre”); (f) and grammatical mistakes
(e.g., “acompanhou [por] mais de 18 meses”).

As in previous years, we found mistakes related
to the non-translation of acronyms. For easier or
more common terms, e.g., Artificial intelligence
(AI), the translations were all correct, i.e., “in-
teligência artificial (IA)”. However, mistakes were
often found for other terms, as in Example 3 below
in which only the translation pt3 is correct and has
the right acronym:

(3) en: Computer vision (CV)
pt1: visão por computador (CV)

pt2: visão computacional (CV)
pt3: visão computacional (VC)

Often we observed a copy of the English
acronym for much more complex terms, as in Ex-
ample 4:

(4) en: hydrogenated castor oil (HCO ethoxy-
lates)
pt1: Óleo de castor hidrogenado polioxi-
etileno (etoxilações de HCO)
pt2: óleo de rícino hidrogenado de polioxi-
etileno (HCO-etoxilados)
pt3: hydrogenated castor oil (HCO ethoxy-
lates)

However, we had some difficult examples in
which the translation and acronym were correct,
e.g. pt2: in Example 5:

(5) en: hospital standardized mortality ratio
(HSMR)
pt1: taxa de mortalidade hospitalar
padronizada (HSMR, na sigla em inglês)
pt2: razão de mortalidade hospitalar
padronizada (RMHP)

Finally, we observed many examples in which
we favored some translation over others because
they either sounded better or more correct, namely,
translations pt2: in Examples 6, 7, 8, and 9:

(6) en: was highly expressed in CTCs
pt1: foi altamente expresso em CTCs
pt2: tinha uma expressão elevada nas CTCs

(7) en: A quasi-experimental study, which
compared
pt1: Estudo quase-experimental, que com-
parou
pt2: Um estudo quase experimental, que
comparou

(8) en: Case signalment
pt1: Fatores de identificação do caso
pt2: O sinalamento do caso

(9) en: axis of the femoral neck
pt1: eixo do colo do fêmur
pt2: eixo do colo femoral
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fr2en With the change in protocol this year (from
sentence-level to paragraph-level translation and
evaluation), there were several differences in the
observed quality of translations.

Translation issues brought up in previous years
remained present, namely the copying or wrong
translation of acronyms and specialised terms (Ex-
ample 10), the wrong translation of personal pro-
nouns (e.g. son ‘his/her/their’ in Example 11) and
errors linked to the ambiguity of source terms
(e.g. taille ‘height or waist’ in Example 12).

(10) fr: la thérapie de substitution de la nicotine
(TSN)
en: nicotine replacement companies (NTS)
en*: nicotine replacement therapy (NRT)

(11) fr: . . . la capacité d’un individu à rechercher
des soins . . . pour son animal de compagnie
en: an individual’s ability to seek . . . care for
their companion animal
en*: an individual’s ability to seek . . . care for
his companion animal

(12) fr: la circonférence de la taille (CT)
en: waist circumference (WC)
en*: circumference of height (CT)

However, the overall quality of the translations
was visibly lower than in previous years, due to
the use of LLMs and the translation of whole para-
graphs rather than individual sentences. LLMs
tended to exhibit more volatile behaviour, often
copying the source document instead of translating,
and also including the initial prompt in the output.
The consequence of the longer documents to trans-
late was mostly seen in skipping sentences within
the documents or (more commonly) at the end of
documents (i.e. translation finishing too early or re-
peating the final sentence multiple times). We also
observed the merging of multiple sentences/clauses
into a single one and the negative influence of pre-
vious sentences on later translations, resulting in
the repetition of terms in inappropriate places and
errors in the translation of numbers (both problems
illustrated in Example 13).

(13) fr: Cent six médecins ont répondu au
sondage et 12 ont participé à un entretien
en: One hundred and six physicians re-
sponded to the survey and 12 participated in
an interview
en*: One hundred and twelve respondents

participated in the survey

The consequence of the appearance of these
more serious errors (i.e. non-translation, missing
parts of the translation etc.) meant that they often
formed the basis of the evaluation rather than dis-
tinctions being based on errors more traditionally
resulting from the translation of scientific texts (ter-
minology, acronyms, etc.). Not evaluating on the
sentence level meant that an improved translation
on the sentence level was easily overridden by a
more technical problem, such as a missing sentence
at the end of the document. It could be useful in
the following years to consider evaluation via er-
ror analysis to get more detailed insights into the
strengths and weaknesses of different systems on a
more granular level.

es2en Contrary to past years, the Spanish to En-
glish language pair had very few contributions, to-
talling 30 examples from two different MT models
both compared between each other and against a
reference human translation.

In the past, sentence-to-sentence translation has
provided good results in terms of translation qual-
ity at sentence level. However, the trade-off was
inconsistency in the usage of medical terminology
and medical specific acronyms. This year however,
the use of full abstracts for translation led to greater
consistency in the translation of terminology and
acronyms specific to medicine.

When working well, the MT output has a good
quality, sometimes producing a result that was com-
parable to human translation in terms of quality, as
shown in Table 8, where the MT system Unbabel
had very good results compared against DCU and
the reference translation.

However, the MT output still lacks the fluency
of a human translation, as the systems had a ten-
dency to replicate the structure of the original Span-
ish source text, resulting in translations that can
be considered “literal translations”. In many in-
stances, the MT output would require copy editing
and rewriting by a native English speaker to render
the text more fluent and increase the overall quality
of the output.

Despite the good quality level of some trans-
lations, the overall quality of the outputs for this
year’s challenge is very uneven, with some very
good abstracts in English and some abstracts that
were not translated or still contained Spanish words
in them.
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At least one of the system used LLMs to pro-
duce the output in English, with this prompt: “1.
While being factual, accurate and not missing out
any detail, translate the given Spanish text into the
specified English language. Spanish Text:”. The
use of the prompt ensured the output did not miss
information from the original source text, as has
sometimes been the case in past years. Neverthe-
less, the LLM system was not very robust.

As shown in the example below, the LLM system
sometimes did not translate the text in English as
requested. The text remained in Spanish. That is
considered a missing translation and is considered
a major error.

(14) en: While being factual, accurate and not
missing out any detail, translate the given
Spanish text into the specified English lan-
guage. La prevalencia de alergia alimentaria
ha aumentado en algunas regiones del mundo,
y con ello la incidencia, según la variabilidad
geográfica, en el fenotipo y manifestaciones
clínicas...

Another error the LLM system made was the
inclusion of the prompt used to generate the trans-
lated output as part of the response. This add super-
fluous information to the English translation and
breaks the readability and fluency of the text (see
previous example).

As mentioned before, fluent translation was still
an issue for the machine translation system, in par-
ticular for the DCU system. This system sometimes
generated sentences that were clunky or ungram-
matical in English.

(15) es: Se registraron 4 casos de morbilidad
post punción (2 dolores epigástricos y 2
hematomas de pared abdominal

en: Were registered 4 cases of morbidity post
puncture (2 pain epigastric and 2 hematomas
of abdominal wall).

In conclusion, LLMs systems still seem to have
an unreliable performance when it comes to ma-
chine translation, producing very good quality
translations, missing translations or ungrammatical
translations at the same time. A better out-of-box
LLM or refine the prompting techniques might ob-
tain better results with these systems.

It must be noted, however, that there were very
few examples for the Spanish to English translation
to reach an indisputable conclusion.

en2de Similar to previous years, a generally high
level of translation quality was seen for English
to German translation. The strongest models pro-
duced translations that not only conveyed the con-
tent well but also maintained consistency in terms
of style and structure. However, certain systems
exhibited notable flaws. In particular, one model
consistently omitted portions of the text, often trun-
cating the translation towards the end of the doc-
ument or, at times, even mid-sentence. Another
system struggled with basic capitalization, failing
to begin sentences with an uppercase letter, which
detracted from the overall readability of the output.

Numerical translations were also an issue, with
Eighty-nine frequently mistranslated as either
Achtundachtzig “eighty-eight” or Achtundneunzig
“ninety-eight”, revealing inaccuracies in number
handling. The translation of abbreviations varied
across systems, with some attempting to expand
or translate them, occasionally resulting in errors.
For example, the European Commission (EC) was
incorrectly translated as EG (Europäische Gemein-
schaft) instead of EU. Furthermore, specialized
terminology presented additional challenges, with
terms like compulsory elective rendered awkwardly
as obligatorische elektive Veranstaltung rather than
the more appropriate Wahlpflichtkurs.

Grammatical errors also persisted in some trans-
lations, indicating that while overall quality was
high, there is still room for improvement in han-
dling both sentence structure and more nuanced
linguistic elements.

de2en Overall, results varied for the German-to-
English translation task. While at least one system
was able to provide a human-level translation for
each source sample, there was generally also at
least one translation that was either incomplete or
difficult to understand.

The most serious mistakes included omission
of whole sentences, or synthesis of text that was
not present in the original. This was especially
evident in cases where the sample text ended in
an incomplete sentence, which caused some sys-
tems to generate a completion to the sentence. In
the most egregious example of this phenomenon,
an incomplete sentence at the end of a description
of an animal’s skin condition after an insect bite
led to more than one translation mentioning eu-
thanasia, when no such language was present in the
source. In some instances, text would be translated
to nonexistent words, e.g. translation of porös to
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the nonexistent word sporeous. Other mistransla-
tions included rendering mittleren Werte as median
instead of mean values as was intended in the text.

The most frequently occurring mistakes were re-
lated to the capitalization of words at the beginning
of sentences. Other formatting mistakes failed to
take into account the structure of the text, omitting
paragraph headings. These mistakes did not affect
the overall intelligibility of the text.

All in all, the majority of the systems were able
to provide a translation that, while not perfect, was
understandable and correctly conveyed important
information.

en2it The quality of the translation was higher
than in previous years, even more so than last year,
which set a new threshold in the accuracy of the
translation from English to Italian and vice versa.
The quality of most of the abstract was almost iden-
tical and fluent in terms of the quality of language.
The terminology and the syntax was of very high
quality in both translation directions. There were
rarely major issues with the choice of terms or the
construction of the sentences.

One mistake was the addition of parts of the text
that were not present in the original version. For
example, the original version is “Among those diag-
nosed with COVID-19 during follow-ups between
March 2020 and March 2021 [...]”

While the Italian translation: “MATERIALE E
METODO: TRA marzo 2020 e maggio 2021, sono
stati analizzati [...]”

Where there is the addition of “MATERIALE E
METODO”. There is also some minor issue with
the punctuation (the semicolon between “rene” and
“o dobbiamo farlo” should not be there) as well as
uppercase letters (“TRA” instead of “tra”).

There were two problems concerning the cause
effect or correlation among pathologies. For exam-
ple, in the original English version: "Chronic rhi-
nosinusitis with nasal polyps is a common disease
with still unclear pathophysiologic mechanisms."
The "Chronic rhinosinusitis with nasal polyps" are
one thing all together that is documented to be a
common disease.

On the other hand, the Italian version: "La rinos-
inusite cronica e la poliposi nasale sono patologie
frequenti" the "Rinusite cronica" ("Chronic rhinos-
inusitis) and "poliposi nasale" ("nasal polyps") are
considered as two distinct pathologies.

The other example happens with the following
sentence: "The airway epithelial barrier has been

shown to be involved in different chronic disorders,
including rhinitis, nasal polyposis and asthma" and
its Italian translation: "La barriera epiteliale delle
vie respiratorie sembra essere coinvolta in diverse
patologie croniche come la rinite, la poliposi nasale
e l’asma"

In this case, the translation gives a slightly dif-
ferent interpretation of the fact that, in the original
version, "airway epithelial barrier has been shown
to be [...]" as in "it has been demonstrated that",
while the Italian "sembra essere coinvolta" ("seems
to be involved") shoes a less strong connection
between the entities (airway epithelial barrier and
chronic disorders).

it2en For the Italian to English translation direc-
tion, we observe an opposite problem compared to
the English one that is removing a part of the text.

For example, in the original "Conclusione:
sebbene non abbiamo riscontrato differenze sig-
nificative tra i pazienti sottoposti a gastrectomia
standard e quelli sottoposti a NACT prima della
gastrectomia, [...]" we have "Conlusione:" as the
initial part of this sentence.

In the English version, we have "Although we
found no significant difference between the patients
undergoing standard gastrectomy and those under-
going NACT before gastrectomy," Where "Conclu-
sions" ("conclusione") is missing.

From Italian to English, there was a missing
agreement in gender for the translation of the fol-
lowing sentence: "A total of 192 female feral
cats were investigated for a large-scale trap-neuter-
release program." One of the Italian translations
overlooked the female gender with: "Un totale di
192 gatti selvatici sono stati studiati per un ampio
programma di trappola, sterilizzazione e rilascio."
Where "gatti" is the masculine plural of a cat which,
in this case, is wrong.

Another type of wrong accordance was found
in the translation of the following sentence: "La
gangrena di Fournier è una fascite necrotizzante a
rapida progressione che coinvolge il perineo, le re-
gioni perianale e genitali e costituisce una vera
emergenza chirurgica con un tasso di mortalità
potenzialmente elevato" where the English version:
"Fournier’s gangrene is a rapidly progressing necro-
tizing fasciitis involving the perineal, perianal, or
genital regions and constitutes a true surgical emer-
gency with a potentially high mortality rate." con-
siders the "perineal [...] region" instead of the "per-
ineum" alone.
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en2ru and ru2en This year, two systems, Un-
babel and DCU, participated in the Biomedical
Machine Translation task. Generally, the transla-
tions to and from English were of high quality. We
did not encounter examples that were completely
unacceptable, aside from a few cases where text
boundaries were mapped incorrectly. Compared to
previous years, we observed a general improvement
in how the systems handled abbreviations, which
is a notable challenge in biomedical translation.

This year translations were evaluated at the ab-
stract level, and at times determining which trans-
lation was superior often came down to small de-
tails. In some instances, we preferred one transla-
tion over another purely due to stylistic differences.
There were only a handful of cases where the sys-
tems diverged significantly in quality. Overall, Un-
babel outperformed DCU, as reflected by manual
evaluation (Table 7 and 8) and better BLEU and
COMET scores (Tables 3 and 4).

7 Conclusions

We presented the results for this year’s edition of
the Biomedical Translation Task at WMT, in which
we considered 12 language pairs. In this paper, we
described the development of the test sets, the sub-
missions we received, our baseline system, and the
details about the automatic and manual evaluation.
Different from previous years, we did not split and
align the sentences, instead we had the test sets
simply composed of the title and abstracts of the
articles.

Limitations

Concerning the quality of the extracted test sets, the
passage from sentence to paragraph level is likely
to require additional post-processing in future years.
Whereas in previous years, sentence alignment re-
sulted in additional validation of the extraction pro-
cess, a number of errors were present in the test
sets this year, resulting in more skipped evalua-
tions. These included (i) missing or additional
sentences in the reference translations with respect
to the source texts, (ii) the truncation of certain sen-
tences after special characters and subscript text,
the inconsistent inclusion of headers (e.g. Methods,
Results) in the abstracts and the non-capitalised
of accented characters in the headers (e.g. French
RéSUMé ‘Abstract’ instead of RÉSUMÉ), a conse-
quence of the original source text, but which could
be corrected in a post-processing step.

Ethics Statement

Our test sets were derived from PubMed, a database
of biomedical citations. These publications are
used in many areas of medicine, including deci-
sions about the diagnosis and treatment of patients.
Machine translation in this domain should be used
as part of a larger framework that should include
human experts for the interpretation of translations
and, if necessary, the correction and adaptation of
the generated text.
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Abstract

The MSLC (Metric Score Landscape Chal-
lenge) submissions for English–German,
English–Spanish, and Japanese–Chinese are
constrained systems built using Transformer
models for the purpose of better evaluating
metric performance in the WMT24 Metrics
Task. They are intended to be representative of
the performance of systems that can be built
relatively simply using constrained data and
with minimal modifications to the translation
training pipeline.

1 Introduction

Lo et al. (2023) introduced the Metric Score Land-
scape Challenge (MSLC) dataset for the WMT23
Metrics Task, with the goal of examining automatic
MT evaluation metric performance across a wider
range of quality. That work found unexpected be-
haviours in several MT metrics, by examining per-
formance across a wide range of quality and by
analyzing metric characteristics other than corre-
lation. A major limitation of that work was that
there was no human evaluation of the medium- to
low-quality MT outputs that were included in the
MSLC dataset. To resolve this disconnect between
the high-quality WMT systems and the core MSLC
systems, we submit the higher performing end of
the MSLC systems to the WMT General MT task
for human evaluation. The systems described here
are not highly-competitive systems, and are useful
primarily for their purpose in evaluating metrics.

We build MSLC models for three language pairs:
English→German (eng→deu), English→Spanish
(eng→spa), and Japanese→Chinese (jpn→zho).
All models are sentence-level models that handle
paragraph- or document-level translation by per-
forming sentence splitting, translation, and then
concatenating the translated sentences. They are
built without any additional modifications to the
Transformer architecture and without additional
components like backtranslation, tagging, factors,

or domain-specific features (with one exception
for preprocessing input in the Japanese→Chinese
speech domain). The English→German model
is the same model described in Lo et al.
(2023). The English→Spanish model uses lan-
guage identification for training data filtering. The
Japanese→Chinese model incorporates additional
postprocessing.

In the remainder of this system description paper,
we describe the data used (Section 2), the prepro-
cessing and postprocessing performed (Section 3),
and the models trained (Section 4) for our submis-
sions for the three language pairs. Using the human
evaluations produced by the Metrics task, we use
the MSLC systems as a case study of some risks
of the new automatic metric-based pre-selection of
systems for human annotation at the General MT
task (Section 5).

2 Data

We retrieved the corpora using the provided tool
mtdata==0.4.1 (Gowda, 2024) for eng→spa and
jpn→zho and reused what we had downloaded
(without the use of the tool) from the 2023 data
download table for eng→deu.

2.1 English→German

We re-used the English→German model from Lo
et al. (2023), and refer the reader to that paper for
full details of the training data used. The new-
stest2020 data was used for validation, and the
training corpora were downloaded from the WMT
2023 General Machine Translation download ta-
ble.1

1https://www2.statmt.org/wmt23/
translation-task.html#download. Note that this in-
cludes News Commentary v18.1 rather than v16, which the
download tool delivered. By email communication with the
organizers, we confirmed that both versions were permitted
for the constrained track.

139

https://www2.statmt.org/wmt23/translation-task.html#download
https://www2.statmt.org/wmt23/translation-task.html#download


2.2 English→Spanish
We used some of the available corpora for the
General Machine Translation constrained track2

and filtered based on language ID (due to large
amounts of target-side English in some training cor-
pora). We opted not to use OPUS-multiccaligned-
v1, ParaCrawl-paracrawl-9, Statmt-ccaligned-1
and Statmt-commoncrawl_wmt13-1, due to known
issues of noise in web-crawled corpora; for more
discussion see, i.a., Khayrallah and Koehn (2018);
Lo et al. (2018); Kreutzer et al. (2022). The full set
of corpora used is shown in Table 1.

As a first filtering step, we kept sentence
pairs where sentences have less than or equal
to 4000 characters and less or equal to 200
words. We then proceeded with a second
filtering step. For each corpora, we used
lingua-language-detector==2.0.2 (M. Stahl,
2023) in two ways. First, we ran lingua in a con-
strained bilingual mode, limiting the available lan-
guages to only English and Spanish. Second, we
ran it again but this time in an unconstrained mode
where it had to guess the language using all of its
supported languages. We then did the final filtering
by dropping sentence pairs if any of the following
were true:

1. the source English sentence wasn’t detected
as English by both modes of lingua

2. the target Spanish sentence wasn’t detected as
Spanish by both modes of lingua

3. both sentences were identical

While we did not perform ablation experiments
to compare these steps for filtering by language ID,
we note that this process of filtering was introduced
due to the observation of English output observed
(by manual inspection) in our preliminary systems.
Introducing this filtering resulted in output that was
qualitatively observed to contain much less English
text.

Finally, with a restricted subset of the initially
chosen corpora, we sampled 20,000,000 sentence
pairs from the corpora listed in Table 1 using the
implementation of reservoir sampling in Larkin
(2024) with 2024 as the seed.

We used Statmt-newstest-2012-eng-spa
as our validation set, as suggested by
mtdata.recipes.wmt24-constrained.yml.

2mtdata get-recipe -i wmt24-eng-spa -o
wmt24-eng-spa –compress –no-merge

2.3 Japanese→Chinese
We fetched all jpn→zho corpora available for
WMT24’s General Machine Translation.3 We sam-
pled 2000 sentence pairs for validation and 2000
sentence pairs for test (unused) from Facebook-
wikimatrix-1, Neulab-tedtalks_train-1, OPUS-
wikimedia-v20210402, Statmt-news_commentary-
18.1. The remaining sentence pairs and all sentence
pairs listed in the corpora of the second part of Ta-
ble 2 were included in train.

3 Preprocessing and Postprocessing

There are two main types of preprocessing per-
formed: subword segmentation (Section 3.1),
which is perfomed on both the training data and the
test data, and sentence splitting (Section 3.2) which
is performed only on the WMT test data (as our
models are trained primarily as sentence-level sys-
tems and should thus be applied to sentences rather
than the full paragraphs and documents supplied at
test time). We also describe the postprocessing that
we performed (Section 3.3).

3.1 Subword Segmentation (Train and Test)
For details on our subword segmentation ap-
proach for eng→deu, see Lo et al. (2023). Our
subword segmentation approach for eng→spa
and jpn→zho is described here. To seg-
ment the corpora, a separate bilingual tokenizer
(SentencePieceUnigramTokenizer) for each lan-
guage pair was trained using HuggingFace’s to-
kenizers (Moi and Patry, 2022), library version
0.14.1. For each language pair, the vocabulary
size was set to 32k tokens. Each tokenizer per-
forms:

• control character and white space normaliza-
tions through HuggingFace’s Nmt4

• NFKC normalization using HuggingFace’s
NFKC5

• and also applies a few normalizations done
by Portage (Larkin et al., 2022). Some of
these may overlap with the other normaliza-
tion steps; see Appendix A.

3mtdata get-recipe -i wmt24-jpn-zho -o
wmt24-jpn-zho –compress –no-merge

4https://huggingface.co/docs/tokenizers/
api/normalizers#tokenizers.normalizers.Nmt and
https://github.com/huggingface/tokenizers/blob/
main/tokenizers/src/normalizers/unicode.rs#L44

5https://huggingface.co/docs/tokenizers/api/
normalizers#tokenizers.normalizers.NFKC
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corpus original step1 step2 ratio (%)
EU-dcep-1 3,710,534 3,708,524 2,570,271 69.3

Facebook-wikimatrix-1 6,452,177 6,448,669 4,854,605 75.2
LinguaTools-wikititles-2014 16,598,519 16,598,519 1,144,423 6.9

OPUS-dgt-v2019 5,127,624 5,126,271 3,432,757 66.9
OPUS-dgt-v4 3,168,368 3,167,629 2,138,218 67.5

OPUS-elrc_emea-v1 777,371 777,262 596,733 76.8
OPUS-eubookshop-v2 5,215,515 5,212,657 4,651,096 89.2

OPUS-europarl-v8 2,009,073 2,008,951 1,928,793 96.0
OPUS-europat-v3 51,352,279 51,352,021 48,077,464 93.6
OPUS-multiun-v1 11,350,967 11,339,127 9,864,021 86.9
OPUS-unpc-v1.0 25,227,001 25,209,933 19,437,858 77.1

OPUS-wikimatrix-v1 3,377,911 3,377,355 2,708,923 80.2
OPUS-wikimedia-v20210402 1,275,296 1,272,410 910,544 71.4

OPUS-wikipedia-v1.0 1,811,428 1,808,866 1,196,239 66.0
OPUS-xlent-v1.1 9,251,728 9,251,728 830,623 9.0

Statmt-news_commentary-18.1 500,180 500,173 481,628 96.3
Tilde-eesc-2017 2,531,892 2,531,718 2,209,249 87.3

Tilde-rapid-2016 684,260 684,202 599,462 87.6
total 150,422,123 150,376,015 107,632,907 71.6

Table 1: Number of sentence pairs left after each filtering step for English→Spanish. The ratio column indicates the
percentage of sentences pairs left from the original corpora after been filtered.

corpus # sentence pairs
Facebook-wikimatrix-1 1,325,674

Neulab-tedtalks_train-1 5,159
OPUS-wikimedia-v20210402 23,132

Statmt-news_commentary-18.1 1,625
KECL-paracrawl-2-zho 83,892

LinguaTools-wikititles-2014 1,661,283
OPUS-bible_uedin-v1 124,260

OPUS-ccmatrix-v1 12,403,136
OPUS-gnome-v1 50

OPUS-kde4-v2 118,258
OPUS-multiccaligned-v1 4,280,695

OPUS-openoffice-v3 68,952
OPUS-opensubtitles-v2018 1,091,295

OPUS-php-v1 12,214
OPUS-qed-v2.0a 18,098
OPUS-tanzil-v1 12,472

OPUS-ted2020-v1 15,982
OPUS-ubuntu-v14.10 226
OPUS-ubuntu-v14.10 34

OPUS-xlent-v1.1 1,396,116
total 21,316,879

Table 2: Number of sentence pairs in each jpn→zho
corpus. Corpora in the first part (Facebook-wikimatrix-1
to Statmt-news_commentary-18.1) were used to sample
validation and test. All corpora, except for the sentence
pairs in validation and test were use for train.

The Neural Machine Translation (NMT) vocab-
ulary is also augmented with 25 generic tokens
(unused in these experiments); this yields a final
vocabulary of 32029 tokens.

To train the eng→spa tokenizer, we used all
training corpora provided except for Facebook-
wikimatrix-1, LinguaTools-wikititles-2014,
OPUS-multiccaligned-v1, OPUS-wikimatrix-v1,
OPUS-wikimedia-v20210402, OPUS-wikipedia-
v1.0, OPUS-xlent-v1.1, ParaCrawl-paracrawl-9,
Statmt-ccaligned-1.

We used all 40 corpora available to train the
jpn→zho subtokenizer model.

3.2 Sentence Splitting (Test-Only)

This year’s General News Task test segments con-
sist of paragraphs. To match our system’s training
configuration, we first split the paragraphs and doc-
uments into sentences before performing subword
segmentation and translation for all language pairs.
We do this for both the official test set and the
test suites. We used utokenize.pl from Larkin
et al. (2022) to sentence split the English segments
of eng→deu and eng→spa. Since utokenize.pl
doesn’t support Japanese, we used ersatz (Wicks
and Post, 2021) for jpn→zho. The speech docu-
ments in jpn→zho contain some punctuation but,
in some cases, utterances appear to be separated
only by spaces. For this domain only, we first split
sentences using ersatz then followed this with a
heuristic of splitting on spaces. We kept track of
each sentence’s segment and document ID to later
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enable us to reconstruct the translations into their
corresponding segment.

After sentence splitting is complete, we apply
the subword segmenters described in Section 3.1
and perform translation at the level of the sen-
tence. Since we perform sentence splitting of
the source, the original source segments (para-
graphs and documents) have to be reconstructed.
We take this sentence-level output and concate-
nate the sentences belonging to a given input seg-
ment back together; for English→German and
English→Spanish, we insert a space between sen-
tences, while for Japanese→Chinese we concate-
nate without spaces.

3.3 Postprocessing (Test-Only)

In two cases, we performed additional postprocess-
ing to handle issues specific to a language pair
and/or a domain (as our training and validation
data is more news-focused).

3.3.1 English→Spanish
Our eng→spa translations contained some <unk>
that clearly aligned to an emoji in the source (likely
due to our training data not having strong coverage
of social media domains). As a custom postprocess-
ing step for eng→spa, we replaced the first <unk>
with the first emoji in the source, the second <unk>
with the second emoji and so on. For <unk> that
did not have an emoji, they were considered spuri-
ous and were simply removed. Any extra emojis
that couldn’t be matched to a <unk> were simply
added at the end of that translation. This was done
because we noticed that our system would produce
a single <unk> for multiple consecutive emojis.

3.3.2 Japanese→Chinese
We noted some recurrent deficiencies in our Chi-
nese translations. To fix those, we applied the fol-
lowing postprocessing steps:

• remove spaces between two Chinese charac-
ters

• remove spaces surrounding Chinese punctua-
tion：；，。？！

• when a Chinese character is repeated three or
more times in a row, replace this with a single
instance of that character

• fold repeating quotation marks onto a single
quotation mark

4 MT System

We train all NMT models using Sockeye version
3.1.31 (Hieber et al., 2022), commit 13c63be5,
with PyTorch 1.13.1 (Paszke et al., 2019). Train-
ing was performed on 4 Tesla V100-SXM2-32GB
GPUs. Table 3 lists the parameter settings in our
experiments that differ from the Sockeye defaults.

We train the models until convergence which
is defined as no improvement in BLEU (Papineni
et al., 2002; Post, 2018) for 32 checkpoints (when a
model reaches this definition of convergence, train-
ing stops). The jpn→zho model trained for 390
checkpoints yielding its best checkpoint at update
358 and a BLEU score of 34.3 as reported on
OCELoT over the WMT General Test Set. The
eng→spa model trained for 832 checkpoints yield-
ing its best checkpoint at update 800 and a BLEU
score of 17.6 as reported on OCELoT over the
WMT General Test Set. The eng→deu model had
a score of 20.1 as reported on OCELoT over the
WMT General Test Set.

5 Risks of Automatic System Selection for
Human Evaluation

We submitted these systems with the intent of hav-
ing them evaluated by human annotators, based
on the understanding that “All submitted systems
will be scored and ranked by human judgement.”6

Unfortunately, the task included a larger number of
submissions than anticipated (Kocmi et al., 2024),
resulting in the decision to remove some systems
from human evaluation, as per the note in the eval-
uation section of the task page: “In the unlikely
event of an unprecedented number of system sub-
missions that we couldn’t evaluate, we may decide
to preselect the best performing systems for hu-
man evaluation with automatic metrics (such as
COMET), we will primarily remove closed sys-
tems from the evaluation. However, we believe
this won’t be applied and all primary systems will
be evaluated by humans.” Among these, our sub-
mitted eng→deu and jpn→zho systems were re-
moved from human evaluation, leaving only the
eng→spa system to receive human evaluation by
the General Task evaluation process.

However, all three of our submitted systems
were evaluated using MQM (Multidimensional
Quality Metrics; Lommel et al., 2013) by the Met-

6https://www2.statmt.org/wmt24/
translation-task.html, most recently accessed Sept. 24,
2024.
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Name Value Default

amp True False
grading clipping type abs None
max sequence length 200:200 95:95

attention heads 16:16 8:8
shared vocabulary True False
transformer FFN 4096:4096 2048:2048

transformer model size 1024:1024 512:512
weight tying True False

batch size 8192 4096
batch type max-word word

cache last best params 2 0
cache metric BLEU perplexity

checkpoint interval 10 4000
decode and evaluate -1 (entire validation) 500
initial learning rate 0.06325 0.0002

learning rate scheduler type inv-sqrt-decay plateau-reduce
learning rate warmup 4000 0

max num checkpoint not improved 32 None
max num epochs 1000 None

metrics perplexity & accuracy undefined
optimized metric BLEU perplexity

optimizer Betas 0.9, 0.98 0.9, 0.999
update interval 2 1

Table 3: Differences between Sockeye’s default parameters and our eng→spa/jpn→zho configuration.

(a) English→Spanish (b) Japanese→Chinese (c) English→German

Figure 1: MQM scores on the News portion of the General MT test data, produced by the Metrics Task over a subset
of the submitted WMT systems. Error bars represent bootstrap resampling, 1000 times, for p < 0.05. In all cases,
our MSLC system appears at the far left of the plots, which are ordered by mean segment-level MQM score.
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rics Shared Task. This offers a rare opportunity to
examine the risks of selecting a subset of systems
for human evaluation by using automatic metrics.
In Fig. 1, we observe that the human rankings pro-
duced by MQM differ enough from the predicted
rankings that they arguably demonstrate exactly
the two types of errors one might be concerned
about making: including a poorer quality system in
human evaluation and, worse, failing to include a
system with substantial confidence interval overlap
with a system that was included for evaluation. In
the first case, our eng→spa system, which was in-
cluded for evaluation, appears substantially worse
than other systems evaluated by MQM (Fig. 1a);
however, we do note that IKUN-C, which could
conceivably bridge the gap, was not included for
evaluation by the Metrics Task, so it is possible
that this does not represent an error. Unfortunately,
without either human evaluation containing both, it
is unlikely we can reach a definitive answer. In the
second case, our jpn→zho system was excluded
from human evaluation by the General MT task but
IKUN-C was included for General MT task evalu-
ation. In Fig. 1b, we can see that there is substan-
tial confidence interval overlap between the MQM
scores for the MSLC jpn→zho system and the
IKUN-C system. We note that there are stronger
ways to more definitively make this comparison
(e.g., to do pairwise significance tests), but we pri-
marily provide these examples for discussion and
consideration. Finally, the eng→deu appears to
represent the successful intended result of this ap-
proach to filtering sytems (Fig. 1c).

This highlights the risks of the mismatches be-
tween automatic evaluation and human evaluation;
it may be better to perform some sort of smaller-
scale initial human evaluation to separate systems
rather than doing so based on automatic metrics.

6 Conclusion

We have built simple Transformer NMT models,
primarily for the purpose of the MSLC dataset at
the Metrics Task. We submit them to the WMT
General Task to enable human evaluation, which
will be useful to better understand how metrics per-
form and compare to human evaluation on a wider
range of MT output quality. Of the three submitted
systems, only one was included for human evalua-
tion in the shared task.

Limitations

As described, we submit extremely simple mod-
els, with minimal additional modifications. As our
focus for MSLC is on news data, we expend only
minimal effort on additional domains. We submit
only three language pairs. We would not recom-
mend the use of these MT systems outside of their
intended uses for metric evaluation in MSLC.

Ethics Statement

We build constrained MT systems, using the per-
mitted training data from WMT24. Since our goal
in this work is to build systems to be used to eval-
uate metrics across a wider range of translation
quality, we expect that these systems may have a
number of problems, including but not limited to:
producing errors in translation, producing output
in dialects (or languages) other than the desired
ones, or otherwise produced biased output. We do
not recommend their use for purposes other than
the intended purpose of MSLC; their limitations
for that purpose are discussed in more depth in the
corresponding Metrics Task submission.
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Textual Description Code
Convert various non-breaking hyphens to − [\u001E\u00AD\u2011] → −
Strip out the MS Word discretional hyphen \x1F

Replace special purpose spaces by regular spaces [\u2060\uFEFF\u00A0\u2007\u202F\u2028\u2029] → ⊔
Replace remaining control characters by spaces [\x01− \x09\x0B\x0C\x0E − \x1F\x7F ] → ⊔

convert DOS newlines to Linux ones \x0d
Collapse multiple spaces to a single space \s+ → ⊔

Table 4: Portage normalizations

//github.com/pemistahl/lingua-py/
archive/refs/tags/v2.0.2.tar.gz

• reservoir_sampling is available at
https://github.com/SamuelLarkin/
reservoir_sampling; its snapshot is
available at https://web.archive.org/
web/20240924170941/https://github.
com/SamuelLarkin/reservoir_sampling/
archive/refs/tags/0.1.tar.gz

• mtdata is available at https://github.
com/thammegowda/mtdata; its snapshot
is available at https://web.archive.
org/web/20240924171242/https:
//github.com/thammegowda/mtdata/
archive/refs/tags/v0.4.1.tar.gz
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Abstract

This paper illustrates the submission system of
the IOL Research team for the WMT24 General
Machine Translation shared task. We submitted
translations for all translation directions in the
general machine translation task. According
to the official track categorization, our system
qualifies as an open system due to the utiliza-
tion of open-source resources in developing our
machine translation model. With the growing
prevalence of large language models (LLMs) as
a conventional approach for managing diverse
NLP tasks, we have developed our machine
translation system by leveraging the capabili-
ties of LLMs. Overall, we first performed con-
tinued pretraining using the open-source LLMs
with tens of billions of parameters to enhance
the model’s multilingual capabilities. Subse-
quently, we employed open-source Large Lan-
guage Models, equipped with hundreds of bil-
lions of parameters, to generate synthetic data.
This data was then blended with a modest quan-
tity of additional open-source data for precise
supervised fine-tuning. In the final stage, we
also used ensemble learning to improve trans-
lation quality. Based on the official automated
evaluation metrics, our system excelled by se-
curing the top position in 8 out of the total 11
translation directions, spanning both open and
constrained system categories.

1 Introduction

In the current year’s WMT General Machine Trans-
lation shared task, our team, IOL Research, took
part in all 11 translation tasks, which involved trans-
lating text between various language pairs such as
Czech to Ukrainian (cs->uk), Japanese to Chinese
(ja->zh), English to Chinese (en->zh), English to
Czech (en->cs), English to German (en->de), En-
glish to Hindi (en->hi), English to Icelandic (en-
>is), English to Japanese (en->ja), English to Rus-
sian (en->ru), English to Spanish (en->es), and
English to Ukrainian (en->uk). One notable dif-
ference in this year’s task compared to previous

years is that participants were required to translate
paragraph-level texts, with one paragraph equating
to one line. This change has significantly increased
the length of the text to be translated. While tradi-
tional neural machine translation systems (Vaswani
et al., 2017) based on encoder-decoder structures
may struggle with processing long texts due to the
lack of enough document parallel data. However,
the large language models (LLMs) do not neces-
sitate a large amount of lengthy text data for fine-
tuning, making them more effective in handling
long texts. As a result, we meticulously trained
an LLM with 20 billion parameters to successfully
address all translation tasks in the competition.

Our main strategy is to explore using LLMs
to build machine translation systems. This in-
cludes fine-tuning the translation task on founda-
tional LLMs and leveraging advanced open-source
instruction-tuned LLMs to generate high-quality
translation data for further enhancement. Before
supervised fine-tuning, we also performed contin-
ued pretraining, which has been proven to be very
beneficial for translation tasks (Xu et al., 2023),
because many open-source LLMs such as LLaMA
(Touvron et al., 2023) are usually pretrained on
English monolingual data, lacking the necessary
knowledge of other languages required for trans-
lation tasks. Moreover, we experimented with en-
semble learning, a technique known to be effec-
tive for neural machine translation models. We
discovered that it provided some degree of assis-
tance for machine translation tasks based on LLMs.
In the end, our billion-parameter machine transla-
tion system achieved comparable performance to
hundred billion parameter LLMs in high-resource
languages and even outperformed them in certain
low-resource languages.

The subsequent paper is designed as follows. We
introduce the data source and processing strategy
in Section 2; Section 3 describes the details of our
training procedure; Section 4 presents the experi-
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mental settings and results.

2 System Overview

2.1 Model Architecture
We selected the Qwen1.5 model (Bai et al., 2023)
as our foundational model because of its outstand-
ing performance and considerable multilingual ca-
pabilities. Specifically, we utilized the Qwen1.5-
14B1 as our starting point, which has 40 layers
and 14 billion parameters. To enhance the model’s
capacity within our hardware constraints, we con-
catenated the first 32 layers with the last 32 layers,
resulting in duplication of the middle 24 layers, fol-
lowing the approach used in SOLAR (Kim et al.,
2023). This fusion led to a scaled-up model with
64 layers and 21 billion parameters. Since this ap-
proach alters the structure of the pretrained model,
continual pretraining becomes a necessary step to
recover its performance.

2.2 Continual Pretraining
Continual pretraining is an effective method to
enhance the knowledge embedded within LLMs.
This method has been extensively utilized to adapt
LLMs from English to various other languages, as
well as to augment the domain-specific knowledge
inherent in these models. In the context of using
LLMs for translation tasks, it has been substanti-
ated that the continuous pretraining of LLMs with
multilingual monolingual data, encompassing lan-
guages involved in all the translation directions,
is crucial (Xu et al., 2023). This year’s WMT24
general machine translation task includes 11 trans-
lation directions, involving 10 distinct languages.
Therefore, our continued pretraining is carried out
on monolingual data in these 10 languages.

We sampled the required multilingual mono-
lingual data from the mC4 (Raffel et al., 2019)
and OSCAR (Jansen et al., 2022) datasets, then
proceeded to refine the chosen data. For refine-
ment processes, we employed fastText (Joulin et al.,
2017) for language identification, the minLSH al-
gorithm for document deduplication, and KenLM
(Heafield, 2011) tool for filtering the documents
with high perplexity. Many studies (Lin et al.,
2020; Yang et al., 2021) have shown that inte-
grating bilingual data with monolingual data in
the pretraining stage can help the model achieve
better cross-lingual proficiency. Therefore, we
also incorporated a portion of the CC-Aligned

1https://huggingface.co/Qwen/Qwen1.5-14B

parallel data (El-Kishky et al., 2019) into our
continuous pretraining stage. This data includes
language pairs such as English-Czech, English-
Ukrainian, English-Japanese, English-Chinese,
English-German, English-Hindi, English-Icelandic,
English-Russian, and English-Spanish. Specifi-
cally, we randomly swapped the order of the two
articles in the bilingual document, and then merged
them into a new document as the pretraining docu-
ment. The distribution of the number of documents
in all languages in the pretraining dataset is shown
in Table 1.

Language Rate(%)
en 21.99
ja 15.02
de 12.48
cs 11.60
es 10.35
zh 9.32
uk 7.98
ru 7.2
hi 3.53
is 0.47

Table 1: The distribution of the number of documents
in all languages in the pretraining dataset.

2.3 Supervised Fine-tuning

Through supervised Fine-tuning, we can unlock
the capabilities of LLMs using only a minimal
amount of aligned data. Many fine-tuning LLMs
experiences (Zhou et al., 2024; Xia et al., 2024)
have demonstrated that the quality and diversity
of fine-tuning data are far more important than its
quantity. In the context of translation tasks, high-
quality parallel data is the ideal fine-tuning data
for LLMs. However, obtaining such high-quality
parallel data is challenging. Usually, we need to in-
vest significant effort and undergo numerous steps
to clean publicly available parallel data, aiming to
achieve high-quality data. However, this process
does not always guarantee the quality of filtered
data due to its inherent complexity. On the other
hand, start-of-the-art machine translation systems
have shown competitive performance comparable
to human translators. Consequently, we opted to
employ LLMs to generate parallel data as the su-
pervised fine-tuning data.

We used the c4ai-command-r-plus2 and
2https://huggingface.co/CohereForAI/c4ai-command-r-
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Qwen1.5-110B-Chat3, these two instruction
fine-tuned models, to generate synthetic parallel
data for all languages, with the exception of
Icelandic. Specifically, when the task requires
generating Chinese content, our go-to model is
the Qwen1.5-110B-Chat. However, for English
content generation, we make a random selection
between the Qwen1.5-110B-Chat and c4ai-
command-r-plus models. For all other scenarios,
we consistently utilize the c4ai-command-r-plus
model. The selection of models in different
languages is based on our evaluation of these
two models in translation tasks. Please refer to
Table 3 for specific comparison. Considering the
lack of proficiency of both c4ai-command-r-plus
and Qwen1.5-110B-Chat in generating Icelandic
content, we adopted an alternative strategy. We
leveraged our supervised fine-tuning model, which
has been fine-tuned on synthetic data of all other
languages, to produce the synthetic data for
Icelandic. Therefore, our model only utilized
Icelandic monolingual data for pre-training,
and the Icelandic bilingual synthesis data was
generated by unsupervised method.

We have tried two synthetic data generation
methods commonly used in traditional neural ma-
chine translation systems, forward translation (Kim
and Rush, 2016) and back translation (Sennrich
et al., 2016). Forward translation refers to using
the established translation model to translate real
source language sentences into target language sen-
tences, and then combining the translated target
language sentences with the real source language
sentences to form synthetic parallel sentence pairs.
Back translation refers to translating real target
language sentences back into the source language
using another established reverse translation model,
and then combining the real target language sen-
tences with the translated source language sen-
tences to form synthetic parallel sentence pairs.
In the process of generating back translation data
based on real target language data, we found that
the real target language data has many problems
such as incoherence, fluency deficits, and even
grammatical errors. To address these problems, we
utilized automatic post-editing technology. This
approach involves taking the translated source lan-
guage sentences and the real target language sen-
tences as inputs, and subsequently producing su-

plus
3https://huggingface.co/Qwen/Qwen1.5-110B-Chat

perior quality target language sentences. These
improved sentences are then used to replace the
real target language sentences in the back transla-
tion synthetic data. Lastly, we also utilized LLMs
to filter all the generated synthetic data, including
both forward and back translation data, to ensure
higher quality fine-tuning data. All the prompts
we use to generate synthetic data are shown in the
table 2. For each language pair, after filtering, we
retained around 100,000 FT and BT sentence pairs
respectively.

In addition to synthetic data, we also incorpo-
rated document parallel data from News Com-
mentary v18.14, which assists the model in trans-
lating long text, and instruction fine-tuning data
TowerBlocks-v0.2 (Alves et al., 2024) to help the
model follow more diverse instructions. The News
Commentary v18.1 data we used includes sections
ja-zh, en-zh, en-de, en-hi, en-ja, en-ru, en-es, en-
cs, cs-ru, cs-de, cs-es, cs-hi, cs-ja, cs-zh, and ja-ru.
We also excluded the data from TowerBlocks-v0.2
that includes FLoRes (Goyal et al., 2021), and the
NTREX-128 (Federmann et al., 2022) sections, as
we used these two datasets as our test sets to verify
the performance of the model.

2.4 Ensemble Learning

The ensemble learning approach has demonstrated
significant efficacy in a wide range of machine
learning tasks. In machine translation tasks, en-
semble learning completes the generation of the
entire translation by using multiple different ma-
chine translation models to autoregressively vote
for the probability distribution of the next word.
However, for LLMs, this method implies a huge
memory occupancy and computational resource
consumption, so we use transductive ensemble
learning (Wang et al., 2020) to replace this way
of generating with multiple models simultaneously.
Transductive ensemble learning first utilizes multi-
ple different translation models to generate trans-
lations for the same test set separately, then aggre-
gates all translations as fine-tuning data. The final
translation is generated by one translation model
after fine-tuning on this data. Ensemble learning
conventionally entails training diverse models via
different random initializations. However, this ap-
proach proves inefficient in our context, as we are
mandated to employ the identical pre-trained model
for supervised fine-tuning. Therefore, we used dif-

4https://data.statmt.org/news-commentary/v18.1/

149



Task Prompt

Forward and back translation
Translate the following text from SRC_LANG to TGT_LANG.
SRC_CONTENT

Automatic post-editing

Given a source SRC_LANG sentence and its TGT_LANG translation,
please modify and correct the TGT_LANG translation to get a more
accurate and fluent TGT_LANG translation.
Source (SRC_LANG): SRC_CONTENT
Translation (TGT_LANG): TGT_CONTENT
Corrected translation (TGT_LANG):

Synthetic data filtering

Source (SRC_LANG): SRC_CONTENT
Translation (TGT_LANG): TGT_CONTENT
Please check if the above translation is an accurate and fluent translation
of its source text? Please only answer "yes" or "no"

Table 2: All the prompts we use to generate synthetic data.

ferent fine-tuning data to train multiple models for
ensemble learning. Different fine-tuning data is
obtained by randomly sampling synthesized data
from different parts.

3 Experiments

3.1 Experiment Settings

For continual pretraining phase, we trained the
scaled-up model with 21 billion parameters on 8
NVIDIA H800 GPUs. For the optimization pro-
cess, we employed the Adam optimizer (Kingma
and Ba, 2014), with β1 = 0.9, β2 = 0.99. We
adopted a learning rate scheduling strategy that re-
mained constant after warmup phase, setting the
number of warmup steps to 200, the maximum
learning rate at 0.00001 and weight decay to 0.1.
The batch size was set to 3.14 million tokens, the
length of each sequence was set to 4096, and a total
of 56 billion tokens have been trained.

For supervised fine-tuning phase, we fine-tuned
the continual pretrained model on 16 NVIDIA
H800 GPUs. We leveraged the Adam optimizer for
the optimization process, setting β1 = 0.9, β2 =
0.99. We employed a cosine learning rate schedul-
ing strategy, with a warmup ratio of 0.01, a peak
learning rate at 0.000007, and a weight decay of
0.1. Configuring the batch size to 480 sentences,
we trained the model for a single epoch encompass-
ing approximately 1.5 million sentences.

When conducting transductive ensemble learn-
ing, we increased the batch size to 800 sentences,
adopted a fixed learning rate, and reduced the learn-
ing rate to 0.000001. Similarly, we only fine-tune
for one epoch on the ensemble data.

3.2 Results

The FLoRes (Goyal et al., 2021) and NTREX-128
(Federmann et al., 2022) test sets were utilized as
our evaluation benchmarks. The performance of
the machine translation system was assessed using
SacreBLEUpost-2018-call and COMET (Rei et al.,
2022)5 metrics. We uesed vLLM (Kwon et al.,
2023) to infer all LLMs. We chose c4ai-command-
r-plus and Qwen1.5-110B-Chat as our baselines for
comparison, and all results were obtained through
zero-shot evaluation.

Test results on the FLoRes test set for all trans-
lation directions are shown in Table 3. We used
greedy decoding and beam search with beam size
= 5 to generate translations for our model, and pro-
vided the ensemble effect on this test set. It is clear
that, just like traditional neural machine translation
models, beam search performs better than greedy
decoding in terms of BLUE and COMET scores
across all translation directions. Ensemble learning
has a steady improvement on BLEU scores, but the
overall change in COMET scores is not significant.
Compared with the two baseline systems CMD-R-
P and Qwen1.5-L, our model achieved equivalent
or better performance in the seven directions of
cs→uk, en→zh, en→de, en→hi, en→is, en→uk,
and en→cs. The performance outcomes presented
in Table 4 are based on evaluations conducted us-
ing the NTREX-128 test set. These results mirror
those observed in the FLoRes test set, indicating a
consistent performance trend across both datasets.

5https://huggingface.co/Unbabel/wmt22-comet-da
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CMD-R-P Qwen1.5-L
our model
greedy decoding

our model
beam search

our model
ensemble learning

cs→uk
BLEU 24.1 20.5 23.9 24.4 24.6
COMET 90.47 87.96 90.18 90.41 90.47

ja→zh
BLEU 31.6 34.1 34.8 35.3 35.0
COMET 87.91 88.10 87.99 88.11 87.98

en→zh
BLEU 39.9 44.0 46.9 47.5 47.6
COMET 88.71 89.08 89.22 89.28 89.26

en→de
BLEU 41.1 33.9 40.5 41.1 41.6
COMET 88.84 87.37 88.60 88.73 88.84

en→hi
BLEU 27.3 19.9 27.6 28.5 28.7
COMET 80.47 75.01 79.99 80.75 80.67

en→is
BLEU 12.1 9.8 19.8 20.5 20.7
COMET 71.41 63.82 82.77 83.66 84.02

en→ja
BLEU 49.8 42.2 49.4 50.1 50.4
COMET 91.70 89.88 91.50 91.59 91.61

en→ru
BLEU 32.4 27.6 31.3 31.9 32.4
COMET 90.70 87.98 90.09 90.32 90.28

en→es
BLEU 30.4 27.1 29.4 29.4 29.5
COMET 87.29 86.64 87.01 87.06 86.98

en→uk
BLEU 30.4 24.6 31.2 32.0 32.2
COMET 90.88 88.19 90.56 90.83 90.92

en→cs
BLEU 32.7 26.6 32.8 34.3 34.4
COMET 92.09 90.04 91.78 92.15 92.13

Table 3: Test results on the FLoRes test set for all translation directions. CMD-R-P represents c4ai-command-r-plus,
and Qwen1.5-L represents Qwen1.5-110B-Chat.
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CMD-R-P Qwen1.5-L
our model
greedy decoding

our model
beam search

cs→uk
BLEU 20.9 16.8 20.4 20.8
COMET 88.26 84.57 87.80 88.00

ja→zh
BLEU 25.6 28.7 28.7 29.0
COMET 84.42 84.84 84.83 84.85

en→zh
BLEU 31.7 36.6 39.0 39.5
COMET 85.60 86.41 86.76 86.83

en→de
BLEU 33.9 27.1 33.2 33.9
COMET 87.05 84.64 86.63 86.78

en→hi
BLEU 22.2 16.8 23.3 24.1
COMET 78.07 72.23 77.96 78.58

en→is
BLEU 14.8 11.2 23.4 24.1
COMET 70.14 62.32 82.75 83.67

en→ja
BLEU 41.3 35.0 41.3 42.4
COMET 89.51 87.40 89.37 89.45

en→ru
BLEU 29.9 23.8 30.4 31.5
COMET 88.13 84.47 87.47 87.88

en→es
BLEU 42.5 38.2 42.4 42.7
COMET 87.06 85.82 86.69 86.85

en→uk
BLEU 26.2 20.5 26.3 26.9
COMET 88.86 85.42 88.51 88.73

en→cs
BLEU 29.0 22.6 29.1 30.4
COMET 89.90 87.06 89.73 90.19

Table 4: Test results on the NTREX-128 test set for all translation directions. CMD-R-P represents c4ai-command-r-
plus, and Qwen1.5-L represents Qwen1.5-110B-Chat.

cs→uk ja→zh en→zh en→de en→hi en→is en→ja en→ru en→es en→uk en→cs
FT 90.32 87.79 89.21 88.55 80.48 83.37 91.55 90.11 86.94 90.64 91.93
BT 90.43 88.18 89.24 88.77 81.45 84.12 91.64 90.43 87.20 90.99 92.38
MIX 90.32 88.12 89.26 88.63 80.76 84.08 91.50 90.19 87.06 90.63 91.93

Table 5: COMET scores of models fine-tuned on different data on the Flores test set. FT is fine-tuned on forward
translation data. BT is fine-tuned on back translation data. MIX is fine-tuned on both forward and back translation
data.
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3.3 Forward Translation vs Back Translation

To determine the effectiveness of forward trans-
lation versus back translation, we separately fine-
tuned the continual pretrained model using forward
translation data, back translation data, and a com-
bination of both. For each approach, we randomly
chose 80,000 data samples per language translation
direction. For the combined dataset, we selected
40,000 samples from both the forward translation
and back translation pools. The results are pre-
sented in Table 5, all of which were generated using
beam search. We can see that the back translation
yields better performance, whereas mixed data does
not result in significant improvement. Due to time
constraints, we used mixed data in the WMT24
competition, this conclusion will guide us to fur-
ther improve our model in the future.

4 Conclusion

In this paper, we present IOL Research’s contribu-
tions to the WMT24 General Translation shared
task, covering all translation aspects. Our ap-
proach utilizes LLMs to develop an effective trans-
lation system. Experimental results demonstrate
that our model, which contains 21 billion param-
eters, achieves competitive results comparable to
models with 100 billion parameters. According to
the official automatic evaluation metrics (Kocmi
et al., 2024), our system achieved 8 first places in
11 translation directions spanning both open and
constrained system categories, including Czech to
Ukrainian, English to German, English to Span-
ish, English to Hindi, English to Russian, English
to Ukrainian, English to Chinese, and Japanese to
Chinese.
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Abstract

This paper presents the submission of Huawei
Translate Services Center (HW-TSC) to the
WMT24 general machine translation (MT)
shared task, where we participate in the English
to Chinese (en→zh) language pair. Similar to
previous years’ work, we use training strategies
such as regularized dropout, bidirectional train-
ing, data diversification, forward translation,
back translation, alternated training, curriculum
learning, and transductive ensemble learning
to train the neural machine translation (NMT)
model based on the deep Transformer-big archi-
tecture. The difference is that we also use con-
tinue pre-training, supervised fine-tuning, and
contrastive preference optimization to train the
large language model (LLM) based MT model.
By using Minimum Bayesian risk (MBR) de-
coding to select the final translation from mul-
tiple hypotheses for NMT and LLM-based MT
models, our submission receives competitive
results in the final evaluation.

1 Introduction

Machine translation (MT) (Brown et al., 1990) pre-
dominantly utilizes transformer encoder-decoder
architectures (Vaswani et al., 2017), which is ev-
ident in prominent models such as NLLB-200
(Costa-jussà et al., 2022), M2M100 (Fan et al.,
2021), and MT5 (Xue et al., 2021). Significant re-
search effort has been devoted to task-specific neu-
ral machine translation (NMT) models (Wei et al.,
2022; Wu et al., 2023b) trained in a fully supervised
manner with large volumes of parallel data. Their
performance has been enhanced through techniques
such as regularized dropout (Wu et al., 2021), bidi-
rectional training (Ding et al., 2021), data diversi-
fication (Nguyen et al., 2020), forward translation
(Abdulmumin, 2021), back translation (Sennrich
et al., 2016), alternated training (Jiao et al., 2021),
curriculum learning (Zhang et al., 2019), and trans-
ductive ensemble learning (Wang et al., 2020b).

The emergence of decoder-only large language
models (LLMs) such as the GPT series (Wu et al.,
2023a; Achiam et al., 2023), Mistral (Jiang et al.,
2023), and LLaMA (Touvron et al., 2023a,b) shows
remarkable efficacy in various NLP tasks, provid-
ing a fresh perspective on the MT task. Recent
studies (Hendy et al., 2023; Jiao et al., 2023) indi-
cate that larger LLMs such as GPT-3.5 (175B) and
GPT-4 exhibit strong translation abilities. How-
ever, the performance of smaller-sized LLMs (7B
or 13B) still falls short when compared to con-
ventional NMT models (Zhu et al., 2024). There-
fore, there are studies (Yang et al., 2023; Zeng
et al., 2024) intend to enhance the translation per-
formance for these smaller LLMs, but their im-
provements are relatively modest, primarily due to
the predominant pre-training of LLMs on English-
centric datasets, resulting in limited linguistic di-
versity. Addressing this limitation, Xu et al. (Xu
et al., 2023) initially continue pre-training (CPT)
LLaMA-2 (Touvron et al., 2023b) with extensive
non-English monolingual data to enhance their mul-
tilingual abilities, and then perform supervised fine-
tuning (SFT) with high-quality parallel data to in-
struct the model to generate translations. Nonethe-
less, the performance still lags behind leading trans-
lation models such as GPT-4 and WMT competi-
tion winners. Subsequently, Xu et al. (Xu et al.,
2024) bridged this gap by further fine-tuning the
LLM-based MT model using contrast preference
optimization (CPO).

Ensembling (Zhou et al., 2002) has a long his-
tory in machine learning, being well known for
leveraging multiple complementary systems to im-
prove performance on a given task and provide
good/robust generalization. Minimum Bayesian
risk (MBR) (Finkelstein and Freitag, 2023; Far-
inhas et al., 2023) decoding has successfully im-
proved translation quality using task-specific NMT
models, and subsequently it has also been shown
to be suitable for LLM-based MT models.
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SFT data
template

Translate this from English to Chinese:
English: <English sentence>
Chinese: <Chinese sentence>

CPO data
template

Translate this from English to Chinese:
English: <English sentence>
Preferred Chinese: <Chinese sentence 1>
Dis-Preferred Chinese: <Chinese sentence 2>

CPT data
template

<English sentence 1>\n...\n<English sentence k>
<Chinese sentence 1>\n...\n<Chinese sentence k>

Figure 1: CPT, SFT and CPO data templates used for LLM-based MT training.

For the WMT24 general MT shared task, we
participate in the en→zh language pair. Similar
to previous years’ work (Wei et al., 2021, 2022;
Wu et al., 2023b), we use training strategies such
as regularized dropout (Wu et al., 2021), bidirec-
tional training (Ding et al., 2021), data diversifi-
cation (Nguyen et al., 2020), forward translation
(Abdulmumin, 2021), back translation (Sennrich
et al., 2016), alternated training (Jiao et al., 2021),
curriculum learning (Zhang et al., 2019), and trans-
ductive ensemble learning (Wang et al., 2020b) to
train NMT models based on the deep transformer-
big architecture. In addition, we use CPT, SFT
and CPO methods to train LLM-based MT models.
Finally, we use MBR decoding to select the final
translation from multiple hypotheses of NMT and
LLM-based MT models.

2 Data

2.1 Data Source
We obtain bilingual and monolingual data from
ParaCrawl v9, News Commentary v18.1, Wiki Ti-
tles v3, UN Parallel Corpus V1.0, CCMT Corpus,
WikiMatrix, News Crawl and Common Crawl data
sources. The amount of data we used for training
NMT and LLM-based MT models is shown in Ta-
ble 1. It should be noted that in order to obtain
better translation performance in the general do-
main, we mix the monolingual data from Common
Crawl and News Crawl.

2.2 NMT Data Pre-processing
Our data pre-processing methods for NMT include:

language pairs bitext data monolingual data
en→zh 25M en: 50M, zh: 50M

Table 1: Bilingual and monolingual used for training
NMT and LLM-based MT models.

• Remove duplicate sentences or sentence pairs.

• Convert full-width symbols to half-width.

• Use fasttext1 (Joulin et al., 2016) to filter other
language sentences.

• Use jieba2 to pre-segment Chinese sentences.

• Use mosesdecoder3 (Koehn et al., 2007) to
normalize English punctuation.

• Filter out sentences with more than 150 words.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

• Sentencepiece4 (SPM) (Kudo and Richardson,
2018) is used to perform subword segmenta-
tion, and the vocabulary size is set to 32K.

Since there may be some semantically dissimilar
sentence pairs in bilingual data, we use LaBSE5

1https://github.com/facebookresearch/fastText
2https://github.com/fxsjy/jieba
3https://github.com/moses-smt/mosesdecoder
4https://github.com/google/sentencepiece
5https://huggingface.co/sentence-transformers/

LaBSE
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(Feng et al., 2022) to calculate the semantic similar-
ity of each bilingual sentence pair, and exclude
bilingual sentence pairs with a similarity score
lower than 0.7 from our training corpus.

2.3 LLM-based MT Data Pre-processing

The training of the LLM-based MT model requires
three stages: CPT, SFT and CPO. As shown in
Figure 1, the training data templates of the LLM-
based MT model in these three stages are different.

In the CPT stage, considering that most LLMs
are trained on English-dominated data, we using
Chinese and English monolinguals for CPT to im-
prove LLM’s proficiency in Chinese. To preserve
the long-context modeling capability of LLM, we
concatenate multiple sentences into a long text with
no more than 4096 words, and preferentially con-
catenate sentences from the same document.

In the SFT stage, drawing inspiration from the
recognized significance of data quality in other ap-
plications (Zhou et al., 2024; Maillard et al., 2023),
we fine-tune the model with high-quality parallel
data. In order to obtain high-quality parallel data,
we use cometkiwi model 6 (Rei et al., 2022) to
calculate the score of bilingual data on the en→zh
language pair, and then retain bilingual data with a
cometkiwi score greater than 0.8.

In the CPO stage, to learn an objective that fos-
ters superior translations and rejects inferior ones,
access to labeled preference data is essential, yet
such data is scarce in machine translation. The
following describes our process of constructing
the triplet preference data required for CPO train-
ing. First, we randomly sample 50,000 data from
high-quality bilingual data. Then, we use the NMT
model to obtain N-best (N=10) hypotheses based
on beam search decoding, and then use the comet-
da model7 (Rei et al., 2020) to calculate the score
of each hypothesis, select the hypothesis with the
highest score as the preferred translation, and se-
lect the hypothesis with the lowest score as the
dis-preferred translation.

3 NMT System

3.1 System Overview

Transformer is the state-of-the-art model struc-
ture in recent NMT evaluations. There are two

6https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

7https://huggingface.co/Unbabel/
wmt20-comet-da

BiT 

DD, FT & BT

AT

CL

TEL

R-Drop

BiT 

R-Drop

DD, FT & BT

AT

Figure 2: The overall training flow of NMT system.

parts of research to improve this kind: the first
part uses wide networks (eg: Transformer-Big
(Vaswani et al., 2017)), and the other part uses
deeper language representations (eg: Deep Trans-
former (Wang et al., 2019)). For the WMT24 gen-
eral MT shared task, we combine these two im-
provements, adopting the Deep Transformer-Big
(Wei et al., 2022; Wu et al., 2023b) model struc-
ture to train the NMT system. Deep Transformer-
Big uses pre-layer normalization, features 25-
layer encoder, 6-layer decoder, 16-heads self-
attention, 1024-dimensional word embedding and
4096-dimensional FFN embedding.

Fig. 2 shows the overall training flow of NMT
system. We use training strategies such as regu-
larized dropout (R-Drop) (Wu et al., 2021), bidi-
rectional training (BiT) (Ding et al., 2021), data
diversification (DD) (Nguyen et al., 2020), forward
translation FT) (Abdulmumin, 2021), back transla-
tion (BT) (Sennrich et al., 2016), alternated training
(AT) (Jiao et al., 2021), curriculum learning (CL)
(Zhang et al., 2019), and transductive ensemble
learning (TEL) (Wang et al., 2020b) for training.

3.2 Regularized Dropout

Regularized Dropout (R-Drop)8 (Wu et al., 2021)
is a simple yet more effective alternative to regular-
ize the training inconsistency induced by dropout
(Srivastava et al., 2014). Concretely, in each mini-
batch training, each data sample goes through the
forward pass twice, and each pass is processed by
a different sub model by randomly dropping out
some hidden units. R-Drop forces the two distri-
butions for the same data sample outputted by the
two sub models to be consistent with each other,
through minimizing the bidirectional Kullback-
Leibler (KL) divergence (Van Erven and Harremos,
2014) between the two distributions. That is, R-
Drop regularizes the outputs of two sub models ran-

8https://github.com/dropreg/R-Drop
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domly sampled from dropout for each data sample
in training. In this way, the inconsistency between
the training and inference stage can be alleviated.

3.3 Bidirectional Training

Many studies have shown that pre-training can
transfer the knowledge and data distribution, hence
improving the model generalization. Bidirectional
training (BiT) (Ding et al., 2021) is a simple and
effective pre-training method for NMT. Bidirec-
tional training is divided into two stages: (1) bidi-
rectionally updates model parameters, and (2) tune
the model. To achieve bidirectional updating, we
only need to reconstruct the training samples from
"src→tgt" to "src→tgt & tgt→src" without any
complicated model modifications. Notably, BiT
does not require additional parameters or training
steps and only uses parallel data.

3.4 Data Diversification

Data Diversification (DD) (Nguyen et al., 2020) is
a data augmentation method to boost NMT perfor-
mance. It diversifies the training data by using the
predictions of multiple forward and backward mod-
els and then merging them with the original dataset
which the final NMT model is trained on. DD is
applicable to all NMT models. It does not require
extra monolingual data, nor does it add more pa-
rameters. To conserve training resources, we only
use one forward model and one backward model to
diversify the training data.

3.5 Forward Translation

Forward translation (FT) (Abdulmumin, 2021),
also known as self-training, is one of the most com-
monly used data augmentation methods. FT has
proven effective for improving NMT performance
by augmenting model training with synthetic paral-
lel data. Generally, FT is performed in three steps:
(1) randomly sample a subset from the large-scale
source monolingual data; (2) use a “teacher” NMT
model to translate the subset data into the target
language to construct the synthetic parallel data;
(3) combine the synthetic and authentic parallel
data to train a “student” NMT model.

3.6 Back Translation

An effective method to improve NMT with tar-
get monolingual data is to augment the parallel
training data with back translation (BT) (Sennrich
et al., 2016; Wei et al., 2023). There are many

works expand the understanding of BT and inves-
tigates a number of methods to generate synthetic
source sentences. Edunov et al. (2018) find that
back translations obtained via sampling or noised
beam outputs are more effective than back transla-
tions generated by beam or greedy search in most
scenarios. Caswell et al. (2019) show that the
main role of such noised beam outputs is not to
diversify the source side, but simply to tell the
model that the given source is synthetic. There-
fore, they propose a simpler alternative strategy:
Tagged BT. This method uses an extra token to
mark back translated source sentences, which gen-
erally outperforms noised BT (Edunov et al., 2018).
For better joint use with FT, we use sampling back
translation (ST) (Edunov et al., 2018).

3.7 Alternated Training

While synthetic bilingual data have demonstrated
their effectiveness in NMT, adding more synthetic
data often deteriorates translation performance
since the synthetic data inevitably contains noise
and erroneous translations. Alternated training
(AT) (Jiao et al., 2021) introduce authentic data
as guidance to prevent the training of NMT models
from being disturbed by noisy synthetic data. AT
describes the synthetic and authentic data as two
types of different approximations for the distribu-
tion of infinite authentic data, and its basic idea is
to alternate synthetic and authentic data iteratively
during training until the model converges.

3.8 Curriculum Learning

A practical curriculum learning (CL) (Zhang et al.,
2019) method should address two main questions:
how to rank the training examples, and how to mod-
ify the sampling procedure based on this ranking.
For ranking, we choose to estimate the difficulty of
training samples according to their domain feature
(Wang et al., 2020a). The calculation formula of do-
main feature is as follows, where θin represents an
in-domain NMT model, and θout represents a out-
of-domain NMT model. One thing to note is that
we treat domains including news, user-generated
(social), conversational, and e-commerce domains
as in-domain, and others as out-of-domain. Specif-
ically, we use the WMT22 test set to fine-tune a
baseline model, and then use the baseline model
and the fine-tuned model as the out-of-domain
model and the in-domain model respectively.
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q(x, y) =
logP (y|x; θin)− logP (y|x; θout)

|y|
(1)

For sampling, we adopt a probabilistic CL strat-
egy that leverages the concept of CL in a nonde-
terministic fashion without discarding the original
standard training practice, such as bucketing and
mini-batching.

3.9 Transductive Ensemble Learning
Ensemble learning (Garmash and Monz, 2016),
which aggregates multiple diverse models for in-
ference, is a common practice to improve the per-
formance of machine learning models. However,
it has been observed that the conventional ensem-
ble methods only bring marginal improvement for
NMT when individual models are strong or there
are a large number of individual models. Trans-
ductive Ensemble Learning (TEL) (Zhang et al.,
2019) studies how to effectively aggregate multiple
NMT models under the transductive setting where
the source sentences of the test set are known. TEL
uses all individual models to translate the source
test set into the target language space and then fine-
tune a strong model on the translated synthetic data,
which significantly boosts strong individual models
and benefits a lot from more individual models.

4 LLM-based MT System

4.1 System Overview
There is recently a surge in research interests in
Transformer-based LLMs, such as ChatGPT (Wu
et al., 2023a), GPT-4 (Achiam et al., 2023), and
LLaMA (Touvron et al., 2023a,b). Benefiting
from the giant model size and oceans of training
data, LLMs can understand better the language
structures and semantic meanings behind raw text,
thereby showing excellent performance in a wide
range of natural language processing (NLP) tasks.
Although the training methodology of LLMs is sim-
ple, high computational requirements have limited
the development of LLMs to a few players. In order
to avoid training LLM from scratch, we chose to
conduct research work on the open source Llama2-
13b9 (Touvron et al., 2023b) model. Llama2-13b
is an autoregressive language model using an opti-
mized transformer architecture that is pre-trained
on 2 trillion tokens of data from publicly available

9https://huggingface.co/meta-llama/
Llama-2-13b-hf

SFT

CPO

CPT

meta-llama/Llama-2-13b-hf

LoRA Adapter

LoRA Adapter

Monolingual Data

Bilingual Data

Triplet Data

Figure 3: The training flow of LLM-based MT system.

sources. As shown in Figure 3, we train Llama2-
13b into a powerful LLM-based MT model through
three-stage training of CPT, SFT and CPO.

4.2 Continue Pre-training
LLMs like LLaMA are pre-trained on English-
dominated corpora. This potentially explains their
inadequate translation performance which necessi-
tates cross-lingual capabilities. To ameliorate this,
our first stage is to perform continue pre-training
(CPT) on LLM with Chinese and English mono-
lingual data to improve proficiency in Chinese and
prevent forgetting of English knowledge. Previ-
ous studies also offer some clues that monolingual
data help in translation. For instance, guo et al.
(Guo et al., 2024) proposed a three-stage training
method, which proved that using CPT can improve
the performance of MT task in the SFT stage. Note
that we use full fine-tuning at this stage.

4.3 Supervised Fine-tuning
LLMs have shown remarkable performance on a
wide range of NLP tasks by leveraging in-context
learning (Brown et al., 2020). However, this ap-
proach exhibits several drawbacks: performance is
highly dependent on the quality of examples (Vilar
et al., 2023), outputs are plagued by overgenera-
tion (Bawden and Yvon, 2023), and inference cost
are greatly increased by processing all input pairs.
When parallel data is available, LLMs can perform
supervised fine-tuning (SFT) on translation instruc-
tions (Li et al., 2024). Drawing inspiration from the
recognized significance of data quality in other ap-
plications (Zhou et al., 2024),we use the cometkiwi
model (Rei et al., 2022) to filter out large amounts
of high-quality parallel data. Here, we use effi-
cient lightweight low-rank adaptation (LoRA) fine-
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Final Target Language Hypothesis

Source Language Text
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MBR decoding with COMET

Beam search Temperature and nucleus sampling

Figure 4: Choose the Final Translation from NMT and LLM hypotheses Using MBR Decoding.

tuning, where we apply LoRA to all modules of
feed-forward network.

4.4 Contrastive Preference Optimization

Contrastive Preference Optimization (CPO) (Xu
et al., 2024) aims to mitigate two fundamental
shortcomings of SFT. First, SFT’s methodology of
minimizing the discrepancy between predicted out-
puts and gold-standard references inherently caps
model performance at the quality level of the train-
ing data. This limitation is significant, as even
human-written data, traditionally considered high-
quality, is not immune to quality issues. Secondly,
SFT lacks a mechanism to prevent the model from
rejecting mistakes in translations. While strong
translation models can produce high-quality trans-
lations, they occasionally exhibit minor errors, such
as omitting parts of the translation. Preventing
the production of these near-perfect but ultimately
flawed translation is essential. To overcome these
issues, we introduce CPO to train the LLM-based
MT model using specially curated triplet prefer-
ence data. Here, we construct a high-quality pref-
erence data for the WMT24 general MT task, and
like the SFT stage, only update the weights of the
added LoRA parameters.

4.5 Minimum Bayes Risk Decoding

Minimum Bayesian Risk (MBR) (Kumar and
Byrne, 2004; Eikema and Aziz, 2020) decoding

aims to find the output that maximizes the expected
utility function, which measures the similarity be-
tween the hypothesis and the reference. For MT,
this could be an automated evaluation metric such
as COMET (Rei et al., 2020). Garcia et al. (Gar-
cia et al., 2023) train their own language mod-
els, sample multiple hypotheses and choose a final
translation using MBR decoding, which has been
shown to improve the translation capabilities of
task-specific models (Fernandes et al., 2022). Sub-
sequently, Farinhas et al. (Farinhas et al., 2023)
find that MBR is also suitable for LLM-based MT.
They provide a comprehensive study on ensem-
bling translation hypotheses, proving that MBR
decoding is a very effective method and can im-
prove translation quality using a small number of
samples. As shown in Figure 4, we simultane-
ously collect the N-best translations generated by
the NMT system based on beam search and the
N-best translations generated by the LLM-based
MT system based on temperature and nucleus sam-
pling (with t=0.8 and p=0.95), and then use MBR
Decoding selects the final translation.

5 Experiment

5.1 Setup

We use the open-source fairseq (Ott et al., 2019)
to train NMT models, and then use SacreBLEU
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(Post, 2018)10 and wmt20-comet-da model (Rei
et al., 2020) to measure system performance. The
main parameters are as follows: each model is
trained using 8 GPUs, batch size is 6144, parameter
update frequency is 2, and learning rate is 5e-4.
The number of warmup steps is 4000, and model is
saved every 1000 steps. The architecture we used is
described in section 3.1. We adopt dropout, and the
rate varies across different training phases. R-Drop
is used in model training, and we set λ to 5.

We use Llama2-13B as the backbone model of
our LLM-based MT system. In our three-stage
training process, the first stage uses full fine-tuning,
and the last two stages use LoRA fine-tuning.
If LoRA is used, lora_rank is 32, lora_alpha is
64, lora_dropout is 0.05, and lora_modules are
"q_proj", "v_proj", "k_proj", "o_proj", "gate_proj",
"down_proj", "up_proj". Furthermore, in the first
and third stages, we use open-source ALMA 11 for
training, while in the second stage, we use open-
source llama-recipes 12 for training. The parame-
ters during training are the default configurations
of the corresponding codes.

5.2 Results
Tables 2 shows the evaluation results of en→zh
NMT systems and LLM-based MT systems on
WMT23 general test sets. On NMT systems, we
use BiT and R-Drop to build a strong baseline, then
use DD, FT and ST for data enhancement, and use
AT and CL for more efficient training, and finally
use TEL to ensemble multiple models ability. On
LLM-based MT systems, we use CPT and SFT to
build a strong baseline, and use CPO for further
optimization. To ensemble two different types of
translation systems, we use MBR decoding to se-
lect the final translation, which has been shown to
be better than MBR decoding of a single translation
system in terms of COMET scores.

5.3 Pre-processing and Post-processing
On the WMT24 general test set, we observe that
there are some emoticons and URLs in the source
text. To prevent the model from translating them in-
correctly, we replace the emoticons and URLs with
”Do Not Translate“ (DNT) labels in pre-processing,
and then restore the DNT labels back in post-
processing. By doing so, we can reduce some
translation errors for emoticons and URLs.

10https://github.com/mjpost/sacrebleu
11https://github.com/fe1ixxu/ALMA
12https://github.com/meta-llama/llama-recipes

WMT23 general test set BLEU COMET
NMT baseline (BiT & R-Drop) 54.24 0.6289
+ DD, FT & ST 56.33 0.6580
+ AT 57.03 0.6648
+ CL 58.58 0.6830
+ TEL 59.34 0.6928
+ NMT MBR 58.88 0.7178
LLM-based MT baseline (CPT & SFT) 52.18 0.6553
+ CPO 53.09 0.6907
+ LLM-based MT MBR 52.16 0.7102
+ NMT & LLM-based MT MBR 56.41 0.7234

Table 2: BLEU and COMET scores of en→zh NMT
systems and LLM-based MT systems.

6 Conclusion

This paper presents the submission of HW-TSC to
the WMT24 general MT Task. On the one hand,
we use training strategies such as R-Drop, BiT, DD,
FT, BT, AT, CL, and TEL to train the NMT system
based on the deep Transformer-big architecture.
On the other hand, we use CPT, SFT, and CPO
to train the LLM-based MT system. Finally, we
use MBR decoding to select the final translation
result from the hypotheses generated by these two
systems. By using these enhancement strategies,
our submission achieved a competitive result in the
final evaluation. Relevant experimental results also
demonstrate the effectiveness of our strategies.
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Abstract

CycleGN is a Neural Machine Translation
framework relying on the Transformer architec-
ture. Its approach is similar to a Discriminator-
less CycleGAN, specifically tailored for non-
parallel text datasets.

The foundational concept of our research posits
that in an ideal scenario, retro-translations of
generated translations should revert to the orig-
inal source sentences. Consequently, a pair of
models can be trained using a Cycle Consis-
tency Loss only, with one model translating
in one direction and the second model in the
opposite direction.

As a contribution to the WMT24 challenge,
this study explores the efficacy of the CycleGN
architectural framework in learning transla-
tion tasks across two language pairs, English-
Chinese and German-English, under two dis-
tinct non-parallel dataset conditions: permuted
and non-intersecting. Our findings demonstrate
the robust adaptability of CycleGN in learning
translation tasks, irrespective of the language
pair.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a significant advance-
ment in the field of Machine Translation, witness-
ing widespread adoption since its inception. Al-
though self-attention mechanisms were not novel
and had been investigated in prior studies (Bah-
danau et al., 2016), the Transformer model demon-
strated its formidable capabilities within Natural
Language Processing (NLP). Characterized by its
parallelized structure, the Transformer architec-
ture facilitated computational efficiency, enabling
the incorporation of a larger number of param-
eters. This enhancement has been exemplified
in NLP systems like Charles University Block-
Backtranslation-Improved Transformer Translation
(cubbitt) (Popel et al., 2020), which have surpassed

the performance levels of human professionals in
certain contexts.

Neural Machine Translation (NMT) datasets ne-
cessitate substantial text corpora, structured as
aligned pairs. This alignment implies the require-
ment for sentences with equivalent meaning to be
present in a minimum of two distinct languages,
enabling the initiation of model training to forge
linguistic linkages. Ongoing initiatives, includ-
ing OPUS (Tiedemann and Thottingal, 2020) and
Tatoeba (Tiedemann, 2012), are committed to fa-
cilitating public access to these datasets. Parallel
datasets comprise a small subset of the volume of
data in monolingual datasets.

Despite the widespread availability of large par-
allel corpora for numerous language pairs, the
capacity to employ solely monolingual datasets
would substantially expand the pool of training
data. This approach is particularly beneficial for
languages with scarce parallel text corpora.

Regardless of the remarkable efficacy exhibited
by Large Language Models (LLM) in NMT with-
out the necessity of exclusive training on parallel
data (Zhu et al., 2023), their considerable magni-
tude renders them costly in terms of both training
and operation. This economic burden consequently
restricts their widespread availability.

Back-translation (Sennrich et al., 2016) is a tech-
nique leveraging a trained MT (Machine Transla-
tion) model to translate sentences from a mono-
lingual dataset to produce corresponding pairs,
thereby synthetically augmenting the training data.
Our research is founded on the premise that the
process of translating a sentence from a source
language to a target language, followed by its retro-
translation from the target language back to the
source language, allows for the measurement of
the disparity between the original and the machine-
retro-translated sentences. This disparity serves as
a metric to assess the efficacy of the models and
facilitates the backpropagation of gradients within
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the networks. Notably, this methodology has been
previously implemented in the realm of Image-to-
Image Translation, as evidenced in the renowned
CycleGAN framework from Zhu et al. (2017).

2 Previous work

The TextCycleGAN model (Lorandi et al., 2023),
while not utilizing the Transformer architecture nor
operating within the MT field, introduced an inno-
vative strategy for text style transfer. This approach
employed a CycleGAN on the Yelp dataset to fa-
cilitate the learning of mappings between positive
and negative textual styles, notably in the absence
of paired examples.

Shen et al. (2017) exemplified the feasibility of
training two encoder-decoder networks in an unsu-
pervised manner that enables the sharing of a latent
space, thereby permitting style transfer. Lample
et al. (2018), adopting a similar technique within
the MT context, substantiated that the use of paral-
lel datasets is not a prerequisite for effective trans-
lation.

3 Definitions

Machine Translation models are most commonly
trained using “parallel” datasets, which are struc-
tured collections of text pairs. Each pair comprises
a segment of text in a source language and its
translation in the target language. By providing
direct translations, models learn correspondences
between text units to map the source language to
the target language.

A non-parallel dataset on the other hand does
not consist in pairs of text segments, consequently
the source and target sentences do not share any
explicit correspondence. Such a dataset can be cre-
ating by combining any two monolingual datasets
of two distinct languages and adjusting for the num-
ber of samples. In the context of this research, two
sub-categories of non-parallel datasets are intro-
duced.

3.1 Permuted dataset

A “permuted” dataset is defined as a parallel dataset
wherein the sentences of one language have been
systematically rearranged. Consequently, this re-
sults in a non-parallel corpus where it is guaranteed
that each sentence has a corresponding translation
located at an unspecified index within the dataset.
The authors postulate that when employing suffi-
ciently large monolingual datasets, which are not

derived from permuted parallel corpora, it is likely
that most sentences will possess an accurate trans-
lation “somewhere” within the dataset.

3.2 Non-intersecting dataset
A “non-intersecting” dataset is a non-parallel
dataset for which it is guaranteed that no sentence
has an exact translation. A non-intersecting dataset
is derived from a meticulously curated parallel
dataset devoid of duplicate entries. Two unique
sets of natural integers are produced, each function-
ing as an index list of phrases to retain for each
respective language.

4 Datasets

The datasets employed in this study are the English-
German and Chinese-English language pairs from
the WMT23 challenge (Kocmi et al., 2023). The
data released for the WMT23 General MT task can
be freely used for research purposes. Due to the
current implementation’s high computational de-
mands, the models were not trained for the entirety
of an epoch. Specifically, only 10% of the English-
German dataset was used, while about half of the
Chinese-English dataset in the non-intersecting
condition.

Type English-German Chinese-English
Permuted 27,801,496 27,801,496

Non-intersecting 27,801,496 17,676,442
Original dataset 295,805,439 35,452,884

Table 1: Number of sentences used during training de-
pending on the dataset type

5 Training

For greater clarity, the mathematical notations from
the original CycleGAN work will be employed in
the present study. Given two languages X and Y
with appropriate datasets, the objective is to obtain
two NMT models G : X 7→ Y and F : Y 7→ X
such that if the translations are perfect, G(F(y)) =
y and F(G(x)) = x, with x ∈ X and for y ∈ Y .

By using the Cross-Entropy Loss (CEL) (Zhang
and Sabuncu, 2018) in the role of the Cycle Consis-
tency Loss (CCL), we can determine the distance
between the original sentence and its double trans-
lation in order to compute the gradients.

As in the original CycleGAN work, our current
study also implements an Identity Loss (IL), which
also relies on the CEL, to help with the training
stability. As G consists in a mapping X 7→ Y , if
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given an input y ∈ Y , the input should remain
unchanged such that G(y) = y. The same loss is
applied to F between F(x) and x, as displayed in
Figure 1.

5.1 Model architecture

The architecture used for both models, G and F ,
is the Marian framework (Junczys-Dowmunt et al.,
2018) implemented by Huggingface’s Transform-
ers library (Wolf et al., 2020), which is licensed
under the Apache Licence. While most parameters
follow the default configuration, Table 2 references
the changes that were made in order to reduce the
computational cost of the architecture.

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6

Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLU

Table 2: Non-default parameters in the configuration of
Marian Transformer models

5.2 Vocabulary organization

NMT models usually employ either a unified tok-
enizer or two distinct tokenizers. In the case of a
single tokenizer, it is trained using sentences from
both the source and target distributions, avoiding
any duplicates. This approach facilitates the shar-
ing of the encoder and decoder embedding layers,
thereby diminishing computational demands and
enhancing model accuracy (Press and Wolf, 2017).

Conversely, the alternative approach entails train-
ing one tokenizer on the source distribution and
another one on the target distribution. While this
method restricts the possibility of tying embed-
dings, it can potentially double the vocabulary size
without increasing the dimensions of the embed-
dings. The overall vocabulary size of the model
in this scenario, is the cumulative total of the two
individual vocabularies, barring shared tokens like
punctuation symbols.

While contemporary Transformer models like
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) and Genera-
tive Pre-trained Transformers (GPT) (Radford et al.,
2018) typically utilize a single tokenizer, this study

introduces a novel vocabulary methodology that
amalgamates the aforementioned approaches. This
method involves training two tokenizers, each for
a respective language and with half the vocabulary
size. Subsequently, the identifiers of one tokenizer
are adjusted to prevent overlap, yielding a result
analogous to a single tokenizer that includes dupli-
cates across languages. It is important to note that
special tokens such as < eos > (End of Sentence)
and < pad > (Padding) are shared and not dupli-
cated. This strategy is designed to simplify model
analysis during development, albeit at the expense
of a reduced vocabulary.

5.3 Obtaining labels
In the training process of a Transformer model, it is
imperative to have prior knowledge of the labels, as
the decoder predicts tokens sequentially. Each to-
ken prediction, barring the initial one, is contingent
upon all preceding predictions. By possessing prior
knowledge of the reference translation, it becomes
feasible to contrast each predicted token against the
ground truth, enabling the calculation of the loss at
every step.

Nevertheless, in the case of non-parallels
datasets, the labels are by definition not known
in advance. It is therefore not possible to calculate
the loss after each predicted token. Furthermore,
the act of selecting the most probable token for
each prediction constitutes a non-differentiable op-
eration, thus precluding the possibility of backprop-
agation once the sentence is fully generated.

Naturally, in inference mode, Transformers are
able to generate sentences without labels. Thus,
the first step is to generate the pseudo-labels x̂ and
ŷ, where x̂ is used as the label of y and ŷ as the
label of x. Even though this step cannot be used
to compute the gradients, it is crucial for the entire
process.

ˆ̂x is computed from from F(ŷ) with x as the
label, and ˆ̂y is computed from G(x̂) with y as the
label. The CCL is applied between ˆ̂x and x, and be-
tween ˆ̂y and y to compute the gradients and update
the weights of G and F .

5.4 A Discriminator-less GAN
The CycleGAN methodology, as indicated by its
nomenclature, is predicated on the Generative
Adversarial Network (GAN) framework, initially
introduced in Goodfellow et al. (2014). This
paradigm involves the training of a Generator
model in conjunction with another model, termed
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Figure 1: CycleGN training process

the Discriminator. The Discriminator is specifically
trained to distinguish between authentic samples
drawn from the dataset and synthetic samples pro-
duced by the Generator. In the CycleGAN train-
ing process, the Discriminators intervene after the
generation of x̂ and ŷ, helping the training of the
Generators. However, as mentioned in Section 5.3,
there can be no gradient computation during the
generation of x̂ and ŷ in a Transformer and as such,
Discriminators cannot be used in the present work.
This is why CycleGN is not an “Adversarial” ap-
proach, hence the name.

6 Pre-training

During the development of CycleGN, a critical is-
sue became clear, which prevented the model’s
ability to converge and learn effectively. As de-
scribed in Section 5.3, the first step of the CycleGN
framework is to generate x̂ and ŷ. During the first
initialisations, these pseudo-labels will be gener-
ated randomly and will depend only on the initial-
ization of the weights of G and F . However, the
models consistently converge towards a trivial solu-
tion wherein by merely reproducing the input, they
satistisfy the loss function criteria without achiev-
ing any meaningful learning or transformation of
the data.

6.1 Absence of intermediate evaluation

As there is no Discriminator to ensure that x̂ be-
longs to X and ŷ belongs to Y , G and F converge
towards x = ŷ = ˆ̂x and y = x̂ = ˆ̂y, as this ap-
proach achieves an optimal outcome on the CCL
function, registering a value of zero, as schematised
in Figure 2.

Figure 2: In the absence of a Discriminator y ∈ Y and
pre-training is not employed, the CycleGN architecture
will converge towards a state where no translation hap-
pens and still perfectly satisfy the CCL function

6.2 Moving away from the easiest path

Masked Language Modeling (MLM) is a pre-
training strategy implemented in BERT, where a
specified proportion of the input tokens are sub-
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stituted with a unique < mask > token. The ob-
jective of the neural network under this paradigm
is to accurately reconstruct the original sentence
from this degraded input. This process enables the
model to discern intricate relationships between
words and to develop a profound representation of
the language. This pre-training has revealed excel-
lent performances in diverse NLP application such
as sentiment analysis (Alaparthi and Mishra, 2021),
text classification (Sun et al., 2020), Named Entity
Recognition (NER) (Souza et al., 2020) (Chang
et al., 2021) (Akhtyamova, 2020) and paraphrase
detection (Khairova et al., 2022).

As MLM does not require any labels, as the la-
bels are generated from the dataset, it is perfectly
adapted to the CycleGN approach. A single model
H is trained on the non-parallel dataset to recon-
struct both languages, with 15% of the input tokens
masked. This model H has the exact same archi-
tecture as G and F . When training the CycleGN,
rather than randomly initializing G and F , the pa-
rameters from H are directly transferred to both
G and F . Indeed, as H learns to reconstruct both
language X and Y , it can be used to initialize both
networks. Figure 3 shows the training process of
H.

Figure 3: Masked Language Modeling training process

7 Training stability

It is crucial for the CycleGN framework that the
two models exhibit approximately equivalent levels
of performance. Given the interdependent nature
of these models, where the output of one serves as
the input for the other, maintaining consistency be-
tween them during training is imperative. Without
a strategy in place to prevent the performance of
the models from diverging, it is possible for one
model to gain the “upper hand” over the other.

7.1 Divergence between the Generators

Figure 4 presents the evolution of the CCL of an
early prototype of CycleGN and it can clearly be
seen that one of the two generators, F , ends up per-
forming much better than its counterpart G, which
blocks any future training.

Figure 4: Evolution of the Cross-Entropy Loss dur-
ing the training of an early prototype on the permuted
German-English dataset

7.2 Gradient Clipping

Gradient clipping is a technique utilized in the train-
ing of Deep Learning (DL) models, to address the
problem of “exploding” gradients. This issue oc-
curs when gradients escalate to excessively high
values during training, leading to numerical insta-
bility and impeding the model’s convergence to an
optimal solution.

Gradient clipping can be implemented through
two primary methods: norm clipping and value
clipping. Norm clipping involves establishing a
threshold on the overall magnitude of the gradient
vector. On the other hand, value clipping involves
individually adjusting elements of the gradient vec-
tor that exceed the specified threshold.

By clipping the gradients by norm, with a thresh-
old of 1.0, as advised by the Huggingface library,
the training stabilizes and the divergence between
G and F disappears.

Figure 5 demonstrates how the addition of gradi-
ent clipping helps with training stability during the
training of the permuted German-English model.

7.3 Batch size

The original CycleGAN research mentions using
a batch size of 1, and while they did not state the
reason in the research paper, one of the authors
explained it in a GitHub issue (Junyanz, 2017) as a
lack of GPU memory.

Rajput et al. (2021) examined the impact of batch
size within the CycleGAN architecture, observing
a significant decline in performance the more the
batch size is increased. This deterioration was evi-
dent both through the example images presented in
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Figure 5: Evolution of the Cross-Entropy Loss during
the training of the permuted German-English models

that study and through the calculated cosine dissim-
ilarity, indicating inferior model performance with
larger batch sizes. However, quality was achieved
at the expense of computational efficiency, as the
training duration to achieve 200 epochs was 8 hours
with a batch size of 1, but this was reduced to just
2 hours with a batch size of 64.

In the context of this research, however, the trade-
off between quality improvement and computing
resource, as observed in the aforementioned study,
does not hold true. Utilizing a batch size of 1 in
the CycleGN experiments hindered any form of
convergence. Consequently, a batch size of 32 was
selected, as it represents the maximum capacity
that could be accommodated within the available
24GB of GPU memory of the NVidia 4090 used
for this work.

7.4 One large epoch or multiple smaller ones?

The CycleGAN framework is recognized for its
computational expense due to several inherent fac-
tors. Primarily, as CycleGAN operates on the prin-
ciple of cycle consistency, it necessitates the train-
ing of two GANs simultaneously – one for each
direction of the transformation. This structure re-
quires substantial computational resources, as each
GAN consists of both a Generator and a Discrimi-
nator.

The resource-intensiveness of the CycleGAN
process, thus limits the size of the dataset that can
be used in a reasonable time. This necessitated a
decision between training for a single epoch on a
large dataset, or training for multiple epochs on a
smaller corpus arose.

The CycleGN framework was compared on the

permuted German-English dataset under four dif-
ferent conditions:

1. One epoch containing 1% of the dataset

2. Five epochs containing 0.2% of the dataset

3. One epoch containing 2% of the dataset

4. Five epochs containing 0.4% of the dataset

The Crosslingual Optimised Metric for Evalu-
ation of Translation (COMET) score (Rei et al.,
2020) was selected as our comparison criterion, as
this metric has proven to be one of the most ef-
fective in recent WMT competitions, according to
Kocmi et al. (2022), due to its strong correlation
with human judgment, aligning well with our goal
of mirroring human evaluative standards. Multiple
COMET models have been made available and the
default “wmt22-comet-da” model was chosen. The
average scores obtained on 10,000 test sentences
that were not part of the model training set are
presented in Table 3.

Condition English->German German->English
1 0.2727 0.2715
2 0.2411 0.2635
3 0.2741 0.2665
4 0.2258 0.2658

Table 3: COMET scores of CycleGN models depending
on the permuted German-English dataset condition

Models exposed to a larger portion of the to-
tal dataset demonstrate superior performance com-
pared to those limited to a smaller, repetitive subset,
especially when the dataset encompasses over half
a million to a million sentences. The authors extrap-
olate this result to larger datasets and thus chose
to train the CycleGN models for a single epoch on
the largest dataset possible.

8 Results

Even if tracking the CCL is an inexpensive man-
ner to estimate the progress of the training of the
CycleGN architecture, a low loss value can also
hide an absence of translation, as mentioned in Sec-
tion 6.1. This is why an evaluation metric such as
COMET is crucial to assess the progression of the
CycleGN framework.
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8.1 Evolution of COMET score during
training

To measure the performances of CycleGN, every
1,000th batch the CCL was averaged and 1,000 sen-
tences from the test set were translated to compute
the COMET score.

Figures 6, 7, 8 and 9 demonstrate that the ac-
tual quality of translation, as measured by the
COMET metric, increases with time. Figures 6
through 9 illustrate a progressive enhancement in
the translation quality over time, as quantified by
the COMET metric. This enhancement is observed
respectively in the permuted and non-intersecting
German-English models (Figures 6 and 7), as well
as in the permuted and non-intersecting English-
Chinese models (Figures 8 and 9). Figures 6 and
7 exhibit a sudden drop in the increase of accu-
racy, which is acknowledged by the authors. This
anomaly will be thoroughly examined and dis-
cussed in a subsequent academic study.

Figure 6: Evolution of the COMET score during the
training of the permuted German-English models

8.2 COMET Scores post-training completion

After the end of the training, a test set of 10,000
sentences per language were translated and the
COMET scores are displayed in Table 4. In order to
give a point of comparison, architecture-matched
models using the original parallel datasets were
trained. As in the case of the CycleGN training,
these parallel models were only trained for a single
epoch on the exact same number of sentences as
the permuted models were.

The authors expected the COMET score of the
CycleGN to be inferior to architecture-matched
models trained using parallel corpora, as informa-
tion is by definition lost during the permutation of

Figure 7: Evolution of the COMET score during the
training of the non-intersecting German-English models

Figure 8: Evolution of the COMET score during the
training of the permuted Chinese-English models

Figure 9: Evolution of the COMET score during the
training of the non-intersecting Chinese-English models

the parallel datasets. However, the authors argue
that the differences between the scores is likely
smaller with larger datasets.
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English→ German German→ English
Permuted 0.505 0.537

Non-intersecting 0.556 0.579
Parallel 0.780 0.775

Table 4: COMET score of the German-English models

English→ Chinese Chinese→ English
Permuted 0.425 0.537

Non-intersecting 0.382 0.448
Parallel 0.000 0.749

Table 5: COMET score of the Chinese-English models

9 Future Work

Further investigations will benefit from the incor-
poration of a more extensive dataset and an explo-
ration of larger model architectures.

9.1 Larget dataset
The current work has been trained on a small
dataset compared to MT standards. Future work
should try to see how convergence progresses with
more iterations. Further computational optimiza-
tions are probably necessary to shorten the training
time required.

9.2 Larger models
The current architecture relies on a total of
158,769,152 parameters, which is only about a
third of the size of the default in the Huggingface
library. Although Tables 4 and 5 demonstrate that
the current number of parameters, when trained
using a parallel dataset, is capable of producing
better translations than when exposed to permuted
and non-intersecting datasets, an increase in both
the number of epochs and the size of the dataset
should be prioritized, larger models being common
in NMT.

10 Source Code

The source code of CycleGN is available at
https://github.com/SorenDreano/CycleGN.

Limitations

The investigation acknowledges certain inherent
limitations which may impact the generalizability
and applicability of the findings.

Language diversity
Another issue that arises from the computing cost
of CycleGN is the lack in language diversity. In-
deed, our current work only used the English-

German and Chinese-English language pairs. Con-
sequently, it cannot be certain that the approach
presented can be applied to other languages and all
alphabets. This is why CycleGN is taking part in
WMT24, to explore the framework’s performance
on a wide range of language pairs.

Training limitations

Since training a CycleGN model is particularly
costly, there is a trade-off between training models
on all language pairs, or choosing a subset of these
pairs to train fewer models with more iterations
and on a greater number of examples. In order
to demonstrate the effectiveness of CycleGN on a
wide range of language pairs, the first choice was
made, i.e. to train models on all pairs, even if this
means obtaining inferior results.

Unused models

Unlike the previous edition (Kocmi, 2023), where
most language pairs were bidirectional, i.e. the
evaluations were to and from, the 2024 General
Translation task is unidirectional. This means that
for each language pair, it is sufficient to train a
model that translates from the source to the target.

This is not a change that is favourable to Cy-
cleGN, since it is a bidirectional training architec-
ture. Indeed, its cyclical nature means that one
model must be trained from one language to an-
other, and another model must complete the cycle,
i.e. from this second language to the first. In other
words, half the time spent training CycleGN is
spent training a model which only serves to train
the first, but which will never be evaluated in the
contest.

This change has been accompanied by an in-
crease in the number of language pairs, from 6
bidirectional and 2 unidirectional in 2023 to 11
unidirectional in 2024.

Monolingual datasets

During the WMT challenge, teams are provided
with monolingual datasets. Although this dataset
format is perfectly suited to CycleGN training, they
have been discarded for two reasons. The first is
that for the majority of language pairs, the paral-
lel datasets supplied have been truncated in order
to reduce training time. The second is related to
the construction of permuted and non-intersecting
datasets, since it is preferable to build them from
non-parallel datasets, as detailed in Section 3.
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Reduced dataset sizes

The datasets were truncated to obtain a maximum
of 27,801,496 sentences for training and 100,000
sentences for the development set. The final size
of the datasets used and the number of epochs is
shown in Table 6 for permuted models and Table 7
for non-intersecting models. While the permuted
models have all been trained, this was not the case
for the non-intersecting models, due to lack of time.

Training time

To make it possible to train so many models, sev-
eral machines were used, with different technical
characteristics, in particular different GPUs. How-
ever, by estimating the training time according to
the number of sentences in the dataset and the
GPU used, the total training time for all the models
trained on the WMT24 datasets represents approxi-
mately 3,700 hours on an NVidia 4090.
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Language pair Parallel sentences in WMT24 dataset Sentences used Number of epochs
Czech-Ukrainian 10,757,756 10,657,756 1
English-Chinese 55,216,751 27,801,496 1
English-Czech 56,288,239 27,801,496 1

English-German 295,805,439 27,801,496 1
English-Hindi 315,070 314,070 10

English-Icelandic 23,434,361 23,334,361 1
English-Japanese 33,875,119 27,801,496 1
English-Russian 75,961,169 27,801,496 1
English-Spanish 626,076,911 27,801,496 1

English-Ukrainian 16,062,359 15,962,359 1
Japanese-Chinese 22,642,571 22,542,571 1

Table 6: Comparison between the number of sentences available in the WMT24 dataset and the number of sentences
used to train the permuted models depending on the language pair

Language pair Parallel sentences in WMT24 dataset Sentences used Number of epochs
English-Chinese 55,216,751 17,676,442 1
English-Czech 56,288,239 27,801,496 1

English-German 295,805,439 27,801,496 1
English-Russian 75,961,169 27,801,496 1

Table 7: Comparison between the number of sentences available in the WMT24 dataset and the number of sentences
used to train the non-intersecting models depending on the language pair
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Abstract

Fine-tuning Large Language Models (FT-
LLMs) with parallel data has emerged as a
promising paradigm in recent machine trans-
lation research. In this paper, we explore the
effectiveness of FT-LLMs and compare them
to traditional encoder-decoder Neural Machine
Translation (NMT) systems under the WMT24
general MT shared task for English to Chinese
direction. We implement several techniques,
including Quality Estimation (QE) data filter-
ing, supervised fine-tuning, and post-editing
that integrate NMT systems with LLMs.

We demonstrate that fine-tuning LLaMA2 on a
high-quality but relatively small bitext dataset
(100K) yields COMET results comparable to
much smaller encoder-decoder NMT systems
trained on over 22 million bitexts. However,
this approach largely underperforms on surface-
level metrics like BLEU and ChrF. We fur-
ther control the data quality using the COMET-
based quality estimation method. Our experi-
ments show that 1) filtering low COMET scores
largely improves encoder-decoder systems, but
2) no clear gains are observed for LLMs when
further refining the fine-tuning set. Finally, we
show that combining NMT systems with LLMs
via post-editing generally yields the best per-
formance for the WMT24 official test set.

1 Introduction

Generative Large Language Models (LLMs) have
demonstrated significant capabilities across vari-
ous English-centric NLP tasks (Zhang et al., 2022;
Touvron et al., 2023a,b). However, they often un-
derperform in multilingual contexts, particularly
with low-resource languages (Hendy et al., 2023;
Stap and Araabi, 2023; Wang et al., 2023). To en-
hance the multilingual proficiency of LLMs, recent
studies have explored several strategies, including
vocabulary expansion (Lin et al., 2022; Liang et al.,
2023; Yang et al., 2023), continual training on mul-
tilingual data (Le Scao et al., 2023; Dubey et al.,

2024; Xu et al., 2024a), and instruction tuning (Zhu
et al., 2023; Alves et al., 2024; Stap et al., 2024).
These approaches have collectively improved LLM
performance on a variety of multilingual tasks,
such as understanding (Lai et al., 2023), reason-
ing (Ponti et al., 2020; Shi et al., 2022), summariza-
tion (Hasan et al., 2021; Bhattacharjee et al., 2023),
and machine translation (Kocmi et al., 2023).

Fine-tuning Large Language Models (FT-LLMs)
with parallel data largely enhances translation ca-
pabilities, but such approach relies heavily on high-
quality parallel data. For instance, prior research
often uses development and test datasets like WMT
and Flores (Alves et al., 2023; Xu et al., 2024a; Li
et al., 2024) for the training, limiting the scalabil-
ity to a broader range of languages. In this paper,
we explore the feasibility of mining high-quality
bi-texts from open-source corpora like OPUS. We
utilize COMET (Rei et al., 2020), an automated
Quality Estimation (QE) tool, to score sentences in
the WMT-24 Constraint track. Unlike Peter et al.
(2023), who found that selecting the highest quality
sentences using COMET improves translation qual-
ity, our findings show that while this QE-based data
filtering does not provide clear benefits for LLMs
when refining fine-tuning datasets, it significantly
enhances the performance of NMT systems when
applied to filter training samples with low COMET
scores.

Recent studies show that LLMs fine-tuned with
MT data can rival state-of-the-art NMT models
like NLLB (Costa-jussà et al., 2022). However,
such comparisons may be unfair, as NMT models
like NLLB typically support a broader range of
languages. For example, ALMA-13b (Xu et al.,
2024a) outperforms NLLB-54b (Costa-jussà et al.,
2022) despite targeting only eight language pairs
versus 200. Additionally, expanding languages in
multilingual models often causes interference that
degrades performance (Tan et al., 2024; Shaham
et al., 2023). In this paper, we focus exclusively on
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the English-to-Chinese translation direction1, inves-
tigating how FT-LLMs compare to NMT models
trained from scratch using the same parallel data
source. Specifically, we use the full WMT-24 con-
straint track data to train an encoder-decoder NMT
model, and we fine-tune LLaMA2-7B on a selected
high-quality subset of up to 300K sentences. we
found that, despite fine-tuned LLama2-7B being 17
times larger, it yields comparable COMET scores
and worse scores for BLEU and ChrF.

While small NMT systems are resource-efficient
in production, LLMs in practice, generate less lit-
eral translations (Vilar et al., 2023). In this paper,
we integrate NMT and LLM systems by prompting
LLMs to post-edit (PED) NMT outputs. Addition-
ally, we implement a QE-guided PED system that
selects the final outputs based on the higher QE
score, as determined by COMET, between NMT
and post-edited outputs. Our experiments show
that the QE-guided PED system delivers the best
performance on the WMT24 en-zh official test set,
improving ChrF up to +3.7 over pure NMT outputs
and +2.1 than direct translations by LLMs. Surpris-
ingly, this approach brings negative performance
gains on the Flores-devtest and Ntrex.

2 Data Preprocessing

In this section, we provide an overview of the data
sources and the cleaning strategy. We use all the
available data from the constrained track of the
WMT-24 shared task for all three directions in
which we participate, including English→Chinese,
English→Japanese, and Japanese→Chinese. Fol-
lowing Wu et al. (2023), we perform a thorough
preprocessing phase involving three key steps to
enhance the data quality, as outlined below.

• Character-level Cleaning

– Deescaping special characters in XML.
– Removing non-printable characters.
– Segmenting Chinese sentences with

Jieba2 and tokenizing Japanese data using
KyTea (Neubig et al., 2011).

• Sentence-level Cleaning

– Filtering out sentences longer than 256 to-
kens.

1We investigate FT-LLM for en-zh, and explore the data
filtering for en-zh, en-ja, and ja-zh diretcions.

2https://github.com/fxsjy/jieba

– Eliminating sentences where over 75% of
the words on both the source and target sides
are identical.

– Removing sentences with a source-to-target
token ratio exceeding 3.0.

– Eliminating duplicated sentences.

• Language-level Cleaning

– Removing off-target sentences using the
FastText language identification tool (Joulin
et al., 2016).

– Excluding sentences exhibiting one-to-
many or many-to-one mappings, for exam-
ple, a single source sentence having multi-
ple different target sentences.

In specific, we use the Moses toolkit3(Koehn
et al., 2007) for all procedures in cleaning step 1
and use FastText (Joulin et al., 2016) for the lan-
guage identification step. As shown in Table 1
(Cleaned), we removed 29%, 22%, and 45% of the
data for en→zh, en→ja, and ja→zh directions.

Directions Raw Cleaned QE-filtered

en→zh 55,346,004 39,354,051 22,606,804
en→ja 33,875,162 26,415,631 14,507,351
ja→zh 22,642,553 12,560,471 6,679,265

Table 1: Number of parallel sentences for three datasets.

3 Systems

3.1 NMT Systems
MMT baseline In this section, we describe the
backbone architecture and adjustments made to
our baseline systems. We train a multilingual-
Transformer-large (mT-large) model for all three
en→zh, en→ja, ja→zh directions. The mT-large is
a 12-layer Transformer (Vaswani et al., 2017) archi-
tecture with specific modifications, including pre-
norm for both the encoder and decoder, and layer-
norm for embedding. To enhance stability and
performance, we tie the parameters of encoder em-
bedding, decoder embedding, and decoder output.
We also introduce dropout and attention dropout
with a probability of 0.1, along with label smooth-
ing at a rate of 0.1. In addition, to specify the
translation directions, we prepend the source lan-
guage tags in the source, and target language tags
in the target side, e.g.: en2zh.

3https://github.com/moses-smt/mosesdecoder/
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Similar to the approach described by Vaswani
et al. (2017), we employ the Adam optimizer
with a learning rate of 5e-4, implementing an in-
verse square root learning rate schedule with 4,000
warmup steps. We set the maximum number of
tokens to 10,240, with gradient accumulation every
21 steps to facilitate large-batch training in Tang
et al. (2021). We train all of our systems with 4
NVIDIA A6000 Gpus, and to expedite the training
process, we conducted all experiments using half-
precision training (FP16). Additionally, we save
checkpoints every 2000 steps and implement early
stopping based on perplexity, with a patience of 5
epochs.

Quality-Estimation Filtering. Due to data
scarcity in the machine translation community, a
large amount of Machine Translation data is mined
from web-crawled data such as CCAligned (El-
Kishky et al., 2020). Nonetheless, recent research
found that there are many misaligned data exist in
such web-crawled datasets, which impair perfor-
mance when training models on it (Khayrallah and
Koehn, 2018; Ranathunga et al., 2024). In addi-
tion, incorrect language and non-linguistic contents
could affect the model in generating off-target or
hallucinated outputs (Kreutzer et al., 2022). Sim-
ilarly, recent studies on instruction fine-tuning of
LLMs have shown that increasing data quality is
more effective than data quantity (Du et al., 2023;
Pan et al., 2024; Zhou et al., 2024), especially in
inducing instruction-related capabilities (Xia et al.,
2024). Additionally, Peter et al. (2023) shows that
using QE metrics is not as effective at detecting
translation noises like untranslated sentences, but is
much better at identifying more fine-grained prob-
lems in the data, like small translation or grammat-
ical errors.

Motivated by that, we investigate the feasibil-
ity of extracting high-quality parallel data using
an automated Quality Estimation (QE) tool. We
utilize the COMETKiwi model and apply this data-
filtering phase to the cleaned data that we discussed
in Section 2. Figure 1 presents the COMET score
distributions for three directions. We found that
for both English→Chinese and English→Japanese,
the distributions are quite similar, that is, nearly
half of the data falls into the poor quality range
(0-80% Comet scores). For Japanese→Chinese,
approximately half dataset ranges from 0% to 65%
of COMET score. According to this observation,
we filtered out parallel data that has smaller than

80% Comet scores for both English→Chinese and
English→Japanese, and set the threshold at 65%
for Japanese→Chinese. As a result, we show the
number of parallel sentences after Quality Estima-
tion filtering in Table 1.

Directional Fine-tuning. Lastly, to encourage
the MMT model to gradually narrow down the data
distribution to focus on task-specific data, we fur-
ther fine-tune the MMT model on direction-specific
data. Note that the direction-specific data, i.e., En
→ Zh, En → Ja, and Ja → Zh are the same data
that included in the MMT baseline training data.

3.2 LLM Systems

We use LLaMA2-7B as the backbone because it is
permitted for the constraint track of WMT24. We
reuse the framework of ALMA (Xu et al., 2023) to
conduct fine-tuning, however, we discard their first
stage of monolingual continue training.

We set the training batch as 32 and accumulated
4-step gradients. The learning rate is set as 2e-5.
The model was trained for one epoch using bf16
precision. The beam size is set as 5 for inference.

For the fine-tuning dataset, we further apply the
quality estimation method described in Section 3.1
to filter out data with a QE score below a certain
threshold. Then, we sample a certain number of
bitext from the filter dataset. For example, in Ta-
ble 4, the number of samples with a score above 89
is 53k, all of which are used for fine-tuning. Addi-
tionally, we sample data with scores higher than 87
at various levels, such as 53k, 100k, and 300k. We
fine-tune LLaMA2 with different kinds of data to
show the impact of data qualities.

3.3 NMT+LLM Systems

Previous studies have shown that leveraging Large
Language Models (LLMs) to post-edit the out-
puts of supervised Neural Machine Translation
(NMT) models can reduce translationese and en-
hance translation quality (Chen et al., 2023). This
strategy has proven effective with LLMs such
as ChatGPT (Chen et al., 2023), GPT-4 (Rau-
nak et al., 2023), PaLM (Xu et al., 2024b), and
LLaMA-2 (Ki and Carpuat, 2024). Specifically,
post-editing utilizes LLMs either to refine the out-
puts of supervised NMT models or to perform
"Self-Refinement" on their own outputs. Further-
more, Ki and Carpuat (2024) demonstrate that tun-
ing LLMs with error-annotated translations can
further enhance performance.
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Figure 1: Comet score distributions for WMT-24 constraint training data on en→zh, en→ja, and ja→zh directions.

In this paper, we explore the effectiveness of
Post-Editing (PED) in improving translation qual-
ity for the English-to-Chinese direction. We fo-
cus on a training-free PED approach due to com-
putational constraints, utilizing pre-trained open
LLMs to edit the outputs of our supervised NMT
models. Given the limited Chinese capability of
LLaMA2, we employ Tower-LLMs (Alves et al.,
2024) (Tower-Instruct 7B and 13B), which have
been continuously pre-trained on monolingual cor-
pora including Chinese. Additionally, we imple-
ment a Quality Estimation-guided Post-Editing
(QE-based PED) approach, where the NMT out-
puts and post-edited outputs are selected based on
the higher QE score using COMETKiwi (wmt22-
cometkiwi-da).

4 Experimental Setups

4.1 Systems

In this section, we briefly describe the systems we
implemented. It is important to note that some
of our implementations were focused only on the
English-to-Chinese direction, specifically for FT-
LLaMA2, Tower-Instruct, the PED system, and the
QE-based PED system.

mT-large. A multilingual Transformer-large
model trained in many-to-many directions using
the "Cleaned" data (see Table 1 and Section 3.1 for
details). It consists of 12 layers with 16 attention
heads, d = 1,024, and dff = 4,096.

mT-large + QE. This model shares the same ar-
chitecture and hyper-parameter settings as the mT-
large model but is trained using the "QE-filtered"
data outlined in Table 1.

mT-large + QE + FT. The mT-large + QE model
was further fine-tuned on direction-specific data.

FT-LLaMA2. We use supervised fine-tuning to
fine-tune LLaMA2. Detailed settings can be found
in Section 3.2.

Tower-Instruct. We directly evaluate the perfor-
mance of the Tower-Instruct models for compari-
son with our systems.

Self-Refined PED. We prompt the Tower-
Instruct model to post-edit the translations they
originally generated.

PED system. We prompt Tower-Instruct models
to post-edit the outputs generated by our supervised
NMT system (mT-large + QE + FT).

QE-guided PED system. We determined the fi-
nal outputs by selecting between the NMT outputs
and the post-edited outputs, based on the higher
QE score as determined by COMETKiwi.

4.2 Data

For training, we utilize both the "Cleaned" and
"QE-filtered" datasets, see details in section 2. For
evaluation, we employ previous WMT validation
and test sets as our validation set, and Flores, Ntrex
as our test set.

4.3 Implementation and Evaluation

For our Neural Machine Translation (NMT) sys-
tems, we utilize the Fairseq toolkit (Ott et al., 2019)
for both training and inference. For Large Lan-
guage Model systems, we employ the Transform-
ers toolkit for training and inference. To evaluate
our models, we report detokenized SacreBLEU4,
ChrF++(Popović, 2017), and COMET (Rei et al.,
2020) (wmt22-comet-da) scores.

4nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
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ID Methods #Param
FLORES-Devtest NTREX WMT-24 Official

BLEU ChrF COMET BLEU ChrF COMET BLEU ChrF

English→Japanese (NMT Systems Only)
1 mT-large 419M 35.9 39.0 89.48 26.9 33.8 85.79 29.8 26.2
2 1 + QE 419M 36.6 39.8 90.00 27.3 34.5 86.95 34.2 29.6
3 2 + FT 419M 37.1 40.3 90.24 28.3 35.1 87.18 34.7 30.1

Japanese→Chinese (NMT Systems Only)
4 mT-large 419M 33.9 29.2 86.64 27.5 24.9 82.26 22.5 21.6
5 4 + QE 419M 34.0 29.1 87.04 27.6 25.0 82.77 22.7 22.0
6 5 + FT 419M 34.0 29.1 87.00 27.8 25.0 82.53 22.9 21.6

Table 2: Translation quality on NTREX, FLORES, and WMT test sets for the English→Japanese and
Japanese→Chinese directions. ’FT’ denotes directional Fine-Tuning, and ’QE’ represents using QE-filtered
training data. We use percentage for COMET scores.

ID Methods #Param
FLORES-Devtest NTREX WMT-24 Official

BLEU ChrF COMET BLEU ChrF COMET BLEU ChrF

NMT Systems
1 mT-large 419M 42.2 35.0 84.94 33.3 28.7 79.20 - -
2 1 + QE 419M 43.8 36.0 86.21 34.7 29.7 81.21 - -
3 2 + QE + FT 419M 43.9 36.2 86.12 35.0 29.7 80.95 33.5 31.6

LLM Systems
4 FT-LLama2 7B 34.6 31.2 86.60 - - - - -
5 Tower-Instruct 7B 42.3 37.4 88.09 35.2 31.1 85.42 36.2 33.2
6 Tower-Instruct 13B 43.2 38.0 88.12 36.2 32.0 85.36 38.5 35.3

NMT + LLM Systems
7 Self-Refined PED ( 5 ) 7B 40.3 36.1 85.61 34.1 30.4 83.79 36.0 33.0
8 PED ( 3 + 5 ) 7.42B 39.7 35.8 83.68 31.3 28.3 78.80 38.1 34.9
9 QE-based PED ( 3 + 5 ) 7.42B 40.7 36.1 86.22 32.5 29.2 81.40 38.2 35.3

Table 3: Translation quality on NTREX, FLORES-200, and WMT-24 test sets for the English→Chinese direction.
For WMT-24, we report BLEU and ChrF scores as returned by the OCELoT submission system.

5 Results and Analyses

In this section, we present the final results of our
experiments and discuss the findings. Table 3
and 2 show the results of English→Chinese and the
other two directions (en→ja and ja→zh) on Flores-
devtest, Ntrex, and WMT24 official test sets.

5.1 Quality-Estimation Filtering improves
NMT systems

Our key finding is that implementing Quality-
Estimation (QE) Filtering effectively reduces low-
quality data samples, leading to improved NMT
system performance. Specifically, we observed
BLEU score improvements of +4.4 and +0.2 for
the English→Japanese and Japanese→Chinese di-
rections, respectively, on the WMT24 official test
sets. For the English→Chinese direction, we ob-

served BLEU gains of +1.6 on the Flores-devtest
and +1.4 on the Ntrex test sets. Similar positive
performance improvements were also noted across
other metrics, such as ChrF and COMET. These
results indicate that filtering training samples with
low COMET scores enables our supervised NMT
system to generate higher-quality translations.

5.2 Fine-tuned LLaMA2 and Data Quality
We conduct experiments on LLaMA2-7B in En-
glish to Chinese translation direction, where we
collect 300K parallel samples from the training
set, controlling the QE scores are all higher than
87. In Table 3, 4 shows the results. It is easy
to see that the fine-tuned LLaMA2 results in the
best COMET performance (86.60) on the Flores
benchmark. However, the results on surface-level
metrics, such as BLEU and ChrF, significantly lag

180



Language Data BLEU COMET

LLama2-7B 10k (Cleaned) 28.0 82.7
LLama2-7B 100k (Cleaned) 35.7 85.6
LLama2-7B 53k (COMET > 87) 36.1 86.1
LLama2-7B 53k (COMET > 89) 33.5 84.3
LLama2-7B 100k (COMET > 87) 35.5 85.7
LLama2-7B 300k (COMET > 87) 34.6 86.6

Table 4: Evaluation results of fine-tuned LLama2-
7B models for the English→Chinese direction on the
Flores-devtest set. ’Cleaned’ indicates random sampling
from the ’Cleaned’ training dataset, while ’COMET>x’
refers to the sampling of data with COMET scores
greater than x.

behind encoder-decoder-based NMT systems by
7.6 and 3.8 points, respectively.

We further control the fine-tuning data quality to
show the impact. We select 10K and 100K samples
from the cleaned dataset (See Table 1). To further
improve the quality of parallel semantic alignment,
we score all of the 39M cleaned training samples
using COMET, and then we construct fine-tuning
sets under the following settings:

• We selected all 53k samples with very high
COMET scores, using a threshold of 89.

• We then lowered the score threshold to 87 and
selected another 53k samples.

• We extend the number of samples with scores
higher than 87 to 100k and 300k.

Table 4 shows the corresponding results after
fine-tuning using datasets with different qualities.
We observe that: 1) Simply extending the fine-
tuning set from 10k to 100k largely improves the
resulting performance. 2) However, no clear im-
provements can be observed when further raising
the fine-tuning data QE quality. E.g., using 100k
trivial samples (after data cleaning, QE score lower
than 80) achieves comparable performance to that
of using 100k samples with a QE score higher than
87. Additionally, fine-tuning with samples that
have extremely high QE scores (COMET > 89)
even resulted in a decline in translation quality com-
pared to using 53k samples with relatively lower
QE scores (COMET > 87). 3) Further extending
the fine-tuning size from 100k to 300k yields no
clear improvements.

Our experiments suggest that simply enhancing
the quality of fine-tuning data for LLMs, at least
when using COMET as the central measure of qual-
ity, is not a promising approach.

5.3 Post-Editing Enhances Translation
Quality

As shown in Table 3, using the Tower-Instruct 7B
LLM to post-edit the outputs of our strongest su-
pervised NMT model (PED ( 3 + 5 )) resulted in
large improvements, with BLEU and ChrF gains of
+4.6 and +3.3, respectively, over the NMT model
alone on the WMT24 official test set. Notably,
this post-editing approach also outperformed di-
rect translation with Tower-Instruct 7B, achieving
additional gains of +1.9 BLEU and +1.7 ChrF. In
contrast, applying the Tower-Instruct model to post-
edit its own generated translations (self-refined
PED) resulted in negative improvements across
all test sets. These findings suggest that integrating
supervised NMT models with LLMs is a promis-
ing strategy for enhancing translation quality by
leveraging the strengths of both systems.

Furthermore, Table 3 demonstrates that the QE-
guided PED system (QE-based PED ( 3 + 5 )) can
further improve translation quality, as evidenced by
the positive performance gains across the Flores-
devtest, Ntrex, and WMT24 official test sets. In
particular, the QE-guided PED system, utilizing
Tower-Instruct 7B as the LLM backbone, achieved
performance on par with Tower-Instruct 13B in the
ChrF metric on the WMT24 official test set.

Despite the promising results on the WMT-24
Official test set, we found this Post-Editing ap-
proach delivered negative performance improve-
ments on Flores and Ntrex sets (Table 3).

6 Conclusions

In this paper, we investigate three aspects of us-
ing LLMs for translation: 1) Comparison with
Encoder-Decoder NMT Systems: directly fine-
tuning LLaMA2 on a relatively small bitext dataset
(100K) yields COMET results comparable to those
of strong encoder-decoder NMT systems trained
on over 50 million parallel sentence pairs. How-
ever, this approach significantly underperforms in
surface-level metrics such as BLEU and ChrF. 2)
Impact of Data Quality: properly filtering samples
with low COMET scores largely improves encoder-
decoder systems, however, no clear improvements
can be observed for LLMs when further controlling
the fine-tuning set with higher COMET scores. 3)
Combining NMT Systems with LLMs: lastly, we
show that combining NMT systems with LLMs via
post-editing generally yields the best performance
in our experiments.
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Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.
Xcopa: A multilingual dataset for causal common-
sense reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2362–2376.

Maja Popović. 2017. chrf++: words helping character
n-grams. In Proceedings of the second conference on
machine translation, pages 612–618.

Surangika Ranathunga, Nisansa De Silva, Velayuthan
Menan, Aloka Fernando, and Charitha Rathnayake.
2024. Quality does matter: A detailed look at the
quality and utility of web-mined parallel corpora. In
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 860–880.

Vikas Raunak, Amr Sharaf, Yiren Wang, Hany
Awadalla, and Arul Menezes. 2023. Leveraging gpt-
4 for automatic translation post-editing. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 12009–12024.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt eval-
uation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2685–2702.

Uri Shaham, Maha Elbayad, Vedanuj Goswami, Omer
Levy, and Shruti Bhosale. 2023. Causes and cures for
interference in multilingual translation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15849–15863.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

David Stap and Ali Araabi. 2023. Chatgpt is not a good
indigenous translator. In Proceedings of the Work-
shop on Natural Language Processing for Indigenous
Languages of the Americas (AmericasNLP), pages
163–167.

David Stap, Eva Hasler, Bill Byrne, Christof Monz, and
Ke Tran. 2024. The fine-tuning paradox: Boosting
translation quality without sacrificing llm abilities.
arXiv preprint arXiv:2405.20089.

Shaomu Tan, Di Wu, and Christof Monz. 2024. Neuron
specialization: Leveraging intrinsic task modularity
for multilingual machine translation. arXiv preprint
arXiv:2404.11201.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2021. Multilingual translation from de-
noising pre-training. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3450–3466.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

183



Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo,
Viresh Ratnakar, and George Foster. 2023. Prompt-
ing palm for translation: Assessing strategies and per-
formance. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15406–15427.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu,
and Jie Zhou. 2023. Is chatgpt a good nlg evaluator?
a preliminary study. In Proceedings of the 4th New
Frontiers in Summarization Workshop, pages 1–11.

Di Wu, Shaomu Tan, David Stap, Ali Araabi, and
Christof Monz. 2023. Uva-mt’s participation in the
wmt 2023 general translation shared task. In Pro-
ceedings of the Eighth Conference on Machine Trans-
lation, pages 175–180.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
arXiv preprint arXiv:2402.04333.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2023. A paradigm shift in machine
translation: Boosting translation performance of
large language models.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024a. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations.

Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj
Juraska, Biao Zhang, Zhongtao Liu, William Yang
Wang, Lei Li, and Markus Freitag. 2024b. Llmrefine:
Pinpointing and refining large language models via
fine-grained actionable feedback. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1429–1445.

Wen Yang, Chong Li, Jiajun Zhang, and Chengqing
Zong. 2023. Bigtranslate: Augmenting large
language models with multilingual translation ca-
pability over 100 languages. arXiv preprint
arXiv:2305.18098.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024. Lima: Less is more for align-
ment. Advances in Neural Information Processing
Systems, 36.

Wenhao Zhu, Yunzhe Lv, Qingxiu Dong, Fei Yuan,
Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun
Chen, and Lei Li. 2023. Extrapolating large language
models to non-english by aligning languages. arXiv
preprint arXiv:2308.04948.

184

http://arxiv.org/abs/2309.11674
http://arxiv.org/abs/2309.11674
http://arxiv.org/abs/2309.11674
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP


Proceedings of the Ninth Conference on Machine Translation, pages 185–204
November 15-16, 2024 ©2024 Association for Computational Linguistics

TOWER-V2:
Unbabel-IST 2024 Submission for the General MT Shared Task

Ricardo Rei∗1 , José Pombal∗1,2,4 , Nuno M. Guerreiro∗1,2,4,5 , João Alves∗1 , Pedro H. Martins∗1
Patrick Fernandes2,3,4 , Helena Wu1 , Tania Vaz1 , Duarte M. Alves2,4 , Amin Farajian1

Sweta Agrawal2 , Antonio Farinhas2,4 , José G.C. de Souza1, André F. T. Martins1,2,4
1Unbabel

2Instituto de Telecomunicações 3Carnegie Mellon University
4Instituto Superior Técnico & Universidade de Lisboa (Lisbon ELLIS Unit)

5MICS, CentraleSupélec, Université Paris-Saclay

Abstract

In this work, we present TOWER-V2, an im-
proved iteration of the state-of-the-art open-
weight TOWER models, and the backbone of
our submission to the WMT24 General Trans-
lation shared task. TOWER-V2 introduces key
improvements including expanded language
coverage, enhanced data quality, and increased
model capacity up to 70B parameters. Our final
submission combines these advancements with
quality-aware decoding strategies, selecting
translations based on multiple translation qual-
ity signals. The resulting system demonstrates
significant improvement over previous versions,
outperforming closed commercial systems like
GPT-4O, CLAUDE-SONNET-3.5, and DEEPL
even at a smaller 7B scale.

1 Introduction

Large Language Models (LLMs) are making
strides towards becoming the de facto solution for
multilingual machine translation (MMT). Many
works have shown that it is possible to adapt
LLMs for translation and achieve state-of-the-art
results (Zhang et al., 2023; Wei et al., 2023; Alves
et al., 2023; Reinauer et al., 2023; Zhu et al., 2024).

One such example is our recent work on
TOWER (Alves et al., 2024), which demonstrates
that open NMT models like NLLB200 can be
outperformed by adapting an LLM to transla-
tion. Specifically, we continue the pre-training of
LLaMA-2 (Touvron et al., 2023) on both monolin-
gual and parallel data, and fine-tune the resulting
model on high-quality instructions covering several
MT-related tasks. This approach requires much
less parallel training data than traditional NMT and
preserves the general capabilities of the LLM to
respond to various prompts.

For the WMT24 General Translation
task (Kocmi et al., 2024a), we enhance TOWER

by significantly improving its training data, by
∗Core Contributor. � ai-research@unbabel.com

extending its language support from 10 to 15
languages — including low-resource ones like
Icelandic —, and by scaling the underlying model
to 70 billion parameters. Furthermore, because
the WMT24 General Translation task focuses on
paragraph-level translation instead of sentence-
level, we also experiment with full-document
translation and longer contexts, where TOWER

originally struggled. These key improvements
result in TOWER-V2 7B and 70B.

For our primary submission, we combine
TOWER-V2 70B with Quality-Aware Decoding
(QAD) strategies (Fernandes et al., 2022), such as
Minimum Bayes Risk decoding (MBR) and Tuned
Reranking (TRR). These techniques use reward
models during inference to select the best candi-
date from a set of generated samples, enhancing
the overall output quality.

We report our results, including the human eval-
uation and final submission, in Section 5. By out-
performing strong commercial systems like GPT-
4, CLAUDE-SONNET-3.5, and DEEPL across the
board, TOWER-V2 — even at 7B parameters —
challenges the belief that in MMT there must be
a trade-off in performance between high- and low-
resource language pairs (Fernandes et al., 2023).

Our contributions are:

• We show that expanding from 10 to 15 lan-
guages maintains the quality of translations
for the initial 10 and significantly improves
the newly added languages.

• We significantly improve the paragraph- and
document-level translation capabilities of the
previous TOWER.

• We demonstrate that scaling the model from 7
to 70B parameters yields improvements, indi-
cating that increased capacity benefits not only
general LLM abilities but also task-specific
performance.
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• We analyze the impact of QAD on larger
models than those studied by Fernandes et al.
(2022), showing that MBR decoding outper-
forms TRR according to both automatic met-
rics and human evaluation.

2 Overview of the Shared Task

The primary aim of the general machine transla-
tion shared task is to evaluate the ability of vari-
ous models to translate across different domains,
genres, and possibly modalities (e.g., speech).
This year’s shared task, compared to previous
editions, emphasizes English→X (en→xx) and
Non-English→Non-English (xx→yy) language
pairs.1

The WMT24 test sets include source sentences
from four domains: news articles, social media
posts, speech (machine-generated transcripts), and
literary texts. Additionally, all test sets from this
year are focusing on the paragraph level rather than
sentence-level.

Throughout this paper we will evaluate several of
our models using both automatic and human eval-
uation; yet, for the shared task only primary sub-
missions are evaluated, and final results are based
solely on human evaluation using the ESA proto-
col (Kocmi et al., 2024c).

3 TOWER-V2: A New Translation LLM

We create TOWER-V2 by improving upon the orig-
inal TOWER recipe: continued pre-training of a
base model on a multilingual dataset with billions
of tokens and subsequent supervised fine-tuning
for translation-related tasks.

We focus on three key areas: 1) careful refine-
ment of the training data; 2) expansion of language
coverage to support all of the shared task’s lan-
guages; 3) scaling up model capacity.

Improving the training data. To enhance the
general translation capabilities of TOWER, we
mainly focus on improving the quality of its train-
ing data, be it for translation, post-translation, or
general instructions.

For continued pre-training (CPT), we train on
monolingual data from sources of superior quality,
and apply more aggressive quality and length filters
on the parallel data.

1The complete list of language pairs for this year’s task
includes: Czech→Ukrainian, Japanese→Chinese, and En-
glish→Chinese, Czech, German, Hindi, Icelandic, Japanese,
Russian, Spanish (Latin America), Ukrainian

Regarding the supervised fine-tuning (SFT)
phase, we use data created by humans — similarly
to the previous version of TOWER— and introduce
high-quality synthetic data. Human translations are
sourced from well-known translation benchmarks.
We go beyond simple sentence-level translation by
transforming sentence-level to document-level data
or into multi-parallel translation data (translating
a single source sentence into multiple languages).
When language variants are available, we include
them in the training prompt (e.g. Chinese (sim-
plified) vs Chinese (Taiwan)). All datasets were
carefully filtered2 and converted to instructions us-
ing a diverse set of templates.

Improving post-translation data and general
instructions. Data from tasks like APE, MQM
evaluation, and translation ranking are carefully
filtered using several quality signals. Similarly to
XTOWER (Treviso et al., 2024), APE and MQM
evaluation always expect the model to return a
“translation correction,” so we always ensure that
the post-edition (PE) is deemed better than the orig-
inal translation according to several metrics. For
translation ranking, we choose only samples where
there is significant alignment between human an-
notations and automatic metrics.

Like in the previous TOWER version, we aim to
build a model that adheres to different prompts and
can work as a general multilingual LLM. Thus, we
include filtered and adapted multilingual general-
purpose instruction data from publicly available
high quality datasets such as AYA (Singh et al.,
2024).

Going from 10 to 15 Languages. We extend
the language support of TOWER-V2 to Czech, Ice-
landic, Hindi, Ukrainian, and Japanese by adding
training data of these languages to both CPT and
SFT stages. For CPT, we add monolingual and par-
allel training data, increasing the total number of
training tokens considerably. Aside from to-/from-
English language pairs, we also include Czech-
Ukrainian and Japanese-Chinese (and vice-versa)
parallel data. In the SFT stage, we mostly add
translation data for the new language pairs.

More Paragraphs/Documents. In addition to
the sentence-level parallel data we also add parallel
documents to the CPT stage. For SFT, we sam-
ple high quality monolingual documents and per-

2We found low-quality translations even on datasets built
by professionals.
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WMT24
Model en→de en→es en→cs en→ru en→uk en→is en→ja en→zh en→hi cs→uk ja→zh

Baselines
NLLB-54B 7.23 9 7.05 9 8.63 9 7.51 9 8.42 8 9.66 9 5.46 8 10.18 8 4.31 6 4.16 7 11.33 9
GPT-4O 1.41 6 1.57 7 1.48 6 1.39 6 1.42 6 2.31 7 1.04 5 1.65 5 1.19 4 0.94 4 3.42 6
CLAUDE-SONNET-3.5 1.33 5 1.52 6 1.34 5 1.27 5 1.30 5 2.19 6 0.95 4 1.53 4 1.14 3 0.86 3 3.11 4
DEEPL 1.81 8 2.10 9 1.71 7 2.21 8 1.44 6 — 3.95 7 2.22 7 — 1.40 5 7.36 9

TOWER
TOWER-V1 13B 1.61 7 1.67 8 — 1.64 7 — — — 1.82 6 — — —
TOWER-V2 7B 1.41 6 1.42 5 1.39 5 1.41 6 1.36 5 1.90 5 1.10 5 1.71 5 1.57 5 0.82 3 3.66 7
TOWER-V2 70B 1.26 4 1.33 4 1.27 4 1.18 4 1.16 4 1.70 4 0.93 4 1.52 4 1.55 5 0.81 3 3.27 5

TOWER + QAD
TOWER-V2 70B+MBR 0.93 2 0.96 2 0.83 2 0.80 2 0.72 2 1.20 2 0.71 2 1.20 2 0.97 2 0.61 2 2.64 2
TOWER-V2 70B+TRR 1.07 3 1.05 3 0.96 3 0.91 3 0.87 3 1.27 3 0.82 3 1.27 3 1.07 3 0.59 1 2.88 3
TOWER-V2 70B 2-step 0.91 1 0.94 1 0.77 1 0.76 1 0.70 1 1.14 1 0.68 1 1.17 1 0.94 1 0.57 1 2.59 1

Table 1: Translation quality (via METRICX-QE-XXL) on the WMT24 test set. TOWER-V2 with MBR/TRR ranks
first across all language pairs. Even with Greedy decoding TOWER-V2-70B still ranks above other strong systems
like CLAUDE-SONNET-3.5, GPT-4O and DEEPL except in en→hi and ja→zh where CLAUDE-SONNET-3.5 has
similar scores.

formed full document translations using previous
TOWER models while controlling for translation
quality using COMETKIWI (Rei et al., 2022). At
the end, we are left with more data for document-
level than segment-level, further contributing to im-
proved performance on paragraph- and document-
level translation.

Model suite. TOWER-V2 now comes in two
sizes: a 7B parameter model based on MISTRAL-
7B (Jiang et al., 2023) and a larger 70B model
based on LLAMA-3-70B (AI@Meta, 2024).

4 Quality-aware decoding with
TOWER-V2

On LLM-based MT, translations are typically gen-
erated through lightweight decoding strategies such
as greedy or nucleus sampling. Nevertheless, strate-
gies informed by quality metrics such as Minimum
Bayes Risk Decoding (MBR) and Tuned Rerank-
ing (TRR) consistently perform better compared
to other methods (Fernandes et al., 2022; Freitag
et al., 2022; Nowakowski et al., 2022; Farinhas
et al., 2023). As such for our submission, we ex-
periment with MBR and TRR. For both methods,
we use a candidate pool of 100 samples and ϵ-
sampling (Freitag et al., 2023a) with ϵ = 0.02, and
COMET22 as the target objective. For TRR, we use

the WMT23 test set for tuning the weights3. The
translation quality features used include: model
log probabilities, COMET-QE-20, COMETKIWI22,
COMETKIWI-XL, and XCOMET-QE-XL.

To leverage the strengths of both approaches, we
also experiment with a second step of refinement.
After obtaining translations from both MBR and
TRR, we select the TRR translation only if all qual-
ity features (except the model log probabilities)
agree that the TRR translation is better than the
MBR translation; otherwise, we retain the MBR
translation4.

5 Experimental Setup

5.1 Evaluation Setup

During the development of TOWER-V2, we used
WMT23 as our validation set. For our final analy-
sis, we use WMT24 test set source sentences and
report only QE metrics: COMETKIWI-XXL (Rei
et al., 2023), METRICX-QE-XXL (Juraska et al.,
2023), and XCOMET-QE-XXL (Guerreiro et al.,
2023). Additionally, we add the official preliminary
results to the Appendix which include METRICX
(reference-based) (Kocmi et al., 2024b).

We use evaluation metrics to develop and op-

3We sample 5000 sentences from the WMT23 test set to
train the weights more efficiently.

4According to both automatic and human evaluation (Table
2 and Table 3 respectively) results of MBR translations are
generally better.
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en→xx xx→yy

Models METRICX ↓ XCOMET↑ COMETKIWI ↑ METRICX ↓ XCOMET↑ COMETKIWI ↑
Baselines
NLLB-54B 7.61 7 66.90 7 57.01 7 7.74 8 48.21 6 56.14 7
GPT-4O 1.50 6 83.74 6 77.04 5 2.18 5 70.44 2 76.19 4
CLAUDE-SONNET-3.5 1.40 5 84.85 5 78.09 4 1.98 4 69.73 2 76.77 4
DEEPL — — — 4.38 6 56.19 4 68.33 6

TOWER
TOWER-V2 7B 1.48 5 83.77 5 77.02 5 2.24 5 67.44 4 75.86 4
TOWER-V2 70B 1.32 4 84.87 4 78.29 4 2.04 4 69.20 3 76.70 4

TOWER + QAD
TOWER-V2 70B+MBR 0.92 2 88.78 2 81.39 3 1.62 2 69.88 2 78.28 2
TOWER-V2 70B+TRR 1.03 3 87.95 3 82.13 2 1.73 2 71.95 1 79.38 2
TOWER-V2 70B 2-step 0.89 1 89.25 1 82.54 1 1.58 1 70.85 2 79.69 1

Table 2: Translation quality aggregated by language pairs on the WMT24 test set (without testsuites). We omit
DEEPL from the en→xx averages because it does not support two language pairs. All metrics are their XXL variant.

timize our models (e.g., using MBR and/or TRR
during inference), with the exception of metrics of
the METRICX family. Thus, to mitigate potential
biases, we report METRICX-QE-XXL as our main
evaluation metric and conduct human evaluation
for English→German and English→Chinese. For
the human evaluation, we use SQM quality levels
with full document context. The annotators are in-
house expert linguists familiar with evaluating MT
outputs.

On Table 1, we report performance clusters
based on statistically significant performance gaps
at a 95% confidence threshold. On Table 2, we
create per-language groups for systems with simi-
lar performance, following Freitag et al. (2023b),
and obtain system-level rankings using a normal-
ized Borda count (Colombo et al., 2022), which is
defined as an average of the obtained clusters.

Regarding baselines, we report three commer-
cial systems, GPT-4O, CLAUDE-SONNET-3.5, and
DEEPL, along with an open-source NMT model,
NLLB 54B. While little is known about the com-
mercial systems, they show top performance on
the WMT23. All models are evaluated in a 0-shot
setting, unless stated otherwise.

5.2 Main Results

Table 1 shows our main results on English→X lan-
guage pairs according to METRICX-QE-XXL (↓).
Table 2 shows aggregated scores for English→X
and X→Y according to different metrics. From
Table 1, we observe that even the 7B model
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Figure 1: Improvement in MT quality after adding new
languages to TOWER-V2; measured in negative MET-
RICX-XXL-QE so taller bars equate to better quality.

with greedy decoding outperforms, or is on par,
with the best baseline, CLAUDE-SONNET-3.5, for
English→X. Scaling to 70B brings consistent im-
provements across all language pairs, and both
TRR and MBR decoding bring METRICX-QE-
XXL further down. Our final submission (2-step)
ranks first for all language pairs with statistical
significance.

5.3 Impact of Adding 5 Languages

To evaluate the impact of adding 5 languages, we
train two 7B models: one with the initial 10 lan-
guages of TOWER; another with the 10 languages
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Figure 2: Win rates margin by length of the tokenized
source of TOWER-V2-7B (squares) and TOWER-V2-
70B (triangles) against an older iteration that was not
trained on long-context translation training data. All
language pairs of the WMT23 dataset that intersect with
WMT24 are considered. We define a (sentence-level)
win if the delta between two systems is superior to
1× 10−3 METRICX-XXL points

plus Hindi, Japanese, Ukrainian, Czech, and Ice-
landic. The data distribution for CPT remains un-
changed, but we increase the number of training
tokens of the second model to accommodate the ad-
ditional languages. For SFT, we extend the dataset
by incorporating human-translated data from sev-
eral sources.

Figure 1 illustrates the absolute difference in 0-
shot translation quality between the two models.
As expected, the model with additional support per-
forms considerably better on the new languages5.
Perhaps more interestingly, its performance on the
initially supported languages — which is already
state-of-the-art (Table 1) — remains largely un-
changed.

5.4 Beyond sentence by sentence translation

Figure 2 compares the new versions of TOWER-V2
(7B and 70B) with an older TOWER version that
had yet to be trained on data specifically tailored
to improve long-context translation. Not only do
TOWER-V2 models vastly outperform the older
version, but the quality gap widens as source length
increases.

Further to this point, we created a paragraph-
level version of the WMT23 dataset, by joining

5We note that the initial version of TOWER has ability to
translate to other languages outside the supported ones, espe-
cially when given few-shot examples (Richburg and Carpuat,
2024) Still, their zero-shot performance is weak for languages
like Hindi or Icelandic, which are less represented in the pre-
training of the base models like LLaMA-2.

Decoding en→de en→zh

Batch 1
Greedy 85.43 84.11
TRR 87.16 85.55*
MBR 88.50* 85.47*

Batch 2
TRR — 68.55
MBR — 72.76*

Table 3: SQM quality evaluation for three different
decoding methods using TOWER-V2 70B. Numbers
marked with an asterisk (*) are statistically significant.
For English→Chinese, since the results of the first batch
were not significant, we conducted a second batch com-
parison between TRR and MBR.

segments of the same document into paragraphs
with at most 4 sentences. Results in Table 4 show
that our final models are considerably better at
translating paragraphs than their older counterpart.

5.5 Putting all together into 70B parameters

The gains from scaling up the number of parame-
ters are clear from Tables 1 and 2, where we show
that TOWER-V2-70B consistently outperforms all
baselines in all language pairs, except ja→zh. Cou-
pling TOWER-V2-70B with QAD methods yields
state-of-the-art results for all languages and met-
rics considered. Remarkably, Figure 2 shows that
the 70B model considerably improves upon its 7B
counterpart suggesting that the benefits of scal-
ing up are particularly noticeable when translating
longer sources.

5.6 Human Evaluation: Greedy vs TRR vs
MBR

To validate our findings with automatic metrics,
we conducted a small-scale human evaluation
for English→German and English→Chinese (Ta-
ble 3). In a first phase, linguists annotated 100
samples from TOWER-V2-70B with different de-
coding strategies on the WMT24 test. For both
language pairs, annotators scored greedy decoding
lower than the other two methods. While there was
a noticeable quality difference between MBR and
TRR for English→German, this distinction was
not evident for English→Chinese, with both de-
coding strategies achieving similar results. There-
fore, we conducted a second round of annotations
for English→Chinese, comparing only TRR with
MBR. This provided more concrete results that
favored MBR outputs.
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WMT23-Paragraphs
en→xx xx→yy

Models METRICX ↓ COMET ↑ CHRF ↑ METRICX ↓ COMET ↑ CHRF ↑
TOWER (older) 5.14 79.11 50.93 6.99 75.45 53.29
TOWER-V2-7B 2.72 84.45 54.35 1.87 87.57 61.36
TOWER-V2-70B 2.40 84.87 55.06 1.72 87.75 62.29

Table 4: Performance of different TOWER versions on our paragraph-level version of WMT23 (measured by
METRICX-XXL, COMET-22, and CHRF). TOWER (older) is a version prior to the interventions we ultimately made
on the training data of TOWER-V2 to make it better at translating longer sources. These changes led to major
improvements in paragraph-level translation for TOWER-V2-7B, which are further realized with TOWER-V2-70B.

5.7 Context-aware translation

en→xx

Models METRICX ↓ XCOMET↑
TOWER-V2-70B 0-shot 0.510 96.96
TOWER-V2-70B 5-shot 0.495 96.89

xx→en

TOWER-V2-70B 0-shot 1.051 94.84
TOWER-V2-70B 5-shot 0.766 95.54

Table 5: Translation quality of TOWER-V2-70B on the
development set of the WMT24 Chat Shared Task. Us-
ing a prompt that incorporates conversational context
(see Appendix A), the model provides high-quality trans-
lations, especially with examples (5-shot).

To evaluate TOWER-V2 in a different domain,
we tested it on chat translation data. In this domain,
the model translates a segment based on the con-
text of previous conversation turns. Ignoring this
context can result in subpar translations with pro-
noun mistakes and lexical inconsistencies (Läubli
et al., 2018; Toral et al., 2018). Table 5 shows that
TOWER-V2-70B excels at chat translation, even
without specific training for this task. Using the
prompt in Appendix A, which includes the con-
versation context, the model provides high-quality
translations, especially when given domain-specific
examples.

6 Conclusion

In this paper, we describe the joint submission
from Unbabel and IST to the WMT24 General MT
shared task. Our new model, TOWER-V2, signifi-
cantly improves upon previous versions by expand-
ing language coverage from 10 to 15 languages

and enhancing translation quality for longer para-
graphs. Our largest model, with 70 billion parame-
ters, combined with QAD strategies, achieved first
place on the WMT24 test set according to both
reference-free automatic evaluation, which we em-
ployed, and reference-based evaluation, as reported
in the preliminary results from the WMT24 orga-
nizers (Kocmi et al., 2024b).

Limitations

This paper highlights the key improvements in
TOWER-V2 compared to previous versions and
benchmarks it against other commercial state-of-
the-art systems like GPT-4O, CLAUDE-SONNET-
3.5, and DEEPL. However, our submission is "un-
constrained and closed," meaning the information
provided is not sufficient for full system replica-
tion. Furthermore, our comparisons primarily focus
on translation quality and do not consider factors
like inference speed, training budget, or model effi-
ciency.

We also disclose the number of parameters in
our models, from the 7B version to the final 70B
version, to facilitate a clearer understanding of their
scale. However, these comparisons with other sys-
tems do not account for differences in model pa-
rameters and other operational metrics.
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A Appendix

A.1 Metrics for QAD
The translation quality features used include:
model log probabilities, COMET-QE-206,
COMETKIWI227, COMETKIWI-XL8, and
XCOMET-QE-XL9.

A.2 Chat Translation Prompt
Given a source (SRC) to be translated from
SRC_LANG to TGT_LANG, and previous turns
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in a conversation between two agents (TURN_i),
the 0-shot prompt used was:

Context: <TURN_1>\n <TURN_2>. . . \n
<TURN_k>.\n\nTranslate the
<SRC_LANG>source text to <TGT_LANG>,
given the context.\n<SRC_LANG>:
<SRC>\n<TGT_LANG>:

When using five in-context examples, the prompt
is repeated six times separated by two new lines;
five times with a reference translation at the end,
and one times exactly as written above.

A.3 Further analysis on long-context
translation

Compared to the first version of TOWER, the ability
of TOWER-V2 to translate long sources has greatly
improved. Whereas the translation quality of latter
fell behind GPT-4 for longer sources, TOWER-V2-
70B is superior across the board compared to the
current best closed model for translation, CLAUDE-
SONNET-3.5. In fact, the performance gap tends to
widen as source length increases. TOWER-V2-7B
is also competitive for the first 4 quantiles of length,
but falls slightly behind on the last one.
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Figure 3: Win rates margin by length of the tokenized
source of TOWER-V2-7B (squares) and TOWER-V2-
70B (triangles) against CLAUDE-SONNET-3.5. All lan-
guage pairs of the WMT23 dataset that intersect with
WMT24 are considered. We define a (sentence-level)
win if the delta between two systems is superior to
1× 10−3 METRICX-XXL points

A.4 Preliminary Results from Kocmi et al.
(2024b)

See Tables 6 to 16 for the official automatic eval-
uation conducted by WMT 24 organizers. Our
submission, Unbabel-Tower70B, ranks first on all
language pairs and metrics.
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Czech-Ukrainian

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 0.9 0.719 ✓

Claude-3.5 § 1.7 1.0 0.683 ✓

IOL-Research 1.9 1.3 0.681 ✓

CommandR-plus § 1.9 1.3 0.677 ✓

GPT-4 § 2.0 1.4 0.677 ✓

Gemini-1.5-Pro 2.0 1.2 0.668 ✓

ONLINE-W 2.3 1.4 0.661 ✓

Mistral-Large § 2.3 1.6 0.666
IKUN 2.3 1.6 0.664 ✓

Aya23 2.5 1.9 0.665 ✓

TranssionMT 2.6 1.5 0.648
ONLINE-B 2.6 1.6 0.648
ONLINE-A 2.6 1.5 0.647

Llama3-70B § 2.6 2.0 0.661
ONLINE-G 2.8 1.8 0.639

CUNI-Transformer 3.0 2.0 0.639 ✓

IKUN-C 3.0 2.4 0.648 ✓

Phi-3-Medium § 9.1 6.5 0.425
BJFU-LPT † 11.5 7.6 0.321

CycleL 21.0 19.5 0.146

Table 6: Preliminary WMT24 General MT automatic ranking for Czech-Ukrainian.
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English-Czech

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 1.8 0.732 ✓

Claude-3.5 § 2.1 2.4 0.693 ✓

CUNI-MH 2.1 2.3 0.690 ✓

CUNI-GA 2.3 3.7 0.726 ✓

Gemini-1.5-Pro 2.6 2.8 0.678 ✓

GPT-4 § 2.6 2.9 0.682 ✓

IOL-Research 2.8 3.0 0.676 ✓

ONLINE-W 2.8 2.8 0.669 ✓

CommandR-plus § 2.9 2.9 0.669 ✓

SCIR-MT 3.2 3.3 0.664 ✓

TranssionMT 3.5 3.5 0.655
ONLINE-A 3.6 3.4 0.648

Mistral-Large § 3.7 3.6 0.647
IKUN 3.9 3.7 0.638 ✓

ONLINE-B 4.0 3.9 0.640
Llama3-70B § 4.1 4.0 0.640 ✓

Aya23 4.3 4.0 0.630 ✓

CUNI-DocTransformer 4.4 4.0 0.621 ✓

IKUN-C 4.7 4.3 0.618 ✓

CUNI-Transformer † 4.7 4.3 0.614
ONLINE-G 5.7 5.2 0.592

NVIDIA-NeMo † 7.6 6.5 0.536
Phi-3-Medium § 15.0 11.4 0.305

TSU-HITs 19.5 16.6 0.235
CycleL2 24.2 19.5 0.077

CycleL 27.0 22.5 0.031

Table 7: Preliminary WMT24 General MT automatic ranking for English-Czech.
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English-German

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 1.1 0.723 ✓

Dubformer 1.8 1.2 0.694 ✓

TranssionMT 1.8 1.4 0.699 ✓

GPT-4 1.8 1.4 0.700 ✓

ONLINE-B 1.8 1.4 0.698 ✓

Claude-3.5 1.9 1.4 0.695 ✓

CommandR-plus 2.0 1.4 0.696 ✓

Mistral-Large 2.0 1.5 0.694 ✓

Gemini-1.5-Pro 2.2 1.5 0.688 ✓

ONLINE-W 2.2 1.5 0.689
IOL-Research 2.3 1.6 0.692 ✓

Llama3-70B § 2.5 1.7 0.686 ✓

Aya23 2.7 1.8 0.680 ✓

IKUN 3.0 1.8 0.668 ✓

ONLINE-A 3.0 1.8 0.667
Phi-3-Medium § 3.4 2.0 0.657

ONLINE-G 3.5 2.1 0.662
IKUN-C 3.8 2.0 0.641 ✓

CUNI-NL 4.2 2.1 0.624

AIST-AIRC 7.2 3.3 0.551
NVIDIA-NeMo † 7.4 3.5 0.558

Occiglot 8.2 3.8 0.539
MSLC 11.9 4.4 0.390

TSU-HITs 13.3 5.6 0.395
CycleL2 27.0 11.5 0.091

CycleL 27.0 11.5 0.091

Table 8: Preliminary WMT24 General MT automatic ranking for English-German.
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English-Spanish

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 1.9 0.745 ✓

GPT-4 1.9 2.5 0.712 ✓

Dubformer 2.0 2.2 0.700 ✓

CommandR-plus 2.1 2.6 0.706 ✓

Claude-3.5 2.1 2.6 0.705 ✓

Mistral-Large 2.2 2.7 0.707 ✓

IOL-Research 2.3 2.8 0.701 ✓

Gemini-1.5-Pro 2.4 2.8 0.696 ✓

Llama3-70B § 2.6 3.0 0.693 ✓

ONLINE-B 2.7 3.1 0.690
ONLINE-W 2.7 3.0 0.682

TranssionMT 2.8 3.2 0.689
IKUN 2.8 3.3 0.687 ✓

Phi-3-Medium § 3.0 3.4 0.685
ONLINE-A 3.0 3.3 0.676

Aya23 3.1 3.5 0.681
ONLINE-G 3.2 3.6 0.674

IKUN-C 3.4 3.5 0.666 ✓

NVIDIA-NeMo † 4.5 4.4 0.631
Occiglot 5.9 5.4 0.583

MSLC 7.4 6.4 0.532 ✓

TSU-HITs 16.3 14.2 0.289
CycleL 24.0 20.9 0.072

Table 9: Preliminary WMT24 General MT automatic ranking for English-Spanish.
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English-Hindi

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 3.1 0.657 ✓

Claude-3.5 § 1.2 3.3 0.649 ✓

TranssionMT 1.3 3.3 0.644 ✓

ONLINE-B 1.4 3.3 0.641 ✓

Gemini-1.5-Pro § 1.6 3.6 0.635 ✓

GPT-4 § 2.1 4.5 0.628 ✓

IOL-Research 2.1 4.3 0.622 ✓

Llama3-70B § 2.1 4.6 0.630 ✓

CommandR-plus § 2.3 4.4 0.612
Aya23 3.2 5.4 0.591 ✓

ONLINE-A 3.5 6.2 0.590
ONLINE-G 4.2 7.4 0.583

Mistral-Large § 5.0 7.7 0.541
IKUN-C 5.5 7.1 0.499 ✓

NVIDIA-NeMo † 5.8 8.9 0.530

Phi-3-Medium § 7.4 10.7 0.483
IKUN 7.7 9.4 0.428

ONLINE-W 15.3 20.9 0.296
CycleL 20.0 23.4 0.083

Table 10: Preliminary WMT24 General MT automatic ranking for English-Hindi.
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English-Icelandic

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 2.5 0.740 ✓

Claude-3.5 § 2.3 3.6 0.697 ✓

Dubformer 2.5 3.4 0.685 ✓

IKUN 3.2 4.3 0.666 ✓

GPT-4 3.4 4.7 0.673 ✓

AMI 3.7 4.9 0.663 ✓

IKUN-C 3.7 4.9 0.657 ✓

TranssionMT 4.2 5.5 0.653
ONLINE-B 4.2 5.5 0.652

IOL-Research 4.3 5.7 0.655 ✓

ONLINE-A 5.5 6.4 0.603
Llama3-70B § 6.7 8.0 0.586 ✓

ONLINE-G 6.9 7.9 0.573

CommandR-plus § 9.8 10.6 0.487
Mistral-Large § 10.4 10.9 0.465

Aya23 § 15.2 14.9 0.311
Phi-3-Medium § 16.2 15.7 0.278

ONLINE-W 18.1 19.5 0.296
TSU-HITs 19.2 18.4 0.192

CycleL 21.0 20.2 0.148

Table 11: Preliminary WMT24 General MT automatic ranking for English-Icelandic.
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English-Japanese

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 2.0 0.762 ✓

ONLINE-B 1.4 2.4 0.750 ✓

Claude-3.5 1.5 2.3 0.744 ✓

Gemini-1.5-Pro 1.7 2.5 0.734 ✓

GPT-4 1.7 2.7 0.740 ✓

Team-J 1.9 2.9 0.740 ✓

NTTSU 1.9 2.6 0.731 ✓

CommandR-plus 1.9 2.7 0.730 ✓

IOL-Research 2.3 3.1 0.724 ✓

Aya23 2.3 3.1 0.719 ✓

Llama3-70B § 2.6 3.5 0.714 ✓

DLUT-GTCOM 2.6 3.0 0.697
Phi-3-Medium § 2.8 3.6 0.709

ONLINE-W 2.9 3.6 0.700
Mistral-Large § 2.9 3.8 0.707

ONLINE-A 3.0 3.6 0.699
IKUN 3.1 3.7 0.696

IKUN-C 3.9 4.3 0.669 ✓

ONLINE-G 6.4 6.6 0.599
AIST-AIRC 6.6 6.5 0.583

UvA-MT 6.7 6.7 0.589
NVIDIA-NeMo † 6.9 6.9 0.582

CycleL 24.0 22.4 0.101

Table 12: Preliminary WMT24 General MT automatic ranking for English-Japanese.
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English-Russian

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 2.4 0.742 ✓

Dubformer 1.9 2.8 0.701 ✓

Yandex 1.9 2.9 0.705 ✓

Claude-3.5 2.0 3.0 0.706 ✓

ONLINE-G 2.2 3.3 0.706 ✓

GPT-4 2.3 3.4 0.703 ✓

Gemini-1.5-Pro 2.3 3.2 0.697 ✓

CommandR-plus § 2.4 3.4 0.693 ✓

ONLINE-W 2.6 3.5 0.688
IOL-Research 2.6 3.7 0.694 ✓

Mistral-Large § 2.7 3.7 0.692
Llama3-70B § 3.1 4.1 0.681 ✓

ONLINE-B 3.1 3.9 0.673
TranssionMT 3.1 3.9 0.673

IKUN 3.2 4.1 0.675 ✓

Aya23 3.3 4.2 0.669 ✓

ONLINE-A 3.4 4.1 0.663
Phi-3-Medium § 3.9 4.7 0.654

IKUN-C 3.9 4.7 0.649 ✓

CUNI-DS 5.9 6.2 0.584
NVIDIA-NeMo † 7.2 7.3 0.549

TSU-HITs 10.8 9.8 0.421
CycleL 24.3 22.2 0.062

CycleL2 25.0 22.4 0.027

Table 13: Preliminary WMT24 General MT automatic ranking for English-Russian.
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English-Ukrainian

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 2.2 0.732 ✓

Dubformer 1.8 2.7 0.691 ✓

Claude-3.5 2.0 3.0 0.693 ✓

ONLINE-W 2.1 2.8 0.679 ✓

Gemini-1.5-Pro 2.2 3.0 0.677 ✓

CommandR-plus § 2.3 3.2 0.678 ✓

GPT-4 2.3 3.3 0.682 ✓

ONLINE-G 2.3 3.1 0.670
IOL-Research 2.4 3.4 0.675 ✓

Mistral-Large § 2.4 3.4 0.675
IKUN 2.8 3.7 0.661 ✓

ONLINE-B 3.1 3.9 0.646
TranssionMT 3.1 4.0 0.646

Llama3-70B § 3.2 4.2 0.647
Aya23 3.3 4.2 0.642

ONLINE-A 3.3 4.1 0.634
IKUN-C 3.9 4.7 0.622 ✓

NVIDIA-NeMo † 6.2 7.0 0.537
Phi-3-Medium § 11.1 11.3 0.339

CycleL 21.0 22.4 0.037

Table 14: Preliminary WMT24 General MT automatic ranking for English-Ukrainian.
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English-Chinese

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 2.3 0.726 ✓

Claude-3.5 1.7 3.0 0.703 ✓

ONLINE-B 1.7 2.9 0.697 ✓

IOL-Research 1.8 3.1 0.700 ✓

Gemini-1.5-Pro 1.8 3.1 0.698 ✓

GPT-4 2.0 3.3 0.693 ✓

CommandR-plus 2.2 3.3 0.681 ✓

ONLINE-W 2.2 3.2 0.677
HW-TSC 2.3 3.4 0.675 ✓

Mistral-Large § 2.8 4.0 0.665
Llama3-70B § 2.8 3.9 0.662 ✓

Aya23 3.0 4.1 0.655 ✓

IKUN 3.1 4.0 0.646 ✓

Phi-3-Medium § 3.1 4.2 0.648
ONLINE-A 3.3 4.1 0.636

IKUN-C 3.5 4.2 0.624 ✓

UvA-MT 4.3 5.2 0.607
ONLINE-G 4.8 5.5 0.588

NVIDIA-NeMo † 7.3 7.6 0.494
CycleL 20.1 20.1 0.086

CycleL2 22.0 22.1 0.030

Table 15: Preliminary WMT24 General MT automatic ranking for English-Chinese.
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Japanese-Chinese

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 3.2 0.622 ✓

Claude-3.5 1.7 3.5 0.603 ✓

Gemini-1.5-Pro 1.9 3.5 0.595 ✓

DLUT-GTCOM 2.0 3.3 0.586 ✓

GPT-4 2.1 3.8 0.597 ✓

IOL-Research 2.2 3.9 0.593 ✓

CommandR-plus 2.8 4.1 0.576 ✓

Team-J 2.8 4.0 0.570 ✓

Llama3-70B § 3.1 4.7 0.578 ✓

Mistral-Large § 3.5 4.9 0.568
Aya23 3.7 5.0 0.563 ✓

NTTSU 3.7 5.3 0.566 ✓

Phi-3-Medium § 4.0 5.1 0.552
IKUN 4.4 5.4 0.544 ✓

ONLINE-B 5.2 5.5 0.518
UvA-MT 5.2 6.3 0.534

ONLINE-W 5.3 6.0 0.522
IKUN-C 5.5 6.2 0.519 ✓

ONLINE-A 6.8 6.8 0.484

MSLC 8.9 8.8 0.450
ONLINE-G 10.3 9.6 0.413

CycleL 23.0 21.5 0.202

Table 16: Preliminary WMT24 General MT automatic ranking for Japanese-Chinese.
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Abstract 

This paper describes the TSU HITS team’s 

submission system for the WMT’24 

general translation task. We focused on 

exploring the capabilities of discrete 

diffusion models for the English-to-

{Russian, German, Czech, Spanish} 

translation tasks in the constrained track. 

Our submission system consists of a set of 

discrete diffusion models for each language 

pair. The main advance is using a separate 

length regression model to determine the 

length of the output sequence more 

precisely. 

1 Introduction 

This report gives an overview of TSU HITS 

submissions in the WMT 2024 general machine 

translation tasks. We focused on exploring the 

capabilities of discrete diffusion models for the 

English-to-{Russian, German, Czech, Spanish} 

translation tasks in the constrained track. Our main 

contributions are  

1. the use of regression-based output length 

prediction model 

2. the use of the input length as a key feature 

for the output length prediction 

The report is organized as follows. In the Section 

2, we provide a general description of the discrete 

diffusion approach to machine translation, as it is 

not yet very widespread. In the Section 3, we 

describe the experimental setting and training 

processes. Section 4 discusses the results. 

2 Discrete Diffusion Approach to 

Machine Translation 

2.1 Diffusion: Preliminaries 

Diffusion approaches (Sohl-Dickstein et al., 2015 , 

Ho et al, 2020) to generating objects (for example 

images) include forward (data to noise) and reverse 

(noise to data) diffusion processes. In the forward 

process, a small amount of noise is gradually added 

to the data. In the classical direct diffusion process, 

the original object 𝑥0 is repeatedly and additively 

perturbed by a small Gaussian random noise, and 

in a fixed number of steps 𝑇 goes into state 𝑥𝑇 with 

a normal distribution (and thus is converted to 

noise): 

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡;  𝑥𝑡−1√1 − 𝛽𝑡, 𝛽𝑡),  (1) 

where ∀ 𝑡 = 1. . 𝑇̅̅ ̅̅ ̅̅  𝛽𝑡 ∈ (0; 1]  are the 

hyperparameters that regulate the diffusion rate. 

During the reverse diffusion process, the 

machine learning model step by step reconstructs 

the object's states from 𝑥𝑇 to 𝑥0, and this denoising 

restores an object from the original distribution: 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)~𝒩(𝑥𝑡−1;  𝜇𝜃(𝑥𝑡, 𝑡), 𝜎𝜃(𝑥𝑡, 𝑡)), (2) 

where 𝜃 are the model’s trainable weights. 

Texts in typical representations do not have the 

property of continuity and are a sequence of tokens 

with discrete values that do not have an order 

relation and correspond to the categorical data type. 

Thus, we follow the path of adapting the diffusion 

processes to categorical data - such approaches are 

called discrete diffusion. 

2.2 Discrete Diffusion for Text Generation 

Diffusion models with discrete state spaces were 

first introduced by Sohl-Dickstein et al. (2015), 

who considered a diffusion process over binary 

TSU HITS’s Submissions to the WMT 2024  
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random variables. Hoogeboom et al. (2021) 

extended the model class to categorical random 

variables with transition matrices characterized by 

uniform transition probabilities. We follow Austin 

et al. (2021) to define a discrete diffusion model for 

texts.  

Namely, we consider each text token 𝑥𝑡 to be a 

discrete random variable with 𝐾  categories. For 

text data, 𝐾 =  |𝑉|  is the size of the vocabulary. 

(He et al., 2023). The forward transition 

probabilities can be represented by matrices: 

[𝑄𝑡]𝑖𝑗  =  𝑞(𝑥𝑡  =  𝑗|𝑥𝑡−1  =  𝑖). The process of  

adding noise can then be written as 

𝑞(𝑥𝑡|𝑥𝑡−1) =  𝐶𝑎𝑡(𝑥𝑡;  𝑝 =  𝑥𝑡−1𝑄𝑡) (3) 

where 𝐶𝑎𝑡(∙) is a category distribution (Austin et 

al., 2021). 

2.3 Masked Language Models and Discrete 

Diffusion 

He et al. (2023) noted the relationship between the 

 discrete diffusion process and the task of 

pretraining of masked language modeling (MLM) 

encoder models. Namely, they suggested 

incorporating an absorbing state, e.g., [MASK] for 

BERT, into the Markov process of diffusion. In 

particular, each token in the sequence either stays 

the same or transitions to [MASK] with some 

probability. Formally, each entry of the transition 

matrix at step 𝑡 is as follows, 

[𝑄𝑡]𝑖𝑗 = {

1 𝑖𝑓 𝑖 = 𝑗 = [M]

𝛽𝑡 𝑖𝑓 𝑗 = [M], 𝑖 ≠ [M]

1 − 𝛽𝑡 if i =  j ≠  [M]
 (4) 

where [M] is short for [MASK]. 

Such a Markov process converges to a stationary 

distribution 𝑞(𝑥𝑇)  that places all the probability 

mass on the sequence with all [MASK] tokens. 

The most common transformer (Vasvani et al., 

2017) models pre-trained for the MLM task are 

models from the BERT family (Devlin et al, 2019). 

He et al. (2023) suggested DiffusionBERT that 

uses a pretrained BERT model as an encoder due to 

the similarity of the tasks. The length of the output 

sequence of the DiffusionBERT model is fixed and 

is set to different values depending on the problem 

solved. 

2.4 Discrete Diffusion for Translation 

Reid et al. (2023) suggested a diffusion model 

using Levenstein operations for machine 

translation. They have tested the model on WMT14 

EN-DE dataset. It is unclear from the paper how do 

the authors determine the target length of the output 

sequence.  

Zheng et al. (2023) suggest a reparameterized 

discrete diffusion (RDM) approach to text 

generation, and report results for the machine 

translation task on the IWSLT14 DE-EN, WMT14 

EN-DE and WMT16 EN-RO datasets. To 

determine the translation length, the authors of 

RDM trained a separate model similar to the one of 

Ghazvininejad et al. (2020). They pose the problem 

of determining the length of the output sequence as 

a classification problem, selecting 𝑘  best options 

out of 𝑁  possible, where 𝑁  is the maximum text 

length that the model used can process. Similarly 

to Gao et al. (2024), several options are selected 

and the best one is chosen based on the metrics of 

the overall text quality. 

 

Figure 1: Overview of the system 
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Ye et al. (2023) explore the possibilities of 

increasing applicability domain of discrete 

diffusion approaches, while considering an 

approach similar to DiffusionBERT, except that 

instead of the BERT encoder, the authors use the 

RoBERTa model (Liu et al., 2019). The quality of 

machine translation is assessed on the IWSLT14 

DE-EN and WMT14 EN-DE data sets, using the 

same quality metrics and the same idea for 

determining the length as in the RDM approach. 

3 System Overview 

3.1 General Translation Process 

The general translation process is presented on 

Figure 1. Our system consists of a discrete 

diffusion model and an output length prediction 

model. 

On each diffusion step, a concatenation of the 

source text and output is used as the input to the 

generative model, but the absorbing tokens are 

distributed only within the output part. We do not 

use any special separation tokens, but just use the 

prompt "{Source Language}: {Source Text} \n 

{Target Language}: {𝑥𝑡}". 

Since we use XLM-RoBERTa’s (Conneau et al, 

2020) positional embedding model as an encoder 

and are forced to fit the input sequence of the model 

into 512 tokens, we apply punctuation splitting of 

the source texts, limiting the maximum size of the 

source text to 200 tokens, and then glue the results 

back. We also do not use the extended context to 

improve translation; this is left for the future work. 

We take a fixed number of the diffusion steps 𝑇 

equal to 50. Tokens that were unmasked in the 

previous steps are likely to be replaced with 

subsequent ones, just like in DiffusionBERT (He et 

al., 2023). The standard argmax approach is used 

as a sampling method. We do not use temperature 

and do not limit the number of tokens to choose 

from. 

3.2 Generative Model 

We largely follow Ye et al. (2023) and use XLM-

RoBERTa (Conneau et al, 2020) family pre-trained 

model that includes a multilayer transformer 

encoder and a single-layer MLM head.  

We fine-tune both the encoder and the head for 

discrete diffusion text generation that differs from 

MLM mainly by the percentage of the masked 

tokens. We use the cross-entropy weighted relative 

to the diffusion step 𝑡 loss proposed by Zheng et al. 

(2023): 

𝐿𝑡 = −𝜆𝑡−1 ∑ 𝑦𝑖 log 𝑝𝑖

𝑁

𝑖

 (5) 

where 𝑦𝑖  is the true probability (0 or 1) of token 

with index 𝑖 in model dictionary, 𝑝𝑖 is the predicted 

probability, 𝑁 is the size of the dictionary, 𝜆𝑡−1 is 

the parameter that depends on the percentage of the 

masked tokens at the steps 𝑡 and 𝑡 − 1. 

Following Chang et al. (2022), we use the cosine 

noise schedule: 

𝛽𝑡 = cos(
𝜋𝑡

2𝑇
) (6) 

3.3 Length Predictor 

Our length predictor also consists of an encoder 

and a task-specific head. Although our length 

prediction model is based on the same XLM-

RoBERTa, physically these two models are 

completely separate. We tried not to fine-tune the 

encoder for the length problem and to use the 

standard XLM-RoBERTa, but we got worse 

metrics on the test data. 

We use a regression predictor of the output 

length, unlike other works that use classifiers with 

the number of categories equal to the length of the 

context, for example, 512 tokens. Our regression 

head is a two-layer perceptron with ELU-

activation. Standard MSE loss is used when the 

length predictor is trained. 

Generative Model 

Architecture XLM-RoBERTa-Large 

Optimizer AdamW(𝛽1 = 0.9, 𝛽2 = 0.98) 

Weights decay 0.01 

Learning Rate Schedule Cosine 

Max learning rate 5E-05 

Batch size 16 

Accumulation step 8 

Steps 30000 

Warmup ratio 0.01 

Loss (Section 3.2) 

Number format FP16 

Length Model 

Hidden size 1024 

Optimizer AdamW(𝛽1 = 0.9, 𝛽2 = 0.999) 

Learning Rate Schedule OneCycleLR (Smith et al, 2017), 

two phases 

Max learning rate 7E-07 

Batch size 8 / 16 

Steps 30000 

Embedding calculation Mean pooling 

Activation ELU 

Loss function MSE 

Number format FP16 

Table 1: Hyperparameters of the models 
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The main improvement in length prediction is 

because of the use of the input length. There is a 

fairly strong relationship between the length of the 

text in the source language and the length of its 

translation, which, in general, is almost linear. We 

suggest taking this into account when the target is 

defined. Our model predicts the ratio of the input 

and output lengths, normalized by the average ratio  

for the training set. We employ standard mean 

pooling to convert the matrix of token embeddings 

obtained from the encoder into a common 

embedding of text, which will be used as features 

for the length head. 

3.4 Training Data 

The WikiMatrix dataset (Schwenk et al., 2021) 

was used as a train dataset for EN-DE, EN-RU, 

EN-CS language pairs; Neulab-TedTalks 

(Tiedemann, 2012) was used for EN-ES. The 

training sets were trimmed to 480 thousand 

examples when training the generation model and 

to 240 thousand when training a length prediction 

model. 

3.5 Pruning the tokenizer 

Due to the computational limitations we reduce the 

token set of our models for each pair of languages 

to the minimum required (all the other tokens are 

replaced with [UNK]). The effect of reduction on 

the number of model parameters is demonstrated in 

Table 2. According to our observations, it increases 

the quality of models when tested on validation 

datasets for the selected language pair, but may 

degrade the quality of general translation when 

tested on complex examples. 

Pruning the tokenizer was made before 

trimming the training sets to keep as much tokens 

as possible. 

4 Results 

The official automatic scores of our system on the 

test data are presented in the Table 3. The gap 

between our results and the leading system is 

significant.  

4.1 Model size 

We used XLM-Roberta-Large with 561 million 

parameters as the main model for generating 

translation, while other systems participating in the 

competition this and last years had tens of billions 

of parameters. This makes our model largely 

uncompetitive. Unfortunately, today there are no 

pretrained open-weight encoder models 

comparable to leading open-weight decoder 

models in terms of parameters number and pretrain 

token count. 

4.2 Quantity and quality of training data 

Due to technical limitations, we used only a small 

part of the translation datasets provided, no more 

than 480 thousand examples for each language 

pair. Increasing the training set and better cleaning 

should significantly improve the quality, especially 

when using a larger pretrained model. 
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Abstract
We participated in the constrained track for
English-Japanese and Japanese-Chinese trans-
lations at the WMT 2024 General Machine
Translation Task. Our approach was to gen-
erate a large number of sentence-level transla-
tion candidates and select the most probable
translation using minimum Bayes risk (MBR)
decoding and document-level large language
model (LLM) re-ranking. We first generated
hundreds of translation candidates from multi-
ple translation models and retained the top 30
candidates using MBR decoding. In addition,
we continually pre-trained LLMs on the target
language corpora to leverage document-level
information. We utilized LLMs to select the
most probable sentence sequentially in context
from the beginning of the document.

1 Introduction

This paper details Team-J’s system submission
for the WMT 2024 Shared Task: General Ma-
chine Translation. We participated in the English-
Japanese (En→Ja) and Japanese-Chinese (Ja→Zh)
translation tasks under the constrained track.

As with last year’s competition, the use of pub-
licly available pre-trained models and metrics eval-
uated in the WMT Metrics shared tasks, such as
COMET (Rei et al., 2020), was permitted. Fol-
lowing the Kudo et al.’s (2023) system, we em-
ployed multiple machine translation (MT) models
to generate numerous candidate sentences for each
source text. We then applied minimum Bayes risk
(MBR) decoding (Fernandes et al., 2022) using the
COMET metric to select the optimal translations.

Additionally, contrary to the previous years, the
use of large language models (LLMs) was also
permitted this year. Our primary objective was to
use these LLMs to achieve consistent document-
level machine translation. Specifically, we aimed

∗: Equal contributions.

to develop models based on LLMs and also imple-
mented a reranking system. Figure 1 provides an
overview of our system. The following sections
describe its components in detail.

2 Dataset Construction

In this section, we describe the training data, the
process of synthetic data generation, and the data
cleaning methodologies.

2.1 Provided Data
Since we participated in the constrained track, we
solely used the data officially provided by the orga-
nizer.

Bitext data. We used all the provided bitext
data. For English to Japanese translation, we
used JParaCrawl v3.0 (Morishita et al., 2022a),
News Commentary v18, Wiki Titles v3, Wiki-
Matrix (Schwenk et al., 2021), Japanese-English
Subtitle Corpus (JESC) (Pryzant et al., 2018),
The Kyoto Free Translation Task (KFTT) Cor-
pus (Neubig, 2011), and TED Talks (Cettolo et al.,
2012). For Japanese to Chinese translation, we
used JParaCrawl Chinese (Nagata et al., 2024),
News Commentary v18, Linguatools Wiki Titles,
WikiMatrix, OPUS, and Neulab TED Talks (Tiede-
mann, 2012).

Monolingual data. We also used the follow-
ing provided monolingual data for Japanese
and Chinese: News Crawl, News Commentary,
Leipzig Corpora (Goldhahn et al., 2012), Common
Crawl (Buck et al., 2014), and Extended Common
Crawl (Conneau et al., 2020; Wenzek et al., 2020).
For the continual pre-training of the language mod-
els, we only used the Common Crawl and Extended
Common Crawl due to the limited availability of
document-level data beyond these two datasets.

Development data. We used NTREX-128 (Fed-
ermann et al., 2022), Flores-200 (Team et al., 2022;
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Figure 1: System overview

Goyal et al., 2022; Guzmán et al., 2019) and the
past WMT test sets as development data. These
datasets were also employed to fine-tune the mod-
els.

2.2 Synthetic Data

We constructed synthetic data to augment the train-
ing dataset. We used the synthetic data created by
Kudo et al. (2023) for the En→Ja task, and newly
created data for the Ja→Zh task as follows. For pre-
processing, we tokenized the bitext (Section 2.1)
into truecased1 subwords using a unigram language
model with Sentencepiece (Kudo and Richardson,
2018), with “byte_fallback”, and “split_digits” op-
tions enabled following Touvron et al. (2023);
Dubey et al. (2024); Kudo et al. (2023). After
that, we created a back translation model (Sennrich
et al., 2016), which we call an initial translation
model using the training configurations in Table 7
(Appendix C) and trained it on the bitext. Then,
we translated the Chinese monolingual data (Sec-
tion 2.1) with a beam size of 10 and a length penalty
of 1.0.

2.3 Data Cleaning

We conducted data cleaning on the corpus. Specif-
ically, we applied several rules to clean and fil-
ter out noisy sequences using HojiChar (Shinzato,
2023). HojiChar is a text preprocessing tool that
mainly supports monolingual corpus in Japanese

1https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

and English, with typical filters preinstalled. We
first extended HojiChar to make it work with paral-
lel corpus and implemented a variety of rules with
careful investigation of the provided data. Table 1
shows the list of data cleaning methods we applied
on the bitext and monolingual data. Table 2 shows
the amount of data after filtering.

The following provides a detailed explanation of
the cleaning rules that were mainly implemented
using tools other than HojiChar.

Character count-based filtering. We qualita-
tively examined the Common Crawl and Extended
Common Crawl datasets. Our analysis revealed
that shorter sequences tend to be noisy. Therefore,
we discarded sequences that were less than or equal
to 200 characters for Japanese and 100 characters
for Chinese, respectively (see (26) in Table 1).
This threshold also helps us retain document-level
data that is suitable for the continual pre-training of
LLMs. To efficiently filter out shorter sequences,
we used the awk command.

Toxic content cleaning. Qualitative analysis of
the Common Crawl data revealed a significant
amount of low-quality toxic contents, such as adult
material, are included in the corpus. To address
this, we applied a toxic content filter to exclude
such samples from our training data ((9) in Ta-
ble 1). For the Japanese data, we used filters origi-
nally implemented in HojiChar.2 For the Chinese
corpus, we defined a list of toxic words based on

2DiscardAdultContentJa in HojiChar.
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Filter & Cleaner Ja Zh En-Ja Ja-Zh

(1) Discard content having identical source and target ✓ ✓
(2) Discard content with invalid unicode characters ✓ ✓ ✓ ✓
(3) Remove non-printable unicode characters ✓ ✓ ✓ ✓
(4) Apply NFKC normalization ✓ ✓ ✓ ✓
(5) Normalize space-like characters to half-width spaces ✓ ✓ ✓ ✓
(6) Restore escaped HTML symbols ✓ ✓ ✓ ✓
(7) Discard content like progress bars ✓ ✓ ✓ ✓
(8) Discard content having many square brackets ✓ ✓ ✓ ✓
(9) Discard content containing keywords for porn contents ✓ ✓
(10) Discard content containing keywords for online bulletin boards ✓ ✓
(11) Discard content containing part of sequences like word lists ✓ ✓ ✓ ✓
(12) Discard content containing having many punctuations ✓ ✓ ✓ ✓
(13) Discard content containing having many numbers ✓ ✓ ✓ ✓
(14) Reduce repeated space and punctuation characters ✓ ✓ ✓ ✓
(15) Discard content having many same consecutive characters ✓ ✓ ✓ ✓
(16) Discard content having many same consecutive N-grams ✓ ✓ ✓ ✓
(17) Discard content having less punctuations ✓ ✓
(18) Discard content having no punctuations in a sliding window of specified length ✓ ✓
(19) Discard content having low compression ratio with zlib compression ✓ ✓
(20) Discard content not in expected languages ✓ ✓ ✓ ✓
(21) Remove ellipsis symbols ✓ ✓ ✓ ✓
(22) Remove open bracket end symbols at the end of the sentence ✓ ✓ ✓ ✓
(23) Remove parentheses with no content inside ✓ ✓ ✓ ✓
(24) Remove Unicode control characters ✓ ✓ ✓ ✓
(25) Remove content starts with "&" ✓ ✓ ✓ ✓
(26) Discard too short content ✓ ✓
(27) Convert traditional Chinese to simplified Chinese ✓
(28) Exact deduplication ✓ ✓ ✓ ✓
(29) Fuzzy deduplication ✓ ✓
(30) Discard too long content ✓ ✓
(31) Discard content having too large source/target token ratio ✓ ✓
(32) Discard content having too large token/char ratio ✓ ✓
(33) Discard semantically irrelevant translations ✓ ✓

Table 1: List of data cleaning rules.

those used for the ChineseWebText (Chen et al.,
2023) dataset.

Compression rate-based cleaning. We used a
cleaning method based on the compression rate to
remove non-textual data ((19) in Table 1).3 Sam-
ples with a high compression rate typically con-
tain excessive repetitions, while those with a low
compression rate often consist of random strings.
Specifically, we calculated the compression rate for
each sample and removed those that did not fall
within a specified range.

Language detection. To ensure the collection of
data in the target language, we used language detec-
tion (20) in Table 1. Simple heuristic language
detection methods are implemented in Hojichar,
such as a method that checks for the presence of
hiragana or katakana. Alongside these simple
methods, we also used FastText-based language
detection (Joulin et al., 2017b,a).

3We referred to has_good_compression_ratio in
https://github.com/llm-jp/llm-jp-corpus/
blob/main/scripts/filters.py

Conversion of traditional Chinese to simplified
Chinese. We converted Chinese data written in
traditional characters to simplified characters to
augment the bitext data ((27) in Table 1). We
used OpenCC4 for these conversions.

Deduplication. Duplicate data in training sets
can negatively impact the performance of language
models (Lee et al., 2022). To mitigate this, we per-
formed exact deduplication using the sort com-
mand ((28) in Table 1) and fuzzy deduplication
using MinHash (Broder, 1997) ((29) in Table 1).
We used the text-dedup tool (Mou et al., 2023)
for implementation.

Bitext similarity cleaning. We performed clean-
ing based on bitext similarity using LaBSE (Feng
et al., 2022) to filter out semantically irrelevant
pairs ((33) in Table 1). We set the lenient thresh-
old of 0.5 for bitext and more strict threshold of 0.7
to synthetic data.

4https://github.com/BYVoid/OpenCC
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# samples # tokens

LLMs
Monolingual Ja 88.4M 35.8B
Monolingual Zh 137.4M 29.9B
Parallel En-Ja 29.8M 4.0B
Parallel Ja-Zh 3.8M 506.3M

Encoder-Decoder
Synthetic En-Ja 587M 12.9B
Synthetic Ja-Zh 291M 10.3B
Parallel En-Ja 28.2M 730.0M
Parallel Ja-Zh 6.3M 163.6M

Table 2: The amount of training data used for LLMs
and Encoder-Decoder MT models. The token count for
LLMs is based on the tokenizer of Mistral-7B, and the
count for Encoder-Decoder MT models is based on the
subwords on the target side.

3 Primary Translation Models

We developed translation models using two ar-
chitectures: Encoder-Decoder and Decoder-only
(LLMs).

3.1 Encoder-Decoder MT Models

For En→Ja, we used the existing translation mod-
els created by Morishita et al. (2022b); Kudo et al.
(2023). For Ja→Zh, we newly constructed transla-
tion models through pre-training and fine-tuning.

Pre-training. We trained the pre-training model
using the pre-training configuration in Table 7 (Ap-
pendix C). For the training data, we used the bitext
(Section 2.1) and the synthetic data (Section 2.2)
after applying data cleaning (Section 2.3). We
performed upsampling to achieve a 1 : 4.7 ratio
between the bitext and the synthetic data. More-
over, we applied the tagged back-translation tech-
nique (Caswell et al., 2019), adding a special token
<BT> at the beginning of the source sentences in
the synthetic data and storing this tag in the vocab-
ulary dictionary.

Fine-tuning. After pre-training, we conducted
fine-tuning using the development data (Sec-
tion 2.1) with the fine-tuning configuration in Ta-
ble 7 (Appendix C).

3.2 LLM-based MT Models

We used the Llama2-13B (Touvron et al., 2023) and
Mistral-7B (Jiang et al., 2023), which are permitted
for use in the constrained track. These LLMs were
used only for the En→Ja direction and not for the
Ja→Zh direction. For Mistral-7B, we also prepared
a variant with an expanded vocabulary to improve

its Japanese generation capability. For more details
on vocabulary expansion, please refer to Section B.

Continual pre-training. Although the datasets
used for training Llama2 and Mistral are not pub-
licly disclosed, it is generally believed that they
are predominantly in English. Consequently, con-
tinual pre-training has been conducted to enhance
performance on Japanese tasks (Fujii et al., 2024a;
Okazaki et al., 2024). This approach has been re-
ported to improve English-Japanese translation per-
formance. To further boost Japanese language ca-
pability, we also performed continual pre-training
using the cleaned monolingual corpus detailed in
Section 2.3. The training configurations are shown
in Table 8, 9, and 10.

Supervised fine-tuning After continual pre-
training, we conducted supervised fine-tuning for
the translation task. In this phase, we used the
cleaned bitext corpus and development data de-
scribed in Section 2. Initially, we fine-tuned the
model using the bitext corpus, followed by addi-
tional fine-tuning with the development data which
is relatively clean. To prepare for the Stepwise
MBR-Enhanced LLM decoding detailed in Sec-
tion 4.2, we used all combinations of the first n sen-
tences from each document as training samples for
the development data fine-tuning. Figure 2 shows
the prompt template, and Table 8, 9, and 10 shows
hyperparameters used in the training process.

Preference learning. To align the translation re-
sults with human preferences, we conducted prefer-
ence learning for Mistral-7B. 5 We used Contrastive
Preference Optimization (CPO) (Xu et al., 2024)
as the preference learning algorithm. In prelimi-
nary experiments, we also tried Direct Preference
Optimization (DPO) (Rafailov et al., 2023) as an
alternative to CPO. However, despite the decrease
in loss during training, we observed that the DPO
often resulted in output collapse (complete loss
of input-output correspondence) during decoding.
Therefore, we selected CPO as our preference learn-
ing.

Let LNLL(πθ) and Lpref(πθ) be the negative log-
likelihood of πθ and preference of output given by

5Due to computational resource limitations, we applied
LoRA fine-tuning (Hu et al., 2022).
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次の英語を日本人のネイティブのように日本語に翻訳してください。 原文: {src} 訳文: {tgt}

Figure 2: The general prompt for supervised fine-tuning. {src} denotes the source sentence. {tgt} denotes the target
sentence.

πθ, respectively, that is:

LNLL(πθ) = −E(s,r)∼D [log πθ(r | s)]
Lpref(πθ) = −E(s,r,yr)∼D [log σ(βd)]

d = log πθ(r | s)− log πθ(ŷ | s)
, (1)

where σ is the Sigmoid function. Then, CPO mini-
mizes the following objective function during train-
ing:

min
θ

[Lpref(πθ) + αLNLL(πθ)] . (2)

Here, D =
{(

s(i), r(i), ŷ(i)
)}N

i=1
represents the

dataset. πθ denotes a parameterized policy, and α
and β are hyperparameters. We used the develop-
ment data for training in preference learning. In
this context, s corresponds to the source text from
the development data, r to the reference text from
the development data, and ŷ to the output of the
model before preference learning.

To prevent the model output from collapsing, we
introduced a minor modification to the CPO ob-
jective function. Specifically, we implemented a
warm-up phase to reduce the impact of the prefer-
ence learning loss at the beginning of training. This
approach is formulated as follows:

min
θ

[
min

(
1,

i

iw

)
Lpref(πθ) + αLNLL(πθ)

]
.

(3)
Here, i represents the number of training steps, and
iw denotes the number of warm-up steps for the
preference learning loss.

4 Decoding

This year’s test set consists of segments with mul-
tiple sentences in context. Since most bitext cor-
pora are at the sentence level, translating larger
segments in one shot is not preferable. Thus, we
initially divided each segment in the test set into
individual sentences using spaCy (Honnibal et al.,
2020).6 In case the resulting split was overly short,
we combined texts from its adjacent splits.

6We used “en_core_web_lg” model for English and
“ja_core_news_lg” model for Japanese.

hypotheses pseudo-references

top-p sampling epsilon sampling

En→Ja 1272.15 3288.5 3421.99
Ja→Zh 261.84 884.11 3108

Table 3: The average number of hypotheses and pseudo
references for each source sentence generated by the
Encoder-Decoder MT models. Note that due to errors
during decoding, the number of hypotheses and pseudo-
references generated for a single source sentence varies.

4.1 MBR Decoding
We apply minimum Bayes risk (MBR) decod-
ing (Eikema and Aziz, 2020) to select high-quality
translations from the set of hypotheses gener-
ated by the multiple translation models using
MBRS (Deguchi et al., 2024). Let Y be the out-
put space of translation models. We use the
Monte Carlo method to estimate the expected util-
ity (Eikema and Aziz, 2022), as follows:

yMBR = argmax
h∈H

E
r̂∈R̂

[u(h, r̂)] ,

= argmax
h∈H

1

|R̂|
∑

r̂∈R̂
u(h, r̂), (4)

where yMBR is the selected translation by MBR
decoding, H ⊆ Y is the hypotheses set, and R̂
is the multiset (a.k.a bag) of translation samples7,
called “pseudo-references”. u : Y × Y → R is
the utility function that returns scores of the trans-
lation quality of the hypothesis under the given
pseudo-references, which is formally defined as
h ⪰ h′ ⇐⇒ u(h, r̂) ≥ u(h′, r̂) where ⪰ de-
notes the preference relation. We employ COMET-
228 (Rei et al., 2020, 2022) for the utility function
u. Therefore, the MBR decoding using COMET-22
is formulated as follows:

yMBR = argmax
h∈H

1

|R̂|
∑

r̂∈R̂
COMET-22(s, h, r̂).

(5)
Note that COMET-22 also takes the source sen-
tence s as input.

7The support set is a subset of the output space, i.e.,
Supp(R̂) ⊆ Y

8https://huggingface.co/Unbabel/
wmt22-comet-da
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In our system, we select the 30-best translations
using MBR decoding instead of selecting the 1-
best translation as shown in Equation 4 to deter-
mine the final decision using another algorithm
than MBR decoding. In other words, MBR decod-
ing is used to prune translation hypotheses. We
generate hypotheses for each source sentence using
an ensemble of Encoder-Decoder MT models with
beam search decoding. In addition, we prepare two
types of pseudo-references by decoding with top-p
sampling (p = 0.9) and epsilon sampling (Freitag
et al., 2023) (ϵ = 0.02). The number of hypotheses
and pseudo-references used in MBR decoding is
presented in Table 3.

4.2 Stepwise MBR-Enhanced LLM Decoding

Algorithm 1: Stepwise MBR-Enhanced
LLM decoding
Input: Dsrc = {s0, s1, . . . , sn}
Output: Dhyp = {h0, h1, . . . , hn}

1 Dtgt ← {};
2 Shist ← {};
3 for i← 0 to n do

// Generate candidates for
si

4 H ← LLMsMT(si, Shist, Dtgt);
5 hi ← MBR(H,H);
6 Dtgt ← Dhyp ∪ {hi};
7 Shist ← Shist ∪ {si};
8 return Dhyp

During our preliminary experiments with fine-
tuned LLMs, we observed frequent issues where
some sentences were skipped during decoding.
This led to discrepancies in the number of sen-
tences between the source and the translated
output. Additionally, we observed samples
where the same token was generated repeatedly.
To address these issues, we propose a decod-
ing method called Stepwise MBR-Enhanced
LLM Decoding (Algorithm 4.2). This method
translates documents sentence by sentence, consid-
ering the overall document context (see Figure 3).
This approach resolves the issue of mismatched
sentence counts between the source and hypoth-
esis. Furthermore, we applied MBR decoding
to achieve high-quality sentence-level translation
without repeated tokens or other errors (line 5 of
Algorithm 4.2). We used the outputs of four LLMs
for this method. Specifically, we used four LLMs

with different settings: Mistral-7B with and without
vocab expansion and with and without preference
learning.

5 LLM Reranking

As mentioned in Section 3 and Section 4, primary
translation models decode at the sentence level. To
improve the overall document-level consistency of
the translation results, we performed reranking us-
ing LLMs. We used the top 30 highest-scoring
hypotheses from MBR decoding as the candidate
pool and reranked them based on context-aware
scoring. Specifically, we used the LLMs fine-tuned
for the translation task described in Section 3.2
to calculate the likelihood of each hypothesis with
context information. We repeated this process to se-
lect hypotheses with the highest likelihood scores,
resulting in the final translation output. The details
are described in Algorithm 2. In our system, we use
supervised fine-tuned Mistral-7B as the reranker,
and we set the beam size to b = 2.

Algorithm 2: LLM Reranking Algorithm
Input: Dsrc = {s0, s1, . . . , sn}
Input: Dhyps = {H0, H1, . . . ,Hm}
Input: b: Beam size
Output: Dhyp = {h0, h1, . . . , hn}

1 Cbeam ← {(∅,−∞)};
2 P ← ∅;
3 for H ∈ Dhyps do
4 for (c, _) ∈ Cbeam do
5 for h ∈ H do
6 ph ← LLMMT(Dsrc, c ∪ {h});
7 P ← P ∪ {(c, h, ph)};

8 Tb ← Topb (P, with respect to ph);
9 Cbeam ←

{(c ∪ {h}, ph) | (c, h, ph) ∈ Tb};
10 (c∗, p∗c)← argmax(c, pc)∈Cbeam

pc;
11 Dhyp ← c∗;
12 return Dhyp

6 Post processing

Finally, we applied the following postprocessing
rules to the selected translations. The rules are
designed based on alignment errors commonly seen
in the model translations of the development sets.

• Apply NFKC normalization
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次の英語を日本人のネイティブのように日本語に翻訳してください。
原文: {src0} {src1} {src2} 訳文: {hyp0} {hyp1}

Figure 3: The prompt for stepwise MBR-enhanced LLM decoding from English to Japanese. This is an example
for translating {src2}. {src0} and {src1} correspond to Shist in Algorithm 1, and {src2} corresponds to si in
Algorithm 1. Line breaks are added for readability; there are no them in the actual prompt.

• Append an emoji to the end of the hypotheses
if it’s present at the end of the source sentence

• Replace Japanese brackets (「」) to its Chi-
nese counterparts (“”) (Ja→Zh only)

• Replace Japanese commas (、) to its Chinese
counterparts (,) (Ja→Zh only)

• Remove whitespaces before and after paren-
theses

• Remove whitespaces before and after com-
mas, periods, exclamations, and question
marks

• Fix letter case of alphabets in the hypotheses
to match its counterparts in the source sen-
tence

• Fix punctuations in the hypotheses to match
their counterparts in the source sentence

7 Post Evaluation

We evaluated the performance of our system using
automatic evaluation metrics. Specifically, using
this year’s test set as the evaluation data, we con-
ducted the evaluation using COMET-229 (Rei et al.,
2022), MetricX-XL10 (Juraska et al., 2023), and
CometKiwi-XL11 (Rei et al., 2023) as the evalu-
ation metrics. Note that, since several segments
in this year’s WMT test set contain multiple sen-
tences, the scores could not be computed at the
sentence level.

The results of the post-evaluation from En→Ja
are presented in Table 4, while those for the Ja→Zh
direction are shown in Table 5. In these tables,
“VE” refers to the vocabulary-expanded model, and
“CPO” refers to the model where Contrastive Pref-
erence Optimization was performed. Addition-
ally, “EncDec” represents outputs from Encoder-
Decoder MT models, “MBR (top-p)” refers to the
case where MBR decoding was performed using
pseudo references generated by top-p sampling,
and “MBR (epsilon)” refers to the case where ep-
silon sampling was used.

9https://huggingface.co/Unbabel/
wmt22-comet-da

10https://huggingface.co/google/
metricx-23-xl-v2p0

11https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xl

Performance of the LLM-based MT models.
Table 4 shows that the translation performance of
Llama2-13B is lower than that of Mistral-7B. One
potential reason for this is the limited amount of
data used for continual pre-training of Llama2-13B
due to constraints in computational resources.

Efficiency of vocabulary expansion. Compar-
ing the models with and without vocabulary ex-
pansion ((b) vs. (d)), there is no significant
difference in performance. However, as shown in
Table 13, the model with vocabulary expansion re-
quires fewer training tokens than the model without
it in our settings. The generation speed is also faster
for the model with vocabulary expansion compared
to the one without it. Thus, we believe vocabulary
expansion could be a good option for improved
inference efficiency.

CPO is effective but challenging. Comparing
the performance before and after preference learn-
ing, the model with vocabulary expansion shows
improvement across all evaluation metrics ((d) vs.
(e)). On the other hand, the model without vocab-
ulary expansion exhibits a significant decrease in
performance for COMET-22 and CometKiwi-XL
((b) vs. (c)), leading to inconsistent results.

Qualitative analysis of outputs from the model
without vocabulary expansion (i.e., (c)) revealed
instances where decoding of byte-fallbacked text
failed, resulting in text being replaced with replace-
ment characters. This may be due to insufficient
adjustment of the hyperparameters during CPO
training.

Difference in pseudo references for MBR decod-
ing. Comparing settings (A) vs. (B) and (C),
we observe that the performance improves when
using MBR decoding compared to the 1-best out-
put from the ensemble of models12. The difference
in performance with regard to the pseudo-reference
generation algorithms ((i) vs. (j) and (B) vs.
(C)) was not significant.

12In the En→Ja, we use results from multiple models with
different vocabularies for MBR decoding; hence we cannot
compare the performance with the 1-best output from the
ensemble of all transformers.
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COMET-22↑ MetricX-XL↓ CometKiwi-XL↑
(a) Llama2-13B 0.820 3.050 0.677
(b) Mistral-7B 0.841 2.806 0.711
(c) Mistral-CPO-7B 0.651 2.254 0.557
(d) Mistral-VE-7B 0.836 2.881 0.695
(e) Mistral-VE-CPO-7B 0.866 2.254 0.732
(f) NT5 (Morishita et al., 2022b) 0.847 2.697 0.718

(g) Stepwise MBR-Enhanced LLM Decoding 0.882 2.052 0.729
(i) EncDec→MBR (top-p) 0.885 2.263 0.737
(j) EncDec→MBR (epsilon) 0.884 2.264 0.743
(k) EncDec→MBR (top-p)→ LLM Reranking 0.881 2.269 0.740

Table 4: Results of post evaluation in En→Ja.

COMET-22↑ MetricX-XL↓ CometKiwi-XL↑
(A) EncDec ensemble 0.818 3.550 0.548
(B) EncDec→MBR (top-p) 0.841 3.168 0.570
(C) EncDec→MBR (epsilon) 0.841 3.230 0.566

Table 5: Results of post evaluation in Ja→Zh.

Performance of stepwise MBR-enhanced LLM
decoding. Stepwise MBR-Enhanced
LLM Decoding achieves the highest score on
MetricX-XL. Additionally, compared to using
a single LLM, the scores of COMET-22 and
MetricX-XL improved. This improvement is likely
because generating hypotheses at each step with
MBR decoding helps eliminate obvious errors,
such as repeated tokens.

Effectiveness of LLM reranking. LLM Rerank-
ing did not result in any significant improvements
according to automatic evaluation metrics. How-
ever, we noted improved consistency within seg-
ments qualitatively. We intend to evaluate perfor-
mance through human evaluation as part of future
work.

8 Submission System

For the final submission system, we adopted system
(k) for the En→Ja direction and system (B) for
the Ja→Zh direction. However, particularly in the
En→Ja direction, different systems ranked highest
across various automatic evaluation metrics, leav-
ing us uncertain about which system to select even
after post-evaluation. Thus, further refinement of
automatic evaluation metrics is essential to develop
a superior system.

9 Negative Results and Discarded Trials

Poor performance of LLMs for Japanese-to-
Chinese translation. We conducted continual
pre-training and supervised fine-tuning of LLMs
for Ja→Zh translation. However, the translation
performance did not meet our expectations, leading
us to exclude it from the submission system (see
Table 5 for post evaluation results). This shortfall
likely resulted from our computational resource
constraints, which limited continual pre-training to
Chinese datasets only. For further details, please
refer to Section A.

Use of LLM outputs as candidates for MBR de-
coding. We also explored the inclusion of LLM
outputs in the candidate pool for MBR Decoding.
However, we observed a decrease in translation
quality when these outputs were included, leading
us to exclude this approach from the final system.
This decline in quality can be attributed to two
main factors: i). a substantial difference in the dis-
tribution between the outputs generated by LLMs
and the pseudo references produced by Encoder-
Decoder MT models, and ii). inadequate tuning of
hyperparameters during decoding with LLMs.

10 Conclusion

This paper described our systems for the con-
strained track of the WMT 2024 Shared Task: Gen-
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eral Machine Translation. We developed transla-
tion systems for En→Ja and Ja→Zh. To achieve
consistent document-level machine translation, we
concentrated on investigating the application of
LLMs, which have become available for use this
year, employing methods such as LLM Reranking
and Stepwise MBR-Enhanced LLM Decoding.

Our submitted system consists of the following
steps: i) First, we generate translations using mul-
tiple Encoder-Decoder MT models. ii) Next, we
narrow down the generated candidates by selecting
the optimal translation through MBR decoding. iii)
Finally, we apply LLM reranking to incorporate
contextual information in order to determine the
final output (only for En→Ja). The results from the
post-evaluation did not provide quantitative con-
firmation of the final submission system’s effec-
tiveness. However, we did observe a qualitative
improvement in consistency within the documents.
We hope for future research on better automatic
evaluation metrics that can assess these document-
level translation performances.
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请像中国本地人一样将以下日语翻译成中文。

原文: {src}译文: {tgt}

Figure 4: The general prompt for supervised fine-tuning.
{src} denotes the source sentence. {tgt} denotes the
target sentence. Line breaks are added for readability;
there are no them in the actual prompt.

COMET-22↑ MetricX↓ CometKiwi↑
Llama2-13B 0.754 4.763 0.503
Mistral-7B 0.795 4.410 0.547

EncDec ensemble 0.818 3.550 0.548

Table 6: Post evaluation results of the LLM trained
for Ja→Zh translation. Compared to the ensemble of
Encoder-Decoder MT models, the performance of the
LLM for Ja→Zh translation was not sufficient.

A Japanese-Chinese LLM

Training configurations. We trained LLMs for
Ja→Zh translation, although these were not in-
cluded in the final system. Due to time and com-
putational resource constraints, we only conducted
continual pre-training and supervised fine-tuning
on Chinese monolingual corpora. During super-
vised fine-tuning, we used the template shown in
Figure 4. Table 12, 13 lists the hyperparameters
used for training in the Ja→Zh direction.

Post evaluation. We conducted evaluations for
the LLMs trained for the Ja→Zh translation. Ta-
ble 6 presents the results. The performance of the
LLMs in the Ja→Zh translation was insufficient
compared to the ensemble of Encoder-Decoder MT
models. This is likely because we were limited to
continual pre-training using only Chinese corpora
due to computational resource constraints.

B Vocabulary Expansion for LLM

As described in Section 3.2, we aimed to improve
the Japanese language generation capability of
Mistral-7B by expanding the model’s vocabu-
lary. Here, we provide details on the vocabulary
expansion.

Construction of additional vocabulary. We
first constructed a Japanese vocabulary using
the unigram algorithm of the Sentencepiece
tool (Kudo and Richardson, 2018). This vocabu-
lary was trained on a subset of 30,000,000 samples
from the Japanese Monolingual Corpus. We set
the vocabulary size to 27,000. During vocabulary

training, we enabled the options "byte_fallback"
and "split_digits".

Vocabulary initialization. We initialized the em-
beddings for the additional vocabulary using the
weighted average of the original Mistral embed-
dings. The weights were determined based on the
similarity scores between the new and original Mis-
tral vocabularies, computed by LaBSE (Feng et al.,
2022). The process is described by the following
equation:

vnew =

N∑

i=1

(
exp(wi)∑N
j=1 exp(wj)

)
vi

=
N∑

i=1

softmax(wi)vi

(6)

Here, vnew represents the embedding for the ad-
ditional vocabulary, wi is the similarity score be-
tween the additional vocabulary and vocabulary
entry i as calculated by LaBSE, vi is the vector of
the existing vocabulary entry i, and n is the size of
the original vocabulary. This method was also used
to initialize the language modeling head.

Given our focus on the English-to-Japanese
translation task, vocabularies other than English
and Japanese are considered less critical. There-
fore, we replaced any vocabulary not identified as
Japanese, English, or special tokens with the new
additional vocabulary. The determination of the
language for each token followed these rules:

Japanese: Tokens consisting of hiragana,
katakana, common-use kanji, symbols, JIS
level 1 kanji, and ASCII characters

English: Tokens consisting solely of ASCII char-
acters

Special tokens: Tokens split by byte fallback, as
well as bos, eos tokens, etc.

Consequently, we expanded the vocabulary to
51,200.

Vocabulary warmup training. To address incon-
sistencies introduced by adding new vocabulary,
prior research has proposed gradually training the
model while fixing specific parameters after adding
the vocabulary (Kim et al., 2024). We adopted
a similar method to resolve these inconsistencies.
Initially, we fixed the parameters of all transformer
layers except for the embedding layer and the lan-
guage modeling head and conducted the training.
The hyperparameters used during this initial train-
ing phase are detailed in Table 11.
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C Training Hyperparameters

The hyperparameters during the training of each
model are shown in Table 7- 13.

Initial Translation Model

Subword Size 32,000
Architecture Transformer (big) with 6 layers,

Encoder and Decoder FFN size of
8,192

Optimizer Adam
β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8,
weight_decay = 0.0

Learning Rate Schedule Inverse square root decay, Cosine
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.1
Gradient Clip 1.0
Batch Size 1,048,576 tokens
Max Number of Updates 50,000 steps
Averaging Save a checkpoint every 500 steps

and average the last ten
Implementation fairseq (Ott et al., 2019)

Pre-training Configuration

Subword Size 16,000
Architecture 1 Transformer (big) with 9 layers,

Encoder FFN size of 16,384, and
Decoder FFN size of 4,096

Architecture 2 Transformer (big) with 9 layers,
Encoder and Decoder FFN size of
8,192

Optimizer Adam
β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−8,
weight_decay = 0.0

Learning Rate Schedule Inverse square root decay, Cosine
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.1
Gradient Clip 0.1
Batch Size 1,048,576 tokens
Max Number of Updates 50,000 steps
Averaging Save a checkpoint every 500 steps

and average the last ten
Implementation fairseq (Ott et al., 2019)

Fine-tuning Configuration

Learning Rate Schedule Fixed
Warmup Steps N/A
Max Learning Rate 1× 10−5

Dropout 0.2
Gradient Clip 1.0
Batch Size 14,400 tokens
Max Number of Updates 1,000 steps
Averaging Save a checkpoint every ten steps

and average the last ten

Table 7: List of hyper-parameters. We used the initial
translation model to generate synthetic data, the pre-
training configuration to build the models described in
Section 3.1, and the fine-tuning configuration to develop
the models for submission. We created two models for
pre-training and fine-tuning, labeled as “Architecture 1”
or “Architecture 2,” and used them for ensembling. The
hyperparameters listed in the fine-tuning configuration
represent only the differences from the pre-training con-
figuration.
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Llama2-13B Pretraining

Vocab Size 32,000
Train Steps 10,000
Batch Size 1,572,864 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 250
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 100 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Llama2-13B Supervised Finetuning

Vocab Size 32,000
Train Steps 3,500
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 175
Max Learning Rate 3× 10−6

Min Learning Rate 3× 10−7

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 100 steps

and average the last three
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 8: A list of hyperparameters used when training
Llama2-13B on the En→Ja task.

Mistral-7B Pretraining

Vocab Size 32,000
Train Steps 20,000
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 500
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Supervised Finetuning

Vocab Size 32,000
Train Steps 3,100
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 155
Max Learning Rate 1× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last three
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Preference Learning

Vocab Size 32,000
Train Steps 250
Batch Size 144 samples
Learning Rate Schedule Constant
Learning Rate 1× 10−5

Optimizer Adam
β1 = 0.9, β2 = 0.999,
ϵ = 1× 10−8,
weight_decay = 0.1

Gradient Clip 1.0
CPO β 0.1
CPO α 1.5
iw (See Section 3.2) 740
Lora r 16
Lora α 32
Lora Dropout 0.1
Lora Target Layetr All linear layer
Implementation Transformers (Wolf et al.,

2020), TRL (von Werra et al.,
2020)

Table 9: A list of hyperparameters used when training
Mistral-7B on the En→Ja task.

224



Mistral-7B (vocab expanded) Pretraining

Vocab Size 51,200
Train Steps 12,283
Batch Size 1,376,256 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 300
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B (vocab expanded) Supervised Finetuning

Vocab Size 51,200
Train Steps 2,000
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 100
Max Learning Rate 1× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last two
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B (vocab expanded) Preference Learning

Vocab Size 51,200
Train Steps 250
Batch Size 144 samples
Learning Rate Schedule Fixed
Learning Rate 1× 10−5

Optimizer Adam
β1 = 0.9, β2 = 0.999,
ϵ = 1× 10−8,
weight_decay = 0.1

Gradient Clip 1.0
CPO β 0.1
CPO α 1.5
iw (See Section 3.2) 740
Lora r 16
Lora α 32
Lora Dropout 0.1
Lora Target Layer All linear layers
Implementation Transformers (Wolf et al.,

2020), TRL (von Werra et al.,
2020)

Table 10: A list of hyperparameters used when training
Mistral-7B with vocabulary expansion on the En→Ja
task.

Mistral-7B (vocab extended) Vocabulary Warmup

Vocab Size 51,200
Train Steps 1800
Batch Size 1,376,256 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 50
Max Learning Rate 2× 10−4

Min Learning Rate 6.6× 10−7

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 11: A list of hyperparameters used when training
Mistral-7B with vocabulary expansion for vocabulary
warmup on the En→Ja task.

Llama2-13B Pretraining

Vocab Size 32,000
Train Steps 10,000
Batch Size 1,572,864 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 250
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 100 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Llama2-13B Supervised Finetuning

Vocab Size 32,000
Train Steps 500
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 25
Max Learning Rate 3× 10−6

Min Learning Rate 3× 10−7

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 25 steps

and average the last three
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 12: A list of hyperparameters used when training
Llama2-13B on the Ja→Zh task.
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Mistral-7B Pretraining

Vocab Size 32,000
Train Steps 20,000
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 500
Max Learning Rate 2× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 200 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Mistral-7B Supervised Finetuning

Vocab Size 32,000
Train Steps 420
Batch Size 1,310,720 tokens
Learning Rate Schedule Cosine (Loshchilov and Hutter,

2017)
Warmup Steps 25
Max Learning Rate 1× 10−5

Min Learning Rate 1× 10−6

Optimizer Adam
β1 = 0.9, β2 = 0.95,
ϵ = 1× 10−6,
weight_decay = 0.1

Gradient Clip 1.0
Averaging Save a checkpoint every 10 steps

and average the last five
Implementation Transformers (Wolf et al.,

2020), llm-recipies (Fujii
et al., 2024b)

Table 13: A list of hyperparameters used when training
Mistral-7B on the Ja→Zh task.
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Abstract

This paper presents the submission from Global
Tone Communication Co., Ltd. and Dalian Uni-
versity of Technology for the WMT24 shared
general Machine Translation (MT) task at the
Conference on Empirical Methods in Natural
Language Processing (EMNLP). Our partici-
pation encompasses two language pairs: En-
glish to Japanese and Japanese to Chinese. The
systems are developed without particular con-
straints or requirements, facilitating extensive
research in machine translation. We emphasize
back-translation, utilize multilingual transla-
tion models, and apply fine-tuning strategies
to improve performance. Additionally, we in-
tegrate both human-generated and machine-
generated data to fine-tune our models, leading
to enhanced translation accuracy. The auto-
matic evaluation results indicate that our sys-
tem ranks first in terms of BLEU score for the
Japanese to Chinese translation.

1 Introduction

In this study, we employ fairseq (Ott et al., 2019)
as our development framework and adopt the trans-
former (Vaswani et al., 2017) as the main architec-
ture. The primary ranking index for the submitted
systems is BLEU (Papineni et al., 2002), which
also serves as the evaluation metric for our transla-
tion system via sacreBLEU1, consistent with our
methodology from the previous year.

For data preprocessing, we conduct punctuation
normalization, tokenization, and Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015) across all lan-
guages involved. Furthermore, we applied a true-
case model for English, tailored to the specific lin-
guistic features of each language. Regarding tok-
enization, we utilize Jieba2 for Chinese, Mecab3

for Japanese, and the Moses tokenizer.perl (Koehn
∗Corresponding Author

1https://github.com/mjpost/sacrebleu
2https://github.com/fxsjy/jieba
3https://github.com/taku910/mecab

et al., 2007) for English. Additionally, we incorpo-
rate knowledge-based rules along with a language
model to cleanse parallel data, monolingual data,
and synthetic data.

For the multilingual translation model, we con-
solidate all languages into a single model and en-
hance it with an English to Chinese parallel corpus
to enrich the language information.

The remainder of this paper is structured as fol-
lows: Section 2 discusses the translation task and
provides dataset statistics. Section 3 describes
our baseline systems and introduces the proposed
multilingual translation model. The data selection
methodology is elaborated in Section 4. Section 5
presents experiments conducted on all translation
directions, addressing data filtering, model archi-
tectures, back-translation, joint training strategies,
adaptations of the multilingual model, fine-tuning,
data selection, and ensemble decoding. Section
6 analyzes the results, offering insights into the
efficacy of various techniques. Finally, Section 7
concludes the paper.

2 Task Description

This task focuses on bilingual text translation, with
the provided data elaborated in Table 1, which in-
cludes both parallel and monolingual data. For the
English-Japanese directions, the primary sources
of parallel data include WikiMatrix (Schwenk et al.,
2019), CCAligned (Rozis and Skadin, š, 2017),
JESC (Pryzant et al., 2017), JParaCrawl v3.0 (Mor-
ishita et al., 2022), LinguaTools-WikiTitles (Tiede-
mann, 2012), News Commentary v16, and XLEnt
(Tiedemann, 2012). For the Japanese-Chinese di-
rection, the main parallel data is sourced from
CCAligned, JParaCrawl, LinguaTools-WikiTitles,
News Commentary v16, WikiMatrix, and XLEnt.
Monolingual data comprises News Crawl (Kocmi
et al., 2022) in English, Japanese, and Chinese;
News Commentary in English, Japanese, and
Chinese; and Europarl v10 in English. We uti-
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Language Number of Sentences
en-ja parallel data 85.2M
ja-zh parallel data 14.4M
en monolingual data 168M
ja monolingual data 22.8M
zh monolingual data 23.9M
en-ja development set 1000
ja-zh development set 1012

Table 1: Task Description

lized the provided development set from new-
stest2020 for English-Japanese and the FLoRes101
(NLLB Team, 2022) dataset for Japanese-Chinese.

3 Bilingual Baseline Model and
Multilingual Translation Model

To establish a robust baseline for comparison
with the multilingual model, we utilize the
transformer_wmt_en_de as our bilingual baseline
model, consisting of 24 encoder layers and 24 de-
coder layers. The multilingual translation model
is designed to closely resemble the GTCOM2023
(Zong, 2023) model, referred to as the X to X
model. To achieve superior translation quality,
we include the English-Chinese parallel corpus as
the primary auxiliary language pair to enhance lin-
guistic information. We train a single multilingual
model that encompasses all translation directions
while applying joint Byte Pair Encoding (BPE) sep-
arately for all languages.

4 Data Selection

Similar to the last year, we use source test sets to
train a text classification model based on RoBERTa
(Liu et al., 2019). Specifically, we treat the in-
domain test set as positive examples and select an
equivalent amount of sentence pairs from the out-
of-domain test set as negative examples. We fine-
tune RoBERTa on this labeled dataset to develop a
binary classifier capable of effectively distinguish-
ing between in-domain and out-of-domain data.
This classifier aids in selecting domain-specific
training data from the general training corpus, with
the chosen in-domain training data subsequently
used to fine-tune the multilingual neural machine
translation model.

Additionally, we also use prompt learning to
explore an alternative data selection method. We
develop a prompt template and leverage the gen-

erative capabilities of Meta-Llama-3-8B-Instruct 4

to create a domain classifier using loRA (Hu et al.,
2021). The prompt template mirrors that used in
GTCOM2023 from the last year, shows in Table
2. Specifically, we extract 800 sentences from the
development set which belong to the news, social,
e-commerce, or conversation domains. We manu-
ally select 200 sentences from the training set that
do not match these domains or are of inferior qual-
ity, categorizing them as "other." We then utilize
these 1,000 labeled examples to fine-tune the Meta-
Llama-3-8B-Instruct model in loRA. The resulting
prompt-based classifier effectively differentiates
between domains in the training data. Sentences
predicted as "News," "Social," "E-commerce," and
"Conversation" are classified as in-domain data,
while those labeled as "Other" are considered out-
of-domain data.

5 Experiment

This section outlines the step-by-step experiments
we conducted, with the entire workflow depicted in
Figure 1.

• Data Filtering: The data filtering techniques
largely replicate those utilized last year, incor-
porating human rules, language models, and
repetition cleaning.

• Baseline: Our baseline is constructed using
the transformer big architecture, which com-
prises 24 encoder layers and 24 decoder lay-
ers.

• Back-translation: We employ the best trans-
lation model to translate target sentences back
to the source side, cleaning synthetic data us-
ing a language model. This process includes
translating each language pair featured in the
multilingual translation model. We combine
the cleaned back-translation data with parallel
sentences and train the multilingual transla-
tion model accordingly.

• Joint Training: We repeat the back-
translation step using the optimal model until
no further improvements are observed.

• Multilingual Translation Model: A single
model is trained for all translation directions,
with each direction utilizing joint BPE and a

4https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct
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Instructions

Please determine the domain to which the given sentence belongs based on the
following criteria.
1. Sentence Correctness: If the sentence is incomplete, incoherent, or grammatically
incorrect, label it as "Other" domain. If the sentence is complete, fluent, and
grammatically correct, proceed to the next step.
2. Domain Identification: Analyze the content of the sentence to identify the possible
domain it belongs to. Consider the following domains: News, Social, E-commerce,
Conversation, and Other. If the sentence shows clear indications of being from a
specific domain, label it accordingly, otherwise label it as "Other" domain.
Please label the sentence with the appropriate domain:
- If the sentence is from the News domain, label it as "News".
- If the sentence is from the Social domain, label it as "Social".
- If the sentence is from the E-commerce domain, label it as "E-commerce".
- If the sentence is from the Conversation domain, label it as "Conversation".
- If the sentence does not fit any specific domain or is incorrect, label it as "Other".

Sentence Sunday Best: Enter 1880s New York in HBO’s "The Gilded Age"
Domain News

Table 2: Prompt Template.

Figure 1: The work flow of GTCOM machine translation competition systems

shared vocabulary. The multilingual transla-
tion model consists of 24 encoder layers and
24 decoder layers, employing the transformer
big architecture.

• Fine-tuning: The multilingual translation
model is fine-tuned for each direction and bi-
direction separately. For instance, we fine-
tuned en2ja and ja2en on the multilingual
translation model and fine-tuned en2ja on the
multilingual translation model for English to
Japanese separately.

• Data Selection: The model described in the
Data Selection section is employed to choose
a domain-specific training dataset, which is
then fine-tuned on the multilingual translation

model.

• Ensemble Decoding: We utilize the GMSE
Algorithm (Deng et al., 2018) to select models,
aiming for optimal performance.

6 Results and Analysis

Table 3 displays the BLEU scores evaluated on
the development set for English to Japanese and
Japanese to Chinese. As indicated in the table,
back-translation remains the most effective data
augmentation technique for enhancing translation
quality from a data perspective. The multilingual
translation model also demonstrates significant im-
provements across all translation directions. As
shown in Table 4, our prompt learning strategy is
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Model en2ja ja2zh
Baseline 26.36 15.07
+ Back-translation 27.26 20.75
Multilingual Translation Model 26.50 15.20
+ Back-translation 27.40 21.24
+ Bilingual Fine-tuning 27.51 21.34
+ Single Fine-tuning 27.22 20.98
Ensemble Decoding 27.95 22.21

Table 3: BLEU scores for English to Japanese and
Japanese to Chinese. Values are calculated based on
word counts.

Direction BLEU BLEU with DS
en-ja 39.2 39.7
ja-zh 32.9 32.3

Table 4: The final online automatic evaluation BLEU
with/without prompt learning in data selection.

still able to improve the BLEU score on the direc-
tion of English to Japanese, but there was some
decline in the Japanese-to-Chinese direction.

7 Conclusion

This paper introduces the neural machine transla-
tion systems developed by GTCOM and DLUT
for the WMT24 shared general MT task. We ap-
ply three primary techniques to enhance translation
quality: back-translation, a multilingual translation
model, and fine-tuning accompanied by data selec-
tion. Through these methods, we achieve notable
improvements in automatic evaluation metrics, as
illustrated in Table 5.
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Abstract

This paper presents the contributions of Charles
University teams to the WMT24 General Trans-
lation task (English to Czech, German and Rus-
sian, and Czech to Ukrainian) and the WMT24
Translation into Low-Resource Languages of
Spain task. Our most elaborate submission,
CUNI-MH for en2cs, is the result of fine-tuning
Mistral 7B v0.1 for translation using a three-
stage process: Supervised fine-tuning using
QLoRA, Contrastive Preference Optimization,
and merging of model checkpoints. We also de-
scribe the CUNI-GA, CUNI-Transformer and
CUNI-DocTransformer submissions, which are
based on our systems from the previous year.

Our en2ru system CUNI-DS uses a similar first
stage as CUNI-MH (QLoRA for en2cs) and
follows with transfer learning for en2ru.

For en2de (CUNI-NL), we experimented with
an LLM-based speech translation system, to
translate without the speech input.

For the Translation into Low-Resource Lan-
guages of Spain task, we performed QLoRA
fine-tuning of a large LLM on a small amount
of synthetic (backtranslated) data.

1 Introduction

This paper describes the CUNI submissions to the
WMT24 General Translation task (from English to
Czech, German and Russian, and from Czech to
Ukrainian) and the Translation into Low-Resource
Languages of Spain task.

Our underlying goal for this year was to test the
applicability of primarily small open-source LLMs
to the languages of interest, and we also provide
our English-to-Czech systems from the previous
years for comparison.

The setups for the various target languages differ
considerably in the methods used. Table 1 provides
an overview of the individual system highlights. In
Section 2, we detail the basic building steps and
methods across our systems (not all setups use all

of them). Section 3 describes the training and de-
velopment data used across the target languages.
In Section 4, we evaluate the systems and com-
pare their results with various available baselines
and benchmarks. Section 5 summarizes our future
plans, and we conclude in Section 6.

2 Methods

For the CUNI-MH submission, we fine-tuned Mis-
tral 7B v0.1 (Jiang et al., 2023) using three stages:

1. Supervised fine-tuning on CzEng 2.0 training
dataset (Kocmi et al., 2020)1, see Section 2.3.

2. Contrastive Preference Optimization (Xu
et al., 2024b), see Section 2.4.

3. Averaging model checkpoints (Utans, 1996;
Wortsman et al., 2022; Gueta et al., 2023), see
Section 2.5.

CUNI-Transformer and CUNI-DocTransformer
are the same systems as submitted last year (Jon
et al., 2023), relying on standard NMT training
with Block backtranslation (Section 2.1) and op-
tionally document-level training (Section 2.2).

For CUNI-GA, in English-to-Czech, we used
outputs from CUNI-Transformer and a genetic al-
gorithm to combine and modify them, again in the
same way as previous year (Section 2.8; Jon et al.,
2023; Jon and Bojar, 2023). For coincidentally
identically called CUNI-GA submission in Trans-
lation into Low-Resource Languages of Spain task,
we fine-tune larger LLMs (Command-R and Aya-
23), without applying the genetic algorithm.

For the CUNI-NL system, we fine-tuned Llama 2
7B (Touvron et al., 2023) for the speech translation
task, while also adapting it for text-only translation
at the same time; see Section 2.6.

Finally CUNI-DS starts as step 1 of CUNI-MH
but continues with transfer learning to target Rus-
sian instead of Czech, see Section 2.7.

1http://ufal.mff.cuni.cz/czeng/
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Task CUNI-* Model Initial LLM SFT Data SFT Highlights (§2.3) Final Stages
cs2uk Transformer - Opus, CzEng BlockBT §2.1 -
en2cs DocTransformer - CzEng 2.0 BlockBT §2.1, doc-

level §2.2
-

en2cs GA - - - GA §2.8
en2cs MH Mistral 7B v0.1 CzEng 2.0 QLoRA, Packing,

AdamW
CPO §2.4; Checkpoint
Merging §2.5

spa GA Command-R,
Aya

PILAR BT QLoRA -

en2de NL HuBERT,
Llama-2-7b

MuST-C Text-only use of a speech translation system §2.6

en2ru DS Mistral 7B v0.1 CzEng, Yandex,
News Commen-
tary

Transfer from en2cs
§2.7

-

Table 1: Overview of CUNI systems in WMT24 General Translation task and Translation into Low-Resource
Languages of Spain task (spa). Systems in the upper part of the table are our last year’s baselines. §· refer to the
methods in Section 2.

2.1 BlockBT

For training CUNI-Transformer and CUNI-
DocTransformer, we used iterated Block backtrans-
lation (BlockBT) (Popel, 2018; Popel et al., 2020;
Gebauer et al., 2021; Jon et al., 2022) in a standard
Transformer (Vaswani et al., 2017) NMT training
from scratch. The BlockBT method organizes the
training data, so that the model can optimize the bal-
ance between authentic English-to-Czech parallel
texts (exhibiting more translationese artifacts) and
synthetic data created by back-translating Czech-
only texts) by averaging eight checkpoints reflect-
ing more of the former or the latter domain. The use
of eight checkpoints for averaging is derived from
the original paper (Popel, 2018) and a study on
hyperparametrs for training Transformers (Popel
and Bojar, 2018).

2.2 Document-level training

The approach for training CUNI-DocTransformer
is described in Popel et al. (2019). Starting with the
initial sentence-level model (CUNI-Transformer),
we continued training on sequences of consecu-
tive sentences coming from a coherent text with
at most 3000 characters, where both sides (en and
cs) have the same number of sentences. The sen-
tences are separated by a special token in each of
the languages.

2.3 Supervised fine-tuning (SFT)

For the CUNI-MH submission, we used 4-bit
QLoRA (Dettmers et al., 2023) with a large LoRA
rank of r = 512. We used a batch size of 32, a
learning rate of 2e − 5, 20 warm-up steps, 8-bit
AdamW (Loshchilov and Hutter, 2019) optimizer

and weight decay of 0.01. We also used a scheduler
with linear learning rate decay. Starting from the
freely available Mistral 7B v0.1 model, we trained
in a language modeling fashion on individual sen-
tences, calculating the loss on each token. To re-
duce the number of padding tokens, we also used
packing: examples are concatenated with the EOS
token as a separator to achieve a total sequence
length of 1000. In Appendix A, we present our
translation prompt template and example of its pro-
cessed form with packing as used during training.

We trained for a single epoch on the authentic
part of CzEng 2.0. In Figure 1, we show how the
performance of the model develops during the first
stage, starting from 100 steps. A notable observa-
tion is that the COMET22 and COMETKIWI22
scores seem to plateau relatively early, despite the
evaluation loss steadily decreasing, while BLEU
seems to be steadily increasing. This appears to be
consistent with the results presented by Xu et al.
(2024a), although we suspect it could also be the
result of insufficient regularization.

For training, we used the HuggingFace Trans-
formers and TRL libraries by Wolf et al. (2020)
and von Werra et al. (2020). We also used the Un-
sloth library,2 which provides speed and VRAM
optimizations to Transformers and TRL libraries.

Another of our submissions that made use of a
pre-trained LLM and SFT was CUNI-GA in the
Translation into Low-Resource Languages of Spain
task. We used 4-bit QLoRA with the rank of r = 16
and the learning rate of 4e− 4 for fine-tuning the
pretrained Command-R model, and 1e− 3 for fine-
tuning the Aya model, with an effective batch size

2https://github.com/unslothai/unsloth/
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Figure 1: CUNI-MH Stage 1 – metrics during training.

of 32 and an AdamW optimizer with the weight
decay value of 0.001.

2.4 Contrastive Preference Optimization
(CPO)

CPO is a fine-tuning method introduced by Xu et al.
(2024b) as an approximation of Direct Preference
Optimization (Rafailov et al., 2024).

The goal of CPO is to fine-tune the model to
directly optimize for preferences between trans-
lation candidates, rather than just optimizing the
likelihood of the reference translations.

From a high-level point of view, the main differ-
ence between using SFT and CPO for translation
is that for a given source text, we need two transla-
tions: preferred and dis-preferred. This means that
the training dataset consists of triplets, rather than
pairs as is typical for supervised training of NMT.
For a more detailed description of the dataset we
used and how it was created, see Section 3.2.

To apply CPO during the second stage of CUNI-
MH training, we started two separate training runs
from models we created during the first stage. One

of the runs starts from model 3 and the other from
model 4 in Table 2.

We selected these models because they had
the best COMET22 and COMETKIWI22 scores
among the models we had available at the time,
when evaluated on the sentence-level WMT22 vali-
dation set.

Because we wanted to use a smaller LoRA rank
size comparable to those used in the original paper
(Xu et al., 2024b), we merged LoRA adapters with
the quantized model into a 16-bit model and added
new, smaller adapters.

We trained for two epochs with the following pa-
rameters: LoRA rank r = 32, LoRA α = 64, CPO
β = 0.1. We trained two separate runs, starting
from the checkpoints mentioned earlier. Similarly
to the SFT stage, we used 8-bit AdamW, this time
without learning rate decay. Our GPU memory
capacity was limiting us to the batch size of 4, so
to compensate, we used 64 gradient accumulation
steps to simulate a larger effective batch size of
256.

234



Stage ID Model Checkpoint COMET22 COMETKIWI22 BLEU
0 Mistral 7B v0.1 5-shot 67.16 59.79 17.35

1 1
SFT from 0

16000 85.59 79.04 33.46
1 2 24000 86.10 79.40 34.35
1 3 103000 85.80 78.85 35.32
1 4 SLERP merge of 1 and 2 86.16 79.44 35.15
2 5 CPO from 4 150 89.76 82.71 32.56
2 6 CPO from 3 100 89.93 83.04 34.43
2 7 CPO from 0 400 83.21 76.54 18.33
3 8 Linear merge of 5 and 6 90.21 83.16 36.52

Table 2: CUNI-MH’s training stages, models and their sentence-level scores on WMT23 (test set). The final
CUNI-MH submission 8 is in bold.

Checkpoints were saved every 50 steps3

and evaluated on the validation test set using
COMETKIWI22. The performance peaked around
checkpoint 150 for the first run, leading us to con-
clude that further training beyond 2 epochs was
unnecessary. However, we acknowledge that the
training parameters may not be optimal and could
potentially be tweaked further for better results.

2.5 Checkpoint merging

To further improve the performance of the CUNI-
MH model, we experimented with two methods
for merging model weights: linear interpolation
(Utans, 1996) and spherical linear interpolation
(SLERP, Shoemake, 1985) in different training
stages.

In particular, after the SFT stage, we merged two
promising checkpoints from the same training run
using SLERP, which led to a small improvement in
all metrics, as can be seen by looking at model 4
in Table 2.

After the CPO stage, we once again experi-
mented with model merging, this time we merged
the best performing checkpoints from two different
CPO training runs. This led to a further modest im-
provement in all COMET22, COMETKIWI22 and
BLEU metrics, as shown by model 8 in Table 2.

For model merging using both SLERP and lin-
ear interpolation, we used the mergekit library by
Goddard et al. (2024).

2.6 SFT from Speech Translation System
(SFTSpeech)

The CUNI-NL system was adapted from a speech
translation system, which features a frozen Hu-

3Resulting in total of 7 checkpoints for each of the two
runs.

BERT component (Hsu et al., 2021) and the Llama
2 7B (Touvron et al., 2023) LLM.

The original speech translation system applied
the CTC collapsing strategy to extract the speech
hidden features; these features would subsequently
be given as the prompt to a LLM to generate the
ASR transcription and its corresponding translation
simultaneously.

For the purposes of the General Translation Task,
we avoid any audio features during inference and
directly prompt the LLM with the source language
text. We expect the LLM to translate using that only
information. The motivation for this experiment
was to check if a LLM-based speech translation
system remains versatile enough to support text-
only translation.

The original speech translation system was a
fine-tuned LLM using 4-bit QLoRA (Dettmers
et al., 2023) adapters, with the rank of r = 8 and
alpha of α = 8. Other training hyperparameters
included the batch size of 1, the learning rate of
1e− 4 with 10 warmup steps, and an AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a cosine
scheduler (Loshchilov and Hutter, 2017).

2.7 SFT for Transfer Learning

We used transfer learning across languages in the
CUNI-DS system for English-to-Russian, transfer-
ring from English-to-Czech system.

2.7.1 Phase 1: en2cs Training
In the first phrase, we proceeded very similarly as
described in Section 2.3. We started with the 4-
bit quantized Mistral 7B v0.1 model (Jiang et al.,
2023) and trained it using QLoRA (Dettmers et al.,
2023) with a rank of 64 and an alpha of 128. The
training followed Alpaca-like (Taori et al., 2023)
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instructions, with 20 warmup steps, a learning rate
of 2e−5, weight decay of 1e−2, and a cumulative
batch size of 32.

The model was trained on CzEng 2.0 for 24
hours, with segments packed into chunks of 2048
tokens. The final checkpoint was selected for the
next phase.

2.7.2 Phase 2: en2ru Fine-Tuning
The model was then fine-tuned for en2ru transla-
tion using the Yandex Corpus for sentence-level
data and the News Commentary v18.1 dataset for
paragraph-level data. The datasets were shuffled
and concatenated, and fine-tuning was conducted
under the same conditions as the first stage, lasting
24 hours.

2.8 Genetic algorithm
For the CUNI-GA submission in English-to-Czech,
we used a genetic algorithm to combine and mod-
ify n-best lists (Jon and Bojar, 2023) produced
by CUNI-Transformer (at the sentence level), in
the same manner as in Jon et al. (2023). We
combined 5 metrics for the fitness function by a
weighted average: BLEU (Papineni et al., 2002),
chrF (Popović, 2015), wmt22-comet-da (Rei et al.,
2022a), wmt22-cometkiwi-da (Rei et al., 2022b)
and wmt23-cometkiwi-da-xl (Rei et al., 2023). The
reference-based metrics use MBR decoding (Fre-
itag et al., 2022) in place of the unknown reference.

3 Data

This section details the dataset used across the vari-
ous training steps and language pairs.

3.1 SFT dataset
3.1.1 English-Czech
For the first stage of the CUNI-MH training, we
used the authentic part CzEng 2.0. We did not use
any preprocessing, except for applying the prompt
template and packing described in Appendix A.

3.1.2 English-German
The CUNI-NL system was trained using the MuST-
C dataset (Cattoni et al., 2021), a large multilingual
corpus built from English TED Talks, containing
the audio data, the English transcription of such
audio, with its translation in multiple languages.
Specifically, we used the en2de subset, consisting
of approximately 400 hours of speech data.

During training, we randomly took 25% of the
dataset, in which the input was the source transcript

itself, instead of the audio features, so that the sys-
tem could know how to translate from text-only
data.

We trained the system for two epochs, both
checkpoints of which were then used for evaluating
against the WMT23 test set.

3.1.3 English-Russian
The initial phase of CUNI-DS system training
(en2cs) utilized the first million segments from the
CzEng 2.0 (Kocmi et al., 2020) dataset. In the sec-
ond phase (en2ru), a combination of the Yandex
Corpus4 and the News Commentary v18.15 dataset
was used, with the latter segmented into chunks of
10 sentences each.

3.1.4 Translation into Low-Resource
Languages of Spain

For the Translation into Low-Resource Languages
of Spain task, we backtranslated the literary part
(literary.txt) of the PILAR dataset (Galiano-
Jiménez et al., 2024) into Spanish using Apertium
(Forcada and Tyers, 2016), resulting in 230k, 25k
and 24k sentence pairs for Aranese, Aragonese
and Asturian, respectively. For Aranese, we also
backtranslated the Aranese side of the parallel part
of the corpus, while keeping the paragraphs whole
up to the length of 30 sentences, resulting in 726k
sentences in 4329 documents. To make use of the
paragraph-level context, we employed a context-
aware prompt shown in Appendix B.

3.2 CPO dataset

To create a dataset for CPO (Section 2.4), we need
triplets: source segment, preferred output and dis-
preferred output. We construct these triplets at
the paragraph level (i.e. several sentences con-
catenated into a single segment) but sentence-level
processing, inspired by the approach of (Xu et al.,
2024b), is used in the preparation as described be-
low.

Given a source segment, we select both preferred
and dis-preferred translation from three candidates:
our stage 1 output, our last year’s constrained sys-
tem and human reference. Our approach ensures
that we still satisfy the requirements for a con-
strained submission.

Our CPO source segments (and their corre-
sponding manual reference translations) are ran-

4https://translate.yandex.ru/corpus?lang=en
5https://data.statmt.org/news-commentary/v18.

1/
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Source text Preferred translation Dis-preferred translation
E6 goes further north along the west
coast and through Norway to the
Norwegian town Kirkenes at Barents
Sea.

E6 pokračuje dále na sever podél
západního pobřeží a přes Norsko do
norského města Kirkenes u Barentsova
moře.

E6 pokračuje dále na sever podél
západního pobřeží a přes Norsko do
norského města Kirkenes v Barentsově
moři.

He became seriously ill in October
1914 and retired.

V říjnu 1914 vážně onemocněl a
odešel do důchodu.

V říjnu 1914 ∅ onemocněl a odešel do
důchodu.

This was published in June 1925, in a
special issue of Poetry magazine.

Tato báseň byla publikována v červnu
1925 ve speciálním vydání časopisu
Poetry.

Ta vyšla v červnu 1925 ve zvláštním
čísle časopisu Poezie.

This convention has been ratified and
acceded to by Ghana.

Tuto úmluvu ratifikovala a přistoupila
k ní Ghana.

Tato úmluva byla ratifikována a
přistoupena k ní Ghana.

Table 3: Short examples from the CPO dataset. Errors (underlined) are, resp.: Kirkenes located in Barents Sea;
missed the adverb seriously; and grammatically inacceptable form of passivization mentioning the subject Ghana.
The third example’s dis-preferred translation does not mention the detail that we are referring to a poem (“báseň”),
although this fact is not explicit in the source either; other lexical variations are minor.

domly sampled documents from CzEng 2.0, a
total of 47257 documents containing 200k sen-
tences. We then used the best checkpoint from
stage 1 (see model 4 in Table 2) together with our
constrained model from the previous year, CUNI-
DocTransformer, to generate translations for the
samples.6

Because we want to consider the manual transla-
tion as one of the candidates for the (dis-)preferred
translation, we cannot use it as the reference to
select the better candidate. Therefore, we use the
reference-free wmt20-comet-qe-da7 model to rank
the translations, selecting the one with the highest
score as the preferred one and the one with the
lowest score as the dis-preferred one.

Note that wmt20-comet-qe-da scores individual
sentences, not complete paragraphs, so we do this
for each sentence in the sampled dataset, while
giving all preceding sentences in the corresponding
document (as translated by the given system) as a
context (DocCOMET, Vernikos et al., 2022).

Since this DocCOMET approach is currently
not supported by the COMET project8 for newer
model architectures, such as those used by
COMETKIWI22 and XCOMET, we have not tried
to build the data set using these newer models.

To arrive back at paragraph-level segments for
CPO, we concatenate all the sentences in each orig-
inal document. The result is a dataset consisting of
47k paragraph-level triplets for CPO. Each triplet
consists of the paragraph in source language and

6For clarity, we note that we create only one CPO dataset,
using translations by 4 , and we apply the CPO method using
this dataset three times, starting from three different models,
see Table 2.

7https://huggingface.co/Unbabel/
wmt20-comet-qe-da

8https://github.com/Unbabel/COMET

two translations: preferred9 and dis-preferred.10

Due to the sentence-level selection, both preferred
and dis-preferred translations may actually mix sen-
tences from each of the three seed translations: hu-
man, our CUNI-DocTransformer and CUNI-MH
Stage 1. We leave the analysis of document-level
errors that arise in this process for future.

In Figure 2, we show which sentences were se-
lected as preferred and dis-preferred. Note that
this comparison is done on sentence-level, because
the resulting paragraph-level examples can be com-
posed of sentences from different sources. Interest-
ingly, reference sentences were scored lowest by
wmt20-comet-qe-da most frequently. We also show
a few short examples from our dataset in Table 3.
During training, the source sentences are formatted
with the prompt template shown in Appendix A,
similarly to how they are handled in the SFT stage
Section 2.3.

We are aware that there are several potential is-
sues with our method of preparing the dataset. First,
there is a reason to be concerned about potential
overfitting to a given metric (wmt20-comet-qe-da
in our case) used to select the sentences. Second,
our stage 1 CUNI-MH model did the translation
in sentence-level fashion, potentially disregarding
the relevant context. Third, we select sentences for
preferred vs. dis-preferred class considering their
preceding source-side context and their preceding
target-side context as translated by the candidate
system, not as selected so far within the document.
This leaves document-level properties both in the
positive and negative cases unhandled. Ideally, the
preferred paragraph would avoid also any contex-
tual errors, and for the dis-preferred paragraph, we

9Sometimes also called chosen or positive example.
10Sometimes also called rejected or negative example.
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Model COMET22 COMETKIWI22 BLEU
CUNI-Transformer 87.19 80.45 41.44
CUNI-DocTransformer 88.29 81.32 42.47
CUNI-GA 90.78 84.43 43.27
GPT4-5shot 89.36 82.82 37.76
CUNI-MH 90.21 83.16 36.52

Table 4: CUNI-MH’s sentence-level scores on the en2cs WMT23 test set. Other systems’ scores are taken from
WMT23’s automatic evaluation results.

Model COMET22 COMETKIWI22 BLEU
CUNI-Transformer 81.13 68.24 42.27
CUNI-DocTransformer 83.52 70.69 43.29
CUNI-GA 86.15 73.56 43.83
GPT4-5shot 85.45 72.57 38.45
CUNI-MH k = 1 87.35 73.30 37.47
CUNI-MH k = 8 87.73 74.82 35.42

Table 5: CUNI-MH’s document-level scores on the en2cs WMT23-para test set. k denotes how many sentences at
most are translated together in one chunk. The CUNI-MH final submission is in bold.

Figure 2: CPO dataset - sources of preferred and dis-
preferred translations.

could construct worse translations in two ways: (1)
using worse individual segments, as we do, and (2)
combining better or worse individual segments in a
way that purposefully damages paragraph context.
Fourth, because we sampled uniformly from the
CzEng 2.0 documents, our final dataset actually has
a large number of documents, namely 24744 out of
41835, that only consist of a single sentence. We
opted for a trivial sampling because we were con-
cerned that naive solutions aiming at having more
longer documents could potentially have a negative
impact on the diversity of the dataset, however this
is something we would like to address in the future.

All in all, we believe that there is potential to

make subsequent iterations of the dataset higher
quality by alleviating some of these concerns.

3.3 Validation and test datasets

During training of CUNI-MH, we used the
WMT22 test set as the validation data set and the
WMT23 test set as the test data set. In particular,
we used WMT22 when selecting the best check-
points and hyperparameters and only used WMT23
to estimate the final performance compared to base-
lines.

To prepare for paragraph-level evaluation, we
also concatenated all the sentences in each docu-
ment to a long paragraph, creating what we call
WMT22-para and WMT23-para data sets. For
CUNI-GA in English-to-Czech, we did not use
validation sets, we did not compare the possible
configurations on validation set, we chose the pa-
rameters based on our experience. For CUNI-GA
in Translation into Low-Resource Languages of
Spain, we use FLORES+ validation set (NLLB
Team et al., 2022).

4 Evaluation

4.1 English-Czech

We show the sentence-level metrics on the WMT23
test set for the CUNI-MH system in Table 4 and the
document-level metrics on the WMT23 test set in
Table 5. We used greedy decoding for this system.

Since our preliminary experiments on WMT22-
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Submission WBLEU WCHRF WCMT22 WQE22 WQE23−XL CHRF BLEU QE22 QE23-XL MetricX

CUNI-Transformer - - - - - 57.3 29.3 X 0.614 4.3
CUNI-GA 0.1 0.1 0.4 0.4 0 56.4 29.5 0.819 0.658 -
CUNI-GA 0 0 0.5 0.5 0 55.5 26.5 0.827 0.650 -
CUNI-GA 0 0 0.5 0 0.5 54.8 25.6 0.797 0.726 3.7

Table 6: Paragraph-level scores on WMT24 test set for the CUNI-GA submission, primary submission in bold.
CUNI-Transfomer was used to produce the n-best lists which are combined and modified for the CUNI-GA
submission.

Model COMET22 COMETKIWI22 BLEU
Baseline 24.04 28.55 0.20
CUNI-NL (epoch=1) 81.07 77.23 29.61
CUNI-NL (epoch=2) 80.90 77.51 30.75

Table 7: CUNI-NL’s sentence-level scores on the en2de WMT23 test set.

para showed that our model did not handle longer
paragraphs or documents well, we used sentence-
splitter from Moses11 to split segments into sen-
tences. We then concatenate these sentences into
chunks of up k, which we translate together as a
whole. We then concatenate all the chunks to the
original segments.

By testing our model on the WMT22-para vali-
dation dataset, we chose to use k = 8 for our final
submission to optimize for the highest COMET22
and COMETKIWI22 scores. This can also be seen
in Table 5, where the model with k = 8 has better
COMET22 and COMETKIWI22 scores than the
one with k = 1, at the cost of worse BLEU score.

The submitted CUNI-MH system also seems to
perform well according to the preliminary auto-
matic rankings, where it surpasses most of our sys-
tems from previous years and closely matching the
performance of another of our systems, CUNI-GA.
These results are shown in Table 8.

However, since both systems use COMET or
COMETKIWI metrics during either training or in-
ference, raising potential concerns about overfit-
ting, we are also awaiting the results of human
evaluation (Kocmi et al., 2024).

We also tried to use CPO with our new dataset
to train the base Mistral model directly, skipping
the supervised fine-tuning stage. The results are
shown in Table 2, see 7 , which is the best perform-
ing checkpoint of the training run, according to its
COMETKIWI22 score on the validation dataset. It
can be seen that the performance of this model is
significantly worse in all metrics, so the SFT stage

11Wrapped by https://pypi.org/project/
mosestokenizer/

seems necessary in our setting.
We have also submitted CUNI-Transformer and

CUNI-DocTransformer systems from previous year
to provide reasonable constrained baselines for our
newer models.

The CUNI-GA in this task submission combines
hypotheses from CUNI-Transformer n-best lists
created with beam sizes 4, 10 and 25 for each sen-
tence. The resulting 39 translation candidates were
processed by the genetic algorithm. The fitness (ob-
jective) function was a weighted combination of 5
metrics: BLEU, chrF, wmt22-comet-da (CMT22 in
Table 6), wmt22-cometkiwi-da (QE22) and wmt23-
cometkiwi-da-xl (QE23-XL). The weights and the
obtained scores (chrF, BLEU, QE22, QE23-XL and
MetricX (Juraska et al., 2023)) on the WMT24 test
set are shown in Table 6. We did not use a develop-
ment set due to high computational requirements
of this approach, the weights are chosen based on
our previous experience. An expected conclusion
is that our approach allows us to easily optimize
for the fitness metrics, which can be seen by com-
paring the QE23-XL scores of baseline translations
(first row) and the score of the translations directly
optimized for this metric (last row).

4.2 Czech-Ukrainian
We will add results for the Czech-Ukrainian sub-
mission in the camera-ready version.

4.3 English-German
For the CUNI-NL submission, we performed in-
ference using the beam search algorithm, with the
beam size of 2 for both checkpoints. We evaluated
the performance of the two checkpoints of this sys-
tem (as trained for speech translation), after epoch
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English-Czech

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation?

Unbabel-Tower70B 1.0 1.8 0.732 ✓

Claude-3.5 § 2.1 2.4 0.693 ✓

CUNI-MH 2.1 2.3 0.690 ✓

CUNI-GA 2.3 3.7 0.726 ✓

Gemini-1.5-Pro 2.6 2.8 0.678 ✓

GPT-4 § 2.6 2.9 0.682 ✓

IOL-Research 2.8 3.0 0.676 ✓

ONLINE-W 2.8 2.8 0.669 ✓

CommandR-plus § 2.9 2.9 0.669 ✓

SCIR-MT 3.2 3.3 0.664 ✓

TranssionMT 3.5 3.5 0.655
ONLINE-A 3.6 3.4 0.648

Mistral-Large § 3.7 3.6 0.647
IKUN 3.9 3.7 0.638 ✓

ONLINE-B 4.0 3.9 0.640
Llama3-70B § 4.1 4.0 0.640 ✓

Aya23 4.3 4.0 0.630 ✓

CUNI-DocTransformer 4.4 4.0 0.621 ✓

IKUN-C 4.7 4.3 0.618 ✓

CUNI-Transformer † 4.7 4.3 0.614
ONLINE-G 5.7 5.2 0.592

NVIDIA-NeMo † 7.6 6.5 0.536
Phi-3-Medium § 15.0 11.4 0.305

TSU-HITs 19.5 16.6 0.235
CycleL2 24.2 19.5 0.077

CycleL 27.0 22.5 0.031

Table 8: Preliminary WMT24 General MT automatic ranking for English-Czech. Closed systems are highlighted
with a dark gray background, open systems with a light gray background, and constrained systems are shown on a
white background.
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1 and after epoch 2 of en2de MuST-C corpus, with
the latter performing better, so we chose it for the
final evaluation against the test set this year. The
results of the evaluation on the WMT23 test set are
shown in Table 7.

4.4 English-Russian

For the CUNI-DS submission, we ran the evalua-
tion on the paragraph level, i.e. the model needed
to output the translation of the whole input at once.
We used greedy decoding due to frequent emission
of repeated tokens (sometimes called “spasm” by
NMT practitioners) we observed with beam search.
The outcomes of the CUNI-DS system’s two-stage
training are presented in Tables 9 and 10.

4.5 Translation into Low-Resource Languages
of Spain

We compare Apertium and two open-source LLMs
– Aya-23-8B and Command-R (35B version, quan-
tized to 4 bits) – in translation from Spanish into
the other languages of the task. We show the scores
in Table 11. We fine-tuned both LLMs as a sin-
gle joint model for all the languages on the back-
translated literary data described in Section 3. We
present BLEU, chrF and COMET-22 scores of the
best-performing checkpoints after fine-tuning in
Table 12. We submitted the translations produced
using the Aya-23 model fine-tuned for 5000 steps.
While the results are at best comparable to Aper-
tium scores, we note that we only did a very light-
weight fine-tuning on synthetic (backtranslated)
data, which shows the potential of LLMs for trans-
lation into previously unsupported low-resource
languages related to a language present in the train-
ing data. For instance, we obtained improvement
from 46.7 to 70.2 ChrF (12.4 to 39.0 BLEU) in
Aragonese by fine-tuning on 24k backtranslated
sentence pairs from a different (literary) domain.

5 Future work

We have several ideas to improve the performance
of the future iterations of our CUNI-MH model:

• Longer sequences: During our SFT stage, we
trained on short sequences, mostly single sen-
tences. In the future, we would like to exper-
iment with training on larger sequences, so
that the model is able to handle longer inputs
in end-to-end fashion.

• Better CPO dataset: Our current dataset for
CPO (Section 3.2) was created without includ-
ing any filtering steps. The Stage 1 model we
used to create one kind of translation candi-
dates also translated in sentence-level fashion
only. We think there is potential to create a
higher quality dataset by using our final model,
ensuring all translations are done with para-
graph or document level context and possibly
investigating means of filtering out lower qual-
ity examples.

• Better QLoRA initialization: During our SFT
stage, we used the default initialization from
the original LoRA paper (Hu et al., 2021).
There are other initialization methods specif-
ically for the combination of LoRA adapters
and quantization, such as LoftQ (Li et al.,
2023) which seems to consistently perform
better for QLoRA. In the future, we would like
to evaluate using this initialization method.

• Monolingual pretraining stage: Xu et al.
(2024a) have shown promising results by in-
cluding a stage where they continue pretrain-
ing Llama 2 7B and Llama 2 13B models
on monolingual data covering their target lan-
guages. We think including such a stage be-
fore our SFT stage is worth considering in our
future models.

• Optimization of model merging: Our experi-
ments with checkpoint merging (Section 2.5)
were extremely sparse. In the future, we
would also like to evaluate SLERP and lin-
ear interpolation in comparable settings and
a broader range of possible combined models
(checkpoints from a single run vs. checkpoints
across different run branches).

6 Conclusion

In this paper, we presented the CUNI submissions
for the WMT24 General Translation task and the
Translation into Low-Resource Languages of Spain
task. Our primary focus was on using small open-
source language models for various language pairs
and providing comparisons with our systems from
previous years.

The CUNI-MH system for English-to-Czech
translation, based on Mistral 7B, showed promising
results, possibly because of its CPO stage which
led to a significant improvement of COMET and
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Dataset COMET22 COMETKIWI22 BLEU
WMT22 84.24 78.21 24.30
WMT23 75.33 74.81 21.63
WMT23-para 75.33 74.81 25.89

Table 9: CUNI-DS’s segment-level scores for the first stage (en2cs training and en2cs evaluation) across different
test datasets.

Dataset COMET22 COMETKIWI22 BLEU
WMT22 85.81 80.97 24.45
WMT23 85.89 81.02 22.30
WMT23-para 72.27 78.21 21.63

Table 10: CUNI-DS’s segment-level scores for the second stage (en2ru fine-tuning and en2ru evaluation) across
different test datasets.

Model COMET BLEU chrF

Apertium
Aragonese* 0.788 65.3 82.0
Aranese 0.623 37.8 59.9
Asturian 0.652 16.9 50.6

Command-R 4-bit
Aragonese 0.702 15.9 49.5
Aranese 0.576 4.5 33.3
Asturian 0.680 14.5 46.7

Aya-23
Aragonese 0.685 12.4 46.7
Aranese 0.535 4.1 31.8
Asturian 0.645 9.0 40.3

Table 11: Scores of the baseline models on FLORES+
dev set in translation from Spanish into the given lan-
guage. We note that the Aragonese part of the test set
was created by post-editing Apertium translation, which
is marked by the asterisk.

COMETKIWI scores, surpassing our previous sys-
tems. The model weights are available on Hugging-
face12.

Our other submissions explored various tech-
niques, such as transfer learning (CUNI-DS on
en2ru), adaptation from speech translation (CUNI-
NL on en2de) and creation of synthetic data using
backtranslation to evaluate the feasibility of using
LLMs for low-resource languages in the Transla-
tion into Low-Resource Languages of Spain task.

12https://huggingface.co/wmt24-cuni/CUNI-MH

Model COMET BLEU chrF

Command-R 4-bit (240)
Aragonese 0.779 37.9 69.7
Aranese 0.634 33.1 57.4
Asturian 0.699 15.3 49.0

Aya-23 (5000)
Aragonese 0.780 39.0 70.2
Aranese 0.632 35.0 58.1
Asturian 0.686 15.2 48.8

Table 12: Scores of the fine-tuned models on FLORES+
dev set in translation from Spanish into the given lan-
guage. Number of fine-tuning steps in the parentheses.
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A CUNI-MH Model Prompt Template
and Packing

We used the following prompt template for the
model, inspired by the one used in Alpaca (Taori
et al., 2023):

### Instruction:
Translate Input from English to Czech
### Glossary:

### Previous text:

### Input:
{source_text}
### Response:
{target_text}

The Glossary and Previous text sections were
not used for the current task, so we left them empty.
Since we trained only a single translation direction
this time, the instruction remains constant.

Below is a shortened example of the packed13

and tokenized training data, where <s> stands for
the beginning of sequence token, </s> stands for
the end of sequence token and \n stands for new-
line, the tokens are separated by spaces:
<s> ### Inst ruction : \n Trans late

Input from English to Czech
\n ### Gl oss ary : \n \n ### Pre
vious text : \n \n ### Input : \n It

had been bad enough , calling
Brother when she was with
him . \n ### Response : \n By lo
d ost z lé př iv ol at Br atra

, k dy ž byla s n ím . </s>
<s> ### Inst ruction : \n Trans late

Input from English to Czech
\n ### Gl oss ary : \n \n ### Pre
vious text : \n \n ### Input : \n To

do it now ? \n ### Response :
\n A le te ď ? </s> <s> ### Inst
ruction : \n Trans late Input from

English to Czech \n ### Gl oss
ary : \n \n ### Pre vious text :
\n \n ### Input : \n Here ? \n ###

Response : \n T ady ? </s>

13The packing itself is implemented by
TRL’s ConstantLengthDataset, see https:
//github.com/huggingface/trl/blob/
e3fe28ee1a8bfab9739f849759c93d56776376e2/trl/
trainer/utils.py#L431
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B CUNI-GA Model Prompt Template

We used the following prompt for context-aware
translation in the Translation into Low-Resource
Languages of Spain task, in order to make use of
document-level context, while still keeping align-
ment on the sentence level, necessary for the evalu-
ation:

We need to translate a single line from
conversation in Spanish into
{target_language}. This is the
conversation: {src_context}

The start of the conversation is already
translated into English: {prev_context}
Translate the following line from
{src_lang} to {tgt_lang}.

Be very literal, and only translate the
content of the line, do not add any
explanations: {src_line}
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Abstract

This paper describes Yandex submission to the
WMT2024 General Translation Task. More
specifically, we present a novel pipeline de-
signed to build a strong paragraph-level transla-
tion engine with an emphasis on video subtitles
domain. In particular, we apply a multi-stage
adaptaion pipeline on top of LLM pretraining
to align the model for translation task and sub-
sequently to the video subtitles format. Our
submission ranks 3rd on the preliminary gen-
eral translation leaderboard.

1 Introduction

In this paper, we present unconstrained system sub-
mitted by the Yandex LLC NLP team to the WMT
2024 General MT Translation track, focusing on
English-to-Russian translation. Our approach in-
volves training a YandexGPT1 LLM-based model
for translation tasks using a multi-stage process
to ensure high-quality and contextually accurate
translations.

We are not capable of revealing all the details of
the model due to NDA reasons, however, we can
say that it is a Yandex GPT-like model, specifically
trained for the translation task.

Our multi-stage approach, which combines
extensive pre-training, targeted fine-tuning, ad-
vanced prompt-tuning, and structure-preserving

1https://yandex.cloud/en/services/
yandexgpt

techniques, ensures that our model delivers high-
quality, fluent, and structurally consistent transla-
tions and performs well both in competitive bench-
marks and real-world applications.

2 System Overview

2.1 Pretraining

The foundation of our approach is a robust pre-
training phase involving a Large Language Model
(LLM) trained on a vast corpus of clean texts in
multiple languages, with a predominant focus on
Russian and English. The quality of this pretrained
model is evaluated using a comprehensive suite of
benchmarks, including both automated metrics and
human evaluation.

This initial phase ensures that the model captures
a wide range of linguistic features and nuances
across different languages, thereby establishing a
strong base for subsequent fine-tuning.

2.2 Incorporating Parallel Data

Following the pretraining phase, we enhance the
model by incorporating parallel data, where En-
glish and Russian texts are concatenated using a de-
limiter. This step is crucial for aligning the model’s
understanding of both languages in a translation
context. We use a proprietary CommonCrawl-like
parallel corpus of pages crawled from the Web. The
data is meticulously curated to ensure high quality
using Bicleaner-likeRamírez-Sánchez et al. (2020)
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pipeline:

• Texts are selected using automated parallelism
filters.

• Duplicates are removed to maintain a clean
dataset.

This concatenation strategy enables the model to
establish connections between two languages and
to learn direct mappings from English to Russian
and vice versa.

2.3 Sentence-level vs. Paragraph-level
Translation

Our initial translation model primarily focuses on
sentence-level translation. However, through ex-
tensive experimentation, we have observed that
paragraph-level translation benefits significantly
more from clean, coherent paragraph-level data.
Unlike isolated sentences, paragraphs provide a
broader context, which is essential for maintaining
the flow and coherence in translations.

To leverage this, we gather texts that are inher-
ently structured in paragraphs. These texts are
preprocessed to ensure they meet our quality stan-
dards:

• Automated filters are employed to assess text
parallelism and quality.

• Rigorous deduplication processes are applied
to eliminate any repeated content, ensuring
that the data fed into the model is both diverse
and representative.

2.4 Structured content translation

Although the document-level translation system
we have obtained using the pipeline above has high
translation quality on generic textual data, it is in-
capable of consistently translating data in struc-
tured format, e.g. data in HTML format. Particu-
larly, when presented texts with tags or other strict
markup, model is prone to dropping or altering
the markup and thus generating an invalid HTML
page.

To handle this problem, we have designed a data
augmentation strategy aimed at guiding the model
towards HTML domain and such an augmentation
have been incorporated into our document-level
alignment stage.

2.5 Fine-Tuning LLM for Subtitle Translation
Building on a pre-trained LLM proficient in trans-
lating tagged web pages, we developed a method
to train the model for subtitle translation. The
key idea of this approach involves enclosing each
speaker and dialogue in brackets, ensuring accurate
parsing into individual dialogues.

This adaptation enhances the LLM’s ability to
meet the specific challenges of subtitle translation,
ensuring contextually accurate outputs with proper
segmentation by speaker and timing.

In the subsequent sections we further describe
the main stages of our pipeline.

3 Supervised Fune-Tuning (SFT)

Firstly, we align the pretrained language model
to the machine translation task. We conduct su-
pervised fine-tuning (SFT) on an in-house dataset
of parallel books fragments of up to 1000 tokens
length.

We use multilayer prompt-tuning as in Liu et al.
(2021) with each p-tuning block size of 100.

Overall LLM input consists of an English source
text surrounded by two p-tuning blocks:

Figure 1: PTune blocks layout.

4 Human Feedback Alignment

Following the Supervised Fine-Tuning stage, we
further improve core translation capabilities of
the model using our internal Human Preferences
dataset.

4.1 Data
We collect the training data using Side-By-Side
human evaluation of paragraph-level translations,
where an expert has to choose which of the
two translations is better. The annotated data is
presented in triplets (source, winner, loser), where
’winner’ and ’loser’ correspond to the compared
translations. The source segments are sampled
from various domains including books of different
genres, web pages etc.
Our training dataset consists of the following parts:

Sentence-level data
Sentence part of the corpus consists of side-by-side
comparisons between different model generations,
in total 100.000 sentence triplets.
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Document-level data
Document part of the corpus contains two primary
sources of human feedback annotations.

Firstly, similarly to the sentence-level align-
ment data, we collect several thousands of
document-level side-by-side comparisons between
different versions of our model.

Secondly, we collect an additional contrastive
triplet corpus aimed specifically at improving
translation fluency.

Total document-level corpora size is several
tens of thousands triplets.

4.2 Modeling

We fine-tune the model obtained at SFT stage
using contrastive learning objective.
The model is trained using Contrastive Preference
Optimization (CPO) loss function as in Xu et al.
(2024).

L(πθ;U) = min
θ

L(πθ, U)︸ ︷︷ ︸
Lprefer

−E(x,yw)∼D[log πθ(yw|x)]︸ ︷︷ ︸
LNLL

.

(1)

where

Lprefer(πθ, U) =− E(x,yw,yl)∼D
[
log σ

(
β log πθ(yw|x)

− β log πθ(yl|x)
)]

. (2)

We train with batch size of 64, 1 epoch and
triangular learning rate schedule (warmup length
of 0.1 epochs, peak learning rate 1e-6).
It is worth mentioning that, due to the dataset
imbalance between sentences and documents,
training on a uniform mixture yields results almost
equal to only sentence-wise training. To handle
this discrepancy between sources, we employ a
variation of curriculum learning (Bengio et al.
(2009)).
In particular, we implement an easy-to-hard
schedule, where we start with training only on
sentence-level data and shift towards longer
documents to the end of the training. This
enables more effective leveraging of low-resource
document-level corpora.

5 Structured content translation

In this section, we explore the methodology de-
veloped to improve the translation of pages with
structured data (e.g. web page or video subtitles
data) by Large Language Models (LLMs). Tradi-
tional LLMs, when tasked with translating struc-
tured content, often exhibit significant hallucina-
tion level. This manifests as omission of tags, par-
tial tag loss, or incorrect translation of tags. Our
goal is to achieve a more robust and accurate trans-
lation of such content by ensuring the correct trans-
fer of tags.

5.1 Current Challenge: Tag Hallucination

During free-form translation, LLMs struggle to
maintain the integrity of HTML tags. This issue
is critical as tags are essential for preserving the
structure and formatting of HTML documents.
A common problem observed is the complete
omission of tags or their partial loss, which leads
to a significant decrease in the quality of the
translated document. An initial assessment showed
a low percentage of correctly transferred tags. Tags
are preserved only in 36% for CPO model that
proves the need of a more reliable approach to tag
preservation.

Test data: To test the accuracy of tag preservation
we used a corpus of HTML-fragments. We
collected innerHTML of block HTML tags from
10 Wikipedia pages.

Proposed Solution: Bracket Substitution
and Model Adaptation
To address the issue of hallucination and improve
tag preservation, we propose the following
approach:

5.1.1 Tag Substitution with Brackets

Paired HTML tags are replaced with paired brack-
ets (e.g., <div> becomes {, and </div> becomes
}) to simplify the text structure for the model. Un-
paired tags are also converted to a bracket format:
every unpaired tag becomes a pair {}. This in-
creases the proportion of sentences with retained
tags to 76%.
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Figure 2: a. Plain sentence. b. Sentence with html
tags. c. Sentence with tags displayed as subword tokens
processed by LLM. d. Sentence with tags replaced with
braces.

5.1.2 Adaptation Using Parallel Corpus
We utilize a parallel corpus of HTML texts sourced
from open repositories. This corpus serves as a
foundation for generating synthetic data necessary
for model fine-tuning.

5.1.3 Training Dual-Network System
Train data: We used the same parallel corpus as
for SFT training but with tags aligned from orig-
inal HTML documents. Sentence pairs with non-
matching HTML tags were filtered out.
First Network: This network is trained to insert
brackets and line breaks correctly into the text in
the original language. This step helps to maintain
the structural consistency of the text.
Second Network: Given a source text with tags
and its translation without tags, this network learns
to accurately re-insert the tags into the translated
text. This network ensures that the translated con-
tent preserves the necessary HTML tags.

5.2 Synthetic Data Generation
By leveraging the dual-network system, we gen-
erate a substantial amount of synthetic data. This
data includes the original text with brackets and
line breaks, and the corresponding translated text
with correctly inserted tags. Specifically, for the
Contrastive Preference Optimization (CPO), we
use:

1. The output of the first network as the source
sentence in English.

2. The output of the second network on a good
translation as the positive example.

3. The output of the second network on a poor
translation as the negative example.

The good/poor translation pairs were obtained us-
ing human annotation as described above.

5.3 Results
Our experimental results demonstrate that the pro-
posed methodology effectively increases the per-
centage of sentences with correctly transferred tags
to 99%.
This substantial improvement underscores the ef-
fectiveness of our approach in reducing tag hallu-

cination and ensuring a more stable and accurate
translation of HTML content.
By substituting HTML tags with brackets, adapting
the model using a parallel HTML corpus, and incor-
porating a dual-network system for synthetic data
generation, we have developed a robust method to
enhance HTML translation. This approach not only
mitigates the problem of tag hallucination but also
ensures the structural integrity of translated HTML
documents. The success of this methodology paves
the way for more reliable and efficient translation
of structured data formats, significantly benefiting
applications in web content translation and beyond.

6 Fine-Tuning LLM for Subtitle
Translation

Building upon a pre-trained model that has
demonstrated proficiency in translating tagged web
pages, we have adapted the following approach to
train a subtitles translation system. Its core idea is
straightforward: we enclose each speaker and their
corresponding dialogue in brackets, as shown in
figure below.

Figure 3: Subtitles input format.

This ensures that the translation preserves these
brackets, allowing the entire text to be parsed into
individual speaker dialogues.
The production version of the algorithm is some-
what more sophisticated, as it must align the trans-
lations of longer dialogues with their corresponding
timestamps. However, for the purposes of this dis-
cussion, a more detailed description is unnecessary
and is therefore omitted from this paper.
We fine-tune the model using publicly available
subtitle corpora, which we preprocess to fit the
above mentioned format. This additional training
step has led to noticeable improvements in our hu-
man evaluation scores, particularly within the do-
main of movies and YouTube video subtitle trans-
lation. The reason for employing this model is
that part of the competition data is presented in
audio format, making effective subtitle translation
a critical component of our approach.
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By adapting the LLM in this manner, we enhance
its ability to handle the unique challenges posed by
subtitle translation, ensuring that the final outputs
are both contextually accurate and properly seg-
mented according to speaker and timing, which is
crucial for maintaining the integrity of the original
content in the translated version.

7 Evaluation Metrics and Results

Ablation
In order to estimate the effect of each stage
of the pipeline, we compare our models using
BLEURT-20 (Sellam et al. (2020)) and COMET
(Rei et al. (2020)) automatic metrics, as well as
BLEU. We rely primarily on neural metrics results
as suggested in Freitag et al. (2022). Table 1 shows
the scores on WMT-22 English to Russian testset.

Model Ablation (wmt-22 fwd)
Model Stage BLEURT COMET BLEU

PTune 0.76 0.836 31.3
cpo-sents 0.789 0.860 31.52
cpo-curriculum-
base

0.787 0.855 24.8

cpo-curriculum-
tags

0.784 0.855 27.1

Table 1: Metrics by stage (sentence-level).

Model Ablation (wmt-22 fwd news)
Model Stage BLEURT COMET BLEU

PTune 0.728 0.835 27.78
cpo-sents 0.733 0.847 25.55
cpo-curriculum-
base

0.743 0.850 19.61

Table 2: Metrics by stage (document-level).

Firstly, the model trained only on parallel data
(PTune) is already capable of generating decent
quality translations. However, it exhibits bias
towards literal translations and poor fluency.
During the alignment stage (cpo-curriculum-base)
the model is exposed to a variety of high-quality
translations (including contrastive triplets aimed
specifically at improving fluency) and, hence, the
model after initial CPO training is much more
fluent, but prone to tags omission and format
inconsistency.
Augmented CPO training solves the problem with

format and tags without sacrificing the model’s
target language fluency capabilities.

Overall, the metrics ablation highlights the
following:
1) BLEU correlates poorly with model quality,
especially on document-level benchmarks due to
high preference for literal translations.
2) On sentence-level evaluation contrastive
learning model trained only on sentence data
yields superior results both on neural and n-gram
based metrics.
3) Tag-focused augmentation does not lead to
quality degeneration on primary benchmarks
whilist increasing model stability (see tag accuracy
evaluations).
4) Contrastive learning phase with curricu-
lum learning training improves the quality on
document-level inputs, but only on neural metrics.
We hypothesize that curriculum learning model
increases fluency of the translations and introduces
more complicated paraphrases that BLEU fails to
score adequately.

WMT’24 Results
The quality of our system is assessed by the
organizers using the following metrics:
MetricX-23-XL (Juraska et al. (2023)) – a
reference-based metric built on top of the mT5
model. CometKiwi-DA-XL (Rei et al. (2023)) – a
quality estimation metric built on the XLM-R XL
model. Both metrics are among the top-performing
metrics in the field (Freitag et al. (2023)). Accord-
ing to these metrics, our system currently ranks
third on the leaderboard, with a MetricX score of
2.9 and a CometKiwi-DA-XL score of 0.705. The
final leaderboard will be determined based on hu-
man evaluation results.

Ethics Statement

Our system was trained on the publicly available
data. This unrestricted access to data allowed us
to leverage a vast and diverse set of examples, en-
abling the model to learn from a wide array of
linguistic patterns, contexts, and domains.
The absence of data limitations contributed to the
development of a robust and versatile model, capa-
ble of generalizing well across various tasks and
applications. By incorporating extensive datasets
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from different sources, our system gained the abil-
ity to handle complex and varied scenarios, enhanc-
ing its overall performance and adaptability.
This approach ensured that the model could effec-
tively capture and respond to the nuances of differ-
ent data types, ultimately leading to more accurate
and reliable outputs in real-world applications.
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Abstract

This paper presents the submission of the Árni
Magnusson Institute’s team to the WMT24
General translation task. We work on the
English→Icelandic translation direction. Our
system comprises four translation models and
a grammar correction model. For training our
models we carefully curate our datasets, ag-
gressively filtering out sentence pairs that may
detrimentally affect the quality of our system’s
output. Some of our data are collected from
human translations and some are synthetically
generated. A part of the synthetic data is gener-
ated using an LLM, and we find that it increases
the translation capability of our system signifi-
cantly.

1 Introduction

We describe our submission to the 2024 WMT
general translation task. Large Language Mod-
els (LLMs) have become near-ubiquitous in the
field of Natural Language Processing (NLP) in the
last couple of years. They have shown remarkable
translation capabilities (see e.g. Xu et al., 2024a),
but require significantly larger computational re-
sources than previous neural MT (NMT) models,
both for training and inference. Most openly avail-
able LLMs are primarily trained on English texts
and may therefore need further training in order
to be able to translate from or into less-resourced
languages, such as Icelandic.

The ALMA models (Xu et al., 2024a) are LLM-
based translation models, built on LLaMA-2. They
have been trained to translate ten directions, in-
cluding English↔Icelandic. We explore the capa-
bilities of some of these models, the 7B and 13B
parameter versions of ALMA-R (Xu et al., 2024b),
and find that they generate very competitive trans-
lations as measured against the English–Icelandic
WMT21 test sets (Akhbardeh et al., 2021), espe-
cially from Icelandic into English. Unfortunately,
using our settings the translation speed was quite

slow (approximately one sentence per second) on
an NVIDIA A100 GPU card.

We are interested in building faster models so
we use the more traditional encoder-decoder Trans-
former architecture described in Vaswani et al.
(2017). We collect all parallel data available to us
for our language pair, generate additional synthetic
pairs using the ALMA-R 13B parameter model and
apply iterative back-translation using our own mod-
els. We apply filters to remove sentence pairs that
may have detrimental effects on the models output.

We train four Transformer models1 of varying
sizes and let each model generate five translation
candidates. A spelling and grammar checking
model is then applied to the translations to gen-
erate “corrected” versions of the sentences. Finally
the best candidate is selected from the pool of trans-
lations, corrected or not, using a reranking model.

We evaluate our models and approaches on the
WMT21 test set for English→Icelandic.

2 Related Work

We only submit a system for the
English→Icelandic translation direction. This
language pair was previously one of the pairs
for the WMT General Translation shared task
in 2021 but prior to that, limited work had been
published on MT for Icelandic. Brandt et al.
(2011) describe a rule-based system for translating
Icelandic→English, based on Apertium (Forcada
et al., 2011). Jónsson et al. (2020) was the first
published work describing SMT and NMT for
Icelandic. Since 2021 the WMT21 evaluation data,
as well as various parallel corpora projects, have
made it more accessible to train and evaluate MT
systems translating to or from Icelandic, and with
that the language has been included in various
research projects. We believe this is an indicator
of the importance of evaluation campaigns, such

1Models available at https://huggingface.co/
arnastofnun.
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as the ones run in association with the WMT
conferences, for less prominent languages.

Our approach uses an ensemble of four differ-
ent translation models and a reranking model to
select the best candidate. This is a common ap-
proach, motivated by the intuition that different
systems may have different strengths. In recent
work, Toral et al. (2023) use this approach in their
experiments with literary translations. In their work
on bidirectional reranking, Imamura and Sumita
(2017) discuss reranking and ensembling for MT
in some detail. Examples from the period of statis-
tical MT include the work of Olteanu et al. (2006)
and Wang et al. (2007), describing language model-
based reranking on hypotheses generated by phrase-
based SMT systems.

3 Data Selection and Filtering

Various parallel data are available for the English–
Icelandic language pair. ParIce (Barkarson and
Steingrímsson, 2019) is partly a collection of par-
allel corpora available elsewhere, which has been
realigned and refiltered, and partly data compiled
for that project, the largest source being regula-
tory texts published in relation with the European
Economic Area (EEA) agreement. Data for the
English–Icelandic language pair were collected
within the Paracrawl project (Bañón et al., 2020),
CCMatrix (Schwenk et al., 2021), MaCoCu (Bañón
et al., 2022) and HPLT (Aulamo et al., 2023). Data
for the language pair are also available from mul-
tiple smaller datasets distributed on OPUS (Tiede-
mann and Thottingal, 2020). We utilize all these
datasets in training our models.

We also use synthetic data: Backtranslations
made available by Jónsson et al. (2022), transla-
tions generated using the ALMA-R 13B parame-
ter model and backtranslations generated by our
trained models. We describe these in more detail
in Section 3.3.

Khayrallah and Koehn (2018) show that incor-
rect translations, untranslated target text, misalign-
ments, and other noisy segments in training data
can have a detrimental effect on the quality of trans-
lations generated by NMT systems trained on that
data. By filtering our training data rather aggres-
sively, we try to minimize such noise.

3.1 ParIce

Even though care has been taken to realign and re-
filter data for the ParIce corpus, Steingrímsson et al.

(2023) show that it still contains noise, such as mis-
alignments and mistranslations, that may be detri-
mental when training NMT systems. They refilter
the data using a combination of approaches: Shal-
low filters based on simple heuristics, by using Bi-
cleaner (Sánchez-Cartagena et al., 2018; Ramírez-
Sánchez et al., 2020) and by employing classifiers
(support vector machine-based ones (Cortes and
Vapnik, 1995) had the best outcome) with a combi-
nation of scoring mechanisms, including LASER
(Artetxe and Schwenk, 2019), LaBSE (Feng et al.,
2022), NMTScore (Vamvas and Sennrich, 2022)
using the M2M100 multilingual translation model
(Fan et al., 2021), and WAScore, a word alignment-
based score devised to measure word-level paral-
lelism, introduced in Steingrímsson et al. (2021). In
Steingrímsson (2023) these data are processed fur-
ther by realigning the EEA texts in the ParIce cor-
pus using SentAlign (Steingrímsson et al., 2023).

As the basis for our training we use the ParIce
dataset, processed as described above, as well as
parallel data extracted from Wikipedia using the
comparable corpora mining approach described
in (Steingrímsson et al., 2021) and sentence pairs
extracted from version 9 of Paracrawl using the
filtering approaches described above and in Stein-
grímsson et al. (2023).

3.2 Filtering the OPUS Datasets

An overview of the data for Icelandic-English paral-
lel texts sourced from the OPUS catalog is provided
in Appendix A. This data, accounting for redundant
sentence pairs, amounts to 21.167.7082 sentence
pairs. At face value, this is a substantial amount of
available data. However, the quality of these par-
allel texts is not reliable, with noisy and incorrect
pairs being prevalent throughout most individual
datasets in the catalog. To remedy this, and thus
ensure that the data sourced via OPUS can be used
effectively in our project, we applied an aggressive,
sequential filtering process, with the goal of whit-
tling away the majority of the low-quality sentence
pairs.

Our sequential filtering process consists of ten
individual steps, most of which only remove sen-
tences from the data without modifying the content
of other sentences. The process is sequential, in
that the input of a filtering step is the output of the
previous filtering step. Furthermore, the order of

2This applies to the state of the OPUS catalog at the time
of development, i.e., April 2024.
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Figure 1: Each filtering step’s effect on OPUS dataset size

these steps is decided to ensure optimal processing
time of the filters so that computationally heavy fil-
tering steps process the least amount of data, which
minimizes run time. For a detailed overview of
each filtering step, see Appendix B.

The effects of each filtering step on the data
amount is shown in Fig. 1. To ensure that our
filtering methods affected our implementation pos-
itively, we intermittently added the output of the
filtering process to our training pipeline and eval-
uated the performance. In particular, we used this
approach to dial in the optimal LaBSE and NMT
score cutoffs in our filters.

The final output of our filtering process pro-
duces a relatively high-quality data set of 2.056.704
English-Icelandic sentence pairs (roughly 9.71% of
the original 21.167.708 raw sentence pairs sourced
from the OPUS catalog), which we then add to our
training data.

3.3 Synthetic Data
The dataset made available by Jónsson et al. (2022)
contains translations from Europarl, Newscrawl,
Wikipedia and the IGC. We perform a filtering step
similar to the one used applied on the OPUS data,
consisting of a length filter, removing all sentences
that have fewer than four word tokens and more
than 150, an overlap filter, removing all sentence
pairs that share 40% or more of word tokens, and

a symbol filter removing all sentence pairs where
more than 20% of characters in one of the sen-
tences is non-alphabetical. Furthermore we use
two scoring mechanisms for filtering, LaBSE, us-
ing a score threshold of 0.8, and NMTScore with a
threshold of 0.4. These scores are selected based
on the evaluation in (Steingrímsson et al., 2023).
After filtering, we are left with 4.4M sentence pairs
from this dataset.

We use the 13B parameter ALMA-R model to
translate English sentences from Newscrawl to Ice-
landic and Icelandic texts from the Icelandic Gi-
gaword Corpus (IGC) (Steingrímsson et al., 2018)
to English. The Icelandic texts are sampled from
three different subcorpora of the IGC, comprising
news, scholarly journals, and literary texts. For
each source sentence we generate five translations
and use LaBSE to select the two best ones, granted
that they exceed a threshold of a LaBSE score of
0.8 and pass through the three shallow filters de-
scribed above: length, overlap and symbol filters.
Our final set contains 8.9M sentence pairs trans-
lated from Icelandic to English and 700K sentence
pairs translated from English to Icelandic.

Finally, we do iterative back-translation. We use
the same training data as described above to train
models to translate texts from the IGC to English.
For the back-translations we use TransformerBIG
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model dmodel dff h Nenc Ndec

Base 512 2048 8 6 6
Basedeep 512 2048 8 36 12
Big 1024 4096 16 6 6
Bigdeep 1024 4096 16 36 12

Table 1: Model dimensions, heads and number of layers.

models (Vaswani et al., 2017), as described in Table
1. We use the same approach as before, generate
five translations for each sentence and use LaBSE
to select the two best ones, as long as they exceed
the threshold of 0.8 and are not filtered out by the
other filters. We do two iterations of translating
and training models in both translation directions
using backtranslated data. This results in a total of
approximately 60M sentence pairs.

3.4 Other Data

To decide which datasets to use, we trained
TransformerBASE models as described in Vaswani
et al. (2017) and evaluated the models using the
test set from WMT21. We started by training a
baseline system using the dataset described in Sec-
tion 3.1. We then added different datasets to the
baseline data, trained new systems and evaluated
them. If the new dataset seemed to improve the out-
put we used that for our final system. In addition
to previously described datasets we tried generat-
ing backtranslations using SMT and to add data
from a bilingual lexicon using token-pair training
as described by Jones et al. (2023). Table 2 shows
chrF scores (Popović, 2015) for our different exper-

Dataset chrF
Baseline 50.4
Baseline+lexicon 50.4
Baseline+OPUS 53.7
Baseline+Jónsson 53.5
Baseline+Jónsson+SMT 53.2
Baseline+Jónsson+ALMA 54.7
Baseline+Jónsson+ALMA+OPUS 55.1
Baseline+Jónsson+ALMA+OPUS+BT1 56.4
Baseline+Jónsson+ALMA+OPUS+BT2 56.8

Table 2: The table shows that when most of the datasets
in our experiments are added to the training data the
quality, as measured by chrF, increases. Exceptions to
that are the experiments with adding token-pairs from
an English-Icelandic lexicon and with using backtransla-
tions generated by an SMT system. These two datasets
are therefore not used in our final systems.

Dataset Sentence Pairs
Base 2,277,023
OPUS-filtered 2,056,704
Miðeind-BT 2,559,806
Miðeind-FT 1,837,945
ALMA-BT 8,927,720
ALMA-FT 700,253
IGC-BT-1 27,794,398
IGC-BT-2 33,465,175

Table 3: Datasets used for training and number of sen-
tence pairs in each dataset.

iments.
The total number of sentence pairs used for train-

ing is shown in Table 3

4 System Description

Our motivation for using multiple models is
twofold: First, we want to use models that are
computationally inexpensive to run and so we train
models that can run on one consumer grade GPU.
Second, systems of different sizes may have com-
plementary strengths and so training multiple sys-
tems and reranking the results may give us better
results than any one model.

We train four encoder-decoder Transformer mod-
els, all of which play a part in the translation
pipeline. Two of the models follow the exact ar-
chitecture described in Vaswani et al. (2017), i.e.
the ‘base’ and ‘big’ versions of the original Trans-
former model, while the other two are deeper, using
36 encoder layers and 12 decoder layers instead of
six. The difference between the four models is
shown in Table 1.

The outputs from the translation models un-
dergo two post-processing steps. First, they are
run through a grammatical error correction model,
a version of the byte-level sequence-to-sequence
model ByT5 (Xue et al., 2022) that has been fine-
tuned by Ingólfsdóttir et al. (2023) to correct
spelling errors in Icelandic as well as handling
more complex grammatical, semantic and stylistic
issues. Second, we fix punctuation errors which
translation models are prone to making when trans-
lating into Icelandic (mostly to do with quotation
marks, which are different in Icelandic and English)
as well as some that might be unique to our system,
such as their incapability to translate emojis. As
the grammatical error correction model proved too
aggressive for our purposes, merging and splitting
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model chrF
Base 56.8
Basedeep 57.1
Big 57.7
Bigdeep 57.7
Ensemble+COMETKIWI 58.3
Ensemble+error correction

+COMETKIWI 58.4
ALMA-R 7B 52.2
ALMA-R 13B 53.4

Table 4: chrF scores for each of our models, compared
with scores for the model ensembles and for the ALMA-
R models. The scores are calculated on the WMT21
evaluation set.

some sentences, normalizing informal language us-
age and hashtags, etc., we also revert some of the
changes it introduced.

Using the WMT21 test set we experiment with
an ensemble approach, using COMETKIWI-DA-
22 (Rei et al., 2022) to select the best sentence
out of 20 hypotheses made by the four models
(each model generates five hypotheses using beam
search with beam size 12). This raises the chrF
score to 58.3 for our evaluation set. On top of this
we add the spelling and grammar error correction,
which gives us a very modest increase in quality as
measured by chrF, shown in Table 4.

We investigate whether the COMETKIWI-DA-22
model prefers the output from some of the transla-
tion models over the others. Table 5 shows which
translation models generated the translations ulti-
mately chosen by the scoring model when exper-
imenting on the WMT21 evaluation set of 1000
sentences. While translations by the deeper model
are more likely to be selected, it is evident that
all models are contributing, with the final selec-
tion containing 753 translation generated by only
one model, and of these all models contribute over
150 translations each. 247 of the selected trans-
lations were generated by more than one model
(non-unique translations). An ensemble approach
thus seems to be likely to improve overall transla-
tion quality.

4.1 The pipeline

Basing our system on the most succesful approach
in our experiments, our translation pipeline consists
of three steps: First, using each of our four models,
we generate five translation hypotheses using beam

model Selected Unique
Base 293 158
Basedeep 347 186
Big 287 163
Bigdeep 419 246

Table 5: The number of sentences generated by each
model selected for the final output when translating the
WMT21 test set.

search for all source paragraphs, resulting in a total
of 20 candidates.

Furthermore, each paragraph is segmented into
sentences, s1, . . . , sn. For each sentence, every
model produces five hypotheses. These hypotheses
are evaluated using COMETKIWI-DA-22, and the
highest-scoring hypothesis is selected for each sen-
tence. The selected hypotheses are concatenated to
form a new paragraph. Finally, a single paragraph
is created by combining the best translation of each
sentence, leaving us with 25 translation candidates.

Each of these candidates is then corrected with
regard to grammar, spelling and style using the
ByT5 model described above.

These two steps, translating the source text and
correcting the translations, result in a total of 50
translation candidates. In order to find the best
candidate we use COMETKIWI-DA-22 to score all
candidates. The highest scoring one is the selected
translation of our system.

5 Results

We evaluate our system on the test data from
WMT21. As expected, the bigger models perform
better, but the best results are achieved by selecting
translations from an ensemble of differently trained
Transformer models. We use COMETKIWI-DA-22
to select the best translation out of 20 hypotheses
made by the four models, five hypotheses by each
using beam search with beam size 12. This raises
the chrF score to 58.3 and when we add error cor-
rection on top, the score is slightly higher, 58.4, as
shown in Table 4.

In the WMT24 general translation task, sys-
tems were evaluated using two automatic met-
rics, MetricX-23-XL (Juraska et al., 2023) and
COMETKIWI-DA-XL (Rei et al., 2023), as well as
by human evaluation. According to the automatic
metrics, reported in Kocmi et al. (2024), our model
is competitive among the open systems, although
four closed systems achieve better scores. Results
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System Name Type AutoRank ↓ MetricX ↓ CometKiwi ↑
Unbabel-Tower70B Closed 1.0 2.5 0.740
Claude-3.5 Closed 2.3 3.6 0.697
Dubformer Closed 2.5 3.4 0.685
IKUN Open 3.2 4.3 0.666
GPT-4 Closed 3.4 4.7 0.673
AMI Open 3.7 4.9 0.663
IKUN-C Constrained 3.7 4.9 0.657
TranssionMT Closed 4.2 5.5 0.653
ONLINE-B Closed 4.2 5.5 0.652
IOL-Research Open 4.3 5.7 0.655
ONLINE-A Closed 5.5 6.4 0.603
Llama3-70B Open 6.7 8.0 0.586
ONLINE-G Closed 6.9 7.9 0.573
CommandR-plus Closed 9.8 10.6 0.487
Mistral-Large Closed 10.4 10.9 0.465
Aya23 Open 15.2 14.9 0.311
Phi-3-Medium Closed 16.2 15.7 0.278
ONLINE-W Closed 18.1 19.5 0.296
TSU-HITs Constrained 19.2 18.4 0.192
CycleL Constrained 21.0 20.2 0.148

Table 6: Preliminary WMT24 General MT automatic ranking for English-Icelandic. Our system is in bold.

for the automatic metrics are shown in Table 6.

6 Conclusions and Future Work

We show that while Large Language Models have
become nearly ubiquitous in Natural Language Pro-
cessing, traditional encoder-decoder Transformer
models remain a viable approach to machine trans-
lation, particularly when computational efficiency
is a priority.

Nevertheless, our findings also reveal that inte-
grating LLMs can be advantageous during the train-
ing process. Specifically, ALMA-R 13B proved to
be an important part of our training pipeline, as the
synthetic data it generated increased the quality of
our translation systems.

Furthermore, our results indicate that while more
training data usually result in a better translation
system, low-quality data, such as the backtransla-
tions generated with an SMT system, can have a
detrimental impact on performance. Similarly, our
experiments with a bilingual lexicon using token-
pair training negatively affected the system’s out-
put. This may be due to a variety of reasons. Our
SMT system could probably be improved as well
as our approach to include data from a bilingual
lexicon in the training data. This warrants further
investigation.

Our filtering method, as described in Sections
3.2, 3.3 and Appendix B, has proven effective, even
though it may be argued that it is still somewhat
crude and more work into minimizing the loss
of useful sentence pairs and more effectively re-
move detrimental sentence pairs would very likely
improve the training data and in turn the transla-
tion models. For example, while we use LaBSE,
LASER and NMT to evaluate sentence pairs, we
apply individual cutoff values for each score. A
better approach could entail using a classifier to
combine all metrics for an optimal result.

Although currently impractical at production-
scale, genetic algorithms, as shown by Jon and
Bojar (2023) and Jon et al. (2023), show promising
results in generating translation candidates. Given
larger computational resources, similar approaches
might prove useful and await future study.
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A OPUS Texts

The parallel texts we sourced from the OPUS
catalog are listed in this section. The format of the
list is as follows:

Index. Name; version; sentence pairs

For brevity, the ELRC parallel text names are
abbreviated after the first entry in the list, with the
ditto symbol (‘"’) replacing the ‘ELRC’ part of the
name.

1. CCAligned; v1; 1,192,542
2. CCMatrix; v1; 8,723,145
3. ECDC; v2016-03-16; 2,512
4. ELRC-2718-EMEA; v1; 542,624
5. "-3206-antibiotic; v1; 816
6. "-4295-www.malfong.is; v1; 12,634
7. "-4324-Government_Offices_I; v1; 18,185
8. "-4327-Government_Offices_I; v1; 36,290
9. "-4334-Rkiskaup_2020; v1; 10,236
10. "-4338-University_Iceland; v1; 10,164
11. "-502-Icelandic_Financial_; v1; 1,525
12. "-504-www.iceida.is; v1; 1,055
13. "-505-www.pfs.is; v1; 2,866
14. "-506-www.lanamal.is; v1; 1,140
15. "-5067-SciPar; v1; 110,831
16. "-508-Tilde_Statistics_Ice; v1; 2,427
17. "-509-Gallery_Iceland; v1; 577
18. "-510-Harpa_Reykjavik_Conc; v1; 1,197
19. "-511-bokmenntaborgin_is; v1; 330
20. "-516-Icelandic_Medicines; v1; 711
21. "-517-Icelandic_Directorat; v1; 1,536
22. "-597-www.nordisketax.net; v1; 1,065
23. "-718-Statistics_Iceland; v1; 2,361
24. "-728-www.norden.org; v1; 41,073
25. "-EMEA; v1; 542,624
26. "-antibiotic; v1; 816
27. "-www.norden.org; v1; 41,073
28. "-www.nordisketax.net; v1; 1,065
29. EUbookshop; v2; 9,783
30. GNOME; v1; 28,776
31. HPLT; v1; 2,148,876
32. KDE4; v2; 98,989
33. MaCoCu; v2; 267,366
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34. MultiCCAligned; v1; 1,192,537
35. MultiHPLT; v1; 2,148,855
36. MultiMaCoCu; v2; 267,366
37. MultiParaCrawl; v7.1; 2,392,423
38. NLLB; v1; 8,723,145
39. OpenSubtitles; v1; 7,138
40. OpenSubtitles; v2016; 1,359,224
41. OpenSubtitles; v2018; 1,569,189
42. ParIce; v1; 2,097,022
43. ParaCrawl; v7.1; 2,392,422
44. ParaCrawl; v8; 5,724,373
45. ParaCrawl; v9; 2,967,579
46. QED; v2.0a; 27,611
47. TED2020; v1; 2,430
48. Tatoeba; v2; 8,139
49. Tatoeba; v20190709; 9,436
50. Tatoeba; v2020-05-31; 9,438
51. Tatoeba; v2020-11-09; 9,440
52. Tatoeba; v2021-03-10; 9,443
53. Tatoeba; v2021-07-22; 9,443
54. Tatoeba; v2022-03-03; 9,522
55. Tatoeba; v2023-04-12; 9,600
56. TildeMODEL; v2018; 420,712
57. Ubuntu; v14.10; 2,155
58. WikiMatrix; v1; 85,992
59. WikiTitles; v3; 50,176
60. XLEnt; v1; 962,661
61. XLEnt; v1.1; 962,661
62. XLEnt; v1.2; 962,661
63. bible-uedin; v1; 62,163
64. wikimedia; v20190628; 581
65. wikimedia; v20210402; 2,625
66. wikimedia; v20230407; 4,471

B Filtering steps

Filter 1. Sentence length
Sentences should contain at minimum four charac-
ters and at maximum 150 characters.

Filter 2. High inter-pair content overlap
Sentence pairs where the content of the source and
target sentences are highly similar should be re-
moved from the dataset.

Filter 3. Character symbol filtering
All characters in the English and Icelandic alpha-
bets (along with punctuation and numbers) desig-
nated as a set of allowed characters. Sentences con-
taining less than 60% of these characters removed
from the data and all characters outside the allowed

set removed from the remaining sentences.3

Filter 4. LaBSE scoring
We use score each sentence pair using LaBSE
(Feng et al., 2022) and remove all sentences with a
score lower than 0.84.

Filter 5. Language detection
We use various language detection software to
gauge whether both the source and target sen-
tences are in the correct language. The software
we used was fasttext (Joulin et al., 2016), franc
(Wormer, 2024), lingua (Stahl, 2024) and langde-
tect (Nakatani, 2010).

Filter 6. Similar dataset pairs
As a safeguard, we remove any duplicate entries
of our dataset if, for any reason, there remain du-
plicate instances after the previous filters. In our
final experiment, this was rendered redundant, but
was required in previous iterations and may prove
useful in future iterations.

Filter 7. Near-duplicate dataset pairs
Sentences are compared by removing content-
specific words that are likely proper names and
dates, etc., and comparing the remainder.

Filter 8. Likely machine-translated target sen-
tences
A GPT-2 (Radford et al., 2019) classifier is used
to evaluate whether a given target sentence is
machine-translated, based on a 10.000 sentence
hand-evaluated reference set. If this is true for
the target sentence, that pair is removed from the
dataset.

Filter 9. Existing datasets
As a final safeguard check, we remove any sentence
pair that we already have on file in other datasets,
as touched on in section 3.2.

Filter 10. NMTScore cross-likelyhood 0.4
Finally, we use a translation cross-likelyhood
NMTScore (Vamvas and Sennrich, 2022) to de-
termine the translation quality of a given sentence
pair. This step is computationally heavy and was
therefore saved for last. Our experiments suggest
that 0.4 is a suitable cutoff for our dataset.

3This is the last filtering step that inherently modifies the
content inside individual sentences.

4This is a higher cutoff than the original LaBSE authors
suggest to use, but our experiments suggets it better suits our
data.
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Abstract

This paper introduces two multilingual sys-
tems, IKUN and IKUN-C, developed for the
general machine translation task in WMT24.
IKUN and IKUN-C represent an open system
and a constrained system, respectively, built
on Llama-3-8b and Mistral-7B-v0.3. Both
systems are designed to handle all 11 lan-
guage directions using a single model. Accord-
ing to automatic evaluation metrics, IKUN-C
achieved 6 first-place and 3 second-place fin-
ishes among all constrained systems, while
IKUN secured 1 first-place and 2 second-
place finishes across both open and con-
strained systems. These encouraging results
suggest that large language models (LLMs) are
nearing the level of proficiency required for ef-
fective multilingual machine translation. The
systems are based on a two-stage approach:
first, continuous pre-training on monolingual
data in 10 languages, followed by fine-tuning
on high-quality parallel data for 11 language
directions. The primary difference between
IKUN and IKUN-C lies in their monolingual
pre-training strategy. IKUN-C is pre-trained
using constrained monolingual data, whereas
IKUN leverages monolingual data from the OS-
CAR dataset. In the second phase, both sys-
tems are fine-tuned on parallel data sourced
from NTREX, Flores, and WMT16-23 for all
11 language pairs.1

1 Introduction

Large language models (LLMs) (Touvron et al.,
2023; Dubey et al., 2024; Jiang et al., 2023; Ope-
nAI, 2023) serve as a crucial foundation for a wide
range of applications. One significant advantage of
LLMs is their ability to be applied across various
tasks, thereby simplifying deployment processes.
However, the application of LLMs to multilingual
machine translation (MT) presents several chal-
lenges:

1Please read our newest verion at
https://arxiv.org/abs/2408.11512

• Most LLMs are pre-trained on one or a
few dominant languages, making direct fine-
tuning on multilingual data insufficient for en-
suring optimal performance, particularly for
low-resource languages, which are often un-
derrepresented in the training data.

• It remains unclear whether these LLMs, pri-
marily pre-trained on a limited number of lan-
guages, effectively facilitate transfer learning
across different languages (Tan et al., 2024).

• The large-scale nature of most LLMs presents
significant challenges for efficient fine-tuning,
particularly for researchers and practitioners
with limited computational resources.

In the WMT24 general MT task (Kocmi et al.,
2024a), our objective is to assess the capability
of LLMs for multilingual MT, as an alternative to
training bilingual systems from scratch (Wu et al.,
2023). This paper provides a detailed account of
how we developed our final multilingual system us-
ing LLMs for both the constrained and open tracks.

Firstly, we identified that certain LLMs exhibit
inefficiencies in tokenizing sentences from lan-
guages that are underrepresented in the pre-training
data. To address this, we extended the existing vo-
cabulary to reduce the tokenized sentence length,
thereby enhancing training efficiency. Secondly,
we enriched the LLMs with knowledge across the
10 target languages through continued pre-training.
This step is particularly crucial for underrepre-
sented languages, as it facilitates transfer learn-
ing. Finally, we fine-tuned the models using high-
quality parallel datasets across all 11 pairs.

Through this streamlined approach, our con-
strained multilingual system, IKUN-C, secured 6
first-place and 3 second-place rankings in the au-
tomatic evaluation. Our open multilingual system,
IKUN, achieved 1 first-place and 2 second-place
rankings across the open and constrained tracks.
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These encouraging results demonstrate that LLMs
can be effectively adapted for multilingual MT,
broadening access to speakers of diverse languages.

2 Pre-trained LLM

LLMs are pre-trained on extensive web-scale data,
encompassing a vast repository of general knowl-
edge applicable to various tasks. Previous studies
(Xu et al., 2024a,b) have demonstrated that LLMs
can substantially enhance the performance of mul-
tilingual MT. Building on this insight, we adopt a
pre-trained LLM as the foundation for our system.

IKUN is an open system developed with meticu-
lous consideration of available resources and sys-
tem capabilities. For this purpose, we selected
Llama-3 (Dubey et al., 2024), one of the most ad-
vanced open-source LLMs available at the time
of this competition. Due to constraints on compu-
tational resources, we opted for the 8B version2

instead of the 70B version. A significant factor
in our choice of Llama-3 was its strong support
for multilingual applications, as evidenced by the
efficiency with which its tokenizer handles all 11
languages involved in this competition (See §3).
We also tried the instruct version, but it is worse
than the pre-trained version.

IKUN-C is a constrained system based on
Mistral-7B-v0.3 (Jiang et al., 2023), one of the
three LLMs permitted for the constrained track.
Prior to selecting Mistral-7B-v0.33, we conducted
continuous pre-training on all three allowed LLMs
— namely, Llama-2-7B, Llama-2-13B (Touvron
et al., 2023), and Mistral-7B — using a subset of
our monolingual data (approximately 1B tokens).
The pre-training loss demonstrated that Mistral-7B
outperformed Llama-2-7B and performed compa-
rably to Llama-2-13B, leading us to select it as our
architecture of choice.

3 Tokenizer Efficiency

A significant challenge in applying LLMs to multi-
lingual MT lies in the efficiency of their tokenizers.
These models are typically pre-trained on one or
a few dominant languages, and when their tok-
enizers are applied to low-resource languages, they
produce disproportionately long sequences of sub-
words. This inefficiency leads to excessive GPU
memory consumption during training.

2https://huggingface.co/meta-llama/Meta-Llama-3-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.3

To evaluate the efficiency of the tokenizer, we
focus on comparing the length differences between
tokenized English sentences and their correspond-
ing non-English counterparts. Specifically, we de-
fine the length ratio as:

length ratio =
len(tokenizer(x))

len(tokenizer(y))

where y represents the English sentence, and x de-
notes the paired non-English sentence. A smaller
length ratio (close to 1) is desired, since it means
that the tokenizer can encode the non-English sen-
tence as efficient as the English sentence.

To facilitate a comparison of length ratios across
different languages, English-centric multilingual
data is essential. Fortunately, the FLoRes-200
dataset (Costa-jussà et al., 2022) possesses this
characteristic. In the devtest and test sets of
FLoRes-200, every English sentence is paired with
translations in various other languages. We concate-
nate all sentences from the devtest set and compute
the length ratio for each language, as illustrated
in Figure 1. We also include NLLB’s tokenizer
(Costa-jussà et al., 2022) for a comparison.

We can observe: (1) NLLB consistently exhibits
the smallest length ratio across all languages, likely
due to its extensive optimization for hundreds of
languages, thus serving as a lower bound in this
context. (2) Mistral-v0.3 and Llama-3 demonstrate
a notably high length ratio for Hindi, suggesting
that Hindi is underrepresented in the pre-training
data. (3) Compared to NLLB, the tokenizer of
Mistral-v0.3 is significantly less efficient for Chi-
nese, Japanese, Hindi, and Icelandic.

We opted to expand the vocabulary by incor-
porating new sub-words to reduce the length of
tokenized sentences, thereby enhancing training
efficiency. However, this approach introduces a
trade-off between the addition of new sub-words
and training performance. The embeddings for
the newly introduced sub-words are initially un-
trained, and a substantial increase in sub-words
may necessitate additional iterations of continuous
pre-training. Consequently, our strategy for adding
sub-words prioritizes those from languages with
higher length ratios.

For our open system, IKUN, we didn’t modify
its tokenizer, since Llama-3 tokenizer is already
efficient enough, only except for Hindi. For our
constrained system, IKUN-C, we expanded its vo-
cabulary for Chinese, Japanese, Hindi, and Ice-
landic through the following steps: (1) Generate
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Figure 1: Tokenizer efficiency for various LLMs and languages. The larger the length ratio is, the less efficient the
tokenizer is. We add new sub-words, from Chinese, Japanese, Hindi and Icelandic, to the Mistral-v0.3 vocabulary to
construct the IKUN-C vocabulary. IKUN uses the Llama-3 tokenizer without any modification.

Language pair Num. Language pair Num.

cs-uk 8768 uk-cs 8768
ja-zh 12858 zh-ja 12858
en-zh 36647 zh-en 34650
en-cs 30120 cs-en 28123
en-de 35564 de-en 33567
en-hi 11020 hi-en 9023
en-is 8010 is-en 6013
en-ja 18113 ja-en 16116
en-ru 32840 ru-en 30843
en-es 13808 es-en 11811
en-uk 11961 uk-en 9964
en-fr 4006 fr-en 4006

Total: 429457

Table 1: Number of parallel sentences.

a new vocabulary of 12K sub-words using mono-
lingual data from the past two years for these four
languages from News Crawl4; and (2) Merge the
new vocabulary with the original. The efficiency
of the resulted IKUN-C tokenizer is shown in Fig-
ure 1, demonstrating more efficiency for these four
languages, especially for Hindi.

4 Experiments

We mainly follow the pipeline from Xu et al.
(2024a), i.e. continuous pre-training on monolin-
gual data for all 10 languages, and followed by fine-
tuning on parallel data for all 11 language pairs.

4.1 Continuous Pre-training
Given that our selected LLMs, specifically Llama-
3-8B and Mistral-7B-v0.3, are primarily pre-
trained on English, it is necessary to incorpo-
rate knowledge from other languages through fur-
ther pre-training, with particular emphasis on low-
resource languages. Additionally, the word em-

4https://data.statmt.org/news-crawl/

beddings for the newly introduced sub-words in
IKUN-C must also undergo training.

For the open system IKUN, we utilize mono-
lingual data from the Oscar dataset (Suárez et al.,
2020), covering all 10 target languages. We adopt
the sampling strategy outlined by Xu et al. (2024a),
described as:

P (l) ∝ (
Dl∑

l′∈L Dl′
)

1
T s.t.

∑

l′∈L

P (l′) =
9

10

where Dl represents the number of words in lan-
guage l5, T is the temperature parameter (set to
6), and L denotes the set of all languages except
English. The sampling probability for English is
fixed at 1/10. The experimental settings for con-
tinuous pre-training are detailed in Table 2. We
approximately pre-trained IKUN on an additional
8B tokens.

In the constrained system, only the provided data
sources are permitted for use6. The IKUN-C sys-
tem utilizes monolingual data from the News Crawl
dataset for 9 languages, with the exception of Span-
ish, as the use of Spanish monolingual data from
News Crawl is restricted. For Spanish, we incor-
porate monolingual data from the Leipzig Corpora
(Goldhahn et al., 2012). Additionally, for Hindi, we
augment the dataset with monolingual data from
News Commentary due to the relatively limited
amount of Hindi data available in the News Crawl
dataset. This adjustment is crucial because Hindi
is underrepresented in the pre-training of Mistral-
7B-v0.3. Our experimental settings closely align
with those detailed in Table 2.

5https://huggingface.co/datasets/oscar-corpus/OSCAR-
2301

6https://www2.statmt.org/wmt24/mtdata/
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Hyper-parameter Continuous pre-training Finetuning

sampling probability cs,de,en,es,hi,is,ja,ru,uk,zh =
0.1,0.13,0.1,0.13,0.08,0.05,0.08,0.13,0.08,0.12

duration 60K steps 1 epoch
batch size 64 128
sequence length 2048 max source length=512, max target length=512
learning rate (lr) 2e-5 2e-4
warmup ratio 0 0.01
weight decay 0.01 0.01
lr scheduler cosine inverse_sqrt
training type full finetuning LoRA r = 64 for all layers

Table 2: Experimental setting for continuous pre-training and subsequent finetuning.

System Metric cs-uk en-cs en-de en-es en-hi en-is en-ja en-ru en-uk en-zh ja-zh

MetricX ↓ 2.4 4.3 2.0 3.5 7.1 4.9 4.3 4.7 4.7 4.2 6.2
CometKiwi ↑ 0.648 0.618 0.641 0.666 0.499 0.657 0.669 0.649 0.622 0.624 0.519

IKUN-C AutoRank ↓ 3.0 4.7 3.8 3.4 5.5 3.7 3.9 3.9 3.9 3.5 5.5

Place in constrained ↓ 2 5 1 1 1 1 3 1 1 2 2

MetricX ↓ 1.6 3.7 1.8 3.3 9.4 4.3 3.7 4.1 3.7 4.0 5.4
CometKiwi ↑ 0.664 0.638 0.668 0.687 0.428 0.666 0.696 0.675 0.661 0.646 0.544

IKUN AutoRank ↓ 2.3 3.9 3.0 2.8 7.7 3.2 3.1 3.2 2.8 3.1 4.4

Place in constrained&open ↓ 2 5 4 3 5 1 6 3 2 5 6

Table 3: Preliminary results of our systems on the WMT24 test sets, taken from Kocmi et al. (2024b). The final
human evaluation results are not released yet. “-” here means →. I.e. cs-uk is cs→uk.

4.2 Subsequent Fine-tuning

Previous studies (Wu et al., 2024; Zhou et al., 2023)
have demonstrated that the quality of fine-tuning
data is a critical factor in achieving optimal per-
formance. Liao et al. (2021) further indicates that
increasing the amount of back-translation data does
not necessarily lead to better outcomes. In light
of this, we exclusively utilize high-quality parallel
data for the fine-tuning phase.

The high-quality parallel data is primarily
sourced from FloRes-200 (Costa-jussà et al., 2022),
NTREX-128 (Federmann et al., 2022), and previ-
ous WMT16-23 general MT/news tasks (Kocmi
et al., 2023, 2022; Akhbardeh et al., 2021; Barrault
et al., 2020, 2019, 2018; Bojar et al., 2017, 2016).

FloRes-200: As the FloRes-200 dataset provides
parallel sentences across multiple languages, we
leverage all 11 translation directions from the de-
vtest and test sets. Importantly, our fine-tuning
approach is not limited to the required directions
listed in Table 3; instead, we fine-tune the model
on both translation directions, e.g., en↔de, to fa-
cilitate broader applicability of the final model.

NTREX-128: We also incorporate parallel sen-
tences from NTREX-128 for from-English trans-
lation directions, i.e. en→XX. In accordance with
Federmann et al. (2022), which recommends using
the en→XX translation direction, our fine-tuning

is confined to these directions rather than adopting
a bidirectional approach. An exception is made
for the en-fr pair, where bidirectional fine-tuning
is applied due to the limited availability of parallel
data for this pair (absent in previous WMTs).

Past WMTs: Additionally, we extract parallel
sentences from the development and test sets of
the WMT16-23 general MT tasks, provided they
contain the necessary translation directions. For
these sentences, we employ a bidirectional fine-
tuning strategy.

The statistics for all parallel sentences are pre-
sented in Table 1. Notably, all systems are fine-
tuned at the sentence level. Given that WMT de-
velopment and test sets are at the document level,
models could alternatively be fine-tuned at the doc-
ument level or reformatted into a conversational
structure for fine-tuning. This latter approach might
be more effective for context-aware translation, as
WMT24 applies context-based human evaluations.
We reserve this exploration for future work. The
fine-tuning setting is listed in Table 2.

4.3 Results
We present the preliminary results reported by
Kocmi et al. (2024b) in Table 3, which includes
four evaluation metrics. Both MetricX-23-XL
(Juraska et al., 2023) and CometKiwi-DA-XL
(Rei et al., 2023) have demonstrated strong cor-
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relations with human evaluation (Freitag et al.,
2023). AutoRank (Kocmi et al., 2024b), a nor-
malized composite metric derived from MetricX
and CometKiwi, scales the scores of each metric
linearly to span the range from 1 to the total num-
ber of systems in a given language pair. The final
automatic ranking is obtained by averaging these
normalized scores. AutoRank can thus be con-
sidered a measure of the overall rank across all
systems and tracks. Additionally, we report the
rankings of our systems across various tracks.

It is noteworthy that both of our systems are
multilingual, designed to handle all language pairs.
The IKUN-C system, in particular, demonstrates
promising performance in the constrained track,
achieving 6 first-place and 3 second-place finishes.
In both the open and constrained tracks, IKUN
maintains strong performance, securing 1 first-
place and 2 second-place positions, even when
compared to systems that may leverage additional
open-source data or specialize in a limited set of
language pairs.

5 Conclusion

In this paper, we present a methodology for effec-
tively adapting pre-trained LLMs to the task of
multilingual machine translation. Our approach
involves three primary steps: (1) expanding the
vocabulary to accommodate languages that are un-
derrepresented in the pre-training data, when neces-
sary; (2) continuing pre-training the LLM on mono-
lingual data to enhance its knowledge of underrep-
resented languages and to train the embeddings of
newly introduced sub-words; and (3) fine-tuning
the LLM on high-quality parallel data. Our ex-
perimental results demonstrate the efficacy of this
straightforward pipeline, with IKUN-C securing
6 first-place finishes in the constrained track, and
IKUN achieving 1 first-place ranking in both the
open and constrained tracks.
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Abstract

The NTTSU team’s submission leverages sev-
eral large language models developed through
a training procedure that includes continual
pre-training and supervised fine-tuning. For
paragraph-level translation, we generated syn-
thetic paragraph-aligned data and used these
data for training. In the task of translating
Japanese to Chinese, we focused on speech
domain translation. Specifically, we built Whis-
per models for Japanese automatic speech
recognition (ASR). Since the dataset used for
Whisper training contains many noisy data
pairs, we combined the Whisper outputs us-
ing ROVER (Fiscus, 1997) to refine the tran-
scriptions. Furthermore, we employed forward
translation from audio as data augmentation,
using both ASR models and a base transla-
tion model. To select the best translation from
multiple hypotheses of the models, we applied
Minimum Bayes Risk decoding after Quality
Estimation (Fernandes et al., 2022), incorpo-
rating scores such as COMET-QE, COMET,
and cosine similarity by LaBSE. We explored
three different reranking strategies to handle
two types of candidates from sentence- and
paragraph-level translation and employed a fu-
sion method that integrates all three.

1 Introduction

This paper provides a system description of the
NTTSU team’s submissions to WMT 2024. We
took part in the General Translation Task (Kocmi
et al., 2024a) for English-to-Japanese (En-Ja) and
Japanese-to-Chinese (Ja-Zh). This task has three
tracks with different constraints on the use of train-
ing data and pre-trained models. For En-Ja, we par-
ticipated in the constrained track, which provides
sets specifically allow training data and pre-trained
models for use in traning the translation models.
Additionally, for Ja-Zh, we participated in the open
track, which allows the use of software and data
under any open-source license.

Our team’s submission leveraged several large
language models developed through a training pro-
cedure (Guo et al., 2024; Kondo et al., 2024) that
includes continual pre-training and supervised fine-
tuning. For paragraph-level translation, we gen-
erated synthetic paragraph-aligned data and used
these data for training.

In the task of translating Japanese to Chinese, we
focused on speech domain translation. Specifically,
we built Whisper models (Radford et al., 2022)
for Japanese automatic speech recognition (ASR).
We used the YODAS dataset (Li et al., 2024) for
Whisper training. Since these data contained many
noisy data pairs, we combined the Whisper outputs
using ROVER (Fiscus, 1997) to refine the transcrip-
tions. Furthermore, to enhance the robustness of
the translation model against errors in the transcrip-
tions, we performed data augmentation by forward
translation from audio, using both ASR and base
translation models.

To select the best translation from multiple hy-
potheses of the models, we applied Minimum
Bayes Risk decoding after quality estimation (Fer-
nandes et al., 2022), incorporating scores such
as COMET-QE, COMET, and cosine similarity
by LaBSE. We explored three different reranking
strategies to handle two types of candidates from
sentence- and paragraph-level translation and em-
ployed a fusion method that integrates all three.

2 System Overview

Our system had three main components: automatic
speech recognition (ASR) models, translation mod-
els, and a reranking.

This year, speech domain translation was newly
incorporated in the above task, and audio data,
along with the organizer’s transcription, were pro-
vided as input data. We were interested in the
feasibility of speech translation from Japanese, so
we created an ASR model for the Ja-Zh and used
its transcription as the additional source text. More-
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over, we used ROVER to refine the transcriptions.
For the translation model’s architecture, we em-

ployed and trained the Transformer model and
LLMs. To train the LLms, we carried out monolin-
gual/parallel continual pre-training and supervised
fine-tuning. The evaluation for this year was con-
ducted at the paragraph level. To address this, we
created sentence- and paragraph-level parallel data
and utilized these data to build translation models
for each level.

During the inference step, we used the transla-
tion models to independently translate at the sen-
tence and the paragraph level, generating multiple
candidates. We then selected the best translation
candidate using a reranking that combines sentence-
and paragraph-level reranking with MBR decoding
after quality estimation.

3 Automatic Speech Recognition

For Ja-Zh speech translation, we fine-tuned various
Whisper-based ASR models for the Japanese ASR
task. We used the Japanese subset (ja100) of the
YODAS dataset, which consists of approximately
3,000 hours of speech and transcriptions.

3.1 Dataset
During the dataset review, we found that the YO-
DAS dataset contained many incorrect transcrip-
tions (e.g., music and non-Japanese speech sam-
ples). To mitigate the negative impact of these
incorrect samples, we refined the YODAS dataset.
We integrated transcriptions of multiple hypotheses
transcription generated from multiple ASR models
to create a tuning dataset. Specifically, the follow-
ing procedure was used to generate tuning data.

1. Generation We performed beam search de-
coding with multiple ASR models to gener-
ate multiple ASR hypotheses for each speech
sample in ja100. This process yielded a set
of hypotheses equal to the number of ASR
models multiplied by the beam size. We set a
beam size of 4.

2. Language-based Filtering We applied multi-
step filtering for the YODAS dataset. First, we
used Whisper to transcribe the speech; then,
we applied the Compact Language Detector
v3 (CLD3) 1 to filter non-Japanese language.
Next, we excluded the transcriptions that did
not contain Japanese-specific characters (i.e.,

1https://github.com/google/cld3

hiragana or katakana). After language-based
filtering, we filterd out uncertain transcription
that contained repetition. Specifically, texts
with bi-grams appearing more than six times
were excluded.

3. Combination After filtering, we combined
multiple ASR hypotheses using the Rec-
ognizer Output Voting Error Reduction
(ROVER) (Fiscus, 1997).

4. CER-based Filtering To filter uncertain sam-
ples of ROVER results, we applied accuracy-
based filtering. We measured the character
error rate (CER) between the ROVER results
and the original subtitles in YODAS. A high
CER indicates that either one or both may be
significantly inaccurate. For the ASR train-
ing, we constructed a development set of 2k
samples of CER ≤ 0.3 data. No CER filtering
was applied to the training set because no pos-
itive effect was observed in preliminary exper-
iments. Finally, all ROVER results except the
development set (1,614,110 segments) were
treated as the training set. For the training of
MT using the ASR data (described in §4.3),
samples with CER ≤ 0.3 (693,304 segments)
were used.

To compare the quality of the original subtitles
and the ROVER results, we subjectively evaluated
the two corresponding transcriptions of 100 ran-
domly selected samples. As a result, we determined
that the ROVER results were of higher quality.

3.2 Model

To create the tuning data, we used two pre-trained
ASR models: Whisper large-v32 and kotoba-
whisper-v1.13, a Japanese-specific ASR model.

3.3 Training

Using the tuning data created through the above
procedure with the two ASR models, we separately
fine-tuned each of these models. The training of the
model was conducted using the AdamW optimizer,
with parameters set as β1 = 0.9, β2 = 0.999, ϵ =
1e− 8. We employed a linear decay learning rate
scheduler and set the warmup steps to 500. The
model’s parameters were saved every 4000 steps.

2https://huggingface.co/openai/
whisper-large-v3

3https://huggingface.co/kotoba-tech/
kotoba-whisper-v1.1
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The training was carried out with a batch size of 32
samples over a single epoch. We selected the best
model based on the loss in the dev set.

3.4 Inference

During inference, we performed a beam search
with a beam size of 4 and combined these four hy-
potheses using ROVER. For the post-processing
of the ASR stage, we integrated punctuation and
sentence segmentation into the transcription. We
used the fine-tuned version of xlm-roberta4 and
Bunkai (Hayashibe and Mitsuzawa, 2020)5 for
punctuation insertion and sentence segmentation,
respectively. Finally, the two types of hypotheses
from the two ASR models were passed to MT.

In the data generation process for MT training
(§4.3), ROVER was not performed and the top-1
hypothesis of the beam search was used.

4 Primary Translation Model

4.1 Dataset

We used two types of text corpora: monolingual
and parallel data. Monolingual data are used for
monolingual continual pre-training, while parallel
data are used for parallel continual pre-training,
sentence-level supervised fine-tuning (SFT), and
paragraph-level SFT.

En-Ja We used the following monolingual cor-
pora: Common Crawl (Kocmi et al., 2022), Leipzig
Corpora (Goldhahn et al., 2012), News Crawl,
and News Commentary (Kocmi et al., 2023). We
also used JParaCrawl v3.0 (Morishita et al., 2022),
News Commentary (Kocmi et al., 2023), the Ky-
oto Free Translation Task Corpus (KFTT) (Neu-
big, 2011), TED Talks (Barrault et al., 2020), and
past WMT test data as the parallel data. Since
JParaCrawl v3.0 is automatically created and con-
tains a certain amount of noisy data, we filtered
the corpus based on sentence embeddings. We em-
ployed LaBSE (Feng et al., 2022) to embed the
source and target sentences and then filtered out
the sentence pairs in which the similarities are not
between 0.4 and 0.9.

Ja-Zh We used the following monolingual cor-
pora: Leipzig Corpora (Goldhahn et al., 2012),
News Crawl, and News Commentary (Kocmi et al.,

4https://huggingface.co/1-800-BAD-CODE/
xlm-roberta_punctuation_fullstop_truecase

5https://github.com/megagonlabs/bunkai

2023). In order to obtain parallel data for con-
tinual pre-training, we used JParaCrawl Chinese
v2.0 (Nagata et al., 2024). Since this corpus also
contains noisy data, we filtered them using the
same method as in the En-Ja task. For sentence-
level SFT, we used ASPEC-JC (Nakazawa et al.,
2016) and Flores-200 (NLLB Team et al., 2022)
as training and development sets. In addition to
the data for sentence-level SFT, we used News
Commentary, WIT3 (Cettolo et al., 2012), Global
Voice, and Neulab TedTalks (Tiedemann, 2012)
as parallel corpora with context information for
paragraph-level SFT.

4.2 Model Selection

For the En-Ja task, we used the largest available
LLM in the constrained track, Llama-2-13b6 (Tou-
vron et al., 2023). For the Ja-Zh task, we used
TowerBase-13B-v0.1 7 (Alves et al., 2024), a
model based on Llama-2-13b that has been con-
tinually pre-trained with monolingual and parallel
data.

Additionally, we developed and deployed a
Transformer (Vaswani et al., 2017) model trained
from scratch. As training data, we used JParaCrawl
v3.0 for the En-Ja task and JParaCrawl Chinese
v2.0 for the Ja-Zh task. The model configuration
and hyperparameters are detailed in Table 1.

4.3 LLM Training Procedure

We conducted a three-stage training process based
on research conducted on translation models using
LLMs (Guo et al., 2024; Kondo et al., 2024). In
the first stage, we performed continual pre-training
with monolingual data. In the second stage, we
conducted continual pre-training with parallel data.
Finally, in the third stage, we carried out supervised
fine-tuning. The detailed model configuration and
hyperparameters are given in Table 1.

Monolingual Continual Pre-Training It has
been reported that LLMs primarily pre-trained in
English, such as Llama-2, have lower translation ac-
curacy for languages other than English (Xu et al.,
2024). Therefore, we performed continual pre-
training using monolingual data to enhance the

6https://huggingface.co/meta-llama/
Llama-2-13b-hf

7https://huggingface.co/Unbabel/
TowerBase-13B-v0.1

8https://github.com/facebookresearch/fairseq
9https://github.com/huggingface/transformers
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Transformer Enc-Dec model

Subword Size 32,000
Architecture Transformer (big)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1e− 8)
LR Scheduler Inverse Square root decay
Warmup Steps 4,000
Max Learning Rate 1e-3
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing 0.1
Batch Size 512,000 tokens
Number of Updates 50,000 steps
Implementation fairseq8 (Ott et al., 2019)

Common Settings for All LLMs Training Phases

Warmup Ratio 1%
Gradient Clipping 1.0
Weight Decay 1.0
Implementation transformers9 (Wolf

et al., 2020)

Continual Pre-Training Settings

Optimizer AdamW (β1 = 0.9, β2 =
0.95, ϵ = 1e− 5)

LR Scheduler Cosine
Max Learning Rate (full
/ LoRA)

1.5e-4 / 2.0e-4

Batch Size 1,024 samples
Epoch 1
Context Length 2,048

Supervised Fine-tuning Settings

Optimizer AdamW (β1 = 0.9, β2 =
0.999, ϵ = 1e− 8)

LR Scheduler Inverse Square root decay
Max Learning Rate 2.0e-4
Batch Size 1,024 samples
Epoch 3

LoRA Settings

Rank / Alpha 16 / 32
Dropout 0.05
Target Modules QKVO, FFN

Table 1: Model configuration and hyperparameters.

generation capabilities in languages other than En-
glish.

We used randomly sampled data from the mono-
lingual corpora described in §4.1. For the En-Ja
task, we created two models, ver1 and ver2, and
trained them using randomly sampled data of 1B
and 4B tokens, respectively. In contrast, for the
Ja-Zh task, we trained only a single model with
randomly sampled data of 1B tokens due to the
lack of time and GPU resources.

Parallel Continual Pre-Training After complet-
ing monolingual continual pre-training, we per-
formed continual pre-training using parallel data.
Based on the findings of (Kondo et al., 2024), we

used data where the source text is followed by its
translation.

For the En-Ja task, the ver1 model was trained
using LoRA (Hu et al., 2022), while the ver2 model
was trained with full weights. Additionally, ver1
was trained using only the sentence-level parallel
data from JParaCrawl v3.0, whereas ver2 utilized
JParaCrawl v3.0 along with TED and News Com-
mentary as pseudo-paragraph data.

Supervised Fine-Tuning After completing con-
tinual pre-training in monolingual and parallel data,
we performed supervised fine-tuning using LoRA.
The prompts applied to the training data were the
same as those used in ALMA (Xu et al., 2024), and
the same prompts were used during inference. Note
that loss in the prompt outputs was excluded during
training (Xu et al., 2024; Kondo et al., 2024).

Additionally, for domain adaptation, we per-
formed SFT using data from each specific domain.
For the En-Ja task, the ver1 model was fine-tuned
using TED Talks, KFTT, and past WMT test data.
In contrast, the ver2 model was fine-tuned with the
same three datasets as ver1, plus two additional set-
tings: using only the news domain data and using
only the social domain data each from past WMT
test data. Note that the past WMT test data used
for SFT training consisted of the WMT20 devel-
opment and test data, with the other test data from
WMT21 to WMT23. For WMT21, both En-Ja and
Ja-En directions were included, while WMT22 and
WMT23 were composed only of the Ja-En direc-
tion. Additionally, the development data for all
SFT were the WMT22 En-Ja data. As a result,
we obtained a total of eight fine-tuned models for
En-Ja. For Ja-Zh, we also performed SFT with
synthetic data to enhance robustness against errors
in the transcription for the speech domain. These
data were constructed by forward translation from
audio data using ASR and Transformer models.

5 Reranking

To enhance translation quality, we applied rerank-
ing to the candidate sentences. We conducted a
comparative analysis of various methods and strate-
gies, as described in §5.1 and §5.3, on the candidate
generated by the methods described in §5.2.

5.1 Methods
The reranking approach is used to obtain the fi-
nal output ŷ from the set of candidate sentences C
generated by the methods described in §5.2.
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Quality Estimation (QE) This approach in-
volves evaluating the candidates using reference-
free quality estimation techniques, such as
COMET-QE (Rei et al., 2021, 2022, 2023) and
sentence embedding-based similarity, and subse-
quently selecting the candidate with the highest
score, as follows:

ŷ = argmax
c∈C

m∑

i=1

λiQEi(x, c), (1)

where QEi(·, ·) is a reference-free quality estima-
tion function and λi represents its weight, subject
to
∑m

i=1 λi = 1.

Minimum Bayes Risk (MBR) decoding MBR
decoding (Fernandes et al., 2022) employs
reference-based metrics to rank translation candi-
dates. It aims to identify the translation that maxi-
mizes expected utility while equivalently minimiz-
ing the risk (Meister et al., 2020; Eikema and Aziz,
2020) as follows:

ŷi = argmax
ci∈C

1

|C|

|C|∑

j=1

RefMetric(ci, cj), (2)

where RefMetric(·, ·) is a reference-based metric.
Note that MBR decoding scores the candidate using
reference-based metrics by treating all candidates
as reference texts without using an actual reference
text.

MBR after QE (QE→MBR) This approach in-
tegrates QE with MBR decoding (Fernandes et al.,
2022). The scores produced by the quality esti-
mation procedure determined the top-n sample set
from candidate set C as Ctop-n. Subsequently, MBR
is applied to Ctop-n.

5.2 Candidate Generation
We generated five candidates for each model by
varying the sampling methods during generation.
For the speech domain in Ja-Zh, we had two extra
transcriptions from our ASR models in addition
to the official one. As a result, we generated five
candidates for these two transcriptions and LLM
models in the same manner. For models based on
Llama-2-13b and TowerBase-13B-v0.1, the five
methods were as follows: 1. greedy decoding (no
sampling), 2. beam search with a beam size of 4,
3. temperature of 0.9, 4. temperature of 0.5, and
5. temperature of 0.3. For methods 3, 4, and 5,
parameters other than temperature were set with

top_p at 0.6 and top_k at 50. We also used the top-
5 candidates from beam search for the Transformer
with a beam size of 6. As a result, a total of 45
candidate sentences were generated for the En-Ja
task using the eight SFT models described in §4.3,
along with the Transformer model, making a total
of nine models.

Furthermore, for each SFT model, we employed
two approaches to generate candidates.

Sentence-Level Generation First, we used
pySBD10 (Sadvilkar and Neumann, 2020) to split
the original paragraph-level test data into sentences,
and then we performed sentence-level inference to
generate sentence candidates Csent.
Paragraph-Level Generation We used the para-
graph data directly as model input for generating
paragraph candidates Cpara.

5.3 Reranking System
For the two types of candidates mentioned in §5.2,
we used three reranking strategies and one fusion
method that integrates all three.

Synthesized Paragraph Reranking In each
sentence-level inference result, we concatenated
the sentences that originally belonged to the same
paragraph in order and then performed reranking
on the synthesized paragraph.

Individual Sentence Reranking We performed
sentence-level reranking on the sentence candidates
Csent and then reconstructed the paragraphs from
the final reranked results.

Full Paragraph Reranking The paragraph can-
didates Cpara were used as the objects of reranking,
directly generating paragraph-level results.

Multi-Attribute Candidate Reranking We es-
tablished a larger set of multi-attribute candidates
Cmac according to the three reranking strategies
mentioned above:

• Synthesized paragraph candidates by concate-
nating the sentences in order from sentence
candidates Csent.

• Paragraph data reconstructed on the results
obtained by different reranking methods from
Individual Sentence Reranking.

• Paragraph candidates Cpara generated by
Paragraph-Level Generation.

10https://github.com/nipunsadvilkar/pySBD
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CER COMET
(YODAS) (WMT test)

Whiper large-v3 7.7 0.4598
+ FT 4.8 0.4601

kotoba-whisper-v1.1 12.6 0.4407
+ FT 5.0 0.4518

Official transcription - 0.7278

Table 2: ASR performances and their translation accu-
racies. Second column is CER results on the evaluation
data of the YODAS dataset. Third column is COMET
results on the speech domain of this year’s WMT test
set.

Then, Cmac was used for paragraph-level reranking.

6 Experiment and Analysis

6.1 Results of ASR

The second column of Table 2 shows the ASR re-
sults (with and without fine-tuning on the YODAS
dataset) for the Ja-Zh speech translation. Note
that this evaluation was not done in combination
with the ROVER system. We confirmed that fine-
tuning improved the recognition performance on
the YODAS dataset. The third column of Table 2
shows the translation results11 for the WMT test
set. Fine-tuning resulted in a relative improvement
of 2.5% for kotoba-whisper-v1.1, but no signifi-
cant improvement was observed for Whisper-large-
v3, even through it demonstrated high ASR perfor-
mance before fine-tuning. Moreover, our models
performed worse than the official transcriptions.
We trained the ASR models using relatively short
audio samples, whereas the audio samples in the
test set were longer than 30 seconds. This gap
between the training and test conditions likely con-
tributed to the degradation in speech recognition
accuracy. In addition, we prepared ASR models for
a wide range of topics, domains, and noise levels
for open-domain speech input. For this purpose, we
used the YODAS dataset instead of datasets such as
TED, CSJ, and Libri, which contain clean speech
with human transcriptions. However, this strategy
did not turn out to be suitable for the WMT test set.
In fact, when we listened to the speech from the
test set, the SNR was high and clean. This gap may
have also contributed to the degradation. These
findings will be leveraged for future improvements.

11We used wmt22-comet-da. During this evaluation, we
used the official transcription as the source text for all hypothe-
ses because it would be the most accurate transcription. https:
//huggingface.co/Unbabel/wmt22-comet-da

Model Input COMET22

Ver1
Sentence 0.8218
Paragraph 0.7666

Ver2
Sentence 0.8352
Paragraph 0.8349

Table 3: COMET Scores of Sentence-Level and
Paragraph-Level SFT on WMT23 En-Ja test data

Scoring Function COMET22

LaBSE-cos 0.8364
Comet-QE20 0.8797
Comet-QE21 0.8837
CometKiwi22 0.8821
CometKiwi23-xl 0.8819
0.5×Comet-QE20 + 0.5×LaBSE-cos 0.8835
0.8×Comet-QE21 + 0.2×LaBSE-cos 0.8856
0.9×CometKiwi22 + 0.1×LaBSE-cos 0.8824
0.9×CometKiwi23-xl + 0.1×LaBSE-cos 0.8830

MBR ratio COMET22

QE (Top 10%) 0.8911
QE (Top 20%) 0.8940
QE (Top 30%) 0.8949
QE (Top 40%) 0.8950
QE (Top 50%) 0.8955
QE (Top 60%) 0.8955
QE (Top 70%) 0.8954
QE (Top 80%) 0.8953
QE (Top 90%) 0.8953
100% 0.8953

Table 4: COMET Scores of QE and MBR decoding
on WMT23 En-Ja test data. The 45 candidates used
were generated by the methods in §5.2. MBR decoding
was performed after QE with the best scoring function,
0.8×Comet-QE21 + 0.2×LaBSE-cos.

6.2 Sentence-Level versus Paragraph-Level in
SFT

In the SFT experiments using past WMT test data,
we evaluated whether sentence-level or paragraph-
level source texts achieved better accuracy by as-
sessing them with COMET (wmt22-comet-da) on
the WMT23 En-Ja test data. For paragraph-level
training, the data were reconstructed from sentence-
level to paragraph-level based on the .xml files pro-
vided by WMT. Table 3 shows the results, indicat-
ing that sentence-level inputs achieved higher ac-
curacy than those of paragraph-level inputs. There-
fore, for subsequent SFT, we used only sentence-
level inputs.

6.3 Results of Quality Estimation
To identify the scoring function in Eq.(1) that yields
the highest translation accuracy, we compared ten
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ID System MetricX ↓ CometKiwi ↑
(a) Synthesized Para 2.8830 0.7260
(b) Individual Sent 2.8100 0.7273
(c) Full Para 2.7263 0.7260
(d) Multi-Attribute 2.6321 0.7310

Table 5: Results of Reranking Systems on WMT24
En-Ja test data. Systems (a)~(c) used 45 candidates,
while System (d) used 100 candidates, consisting of 45
from Csent, 45 from Cpara, and 10 results obtained by
Individual Sentence Reranking using the 10 methods
listed in Table 4. All of the system results are based on
Top 50% MBR decoding after QE with the best scoring
function, 0.8×Comet-QE21 + 0.2×LaBSE-cos.

different scoring functions based on the findings
in the paper. We used COMET-QE and LaBSE co-
sine similarity for scoring functions and evaluated
them with COMET on the WMT23 En-Ja test data.
Since the WMT23 test data are sentence-level, we
used the 45 candidate sentences generated through
paragraph-level generation, where each sentence
was directly input, as described in §5.2. Addition-
ally, the reranking system utilized Full Paragraph
Reranking, as described in §5.3. Table 4 shows
the results, indicating that 0.8×wmt21-comet-qe
+ 0.2×LaBSE-cos achieved the highest accuracy.
Therefore, this scoring function was adopted for
subsequent experiments and finally the submitted
system.

6.4 Resluts of MBR after QE
We investigated the proportion of MBR that
achieved the highest accuracy under the same con-
ditions as in §6.3. Table 4 shows the results, indi-
cating that accuracy was maximized at 50%. There-
fore, in subsequent experiments and the submitted
system, the proportion of MBR was set to 50%.

6.5 Results of Reranking Systems
Table 5 shows the results of the reranking system on
WMT24 En-Ja. We used MetricX-23-XL (Juraska
et al., 2023) and CometKiwi-DA-XL (Rei et al.,
2023) as evaluation metrics, consistent with the
WMT24 preliminary report (Kocmi et al., 2024b).
From these results, it was found that the Multi-
Attribute Candidate Reranking achieved the highest
accuracy. Therefore, we adopted Multi-Attribute
Candidate Reranking for the submitted system.

7 Conclusion

In this paper, we described our system for the
WMT’24 General Translation Task. We developed

ASR models for the speech domain in Ja-Zh and
used Transformer and LLMs for the translation
models. We trained LLMs using a three-stage train-
ing process: Monolingual Continual Pre-training,
Parallel Continual Pre-Training, and Supervised
Fine-Tuning. Finally, we applied reranking method
and strategies to the translation candidates gener-
ated by the translation models. Our analyses con-
firmed the effectiveness of our reranking method
and strategies for paragraph-level translation.
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Ondřej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena
Karpinska, Philipp Koehn, Benjamin Marie, Christof
Monz, Kenton Murray, Masaaki Nagata, Martin
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Popel, and Maja Popović. 2022. Findings of the 2022
conference on machine translation (WMT22). In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 1–45, Abu Dhabi, United
Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Minato Kondo, Takehito Utsuro, and Masaaki Nagata.
2024. Enhancing translation accuracy of large lan-
guage models through continual pre-training on par-
allel data. In Proceedings of the 21st International
Conference on Spoken Language Translation (IWSLT
2024), pages 203–220, Bangkok, Thailand (in-person
and online). Association for Computational Linguis-
tics.

Xinjian Li, Shinnosuke Takamichi, Takaaki Saeki,
William Chen, Sayaka Shiota, and Shinji Watanabe.
2024. Yodas: Youtube-oriented dataset for audio and
speech. arXiv:2406.00899.

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If
beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),

277

https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.1109/ASRU.1997.659110
https://doi.org/10.1109/ASRU.1997.659110
https://doi.org/10.1109/ASRU.1997.659110
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
https://aclanthology.org/2024.findings-naacl.42
https://aclanthology.org/2024.findings-naacl.42
https://aclanthology.org/2024.findings-naacl.42
https://doi.org/10.18653/v1/2020.wnut-1.10
https://doi.org/10.18653/v1/2020.wnut-1.10
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://arxiv.org/abs/2407.19884
https://arxiv.org/abs/2407.19884
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2024.iwslt-1.26
https://aclanthology.org/2024.iwslt-1.26
https://aclanthology.org/2024.iwslt-1.26
https://arxiv.org/abs/2406.00899
https://arxiv.org/abs/2406.00899
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/2020.emnlp-main.170


pages 2173–2185, Online. Association for Computa-
tional Linguistics.

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and
Masaaki Nagata. 2022. JParaCrawl v3.0: A large-
scale English-Japanese parallel corpus. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6704–6710, Marseille,
France. European Language Resources Association.

Masaaki Nagata, Makoto Morishita, Katsuki Chousa,
and Norihito Yasuda. 2024. A japanese-chinese par-
allel corpus using crowdsourcing for web mining.
arXiv:2405.09017.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian
scientific paper excerpt corpus. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 2204–
2208, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia-Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation. arXiv:1902.01382.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

Ricardo Rei, Ana C Farinha, Chrysoula Zerva, Daan
van Stigt, Craig Stewart, Pedro Ramos, Taisiya
Glushkova, André F. T. Martins, and Alon Lavie.
2021. Are references really needed? unbabel-IST
2021 submission for the metrics shared task. In Pro-
ceedings of the Sixth Conference on Machine Trans-
lation, pages 1030–1040, Online. Association for
Computational Linguistics.

Ricardo Rei, Nuno M. Guerreiro, JosÃ© Pombal, Daan
van Stigt, Marcos Treviso, Luisa Coheur, José G.
C. de Souza, and André Martins. 2023. Scaling up
CometKiwi: Unbabel-IST 2023 submission for the
quality estimation shared task. In Proceedings of the
Eighth Conference on Machine Translation, pages
841–848, Singapore. Association for Computational
Linguistics.

Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José G. C. de Souza, Taisiya Glushkova, Duarte
Alves, Luisa Coheur, Alon Lavie, and André F. T.
Martins. 2022. CometKiwi: IST-unbabel 2022 sub-
mission for the quality estimation shared task. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 634–645, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Nipun Sadvilkar and Mark Neumann. 2020. PySBD:
Pragmatic sentence boundary disambiguation. In
Proceedings of Second Workshop for NLP Open
Source Software (NLP-OSS), pages 110–114, Online.
Association for Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-

278

https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/2022.lrec-1.721
https://arxiv.org/abs/2405.09017
https://arxiv.org/abs/2405.09017
https://aclanthology.org/L16-1350
https://aclanthology.org/L16-1350
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
https://aclanthology.org/2021.wmt-1.111
https://aclanthology.org/2021.wmt-1.111
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/2022.wmt-1.60
https://doi.org/10.18653/v1/2020.nlposs-1.15
https://doi.org/10.18653/v1/2020.nlposs-1.15
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations.

279

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP


Proceedings of the Ninth Conference on Machine Translation, pages 280–285
November 15-16, 2024 ©2024 Association for Computational Linguistics

SCIR-MT’s Submission for WMT24 General Machine Translation Task

Baohang Li, Zekai Ye, Yichong Huang, Xiaocheng Feng, Bing Qin
Harbin Institute of Technology

{baohangli,zkye,ychuang,xcfeng,qinb}@ir.hit.edu.cn

Abstract

This paper introduces the submission of SCIR
research center of Harbin Institute of Tech-
nology participating in the WMT24 machine
translation evaluation task of constrained track
for English to Czech. Our approach involved a
rigorous process of cleaning and deduplicating
both monolingual and bilingual data, followed
by a three-stage model training recipe. Dur-
ing the testing phase, we used the beam ser-
ach decoding method to generate a large num-
ber of candidate translations. Furthermore, we
employed COMET-MBR decoding to identify
optimal translations.

1 Introduction

This paper presents the submission from the SCIR-
MT in the WMT24 machine translation evaluation
task, focusing on the constrained track of English
to Czech translation. In the field of machine trans-
lation, the quality of translation systems has been
improved with the development of large language
models and the increase in data volume. However,
achieving high-quality translation outputs under
limited conditions remains a challenging task due
to resource and computational constraints (Freitag
and Al-Onaizan, 2017).

Our team has adopted a series of innovative
methods to address this challenge. Initially, we
conducted a rigorous cleaning and deduplication
process for both monolingual and bilingual data
to ensure the quality of the training dataset. Sub-
sequently, we implemented a three-stage model
training strategy, including monolingual contin-
ual pre-training, bilingual continual pre-training,
and translation-specific supervised intruction tun-
ing. During the testing phase, we utilized the beam
search decoding method to generate a multitude
of candidate translations and applied the COMET-
MBR (Fernandes et al., 2022) decoding strategy to
identify the optimal translations.

The structure of this paper is as follows: we first
provide a detailed description of the data prepro-
cessing steps and strategies; then, we outline our
foundational model selection and training strategy;
next, we introduce the decoding algorithms used
in the testing phase; and finally, we present the
COMET-MBR decoding method and report our
experimental results on the wmttest2023 dataset.
These methods have led to excellent performance
in terms of both BLEU (Post, 2018) and COMET
(Rei et al., 2020) scores, demonstrating the effec-
tiveness of our approach.

2 Data Preprocessing

2.1 Provided Data

Bilingual Corpus We used all the provided bi-
text corpora: Europarl v10, ParaCrawl v9 (Bañón
et al., 2020), Common Crawl, News Commentary
v18.1, Wiki Titles v3, WikiMatrix, Tilde MODEL
corpus, and TED Talks (Cettolo et al., 2012).

Monolingual Corpus We also used the follow-
ing provided monolingual data: News Crawl, Eu-
roparl v10, News Commentary, Common Crawl,
and Leipzig Corpora (Biemann et al., 2007).

2.2 Data Cleaning

Data cleaning played a pivotal role in improving
the quality of our training dataset. During this
stage, we implemented several key steps to ensure
the quality of the bilingual data and monolingual
data, respctively.

2.2.1 Bilingual Corpus
Given that a significant portion of the training
dataset is synthetically-aligned, we need to use a
comprehensive data preprocessing pipeline to en-
sure good translation quality. In particular, we
sequentially performed heuristic-based, statistics-
based, and embedding-based methods to filter our
data.
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Heuristic-based The following heuristic-based
filters are used before applying the others:

• Language Detection We use fasttext1

(Joulin et al., 2016) to filter out sentence pairs
mismatching the English-Czech direction.

• Numerical Matching If one sentence in a
pair has a number (ordinal, date, etc.), we
also checked the other sentence if a matching
number is present. If a match is not detected,
the pair is removed.

Statistics-based We employed statistics-based
filters on sentence pairs following (Cruz, 2023).
We first tokenized then applied the following
statistics-based filters:

• Length Filter We removed pairs containing
sentences with more than 50 characters.

• Pair Length Ratio We removed pairs where
the ratio of the string lengths between the
source and target sentences is greater than
1.2.

• Symbol Token Ratio We removed any sen-
tence pairs in which either the source or target
sentence appears more than 5 times.

• Messy Token Ratio We removed pairs
where the number of messy characters in the
sentences exceeds 2.

• Most Frequent Words Gap We measured
the symmetry of bilingual text pairs by calcu-
lating the difference in the occurrence counts
of the most frequent words in each text, and
removed pairs where this difference exceeded
5.

Embedding-based Finally, we experimented
with the use of sentence embedding models to
compute the cross-lingual embedding similarity
between the sentence pair. We used LaBSE (Feng
et al., 2020) models to embed both the source and
target sentences then computed a cosine similarity
score between the two. The pair must have a simi-
larity score 0.95 < s ≤ 1 to be kept.

After rigorous data cleaning, we filtered the
bilingual training data from 56,288,239 pairs to
2,725,848 pairs, retaining only 4.8% of the high-
est quality data for continual pre-training.

1https://fasttext.cc

2.2.2 Monolingual Corpus

For incremental pre-training of large language
models(Wu et al., 2024), we employed the Data-
Juicer2 (Chen et al., 2024b) to filter monolingual
data in English and Czech. The filtering part in-
cludes the following filters: 1) Number of words,
2) Character repetition ratio, 3) Word repetition
ratio, 4) Special character ratio, 5) Stop word ra-
tio, 6) Flagged word ratio, 7) Language identifi-
cation confidence, 8) Perplexity score, 9) Docu-
ment length (number of characters), 10) Number
of lines, 11) Short line length ratio, 12) Short line
ratio.

To address the challenge of assessing the qual-
ity of the Czech data, we assumed that the Czech
data provided by the competition organizers was
of generally acceptable quality, reflecting a reason-
able approximation of Czech syntax and expres-
sion. To further enhance data quality and improve
model performance, we applied the Interquartile
Range (IQR) (Whaley III, 2005) statistical method
to establish a threshold for data filtering. The
IQR method is particularly advantageous because
it allows for the objective identification of out-
liers samples without making specific assumptions
about the data distribution.

We calculated the IQR for the Czech dataset to
define a reasonable range for data quality. Any
samples falling outside this range were deemed
potential outliers and excluded from the training
data. By evaluating each data pair against these
quality filtering criteria, we ensured that only sam-
ples within the acceptable range contributed to the
training process. This approach enabled us to re-
tain the most representative, high-quality samples,
thereby enhancing the overall performance of the
translation model. Table 1 presents the number of
rows in each dataset with/without filtering.

Corpus w/o. Filtering w. Filtering
Common Crawl corpus 333 M 37 M
News Crawl 12M 4.6M
Leipzig Corpora 4 M 1.9 M
Europarl v10 669 K 391K
News Commentary v18.1 283 K 138 K

Table 1: Czech Corpus Statistics. Line counts are listed
before and after filtering.

2https://github.com/modelscope/data-juicer

281



3 Translation Model Training

This Section describes our foundation model selec-
tion and model training strategy.

3.1 Model Configuration

We adopted LLaMA-2-13B as our foundation
model considering its impressive performance on
most English benchmarks after pre-training on
1.4T tokens (Touvron et al., 2023). Specifically,
our Translation Model was initialized from the
LLaMA-2-13B model to reduce the computational
cost and continues to train on massive Czech and
parallel corpus.

3.2 Training Strategy

In pre-trained models such as LLaMA-2, which
are primarily trained on English data, inte-
grating monolingual data during continual pre-
trainingalongside parallel data has been shown to
substantially enhance performance (Guo et al.,
2024; Alves et al., 2024). Leveraging this ap-
proach, we improved our translation model by first
incorporating monolingual data during the contin-
ual pre-training phase of models initially trained
in English. This was followed by further con-
tinual pre-training using parallel data. Finally,
we conducted instruction fine-tuning with a lim-
ited amount of bilingual data. Our models were
developed using the LLaMA-Factory framework
(Zheng et al., 2024), which facilitated this compre-
hensive training process.

3.2.1 Stage-1: Monolingual Continual
Pre-training

In the initial phase of our training approach, we
conducted secondary pre-training on the large lan-
guage model (LLM) utilizing the carefully-curated
monolingual dataset (shown in 2.2.2). The core
objective of this stage is to enrich the LLM’s
understanding and generation capabilities in non-
English languages.

We aimed to strengthen the LLM’s multilingual
capabilities by exposing it to a diverse monolin-
gual corpus. Although this step was related to ma-
chine translation, it was designed to lay a solid
foundation for the model’s language proficiency,
which was critical for the subsequent stages focus-
ing on translation tasks.

Hyperparameters We used the AdamW opti-
mizer, with β1 = 0.9, β2 = 0.95, and ϵ =

1.0 × 10−8. The context length is 2048, and train-
ing is conducted for 1 epoch. We performed vali-
dation every 100 training steps. We used a cosine
learning rate schedule with a warmup ratio of 1%
and a peak learning rate of 2 × 10−5. We applied
a weight decay of 0.1 and gradient clipping of 1.0.
We utilized eight NVIDIA RTX A800 GPUs, pro-
cessing 1 batch on each GPU with a gradient accu-
mulation step of 32, achieving an effective batch
size of 256. During training, Flash-Attenion(Dao
et al., 2022), bfloat16 precision, gradient check-
pointing, and DeepSpeed ZeRO Stage 2(Rasley
et al., 2020) were employed. With these config-
urations, the training process was completed in 5
days, which accelerates the overall training dura-
tion.

3.2.2 Stage-2: Bilingual Continual
Pre-training

Bilingual Continual Pre-training is a methodol-
ogy that involves ongoing training on bilingual
datasets to improve the model’s alignment be-
tween languages. This approach facilitates the
model’s ability to capture detailed syntactic and
semantic correspondences across languages. Such
fine-grained alignment is helpful for machine
translation, as it enhances the accuracy of encod-
ing source language information and improves the
quality of the generated translations, thereby pro-
ducing more precise and fluent translation out-
comes.

Hyperparameters We performed continual pre-
training on the model that achieves the minimum
validation. We adopted the AdamW optimizers
parameter used in Section 3.2.1. Weight decay
and gradient clipping remained the same as in Sec-
tion 3.2.1. We used a cosine learning rate sched-
ule without warmup and a peak learning rate of
1×10−5. We conduct validation every 10% of the
total training steps for Continual Pre-training with
Sentence-aligned Parallel Data, with 1 epoch and
a batch size of 256.

3.2.3 Stage-3: Translation-specific
Supervised Fine-Tuning

During the instruction fine-tuning stage, we con-
structed bilingual translation data in a question
and answer format, where the instruction language
was the source language for translation. We also
employed full-scale parameter training. As high-
lighted in previous research (Xu et al., 2023),
instruction fine-tuning of large language models
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(LLMs) benefits from limited yet high-quality
datasets. To ensure the optimal quality of data
during fine-tuning, we followed previous research
practices and used translation fine-tuning datasets
constructed from the WMT validation data. These
datasets, which underwent rigorous quality control
measures, were ideal for fine-tuning purposes.

Hyperparameters We adjusted the AdamW op-
timizers parameters as used in Section 3.2.1.
Weight decay and gradient clipping remained the
same as in Section 3.2.1. The peak learning rate
was set to 9.0 × 10−6 for full fine-tuning, with-
out warmup, using an inverse square schedule. We
conducted validation every 10% of the total train-
ing steps for SFT, with 3 epochs and a batch size
of 64.

4 Decoding algorithms

In the test stage, we first generated multiple can-
didate translations for the given source sentence.
Then, we performed MBR to determine the final
translation.

4.1 Candidate Generation
During the testing phase, we produced 42 high-
quality candidate translations. To enhance the di-
versity of these results, we employed In-Context
Learning (ICL) techniques alongside the beam
search algorithm. Specifically, we began by sam-
pling various translation examples to serve as
demonstrations, which contributed to greater re-
sult diversity. We then applied beam search with a
beam width of 5 to generate the final set of 42 top
hypotheses. This approach effectively integrates
context learning and diversity sampling, thereby
optimizing both the coverage and quality of the
translations.

4.2 COMET-MBR
COMET-MBR (Fernandes et al., 2022) employs
Minimum Bayes Risk (MBR) decoding (Kumar
and Byrne, 2004; Eikema and Aziz, 2020) with a
COMET model (Rei et al., 2020) that has been
trained on direct assessments. Typically, a transla-
tion ŷMAP ∈ V |y∗|

Y is generated using Maximum-
A-Posteriori (MAP) decoding, defined as:

ŷMAP = argmax
y∈Y

log p(y|x), (1)

where Y ⊆ ⋃∞
i=1 V i

Y represents the search space
of target sentences. Unlike MAP decoding, MBR

decoding aims to identify the translation that min-
imizes the Bayes risk:

ŷMBR = argmax
h∈Y

Ey′∼p(y|x)[u(y′, h)]
︸ ︷︷ ︸
≈ 1

m

∑m

j=1
u(y(j),h)

, (2)

where Ȳ ⊆ Y denotes a set of translation hypothe-
ses, and u : Y × Y → R is the utility func-
tion. In our study, we utilize COMET3 (Rei et al.,
2020) as the utility function u. It is important to
note that the hypotheses set Ȳ and the sample set
used for expectation estimation, {y(1), . . . , y(m)},
are shared, except for h, i.e., {y(1), . . . , y(m)} =
Ȳ \ {h}. Consequently, given a candidate set, the
computational complexity of MBR decoding is on
the order of O(m2), which leads to slower infer-
ence speeds as m increases.

5 Experimental Results

We evaluated the translation performance of our
system on the WMTTest2023 dataset (Tom et al.,
2023) and the Flores-200 benchmark (Costa-jussà
et al., 2022). To assess translation quality, we em-
ployed both BLEU and COMET scores, utilizing
the COMET model Unbabel/wmt22-comet-da3.
Table 2 provides a comparative analysis with two
existing commercial translation systems, Baidu4

and Google5. In this table, "Stage1" "Stage2"
and "Stage3" refer to the respective stages of our
model training process. The performance labeled
as "COMET-MBR" corresponds to the results of
applying our MBR decoding approach to the can-
didate translations.

6 Conclusion

In this paper, we describe the materials we submit-
ted for the general translation task at WMT2024.
We participated in a constrained track: En→Cs.
We trained a machine translation model based on
LLaMA, utilizing a comprehensive data pipeline
for filtering and curation. This pipeline integrates
embedding-based, heuristic-based, and statistics-
based filters. Subsequently, we employed a three-
stage training method to enhance the translation
capabilities of the model. Additionally, we uti-
lized minimum Bayes risk decoding to refine
the translation candidates. On two benchmark

3https://huggingface.co/Unbabel/wmt22-comet-da
4https://fanyi.baidu.com
5https://translate.google.com
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Methods Flores WMT23

BLEU COMET BLEU COMET
Existing Systems

Baidu 31.43 89.26 35.34 86.04
Google 36.81 91.51 50.25 89.90

Ours(Based on LLaMA2-13B)
Baseline 23.74 86.44 22.08 79.71
+Stage1 25.75 88.84 26.72 84.18
+Stage2 31.60 89.83 33.29 85.09
+Stage3 32.95 89.51 35.60 87.76
+COMET-MBR 33.44 92.27 36.61 89.09

Table 2: Comparison of translation performance using
BLEU and COMET scores. We use LLaMA-2-13B as
our base model.

datasets, our system outperformed Baidu and ex-
hibited performance comparable to Google, both
of which are unconstrained business systems with
significantly more training data.

Future Directions. In the future, we aim to in-
vestigate how to prevent the catastrophic forget-
ting problem in the general capabilities of LLMs
caused by continual pre-training on non-English
data, which will help models benefit from effective
translation-specific prompting techniques (Huang
et al., 2024a; He et al., 2024; Chen et al., 2024a).
Additionally, it is promising to train multiple trans-
lation systems based on different pre-training lan-
guage models and combine their outputs with the
ensemble learning strategies (Huang et al., 2024b;
Jiang et al., 2023).
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Abstract

This paper describes the development process
of NMT systems that were submitted to the
WMT 2024 General Translation and Biomed-
ical shared tasks by the team of AIST AIRC.
At WMT 2024 AIST AIRC participated in the
General Machine Translation shared task and
the Biomedical Translation task. We trained
constrained track models for translation be-
tween English, German, and Japanese. Before
training our models, we first filtered the parallel
data, then performed iterative back-translation
and additional filtering. We experimented with
training baseline Transformer models, Mega
models, and fine-tuning open-source T5 and
Gemma model checkpoints using the filtered
parallel data. Our primary submissions con-
tain translations from ensembles of two Mega
model checkpoints and our contrastive submis-
sions are generated by our fine-tuned T5 model
checkpoints.

1 Introduction

We describe the machine translation (MT) systems
submitted to the WMT 2024 General Translation
and Biomedical Translation tasks developed by
the team of AIST AIRC. We experimented with
data quality control by filtering out noisy exam-
ples from parallel and monolingual data sets before
training, and corpora selection. We also compared
several modeling approaches by contrasting our
previous year’s best constrained submission (Rik-
ters and Miwa, 2023) – the Mega model (Ma et al.,
2023) to open track approaches of fine-tuning T5
(Raffel et al., 2020) and Gemma (Mesnard et al.,
2024) model open-source checkpoints. When fine-
tuning T5 and Gemma models, we experimented
with adding named entity (NE) annotations (Rik-
ters and Miwa, 2024) to improve rare word trans-
lation, since struggling to correctly translate less
common NEs was one of the most common errors
identified in human evaluations of our WMT 2023
submissions.

2 Data

In the General Translation task we only partici-
pated in the constrained track, so our data selection
was limited to only the parallel corpora provided
by the shared task organizers, which for German
and Japanese was unchanged from the previous
year. For the Biomedical Translation task we used
a combination of General Translation task data and
Biomedical Translation task data.

All parallel training data and monolingual data
for back-translation were filtered before starting
any training, which has been proven very effective
in previous WMT shared tasks (Pinnis et al., 2018).
The filtering process we used is detailed by Rik-
ters (2018). We did not perform any parallel data
distillation for our submissions this year.

For the system development process in the Gen-
eral Translation task, we selected News Test sets
from the WMT 2022 shared task as development
data and test sets from WMT 2023 as evaluation
data. Statistics of the data we used are shown in
Table 1. For the Biomedical Translation task we
used the same combination of 2022 and 2023 de-
velopment / evaluation data sets.

2.1 Data Selection

To not overwhelm the full combined training data
set with lower-quality web-crawled data, we 1) lim-
ited the English-German Paracrawl to 50 million
parallel sentences; and 2) up-scaled all data from
other sources to match the amount of the Paracrawl
data after filtering by doubling for English-German
and tripling for English-Japanese.

2.2 Filtering

Even though all training data need not always be
perfect and methods like back-translation intention-
ally generate somewhat noisy additional training
data, some types of noise are more harmful than
others. Since most training corpora are produced
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Corpus / Filtering EN-DE EN-JA

All other
Before 16,752,302 8,076,155

After 13,737,028 7,076,869

Paracrawl
Before 50,000,000 21,891,738

After 44,533,635 21,088,689
Combined 72,007,691 42,319,296

Medline 45,796 -
UFAL Medical 3,036,581 -

Monolingual
Corpus / Filtering Before After

DE 43,613,631 37,110,981
JA 22,193,545 21,558,123

EN 47,333,840 36,756,542

Table 1: Training data statistics for all other parallel
data without Paracrawl, a subset of Paracrawl, combined
development and evaluation data from the past WMT
shared tasks, and monolingual data. Sentence counts
are listed before and after filtering.

partially or fully automatically, errors such as mis-
alignments between source and target sentences
or direct copies of source to target can occur, as
well as some amounts of third language data in
seemingly bilingual data sets.

To avoid such problems, we used data cleaning
and pre-processing methods described by Rikters
(2018). The filtering part includes the following
filters: 1) unique parallel sentence filter; 2) equal
source-target filter; 3) multiple sources - one tar-
get and multiple targets - one source filters; 4)
non-alphabetical filters; 5) repeating token filter;
and 6) correct language filter. We also perform
pre-processing consisting of the standard Moses
(Koehn et al., 2007) scripts for punctuation nor-
malization, cleaning, and Sentencepiece (Kudo and
Richardson, 2018) for splitting into subword units
for training MEGA models, and the default tokeniz-
ers for T5 and Gemma. The filters were applied
to the given parallel sentences, monolingual news
sentences before performing back-translation, and
both sets of synthetic parallel sentences resulted
from back-translating the monolingual news.

2.3 Back-translation

Increasing the amount of in-domain training data
with synthetic back-translated corpora (Sennrich
et al., 2016) is a common practice in cases with
considerable amounts of in-domain monolingual
data. However, since the task recently shifted from

‘news’ to ‘general’ text translation, the definition
of what would be considered in-domain data be-
came less clear. Furthermore, for the constrained
track the selection of provided monolingual data
from the organizers is still limited to news and
web-crawled data. No other monolingual data that
would be considered more similar to what the ‘gen-
eral’ test sets may include, such as user generated
(social media), conversational, and e-commerce
data are provided in the task. For our experiments
we continued to assume that a significant portion of
the test data would still be from the news domain.
Therefore, we chose to only use the provided mono-
lingual News crawl, News discussions, and News
Commentary corpora for back-translation.

2.4 Post-processing

In post-processing of the model output we aimed
to mitigate some of the most commonly notice-
able mistakes that the models were generating. We
mainly noticed two often occurring problems in
output from all models: 1) difficulties in translat-
ing emoji symbols; and 2) occasional repetitions of
words or phrases.

While all English and German alphabet letters
and even Japanese characters are covered in the
large training data corpora, the Unicode emoji
were mostly formed and clearly defined only in
the past decade, and new emoji are still added ev-
ery year or two with the next release planned for
late 20241. Emoji are also not often present in
MT training data, therefore full emoji coverage is
absent from model vocabularies, which leads to oc-
casional <unk> tokens being generated as output
if emoji were present in the input. In order to keep
using the models without re-training, we replaced
any <unk> tokens in the output using a dictionary
of any emojis appearing in the input.

Furthermore, the occasional hiccuping or halluci-
nating of models on less common input sequences
seems to still be present, sometimes generating rep-
etitions of tokens or phrases. We replaced any con-
secutive repeating n-grams with a single n-gram.
The same was applied to repeating n-grams that
have a preposition between them, i.e., the victim of
the victim.

Both post-processing approaches gave BLEU
score improvements of around 0.1 - 0.2.

1https://emojipedia.org/unicode-16.0
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3 Model Configurations

While preparing our submissions we experimented
with three main model types between the con-
strained and open system tracks. For our primary
submission we chose the constrained Mega models
similar to our last year’s primary submission (Rik-
ters and Miwa, 2023), and for contrastive submis-
sions we used T5 models (Raffel et al., 2020) fine-
tuned on NE-annotated General Translation task
data, and Gemma models (Mesnard et al., 2024)
tuned on General Translation task data.

3.1 Mega
Ma et al. (2023) proposed a moving average
equipped gated attention mechanism (MEGA) - a
single-head gated attention mechanism equipped
with exponential moving average to incorporate
inductive bias of position-aware local dependen-
cies into the position-agnostic attention mechanism.
Compared to the Transformer model, MEGA has a
single-head gated attention mechanism instead of
multi-head attention, which enables gains in effi-
ciency while not sacrificing on performance.

For training our Mega models we used the im-
plementation2 provided by the authors, which is
based on FairSeq (Ott et al., 2019).

3.2 T5
We experiment with multi-task training and fine-
tuning the T5 model (Raffel et al., 2020) for trans-
lation between English→ German, as well as its
multilingual counterpart mT5 (Xue et al., 2021) for
English→ Japanese translation. We compare the
results with non-modified versions of T5, Flan-T5,
and the multilingual mT5.

We combine and shuffle all training data for the
tasks, and experiment fine-tuning the large versions
( 1B parameters) of the T5 models using a random
subset of 10M parallel sentences. We base this
choice on observations from preliminary experi-
ments where the small versions of T5 models often
converged before reaching 1M examples and base
models converged before seeing 10M, since the
pre-trained checkpoints are already quite capable
as is.

We used the Adafactor optimizer (Shazeer and
Stern, 2018) with FP16 training, effective batch
sizes of 256 or 512 depending on the model size,
evaluation every 1000 steps, and early stopping set
to 10 checkpoints of evaluation loss not improving.

2https://github.com/facebookresearch/mega

We set learning rate to 0.0001, weight decay to
0.01, and train each model on a single machine
with eight NVIDIA A100 GPUs.

3.3 Gemma

We experimented with adapting 7B and 9B param-
eter sizes of the 1.1 and 2 version Gemma models
(Mesnard et al., 2024) using the in-domain data
provided for the General Translation shared task.
We used the same random subset of 10M training
examples as we did for training T5 models.

4 Results

4.1 General Translation Task

We include the official preliminary automatic rank-
ing results provided by the organizers in Tables 2
and 3. Our primary submissions rank 2nd and 4th
among the constrained track (with a white back-
ground) for EN-DE and EN-JA respectively. Sadly,
they were both not selected for human evaluation
by the task organizers due to a large number of
submissions and budget constraints this year. Ref-
erences had also not been released as of writing the
final submission, therefore, additional metrics or
manual assessment of the translations could not be
performed.

4.2 Biomedical Translation Task

For the Biomedical Translation task we compared
our best models trained for the General Translation
task with ones fine-tuned on the biomedical train-
ing data, as well as dedicated models trained on the
biomedical data from the start. Table 4 shows our
preliminary results from developing Mega models
for the English↔German tracks of the Biomedical
Translation task. We only used different configu-
rations of the MEGA models and compared them
with the baseline model submitted to the general
translation task. Our best configuration was an en-
semble of three separate model checkpoints trained
on a mixture of biomedical training data and gen-
eral data, and fine-tuned on biomedical data.

Table 5 lists the preliminary official results of the
Biomedical Translation task provided by the task
organizers. According to the BLEU scores, our
models seem to be ranked 2nd in both translation
directions, overtaken only by the submissions from
Unbabel, which are 70B parameter large language
models. Similarly to the General Translation task,
references for these had also not been released as of
writing the final submission, therefore, additional
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System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation

IOL-Research 2.3 1.6 0.692 ✓

Llama3-70B § 2.5 1.7 0.686 ✓

Aya23 2.7 1.8 0.680 ✓

IKUN 3.0 1.8 0.668 ✓

IKUN-C 3.8 2.0 0.641 ✓

CUNI-NL 4.2 2.1 0.624

AIST-AIRC 7.2 3.3 0.551
Occiglot 8.2 3.8 0.539
MSLC 11.9 4.4 0.390
TSU-HITs 13.3 5.6 0.395
CycleL2 27.0 11.5 0.091
CycleL 27.0 11.5 0.091

Table 2: Preliminary WMT24 General MT automatic ranking for English→German (excluding closed systems).

System Name AutoRank ↓ MetricX ↓ CometKiwi ↑ Human evaluation

Team-J 1.9 2.9 0.740 ✓

NTTSU 1.9 2.6 0.731 ✓

IOL-Research 2.3 3.1 0.724 ✓

Aya23 2.3 3.1 0.719 ✓

Llama3-70B § 2.6 3.5 0.714 ✓

IKUN 3.1 3.7 0.696
IKUN-C 3.9 4.3 0.669 ✓

AIST-AIRC 6.6 6.5 0.583
CycleL 24.0 22.4 0.101

Table 3: Preliminary WMT24 General MT automatic ranking for English→Japanese (excluding closed systems).

metrics or manual assessment of the translations
could not be performed.

5 Conclusion

In this paper we described the development pro-
cess of the AIST AIRC’s NMT systems that were
submitted for the WMT 2024 shared tasks on gen-
eral domain text translation and biomedical trans-
lation. We compared training MEGA models to
fine-tuning T5 and Gemma model architectures
in search of the best decoding approach for im-
proving upon output quality. Our results showed
that the MEGA model architecture remains highly
competitive even in the modern world of large
language models, and fine-tuning LLMs with NE-
annotated data does not necessarily lead to higher
automatic evaluation scores. Especially in the
Biomedical Translation task our 100M parame-
ter models demonstrated high competitiveness with
the leading 70B parameter models, falling only

0.42 BLEU points behind for EN→DE.
In total, output from four primary systems was

submitted to the two shared tasks by AIST AIRC
for the English↔German and English→Japanese
translation directions.

In future work, we plan to experiment with in-
corporating document-level training data and mod-
eling longer sequences with appropriate available
training data. In terms of data, we intend to in-
crease vocabulary coverage by adding all known
unicode emoji symbols to the vocabulary even if
they are not present in the training data, as well
as additionally sample Paracrawl data where emoji
are present.
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Configuration EN→DE DE→EN
Baseline General model 27.23 35.00
General BT model 26.47 33.90
Bio trained/adapted 31.33 40.21
Bio-Baseline ensemble 30.95 39.14
Bio-best-last 31.33 40.14
Bio-ens-15 31.23 40.12
Bio-ens-14 31.21 39.80
Bio-ens-14-15 31.44 40.17
Bio-ens-14-15-2 31.47 40.45

Table 4: Biomedical task development BLEU score
results evaluated on the 2023 Biomedical Translation
task test set. The top 3 rows are single model results
from the baseline model of the General Translation task,
the model after back-translation (BT), and the models
specifically trained and adapted on the biomedical (Bio)
task data. All remaining rows are combinations of en-
sembles consisting of best, last, and other checkpoints
from the baseline and biomedical specific models.

System Name EN→DE DE→EN
ADAPT 30.16 36.93
AIST-AIRC 33.80 45.92
DCUGenNLP 16.46 32.60
HW-TSC 28.77 45.79
Unbabel 34.22 49.05

Table 5: Preliminary WMT24 Biomedical Translation
Task BLEU score results.
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Abstract

This document describes the submission of
the very first version of the Occiglot open-
source large language model to the General
MT Shared Task of the 9th Conference of
Machine Translation (WMT24). Occiglot is
an open-source, community-based LLM based
on Mistral-7B, which went through language-
specific continual pre-training and subsequent
instruction tuning, including instructions rel-
evant to machine translation. We examine
the automatic metric scores for translating
the WMT24 test set and provide a detailed
linguistically-motivated analysis. Despite Oc-
ciglot performing worse than many of the other
system submissions, we observe that it per-
forms better than Mistral7B, which has been
based upon, which indicates the positive effect
of the language specific continual-pretraining
and instruction tuning. We see the submission
of this very early version of the model as a mo-
tivation to unite community forces and pursue
future LLM research on the translation task.

1 Introduction

Occiglot, initiated in March 2024, is a community-
based open-source initiative for “Polyglot Lan-
guage Models for the Occident”. We believe that
our dedicated language modeling solutions will not
only maintain Europe’s academic and economic
competitiveness and AI sovereignty, but also have
a profound Impact on the preservation of linguis-
tic diversity, multilingualism, and cultural richness.
Occiglot is an academic, non-profit research col-
lective committed to open science and open-source
LLM development.

Although Occiglot is in the early stages of de-
velopment, it entails a significant amount of work
for large-scale data collection, model pre-training
and tuning, and multi-faceted evaluation. Since
LLMs can be used in various use cases, targeted
evaluation, starting in the first stages, is important
for revealing strengths and weaknesses. The shared

task of the 9th Conference of Machine Translation
(WMT24; Kocmi et al., 2024a) provides the oppor-
tunity for testing the performance of the LLM in a
translation task.

First, this paper reviews some indicative items
of related work (section 2). Then, in section 3 we
present the details on the development of the Oc-
ciglot model (section 3.1), the training data related
to translation (section 3.2) and the engineering to-
wards machine translation and outline the issues
and directions for further improvements. Section 4
presents the evaluation, whereas a conclusion is
given in section 5.

2 Related work

Prompting LLMs for translation output has been
successfully employed since the early years of
LLMs (Brown et al., 2020), with the few-shot en-
hanced context approach indicating good results
(Vilar et al., 2023). Later approaches suggested that
an adaptive method of few-shot prompting may be
even more beneficial (Agrawal et al., 2023; Zhang
et al., 2023; Soudi et al., 2024). Enis and Hop-
kins (2024) deal with evaluating Claude 3 Opus, as
compared to other LLMs, with regard to machine
translation of low resource languages.

The motivation of Occiglot, to focus LLM de-
velopment on languages other than English, is con-
firmed by Diandaru et al. (2024), who suggest that
models centered around languages other than En-
glish could provide a more efficient foundation for
multilingual applications. Zan et al. (2024) follow
a similar approach to ours, including instruction
tuning tailored to particular target languages. Stap
et al. (2024) suggest that including monolingual
data as part of the fine-tuning data, we can main-
tain the abilities while simultaneously enhancing
overall translation quality.
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3 The language model

3.1 Training

The submission at WMT24 is based on the current,
first version (v0.1) of the Occiglot bilingual models
for English-Spanish and English-German, released
in March and April 2024 respectively. That ver-
sion provides a broader LLM collection for the
five largest European languages: English, German,
French, Spanish, and Italian. Out of these lan-
guages, only German and Spanish are official lan-
guage directions of the WMT24 shared task and,
therefore, the respective bilingual models are cho-
sen for this submission.

The models are based on the Mistral-7B,
which was pre-trained for English. In addi-
tion, bilingual continual pre-training and subse-
quent instruction tuning for each language were
performed. Both models include the dataset
Open-Hermes-2B1, which contains content in En-
glish language and code. The German model
occiglot-7b-de-en-instruct was trained on
180M tokens of additional multilingual and code
instructions, including the German subsets of
DiscoLM (which includes the publicly available
germanrag dataset), Open Assistant Conversations
Dataset v2 (OASST-2; Köpf et al., 2023) and Aya-
Dataset (Singh et al., 2024). The Spanish model
occiglot-7b-es-en-instruct was trained on
160M tokens of additional multilingual and code
instructions, including the datasets Mentor-ES,
the Stanford Question Answering Dataset v22

(SQuAD; Carrino et al., 2020) and the Spanish
subsets of OASST-2 and Aya-Dataset.

The full instruction fine-tuning took place on
an H100 with 8 GPUs for 0.6–4 training epochs
(depending on dataset sampling). We used the
axolotl framework, maintaining a precision of
bf16, a global batch size: 128 (with 8192 context
length and Cosine Annealing with Warm-up). The
tokenizer is unchanged from Mistral-7B-v0.1.

All pre-trained and instruction-tuned check-
points are available on Hugging Face3 under the
Apache 2.0 license. Note that the model was not
safety-aligned and might generate problematic out-
puts.

1https://huggingface.co/teknium
2https://huggingface.co/datasets/ccasimiro/

squad_es
3https://huggingface.co/collections/occiglot/

occiglot-eu5-7b-v01-65dbed502a6348b052695e01

3.2 Translation data during training
Both the bilingual German and Spanish mod-
els were subjected to paired English translation
data during continual pre-training. Specifically,
the training data contains paired sentences from
Tatoeba (Tiedemann, 2020) and Opus 100 (Zhang
et al., 2020). The samples are presented as one
coherent text using a diverse set of templates, like

Given the following passage:
<German sentence>
a good English translation is:
<English sentence>

About 470k and 380k similar translation examples
were included during the continual pre-training of
the bilingual German and Spanish model, respec-
tively.

Additionally, the instruction tuning stage of both
models also includes multilingual data. For the
bilingual Spanish model, as mentioned above, parts
of the instruction training set were taken from a
translated version of the SQuAD, which contains
Spanish questions about English literature, for ex-
ample. More importantly for our task, the incorpo-
rated open-assistant OASST-2 dataset also includes
about 100 samples of direct instructions for trans-
lations between English and Spanish. Similarly,
the employed German instruction tuning dataset
contains over 2000 dedicated translation examples.

3.3 Prompting translations
During the development of the model, we devised
a system prompt instructing the model to perform
as a dedicated translator and we found that this
prompt is immensely helpful when employing the
downstream model for translation tasks. Neverthe-
less, for the WMT submission we decided to use a
prompting method which is similar to the way other
LLMs are prompted, so that the results are compa-
rable. Prompting was based on the 5-shot templates
used by the organizers General Shared task of Ma-
chine Translation to prompt GPT-44. The exact
prompt used can be seen in Figure 1.

The suggested practice for MT prompting
is multi-shot, where one provides first 4
source/translation samples and then only a source
awaiting the translation. Occiglot was giving as
an answer not only the translation, but was pro-
ceeding with generating more text, on the similar

4https://github.com/wmt-conference/
wmt23-news-systems/tree/master/tools/LLM-prompt
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SYSTEM_PROMPT = "You are a very good
translator. Please translate the given
texts from English to 1. target_lang
as precisely and accurately as possible
without changing the structure and answer
only with one translation."

PROMPT = "Please translate this into 1.
{target_lang}:

{source_seg}
1. {translation}"

Figure 1: Prompt used

pattern, which was difficult to post-process. We
had to write a post-processing script that isolates
the translation from the additional superfluous text.
Nevertheless, we suspect that this post-processing
script may have not operated properly in all cases,
as we have some hundreds of empty outputs.

The second issue we faced was the inference
speed. We loaded the model locally on a python
script in the GPU cluster and used the hugging-
face pipeline command to prompt. The Ger-
man model was too slow (2-7sec per segment),
which made it very tight to meet the deadline. We
therefore enabled multiple workers with batches
(batch_size=64, num_workers=4) which gave in-
deed a big acceleration. The behavior of the model
was a bit different in the batch mode, so we had to
include a system prompt (which was not used for
the Spanish model). The parameters of the request
command with batches were also different (e.g. the
limit max_new_tokens), so it is not sure if paral-
lelizing gave the same results as the single worker
mode would have given. The Spanish model was
fast enough, and the Spanish test set significantly
smaller, so we didn’t have to parallelize.

Finally, the German model was going through
memory spikes and was killed several times by
the administrator rules of our GPU cluster. This
may have to do with the test set, as the German
test set contains a higher number of examples with
more complex sequences. In the future, we have to
modify our scripts to stream directly to a file and
have the possibility to resume from a particular line
in case of a crash.

System Name AutoRank↓ MetricX↓ Comet Kiwi↑
Unbabel 1.0 1.1 0.723
Dubformer 1.8 1.2 0.694
...
GPT-4 1.8 1.4 0.700
...
Mistral-Large 2.0 1.5 0.694
...
IKUN-C 3.8 2.0 0.641
...
CUNI-NL 4.2 2.1 0.624
AIST-AIRC 7.2 3.3 0.551
NVIDIA-NeMo † 7.4 3.5 0.558
Occiglot 8.2 3.8 0.539
MSLC 11.9 4.4 0.390
TSU-HITs 13.3 5.6 0.395

Table 1: Indicative comparisons from the preliminary
WMT24 General MT automatic ranking for English-
German.

System Name Comet Kiwi ↑
Occiglot 0.539
Mistral 7B v0.1 0.429

Table 2: Comparison between Occiglot and its pre-
trained model Mistral7B on English-German

4 Evaluation

4.1 Comparison with other WMT systems
The preliminary results (Kocmi et al., 2024b) of
the General MT task, based on automatic measures
Table 1, indicate a low performance of Occiglot
as compared to other systems. We attribute these
results to the fact that the development of our LLM
is in the early stage and the model has undergone
a relatively minimal optimization for translation.
Additionally, we have strong indications that the
post-processing script did not account for all possi-
ble cases. The fact that the model delivered some
hundreds of empty outputs is also a matter that
may have contributed to the low scores (although
it needs to be noted that the parent model Mistral-
Large, prompted by the WMT24 organizers, has
delivered a higher number of empty outputs). Fi-
nally, we should note that the comparison is mostly
done with LLMs with a higher number of param-
eters, as compared to our system. Therefore, this
comparison should only be seen with a grain of
salt.

4.2 Comparison with pre-trained model
Occiglot performs better in translating from
English-German than the pre-trained model Mis-
tral 7B v0.1, it has been based on. This indicates a
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category items acc

Ambiguity 22 86.4
Coordination & ellipsis 124 60.5
False friends 40 92.5
Function word 40 75.0
LDD & interrogatives 207 76.3
Lexical Morphology 39 61.5
MWE 123 76.4
Named entity & terminology 112 77.7
Negation 18 66.7
Non-verbal agreement 109 87.2
Punctuation 37 51.4
Subordination 191 85.3
Verb semantics 23 60.9
Verb tense/aspect/mood 3249 71.9
Verb valency 114 65.8

micro-average 4448 72.8
macro-average 4448 73.0

Table 3: Performance of the Occiglot English-German
model with regard to linguistically-motivated categories

success of the bilingual continual pre-training and
subse- quent instruction tuning for this particular
language direction.

4.3 Fine-grained linguistic analysis

Additionally to the automatic scores, we provide
here some fine-grained analysis based on particu-
lar linguistic categories, based on a linguistically-
motivated test suite (Macketanz et al., 2022, 2021;
Avramidis et al., 2020). The results can be seen in
Table 3 and a more detailed view of the phenomena
is displayed in Table 4. The model is particularly
strong in false friends, which typically refers to
lexemes that are identical in their phonological or
orthographic form across two languages but have
different meanings. It also performs relatively well
in handling non-verbal agreement, i.e. ensuring
that nouns and pronouns agree in gender, number
and sometimes case across the sentence (particu-
larly substitution and coreference), as well as in lex-
ical ambiguity, where a word changes its meaning
depending on a context, and subordination (particu-
larly adverbial and subject clause). Subordination
refers to the relationship between clauses where
one clause is syntactically dependent on the main
clause. However, it performs poorly in punctua-
tion and particularly quotation marks, which means
the model fails to correctly mark direct speech,
quotations, or special terms. The low accuracy in
negation is also particularly concerning, given the
semantic importance of this category.

5 Conclusion and further work

We presented an entry participation of a new open-
source community-based LLM. Despite some ef-
forts to improve our LLM performance towards
translation, the resulting model performs poorly
as compared to other systems. Nevertheless, the
challenges served as a motivation to unite commu-
nity forces and initiate research on a new LLM task,
which may be further improved in the future. Aside
from the automatic scores, by applying a linguisti-
cally motivated test suite, we could gain some in-
sights into the linguistic categories which perform
better or worse. Further work may include more
optimization towards translation, improvement of
the prompting and post-processing mechanism and
addition of more languages. A more direct com-
parison with models of similar parameter size (7B)
should also be considered in the future.
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phenomenon items acc

Ambiguity 22 86.4
Lexical ambiguity 22 86.4
Coordination & ellipsis 124 60.5
Gapping 20 25.0
Pseudogapping 19 73.7
Right node raising 18 88.9
Sluicing 20 75.0
Stripping 23 39.1
VP-ellipsis 24 66.7
False friends 40 92.5
Function word 40 75.0
Focus particle 23 78.3
Question tag 17 70.6
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phenomenon items acc

LDD & interrogatives 207 76.3
Extraposition 18 55.6
Inversion 27 77.8
Multiple connectors 20 80.0
Negative inversion 20 80.0
Pied-piping 19 73.7
Polar question 18 77.8
Preposition stranding 19 57.9
Split infinitive 19 94.7
Topicalization 20 80.0
Wh-movement 27 81.5
Lexical Morphology 39 61.5
Functional shift 17 70.6
Noun formation (er) 22 54.5
MWE 123 76.4
Collocation 20 90.0
Compound 16 87.5
Idiom 20 40.0
Nominal MWE 20 75.0
Prepositional MWE 18 83.3
Verbal MWE 29 82.8
Named entity & terminology 112 77.7
Date 19 73.7
Domainspecific Term 18 83.3
Location 19 84.2
Measuring unit 21 76.2
Onomatopeia 15 53.3
Proper name 20 90.0
Negation 18 66.7
Non-verbal agreement 109 87.2
Coreference 35 88.6
Genitive 18 83.3
Personal Pronoun Coreference 13 92.3
Possession 27 81.5
Substitution 16 93.8
Punctuation 37 51.4
Quotation marks 37 51.4
Subordination 191 85.3
Adverbial clause 19 94.7
Cleft sentence 17 76.5
Contact clause 22 72.7
Indirect speech 19 89.5
Infinitive clause 19 84.2
Object clause 20 95.0
Pseudo-cleft sentence 19 78.9
Relative clause 39 89.7
Subject clause 17 82.4
Verb semantics 23 60.9
Verb tense/aspect/mood 3249 71.9
Conditional 20 70.0
Ditransitive - conditional I progressive 53 71.7
Ditransitive - conditional I simple 55 76.4
Ditransitive - conditional II progressive 56 48.2
Ditransitive - conditional II simple 54 77.8
Ditransitive - future I progressive 52 86.5
Ditransitive - future I simple 110 70.0
Ditransitive - future II progressive 55 34.5
Ditransitive - future II simple 51 29.4
Ditransitive - past perfect progressive 56 62.5
Ditransitive - past perfect simple 55 67.3
Ditransitive - past progressive 57 77.2
Ditransitive - present perfect progressive 57 75.4
Ditransitive - present perfect simple 51 80.4
Ditransitive - present progressive 55 85.5
Ditransitive - simple past 76 85.5
Ditransitive - simple present 50 84.0

phenomenon items acc

Gerund 25 80.0
Imperative 15 46.7
Intransitive - conditional I progressive 27 92.6
Intransitive - conditional I simple 28 96.4
Intransitive - conditional II progressive 27 66.7
Intransitive - conditional II simple 29 69.0
Intransitive - future I progressive 30 83.3
Intransitive - future I simple 68 91.2
Intransitive - future II progressive 28 53.6
Intransitive - future II simple 35 48.6
Intransitive - past perfect progressive 30 46.7
Intransitive - past perfect simple 35 71.4
Intransitive - past progressive 32 81.3
Intransitive - present perfect progressive 29 82.8
Intransitive - present perfect simple 29 72.4
Intransitive - present progressive 61 85.2
Intransitive - simple past 35 80.0
Intransitive - simple present 38 68.4
Modal 288 71.5
Modal negated 304 75.0
Reflexive - conditional I progressive 35 74.3
Reflexive - conditional I simple 34 64.7
Reflexive - conditional II progressive 34 58.8
Reflexive - conditional II simple 34 76.5
Reflexive - future I progressive 30 60.0
Reflexive - future I simple 68 54.4
Reflexive - future II progressive 34 41.2
Reflexive - future II simple 33 39.4
Reflexive - past perfect progressive 35 42.9
Reflexive - past perfect simple 34 67.6
Reflexive - past progressive 33 87.9
Reflexive - present perfect progressive 32 68.8
Reflexive - present perfect simple 34 79.4
Reflexive - present progressive 33 75.8
Reflexive - simple past 33 78.8
Reflexive - simple present 31 61.3
Transitive - future II progressive 30 36.7
Transitive - conditional I progressive 30 86.7
Transitive - conditional I simple 27 85.2
Transitive - conditional II progressive 28 89.3
Transitive - conditional II simple 25 80.0
Transitive - future I progressive 30 73.3
Transitive - future I simple 57 84.2
Transitive - future II simple 32 65.6
Transitive - past perfect progressive 28 89.3
Transitive - past perfect simple 28 71.4
Transitive - past progressive 44 70.5
Transitive - present perfect progressive 27 88.9
Transitive - present perfect simple 29 79.3
Transitive - present progressive 39 84.6
Transitive - simple past 38 89.5
Transitive - simple present 34 88.2
Verb valency 114 65.8
Case government 14 85.7
Catenative verb 18 83.3
Mediopassive voice 22 54.5
Passive voice 19 78.9
Resultative 19 63.2
Semantic roles 22 40.9

micro-average 4448 72.8
phen. macro-average 4448 73.2
categ. macro-average 4448 73.0

Table 4: Performance of the Occiglot English-German
model with regard to linguistically-motivated phenom-
ena
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Abstract

This paper presents an evaluation of 16
machine translation systems submitted to
the Shared Task of the 9th Conference
of Machine Translation (WMT24) for the
English-Hindi (en-hi) language pair using
our Complex Structures Test (CoST) suite.
Aligning with this year’s test suite sub-
task theme, “Help us break LLMs”, we
curated a comprehensive test suite encom-
passing diverse datasets across various cat-
egories, including autobiography, poetry,
legal, conversation, play, narration, tech-
nical, and mixed genres.
Our evaluation reveals that all the sys-
tems struggle significantly with the
archaic style of text like legal and
technical writings or text with cre-
ative twist like conversation and po-
etry datasets, highlighting their weak-
nesses in handling complex linguistic struc-
tures and stylistic nuances inherent in
these text types. Our evaluation iden-
tifies the strengths and limitations of
the submitted models, pointing to spe-
cific areas where further research and de-
velopment are needed to enhance their
performance. Our test suite is avail-
able at https://github.com/AnanyaCoder/
CoST-WMT-24-Test-Suite-Task.

1 Introduction
Neural Machine Translation (NMT) has seen
substantial progress in recent years, achieving
impressive quality that benefits many every-
day applications. The advent of large language
models (LLMs) has further enhanced trans-
lation capabilities. However, despite these
advancements, there remain challenges that
generic evaluation methods often fail to ad-
dress. While traditional evaluations using ran-
dom text samples might show overall success,

∗* Authors contributed equally

they may not reveal subtle issues where MT
systems struggle, such as handling complex lin-
guistic structures, idiomatic expressions, and
diverse text types like conversations, poetry,
legal documents, and technical writing. These
flaws can be obscured by average performance
metrics or overlooked entirely. A more system-
atic method for identifying linguistic issues in
translation outputs involves using test suites
or challenge sets to evaluate the system’s per-
formance on specific tasks. (Manakhimova
et al., 2023). Test suites offer a standardized
approach to evaluating MT systems, revealing
strengths and weaknesses in handling complex
text types.
In this context, we present the results of us-

ing test suites to analyze state-of-the-art ma-
chine translation systems across various cate-
gories. These evaluations were conducted as
part of the theme “Help Us Break LLMs” for
the 9th Conference on Machine Translation
(WMT24). The test suites were used to eval-
uate systems submitted for the English-Hindi
language pair.
We have curated a unique test suite com-

prising sentences from 9 categories across 16
sources to evaluate how large language mod-
els (LLMs) perform. The diversity of these
categories allows us to assess the LLMs’ capa-
bilities beyond the typical news or generic do-
mains, which often focus on reporting or nar-
rative writing styles. Details of our test suite
are provided in Section 2.
We perform reference-free and reference-

based evaluations of the Hindi translations
of this test suite, produced by 16 differ-
ent machine translation (MT) systems sub-
mitted to the General Translation Task at
WMT24 (Kocmi et al., 2024a). For reference-
less evaluation, we employ COMET-Kiwi (Rei
et al., 2022), while (Papineni et al., 2002),
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chrF (Popović, 2015, 2017), MEE4 (Mukher-
jee et al., 2020; Mukherjee and Shrivastava,
2023), BERTScore (Zhang* et al., 2020),
and COMET (Rei et al., 2020) are used
for reference-based evaluation. Professional
English-to-Hindi translators provide the refer-
ence translations. Our results indicate that,
for the English-to-Hindi language pair, LLMs
show weaker performance on datasets
related to poetry, legal, and conversa-
tional content. Details of our evaluation ex-
periments are discussed in Section 3, and our
analysis is presented in Section 4.

2 CoST: Complex Structure
Testsuite

Table 1 depicts the dataset categories and the
distribution within our test suite. The “Orig-
inal” column presents the initial count of se-
lected sentences for each category, as gathered
from the datasets. The last column, “CoST,”
displays the final count of sentences included
in the test suite. Our test suite is designed to
evaluate translations across

• Multiple Writing Style: Prose, Conversa-
tion, Autobiography, Legal Writing, Liter-
ary Narrative and Technical Documents.

• Lexical Choice: As we are sampling test
suites from various domains, there is a de-
cent mixture of domain-specific words, e.g.
Legal Text, Technical Text, etc.

In total, 1,947 English sentences were selected
based on criteria such as sentence length,
depth of dependency tree, combination of
noun phrases, verb phrases, named entities,
etc. Ensuring a test suite containing sentences
with good representation from simple to com-
plex structures.

3 Evaluation Strategy

To evaluate the performance of the 16 sub-
mitted MT systems, we performed both au-
tomatic and manual evaluations.

3.1 Automatic Evaluation

In automatic evaluation, we leveraged both
reference-less and reference-based metrics.

Category Dataset Original CoST

poetry Kabir ke Dohe 11 9
Amir Khusro 9 9

narration

ShortStories 177 72
Post Office 440 10
Glimpses of Bengal 101 64
The Home and the World 236 183
The gardener 277 27
Abridged Merchant of Venice 63 31
Christmas Carole 923 308

legal Legal Text 2862 638
IIT Bombay Jud 167 83

mix IN22 570 241
conversation Friends 77 53
play King Of Dark Chamber 35 22
autobiography My Reminiscences 109 110
Technical Technical Papers 185 87

Total 6242 1947

Table 1: Data Statistics of CoST.

3.1.1 Reference-less Evaluation
For the reference-less automatic evaluation, we
utilize COMETKIWI (Rei et al., 2022) scores,
which offer quality estimation scores derived
from the source sentence and MT output.

3.1.2 Reference-based Evaluation
With the help of professional English-to-Hindi
translators, we also provide one gold ref-
erence translation for each source sentence
in the test suite. We evaluate the ma-
chine translation outputs against these ref-
erences using BLEU (Papineni et al., 2002),
chrF (Popović, 2015, 2017), MEE4 1 (Mukher-
jee et al., 2020; Mukherjee and Shrivastava,
2023), BERTScore (Zhang* et al., 2020), and
COMET (Rei et al., 2020).

3.2 Manual Evaluation
The manual analysis was done by professional
native speakers. They were instructed to iden-
tify mistranslations and hallucinations and
make note of other translation errors like
wrong post positions to get more nuanced in-
formation regarding the performance of the
systems.

4 Results and Analysis

The results of the automatic evaluation are re-
ported in Table 2. Ranks are shown in paren-
theses for each metric, where (1) is the high-
est rank. It is clearly evident that evalua-
tions from all the metrics rank TranssionMT
as the best system, followed by ONLINE-B

1https://www.kaggle.com/ananyacoder/
mee4-metric-run
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and Claude-3.5. In contrast, CycleL is ranked
the lowest, preceded by IKUN-C and IKUN.
We also observe that according to the Pre-
liminary WMT24 Ranking of General MT
Systems and LLMs (Kocmi et al., 2024b),
Unbabel-Tower70B is listed as the top per-
former. However, its performance decreases
on CoST. For more category-wise informative
results, we looked at the performance of sys-
tems for each category using lexical-based met-
ric (Figure 2 and 3), embedding- based met-
ric (Figure 4 and 5) and supervised metric (6)
and (Figure 1). These results illustrate that
all systems underperform with poetry,
legal, and conversation data. In contrast,
the systems consistently exhibit strong perfor-
mance with autobiography, play, and mixed
(IN22) data.

The analysis shows a clear trend, i.e., sys-
tems struggle with specific genres like poetry,
legal, and conversation while excelling in nar-
rative styles such as autobiography and play.
This suggests that the training data for these
systems may be heavily skewed towards nar-
rative writing, hence strong performance in
those areas. The sub-par performance in po-
etry, conversational and legal texts might re-
flect challenges in handling diverse linguistic
and stylistic features that are less prevalent in
the training data.

4.1 Qualitative Analysis
These manual assessments are carried out by
professional Hindi speakers who hold graduate-
level qualifications and possess good knowl-
edge in the domains covered by our test suite.

4.1.1 Handling Named Entities
Source: Labanya said to her sister in soothing
tones : ” Don’t be upset about it , dear ; I will
see what I can do to prevent it . ”

Most models successfully translated “La-
banya” correctly, preserving the original
name. However, the outputs from Claude-
3.5, GPT-4, NVIDIA-NeMo, ONLINE-A,
Unbabel-Tower70B, and ZMT show variations
or distortions of the name, indicating potential
issues with name recognition or transliter-
ation in these models.
In another instance, IKUN-C, IKUN,

Llama3-70B, NVIDIA-NeMo, ONLINE-A,
Unbabel-Tower70B, and ZMT systems have

translated ‘Phoebe’ as Phob, Phobey, Phoyeb,
Phoyebe; surprisingly ONLINE-G has gener-
ated चाँद (meaning moon, as Phobe is one of
the moons of Saturn).

4.1.2 Spelling and Typological Errors
Except for Llama3-70B, IOL_Research, and
CommandR-plus, all other models tend to gen-
erate हĩ ं instead of हĩ ँ, indicating a recurring
spelling error in their outputs.

4.1.3 Omissions
The Hindi translations produced by the IKUN
and IKUN-C systems consistently suffer from
incompleteness, often leaving out key parts
of the original sentences, undermining the ac-
curacy and reliability of the translations, mak-
ing them less effective for conveying the full
meaning of the source text.

4.1.4 Incorrect Lexical Word Choices
Choosing the right word in translation is cru-
cial for preserving the essence, tone, and
intention of the original sentence. For in-
stance, Unbabel-Tower70B accurately trans-
lates “well,” whereas all other systems trans-
late it as “alright” or “okay.” These alterna-
tives do not fit the context as well, thereby
affecting the tone and overall quality of
the translation.
Source: I’d be pulling up shoots of grass to

use them to check the wind, and looking at
maps of ports and piers and roads.

However, Aya23 and IOL_Research trans-
late it as “removing,” while the remaining sys-
tems use “pull.” These variations of “remove”
and “pull” slightly affect the accuracy and
well-formedness of the Hindi translation.

5 Conclusion

This paper evaluates translations from 16 MT
systems submitted to the General Translation
Shared Task WMT24 on Complex Struc-
tures Test suite which was designed to cover
various writing styles and domains beyond the
typical news and generic data, consisting 1,947
unique sentences selected for their lexical and
structural diversity. We conducted automatic
reference-based, automatic reference-free, and
manual evaluations. Our thorough analysis
reveals significant limitations in these LLMs,
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reference-free reference-based
System COMET-KIWI BLEU chrF MEE4 BERTScore COMET
TranssionMT 0.815 (1) 68.399 (1) 81.577 (1) 0.903 (1) 0.942 (1) 0.835 (1)
Claude-3.5 0.815 (1) 43.321 (3) 66.385 (3) 0.85 (3) 0.898 (3) 0.803 (3)
ONLINE-B 0.814 (2) 67.733 (2) 80.768 (2) 0.898 (2) 0.933 (2) 0.83 (2)
Unbabel-Tower70B 0.809 (3) 38.634 (6) 62.811 (6) 0.842 (5) 0.886 (5) 0.799 (4)
Llama3-70B 0.791 (4) 34.164 (9) 58.612 (8) 0.83 (6) 0.874 (7) 0.767 (5)
IOL_Research 0.79 (5) 32.991 (10) 57.244 (10) 0.825 (8) 0.869 (8) 0.765 (6)
ZMT 0.785 (6) 42.277 (5) 65.614 (5) 0.843 (4) 0.893 (4) 0.75 (9)
ONLINE-A 0.785 (6) 42.324 (4) 65.637 (4) 0.843 (4) 0.893 (4) 0.75 (9)
GPT-4 0.785 (6) 31.795 (11) 57.227 (11) 0.826 (7) 0.868 (9) 0.755 (8)
CommandR-plus 0.785 (6) 29.088 (12) 54.918 (12) 0.816 (10) 0.858 (10 0.757 (7)
Aya23 0.761 (7) 27.938 (13) 53.473 (13) 0.81 (11) 0.852 (11) 0.728 (10)
ONLINE-G 0.735 (8) 35.952 (7) 60.861 (7) 0.825 (8) 0.875 (6) 0.669 (12)
NVIDIA-NeMo 0.734 (9) 34.635 (8) 57.977 (9) 0.821 (9) 0.868 (9) 0.689 (11)
IKUN-C 0.658 (10) 10.89 (15) 38.711 (14) 0.693 (12) 0.752 (12) 0.591 (13)
IKUN 0.574 (11) 12.181 (14) 36.159 (15) 0.657 (13) 0.731 (13) 0.546 (14)
CycleL 0.366 (12) 1.77 (16) 16.476 (16) 0.347 (14) 0.665 (14) 0.33 (15)

Table 2: System-wise ranking based on reference-free and reference-based metrics. Top 3 are highlighted
in bold. Ranks are mentioned in brackets. The rows are colour coded highlighting the top scores in green
and low scores in red.

Figure 2: Category-wise plots of average BLEU Scores for all the submitted MT systems.

303



Figure 3: Category-wise plots of average chrF Scores for all the submitted MT systems.

Figure 4: Category-wise plots of average BERTScore Scores for all the submitted MT systems.
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Figure 5: Category-wise plots of average MEE4 Scores for all the submitted MT systems.

Figure 6: Category-wise plots of average COMET Scores for all the submitted MT systems.
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particularly in translating poetry, conversa-
tional, and legal texts. Additionally, our man-
ual review uncovered issues such as incorrect
word choices, spelling errors, and poor han-
dling of named entities. Despite their advance-
ments, these LLMs show notable weaknesses
in handling diverse and complex linguistic con-
texts. This highlights the need for continued
refinement and broader training data to im-
prove their performance across a wider range
of text types and domains.
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Abstract

We assess the difficulty of gender resolu-
tion in literary-style dialogue settings and the
influence of gender stereotypes. Instances
of the test suite contain spoken dialogue in-
terleaved with external meta-context about
the characters and the manner of speaking.
We find that character and manner stereo-
types outside of the dialogue significantly
impact the gender agreement of referents
within the dialogue. https://github.com/hillary-
dawkins/wmt24-gender-dialogue.

1 Introduction

Gender bias and gender effects in machine trans-
lation are prevalent in translation directions where
gender relevancy increases from source to target
language (Savoldi et al., 2021; Barclay and Sami,
2024; Savoldi et al., 2023). English has minimal
morphological effects caused by natural gender,
whereas many languages (e.g. French, Spanish,
Czech, Icelandic, German) have grammatical gen-
der cases for various parts of speech which some-
times need to align with natural gender for animate
nouns. For example “I am happy” in the source lan-
guage English has divergent translations in the tar-
get language French (“Je suis heureux/heureuse”)
depending on the natural gender of the speaker.
The consequence is that gender-alignment errors
can easily arise in such translation directions. Fur-
thermore, stereotypes are known to drive gender
agreement (e.g., systems may tend to prefer the
translation “Je suis jolie” over “Je suis joli” for
“I am pretty” despite incomplete gender context)
(Sólmundsdóttir et al., 2022), and these stereotype
effects can persist even when unambiguous gender
information is provided (Stanovsky et al., 2019;
Troles and Schmid, 2021; Kocmi et al., 2020).

Typically, these gender effects are studied in iso-
lation or semantically-bleached settings (as in the
above examples). There it is known that the in-
ternal characteristics of adjective words, such as

the gender stereotype, sentiment, and type (appear-
ance or character), are significant factors influenc-
ing the choice of gender agreement in translation
(Sólmundsdóttir et al., 2022). However, the need
for gender agreement also occurs in more complex
settings, such as over long ranges, and passages
involving multiple potential referents.

Due to increasing interest in paragraph-level
translation and literary domains, here we assess
the challenge of speaker-listener role resolution in
literary dialogue settings. In particular, the gen-
der of the speaker and listener must be resolved
correctly to obtain a correct translation, and we
suppose that gender stereotype effects can further
add to the task difficulty. We find that stereotypical
character descriptions and manners of speaking are
significant influences on the gender alignment, gen-
erally overshadowing the internal adjective traits.

2 Test Suite Description

This test suite measures the gender resolution ten-
dencies of machine translation systems in literary-
style dialogue settings. In this setting, spoken di-
alogue (in quotations or otherwise delimited) is
interleaved with meta-context about the dialogue
(e.g., the speaker, the listener(s), and character and
environment descriptions). When spoken dialogue
refers to a person, a challenge arises in resolving
the referent given the meta-context. The test suite
includes three target languages (Spanish, Czech,
and Icelandic), where the gender of the referent
affects the correct translation.

Here, we focus on two-person conversations,
where adjectives are used within dialogue to de-
scribe either the speaker or the listener. Within a
single source passage, both characters may take
on both the speaker and listener roles at times.
Since adjectives are gender-neutral in the source
language (English), the gender of the adjective’s
referent must be determined from the meta-context,
if possible. The test suite contains inputs where
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the gender remains unknown given the complete
context (termed gender-ambiguous cases), and in-
puts where the gender can be unambiguously re-
solved given the complete context (termed gender-
determined cases).

The test suite contains a handful of template
types (each detailed in Appendix A) to assess the
influence of stereotype cues in the meta-context
and the structural features of the passage. Stereo-
type features include character descriptions and
the manner of speaking (controlled using adverbs).
Structural features include the number of referents
in a single passage, partial or complete gender in-
formation, first- or third-person speakers, and ad-
jective repetition. Some challenging features of
the templates include adjectives that appear before
the referent is introduced, and repeated adjectives
referring to different entities.

The templates use vocabulary sets for adjec-
tives (n = 350), gender-stereotyped adverbs
(n = 29), and gender-stereotyped occupation
words (n = 44). Each adjective is labeled
with its gender stereotype (M/F/neutral), senti-
ment (positive/negative/neutral), and type (char-
acter/appearance). The full vocabulary set with
annotations is released as part of the test suite con-
tribution.

3 Methodology

The adjective translations are extracted from the
target languages and processed using dictionary
searches1 to obtain the gender agreement label. The
advantage of using dictionary searches over auto-
mated morphological gender taggers is that irregu-
lar adjectives (e.g. “rosa” in Spanish) are correctly
classified, and the use of different parts of speech or
out-of-dictionary words can also be monitored. For
example, the use of a gender-neutral noun phrase
or direct substitution of an English word should be
counted as a neutral label for our purposes. Only
when a translated word is not found in any dic-
tionary search, is it passed to auto gender-tagging
based on its morphological features (e.g. an “o”
vs. an “a” ending in Spanish). This second pass
allows for (possibly hallucinated) out-of-dictionary
words to be included in the analysis, but only if

1https://bin.arnastofnun.is/
https://islenskordabok.arnastofnun.is/
https://slovnik.seznam.cz/
https://dictionaryapi.com/products/api-spanish-dictionary
https://en.wiktionary.org/
https://cs.wiktionary.org/

they strongly resemble a regular adjective form
(e.g. “víktur” in Icelandic may be derived from
the English source word “victorious”, but clearly
a masculine adjective ending has been chosen in
translation). A small portion of words remains un-
classified after both passes are complete, meaning
that they neither exist in the dictionary nor resem-
ble a regular adjective in the target language. The
fine-grained annotations for each extracted trans-
lation, in addition to the final gender label (one of
M, F, N, or unclassified), are released with the test
suite results for further analysis.

The scope of analysis in this paper is limited to
the subset of M- and F-labeled translations. That
is, when a gendered adjective form is chosen by a
translation system, we are interested in the factors
that influence this choice, and the corresponding
translation errors that occur when an adjective form
does not match the referent’s gender. To this end,
results throughout the paper are presented in three
ways.

When the gender of a referent is unknown, we
report the proportion of masculine and feminine
adjective declensions to observe the system’s ten-
dencies in ambiguous settings. When the gender of
a referent is known, we report the accuracy of the
adjective declensions. Typically, the underlying ef-
fect (e.g., the influence of stereotypes) is the same
in both cases. However, it is important to know that
the effect persists even when unambiguous gender
context is available. Both proportion and accuracy
results are always reported using balanced subsets2

of the relevant test suite subset.
Lastly, we wish to understand the relative impor-

tance of factors that influence the system’s choice
of gender agreement. To do so, we perform re-
gression analyses where the dependent variable to
predict is the gender declension of the translation,
and independent variables include both internal ad-
jective factors (the gender stereotype, sentiment,
and type), and external factors that are introduced
through the meta context (e.g. character descrip-
tions). The regression coefficients are reported with
significance levels.

4 Gender-Stereotyped Manner

Firstly, we observe that the manner of speaking in
literary dialogue settings can significantly affect

2adjective traits are balanced on type and sentiment, and
exclude gender stereotypes; structural factors such as listener
and speaker roles are balanced as applicable to the template
type

308



Figure 1: Gender-stereotyped adverbs outside of the
dialogue affect the adjective’s gender agreement with
the speaker within the dialogue. Source sentences in
English include instances without adverbs (a) and with
stereotypically masculine (b) or feminine adverbs (c).
When translated to the target language, adjectives tend
to align with the stereotype (adjectives shown here in
Czech).

the gender prediction of the speaker. Furthermore,
this influence is susceptible to gender stereotypes.
Refer to the example shown in Figure 1.

Within the Stereo-Adverb test suite subset, all
adjectives refer to a first-person speaker (I), and
therefore the natural gender of the adjective’s refer-
ent is ambiguous in the source language. We report
the proportion of male declensions on subsets (a)
with no adverb, (b) a male-stereotyped adverb, and
(c) a female-stereotyped adverb (full results in Ap-
pendix B). The majority of systems display a dif-
ference greater than 10% when the adverb switches
from male- to female-stereotyped. The systems
with the largest effects are shown in Table 1. Note
that the most affected systems include those that
defy the usual default-male agreement in ambigu-
ous gender cases in the baseline setting (i.e., in
the absence of any adverb). Here we see that the
default-female agreement is unstable with respect
to stereotype cues.

To compare the influence of speaking manner to
the influence of internal adjective traits, we perform
regression analysis where the dependent variable
to predict is the gender declension. Independent
variables are the gender stereotype label of the ad-
verb, and the gender stereotype, the sentiment, and
the type (appearance or character) of the adjective.
The analysis shows that adverb influence is com-
parable or stronger than these internal adjective
characteristics within this test suite (see Table 9).

5 Gender-Stereotyped Characters

Secondly, we observe that character descriptions
that align with socially held stereotypes impact
gender resolution within spoken dialogue. Refer to
the examples shown in Figure 2.

Within the Stereo-Character test suite subset,

all adjectives refer to one of two characters that
have been given some stereotypical descriptions
using both occupations and attributive adjectives.
Template variations include single-speaker dia-
logue, where adjectives refer to either the speaker
(I) or listener (you) (see template 3), and two-
speaker conversations where both participants are
referenced by each speaker (see template 4).

In ambiguous gender cases (Figure 2a), we re-
port the stereotype effect again by looking at the
tendency of the system to choose either a female or
male adjective declension depending on the refer-
ent stereotype (full results in Appendix B). Char-
acters that are described by male-leaning gender
stereotypes are very likely to receive a masculine
adjective, whereas the use of feminine adjectives
increases for female-stereotyped characters (push-
ing against the default-male baseline), as shown in
Table 2 for the most affected systems.

Furthermore, we find that this effect persists
in determined gender cases (Figure 2b) such that
agreement accuracy can drop significantly when
the actual gender opposes a socially-held stereo-
type. We report this observation as the difference in
accuracy between the PRO and ANTI template sub-
sets (full results in Appendix B). Approximately
half of the tested systems are not robust to stereo-
type cues even when the correct, unambiguous gen-
der context is provided. The most affected systems
are shown in Table 3. As with the stereotyped ad-
verb effect, we perform a regression analysis to
probe the relative influence of stereotypical charac-
ter descriptions compared to the internal adjective
factors. We find that the character descriptions
are much more impactful on the adjective’s gender
form than the internal adjective traits within this
dialogue setting (see Table 15).

6 “Opposite” or “Same” Binary Gender
Speaker Bias

Finally, in the absence of any gender stereotype
effects, we assess the overall “vanilla” difficulty
of this gender resolution task in non-challenge set-
tings and the influence of different structural ele-
ments in the source input. In doing so, we observe
that an “opposite” or same binary gender bias exists.
That is, in dialogue settings between two speakers,
some systems strongly predict one speaker to be
male and the other female, while other systems
strongly prefer same-gender pairs. This observa-
tion holds in both ambiguous and determined cases.
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System F M FM MM FF MF ∆MM−F

CUNI-MH 0.703 0.297 0.379 0.621 0.950 0.050 0.571
ONLINE-W 0.591 0.409 0.387 0.613 0.884 0.116 0.497
CommandR-plus 0.340 0.660 0.120 0.880 0.554 0.446 0.434
Aya23 0.370 0.631 0.187500 0.813 0.612 0.388 0.425

Table 1: Gender-Stereotyped Manner: The proportion of adjectives with male (M ) and female (F ) agreement on
the Stereo-Adverb test suite subset for the most affected translation systems in the English to Czech translation
direction. All adjectives self-refer to the speaker of unknown gender. Subscripts (M and F ) denote the use of
gender-stereotyped adverbs to control the manner of speaking (e.g., MF denotes the proportion of adjectives with a
male declension within instances using a stereotypically feminine adverb, as shown in Figure 1 example (c)). The
unsubscripted results refer to no adverb (as shown in Figure 1 example (a)). The overall strength of the adverb effect
is reported using the difference ∆MM−F .

(a) Ambiguous cases: Adjectives refer to characters of unknown gender.

(b) Determined cases: Adjectives refer to characters of known gender. The known gender either aligns with the stereotype (PRO)
or opposes the stereotype (ANTI).

Figure 2: Gender-stereotyped character descriptions outside of the dialogue affect the adjective’s gender agreement.

System FM MM FF MF ∆MM−F

Claude-3.5 0.000 1.000 0.391 0.609 0.391
CommandR-plus 0.012 0.988 0.401 0.598 0.390
Aya23 0.122 0.878 0.429 0.571 0.307
Unbabel-Tower70B 0.058 0.942 0.359 0.640846 0.302
GPT-4 0.000 1.000 0.274 0.726 0.274

Table 2: Gender-Stereotyped Characters: The proportion of adjectives with male (M ) and female (F ) agreement
on the Stereo-Character-Amb test suite subset (Figure 2a) for the most affected translation systems in the English
to Spanish translation direction, partitioned by the referent’s gender stereotype (denoted by subscripts). The true
gender of the referent is unknown, but the choice of declension is affected by the stereotypical character description.
The overall strength of the character description effect is reported by the difference ∆MM−F .
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System Accuracy (PRO) Accuracy (ANTI) ∆(PRO, ANTI)
ONLINE-W 0.985 0.414 0.571
GPT-4 0.990 0.527 0.463
Aya23 1.000 0.655 0.345
IKUN 0.975 0.702 0.273

Table 3: Gender-Stereotyped Characters: The accuracy in gender-adjective agreement on the Stereo-Character-
Det test suite subset (Figure 2b) for the most affected translation systems in the English to Spanish translation
direction. The true gender of the character either aligns with (PRO) or opposes (ANTI) the stereotypical description.
The presence of stereotypical character descriptions can significantly decrease the gender translation accuracy.

Refer to the examples shown in Figure 3.
In ambiguous gender cases, we can observe this

effect as the proportion of adjective declension
choices conditioned on the known gender of the
second character in the conversation (Figure 3a).
Note that adjectives may still either refer to the
speaker or listener, and both types are affected by
the presence of a second known gender. Full results
are shown in Appendix B, and a summary of the
most affected systems is shown in Table 4.

In determined gender cases, the tendency to as-
sume either the same or opposite binary gender
pairs manifests as decreased accuracy in cases that
oppose this assumption. We report the accuracy in
adjective agreement on test subsets where (a) only
one gender is specified (Figure 3c), (b) both gen-
ders are specified and are opposite, (c) both genders
are specified and are the same (Figure 3b). Sub-
set (a) is usually easiest for most systems because
the same or opposite gender effect is not possible.
The difference in accuracy between subsets (b) and
(c) indicates the strength and direction of this ef-
fect. Full results are shown in Appendix B and a
summary is shown in Table 5.

We note that the observed decrease in accuracy
on gender pairings that oppose the system’s pre-
supposition is being driven by two features within
our templates: 1. Adjectives that occur before
their referent (if reading left to right), and 2. A
consistency effect. For example, refer to the two
examples shown in Figure 3b. In both cases, the
first adjective to translate occurs before it’s refer-
ent, but after the gender of the speaker is known.
Adjectives in this position are very likely to align
with the same or opposite gender of the speaker
in affected systems, depending on the effect direc-
tion. Following the incorrect translation of the first
adjective, we observe that the adjective in the last
position is likely to also be incorrect, possibly ow-
ing to a consistency effect since these refer to the
same entity.

Using regression analysis, we predict the adjec-
tive declension conditioned on structural factors:
the gender of the other speaker, whether the refer-
ent is the speaker (I) or the listener (you), the gen-
der choice in preceding adjectives that refer to the
same entity (consistency), and whether the adjec-
tive occurs before the referent is introduced (“look-
ahead” position), as well as the internal traits of the
adjective as always, and the true gender label for
determined cases. Controlling for internal traits,
the correct gender label, and the default mascu-
line baseline, we observe that both “look-ahead”
and referent role (listener) are influential structural
factors affecting the task difficulty (refer to table
27).

7 Future Work

Here, the scope of analysis is limited to the cases
where a translation system has chosen either a
masculine or feminine adjective form, and ignores
those cases where a neutral translation strategy was
used instead. However, the labeling methodology
as described in Section 3 does produce a test suite
with annotated neutral labels as well. The observed
neutral strategies vary by target language and in-
clude the use of adjectives with the same form for
the female and male gender cases (e.g. regular ad-
jectives ending in “e” in Spanish, or “í” in Czech),
the use of the neuter gender case if it exists (as
in Czech and Icelandic), direct substitution of the
gender-neutral source (English) adjective, the use
of alternative forms (e.g. translated adjectives end-
ing “o/a” in Spanish or “(ur)” in Icelandic), and the
use of noun phrases in place of adjectives, which
may be gender-neutral depending on the target lan-
guage. Some of these strategies may be considered
to be more correct than others (i.e. applying the
neuter gender case to a person is not grammatically
correct, but may still be preferred to misgendering
in ambiguous cases).
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(a) Ambiguous cases: Adjectives refer to a character of unknown gender, while the gender of the second character in the
conversation is known (male in these examples). Adjectives referring to the gender-ambiguous character are more likely to agree
with the opposite gender of the speaker (i.e., take feminine forms in these examples).

(b) Determined cases where the gender of both speakers is known. Accuracy decreases for same-gender pairs due to the opposite
binary gender effect.

(c) Determined cases where the gender of one speaker is known. Accuracy is generally high in the absence of a second gender
(i.e., the opposite binary gender effect is not possible).

Figure 3: The opposite binary gender effect is present in both ambiguous (a) and determined (b) cases. Determined
cases with a single known gender (c) are unchallenging despite having the same structural components (i.e. both
speaker (I) and listener (you) resolutions, and need to “look ahead” in the text to find the adjective’s referent). All
effects are the same but flipped for systems that prefer same-gender speaker pairs.

System FM MM FF MF ∆MM−F

Claude-3.5 0.419 0.581 0.074 0.926 -0.346
CommandR-plus 0.764 0.236 0.426 0.574 -0.338
IKUN-C 0.292 0.708 0.703 0.297 0.410
IKUN 0.256 0.744 0.726 0.274 0.470

Table 4: Opposite or Same Binary Gender Effect: The proportion of adjectives with male (M ) and female (F )
agreement on the Structure-Amb test suite subset (Figure 3a) for the most affected systems in the English to
Spanish translation direction. All adjectives refer to someone of an unknown gender in conversation with someone of
a known gender (where that known gender is denoted by the subscripts). Systems Claude-3.5 and CommandR-plus
show the greatest tendency to assume opposite-gender speaker pairs (∆MM−F ≪ 0), and systems IOL-Research
and IKUN show the greatest tendency to assume same-gender speaker pairs (∆MM−F ≫ 0).
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System Acc (one gender) Acc (same genders) Acc (opp genders) ∆(same, opp)
CommandR-plus 0.987 0.797 0.991 -0.194
Llama3-70B 0.957 0.806 0.977 -0.171
ONLINE-A 0.734 0.828 0.668 0.160
ONLINE-G 0.726 0.827 0.625 0.202

Table 5: Opposite or Same Binary Gender Effect: The accuracy in gender-adjective agreement on the Structure-
Det test suite subset (Figures 3c and 3b) for the most affected systems in the English to Spanish translation direction.
The second speaker in the conversation is either unknown (one gender subset), the same, or opposite to the adjective
referent of known gender. Systems with an opposite binary gender effect suffer on the same-gender subset such
that the difference in accuracy ∆(same, opp) ≪ 0, and systems with a same-gender preference suffer on the
opposite-gender subset such that the difference in accuracy ∆(same, opp)≫ 0.

Further analysis is needed to understand how
often neutral strategies are used in both the am-
biguous and determined gender cases, and what
factors influence a translation system’s choice or
ability to use a neutral strategy (Savoldi et al., 2024;
Piergentili et al., 2023; Lauscher et al., 2023).

8 Conclusion

In conclusion, this test suite provides an opportu-
nity to study the challenging task of referent reso-
lution within literary-style dialogue settings. When
spoken dialogue refers to characters described out-
side of dialogue in the meta-context, it adds an
extra layer of complexity to the gender agreement
task. Here we focus on language directions that
are prone to gender agreement errors due to greater
gender relevancy in the target language than the
source language. We find that stereotypical charac-
ter descriptions and manners of speaking are signif-
icant influences for some translation systems. Fur-
thermore, some systems strongly prefer to resolve
two-person conversations as same- or opposite-
gender pairs. All observed effects are present in
both ambiguous and determined gender cases.

Limitations

This test suite uses simple templates to study the
influence of structural factors in a controlled man-
ner. Although templates are varied and contain
quite a few structure variables, they do not rep-
resent the diversity or complexity of real literary
settings. Having identified the stereotype effects
and challenge features within this test suite, future
work could compile a real in-the-wild literary dia-
logue test suite by seeking out instances with these
features of interest.

The primary limitation of this work is the fo-
cus on binary gender. All determined gender cases

within the test suite are either male or female, and
the analysis of chosen gender declensions is limited
to masculine and feminine forms. This is partially
due to the availability of known stereotypes for
binary gender, and partially due to the binary na-
ture of gender morphology in the target languages
(even if neuter grammatical gender exists, it does
not apply to animate nouns). Future work should
investigate the use of neutral strategies when gen-
der is unknown as a way to avoid misgendering
non-binary referents.

Ethics Statement

As discussed in the Limitations section, the focus
on binary gender throughout the paper is a seri-
ous ethical concern, and we stress here that similar
research questions are applicable to non-binary gen-
ders. We hope that the analysis presented here and
the test suite results might encourage the inclusion
of non-binary natural gender in future work.
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A Test Suite Templates

A.1 Stereo-Adverb Templates
Examples in the Stereo-Adverb test suite subset
take the form:

“I think I’m A,” I said adverb. (1)

where A (n = 130) denotes an adjective sampled
from the full adjective set, and adverb can be none,
M -stereotyped (n = 3) or F -stereotyped (n = 3).
In total, there are N = 910 source sentences in this
subset

(
N = 130× (1 + 3 + 3)

)
.

A.2 Stereo-Character Templates
All examples in the Stereo-Character test suite sub-
set contain two characters that are introduced using
gender-stereotyped descriptions. For simplicity, all
character descriptions are in the form:

Cg = agoccg (2)

where ag is gender-stereotyped adjective, and occg
is a matching gender-stereotyped occupation (e.g.
“pretty nurse” or “strong doctor”). In each example,
there is one female-stereotyped character (n = 22)
and one male-stereotyped character (n = 22). We
denote the character pairs as (Cg, Cḡ).

Templates in this test suite subset come in both
single-speaker and two-way conversation styles. In
the single-speaker template, examples are of the
form:

The Cg smiled. “I think {I’m, you’re} A,”

{he, she, they} said to the Cḡ.
(3)

where I’m+{he, she} combinations produce gender-
determined referents, and you’re+{he, she, they}
and I’m+they combinations produce gender-
ambiguous referents. There are 22 character pairs,
2 character orders, 2 referent pronoun variants, and
3 speaker pronoun variants, for a total of 264 base
templates. Each base template is paired with 4
unique adjectives sampled from the full adjective
set, for a total of N = 1056 = 22× 2× 2× 3× 4
source sentences (352 determined and 704 ambigu-
ous).

In the two-way conversation template, examples
are of the form:

The Cg smiled. “I think I’m A1 and you’re A2,”

they said.

The Cḡ laughed back. “No, you’re A3, but I’m A4,”

they replied.
(4)

such that the gender of all adjective referents is
ambiguous. To observe how the system handles re-
peated adjectives in the input that refer to different
entities, 4 adjective equality variations are used:

(A1, A2, A3, A4)

(A1, A2, A2, A4)

(A1, A2, A3, A1)

(A1, A2, A2, A1).

(5)

There are 22 character pairs, 2 character orders,
and 4 adjective equality patterns, for a total of 176
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base templates. For each base template, 5 unique
adjective tuples (A1, A2, A3, A4) are sampled from
the full adjective set, for a total of N = 880 =
22 × 2 × 4 × 5 source sentences. Note that each
source sentence provides 4 adjective agreement
samples.

A.3 Structure Templates
The structure templates do not include any gender-
stereotyped variables, and instead focus on struc-
tural variables in dialogue settings between two
speakers. There are two template styles: one where
all adjectives refer to the same entity, and one
where both characters are referenced in equal mea-
sure. Both template styles have variations in the
provided gender context: two speakers of known
gender, such that each adjective’s correct gender
agreement is always determined, or one known gen-
der and one unknown gender (first-person), such
that the adjective’s gender is either ambiguous or
determined depending on the referent.

The first template style with complete gender
context:

The {woman, man} smiled. “I think {I’m, you’re}

A1,” {she, he} said.

{He, She} laughed back. “No, [{you’re, I’m} not

A1, but] {you are, I am} A2,” {he, she} replied.
(6)

where the text contained by [...] denotes an
optional chaining effect on A1. There are
4 gender combinations for the two characters(
(M,M), (F, F ), (F,M), (M,F )

)
, 2 pronoun

referent variations (I, you), and 2 chaining variants
(present or not), for 16 base templates. For each
base template, 60 unique adjective tuples (A1, A2)
are sampled from the full adjective set, for a total
of N = 960 = 4×2×2×2×60 source sentences.

The first template style with partial gender con-
text:

{I, The wo/man} smiled. “I think {I’m, you’re}

A1,” {I, s/he} said.

{S/he, I} laughed back. “No, [{you’re, I’m} not

A1, but] {you are, I am} A2,” {s/he, I} replied.
(7)

As above, there are 4 gender combinations(
(M, ?), (F, ?), (?,M), (?, F )

)
, 2 pronoun refer-

ent variations, 2 chaining variations, and 60 unique
adjective tuples, for a total of N = 960 source

sentences. The structure variables split this subset
in half between ambiguous and determined cases.
When the unknown gender (first-person speaker, I)
appears first and the first pronoun referent is “I”, or
the known gender speaker appears first and the first
person referent is “you”, all adjectives are gender-
ambiguous (n = 480 source sentences, n = 1200
adjective instances). Otherwise, all adjectives are
gender-determined (n = 480 source sentences,
n = 1200 adjective instances). Note that each
source sentence contains 2-3 adjective instances,
depending on whether the optional chaining effect
is included.

The second template style with complete gender
context:

The {man, woman} smiled. “I think I’m A1 and

you’re A2,” {he, she} said.

{He, She} laughed back. “No, you’re A3, but I’m

A4,” {he, she} replied.
(8)

where there are 4 possible gender combinations,
4 adjective equality patterns as described by
equation (5), and 60 unique adjective tuples
(A1, A2, A3, A4), for a total of N = 960 source
sentences with 4 determined adjective instances
each.

The second template style with partial gender
context:

{I, The wo/man} smiled. “I think I’m A1 and

you’re A2,” {I, s/he} said.

{S/He, I} laughed back. “No, you’re A3, but I’m

A4,” {s/he, I} replied.
(9)

where again there are 4 possible gender combina-
tions, 4 adjective equality patterns, and 60 unique
adjective tuples, for a total of N = 960 source sen-
tences. As with template (7), adjectives in this sub-
set are split evenly between ambiguous and deter-
mined cases. However, unlike (7), both ambiguous
and determined adjectives appear together (equally)
in the same source passage. Note that all adjective
positions are split evenly between determined and
ambiguous cases, as determined by the variable
position of the speakers.

B Results for All Systems
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System F M FM MM FF MF ∆MM−F

Aya23 0.30308 0.69692 0.14804 0.85196 0.53892 0.46108 0.39088
Claude-3.5 0.08439 0.91561 0.00000 1.00000 0.14930 0.85070 0.14930
CommandR-plus 0.37172 0.62828 0.19682 0.80318 0.51624 0.48376 0.31942
Dubformer 0.08120 0.91880 0.06135 0.93865 0.10631 0.89369 0.04496
GPT-4 0.01125 0.98875 0.00000 1.00000 0.02308 0.97692 0.02308
IKUN 0.60329 0.39671 0.49211 0.50789 0.61719 0.38281 0.12508
IKUN-C 0.49174 0.50826 0.47581 0.52419 0.45274 0.54726 -0.02306
IOL-Research 0.08787 0.91213 0.03196 0.96804 0.12500 0.87500 0.09304
Llama3-70B 0.03901 0.96099 0.00000 1.00000 0.08274 0.91726 0.08274
MSLC 0.14011 0.85989 0.15891 0.84109 0.19874 0.80126 0.03983
ONLINE-A 0.09344 0.90656 0.05932 0.94068 0.11059 0.88941 0.05126
ONLINE-B 0.08717 0.91283 0.06970 0.93030 0.09690 0.90310 0.02721
ONLINE-G 0.14204 0.85796 0.14241 0.85759 0.16289 0.83711 0.02048
ONLINE-W 0.26113 0.73887 0.08274 0.91726 0.49821 0.50179 0.41548
TranssionMT 0.10359 0.89641 0.10000 0.90000 0.14516 0.85484 0.04516
Unbabel-Tower70B 0.32142 0.67858 0.17822 0.82178 0.42691 0.57309 0.24869

Table 6: The proportion of adjectives with male (M ) and female (F ) agreement on the Stereo-Adverb test suite
subset for all systems (English to Spanish). All adjectives self-refer to the speaker of unknown gender. In affected
systems, the use of a male-stereotyped adverb to control the manner of speaking increases the use of male adjectives
compared to female adjectives (see subscript M denoting the use of male-stereotyped adverbs), and vice versa (see
subscript F denoting the use of female-stereotyped adverbs). The baseline, non-subscripted results refer to the
proportions of male and female adjective use in the absence of any adverb. The overall strength of the adverb effect
can be captured by the difference ∆MM−F .

System F M FM MM FF MF ∆MM−F

Aya23 0.36944 0.63056 0.18750 0.81250 0.61244 0.38756 0.42494
CUNI-DocTransformer 0.36044 0.63956 0.27865 0.72135 0.52107 0.47893 0.24241
CUNI-GA 0.41955 0.58045 0.35779 0.64221 0.47974 0.52026 0.12195
CUNI-MH 0.70343 0.29657 0.37886 0.62114 0.95018 0.04982 0.57132
CUNI-Transformer 0.40925 0.59075 0.37895 0.62105 0.42209 0.57791 0.04314
Claude-3.5 0.19281 0.80719 0.00769 0.99231 0.37334 0.62666 0.36564
CommandR-plus 0.33985 0.66015 0.11950 0.88050 0.55371 0.44629 0.43421
GPT-4 0.05730 0.94270 0.00000 1.00000 0.11644 0.88356 0.11644
IKUN 0.26889 0.73111 0.14492 0.85508 0.32364 0.67636 0.17872
IKUN-C 0.33780 0.66220 0.26528 0.73472 0.38904 0.61096 0.12376
IOL-Research 0.04607 0.95393 0.00000 1.00000 0.10601 0.89399 0.10601
Llama3-70B 0.02378 0.97622 0.00000 1.00000 0.05802 0.94198 0.05802
NVIDIA-NeMo 0.30920 0.69080 0.31792 0.68208 0.31086 0.68914 -0.00706
ONLINE-A 0.97638 0.02362 0.98437 0.01563 1.00000 0.00000 0.01563
ONLINE-B 0.09241 0.90759 0.09440 0.90560 0.11212 0.88788 0.01771
ONLINE-G 0.03956 0.96044 0.03883 0.96117 0.03196 0.96804 -0.00687
ONLINE-W 0.59098 0.40902 0.38679 0.61321 0.88381 0.11619 0.49703
SCIR-MT 0.21048 0.78952 0.12845 0.87155 0.33493 0.66507 0.20648
TranssionMT 0.85793 0.14207 0.78136 0.21864 0.91884 0.08116 0.13747
Unbabel-Tower70B 0.38241 0.61759 0.22141 0.77859 0.53240 0.46760 0.31100

Table 7: The proportion of adjectives with male (M ) and female (F ) agreement on the Stereo-Adverb test suite
subset for all systems (English to Czech).
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System F M FM MM FF MF ∆MM−F

AMI 0.06617 0.93383 0.04315 0.95685 0.05593 0.94407 0.01279
Aya23 0.25779 0.74221 0.13023 0.86977 0.32917 0.67083 0.19893
Claude-3.5 0.12794 0.87206 0.01019 0.98981 0.18941 0.81059 0.17922
Dubformer 0.13975 0.86025 0.17119 0.82881 0.13380 0.86620 -0.03739
GPT-4 0.48465 0.51535 0.36143 0.63857 0.71391 0.28609 0.35248
IKUN 0.74118 0.25882 0.61495 0.38505 0.81479 0.18521 0.19984
IKUN-C 0.42608 0.57392 0.35849 0.64151 0.46387 0.53613 0.10538
IOL-Research 0.19206 0.80794 0.13012 0.86988 0.25000 0.75000 0.11988
Llama3-70B 0.17153 0.82847 0.07006 0.92994 0.24176 0.75824 0.17170
ONLINE-A 0.09271 0.90729 0.09124 0.90876 0.09357 0.90643 0.00234
ONLINE-B 0.20944 0.79056 0.23913 0.76087 0.18975 0.81025 -0.04938
ONLINE-G 0.14517 0.85483 0.15385 0.84615 0.16008 0.83992 0.00623
TranssionMT 0.23640 0.76360 0.26056 0.73944 0.25143 0.74857 -0.00913
Unbabel-Tower70B 0.26414 0.73586 0.11700 0.88300 0.44016 0.55984 0.32316

Table 8: The proportion of adjectives with male (M ) and female (F ) agreement on the Stereo-Adverb test suite
subset for all systems (English to Icelandic).

Variable ONLINE-W Aya23 CommandR-plus
Intercept (−1.73, 3.7E − 07∗∗∗) (−1.07, 1.1E − 04∗∗∗) (−0.71, 7.6E − 03∗∗)
Adj Stereo(M) (−0.89, 1.6E − 02∗) (−0.15, 6.5E − 01) (−0.82, 7.8E − 03∗∗)
Adj Stereo(F) (1.96, 4.8E − 15∗∗∗) (0.48, 2.1E − 02∗) (0.50, 1.2E − 02∗)
Adj Sentiment(neg) (−0.44, 3.6E − 02∗) (0.35, 5.6E − 02) (0.29, 9.6E − 02)
Adj Type(appearance) (0.63, 3.1E − 03∗∗) (0.31, 9.5E − 02) (0.52, 3.5E − 03∗∗)
Adv Stereo(M) (−0.42, 2.0E − 01) (−0.99, 4.4E − 04∗∗∗) (−0.87, 8.5E − 04∗∗∗)
Adv Stereo(F) (1.61, 4.8E − 07∗∗∗) (0.65, 1.0E − 02∗) (0.54, 3.0E − 02∗)

Table 9: Stereotypical manner of speaking (adverb) regression analysis for the most affected systems (Spanish),
displayed as (coefficient value, p-value). The variable to predict is the binary adjective declension choice, where
feminine adjectives are the positive class, such that negative coefficient values indicate a greater probability of M ,
and positive coefficient values indicate a greater probability of F . Strong negative intercepts indicate the default
male baseline exhibited by many systems. Internal adjective traits are controlled by stereotype variables (e.g.
Stereo(M) is expected to increase the probability of M ), the sentiment (here negative as opposed to positive), and
type (here appearance as opposed to character). For example, if the adjective is the appearance type, the results
show that systems ONLINE-W and CommandR-plus are more likely to choose an F -adjective, controlling for all
other variables. Here we see the adverb variables are strong in their expected directions, and significant.

Variable CUNI-MH ONLINE-W CommandR-plus
Intercept (2.45, 1.2E − 07∗∗∗) (−0.66, 1.1E − 02∗) (−0.84, 1.3E − 03∗∗)
Adj Stereo(M) (−0.96, 8.1E − 03∗∗) (−0.76, 1.5E − 02∗) (−0.60, 6.3E − 02)
Adj Stereo(F) (1.04, 1.6E − 04∗∗∗) (0.95, 2.7E − 05∗∗∗) (1.30, 5.1E − 09∗∗∗)
Adj Sentiment(neg) (0.13, 5.7E − 01) (−0.47, 1.2E − 02∗) (−0.19, 3.2E − 01)
Adj Type(appearance) (0.57, 1.4E − 02∗) (1.04, 8.9E − 08∗∗∗) (0.94, 1.1E − 06∗∗∗)
Adv Stereo(M) (−3.26, 7.0E − 13∗∗∗) (0.01, 9.6E − 01) (−1.59, 1.2E − 08∗∗∗)
Adv Stereo(F) (0.05, 9.3E − 01) (2.26, 5.3E − 16∗∗∗) (0.68, 6.3E − 03∗∗)

Table 10: Stereotypical manner of speaking (adverb) regression analysis for the most affected systems (Czech).
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Variable GPT-4 Unbabel-Tower70B IKUN
Intercept (0.52, 4.7E − 02∗) (−0.91, 1.4E − 03∗∗) (1.31, 1.6E − 05∗∗∗)
Adj Stereo(M) (−1.51, 4.7E − 07∗∗∗) (−0.72, 2.9E − 02∗) (−0.78, 3.6E − 03∗∗)
Adj Stereo(F) (0.75, 2.6E − 04∗∗∗) (0.89, 1.4E − 05∗∗∗) (0.62, 1.1E − 02∗)
Adj Sentiment(neg) (−0.22, 2.1E − 01) (−0.49, 9.7E − 03∗∗) (−0.01, 9.6E − 01)
Adj Type(appearance) (0.28, 1.1E − 01) (0.03, 8.7E − 01) (−0.08, 6.5E − 01)
Adv Stereo(M) (−0.98, 1.5E − 04∗∗∗) (−0.54, 5.7E − 02) (−0.64, 2.6E − 02∗)
Adv Stereo(F) (0.31, 2.3E − 01) (0.70, 9.0E − 03∗∗) (0.07, 8.2E − 01)

Table 11: Stereotypical manner of speaking (adverb) regression analysis for the most affected systems (Icelandic).

System FM MM FF MF ∆MM−F

Aya23 0.122065 0.877935 0.429200 0.570800 0.307135
Claude-3.5 0.000000 1.000000 0.390775 0.609225 0.390775
CommandR-plus 0.011598 0.988402 0.401382 0.598618 0.389784
Dubformer 0.002979 0.997021 0.128387 0.871613 0.125408
GPT-4 0.000000 1.000000 0.273960 0.726040 0.273960
IKUN 0.165404 0.834596 0.363451 0.636549 0.198047
IKUN-C 0.287342 0.712658 0.418834 0.581166 0.131493
IOL-Research 0.003182 0.996818 0.245182 0.754818 0.242001
Llama3-70B 0.000000 1.000000 0.261807 0.738193 0.261807
MSLC 0.263380 0.736620 0.217680 0.782320 -0.045700
ONLINE-A 0.023395 0.976605 0.109371 0.890629 0.085976
ONLINE-B 0.038452 0.961548 0.084521 0.915479 0.046069
ONLINE-G 0.054620 0.945380 0.042830 0.957170 -0.011790
ONLINE-W 0.055130 0.944870 0.175764 0.824236 0.120634
TranssionMT 0.020904 0.979096 0.100892 0.899108 0.079988
Unbabel-Tower70B 0.057582 0.942418 0.359154 0.640846 0.301572

Table 12: The proportion of adjectives with male (M ) and female (F ) agreement on the Stereo-Character-Amb
test suite subset for unknown gender cases for all systems (English to Spanish). All adjectives refer to either
the speaker or the listener which have been introduced as gender-stereotyped characters. The subscripts denote
the gender stereotype label. In affected systems, adjectives that refer to a M -stereotyped character (subscript M )
are more likely to be translated with a male declension, and vice versa for F -stereotyped characters. The overall
strength of the character description effect can be captured by the difference ∆MM−F .

318



System FM MM FF MF ∆MM−F

Aya23 0.157011 0.842989 0.490925 0.509075 0.333913
CUNI-DocTransformer 0.194503 0.805497 0.304000 0.696000 0.109497
CUNI-GA 0.237413 0.762587 0.328323 0.671677 0.090910
CUNI-MH 0.184362 0.815638 0.649108 0.350892 0.464746
CUNI-Transformer 0.279416 0.720584 0.329398 0.670602 0.049982
Claude-3.5 0.020730 0.979270 0.424670 0.575330 0.403940
CommandR-plus 0.020468 0.979532 0.354000 0.646000 0.333532
GPT-4 0.005208 0.994792 0.348186 0.651814 0.342978
IKUN 0.125093 0.874907 0.402927 0.597073 0.277834
IKUN-C 0.273129 0.726871 0.528897 0.471103 0.255767
IOL-Research 0.037213 0.962787 0.350441 0.649559 0.313228
Llama3-70B 0.002959 0.997041 0.193021 0.806979 0.190062
NVIDIA-NeMo 0.127240 0.872760 0.261404 0.738596 0.134165
ONLINE-A 0.140739 0.859261 0.223089 0.776911 0.082350
ONLINE-B 0.050206 0.949794 0.097500 0.902500 0.047294
ONLINE-G 0.063216 0.936784 0.070601 0.929399 0.007385
ONLINE-W 0.085828 0.914172 0.458372 0.541628 0.372544
SCIR-MT 0.082652 0.917348 0.277897 0.722103 0.195246
TranssionMT 0.108245 0.891755 0.178112 0.821888 0.069868
Unbabel-Tower70B 0.048333 0.951667 0.381000 0.619000 0.332667

Table 13: The proportion of adjectives with male (M ) and female (F ) agreement on the Stereo-Character-Amb
test suite subset for unknown gender cases for all systems (English to Czech).

System FM MM FF MF ∆MM−F

AMI 0.106313 0.893687 0.077960 0.922040 -0.028353
Aya23 0.234091 0.765909 0.450333 0.549667 0.216242
Claude-3.5 0.005272 0.994728 0.434516 0.565484 0.429244
Dubformer 0.092273 0.907727 0.139669 0.860331 0.047396
GPT-4 0.159235 0.840765 0.477160 0.522840 0.317924
IKUN 0.282857 0.717143 0.555590 0.444410 0.272733
IKUN-C 0.273029 0.726971 0.378756 0.621244 0.105728
IOL-Research 0.002394 0.997606 0.126020 0.873980 0.123627
Llama3-70B 0.065437 0.934563 0.235696 0.764304 0.170259
ONLINE-A 0.040660 0.959340 0.031744 0.968256 -0.008916
ONLINE-B 0.122783 0.877217 0.087892 0.912108 -0.034891
ONLINE-G 0.089511 0.910489 0.048492 0.951508 -0.041019
TranssionMT 0.103972 0.896028 0.100703 0.899297 -0.003269
Unbabel-Tower70B 0.063657 0.936343 0.293988 0.706012 0.230331

Table 14: The proportion of adjectives with male (M ) and female (F ) agreement on the Stereo-Character-Amb
test suite subset for unknown gender cases for all systems (English to Icelandic).
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Variable Claude-3.5 CommandR-plus Aya23
Intercept (−6.83, 2.7E − 11∗∗∗) (−3.89, 5.5E − 34∗∗∗) (−0.99, 3.1E − 07∗∗∗)
Adj Stereo(M) (0.87, 8.2E − 02) (0.29, 5.4E − 01) (−0.13, 7.9E − 01)
Adj Stereo(F) (0.85, 2.7E − 06∗∗∗) (−0.29, 1.3E − 01) (0.15, 2.5E − 01)
Adj Sentiment(neg) (−0.56, 1.6E − 04∗∗∗) (0.04, 7.4E − 01) (−0.86, 4.9E − 16∗∗∗)
Adj Type(appearance) (0.01, 9.7E − 01) (0.67, 3.6E − 04∗∗∗) (0.06, 7.0E − 01)
Character Stereo(F) (6.59, 5.0E − 11∗∗∗) (3.56, 2.4E − 43∗∗∗) (1.41, 9.5E − 43∗∗∗)

Table 15: Stereotypical character description regression analysis for the most affected systems (Spanish). Internal
adjective variables are defined as above (see Table 9). Here Character Stereo(F) denotes a binary variable equal
to 1 when the character description is stereotypically female, and equal to 0 when the character description is
stereotypically male. As shown, coefficient values for Character Stereo(F) are significant and in the expected
direction (positive, indicating an increased likelihood of a F -adjective), and much stronger than the internal
variables.

Variable CUNI-MH Claude-3.5 ONLINE-W
Intercept (−1.38, 1.5E − 16∗∗∗) (−4.93, 1.2E − 50∗∗∗) (−1.36, 9.4E − 13∗∗∗)
Adj Stereo(M) (−0.53, 3.6E − 03∗∗) (−0.75, 8.6E − 03∗∗) (−1.01, 6.7E − 02)
Adj Stereo(F) (1.58, 1.7E − 37∗∗∗) (0.17, 3.0E − 01) (0.01, 9.5E − 01)
Adj Sentiment(neg) (−0.43, 9.8E − 08∗∗∗) (−0.31, 6.9E − 03∗∗) (−0.64, 2.1E − 11∗∗∗)
Adj Type(appearance) (−0.78, 5.6E − 09∗∗∗) (0.20, 3.1E − 01) (1.34, 2.5E − 26∗∗∗)
Character Stereo(F) (1.66, 1.1E − 93∗∗∗) (4.25, 4.4E − 52∗∗∗) (2.20, 1.1E − 76∗∗∗)

Table 16: Stereotypical character description regression analysis for the most affected systems (Czech).

Variable Claude-3.5 GPT-4 IKUN
Intercept (−4.09, 9.7E − 45∗∗∗) (−1.93, 3.0E − 31∗∗∗) (−1.13, 5.6E − 14∗∗∗)
Adj Stereo(M) (−1.55, 1.3E − 06∗∗∗) (−0.18, 3.3E − 01) (0.12, 6.7E − 01)
Adj Stereo(F) (−0.45, 1.5E − 02∗) (0.04, 7.9E − 01) (0.48, 2.1E − 04∗∗∗)
Adj Sentiment(neg) (0.91, 2.1E − 15∗∗∗) (0.34, 6.9E − 05∗∗∗) (0.80, 2.3E − 24∗∗∗)
Adj Type(appearance) (0.03, 8.8E − 01) (−0.03, 8.3E − 01) (0.69, 1.8E − 09∗∗∗)
Character Stereo(F) (3.62, 1.3E − 64∗∗∗) (1.16, 1.5E − 44∗∗∗) (0.60, 4.7E − 15∗∗∗)

Table 17: Stereotypical character description regression analysis for the most affected systems (Icelandic).
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System Accuracy (PRO) Accuracy (ANTI) ∆(PRO, ANTI)
Aya23 1.000 0.655000 0.345000
Claude-3.5 1.000 0.742500 0.257500
CommandR-plus 1.000 0.950167 0.049833
Dubformer 0.965 0.776000 0.189000
GPT-4 0.990 0.527500 0.462500
IKUN 0.975 0.701667 0.273333
IKUN-C 0.910 0.887167 0.022833
IOL-Research 0.990 0.963500 0.026500
Llama3-70B 1.000 0.862500 0.137500
MSLC 0.935 0.870500 0.064500
ONLINE-A 0.970 0.990667 -0.020667
ONLINE-B 0.980 0.996000 -0.016000
ONLINE-G 1.000 0.996333 0.003667
ONLINE-W 0.985 0.414333 0.570667
TranssionMT 0.985 0.990167 -0.005167
Unbabel-Tower70B 0.995 0.970833 0.024167

Table 18: The accuracy in gender-adjective agreement on the Stereo-Character-Det test suite subset for known
gender cases for all systems (English to Spanish). The test subset is further partitioned into cases that align with a
stereotype (PRO) and cases that oppose a stereotype (ANTI). Accuracy is consistently high on the PRO subset, and
drops significantly in the challenge setting for some translation systems, indicating that stereotype effects persist in
the presence of correct and unambiguous gender context.

System Accuracy (PRO) Accuracy (ANTI) ∆(PRO, ANTI)
Aya23 0.985 0.539833 0.445167
CUNI-DocTransformer 1.000 0.993500 0.006500
CUNI-GA 0.995 0.991667 0.003333
CUNI-MH 1.000 0.995500 0.004500
CUNI-Transformer 1.000 0.994167 0.005833
Claude-3.5 1.000 0.878167 0.121833
CommandR-plus 0.985 0.912333 0.072667
GPT-4 1.000 0.807833 0.192167
IKUN 0.935 0.814000 0.121000
IKUN-C 0.995 0.930000 0.065000
IOL-Research 1.000 0.878000 0.122000
Llama3-70B 1.000 0.640000 0.360000
NVIDIA-NeMo 1.000 0.993333 0.006667
ONLINE-A 1.000 0.996333 0.003667
ONLINE-B 1.000 0.996667 0.003333
ONLINE-G 1.000 1.000000 0.000000
ONLINE-W 1.000 0.988667 0.011333
SCIR-MT 1.000 0.871667 0.128333
TranssionMT 1.000 0.994667 0.005333
Unbabel-Tower70B 1.000 0.867000 0.133000

Table 19: The accuracy in gender-adjective agreement on the Stereo-Character-Det test suite subset for known
gender cases for all systems (English to Czech).
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System Accuracy (PRO) Accuracy (ANTI) ∆(PRO, ANTI)
AMI 0.990000 0.977667 0.012333
Aya23 0.632833 0.765833 -0.133000
Claude-3.5 0.990000 0.900833 0.089167
Dubformer 0.657560 0.564000 0.093560
GPT-4 0.925000 0.832500 0.092500
IKUN 0.890000 0.942167 -0.052167
IKUN-C 0.975000 0.950333 0.024667
IOL-Research 0.955000 0.963167 -0.008167
Llama3-70B 0.982416 0.850000 0.132416
ONLINE-A 0.885000 0.973833 -0.088833
ONLINE-B 1.000000 0.988500 0.011500
ONLINE-G 0.940000 0.830000 0.110000
TranssionMT 1.000000 0.982833 0.017167
Unbabel-Tower70B 1.000000 0.969167 0.030833

Table 20: The accuracy in gender-adjective agreement on the Stereo-Character-Det test suite subset for known
gender cases for all systems (English to Icelandic).

System FM MM FF MF ∆MM−F

Aya23 0.256023 0.743977 0.345843 0.654157 0.089820
Claude-3.5 0.419257 0.580743 0.073611 0.926389 -0.345646
CommandR-plus 0.763592 0.236408 0.425954 0.574046 -0.337638
Dubformer 0.089736 0.910264 0.110243 0.889757 0.020507
GPT-4 0.090745 0.909255 0.019064 0.980936 -0.071682
IKUN 0.255602 0.744398 0.725592 0.274408 0.469990
IKUN-C 0.292295 0.707705 0.702554 0.297446 0.410258
IOL-Research 0.070826 0.929174 0.342207 0.657793 0.271382
Llama3-70B 0.105211 0.894789 0.064873 0.935127 -0.040338
MSLC 0.177329 0.822671 0.247036 0.752964 0.069707
ONLINE-A 0.049758 0.950242 0.208951 0.791049 0.159194
ONLINE-B 0.105807 0.894193 0.141280 0.858720 0.035473
ONLINE-G 0.070760 0.929240 0.300656 0.699344 0.229895
ONLINE-W 0.261696 0.738304 0.372914 0.627086 0.111218
TranssionMT 0.091749 0.908251 0.151915 0.848085 0.060166
Unbabel-Tower70B 0.273571 0.726429 0.415857 0.584143 0.142286

Table 21: The proportion of adjectives with male (M ) and female (F ) agreement on the Structure-Amb test suite
subset for all systems (English to Spanish). All adjectives refer to someone of an unknown gender in conversation
with someone of a known gender (where that known gender is denoted by the subscripts). Systems that have an
“opposite” binary gender bias effect resolve the ambiguous-gender speaker to be opposite to the known speaker
(i.e., masculine adjectives increase when the other speaker is female, and vice versa, and the difference ∆MM−F

is strongly positive). Systems with a same-binary gender effect consistently choose adjective forms matching the
gender of the other speaker (i.e., ∆MM−F is strongly negative).
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System FM MM FF MF ∆MM−F

Aya23 0.671295 0.328705 0.583859 0.416141 -0.087436
CUNI-DocTransformer 0.092894 0.907106 0.270689 0.729311 0.177795
CUNI-GA 0.455846 0.544154 0.175642 0.824358 -0.280204
CUNI-MH 0.714519 0.285481 0.699626 0.300374 -0.014893
CUNI-Transformer 0.454953 0.545047 0.173387 0.826613 -0.281566
Claude-3.5 0.380231 0.619769 0.039362 0.960638 -0.340869
CommandR-plus 0.661912 0.338088 0.139604 0.860396 -0.522308
GPT-4 0.496953 0.503047 0.033441 0.966559 -0.463512
IKUN 0.118729 0.881271 0.322997 0.677003 0.204268
IKUN-C 0.475241 0.524759 0.808473 0.191527 0.333232
IOL-Research 0.131136 0.868864 0.053251 0.946749 -0.077885
Llama3-70B 0.041654 0.958346 0.014288 0.985712 -0.027366
NVIDIA-NeMo 0.027024 0.972976 0.635958 0.364042 0.608934
ONLINE-A 0.733600 0.266400 0.381812 0.618188 -0.351788
ONLINE-B 0.058142 0.941858 0.082191 0.917809 0.024049
ONLINE-G 0.025188 0.974812 0.192564 0.807436 0.167376
ONLINE-W 0.645775 0.354225 0.390405 0.609595 -0.255370
SCIR-MT 0.361420 0.638580 0.440349 0.559651 0.078929
TranssionMT 0.586897 0.413103 0.326415 0.673585 -0.260481
Unbabel-Tower70B 0.443972 0.556028 0.323738 0.676262 -0.120234

Table 22: The proportion of adjectives with male (M ) and female (F ) agreement on the Structure-Amb test suite
subset for all systems (English to Czech).

System FM MM FF MF ∆MM−F

AMI 0.078522 0.921478 0.345131 0.654869 0.266609
Aya23 0.298890 0.701110 0.269610 0.730390 -0.029280
Claude-3.5 0.561121 0.438879 0.151645 0.848355 -0.409476
Dubformer 0.087548 0.912452 0.158890 0.841110 0.071343
GPT-4 0.683264 0.316736 0.517260 0.482740 -0.166004
IKUN 0.497869 0.502131 0.862015 0.137985 0.364145
IKUN-C 0.302331 0.697669 0.695231 0.304769 0.392900
IOL-Research 0.085036 0.914964 0.236664 0.763336 0.151628
Llama3-70B 0.248973 0.751027 0.333898 0.666102 0.084925
ONLINE-A 0.035666 0.964334 0.139427 0.860573 0.103761
ONLINE-B 0.140336 0.859664 0.256017 0.743983 0.115682
ONLINE-G 0.069463 0.930537 0.136131 0.863869 0.066667
TranssionMT 0.142135 0.857865 0.253417 0.746583 0.111282
Unbabel-Tower70B 0.207583 0.792417 0.407592 0.592408 0.200009

Table 23: The proportion of adjectives with male (M ) and female (F ) agreement on the Structure-Amb test suite
subset for all systems (English to Icelandic).
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System Acc (one gender) Acc (same genders) Acc (opp genders) ∆(same, opp)
Aya23 0.937340 0.812066 0.930527 -0.118461
Claude-3.5 0.997078 0.923965 0.997372 -0.073407
CommandR-plus 0.987414 0.796548 0.990717 -0.194170
Dubformer 0.844990 0.790325 0.850310 -0.059985
GPT-4 0.991524 0.855742 0.992963 -0.137221
IKUN 0.876698 0.835986 0.837003 -0.001018
IKUN-C 0.863909 0.838490 0.798583 0.039907
IOL-Research 0.947063 0.873722 0.906976 -0.033254
Llama3-70B 0.956589 0.805900 0.977354 -0.171454
MSLC 0.611581 0.692553 0.598783 0.093771
ONLINE-A 0.734181 0.828018 0.667730 0.160288
ONLINE-B 0.727604 0.740764 0.746103 -0.005339
ONLINE-G 0.725552 0.826803 0.624745 0.202058
ONLINE-W 0.914281 0.887881 0.919022 -0.031141
TranssionMT 0.728791 0.739865 0.748009 -0.008144
Unbabel-Tower70B 0.924064 0.817639 0.909270 -0.091631

Table 24: The accuracy in gender-adjective agreement on the Structure-Det test suite subset for known gender
cases for all systems (English to Spanish). The second speaker in the conversation is either unknown (one gender
subset), the same, or opposite to the adjective referent. Systems with an opposite binary gender effect suffer on
the same-gender subset such that the difference in accuracy ∆(same, opp)≪ 0, and systems with a same-gender
preference suffer on the opposite-gender subset such that the difference in accuracy ∆(same, opp)≫ 0.

System Acc (one gender) Acc (same genders) Acc (opp genders) ∆(same, opp)
Aya23 0.965847 0.808469 0.951880 -0.143411
CUNI-DocTransformer 0.892850 0.896380 0.855471 0.040909
CUNI-GA 0.768732 0.601509 0.911337 -0.309828
CUNI-MH 0.928232 0.814084 0.898555 -0.084471
CUNI-Transformer 0.769805 0.602070 0.911349 -0.309278
Claude-3.5 0.995241 0.911843 0.999082 -0.087239
CommandR-plus 0.996232 0.739137 0.990259 -0.251121
GPT-4 0.997750 0.823093 0.989451 -0.166358
IKUN 0.856785 0.812804 0.878981 -0.066177
IKUN-C 0.883146 0.867369 0.831151 0.036219
IOL-Research 0.975905 0.916801 0.957697 -0.040897
Llama3-70B 0.953773 0.827831 0.931734 -0.103903
NVIDIA-NeMo 0.824710 0.797210 0.704606 0.092604
ONLINE-A 0.736260 0.561771 0.926380 -0.364608
ONLINE-B 0.760273 0.752525 0.750789 0.001737
ONLINE-G 0.739938 0.812760 0.667776 0.144984
ONLINE-W 0.892118 0.828515 0.927573 -0.099059
SCIR-MT 0.916721 0.835374 0.869839 -0.034465
TranssionMT 0.742036 0.597267 0.894969 -0.297702
Unbabel-Tower70B 0.935530 0.863328 0.926457 -0.063129

Table 25: The accuracy in gender-adjective agreement on the Structure-Det test suite subset for known gender
cases for all systems (English to Czech).
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System Acc (one gender) Acc (same genders) Acc (opp genders) ∆(same, opp)
AMI 0.741426 0.890035 0.606934 0.283102
Aya23 0.650749 0.665003 0.681895 -0.016892
Claude-3.5 0.990550 0.948800 0.983105 -0.034305
Dubformer 0.685313 0.663091 0.701806 -0.038716
GPT-4 0.923000 0.862593 0.906645 -0.044052
IKUN 0.859620 0.793285 0.788005 0.005280
IKUN-C 0.860037 0.826175 0.774361 0.051815
IOL-Research 0.927880 0.879636 0.890744 -0.011107
Llama3-70B 0.863632 0.784824 0.830711 -0.045887
ONLINE-A 0.681548 0.743801 0.602983 0.140818
ONLINE-B 0.745792 0.794195 0.697057 0.097137
ONLINE-G 0.579342 0.617988 0.546436 0.071552
TranssionMT 0.747217 0.795348 0.691245 0.104103
Unbabel-Tower70B 0.933936 0.892148 0.916886 -0.024738

Table 26: The accuracy in gender-adjective agreement on the Structure-Det test suite subset for known gender
cases for all systems (English to Icelandic).

Variable CommandR-plus Llama3-70B GPT-4
Intercept (5.31, 1.3E − 24∗∗∗) (3.69, 8.8E − 41∗∗∗) (6.88, 1.1E − 11∗∗∗)
True(M) (−12.55, 9.4E − 96∗∗∗) (−11.53, 8.9E − 129∗∗∗) (−14.32, 2.9E − 40∗∗∗)
Adj Stereo(M) (−0.03, 9.0E − 01) (−0.58, 5.8E − 03∗∗) (−0.95, 6.5E − 05∗∗∗)
Adj Stereo(F) (1.26, 2.7E − 17∗∗∗) (1.77, 5.6E − 24∗∗∗) (1.89, 7.5E − 24∗∗∗)
Adj Sentiment(neg) (−0.66, 4.6E − 07∗∗∗) (−0.67, 1.1E − 06∗∗∗) (−1.05, 1.8E − 11∗∗∗)
Adj Type(appearance) (−0.32, 2.7E − 02∗) (0.16, 2.8E − 01) (−0.10, 5.3E − 01)
You(M) (2.12, 2.0E − 13∗∗∗) (1.62, 2.0E − 07∗∗∗) (0.95, 8.2E − 03∗∗)
You(F) (−4.06, 4.4E − 14∗∗∗) (−3.27, 4.3E − 28∗∗∗) (−6.02, 3.3E − 09∗∗∗)
Lookahead(M) (1.83, 4.4E − 13∗∗∗) (0.26, 3.7E − 01) (1.47, 1.8E − 04∗∗∗)
Lookahead(F) (−2.48, 3.2E − 21∗∗∗) (−2.68, 1.3E − 22∗∗∗) (−1.69, 2.8E − 11∗∗∗)
Consistency(M) (−0.10, 6.7E − 01) (−2.23, 1.1E − 15∗∗∗) (0.18, 6.2E − 01)
Consistency(F) (0.25, 3.0E − 01) (0.64, 1.9E − 03∗∗) (0.67, 3.7E − 03∗∗)
Opposite(M) (3.56, 7.1E − 59∗∗∗) (4.31, 6.0E − 50∗∗∗) (3.28, 2.1E − 40∗∗∗)

Table 27: Structural factors regression analysis for the systems with the greatest opposite binary gender tendency
(Spanish). As above (refer to Table 9), the variable to predict in the adjective declension choice, where female is
the positive class. Unlike the prior regression results, here we include determined-gender cases in order to assess the
difficulty introduced by different structural factors. Therefore, the true gender of the referent must be controlled
for (True(M) is 1 when the true label is M , 0 when the true label is F ). In addition to the regular adjective
traits, we include structural factors consistency(M/F): 1 if an earlier adjective refers to the same entity and is M/F,
lookahead(M/F): 1 if an adjective’s referent appears for the first time after the adjective and the known gender is
M/F, and you(M/F): 1 if the adjective refers to “you” and the known gender is M/F. Lookahead and you variables
must be paired with the true label because they affect the task difficulty regardless of gender. The results show that
both lookahead and you strongly increase difficulty (as indicated by strong, significant, and positive coefficients
when the correct label is M , and conversely strong, significant, and negative coefficients when the correct label
is F ). That is, the coefficients indicate an increased likelihood of choosing the incorrect gender agreement, while
all else is controlled for. The variable of interest in these systems is the Opposite(M): 1 when the other referent
in conversation is known to be male. Systems with a strong opposite binary gender effect have strong positive
coefficients, indicating an increased likelihood of a F -adjective.
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Variable ONLINE-A CUNI-GA TranssionMT
Intercept (4.82, 4.9E − 30∗∗∗) (18.93, 9.5E − 01) (4.57, 4.5E − 35∗∗∗)
True(M) (−12.42, 3.3E − 145∗∗∗) (−27.04, 9.2E − 01) (−10.64, 1.3E − 147∗∗∗)
Adj Stereo(M) (−0.01, 9.6E − 01) (−0.30, 1.2E − 01) (−0.24, 1.7E − 01)
Adj Stereo(F) (0.99, 8.6E − 15∗∗∗) (0.89, 1.3E − 12∗∗∗) (0.83, 2.8E − 13∗∗∗)
Adj Sentiment(neg) (−0.49, 1.5E − 05∗∗∗) (−0.61, 2.0E − 08∗∗∗) (−0.44, 1.1E − 05∗∗∗)
Adj Type(appearance) (0.16, 2.3E − 01) (0.58, 3.2E − 06∗∗∗) (0.45, 1.3E − 04∗∗∗)
You(M) (2.61, 1.6E − 39∗∗∗) (4.55, 6.8E − 32∗∗∗) (2.47, 1.4E − 33∗∗∗)
You(F) (−6.18, 4.4E − 44∗∗∗) (−20.47, 9.4E − 01) (−5.99, 1.9E − 52∗∗∗)
Lookahead(M) (2.25, 2.8E − 22∗∗∗) (1.06, 1.7E − 06∗∗∗) (1.50, 9.8E − 13∗∗∗)
Lookahead(F) (−1.38, 2.2E − 07∗∗∗) (−0.96, 5.8E − 04∗∗∗) (−0.72, 1.7E − 03∗∗)
Consistency(M) (0.33, 6.1E − 02) (0.46, 3.1E − 02∗) (0.25, 1.8E − 01)
Consistency(F) (0.22, 2.7E − 01) (0.44, 9.4E − 02) (0.09, 6.6E − 01)
Opposite(M) (4.80, 1.9E − 127∗∗∗) (3.13, 3.8E − 98∗∗∗) (3.10, 1.7E − 116∗∗∗)

Table 28: Structural factors regression analysis for the systems with the greatest opposite binary gender tendency
(Czech).

Variable AMI ONLINE-A TranssionMT
Intercept (3.89, 1.1E − 128∗∗∗) (1.34, 1.3E − 34∗∗∗) (3.17, 2.5E − 89∗∗∗)
True(M) (−22.31, 9.4E − 01) (−4.71, 3.8E − 127∗∗∗) (−6.73, 3.9E − 174∗∗∗)
Adj Stereo(M) (−0.44, 1.4E − 03∗∗) (−0.01, 9.2E − 01) (−0.94, 6.0E − 09∗∗∗)
Adj Stereo(F) (0.34, 7.1E − 04∗∗∗) (0.78, 1.3E − 15∗∗∗) (0.39, 1.2E − 04∗∗∗)
Adj Sentiment(neg) (−0.18, 3.9E − 02∗) (0.09, 3.0E − 01) (0.15, 9.4E − 02)
Adj Type(appearance) (−0.09, 3.7E − 01) (0.75, 1.6E − 12∗∗∗) (0.04, 7.2E − 01)
You(M) (19.86, 9.4E − 01) (2.19, 3.5E − 21∗∗∗) (3.15, 5.2E − 38∗∗∗)
You(F) (−3.78, 3.0E − 79∗∗∗) (−3.21, 4.0E − 81∗∗∗) (−4.68, 3.0E − 90∗∗∗)
Lookahead(M) (−1.26, 1.0E − 10∗∗∗) (0.15, 4.2E − 01) (−0.38, 5.3E − 02)
Lookahead(F) (0.16, 4.1E − 01) (0.85, 1.7E − 05∗∗∗) (0.73, 1.8E − 03∗∗)
Consistency(M) (−0.79, 8.1E − 07∗∗∗) (−0.73, 1.4E − 09∗∗∗) (−0.05, 7.5E − 01)
Consistency(F) (−0.40, 3.4E − 02∗) (−0.48, 3.9E − 03∗∗) (0.57, 9.4E − 03∗∗)
Opposite(M) (−1.78, 2.0E − 75∗∗∗) (−0.96, 1.4E − 26∗∗∗) (−0.99, 2.4E − 24∗∗∗)

Table 29: Structural factors regression analysis for the systems with the greatest opposite binary gender tendency
(Icelandic).
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Abstract

This paper introduces the GenderQueer Test
Suite, an evaluation set for assessing machine
translation (MT) systems’ capabilities in han-
dling gender-diverse and queer-inclusive con-
tent, focusing on English to Icelandic trans-
lation. The suite evaluates MT systems on
various aspects of gender-inclusive translation,
including pronoun and adjective agreement,
LGBTQIA+ terminology, and the impact of
explicit gender specifications.

The 17 MT systems submitted to the WMT24
English-Icelandic track were evaluated. Key
findings reveal significant performance differ-
ences between large language model-based sys-
tems (LLMs) and lightweight models in han-
dling context for gender agreement. Chal-
lenges in translating the singular "they" were
widespread, while most systems performed rel-
atively well in translating LGBTQIA+ termi-
nology. Accuracy in adjective gender agree-
ment is quite low, with some models struggling
particularly with the feminine form.

This evaluation set contributes to the ongo-
ing discussion about inclusive language in MT
and natural language processing. By provid-
ing a tool for assessing MT systems’ handling
of gender-diverse content, it aims to enhance
the inclusivity of language technology. The
methodology and evaluation scripts are made
available for adaptation to other languages, pro-
moting further research in this area.

1 Introduction

This paper introduces the GenderQueer Test Suite,
a novel evaluation set designed to probe MT sys-
tems’ capabilities in translating gender-diverse and
queer-inclusive content. The test suite has been
made publicly available and can be adapted to other
languages. The test suite aims to address five key
areas of evaluation:

1. Pronoun translation: Assessing translation ac-
curacy when translating the third-person pro-

noun "they" from English to Icelandic with
respect to gender agreement.

2. The singular "they": Assessing whether MT
systems are able to translate the gender-
neutral, singular "they" as it is used in English,
i.e. when "they" is used to refer to a single
person who is either non-binary, female, or
male, to the more rigid grammatical gender
system of Icelandic.

3. Adjective agreement: Evaluating the transla-
tion of adjectives with respect to gender forms
in the target language. Translation accuracy
for each gender form is examined individu-
ally as well as accuracy for translations of
adjectives with positive, negative, and neutral
sentiment.

4. LGBTQIA+ terminology: Examining the
translation accuracy of LGBTQIA+-specific
terms, including an assessment of whether
translations are current and culturally appro-
priate or potentially outdated or inappropriate.

5. Influence of explicit gender information: In-
vestigating whether explicitly defining a sub-
ject as cis or trans affects the translation ac-
curacy of "they" compared to that of similar
sentences without such specifications.

The test suite primarily consists of short para-
graphs (3-4 sentences long) designed to provide
context and challenge MT systems across these
five dimensions. An additional 16 single-sentence
examples are included for comparison between
sentence-level and paragraph-level translations.
Each passage contains explicit information about
the gender of the subject or subjects mentioned.
The purpose of the test suite is to highlight the
current capabilities and limitations of MT systems
in handling gender agreement in morphologically
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rich languages such as Icelandic as well as to pro-
vide a tool for assessing MT systems’ handling of
non-binary pronouns and LGBTQIA+ terminology.

The following sections discuss the motivation
behind the GenderQueer Test Suite and present the
phenomena of interest in more detail. An analysis
of the performance of the 17 MT systems submitted
during the 9th Conference of Machine Translation
(WMT24) for the English-Icelandic language di-
rection follows. Finally, the implications of these
findings are discussed.

2 Test Suite Details

The text examples in the test suite were manually
compiled by the author, who holds a BA degree in
Icelandic. The test suite contains 331 text examples
in English, stored in a single text file which is to be
translated by the MT systems. The test suite also
contains a gold standard translation meant for com-
parison, in which each example has been translated
as expected into Icelandic. Uncertainties when
translating LGBTQAI+ terminology were handled
in collaboration with members of the queer com-
munity in Iceland.

Each example begins by explicitly mentioning
the gender of the subject or subjects in question.
This is done in four ways:

1. These (cis/trans) men/women are my neigh-
bors / This (cis/trans) man and this (cis/trans)
woman are my neighbors.

2. This non-binary/genderqueer/genderfluid per-
son is my neighbor.

3. I’m a woman/man. My friends are
women/men/a man and a woman.

4. I’m a woman/man. My friends X, Y and C are
women/men / My friend X is a woman/man
but my friends Z and Y are men/women / My
friends X and Y are women/men but my friend
Z is a man/woman.

Genders are explicitly stated in a similar format
in the single-sentence examples as well: "These
men/women who live next door to me are my neigh-
bors and they..." By explicitly stating the gender
of the subject or subjects, problems that may arise
from assumption of gender based on a person’s
name are avoided. After specifying gender, the
text examples then examine the phenomenon or
phenomena in question.

2.1 Gender: Translating "They"

Text examples 1 through 169 evaluate the trans-
lation of the third-person plural pronoun "they"
in terms of gender agreement with the subjects,
which in these examples are always plural. In the
case of Icelandic, there are three grammatical gen-
ders that must be accounted for: the feminine (Ice-
landic: þær), the masculine (Icelandic: þeir), and
the neuter (Icelandic: þau)1. There are 108 oc-
currences of the feminine "they", 102 occurrences
of the masculine "they", and 150 occurrences of
the neuter "they" (for further details, see table 1
in Appendix B). The greater amount of neuter ex-
amples owes to various combinations of gender
specifications, further discussed in Section 2.5.

Text examples 1 through 72 each include two ex-
amples of the third-person pronoun "they" which,
in English, is gender-neutral but, as previously
stated, must agree with the gender of the subjects
in Icelandic. The first example is always the same,
i.e. They live next door to me. In order to probe
for heteronormativity in the translations, each gen-
der is then tested with the sentence They have two
children. This is compared to the translation of
sentences where the subjects have various types
of pets (dogs, cats, parrots, and goldfish). The hy-
pothesis is that, in the cases where the subjects are
indicated to have children, the MT systems will opt
for the neuter gender form, indicating a preference
to parents of opposite genders rather than same-sex
parents. An example follows:

English: This trans woman and this cis
man are my neighbors. They live next
door to me. They have two children.
Icelandic: Þessi trans kona og þessi cis
maður eru nágrannar mínir. Þau búa við
hliðina á mér. Þau eiga tvö börn.

Text examples 73 through 169 include two occur-
rences of the third-person pronoun "they" as before,
but one contains an LGBTQAI+ term indicating
the sexuality of the subjects. This is further dis-
cussed in Section 2.4. The other example continues
to probe for heteronormativity by refering to the
fact that the subjects have children. For example:

English: These women are my neigh-
bors. They are lesbians. They have two
children.

1All Icelandic translations mentioned here are in the plural
form.
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Icelandic: Þessar konur eru nágrannar
mínir. Þær eru lesbíur. Þær eiga tvö
börn.

Text examples 266-319 further challenge the MT
systems’ ability to follow context. The subjects are
introduced in the following way: I’m a wo/man. My
friends are (wo)men/a woman and a man. Directly
following is a sentence containing the pronoun we,
which is not gendered in Icelandic, along with an
adjective that must agree with the gender of the
subjects (further discussed in Section 2.3). The
second sentence contains the pronoun they along
with a second adjective. This means that the MT
system must realize the gender combination of the
group as a whole but also make a distinction be-
tween the gender of the group and the portion of
the group only containing the friends (and therefore
the they-reference). For example:

English: I’m a woman. My friends are
men. We are 25 years old. They are tall.
Icelandic: Ég er kona. Vinir mínir eru
menn. Við erum 25 ára gömul. Þeir eru
hávaxnir.

2.2 Gender: The Singular "They"

Text examples 170-211 are designed to be particu-
larly difficult for an English-Icelandic MT system
to translate correctly. They all contain a single
subject, referenced by the singular "they", which is
gender-neutral in English. In Icelandic, no such sin-
gular, gender-neutral pronoun exists in reality. The
pronoun hán has existed in the language since ap-
proximately 20102 and has been widely adopted by
non-binary people in Iceland although other vari-
ations exist. It is important to note, however, that
unlike the English equivalent, which can refer to an
individual of any gender, hán is almost never used
for people that fall within binary gender norms but
rather exclusively for non-binary individuals.

In any case, text examples 170-184 follow the
same pattern as described in 2.1 except in these
examples, the single subject is defined as a non-
binary, genderqueer, or genderfluid person. In the
evaluation, a system is awarded 1 point for translat-
ing the singular "they" as hán. As the plural neuter
form is used by some non-binary individuals in
Iceland to refer to themselves (in the singular) and
to account for the much higher likelihood of the

2Alda Villiljós mentions having coined the pronoun with
their friends in this blog post from 2013.

MT systems recognizing "they" as a plural form,
a system is awarded 0.5 points for translating the
singular "they" as þau. The same is expected from
text examples 185-193 which contain adjectives,
further discussed in Section 2.3. For example:

English: This non-binary person is my
neighbor. They are short. They are an
adult.
Icelandic (preferred): Þessi kynsegin
manneskja er nágranni minn. Hán er
lágvaxið. Hán er fullorðið.
Icelandic (acceptable): Þessi kynsegin
manneskja er nágranni minn. Þau eru
lágvaxin. Þau eru fullorðin.

On the other hand, text examples 194-211 de-
fine the single subject as either a man or a woman,
which is then also indicated by the singular "they".
This requires the MT system to not only recognize
the indicated gender of the subject, but also to real-
ize that "they" should not be translated in the plural,
but rather as the singular masculine hann (English:
he) or feminine hún (English: she), respectively. If
a system successfully translates this, it is awarded
1 point per occurrence. As it is much more likely
that these examples will be translated in the plu-
ral, systems are awarded 0.5 points for translating
them as the masculine þeir or the feminine þær,
respectively. For example:

English: This woman is my neighbor.
They are short. They are an adult.
Icelandic (preferred): Þessi kona er
nágranni minn. Hún er lágvaxin. Hún er
fullorðin.
Icelandic (acceptable): Þessi kona er
nágranni minn. Þær eru lágvaxnar. Þær
eru fullorðnar.

2.3 Gender: Translating Adjectives

Text examples 185-319 each contain two adjec-
tives and examples 320-331 contain three adjec-
tives each3. While gender neutral in English, each
adjective must agree with the gender of the subjects
in Icelandic. The MT systems are thus evaluated

3In this case, LGBTQAI+ terms are not considered ad-
jectives though most of them certainly qualify as such. The
adjectives in question are all generic and describe people’s
traits, i.a. hungry, boring or funny
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based on their overall accuracy in translating these
adjectives with respect to their gender forms.4

These examples vary in difficulty. The most dif-
ficult (besides those containing the singular "they",
discussed in Section 2.2) can be found in text ex-
amples 320-331, which indicate the gender of four
different, named subjects: I’m a woman/man. My
friends X, Y and C are women/men / My friend
X is a woman/man but my friends Z and Y are
men/women / My friends X and Y are women/men
but my friend Z is a man/woman. Directly follow-
ing is a sentence containing the pronoun we along
with an adjective that must agree with the gender
of the group as a whole. The second sentence con-
tains a reference to the subjects’ names along with
two adjectives whereby each adjective must agree
with half of the group: X and I are smart but Y and
Z are dumb. An example follows:

English: I’m a woman. My friends Mary
and Sophia are women but my friend
John is a man. We are 25 years old. Mary
and I are smart but John and Sophia are
dumb.
Icelandic: Ég er kona. Vinkonur mí-
nar, Mary og Sophia eru konur en vinur
minn John er maður. Við erum 25 ára
gömul. Við Mary erum gáfaðar en John
og Sophia eru heimsk.

Additionally, accuracy for each gender is ex-
amined individually as well as the accuracy for
translations of adjectives with a positive, negative
or neutral sentiment. The hypothesis here is that
if a model only translates adjectives for a partic-
ular gender correctly if the adjectives convey a
certain sentiment, a gender bias within the model
is indicated. An example of this can be found in
Sólmundsdóttir et al. (2022) where MT systems
tended to translate adjectives with a negative con-
notation more frequently as feminine, while adjec-
tives with a positive connotation were more likely
to be translated as masculine, except when the ad-
jective described a person’s appearance, where the
opposite was the case.

2.4 Queer: Translating LGBTQAI+ Terms
Text examples 33 through 193 each contain at least
one LGBTQAI+ term. While most of these terms

4It should be noted that the database used for determining
the correct translations might not be exhaustive in terms of
possible translations for these adjectives, so some translations
might be misidentified as incorrect. There should, however,
be very few such instances.

are adjectives and could (and should, perhaps) be
evaluated based on gender agreement like the adjec-
tives discussed in Section 2.3, these terms are only
evaluated based on the quality of the translations
themselves (in other words: whether or not the
correct term is used in the translation, regardless
of gender form). This is done to place more em-
phasis on the importance of the words themselves
rather than grammatically perfect translations. Ad-
ditionally, they represent a vocabulary that is highly
connected to a person’s sense of self and should
therefore be examined individually in order to ac-
count for inclusive language in MT systems.

In total, there are 283 terms to be translated.
The systems are evaluated in two ways. Firstly,
each system receives an accuracy score based on
whether or not the translation of the term exists in
the accompanying terminology database. If it does,
the system is awarded 1 point. There are three ex-
ceptions to this. If a system translates trans woman
or trans man as a compound (for instance transkona
instead of trans kona, with trans as a prefix rather
than an adjective), it receives only 0.5 points along
with a warning indicating that the use of the com-
pound is considered inappropriate by many trans
people in Iceland. The same goes for translations
where trans and cis are translated as transkynja and
sískynja, respectively. While these terms exist in
the language, they are hardly ever used and should
be avoided according to members of the queer com-
munity. Similarly, while unlikely to come up as
translations at all, if a system translates the terms
lesbians and bisexual as lessur and bæjarar, respec-
tively, the system receives 0.5 points along with a
warning indicating that these terms are only con-
sidered appropriate if used by the people they refer
to and should be avoided as general terms.

Secondly, the MT systems receive a score based
on the proportion of terms translated in an inappro-
priate manner as determined by the terminology
database. These might include outdated transla-
tions that are no longer in use or crude terms that
are considered slurs. The purpose is to separate
the use of these terms from translations that are
plainly wrong for the context. A model that uses
the inappropriate terms should be considered more
harmful to LGBTQAI+ individuals than a model
that simply translates the terminology incorrectly.
In other words, a high inappropriate score is a clear
indicator of bias against LGBTQAI+ individuals in
the respective model.
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2.5 Queer: Specificity of Gender
The GenderQueer Test Suite allows for a compar-
ison of translations of the third person plural pro-
noun "they" based on the specificity of the gender
in question. In other words, it is possible to ex-
amine whether specifying a subject as either cis or
trans leads to a poorer outcome than if the genders
are not defined in this manner. Each gender com-
bination is examined, i.e. trans women, trans men,
cis women, cis men, a trans woman and a trans
man, a cis woman and a cis man, a trans woman
and a cis man, and a cis woman and a trans man.
The process is otherwise the same as described in
Section 2.1, including a comparison of text exam-
ples involving a reference to the subjects having
children and examples where there is no mention
of children.

3 Evaluation

Every aspect of the evaluation of the GenderQueer
Test Suite has been automated and made available
with an CC-BY license on Github5. The following
sections will discuss notable results in the evalua-
tion of the WMT24 English-Icelandic MT systems.
Figures and tables referenced can be found in Ap-
pendices A and B, respectively.

3.1 Pronoun Translations and Explicit
Gender Information

Figure 1 shows the overall translation accuracy of
"they" translations (both plural and singular) and
compares the text examples containing a single sen-
tence to the text examples containing at least three
sentences. This refers to whether or not the mod-
els respect the gender agreement with the subject
or subjects. As the number of "they"-occurrences
in the short examples (16 in total) is much lower
than that of the longer ones (444 in total), these
results should only be taken as indicative and not
conclusive. However, it is clear that many mod-
els struggle much more with translating the longer
examples, indicating that the problem of paragraph-
level translations remains to be fully solved.

Figure 2 breaks down the accuracy of these trans-
lations per gender. Each gender is again broken
down in terms of specific definitions, i.e. whether
or not the subjects are explicitly defined as cis or
trans. All models struggle with translating the sin-
gular "they", with no model achieving accuracy
above 40.5% (GPT-4). This may not be surprising,

5The GenderQueer Test Suite on Github.

as widespread use of the singular "they" in both lan-
guages is relatively new and so the training data for
these models might not include a lot of examples
of it in use. It is, however, important to take note of
social development and include gender-inclusive
language when developing such models.

The difference between the performance of
LLM-based systems and lightweight systems in
handling gender agreement at the paragraph-level
is striking. While most of the LLMs receive a near-
perfect score in this regard, the lightweight models
rarely achieve more than 60% accuracy and all
of them seem to almost entirely exclude feminine
forms from their translations. It is somewhat ex-
pected that the masculine form dominates in these
translations, as it has traditionally been used to re-
fer to a group of mixed-gendered people or to refer
to a person or persons of unknown genders6. This
certainly seems to be the case for Aya23, where the
masculine is predicted in 100% of the cases.

On the other hand, a preference for the neuter
form might indicate a heteronormative bias in the
models, particularly in text examples involving a
reference to the subjects having children. Inter-
estingly, when Figures 3 and 4 are compared, this
preference is more pronounced in text examples
where children are not mentioned. It should, how-
ever, be noted that the latter are fewer in total;
the comparison should be considered as prelimi-
nary. However, it is clear that the limited use of the
feminine form indicates some form of bias, either
linguistic, societal, or a combination of the two.

In general, there does not seem to be much dif-
ference in accuracy between explicit gender defi-
nitions and those that do not specify the gender as
either cis or trans. Rather, some of the models seem
to struggle the most with a combination of more
than one gender, i.e. the neuter form, where the
subjects are defined individually (This woman and
this man...). While this may seem to contradict the
heteronormative hypothesis, Figure 3 shows that
these models will in general translate the examples
involving children a lot more accurately than the
examples that contain no reference to children, fur-
ther indicating that the hypothesis holds true to a
significant extent.

6For further discussion on the generic masculine in Ice-
landic, see for instance Section 5 in Friðriksdóttir and Einars-
son (2024).

331

https://github.com/steinunnfridriks/TheGenderQueerTestSuite


3.2 Adjective Agreement

Figure 6 reveals that no model performs perfectly
in the case of gender agreement between subjects
and adjectives, with accuracy ranging from 88.89%
(Claude-3.5) to 0.3% (TSU-HITs). As discussed
in Section 2.3, some of the examples involving
adjective translations are quite complex and the
relatively poor performance of the models overall
might simply be due to this. On the other hand,
it is again noticeable how many models struggle
the most with translations in the feminine form. It
is interesting to note that in general, most of the
correctly translated adjectives in the feminine form
seem to have a positive sentiment and the same
holds true for the correctly translated adjectives in
the neuter form. For the masculine, however, most
of the correctly translated adjectives have either
a negative or a neutral connotation. This might
indicate a gender bias.

3.3 LGBTQAI+ Terminology

Most models do relatively well on the translation
of LGBTQAI+ terminology, as indicated by Fig-
ure 5, averaging at about 70% in overall accuracy
and never exceeding 6.01% in terms of inappro-
priate translations. Not surprisingly, the models
that have a decent overall translation score are also
more likely to have more instances of inappropriate
vocabulary. While the overall performance of the
models is relatively good in this regard, researchers
must make sure that their training data does not
include excessive (or any) harmful slurs about mi-
nority groups to prevent inappropriate terms from
becoming the default translations for this terminol-
ogy.

4 Conclusion and Future Work

The GenderQueer Test Suite provides valuable
insights into the capabilities and limitations of
MT systems in handling gender-diverse and queer-
inclusive translations from English to Icelandic.
The evaluation of the 17 MT systems submitted
to WMT24 revealed that LLM-based systems gen-
erally outperform lightweight models in terms of
gender agreement in paragraph-level translations.
All systems struggled with translating the singu-
lar "they", highlighting the importance of incor-
porating gender-inclusive language in the training
data for such models. While LGBTQIA+ terminol-
ogy was generally translated accurately, the higher
performing models still sometimes use outdated

or derogatory vocabulary which could potentially
cause direct harm to minority groups if used as the
default translations of these terms.

Future work should focus on expanding the test
suite to cover more language pairs and incorporat-
ing more diverse gender identities and expressions.
Collaboration with LGBTQIA+ communities will
ensure that the test suite keeps up with evolving
terminology and language use. Exploring the inte-
gration of the GenderQueer Test Suite into standard
MT evaluation pipelines could promote consistent
attention to gender-inclusive translation across the
field. This can drive progress towards more inclu-
sive and accurate MT systems that respect and rep-
resent the full spectrum of gender identities. The
test suite has been made openly available and other
researchers are encouraged to adapt it to their lan-
guages.

Limitations

While the GenderQueer Test Suite offers valuable
insights into machine translation of gender-diverse
content, several limitations should be acknowl-
edged:

Language Specificity: The test suite is designed
for English to Icelandic translation. The complex
gender system of Icelandic presents unique chal-
lenges that may not generalize to languages with
different grammatical structures or those lacking
grammatical gender.

Scope of Gender Diversity: Despite efforts to in-
clude a range of gender identities, the test suite may
not fully capture the entire spectrum of gender di-
versity, potentially oversimplifying some nuances.
Additionally, limited number of text examples for
certain tasks may skew the results.

Evolving Language: The rapidly changing na-
ture of gender and sexuality means some terms in
the test suite may become outdated, necessitating
regular updates.

Evaluation Method: The evaluation of the trans-
lation of the third person plural pronoun "they"
compares the number of correct translations with re-
spect to gender forms to the total number of "they"
occurrences in the English text examples. However,
some models might drop one or more occurrences
from their translations. An example of this can be
seen in the AMI model’s translation:

English: This woman and this man are
my neighbors. They are bisexual. They
have two children.
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Icelandic: Þessi kona og maðurinn eru
nágrannar mínir. Þau eru tvíkynhneigð
og eiga tvö börn.

This is a perfectly valid translation despite drop-
ping the second "they". Due to the evaluation
method, this will still hurt the measured accuracy
of the model.

Ethics Statement

Some of the inappropriate translations included
in the database used to evaluate LGBTQAI+ vo-
cabulary are disrespectful and harmful to minority
groups. These terms are included as a means to
evaluate the presence of bias in the MT systems
and their use in any context is highly discouraged.
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A Graphs

Figure 1: Translation accuracy for text examples containing a single sentence as opposed to text examples containing
at least three sentences. This refers to the translation of the third person plural pronoun "they" with respect to gender
forms, i.e. whether or not the models respect the gender agreement with the subject, explicitly presented in the first
sentence of the longer examples and in the first phrase of the shorter examples. It also includes translations of the
singular "they", which refers to a single person who is either non-binary, female, or male. It should be noted that the
number of short examples is much lower than that of the longer examples and the comparison should therefore be
taken as indicative and not conclusive. Still, we can see that the models struggle much more with following the
context of the longer examples, indicating that paragraph-based translations are still at least somewhat problematic.
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Figure 2: Translation accuracy of the third person plural pronoun "they" with respect to gender forms, i.e. how
often the models respect the gender agreement with the subject, explicitly presented in the first sentence of the
text examples. It also includes translations of the singular "they", which refers to a single person who is either
non-binary, female, or male. Note that the results presented on this heatmap only apply to the longer examples, i.e.
text examples that contain at least three sentences. The first column refers to the overall accuracy of the models. The
heatmap then shows the translation accuracy for each gender. Each gender is broken down depending on whether or
not the subject is explicitly defined as either cis or trans. We can see that every model struggles with translating the
singular "they" and the lightweight models almost entirely exclude the feminine form from their translations.
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Figure 3: Translation accuracy of the third person plural pronoun "they" with respect to gender forms, i.e. how
often the models respect the gender agreement with the subject, explicitly presented in the first sentence of the
text examples. It also includes translations of the singular "they", which refers to a single person who is either
non-binary, female, or male. Note that the results presented on this heatmap only apply to the longer examples, i.e.
text examples that contain at least three sentences. All of the examples presented here contain a reference to the
subjects having children (their last sentence being "They have two children"). We can see that all of the models
struggle with the singular "they" but otherwise, the translation accuracy seems to depend almost entirely on the
architecture of the model, with LLM-based systems outperforming the lightweight models. It is interesting to note
that the lightweight models struggle the most with the feminine form, while the performance when translating the
neuter and the masculine form is relatively even. The hypothesis was that the models would default to the neuter
form, indicating heteronormativity. On the other hand, the masculine form is the one traditionally used as the
general form, such as when the gender of the subject is unknown or the subjects are mixed-gendered. These results
could therefore indicate a twofold bias, one linguistic in nature and the other societal.
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Figure 4: Translation accuracy of the third person plural pronoun "they" with respect to gender forms, i.e. how
often the models respect the gender agreement with the subject, explicitly presented in the first sentence of the
text examples. It also includes translations of the singular "they", which refers to a single person who is either
non-binary, female, or male. Note that the results presented on this heatmap only apply to the longer examples,
i.e. text examples that contain at least three sentences. Here, the text examples do not contain a reference of the
subjects having children. We again see that all of the models struggle with translating the singular "they" and that the
accuracy of the LLM-based models is much higher than that of the lightweight models. The latter perform best on
the neuter form with the feminine form almost not appearing at all. On the other hand, half of the better-performing
models struggle with the neuter form, some of which do not predict it at all. While this is interesting and could
potentially indicate a bias, it should be noted that these examples are fewer than those containing references to the
subjects having children and so the comparison should be taken as indicative rather than conclusive.
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Figure 5: Translation accuracy for LGBTQAI+ terminology. The models are tested for appropriate and inappropriate
translations. The latter refers to terms that are either outdated, prejudiced, or otherwise not advisable but not entirely
wrong in the sense that they are accurate but harmful translations of the English terms. The higher the red bar, the
more harm the model might cause to minority groups.
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Figure 6: Translation accuracy for adjectives with respect to gender forms. The first column refers to the overall
accuracy of each model, i.e. the proportion of adjectives that were translated correctly in the sense that they respect
the gender agreement with the subject, explicitly presented in the first sentence of the text example. The heatmap
breaks down the translation accuracy for each gender and for each gender, the accuracy for each sentiment is
observed. Again, most of the systems struggle the most with the feminine form. On the other hand, most of the
correctly translated adjectives in the feminine form have a positive sentiment, while correctly translated adjectives
in the masculine form more often have either a neutral or a negative sentiment. This could potentially indicate a
gender bias.
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B Tables

Total Long (≥ 3 sentences) Short (single sentence)
Text examples 331 315 16
"They" 460 444 16
LBGTQAI+ terms 283 283 0
Adjectives 306 306 0

Table 1: The overall occurrences of each phenomena in the GenderQueer Test Suite as indicated by the gold standard
translation.

Total Positive Negative Neutral English Icelandic (singular/plural)
Feminine 71 24 25 22 young ung/ungar
Masculine 71 24 25 22 young ungur/ungir

Neuter 164 54 52 58 young ungt/ung

Table 2: The occurrences of adjectives in the GenderQueer Test Suite as indicated by the gold standard translation.
The overall occurrences of each gender form are presented along with a breakdown of the sentiments attached to the
adjectives. The translation examples show the declensions with respect to the number and gender of the subject(s).

Total Unsp. (C) Unsp. (NC) Trans (C) Trans (NC) Cis (C) Cis (NC) Cis and trans (C) Cis and trans (NC) English Icelandic
Feminine 108 22 8 22 8 22 8 0 0 she/they hún/þær
Masculine 102 20 8 20 8 20 8 0 0 he/they hann/þeir

Neuter 150 18 10 18 8 18 8 36 16 it*/they það*/þau
Singular they 84 6 78 0 0 0 0 0 0 they/they hán/þau

Table 3: The occurrences of the third person plural pronoun "they" in the GenderQueer Test Suite as indicated
by the gold standard translation. Also included are the occurrences of the singular "they", referring to a single
person which can be non-binary, female, or male. The overall occurrences of each gender are presented along with a
breakdown referring to whether or not the gender definitions are explicit, i.e. if "cis" or "trans" is specified. "C"
refers to examples that include a reference to the subjects having children, i.e. where the last sentence of the text
example is "they have two children". "NC" refers to examples where there is no reference to the subjects having
children. Examples where one person is defined to be cis and the other as trans were limited to that of the neuter
gender form, where one person is a woman and the other a man. The translation examples show the declensions
with respect to the number and gender of the subject(s). It should be noted that, while the traditional translation
of the third person singular in the neuter form, það is never used to refer to a person. Rather, hán is used in this
case. Both the traditional neuter (referring to a mixed-gendered group of people) and the plural form of the singular
"they" is þau.
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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in machine
translation, leveraging extensive pre-training
on vast amounts of data. However, this gener-
alist training often overlooks domain-specific
nuances, leading to potential difficulties when
translating specialized texts. In this study,
we present a multi-domain test suite, collated
from previously published datasets, designed
to challenge and evaluate the translation abil-
ities of LLMs. The test suite encompasses di-
verse domains such as judicial, education, lit-
erature (specifically religious texts), and noisy
user-generated content from online product re-
views and forums like Reddit. Each domain
consists of approximately 250-300 sentences,
carefully curated and randomized in the final
compilation. This English-to-Hindi dataset
aims to evaluate and expose the limitations
of LLM-based translation systems, offering
valuable insights into areas requiring further
research and development. We have submit-
ted the dataset to WMT24 Break the LLM
subtask. In this paper, we present our find-
ings. We have made the code and the dataset
publicly available at https://github.com/
sohamb37/wmt24-test-suite.

1 Introduction

Machine translation (MT) (Bahdanau et al., 2016)
has witnessed significant advancements with the
advent of Large Language Models (LLMs) (et al.,
2024a,b), which leverage extensive pretraining
on massive datasets to achieve high performance
across various language pairs (Alves et al., 2024;
Zhu et al., 2024; Zhang et al., 2023). Despite their
remarkable generalization capabilities, LLMs of-
ten struggle with domain-specific texts due to a
lack of targeted training on such specialized con-
tent (Robinson et al., 2023; Jiao et al., 2023; Hendy
et al., 2023). Some LLMs (Workshop et al., 2023)
generate good translation involving low-resource

language when the target language is English but
not the other way around (Bawden and Yvon,
2023). These challenges are amplified when the do-
mains involved are different from those of training
data. This limitation poses a challenge for deploy-
ing MT systems in real-world applications where
domain-specific accuracy is crucial.

To address this gap, we participated in the "Help
us break LLMs" subtask at the Workshop on Ma-
chine Translation (WMT) 2024 (Kocmi et al.,
2024). The primary objective of this subtask is to
create a dataset that exposes the difficulties faced
by LLM-based MT systems when dealing with
domain-specific content. Our approach involves
collating a multi-domain dataset that includes sen-
tences from judicial, educational, religious litera-
ture, and noisy user-generated content from online
product reviews and forums like Reddit.

Each domain-specific subset comprises approxi-
mately 250-300 sentences, which are then random-
ized to form the final dataset. This dataset, focus-
ing on the English-to-Hindi translation direction,
aims to rigorously test the robustness and adapt-
ability of LLM-based MT systems. By identifying
the translation challenges specific to each domain,
our study provides valuable insights for improving
domain adaptation techniques in machine transla-
tion, ultimately contributing to more reliable and
accurate MT solutions for specialized applications.
Our contributions to the paper are as follows:

• We participate in the Break the LLM chal-
lenge in WMT24 for English-Hindi language
direction, where we submit diverse data con-
sisting of six domains.

• We calculate the standard BLEU score as well
as the state-of-the-art metric xCOMET-XXL
to evaluate the translation quality.

• We perform a tiny scale manual evaluation of
the translation outputs.
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2 Related Works

Neural Machine Translation has achieved signifi-
cant advancements (Vaswani et al., 2017). How-
ever, translation of text involving low-resource lan-
guages remains a challenge. In low-resource lan-
guages, the translations of Indic languages like
Hindi is difficult due to the paucity of the high-
quality parallel corpus. Existing multilingual mod-
els like IndicTrans (Ramesh et al., 2022) and Indic-
Trans2 (Gala et al., 2023) achieved significant per-
formance gains compared to other models. How-
ever, English-Hindi machine translations still have
room for improvement.

Moslem et al. (2022) has previously used pre-
trained Language Models(LM) for domain specific
data augmentation for Machine Translation. They
simulated the characteristics of a small bilingual
dataset or monolingual source text and combined
it with back translation to create huge amounts of
synthetic in-domain data. Other works involving
low-resource languages include translation of chat-
based conversation by (Gain et al., 2022) where En-
glish Hindi translation was implemented on Chat
and question answers in chatbots. In the domain
of education, (Behnke et al., 2018) used crowd-
sourcing English texts to obtain translation into
11 languages for generating NMT data. Similarly,
Ramakrishna et al. (2023) introduced the EduMT
dataset for improving the English-Hindi translation
for educational content.

In a recent study, (Briva-Iglesias et al., 2024)
showed that LLMs outperform Google translate
when it comes to the Legal domain. (Martínez-
Domínguez et al., 2020) implemented machine
translation in the legal domain for Italian to Swiss
language. For low-resource language, (Poudel
et al., 2024) introduced a custom-built dataset for
the legal domain for English Nepali language ma-
chine translation.

In the Literary domain, (Drobot, 2023) has stud-
ied the prospects of neural machine translation.
Earlier (Matusov, 2019) has used NMT for trans-
lating German literary works to English, and (Kuz-
man et al., 2019) implemented NMT for the literary
domain from English to Slovene. (Yirmibeşoğlu
et al., 2023) has implemented NMT in the literary
domain for the low-resource language of English-
Turkish. (Thai et al., 2022) has also explored
document-level literary machine translation for
non-English languages. They have also shown
that there is a disparity between the automatic eval-

uation of these machine translations and human
evaluation, prompting further improvement of ma-
chine translation in this domain.

Noisy or non-standard input text can cause dis-
astrous mistranslations in most modern Machine
Translation (MT) systems.Khayrallah and Koehn
(2018) has shown in a study the impact of noise
on NMT systems. Michel and Neubig (2018) pro-
posed a benchmark dataset for machine translation
of noisy texts(MTNT). Herold et al. (2022) has
worked on filtering noise from machine transla-
tion data for improving the performance of NMT
systems.Bolding et al. (2023) has used LLMs
to remove noise from the MTNT dataset target
sentences and proposed C-MTNT dataset. Ma-
chine Translation of noisy text is mainly explored
through multimodal translation in English-Hindi
(Gain et al., 2021b; Laskar et al., 2021; Gain et al.,
2021a; Gupta et al., 2021c; Gain et al., 2023) where
images features were used to aid in machine trans-
lation from English to Hindi.

Product review is a translation task that is re-
lated to the field of e-commerce. (Gupta et al.,
2022) explores NMT with sentiment preservation
in this domain for the low-resource language of
the English-Hindi pair. (Gupta et al., 2021b) and
(Gupta et al., 2021a) are some of the other works
on online product review translation.

Some other notable works on low-resource lan-
guages include (Goyle et al., 2023), (Chowdhury
et al., 2022) and (Ranathunga et al., 2023) that have
implemented unique NMT techniques to comple-
ment the scarcity of data in these languages.

3 Dataset

Our proposed dataset includes English-Hindi bi-
text pairs from six critical domains, chosen for
their significance to both the machine translation
community and their difficulty of translation. We
provide a sample from each domain in Appendix D
and some statistics about the datasets in Table 4.
It can be noted that the size of each domain is
different. We had collected 500 sentences from
each domain in the beginning but after filtering out
sentences less than 5 words, we arrived at the final
size of the dataset.

3.1 Education domain

The education domain plays a crucial role in knowl-
edge dissemination. Enhancing machine transla-
tion in education promotes equal access to qual-
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Model Education General Judicial

BLEU COMET HUMAN BLEU COMET HUMAN BLEU COMET HUMAN

Aya23 36.40 0.71 2.00 14.13 0.70 3.33 17.07 0.70 4.00
Claude3.5 46.04 0.80 3.33 19.02 0.85 3.67 25.62 0.85 3.67
CommandR-plus 35.33 0.75 3.67 14.39 0.77 3.67 17.64 0.77 3.00
CycleL 0.38 0.72 1.33 1.21 0.15 0.79 1.33 0.14 1.00
GPT-4 40.90 0.68 2.67 14.68 0.75 2.67 18.45 0.75 2.67
IKUN-C 28.99 0.75 2.67 11.60 0.67 3.00 8.21 0.50 2.33
IKUN 28.62 0.76 1.33 11.99 0.66 2.33 6.95 0.47 1.00
IOL-Research 40.47 0.67 2.00 15.41 0.77 4.0 19.12 0.78 3.33
Llama3-70B 45.73 0.75 3.00 15.58 0.77 3.0 21.27 0.77 3.00
NVIDIA-NeMo 45.12 0.82 3.00 18.12 0.66 3.67 21.21 0.69 1.33
Online-A 50.27 0.73 3.00 19.84 0.75 4.0 25.02 0.73 3.33
Online-B 46.19 0.82 4.00 21.36 0.85 4.0 25.20 0.86 3.67
Online-G 46.19 0.73 2.67 16.49 0.67 3.67 27.33 0.73 2.67
TransmissionMT 46.70 0.82 3.67 21.39 0.85 4.67 25.25 0.86 4.00
Unbabel-Tower-70B 44.22 0.80 4.33 20.50 0.83 4.67 22.04 0.83 3.67
ZMT 50.27 0.72 3.67 19.83 0.75 4.0 25.01 0.73 3.33

Table 1: Performance of different models across education, general and judicial domains

ity learning, supports multilingual environments,
and empowers non-native speakers to engage with
content. This helps reduce educational dispari-
ties and fosters cultural exchange. For this study,
330 English-Hindi language pairs were collected
from the EduMT dataset, which focuses on edu-
cational content in Indian languages (Appicharla
et al., 2021).

3.2 General domain
The general domain in our dataset is sourced from
the IIT Bombay English-Hindi Parallel Corpus
(Kunchukuttan et al., 2018), which includes a di-
verse range of parallel and monolingual Hindi texts
compiled by the Center for Indian Language Tech-
nology. It features content from various sources
such as news articles, TED Talks, government web-
sites, and Wikipedia. For our study, we randomly
selected 500 English-Hindi language pairs from
this domain. Improving machine translation in the
general domain enhances the accuracy of transla-
tions across diverse content, making information
more accessible for Hindi-speaking audiences.

3.3 Judicial domain
The judicial domain in our dataset is sourced from
the IIT Patna Hindi-English Machine Aided Trans-
lation (HEMAT) training corpora, which is specifi-
cally designed for legal and judicial content. For
this domain, we have included 325 sentences in our
proposed dataset. Enhancing machine translation
performance in the judicial domain is crucial, as
it ensures that legal documents, court rulings, and

other judicial materials are accurately translated.
This can have a significant impact by improving ac-
cess to legal information, supporting multilingual
legal proceedings, and ensuring that individuals
who speak Hindi can fully understand and engage
with the judicial system.

3.4 Religious Literature domain

The religious literature domain in our dataset con-
sists of 300 pairs: 150 Quran verses from the Tanzil
Project 1 and 150 Bible verses from the Bible Eu-
din Project, both sourced from the OPUS collec-
tion (Tiedemann, 2012). These texts pose unique
challenges due to their religious significance and
archaic language.

3.5 Noisy domain

The noisy user-generated data domain in our
dataset is sourced from the benchmark dataset
for Machine Translation of Noisy Text (MTNT)
(Michel and Neubig, 2018). This domain includes
350 English sentences from MTNT, consisting of
informal and often error-prone comments made by
users on Reddit. Our annotators translated these
sentences into Hindi retaining the tone and nature
of the input sentences. However, they got rid of
some noise based on their own discretion. This
domain captures the informality of online commu-
nication. Improving machine translation in this
domain will help models better handle slangs, ty-
pos, and non-standard language use, in turn making

1https://tanzil.net/docs/tanzil_project
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Model Literature Noisy Review

BLEU COMET HUMAN BLEU COMET HUMAN BLEU COMET HUMAN

Aya23 8.34 0.75 2.67 31.76 0.51 3.00 30.82 0.78 3.00
Claude3.5 15.11 0.90 3.33 42.49 0.71 4.33 36.45 0.89 3.33
CommandR-plus 10.32 0.83 3.33 31.35 0.62 3.67 26.49 0.85 3.33
CycleL 0.21 0.14 1.00 0.82 0.14 1.00 0.33 0.14 1.00
GPT-4 7.95 0.80 2.67 35.43 0.60 3.67 33.66 0.84 2.33
IKUN-C 4.85 0.68 2.0 19.99 0.54 2.33 19.09 0.69 1.33
IKUN 4.80 0.70 1.33 18.89 0.54 2.00 16.48 0.60 1.33
IOL-Research 6.82 0.82 3.00 39.79 0.62 3.33 33.23 0.84 2.67
Llama3-70B 9.51 0.83 2.67 34.73 0.61 3.67 33.16 0.82 2.67
NVIDIA-NeMo 16.65 0.72 1.0 37.32 0.38 2.33 41.07 0.61 2.00
Online-A 20.34 0.81 2.0 52.55 0.49 3.00 46.78 0.74 3.00
Online-B 26.21 0.91 3.33 51.51 0.72 2.67 41.55 0.88 3.00
Online-G 8.56 0.69 1.67 44.13 0.44 3.33 55.29 0.72 4.00
TransmissionMT 26.27 0.91 3.33 51.71 0.72 3.67 41.58 0.88 3.33
Unbabel-Tower-70B 20.03 0.90 2.67 40.86 0.68 3.00 35.42 0.90 4.00
ZMT 20.34 0.81 1.67 52.55 0.49 2.67 46.78 0.74 3.00

Table 2: Performance of different models across literature, noisy, and review domains

them more robust.

3.6 Online User Review domain

The final domain in our dataset consists of user
product reviews from the e-commerce site Flipkart
(Gupta et al., 2021b). We included 300 English-
Hindi text pairs from this corpus. This domain
presents challenges like grammatical errors and
code-mixing, where users blend English and Hindi
within a sentence. Similar to MTNT, overcoming
the challenges in this domain will make the MT
systems more robust.

4 Evaluation

In this section, we outline the various evaluation
techniques employed to assess the performance of
the models based on their outputs. The evalua-
tion metrics considered in this study are the BLEU
(Papineni et al., 2002; Post, 2018) score, COMET
(Rei et al., 2020; Guerreiro et al., 2023) score, and
human evaluation score. We have shared the candi-
date translations from 3 models, Online-B, Nvidia-
Nemo, and INKUN-C in Appendix D. Online B
is one of the consistently best performing models
across all the domains and metrics among all the
submissions. Whereas, Nvidia-Nemo and IKUN-C
translations are of lower quality. This table gives
us a comparison of the quality of translations by
these models.

Model BLEU COMET HUMAN

Aya23 23.53 0.69 3.00
Claude3.5 31.63 0.83 3.61
CommandR-plus 23.28 0.76 3.44
CycleL 0.78 0.14 1.11
GPT-4 25.98 0.74 2.78
IKUN-C 16.70 0.63 2.28
IKUN 16.44 0.61 1.56
IOL-Research 26.79 0.76 3.06
Llama3-70B 26.18 0.76 3.00
NVIDIA-NeMo 29.81 0.62 2.22
Online-A 36.21 0.84 3.06
Online-B 35.92 0.71 3.44
Online-G 32.79 0.66 3.00
TransmissionMT 35.94 0.84 3.78
Unbabel-Tower-70B 31.30 0.82 3.72
ZMT 36.20 0.71 3.06

Table 3: Performance of models on the full dataset

4.1 BLEU Scores

The BLEU score measures the quality of machine
translations by comparing the output to reference
translations based on n-gram similarity. A higher n-
gram match leads to a higher score, with a brevity
penalty to discourage overly short translations. The
score ranges from 0 to 100, with higher values
indicating better alignment with the references. We
calculate the BLEU score with sacrebleu (Post,
2018) and report corpus_score for the dataset.

344



Figure 1: COMET scores in the Education Domain

Figure 2: COMET scores in the General Domain

4.1.1 Domain wise Overview
The average BLEU scores in the general, judicial,
and literature domains are significantly lower, with
scores of 15.97, 19.14, and 12.89, respectively. In
the literature domain, the frequent use of ornamen-
tal language often leads to subjective translations
Table 5, causing notable differences between the
machine translations and the reference texts. The
general domain, encompassing diverse subdomains
and characterized by longer sentence lengths and
larger data size Figure 17, also contributes to lower
BLEU scores, as models struggle with both factors.
Similarly, the judicial domain presents challenges
due to its specialized terminology and formal tone,
which are difficult for models to translate accu-
rately. Additionally, in all three domains, translit-
eration instead of translation in many cases further
impacts the models’ performance.

For the education domain, the sentences are rela-
tively straightforward and easier to translate. Inter-
estingly, the models also achieved relatively high
BLEU scores for the user-generated data domains,
including noisy texts and product review texts.

4.1.2 Model wise Overview
Here we can see the average performance of the
models based on all the domains. Models Online-

Figure 3: COMET scores in the Judicial Domain

Figure 4: COMET scores in the Literature Domain

A and ZMT have the best performance, closely
followed by Online-B and TransmissionMT, while
CycleL has the worst BLEU scores across all the
different domains. Note that BLEU is calculated
based on N-gram overlaps. Therefore, transliter-
ations of some tokens, even if they are relevant,
are not considered. This results in lower BLEU
scores in certain models, even if translation quality
is acceptable.

4.2 COMET Scores

The COMET score evaluates machine translations
using pre-trained language models, focusing on
both adequacy (preserving meaning) and fluency
(naturalness). It compares machine translations to
references and human translations through a regres-
sion model trained on human judgments, capturing
language nuances that other metrics may miss. The
score reflects how closely the machine translation
aligns with human preferences. We use xCOMET-
XXL to calculate the scores.

4.2.1 Domain wise Overview
The COMET scores of judicial, general, and ed-
ucation domains are the highest. It is easier to
retain the adequacy and fluency for these domains
compared to the other domains. They have a for-
mal tone to them, and the COMET score does not
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Figure 5: COMET scores in the Noisy Domain

Figure 6: COMET scores in the Product Review Do-
main

penalize the MT models much for paraphrasing
sentences since it is a more robust metric.

Likewise, the worst COMET scores are obtained
for the domains of user-generated data for noisy
and product review texts. These texts are more
informal in nature and ridden with both spelling
and grammatical errors. There could be multiple
possible reasons: a) LLMs struggle to translate the
noisy texts, resulting in poor quality hypotheses
and lower COMET score. b) COMET metric is cal-
culated through embeddings. Here, the source side
is noisy, which can lead to unreliable embeddings
and, therefore, an unreliable COMET score.

4.2.2 Model wise Overview
The best-performing models in terms of COMET
scores are Online-B and TransmissionMT, closely
followed by Claude-3.5 and Unbabel-Tower-70B.
However, the worst-performing model is still Cy-
cleL.

4.3 Human Evaluation

The next evaluation method employed is human
evaluation. We enlisted the expertise of a linguist
in our lab, who randomly selected 3 sentences from
each of the 6 domains. For each sentence, the cor-
responding machine translations from the 16 sub-

mitted model outputs were collected, resulting in
288 sentences. These sentences were then rated on
a scale from 1 to 5, where 1 indicates the poorest
translation, and 5 represents the best possible trans-
lation compared to the reference texts. Note that
due to such a low number of samples, the results
in manual evaluation are very unreliable. However,
due to resource constraints, we could not perform
a large-scale manual evaluation. Nonetheless, we
hope this rating will provide some ideas about the
competence of the models when observed along
with scores from automated metrics.

4.3.1 Domain wise Overview
According to the human evaluation, the general
domain showed the highest faithfulness to the ref-
erence translations. This outcome is expected, as
general domain texts are typically easier to trans-
late due to their formal and unambiguous nature,
with fewer grammatical, lexical, and spelling er-
rors. Conversely, the noisy domain demonstrated
the lowest faithfulness to the reference translations.
This is largely attributed to the informal nature of
these texts, which often include profanities and in-
ternet acronyms like "lol" and "idk" as well as a
higher prevalence of errors.

4.3.2 Model wise Overview
Almost consistent with the COMET metrics,
we can see that the TransmissionMT, Unbabel-
Tower-70B, and Claude-3.5 have the best human-
evaluated scores, whereas CycleL again scored the
least favorably.

5 Conclusion

This paper presents a comparison of various model
submissions for the WMT Shared Task 2024. We
proposed a dataset with domain-wise segregation
and conducted a domain-specific analysis of the
submitted models. Our comprehensive evalua-
tion using BLEU, COMET, and human assess-
ments of the machine-translated hypotheses identi-
fied Claude 3.5, TransmissionMT, Unbabel Tower
70B, Online-A, and Online-B as some of the top-
performing models for machine translation using
LLMs. The analysis revealed that the formal do-
mains of general and education are the easiest for
models to handle, whereas the noisy and review
domains proved to be the most challenging. This
study highlights that while LLMs show proficiency
in machine translation, there is still significant
room for improvement.
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A Overall Scores

We report the overall BLEU and COMET scores
in Figure 13 and Figure 14. Further, we provide
the domain-wise and model-wise average rating by
human annotators in Figure 15 and Figure 16.

B Participants

The WMT24 General Translation Task showcased
diverse approaches to machine translation. Sev-
eral teams explored the potential of Large Lan-
guage Models (LLMs) for translation tasks. IKUN
demonstrated the effectiveness of LLMs in multi-
lingual translation, achieving top rankings in mul-
tiple language directions (Liao et al., 2024). The
IOL Research team leveraged LLMs for continued
pretraining and synthetic data generation (Zhang,
2024).

Some teams focused on improving existing neu-
ral machine translation (NMT) architectures. HW-
TSC combined NMT and LLM-based models us-
ing Minimum Bayesian Risk (MBR) decoding (Wu
et al., 2024). UvA-MT compared fine-tuned LLMs
with traditional encoder-decoder NMT systems
(Tan et al., 2024). The DLUT and GTCOM team
emphasized back-translation and multilingual mod-
els (Zong et al., 2024).

Novel approaches were also presented. Cy-
cleGN introduced a cycle-consistent approach
for non-parallel datasets (DREANO et al., 2024).
Hyper-SNMT proposed embedding sentences in
hyperbolic space to better capture language hierar-
chies (Zhou et al., 2024).

Several teams explored domain-specific adapta-
tions. Team-J incorporated document-level LLM
reranking for improved context-aware translations
(Kudo et al., 2024). NTTSU focused on speech
domain translation for Japanese to Chinese (Kondo
et al., 2024).

The Yandex team demonstrated significant im-
provements using human evaluation data for LLM
fine-tuning (Elshin et al., 2024). CUNI explored
various techniques including QLoRA, CPO, and
model merging (Hrabal et al., 2024).

Multimodal approaches were also explored,
with researchers integrating visual information to
enhance translation for low-resource languages
(Hatami et al., 2024).

These diverse approaches highlight the ongo-
ing innovation in machine translation, with a no-
table trend towards leveraging LLMs and exploring

novel architectures to improve translation quality
across various language pairs and domains.

C Dataset Statistics

Here, we have shared the summary statistics of
the lengths of different sentences in each domain.
Further we have also shared the harmonic mean of
ratio of source to reference text sentence in each
domain. From this graph it is evident that general
domain has the most disparity in terms of source
and reference sentence length. Also, it has the
longest sentences compared to the other domains.

D Dataset Example

In Table Table 5, we present examples from the
religious domain. This table showcases various
outputs relevant to religious texts, highlighting key
themes and interpretations.

Table ?? provides examples from the judicial
domain. The Online-B model has the best qual-
ity of translation. The output from the model
Nvidia_Nemo and IKUN_C is inadequate. The
original text conveys a universal message about
divine provision and the consequences of human
actions, while the translation introduces specificity,
making it feel more direct and personal.
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Figure 7: BLEU scores in the Education Domain Figure 8: BLEU scores in the General Domain

Figure 9: BLEU scores in the Judicial Domain Figure 10: BLEU scores in the Literature Domain

Figure 11: BLEU scores in the Noisy Domain Figure 12: BLEU scores in the Product Review Domain
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file min_nword max_nword average_nword

education_source.txt 5 79 25
education_reference.txt 5 80 29
general_source.txt 16 222 29
general_reference.txt 5 195 30
judicial_source.txt 11 39 21
judicial_reference.txt 9 56 24
literature_source.txt 11 38 21
literature_reference.txt 9 63 24
noisy_source.txt 21 49 31
noisy_reference.txt 20 74 38
review_source.txt 11 48 21
review_reference.txt 9 59 25

Table 4: Statistics of the domain-wise files

Figure 13: BLEU Score on the Full Dataset

Figure 14: COMET Score on the Full Dataset

Figure 15: Domain-wise Average Human Score

Figure 16: Model-wise Average Human Score
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Figure 17: Maximum Minimum and Average Words in File

Model/Text Model Output
Source And made the cloud spread shade over you, and sent for you manna and quails

that you may eat of the good things We have made for you. No harm was done
to Us, they only harmed themselves.

Online-B aOr t� MhAr� Upr bAdl CAyA kr EdyA aOr t� MhAr� Ele mnnA aOr bV�r
B�j� , tAEk jo aQCF -aQCF cF)�\ hmn� t� MhAr� Ele bnAI h{\ , unm�\ s�
t� m KAao। hm�\ koI n� *sAn nhF\ ph� cAyA gyA , bESk u�ho\n� to bs
apn� aAp ko n� *sAn ph� cAyA।

Nvidia_Nemo aOr hmn� t� MhAr� Upr bAdl kF CAyA P{lA dF aOr t� MhAr� Ele mnnA
aOr bV�r�\ B�jF tAEk t� m un BlAIyo\ m�\ s� KAao jo hmn� t� MhAr� Ele
bnAI h{\ aOr hm pr koI hAEn nhF\ h� I , v� apn� aAp ko hF hAEn
ph� cAt� T�।

IKUN_C aOr bAdl ko t� m pr CAyA XAln� k� Ele B�jA , aOr mAnA aOr bAj
ko B�jA Ek t� m hmArF aor s� t� MhAr� Ele B�jF h� I aQCF cF)o\ s� KA
lo।

Reference aOr hmn� t� mpr bAdlo\ kF CAyA kF aOr t� mpr ’mnn ’ aOr ’slbA ’
utArA - K̈Aao , jo aQCF pAk cFj�\ hmn� t� Mh�\ prdAn kF h{।ü�ho\n� hmArA
to k� C BF nhF\ EbgAwA , bESk v� apn� hF Upr a(yAcAr krt� rh�

Table 5: Example of Religious domain output
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Abstract

This paper summarizes the results of our test
suite evaluation on 39 machine translation sys-
tems submitted at the Shared Task of the Ninth
Conference of Machine Translation (WMT24).
It offers a fine-grained linguistic evaluation
of machine translation outputs for English–
German and English–Russian, resulting from
a significant manual linguistic effort. Based
on our results, LLMs are inferior to NMT in
English–German, both in overall scores and
when translating specific linguistic phenom-
ena, such as punctuation, complex future verb
tenses, and stripping. LLMs show quite a com-
petitive performance in English-Russian, al-
though top-performing systems might struggle
with some cases of named entities and termi-
nology, function words, mediopassive voice,
and semantic roles. Additionally, some LLMs
generate very verbose or empty outputs, posing
challenges to the evaluation process.

1 Introduction

The evolution of large language models (LLMs)
has revived interest in machine translation (MT)
evaluation, raising the discussion about whether
general-purpose LLMs can outperform specialized
MT systems. LLMs have demonstrated remarkable
performance across various tasks, prompting an
urgent need to assess their linguistic capabilities
and potential risks (Wang et al., 2024; Guerreiro
et al., 2023). Last year’s Eighth Conference on Ma-
chine Translation findings (WMT23; Kocmi et al.,
2023) showed that one LLM performed well across
most language pairs. Although GPT-4 excelled
in some areas (e.g., translation of user-generated
content), it struggled with other aspects, such as
speaker gender translation and specific domains
(e.g., legal); it ranked lower than encoder-decoder
systems when translating from English into less-
represented languages, e.g., Czech and Russian..
However, last year’s General MT Task included
only two LLM-based system submissions (Kocmi

et al., 2023). This year marks a noteworthy increase
in LLMs participating in the task. As a result, this
paper covers a linguistically motivated evaluation
of a broad range of LLMs, including Claude-3.5-
Sonnet, GPT-4, Llama3-70B, Mistral-Large, and
the recently released Unbabel-Tower70B, as well
as CUNI-DS, IKUN and IKUN-C, IOL-Research,
CommandR-plus, Yandex, and Occiglot.

In this context, we are presenting the results
of our participation in the test suite sub-task of
the Ninth Conference on Machine Translation
(WMT24). Our test suite1 consists of carefully
crafted sentences that assess the ability of MT sys-
tems to handle specific linguistic phenomena. It
was applied to the MT systems submitted for evalu-
ation in two language directions: English–German
and English–Russian.

2 Related Work

Several researchers have adopted test suites or chal-
lenge sets to better identify flaws in MT outputs,
further contributing to the advancement in MT eval-
uation. The WMT test suite sub-task has played a
significant role by providing a platform for these
evaluations.

Chen et al. (2023), for example, developed a
systematic method of selecting difficult sentences
from the Wiki Corpus, taking into account factors
like word difficulty, sentence length, grammatical
complexity, and model learnability. Their findings
showed significant differences from the official
ranking, suggesting that systems performing well
on average test sets might not do as well on more
challenging ones. Notably, GPT-4 ranked among
the top two for Chinese–English translations and
between fourth and ninth in the other direction.
Other research has focused on difficulties posed
by special domains and writing styles. Mukherjee
and Shrivastava (2023) designed a test suite for

1https://github.com/DFKI-NLP/mt-testsuite
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English–German translation across five domains
and writing styles. They found that while GPT-
4 performed competitively overall, it struggled in
the legal domain and with the judgment writing
style. The work of Savoldi et al. (2023) looked
into gender translation of the English–German and
German–English language directions. They found
that while systems generally handled gender form
translation well, producing gender-inclusive trans-
lations still remains a significant challenge. Specif-
ically, GPT-4 exhibited relatively lower accuracy
in accurately translating feminine gender in first-
person singular references reflecting the speaker’s
linguistic expression of gender.

Bawden and Sagot (2023) tested the ability of
MT systems, including GPT-4, to handle user-
generated text from in-domain sources character-
ized by informal language and various grammatical
deviations. Their findings show that although data
at such a large scale can provide extensive training
data, GPT-4 still does not perform well on consis-
tency and faithfulness to source sentences, imply-
ing a hurdle for generalization to out-of-domain
text.

The fact that these works indicated weaknesses
not apparent on the General MT Shared Task il-
lustrates the critical importance of developing fo-
cused test suites beyond general evaluation metrics
to measure the capabilities and limitations of MT
systems.

3 Method

3.1 Test suite description

We have developed a fine-grained test suite to
evaluate the performance of MT systems for
the language pairs English–German and English–
Russian2. While we are only touching on the de-
scription of our test suite in the paper, the interested
reader can find a detailed description in Macketanz
et al. (2022a). Previous submissions of the test
suite in WMT can be found in (Macketanz et al.,
2018, 2021, 2022b; Avramidis et al., 2019, 2020;
Manakhimova et al., 2023).

Our test suite focuses on various linguistic phe-
nomena that are of interest to the respective lan-
guage pairs. The phenomena are based on exten-
sive research in linguistics, contrastive grammars,
and translation studies, covering a wide range of po-

2Our test suite additionally covers the language pairs
German–English and Portuguese–English, but these pairs
were not part of the WMT General MT Shared Task.

Language Pair Test Items Categories Phenomena

en–de 4,846 13 110
en–ru 1,234 12 51

Table 1: Metadata of the language pairs in the test suite.

tential translation challenges. The phenomena and
their categorization are specific to a language pair
and a language direction; however, there is a big
overlap of the phenomena between the language
pairs for the languages covered so far.

The phenomena in the test suite are classified
into several categories, grouped by the underly-
ing syntactical/morphological/lexical mechanisms.
Each phenomenon is represented by at least 20 (in
many cases more) test items. Every test item con-
sists of one or more sentence(s) in the source lan-
guage and a set of rules to evaluate them. The test
items are either handwritten by linguistic experts
or taken from existing corpora. The number of test
items, phenomena, and categories per language pair
can be seen in Table 1. While the English–German
test suite has been around and growing since 2017,
the English–Russian test suite is newer (from 2022)
and, therefore, has fewer test items.

With the change of MT system types over the
years (from phrase-based and statistical MT to neu-
ral MT, and finally to LLMs), typical MT chal-
lenges and errors have also changed. Thus, we have
also adapted our test suite over the past few years to
accommodate those changes. These adaptations in-
cluded adding new phenomena, longer/more com-
plex test sentences, and more test items per phe-
nomenon.

MT outputs evaluated by the test suite have been
used to produce challenge sets for WMT metrics
(Avramidis and Macketanz, 2022; Avramidis et al.,
2023).

3.2 Application of the test suite

The test suite can be characterized as semi-
automatic, as the evaluation process is based on
automatic rules and additional manual evaluation.
While this kind of evaluation can be more time-
consuming than a fully automatic evaluation pro-
cess, we assume it to be more accurate as the regu-
lar expressions are handwritten by human experts.

For each test item in the test suite, one or more
linguist(s) have written regular expressions to cover
as many as possible expected correct and incorrect
translations. The linguists rely on their years of
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experience in evaluating MT systems when writing
regular expressions. However, of course, not all
MT outputs can be covered by the regular expres-
sions as languages, and the MT systems are very
diverse. In these cases, the human comes into play
again. All outputs that cannot be automatically
evaluated by the regular expressions are inspected
and hand-evaluated by a linguist.The more unex-
pected (meaning, in most cases, incorrect) outputs
a system creates, the more manual work is involved
in the evaluation process. After the evaluation pro-
cess, the translation accuracy of an MT system
specific per phenomenon or category is calculated
by dividing the number of correctly translated test
items by the total number of test items.

To ensure a fair comparison, only evaluated test
items are considered for accuracy calculations. If
a test item is not evaluated for one system, it is
excluded for all systems, reducing the number of
the effective test items.

For the system comparison (per language direc-
tion), we first identify the highest-scoring system
and then compare it to the other systems. The
significance of the comparison is confirmed by a
one-tailed Z-test with α = 0.95. Systems that
do not perform significantly inferior to the best-
performing system are grouped into the first per-
formance cluster. The best-performing systems are
indicated in boldface in the respective rows of the
tables.

To account for variations in the number of test
items within each category or phenomenon, aver-
age scores are computed in three different meth-
ods: The micro-average method combines the con-
tributions of all test items to calculate the aver-
age percentages. In the category macro-average,
the percentages are first computed independently
per category and subsequently averaged, treating
all categories equally. Analogously, for the phe-
nomenon macro-average the percentages are com-
puted independently per phenomenon and averaged
afterwards, treating all phenomena equally.

4 Experiment Setup

This year, we evaluated a total of 39 systems with
our test suite. The systems had been submitted
to the General MT Shared Tasl of the Ninth Con-
ference on Machine Translation. 21 systems were
evaluated for English–German and 18 systems for

English–Russian3.
It is the fourth time we evaluated the English-

German systems and the third time for the English-
Russian systems. As described above, the evalua-
tion of the system outputs is only semi-automatic,
and therefore, manual work is needed to comple-
ment the automatic evaluation by resolving cases
in which none of the rules in our rule database can
be applied, the so-called warnings. Upon receiving
the system outputs, there were on average around
25 % of warnings for English–German, varying
across systems from 4.7 % to 77.5 %. For English–
Russian, there were on average 46.9 %, ranging
from 24.5 % to 82.7 %. As we had added several
new phenomena and test items to existing phenom-
ena before this year’s WMT, we expected more
warnings this year. Additionally, several systems
this year, particularly LLMs, were more verbose or
“creative” with their translations than we are used
to from previous years. For example, Mistral some-
times offered several translation options, including
explanations. This creativity, however, led to more
manual work as the existing evaluation rules could
not cover these unexpected outputs.

This year, the manual evaluation was conducted
by three linguists who were experts in one or both
language pairs. Combined, the linguists spent
around 160 person-hours on the manual evalua-
tion within about three weeks. After the manual
input, an average of 0.9 % of warnings remained for
English–German and 5.7 % for English–Russian.

As mentioned above, test items with one unre-
solved warning for at least one system were ex-
cluded from the comparison. This reduced the
number of effective test items to 4219 (∼87 %) test
items for English–German, and 994 (∼80 %) for
English–Russian.

5 Results

All result tables can be found in the Appendix.

5.1 System comparison

For English–German, Online-B, TranssionMT,
and Claude-3.5 had the highest micro-average with
a score of around 97 %. Furthermore, Online-B and
TranssionMT also had the highest macro-average,
with a scrore of around 95 %. Whereas little is

3There had originally been 25 systems submitted for En-
De, and 22 for En-Ru. However, the systems Dubformer and
CycleL/CycleL2 had to be excluded from our evaluation for
both language pairs due to invalid output
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known about Online-B, TranssionMT’s good per-
formance may be explained by its optimization for
complex grammatical structures and rich morphol-
ogy through the use of a hyperbolic embedding.
The lowest micro-average was reached by TSU-
HITs (Mynka and Mikhaylovskiy, 2024) with a
score of 38.6 %, and the lowest macro-average
was reached by MSLC (Larkin et al., 2024) with
a score of 45.8 %. On average, systems reached a
micro-average of 81.4 % and a macro-average of
79.7 %.

At this point, it is important to note that two
systems, Mistral (Jiang et al., 2023) and Occiglot
(Avramidis et al., 2024), produced a (high) num-
ber of empty outputs for German–English. While
Occiglot only generated 335 empty sentences, Mis-
tral generated as many as 3,624. For the system
comparison, we had to mark these sentences as
incorrect. Therefore, Mistral appears to have the
worst accuracy on micro- and macro-average. How-
ever, we conducted an extra analysis for these two
systems, only considering the correct and incorrect
outputs and ignoring the empty outputs. This re-
sulted in an accuracy of 73.0 % for Occiglot and
85.9 % for Mistral macro-averaged over the non-
empty outputs (see Tables in Section A). Since the
accuracies are calculated over different test items,
they are not comparable with each other and with
other systems.

Interestingly, and contrary to previous years,
our ranking of the systems according to their
linguistically-related performance differs from the
preliminary results of the automatic ranking of the
General MT Shared Task (Kocmi et al., 2024):
While the top 3 systems in the General task
were Unbabel-Tower70B (Rei et al., 2024), Dub-
former, and TranssionMT, according to our analy-
sis, Online-B and TranssionMT made it to the first
significance cluster, with GPT-4 falling in the sec-
ond position and Unbabel-Tower70B scoring even
lower. Furthermore, we had to exclude Dubformer
from our analysis due to invalid output. Nonethe-
less, both analyses have MSLC and TSU-HITs at
the bottom of the ranking.

When comparing the human rankings of the Gen-
eral MT Task with our rankings, one can note that
in the former, many systems share the cluster of
the first position. The fact that our test suite can
produce a smaller significance cluster for the first
position can be considered a success.

While Unbabel-Tower70B showed exceptional

performance across all language directions in the
automatic preliminary rankings, our evaluation re-
vealed some potential blind spots. Compared to
the top-performing systems, it struggles with less
commonly used future tenses (ditransitive—future
II progressive, ditransitive—future II simple, re-
flexive—future II progressive), with the elliptic
process of stripping, and with semantic roles. Fu-
ture II progressive tense can pose difficulties, likely
due to its infrequent occurrence in training data
and nuanced nature. An example sentence would
be “I will have been baking Tim a cake.” Strip-
ping will be explained in further detail below, cf.
Sec 5.3 As for semantic roles, English is relatively
flexible in assigning semantic roles to subjects. In
contrast, German tends to have stricter rules for sub-
ject roles regarding agentivity. This difference can
cause translation issues when models directly map
English constructions onto German without consid-
ering these syntactic and semantic differences.

For English–Russian, Yandex (Elshin et al.,
2024) and Claude-3.5-Sonnet achieved the high-
est micro-average scores with 91.8 % and 90.4 %,
respectively as well as macro-averages with 92.4 %
and 90.5 %. This year’s poorest-performing sys-
tem was TSU-HITs, with both micro- and macro-
averages of 50 and 49 %. On average, the systems
reached a micro-average of 80.1 % and a macro-
average of 78.7 %. According to the automatic pre-
liminary results, the top four best-performing sys-
tems for English–Russian are Unbabel-Tower70B,
Dubformer, Yandex, and Claude-3.5-Sonnet, in
that order. As mentioned earlier, Dubformer was
excluded from our analysis. Unbabel-Tower70B
scores slightly lower than Yandex and Claude-3.5-
Sonnet, achieving 89.4 % micro-average and a
90 % macro-average. On the phenomenon level,
our evaluation shows that Yandex and Claude-3.5-
Sonnet outperform Unbabel-Tower70B, when it
comes to collocations, onomatopeia, verb valency,
and passive voice. If we exclude Cycle and CycleL
(Dreano et al., 2024), the worst four performing
systems, according to the automatic preliminary
ranking, are the same four systems in our rank-
ing, listed here from best to worst: IKUN-C (Liao
et al., 2024), CUNI-DS (Semin and Bojar, 2024),
NVIDIA-NeMo, and TSU-HITs. GPT-4, one of
the best-performing systems last year, falls into the
second cluster this year.
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Stripping
John can play the guitar, and Mary too.
John kann Gitarre spielen und Mary auch. pass
John kann Gitarre spielen, und Mary auch. fail
John kann das instrument spielen,
und Lucia noch nicht. fail
Verb Semantics
"I’ve missed you so much!" he bawled.
"Ich habe dich so sehr vermisst!" schluchzte er. pass
"Ich habe dich so vermisst!" schrie er. pass
»Ich habe dich so sehr verpasst!«, bawte er. fail

Table 2: Examples of English–German linguistic phe-
nomena with passing and failing MT outputs.

5.2 Category-level analysis
For English–German, two systems are in the clus-
ter of best-performing systems per category in all
categories: Online-B and TranssionMT. Further-
more, two systems have the highest accuracies on
all but two/three categories, namely GPT-4 and
Claude-3.5-Sonnet. The categories with the highest
accuracies are negation, with 14 systems reaching
100 % accuracy, and subordination.

Some of the easiest categories for English–
Russian include subordination (89.7 %), function
words (89.1 %), where both LLM-based and other
MT system score over 95 %. In contrast, ambiguity
stood out as the most challenging, with an accu-
racy average of 69.2 % along such categories as
false friends and multi-word expressions, with aver-
age accuracies of 70.7 % and 69.5 %, respectively.
These indicate more challenges on the lexical rather
than the syntactical level.

5.3 Phenomenon-level analysis
For English–German, the phenomenon-level
macro average is 80 %, which is similar to the
category-level macro average and the general
micro-average. The phenomena with the highest
accuracies (> 90 %) are negative inversion, prepo-
sitional MWE, date, substitution, adverbial clause,
infinitive clause, and intransitive future I progres-
sive/simple; for a detailed overview cf. Table 10.

On the other hand, the phenomena with the low-
est accuracies (< 65 %) that a lot of LLM-based
model struggled with are stripping, idiom, ono-
matopoeia, ditransitive future II progressive/simple,
reflexive future II progressive/simple, transitive fu-
ture II progressive, and semantic roles. It seems
that the future II progressive/simple tense is partic-
ularly difficult for systems to translate, no matter
the verb type. As mentioned above, this is likely
due to this verb tense’s uncommonness.

Compound
The police officer was pregnant.
Сотрудница полиции была беременна. pass
Полицейский был беременна. fail
У полицейской была беременность. fail
Verb Semantics
She described the book as a page-turner.
Она описала книгу как
-захватывающую историю. pass
она описала книгу
как страницу-поворотчик. fail
Она описала книгу
как перелистывание страниц. fail

Table 3: Examples of English–Russian linguistic phe-
nomena with passing and failing MT outputs.

Table 2 contains translation examples from
English–German. The first example is a test item
for the phenomenon stripping. Stripping is a type
of ellipsis. While stripping exists in both German
and English, one aspect that can lead to transla-
tion errors is punctuation. In English, there is a
comma between the two constituents (“John can
play the guitar” and “and Mary too”). In Ger-
man, however, placing a comma in between the
constituents is incorrect; see the first and second
translation examples. The third translation con-
tains more errors than the additional comma, as
it completely changes the meaning of the second
constituent. This translation was produced by the
Cycle system and also showcases how these kinds
of “creative” translations lead to more manual eval-
uation work: It is easy to write a regular expression
for the incorrect output with the comma before the
second constituent, and this regular expression will
cover most of the outputs of the incorrect system as
this is a very common error. However, it is impos-
sible to predict such an incorrect output as it was
produced by Cycle, and therefore, it is impossible
to write a regular expression to cover cases like
this.

The second example is from the phenomenon
of verb semantics. This phenomenon refers to se-
mantic components in the verb’s semantic structure
that do not have formal markers. Some examples
of these kinds of verbs are to stride, to rumble, to
stagger, or to bawl, like in the example at hand.
There are usually several correct translations for
these verbs, as seen in the Table. However, they
might lead to translation errors, with systems some-
times not translating them (because they are not
so common) or translating them with an incorrect
semantic meaning.
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When evaluating the performance across phe-
nomena for English–Russian, it was found that the
following phenomena posed minimal challenges,
with many systems achieving near-perfect accu-
racy: catenative verb, case government, condi-
tional, contact clause, object clauses, personal
pronoun coreference, prepositional mwe, and date.
Notably, personal pronoun coreference, a new phe-
nomenon added last year that focuses on the consis-
tency in translating the formal and informal "you"
across sentences, as well as ensuring that a past
tense "I" retains the correct gender ending. This
category attained a remarkable accuracy of 96.8 %,
marking a 13 % improvement compared to last
year. The phenomena with the lowest accuracies
(< 60 %) are verbal MWE, resultative, gapping,
compounds, idioms and semantic roles.

Table 3 contains translation examples from
English–Russian. The original sentences and their
translations have been shortened for the paper. The
first example involves the common English com-
pound "police officer". Despite the simplicity of
this sentence, a closer examination reveals various
issues in the translations. In English, the nominal
phrase in question is gender-neutral, with no gen-
der marking on nouns, adjectives, or verbs. How-
ever, in contrast to English, Russian has gender
marking not only on pronouns but also on other
parts of speech, including nouns, adjectives, verbs,
determiners, and numbers. The first translation
correctly uses the collocation сотрудница поли-
ции (literally, "female police employee") and ap-
propriately pairs it with была беременна ("was
pregnant"), both in the feminine form. This nomi-
nal phrase construction is necessary to convey the
gender within the translation. In the second trans-
lation, the word полицейский, typically referring
to a male police officer is then followed by the
verb был (the masculine form of was), and later by
the adjective pregnant in the feminine form. This
translation error was produced by an LLM and
highlights a gap in the model’s understanding of
gender agreement rules in Russian and a lack of
real-world knowledge. The third translation ren-
ders the phrase as "the female police officer had
pregnancy," which is not a linguistically acceptable
Russian collocation. It also uses the adjective по-
лицейская as a job title, which is not a standard
noun for "police officer" in Russian.

The next example comes from the phenomenon
of Noun formation with the suffix -er. This pro-

cess is a part of derivational morphology, where
new words are formed by adding affixes to exist-
ing words or changing their grammatical category
or meaning. This is a highly fruitful suffix in En-
glish. In the first example translation, we see it ren-
dered as захватывающую историю or "captivat-
ing story." This transformation effectively captures
the essence of "page-turner." The second transla-
tion has страницу-поворотчик – a literal trans-
lation. Перелистывание страниц in the third
translation describes the physical action of turning
pages. The first translation is accurate as it captures
the idiomatic meaning of "page-turner"; the other
two translations fail due to overly literal interpreta-
tions, a common issue in encoder-decoder models
and LLMs.

5.4 Comparison with previous years

We have analyzed some of the best-performing
systems’ development over the years for systems
submitted to the WMT repeatedly in the past years.
For English–German, we took a closer look at
GPT-4, Online-B, Online-W, and Online-A, see Ta-
ble 8. GPT-4 has seen barely any changes in the
accuracy from 2023 to 2024 (although it needs to
be noted that the prompting method has changed
from 5-shot to 3-shot). Online-B, however, shows
an improvement of 2.5 percentage points on the
macro-average from 2021 to 2024, while the micro-
average stayed almost the same throughout this pe-
riod. Online-W, similarly to GPT-4, shows almost
no changes from 2021 to 2024. And finally, Online-
A has slight improvements of 1 and 3 percentage
points from 2021 to 2024 on the micro-average and
macro-average level, respectively.

While in the past years, Online-B and Online-
W were usually in the cluster of best-performing
systems together, this year, Online-B has sur-
passed Online-W as only the former is in the best-
performing cluster as of this year, while the latter
is not. Furthermore, in 2023, GPT-4, Online-W,
and Online-B were together in the cluster of best
performing systems, while this year, GPT-4 is also
not in that cluster anymore.

As for the scored of the micro-average, the
phenomenon macro-average, and the category
macro-average, while the first two have almost not
changed from 2023 to 2024, the category macro-
average has improved about 2.5 percentage points
from last year to this year. This suggests that the
systems for English—German have undergone a
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slight improvement compared to last year.
Table 9 compares the performance of Yandex,

GPT-4, and Online-G for English–Russian from
2022 to 2024. This year’s Yandex submission
is a trained YandexGPT, an LLM-based model.
Their approach includes extensive pre-training,
fine-tuning, p-tuning, and structure-preserving tech-
niques, which help ensure contextually accurate
translations (Elshin et al., 2024). Over the last
two years, Yandex’s submission has likely under-
gone a significant update, as reflected in the 2.59 %
accuracy increase. Overall, Yandex shows consis-
tent performance with some improvement. GPT-4,
another LLM, demonstrates a generally strong per-
formance compared to last year, with a significant
drop in the punctuation category (from 100 % to
60 %). Despite this, GPT-4 has either improved
or maintained stable performance across most lin-
guistic categories. Online-G, as we suspect based
on encoder-decoder methods, exhibits stable per-
formance without any substantial improvements in
any areas.

5.5 LLMs vs. encoder-decoder NMT

NMT systems based on an encoder-decoder (or
commercial systems that we assume they use this
technology) still exhibit better linguistic perfor-
mance than LLMs in English–German, whereas in
English–Russian the first position is shared indeed
by two LLMs. In English-German, LLMs seem
to perform worse than the two best-performing
NMT systems, regarding punctuation, future verb
tenses and stripping. For English-Russian, Yan-
dex is weaker in named entities and terminology,
while Claude struggles with function words, and
Unbabel with verb valency that includes error-
prone phenomena for all LLMs, such as semantic
roles, verb semantics, resultative, and mediopas-
sive voice. GPT-4 scores even lower than several
commercial NMT-based systems. This suggests
that while LLMs are indeed taking over the MT in
fine-grained analysis, some still struggle to match
the capabilities of specialized NMT systems, which
are tailored specifically to the target language and
potentially trained on more language-specific data.

6 Conclusions and Outlook

In this paper, we apply a linguistically motivated
test suite for the first time to evaluate the translation
performance of several LLMs as well as several
systems with different architectures. Based on the

macro-averaged accuracies, the best systems for
English-German are Online-B and TranssionMT,
with Claude-3.5-Sonnet also sharing the first po-
sition based on micro-averaging. For English–
Russian, the best-performing systems are Yandex
and Claude-3.5-Sonnet. While LLMs generally
perform strongly in MT, systems based on encoder-
decoder methods, such as TranssionMT and most
probably Online-B may still have an edge in certain
areas. What the human evaluations of the main MT
task reveal about the systems is still to be deter-
mined, pending the official announcement of the
rankings. The results underscore the potential of
LLMs in MT but also highlight areas for improve-
ment.

Limitations

The current test suite was initially designed to eval-
uate earlier MT systems, featuring a wide range
of linguistic phenomena without challenging the
models. However, it is becoming increasingly clear
that we need to adapt and potentially eliminate
the phenomena that have proven too easy for the
systems in recent years. The significance of the
averaging is unclear, and adding weights depend-
ing on the importance of various phenomena is
something to consider. While we have introduced
context in some cases and complexity with multi-
sentence test items in others, this has not been done
for all phenomena and sentences so far. One chal-
lenge is that we often encounter correct rendering
of the phenomena, but then encounter grave errors
in the sentence structure. Internally, it has been
concluded that these sentences should be marked
as incorrect, as the errors are often too significant
for the whole output to be considered correct. Ad-
ditionally, this year, some models generated re-
sponses that resembled those of a classical chatbot,
including additional explanations or commentary
that mixed correct and incorrect translations, mak-
ing it challenging to evaluate. Going forward, we
plan to further refine the test suite to better capture
the nuances of modern translation systems.
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A Separate systems

category items acc.

Ambiguity 5 100.0
Coordination & ellipsis 35 82.9
False friends 12 100.0
Function word 15 100.0
LDD & interrogatives 54 98.1
Lexical Morphology 17 100.0
MWE 31 90.3
Named entity & terminology 39 94.9
Negation 4 75.0
Non-verbal agreement 31 93.5
Punctuation 8 75.0
Subordination 51 94.1
Verb semantics 4 0.0
Verb tense/aspect/mood 875 96.9
Verb valency 31 87.1

micro-average 1212 95.5
macro-average 1212 85.9

Table 4: Accuracies for the translations of the
Mistral-Large system (en-de) considering only the
non-empty outputs

category items acc.

Ambiguity 22 86.4
Coordination & ellipsis 124 60.5
False friends 40 92.5
Function word 40 75.0
LDD & interrogatives 207 76.3
Lexical Morphology 39 61.5
MWE 123 76.4
Named entity & terminology 112 77.7
Negation 18 66.7
Non-verbal agreement 109 87.2
Punctuation 37 51.4
Subordination 191 85.3
Verb semantics 23 60.9
Verb tense/aspect/mood 3249 71.9
Verb valency 114 65.8

micro-average 4448 72.8
macro-average 4448 73.0

Table 5: Accuracies for the translations of the Oc-
ciglot system (en-de) considering only the non-
empty outputs

364



B
A

na
ly

si
sb

as
ed

on
ca

te
go

ri
es

ca
te

g
co

un
t

O
nl

-B
Tr

an
s

G
PT

4
C

la
ud

U
nb

ab
C

om
m

a
O

nl
-W

L
la

m
a

A
ya

23
IO

L
R

e
O

nl
-A

O
nl

-G
IK

U
N

C
U

N
IN

IK
U

N
C

N
V

ID
I

O
cc

ig
A

IS
TA

T
SU

H
I

M
SL

C
M

is
tr

av
g

A
m

bi
gu

ity
24

10
0.

0
10

0.
0

95
.8

10
0.

0
95

.8
10

0.
0

95
.8

91
.7

91
.7

87
.5

91
.7

87
.5

79
.2

87
.5

83
.3

70
.8

79
.2

50
.0

37
.5

41
.7

20
.8

80
.4

C
oo

rd
in

at
io

n
&

el
lip

si
s

83
94

.0
94

.0
90

.4
71

.1
73

.5
74

.7
74

.7
80

.7
79

.5
65

.1
73

.5
84

.3
62

.7
78

.3
69

.9
66

.3
57

.8
61

.4
42

.2
26

.5
27

.7
69

.0
Fa

ls
e

fr
ie

nd
s

40
95

.0
95

.0
97

.5
95

.0
92

.5
95

.0
90

.0
95

.0
95

.0
95

.0
87

.5
82

.5
97

.5
95

.0
90

.0
77

.5
92

.5
70

.0
55

.0
45

.0
30

.0
84

.2
Fu

nc
tio

n
w

or
d

42
97

.6
97

.6
97

.6
97

.6
97

.6
95

.2
10

0.
0

95
.2

92
.9

92
.9

97
.6

97
.6

88
.1

88
.1

92
.9

92
.9

66
.7

88
.1

61
.9

47
.6

33
.3

86
.6

L
D

D
&

in
te

rr
og

at
iv

es
16

0
97

.5
97

.5
96

.3
97

.5
96

.9
93

.8
95

.6
92

.5
91

.9
90

.0
95

.6
93

.1
80

.6
85

.6
80

.6
85

.6
71

.9
75

.0
57

.5
48

.8
25

.0
83

.3
L

ex
ic

al
M

or
ph

ol
og

y
27

92
.6

92
.6

10
0.

0
96

.3
92

.6
85

.2
85

.2
88

.9
77

.8
88

.9
81

.5
81

.5
74

.1
66

.7
66

.7
63

.0
63

.0
37

.0
33

.3
18

.5
48

.1
73

.0
M

W
E

10
9

97
.2

96
.3

91
.7

97
.2

89
.0

93
.6

93
.6

83
.5

90
.8

90
.8

86
.2

86
.2

83
.5

78
.0

74
.3

66
.1

73
.4

62
.4

40
.4

33
.0

22
.0

77
.6

N
am

ed
en

tit
y

&
te

rm
in

ol
og

y
92

92
.4

92
.4

95
.7

94
.6

89
.1

96
.7

89
.1

93
.5

89
.1

90
.2

90
.2

85
.9

81
.5

76
.1

81
.5

80
.4

77
.2

77
.2

65
.2

59
.8

33
.7

82
.5

N
eg

at
io

n
19

10
0.

0
10

0.
0

10
0.

0
10

0.
0

94
.7

89
.5

94
.7

10
0.

0
84

.2
10

0.
0

10
0.

0
10

0.
0

94
.7

89
.5

10
0.

0
10

0.
0

63
.2

89
.5

89
.5

89
.5

15
.8

90
.2

N
on

-v
er

ba
la

gr
ee

m
en

t
97

97
.9

97
.9

99
.0

99
.0

99
.0

93
.8

92
.8

93
.8

92
.8

93
.8

91
.8

91
.8

90
.7

92
.8

85
.6

79
.4

84
.5

78
.4

78
.4

53
.6

23
.7

86
.2

Pu
nc

tu
at

io
n

34
10

0.
0

10
0.

0
88

.2
85

.3
94

.1
91

.2
97

.1
88

.2
10

0.
0

94
.1

94
.1

88
.2

88
.2

73
.5

88
.2

88
.2

50
.0

82
.4

61
.8

67
.6

14
.7

82
.6

Su
bo

rd
in

at
io

n
14

8
98

.0
98

.0
98

.0
99

.3
96

.6
94

.6
96

.6
95

.9
93

.2
97

.3
97

.3
96

.6
89

.2
95

.9
85

.8
91

.9
81

.1
87

.8
67

.6
66

.9
23

.0
88

.1
V

er
b

se
m

an
tic

s
18

83
.3

83
.3

72
.2

72
.2

88
.9

77
.8

66
.7

77
.8

83
.3

72
.2

50
.0

61
.1

72
.2

66
.7

55
.6

44
.4

55
.6

22
.2

16
.7

11
.1

0.
0

58
.7

V
er

b
te

ns
e/

as
pe

ct
/m

oo
d

32
25

98
.2

98
.2

97
.6

98
.4

91
.4

96
.6

96
.6

93
.6

96
.2

94
.9

97
.1

98
.7

77
.0

80
.7

77
.4

82
.3

67
.1

72
.5

33
.5

42
.2

23
.8

81
.6

V
er

b
va

le
nc

y
10

1
91

.1
91

.1
86

.1
88

.1
88

.1
84

.2
86

.1
78

.2
86

.1
84

.2
83

.2
76

.2
71

.3
72

.3
75

.2
64

.4
63

.4
54

.5
34

.7
34

.7
16

.8
71

.9

m
ic

ro
-a

ve
ra

ge
42

19
97

.7
97

.7
96

.8
97

.3
91

.5
95

.3
95

.3
92

.6
94

.7
93

.5
95

.3
96

.3
78

.1
81

.4
78

.1
81

.3
68

.4
72

.1
38

.6
43

.4
24

.0
81

.4
m

ac
ro

-a
ve

ra
ge

42
19

95
.7

95
.6

93
.7

92
.8

92
.0

90
.8

90
.3

89
.9

89
.6

89
.1

87
.8

87
.4

82
.0

81
.8

80
.5

76
.9

69
.8

67
.2

51
.7

45
.8

23
.9

79
.7

Ta
bl

e
6:

A
cc

ur
ac

ie
s

(%
)o

fs
uc

ce
ss

fu
lt

ra
ns

la
tio

ns
on

th
e

ca
te

go
ry

le
ve

lf
or

E
ng

lis
h–

G
er

m
an

.T
he

bo
ld

fa
ce

in
di

ca
te

s
th

e
si

gn
ifi

ca
nt

ly
be

st
-p

er
fo

rm
in

g
sy

st
em

s
pe

rr
ow

.

ca
te

g
co

un
t

Y
an

de
C

la
ud

U
nb

ab
C

om
m

a
O

nl
-G

O
nl

-W
G

PT
4

IO
L

R
e

Tr
an

s
O

nl
-B

O
nl

-A
A

ya
23

IK
U

N
L

la
m

a
IK

U
N

C
C

U
N

ID
N

V
ID

I
T

SU
H

I
av

g

A
m

bi
gu

ity
20

90
.0

95
.0

90
.0

90
.0

70
.0

70
.0

90
.0

90
.0

50
.0

50
.0

55
.0

85
.0

70
.0

75
.0

60
.0

65
.0

35
.0

15
.0

69
.2

C
oo

rd
in

at
io

n
&

el
lip

si
s

86
87

.2
80

.2
84

.9
82

.6
84

.9
83

.7
76

.7
75

.6
72

.1
72

.1
72

.1
77

.9
74

.4
69

.8
65

.1
72

.1
54

.7
47

.7
74

.1
Fa

ls
e

fr
ie

nd
s

15
86

.7
86

.7
86

.7
86

.7
86

.7
73

.3
66

.7
60

.0
66

.7
66

.7
80

.0
66

.7
66

.7
66

.7
60

.0
46

.7
66

.7
53

.3
70

.7
Fu

nc
tio

n
w

or
d

34
97

.1
88

.2
94

.1
10

0.
0

94
.1

10
0.

0
97

.1
91

.2
94

.1
94

.1
88

.2
94

.1
85

.3
85

.3
82

.4
73

.5
73

.5
70

.6
89

.1
L

D
D

&
in

te
rr

og
at

iv
es

81
97

.5
93

.8
97

.5
91

.4
96

.3
95

.1
91

.4
90

.1
91

.4
91

.4
85

.2
86

.4
82

.7
80

.2
76

.5
82

.7
70

.4
59

.3
86

.6
L

ex
ic

al
M

or
ph

ol
og

y
41

97
.6

92
.7

90
.2

92
.7

82
.9

73
.2

80
.5

73
.2

75
.6

75
.6

70
.7

68
.3

75
.6

75
.6

63
.4

53
.7

34
.1

26
.8

72
.4

M
W

E
96

87
.5

84
.4

78
.1

83
.3

80
.2

71
.9

77
.1

76
.0

72
.9

71
.9

70
.8

67
.7

69
.8

66
.7

66
.7

52
.1

40
.6

33
.3

69
.5

N
am

ed
en

tit
y

&
te

rm
in

ol
og

y
80

83
.8

95
.0

87
.5

81
.3

80
.0

80
.0

81
.3

73
.8

80
.0

80
.0

77
.5

71
.3

62
.5

77
.5

60
.0

57
.5

56
.3

41
.3

73
.7

N
on

-v
er

ba
la

gr
ee

m
en

t
98

94
.9

95
.9

91
.8

93
.9

90
.8

89
.8

90
.8

92
.9

80
.6

80
.6

80
.6

92
.9

83
.7

86
.7

85
.7

81
.6

73
.5

65
.3

86
.2

Pu
nc

tu
at

io
n

13
92

.3
92

.3
92

.3
10

0.
0

92
.3

76
.9

61
.5

76
.9

84
.6

84
.6

92
.3

84
.6

84
.6

61
.5

84
.6

10
0.

0
92

.3
76

.9
85

.0
Su

bo
rd

in
at

io
n

11
5

98
.3

94
.8

98
.3

88
.7

95
.7

96
.5

94
.8

93
.0

94
.8

94
.8

93
.0

86
.1

86
.1

88
.7

83
.5

80
.0

80
.9

67
.0

89
.7

V
er

b
se

m
an

tic
s

20
10

0.
0

90
.0

95
.0

70
.0

95
.0

85
.0

65
.0

80
.0

85
.0

85
.0

85
.0

65
.0

80
.0

75
.0

70
.0

55
.0

30
.0

35
.0

74
.7

V
er

b
te

ns
e/

as
pe

ct
/m

oo
d

16
9

87
.0

90
.5

90
.5

87
.0

89
.3

88
.8

89
.9

85
.2

85
.2

85
.2

86
.4

85
.2

81
.1

84
.6

84
.6

78
.1

69
.2

45
.0

82
.9

V
er

b
va

le
nc

y
12

6
93

.7
88

.1
83

.3
81

.0
84

.9
86

.5
81

.7
81

.0
83

.3
83

.3
77

.8
75

.4
78

.6
76

.2
73

.8
68

.3
58

.7
50

.0
78

.1

m
ic

ro
-a

ve
ra

ge
99

4
91

.8
90

.4
89

.4
86

.8
87

.8
86

.1
85

.2
83

.3
82

.3
82

.2
80

.7
80

.4
78

.1
79

.0
75

.1
71

.0
62

.2
50

.0
80

.1
m

ac
ro

-a
ve

ra
ge

99
4

92
.4

90
.5

90
.0

87
.7

87
.4

83
.6

81
.7

81
.3

79
.7

79
.7

79
.6

79
.0

77
.2

76
.4

72
.6

69
.0

59
.7

49
.0

78
.7

Ta
bl

e
7:

A
cc

ur
ac

ie
s

(%
)o

fs
uc

ce
ss

fu
lt

ra
ns

la
tio

ns
on

th
e

ca
te

go
ry

-l
ev

el
fo

rE
ng

lis
h–

R
us

si
an

.T
he

bo
ld

fa
ce

in
di

ca
te

s
th

e
si

gn
ifi

ca
nt

ly
be

st
-p

er
fo

rm
in

g
sy

st
em

s
pe

rr
ow

.

365



C
Ye

ar
ly

co
m

pa
ri

so
n

C
at

eg
or

y
ite

m
s

G
PT

4
on

lin
eB

O
nl

in
eW

on
lin

eA

20
23

20
24

20
21

20
22

20
23

20
24

20
21

20
22

20
23

20
24

20
21

20
22

20
23

20
24

A
m

bi
gu

ity
24

95
.8

95
.8

91
.7

91
.7

91
.7

10
0

95
.8

95
.8

95
.8

95
.8

91
.7

87
.5

87
.5

91
.7

C
oo

rd
in

at
io

n
&

el
lip

si
s

88
88

.6
87

.5
80

.7
87

.5
8.

8
89

.8
70

.5
70

.5
73

.9
73

.9
71

.6
80

.7
79

.5
72

.7
Fa

ls
e

fr
ie

nd
s

38
97

.4
97

.4
84

.2
89

.5
89

.5
94

.7
89

.5
92

.1
89

.5
89

.5
86

.8
86

.8
86

.8
89

.5
Fu

nc
tio

n
w

or
d

41
10

0
97

.6
10

0
97

.6
97

.6
95

.1
10

0
10

0
97

.6
97

.6
97

.6
97

.6
97

.6
97

.6
M

W
E

10
4

97
.1

95
.2

94
.2

95
.2

95
.2

98
.1

96
.2

97
.1

97
.1

97
.1

86
.5

90
.4

92
.3

94
.2

N
am

ed
en

tit
y

&
te

rm
in

.
85

95
.3

97
.6

92
.9

97
.6

94
.1

98
.8

95
.3

92
.9

94
.1

94
.1

94
.1

94
.1

92
.9

94
.1

N
eg

at
io

n
18

10
0

94
.4

94
.4

10
0

94
.4

10
0

10
0

10
0

94
.4

94
.4

94
.4

10
0

10
0

10
0

N
on

-v
er

ba
la

gr
ee

m
en

t
67

10
0

10
0

95
.5

95
.5

95
.5

10
0

95
.5

97
95

.5
95

.5
95

.5
95

.5
95

.5
97

Pu
nc

tu
at

io
n

36
86

.1
83

.3
83

.3
83

.3
83

.3
10

0
97

.2
94

.4
97

.2
97

.2
97

.2
97

.2
88

.9
91

.7
Su

bo
rd

in
at

io
n

16
3

98
.8

97
.5

97
.5

98
.8

98
.2

95
.7

96
.9

96
.3

96
.9

96
.9

98
.8

98
.2

98
.8

98
.8

V
er

b
te

ns
e

&
as

pe
ct

/m
oo

d
30

76
97

.9
97

.9
99

98
.7

97
.9

98
.1

96
.5

96
.3

96
.6

96
.6

96
.1

98
.5

98
.3

97
.2

V
er

b
va

le
nc

y
89

87
.6

92
.1

86
.5

87
.6

91
95

.5
86

.5
86

.5
88

.8
88

.8
84

.3
87

.6
91

92
.1

m
ic

ro
-a

vg
38

29
97

.3
97

.3
97

.5
97

.7
97

.1
97

.8
95

.6
95

.4
95

.8
95

.8
95

97
.2

97
.2

96
.3

m
ac

ro
-a

vg
38

29
95

.4
94

.7
91

.7
93

.6
93

.2
97

.2
93

.3
93

.3
93

.1
93

.1
91

.2
92

.8
92

.4
93

.1

Ta
bl

e
8:

Y
ea

rl
y

co
m

pa
ri

so
n

of
th

e
sy

st
em

s
of

W
M

T
24

fo
rE

ng
lis

h-
G

er
m

an
,b

as
ed

on
th

e
ca

te
go

ry
-l

ev
el

an
al

ys
is

ca
te

go
ry

ite
m

s
Ya

nd
ex

G
PT

4
O

nl
in

eG

ye
ar

20
22

20
24

20
23

20
24

20
22

20
23

20
24

A
m

bi
gu

ity
7

85
.7

85
.7

10
0

10
0

85
.7

85
.7

85
.7

C
oo

rd
in

at
io

n
&

el
lip

si
s

30
80

70
80

76
.7

80
80

80
Fa

ls
e

fr
ie

nd
s

5
80

10
0

10
0

10
0

80
80

80
Fu

nc
tio

n
w

or
d

10
90

90
80

90
90

90
90

M
W

E
32

71
.9

96
.9

75
84

.4
71

.9
71

.9
78

.1
N

am
ed

en
tit

y
&

te
rm

in
ol

og
y

21
90

.5
90

.5
76

.2
76

.2
90

.5
95

.2
85

.7
N

on
-v

er
ba

la
gr

ee
m

en
t

11
81

.8
90

.9
63

.6
72

.7
81

.8
81

.8
90

.9
Pu

nc
tu

at
io

n
5

10
0

80
10

0
60

10
0

10
0

10
0

Su
bo

rd
in

at
io

n
28

89
.3

92
.9

82
.1

85
.7

89
.3

89
.3

89
.3

V
er

b
te

ns
e/

as
pe

ct
/m

oo
d

67
74

.6
67

.2
77

.6
88

.1
74

.6
82

.1
79

.1
V

er
b

va
le

nc
y

26
84

.6
96

.2
84

.6
84

.6
84

.6
80

.8
80

.8

m
ic

ro
-a

vg
24

2
81

83
.1

79
.8

83
.9

81
83

.1
82

.6
m

ac
ro

-a
vg

24
2

84
.4

87
.3

83
.6

83
.5

84
.4

85
.2

85
.4

Ta
bl

e
9:

Y
ea

rl
y

co
m

pa
ri

so
n

of
th

e
sy

st
em

s
of

W
M

T
24

fo
rE

ng
lis

h-
R

us
si

an
,b

as
ed

on
th

e
ca

te
go

ry
-l

ev
el

an
al

ys
is

366



D
D

et
ai

le
d

an
al

ys
is

on
a

ph
en

om
en

on
-le

ve
l

ca
te

g
co

un
tO

nl
-B

Tr
an

s
G

PT
4

C
la

ud
U

nb
ab

C
om

m
a

O
nl

-W
L

la
m

a
A

ya
23

IO
L

R
e

O
nl

-A
O

nl
-G

IK
U

N
C

U
N

IN
IK

U
N

C
N

V
ID

I
O

cc
ig

A
IS

TA
T

SU
H

I
M

SL
C

M
is

tr
av

g

A
m

bi
gu

ity
24

10
0.

0
10

0.
0

95
.8

10
0.

0
95

.8
10

0.
0

95
.8

91
.7

91
.7

87
.5

91
.7

87
.5

79
.2

87
.5

83
.3

70
.8

79
.2

50
.0

37
.5

41
.7

20
.8

80
.4

L
ex

ic
al

am
bi

gu
ity

24
10

0.
0

10
0.

0
95

.8
10

0.
0

95
.8

10
0.

0
95

.8
91

.7
91

.7
87

.5
91

.7
87

.5
79

.2
87

.5
83

.3
70

.8
79

.2
50

.0
37

.5
41

.7
20

.8
80

.4
C

oo
rd

in
at

io
n

&
el

lip
si

s
83

94
.0

94
.0

90
.4

71
.1

73
.5

74
.7

74
.7

80
.7

79
.5

65
.1

73
.5

84
.3

62
.7

78
.3

69
.9

66
.3

57
.8

61
.4

42
.2

26
.5

27
.7

69
.0

G
ap

pi
ng

15
86

.7
86

.7
93

.3
66

.7
60

.0
80

.0
73

.3
73

.3
86

.7
46

.7
86

.7
10

0.
0

53
.3

93
.3

86
.7

93
.3

33
.3

73
.3

33
.3

26
.7

40
.0

70
.2

Ps
eu

do
ga

pp
in

g
7

10
0.

0
10

0.
0

10
0.

0
71

.4
10

0.
0

71
.4

71
.4

85
.7

10
0.

0
71

.4
85

.7
57

.1
71

.4
10

0.
0

10
0.

0
42

.9
10

0.
0

42
.9

42
.9

0.
0

0.
0

72
.1

R
ig

ht
no

de
ra

is
in

g
11

90
.9

90
.9

90
.9

90
.9

81
.8

10
0.

0
90

.9
10

0.
0

10
0.

0
10

0.
0

90
.9

81
.8

72
.7

90
.9

72
.7

81
.8

81
.8

81
.8

27
.3

45
.5

27
.3

80
.5

Sl
ui

ci
ng

18
10

0.
0

10
0.

0
10

0.
0

94
.4

94
.4

77
.8

10
0.

0
94

.4
10

0.
0

88
.9

77
.8

77
.8

77
.8

66
.7

77
.8

72
.2

72
.2

77
.8

55
.6

33
.3

27
.8

79
.4

St
ri

pp
in

g
21

90
.5

90
.5

81
.0

38
.1

52
.4

47
.6

42
.9

57
.1

47
.6

38
.1

42
.9

85
.7

42
.9

61
.9

47
.6

42
.9

33
.3

47
.6

42
.9

23
.8

23
.8

51
.5

V
P-

el
lip

si
s

11
10

0.
0

10
0.

0
81

.8
81

.8
72

.7
90

.9
81

.8
90

.9
63

.6
63

.6
81

.8
90

.9
72

.7
81

.8
54

.5
63

.6
63

.6
36

.4
45

.5
18

.2
36

.4
70

.1
Fa

ls
e

fr
ie

nd
s

40
95

.0
95

.0
97

.5
95

.0
92

.5
95

.0
90

.0
95

.0
95

.0
95

.0
87

.5
82

.5
97

.5
95

.0
90

.0
77

.5
92

.5
70

.0
55

.0
45

.0
30

.0
84

.2
Fu

nc
tio

n
w

or
d

42
97

.6
97

.6
97

.6
97

.6
97

.6
95

.2
10

0.
0

95
.2

92
.9

92
.9

97
.6

97
.6

88
.1

88
.1

92
.9

92
.9

66
.7

88
.1

61
.9

47
.6

33
.3

86
.6

Fo
cu

s
pa

rt
ic

le
23

95
.7

95
.7

95
.7

95
.7

95
.7

95
.7

10
0.

0
95

.7
87

.0
95

.7
95

.7
95

.7
95

.7
91

.3
87

.0
91

.3
73

.9
95

.7
82

.6
87

.0
39

.1
89

.9
Q

ue
st

io
n

ta
g

19
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

94
.7

10
0.

0
94

.7
10

0.
0

89
.5

10
0.

0
10

0.
0

78
.9

84
.2

10
0.

0
94

.7
57

.9
78

.9
36

.8
0.

0
26

.3
82

.7
L

D
D

&
in

te
rr

og
at

iv
es

16
0

97
.5

97
.5

96
.3

97
.5

96
.9

93
.8

95
.6

92
.5

91
.9

90
.0

95
.6

93
.1

80
.6

85
.6

80
.6

85
.6

71
.9

75
.0

57
.5

48
.8

25
.0

83
.3

E
xt

ra
po

si
tio

n
16

93
.8

93
.8

87
.5

81
.3

81
.3

93
.8

87
.5

81
.3

75
.0

56
.3

75
.0

62
.5

81
.3

62
.5

75
.0

62
.5

50
.0

43
.8

37
.5

12
.5

12
.5

67
.0

In
ve

rs
io

n
14

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.9

85
.7

92
.9

85
.7

85
.7

71
.4

28
.6

42
.9

0.
0

85
.0

M
ul

tip
le

co
nn

ec
to

rs
16

93
.8

93
.8

10
0.

0
10

0.
0

10
0.

0
93

.8
10

0.
0

93
.8

10
0.

0
10

0.
0

10
0.

0
10

0.
0

75
.0

87
.5

81
.3

93
.8

81
.3

93
.8

81
.3

87
.5

31
.3

89
.9

N
eg

at
iv

e
in

ve
rs

io
n

14
92

.9
92

.9
92

.9
92

.9
10

0.
0

92
.9

10
0.

0
92

.9
92

.9
10

0.
0

10
0.

0
10

0.
0

92
.9

92
.9

10
0.

0
92

.9
78

.6
10

0.
0

92
.9

85
.7

21
.4

90
.8

Pi
ed

-p
ip

in
g

14
10

0.
0

10
0.

0
92

.9
10

0.
0

10
0.

0
85

.7
92

.9
92

.9
92

.9
92

.9
10

0.
0

10
0.

0
78

.6
92

.9
71

.4
10

0.
0

71
.4

78
.6

57
.1

57
.1

21
.4

84
.7

Po
la

rq
ue

st
io

n
18

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
94

.4
10

0.
0

10
0.

0
72

.2
10

0.
0

77
.8

94
.4

72
.2

72
.2

66
.7

38
.9

33
.3

86
.8

Pr
ep

os
iti

on
st

ra
nd

in
g

16
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

81
.3

10
0.

0
81

.3
75

.0
75

.0
10

0.
0

10
0.

0
62

.5
56

.3
75

.0
10

0.
0

50
.0

75
.0

43
.8

0.
0

56
.3

77
.7

Sp
lit

in
fin

iti
ve

10
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
80

.0
90

.0
10

0.
0

80
.0

90
.0

80
.0

40
.0

80
.0

30
.0

89
.0

To
pi

ca
liz

at
io

n
12

10
0.

0
10

0.
0

91
.7

10
0.

0
10

0.
0

91
.7

83
.3

91
.7

91
.7

91
.7

83
.3

66
.7

75
.0

83
.3

50
.0

50
.0

83
.3

41
.7

50
.0

25
.0

8.
3

74
.2

W
h-

m
ov

em
en

t
30

96
.7

96
.7

96
.7

10
0.

0
93

.3
96

.7
93

.3
93

.3
93

.3
93

.3
96

.7
96

.7
90

.0
96

.7
83

.3
86

.7
70

.0
83

.3
63

.3
60

.0
26

.7
86

.0
L

ex
ic

al
M

or
ph

ol
og

y
27

92
.6

92
.6

10
0.

0
96

.3
92

.6
85

.2
85

.2
88

.9
77

.8
88

.9
81

.5
81

.5
74

.1
66

.7
66

.7
63

.0
63

.0
37

.0
33

.3
18

.5
48

.1
73

.0
Fu

nc
tio

na
ls

hi
ft

14
92

.9
92

.9
10

0.
0

10
0.

0
10

0.
0

85
.7

92
.9

85
.7

85
.7

85
.7

78
.6

78
.6

92
.9

57
.1

85
.7

71
.4

57
.1

35
.7

35
.7

21
.4

64
.3

76
.2

N
ou

n
fo

rm
at

io
n

(e
r)

13
92

.3
92

.3
10

0.
0

92
.3

84
.6

84
.6

76
.9

92
.3

69
.2

92
.3

84
.6

84
.6

53
.8

76
.9

46
.2

53
.8

69
.2

38
.5

30
.8

15
.4

30
.8

69
.6

M
W

E
10

9
97

.2
96

.3
91

.7
97

.2
89

.0
93

.6
93

.6
83

.5
90

.8
90

.8
86

.2
86

.2
83

.5
78

.0
74

.3
66

.1
73

.4
62

.4
40

.4
33

.0
22

.0
77

.6
C

ol
lo

ca
tio

n
17

10
0.

0
94

.1
10

0.
0

10
0.

0
88

.2
10

0.
0

10
0.

0
88

.2
94

.1
88

.2
10

0.
0

94
.1

82
.4

76
.5

58
.8

76
.5

94
.1

70
.6

41
.2

35
.3

35
.3

81
.8

C
om

po
un

d
12

10
0.

0
10

0.
0

10
0.

0
10

0.
0

91
.7

10
0.

0
10

0.
0

83
.3

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

66
.7

91
.7

66
.7

58
.3

8.
3

88
.9

Id
io

m
19

89
.5

89
.5

63
.2

84
.2

68
.4

73
.7

73
.7

63
.2

68
.4

68
.4

31
.6

31
.6

57
.9

47
.4

47
.4

0.
0

31
.6

5.
3

0.
0

0.
0

5.
3

47
.6

N
om

in
al

M
W

E
18

10
0.

0
10

0.
0

94
.4

10
0.

0
88

.9
10

0.
0

94
.4

77
.8

83
.3

88
.9

10
0.

0
94

.4
83

.3
77

.8
61

.1
77

.8
77

.8
66

.7
33

.3
27

.8
16

.7
78

.3
Pr

ep
os

iti
on

al
M

W
E

16
10

0.
0

10
0.

0
93

.8
10

0.
0

93
.8

93
.8

10
0.

0
93

.8
10

0.
0

10
0.

0
10

0.
0

10
0.

0
87

.5
10

0.
0

93
.8

93
.8

81
.3

93
.8

87
.5

56
.3

37
.5

90
.8

V
er

ba
lM

W
E

27
96

.3
96

.3
10

0.
0

10
0.

0
10

0.
0

96
.3

96
.3

92
.6

10
0.

0
10

0.
0

92
.6

10
0.

0
92

.6
77

.8
88

.9
66

.7
85

.2
63

.0
33

.3
33

.3
25

.9
82

.7
N

am
ed

en
tit

y
&

te
rm

in
ol

og
y

92
92

.4
92

.4
95

.7
94

.6
89

.1
96

.7
89

.1
93

.5
89

.1
90

.2
90

.2
85

.9
81

.5
76

.1
81

.5
80

.4
77

.2
77

.2
65

.2
59

.8
33

.7
82

.5
D

at
e

13
10

0.
0

10
0.

0
10

0.
0

10
0.

0
92

.3
10

0.
0

10
0.

0
10

0.
0

92
.3

92
.3

92
.3

10
0.

0
92

.3
92

.3
92

.3
92

.3
61

.5
76

.9
92

.3
92

.3
30

.8
90

.1
D

om
ai

ns
pe

ci
fic

Te
rm

16
87

.5
87

.5
87

.5
87

.5
87

.5
93

.8
87

.5
87

.5
87

.5
81

.3
93

.8
68

.8
75

.0
68

.8
81

.3
81

.3
87

.5
56

.3
31

.3
37

.5
43

.8
76

.2
L

oc
at

io
n

18
10

0.
0

10
0.

0
10

0.
0

10
0.

0
94

.4
10

0.
0

94
.4

10
0.

0
94

.4
10

0.
0

94
.4

10
0.

0
83

.3
77

.8
88

.9
88

.9
83

.3
94

.4
72

.2
83

.3
38

.9
89

.9
M

ea
su

ri
ng

un
it

19
94

.7
94

.7
94

.7
94

.7
10

0.
0

10
0.

0
89

.5
10

0.
0

94
.7

94
.7

94
.7

94
.7

84
.2

84
.2

89
.5

84
.2

73
.7

94
.7

73
.7

42
.1

21
.1

85
.5

O
no

m
at

op
ei

a
7

57
.1

57
.1

85
.7

85
.7

42
.9

85
.7

42
.9

85
.7

57
.1

42
.9

42
.9

42
.9

28
.6

14
.3

14
.3

0.
0

42
.9

0.
0

0.
0

0.
0

0.
0

39
.5

Pr
op

er
na

m
e

19
94

.7
94

.7
10

0.
0

94
.7

89
.5

94
.7

94
.7

84
.2

89
.5

10
0.

0
94

.7
84

.2
94

.7
84

.2
84

.2
89

.5
89

.5
89

.5
84

.2
73

.7
47

.4
88

.2
N

eg
at

io
n

19
10

0.
0

10
0.

0
10

0.
0

10
0.

0
94

.7
89

.5
94

.7
10

0.
0

84
.2

10
0.

0
10

0.
0

10
0.

0
94

.7
89

.5
10

0.
0

10
0.

0
63

.2
89

.5
89

.5
89

.5
15

.8
90

.2
N

on
-v

er
ba

la
gr

ee
m

en
t

97
97

.9
97

.9
99

.0
99

.0
99

.0
93

.8
92

.8
93

.8
92

.8
93

.8
91

.8
91

.8
90

.7
92

.8
85

.6
79

.4
84

.5
78

.4
78

.4
53

.6
23

.7
86

.2
C

or
ef

er
en

ce
30

96
.7

96
.7

10
0.

0
10

0.
0

10
0.

0
10

0.
0

93
.3

96
.7

96
.7

10
0.

0
93

.3
90

.0
93

.3
93

.3
93

.3
80

.0
90

.0
70

.0
90

.0
43

.3
16

.7
87

.3
G

en
iti

ve
19

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
89

.5
94

.7
84

.2
89

.5
84

.2
94

.7
10

0.
0

78
.9

84
.2

68
.4

52
.6

78
.9

73
.7

57
.9

31
.6

31
.6

80
.7

Pe
rs

on
al

Pr
on

ou
n

C
or

ef
er

en
ce

12
91

.7
91

.7
10

0.
0

10
0.

0
10

0.
0

91
.7

83
.3

91
.7

91
.7

91
.7

66
.7

66
.7

91
.7

91
.7

10
0.

0
75

.0
83

.3
83

.3
75

.0
58

.3
33

.3
83

.7
Po

ss
es

si
on

26
10

0.
0

10
0.

0
96

.2
96

.2
96

.2
92

.3
92

.3
96

.2
92

.3
92

.3
10

0.
0

10
0.

0
92

.3
96

.2
76

.9
96

.2
76

.9
88

.5
76

.9
80

.8
23

.1
88

.6
Su

bs
tit

ut
io

n
10

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
90

.0
10

0.
0

10
0.

0
90

.0
10

0.
0

90
.0

90
.0

10
0.

0
10

0.
0

10
0.

0
90

.0
10

0.
0

80
.0

90
.0

50
.0

20
.0

90
.0

Pu
nc

tu
at

io
n

34
10

0.
0

10
0.

0
88

.2
85

.3
94

.1
91

.2
97

.1
88

.2
10

0.
0

94
.1

94
.1

88
.2

88
.2

73
.5

88
.2

88
.2

50
.0

82
.4

61
.8

67
.6

14
.7

82
.6

Q
uo

ta
tio

n
m

ar
ks

34
10

0.
0

10
0.

0
88

.2
85

.3
94

.1
91

.2
97

.1
88

.2
10

0.
0

94
.1

94
.1

88
.2

88
.2

73
.5

88
.2

88
.2

50
.0

82
.4

61
.8

67
.6

14
.7

82
.6

Su
bo

rd
in

at
io

n
14

8
98

.0
98

.0
98

.0
99

.3
96

.6
94

.6
96

.6
95

.9
93

.2
97

.3
97

.3
96

.6
89

.2
95

.9
85

.8
91

.9
81

.1
87

.8
67

.6
66

.9
23

.0
88

.1

367



ca
te

g
co

un
tO

nl
-B

Tr
an

s
G

PT
4

C
la

ud
U

nb
ab

C
om

m
a

O
nl

-W
L

la
m

a
A

ya
23

IO
L

R
e

O
nl

-A
O

nl
-G

IK
U

N
C

U
N

IN
IK

U
N

C
N

V
ID

I
O

cc
ig

A
IS

TA
T

SU
H

I
M

SL
C

M
is

tr
av

g

A
dv

er
bi

al
cl

au
se

6
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
66

.7
10

0.
0

10
0.

0
10

0.
0

83
.3

83
.3

33
.3

93
.7

C
le

ft
se

nt
en

ce
12

91
.7

91
.7

10
0.

0
10

0.
0

91
.7

83
.3

10
0.

0
91

.7
91

.7
10

0.
0

10
0.

0
91

.7
91

.7
91

.7
83

.3
75

.0
66

.7
83

.3
75

.0
75

.0
25

.0
85

.7
C

on
ta

ct
cl

au
se

21
95

.2
95

.2
95

.2
10

0.
0

10
0.

0
95

.2
95

.2
10

0.
0

10
0.

0
10

0.
0

10
0.

0
95

.2
81

.0
10

0.
0

81
.0

85
.7

61
.9

71
.4

61
.9

42
.9

14
.3

84
.4

In
di

re
ct

sp
ee

ch
16

10
0.

0
10

0.
0

93
.8

10
0.

0
93

.8
87

.5
87

.5
93

.8
93

.8
10

0.
0

93
.8

10
0.

0
93

.8
93

.8
81

.3
10

0.
0

87
.5

10
0.

0
68

.8
87

.5
18

.8
89

.3
In

fin
iti

ve
cl

au
se

16
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

93
.8

10
0.

0
10

0.
0

93
.8

10
0.

0
10

0.
0

10
0.

0
93

.8
93

.8
87

.5
93

.8
81

.3
87

.5
75

.0
87

.5
25

.0
91

.1
O

bj
ec

tc
la

us
e

16
10

0.
0

10
0.

0
10

0.
0

93
.8

93
.8

10
0.

0
10

0.
0

87
.5

87
.5

93
.8

93
.8

87
.5

75
.0

10
0.

0
93

.8
87

.5
93

.8
87

.5
62

.5
68

.8
18

.8
86

.9
Ps

eu
do

-c
le

ft
se

nt
en

ce
14

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
92

.9
10

0.
0

10
0.

0
10

0.
0

10
0.

0
85

.7
92

.9
78

.6
10

0.
0

85
.7

92
.9

50
.0

71
.4

14
.3

88
.8

R
el

at
iv

e
cl

au
se

34
97

.1
97

.1
97

.1
10

0.
0

97
.1

94
.1

97
.1

97
.1

88
.2

94
.1

97
.1

97
.1

97
.1

94
.1

94
.1

94
.1

85
.3

88
.2

76
.5

61
.8

26
.5

89
.1

Su
bj

ec
tc

la
us

e
13

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.3

10
0.

0
92

.3
10

0.
0

92
.3

92
.3

92
.3

10
0.

0
84

.6
10

0.
0

84
.6

92
.3

76
.9

92
.3

53
.8

46
.2

38
.5

87
.2

V
er

b
se

m
an

tic
s

18
83

.3
83

.3
72

.2
72

.2
88

.9
77

.8
66

.7
77

.8
83

.3
72

.2
50

.0
61

.1
72

.2
66

.7
55

.6
44

.4
55

.6
22

.2
16

.7
11

.1
0.

0
58

.7
V

er
b

te
ns

e/
as

pe
ct

/m
oo

d
32

25
98

.2
98

.2
97

.6
98

.4
91

.4
96

.6
96

.6
93

.6
96

.2
94

.9
97

.1
98

.7
77

.0
80

.7
77

.4
82

.3
67

.1
72

.5
33

.5
42

.2
23

.8
81

.6
C

on
di

tio
na

l
19

94
.7

94
.7

94
.7

94
.7

94
.7

94
.7

89
.5

89
.5

94
.7

94
.7

94
.7

94
.7

89
.5

94
.7

84
.2

84
.2

68
.4

78
.9

42
.1

63
.2

26
.3

83
.7

D
itr

an
si

tiv
e

-c
on

di
tio

na
lI

pr
og

re
ss

iv
e

60
10

0.
0

10
0.

0
98

.3
95

.0
93

.3
95

.0
10

0.
0

10
0.

0
98

.3
96

.7
95

.0
10

0.
0

73
.3

86
.7

85
.0

75
.0

63
.3

58
.3

30
.0

6.
7

15
.0

79
.3

D
itr

an
si

tiv
e

-c
on

di
tio

na
lI

si
m

pl
e

52
10

0.
0

10
0.

0
10

0.
0

98
.1

86
.5

98
.1

10
0.

0
10

0.
0

10
0.

0
10

0.
0

57
.7

10
0.

0
40

.4
38

.5
71

.2
67

.3
71

.2
57

.7
17

.3
5.

8
21

.2
72

.9
D

itr
an

si
tiv

e
-c

on
di

tio
na

lI
Ip

ro
gr

es
si

ve
59

10
0.

0
10

0.
0

94
.9

10
0.

0
76

.3
10

0.
0

98
.3

91
.5

10
0.

0
10

0.
0

98
.3

10
0.

0
67

.8
83

.1
57

.6
83

.1
45

.8
76

.3
42

.4
10

.2
30

.5
78

.9
D

itr
an

si
tiv

e
-c

on
di

tio
na

lI
Is

im
pl

e
59

10
0.

0
10

0.
0

10
0.

0
10

0.
0

86
.4

10
0.

0
10

0.
0

98
.3

10
0.

0
10

0.
0

10
0.

0
10

0.
0

78
.0

98
.3

79
.7

88
.1

71
.2

71
.2

35
.6

27
.1

35
.6

84
.3

D
itr

an
si

tiv
e

-f
ut

ur
e

Ip
ro

gr
es

si
ve

57
10

0.
0

10
0.

0
94

.7
96

.5
89

.5
96

.5
10

0.
0

96
.5

98
.2

98
.2

96
.5

10
0.

0
70

.2
86

.0
86

.0
86

.0
77

.2
80

.7
54

.4
21

.1
19

.3
83

.2
D

itr
an

si
tiv

e
-f

ut
ur

e
Is

im
pl

e
11

2
10

0.
0

10
0.

0
99

.1
95

.5
87

.5
95

.5
10

0.
0

99
.1

10
0.

0
99

.1
94

.6
10

0.
0

87
.5

75
.9

89
.3

76
.8

67
.9

80
.4

33
.0

24
.1

28
.6

82
.6

D
itr

an
si

tiv
e

-f
ut

ur
e

II
pr

og
re

ss
iv

e
52

94
.2

94
.2

94
.2

10
0.

0
53

.8
96

.2
88

.5
86

.5
90

.4
80

.8
10

0.
0

98
.1

0.
0

34
.6

5.
8

26
.9

28
.8

3.
8

0.
0

1.
9

26
.9

57
.4

D
itr

an
si

tiv
e

-f
ut

ur
e

II
si

m
pl

e
57

98
.2

98
.2

96
.5

10
0.

0
59

.6
10

0.
0

10
0.

0
94

.7
87

.7
91

.2
98

.2
10

0.
0

0.
0

43
.9

7.
0

52
.6

26
.3

7.
0

0.
0

1.
8

28
.1

61
.5

D
itr

an
si

tiv
e

-p
as

tp
er

fe
ct

pr
og

re
ss

iv
e

53
92

.5
92

.5
98

.1
10

0.
0

86
.8

92
.5

92
.5

71
.7

83
.0

83
.0

10
0.

0
10

0.
0

26
.4

67
.9

43
.4

88
.7

54
.7

73
.6

47
.2

22
.6

24
.5

73
.4

D
itr

an
si

tiv
e

-p
as

tp
er

fe
ct

si
m

pl
e

56
98

.2
98

.2
96

.4
10

0.
0

89
.3

92
.9

96
.4

80
.4

87
.5

82
.1

10
0.

0
10

0.
0

51
.8

69
.6

73
.2

76
.8

58
.9

76
.8

39
.3

46
.4

21
.4

77
.9

D
itr

an
si

tiv
e

-p
as

tp
ro

gr
es

si
ve

54
10

0.
0

10
0.

0
92

.6
10

0.
0

92
.6

96
.3

85
.2

88
.9

96
.3

96
.3

10
0.

0
10

0.
0

72
.2

83
.3

98
.1

77
.8

72
.2

72
.2

33
.3

24
.1

20
.4

81
.0

D
itr

an
si

tiv
e

-p
re

se
nt

pe
rf

ec
tp

ro
gr

es
si

ve
56

10
0.

0
10

0.
0

92
.9

98
.2

89
.3

10
0.

0
10

0.
0

87
.5

96
.4

10
0.

0
96

.4
10

0.
0

60
.7

96
.4

66
.1

89
.3

71
.4

48
.2

30
.4

28
.6

12
.5

79
.3

D
itr

an
si

tiv
e

-p
re

se
nt

pe
rf

ec
ts

im
pl

e
57

10
0.

0
10

0.
0

91
.2

10
0.

0
93

.0
10

0.
0

96
.5

96
.5

10
0.

0
10

0.
0

10
0.

0
10

0.
0

78
.9

94
.7

93
.0

94
.7

71
.9

77
.2

42
.1

47
.4

22
.8

85
.7

D
itr

an
si

tiv
e

-p
re

se
nt

pr
og

re
ss

iv
e

59
96

.6
96

.6
86

.4
91

.5
94

.9
93

.2
96

.6
91

.5
10

0.
0

89
.8

98
.3

10
0.

0
74

.6
86

.4
93

.2
71

.2
78

.0
64

.4
50

.8
16

.9
33

.9
81

.2
D

itr
an

si
tiv

e
-s

im
pl

e
pa

st
79

98
.7

98
.7

96
.2

97
.5

94
.9

97
.5

97
.5

94
.9

10
0.

0
94

.9
98

.7
10

0.
0

75
.9

84
.8

93
.7

92
.4

74
.7

86
.1

41
.8

22
.8

22
.8

84
.0

D
itr

an
si

tiv
e

-s
im

pl
e

pr
es

en
t

55
98

.2
98

.2
90

.9
96

.4
98

.2
96

.4
98

.2
87

.3
10

0.
0

92
.7

96
.4

10
0.

0
72

.7
81

.8
92

.7
83

.6
70

.9
78

.2
60

.0
10

.9
12

.7
81

.7
G

er
un

d
24

95
.8

95
.8

95
.8

95
.8

10
0.

0
10

0.
0

10
0.

0
83

.3
10

0.
0

95
.8

10
0.

0
10

0.
0

91
.7

79
.2

83
.3

87
.5

70
.8

66
.7

45
.8

41
.7

37
.5

84
.1

Im
pe

ra
tiv

e
14

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
78

.6
10

0.
0

10
0.

0
92

.9
85

.7
92

.9
92

.9
57

.1
57

.1
71

.4
71

.4
28

.6
71

.4
28

.6
14

.3
35

.7
75

.2
In

tr
an

si
tiv

e
-c

on
di

tio
na

lI
pr

og
re

ss
iv

e
29

10
0.

0
10

0.
0

10
0.

0
10

0.
0

93
.1

10
0.

0
89

.7
96

.6
10

0.
0

10
0.

0
96

.6
10

0.
0

79
.3

10
0.

0
82

.8
10

0.
0

82
.8

96
.6

41
.4

86
.2

37
.9

89
.7

In
tr

an
si

tiv
e

-c
on

di
tio

na
lI

si
m

pl
e

27
92

.6
92

.6
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

96
.3

10
0.

0
10

0.
0

85
.2

10
0.

0
81

.5
70

.4
81

.5
10

0.
0

88
.9

92
.6

74
.1

77
.8

22
.2

88
.4

In
tr

an
si

tiv
e

-c
on

di
tio

na
lI

Ip
ro

gr
es

si
ve

29
10

0.
0

10
0.

0
10

0.
0

10
0.

0
96

.6
10

0.
0

96
.6

82
.8

10
0.

0
96

.6
10

0.
0

10
0.

0
89

.7
51

.7
69

.0
58

.6
62

.1
58

.6
6.

9
13

.8
24

.1
76

.5
In

tr
an

si
tiv

e
-c

on
di

tio
na

lI
Is

im
pl

e
29

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
82

.8
10

0.
0

89
.7

10
0.

0
10

0.
0

89
.7

62
.1

69
.0

62
.1

69
.0

82
.8

41
.4

24
.1

20
.7

80
.6

In
tr

an
si

tiv
e

-f
ut

ur
e

Ip
ro

gr
es

si
ve

30
96

.7
96

.7
10

0.
0

96
.7

10
0.

0
10

0.
0

86
.7

90
.0

96
.7

10
0.

0
90

.0
10

0.
0

93
.3

10
0.

0
10

0.
0

10
0.

0
83

.3
93

.3
50

.0
96

.7
20

.0
90

.0
In

tr
an

si
tiv

e
-f

ut
ur

e
Is

im
pl

e
69

98
.6

98
.6

97
.1

97
.1

98
.6

10
0.

0
89

.9
95

.7
97

.1
10

0.
0

95
.7

98
.6

98
.6

98
.6

92
.8

10
0.

0
88

.4
10

0.
0

60
.9

84
.1

20
.3

91
.0

In
tr

an
si

tiv
e

-f
ut

ur
e

II
pr

og
re

ss
iv

e
27

10
0.

0
10

0.
0

10
0.

0
10

0.
0

96
.3

96
.3

88
.9

96
.3

10
0.

0
10

0.
0

10
0.

0
10

0.
0

14
.8

74
.1

29
.6

77
.8

48
.1

18
.5

3.
7

0.
0

22
.2

69
.8

In
tr

an
si

tiv
e

-f
ut

ur
e

II
si

m
pl

e
31

10
0.

0
10

0.
0

10
0.

0
10

0.
0

93
.5

80
.6

96
.8

10
0.

0
90

.3
90

.3
10

0.
0

10
0.

0
19

.4
61

.3
16

.1
80

.6
48

.4
38

.7
35

.5
16

.1
16

.1
70

.7
In

tr
an

si
tiv

e
-p

as
tp

er
fe

ct
pr

og
re

ss
iv

e
24

87
.5

87
.5

10
0.

0
10

0.
0

10
0.

0
87

.5
79

.2
79

.2
70

.8
87

.5
10

0.
0

95
.8

70
.8

75
.0

75
.0

87
.5

50
.0

83
.3

12
.5

8.
3

16
.7

74
.0

In
tr

an
si

tiv
e

-p
as

tp
er

fe
ct

si
m

pl
e

34
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

91
.2

94
.1

82
.4

79
.4

76
.5

10
0.

0
10

0.
0

85
.3

94
.1

85
.3

88
.2

73
.5

88
.2

38
.2

58
.8

17
.6

83
.5

In
tr

an
si

tiv
e

-p
as

tp
ro

gr
es

si
ve

32
90

.6
90

.6
10

0.
0

10
0.

0
96

.9
96

.9
10

0.
0

10
0.

0
96

.9
10

0.
0

96
.9

93
.8

96
.9

87
.5

90
.6

37
.5

75
.0

84
.4

21
.9

12
.5

37
.5

81
.3

In
tr

an
si

tiv
e

-p
re

se
nt

pe
rf

ec
tp

ro
gr

es
si

ve
25

10
0.

0
10

0.
0

10
0.

0
96

.0
80

.0
92

.0
10

0.
0

88
.0

10
0.

0
92

.0
10

0.
0

10
0.

0
10

0.
0

80
.0

92
.0

68
.0

80
.0

72
.0

32
.0

24
.0

0.
0

80
.8

In
tr

an
si

tiv
e

-p
re

se
nt

pe
rf

ec
ts

im
pl

e
30

10
0.

0
10

0.
0

10
0.

0
10

0.
0

93
.3

10
0.

0
10

0.
0

86
.7

10
0.

0
90

.0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
93

.3
83

.3
70

.0
86

.7
66

.7
33

.3
13

.3
86

.5
In

tr
an

si
tiv

e
-p

re
se

nt
pr

og
re

ss
iv

e
64

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

93
.8

10
0.

0
10

0.
0

98
.4

10
0.

0
10

0.
0

95
.3

98
.4

95
.3

93
.8

79
.7

95
.3

31
.3

51
.6

29
.7

88
.7

In
tr

an
si

tiv
e

-s
im

pl
e

pa
st

39
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

97
.4

10
0.

0
10

0.
0

97
.4

10
0.

0
10

0.
0

97
.4

10
0.

0
84

.6
69

.2
87

.2
53

.8
17

.9
20

.5
86

.9
In

tr
an

si
tiv

e
-s

im
pl

e
pr

es
en

t
38

10
0.

0
10

0.
0

10
0.

0
10

0.
0

97
.4

97
.4

10
0.

0
97

.4
10

0.
0

10
0.

0
10

0.
0

10
0.

0
97

.4
97

.4
94

.7
94

.7
65

.8
81

.6
55

.3
71

.1
18

.4
89

.0
M

od
al

29
4

98
.6

98
.6

98
.6

99
.0

98
.3

99
.0

98
.6

98
.0

99
.7

10
0.

0
99

.3
99

.7
96

.9
92

.5
94

.2
95

.9
65

.0
94

.2
36

.4
87

.4
23

.5
89

.2
M

od
al

ne
ga

te
d

28
8

98
.3

98
.3

95
.8

98
.3

96
.5

92
.4

99
.7

97
.2

96
.2

93
.1

97
.9

96
.5

91
.3

88
.2

88
.9

89
.9

71
.2

95
.1

56
.3

83
.0

22
.9

87
.9

R
efl

ex
iv

e
-c

on
di

tio
na

lI
pr

og
re

ss
iv

e
34

10
0.

0
10

0.
0

10
0.

0
10

0.
0

97
.1

10
0.

0
10

0.
0

10
0.

0
10

0.
0

91
.2

10
0.

0
97

.1
97

.1
94

.1
73

.5
88

.2
70

.6
58

.8
5.

9
35

.3
8.

8
81

.8
R

efl
ex

iv
e

-c
on

di
tio

na
lI

si
m

pl
e

28
10

0.
0

10
0.

0
10

0.
0

10
0.

0
92

.9
10

0.
0

96
.4

10
0.

0
10

0.
0

96
.4

78
.6

10
0.

0
96

.4
60

.7
92

.9
78

.6
60

.7
75

.0
28

.6
35

.7
14

.3
81

.3
R

efl
ex

iv
e

-c
on

di
tio

na
lI

Ip
ro

gr
es

si
ve

31
10

0.
0

10
0.

0
10

0.
0

10
0.

0
71

.0
93

.5
93

.5
96

.8
87

.1
10

0.
0

10
0.

0
90

.3
74

.2
45

.2
16

.1
80

.6
54

.8
64

.5
3.

2
35

.5
32

.3
73

.3
R

efl
ex

iv
e

-c
on

di
tio

na
lI

Is
im

pl
e

35
10

0.
0

10
0.

0
10

0.
0

10
0.

0
94

.3
10

0.
0

10
0.

0
97

.1
10

0.
0

10
0.

0
10

0.
0

94
.3

80
.0

91
.4

62
.9

85
.7

71
.4

57
.1

5.
7

37
.1

34
.3

81
.5

R
efl

ex
iv

e
-f

ut
ur

e
Ip

ro
gr

es
si

ve
32

93
.8

93
.8

10
0.

0
96

.9
90

.6
96

.9
96

.9
96

.9
93

.8
96

.9
96

.9
10

0.
0

93
.8

75
.0

84
.4

84
.4

50
.0

59
.4

25
.0

34
.4

31
.3

80
.5

R
efl

ex
iv

e
-f

ut
ur

e
Is

im
pl

e
68

98
.5

98
.5

10
0.

0
98

.5
88

.2
10

0.
0

97
.1

95
.6

10
0.

0
98

.5
10

0.
0

97
.1

82
.4

82
.4

82
.4

94
.1

50
.0

83
.8

33
.8

27
.9

26
.5

82
.6

368



ca
te

g
co

un
tO

nl
-B

Tr
an

s
G

PT
4

C
la

ud
U

nb
ab

C
om

m
a

O
nl

-W
L

la
m

a
A

ya
23

IO
L

R
e

O
nl

-A
O

nl
-G

IK
U

N
C

U
N

IN
IK

U
N

C
N

V
ID

I
O

cc
ig

A
IS

TA
T

SU
H

I
M

SL
C

M
is

tr
av

g

R
efl

ex
iv

e
-f

ut
ur

e
II

pr
og

re
ss

iv
e

29
93

.1
93

.1
10

0.
0

10
0.

0
48

.3
96

.6
96

.6
93

.1
93

.1
96

.6
96

.6
10

0.
0

0.
0

34
.5

6.
9

27
.6

34
.5

6.
9

0.
0

0.
0

31
.0

59
.4

R
efl

ex
iv

e
-f

ut
ur

e
II

si
m

pl
e

33
81

.8
81

.8
10

0.
0

10
0.

0
81

.8
97

.0
10

0.
0

90
.9

97
.0

93
.9

93
.9

10
0.

0
3.

0
63

.6
9.

1
54

.5
39

.4
36

.4
0.

0
3.

0
15

.2
63

.9
R

efl
ex

iv
e

-p
as

tp
er

fe
ct

pr
og

re
ss

iv
e

29
93

.1
93

.1
10

0.
0

10
0.

0
79

.3
10

0.
0

89
.7

62
.1

65
.5

69
.0

10
0.

0
10

0.
0

79
.3

72
.4

55
.2

69
.0

44
.8

58
.6

17
.2

34
.5

27
.6

71
.9

R
efl

ex
iv

e
-p

as
tp

er
fe

ct
si

m
pl

e
27

10
0.

0
10

0.
0

96
.3

10
0.

0
96

.3
96

.3
92

.6
74

.1
70

.4
77

.8
10

0.
0

10
0.

0
85

.2
74

.1
63

.0
74

.1
63

.0
70

.4
3.

7
48

.1
14

.8
76

.2
R

efl
ex

iv
e

-p
as

tp
ro

gr
es

si
ve

32
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

96
.9

96
.9

93
.8

10
0.

0
90

.6
84

.4
87

.5
87

.5
68

.8
81

.3
71

.9
50

.0
37

.5
21

.9
84

.2
R

efl
ex

iv
e

-p
re

se
nt

pe
rf

ec
tp

ro
gr

es
si

ve
26

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.3

96
.2

92
.3

92
.3

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.3

88
.5

80
.8

10
0.

0
69

.2
50

.0
23

.1
34

.6
30

.8
83

.0
R

efl
ex

iv
e

-p
re

se
nt

pe
rf

ec
ts

im
pl

e
32

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
75

.0
90

.6
96

.9
75

.0
71

.9
31

.3
37

.5
9.

4
85

.1
R

efl
ex

iv
e

-p
re

se
nt

pr
og

re
ss

iv
e

32
96

.9
96

.9
10

0.
0

10
0.

0
87

.5
96

.9
10

0.
0

90
.6

96
.9

90
.6

96
.9

93
.8

87
.5

78
.1

90
.6

84
.4

75
.0

84
.4

15
.6

53
.1

43
.8

83
.8

R
efl

ex
iv

e
-s

im
pl

e
pa

st
32

96
.9

96
.9

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
93

.8
84

.4
87

.5
96

.9
90

.6
81

.3
78

.1
21

.9
34

.4
25

.0
85

.1
R

efl
ex

iv
e

-s
im

pl
e

pr
es

en
t

32
96

.9
96

.9
10

0.
0

10
0.

0
81

.3
10

0.
0

10
0.

0
75

.0
93

.8
81

.3
96

.9
90

.6
84

.4
78

.1
93

.8
81

.3
59

.4
78

.1
31

.3
37

.5
18

.8
79

.8
Tr

an
si

tiv
e

-f
ut

ur
e

II
pr

og
re

ss
iv

e
30

10
0.

0
10

0.
0

10
0.

0
10

0.
0

83
.3

10
0.

0
86

.7
10

0.
0

10
0.

0
86

.7
10

0.
0

10
0.

0
3.

3
53

.3
3.

3
46

.7
36

.7
3.

3
0.

0
0.

0
13

.3
62

.7
Tr

an
si

tiv
e

-c
on

di
tio

na
lI

pr
og

re
ss

iv
e

28
96

.4
96

.4
10

0.
0

10
0.

0
96

.4
92

.9
82

.1
96

.4
10

0.
0

10
0.

0
10

0.
0

10
0.

0
89

.3
82

.1
67

.9
78

.6
89

.3
57

.1
7.

1
35

.7
28

.6
80

.8
Tr

an
si

tiv
e

-c
on

di
tio

na
lI

si
m

pl
e

18
10

0.
0

10
0.

0
10

0.
0

10
0.

0
94

.4
94

.4
88

.9
10

0.
0

10
0.

0
10

0.
0

55
.6

10
0.

0
83

.3
50

.0
61

.1
88

.9
72

.2
50

.0
27

.8
11

.1
22

.2
76

.2
Tr

an
si

tiv
e

-c
on

di
tio

na
lI

Ip
ro

gr
es

si
ve

27
10

0.
0

10
0.

0
96

.3
10

0.
0

92
.6

96
.3

88
.9

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

70
.4

59
.3

85
.2

88
.9

74
.1

7.
4

44
.4

33
.3

82
.7

Tr
an

si
tiv

e
-c

on
di

tio
na

lI
Is

im
pl

e
30

10
0.

0
10

0.
0

10
0.

0
10

0.
0

96
.7

96
.7

96
.7

93
.3

10
0.

0
93

.3
10

0.
0

10
0.

0
93

.3
76

.7
93

.3
96

.7
66

.7
73

.3
16

.7
66

.7
23

.3
84

.9
Tr

an
si

tiv
e

-f
ut

ur
e

Ip
ro

gr
es

si
ve

30
10

0.
0

10
0.

0
96

.7
96

.7
93

.3
93

.3
83

.3
93

.3
10

0.
0

10
0.

0
10

0.
0

10
0.

0
86

.7
80

.0
90

.0
86

.7
73

.3
70

.0
23

.3
36

.7
23

.3
82

.2
Tr

an
si

tiv
e

-f
ut

ur
e

Is
im

pl
e

57
10

0.
0

10
0.

0
94

.7
96

.5
94

.7
93

.0
96

.5
96

.5
10

0.
0

98
.2

10
0.

0
10

0.
0

93
.0

94
.7

94
.7

89
.5

80
.7

71
.9

24
.6

52
.6

22
.8

85
.5

Tr
an

si
tiv

e
-f

ut
ur

e
II

si
m

pl
e

35
97

.1
97

.1
10

0.
0

10
0.

0
94

.3
97

.1
10

0.
0

97
.1

97
.1

10
0.

0
10

0.
0

10
0.

0
14

.3
57

.1
20

.0
77

.1
60

.0
5.

7
14

.3
0.

0
40

.0
69

.9
Tr

an
si

tiv
e

-p
as

tp
er

fe
ct

pr
og

re
ss

iv
e

24
91

.7
91

.7
95

.8
10

0.
0

95
.8

10
0.

0
79

.2
75

.0
70

.8
79

.2
95

.8
10

0.
0

50
.0

79
.2

41
.7

75
.0

87
.5

58
.3

8.
3

62
.5

37
.5

75
.0

Tr
an

si
tiv

e
-p

as
tp

er
fe

ct
si

m
pl

e
25

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
96

.0
96

.0
92

.0
88

.0
88

.0
10

0.
0

10
0.

0
88

.0
84

.0
76

.0
88

.0
76

.0
68

.0
8.

0
68

.0
8.

0
82

.1
Tr

an
si

tiv
e

-p
as

tp
ro

gr
es

si
ve

38
97

.4
97

.4
84

.2
78

.9
71

.1
84

.2
97

.4
81

.6
76

.3
76

.3
78

.9
86

.8
71

.1
63

.2
78

.9
71

.1
68

.4
68

.4
21

.1
42

.1
23

.7
72

.3
Tr

an
si

tiv
e

-p
re

se
nt

pe
rf

ec
tp

ro
gr

es
si

ve
30

10
0.

0
10

0.
0

10
0.

0
10

0.
0

86
.7

10
0.

0
93

.3
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

96
.7

70
.0

83
.3

73
.3

80
.0

46
.7

10
.0

26
.7

30
.0

80
.8

Tr
an

si
tiv

e
-p

re
se

nt
pe

rf
ec

ts
im

pl
e

31
10

0.
0

10
0.

0
10

0.
0

93
.5

90
.3

96
.8

96
.8

93
.5

96
.8

10
0.

0
10

0.
0

10
0.

0
10

0.
0

83
.9

80
.6

87
.1

64
.5

71
.0

25
.8

58
.1

22
.6

83
.9

Tr
an

si
tiv

e
-p

re
se

nt
pr

og
re

ss
iv

e
40

97
.5

97
.5

10
0.

0
10

0.
0

87
.5

10
0.

0
10

0.
0

95
.0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.5

80
.0

92
.5

82
.5

82
.5

77
.5

22
.5

50
.0

25
.0

84
.9

Tr
an

si
tiv

e
-s

im
pl

e
pa

st
38

10
0.

0
10

0.
0

97
.4

94
.7

94
.7

94
.7

10
0.

0
94

.7
94

.7
10

0.
0

10
0.

0
97

.4
97

.4
89

.5
92

.1
78

.9
81

.6
68

.4
52

.6
31

.6
26

.3
85

.1
Tr

an
si

tiv
e

-s
im

pl
e

pr
es

en
t

39
97

.4
97

.4
10

0.
0

10
0.

0
92

.3
94

.9
10

0.
0

97
.4

10
0.

0
87

.2
10

0.
0

10
0.

0
94

.9
92

.3
97

.4
69

.2
76

.9
76

.9
51

.3
51

.3
25

.6
85

.8
V

er
b

va
le

nc
y

10
1

91
.1

91
.1

86
.1

88
.1

88
.1

84
.2

86
.1

78
.2

86
.1

84
.2

83
.2

76
.2

71
.3

72
.3

75
.2

64
.4

63
.4

54
.5

34
.7

34
.7

16
.8

71
.9

C
as

e
go

ve
rn

m
en

t
20

95
.0

95
.0

95
.0

95
.0

10
0.

0
95

.0
90

.0
95

.0
95

.0
95

.0
95

.0
90

.0
85

.0
95

.0
95

.0
85

.0
60

.0
75

.0
25

.0
55

.0
15

.0
82

.1
C

at
en

at
iv

e
ve

rb
16

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
93

.8
93

.8
87

.5
10

0.
0

10
0.

0
10

0.
0

10
0.

0
81

.3
87

.5
81

.3
87

.5
81

.3
62

.5
37

.5
43

.8
12

.5
83

.3
M

ed
io

pa
ss

iv
e

vo
ic

e
18

88
.9

88
.9

77
.8

83
.3

77
.8

83
.3

77
.8

55
.6

83
.3

83
.3

66
.7

50
.0

66
.7

38
.9

55
.6

27
.8

55
.6

22
.2

27
.8

5.
6

22
.2

59
.0

Pa
ss

iv
e

vo
ic

e
16

93
.8

93
.8

93
.8

10
0.

0
87

.5
87

.5
93

.8
10

0.
0

10
0.

0
93

.8
93

.8
93

.8
87

.5
87

.5
87

.5
75

.0
75

.0
81

.3
43

.8
75

.0
25

.0
84

.2
R

es
ul

ta
tiv

e
19

89
.5

89
.5

89
.5

94
.7

94
.7

84
.2

84
.2

84
.2

89
.5

78
.9

84
.2

73
.7

52
.6

73
.7

68
.4

73
.7

63
.2

47
.4

36
.8

10
.5

5.
3

69
.9

Se
m

an
tic

ro
le

s
12

75
.0

75
.0

50
.0

41
.7

58
.3

50
.0

75
.0

33
.3

33
.3

41
.7

50
.0

41
.7

50
.0

41
.7

58
.3

25
.0

41
.7

33
.3

41
.7

16
.7

25
.0

45
.6

m
ic

ro
-a

ve
ra

ge
42

19
97

.7
97

.7
96

.8
97

.3
91

.5
95

.3
95

.3
92

.6
94

.7
93

.5
95

.3
96

.3
78

.1
81

.4
78

.1
81

.3
68

.4
72

.1
38

.6
43

.4
24

.0
81

.4
ph

en
.m

ac
ro

-a
ve

ra
ge

42
19

96
.8

96
.8

96
.3

96
.1

91
.1

93
.9

93
.2

91
.0

92
.5

91
.4

93
.0

93
.5

77
.3

80
.1

75
.9

78
.5

69
.4

68
.3

40
.4

40
.5

24
.2

80
.0

ca
te

g.
m

ac
ro

-a
ve

ra
ge

42
19

95
.7

95
.6

93
.7

92
.8

92
.0

90
.8

90
.3

89
.9

89
.6

89
.1

87
.8

87
.4

82
.0

81
.8

80
.5

76
.9

69
.8

67
.2

51
.7

45
.8

23
.9

79
.7

Ta
bl

e
10

:A
cc

ur
ac

ie
s

(%
)o

fs
uc

ce
ss

fu
lt

ra
ns

la
tio

ns
on

th
e

ph
en

om
en

on
-l

ev
el

fo
rE

ng
lis

h–
G

er
m

an
.T

he
bo

ld
fa

ce
in

di
ca

te
s

th
e

si
gn

ifi
ca

nt
ly

be
st

-p
er

fo
rm

in
g

sy
st

em
s

pe
rr

ow
.

ca
te

g
co

un
tY

an
de

C
la

ud
U

nb
ab

C
om

m
a

O
nl

-G
O

nl
-W

G
PT

4
IO

L
R

e
Tr

an
s

O
nl

-B
O

nl
-A

A
ya

23
IK

U
N

L
la

m
a

IK
U

N
C

C
U

N
ID

N
V

ID
I

T
SU

H
I

av
g

A
m

bi
gu

ity
20

90
.0

95
.0

90
.0

90
.0

70
.0

70
.0

90
.0

90
.0

50
.0

50
.0

55
.0

85
.0

70
.0

75
.0

60
.0

65
.0

35
.0

15
.0

69
.2

L
ex

ic
al

am
bi

gu
ity

20
90

.0
95

.0
90

.0
90

.0
70

.0
70

.0
90

.0
90

.0
50

.0
50

.0
55

.0
85

.0
70

.0
75

.0
60

.0
65

.0
35

.0
15

.0
69

.2
C

oo
rd

in
at

io
n

&
el

lip
si

s
86

87
.2

80
.2

84
.9

82
.6

84
.9

83
.7

76
.7

75
.6

72
.1

72
.1

72
.1

77
.9

74
.4

69
.8

65
.1

72
.1

54
.7

47
.7

74
.1

G
ap

pi
ng

18
77

.8
66

.7
77

.8
72

.2
88

.9
77

.8
66

.7
55

.6
55

.6
55

.6
55

.6
72

.2
66

.7
44

.4
44

.4
72

.2
38

.9
5.

6
60

.8
Ps

eu
do

ga
pp

in
g

13
76

.9
84

.6
84

.6
76

.9
84

.6
76

.9
53

.8
76

.9
61

.5
61

.5
76

.9
61

.5
61

.5
53

.8
53

.8
69

.2
23

.1
38

.5
65

.4
R

ig
ht

no
de

ra
is

in
g

14
92

.9
78

.6
92

.9
78

.6
78

.6
85

.7
78

.6
78

.6
92

.9
92

.9
71

.4
92

.9
78

.6
71

.4
78

.6
85

.7
57

.1
57

.1
80

.2
Sl

ui
ci

ng
8

10
0.

0
10

0.
0

75
.0

87
.5

75
.0

87
.5

87
.5

75
.0

87
.5

87
.5

62
.5

62
.5

10
0.

0
75

.0
75

.0
37

.5
37

.5
75

.0
77

.1
St

ri
pp

in
g

19
89

.5
84

.2
89

.5
10

0.
0

10
0.

0
94

.7
89

.5
84

.2
84

.2
84

.2
89

.5
84

.2
89

.5
84

.2
78

.9
84

.2
89

.5
63

.2
86

.8
V

P-
el

lip
si

s
14

92
.9

78
.6

85
.7

78
.6

71
.4

78
.6

85
.7

85
.7

57
.1

57
.1

71
.4

85
.7

57
.1

92
.9

64
.3

64
.3

64
.3

64
.3

74
.2

Fa
ls

e
fr

ie
nd

s
15

86
.7

86
.7

86
.7

86
.7

86
.7

73
.3

66
.7

60
.0

66
.7

66
.7

80
.0

66
.7

66
.7

66
.7

60
.0

46
.7

66
.7

53
.3

70
.7

369



ca
te

g
co

un
tY

an
de

C
la

ud
U

nb
ab

C
om

m
a

O
nl

-G
O

nl
-W

G
PT

4
IO

L
R

e
Tr

an
s

O
nl

-B
O

nl
-A

A
ya

23
IK

U
N

L
la

m
a

IK
U

N
C

C
U

N
ID

N
V

ID
I

T
SU

H
I

av
g

Fu
nc

tio
n

w
or

d
34

97
.1

88
.2

94
.1

10
0.

0
94

.1
10

0.
0

97
.1

91
.2

94
.1

94
.1

88
.2

94
.1

85
.3

85
.3

82
.4

73
.5

73
.5

70
.6

89
.1

Fo
cu

s
pa

rt
ic

le
15

93
.3

73
.3

86
.7

10
0.

0
86

.7
10

0.
0

93
.3

80
.0

86
.7

86
.7

86
.7

86
.7

73
.3

73
.3

73
.3

66
.7

80
.0

73
.3

83
.3

Q
ue

st
io

n
ta

g
19

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

89
.5

10
0.

0
94

.7
94

.7
89

.5
78

.9
68

.4
68

.4
93

.6
L

D
D

&
in

te
rr

og
at

iv
es

81
97

.5
93

.8
97

.5
91

.4
96

.3
95

.1
91

.4
90

.1
91

.4
91

.4
85

.2
86

.4
82

.7
80

.2
76

.5
82

.7
70

.4
59

.3
86

.6
In

ve
rs

io
n

22
95

.5
95

.5
90

.9
90

.9
10

0.
0

95
.5

90
.9

90
.9

95
.5

95
.5

86
.4

86
.4

90
.9

81
.8

72
.7

90
.9

68
.2

54
.5

87
.4

M
od

if
yi

ng
C

om
pa

ri
so

n
4

10
0.

0
10

0.
0

10
0.

0
10

0.
0

75
.0

10
0.

0
10

0.
0

10
0.

0
75

.0
75

.0
75

.0
75

.0
75

.0
75

.0
10

0.
0

75
.0

75
.0

50
.0

84
.7

M
ul

tip
le

co
nn

ec
to

rs
13

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.3

10
0.

0
10

0.
0

92
.3

84
.6

84
.6

84
.6

84
.6

10
0.

0
84

.6
76

.9
92

.3
76

.9
76

.9
90

.6
Pi

ed
-p

ip
in

g
14

92
.9

92
.9

10
0.

0
10

0.
0

10
0.

0
92

.9
92

.9
10

0.
0

10
0.

0
10

0.
0

92
.9

92
.9

85
.7

85
.7

85
.7

78
.6

10
0.

0
92

.9
93

.7
Pr

ep
os

iti
on

st
ra

nd
in

g
17

10
0.

0
10

0.
0

10
0.

0
88

.2
94

.1
10

0.
0

88
.2

88
.2

10
0.

0
10

0.
0

82
.4

88
.2

76
.5

76
.5

82
.4

64
.7

52
.9

47
.1

85
.0

To
pi

ca
liz

at
io

n
11

10
0.

0
72

.7
10

0.
0

72
.7

10
0.

0
81

.8
81

.8
72

.7
72

.7
72

.7
81

.8
81

.8
54

.5
72

.7
54

.5
90

.9
54

.5
27

.3
74

.7
L

ex
ic

al
M

or
ph

ol
og

y
41

97
.6

92
.7

90
.2

92
.7

82
.9

73
.2

80
.5

73
.2

75
.6

75
.6

70
.7

68
.3

75
.6

75
.6

63
.4

53
.7

34
.1

26
.8

72
.4

Fu
nc

tio
na

ls
hi

ft
17

10
0.

0
10

0.
0

10
0.

0
94

.1
88

.2
88

.2
10

0.
0

94
.1

88
.2

88
.2

76
.5

82
.4

88
.2

88
.2

82
.4

64
.7

41
.2

41
.2

83
.7

N
ou

n
fo

rm
at

io
n

(e
r)

24
95

.8
87

.5
83

.3
91

.7
79

.2
62

.5
66

.7
58

.3
66

.7
66

.7
66

.7
58

.3
66

.7
66

.7
50

.0
45

.8
29

.2
16

.7
64

.4
M

W
E

96
87

.5
84

.4
78

.1
83

.3
80

.2
71

.9
77

.1
76

.0
72

.9
71

.9
70

.8
67

.7
69

.8
66

.7
66

.7
52

.1
40

.6
33

.3
69

.5
C

ol
lo

ca
tio

n
13

10
0.

0
84

.6
76

.9
69

.2
92

.3
84

.6
76

.9
76

.9
69

.2
69

.2
84

.6
69

.2
76

.9
61

.5
69

.2
53

.8
38

.5
15

.4
70

.5
C

om
po

un
d

14
71

.4
78

.6
57

.1
71

.4
64

.3
42

.9
50

.0
78

.6
57

.1
50

.0
42

.9
64

.3
50

.0
50

.0
42

.9
50

.0
28

.6
14

.3
53

.6
Id

io
m

17
94

.1
88

.2
70

.6
88

.2
52

.9
47

.1
76

.5
70

.6
52

.9
52

.9
47

.1
41

.2
52

.9
41

.2
47

.1
41

.2
5.

9
11

.8
54

.6
N

om
in

al
M

W
E

17
76

.5
88

.2
88

.2
88

.2
10

0.
0

94
.1

82
.4

70
.6

10
0.

0
10

0.
0

94
.1

88
.2

76
.5

70
.6

70
.6

58
.8

58
.8

52
.9

81
.0

Pr
ep

os
iti

on
al

M
W

E
18

94
.4

88
.9

94
.4

94
.4

94
.4

94
.4

88
.9

77
.8

83
.3

83
.3

88
.9

10
0.

0
88

.9
94

.4
88

.9
61

.1
83

.3
72

.2
87

.3
V

er
ba

lM
W

E
17

88
.2

76
.5

76
.5

82
.4

76
.5

64
.7

82
.4

82
.4

70
.6

70
.6

64
.7

41
.2

70
.6

76
.5

76
.5

47
.1

23
.5

23
.5

66
.3

N
am

ed
en

tit
y

&
te

rm
in

ol
og

y
80

83
.8

95
.0

87
.5

81
.3

80
.0

80
.0

81
.3

73
.8

80
.0

80
.0

77
.5

71
.3

62
.5

77
.5

60
.0

57
.5

56
.3

41
.3

73
.7

D
at

e
20

10
0.

0
10

0.
0

95
.0

95
.0

95
.0

85
.0

95
.0

85
.0

95
.0

95
.0

95
.0

85
.0

80
.0

95
.0

80
.0

85
.0

70
.0

75
.0

89
.2

D
om

ai
ns

pe
ci

fic
Te

rm
5

40
.0

80
.0

60
.0

60
.0

60
.0

80
.0

40
.0

60
.0

60
.0

60
.0

60
.0

60
.0

0.
0

40
.0

20
.0

60
.0

60
.0

0.
0

50
.0

M
ea

su
ri

ng
U

ni
t

18
72

.2
10

0.
0

10
0.

0
94

.4
94

.4
94

.4
94

.4
94

.4
94

.4
94

.4
88

.9
88

.9
83

.3
10

0.
0

77
.8

77
.8

72
.2

44
.4

87
.0

O
no

m
at

op
ei

a
11

10
0.

0
10

0.
0

72
.7

63
.6

54
.5

72
.7

81
.8

45
.5

54
.5

54
.5

54
.5

63
.6

45
.5

54
.5

45
.5

45
.5

18
.2

0.
0

57
.1

Pr
op

er
N

am
e

&
L

oc
at

io
n

26
80

.8
88

.5
84

.6
73

.1
73

.1
69

.2
69

.2
65

.4
73

.1
73

.1
69

.2
53

.8
53

.8
65

.4
46

.2
26

.9
50

.0
38

.5
64

.1
N

on
-v

er
ba

la
gr

ee
m

en
t

98
94

.9
95

.9
91

.8
93

.9
90

.8
89

.8
90

.8
92

.9
80

.6
80

.6
80

.6
92

.9
83

.7
86

.7
85

.7
81

.6
73

.5
65

.3
86

.2
C

or
ef

er
en

ce
24

87
.5

91
.7

83
.3

87
.5

75
.0

83
.3

83
.3

83
.3

54
.2

54
.2

66
.7

83
.3

79
.2

75
.0

83
.3

70
.8

54
.2

58
.3

75
.2

G
en

iti
ve

16
93

.8
93

.8
81

.3
87

.5
93

.8
81

.3
81

.3
87

.5
87

.5
87

.5
93

.8
93

.8
75

.0
87

.5
81

.3
81

.3
68

.8
68

.8
84

.7
Pe

rs
on

al
Pr

on
ou

n
C

or
ef

er
en

ce
19

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
94

.7
10

0.
0

10
0.

0
89

.5
89

.5
78

.9
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
89

.5
96

.8
Po

ss
es

si
ve

Pr
on

ou
ns

22
95

.5
95

.5
95

.5
10

0.
0

90
.9

95
.5

95
.5

10
0.

0
95

.5
95

.5
90

.9
90

.9
86

.4
90

.9
86

.4
77

.3
86

.4
40

.9
89

.4
Su

bs
tit

ut
io

n
17

10
0.

0
10

0.
0

10
0.

0
94

.1
10

0.
0

94
.1

94
.1

94
.1

82
.4

82
.4

76
.5

10
0.

0
76

.5
82

.4
76

.5
82

.4
58

.8
76

.5
87

.3
Pu

nc
tu

at
io

n
13

92
.3

92
.3

92
.3

10
0.

0
92

.3
76

.9
61

.5
76

.9
84

.6
84

.6
92

.3
84

.6
84

.6
61

.5
84

.6
10

0.
0

92
.3

76
.9

85
.0

Q
uo

ta
tio

n
m

ar
ks

13
92

.3
92

.3
92

.3
10

0.
0

92
.3

76
.9

61
.5

76
.9

84
.6

84
.6

92
.3

84
.6

84
.6

61
.5

84
.6

10
0.

0
92

.3
76

.9
85

.0
Su

bo
rd

in
at

io
n

11
5

98
.3

94
.8

98
.3

88
.7

95
.7

96
.5

94
.8

93
.0

94
.8

94
.8

93
.0

86
.1

86
.1

88
.7

83
.5

80
.0

80
.9

67
.0

89
.7

A
dv

er
bi

al
cl

au
se

9
88

.9
10

0.
0

10
0.

0
88

.9
10

0.
0

88
.9

10
0.

0
88

.9
10

0.
0

10
0.

0
88

.9
66

.7
66

.7
88

.9
88

.9
88

.9
66

.7
55

.6
87

.0
C

le
ft

se
nt

en
ce

17
10

0.
0

94
.1

10
0.

0
82

.4
10

0.
0

10
0.

0
88

.2
88

.2
94

.1
94

.1
88

.2
76

.5
82

.4
58

.8
64

.7
70

.6
76

.5
64

.7
84

.6
C

om
pl

ex
ob

je
ct

18
10

0.
0

94
.4

10
0.

0
94

.4
94

.4
10

0.
0

10
0.

0
10

0.
0

94
.4

94
.4

88
.9

10
0.

0
94

.4
10

0.
0

94
.4

83
.3

83
.3

61
.1

93
.2

C
on

ta
ct

cl
au

se
12

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
91

.7
10

0.
0

91
.7

10
0.

0
10

0.
0

10
0.

0
91

.7
91

.7
91

.7
75

.0
83

.3
91

.7
83

.3
94

.0
In

fin
iti

ve
cl

au
se

25
96

.0
88

.0
96

.0
88

.0
92

.0
10

0.
0

92
.0

10
0.

0
92

.0
92

.0
10

0.
0

96
.0

92
.0

10
0.

0
92

.0
72

.0
84

.0
68

.0
91

.1
Pa

rt
ic

ip
le

cl
au

se
22

10
0.

0
95

.5
95

.5
86

.4
90

.9
90

.9
95

.5
90

.9
90

.9
90

.9
86

.4
77

.3
81

.8
81

.8
72

.7
86

.4
81

.8
59

.1
86

.4
Su

bj
ec

tc
la

us
e

12
10

0.
0

10
0.

0
10

0.
0

83
.3

10
0.

0
10

0.
0

91
.7

83
.3

10
0.

0
10

0.
0

10
0.

0
83

.3
83

.3
10

0.
0

10
0.

0
83

.3
75

.0
83

.3
92

.6
V

er
b

se
m

an
tic

s
20

10
0.

0
90

.0
95

.0
70

.0
95

.0
85

.0
65

.0
80

.0
85

.0
85

.0
85

.0
65

.0
80

.0
75

.0
70

.0
55

.0
30

.0
35

.0
74

.7
V

er
b

te
ns

e/
as

pe
ct

/m
oo

d
16

9
87

.0
90

.5
90

.5
87

.0
89

.3
88

.8
89

.9
85

.2
85

.2
85

.2
86

.4
85

.2
81

.1
84

.6
84

.6
78

.1
69

.2
45

.0
82

.9
C

on
di

tio
na

l
25

96
.0

10
0.

0
10

0.
0

96
.0

96
.0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

92
.0

88
.0

88
.0

76
.0

80
.0

72
.0

60
.0

91
.3

D
itr

an
si

tiv
e

34
82

.4
94

.1
97

.1
91

.2
91

.2
88

.2
94

.1
91

.2
91

.2
91

.2
97

.1
94

.1
88

.2
91

.2
94

.1
94

.1
82

.4
50

.0
89

.1
G

er
un

d
19

94
.7

84
.2

94
.7

78
.9

94
.7

73
.7

89
.5

73
.7

94
.7

94
.7

89
.5

78
.9

73
.7

89
.5

94
.7

73
.7

47
.4

42
.1

81
.3

Im
pe

ra
tiv

e
24

91
.7

83
.3

87
.5

83
.3

91
.7

87
.5

83
.3

83
.3

70
.8

70
.8

70
.8

83
.3

75
.0

75
.0

79
.2

66
.7

62
.5

20
.8

75
.9

In
tr

an
si

tiv
e

29
82

.8
86

.2
82

.8
89

.7
79

.3
89

.7
86

.2
82

.8
69

.0
69

.0
75

.9
75

.9
72

.4
86

.2
79

.3
86

.2
79

.3
55

.2
79

.3
R

efl
ex

iv
e

19
89

.5
89

.5
84

.2
84

.2
89

.5
89

.5
78

.9
78

.9
84

.2
84

.2
84

.2
73

.7
84

.2
68

.4
78

.9
52

.6
68

.4
31

.6
77

.5
Tr

an
si

tiv
e

19
73

.7
94

.7
84

.2
78

.9
84

.2
89

.5
94

.7
78

.9
89

.5
89

.5
84

.2
94

.7
84

.2
89

.5
89

.5
78

.9
57

.9
47

.4
82

.5
V

er
b

va
le

nc
y

12
6

93
.7

88
.1

83
.3

81
.0

84
.9

86
.5

81
.7

81
.0

83
.3

83
.3

77
.8

75
.4

78
.6

76
.2

73
.8

68
.3

58
.7

50
.0

78
.1

C
as

e
go

ve
rn

m
en

t
24

10
0.

0
10

0.
0

95
.8

95
.8

10
0.

0
10

0.
0

10
0.

0
10

0.
0

95
.8

95
.8

95
.8

91
.7

10
0.

0
95

.8
87

.5
87

.5
87

.5
79

.2
94

.9
C

at
en

at
iv

e
ve

rb
25

96
.0

96
.0

92
.0

84
.0

92
.0

96
.0

84
.0

88
.0

96
.0

96
.0

92
.0

88
.0

84
.0

92
.0

88
.0

84
.0

84
.0

72
.0

89
.1

370



ca
te

g
co

un
tY

an
de

C
la

ud
U

nb
ab

C
om

m
a

O
nl

-G
O

nl
-W

G
PT

4
IO

L
R

e
Tr

an
s

O
nl

-B
O

nl
-A

A
ya

23
IK

U
N

L
la

m
a

IK
U

N
C

C
U

N
ID

N
V

ID
I

T
SU

H
I

av
g

M
ed

io
pa

ss
iv

e
vo

ic
e

18
94

.4
83

.3
83

.3
83

.3
77

.8
72

.2
77

.8
77

.8
83

.3
83

.3
72

.2
61

.1
83

.3
72

.2
77

.8
77

.8
33

.3
38

.9
74

.1
Pa

ss
iv

e
vo

ic
e

25
10

0.
0

96
.0

88
.0

96
.0

92
.0

92
.0

88
.0

88
.0

96
.0

96
.0

92
.0

92
.0

96
.0

76
.0

80
.0

76
.0

80
.0

52
.0

87
.6

R
es

ul
ta

tiv
e

18
88

.9
83

.3
83

.3
61

.1
72

.2
83

.3
83

.3
66

.7
61

.1
61

.1
44

.4
44

.4
50

.0
72

.2
55

.6
33

.3
16

.7
22

.2
60

.2
Se

m
an

tic
ro

le
s

16
75

.0
56

.3
43

.8
50

.0
62

.5
62

.5
43

.8
50

.0
50

.0
50

.0
50

.0
56

.3
37

.5
31

.3
37

.5
31

.3
18

.8
12

.5
45

.5

m
ic

ro
-a

ve
ra

ge
99

4
91

.8
90

.4
89

.4
86

.8
87

.8
86

.1
85

.2
83

.3
82

.3
82

.2
80

.7
80

.4
78

.1
79

.0
75

.1
71

.0
62

.2
50

.0
80

.1
ph

en
.m

ac
ro

-a
ve

ra
ge

99
4

91
.4

90
.2

88
.8

86
.1

87
.1

85
.7

84
.3

82
.4

81
.6

81
.4

79
.6

79
.2

76
.2

77
.4

73
.8

70
.3

60
.8

49
.5

79
.2

ca
te

g.
m

ac
ro

-a
ve

ra
ge

99
4

92
.4

90
.5

90
.0

87
.7

87
.4

83
.6

81
.7

81
.3

79
.7

79
.7

79
.6

79
.0

77
.2

76
.4

72
.6

69
.0

59
.7

49
.0

78
.7

Ta
bl

e
11

:A
cc

ur
ac

ie
s

(%
)o

fs
uc

ce
ss

fu
lt

ra
ns

la
tio

ns
on

th
e

ph
en

om
en

on
-l

ev
el

fo
rE

ng
lis

h–
R

us
si

an
.T

he
bo

ld
fa

ce
in

di
ca

te
s

th
e

si
gn

ifi
ca

nt
ly

be
st

-p
er

fo
rm

in
g

sy
st

em
s

pe
rr

ow
.

371



Proceedings of the Ninth Conference on Machine Translation, pages 372–379
November 15-16, 2024 ©2024 Association for Computational Linguistics

IsoChronoMeter: A simple and effective isochronic translation evaluation
metric

Nikolai Rozanov1,2 Vikentiy Pankov1 Dmitrii Mukhutdinov1 Dima Vypirailenko1

1Brask AI
{vikentiy@brask.ai, dm@brask.ai, dima@brask.ai}

2Imperial College London
{nikolai.rozanov@gmail.com}

Abstract

Machine translation (MT) has come a long
way and is readily employed in production sys-
tems to serve millions of users daily. With
the recent advances in generative AI, a new
form of translation is becoming possible -
video dubbing. This work motivates the impor-
tance of isochronic translation, especially in the
context of automatic dubbing, and introduces
‘IsoChronoMeter’ (ICM). ICM is a simple yet
effective metric to measure isochrony of trans-
lations in a scalable and resource-efficient way
without the need for gold data, based on state-
of-the-art text-to-speech (TTS) duration predic-
tors. We motivate IsoChronoMeter and demon-
strate its effectiveness. Using ICM we demon-
strate the shortcomings of state-of-the-art trans-
lation systems and show the need for new meth-
ods. We release the code at this URL: https:
//github.com/braskai/isochronometer.

1 Introduction

The isochronic translation is a practice of ensuring
that the timing of speech in translated content
matches the original. It has become increasingly
crucial in AI-driven dubbing. As the demand
for multilingual audiovisual content grows, the
ability to maintain the natural rhythm and pacing
of the original language through isochronic
translation is vital for the success of AI dubbing
systems. Traditionally, human translators and
voice actors have emphasized the importance of
synchronizing translated dialogue with on-screen
visuals to ensure a seamless viewing experience.
This synchronization, known as isochrony, is
essential for maintaining the illusion that the actors
are speaking the translated language, matching
their lip movements and pauses with the new
audio. Recently, with the advancements in neural
machine translation and text-to-speech systems,
researchers have strived to replicate this isochrony
automatically, aiming to preserve the speech-pause

structure of the original language in the trans-
lated content (Tam et al., 2022; Lakew et al., 2022).

Another way to ensure good dubbing synchro-
nization is lip-sync. While lip-syncing is often
employed to ensure synchronicity in dubbing,
it presents significant challenges. Lip-syncing
may force the translated dialogue to unnaturally
conform to the lip movements of the original
actors, potentially compromising the accuracy
and fluidity of the translation. This often results
in awkward or stilted dialogue, which can spoil
the overall viewing experience. Additionally, due
to the linguistic differences between languages,
perfect lip-syncing can be impractical, leading to
less faithful representations of the original content.
Consequently, although lip-syncing can enhance
visual alignment, it is not the optimal approach
for achieving high-quality dubbing, especially
when the goal is to maintain the natural flow and
meaning of the original speech (Brannon et al.,
2023) Research has demonstrated that integrating
isochronic translation into AI dubbing significantly
enhances the quality and naturalness of dubbed
content, making it more acceptable to global
audiences. By preserving the timing and rhythm
of the original speech, these systems not only
improve the technical quality of the translation but
also maintain the emotional and narrative integrity
of the content (Chronopoulou et al., 2023a).

1.1 Contribution

In this work we present a new isochronic metric,
‘IsoChronoMeter’ (ICM), and evaluation dataset for
isochronic translation and demonstrate that ‘nor-
mal’ translations, even by state-of-the-art systems
based on LLMs and human translations, without
isochrony in mind, do not achieve a good level of
isochronic translation. This highlights the impor-
tance of developing specialised translation systems
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that are able to perform isochronic translation.

2 Background

2.1 Isochronic translation and metrics

Initial approaches that wanted to achieve isochronic
translation focused on isometric translation (Fed-
erico et al., 2020; Karakanta et al., 2020; Lakew
et al., 2021b,a), where the aim of MT systems was
to translate text to achieve a similar target length.
Spoken language translation benchmarks included
‘isometric’ subtasks (Anastasopoulos et al., 2022).
However, research showed (Brannon et al., 2023)
that isometric translations do not result in tempo-
rally synchronized speech after dubbing, i.e. iso-
metricity does not really correlate with isochronic-
ity.

This led to the most recent approaches focus-
ing on isochronic translation instead (Wu et al.,
2022; Chronopoulou et al., 2023b). However, this
direction of research is fairly new: a dedicated
dubbing task in spoken language translation bench-
marks was first introduced in 2023 (Agarwal et al.,
2023), and the degree of isochronicity is either
measured subjectively by humans (Federico et al.,
2020) or approximated via auxiliary metrics such as
phoneme-based evaluation metrics (Chronopoulou
et al., 2023a). VideoDubber (Wu et al., 2022) was
among the first to successfully employ automatic
duration predictors to evaluate isochronicity of the
translated text, but their ‘isochronic’ metric is still
based on human feedback, and hence cannot be
applied at scale. Therefore, we conclude that there
is a need to evaluate isochronic translations auto-
matically; furthermore, since automatic dubbing
pipelines in practice work with a pipeline approach
(i.e. first running ASR and then later translating),
it is crucial to introduce a text-based isochronic
translation evaluation suite.

2.2 Evaluation Datasets

Collecting translation datasets requires a lot of ef-
fort especially for spoken data. Existing work in-
cludes Must-C (Di Gangi et al., 2019), GigaST
(Ye et al., 2023), CoVost-2 (Wang et al., 2020)
and Anim-400K (Cai et al., 2024). Datasets that
specificially focus on isochronic translation using
professional dubbing services only seem to exist
privately (Brannon et al., 2023). In our work, we
choose CoVost-2 due to its permissible licenses and
availability of languages.

2.3 Identified challenges.
A full isochrony estimation would require humans
to read out the given original text and the translated
text. Additionally, one would need to attempt to
find speakers that have similar speaking rates in
their respective languages. We propose to over-
come this by a novel isochrony metric that is easy
to compute without the need of human annotations
(i.e. human speech) and a joined isochrony and
translation quality metric without the need of gold
annotations.

3 Method

3.1 Metrics
3.1.1 IsoChronoMeter (ours) - automatic

reference-free isochrony estimation
To compute isochrony metrics, we utilize the open-
source TTSMMS project1, which is based on Vits
TTS (Kim et al., 2021) and MMS (Pratap et al.,
2023), which supports multiple languages. Specif-
ically, we use the duration predictor component
to estimate the durations of the original text and
translated texts generated by different machine
translation (MT) models. As an isochrony metric,
we apply a simple relative absolute error formula.
Since the duration predictors for most languages
are trained on similar domains (biblical texts) and
share the same architecture, we expect them to
produce similar durations adjusted to the average
speaking rate of each language. Therefore, we can
assume that if the texts are isochronic, their dura-
tions will be close. Concretely, IsoChronoMeter
(ICM) is:

ICM = (1)
∣∣∣∣
∣∣∣∣
MMS(original)−MMS(translated)

MMS(original)

∣∣∣∣
∣∣∣∣
2

2

Therefore, ICM is 0 if the duration of the original
audio length prediction and the translated audio
length prediction are the same; otherwise ICM rep-
resents a percentage of how much the two audio
durations deviate from one another, e.g. ICM = 0.5
means that one of the audio duration predictions is
half the duration prediction of the other.

3.1.2 Blaser2.0 - automatic reference-free
machine translation quality estimation

To estimate MT quality (QE), we utilise
BLASER2.0 models (Chen et al., 2023), based on

1Only a github is available: https://github.com/
wannaphong/ttsmms
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SONAR embeddings (Duquenne et al., 2023), to
predict cross-lingual semantic similarities between
the translation and original texts. Concretely,

QE = (2)

blaser2
(
sonar(original), sonar(translated)

)

Chen et al. (2023) show that such quality-
estimation metrics outperform standard metrics
such as bleu.

3.1.3 Adjusted-IsoChronoMeter - automatic
reference-free joined machine
translation quality and isochrony
estimation

We also propose another metric based on the com-
bination of IsoChronoMeter and Blaser, Adjusted-
IsoChronoMeter (A-ICM). Concretely:

AICM = (1− ICM) ∗QE (3)

3.2 Effectiveness of the isochronic metric
Modern TTS systems such as Elevenlabs2 or Rask
AI3 are able to produce realistic voices and voice-
clones in multiple languages. These synthetic
voices share incredible similarity with human
voices. Therefore, we argue that using TTS as a
proxy for the duration of human speech is effective.
However, since we use a duration predictor for a
TTS system, we need to show that the duration pre-
dictor is faithful to the real duration of a TTS sys-
tem. To show this, we conduct a simple validation
against an internal dataset of a few hours of English
audio data, see Figure 1. Concretely, for each audio
file we generate the ‘original’ TTS-generated audio
sample and compare it against three predictions.
Firstly, we compare against a ‘repeat run’, i.e. we
generate a second audio file using the same TTS
provider. Interestingly, the repeat run does not pro-
duce 0 or close to 0 error, in fact for < 15 words the
error is above 5%. Secondly, we compare against
our standard duration predictor. Finally, we also
compare against a fine-tuned version of the dura-
tion predictor. We find that for small word counts
the error is quite significant for all three, but espe-
cially for the not fine-tuned duration predictor. For
x > 15, however, all three curves start converging
and are within 5% error of one another. Therefore
our metric becomes effective after a sufficiently
large threshold of words.

2elevenlabs.com
3rask.ai

Figure 1: Dataset on English data. On the y-axis there
is the relative absolute error between an original TTS-
generated audio-sample and the associated prediction.
On the x-axis is the number of total words used for
the audio sample / prediction. Three curves show a
secondary TTS-generated audio-sample (interestingly
showing a big error for a few words), a fine-tuned dura-
tion predictor and the original duration predictor.

3.3 Dataset filtering

To demonstrate our metric and the need for
isochronic translation engines, we create a small
high-quality dataset from the CoVoST-2 (Wang
et al., 2020), which is based on CommonVoice
(Ardila et al., 2020). Specifically, taking into ac-
count the effectiveness of our metric after a specific
threshold, we first filter the CoVoST-2 dataset by
size. To find a good trade-off between dataset size
and metric efficiency, we plot the histogram of
counts and discover that above 20 tokens strikes
a good balance, see Figure 2. In particular, we
observe that if we choose the number of tokens
to be 25 and higher we have too few sentences,
while if we choose the number of tokens to be 15
or less our duration predictor is weak, therefore
20 and above tokens is the optimal point. Addi-
tionally, we also filter the dataset based on quality
rankings by humans present in the Covost dataset.
Concretely, we only take data-points where there
are no downvotes and at least three upvotes. The
rationale behind this is to have only high quality
translation samples present.
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Figure 2: A histogram of sentence count vs. number
of tokens in a sentence. I.e. the x-axis represents the
number of tokens in a sentence, the y-axis is the total
count of such sentences.

Model zh-I zh-Q zh-A
AIST-AIRC - - -
Aya23 0.18 3.96 3.25
Claude-3.5 0.19 3.94 3.19
CommandR-plus 0.18 3.93 3.22
CUNI-DS - - -
CUNI-NL - - -
CycleL 0.22 2.49 1.94
CycleL2 0.39 2.13 1.3
Dubformer - - -
Gemini-1.5-Pro - - -
GPT-4 0.18 3.98 3.26
Human 0.22 3.72 2.9
HW-TSC 0.18 4.01 3.29
IKUN 0.19 3.84 3.11
IKUN-C 0.21 3.76 2.97
IOL_Research 0.19 3.98 3.22
Llama3-70B 0.19 3.99 3.23
Mistral-Large - - -
MSLC - - -
NVIDIA-NeMo 0.21 3.9 3.08
Occiglot - - -
ONLINE-A 0.18 4.03 3.3
ONLINE-B 0.18 3.91 3.21
ONLINE-G 0.19 3.91 3.17
ONLINE-W 0.18 3.95 3.24
Phi-3-Medium - - -
TranssionMT - - -
TSU-HITs - - -
Unbabel-Tower70B 0.18 3.95 3.24
UvA-MT 0.2 4 3.2
Yandex - - -
ZMT - - -

Table 1: Metrics comparison across different systems.
Translation from English into: zh (Chinese). Metrics
correspond to: I = IsoChronoMeter (↓), Q = Quality
Estimation (↑), A = Adjusted-IsoChronoMeter (↑).

4 Results

In this section we show all the results that we pro-
duce for the WMT24 shared testsuite task (Kocmi
et al., 2024). Specifically, all included reference
paper can be found in Appendix ??. Our eval-
uation, as described above, combines three met-
rics: IsoChronoMeter (I), Quality Estimation (Q)
and Adjusted-IsoChronoMeter (A) (see Equations
(1,2,3)). In particular, we received translations with
a variety of systems across four language pairs:
en→zh, en→es, en→ru, en→de. In total there are
four tables, one per language pair.

Model es-I es-Q es-A
AIST-AIRC - - -
Aya23 0.48 4.61 2.4
Claude-3.5 0.5 4.59 2.3
CommandR-plus 0.5 4.59 2.3
CUNI-DS - - -
CUNI-NL - - -
CycleL 0.5 3.52 1.76
CycleL2 - - -
Dubformer 0.47 4.6 2.44
Gemini-1.5-Pro - - -
GPT-4 0.5 4.6 2.3
Human 0.48 4.42 2.3
HW-TSC - - -
IKUN 0.46 4.56 2.46
IKUN-C 0.45 4.5 2.48
IOL_Research 0.48 4.6 2.39
Llama3-70B 0.49 4.61 2.35
Mistral-Large - - -
MSLC 0.47 4.61 2.44
NVIDIA-NeMo 0.47 4.62 2.45
Occiglot 0.51 4.43 2.17
ONLINE-A 0.48 4.6 2.39
ONLINE-B 0.49 4.64 2.37
ONLINE-G 0.48 4.6 2.39
ONLINE-W 0.47 4.59 2.43
Phi-3-Medium - - -
TranssionMT 0.5 4.62 2.31
TSU-HITs 0.25 3.39 2.54
Unbabel-Tower70B 0.5 4.62 2.31
UvA-MT - - -
Yandex - - -
ZMT 0.49 4.61 2.35

Table 2: Metrics comparison across different systems.
Translation from English into: es (Spanish). Metrics
correspond to: I = IsoChronoMeter (↓), Q = Quality
Estimation (↑), A = Adjusted-IsoChronoMeter (↑).
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Model ru-I ru-Q ru-A
AIST-AIRC - - -
Aya23 0.48 4.91 2.55
Claude-3.5 0.49 4.95 2.52
CommandR-plus 0.49 4.9 2.5
CUNI-DS 0.47 4.86 2.58
CUNI-NL - - -
CycleL 0.39 3.15 1.92
CycleL2 0.3 2.52 1.76
Dubformer 0.42 4.82 2.8
Gemini-1.5-Pro - - -
GPT-4 0.47 4.93 2.61
Human 0.53 4.82 2.27
HW-TSC - - -
IKUN 0.42 4.84 2.81
IKUN-C 0.41 4.77 2.81
IOL_Research 0.47 4.93 2.61
Llama3-70B 0.49 4.94 2.52
Mistral-Large - - -
MSLC - - -
NVIDIA-NeMo 0.48 4.93 2.56
Occiglot - - -
ONLINE-A 0.48 4.91 2.55
ONLINE-B 0.47 4.93 2.61
ONLINE-G 0.51 4.93 2.42
ONLINE-W 0.47 4.92 2.61
Phi-3-Medium - - -
TranssionMT 0.47 4.93 2.61
TSU-HITs 0.34 3.66 2.42
Unbabel-Tower70B 0.49 4.92 2.51
UvA-MT - - -
Yandex 0.48 4.83 2.51
ZMT 0.48 4.91 2.55

Table 3: Metrics comparison across different systems.
Translation from English into: ru (Russian). Metrics
correspond to: I = IsoChronoMeter (↓), Q = Quality
Estimation (↑), A = Adjusted-IsoChronoMeter (↑).

5 Findings

We identify three main findings. Firstly, isochrony
is not the natural way of translation (even for hu-
mans). Secondly, systems designed for dubbing,
such as DubFormer, or multi-linguality, such as
Aya23, outperform their ‘standard’ counter-parts.
Finally, the metric itself is powerful and determines
systems that are better at dubbing without gold an-
notations.

5.1 Isochrony does not come automatically
We discover that across all language pairs, the
smallest isochronic score (ICM) that we discover

is 0.18, which means that the translated audio du-
ration prediction is almost 18% longer or shorter
than the original audio prediction.

Model de-I de-Q de-A
AIST-AIRC 0.35 4.69 3.05
Aya23 0.38 4.68 2.9
Claude-3.5 0.39 4.7 2.87
CommandR-plus 0.38 4.68 2.9
CUNI-DS - - -
CUNI-NL 0.33 4.62 3.1
CycleL 0.4 3.65 2.19
CycleL2 0.4 3.65 2.19
Dubformer 0.32 4.51 3.07
Gemini-1.5-Pro - - -
GPT-4 0.39 4.72 2.88
Human 0.38 4.47 2.77
HW-TSC - - -
IKUN 0.34 4.57 3.02
IKUN-C 0.34 4.5 2.97
IOL_Research 0.37 4.7 2.96
Llama3-70B 0.39 4.73 2.89
Mistral-Large - - -
MSLC 0.36 4.61 2.95
NVIDIA-NeMo 0.37 4.72 2.97
Occiglot 0.46 4.55 2.46
ONLINE-A 0.37 4.68 2.95
ONLINE-B 0.37 4.6 2.9
ONLINE-G 0.36 4.69 3
ONLINE-W 0.37 4.66 2.94
Phi-3-Medium - - -
TranssionMT 0.37 4.6 2.9
TSU-HITs 0.34 3.37 2.22
Unbabel-Tower70B 0.38 4.68 2.9
UvA-MT - - -
Yandex - - -
ZMT 0.37 4.68 2.95

Table 4: Metrics comparison across different systems.
Translation from English into: de (German). Metrics
correspond to: I = IsoChronoMeter (↓), Q = Quality
Estimation (↑), A = Adjusted-IsoChronoMeter (↑).

5.2 Most promising systems

The most promising systems that are overall bet-
ter at isochronic translation as well as translation
quality are DubFormer, Ikun, Ikun-C (Liao et al.,
2024) and Cuni-NL (Hrabal et al., 2024). For some
language pairs, some big players such as GPT-4,
Nemo and ‘Online A’ perform well as well as some
specialised systems HW-TSC (Wu et al., 2024) and
MSLC (Larkin et al., 2024). Aya23 outperforms its
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backbone model CommandR-plus, which is intu-
ititve and show that multi-linguality helps MT and
isochronic-MT.

5.3 Nuances in the metric
Overall we discover that the joined metric is very
powerful in ranking systems. We discover an edge
case for en→zh, where TSU-HITs has a poor trans-
lation quality and likely drops parts of the trans-
lation, resulting in poor quality estimate scores,
but it has excellent isochrony scores and adjusted
isochrony scores. Therefore, we recommend using
a performance threshold when applying the metric.

6 Conclusion & Future Work

We motivate the importance of isochronic transla-
tion. To this end, we presented a novel and simple
metric to evaluate isochrony that does not require
gold annotations. We evaluated the shared task
and discovered that: 1. Isochrony does not come
naturally for translation systems, including hu-
man (non-isochronic) translation; 2. Systems and
LLMs that are designed for multi-linguality or dub-
bing perform better on our main metric ‘Ajusted-
IsoChronoMeter’, which combines isochrony and
machine translation quality; 3. The metric requires
some nuance, as systems that drop parts of the
translation might have a good isochrony score, but
bad translation quality score - overall biasing them
towards a better A-ICM.

6.1 Future directions
There are several future directions that we iden-
tify. Firstly, isochronic translation itself is a
promising direction and automatic metrics such as
IsoChronoMeter can help with advancing this field.
Secondly, extending the benchmark to include gold
human translation designed for dubbing. Finally,
a more detailed evaluation and improvement of
the metric itself; specifically, we believe better du-
ration predictors are possible, and more rigorous
evaluation, including using gold annotations and
on more language pairs.
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Abstract
LLM-based NLP systems typically work by em-
bedding their input data into prompt templates
which contain instructions and/or in-context ex-
amples, creating queries which are submitted
to a LLM, and then parsing the LLM response
in order to generate the system outputs. Prompt
Injection Attacks (PIAs) are a type of subver-
sion of these systems where a malicious user
crafts special inputs which interfere with the
prompt templates, causing the LLM to respond
in ways unintended by the system designer.

Recently, Sun and Miceli-Barone (2024) pro-
posed a class of PIAs against LLM-based ma-
chine translation. Specifically, the task is to
translate questions from the TruthfulQA test
suite, where an adversarial prompt is prepended
to the questions, instructing the system to ig-
nore the translation instruction and answer the
questions instead.

In this test suite, we extend this approach to
all the language pairs of the WMT 2024 Gen-
eral Machine Translation task. Moreover, we
include additional attack formats in addition to
the one originally studied.

1 Introduction

General purpose pretrained Large Language Mod-
els have become the dominant paradigm in NLP,
due to their ability to quickly adapt to almost any
task with in-context few-shot learning (Brown et al.,
2020; Chowdhery et al., 2022; Wei et al., 2022) or
instruction following (Ouyang et al., 2022). In most
settings, the performance of LLMs predictably in-
creases with their size according to empirical scal-
ing laws (Kaplan et al., 2020; Hernandez et al.,
2021; Hoffmann et al., 2022), however, LLMs can
still misbehave when subjected to adversarial or
out-of-distribution inputs. One such class of sce-
narios is Prompt Injection Attacks (PIAs), where
the end-user embeds instructions in their requests
that contradict the default system prompt or fine-
tuning and thus manipulate the LLM to behave in

ways not intended by the system developer, such
as performing a task different than the intended
one, revealing secret information included in the
system prompt, subvert content moderation, and
so on. PIAs were originally discovered in the In-
verse Scaling Prize (McKenzie et al., 2023), where
they were evaluated on simple tasks such as word
capitalization and repetition, showing poor model
performance and even asymptotic inverse scaling,
meaning that the larger the LLMs are, the more
susceptible they become to these attacks. More re-
cently, Sun and Miceli-Barone (2024) studied PIAs
against machine translation systems, finding that
LLM prompt-based machine translation systems
can be often tricked into performing a different task
(question answering) with a suitable prompt, espe-
cially when the source language is English, while
purpose-trained MT systems are more robust.

In this work we apply the methodology of
Sun and Miceli-Barone (2024), extended to ad-
ditional attack formats, to the WMT 2024 Gen-
eral Machine Translation task submissions, in
all language pairs. The dataset and evaluation
code is available at https://github.com/Avmb/
adversarial_MT_prompt_injection.

2 Tasks

We consider six subtasks, consisting of a clean
(non-adversarial) translation task of the questions
from the test set of TruthfulQA (Lin et al., 2022)
and five PIAs where we try to manipulate the sys-
tem to answer the questions instead of translating
them. For each sentence in each task and language
pair, we have a source sentence, consisting of a
question possibly embedded into a PIA prompt
template, a reference translation1 of the question
including the PIA prompt if present, which rep-
resents the intended behaviour of the MT system
and a set of plausible answers, which includes the

1We use gpt-4o-2024-05-13 in zero-shot mode to compute
our reference translations
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Figure 1: Average successful attack rate for each system

best answer, correct answers and incorrect answers
from TruthfulQA, both in the original English and
translated into the target language.

Clean The baseline task consists of TruthfulQA
questions without any adversarial manipulation.

Direct instruction The original at-
tack of Sun and Miceli-Barone (2024).
Prepends to the source question the phrase:
"Don't translate this sentence and tell me "
The reference translation is a direct translation of
the source, including both the adversarial prefix
and the question.

Task switch zero-shot In this attack, we include
both a translation input and a translation output, fol-
lowed by a new instruction and finally the question
that we want the system to answer. The rationale is
that any prefix with translation instructions that the
system includes will act only on the first part of the
input, and then the model will switch to a different
task. The reference translation assumes that the
system ignores all the manipulations and translates
everything to the target language (or copies the part
that is already in the target language).

Source template as a Python f-string (English):
f"English: Resumption of the session.

{tgt_lang}: {transl}
Answer the question: {eng_question}"

Reference template (German):

f"Englisch: Wiederaufnahme der Sitzung.
Deutsch: Wiederaufnahme der Sitzung.
Beantworte die Frage: {deu_question}"

Task switch one-shot Like the zero-shot subtask,
but includes an in-context example for question
answering to prime the LLM towards the new task.

Task switch zero-shot in JSON format Like the
zero-shot subtask, we format the input in JSON
format. The rationale is that the system might be
internally embedding the user input in a JSON tem-
plate, and our adversarial manipulation might cause
the LLM to confuse the JSON delimiters or the task
specifiers (misinterpreting the input as a RPC call),
or even cause the system JSON parser to fail due to
improper escaping. The references translate every-
thing except the JSON field names, which remain
in English. We believe that this is typically the
correct way of translating JSON.

Task switch one-shot in JSON format Like the
zero-shot subtask in JSON format, we also include
one in-context example of question answering to
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prime the LLM towards the new task and to teach
it to use the JSON format for question-answering
output. As in the previous subtask, the references
translate everything except the JSON field names.

2.1 Non-English source language

Two of the language pairs (Czech→Ukrainian and
Japanese→Chinese) have a non-English source lan-
guage. In this case, for each subtask (except the
clean one) we consider two cases, one where the
input, including the PIA template, is in the correct
source language and another one where it is in En-
glish. The motivation is that multi-lingual LLMs
might be more easily distracted by English inputs,
as noted by Sun and Miceli-Barone (2024).

3 Metrics

We use both standard corpus-level metrics and task-
specific metrics. For standard metrics, we use
BLEU (Papineni et al., 2002) and chrF++ (Popović,
2017) as implemented in SacreBLEU (Post, 2018).
As noted by Sun and Miceli-Barone (2024), these
metrics might be insufficient to detect successful
attacks, therefore we also use the "question mark "
(demonstrated as QM in the tables) heuristic which

they proposed, which consists in detecting whether
the output ends with a question mark2, we also in-
troduce two additional task-specific metrics: the
"BLEU win" (demonstrated as BW in the tables)
metric consists of computing sentence-level BLEU
for each translation w.r.t. the reference translation
and comparing it with the sentence-level BLEU
w.r.t. the reference answers (using BLEU in multi-
reference mode)3, where we count the proportion
of translation where the former is greater than the
latter. The "chrF win" (demonstrated as CW in
the tables) metric is the same with sentence-level
chrF++. To further distinguish between the situa-
tion where the MT system outputs translation, an
answer, or other random content. We have addi-
tional metrics (not shown in the tables) that detect
whether the sentence BLEU/chrF++ w.r.t the refer-
ence translation/reference answers are above/below
a threshold. We also detect the target language
to ensure it is correct, using OpenLID (Burchell

2possibly followed by closing double quotes. We also
allow for Chinese question marks and quote characters.

3reference answers are all the candidate answers for the
example provided in TruthfulQA, in English and also trans-
lated to the non-English source language (if present) and the
target language, using gpt-4o-2024-05-13 in zero-shot mode.
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et al., 2023), implemented in Hugging Face. We
further analyze the system output with GPT-44 by
asking whether the translation output is a genuine
translation, an answer, or other irrelevant output.
We count the proportion of output in each task and
system type where GPT-4 determines it is a transla-
tion or answer and yield metrics Transl and Ans5

respectively. Finally, we calculate Avg. win, the
arithmetic mean of all the positive task-specific
metrics excluding to indicate the system’s robust-
ness against prompt injection, and SAAvg (Suc-
cessful Attack, avg.), the arithmetic mean of all
the negative metrics to detect successful attacks
that result in the system answering the question
rather than translating (Avg. win and SAAvg do
not sum to 1, because attacks can make the system
output something which is neither a translation nor
an answer).

4 Systems

We divide the systems into "base LLMs" and "team
submissions". General purpose LLMs (GPLLMs)
are publicly available either through weights or
APIs that haven’t been specifically optimized for
translation tasks. The WMT MT Test Suites track
organisers evaluated these systems using 4-shot
prompting (Hendy et al., 2023). Team submissions
are the MT systems that have been submitted by
the WMT General Machine Translation task par-
ticipants, including commercial MT systems ac-
cessed by API. We further categorized these sys-
tems into LLM-based systems fine-tuned with MT
data and specialised for MT task (SLLMs)(e.g.
Semin and Bojar (2024)), those using other neu-
ral network architectures, which include encoder-
decoder architectures (e.g. Jasonarson et al. (2024))
and those systems whose architectures remain un-
known (Other). Finally, we consider anonymized
commercial online translation systems (Online).

Base LLMs

AYA23,Claude-3, CommandR-plus,
GPT-4, Gemini-1,
Llama3-70B, Mistral-Large, NVIDIA-NeMo,
Phi-3-Medium

Team submissions: LLM-Based

AIST-AIRC,

4gpt-4o-mini-2024-07-18
5Transl and Ans do not sum to 1 in general, because the

GPT-4 judge can also output "OTHER" if it determines that
the output is neither a translation nor an answer.

CUNI-DS,CUNI-MH, CUNI-NL,
IKUN, IKUN-C,
IOL_Research,Occiglot,SCIR-MT,
Unbabel-Tower70B, Yandex

Team submissions: Other architectures

AMI, BJFU-LPT, CycleL, CycleL2,
DLUT_GTCOM,
CUNI-DocTransformer,
CUNI-GA, CUNI-Transformer,
Dubformer,HW-TSC,MSLC,NTTSU,
Team-J, TranssionMT, TSU-HITs,
UvA-MT

Online Systems

ONLINE-A, ONLINE-B, ONLINE-G, ONLINE-W

Note that not all of these systems have submissions
for all language pairs.

5 Results

In this section, we will focus on the results of
different types of systems across our designed
tasks, and compare the performances under En-
glish source and non-English source examples in
Czech-Ukrainian and Japanese-Chinese Language
pairs. Summary results in figure 1.

Extended results in appendix A, tables 3 to 78,
summary results are in tables 79 to 102.

5.1 Task: Different prompt injection formats

We start our analysis by examining the performance
differences between different MT system types un-
der different prompt injection formats. We report
the performance of each system type under all 6
tasks, averaged across all language pairs. The re-
sults are found in table 1. We observe a persistent
performance downgrade across all metrics when
the prompt injection methods get more and more
complicated. (i.e. from clean to direct, from zero-
shot to one-shot). The change of Ans is exciting as
it peaks under tasks 0-shot and 1-shot, then goes
down along with other metrics under prompt in-
jection with JSON format. This phenomenon indi-
cates that under 0-shot and 1-shot prompt injection,
the MT systems are geared toward answering the
question while under prompt injection with JSON
format, the systems tend to be completely confused
by outputting irrelevant strings, neither translation
nor answers. This is again corroborated by the sub-
optimal performance of the corpus-specific metrics,
as they show lower similarity between the output
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
clean 40.3 60.65 0.94 0.66 0.89 0.98 0.85 0.06 0.83 0.27
GPLLMs 43.69 64.56 0.98 0.69 0.93 0.99 0.92 0.06 0.87 0.26
SLLMs 50.03 68.62 0.98 0.71 0.93 0.99 0.93 0.06 0.89 0.26
Other 24.61 43.65 0.78 0.54 0.76 0.92 0.62 0.06 0.67 0.29
Online 42.85 65.79 1.0 0.7 0.93 0.99 0.91 0.07 0.88 0.26
direct 23.67 47.64 0.81 0.54 0.77 0.89 0.57 0.27 0.69 0.29
GPLLMs 17.45 37.94 0.62 0.42 0.63 0.73 0.48 0.46 0.55 0.41
SLLMs 26.43 53.17 0.95 0.53 0.74 1.0 0.65 0.26 0.77 0.28
Other 16.5 36.82 0.72 0.52 0.72 0.84 0.4 0.22 0.59 0.29
Online 34.29 62.64 0.94 0.69 0.98 1.0 0.76 0.14 0.86 0.2
0-shot 26.08 42.39 0.82 0.56 0.76 0.83 0.41 0.33 0.65 0.3
GPLLMs 26.39 42.44 0.84 0.57 0.77 0.82 0.44 0.39 0.67 0.32
SLLMs 29.02 48.55 0.92 0.62 0.9 0.96 0.52 0.31 0.77 0.25
Other 16.44 29.21 0.59 0.41 0.5 0.64 0.18 0.3 0.43 0.39
Online 32.48 49.37 0.92 0.64 0.9 0.9 0.49 0.32 0.76 0.26
1-shot 25.29 39.88 0.73 0.61 0.76 0.81 0.39 0.28 0.64 0.28
GPLLMs 24.65 40.12 0.76 0.59 0.73 0.76 0.36 0.36 0.61 0.31
SLLMs 27.76 45.11 0.84 0.67 0.89 0.96 0.52 0.27 0.75 0.22
Other 15.29 27.07 0.49 0.47 0.52 0.63 0.17 0.23 0.42 0.36
Online 33.46 47.21 0.84 0.7 0.9 0.88 0.51 0.28 0.76 0.23
0-shot JSON 21.45 29.91 0.74 0.47 0.65 0.74 0.62 0.11 0.6 0.33
GPLLMs 25.07 33.74 0.89 0.52 0.69 0.73 0.67 0.13 0.65 0.32
SLLMs 17.21 28.1 0.85 0.55 0.8 0.92 0.76 0.1 0.74 0.27
Other 14.38 22.79 0.4 0.23 0.3 0.52 0.25 0.13 0.3 0.46
Online 29.14 35.02 0.84 0.59 0.8 0.81 0.78 0.06 0.73 0.28
1-shot JSON 15.66 25.59 0.71 0.43 0.61 0.72 0.56 0.13 0.56 0.35
GPLLMs 17.05 27.68 0.8 0.4 0.52 0.6 0.47 0.22 0.51 0.4
SLLMs 14.69 27.08 0.83 0.51 0.79 0.92 0.76 0.1 0.72 0.27
Other 9.56 18.36 0.38 0.24 0.31 0.54 0.23 0.14 0.3 0.45
Online 21.36 29.26 0.83 0.58 0.8 0.82 0.77 0.06 0.72 0.27

Table 1: Performance of each model type across all six tasks. The bold and underlined numbers indicate the best
and the second-best performance scores under each task. The grey row is the average score for all system types.
Corpus-specific and task-specific metrics are separated by the vertical line.
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
direct 4.64 7.8 0.07 0.05 0.17 0.16 0.21 0.03 0.13 -0.06
GPLLMs 10.91 19.87 0.31 0.14 0.29 0.24 0.38 -0.23 0.27 -0.17
SLLMs 2.92 -3.17 0.0 0.01 0.01 0.01 0.21 0.16 0.03 0.02
Other 7.39 18.75 -0.03 0.08 0.39 0.4 0.19 0.02 0.24 -0.12
Online -2.67 -4.23 0.01 -0.0 -0.0 -0.0 0.05 0.17 -0.01 0.02
0-shot 4.55 6.31 0.03 0.02 0.13 0.03 0.14 0.0 0.06 -0.03
GPLLMs 4.17 4.46 0.06 0.02 0.08 -0.01 0.17 -0.12 0.06 -0.04
SLLMs 5.58 6.5 0.14 0.11 0.16 0.07 0.25 0.07 0.14 -0.06
Other 5.59 12.76 -0.09 -0.01 0.29 0.36 0.12 -0.04 0.15 -0.09
Online 2.85 1.51 -0.0 -0.04 -0.03 -0.3 0.01 0.09 -0.1 0.07
1-shot 3.6 6.84 0.03 0.04 0.13 0.0 0.15 -0.07 0.07 -0.04
GPLLMs -0.38 2.05 0.02 0.03 0.14 0.04 0.2 -0.19 0.06 -0.06
SLLMs 6.84 10.94 0.14 0.17 0.18 0.09 0.2 0.04 0.19 -0.08
Other 1.39 7.53 -0.05 0.0 0.24 0.26 0.16 -0.12 0.12 -0.09
Online 6.55 6.84 0.0 -0.03 -0.02 -0.39 0.04 -0.02 -0.08 0.06
0-shot JSON 3.76 6.78 0.0 0.03 0.12 -0.07 -0.03 -0.08 -0.01 -0.03
GPLLMs -0.44 1.25 -0.1 0.01 0.07 -0.04 -0.05 -0.12 -0.05 -0.01
SLLMs 5.18 11.96 0.27 0.23 0.3 0.13 0.08 0.08 0.22 -0.12
Other 1.82 4.82 -0.15 -0.04 0.15 0.22 0.01 -0.27 0.02 -0.08
Online 8.48 9.11 -0.01 -0.08 -0.06 -0.61 -0.14 0.01 -0.22 0.11
1-shot JSON 3.77 7.01 0.05 0.06 0.18 -0.05 0.04 -0.12 0.04 -0.06
GPLLMs 0.38 2.05 -0.07 0.06 0.24 0.1 0.11 -0.24 0.06 -0.08
SLLMs 3.02 10.11 0.3 0.28 0.31 0.15 0.1 0.03 0.24 -0.14
Other 2.19 5.41 -0.06 -0.01 0.21 0.22 0.06 -0.31 0.05 -0.11
Online 9.47 10.49 0.02 -0.07 -0.04 -0.65 -0.12 0.03 -0.21 0.11

Table 2: Delta between English source language and non-English source language in Czech-Ukrainian and Japanese-
Chinese language pairs. Numbers indicating a downgrade in the performance on the side of the English source
language are marked in bold. Similarly, the grey rows are the average performance across all types of systems, and
corpus-specific and task-specific metrics are separated by the vertical line.
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and reference answer.
From the table, we can also observe the striking
robustness of Online translation systems against
all kinds of prompt injection. Taking the Online
system aside, we can see that the performance
of SLLMs also shows a rather strong persistence
against prompt injection and better translation qual-
ity, with only a small margin compared to On-
line systems. For GLLMs, despite its size and
optimal performance on most other tasks, they un-
derperform SLLMs which are based on smaller
LLMs fine-tuned on MT data, when facing injected
prompt, and its performance is comparable with
SLLMs without injected prompt. On the other
hand, team submission systems with other architec-
tures underperform most other systems types under
all tasks.
The results show that commercial online MT sys-
tems are the most robust against prompt injection,
while the LLM-based systems fine-tuned with MT
instruction and data also show a similar robustness
against prompt injection, with Avg. win above 0.7
across all tasks.

5.2 Performance difference between English
and non-English source languages

Systems that are intended to translate from a non-
English source language can be attacked in either
English or the non-English language. We analyze
the performance differences between English at-
tacks and non-English attacks in Czech-Ukrainian
and Japanese-Chinese language pairs by calculat-
ing the average metrics delta between English-
source and non-English sources. The results are
found in 2.

Similar to the previous analysis, we can find
a steady decrease in English attack robustness as
the complexity of prompt injection increases, and
the decrease is generally under the task-specific
metrics, not under corpus-specific metrics, indi-
cating that the MT systems are misled toward ei-
ther answering the questions or outputting irrele-
vant rather than general decrease in the translation
quality. This is particularly obvious under the two
JSON-formated prompt injection tasks where both
LLMTransl and LLMAns experience a decrease in
all systems types.
Concerning the specific differences between sys-
tem types, we can see that team Online systems
suffer from the most performance loss when the
attack language is English. In addition, we also

observe casual performance loss for GPLLMs sys-
tems under 0-shot JSON task. Again, SLLMs and
Other show the strongest performance robustness
under the English attack language, with the largest
Avg. win and the smallest SAAvg under most tasks,
arguably being based on multi-lingual LLMs they
can still process English source text but the fine-
tuning on translation tasks steers them away from
performing other tasks.

5.3 Scaling

We show in Figure 2 the average successful attack
rate vs. the clean dataset corpus-BLEU score. In
general, the systems that have a higher resistance
against successful attacks are also the ones that per-
form better on the clean dataset, indicating positive
scaling between robustness and non-adversarial per-
formance.

6 Conclusions

We presented a test suite of five variants of prompt-
injection attacks for machine translation plus one
baseline clean version, and we evaluated it on all
systems and language pairs of the WMT 2024 Gen-
eral Translation task. We found a general trend of
decrease in MT performance with increasing com-
plexity of prompt injection, where even the best
performance LLMs stumble on, some even with
BLEU scores less than 10 under certain language
pairs. In addition, we detected a decrease in perfor-
mance with the English injected prompts, particu-
larly for commercial MT systems and sometimes
for general-purpose LLMs. Among all systems
types, the specialized MT systems fine-tuned on
LLMs and the commercial MT systems show the
best overall performance against prompt injection.

Ethics Statement

In this work, we investigate the vulnerability of
LLMs to Prompt Injection Attacks. We do not
present novel attacks, instead, we focus on the char-
acterization of the system performance under a
well-known attack, albeit applied to a novel task
(Machine Translation), we believe that our work
does not create additional security risks but instead
may contribute to eventually increasing the secu-
rity of LLM-based systems by furthering a better
understanding of these vulnerabilities.

In this work we do not carry out experiments
on human subjects, therefore there are no risks
associated with human experimentation.
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Limitations

Our work has the following limitations:

• Due to the format of the WMT shared task,
we are limited to single rounds of interactions
with the systems, and we are further limited
to single-line examples. This has prevents cer-
tain kinds of attacks that use multiple rounds
of dialogue, and also attacks that include mul-
tiple lines in each message, which can exploit
certain formatting tricks using JSON, XML
or Markdown.

• No single metric that we used can always de-
termine whether a system output is a plausi-
ble translation, an answer or something else.
Even GPT-4-based evaluation makes mistakes.
We combined different heuristics to amelio-
rate this issue, but there might be still systems,
language pairs or attack formats which may
be inaccurately evaluated. Human evaluation
is possible but we did not perform it due to
time and financial considerations.

• Using GPT-4 for dataset generation and eval-
uation creates some reproducibility issues in
the long term, because OpenAI eventually re-
tires models.

Acknowledgements

For this project, Antonio Valerio Miceli-Barone
was funded by the University of Edinburgh (PI
Vaishak Belle) in collaboration with Cisco Systems,
Inc.

Zhifan Sun was funded by Technische Univer-
sität Darmstadt.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Laurie Burchell, Alexandra Birch, Nikolay Bogoychev,
and Kenneth Heafield. 2023. An open dataset and
model for language identification. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 865–879, Toronto, Canada. Association for
Computational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How good are gpt models at ma-
chine translation? a comprehensive evaluation.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Atli Jasonarson, Hinrik Hafsteinsson, Bjarki Ármanns-
son, and Steinþór Steingrímsson. 2024. Cogs in a
machine, doing what they’re meant to do – the AMI
submission to the WMT24 general translation task.
In Proceedings of the Ninth Conference on Machine
Translation, USA. Association for Computational
Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

387

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2023.acl-short.75
https://doi.org/10.18653/v1/2023.acl-short.75
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2102.01293
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2001.08361


Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods.

Ian R. McKenzie, Alexander Lyzhov, Michael Pieler,
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,
Andrew Gritsevskiy, Daniel Wurgaft, Derik Kauff-
man, Gabriel Recchia, Jiacheng Liu, Joe Cavanagh,
Max Weiss, Sicong Huang, The Floating Droid, Tom
Tseng, Tomasz Korbak, Xudong Shen, Yuhui Zhang,
Zhengping Zhou, Najoung Kim, Samuel R. Bowman,
and Ethan Perez. 2023. Inverse scaling: When bigger
isn’t better.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.
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A Results

A.1 Extended results
Base LLMs are highlighted in gray. Problem-specific metrics: "QM": Question mark heuristic, "BW":
BLEU win, "CW": chrF++ win, "LID": correct target language, "Avg. robustness" is the arithmetic
average of all the problem-specific metrics.

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 50.124 69.491 1.000 0.891 0.917 0.980 0.952 0.045 0.937 0.261
Claude-3 63.945 80.516 0.998 0.930 0.966 0.979 0.965 0.034 0.965 0.257
CommandR-plus 51.532 70.648 0.996 0.903 0.923 0.978 0.945 0.051 0.938 0.258
GPT-4 58.671 76.248 0.999 0.911 0.960 0.982 0.965 0.035 0.958 0.255
Llama3-70B 55.838 73.779 0.998 0.907 0.940 0.980 0.976 0.024 0.951 0.254
NVIDIA-NeMo 53.441 71.047 0.968 0.889 0.913 0.968 0.961 0.033 0.934 0.269
CUNI-DS 45.865 65.698 0.947 0.901 0.924 0.978 0.968 0.029 0.930 0.254
IKUN 46.017 65.324 0.995 0.891 0.918 0.976 0.968 0.028 0.934 0.249
IKUN-C 39.794 60.823 0.998 0.865 0.903 0.977 0.952 0.039 0.913 0.246
Unbabel-Tower70B 54.457 73.925 0.996 0.917 0.947 0.988 0.958 0.039 0.956 0.253
Yandex 42.793 65.032 0.939 0.873 0.887 0.985 0.934 0.064 0.912 0.270
CycleL 1.720 19.371 0.988 0.712 0.764 0.976 0.032 0.050 0.519 0.122
CycleL2 0.823 15.256 0.974 0.714 0.693 0.972 0.004 0.026 0.488 0.108
Dubformer 0.811 2.480 0.999 0.039 0.002 0.000 0.002 0.009 0.152 0.684
IOL_Research 62.421 77.519 0.967 0.902 0.934 0.978 0.974 0.026 0.950 0.269
ONLINE-A 57.977 75.168 0.998 0.923 0.940 0.969 0.958 0.042 0.954 0.259
ONLINE-B 55.403 73.776 0.998 0.913 0.944 0.971 0.960 0.040 0.950 0.258
ONLINE-G 53.353 74.154 0.996 0.909 0.929 0.987 0.947 0.051 0.947 0.260
ONLINE-W 53.906 72.810 0.995 0.913 0.934 0.982 0.961 0.038 0.952 0.259
TSU-HITs 22.052 43.818 0.553 0.717 0.808 0.969 0.788 0.100 0.742 0.331
TranssionMT 55.300 74.002 0.998 0.912 0.945 0.969 0.961 0.039 0.950 0.260

Table 3: English→Russian, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 56.347 76.822 0.995 0.990 0.988 1.000 0.886 0.114 0.972 0.204
Claude-3 0.032 0.542 0.010 0.006 0.001 0.005 0.000 1.000 0.003 0.836
CommandR-plus 23.382 53.457 0.803 0.704 0.709 0.882 0.586 0.354 0.727 0.375
GPT-4 26.456 42.902 0.674 0.389 0.278 0.976 0.215 0.785 0.555 0.575
Llama3-70B 2.860 12.925 0.266 0.211 0.188 0.244 0.127 0.873 0.208 0.720
NVIDIA-NeMo 35.470 69.105 0.982 0.951 0.983 1.000 0.848 0.152 0.943 0.229
CUNI-DS 24.399 51.947 0.942 0.909 0.871 1.000 0.914 0.086 0.880 0.228
IKUN 25.417 53.386 0.987 0.897 0.807 1.000 0.936 0.064 0.888 0.237
IKUN-C 22.346 50.852 0.994 0.853 0.798 1.000 0.922 0.078 0.864 0.233
Unbabel-Tower70B 30.181 65.860 0.995 0.960 0.963 1.000 0.670 0.329 0.901 0.247
Yandex 27.575 64.911 0.780 0.969 0.990 1.000 0.845 0.155 0.899 0.242
CycleL 1.379 18.603 0.984 0.832 0.707 0.999 0.000 0.179 0.512 0.119
CycleL2 0.570 15.032 0.977 0.652 0.554 0.998 0.000 0.162 0.456 0.149
Dubformer 0.489 1.503 0.999 0.033 0.001 0.000 0.001 0.044 0.148 0.671
IOL_Research 33.521 55.760 0.965 0.655 0.589 0.990 0.463 0.535 0.760 0.407
ONLINE-A 34.274 66.320 0.863 0.969 0.958 1.000 0.777 0.223 0.912 0.251
ONLINE-B 33.462 68.866 0.995 0.987 0.989 1.000 0.812 0.188 0.945 0.223
ONLINE-G 34.105 70.464 0.999 0.973 0.995 1.000 0.902 0.098 0.957 0.214
ONLINE-W 36.434 70.303 0.999 0.960 0.980 1.000 0.886 0.114 0.954 0.222
TSU-HITs 8.637 36.031 0.124 0.813 0.949 0.996 0.721 0.257 0.651 0.268
TranssionMT 33.411 69.050 0.995 0.987 0.989 1.000 0.815 0.185 0.945 0.222

Table 4: English→Russian, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 62.406 78.552 0.947 0.999 0.994 1.000 0.048 0.570 0.855 0.262
Claude-3 59.403 78.275 0.957 0.960 0.957 0.960 0.098 0.406 0.835 0.257
CommandR-plus 31.655 52.900 0.864 0.858 0.737 0.996 0.027 0.902 0.734 0.390
GPT-4 63.638 80.974 0.999 1.000 1.000 1.000 0.129 0.379 0.875 0.224
Llama3-70B 37.223 56.440 0.908 0.847 0.764 0.999 0.022 0.881 0.758 0.391
NVIDIA-NeMo 62.288 78.741 0.994 1.000 1.000 1.000 0.027 0.610 0.860 0.249
CUNI-DS 16.636 36.002 0.952 0.435 0.252 0.995 0.000 0.998 0.546 0.529
IKUN 63.435 78.322 0.998 1.000 0.998 1.000 0.049 0.359 0.863 0.211
IKUN-C 25.074 52.561 0.996 0.949 0.878 1.000 0.054 0.875 0.793 0.326
Unbabel-Tower70B 36.738 58.955 0.989 0.968 0.897 1.000 0.037 0.897 0.825 0.341
Yandex 23.056 51.441 0.965 0.979 0.898 1.000 0.010 0.612 0.777 0.270
CycleL 1.531 18.542 0.967 0.985 0.842 0.984 0.000 0.879 0.547 0.173
CycleL2 0.340 13.500 0.763 0.846 0.641 0.925 0.000 0.618 0.454 0.209
Dubformer 10.182 17.596 0.999 0.450 0.048 0.000 0.001 0.136 0.218 0.596
IOL_Research 66.535 84.207 0.991 0.996 0.995 1.000 0.066 0.301 0.862 0.211
ONLINE-A 56.073 80.194 0.998 1.000 1.000 1.000 0.007 0.315 0.858 0.215
ONLINE-B 62.117 80.242 0.998 1.000 1.000 1.000 0.006 0.646 0.858 0.259
ONLINE-G 49.336 72.718 0.999 0.998 0.998 1.000 0.000 0.315 0.853 0.215
ONLINE-W 63.109 83.275 0.999 1.000 1.000 1.000 0.054 0.360 0.865 0.218
TSU-HITs 5.622 30.610 0.082 0.908 0.962 1.000 0.118 0.671 0.557 0.272
TranssionMT 62.049 80.343 0.998 1.000 1.000 1.000 0.006 0.654 0.858 0.260

Table 5: English→Russian, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 78.245 89.097 0.999 1.000 1.000 1.000 0.000 0.732 0.857 0.214
Claude-3 87.218 92.427 0.973 0.979 0.977 0.979 0.005 0.744 0.837 0.240
CommandR-plus 62.914 75.684 0.963 1.000 0.998 0.999 0.000 0.905 0.850 0.257
GPT-4 73.570 85.441 0.996 1.000 1.000 1.000 0.000 0.781 0.857 0.229
Llama3-70B 76.261 84.499 0.978 1.000 1.000 1.000 0.006 0.624 0.855 0.205
NVIDIA-NeMo 69.460 81.005 0.965 1.000 1.000 1.000 0.000 0.786 0.852 0.238
CUNI-DS 36.008 55.041 0.021 0.995 0.994 1.000 0.002 0.519 0.711 0.228
IKUN 84.657 91.057 0.998 0.999 0.994 1.000 0.000 0.728 0.855 0.208
IKUN-C 49.945 71.158 0.991 1.000 1.000 1.000 0.010 0.791 0.857 0.229
Unbabel-Tower70B 59.223 74.272 0.995 1.000 1.000 1.000 0.002 0.851 0.857 0.250
Yandex 50.556 72.383 0.958 1.000 1.000 1.000 0.002 0.630 0.852 0.194
CycleL 1.540 21.744 0.613 0.967 0.857 0.876 0.000 0.067 0.528 0.112
CycleL2 0.226 10.966 0.158 0.690 0.485 0.728 0.000 0.066 0.294 0.287
Dubformer 4.556 8.529 0.999 0.460 0.012 0.000 0.007 0.022 0.211 0.512
IOL_Research 80.168 90.896 0.996 1.000 1.000 1.000 0.000 0.692 0.857 0.209
ONLINE-A 82.858 91.560 0.998 1.000 1.000 1.000 0.000 0.782 0.857 0.227
ONLINE-B 84.891 91.609 0.998 1.000 1.000 1.000 0.000 0.743 0.857 0.218
ONLINE-G 72.098 87.344 0.994 1.000 1.000 1.000 0.000 0.586 0.856 0.196
ONLINE-W 72.016 85.979 0.999 1.000 1.000 1.000 0.002 0.614 0.857 0.198
TSU-HITs 0.352 16.821 0.029 0.759 0.766 1.000 0.045 0.317 0.398 0.259
TranssionMT 84.849 91.624 0.998 1.000 1.000 1.000 0.000 0.745 0.857 0.218

Table 6: English→Russian, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 6.152 22.203 0.911 0.810 0.858 0.963 0.852 0.121 0.864 0.293
Claude-3 27.579 30.655 0.985 0.554 0.572 0.583 0.575 0.037 0.632 0.437
CommandR-plus 3.246 15.813 0.660 0.552 0.583 0.869 0.569 0.335 0.633 0.435
GPT-4 16.358 34.809 0.999 0.108 0.087 0.086 0.084 0.011 0.223 0.647
Llama3-70B 15.552 34.564 0.999 0.917 0.942 0.978 0.973 0.026 0.958 0.257
NVIDIA-NeMo 16.936 31.924 0.351 0.367 0.406 0.991 0.343 0.011 0.443 0.354
CUNI-DS 15.899 34.644 0.940 0.814 0.798 0.901 0.834 0.016 0.827 0.290
IKUN 14.258 33.930 0.985 0.880 0.887 0.976 0.938 0.048 0.911 0.256
IKUN-C 6.366 25.578 0.979 0.848 0.864 0.966 0.927 0.040 0.893 0.261
Unbabel-Tower70B 6.992 25.179 0.931 0.734 0.758 0.838 0.765 0.089 0.791 0.339
Yandex 1.663 11.932 0.028 0.039 0.116 0.771 0.009 0.979 0.144 0.614
CycleL 0.000 4.278 0.000 0.100 0.164 0.069 0.000 0.007 0.048 0.525
CycleL2 0.034 5.305 0.000 0.086 0.111 0.818 0.000 0.005 0.145 0.428
Dubformer 15.879 30.230 0.999 0.039 0.002 0.000 0.002 0.009 0.152 0.684
IOL_Research 2.058 16.422 0.670 0.607 0.630 0.909 0.635 0.098 0.671 0.349
ONLINE-A 16.512 37.187 0.999 0.925 0.942 0.976 0.958 0.042 0.960 0.262
ONLINE-B 16.015 24.116 0.976 0.890 0.916 0.945 0.923 0.050 0.921 0.268
ONLINE-G 13.410 27.853 0.422 0.275 0.313 0.635 0.306 0.083 0.356 0.441
ONLINE-W 15.780 34.287 0.999 0.911 0.941 0.984 0.971 0.027 0.956 0.257
TSU-HITs 0.000 3.047 0.000 0.034 0.023 0.136 0.001 0.070 0.028 0.560
TranssionMT 16.011 35.944 0.993 0.903 0.924 0.966 0.951 0.044 0.940 0.265

Table 7: English→Russian, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 1.797 15.461 0.993 0.890 0.925 0.965 0.939 0.047 0.930 0.257
Claude-3 14.487 19.419 0.984 0.051 0.023 0.023 0.017 0.028 0.166 0.680
CommandR-plus 1.047 10.756 0.824 0.322 0.335 0.488 0.330 0.170 0.433 0.551
GPT-4 5.060 21.685 0.998 0.065 0.038 0.035 0.033 0.015 0.180 0.670
Llama3-70B 4.804 21.169 0.999 0.918 0.944 0.983 0.963 0.035 0.957 0.256
NVIDIA-NeMo 1.678 19.243 0.159 0.705 0.442 0.995 0.000 0.007 0.329 0.245
CUNI-DS 4.858 21.717 0.985 0.907 0.930 0.985 0.953 0.038 0.933 0.248
IKUN 1.679 16.411 0.973 0.884 0.909 0.968 0.936 0.055 0.915 0.260
IKUN-C 1.618 15.853 0.892 0.808 0.825 0.962 0.825 0.113 0.836 0.284
Unbabel-Tower70B 2.470 17.172 0.968 0.655 0.671 0.720 0.679 0.055 0.722 0.381
Yandex 0.735 7.785 0.016 0.026 0.108 0.775 0.002 0.985 0.135 0.617
CycleL 0.000 2.184 0.000 0.100 0.166 0.062 0.000 0.006 0.047 0.526
CycleL2 0.000 3.115 0.000 0.097 0.095 0.804 0.000 0.006 0.142 0.430
Dubformer 5.347 19.448 0.999 0.039 0.002 0.000 0.002 0.009 0.152 0.684
IOL_Research 1.856 15.691 0.995 0.851 0.868 0.895 0.895 0.032 0.889 0.290
ONLINE-A 5.059 22.724 0.999 0.925 0.942 0.976 0.958 0.042 0.960 0.262
ONLINE-B 5.267 13.681 0.994 0.913 0.947 0.972 0.945 0.050 0.951 0.260
ONLINE-G 3.994 15.395 0.000 0.007 0.000 0.000 0.000 0.001 0.001 0.575
ONLINE-W 4.821 20.608 0.998 0.919 0.947 0.985 0.969 0.029 0.958 0.256
TSU-HITs 0.000 2.441 0.000 0.067 0.054 0.640 0.000 0.624 0.109 0.564
TranssionMT 5.267 22.061 0.996 0.917 0.949 0.974 0.947 0.053 0.954 0.261

Table 8: English→Russian, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 60.528 77.596 0.999 0.929 0.961 0.998 0.999 0.001 0.972 0.253
Claude-3 69.372 84.126 0.998 0.950 0.977 0.995 0.998 0.001 0.982 0.256
CommandR-plus 60.904 78.355 0.993 0.928 0.968 0.995 0.998 0.002 0.971 0.256
GPT-4 70.239 84.067 0.999 0.950 0.979 0.996 0.998 0.001 0.982 0.255
Llama3-70B 64.414 79.829 0.999 0.940 0.976 0.995 1.000 0.000 0.976 0.256
NVIDIA-NeMo 62.179 77.817 0.985 0.933 0.968 0.996 0.995 0.000 0.973 0.256
AIST-AIRC 54.511 72.781 0.998 0.909 0.953 0.995 0.996 0.000 0.965 0.254
CUNI-NL 51.442 69.699 0.994 0.892 0.940 0.996 0.995 0.000 0.952 0.256
IKUN 51.652 70.262 0.996 0.880 0.940 0.995 0.993 0.000 0.947 0.259
IKUN-C 44.710 65.240 0.994 0.868 0.930 0.998 0.979 0.004 0.931 0.252
Unbabel-Tower70B 61.008 78.193 0.991 0.924 0.966 0.998 0.999 0.001 0.970 0.254
CycleL 20.487 44.322 0.977 0.803 0.884 0.993 0.447 0.000 0.776 0.210
CycleL2 20.487 44.322 0.977 0.803 0.884 0.993 0.447 0.000 0.776 0.210
Dubformer 26.213 32.808 0.956 0.867 0.927 0.324 0.307 0.038 0.571 0.213
IOL_Research 69.214 82.833 0.977 0.929 0.969 0.995 0.996 0.001 0.974 0.263
MSLC 41.196 64.234 0.968 0.868 0.920 0.995 0.952 0.002 0.927 0.258
ONLINE-A 68.859 82.629 0.999 0.949 0.979 0.996 1.000 0.000 0.983 0.255
ONLINE-B 54.922 74.946 0.998 0.907 0.956 0.998 0.996 0.004 0.961 0.256
ONLINE-G 68.624 82.302 0.999 0.956 0.977 0.998 1.000 0.000 0.985 0.255
ONLINE-W 61.546 78.220 0.999 0.923 0.952 0.995 1.000 0.000 0.969 0.258
TSU-HITs 29.868 49.567 0.521 0.766 0.863 0.976 0.864 0.002 0.785 0.322
TranssionMT 54.873 74.941 0.998 0.909 0.956 0.998 0.996 0.004 0.961 0.256

Table 9: English→German, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 41.099 67.517 0.988 0.938 0.919 0.998 0.979 0.015 0.964 0.228
Claude-3 1.673 18.229 0.024 0.119 0.173 0.234 0.024 0.974 0.114 0.767
CommandR-plus 17.442 45.738 0.619 0.608 0.573 0.892 0.492 0.448 0.641 0.441
GPT-4 43.766 60.993 0.825 0.638 0.599 0.995 0.799 0.201 0.795 0.385
Llama3-70B 38.530 68.205 0.865 0.875 0.879 0.898 0.856 0.143 0.877 0.281
NVIDIA-NeMo 41.074 68.625 0.968 0.988 0.984 1.000 0.994 0.005 0.989 0.221
AIST-AIRC 55.103 75.235 0.999 0.996 0.996 1.000 0.980 0.009 0.994 0.191
CUNI-NL 55.620 74.731 0.761 1.000 0.999 0.999 0.988 0.005 0.964 0.224
IKUN 33.558 65.936 0.810 0.984 0.996 1.000 0.989 0.005 0.965 0.220
IKUN-C 26.128 58.671 0.896 0.913 0.908 0.999 0.976 0.007 0.917 0.229
Unbabel-Tower70B 50.687 76.317 0.920 0.999 0.999 1.000 0.991 0.009 0.986 0.208
CycleL 13.915 39.040 0.989 0.907 0.830 1.000 0.043 0.000 0.720 0.171
CycleL2 13.915 39.040 0.989 0.907 0.830 1.000 0.043 0.000 0.720 0.171
Dubformer 12.618 39.766 0.272 0.483 0.515 0.857 0.196 0.748 0.484 0.563
IOL_Research 33.076 55.070 0.812 0.607 0.531 0.999 0.918 0.081 0.804 0.389
MSLC 31.890 60.409 0.974 0.947 0.939 0.993 0.709 0.113 0.911 0.212
ONLINE-A 66.785 83.023 0.999 0.999 0.999 1.000 0.999 0.000 0.999 0.204
ONLINE-B 57.270 77.814 0.245 1.000 0.998 1.000 0.996 0.004 0.891 0.300
ONLINE-G 46.439 71.427 0.999 0.993 0.994 1.000 0.995 0.005 0.995 0.211
ONLINE-W 62.199 79.838 0.961 0.999 0.999 1.000 0.999 0.001 0.994 0.209
TSU-HITs 6.294 29.317 0.144 0.652 0.853 0.946 0.353 0.168 0.526 0.294
TranssionMT 57.217 77.757 0.242 1.000 0.998 1.000 0.996 0.004 0.891 0.300

Table 10: English→German, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 59.821 79.456 0.998 1.000 1.000 1.000 0.092 0.846 0.870 0.301
Claude-3 45.477 65.493 0.879 0.930 0.947 0.950 0.601 0.348 0.870 0.266
CommandR-plus 52.798 76.068 0.906 0.965 0.958 1.000 0.108 0.856 0.841 0.327
GPT-4 62.776 81.285 1.000 1.000 1.000 1.000 0.326 0.627 0.904 0.280
Llama3-70B 57.572 79.454 0.996 1.000 1.000 1.000 0.075 0.891 0.867 0.314
NVIDIA-NeMo 43.543 66.512 0.999 0.995 0.994 1.000 0.291 0.683 0.895 0.291
AIST-AIRC 50.763 73.435 0.999 1.000 1.000 1.000 0.048 0.935 0.864 0.309
CUNI-NL 60.950 77.784 0.892 1.000 1.000 1.000 0.069 0.776 0.849 0.277
IKUN 48.285 70.452 0.996 1.000 0.999 1.000 0.131 0.815 0.871 0.281
IKUN-C 29.617 54.938 0.994 0.968 0.919 1.000 0.092 0.900 0.825 0.331
Unbabel-Tower70B 36.617 61.602 0.998 0.984 0.938 1.000 0.179 0.814 0.857 0.328
CycleL 18.758 46.248 0.987 0.996 0.998 1.000 0.000 0.589 0.781 0.198
CycleL2 18.758 46.248 0.987 0.996 0.998 1.000 0.000 0.589 0.781 0.198
Dubformer 7.240 30.085 0.922 0.406 0.359 0.144 0.006 0.179 0.398 0.520
IOL_Research 65.014 84.971 0.998 1.000 1.000 1.000 0.097 0.827 0.871 0.301
MSLC 27.774 51.958 0.972 0.987 0.955 0.996 0.042 0.887 0.815 0.299
ONLINE-A 53.782 80.294 0.999 1.000 1.000 1.000 0.126 0.873 0.875 0.311
ONLINE-B 49.961 73.532 0.998 0.999 0.998 1.000 0.430 0.540 0.918 0.255
ONLINE-G 65.006 83.639 0.999 1.000 1.000 1.000 0.246 0.745 0.892 0.293
ONLINE-W 55.087 82.317 0.999 1.000 1.000 1.000 0.106 0.887 0.872 0.314
TSU-HITs 4.685 28.741 0.083 0.728 0.898 0.918 0.034 0.387 0.473 0.281
TranssionMT 50.021 73.607 0.998 0.999 0.998 1.000 0.428 0.541 0.917 0.254

Table 11: English→German, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 50.963 76.693 0.996 1.000 1.000 1.000 0.788 0.048 0.969 0.131
Claude-3 54.700 71.634 0.847 0.895 0.930 0.987 0.852 0.018 0.886 0.168
CommandR-plus 63.094 82.606 0.939 1.000 1.000 1.000 0.734 0.171 0.953 0.158
GPT-4 61.142 82.555 1.000 1.000 1.000 1.000 0.865 0.037 0.981 0.140
Llama3-70B 68.401 85.809 0.998 1.000 1.000 1.000 0.922 0.009 0.988 0.128
NVIDIA-NeMo 59.526 79.044 0.991 1.000 1.000 1.000 0.901 0.050 0.985 0.146
AIST-AIRC 54.064 77.054 0.999 1.000 1.000 1.000 0.901 0.035 0.986 0.125
CUNI-NL 45.673 71.102 0.984 1.000 0.999 1.000 0.471 0.175 0.922 0.138
IKUN 53.587 75.078 0.994 0.999 0.990 1.000 0.856 0.073 0.974 0.130
IKUN-C 42.706 65.255 0.989 1.000 1.000 1.000 0.890 0.060 0.982 0.132
Unbabel-Tower70B 64.058 79.666 0.995 1.000 1.000 1.000 0.985 0.004 0.997 0.141
CycleL 11.668 42.855 0.958 1.000 1.000 1.000 0.000 0.034 0.735 0.064
CycleL2 11.668 42.855 0.958 1.000 1.000 1.000 0.000 0.034 0.735 0.064
Dubformer 3.704 23.383 0.939 0.376 0.382 0.018 0.005 0.346 0.271 0.502
IOL_Research 71.042 85.830 0.999 1.000 1.000 1.000 0.820 0.055 0.974 0.132
MSLC 37.670 60.853 0.972 1.000 0.999 1.000 0.529 0.084 0.928 0.133
ONLINE-A 66.177 86.468 0.999 1.000 1.000 1.000 0.860 0.086 0.980 0.140
ONLINE-B 65.085 84.832 0.998 1.000 1.000 1.000 0.823 0.037 0.974 0.124
ONLINE-G 71.142 87.991 0.999 1.000 1.000 1.000 0.857 0.050 0.979 0.133
ONLINE-W 55.280 81.221 1.000 1.000 1.000 1.000 0.896 0.010 0.985 0.124
TSU-HITs 0.239 14.339 0.024 0.499 0.579 0.955 0.004 0.201 0.306 0.314
TranssionMT 64.962 84.750 0.998 1.000 1.000 1.000 0.825 0.037 0.975 0.124

Table 12: English→German, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 68.535 70.639 0.995 0.928 0.962 0.995 0.999 0.000 0.971 0.258
Claude-3 68.065 62.631 0.999 0.955 0.978 0.998 0.998 0.000 0.986 0.255
CommandR-plus 46.057 50.994 0.897 0.559 0.586 0.670 0.617 0.080 0.653 0.436
GPT-4 72.389 69.642 0.999 0.896 0.928 0.942 0.945 0.000 0.940 0.280
Llama3-70B 68.352 71.442 0.998 0.942 0.974 0.994 0.999 0.001 0.978 0.257
NVIDIA-NeMo 57.014 62.936 0.989 0.912 0.936 0.976 0.969 0.000 0.950 0.265
AIST-AIRC 70.412 70.165 0.971 0.737 0.756 0.830 0.816 0.002 0.813 0.339
CUNI-NL 67.845 73.794 0.895 0.825 0.852 0.993 0.901 0.001 0.878 0.277
IKUN 75.799 80.690 0.990 0.881 0.947 0.996 0.991 0.000 0.948 0.260
IKUN-C 64.371 70.997 0.967 0.864 0.917 0.994 0.971 0.002 0.926 0.261
Unbabel-Tower70B 71.215 69.715 0.989 0.633 0.651 0.651 0.654 0.001 0.703 0.400
CycleL 20.592 32.871 0.015 0.218 0.297 0.397 0.007 0.004 0.140 0.454
CycleL2 20.592 32.871 0.015 0.218 0.297 0.397 0.007 0.004 0.140 0.454
Dubformer 25.567 28.961 0.294 0.047 0.064 0.180 0.004 0.316 0.106 0.691
IOL_Research 60.629 65.159 0.996 0.925 0.965 0.985 0.993 0.001 0.968 0.260
MSLC 50.971 51.609 0.017 0.059 0.173 0.967 0.001 0.000 0.175 0.429
ONLINE-A 79.705 80.123 0.998 0.939 0.978 0.996 1.000 0.000 0.980 0.257
ONLINE-B 75.136 46.306 0.998 0.934 0.962 0.996 0.995 0.004 0.971 0.255
ONLINE-G 65.846 72.667 0.999 0.936 0.978 0.998 0.999 0.000 0.980 0.256
ONLINE-W 71.845 77.223 0.996 0.924 0.958 0.996 0.999 0.000 0.971 0.257
TSU-HITs 0.090 11.361 0.000 0.034 0.042 0.264 0.000 0.028 0.049 0.540
TranssionMT 75.074 76.169 0.998 0.931 0.962 0.998 0.996 0.004 0.971 0.256

Table 13: English→German, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 64.962 70.320 0.989 0.908 0.949 0.995 0.991 0.002 0.961 0.259
Claude-3 52.718 52.339 0.808 0.594 0.597 0.673 0.584 0.118 0.648 0.438
CommandR-plus 39.666 51.642 0.968 0.498 0.498 0.534 0.529 0.058 0.585 0.465
GPT-4 63.042 64.243 0.999 0.381 0.364 0.335 0.340 0.001 0.459 0.530
Llama3-70B 64.711 72.010 0.996 0.941 0.977 0.994 0.998 0.002 0.978 0.257
NVIDIA-NeMo 53.905 61.422 0.681 0.678 0.710 0.967 0.665 0.001 0.714 0.313
AIST-AIRC 57.093 63.316 0.251 0.191 0.162 0.846 0.084 0.013 0.240 0.429
CUNI-NL 60.424 68.018 0.905 0.800 0.854 0.994 0.901 0.007 0.873 0.279
IKUN 72.314 81.420 0.984 0.894 0.946 0.994 0.983 0.001 0.946 0.260
IKUN-C 55.998 71.180 0.976 0.838 0.880 0.961 0.927 0.010 0.894 0.271
Unbabel-Tower70B 68.188 72.826 0.993 0.770 0.797 0.802 0.805 0.000 0.824 0.336
CycleL 8.724 21.312 0.000 0.072 0.132 0.372 0.000 0.002 0.082 0.495
CycleL2 8.724 21.312 0.000 0.072 0.132 0.372 0.000 0.002 0.082 0.495
Dubformer 18.630 23.978 0.360 0.039 0.023 0.010 0.009 0.621 0.078 0.824
IOL_Research 55.451 68.917 0.991 0.917 0.962 0.995 0.998 0.000 0.966 0.257
MSLC 37.651 45.773 0.028 0.048 0.011 0.002 0.002 0.013 0.014 0.623
ONLINE-A 74.129 78.421 0.998 0.939 0.978 0.996 1.000 0.000 0.980 0.257
ONLINE-B 71.704 50.631 0.998 0.913 0.960 0.996 0.998 0.002 0.965 0.257
ONLINE-G 65.809 73.826 0.999 0.936 0.978 0.998 0.999 0.000 0.980 0.256
ONLINE-W 66.049 72.412 0.999 0.924 0.960 0.996 0.998 0.000 0.971 0.255
TSU-HITs 0.000 7.087 0.001 0.031 0.028 0.301 0.002 0.015 0.052 0.532
TranssionMT 71.683 75.342 0.998 0.913 0.958 0.998 0.996 0.004 0.965 0.258

Table 14: English→German, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 19.085 40.614 0.993 0.058 0.885 0.971 0.933 0.062 0.670 0.257
Claude-3 1.919 53.543 0.989 0.148 0.909 0.977 0.936 0.058 0.721 0.262
CommandR-plus 14.366 43.986 0.985 0.073 0.890 0.985 0.916 0.081 0.682 0.262
GPT-4 17.514 54.097 0.995 0.131 0.909 0.993 0.944 0.055 0.720 0.263
Llama3-70B 27.898 43.181 0.982 0.051 0.879 0.966 0.953 0.045 0.672 0.265
NVIDIA-NeMo 2.076 35.694 0.793 0.007 0.781 0.985 0.924 0.066 0.599 0.306
AIST-AIRC 0.719 34.974 0.933 0.005 0.796 1.000 0.956 0.039 0.638 0.287
IKUN 13.311 31.025 0.962 0.017 0.813 0.913 0.946 0.047 0.613 0.265
IKUN-C 2.249 26.016 0.928 0.010 0.819 0.936 0.945 0.050 0.600 0.261
Unbabel-Tower70B 8.143 41.692 0.944 0.053 0.891 0.980 0.930 0.069 0.672 0.272
CycleL 0.041 3.364 0.032 0.005 0.256 0.980 0.009 0.141 0.183 0.412
DLUT_GTCOM 0.813 42.293 0.930 0.001 0.840 0.993 0.958 0.033 0.651 0.291
IOL_Research 19.182 51.107 0.936 0.127 0.906 0.993 0.936 0.062 0.706 0.266
NTTSU 4.594 33.132 0.922 0.023 0.842 0.942 0.931 0.065 0.630 0.279
ONLINE-A 1.220 44.459 0.971 0.001 0.847 1.000 0.966 0.033 0.666 0.282
ONLINE-B 1.015 44.589 0.995 0.062 0.890 0.996 0.952 0.045 0.692 0.266
ONLINE-G 3.339 45.429 0.995 0.119 0.878 0.991 0.947 0.050 0.708 0.263
ONLINE-W 4.871 34.170 0.984 0.012 0.823 0.887 0.965 0.031 0.631 0.281
Team-J 0.416 36.323 0.999 0.001 0.827 1.000 0.941 0.055 0.653 0.275
UvA-MT 1.159 43.238 0.942 0.001 0.852 0.999 0.965 0.032 0.661 0.292

Table 15: English→Japanese, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 2.351 33.241 0.099 0.000 0.848 1.000 0.507 0.491 0.467 0.449
Claude-3 0.009 0.519 0.007 0.000 0.005 0.013 0.000 1.000 0.004 0.830
CommandR-plus 0.087 21.326 0.610 0.001 0.404 0.805 0.367 0.591 0.379 0.515
GPT-4 3.434 36.947 0.776 0.004 0.531 0.990 0.671 0.328 0.541 0.403
Llama3-70B 0.044 24.361 0.424 0.001 0.785 0.813 0.683 0.317 0.499 0.418
NVIDIA-NeMo 0.108 27.875 0.459 0.005 0.487 0.742 0.741 0.204 0.435 0.504
AIST-AIRC 0.244 41.424 0.854 0.005 0.950 1.000 0.903 0.097 0.668 0.272
IKUN 1.464 31.780 0.154 0.001 0.950 1.000 0.662 0.334 0.522 0.384
IKUN-C 3.047 28.905 0.513 0.000 0.881 1.000 0.792 0.207 0.555 0.319
Unbabel-Tower70B 0.975 38.482 0.318 0.000 0.938 1.000 0.737 0.263 0.565 0.375
CycleL 0.036 3.754 0.009 0.005 0.301 0.976 0.000 0.126 0.184 0.407
DLUT_GTCOM 0.389 46.306 0.944 0.002 0.953 0.999 0.918 0.082 0.688 0.280
IOL_Research 2.488 31.062 0.903 0.001 0.550 0.989 0.613 0.386 0.538 0.378
NTTSU 0.533 37.444 0.865 0.001 0.953 0.998 0.789 0.207 0.646 0.281
ONLINE-A 0.211 41.546 0.716 0.000 0.907 1.000 0.785 0.213 0.628 0.329
ONLINE-B 0.301 41.975 0.157 0.000 0.958 1.000 0.827 0.171 0.563 0.393
ONLINE-G 0.675 36.629 0.346 0.000 0.911 1.000 0.736 0.263 0.564 0.382
ONLINE-W 5.072 30.673 0.778 0.002 0.676 0.988 0.797 0.202 0.565 0.342
Team-J 0.341 48.369 0.999 0.002 0.979 1.000 0.934 0.066 0.702 0.259
UvA-MT 0.822 41.432 0.908 0.004 0.903 0.999 0.851 0.147 0.658 0.300

Table 16: English→Japanese, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.066 35.766 0.955 0.001 0.859 0.920 0.011 0.953 0.512 0.403
Claude-3 0.006 15.283 0.487 0.000 0.488 0.450 0.065 0.776 0.277 0.571
CommandR-plus 0.057 17.950 0.404 0.002 0.350 0.936 0.026 0.953 0.287 0.548
GPT-4 2.559 51.818 0.999 0.001 1.000 1.000 0.015 0.955 0.574 0.377
Llama3-70B 0.017 27.923 0.957 0.002 0.858 0.931 0.006 0.923 0.495 0.377
NVIDIA-NeMo 0.048 29.803 0.793 0.005 0.876 1.000 0.002 0.983 0.500 0.398
AIST-AIRC 0.029 33.231 0.966 0.006 0.952 1.000 0.002 0.967 0.559 0.370
IKUN 0.068 42.846 0.967 0.004 0.996 1.000 0.016 0.703 0.569 0.317
IKUN-C 0.250 17.596 0.854 0.001 0.416 0.923 0.005 0.994 0.348 0.473
Unbabel-Tower70B 0.720 36.438 0.936 0.002 0.854 1.000 0.006 0.989 0.538 0.413
CycleL 0.006 3.367 0.013 0.004 0.326 0.982 0.000 0.431 0.189 0.444
DLUT_GTCOM 0.148 34.145 0.955 0.005 0.821 0.942 0.012 0.789 0.517 0.392
IOL_Research 0.025 35.366 0.938 0.004 0.933 0.979 0.020 0.957 0.546 0.381
NTTSU 0.061 14.918 0.780 0.004 0.343 0.184 0.184 0.267 0.235 0.595
ONLINE-A 0.036 37.523 0.920 0.004 0.941 1.000 0.005 0.859 0.552 0.374
ONLINE-B 0.120 40.241 0.933 0.001 0.918 1.000 0.006 0.974 0.551 0.403
ONLINE-G 0.087 42.494 0.995 0.004 0.993 0.974 0.031 0.909 0.571 0.368
ONLINE-W 2.841 37.110 0.963 0.001 0.940 0.999 0.028 0.894 0.561 0.373
Team-J 0.012 32.092 0.998 0.004 0.837 1.000 0.009 0.949 0.541 0.392
UvA-MT 0.039 10.618 0.951 0.001 0.051 0.055 0.015 0.143 0.159 0.655

Table 17: English→Japanese, 0-shot

398



System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.154 40.156 0.993 0.714 1.000 1.000 0.005 0.892 0.673 0.202
Claude-3 0.108 44.238 0.783 0.001 0.956 0.781 0.001 0.799 0.472 0.365
CommandR-plus 0.190 34.767 0.856 0.118 0.968 1.000 0.002 0.928 0.559 0.335
GPT-4 0.223 51.838 0.999 0.002 1.000 1.000 0.006 0.983 0.573 0.335
Llama3-70B 0.118 37.235 0.979 0.965 1.000 1.000 0.000 0.956 0.706 0.178
NVIDIA-NeMo 2.027 43.511 0.829 0.991 1.000 1.000 0.002 0.974 0.693 0.205
AIST-AIRC 0.067 46.897 0.969 0.993 1.000 1.000 0.010 0.916 0.710 0.176
IKUN 0.056 60.658 0.980 0.998 1.000 1.000 0.002 0.897 0.711 0.148
IKUN-C 0.055 26.628 0.814 0.371 0.985 0.988 0.007 0.829 0.573 0.260
Unbabel-Tower70B 0.225 41.367 0.984 0.088 1.000 1.000 0.005 0.966 0.583 0.322
CycleL 0.011 3.560 0.006 0.949 0.463 0.998 0.000 0.061 0.345 0.235
DLUT_GTCOM 0.129 49.351 0.971 0.980 1.000 1.000 0.011 0.810 0.709 0.178
IOL_Research 0.587 48.373 0.971 0.985 1.000 1.000 0.004 0.969 0.709 0.181
NTTSU 0.112 13.293 0.564 0.388 0.421 0.346 0.037 0.279 0.283 0.421
ONLINE-A 0.070 50.491 0.920 0.995 1.000 1.000 0.015 0.840 0.704 0.179
ONLINE-B 0.352 51.867 0.996 0.996 1.000 1.000 0.028 0.889 0.717 0.168
ONLINE-G 0.182 46.613 0.995 0.989 1.000 1.000 0.011 0.968 0.714 0.185
ONLINE-W 0.069 47.597 0.989 0.000 1.000 1.000 0.002 0.982 0.571 0.326
Team-J 0.028 49.044 0.998 0.998 1.000 1.000 0.002 0.994 0.714 0.185
UvA-MT 0.049 13.366 0.594 0.206 0.406 0.332 0.011 0.392 0.260 0.511

Table 18: English→Japanese, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 17.560 28.113 0.978 0.018 0.716 0.819 0.788 0.069 0.574 0.344
Claude-3 35.785 43.674 0.953 0.157 0.815 0.878 0.867 0.071 0.668 0.311
CommandR-plus 13.662 22.976 0.929 0.053 0.684 0.780 0.709 0.105 0.553 0.375
GPT-4 30.923 40.698 0.999 0.005 0.054 0.053 0.048 0.060 0.175 0.678
Llama3-70B 28.549 41.916 0.803 0.043 0.772 0.968 0.772 0.131 0.573 0.296
NVIDIA-NeMo 24.280 27.722 0.819 0.001 0.717 0.913 0.875 0.027 0.561 0.314
AIST-AIRC 26.751 35.533 0.906 0.001 0.272 0.339 0.339 0.076 0.296 0.542
IKUN 18.950 34.503 0.908 0.039 0.831 0.947 0.907 0.062 0.624 0.271
IKUN-C 25.252 36.187 0.941 0.012 0.816 0.920 0.911 0.054 0.597 0.262
Unbabel-Tower70B 17.235 32.173 0.990 0.105 0.903 0.987 0.935 0.058 0.703 0.261
CycleL 0.039 4.183 0.000 0.002 0.027 0.879 0.000 0.001 0.130 0.442
DLUT_GTCOM 21.587 24.692 0.043 0.000 0.062 0.159 0.023 0.103 0.042 0.586
IOL_Research 13.093 26.752 0.827 0.069 0.808 0.856 0.804 0.061 0.599 0.300
NTTSU 11.016 26.835 0.016 0.000 0.453 0.721 0.454 0.179 0.280 0.513
ONLINE-A 26.998 37.914 0.372 0.000 0.379 0.372 0.367 0.004 0.259 0.453
ONLINE-B 28.011 23.177 0.993 0.024 0.881 0.995 0.956 0.038 0.678 0.270
ONLINE-G 38.436 28.691 0.242 0.020 0.267 0.367 0.267 0.024 0.204 0.477
ONLINE-W 18.163 22.537 0.104 0.000 0.192 0.098 0.100 0.005 0.082 0.525
Team-J 28.059 26.807 0.987 0.002 0.433 0.499 0.494 0.039 0.406 0.489
UvA-MT 25.483 36.333 0.951 0.002 0.020 0.040 0.048 0.070 0.155 0.686

Table 19: English→Japanese, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 4.104 23.321 0.985 0.035 0.793 0.905 0.865 0.048 0.630 0.306
Claude-3 0.001 5.146 0.002 0.000 0.100 0.699 0.018 0.980 0.136 0.707
CommandR-plus 0.421 12.296 0.488 0.015 0.387 0.755 0.371 0.382 0.352 0.517
GPT-4 13.182 29.647 0.999 0.001 0.002 0.001 0.009 0.048 0.147 0.694
Llama3-70B 4.237 25.813 0.996 0.011 0.819 0.993 0.978 0.021 0.658 0.271
NVIDIA-NeMo 3.344 14.558 0.952 0.001 0.217 1.000 0.078 0.021 0.321 0.264
AIST-AIRC 6.832 22.356 0.013 0.000 0.012 0.016 0.002 0.015 0.007 0.568
IKUN 3.842 24.653 0.966 0.029 0.835 0.939 0.927 0.061 0.632 0.269
IKUN-C 4.214 23.210 0.849 0.006 0.671 0.818 0.785 0.110 0.509 0.319
Unbabel-Tower70B 4.522 25.322 0.989 0.095 0.884 0.991 0.940 0.054 0.698 0.263
CycleL 0.000 3.264 0.000 0.005 0.017 0.914 0.002 0.000 0.134 0.438
DLUT_GTCOM 2.420 10.197 0.228 0.001 0.223 0.705 0.012 0.315 0.167 0.453
IOL_Research 4.329 24.127 0.974 0.098 0.891 0.983 0.936 0.064 0.695 0.261
NTTSU 4.455 22.270 0.040 0.004 0.676 0.934 0.755 0.133 0.426 0.427
ONLINE-A 6.620 25.051 0.372 0.000 0.379 0.372 0.367 0.004 0.259 0.453
ONLINE-B 7.834 15.040 0.983 0.006 0.882 0.996 0.925 0.055 0.668 0.277
ONLINE-G 9.458 14.110 0.995 0.122 0.891 0.984 0.949 0.048 0.708 0.263
ONLINE-W 4.045 12.697 0.146 0.002 0.219 0.142 0.138 0.010 0.110 0.514
Team-J 2.152 12.340 0.979 0.002 0.307 1.000 0.076 0.093 0.339 0.260
UvA-MT 8.453 25.104 0.998 0.002 0.000 0.000 0.000 0.002 0.143 0.431

Table 20: English→Japanese, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 44.375 63.672 0.998 0.824 0.920 0.998 0.958 0.032 0.929 0.269
Claude-3 60.166 76.954 0.996 0.911 0.957 0.996 0.963 0.031 0.967 0.271
CommandR-plus 39.996 61.592 0.988 0.819 0.917 0.996 0.928 0.061 0.916 0.272
GPT-4 50.565 69.608 0.998 0.908 0.942 1.000 0.963 0.029 0.956 0.265
Llama3-70B 51.601 69.311 0.998 0.887 0.946 1.000 0.957 0.031 0.952 0.266
NVIDIA-NeMo 47.354 66.582 0.984 0.827 0.928 0.999 0.953 0.027 0.931 0.280
IKUN 40.887 60.362 0.946 0.832 0.908 0.998 0.950 0.024 0.912 0.275
IKUN-C 35.290 56.369 0.961 0.775 0.873 0.999 0.945 0.032 0.885 0.275
Unbabel-Tower70B 56.242 74.129 0.998 0.908 0.963 1.000 0.953 0.038 0.965 0.272
CycleL 0.268 12.822 0.000 0.175 0.373 0.958 0.143 0.086 0.240 0.384
IOL_Research 53.133 70.132 0.983 0.876 0.940 0.998 0.956 0.032 0.948 0.273
ONLINE-A 59.021 74.613 0.998 0.901 0.951 0.998 0.966 0.027 0.962 0.272
ONLINE-B 56.473 71.907 0.998 0.892 0.957 1.000 0.956 0.037 0.956 0.268
ONLINE-G 55.704 72.554 0.998 0.887 0.934 1.000 0.966 0.021 0.956 0.273
ONLINE-W NA
TranssionMT 56.588 73.267 0.999 0.895 0.958 1.000 0.962 0.032 0.959 0.268

Table 21: English→Hindi, clean

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 47.587 67.255 0.968 0.960 0.958 0.998 0.657 0.319 0.926 0.252
Claude-3 0.094 0.678 0.010 0.009 0.004 0.024 0.000 1.000 0.007 0.843
CommandR-plus 11.226 20.996 0.764 0.305 0.299 0.328 0.220 0.376 0.358 0.588
GPT-4 33.480 53.554 0.925 0.676 0.641 0.979 0.532 0.461 0.774 0.395
Llama3-70B 0.450 1.517 0.082 0.022 0.020 0.026 0.018 0.979 0.030 0.829
NVIDIA-NeMo 41.353 66.693 0.980 0.993 0.991 1.000 0.703 0.285 0.951 0.250
IKUN 36.678 60.934 0.924 0.987 0.980 1.000 0.673 0.304 0.926 0.250
IKUN-C 32.860 56.557 0.956 0.978 0.963 1.000 0.681 0.304 0.922 0.241
Unbabel-Tower70B 44.632 69.722 0.998 0.994 0.995 1.000 0.700 0.293 0.954 0.255
CycleL 0.218 12.777 0.000 0.284 0.370 1.000 0.001 0.119 0.237 0.360
IOL_Research 35.627 56.917 0.979 0.750 0.727 0.998 0.627 0.362 0.837 0.334
ONLINE-A 44.890 69.419 0.999 0.996 0.994 1.000 0.707 0.283 0.956 0.252
ONLINE-B 57.150 74.603 0.998 0.994 0.988 1.000 0.667 0.319 0.949 0.261
ONLINE-G 43.515 68.688 0.999 0.998 0.991 1.000 0.705 0.285 0.955 0.250
ONLINE-W NA
TranssionMT 57.115 75.296 0.999 0.995 0.988 1.000 0.665 0.322 0.949 0.262

Table 22: English→Hindi, direct
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 54.461 67.057 0.891 0.996 0.979 0.999 0.006 0.800 0.838 0.312
Claude-3 3.221 8.801 0.060 0.453 0.557 0.157 0.083 0.610 0.205 0.532
CommandR-plus 21.246 40.145 0.436 0.789 0.590 0.870 0.004 0.940 0.569 0.485
GPT-4 41.790 67.517 0.999 0.999 0.998 0.950 0.002 0.991 0.849 0.338
Llama3-70B 38.000 53.859 0.834 0.845 0.802 0.955 0.009 0.880 0.741 0.398
NVIDIA-NeMo 41.275 54.896 0.984 0.994 0.928 0.987 0.000 0.816 0.840 0.309
IKUN 56.213 68.702 0.979 1.000 1.000 1.000 0.001 0.756 0.853 0.274
IKUN-C 17.734 36.013 0.968 0.546 0.271 0.994 0.001 0.998 0.583 0.517
Unbabel-Tower70B 38.574 57.119 0.998 0.940 0.769 0.999 0.000 1.000 0.804 0.399
CycleL 0.037 8.772 0.000 0.372 0.417 0.558 0.000 0.422 0.193 0.441
IOL_Research 39.956 65.259 0.991 0.985 0.985 0.973 0.001 0.998 0.844 0.331
ONLINE-A 49.365 67.457 0.999 1.000 1.000 1.000 0.001 0.958 0.857 0.331
ONLINE-B 46.423 68.383 0.998 0.989 0.979 0.973 0.000 0.995 0.848 0.354
ONLINE-G 33.296 57.098 0.999 0.990 0.930 1.000 0.007 0.984 0.826 0.342
ONLINE-W NA
TranssionMT 46.395 69.002 0.999 0.990 0.980 0.971 0.000 0.995 0.848 0.355

Table 23: English→Hindi, 0-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 61.252 73.444 0.999 1.000 1.000 1.000 0.010 0.770 0.858 0.223
Claude-3 0.001 3.261 0.006 0.589 0.125 0.002 0.028 0.076 0.107 0.508
CommandR-plus 35.854 55.859 0.963 1.000 0.996 1.000 0.033 0.760 0.853 0.216
GPT-4 49.390 68.971 0.998 1.000 1.000 1.000 0.023 0.962 0.860 0.254
Llama3-70B 57.681 71.371 0.972 1.000 1.000 1.000 0.006 0.703 0.854 0.220
NVIDIA-NeMo 35.768 56.995 0.732 1.000 1.000 1.000 0.002 0.944 0.819 0.277
IKUN 62.435 71.399 0.999 1.000 1.000 1.000 0.002 0.765 0.857 0.126
IKUN-C 20.702 41.977 0.264 0.974 0.984 0.996 0.004 0.933 0.696 0.280
Unbabel-Tower70B 51.432 67.662 0.996 1.000 1.000 1.000 0.006 0.973 0.857 0.272
CycleL 0.007 5.845 0.000 0.224 0.099 0.826 0.000 0.086 0.164 0.423
IOL_Research 49.565 70.180 0.994 1.000 1.000 1.000 0.009 0.951 0.857 0.237
ONLINE-A 54.516 71.560 0.999 1.000 1.000 1.000 0.009 0.880 0.858 0.253
ONLINE-B 54.462 73.655 0.998 1.000 1.000 1.000 0.006 0.983 0.858 0.260
ONLINE-G 52.658 70.135 0.999 1.000 1.000 1.000 0.013 0.971 0.859 0.262
ONLINE-W NA
TranssionMT 54.474 73.901 0.999 1.000 1.000 1.000 0.006 0.983 0.858 0.260

Table 24: English→Hindi, 1-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 7.049 17.769 0.976 0.640 0.685 0.754 0.715 0.054 0.733 0.376
Claude-3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.571
CommandR-plus 2.197 11.202 0.485 0.192 0.230 0.588 0.200 0.140 0.297 0.523
GPT-4 16.415 30.954 0.999 0.361 0.361 0.388 0.367 0.049 0.462 0.530
Llama3-70B 9.731 20.035 0.998 0.862 0.927 0.980 0.949 0.039 0.930 0.266
NVIDIA-NeMo 12.329 21.184 0.875 0.759 0.810 0.931 0.201 0.741 0.703 0.360
IKUN 9.848 21.942 0.841 0.803 0.892 0.965 0.918 0.051 0.870 0.293
IKUN-C 4.655 19.684 0.580 0.547 0.603 0.673 0.614 0.136 0.582 0.388
Unbabel-Tower70B 12.473 26.454 0.982 0.880 0.939 0.982 0.946 0.027 0.942 0.271
CycleL 0.000 1.137 0.000 0.077 0.104 0.813 0.012 0.067 0.144 0.440
IOL_Research 6.565 17.939 0.996 0.854 0.912 0.979 0.950 0.023 0.927 0.272
ONLINE-A 11.959 23.106 0.998 0.896 0.947 0.996 0.950 0.028 0.949 0.260
ONLINE-B 16.480 18.335 0.998 0.898 0.951 0.999 0.950 0.032 0.953 0.261
ONLINE-G 4.094 11.277 0.616 0.503 0.475 0.660 0.519 0.214 0.522 0.392
ONLINE-W NA
TranssionMT 16.473 30.898 0.999 0.909 0.958 1.000 0.967 0.022 0.965 0.269

Table 25: English→Hindi, 0-shot JSON format

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 2.255 11.718 0.983 0.843 0.919 0.999 0.936 0.047 0.925 0.269
Claude-3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.571
CommandR-plus 0.348 6.697 0.624 0.228 0.255 0.561 0.271 0.220 0.357 0.570
GPT-4 4.312 17.611 0.996 0.035 0.016 0.015 0.022 0.028 0.160 0.682
Llama3-70B 2.176 11.922 0.980 0.843 0.917 0.993 0.945 0.042 0.928 0.283
NVIDIA-NeMo 2.735 11.847 0.022 0.076 0.130 0.928 0.001 0.905 0.168 0.552
IKUN 2.661 13.601 0.263 0.308 0.383 0.993 0.246 0.264 0.378 0.405
IKUN-C 0.028 7.078 0.148 0.154 0.186 0.493 0.075 0.306 0.165 0.492
Unbabel-Tower70B 3.154 14.423 0.989 0.885 0.933 0.993 0.952 0.033 0.949 0.273
CycleL 0.000 0.499 0.000 0.088 0.106 0.826 0.009 0.077 0.147 0.437
IOL_Research 2.323 11.876 0.998 0.870 0.936 0.999 0.969 0.023 0.942 0.262
ONLINE-A 3.000 11.714 0.998 0.896 0.947 0.996 0.950 0.028 0.949 0.260
ONLINE-B 4.807 9.601 0.864 0.829 0.819 0.931 0.836 0.043 0.826 0.280
ONLINE-G 1.441 6.492 0.616 0.503 0.475 0.660 0.519 0.214 0.522 0.392
ONLINE-W NA
TranssionMT 4.803 17.435 0.864 0.832 0.886 1.000 0.842 0.042 0.870 0.288

Table 26: English→Hindi, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 71.590 83.455 1.000 0.941 0.953 0.994 0.991 0.007 0.979 0.271
Claude-3 77.382 88.287 0.995 0.952 0.983 0.996 0.998 0.002 0.986 0.268
CommandR-plus 69.366 82.843 0.995 0.929 0.971 0.995 0.985 0.009 0.977 0.272
GPT-4 76.485 86.879 0.998 0.947 0.979 0.996 1.000 0.000 0.986 0.268
Llama3-70B 75.659 85.899 0.994 0.936 0.972 0.996 1.000 0.000 0.983 0.270
NVIDIA-NeMo 71.684 83.575 0.984 0.936 0.973 0.996 0.999 0.000 0.980 0.272
IKUN 56.366 73.524 0.987 0.869 0.922 0.998 0.989 0.004 0.953 0.276
IKUN-C 52.543 70.275 0.999 0.849 0.923 0.991 0.991 0.004 0.945 0.274
Occiglot 49.361 68.297 0.967 0.851 0.901 0.988 0.972 0.013 0.930 0.283
Unbabel-Tower70B 58.762 76.431 0.996 0.920 0.949 0.994 0.993 0.007 0.970 0.268
CycleL 32.147 51.642 0.999 0.848 0.925 0.993 0.488 0.002 0.834 0.221
Dubformer 60.120 79.825 0.927 0.879 0.924 0.993 0.939 0.060 0.939 0.297
IOL_Research 76.839 86.496 0.985 0.941 0.973 0.996 0.998 0.002 0.982 0.272
MSLC 56.800 74.431 0.999 0.905 0.962 0.999 0.993 0.000 0.965 0.262
ONLINE-A 74.616 85.820 0.998 0.952 0.976 0.996 0.999 0.001 0.986 0.266
ONLINE-B 72.932 83.788 0.998 0.950 0.969 0.996 0.994 0.004 0.984 0.269
ONLINE-G 76.360 86.243 0.999 0.952 0.978 0.995 0.998 0.000 0.987 0.266
ONLINE-W 58.478 74.701 0.999 0.896 0.945 0.996 0.999 0.001 0.964 0.271
TSU-HITs 24.907 50.317 0.228 0.584 0.863 0.989 0.940 0.006 0.731 0.394
TranssionMT 73.144 85.551 0.998 0.955 0.976 0.996 0.995 0.005 0.986 0.267

Table 27: English→Spanish, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 65.702 80.565 0.985 0.999 0.998 1.000 0.956 0.044 0.991 0.243
Claude-3 0.227 12.311 0.009 0.024 0.061 0.005 0.000 1.000 0.016 0.823
CommandR-plus 32.106 56.513 0.818 0.714 0.683 0.800 0.666 0.181 0.735 0.387
GPT-4 13.347 41.908 0.250 0.356 0.341 0.962 0.190 0.810 0.471 0.625
Llama3-70B 0.880 13.415 0.066 0.054 0.054 0.058 0.024 0.976 0.050 0.821
NVIDIA-NeMo 65.218 81.014 0.984 0.995 0.990 0.999 0.978 0.022 0.992 0.245
IKUN 40.151 62.924 0.842 0.902 0.820 1.000 0.988 0.009 0.914 0.281
IKUN-C 39.406 63.870 0.881 0.940 0.908 1.000 0.953 0.043 0.935 0.260
Occiglot 35.751 59.149 0.951 0.919 0.862 1.000 0.958 0.029 0.922 0.256
Unbabel-Tower70B 40.903 64.886 0.974 0.935 0.843 0.998 0.984 0.015 0.941 0.263
CycleL 19.436 41.475 0.999 0.898 0.772 1.000 0.002 0.137 0.720 0.221
Dubformer 14.020 34.187 0.277 0.295 0.284 0.693 0.113 0.837 0.357 0.675
IOL_Research 53.335 69.931 0.933 0.887 0.862 1.000 0.917 0.082 0.935 0.294
MSLC 37.659 62.742 0.994 0.945 0.836 1.000 0.894 0.093 0.930 0.260
ONLINE-A 65.941 82.242 0.987 1.000 1.000 1.000 0.966 0.034 0.993 0.242
ONLINE-B 67.157 81.476 0.994 0.999 1.000 1.000 0.979 0.021 0.996 0.239
ONLINE-G 49.255 68.330 0.998 0.923 0.802 1.000 0.980 0.017 0.949 0.276
ONLINE-W 61.791 77.853 0.994 0.998 0.994 0.999 0.978 0.022 0.994 0.231
TSU-HITs 18.159 42.517 0.029 0.800 0.922 0.947 0.388 0.299 0.614 0.340
TranssionMT 65.473 82.434 0.990 1.000 1.000 1.000 0.966 0.034 0.994 0.241

Table 28: English→Spanish, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 56.369 72.755 0.756 0.960 0.902 0.999 0.081 0.900 0.813 0.391
Claude-3 42.825 62.428 0.796 0.912 0.946 0.890 0.392 0.526 0.807 0.312
CommandR-plus 20.217 43.259 0.269 0.703 0.552 0.737 0.060 0.925 0.529 0.566
GPT-4 64.419 78.732 0.999 1.000 1.000 1.000 0.386 0.606 0.912 0.292
Llama3-70B 39.510 57.523 0.607 0.807 0.756 0.854 0.021 0.927 0.667 0.464
NVIDIA-NeMo 57.475 72.389 0.996 1.000 0.996 1.000 0.300 0.695 0.899 0.316
IKUN 79.778 82.118 0.991 1.000 1.000 1.000 0.267 0.665 0.894 0.280
IKUN-C 35.101 57.300 0.999 0.925 0.812 1.000 0.248 0.747 0.844 0.350
Occiglot 22.173 37.527 0.679 0.469 0.299 0.966 0.004 0.983 0.525 0.569
Unbabel-Tower70B 41.489 62.630 0.990 0.990 0.913 0.999 0.394 0.603 0.898 0.315
CycleL 30.751 58.344 0.999 1.000 0.999 1.000 0.000 0.636 0.852 0.223
Dubformer 31.864 45.799 0.952 0.793 0.519 0.468 0.088 0.386 0.670 0.450
IOL_Research 87.578 92.645 0.995 1.000 1.000 1.000 0.318 0.662 0.902 0.294
MSLC 50.773 74.280 0.996 1.000 1.000 1.000 0.022 0.971 0.860 0.317
ONLINE-A 61.528 80.215 0.999 1.000 1.000 1.000 0.274 0.681 0.896 0.296
ONLINE-B 83.570 91.401 0.996 1.000 1.000 1.000 0.272 0.716 0.895 0.305
ONLINE-G 80.674 91.066 0.999 1.000 1.000 1.000 0.275 0.721 0.896 0.303
ONLINE-W 64.504 86.163 0.999 1.000 1.000 1.000 0.089 0.903 0.870 0.304
TSU-HITs 22.980 48.183 0.138 0.950 0.916 1.000 0.001 0.960 0.686 0.433
TranssionMT 61.642 80.314 0.999 1.000 1.000 1.000 0.277 0.678 0.896 0.296

Table 29: English→Spanish, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 58.461 72.866 0.994 1.000 1.000 1.000 0.040 0.911 0.862 0.287
Claude-3 0.104 11.418 0.032 0.253 0.233 0.967 0.027 0.086 0.225 0.443
CommandR-plus 36.917 59.632 0.453 0.957 0.955 0.917 0.222 0.649 0.757 0.334
GPT-4 74.662 87.103 0.999 1.000 1.000 1.000 0.862 0.067 0.980 0.157
Llama3-70B 68.395 84.329 0.852 1.000 1.000 1.000 0.594 0.225 0.921 0.196
NVIDIA-NeMo 76.887 86.448 0.969 1.000 1.000 1.000 0.824 0.023 0.970 0.157
IKUN 90.086 91.617 0.996 1.000 0.999 1.000 0.638 0.013 0.948 0.121
IKUN-C 49.512 71.442 0.989 1.000 1.000 1.000 0.865 0.094 0.979 0.149
Occiglot 40.811 58.548 0.684 0.859 0.860 0.945 0.258 0.382 0.735 0.258
Unbabel-Tower70B 60.752 77.323 0.989 1.000 1.000 1.000 0.974 0.011 0.995 0.147
CycleL 27.475 58.624 0.985 1.000 1.000 1.000 0.001 0.174 0.855 0.102
Dubformer 9.617 25.795 0.985 0.748 0.360 0.013 0.001 0.173 0.417 0.443
IOL_Research 94.731 96.852 0.996 1.000 1.000 1.000 0.729 0.002 0.961 0.138
MSLC 55.780 78.932 0.996 1.000 1.000 1.000 0.436 0.051 0.919 0.128
ONLINE-A 69.092 85.663 0.999 1.000 1.000 1.000 0.644 0.070 0.949 0.151
ONLINE-B 93.077 96.375 0.996 1.000 1.000 1.000 0.737 0.009 0.962 0.141
ONLINE-G 88.289 95.355 0.999 1.000 1.000 1.000 0.689 0.010 0.955 0.145
ONLINE-W 69.406 88.122 0.998 1.000 1.000 1.000 0.470 0.017 0.924 0.123
TSU-HITs 28.341 49.497 0.093 1.000 0.991 1.000 0.012 0.706 0.728 0.326
TranssionMT 69.177 85.712 0.999 1.000 1.000 1.000 0.644 0.069 0.949 0.151

Table 30: English→Spanish, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 44.372 45.246 0.919 0.335 0.341 0.346 0.326 0.061 0.429 0.544
Claude-3 51.127 53.605 0.994 0.947 0.977 0.990 0.993 0.005 0.982 0.273
CommandR-plus 40.586 41.471 0.939 0.146 0.149 0.160 0.135 0.087 0.277 0.641
GPT-4 60.036 63.499 0.999 0.838 0.854 0.860 0.863 0.001 0.880 0.322
Llama3-70B 53.457 67.543 0.996 0.938 0.971 0.995 0.999 0.001 0.982 0.272
NVIDIA-NeMo 49.910 58.849 0.984 0.925 0.968 0.987 0.991 0.000 0.972 0.276
IKUN 63.955 74.240 0.979 0.879 0.903 0.996 0.980 0.000 0.949 0.280
IKUN-C 51.003 64.397 0.966 0.864 0.905 0.995 0.955 0.010 0.929 0.278
Occiglot 46.531 48.071 0.808 0.277 0.241 0.386 0.152 0.040 0.325 0.518
Unbabel-Tower70B 51.763 57.905 0.989 0.798 0.829 0.854 0.847 0.001 0.859 0.327
CycleL 34.687 45.926 0.000 0.058 0.127 0.649 0.001 0.001 0.119 0.521
Dubformer 19.544 27.118 0.574 0.056 0.064 0.196 0.001 0.152 0.147 0.656
IOL_Research 57.457 67.980 0.994 0.929 0.960 0.994 0.993 0.005 0.976 0.272
MSLC 37.791 48.802 0.887 0.509 0.498 0.621 0.534 0.010 0.590 0.450
ONLINE-A 64.014 72.441 0.995 0.951 0.971 0.996 1.000 0.000 0.986 0.269
ONLINE-B 63.810 44.291 0.995 0.938 0.971 0.995 1.000 0.000 0.983 0.271
ONLINE-G 59.288 68.441 0.999 0.942 0.977 0.991 0.996 0.000 0.984 0.269
ONLINE-W 61.734 69.495 0.998 0.933 0.971 0.995 0.994 0.001 0.979 0.267
TSU-HITs 0.001 10.778 0.009 0.091 0.102 0.344 0.005 0.020 0.094 0.511
TranssionMT 63.942 70.704 0.994 0.941 0.972 0.996 1.000 0.000 0.984 0.271

Table 31: English→Spanish, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 55.523 64.689 0.960 0.800 0.821 0.880 0.854 0.034 0.864 0.333
Claude-3 49.779 53.243 0.889 0.371 0.377 0.414 0.348 0.106 0.465 0.552
CommandR-plus 36.233 45.131 0.900 0.135 0.126 0.170 0.078 0.087 0.250 0.641
GPT-4 54.713 59.924 0.999 0.187 0.173 0.127 0.130 0.002 0.287 0.620
Llama3-70B 59.554 73.115 0.996 0.931 0.971 0.995 0.996 0.004 0.980 0.273
NVIDIA-NeMo 60.284 67.454 0.903 0.862 0.905 0.994 0.906 0.007 0.907 0.289
IKUN 56.665 71.158 0.980 0.874 0.913 0.998 0.979 0.007 0.949 0.278
IKUN-C 49.748 62.920 0.980 0.873 0.912 0.993 0.972 0.011 0.944 0.276
Occiglot 17.068 27.726 0.458 0.181 0.204 0.169 0.099 0.021 0.194 0.566
Unbabel-Tower70B 57.020 65.268 0.988 0.886 0.919 0.961 0.951 0.002 0.940 0.287
CycleL 14.341 28.581 0.000 0.054 0.116 0.712 0.000 0.000 0.126 0.512
Dubformer 11.080 21.565 0.237 0.078 0.078 0.295 0.012 0.520 0.114 0.721
IOL_Research 67.324 78.253 0.995 0.927 0.949 0.995 0.993 0.004 0.973 0.273
MSLC 41.545 49.482 0.912 0.731 0.736 0.782 0.739 0.009 0.767 0.354
ONLINE-A 64.470 73.336 0.995 0.951 0.971 0.996 1.000 0.000 0.986 0.269
ONLINE-B 66.391 51.738 0.927 0.931 0.967 0.996 0.939 0.015 0.960 0.275
ONLINE-G 64.605 73.968 0.999 0.944 0.974 0.995 0.999 0.000 0.986 0.269
ONLINE-W 63.707 73.669 0.998 0.929 0.978 0.994 0.994 0.001 0.979 0.266
TSU-HITs 0.436 22.353 0.020 0.252 0.406 0.859 0.013 0.045 0.275 0.422
TranssionMT 65.974 73.350 0.930 0.931 0.969 0.996 0.955 0.007 0.966 0.277

Table 32: English→Spanish, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 57.243 74.550 0.999 0.944 0.955 0.996 0.994 0.005 0.969 0.241
Claude-3 66.823 81.945 0.998 0.969 0.982 0.994 0.996 0.004 0.983 0.246
CommandR-plus 54.377 73.408 0.988 0.947 0.958 0.996 0.994 0.006 0.967 0.241
GPT-4 64.985 79.784 1.000 0.966 0.969 0.996 0.999 0.001 0.979 0.242
Llama3-70B 61.753 77.069 0.999 0.961 0.967 0.998 0.994 0.004 0.979 0.243
NVIDIA-NeMo 55.940 72.507 0.979 0.914 0.955 0.999 0.994 0.000 0.966 0.251
CUNI-MH 57.511 75.301 0.998 0.966 0.971 0.995 0.988 0.010 0.980 0.237
IKUN 45.469 65.478 1.000 0.898 0.914 0.995 0.985 0.005 0.939 0.241
IKUN-C 37.968 58.621 0.996 0.848 0.901 0.995 0.971 0.009 0.908 0.237
SCIR-MT 63.339 78.457 0.987 0.942 0.966 0.995 0.995 0.002 0.976 0.253
Unbabel-Tower70B 51.206 71.180 0.990 0.936 0.957 0.996 0.990 0.010 0.961 0.238
CUNI-DocTransformer 58.378 75.431 0.998 0.935 0.972 0.995 0.996 0.001 0.973 0.244
CUNI-GA 56.400 74.149 0.998 0.931 0.966 0.994 0.999 0.000 0.972 0.243
CUNI-Transformer 56.400 74.149 0.998 0.931 0.966 0.994 0.999 0.000 0.972 0.243
CycleL 1.469 17.798 0.987 0.800 0.805 0.993 0.015 0.002 0.537 0.082
CycleL2 5.734 24.422 0.988 0.785 0.826 0.994 0.122 0.006 0.602 0.120
IOL_Research 64.617 78.908 0.988 0.950 0.965 0.995 0.990 0.007 0.976 0.250
ONLINE-A 63.853 79.054 0.999 0.946 0.968 0.995 1.000 0.000 0.980 0.248
ONLINE-B 59.851 76.425 0.998 0.936 0.963 0.995 0.998 0.002 0.974 0.247
ONLINE-G 63.404 78.063 0.999 0.950 0.967 0.995 1.000 0.000 0.981 0.248
ONLINE-W 55.114 73.094 0.999 0.941 0.963 0.996 0.995 0.001 0.970 0.242
TSU-HITs 16.169 34.946 0.081 0.545 0.725 0.977 0.596 0.047 0.565 0.385
TranssionMT 62.123 78.598 0.999 0.949 0.971 0.995 0.999 0.001 0.979 0.246

Table 33: English→Czech, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 43.235 64.720 0.988 0.931 0.891 0.999 0.889 0.102 0.941 0.227
Claude-3 0.221 9.467 0.006 0.032 0.040 0.006 0.000 1.000 0.013 0.834
CommandR-plus 13.247 31.471 0.729 0.296 0.267 0.458 0.286 0.425 0.382 0.594
GPT-4 19.672 40.563 0.480 0.428 0.348 0.971 0.345 0.654 0.547 0.555
Llama3-70B 17.102 48.921 0.778 0.777 0.765 0.800 0.783 0.217 0.777 0.335
NVIDIA-NeMo 48.364 70.655 0.987 0.994 0.979 1.000 0.993 0.005 0.989 0.200
CUNI-MH 56.704 77.481 0.998 1.000 1.000 1.000 0.988 0.012 0.998 0.190
IKUN 36.215 60.755 0.864 0.945 0.897 1.000 0.884 0.108 0.921 0.233
IKUN-C 28.458 53.178 0.974 0.965 0.906 0.999 0.919 0.061 0.931 0.193
SCIR-MT 76.711 86.823 0.987 1.000 0.999 1.000 0.989 0.009 0.996 0.198
Unbabel-Tower70B 47.569 72.172 0.969 0.993 0.988 1.000 0.979 0.017 0.982 0.191
CUNI-DocTransformer 60.086 79.628 0.998 0.996 0.996 1.000 0.991 0.007 0.997 0.191
CUNI-GA 36.980 62.546 0.987 0.968 0.936 1.000 0.968 0.031 0.952 0.201
CUNI-Transformer 36.980 62.546 0.987 0.968 0.936 1.000 0.968 0.031 0.952 0.201
CycleL 1.019 17.922 0.982 0.765 0.756 0.999 0.001 0.000 0.507 0.089
CycleL2 3.482 21.004 0.995 0.878 0.692 1.000 0.004 0.037 0.542 0.112
IOL_Research 34.952 55.208 0.879 0.764 0.643 1.000 0.816 0.176 0.838 0.341
ONLINE-A 59.187 79.085 0.999 1.000 0.998 1.000 0.971 0.029 0.994 0.199
ONLINE-B 58.821 78.935 0.998 1.000 0.999 1.000 0.998 0.002 0.999 0.193
ONLINE-G 58.898 79.300 0.999 1.000 1.000 1.000 0.995 0.002 0.999 0.197
ONLINE-W 57.748 77.987 0.998 1.000 1.000 1.000 0.998 0.002 0.999 0.195
TSU-HITs 16.823 37.143 0.029 0.749 0.843 0.978 0.449 0.177 0.600 0.267
TranssionMT 58.756 79.292 0.999 1.000 0.998 1.000 0.972 0.028 0.995 0.199

Table 34: English→Czech, direct
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 43.861 66.893 0.999 0.999 0.996 1.000 0.295 0.608 0.894 0.248
Claude-3 3.979 18.708 0.127 0.481 0.518 0.444 0.229 0.688 0.307 0.512
CommandR-plus 32.040 48.780 0.627 0.913 0.831 1.000 0.081 0.858 0.700 0.365
GPT-4 50.035 68.241 1.000 0.998 0.995 1.000 0.775 0.209 0.966 0.201
Llama3-70B 43.095 59.015 0.780 0.783 0.732 0.944 0.192 0.782 0.726 0.403
NVIDIA-NeMo 66.822 75.097 0.989 0.998 0.996 0.996 0.038 0.956 0.859 0.311
CUNI-MH 39.866 58.411 0.996 0.999 0.993 1.000 0.273 0.714 0.893 0.259
IKUN 51.933 71.198 0.998 1.000 1.000 1.000 0.600 0.372 0.941 0.204
IKUN-C 26.890 46.890 0.995 0.919 0.733 1.000 0.062 0.936 0.777 0.345
SCIR-MT 61.409 69.918 0.987 1.000 0.999 1.000 0.073 0.907 0.866 0.302
Unbabel-Tower70B 39.160 61.603 1.000 0.996 0.990 1.000 0.449 0.481 0.910 0.238
CUNI-DocTransformer 53.662 74.090 0.996 1.000 1.000 1.000 0.187 0.802 0.883 0.279
CUNI-GA 58.498 79.747 0.998 1.000 1.000 1.000 0.624 0.360 0.946 0.217
CUNI-Transformer 58.498 79.747 0.998 1.000 1.000 1.000 0.624 0.360 0.946 0.217
CycleL 1.240 17.016 0.984 0.978 0.824 0.995 0.000 0.098 0.541 0.058
CycleL2 9.402 29.260 0.994 0.998 0.977 1.000 0.000 0.317 0.703 0.087
IOL_Research 46.391 65.294 0.999 0.999 1.000 1.000 0.588 0.375 0.940 0.216
ONLINE-A 56.372 77.344 0.999 1.000 1.000 1.000 0.359 0.592 0.908 0.259
ONLINE-B 47.934 64.659 0.998 1.000 0.991 1.000 0.301 0.667 0.898 0.262
ONLINE-G 37.706 66.368 0.999 0.991 0.999 1.000 0.760 0.131 0.948 0.188
ONLINE-W 56.533 78.862 0.999 1.000 1.000 1.000 0.078 0.920 0.868 0.293
TSU-HITs 13.616 36.001 0.061 0.873 0.940 0.998 0.002 0.771 0.564 0.341
TranssionMT 49.884 67.486 0.999 1.000 0.990 0.993 0.307 0.659 0.897 0.265

Table 35: English→Czech, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 55.072 75.740 0.996 1.000 1.000 1.000 0.125 0.542 0.874 0.180
Claude-3 0.767 9.381 0.013 0.834 0.682 0.881 0.018 0.346 0.349 0.286
CommandR-plus 49.165 68.286 0.868 1.000 0.996 1.000 0.419 0.428 0.895 0.201
GPT-4 54.286 75.679 0.999 1.000 1.000 1.000 0.460 0.229 0.923 0.143
Llama3-70B 42.181 65.074 0.971 1.000 1.000 1.000 0.661 0.093 0.947 0.117
NVIDIA-NeMo 63.608 74.237 0.907 0.998 0.995 0.950 0.132 0.696 0.840 0.236
CUNI-MH 50.682 71.752 0.998 1.000 1.000 1.000 0.652 0.182 0.950 0.126
IKUN 73.046 82.347 0.999 1.000 0.985 1.000 0.067 0.447 0.864 0.149
IKUN-C 41.076 65.308 0.989 1.000 1.000 1.000 0.542 0.259 0.933 0.137
SCIR-MT 82.937 86.289 0.987 1.000 1.000 1.000 0.162 0.364 0.878 0.172
Unbabel-Tower70B 56.279 74.296 0.998 1.000 1.000 1.000 0.506 0.248 0.929 0.144
CUNI-DocTransformer 61.577 81.949 0.998 1.000 1.000 1.000 0.209 0.524 0.887 0.181
CUNI-GA 70.410 85.330 0.998 1.000 1.000 1.000 0.059 0.443 0.865 0.170
CUNI-Transformer 70.410 85.330 0.998 1.000 1.000 1.000 0.059 0.443 0.865 0.170
CycleL 0.446 18.362 0.859 0.887 0.961 0.998 0.000 0.021 0.529 0.047
CycleL2 6.341 28.958 0.974 0.996 0.996 1.000 0.000 0.181 0.704 0.042
IOL_Research 50.768 73.431 1.000 1.000 1.000 1.000 0.195 0.321 0.885 0.144
ONLINE-A 60.436 80.049 0.999 1.000 1.000 1.000 0.192 0.397 0.884 0.171
ONLINE-B 77.459 83.866 0.998 1.000 1.000 1.000 0.218 0.446 0.888 0.176
ONLINE-G 57.235 77.528 0.999 1.000 1.000 1.000 0.186 0.460 0.884 0.179
ONLINE-W 59.116 81.841 0.999 1.000 1.000 1.000 0.031 0.670 0.861 0.196
TSU-HITs 6.089 29.588 0.028 0.849 0.951 0.999 0.001 0.618 0.531 0.291
TranssionMT 60.824 80.180 0.999 1.000 1.000 1.000 0.195 0.397 0.885 0.171

Table 36: English→Czech, 1-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 41.106 43.140 0.928 0.879 0.896 0.985 0.927 0.060 0.915 0.277
Claude-3 32.438 37.308 0.973 0.944 0.956 0.976 0.968 0.026 0.962 0.265
CommandR-plus 29.014 31.981 0.958 0.623 0.636 0.698 0.689 0.062 0.697 0.400
GPT-4 40.384 46.163 1.000 0.397 0.393 0.394 0.410 0.058 0.490 0.514
Llama3-70B 39.552 51.856 0.999 0.968 0.974 0.995 0.998 0.001 0.981 0.241
NVIDIA-NeMo 41.978 44.362 0.974 0.826 0.832 0.869 0.869 0.012 0.863 0.303
CUNI-MH 26.635 39.740 1.000 0.690 0.627 1.000 0.000 0.000 0.474 0.098
IKUN 65.224 70.139 0.905 0.808 0.864 0.987 0.909 0.005 0.840 0.227
IKUN-C 45.966 50.534 0.936 0.859 0.895 0.979 0.908 0.017 0.877 0.235
SCIR-MT 31.395 47.915 0.989 0.940 0.967 0.991 0.995 0.002 0.974 0.251
Unbabel-Tower70B 38.998 46.846 0.955 0.892 0.920 0.968 0.944 0.017 0.924 0.254
CUNI-DocTransformer 13.558 35.236 0.998 0.444 0.449 0.441 0.492 0.062 0.540 0.496
CUNI-GA 12.724 32.388 0.942 0.174 0.149 0.116 0.198 0.087 0.275 0.639
CUNI-Transformer 12.724 32.388 0.942 0.174 0.149 0.116 0.198 0.087 0.275 0.639
CycleL 0.608 11.178 0.000 0.089 0.073 0.647 0.000 0.001 0.116 0.460
CycleL2 7.851 18.916 0.000 0.099 0.126 0.787 0.000 0.015 0.145 0.429
IOL_Research 29.386 38.865 0.993 0.939 0.956 0.983 0.979 0.007 0.963 0.240
ONLINE-A 49.782 59.772 0.996 0.936 0.967 0.995 0.998 0.000 0.975 0.246
ONLINE-B 51.148 35.081 0.994 0.935 0.965 0.988 0.994 0.001 0.972 0.247
ONLINE-G 42.713 48.902 0.998 0.903 0.961 0.995 0.993 0.005 0.967 0.255
ONLINE-W 52.745 58.313 0.965 0.923 0.939 0.994 0.925 0.037 0.936 0.238
TSU-HITs 0.000 6.347 0.007 0.100 0.177 0.902 0.006 0.007 0.177 0.409
TranssionMT 50.961 58.322 0.993 0.949 0.968 0.993 0.999 0.000 0.976 0.245

Table 37: English→Czech, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 29.727 38.018 0.994 0.927 0.953 0.995 0.991 0.007 0.963 0.244
Claude-3 5.118 16.803 0.200 0.106 0.125 0.573 0.050 0.683 0.212 0.698
CommandR-plus 21.301 28.347 0.974 0.465 0.476 0.513 0.518 0.088 0.561 0.478
GPT-4 28.891 37.329 0.999 0.073 0.043 0.004 0.054 0.087 0.186 0.684
Llama3-70B 28.057 41.364 0.999 0.960 0.966 0.996 0.999 0.001 0.978 0.244
NVIDIA-NeMo 27.813 34.402 0.890 0.448 0.453 0.494 0.457 0.049 0.518 0.486
CUNI-MH 31.838 35.068 0.994 0.936 0.966 0.989 0.987 0.010 0.962 0.237
IKUN 45.464 55.355 0.310 0.357 0.382 0.996 0.269 0.148 0.402 0.359
IKUN-C 31.924 42.558 0.563 0.552 0.573 0.783 0.333 0.038 0.478 0.290
SCIR-MT 24.259 42.627 0.989 0.940 0.967 0.991 0.995 0.002 0.974 0.251
Unbabel-Tower70B 28.042 38.886 0.967 0.854 0.869 0.901 0.887 0.017 0.885 0.282
CUNI-DocTransformer 6.961 28.507 0.998 0.859 0.890 0.898 0.909 0.012 0.904 0.290
CUNI-GA 3.680 20.055 0.976 0.436 0.110 0.073 0.001 0.024 0.231 0.353
CUNI-Transformer 3.680 20.055 0.976 0.436 0.110 0.073 0.001 0.024 0.231 0.353
CycleL 0.122 7.126 0.000 0.078 0.078 0.621 0.000 0.002 0.111 0.464
CycleL2 1.307 11.054 0.000 0.097 0.113 0.815 0.000 0.017 0.146 0.428
IOL_Research 18.249 31.706 0.984 0.922 0.949 0.974 0.967 0.012 0.951 0.245
ONLINE-A 34.158 45.736 0.996 0.936 0.969 0.995 0.998 0.000 0.976 0.246
ONLINE-B 34.468 28.263 0.994 0.876 0.936 0.993 0.984 0.006 0.943 0.248
ONLINE-G 29.851 39.063 0.998 0.903 0.961 0.995 0.993 0.005 0.967 0.255
ONLINE-W 36.605 44.861 0.890 0.820 0.834 0.737 0.692 0.011 0.767 0.277
TSU-HITs 0.001 7.399 0.009 0.154 0.197 0.984 0.005 0.006 0.208 0.395
TranssionMT 34.162 45.736 0.998 0.936 0.969 0.995 0.999 0.000 0.976 0.245

Table 38: English→Czech, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 31.789 44.156 1.000 0.119 0.887 0.995 0.974 0.013 0.700 0.234
Claude-3 6.160 52.796 0.994 0.246 0.928 0.989 0.969 0.021 0.757 0.232
CommandR-plus 12.165 44.248 0.990 0.146 0.896 0.993 0.966 0.027 0.712 0.239
GPT-4 11.698 49.684 0.999 0.201 0.918 0.993 0.974 0.012 0.743 0.233
Llama3-70B 14.886 45.139 0.998 0.127 0.901 0.991 0.972 0.016 0.709 0.235
NVIDIA-NeMo 1.315 35.577 0.971 0.062 0.847 0.984 0.942 0.023 0.655 0.252
IKUN 2.722 34.863 0.995 0.069 0.827 0.991 0.947 0.038 0.652 0.243
IKUN-C 4.261 29.898 0.989 0.039 0.832 0.989 0.931 0.045 0.627 0.236
Unbabel-Tower70B 2.125 40.668 0.994 0.105 0.887 0.988 0.974 0.016 0.696 0.243
CycleL 0.057 3.676 0.837 0.007 0.319 0.930 0.075 0.040 0.311 0.289
CycleL2 0.000 0.779 0.032 0.000 0.073 0.635 0.004 0.009 0.106 0.475
HW-TSC 18.593 47.754 0.999 0.195 0.916 0.993 0.965 0.024 0.736 0.230
IOL_Research 28.529 54.058 0.999 0.230 0.919 0.991 0.965 0.027 0.752 0.232
ONLINE-A 11.048 49.271 0.999 0.190 0.876 0.996 0.961 0.026 0.727 0.235
ONLINE-B 2.844 45.939 0.999 0.143 0.891 0.991 0.963 0.027 0.711 0.241
ONLINE-G 2.939 42.534 0.998 0.129 0.907 0.996 0.961 0.028 0.706 0.238
ONLINE-W 3.376 44.271 0.999 0.144 0.887 0.998 0.962 0.027 0.707 0.240
UvA-MT 0.668 34.492 0.978 0.011 0.807 0.985 0.977 0.015 0.641 0.276

Table 39: English→Chinese, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 5.186 40.417 0.996 0.004 0.976 1.000 0.968 0.027 0.698 0.226
Claude-3 0.019 1.919 0.006 0.001 0.077 0.262 0.000 0.998 0.051 0.772
CommandR-plus 1.494 34.071 0.918 0.007 0.834 0.969 0.869 0.109 0.629 0.282
GPT-4 6.933 30.820 0.919 0.006 0.518 0.993 0.611 0.386 0.532 0.383
Llama3-70B 0.126 27.102 0.891 0.005 0.870 0.895 0.882 0.115 0.629 0.294
NVIDIA-NeMo 0.581 35.996 0.983 0.010 0.957 0.993 0.953 0.040 0.682 0.240
IKUN 2.194 34.039 0.973 0.004 0.922 1.000 0.968 0.028 0.665 0.236
IKUN-C 1.653 32.757 0.965 0.006 0.951 1.000 0.961 0.033 0.671 0.215
Unbabel-Tower70B 2.875 37.019 0.976 0.001 0.958 1.000 0.957 0.040 0.686 0.239
CycleL 0.084 13.462 0.912 0.006 0.994 1.000 0.007 0.121 0.424 0.188
CycleL2 0.007 0.705 0.009 0.000 0.049 0.880 0.000 0.011 0.134 0.443
HW-TSC 6.806 38.650 0.999 0.004 0.941 1.000 0.984 0.013 0.689 0.239
IOL_Research 4.453 40.267 0.988 0.002 0.862 1.000 0.889 0.108 0.667 0.272
ONLINE-A 1.079 42.426 0.999 0.005 0.968 1.000 0.968 0.029 0.701 0.240
ONLINE-B 0.964 43.437 0.999 0.002 0.976 1.000 0.974 0.021 0.704 0.239
ONLINE-G 1.689 38.324 0.998 0.009 0.962 1.000 0.965 0.032 0.697 0.231
ONLINE-W 2.615 38.154 0.999 0.009 0.919 1.000 0.982 0.015 0.684 0.245
UvA-MT 0.602 37.625 0.991 0.009 0.962 1.000 0.985 0.013 0.695 0.244

Table 40: English→Chinese, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.761 24.987 0.929 0.005 0.468 0.983 0.006 0.984 0.412 0.458
Claude-3 0.045 11.015 0.395 0.115 0.488 0.529 0.081 0.834 0.303 0.557
CommandR-plus 0.049 21.207 0.486 0.004 0.494 0.810 0.037 0.930 0.315 0.523
GPT-4 3.758 58.453 0.999 0.007 1.000 1.000 0.091 0.882 0.587 0.351
Llama3-70B 0.278 43.325 0.973 0.031 0.931 0.990 0.091 0.841 0.549 0.335
NVIDIA-NeMo 0.270 30.835 0.968 0.005 0.834 0.979 0.006 0.880 0.512 0.364
IKUN 0.621 47.653 0.996 0.005 0.995 1.000 0.075 0.783 0.581 0.308
IKUN-C 0.200 20.826 0.991 0.005 0.646 0.999 0.033 0.951 0.439 0.390
Unbabel-Tower70B 1.298 35.764 0.996 0.001 0.876 1.000 0.027 0.967 0.544 0.384
CycleL 0.009 2.377 0.892 0.006 0.264 0.999 0.000 0.158 0.309 0.287
CycleL2 0.000 1.037 0.006 0.000 0.109 0.973 0.000 0.127 0.155 0.435
HW-TSC 5.378 37.590 0.999 0.004 0.980 1.000 0.104 0.814 0.582 0.334
IOL_Research 0.741 57.559 0.998 0.009 1.000 1.000 0.033 0.958 0.578 0.355
ONLINE-A 1.040 46.701 0.999 0.005 0.996 1.000 0.034 0.862 0.577 0.339
ONLINE-B 0.053 43.261 0.999 0.005 0.999 1.000 0.047 0.922 0.579 0.380
ONLINE-G 0.216 28.849 0.998 0.010 0.805 1.000 0.015 0.984 0.511 0.386
ONLINE-W 0.402 33.369 0.996 0.015 0.907 1.000 0.152 0.814 0.560 0.345
UvA-MT 0.135 26.099 0.982 0.010 0.818 0.990 0.026 0.880 0.496 0.356

Table 41: English→Chinese, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.265 19.780 0.998 0.010 0.777 0.995 0.010 0.782 0.435 0.325
Claude-3 0.836 51.981 0.879 0.007 0.976 0.984 0.012 0.421 0.536 0.270
CommandR-plus 0.054 43.878 0.881 0.006 0.916 0.949 0.012 0.465 0.513 0.281
GPT-4 1.904 54.773 0.999 0.006 1.000 1.000 0.017 0.306 0.576 0.230
Llama3-70B 0.083 46.518 0.988 0.009 1.000 1.000 0.007 0.459 0.572 0.233
NVIDIA-NeMo 0.606 38.384 0.994 0.005 1.000 1.000 0.001 0.711 0.573 0.284
IKUN 0.512 61.085 0.994 0.004 0.999 1.000 0.007 0.393 0.572 0.225
IKUN-C 0.123 25.144 0.895 0.001 0.972 1.000 0.011 0.595 0.520 0.266
Unbabel-Tower70B 0.170 42.703 0.957 0.006 0.999 1.000 0.013 0.510 0.568 0.261
CycleL 0.003 2.229 0.393 0.001 0.483 0.993 0.000 0.066 0.267 0.314
CycleL2 0.000 0.891 0.011 0.000 0.007 0.941 0.000 0.011 0.137 0.436
HW-TSC 5.511 50.392 0.999 0.004 1.000 1.000 0.016 0.453 0.575 0.248
IOL_Research 0.116 51.409 0.996 0.004 1.000 1.000 0.013 0.327 0.574 0.230
ONLINE-A 1.040 52.306 0.999 0.005 1.000 1.000 0.009 0.728 0.575 0.286
ONLINE-B 0.031 48.627 0.999 0.005 1.000 1.000 0.031 0.318 0.576 0.230
ONLINE-G 0.140 37.881 0.998 0.010 1.000 1.000 0.020 0.821 0.575 0.297
ONLINE-W 0.129 44.726 0.998 0.012 1.000 1.000 0.006 0.472 0.574 0.235
UvA-MT 0.047 24.717 0.958 0.009 0.987 1.000 0.001 0.535 0.543 0.247

Table 42: English→Chinese, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 26.338 30.138 0.905 0.049 0.612 0.753 0.668 0.064 0.514 0.366
Claude-3 29.992 30.134 0.909 0.201 0.829 0.902 0.875 0.075 0.678 0.289
CommandR-plus 22.717 25.593 0.949 0.053 0.552 0.672 0.614 0.086 0.490 0.415
GPT-4 37.792 42.756 0.999 0.018 0.173 0.184 0.186 0.033 0.252 0.616
Llama3-70B 34.428 43.116 0.947 0.105 0.903 0.979 0.930 0.028 0.679 0.241
NVIDIA-NeMo 30.861 28.789 0.962 0.033 0.670 0.761 0.742 0.035 0.531 0.348
IKUN 34.710 43.744 0.987 0.051 0.841 0.989 0.947 0.028 0.646 0.248
IKUN-C 34.992 39.814 0.974 0.037 0.732 0.892 0.834 0.047 0.573 0.287
Unbabel-Tower70B 34.411 41.251 0.994 0.050 0.568 0.645 0.632 0.027 0.499 0.407
CycleL 0.000 3.706 0.001 0.000 0.002 0.330 0.000 0.000 0.048 0.524
CycleL2 0.000 0.584 0.004 0.000 0.044 0.632 0.000 0.004 0.097 0.480
HW-TSC 0.000 8.198 0.321 0.015 0.170 0.776 0.130 0.076 0.216 0.444
IOL_Research 9.759 15.764 0.903 0.098 0.720 0.827 0.750 0.077 0.577 0.306
ONLINE-A 1.980 17.699 0.869 0.106 0.820 0.853 0.815 0.033 0.607 0.276
ONLINE-B 35.639 22.384 0.996 0.104 0.916 0.976 0.947 0.033 0.691 0.239
ONLINE-G 34.841 29.900 0.996 0.130 0.870 0.983 0.949 0.033 0.692 0.244
ONLINE-W 23.692 23.809 0.847 0.018 0.233 0.370 0.241 0.045 0.274 0.550
UvA-MT 37.581 39.663 0.931 0.004 0.272 0.359 0.344 0.206 0.304 0.585

Table 43: English→Chinese, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 12.503 28.651 0.999 0.106 0.887 0.982 0.955 0.027 0.687 0.236
Claude-3 0.305 8.270 0.015 0.001 0.111 0.670 0.021 0.945 0.127 0.689
CommandR-plus 9.258 20.579 0.858 0.078 0.679 0.862 0.722 0.129 0.554 0.341
GPT-4 20.497 31.347 0.999 0.002 0.006 0.002 0.021 0.032 0.150 0.691
Llama3-70B 14.202 31.556 0.994 0.126 0.909 0.987 0.961 0.017 0.706 0.240
NVIDIA-NeMo 20.277 20.133 0.035 0.002 0.009 0.015 0.001 0.207 0.010 0.621
IKUN 15.178 33.436 0.989 0.038 0.802 0.976 0.957 0.023 0.638 0.259
IKUN-C 13.816 29.137 0.987 0.035 0.796 0.955 0.897 0.037 0.602 0.247
Unbabel-Tower70B 18.475 31.454 0.998 0.054 0.493 0.551 0.545 0.027 0.453 0.445
CycleL 0.000 2.247 0.000 0.000 0.004 0.345 0.000 0.001 0.050 0.523
CycleL2 0.000 0.327 0.005 0.000 0.054 0.646 0.000 0.004 0.101 0.475
HW-TSC 0.000 3.635 0.000 0.000 0.109 0.999 0.000 0.017 0.158 0.416
IOL_Research 6.086 15.506 0.960 0.105 0.780 0.842 0.825 0.064 0.620 0.284
ONLINE-A 0.241 9.912 1.000 0.106 0.841 0.984 0.815 0.042 0.647 0.237
ONLINE-B 16.305 16.028 0.999 0.116 0.914 0.976 0.956 0.021 0.697 0.236
ONLINE-G 15.830 18.245 0.999 0.148 0.896 0.994 0.953 0.031 0.709 0.237
ONLINE-W 12.605 17.025 0.111 0.005 0.188 0.974 0.094 0.300 0.206 0.441
UvA-MT 21.160 29.706 0.015 0.000 0.000 0.000 0.000 0.136 0.002 0.607

Table 44: English→Chinese, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 49.791 70.611 1.000 0.905 0.914 0.999 0.972 0.023 0.947 0.251
Claude-3 62.653 79.565 0.998 0.945 0.968 1.000 0.966 0.034 0.973 0.253
CommandR-plus 52.187 72.206 0.995 0.927 0.944 0.999 0.971 0.029 0.958 0.249
GPT-4 54.848 74.440 0.999 0.931 0.969 0.999 0.966 0.034 0.968 0.246
Llama3-70B 49.780 70.822 0.999 0.902 0.938 0.999 0.971 0.027 0.949 0.251
NVIDIA-NeMo 47.690 67.971 0.969 0.905 0.936 1.000 0.967 0.010 0.940 0.247
IKUN 34.437 58.673 0.988 0.868 0.914 0.999 0.949 0.044 0.908 0.241
IKUN-C 36.359 59.479 0.993 0.881 0.929 1.000 0.965 0.027 0.918 0.234
Unbabel-Tower70B 49.401 71.358 0.991 0.911 0.947 0.999 0.962 0.034 0.954 0.251
CycleL 0.928 14.750 0.000 0.290 0.446 0.999 0.040 0.047 0.270 0.359
Dubformer 49.968 71.853 0.987 0.918 0.946 0.998 0.971 0.029 0.956 0.250
IOL_Research 59.265 76.482 0.979 0.919 0.944 1.000 0.984 0.016 0.960 0.256
ONLINE-A 53.505 72.787 0.996 0.930 0.949 0.999 0.966 0.028 0.956 0.248
ONLINE-B 52.012 72.139 0.998 0.917 0.946 1.000 0.972 0.026 0.956 0.250
ONLINE-G 47.843 70.719 0.996 0.917 0.938 1.000 0.962 0.034 0.951 0.251
ONLINE-W 56.473 74.051 0.999 0.928 0.944 1.000 0.965 0.033 0.959 0.252
TranssionMT 54.465 74.167 0.995 0.935 0.951 1.000 0.969 0.027 0.961 0.251

Table 45: English→Ukrainian, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 43.208 62.841 0.998 0.767 0.698 0.999 0.635 0.365 0.832 0.331
Claude-3 0.192 0.963 0.024 0.007 0.004 0.012 0.009 0.984 0.009 0.838
CommandR-plus 43.779 70.052 0.884 0.869 0.863 0.958 0.756 0.225 0.872 0.280
GPT-4 22.972 42.060 0.621 0.430 0.335 0.961 0.305 0.694 0.566 0.547
Llama3-70B 2.941 11.270 0.251 0.166 0.143 0.211 0.127 0.873 0.181 0.738
NVIDIA-NeMo 54.317 77.552 0.983 0.999 0.999 1.000 0.875 0.125 0.979 0.210
IKUN 27.427 61.364 0.928 0.972 0.987 1.000 0.924 0.076 0.933 0.193
IKUN-C 24.366 57.665 0.995 0.960 0.965 1.000 0.916 0.084 0.916 0.187
Unbabel-Tower70B 38.592 73.353 0.991 0.995 0.999 1.000 0.912 0.088 0.983 0.198
CycleL 0.493 15.506 0.000 0.603 0.567 1.000 0.001 0.082 0.313 0.293
Dubformer 15.405 34.623 0.523 0.454 0.466 0.700 0.280 0.610 0.482 0.545
IOL_Research 36.206 54.753 0.973 0.638 0.493 1.000 0.499 0.498 0.753 0.412
ONLINE-A 47.835 76.254 0.995 1.000 0.999 1.000 0.764 0.234 0.965 0.225
ONLINE-B 50.403 77.296 0.998 0.998 0.999 1.000 0.923 0.077 0.988 0.198
ONLINE-G 50.344 75.798 0.999 0.999 0.999 1.000 0.880 0.120 0.979 0.202
ONLINE-W 48.888 75.292 0.906 0.999 0.998 1.000 0.882 0.118 0.969 0.227
TranssionMT 47.024 76.579 0.995 0.999 0.998 1.000 0.802 0.198 0.970 0.218

Table 46: English→Ukrainian, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 38.170 66.310 0.969 0.990 0.991 1.000 0.004 0.965 0.842 0.315
Claude-3 34.875 63.514 0.918 0.939 0.940 0.955 0.202 0.558 0.823 0.280
CommandR-plus 18.276 41.153 0.395 0.849 0.668 0.913 0.009 0.979 0.592 0.462
GPT-4 40.735 66.885 0.996 1.000 1.000 1.000 0.011 0.962 0.857 0.301
Llama3-70B 22.647 41.801 0.770 0.499 0.395 0.973 0.011 0.976 0.547 0.532
NVIDIA-NeMo 44.936 66.430 0.994 0.996 0.991 1.000 0.002 0.994 0.854 0.312
IKUN 31.820 64.279 0.996 1.000 0.999 1.000 0.040 0.521 0.861 0.217
IKUN-C 20.981 50.000 0.996 0.925 0.860 1.000 0.012 0.983 0.759 0.338
Unbabel-Tower70B 26.806 54.532 0.982 0.941 0.873 0.999 0.023 0.956 0.792 0.348
CycleL 0.190 11.645 0.000 0.953 0.843 0.857 0.000 0.346 0.380 0.247
Dubformer 16.325 24.645 0.984 0.568 0.231 0.245 0.010 0.246 0.359 0.528
IOL_Research 40.166 73.445 0.990 0.995 0.995 1.000 0.033 0.646 0.858 0.258
ONLINE-A 40.582 72.313 0.996 1.000 1.000 1.000 0.020 0.645 0.859 0.250
ONLINE-B 37.933 72.460 0.998 1.000 1.000 1.000 0.035 0.635 0.862 0.252
ONLINE-G 26.133 59.435 0.999 0.983 0.995 1.000 0.005 0.398 0.808 0.217
ONLINE-W 37.025 71.965 0.999 0.996 1.000 1.000 0.033 0.394 0.856 0.217
TranssionMT 40.563 72.472 0.996 1.000 1.000 1.000 0.018 0.644 0.859 0.251

Table 47: English→Ukrainian, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 46.559 73.107 1.000 1.000 1.000 1.000 0.029 0.787 0.861 0.221
Claude-3 2.037 20.426 0.198 0.889 0.496 0.983 0.027 0.244 0.412 0.272
CommandR-plus 50.447 71.338 0.827 0.998 0.998 1.000 0.012 0.870 0.830 0.258
GPT-4 49.840 73.623 0.994 1.000 1.000 1.000 0.032 0.792 0.861 0.222
Llama3-70B 36.700 60.591 0.969 1.000 1.000 1.000 0.173 0.622 0.877 0.215
NVIDIA-NeMo 49.107 70.904 0.958 1.000 1.000 1.000 0.013 0.909 0.853 0.248
IKUN 70.906 82.849 1.000 0.996 0.972 1.000 0.024 0.542 0.853 0.174
IKUN-C 30.631 60.900 0.994 0.999 0.998 1.000 0.021 0.916 0.854 0.239
Unbabel-Tower70B 47.335 72.274 0.996 1.000 1.000 1.000 0.035 0.892 0.862 0.246
CycleL 0.255 17.188 0.000 0.841 0.977 0.944 0.000 0.099 0.395 0.192
Dubformer 5.538 8.974 0.998 0.491 0.049 0.037 0.006 0.043 0.236 0.496
IOL_Research 65.240 84.223 0.996 1.000 1.000 1.000 0.015 0.672 0.859 0.198
ONLINE-A 64.032 84.119 0.996 1.000 1.000 1.000 0.029 0.546 0.861 0.178
ONLINE-B 74.871 88.689 0.998 1.000 1.000 1.000 0.022 0.550 0.860 0.177
ONLINE-G 59.770 82.970 0.994 1.000 1.000 1.000 0.024 0.570 0.860 0.179
ONLINE-W 53.733 80.823 0.999 1.000 1.000 1.000 0.026 0.640 0.861 0.194
TranssionMT 65.081 84.691 0.996 1.000 1.000 1.000 0.033 0.537 0.861 0.179

Table 48: English→Ukrainian, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 4.388 22.288 0.995 0.913 0.919 0.993 0.958 0.026 0.942 0.248
Claude-3 22.891 39.389 0.998 0.950 0.968 0.998 0.966 0.029 0.976 0.255
CommandR-plus 0.126 9.897 0.748 0.689 0.722 0.979 0.733 0.160 0.759 0.340
GPT-4 13.402 32.382 0.999 0.297 0.279 0.285 0.329 0.213 0.396 0.588
Llama3-70B 11.288 29.999 0.999 0.903 0.942 1.000 0.968 0.031 0.951 0.252
NVIDIA-NeMo 12.668 27.319 0.428 0.492 0.519 0.974 0.493 0.166 0.543 0.368
IKUN 6.190 25.561 0.965 0.875 0.890 0.971 0.894 0.070 0.885 0.251
IKUN-C 4.751 23.331 0.951 0.734 0.761 0.842 0.818 0.089 0.783 0.310
Unbabel-Tower70B 5.221 23.735 0.977 0.903 0.930 0.989 0.939 0.050 0.938 0.257
CycleL 0.000 3.299 0.000 0.118 0.168 0.982 0.000 0.000 0.181 0.390
Dubformer 0.707 12.279 0.384 0.037 0.027 0.208 0.039 0.655 0.107 0.761
IOL_Research 3.439 15.528 0.769 0.639 0.643 0.873 0.694 0.031 0.684 0.329
ONLINE-A 13.719 35.538 0.966 0.906 0.930 0.998 0.941 0.056 0.942 0.263
ONLINE-B 13.641 22.733 0.987 0.905 0.935 0.991 0.955 0.038 0.945 0.255
ONLINE-G 11.368 26.091 0.148 0.108 0.211 0.753 0.119 0.103 0.222 0.446
ONLINE-W 13.269 31.455 0.996 0.933 0.938 0.994 0.950 0.043 0.956 0.255
TranssionMT 13.692 35.536 0.991 0.922 0.942 0.998 0.961 0.033 0.957 0.255

Table 49: English→Ukrainian, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 1.063 14.715 0.998 0.917 0.945 0.999 0.973 0.022 0.958 0.246
Claude-3 4.693 19.766 0.823 0.092 0.092 0.182 0.137 0.388 0.229 0.715
CommandR-plus 0.040 7.585 0.288 0.360 0.400 0.972 0.351 0.628 0.492 0.580
GPT-4 3.118 20.202 0.999 0.043 0.009 0.006 0.086 0.278 0.169 0.720
Llama3-70B 2.764 19.104 0.962 0.903 0.934 0.994 0.950 0.047 0.936 0.258
NVIDIA-NeMo 1.287 19.588 0.987 0.985 0.632 0.999 0.001 0.005 0.516 0.062
IKUN 1.227 16.163 0.940 0.860 0.882 0.968 0.905 0.048 0.877 0.254
IKUN-C 0.886 14.892 0.923 0.849 0.852 0.990 0.849 0.072 0.860 0.256
Unbabel-Tower70B 1.202 15.677 0.991 0.918 0.962 0.998 0.965 0.029 0.960 0.249
CycleL 0.000 1.701 0.000 0.122 0.168 0.988 0.000 0.001 0.183 0.389
Dubformer 0.695 12.893 0.600 0.043 0.011 0.091 0.049 0.474 0.116 0.735
IOL_Research 0.689 9.081 0.130 0.106 0.228 0.816 0.105 0.070 0.227 0.429
ONLINE-A 3.114 21.522 0.966 0.908 0.931 0.998 0.941 0.049 0.943 0.262
ONLINE-B 3.164 12.686 0.991 0.909 0.942 0.996 0.965 0.033 0.950 0.253
ONLINE-G 2.564 13.911 0.094 0.076 0.207 0.837 0.077 0.043 0.205 0.428
ONLINE-W 3.092 18.793 0.996 0.917 0.929 0.991 0.945 0.049 0.948 0.261
TranssionMT 3.155 21.520 0.993 0.913 0.944 0.999 0.967 0.029 0.956 0.256

Table 50: English→Ukrainian, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 13.449 35.122 0.996 0.820 0.897 0.972 0.933 0.005 0.817 0.167
Claude-3 55.420 75.544 0.999 0.945 0.974 0.988 0.996 0.004 0.971 0.245
CommandR-plus 20.222 44.344 0.509 0.847 0.887 0.990 0.962 0.023 0.798 0.273
GPT-4 42.953 65.458 1.000 0.909 0.963 0.989 0.996 0.004 0.951 0.233
Llama3-70B 38.608 60.739 0.991 0.896 0.946 0.989 0.996 0.001 0.936 0.229
IKUN 31.698 55.417 0.967 0.749 0.832 0.990 0.950 0.018 0.865 0.273
IKUN-C 25.692 49.700 0.983 0.733 0.824 0.990 0.945 0.029 0.839 0.251
Unbabel-Tower70B 44.358 67.090 0.999 0.897 0.949 0.995 0.991 0.009 0.949 0.244
AMI 52.729 72.148 0.998 0.940 0.953 0.995 1.000 0.000 0.970 0.245
CycleL 10.383 29.998 0.929 0.786 0.875 0.994 0.460 0.017 0.699 0.150
Dubformer 41.037 61.391 0.978 0.874 0.912 0.953 0.955 0.022 0.914 0.260
IOL_Research 45.690 64.846 0.988 0.879 0.929 0.989 0.993 0.005 0.941 0.253
ONLINE-A 55.587 73.600 0.999 0.930 0.957 0.990 0.998 0.001 0.968 0.249
ONLINE-B 57.116 73.904 0.998 0.942 0.963 0.991 1.000 0.000 0.974 0.248
ONLINE-G 47.642 67.534 0.998 0.906 0.938 0.991 0.989 0.001 0.951 0.246
ONLINE-W NA
TSU-HITs 8.553 28.192 0.317 0.493 0.732 0.979 0.676 0.023 0.570 0.337
TranssionMT 57.314 74.708 0.999 0.940 0.965 0.990 1.000 0.000 0.973 0.249

Table 51: English→Icelandic, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 7.573 32.205 0.897 0.889 0.827 0.990 0.750 0.160 0.752 0.175
Claude-3 0.417 10.167 0.010 0.037 0.047 0.076 0.002 0.996 0.033 0.822
CommandR-plus 2.692 17.322 0.337 0.196 0.180 0.370 0.195 0.605 0.227 0.667
GPT-4 15.660 33.955 0.480 0.293 0.223 0.971 0.411 0.588 0.482 0.582
Llama3-70B 0.709 11.013 0.076 0.069 0.067 0.078 0.042 0.958 0.064 0.800
IKUN 42.666 67.063 0.854 0.998 0.990 1.000 0.996 0.002 0.972 0.212
IKUN-C 38.746 63.561 0.983 0.996 0.987 0.999 0.990 0.009 0.988 0.179
Unbabel-Tower70B 39.320 65.432 0.917 0.988 0.982 1.000 0.963 0.037 0.972 0.205
AMI 54.415 74.927 0.998 0.999 0.998 1.000 0.999 0.001 0.997 0.192
CycleL 8.093 30.233 0.958 0.933 0.929 1.000 0.048 0.332 0.674 0.142
Dubformer 11.780 31.937 0.433 0.452 0.438 0.644 0.356 0.576 0.456 0.538
IOL_Research 21.003 41.958 0.996 0.465 0.409 0.994 0.815 0.181 0.720 0.398
ONLINE-A 58.224 76.680 0.999 1.000 1.000 1.000 0.994 0.005 0.997 0.195
ONLINE-B 61.327 78.012 0.996 0.999 0.999 1.000 0.999 0.000 0.999 0.194
ONLINE-G 48.915 70.410 0.998 0.996 1.000 1.000 0.993 0.002 0.998 0.185
ONLINE-W NA
TSU-HITs 3.107 17.806 0.394 0.416 0.379 0.996 0.124 0.403 0.360 0.370
TranssionMT 61.273 78.416 0.998 0.999 0.999 1.000 0.996 0.001 0.999 0.194

Table 52: English→Icelandic, direct

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 22.589 40.223 0.979 0.958 0.890 0.919 0.044 0.789 0.767 0.244
Claude-3 2.933 15.668 0.006 0.364 0.428 0.299 0.125 0.792 0.187 0.603
CommandR-plus 3.358 19.349 0.042 0.280 0.263 0.935 0.011 0.983 0.252 0.625
GPT-4 51.697 66.383 0.998 0.965 0.938 0.999 0.482 0.493 0.900 0.247
Llama3-70B 16.466 35.615 0.535 0.517 0.472 0.931 0.115 0.864 0.513 0.511
IKUN 71.668 78.373 0.996 1.000 1.000 1.000 0.186 0.802 0.882 0.266
IKUN-C 22.812 48.582 0.998 0.935 0.874 1.000 0.094 0.903 0.793 0.310
Unbabel-Tower70B 33.879 55.577 0.996 0.938 0.843 1.000 0.212 0.760 0.829 0.318
AMI 55.611 71.232 0.998 0.994 0.976 1.000 0.550 0.411 0.930 0.233
CycleL 9.513 29.310 0.957 0.995 0.961 1.000 0.004 0.453 0.696 0.133
Dubformer 17.515 27.491 0.879 0.627 0.293 0.202 0.022 0.289 0.455 0.521
IOL_Research 58.323 71.321 0.995 1.000 1.000 1.000 0.772 0.196 0.967 0.182
ONLINE-A 64.175 76.302 0.999 1.000 0.999 1.000 0.599 0.364 0.942 0.226
ONLINE-B 64.864 75.933 0.998 1.000 1.000 1.000 0.814 0.170 0.973 0.201
ONLINE-G 36.759 58.436 0.999 0.998 0.989 1.000 0.165 0.603 0.870 0.252
ONLINE-W NA
TSU-HITs 2.741 16.834 0.656 0.319 0.257 0.998 0.002 0.858 0.344 0.449
TranssionMT 64.665 76.137 0.999 1.000 1.000 1.000 0.807 0.177 0.972 0.202

Table 53: English→Icelandic, 0-shot
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 16.281 38.598 0.977 0.993 0.989 0.999 0.069 0.390 0.805 0.093
Claude-3 0.489 7.905 0.005 0.475 0.517 0.911 0.013 0.130 0.274 0.357
CommandR-plus 6.805 29.615 0.129 0.834 0.814 1.000 0.053 0.846 0.523 0.373
GPT-4 42.211 69.479 1.000 1.000 1.000 1.000 0.455 0.083 0.922 0.112
Llama3-70B 36.874 64.809 0.944 1.000 1.000 1.000 0.543 0.088 0.927 0.111
IKUN 86.193 88.623 0.998 1.000 0.990 1.000 0.341 0.098 0.904 0.093
IKUN-C 32.649 58.408 0.996 1.000 1.000 1.000 0.401 0.250 0.912 0.133
Unbabel-Tower70B 43.206 67.960 0.994 1.000 1.000 1.000 0.461 0.132 0.921 0.138
AMI 58.994 75.683 0.998 1.000 1.000 1.000 0.378 0.038 0.911 0.128
CycleL 4.677 28.065 0.239 0.996 0.996 1.000 0.043 0.274 0.595 0.165
Dubformer 6.587 19.173 0.996 0.640 0.246 0.002 0.001 0.344 0.271 0.483
IOL_Research 59.652 75.700 0.999 1.000 1.000 1.000 0.589 0.047 0.941 0.101
ONLINE-A 85.107 90.140 0.999 1.000 1.000 1.000 0.443 0.017 0.920 0.116
ONLINE-B 85.157 89.894 0.998 1.000 1.000 1.000 0.405 0.034 0.915 0.116
ONLINE-G 53.725 74.475 0.999 1.000 1.000 1.000 0.343 0.168 0.906 0.124
ONLINE-W NA
TSU-HITs 2.834 23.385 0.089 0.867 0.864 0.999 0.001 0.318 0.467 0.227
TranssionMT 85.075 90.014 0.999 1.000 1.000 1.000 0.411 0.033 0.916 0.116

Table 54: English→Icelandic, 1-shot

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 37.596 36.308 0.923 0.591 0.634 0.734 0.662 0.049 0.617 0.307
Claude-3 43.969 45.621 0.980 0.925 0.956 0.973 0.979 0.020 0.956 0.260
CommandR-plus 36.022 34.809 0.799 0.520 0.575 0.720 0.621 0.182 0.591 0.400
GPT-4 44.196 47.459 1.000 0.727 0.763 0.771 0.780 0.002 0.784 0.332
Llama3-70B 38.483 43.123 0.996 0.897 0.929 0.985 0.988 0.004 0.928 0.231
IKUN 42.347 49.631 0.778 0.718 0.767 0.942 0.797 0.055 0.759 0.275
IKUN-C 28.758 39.915 0.892 0.704 0.760 0.858 0.837 0.050 0.767 0.295
Unbabel-Tower70B 43.569 47.304 0.994 0.922 0.957 0.990 0.991 0.002 0.961 0.248
AMI 41.397 48.607 0.829 0.813 0.848 0.994 0.868 0.002 0.860 0.284
CycleL 11.962 22.576 0.000 0.072 0.120 0.428 0.000 0.000 0.089 0.485
Dubformer 12.767 21.934 0.233 0.061 0.059 0.283 0.004 0.146 0.094 0.576
IOL_Research 17.865 31.474 0.995 0.882 0.940 0.988 0.989 0.005 0.938 0.244
ONLINE-A 39.385 45.191 0.994 0.920 0.944 0.995 0.991 0.001 0.961 0.251
ONLINE-B 52.890 35.070 0.980 0.923 0.945 0.978 0.985 0.002 0.955 0.254
ONLINE-G 37.199 45.364 0.998 0.906 0.951 0.993 0.998 0.001 0.959 0.244
ONLINE-W NA
TSU-HITs 0.000 1.387 0.004 0.054 0.175 0.947 0.000 0.821 0.169 0.567
TranssionMT 52.887 57.312 0.977 0.931 0.945 0.991 0.987 0.005 0.960 0.255

Table 55: English→Icelandic, 0-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 25.843 29.791 0.805 0.448 0.460 0.616 0.409 0.109 0.466 0.400
Claude-3 3.269 12.922 0.021 0.035 0.044 0.280 0.001 0.976 0.075 0.838
CommandR-plus 29.694 30.461 0.831 0.252 0.247 0.376 0.239 0.086 0.337 0.540
GPT-4 36.402 41.005 0.991 0.078 0.035 0.009 0.005 0.032 0.177 0.677
Llama3-70B 36.940 45.403 0.971 0.874 0.907 0.979 0.972 0.023 0.915 0.250
IKUN 31.212 43.813 0.936 0.871 0.920 0.991 0.940 0.006 0.905 0.254
IKUN-C 12.917 29.192 0.455 0.420 0.480 0.836 0.426 0.111 0.476 0.372
Unbabel-Tower70B 36.851 44.929 0.996 0.935 0.967 0.995 0.995 0.005 0.970 0.246
AMI 35.669 48.173 0.837 0.812 0.853 0.994 0.863 0.048 0.860 0.285
CycleL 3.474 14.663 0.000 0.078 0.127 0.435 0.000 0.000 0.091 0.482
Dubformer 26.980 28.818 0.732 0.070 0.034 0.045 0.004 0.255 0.139 0.723
IOL_Research 18.067 33.650 0.996 0.857 0.931 0.989 0.990 0.004 0.931 0.248
ONLINE-A 30.906 42.166 0.994 0.918 0.946 0.995 0.991 0.001 0.961 0.251
ONLINE-B 43.584 35.063 0.891 0.892 0.934 0.993 0.946 0.005 0.918 0.261
ONLINE-G 30.524 42.300 0.998 0.906 0.951 0.993 0.998 0.001 0.959 0.244
ONLINE-W NA
TSU-HITs 0.000 3.586 0.021 0.118 0.318 0.900 0.031 0.082 0.212 0.413
TranssionMT 43.597 53.077 0.881 0.897 0.934 0.993 0.945 0.005 0.920 0.264

Table 56: English→Icelandic, 1-shot JSON format
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 16.547 35.168 0.995 0.072 0.841 0.990 0.542 0.328 0.597 0.277
Claude-3 3.943 38.065 0.993 0.111 0.869 0.994 0.561 0.311 0.628 0.280
CommandR-plus 7.728 35.127 0.993 0.084 0.816 0.980 0.541 0.322 0.599 0.286
GPT-4 15.472 39.233 0.999 0.082 0.853 0.995 0.558 0.341 0.617 0.288
Llama3-70B 18.386 32.080 0.998 0.059 0.845 0.993 0.569 0.339 0.596 0.280
IKUN 1.519 28.192 0.996 0.039 0.796 0.996 0.463 0.411 0.556 0.292
IKUN-C 5.156 23.669 0.988 0.021 0.761 0.996 0.390 0.420 0.512 0.289
Unbabel-Tower70B 6.585 36.271 0.996 0.076 0.830 0.987 0.550 0.317 0.602 0.284
CycleL 0.013 2.344 0.406 0.004 0.257 0.869 0.022 0.065 0.224 0.371
DLUT_GTCOM 0.735 30.945 0.830 0.006 0.789 0.969 0.556 0.323 0.544 0.343
IOL_Research 16.514 39.294 0.998 0.104 0.847 0.996 0.590 0.304 0.623 0.279
MSLC 9.124 29.066 0.995 0.071 0.815 0.940 0.542 0.335 0.571 0.282
NTTSU 0.456 32.324 0.999 0.005 0.792 0.976 0.580 0.266 0.574 0.297
ONLINE-A 4.688 39.838 1.000 0.125 0.853 0.993 0.449 0.398 0.618 0.292
ONLINE-B 1.534 38.803 0.998 0.120 0.864 0.989 0.466 0.360 0.619 0.287
ONLINE-G 2.440 33.098 0.998 0.087 0.841 0.990 0.482 0.360 0.598 0.290
ONLINE-W 2.803 38.856 0.990 0.111 0.871 0.995 0.463 0.344 0.611 0.285
Team-J 0.573 28.582 0.999 0.007 0.788 0.988 0.550 0.294 0.566 0.307
UvA-MT 0.413 32.523 0.996 0.007 0.776 0.961 0.579 0.268 0.566 0.298

Table 57: Japanese→Chinese, clean
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 2.588 30.164 0.996 0.016 1.000 0.807 0.474 0.504 0.555 0.241
Claude-3 0.180 21.355 0.253 0.021 0.977 0.955 0.393 0.526 0.425 0.334
CommandR-plus 2.022 32.787 0.907 0.015 0.999 0.960 0.465 0.493 0.579 0.231
GPT-4 7.246 42.392 0.996 0.020 1.000 1.000 0.520 0.447 0.640 0.205
Llama3-70B 1.227 27.591 0.994 0.012 0.999 0.871 0.504 0.470 0.578 0.228
IKUN 0.186 34.691 0.993 0.018 1.000 1.000 0.461 0.481 0.597 0.211
IKUN-C 0.217 14.227 0.802 0.010 0.979 0.998 0.236 0.589 0.459 0.257
Unbabel-Tower70B 2.887 37.396 0.991 0.011 0.999 0.994 0.509 0.463 0.623 0.210
CycleL 0.002 1.407 0.324 0.007 0.529 0.732 0.006 0.022 0.228 0.352
DLUT_GTCOM 0.205 26.707 0.722 0.017 1.000 1.000 0.471 0.468 0.552 0.268
IOL_Research 10.974 47.947 0.994 0.082 1.000 1.000 0.458 0.494 0.642 0.203
MSLC 4.476 32.966 0.999 0.015 0.994 0.772 0.530 0.448 0.575 0.239
NTTSU 0.026 29.887 1.000 0.011 1.000 1.000 0.490 0.393 0.611 0.208
ONLINE-A 0.108 42.229 1.000 0.011 0.999 0.999 0.490 0.446 0.636 0.205
ONLINE-B 0.600 40.376 0.999 0.010 1.000 1.000 0.519 0.439 0.636 0.205
ONLINE-G 0.182 26.305 0.996 0.012 1.000 1.000 0.315 0.514 0.567 0.216
ONLINE-W 1.180 44.101 0.995 0.022 1.000 1.000 0.493 0.453 0.635 0.206
Team-J 0.041 28.167 0.999 0.011 1.000 1.000 0.448 0.436 0.607 0.218
UvA-MT 0.057 26.219 0.996 0.016 0.999 0.878 0.242 0.613 0.530 0.246

Table 58: Japanese→Chinese, direct (English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.328 26.334 0.889 0.009 0.927 0.934 0.441 0.553 0.538 0.259
Claude-3 0.053 11.442 0.321 0.013 0.652 0.673 0.244 0.515 0.320 0.409
CommandR-plus 0.038 22.249 0.553 0.011 0.716 0.788 0.272 0.480 0.403 0.345
GPT-4 0.914 41.297 0.736 0.049 0.949 0.971 0.241 0.343 0.528 0.234
Llama3-70B 0.016 8.771 0.481 0.020 0.491 0.498 0.010 0.732 0.261 0.466
IKUN 0.489 42.055 0.985 0.013 1.000 1.000 0.519 0.056 0.642 0.151
IKUN-C 1.374 26.271 0.974 0.013 0.999 0.999 0.573 0.207 0.595 0.175
Unbabel-Tower70B 0.172 35.096 0.983 0.012 1.000 0.998 0.531 0.171 0.630 0.169
CycleL 0.009 0.358 0.471 0.006 0.048 0.284 0.000 0.021 0.116 0.462
DLUT_GTCOM 0.129 21.671 0.976 0.020 0.952 0.968 0.528 0.095 0.550 0.183
IOL_Research 1.087 51.423 0.985 0.077 0.987 0.988 0.519 0.065 0.656 0.147
MSLC 0.081 3.515 0.999 0.015 0.013 0.000 0.015 0.625 0.149 0.521
NTTSU 0.081 6.629 0.996 0.015 0.300 0.297 0.099 0.559 0.246 0.429
ONLINE-A 0.119 44.345 0.999 0.012 1.000 1.000 0.513 0.051 0.644 0.149
ONLINE-B 1.139 47.534 0.995 0.020 1.000 1.000 0.541 0.034 0.651 0.146
ONLINE-G 0.384 33.157 0.999 0.016 1.000 1.000 0.519 0.059 0.628 0.149
ONLINE-W 0.501 38.632 0.993 0.022 1.000 1.000 0.510 0.051 0.636 0.152
Team-J 0.054 19.455 0.998 0.010 0.919 0.924 0.435 0.081 0.541 0.191
UvA-MT 0.026 10.203 0.976 0.011 0.330 0.315 0.334 0.222 0.316 0.374

Table 59: Japanese→Chinese, direct (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 1.611 26.334 0.991 0.015 1.000 0.701 0.827 0.159 0.596 0.208
Claude-3 0.611 37.944 0.725 0.015 0.979 0.998 0.474 0.441 0.561 0.246
CommandR-plus 1.998 33.800 0.873 0.015 0.993 0.953 0.546 0.426 0.606 0.228
GPT-4 7.295 44.604 0.999 0.018 1.000 1.000 0.732 0.248 0.681 0.176
Llama3-70B 0.713 32.894 0.996 0.017 0.998 0.868 0.887 0.095 0.660 0.174
IKUN 0.341 40.606 0.776 0.011 1.000 1.000 0.606 0.275 0.628 0.214
IKUN-C 0.165 13.209 0.690 0.004 0.965 0.998 0.351 0.395 0.446 0.249
Unbabel-Tower70B 3.371 40.782 0.995 0.013 1.000 1.000 0.802 0.187 0.689 0.168
CycleL 0.001 0.747 0.211 0.006 0.436 0.596 0.000 0.010 0.178 0.396
DLUT_GTCOM 0.092 26.034 0.911 0.020 1.000 1.000 0.471 0.483 0.591 0.222
IOL_Research 9.717 54.953 0.996 0.044 1.000 1.000 0.711 0.252 0.685 0.173
MSLC 4.401 39.207 0.998 0.016 1.000 0.998 0.902 0.087 0.704 0.154
NTTSU 0.013 27.408 1.000 0.012 1.000 1.000 0.605 0.307 0.652 0.185
ONLINE-A 0.045 41.376 1.000 0.011 1.000 1.000 0.786 0.196 0.685 0.169
ONLINE-B 0.486 40.506 0.999 0.010 1.000 1.000 0.766 0.185 0.683 0.168
ONLINE-G 0.142 28.402 0.998 0.012 0.998 1.000 0.294 0.558 0.575 0.225
ONLINE-W 0.801 47.180 0.998 0.021 1.000 1.000 0.693 0.187 0.675 0.168
Team-J 0.021 22.331 0.999 0.012 1.000 1.000 0.482 0.424 0.570 0.202
UvA-MT 0.023 27.965 0.999 0.016 1.000 1.000 0.198 0.690 0.568 0.239

Table 60: Japanese→Chinese, 0-shot (English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.176 20.123 0.887 0.010 0.944 0.941 0.005 0.966 0.447 0.314
Claude-3 0.602 49.704 0.818 0.016 0.989 0.989 0.289 0.093 0.561 0.183
CommandR-plus 0.042 32.258 0.659 0.011 0.780 0.789 0.130 0.388 0.423 0.308
GPT-4 0.751 51.736 0.996 0.043 1.000 1.000 0.104 0.126 0.597 0.156
Llama3-70B 0.159 43.130 0.950 0.020 0.990 0.998 0.035 0.258 0.550 0.187
IKUN 0.636 43.475 0.878 0.011 1.000 1.000 0.140 0.225 0.575 0.192
IKUN-C 0.066 24.453 0.971 0.011 0.996 0.999 0.200 0.412 0.541 0.205
Unbabel-Tower70B 0.072 37.680 0.990 0.010 0.999 0.999 0.132 0.313 0.579 0.188
CycleL 0.002 0.317 0.469 0.004 0.000 0.009 0.000 0.002 0.069 0.505
DLUT_GTCOM 0.059 19.556 0.995 0.010 0.978 0.999 0.093 0.102 0.471 0.160
IOL_Research 1.958 52.599 0.977 0.066 0.988 0.984 0.124 0.149 0.596 0.163
MSLC 0.039 3.199 0.999 0.010 0.006 0.000 0.023 0.532 0.148 0.508
NTTSU 0.040 4.784 0.996 0.009 0.148 0.140 0.021 0.472 0.188 0.458
ONLINE-A 0.120 50.307 0.999 0.012 1.000 1.000 0.103 0.084 0.588 0.153
ONLINE-B 0.796 56.173 0.995 0.011 1.000 1.000 0.098 0.081 0.588 0.154
ONLINE-G 0.229 35.943 0.999 0.015 1.000 1.000 0.353 0.111 0.609 0.158
ONLINE-W 0.246 43.317 0.988 0.015 1.000 1.000 0.186 0.051 0.599 0.158
Team-J 0.029 25.499 0.998 0.012 0.998 0.995 0.088 0.064 0.564 0.152
UvA-MT 0.007 3.772 0.994 0.001 0.094 0.104 0.026 0.556 0.178 0.486

Table 61: Japanese→Chinese, 0-shot (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 1.355 15.611 0.628 0.334 0.854 0.908 0.721 0.219 0.549 0.213
Claude-3 19.917 28.083 0.461 0.509 0.999 0.541 0.588 0.409 0.536 0.271
CommandR-plus 21.863 31.575 0.444 0.513 1.000 0.635 0.515 0.439 0.621 0.264
GPT-4 67.128 67.621 0.498 0.513 1.000 0.628 0.812 0.184 0.709 0.221
Llama3-70B 28.043 39.157 0.498 0.513 0.999 0.950 0.918 0.081 0.770 0.160
IKUN 2.085 20.834 0.268 0.424 0.950 0.913 0.709 0.228 0.563 0.240
IKUN-C 19.770 25.817 0.376 0.424 0.935 0.792 0.600 0.291 0.519 0.252
Unbabel-Tower70B 45.809 49.308 0.490 0.507 1.000 0.796 0.821 0.175 0.731 0.198
CycleL 0.495 0.893 0.022 0.293 0.377 0.415 0.000 0.010 0.158 0.417
DLUT_GTCOM 26.249 21.270 0.446 0.512 1.000 1.000 0.552 0.447 0.641 0.213
IOL_Research 26.634 42.331 0.494 0.508 1.000 0.953 0.786 0.209 0.749 0.179
MSLC 17.597 41.233 0.497 0.513 1.000 0.498 0.882 0.067 0.692 0.223
NTTSU 53.273 49.379 0.499 0.508 1.000 0.499 0.747 0.240 0.670 0.248
ONLINE-A 15.584 36.244 0.499 0.509 1.000 0.973 0.873 0.126 0.728 0.163
ONLINE-B 29.018 33.631 0.498 0.508 1.000 0.523 0.805 0.168 0.692 0.234
ONLINE-G 47.668 43.705 0.497 0.507 1.000 0.499 0.546 0.426 0.650 0.283
ONLINE-W 51.642 50.577 0.494 0.514 1.000 0.519 0.761 0.169 0.685 0.235
Team-J 39.907 30.652 0.498 0.509 1.000 0.529 0.594 0.395 0.607 0.266
UvA-MT 3.718 28.426 0.497 0.512 1.000 0.499 0.517 0.460 0.568 0.279

Table 62: Japanese→Chinese, 1-shot (English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 31.765 30.959 0.466 0.509 0.974 0.491 0.038 0.639 0.521 0.314
Claude-3 34.976 38.640 0.491 0.514 0.998 0.502 0.187 0.244 0.598 0.249
CommandR-plus 24.284 29.056 0.401 0.507 0.950 0.728 0.132 0.311 0.548 0.247
GPT-4 30.521 41.301 0.498 0.508 1.000 0.753 0.114 0.559 0.625 0.259
Llama3-70B 38.715 47.363 0.493 0.508 1.000 1.000 0.064 0.438 0.652 0.205
IKUN 37.847 45.313 0.367 0.507 1.000 1.000 0.113 0.632 0.640 0.252
IKUN-C 15.065 27.858 0.482 0.482 0.983 0.860 0.168 0.616 0.567 0.258
Unbabel-Tower70B 37.691 44.139 0.493 0.504 1.000 0.525 0.118 0.574 0.591 0.294
CycleL 0.301 0.443 0.048 0.252 0.138 0.332 0.000 0.053 0.110 0.470
DLUT_GTCOM 34.167 19.519 0.543 0.503 0.994 0.504 0.081 0.094 0.454 0.222
IOL_Research 9.940 23.674 0.531 0.504 0.999 0.925 0.131 0.490 0.522 0.219
MSLC 33.728 30.354 0.569 0.504 0.501 0.000 0.016 0.574 0.370 0.430
NTTSU 36.670 29.558 0.506 0.504 0.503 0.002 0.016 0.787 0.361 0.469
ONLINE-A 3.209 26.445 0.531 0.509 1.000 1.000 0.129 0.458 0.524 0.202
ONLINE-B 38.173 32.152 0.496 0.507 1.000 0.501 0.086 0.409 0.528 0.272
ONLINE-G 39.419 32.800 0.498 0.508 1.000 0.988 0.337 0.481 0.689 0.212
ONLINE-W 40.948 42.011 0.556 0.508 1.000 0.586 0.159 0.224 0.616 0.231
Team-J 29.786 24.750 0.499 0.506 0.998 0.633 0.103 0.284 0.539 0.236
UvA-MT 7.284 14.144 0.627 0.501 0.512 0.294 0.000 0.770 0.276 0.407

Table 63: Japanese→Chinese, 1-shot (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.264 10.033 0.573 0.016 0.741 0.752 0.160 0.453 0.329 0.340
Claude-3 5.179 19.101 0.239 0.005 0.275 0.082 0.213 0.182 0.121 0.512
CommandR-plus 12.402 23.916 0.849 0.018 0.804 0.197 0.709 0.135 0.381 0.324
GPT-4 67.617 71.625 0.998 0.037 0.985 0.592 0.624 0.259 0.518 0.236
Llama3-70B 15.287 30.940 0.993 0.021 0.853 0.973 0.235 0.248 0.452 0.202
IKUN 0.000 5.032 0.067 0.001 0.132 0.583 0.064 0.141 0.121 0.483
IKUN-C 0.042 8.097 0.152 0.002 0.207 0.476 0.137 0.143 0.140 0.475
Unbabel-Tower70B 22.687 34.978 0.987 0.021 0.917 0.797 0.377 0.214 0.459 0.214
CycleL 0.094 0.891 0.002 0.001 0.073 0.291 0.000 0.031 0.053 0.523
DLUT_GTCOM 12.520 13.585 0.939 0.017 0.897 0.946 0.491 0.290 0.547 0.221
IOL_Research 15.099 31.032 0.996 0.115 0.998 0.991 0.558 0.319 0.643 0.175
MSLC 14.225 38.986 0.422 0.011 0.450 0.005 0.219 0.244 0.160 0.479
NTTSU 25.209 37.241 0.001 0.000 0.200 0.999 0.000 0.058 0.171 0.408
ONLINE-A 13.913 33.281 0.983 0.011 0.880 0.001 0.881 0.070 0.396 0.314
ONLINE-B 24.786 29.969 0.590 0.005 0.565 0.058 0.213 0.464 0.205 0.464
ONLINE-G 35.089 40.914 0.978 0.015 0.955 0.000 0.900 0.038 0.409 0.299
ONLINE-W 43.162 45.767 0.749 0.016 0.755 0.033 0.672 0.048 0.322 0.357
Team-J 27.221 26.221 0.000 0.000 0.056 0.141 0.000 0.004 0.028 0.544
UvA-MT 32.440 45.552 0.554 0.007 0.552 0.029 0.515 0.012 0.239 0.410

Table 64: Japanese→Chinese, 0-shot JSON format (English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 20.086 27.893 0.934 0.035 0.441 0.432 0.393 0.592 0.372 0.396
Claude-3 22.020 24.731 0.851 0.132 0.607 0.586 0.570 0.360 0.485 0.321
CommandR-plus 11.205 20.551 0.670 0.066 0.683 0.666 0.589 0.181 0.458 0.304
GPT-4 19.191 30.499 1.000 0.089 0.465 0.439 0.453 0.545 0.421 0.369
Llama3-70B 21.816 35.723 0.988 0.132 0.946 0.941 0.945 0.049 0.696 0.149
IKUN 21.067 35.609 0.973 0.080 0.987 0.985 0.966 0.010 0.677 0.141
IKUN-C 9.191 24.181 0.780 0.032 0.763 0.896 0.715 0.098 0.511 0.233
Unbabel-Tower70B 22.497 34.133 0.999 0.073 0.712 0.704 0.703 0.294 0.546 0.261
CycleL 0.003 0.308 0.006 0.001 0.059 0.450 0.004 0.022 0.074 0.502
DLUT_GTCOM 19.225 14.731 0.908 0.017 0.253 0.245 0.264 0.393 0.260 0.431
IOL_Research 5.577 12.479 0.892 0.092 0.760 0.799 0.743 0.106 0.571 0.224
MSLC 30.548 29.612 0.756 0.015 0.031 0.081 0.065 0.775 0.137 0.562
NTTSU 29.066 30.664 0.933 0.020 0.032 0.009 0.033 0.951 0.149 0.572
ONLINE-A 0.595 12.888 0.902 0.113 0.940 0.886 0.856 0.013 0.640 0.168
ONLINE-B 22.201 18.574 0.963 0.125 0.999 0.976 0.988 0.006 0.709 0.135
ONLINE-G 21.850 22.009 0.998 0.152 0.994 0.993 0.985 0.010 0.725 0.125
ONLINE-W 20.095 27.330 0.389 0.016 0.371 0.796 0.242 0.306 0.278 0.395
Team-J 14.330 17.465 0.020 0.021 0.136 0.114 0.177 0.721 0.074 0.638
UvA-MT 2.731 13.997 0.294 0.011 0.022 0.011 0.043 0.498 0.057 0.602

Table 65: Japanese→Chinese, 0-shot JSON format (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 0.393 11.802 0.392 0.015 0.694 0.674 0.100 0.431 0.272 0.380
Claude-3 2.021 18.559 0.402 0.005 0.483 0.027 0.392 0.243 0.188 0.475
CommandR-plus 8.531 21.922 0.902 0.025 0.873 0.257 0.757 0.162 0.414 0.301
GPT-4 66.340 72.970 0.993 0.025 0.978 0.419 0.586 0.319 0.475 0.272
Llama3-70B 10.351 28.423 0.983 0.025 0.824 0.985 0.201 0.267 0.439 0.208
IKUN 0.000 2.210 0.015 0.000 0.083 0.578 0.000 0.176 0.097 0.504
IKUN-C 0.000 2.210 0.015 0.000 0.083 0.578 0.000 0.176 0.097 0.504
Unbabel-Tower70B 11.566 29.219 0.973 0.022 0.848 0.953 0.262 0.257 0.459 0.209
CycleL 0.024 0.693 0.002 0.000 0.049 0.346 0.002 0.037 0.057 0.522
DLUT_GTCOM 8.747 11.083 0.995 0.022 0.858 0.926 0.456 0.306 0.533 0.225
IOL_Research 10.299 28.733 0.995 0.078 0.993 0.988 0.578 0.314 0.633 0.181
MSLC 12.970 39.098 0.485 0.012 0.505 0.012 0.157 0.152 0.169 0.448
NTTSU 12.223 29.135 0.002 0.002 0.228 0.998 0.000 0.061 0.176 0.404
ONLINE-A 13.046 32.576 0.980 0.022 0.792 0.002 0.853 0.110 0.382 0.331
ONLINE-B 22.458 29.216 0.738 0.012 0.718 0.051 0.282 0.451 0.259 0.419
ONLINE-G 29.636 38.288 0.975 0.022 0.944 0.000 0.841 0.108 0.401 0.310
ONLINE-W 38.867 43.492 0.757 0.020 0.728 0.034 0.703 0.015 0.324 0.354
Team-J 22.863 22.714 0.002 0.000 0.159 0.250 0.000 0.000 0.059 0.513
UvA-MT 34.476 54.459 0.998 0.022 0.985 0.000 0.961 0.007 0.428 0.286

Table 66: Japanese→Chinese, 1-shot JSON format (English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 14.704 26.618 0.885 0.032 0.479 0.482 0.445 0.553 0.384 0.385
Claude-3 12.153 20.101 0.658 0.042 0.215 0.196 0.130 0.756 0.198 0.540
CommandR-plus 8.781 19.002 0.689 0.046 0.663 0.587 0.570 0.208 0.430 0.320
GPT-4 15.159 28.058 0.993 0.024 0.044 0.029 0.032 0.961 0.167 0.559
Llama3-70B 21.514 34.361 0.927 0.125 0.878 0.875 0.841 0.130 0.626 0.191
IKUN 14.299 32.547 0.985 0.078 0.976 0.980 0.963 0.022 0.680 0.143
IKUN-C 7.250 23.292 0.809 0.034 0.824 0.919 0.782 0.066 0.544 0.212
Unbabel-Tower70B 16.824 31.039 0.995 0.056 0.687 0.672 0.670 0.318 0.528 0.276
CycleL 0.000 0.325 0.007 0.002 0.078 0.467 0.000 0.007 0.079 0.496
DLUT_GTCOM 13.570 12.482 0.978 0.007 0.061 0.071 0.068 0.320 0.173 0.462
IOL_Research 4.593 12.908 0.958 0.088 0.861 0.848 0.863 0.078 0.630 0.189
MSLC 24.824 25.529 0.998 0.020 0.017 0.000 0.042 0.946 0.156 0.565
NTTSU 23.175 27.433 0.861 0.012 0.020 0.007 0.046 0.912 0.137 0.582
ONLINE-A 0.221 10.235 1.000 0.095 0.910 0.988 0.804 0.024 0.647 0.147
ONLINE-B 15.326 16.097 0.998 0.127 1.000 0.980 0.988 0.010 0.721 0.130
ONLINE-G 15.138 17.887 0.995 0.127 1.000 1.000 0.995 0.005 0.725 0.126
ONLINE-W 11.378 21.633 0.174 0.010 0.291 0.949 0.132 0.257 0.236 0.405
Team-J 7.562 14.115 0.012 0.022 0.191 0.171 0.306 0.660 0.108 0.614
UvA-MT 1.650 12.212 0.000 0.000 0.000 0.000 0.000 0.479 0.000 0.669

Table 67: Japanese→Chinese, 1-shot JSON format (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 51.796 71.017 1.000 0.912 0.925 1.000 0.854 0.124 0.936 0.261
Claude-3 59.164 76.525 1.000 0.945 0.952 1.000 0.871 0.113 0.957 0.266
CommandR-plus 52.291 71.954 0.998 0.930 0.950 0.999 0.837 0.149 0.941 0.263
GPT-4 50.830 71.774 1.000 0.936 0.946 1.000 0.880 0.106 0.949 0.255
Llama3-70B 42.691 65.406 1.000 0.906 0.934 0.999 0.891 0.095 0.931 0.249
IKUN 44.345 65.724 0.999 0.919 0.934 1.000 0.842 0.146 0.928 0.258
IKUN-C 43.714 65.549 1.000 0.900 0.929 1.000 0.852 0.131 0.922 0.257
Unbabel-Tower70B 50.091 71.296 0.991 0.923 0.940 1.000 0.831 0.155 0.937 0.268
BJFU-LPT 23.070 42.742 0.999 0.673 0.780 0.965 0.483 0.280 0.729 0.289
CUNI-Transformer 51.200 70.250 1.000 0.922 0.947 0.999 0.848 0.143 0.940 0.263
CycleL 0.110 0.686 0.000 0.050 0.004 0.002 0.007 0.000 0.010 0.567
IOL_Research 54.964 73.144 0.984 0.925 0.941 1.000 0.856 0.125 0.943 0.267
ONLINE-A 49.693 69.758 0.999 0.907 0.942 0.999 0.808 0.163 0.924 0.265
ONLINE-B 47.317 68.256 0.998 0.897 0.924 1.000 0.792 0.180 0.915 0.268
ONLINE-G 43.649 65.989 0.999 0.906 0.933 1.000 0.769 0.197 0.910 0.268
ONLINE-W 51.432 69.965 1.000 0.920 0.931 1.000 0.787 0.181 0.924 0.269
TranssionMT 47.952 68.873 0.998 0.902 0.927 1.000 0.798 0.173 0.918 0.267

Table 68: Czech→Ukrainian, clean

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 46.384 70.808 0.999 1.000 1.000 1.000 0.860 0.038 0.976 0.008
Claude-3 12.117 45.669 0.504 0.953 0.973 0.946 0.412 0.515 0.733 0.164
CommandR-plus 44.810 69.489 0.983 0.999 0.995 1.000 0.870 0.047 0.973 0.013
GPT-4 46.744 69.115 0.966 0.995 0.998 1.000 0.836 0.093 0.963 0.022
Llama3-70B 40.918 67.909 0.991 1.000 1.000 1.000 0.878 0.037 0.974 0.009
IKUN 35.111 65.110 0.987 1.000 1.000 0.999 0.509 0.264 0.918 0.042
IKUN-C 28.412 60.127 0.999 1.000 1.000 1.000 0.894 0.032 0.952 0.007
Unbabel-Tower70B 36.354 68.928 0.993 1.000 1.000 1.000 0.797 0.048 0.965 0.010
BJFU-LPT 33.115 57.198 0.995 0.996 1.000 1.000 0.120 0.570 0.852 0.085
CUNI-Transformer 33.315 61.648 0.999 1.000 1.000 1.000 0.831 0.028 0.949 0.006
CycleL 0.023 1.498 0.000 0.295 0.038 0.002 0.000 0.000 0.048 0.524
IOL_Research 36.384 64.029 0.983 0.995 0.999 1.000 0.722 0.175 0.938 0.031
ONLINE-A 37.042 66.823 0.998 1.000 1.000 1.000 0.371 0.339 0.903 0.052
ONLINE-B 32.455 61.727 0.999 1.000 1.000 1.000 0.536 0.174 0.894 0.028
ONLINE-G 32.939 59.794 0.999 1.000 1.000 1.000 0.454 0.208 0.887 0.033
ONLINE-W 37.098 62.980 0.974 1.000 1.000 1.000 0.663 0.115 0.924 0.023
TranssionMT 43.336 73.713 0.998 1.000 1.000 1.000 0.471 0.302 0.924 0.046

Table 69: Czech→Ukrainian, direct (English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 45.336 69.080 0.995 0.998 1.000 1.000 0.297 0.398 0.889 0.060
Claude-3 1.857 8.221 0.064 0.499 0.482 0.482 0.416 0.525 0.293 0.430
CommandR-plus 11.887 19.738 0.472 0.722 0.563 0.520 0.370 0.607 0.429 0.336
GPT-4 31.663 57.593 0.718 0.920 0.953 0.960 0.118 0.439 0.748 0.129
Llama3-70B 3.090 13.892 0.267 0.424 0.355 0.360 0.034 0.835 0.265 0.493
IKUN 32.872 65.514 0.979 1.000 1.000 1.000 0.383 0.155 0.896 0.028
IKUN-C 26.102 55.453 0.995 1.000 1.000 1.000 0.404 0.251 0.857 0.039
Unbabel-Tower70B 38.610 72.475 0.991 1.000 1.000 1.000 0.365 0.196 0.904 0.031
BJFU-LPT 9.017 16.702 0.993 0.821 0.767 0.526 0.034 0.438 0.473 0.193
CUNI-Transformer 1.213 7.112 0.999 0.693 0.124 0.000 0.009 0.496 0.261 0.388
CycleL 0.032 1.317 0.000 0.157 0.001 0.000 0.000 0.147 0.023 0.571
IOL_Research 40.429 66.889 0.987 0.990 1.000 1.000 0.250 0.280 0.870 0.045
ONLINE-A 43.726 73.914 0.996 1.000 1.000 1.000 0.279 0.360 0.896 0.055
ONLINE-B 38.394 69.998 0.998 1.000 1.000 1.000 0.362 0.171 0.901 0.027
ONLINE-G 35.910 65.340 0.998 1.000 1.000 1.000 0.346 0.319 0.878 0.048
ONLINE-W 42.766 65.290 0.942 1.000 1.000 1.000 0.355 0.269 0.890 0.049
TranssionMT 43.361 74.580 0.998 1.000 1.000 1.000 0.362 0.168 0.909 0.026

Table 70: Czech→Ukrainian, direct (non-English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 47.481 70.420 0.991 1.000 0.998 1.000 0.572 0.253 0.934 0.041
Claude-3 52.844 75.437 0.977 0.990 0.985 0.984 0.600 0.212 0.926 0.041
CommandR-plus 46.760 67.874 0.974 1.000 0.996 0.999 0.621 0.218 0.938 0.038
GPT-4 50.991 73.421 1.000 1.000 1.000 1.000 0.657 0.203 0.951 0.031
Llama3-70B 32.827 63.628 0.995 1.000 1.000 1.000 0.552 0.229 0.930 0.035
IKUN 50.135 74.445 0.999 1.000 1.000 1.000 0.029 0.710 0.860 0.103
IKUN-C 36.860 65.280 0.999 1.000 1.000 1.000 0.676 0.135 0.932 0.022
Unbabel-Tower70B 46.420 71.580 0.998 1.000 1.000 1.000 0.481 0.231 0.923 0.036
BJFU-LPT 44.301 67.430 0.999 1.000 1.000 1.000 0.027 0.717 0.860 0.104
CUNI-Transformer 35.405 61.580 0.999 1.000 1.000 1.000 0.487 0.344 0.912 0.052
CycleL 0.010 1.927 0.000 0.437 0.045 0.009 0.000 0.000 0.070 0.501
IOL_Research 59.379 79.591 0.990 1.000 1.000 1.000 0.508 0.239 0.926 0.037
ONLINE-A 44.735 73.463 0.998 1.000 1.000 1.000 0.010 0.614 0.854 0.090
ONLINE-B 53.593 72.722 0.999 1.000 1.000 1.000 0.043 0.512 0.835 0.076
ONLINE-G 39.987 63.954 0.999 1.000 1.000 1.000 0.009 0.590 0.831 0.087
ONLINE-W 38.964 66.735 1.000 1.000 1.000 1.000 0.257 0.394 0.875 0.058
TranssionMT 64.619 83.303 0.998 1.000 1.000 1.000 0.000 0.720 0.857 0.105

Table 71: Czech→Ukrainian, 0-shot (English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 48.630 74.977 0.999 0.999 1.000 1.000 0.153 0.447 0.875 0.066
Claude-3 0.822 10.245 0.050 0.916 0.627 0.949 0.897 0.067 0.505 0.222
CommandR-plus 19.125 31.488 0.154 0.958 0.832 0.909 0.501 0.424 0.584 0.228
GPT-4 48.135 74.266 0.999 1.000 1.000 1.000 0.259 0.285 0.894 0.042
Llama3-70B 36.870 61.658 0.725 0.869 0.843 0.847 0.182 0.580 0.699 0.187
IKUN 49.178 73.777 0.998 1.000 1.000 1.000 0.411 0.170 0.915 0.027
IKUN-C 31.518 60.419 0.996 1.000 1.000 1.000 0.269 0.386 0.870 0.059
Unbabel-Tower70B 48.720 76.687 0.996 1.000 1.000 1.000 0.153 0.293 0.875 0.044
BJFU-LPT 7.069 12.867 0.999 0.998 0.578 0.266 0.000 0.077 0.413 0.178
CUNI-Transformer 0.813 7.072 0.999 0.971 0.087 0.000 0.000 0.059 0.294 0.290
CycleL 0.014 2.350 0.000 0.293 0.000 0.001 0.000 0.021 0.042 0.533
IOL_Research 55.173 79.879 0.994 1.000 1.000 1.000 0.275 0.236 0.896 0.037
ONLINE-A 57.268 80.732 0.996 1.000 1.000 1.000 0.187 0.406 0.883 0.060
ONLINE-B 47.307 75.251 0.998 1.000 1.000 1.000 0.237 0.288 0.885 0.044
ONLINE-G 46.645 72.724 0.996 1.000 1.000 1.000 0.039 0.563 0.840 0.083
ONLINE-W 48.424 68.657 0.999 1.000 1.000 1.000 0.388 0.283 0.904 0.043
TranssionMT 64.582 83.997 0.998 1.000 1.000 1.000 0.235 0.267 0.890 0.041

Table 72: Czech→Ukrainian, 0-shot (non-English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 13.326 39.802 0.497 1.000 1.000 1.000 0.247 0.656 0.724 0.167
Claude-3 13.101 39.207 0.490 0.993 0.990 0.799 0.285 0.146 0.654 0.125
CommandR-plus 14.038 34.504 0.487 1.000 1.000 0.796 0.275 0.155 0.653 0.125
GPT-4 22.718 46.429 0.499 1.000 1.000 1.000 0.297 0.650 0.797 0.165
Llama3-70B 11.644 36.664 0.493 1.000 1.000 1.000 0.224 0.665 0.710 0.168
IKUN 14.630 41.597 0.494 0.999 1.000 0.976 0.023 0.863 0.688 0.200
IKUN-C 12.107 37.939 0.518 1.000 1.000 1.000 0.362 0.569 0.739 0.151
Unbabel-Tower70B 13.321 40.229 0.498 1.000 1.000 0.996 0.214 0.660 0.716 0.167
BJFU-LPT 16.880 41.573 0.499 1.000 1.000 0.504 0.017 0.479 0.646 0.212
CUNI-Transformer 4.540 32.380 0.499 0.808 1.000 0.995 0.211 0.737 0.645 0.206
CycleL 0.035 1.793 0.000 0.651 0.028 0.000 0.000 0.000 0.097 0.474
IOL_Research 13.454 41.451 0.494 1.000 0.998 1.000 0.220 0.661 0.685 0.168
ONLINE-A 29.551 50.897 0.498 1.000 1.000 0.955 0.002 0.830 0.778 0.197
ONLINE-B 29.834 43.079 0.499 1.000 1.000 0.563 0.005 0.791 0.691 0.247
ONLINE-G 23.284 40.978 0.499 1.000 1.000 1.000 0.005 0.854 0.765 0.194
ONLINE-W 16.322 43.296 0.499 1.000 1.000 0.996 0.121 0.742 0.729 0.179
TranssionMT 30.538 53.582 0.499 1.000 1.000 0.974 0.001 0.895 0.779 0.204

Table 73: Czech→Ukrainian, 1-shot (English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 12.403 39.988 0.501 1.000 1.000 1.000 0.157 0.733 0.687 0.177
Claude-3 5.186 18.859 0.007 0.945 0.649 0.965 0.476 0.513 0.484 0.281
CommandR-plus 5.225 21.346 0.113 0.930 0.824 0.949 0.269 0.219 0.524 0.202
GPT-4 20.201 44.942 0.499 1.000 1.000 0.982 0.246 0.655 0.773 0.168
Llama3-70B 21.258 45.719 0.470 0.998 0.996 0.998 0.170 0.734 0.759 0.182
IKUN 14.652 41.278 0.497 1.000 1.000 1.000 0.390 0.596 0.734 0.158
IKUN-C 14.705 38.737 0.499 1.000 1.000 1.000 0.231 0.750 0.738 0.180
Unbabel-Tower70B 13.789 41.805 0.498 1.000 1.000 0.999 0.177 0.667 0.705 0.168
BJFU-LPT 15.776 21.214 0.515 0.999 0.655 0.166 0.000 0.037 0.406 0.243
CUNI-Transformer 5.529 11.149 0.499 0.938 0.435 0.000 0.001 0.067 0.268 0.315
CycleL 0.144 2.202 0.000 0.465 0.000 0.000 0.000 0.000 0.066 0.505
IOL_Research 8.829 36.552 0.508 0.860 0.895 0.977 0.252 0.268 0.642 0.147
ONLINE-A 25.043 51.472 0.510 1.000 1.000 1.000 0.187 0.741 0.786 0.176
ONLINE-B 23.961 41.456 0.499 1.000 1.000 0.940 0.235 0.725 0.731 0.184
ONLINE-G 20.539 43.621 0.499 1.000 1.000 1.000 0.043 0.906 0.722 0.201
ONLINE-W 22.623 46.890 0.499 1.000 1.000 1.000 0.379 0.617 0.809 0.161
TranssionMT 25.323 52.901 0.499 1.000 1.000 1.000 0.204 0.727 0.787 0.176

Table 74: Czech→Ukrainian, 1-shot (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 2.147 18.888 0.999 0.996 0.996 0.996 0.825 0.138 0.938 0.026
Claude-3 1.009 13.452 0.847 0.864 0.408 0.383 0.695 0.201 0.559 0.244
CommandR-plus 2.182 14.449 0.668 0.813 0.771 0.808 0.543 0.410 0.682 0.197
GPT-4 6.110 23.763 1.000 0.956 0.384 0.356 0.815 0.051 0.600 0.194
Llama3-70B 2.096 18.345 0.999 0.988 0.999 1.000 0.864 0.108 0.921 0.020
IKUN 8.386 22.957 0.966 0.911 0.397 0.384 0.666 0.113 0.552 0.210
IKUN-C 1.859 17.569 0.747 0.728 0.694 0.880 0.386 0.311 0.610 0.184
Unbabel-Tower70B 2.233 19.069 0.996 0.993 0.984 0.983 0.808 0.152 0.930 0.031
BJFU-LPT 1.363 16.719 0.000 0.058 0.141 0.716 0.000 0.072 0.131 0.456
CUNI-Transformer 0.010 10.501 0.047 0.048 0.137 0.353 0.017 0.088 0.086 0.501
CycleL 0.003 1.416 0.000 0.039 0.027 0.053 0.000 0.017 0.017 0.557
IOL_Research 1.788 15.626 0.698 0.692 0.733 0.916 0.591 0.247 0.703 0.176
ONLINE-A 12.677 29.133 0.995 0.958 0.930 0.814 0.871 0.089 0.798 0.057
ONLINE-B 10.813 18.183 0.908 0.934 0.913 0.914 0.632 0.197 0.785 0.079
ONLINE-G 7.923 18.949 0.006 0.006 0.207 0.005 0.005 0.002 0.033 0.540
ONLINE-W 5.625 22.669 0.987 0.936 0.847 0.807 0.742 0.141 0.778 0.083
TranssionMT 10.790 27.831 0.930 0.938 0.923 0.922 0.656 0.209 0.803 0.074

Table 75: Czech→Ukrainian, 0-shot JSON format (English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 2.060 16.944 0.999 0.996 0.990 0.990 0.979 0.017 0.973 0.009
Claude-3 13.359 20.291 0.993 0.785 0.518 0.498 0.492 0.506 0.610 0.250
CommandR-plus 0.959 12.553 0.727 0.788 0.786 0.876 0.690 0.193 0.742 0.148
GPT-4 4.594 22.466 0.999 0.562 0.089 0.061 0.073 0.909 0.276 0.463
Llama3-70B 3.365 20.334 0.998 0.995 0.999 1.000 0.987 0.013 0.973 0.006
IKUN 2.207 18.989 0.987 0.988 0.988 0.990 0.966 0.028 0.956 0.013
IKUN-C 3.175 20.407 0.958 0.847 0.755 0.764 0.797 0.130 0.778 0.119
Unbabel-Tower70B 2.207 18.509 0.976 0.982 0.984 0.995 0.962 0.038 0.966 0.018
BJFU-LPT 2.373 17.972 0.475 0.289 0.122 0.253 0.086 0.554 0.177 0.492
CUNI-Transformer 0.067 9.490 0.038 0.033 0.001 0.001 0.000 0.159 0.010 0.646
CycleL 0.010 1.562 0.000 0.011 0.061 0.015 0.000 0.028 0.012 0.564
IOL_Research 0.959 10.262 0.259 0.258 0.362 0.852 0.241 0.299 0.340 0.370
ONLINE-A 5.662 26.044 0.965 0.971 0.977 0.998 0.952 0.043 0.960 0.022
ONLINE-B 5.679 15.915 0.980 0.998 0.985 0.994 0.965 0.029 0.963 0.014
ONLINE-G 4.470 17.782 0.098 0.146 0.258 0.870 0.076 0.525 0.228 0.457
ONLINE-W 5.600 25.450 0.998 0.996 0.999 0.998 0.972 0.024 0.978 0.007
TranssionMT 5.662 26.039 0.982 0.998 0.985 0.999 0.968 0.027 0.968 0.013

Table 76: Czech→Ukrainian, 0-shot JSON format (non-English source)
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System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 1.209 15.930 0.988 0.980 0.988 0.990 0.846 0.118 0.939 0.028
Claude-3 0.175 9.852 0.640 0.686 0.096 0.069 0.512 0.370 0.299 0.411
CommandR-plus 0.945 12.276 0.801 0.892 0.931 0.961 0.659 0.314 0.825 0.109
GPT-4 2.235 17.932 1.000 0.971 0.669 0.667 0.855 0.074 0.776 0.112
Llama3-70B 1.144 15.433 1.000 0.993 1.000 1.000 0.860 0.120 0.933 0.020
IKUN 8.349 21.330 1.000 0.919 0.042 0.000 0.743 0.025 0.391 0.295
IKUN-C 0.784 14.040 0.593 0.547 0.527 0.806 0.240 0.287 0.460 0.267
Unbabel-Tower70B 1.265 16.248 0.988 0.975 0.978 0.983 0.806 0.169 0.923 0.040
BJFU-LPT 0.161 11.288 0.000 0.110 0.103 0.534 0.000 0.037 0.107 0.474
CUNI-Transformer 0.000 7.124 0.118 0.098 0.218 0.404 0.054 0.118 0.129 0.470
CycleL 0.000 1.146 0.000 0.032 0.039 0.056 0.000 0.032 0.018 0.558
IOL_Research 0.997 12.974 0.713 0.708 0.730 0.926 0.591 0.248 0.714 0.172
ONLINE-A 8.813 24.505 0.993 0.949 0.936 0.831 0.877 0.078 0.801 0.054
ONLINE-B 7.119 15.058 0.900 0.912 0.909 0.907 0.637 0.191 0.778 0.083
ONLINE-G 4.738 15.217 0.007 0.007 0.206 0.010 0.005 0.000 0.034 0.539
ONLINE-W 4.298 19.352 0.980 0.934 0.860 0.838 0.686 0.189 0.789 0.085
TranssionMT 7.093 23.382 0.912 0.919 0.914 0.924 0.686 0.184 0.794 0.076

Table 77: Czech→Ukrainian, 1-shot JSON format (English source)

System BLEU chrF QM BW CW LID Transl Ans Avg. win SAAvg
Aya23 1.151 13.983 1.000 1.000 1.000 1.000 0.976 0.024 0.979 0.006
Claude-3 11.965 17.619 0.939 0.482 0.061 0.044 0.034 0.954 0.234 0.495
CommandR-plus 0.845 12.246 0.697 0.809 0.824 0.848 0.689 0.249 0.745 0.157
GPT-4 2.116 17.765 0.995 0.504 0.022 0.005 0.024 0.934 0.225 0.492
Llama3-70B 1.113 14.895 0.993 0.993 0.995 0.998 0.971 0.029 0.968 0.010
IKUN 1.116 15.848 0.949 0.958 0.963 0.980 0.936 0.037 0.932 0.030
IKUN-C 1.367 16.257 0.914 0.949 0.958 0.990 0.912 0.073 0.919 0.043
Unbabel-Tower70B 1.132 15.429 0.988 1.000 0.998 0.998 0.973 0.027 0.980 0.009
BJFU-LPT 0.452 13.846 0.213 0.174 0.120 0.377 0.000 0.721 0.126 0.550
CUNI-Transformer 0.001 6.806 0.117 0.073 0.000 0.000 0.000 0.254 0.027 0.646
CycleL 0.001 1.255 0.000 0.020 0.073 0.029 0.000 0.032 0.017 0.560
IOL_Research 0.655 8.578 0.147 0.147 0.249 0.765 0.115 0.430 0.235 0.452
ONLINE-A 2.950 21.129 0.954 0.961 0.971 0.998 0.939 0.051 0.952 0.028
ONLINE-B 2.989 12.473 0.973 0.990 0.993 0.995 0.980 0.012 0.969 0.012
ONLINE-G 2.261 13.608 0.054 0.110 0.244 0.961 0.020 0.545 0.207 0.465
ONLINE-W 2.936 20.718 0.998 0.995 1.000 1.000 0.971 0.029 0.981 0.007
TranssionMT 2.970 21.130 0.971 0.990 0.993 0.998 0.976 0.017 0.971 0.013

Table 78: Czech→Ukrainian, 1-shot JSON format (non-English source)
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A.2 Summary results
A.2.1 Weakest attacks

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 50.124 69.491 0.995 0.990 0.988 1.000 0.886 0.114 0.972 direct
Claude-3 63.945 80.516 0.973 0.979 0.977 0.979 0.005 0.744 0.837 1-shot
CommandR-plus 51.532 70.648 0.963 1.000 0.998 0.999 0.000 0.905 0.850 1-shot
GPT-4 58.671 76.248 0.999 1.000 1.000 1.000 0.129 0.379 0.875 0-shot
Llama3-70B 55.838 73.779 0.999 0.917 0.942 0.978 0.973 0.026 0.958 0-shot JSON format
NVIDIA-NeMo 53.441 71.047 0.982 0.951 0.983 1.000 0.848 0.152 0.943 direct
CUNI-DS 45.865 65.698 0.985 0.907 0.930 0.985 0.953 0.038 0.933 1-shot JSON format
IKUN 46.017 65.324 0.973 0.884 0.909 0.968 0.936 0.055 0.915 1-shot JSON format
IKUN-C 39.794 60.823 0.979 0.848 0.864 0.966 0.927 0.040 0.893 0-shot JSON format
Unbabel-Tower70B 54.457 73.925 0.995 0.960 0.963 1.000 0.670 0.329 0.901 direct
Yandex 42.793 65.032 0.780 0.969 0.990 1.000 0.845 0.155 0.899 direct
CycleL 1.720 19.371 0.967 0.985 0.842 0.984 0.000 0.879 0.547 0-shot
CycleL2 0.823 15.256 0.977 0.652 0.554 0.998 0.000 0.162 0.456 direct
Dubformer 0.811 2.480 0.999 0.450 0.048 0.000 0.001 0.136 0.218 0-shot
IOL_Research 62.421 77.519 0.995 0.851 0.868 0.895 0.895 0.032 0.889 1-shot JSON format
ONLINE-A 57.977 75.168 0.999 0.925 0.942 0.976 0.958 0.042 0.960 0-shot JSON format
ONLINE-B 55.403 73.776 0.994 0.913 0.947 0.972 0.945 0.050 0.951 1-shot JSON format
ONLINE-G 53.353 74.154 0.999 0.973 0.995 1.000 0.902 0.098 0.957 direct
ONLINE-W 53.906 72.810 0.998 0.919 0.947 0.985 0.969 0.029 0.958 1-shot JSON format
TSU-HITs 22.052 43.818 0.124 0.813 0.949 0.996 0.721 0.257 0.651 direct
TranssionMT 55.300 74.002 0.996 0.917 0.949 0.974 0.947 0.053 0.954 1-shot JSON format

Table 79: English→Russian; weakest attack by Avg. win

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 60.528 77.596 0.995 0.928 0.962 0.995 0.999 0.000 0.971 0-shot JSON format
Claude-3 69.372 84.126 0.999 0.955 0.978 0.998 0.998 0.000 0.986 0-shot JSON format
CommandR-plus 60.904 78.355 0.939 1.000 1.000 1.000 0.734 0.171 0.953 1-shot
GPT-4 70.239 84.067 1.000 1.000 1.000 1.000 0.865 0.037 0.981 1-shot
Llama3-70B 64.414 79.829 0.998 1.000 1.000 1.000 0.922 0.009 0.988 1-shot
NVIDIA-NeMo 62.179 77.817 0.968 0.988 0.984 1.000 0.994 0.005 0.989 direct
AIST-AIRC 54.511 72.781 0.999 0.996 0.996 1.000 0.980 0.009 0.994 direct
CUNI-NL 51.442 69.699 0.761 1.000 0.999 0.999 0.988 0.005 0.964 direct
IKUN 51.652 70.262 0.994 0.999 0.990 1.000 0.856 0.073 0.974 1-shot
IKUN-C 44.710 65.240 0.989 1.000 1.000 1.000 0.890 0.060 0.982 1-shot
Unbabel-Tower70B 61.008 78.193 0.995 1.000 1.000 1.000 0.985 0.004 0.997 1-shot
CycleL 20.487 44.322 0.987 0.996 0.998 1.000 0.000 0.589 0.781 0-shot
CycleL2 20.487 44.322 0.987 0.996 0.998 1.000 0.000 0.589 0.781 0-shot
Dubformer 26.213 32.808 0.272 0.483 0.515 0.857 0.196 0.748 0.484 direct
IOL_Research 69.214 82.833 0.999 1.000 1.000 1.000 0.820 0.055 0.974 1-shot
MSLC 41.196 64.234 0.972 1.000 0.999 1.000 0.529 0.084 0.928 1-shot
ONLINE-A 68.859 82.629 0.999 0.999 0.999 1.000 0.999 0.000 0.999 direct
ONLINE-B 54.922 74.946 0.998 1.000 1.000 1.000 0.823 0.037 0.974 1-shot
ONLINE-G 68.624 82.302 0.999 0.993 0.994 1.000 0.995 0.005 0.995 direct
ONLINE-W 61.546 78.220 0.961 0.999 0.999 1.000 0.999 0.001 0.994 direct
TSU-HITs 29.868 49.567 0.144 0.652 0.853 0.946 0.353 0.168 0.526 direct
TranssionMT 54.873 74.941 0.998 1.000 1.000 1.000 0.825 0.037 0.975 1-shot

Table 80: English→German; weakest attack by Avg. win
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 19.085 40.614 0.993 0.714 1.000 1.000 0.005 0.892 0.673 1-shot
Claude-3 1.919 53.543 0.953 0.157 0.815 0.878 0.867 0.071 0.668 0-shot JSON format
CommandR-plus 14.366 43.986 0.856 0.118 0.968 1.000 0.002 0.928 0.559 1-shot
GPT-4 17.514 54.097 0.999 0.001 1.000 1.000 0.015 0.955 0.574 0-shot
Llama3-70B 27.898 43.181 0.979 0.965 1.000 1.000 0.000 0.956 0.706 1-shot
NVIDIA-NeMo 2.076 35.694 0.829 0.991 1.000 1.000 0.002 0.974 0.693 1-shot
AIST-AIRC 0.719 34.974 0.969 0.993 1.000 1.000 0.010 0.916 0.710 1-shot
IKUN 13.311 31.025 0.980 0.998 1.000 1.000 0.002 0.897 0.711 1-shot
IKUN-C 2.249 26.016 0.941 0.012 0.816 0.920 0.911 0.054 0.597 0-shot JSON format
Unbabel-Tower70B 8.143 41.692 0.990 0.105 0.903 0.987 0.935 0.058 0.703 0-shot JSON format
CycleL 0.041 3.364 0.006 0.949 0.463 0.998 0.000 0.061 0.345 1-shot
DLUT_GTCOM 0.813 42.293 0.971 0.980 1.000 1.000 0.011 0.810 0.709 1-shot
IOL_Research 19.182 51.107 0.971 0.985 1.000 1.000 0.004 0.969 0.709 1-shot
NTTSU 4.594 33.132 0.865 0.001 0.953 0.998 0.789 0.207 0.646 direct
ONLINE-A 1.220 44.459 0.920 0.995 1.000 1.000 0.015 0.840 0.704 1-shot
ONLINE-B 1.015 44.589 0.996 0.996 1.000 1.000 0.028 0.889 0.717 1-shot
ONLINE-G 3.339 45.429 0.995 0.989 1.000 1.000 0.011 0.968 0.714 1-shot
ONLINE-W 4.871 34.170 0.989 0.000 1.000 1.000 0.002 0.982 0.571 1-shot
Team-J 0.416 36.323 0.998 0.998 1.000 1.000 0.002 0.994 0.714 1-shot
UvA-MT 1.159 43.238 0.908 0.004 0.903 0.999 0.851 0.147 0.658 direct

Table 81: English→Japanese; weakest attack by Avg. win

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 44.375 63.672 0.968 0.960 0.958 0.998 0.657 0.319 0.926 direct
Claude-3 60.166 76.954 0.060 0.453 0.557 0.157 0.083 0.610 0.205 0-shot
CommandR-plus 39.996 61.592 0.963 1.000 0.996 1.000 0.033 0.760 0.853 1-shot
GPT-4 50.565 69.608 0.998 1.000 1.000 1.000 0.023 0.962 0.860 1-shot
Llama3-70B 51.601 69.311 0.998 0.862 0.927 0.980 0.949 0.039 0.930 0-shot JSON format
NVIDIA-NeMo 47.354 66.582 0.980 0.993 0.991 1.000 0.703 0.285 0.951 direct
IKUN 40.887 60.362 0.924 0.987 0.980 1.000 0.673 0.304 0.926 direct
IKUN-C 35.290 56.369 0.956 0.978 0.963 1.000 0.681 0.304 0.922 direct
Unbabel-Tower70B 56.242 74.129 0.998 0.994 0.995 1.000 0.700 0.293 0.954 direct
CycleL 0.268 12.822 0.000 0.284 0.370 1.000 0.001 0.119 0.237 direct
IOL_Research 53.133 70.132 0.998 0.870 0.936 0.999 0.969 0.023 0.942 1-shot JSON format
ONLINE-A 59.021 74.613 0.999 0.996 0.994 1.000 0.707 0.283 0.956 direct
ONLINE-B 56.473 71.907 0.998 0.898 0.951 0.999 0.950 0.032 0.953 0-shot JSON format
ONLINE-G 55.704 72.554 0.999 0.998 0.991 1.000 0.705 0.285 0.955 direct
ONLINE-W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 direct
TranssionMT 56.588 73.267 0.999 0.909 0.958 1.000 0.967 0.022 0.965 0-shot JSON format

Table 82: English→Hindi; weakest attack by Avg. win
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 71.590 83.455 0.985 0.999 0.998 1.000 0.956 0.044 0.991 direct
Claude-3 77.382 88.287 0.994 0.947 0.977 0.990 0.993 0.005 0.982 0-shot JSON format
CommandR-plus 69.366 82.843 0.453 0.957 0.955 0.917 0.222 0.649 0.757 1-shot
GPT-4 76.485 86.879 0.999 1.000 1.000 1.000 0.862 0.067 0.980 1-shot
Llama3-70B 75.659 85.899 0.996 0.938 0.971 0.995 0.999 0.001 0.982 0-shot JSON format
NVIDIA-NeMo 71.684 83.575 0.984 0.995 0.990 0.999 0.978 0.022 0.992 direct
IKUN 56.366 73.524 0.979 0.879 0.903 0.996 0.980 0.000 0.949 0-shot JSON format
IKUN-C 52.543 70.275 0.989 1.000 1.000 1.000 0.865 0.094 0.979 1-shot
Occiglot 49.361 68.297 0.951 0.919 0.862 1.000 0.958 0.029 0.922 direct
Unbabel-Tower70B 58.762 76.431 0.989 1.000 1.000 1.000 0.974 0.011 0.995 1-shot
CycleL 32.147 51.642 0.985 1.000 1.000 1.000 0.001 0.174 0.855 1-shot
Dubformer 60.120 79.825 0.952 0.793 0.519 0.468 0.088 0.386 0.670 0-shot
IOL_Research 76.839 86.496 0.994 0.929 0.960 0.994 0.993 0.005 0.976 0-shot JSON format
MSLC 56.800 74.431 0.994 0.945 0.836 1.000 0.894 0.093 0.930 direct
ONLINE-A 74.616 85.820 0.987 1.000 1.000 1.000 0.966 0.034 0.993 direct
ONLINE-B 72.932 83.788 0.994 0.999 1.000 1.000 0.979 0.021 0.996 direct
ONLINE-G 76.360 86.243 0.999 0.944 0.974 0.995 0.999 0.000 0.986 1-shot JSON format
ONLINE-W 58.478 74.701 0.994 0.998 0.994 0.999 0.978 0.022 0.994 direct
TSU-HITs 24.907 50.317 0.093 1.000 0.991 1.000 0.012 0.706 0.728 1-shot
TranssionMT 73.144 85.551 0.990 1.000 1.000 1.000 0.966 0.034 0.994 direct

Table 83: English→Spanish; weakest attack by Avg. win

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 57.243 74.550 0.994 0.927 0.953 0.995 0.991 0.007 0.963 1-shot JSON format
Claude-3 66.823 81.945 0.973 0.944 0.956 0.976 0.968 0.026 0.962 0-shot JSON format
CommandR-plus 54.377 73.408 0.868 1.000 0.996 1.000 0.419 0.428 0.895 1-shot
GPT-4 64.985 79.784 1.000 0.998 0.995 1.000 0.775 0.209 0.966 0-shot
Llama3-70B 61.753 77.069 0.999 0.968 0.974 0.995 0.998 0.001 0.981 0-shot JSON format
NVIDIA-NeMo 55.940 72.507 0.987 0.994 0.979 1.000 0.993 0.005 0.989 direct
CUNI-MH 57.511 75.301 0.998 1.000 1.000 1.000 0.988 0.012 0.998 direct
IKUN 45.469 65.478 0.998 1.000 1.000 1.000 0.600 0.372 0.941 0-shot
IKUN-C 37.968 58.621 0.989 1.000 1.000 1.000 0.542 0.259 0.933 1-shot
SCIR-MT 63.339 78.457 0.987 1.000 0.999 1.000 0.989 0.009 0.996 direct
Unbabel-Tower70B 51.206 71.180 0.969 0.993 0.988 1.000 0.979 0.017 0.982 direct
CUNI-DocTransformer 58.378 75.431 0.998 0.996 0.996 1.000 0.991 0.007 0.997 direct
CUNI-GA 56.400 74.149 0.987 0.968 0.936 1.000 0.968 0.031 0.952 direct
CUNI-Transformer 56.400 74.149 0.987 0.968 0.936 1.000 0.968 0.031 0.952 direct
CycleL 1.469 17.798 0.984 0.978 0.824 0.995 0.000 0.098 0.541 0-shot
CycleL2 5.734 24.422 0.974 0.996 0.996 1.000 0.000 0.181 0.704 1-shot
IOL_Research 64.617 78.908 0.993 0.939 0.956 0.983 0.979 0.007 0.963 0-shot JSON format
ONLINE-A 63.853 79.054 0.999 1.000 0.998 1.000 0.971 0.029 0.994 direct
ONLINE-B 59.851 76.425 0.998 1.000 0.999 1.000 0.998 0.002 0.999 direct
ONLINE-G 63.404 78.063 0.999 1.000 1.000 1.000 0.995 0.002 0.999 direct
ONLINE-W 55.114 73.094 0.998 1.000 1.000 1.000 0.998 0.002 0.999 direct
TSU-HITs 16.169 34.946 0.029 0.749 0.843 0.978 0.449 0.177 0.600 direct
TranssionMT 62.123 78.598 0.999 1.000 0.998 1.000 0.972 0.028 0.995 direct

Table 84: English→Czech; weakest attack by Avg. win
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 31.789 44.156 0.996 0.004 0.976 1.000 0.968 0.027 0.698 direct
Claude-3 6.160 52.796 0.909 0.201 0.829 0.902 0.875 0.075 0.678 0-shot JSON format
CommandR-plus 12.165 44.248 0.918 0.007 0.834 0.969 0.869 0.109 0.629 direct
GPT-4 11.698 49.684 0.999 0.007 1.000 1.000 0.091 0.882 0.587 0-shot
Llama3-70B 14.886 45.139 0.994 0.126 0.909 0.987 0.961 0.017 0.706 1-shot JSON format
NVIDIA-NeMo 1.315 35.577 0.983 0.010 0.957 0.993 0.953 0.040 0.682 direct
IKUN 2.722 34.863 0.973 0.004 0.922 1.000 0.968 0.028 0.665 direct
IKUN-C 4.261 29.898 0.965 0.006 0.951 1.000 0.961 0.033 0.671 direct
Unbabel-Tower70B 2.125 40.668 0.976 0.001 0.958 1.000 0.957 0.040 0.686 direct
CycleL 0.057 3.676 0.912 0.006 0.994 1.000 0.007 0.121 0.424 direct
CycleL2 0.000 0.779 0.006 0.000 0.109 0.973 0.000 0.127 0.155 0-shot
HW-TSC 18.593 47.754 0.999 0.004 0.941 1.000 0.984 0.013 0.689 direct
IOL_Research 28.529 54.058 0.988 0.002 0.862 1.000 0.889 0.108 0.667 direct
ONLINE-A 11.048 49.271 0.999 0.005 0.968 1.000 0.968 0.029 0.701 direct
ONLINE-B 2.844 45.939 0.999 0.002 0.976 1.000 0.974 0.021 0.704 direct
ONLINE-G 2.939 42.534 0.999 0.148 0.896 0.994 0.953 0.031 0.709 1-shot JSON format
ONLINE-W 3.376 44.271 0.999 0.009 0.919 1.000 0.982 0.015 0.684 direct
UvA-MT 0.668 34.492 0.991 0.009 0.962 1.000 0.985 0.013 0.695 direct

Table 85: English→Chinese; weakest attack by Avg. win

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 49.791 70.611 0.998 0.917 0.945 0.999 0.973 0.022 0.958 1-shot JSON format
Claude-3 62.653 79.565 0.998 0.950 0.968 0.998 0.966 0.029 0.976 0-shot JSON format
CommandR-plus 52.187 72.206 0.884 0.869 0.863 0.958 0.756 0.225 0.872 direct
GPT-4 54.848 74.440 0.994 1.000 1.000 1.000 0.032 0.792 0.861 1-shot
Llama3-70B 49.780 70.822 0.999 0.903 0.942 1.000 0.968 0.031 0.951 0-shot JSON format
NVIDIA-NeMo 47.690 67.971 0.983 0.999 0.999 1.000 0.875 0.125 0.979 direct
IKUN 34.437 58.673 0.928 0.972 0.987 1.000 0.924 0.076 0.933 direct
IKUN-C 36.359 59.479 0.995 0.960 0.965 1.000 0.916 0.084 0.916 direct
Unbabel-Tower70B 49.401 71.358 0.991 0.995 0.999 1.000 0.912 0.088 0.983 direct
CycleL 0.928 14.750 0.000 0.841 0.977 0.944 0.000 0.099 0.395 1-shot
Dubformer 49.968 71.853 0.523 0.454 0.466 0.700 0.280 0.610 0.482 direct
IOL_Research 59.265 76.482 0.996 1.000 1.000 1.000 0.015 0.672 0.859 1-shot
ONLINE-A 53.505 72.787 0.995 1.000 0.999 1.000 0.764 0.234 0.965 direct
ONLINE-B 52.012 72.139 0.998 0.998 0.999 1.000 0.923 0.077 0.988 direct
ONLINE-G 47.843 70.719 0.999 0.999 0.999 1.000 0.880 0.120 0.979 direct
ONLINE-W 56.473 74.051 0.906 0.999 0.998 1.000 0.882 0.118 0.969 direct
TranssionMT 54.465 74.167 0.995 0.999 0.998 1.000 0.802 0.198 0.970 direct

Table 86: English→Ukrainian; weakest attack by Avg. win

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 13.449 35.122 0.977 0.993 0.989 0.999 0.069 0.390 0.805 1-shot
Claude-3 55.420 75.544 0.980 0.925 0.956 0.973 0.979 0.020 0.956 0-shot JSON format
CommandR-plus 20.222 44.344 0.799 0.520 0.575 0.720 0.621 0.182 0.591 0-shot JSON format
GPT-4 42.953 65.458 1.000 1.000 1.000 1.000 0.455 0.083 0.922 1-shot
Llama3-70B 38.608 60.739 0.996 0.897 0.929 0.985 0.988 0.004 0.928 0-shot JSON format
IKUN 31.698 55.417 0.854 0.998 0.990 1.000 0.996 0.002 0.972 direct
IKUN-C 25.692 49.700 0.983 0.996 0.987 0.999 0.990 0.009 0.988 direct
Unbabel-Tower70B 44.358 67.090 0.917 0.988 0.982 1.000 0.963 0.037 0.972 direct
AMI 52.729 72.148 0.998 0.999 0.998 1.000 0.999 0.001 0.997 direct
CycleL 10.383 29.998 0.957 0.995 0.961 1.000 0.004 0.453 0.696 0-shot
Dubformer 41.037 61.391 0.433 0.452 0.438 0.644 0.356 0.576 0.456 direct
IOL_Research 45.690 64.846 0.995 1.000 1.000 1.000 0.772 0.196 0.967 0-shot
ONLINE-A 55.587 73.600 0.999 1.000 1.000 1.000 0.994 0.005 0.997 direct
ONLINE-B 57.116 73.904 0.996 0.999 0.999 1.000 0.999 0.000 0.999 direct
ONLINE-G 47.642 67.534 0.998 0.996 1.000 1.000 0.993 0.002 0.998 direct
ONLINE-W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 direct
TSU-HITs 8.553 28.192 0.089 0.867 0.864 0.999 0.001 0.318 0.467 1-shot
TranssionMT 57.314 74.708 0.998 0.999 0.999 1.000 0.996 0.001 0.999 direct

Table 87: English→Icelandic; weakest attack by Avg. win
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 16.547 35.168 0.991 0.015 1.000 0.701 0.827 0.159 0.596 0-shot (en)
Claude-3 3.943 38.065 0.491 0.514 0.998 0.502 0.187 0.244 0.598 1-shot (non-en)
CommandR-plus 7.728 35.127 0.444 0.513 1.000 0.635 0.515 0.439 0.621 1-shot (en)
GPT-4 15.472 39.233 0.498 0.513 1.000 0.628 0.812 0.184 0.709 1-shot (en)
Llama3-70B 18.386 32.080 0.498 0.513 0.999 0.950 0.918 0.081 0.770 1-shot (en)
IKUN 1.519 28.192 0.985 0.078 0.976 0.980 0.963 0.022 0.680 1-shot JSON format (non-en)
IKUN-C 5.156 23.669 0.974 0.013 0.999 0.999 0.573 0.207 0.595 direct (non-en)
Unbabel-Tower70B 6.585 36.271 0.490 0.507 1.000 0.796 0.821 0.175 0.731 1-shot (en)
CycleL 0.013 2.344 0.324 0.007 0.529 0.732 0.006 0.022 0.228 direct (en)
DLUT_GTCOM 0.735 30.945 0.446 0.512 1.000 1.000 0.552 0.447 0.641 1-shot (en)
IOL_Research 16.514 39.294 0.494 0.508 1.000 0.953 0.786 0.209 0.749 1-shot (en)
MSLC 9.124 29.066 0.998 0.016 1.000 0.998 0.902 0.087 0.704 0-shot (en)
NTTSU 0.456 32.324 0.499 0.508 1.000 0.499 0.747 0.240 0.670 1-shot (en)
ONLINE-A 4.688 39.838 0.499 0.509 1.000 0.973 0.873 0.126 0.728 1-shot (en)
ONLINE-B 1.534 38.803 0.998 0.127 1.000 0.980 0.988 0.010 0.721 1-shot JSON format (non-en)
ONLINE-G 2.440 33.098 0.998 0.152 0.994 0.993 0.985 0.010 0.725 0-shot JSON format (non-en)
ONLINE-W 2.803 38.856 0.494 0.514 1.000 0.519 0.761 0.169 0.685 1-shot (en)
Team-J 0.573 28.582 0.498 0.509 1.000 0.529 0.594 0.395 0.607 1-shot (en)
UvA-MT 0.413 32.523 0.497 0.512 1.000 0.499 0.517 0.460 0.568 1-shot (en)

Table 88: Japanese→Chinese; weakest attack by Avg. win

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 51.796 71.017 1.000 1.000 1.000 1.000 0.976 0.024 0.979 1-shot JSON format (non-en)
Claude-3 59.164 76.525 0.977 0.990 0.985 0.984 0.600 0.212 0.926 0-shot (en)
CommandR-plus 52.291 71.954 0.983 0.999 0.995 1.000 0.870 0.047 0.973 direct (en)
GPT-4 50.830 71.774 0.966 0.995 0.998 1.000 0.836 0.093 0.963 direct (en)
Llama3-70B 42.691 65.406 0.991 1.000 1.000 1.000 0.878 0.037 0.974 direct (en)
IKUN 44.345 65.724 0.987 0.988 0.988 0.990 0.966 0.028 0.956 0-shot JSON format (non-en)
IKUN-C 43.714 65.549 0.999 1.000 1.000 1.000 0.894 0.032 0.952 direct (en)
Unbabel-Tower70B 50.091 71.296 0.988 1.000 0.998 0.998 0.973 0.027 0.980 1-shot JSON format (non-en)
BJFU-LPT 23.070 42.742 0.999 1.000 1.000 1.000 0.027 0.717 0.860 0-shot (en)
CUNI-Transformer 51.200 70.250 0.999 1.000 1.000 1.000 0.831 0.028 0.949 direct (en)
CycleL 0.110 0.686 0.000 0.651 0.028 0.000 0.000 0.000 0.097 1-shot (en)
IOL_Research 54.964 73.144 0.983 0.995 0.999 1.000 0.722 0.175 0.938 direct (en)
ONLINE-A 49.693 69.758 0.965 0.971 0.977 0.998 0.952 0.043 0.960 0-shot JSON format (non-en)
ONLINE-B 47.317 68.256 0.973 0.990 0.993 0.995 0.980 0.012 0.969 1-shot JSON format (non-en)
ONLINE-G 43.649 65.989 0.999 1.000 1.000 1.000 0.454 0.208 0.887 direct (en)
ONLINE-W 51.432 69.965 0.998 0.995 1.000 1.000 0.971 0.029 0.981 1-shot JSON format (non-en)
TranssionMT 47.952 68.873 0.971 0.990 0.993 0.998 0.976 0.017 0.971 1-shot JSON format (non-en)

Table 89: Czech→Ukrainian; weakest attack by Avg. win
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans Avg. win Task
Aya23 42.393 60.496 1.000 1.000 1.000 1.000 0.976 0.024 0.979 1-shot JSON format (non-en)
Claude-3 47.904 71.624 0.866 0.626 0.783 0.811 0.802 0.029 0.760 0-shot JSON format
CommandR-plus 39.558 61.701 0.945 0.507 0.997 0.980 0.668 0.270 0.776 direct (en)
GPT-4 46.751 68.297 0.999 1.000 1.000 1.000 0.259 0.285 0.894 0-shot (non-en)
Llama3-70B 45.592 63.932 0.998 0.995 0.999 1.000 0.987 0.013 0.973 0-shot JSON format (non-en)
NVIDIA-NeMo 42.710 63.846 0.916 0.742 0.921 0.967 0.886 0.105 0.870 direct
AIST-AIRC 27.615 53.878 0.984 0.996 1.000 1.000 0.455 0.476 0.848 1-shot
CUNI-DS 45.865 65.698 0.985 0.907 0.930 0.985 0.953 0.038 0.933 1-shot JSON format
CUNI-MH 57.511 75.301 0.998 1.000 1.000 1.000 0.988 0.012 0.998 direct
CUNI-NL 51.442 69.699 0.761 1.000 0.999 0.999 0.988 0.005 0.964 direct
IKUN 33.493 55.349 0.987 0.988 0.988 0.990 0.966 0.028 0.956 0-shot JSON format (non-en)
IKUN-C 29.794 51.422 0.914 0.949 0.958 0.990 0.912 0.073 0.919 1-shot JSON format (non-en)
Occiglot 49.361 68.297 0.951 0.919 0.862 1.000 0.958 0.029 0.922 direct
SCIR-MT 63.339 78.457 0.987 1.000 0.999 1.000 0.989 0.009 0.996 direct
Unbabel-Tower70B 40.216 63.839 0.988 1.000 0.998 0.998 0.973 0.027 0.980 1-shot JSON format (non-en)
Yandex 42.793 65.032 0.780 0.969 0.990 1.000 0.845 0.155 0.899 direct
AMI 52.729 72.148 0.998 0.999 0.998 1.000 0.999 0.001 0.997 direct
BJFU-LPT 23.070 42.742 0.999 1.000 1.000 1.000 0.027 0.717 0.860 0-shot (en)
CUNI-DocTransformer 58.378 75.431 0.998 0.996 0.996 1.000 0.991 0.007 0.997 direct
CUNI-GA 56.400 74.149 0.987 0.968 0.936 1.000 0.968 0.031 0.952 direct
CUNI-Transformer 53.800 72.199 0.987 0.968 0.936 1.000 0.968 0.031 0.952 direct
CycleL 6.148 18.252 0.644 0.699 0.719 0.931 0.000 0.446 0.499 0-shot
CycleL2 6.761 21.195 0.687 0.710 0.681 0.975 0.000 0.413 0.523 0-shot
DLUT_GTCOM 0.774 36.619 0.971 0.980 1.000 1.000 0.011 0.810 0.709 1-shot
Dubformer 35.630 49.672 0.947 0.569 0.290 0.212 0.025 0.247 0.420 0-shot
HW-TSC 18.593 47.754 0.999 0.004 0.941 1.000 0.984 0.013 0.689 direct
IOL_Research 50.033 68.620 0.994 1.000 1.000 1.000 0.275 0.236 0.896 0-shot (non-en)
MSLC 35.706 55.910 0.984 1.000 0.999 1.000 0.482 0.068 0.924 1-shot
NTTSU 2.525 32.728 0.499 0.508 1.000 0.499 0.747 0.240 0.670 1-shot (en)
ONLINE-A 45.461 67.909 0.965 0.971 0.977 0.998 0.952 0.043 0.960 0-shot JSON format (non-en)
ONLINE-B 41.947 65.861 0.973 0.990 0.993 0.995 0.980 0.012 0.969 1-shot JSON format (non-en)
ONLINE-G 42.300 65.329 0.926 0.766 0.962 1.000 0.906 0.092 0.899 direct
ONLINE-W 31.636 50.922 0.998 0.995 1.000 1.000 0.971 0.029 0.981 1-shot JSON format (non-en)
TSU-HITs 20.310 41.368 0.144 0.686 0.789 0.973 0.407 0.261 0.550 direct
Team-J 0.494 32.453 0.998 0.998 1.000 1.000 0.002 0.994 0.714 1-shot
TranssionMT 57.720 75.513 0.971 0.990 0.993 0.998 0.976 0.017 0.971 1-shot JSON format (non-en)
UvA-MT 0.746 36.751 0.950 0.006 0.933 0.999 0.918 0.080 0.676 direct

Table 90: Average across all language pairs; weakest attack by Avg. win
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A.2.2 Strongest attacks

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 50.124 69.491 0.911 0.810 0.858 0.963 0.852 0.121 0.293 0-shot JSON format
Claude-3 63.945 80.516 0.010 0.006 0.001 0.005 0.000 1.000 0.836 direct
CommandR-plus 51.532 70.648 0.824 0.322 0.335 0.488 0.330 0.170 0.551 1-shot JSON format
GPT-4 58.671 76.248 0.998 0.065 0.038 0.035 0.033 0.015 0.670 1-shot JSON format
Llama3-70B 55.838 73.779 0.266 0.211 0.188 0.244 0.127 0.873 0.720 direct
NVIDIA-NeMo 53.441 71.047 0.351 0.367 0.406 0.991 0.343 0.011 0.354 0-shot JSON format
CUNI-DS 45.865 65.698 0.952 0.435 0.252 0.995 0.000 0.998 0.529 0-shot
IKUN 46.017 65.324 0.973 0.884 0.909 0.968 0.936 0.055 0.260 1-shot JSON format
IKUN-C 39.794 60.823 0.996 0.949 0.878 1.000 0.054 0.875 0.326 0-shot
Unbabel-Tower70B 54.457 73.925 0.968 0.655 0.671 0.720 0.679 0.055 0.381 1-shot JSON format
Yandex 42.793 65.032 0.016 0.026 0.108 0.775 0.002 0.985 0.617 1-shot JSON format
CycleL 1.720 19.371 0.000 0.100 0.166 0.062 0.000 0.006 0.526 1-shot JSON format
CycleL2 0.823 15.256 0.000 0.097 0.095 0.804 0.000 0.006 0.430 1-shot JSON format
Dubformer 0.811 2.480 0.999 0.039 0.002 0.000 0.002 0.009 0.684 0-shot JSON format
IOL_Research 62.421 77.519 0.965 0.655 0.589 0.990 0.463 0.535 0.407 direct
ONLINE-A 57.977 75.168 0.999 0.925 0.942 0.976 0.958 0.042 0.262 0-shot JSON format
ONLINE-B 55.403 73.776 0.976 0.890 0.916 0.945 0.923 0.050 0.268 0-shot JSON format
ONLINE-G 53.353 74.154 0.000 0.007 0.000 0.000 0.000 0.001 0.575 1-shot JSON format
ONLINE-W 53.906 72.810 0.999 0.911 0.941 0.984 0.971 0.027 0.257 0-shot JSON format
TSU-HITs 22.052 43.818 0.000 0.067 0.054 0.640 0.000 0.624 0.564 1-shot JSON format
TranssionMT 55.300 74.002 0.993 0.903 0.924 0.966 0.951 0.044 0.265 0-shot JSON format

Table 91: English→Russian; strongest attack by SAAvg

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 60.528 77.596 0.998 1.000 1.000 1.000 0.092 0.846 0.301 0-shot
Claude-3 69.372 84.126 0.024 0.119 0.173 0.234 0.024 0.974 0.767 direct
CommandR-plus 60.904 78.355 0.968 0.498 0.498 0.534 0.529 0.058 0.465 1-shot JSON format
GPT-4 70.239 84.067 0.999 0.381 0.364 0.335 0.340 0.001 0.530 1-shot JSON format
Llama3-70B 64.414 79.829 0.996 1.000 1.000 1.000 0.075 0.891 0.314 0-shot
NVIDIA-NeMo 62.179 77.817 0.681 0.678 0.710 0.967 0.665 0.001 0.313 1-shot JSON format
AIST-AIRC 54.511 72.781 0.251 0.191 0.162 0.846 0.084 0.013 0.429 1-shot JSON format
CUNI-NL 51.442 69.699 0.905 0.800 0.854 0.994 0.901 0.007 0.279 1-shot JSON format
IKUN 51.652 70.262 0.996 1.000 0.999 1.000 0.131 0.815 0.281 0-shot
IKUN-C 44.710 65.240 0.994 0.968 0.919 1.000 0.092 0.900 0.331 0-shot
Unbabel-Tower70B 61.008 78.193 0.989 0.633 0.651 0.651 0.654 0.001 0.400 0-shot JSON format
CycleL 20.487 44.322 0.000 0.072 0.132 0.372 0.000 0.002 0.495 1-shot JSON format
CycleL2 20.487 44.322 0.000 0.072 0.132 0.372 0.000 0.002 0.495 1-shot JSON format
Dubformer 26.213 32.808 0.360 0.039 0.023 0.010 0.009 0.621 0.824 1-shot JSON format
IOL_Research 69.214 82.833 0.812 0.607 0.531 0.999 0.918 0.081 0.389 direct
MSLC 41.196 64.234 0.028 0.048 0.011 0.002 0.002 0.013 0.623 1-shot JSON format
ONLINE-A 68.859 82.629 0.999 1.000 1.000 1.000 0.126 0.873 0.311 0-shot
ONLINE-B 54.922 74.946 0.245 1.000 0.998 1.000 0.996 0.004 0.300 direct
ONLINE-G 68.624 82.302 0.999 1.000 1.000 1.000 0.246 0.745 0.293 0-shot
ONLINE-W 61.546 78.220 0.999 1.000 1.000 1.000 0.106 0.887 0.314 0-shot
TSU-HITs 29.868 49.567 0.000 0.034 0.042 0.264 0.000 0.028 0.540 0-shot JSON format
TranssionMT 54.873 74.941 0.242 1.000 0.998 1.000 0.996 0.004 0.300 direct

Table 92: English→German; strongest attack by SAAvg
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 19.085 40.614 0.099 0.000 0.848 1.000 0.507 0.491 0.449 direct
Claude-3 1.919 53.543 0.007 0.000 0.005 0.013 0.000 1.000 0.830 direct
CommandR-plus 14.366 43.986 0.404 0.002 0.350 0.936 0.026 0.953 0.548 0-shot
GPT-4 17.514 54.097 0.999 0.001 0.002 0.001 0.009 0.048 0.694 1-shot JSON format
Llama3-70B 27.898 43.181 0.424 0.001 0.785 0.813 0.683 0.317 0.418 direct
NVIDIA-NeMo 2.076 35.694 0.459 0.005 0.487 0.742 0.741 0.204 0.504 direct
AIST-AIRC 0.719 34.974 0.013 0.000 0.012 0.016 0.002 0.015 0.568 1-shot JSON format
IKUN 13.311 31.025 0.154 0.001 0.950 1.000 0.662 0.334 0.384 direct
IKUN-C 2.249 26.016 0.854 0.001 0.416 0.923 0.005 0.994 0.473 0-shot
Unbabel-Tower70B 8.143 41.692 0.936 0.002 0.854 1.000 0.006 0.989 0.413 0-shot
CycleL 0.041 3.364 0.013 0.004 0.326 0.982 0.000 0.431 0.444 0-shot
DLUT_GTCOM 0.813 42.293 0.043 0.000 0.062 0.159 0.023 0.103 0.586 0-shot JSON format
IOL_Research 19.182 51.107 0.938 0.004 0.933 0.979 0.020 0.957 0.381 0-shot
NTTSU 4.594 33.132 0.780 0.004 0.343 0.184 0.184 0.267 0.595 0-shot
ONLINE-A 1.220 44.459 0.372 0.000 0.379 0.372 0.367 0.004 0.453 0-shot JSON format
ONLINE-B 1.015 44.589 0.933 0.001 0.918 1.000 0.006 0.974 0.403 0-shot
ONLINE-G 3.339 45.429 0.242 0.020 0.267 0.367 0.267 0.024 0.477 0-shot JSON format
ONLINE-W 4.871 34.170 0.104 0.000 0.192 0.098 0.100 0.005 0.525 0-shot JSON format
Team-J 0.416 36.323 0.987 0.002 0.433 0.499 0.494 0.039 0.489 0-shot JSON format
UvA-MT 1.159 43.238 0.951 0.002 0.020 0.040 0.048 0.070 0.686 0-shot JSON format

Table 93: English→Japanese; strongest attack by SAAvg

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 44.375 63.672 0.976 0.640 0.685 0.754 0.715 0.054 0.376 0-shot JSON format
Claude-3 60.166 76.954 0.010 0.009 0.004 0.024 0.000 1.000 0.843 direct
CommandR-plus 39.996 61.592 0.764 0.305 0.299 0.328 0.220 0.376 0.588 direct
GPT-4 50.565 69.608 0.996 0.035 0.016 0.015 0.022 0.028 0.682 1-shot JSON format
Llama3-70B 51.601 69.311 0.082 0.022 0.020 0.026 0.018 0.979 0.829 direct
NVIDIA-NeMo 47.354 66.582 0.022 0.076 0.130 0.928 0.001 0.905 0.552 1-shot JSON format
IKUN 40.887 60.362 0.263 0.308 0.383 0.993 0.246 0.264 0.405 1-shot JSON format
IKUN-C 35.290 56.369 0.968 0.546 0.271 0.994 0.001 0.998 0.517 0-shot
Unbabel-Tower70B 56.242 74.129 0.998 0.940 0.769 0.999 0.000 1.000 0.399 0-shot
CycleL 0.268 12.822 0.000 0.372 0.417 0.558 0.000 0.422 0.441 0-shot
IOL_Research 53.133 70.132 0.979 0.750 0.727 0.998 0.627 0.362 0.334 direct
ONLINE-A 59.021 74.613 0.999 1.000 1.000 1.000 0.001 0.958 0.331 0-shot
ONLINE-B 56.473 71.907 0.998 0.989 0.979 0.973 0.000 0.995 0.354 0-shot
ONLINE-G 55.704 72.554 0.616 0.503 0.475 0.660 0.519 0.214 0.392 0-shot JSON format
ONLINE-W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.574 0-shot
TranssionMT 56.588 73.267 0.999 0.990 0.980 0.971 0.000 0.995 0.355 0-shot

Table 94: English→Hindi; strongest attack by SAAvg
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 71.590 83.455 0.919 0.335 0.341 0.346 0.326 0.061 0.544 0-shot JSON format
Claude-3 77.382 88.287 0.009 0.024 0.061 0.005 0.000 1.000 0.823 direct
CommandR-plus 69.366 82.843 0.939 0.146 0.149 0.160 0.135 0.087 0.641 0-shot JSON format
GPT-4 76.485 86.879 0.250 0.356 0.341 0.962 0.190 0.810 0.625 direct
Llama3-70B 75.659 85.899 0.066 0.054 0.054 0.058 0.024 0.976 0.821 direct
NVIDIA-NeMo 71.684 83.575 0.996 1.000 0.996 1.000 0.300 0.695 0.316 0-shot
IKUN 56.366 73.524 0.842 0.902 0.820 1.000 0.988 0.009 0.281 direct
IKUN-C 52.543 70.275 0.999 0.925 0.812 1.000 0.248 0.747 0.350 0-shot
Occiglot 49.361 68.297 0.679 0.469 0.299 0.966 0.004 0.983 0.569 0-shot
Unbabel-Tower70B 58.762 76.431 0.989 0.798 0.829 0.854 0.847 0.001 0.327 0-shot JSON format
CycleL 32.147 51.642 0.000 0.058 0.127 0.649 0.001 0.001 0.521 0-shot JSON format
Dubformer 60.120 79.825 0.237 0.078 0.078 0.295 0.012 0.520 0.721 1-shot JSON format
IOL_Research 76.839 86.496 0.933 0.887 0.862 1.000 0.917 0.082 0.294 direct
MSLC 56.800 74.431 0.887 0.509 0.498 0.621 0.534 0.010 0.450 0-shot JSON format
ONLINE-A 74.616 85.820 0.999 1.000 1.000 1.000 0.274 0.681 0.296 0-shot
ONLINE-B 72.932 83.788 0.996 1.000 1.000 1.000 0.272 0.716 0.305 0-shot
ONLINE-G 76.360 86.243 0.999 1.000 1.000 1.000 0.275 0.721 0.303 0-shot
ONLINE-W 58.478 74.701 0.999 1.000 1.000 1.000 0.089 0.903 0.304 0-shot
TSU-HITs 24.907 50.317 0.009 0.091 0.102 0.344 0.005 0.020 0.511 0-shot JSON format
TranssionMT 73.144 85.551 0.999 1.000 1.000 1.000 0.277 0.678 0.296 0-shot

Table 95: English→Spanish; strongest attack by SAAvg

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 57.243 74.550 0.928 0.879 0.896 0.985 0.927 0.060 0.277 0-shot JSON format
Claude-3 66.823 81.945 0.006 0.032 0.040 0.006 0.000 1.000 0.834 direct
CommandR-plus 54.377 73.408 0.729 0.296 0.267 0.458 0.286 0.425 0.594 direct
GPT-4 64.985 79.784 0.999 0.073 0.043 0.004 0.054 0.087 0.684 1-shot JSON format
Llama3-70B 61.753 77.069 0.780 0.783 0.732 0.944 0.192 0.782 0.403 0-shot
NVIDIA-NeMo 55.940 72.507 0.890 0.448 0.453 0.494 0.457 0.049 0.486 1-shot JSON format
CUNI-MH 57.511 75.301 0.996 0.999 0.993 1.000 0.273 0.714 0.259 0-shot
IKUN 45.469 65.478 0.310 0.357 0.382 0.996 0.269 0.148 0.359 1-shot JSON format
IKUN-C 37.968 58.621 0.995 0.919 0.733 1.000 0.062 0.936 0.345 0-shot
SCIR-MT 63.339 78.457 0.987 1.000 0.999 1.000 0.073 0.907 0.302 0-shot
Unbabel-Tower70B 51.206 71.180 0.967 0.854 0.869 0.901 0.887 0.017 0.282 1-shot JSON format
CUNI-DocTransformer 58.378 75.431 0.998 0.444 0.449 0.441 0.492 0.062 0.496 0-shot JSON format
CUNI-GA 56.400 74.149 0.942 0.174 0.149 0.116 0.198 0.087 0.639 0-shot JSON format
CUNI-Transformer 56.400 74.149 0.942 0.174 0.149 0.116 0.198 0.087 0.639 0-shot JSON format
CycleL 1.469 17.798 0.000 0.078 0.078 0.621 0.000 0.002 0.464 1-shot JSON format
CycleL2 5.734 24.422 0.000 0.099 0.126 0.787 0.000 0.015 0.429 0-shot JSON format
IOL_Research 64.617 78.908 0.879 0.764 0.643 1.000 0.816 0.176 0.341 direct
ONLINE-A 63.853 79.054 0.999 1.000 1.000 1.000 0.359 0.592 0.259 0-shot
ONLINE-B 59.851 76.425 0.998 1.000 0.991 1.000 0.301 0.667 0.262 0-shot
ONLINE-G 63.404 78.063 0.998 0.903 0.961 0.995 0.993 0.005 0.255 0-shot JSON format
ONLINE-W 55.114 73.094 0.999 1.000 1.000 1.000 0.078 0.920 0.293 0-shot
TSU-HITs 16.169 34.946 0.007 0.100 0.177 0.902 0.006 0.007 0.409 0-shot JSON format
TranssionMT 62.123 78.598 0.999 1.000 0.990 0.993 0.307 0.659 0.265 0-shot

Table 96: English→Czech; strongest attack by SAAvg
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 31.789 44.156 0.929 0.005 0.468 0.983 0.006 0.984 0.458 0-shot
Claude-3 6.160 52.796 0.006 0.001 0.077 0.262 0.000 0.998 0.772 direct
CommandR-plus 12.165 44.248 0.486 0.004 0.494 0.810 0.037 0.930 0.523 0-shot
GPT-4 11.698 49.684 0.999 0.002 0.006 0.002 0.021 0.032 0.691 1-shot JSON format
Llama3-70B 14.886 45.139 0.973 0.031 0.931 0.990 0.091 0.841 0.335 0-shot
NVIDIA-NeMo 1.315 35.577 0.035 0.002 0.009 0.015 0.001 0.207 0.621 1-shot JSON format
IKUN 2.722 34.863 0.996 0.005 0.995 1.000 0.075 0.783 0.308 0-shot
IKUN-C 4.261 29.898 0.991 0.005 0.646 0.999 0.033 0.951 0.390 0-shot
Unbabel-Tower70B 2.125 40.668 0.998 0.054 0.493 0.551 0.545 0.027 0.445 1-shot JSON format
CycleL 0.057 3.676 0.001 0.000 0.002 0.330 0.000 0.000 0.524 0-shot JSON format
CycleL2 0.000 0.779 0.004 0.000 0.044 0.632 0.000 0.004 0.480 0-shot JSON format
HW-TSC 18.593 47.754 0.321 0.015 0.170 0.776 0.130 0.076 0.444 0-shot JSON format
IOL_Research 28.529 54.058 0.998 0.009 1.000 1.000 0.033 0.958 0.355 0-shot
ONLINE-A 11.048 49.271 0.999 0.005 0.996 1.000 0.034 0.862 0.339 0-shot
ONLINE-B 2.844 45.939 0.999 0.005 0.999 1.000 0.047 0.922 0.380 0-shot
ONLINE-G 2.939 42.534 0.998 0.010 0.805 1.000 0.015 0.984 0.386 0-shot
ONLINE-W 3.376 44.271 0.847 0.018 0.233 0.370 0.241 0.045 0.550 0-shot JSON format
UvA-MT 0.668 34.492 0.015 0.000 0.000 0.000 0.000 0.136 0.607 1-shot JSON format

Table 97: English→Chinese; strongest attack by SAAvg

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 49.791 70.611 0.998 0.767 0.698 0.999 0.635 0.365 0.331 direct
Claude-3 62.653 79.565 0.024 0.007 0.004 0.012 0.009 0.984 0.838 direct
CommandR-plus 52.187 72.206 0.288 0.360 0.400 0.972 0.351 0.628 0.580 1-shot JSON format
GPT-4 54.848 74.440 0.999 0.043 0.009 0.006 0.086 0.278 0.720 1-shot JSON format
Llama3-70B 49.780 70.822 0.251 0.166 0.143 0.211 0.127 0.873 0.738 direct
NVIDIA-NeMo 47.690 67.971 0.428 0.492 0.519 0.974 0.493 0.166 0.368 0-shot JSON format
IKUN 34.437 58.673 0.940 0.860 0.882 0.968 0.905 0.048 0.254 1-shot JSON format
IKUN-C 36.359 59.479 0.996 0.925 0.860 1.000 0.012 0.983 0.338 0-shot
Unbabel-Tower70B 49.401 71.358 0.982 0.941 0.873 0.999 0.023 0.956 0.348 0-shot
CycleL 0.928 14.750 0.000 0.118 0.168 0.982 0.000 0.000 0.390 0-shot JSON format
Dubformer 49.968 71.853 0.384 0.037 0.027 0.208 0.039 0.655 0.761 0-shot JSON format
IOL_Research 59.265 76.482 0.130 0.106 0.228 0.816 0.105 0.070 0.429 1-shot JSON format
ONLINE-A 53.505 72.787 0.966 0.906 0.930 0.998 0.941 0.056 0.263 0-shot JSON format
ONLINE-B 52.012 72.139 0.987 0.905 0.935 0.991 0.955 0.038 0.255 0-shot JSON format
ONLINE-G 47.843 70.719 0.148 0.108 0.211 0.753 0.119 0.103 0.446 0-shot JSON format
ONLINE-W 56.473 74.051 0.996 0.917 0.929 0.991 0.945 0.049 0.261 1-shot JSON format
TranssionMT 54.465 74.167 0.993 0.913 0.944 0.999 0.967 0.029 0.256 1-shot JSON format

Table 98: English→Ukrainian; strongest attack by SAAvg

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 13.449 35.122 0.805 0.448 0.460 0.616 0.409 0.109 0.400 1-shot JSON format
Claude-3 55.420 75.544 0.021 0.035 0.044 0.280 0.001 0.976 0.838 1-shot JSON format
CommandR-plus 20.222 44.344 0.337 0.196 0.180 0.370 0.195 0.605 0.667 direct
GPT-4 42.953 65.458 0.991 0.078 0.035 0.009 0.005 0.032 0.677 1-shot JSON format
Llama3-70B 38.608 60.739 0.076 0.069 0.067 0.078 0.042 0.958 0.800 direct
IKUN 31.698 55.417 0.778 0.718 0.767 0.942 0.797 0.055 0.275 0-shot JSON format
IKUN-C 25.692 49.700 0.455 0.420 0.480 0.836 0.426 0.111 0.372 1-shot JSON format
Unbabel-Tower70B 44.358 67.090 0.996 0.938 0.843 1.000 0.212 0.760 0.318 0-shot
AMI 52.729 72.148 0.837 0.812 0.853 0.994 0.863 0.048 0.285 1-shot JSON format
CycleL 10.383 29.998 0.000 0.072 0.120 0.428 0.000 0.000 0.485 0-shot JSON format
Dubformer 41.037 61.391 0.732 0.070 0.034 0.045 0.004 0.255 0.723 1-shot JSON format
IOL_Research 45.690 64.846 0.996 0.465 0.409 0.994 0.815 0.181 0.398 direct
ONLINE-A 55.587 73.600 0.994 0.920 0.944 0.995 0.991 0.001 0.251 0-shot JSON format
ONLINE-B 57.116 73.904 0.891 0.892 0.934 0.993 0.946 0.005 0.261 1-shot JSON format
ONLINE-G 47.642 67.534 0.999 0.998 0.989 1.000 0.165 0.603 0.252 0-shot
ONLINE-W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.575 0-shot
TSU-HITs 8.553 28.192 0.004 0.054 0.175 0.947 0.000 0.821 0.567 0-shot JSON format
TranssionMT 57.314 74.708 0.881 0.897 0.934 0.993 0.945 0.005 0.264 1-shot JSON format

Table 99: English→Icelandic; strongest attack by SAAvg
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 16.547 35.168 0.934 0.035 0.441 0.432 0.393 0.592 0.396 0-shot JSON format (non-en)
Claude-3 3.943 38.065 0.658 0.042 0.215 0.196 0.130 0.756 0.540 1-shot JSON format (non-en)
CommandR-plus 7.728 35.127 0.553 0.011 0.716 0.788 0.272 0.480 0.345 direct (non-en)
GPT-4 15.472 39.233 0.993 0.024 0.044 0.029 0.032 0.961 0.559 1-shot JSON format (non-en)
Llama3-70B 18.386 32.080 0.481 0.020 0.491 0.498 0.010 0.732 0.466 direct (non-en)
IKUN 1.519 28.192 0.015 0.000 0.083 0.578 0.000 0.176 0.504 1-shot JSON format (en)
IKUN-C 5.156 23.669 0.015 0.000 0.083 0.578 0.000 0.176 0.504 1-shot JSON format (en)
Unbabel-Tower70B 6.585 36.271 0.493 0.504 1.000 0.525 0.118 0.574 0.294 1-shot (non-en)
CycleL 0.013 2.344 0.002 0.001 0.073 0.291 0.000 0.031 0.523 0-shot JSON format (en)
DLUT_GTCOM 0.735 30.945 0.978 0.007 0.061 0.071 0.068 0.320 0.462 1-shot JSON format (non-en)
IOL_Research 16.514 39.294 0.892 0.092 0.760 0.799 0.743 0.106 0.224 0-shot JSON format (non-en)
MSLC 9.124 29.066 0.998 0.020 0.017 0.000 0.042 0.946 0.565 1-shot JSON format (non-en)
NTTSU 0.456 32.324 0.861 0.012 0.020 0.007 0.046 0.912 0.582 1-shot JSON format (non-en)
ONLINE-A 4.688 39.838 0.980 0.022 0.792 0.002 0.853 0.110 0.331 1-shot JSON format (en)
ONLINE-B 1.534 38.803 0.590 0.005 0.565 0.058 0.213 0.464 0.464 0-shot JSON format (en)
ONLINE-G 2.440 33.098 0.975 0.022 0.944 0.000 0.841 0.108 0.310 1-shot JSON format (en)
ONLINE-W 2.803 38.856 0.174 0.010 0.291 0.949 0.132 0.257 0.405 1-shot JSON format (non-en)
Team-J 0.573 28.582 0.020 0.021 0.136 0.114 0.177 0.721 0.638 0-shot JSON format (non-en)
UvA-MT 0.413 32.523 0.000 0.000 0.000 0.000 0.000 0.479 0.669 1-shot JSON format (non-en)

Table 100: Japanese→Chinese; strongest attack by SAAvg

clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 51.796 71.017 0.501 1.000 1.000 1.000 0.157 0.733 0.177 1-shot (non-en)
Claude-3 59.164 76.525 0.939 0.482 0.061 0.044 0.034 0.954 0.495 1-shot JSON format (non-en)
CommandR-plus 52.291 71.954 0.472 0.722 0.563 0.520 0.370 0.607 0.336 direct (non-en)
GPT-4 50.830 71.774 0.995 0.504 0.022 0.005 0.024 0.934 0.492 1-shot JSON format (non-en)
Llama3-70B 42.691 65.406 0.267 0.424 0.355 0.360 0.034 0.835 0.493 direct (non-en)
IKUN 44.345 65.724 1.000 0.919 0.042 0.000 0.743 0.025 0.295 1-shot JSON format (en)
IKUN-C 43.714 65.549 0.593 0.547 0.527 0.806 0.240 0.287 0.267 1-shot JSON format (en)
Unbabel-Tower70B 50.091 71.296 0.498 1.000 1.000 0.999 0.177 0.667 0.168 1-shot (non-en)
BJFU-LPT 23.070 42.742 0.213 0.174 0.120 0.377 0.000 0.721 0.550 1-shot JSON format (non-en)
CUNI-Transformer 51.200 70.250 0.117 0.073 0.000 0.000 0.000 0.254 0.646 1-shot JSON format (non-en)
CycleL 0.110 0.686 0.000 0.157 0.001 0.000 0.000 0.147 0.571 direct (non-en)
IOL_Research 54.964 73.144 0.147 0.147 0.249 0.765 0.115 0.430 0.452 1-shot JSON format (non-en)
ONLINE-A 49.693 69.758 0.498 1.000 1.000 0.955 0.002 0.830 0.197 1-shot (en)
ONLINE-B 47.317 68.256 0.499 1.000 1.000 0.563 0.005 0.791 0.247 1-shot (en)
ONLINE-G 43.649 65.989 0.006 0.006 0.207 0.005 0.005 0.002 0.540 0-shot JSON format (en)
ONLINE-W 51.432 69.965 0.499 1.000 1.000 0.996 0.121 0.742 0.179 1-shot (en)
TranssionMT 47.952 68.873 0.499 1.000 1.000 0.974 0.001 0.895 0.204 1-shot (en)

Table 101: Czech→Ukrainian; strongest attack by SAAvg
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clean adversarial
System BLEU chrF QM BW CW LID Transl Ans SAAvg Task
Aya23 42.393 60.496 0.934 0.035 0.441 0.432 0.393 0.592 0.396 0-shot JSON format (non-en)
Claude-3 47.904 71.624 0.012 0.026 0.046 0.071 0.004 0.995 0.818 direct
CommandR-plus 39.558 61.701 0.751 0.261 0.378 0.581 0.379 0.205 0.520 1-shot JSON format
GPT-4 46.751 68.297 0.998 0.096 0.076 0.059 0.078 0.058 0.663 1-shot JSON format
Llama3-70B 45.592 63.932 0.411 0.242 0.419 0.447 0.394 0.606 0.582 direct
NVIDIA-NeMo 42.710 63.846 0.579 0.470 0.437 0.799 0.264 0.150 0.354 1-shot JSON format
AIST-AIRC 27.615 53.878 0.132 0.095 0.087 0.431 0.043 0.014 0.499 1-shot JSON format
CUNI-DS 45.865 65.698 0.952 0.435 0.252 0.995 0.000 0.998 0.529 0-shot
CUNI-MH 57.511 75.301 0.996 0.999 0.993 1.000 0.273 0.714 0.259 0-shot
CUNI-NL 51.442 69.699 0.905 0.800 0.854 0.994 0.901 0.007 0.279 1-shot JSON format
IKUN 33.493 55.349 0.507 0.460 0.062 0.289 0.371 0.100 0.399 1-shot JSON format (en)
IKUN-C 29.794 51.422 0.304 0.273 0.305 0.692 0.120 0.232 0.385 1-shot JSON format (en)
Occiglot 49.361 68.297 0.679 0.469 0.299 0.966 0.004 0.983 0.569 0-shot
SCIR-MT 63.339 78.457 0.987 1.000 0.999 1.000 0.073 0.907 0.302 0-shot
Unbabel-Tower70B 40.216 63.839 0.987 0.751 0.884 1.000 0.147 0.830 0.343 0-shot
Yandex 42.793 65.032 0.016 0.026 0.108 0.775 0.002 0.985 0.617 1-shot JSON format
AMI 52.729 72.148 0.837 0.812 0.853 0.994 0.863 0.048 0.285 1-shot JSON format
BJFU-LPT 23.070 42.742 0.213 0.174 0.120 0.377 0.000 0.721 0.550 1-shot JSON format (non-en)
CUNI-DocTransformer 58.378 75.431 0.998 0.444 0.449 0.441 0.492 0.062 0.496 0-shot JSON format
CUNI-GA 56.400 74.149 0.942 0.174 0.149 0.116 0.198 0.087 0.639 0-shot JSON format
CUNI-Transformer 53.800 72.199 0.117 0.073 0.000 0.000 0.000 0.254 0.646 1-shot JSON format (non-en)
CycleL 6.148 18.252 0.000 0.157 0.001 0.000 0.000 0.147 0.571 direct (non-en)
CycleL2 6.761 21.195 0.001 0.066 0.099 0.659 0.000 0.007 0.457 1-shot JSON format
DLUT_GTCOM 0.774 36.619 0.043 0.000 0.062 0.159 0.023 0.103 0.586 0-shot JSON format
Dubformer 35.630 49.672 0.586 0.054 0.030 0.088 0.015 0.376 0.737 1-shot JSON format
HW-TSC 18.593 47.754 0.321 0.015 0.170 0.776 0.130 0.076 0.444 0-shot JSON format
IOL_Research 50.033 68.620 0.147 0.147 0.249 0.765 0.115 0.430 0.452 1-shot JSON format (non-en)
MSLC 35.706 55.910 0.998 0.020 0.017 0.000 0.042 0.946 0.565 1-shot JSON format (non-en)
NTTSU 2.525 32.728 0.780 0.004 0.343 0.184 0.184 0.267 0.595 0-shot
ONLINE-A 45.461 67.909 0.990 0.779 0.993 1.000 0.158 0.683 0.289 0-shot
ONLINE-B 41.947 65.861 0.990 0.777 0.987 0.997 0.212 0.696 0.297 0-shot
ONLINE-G 42.300 65.329 0.054 0.110 0.244 0.961 0.020 0.545 0.465 1-shot JSON format (non-en)
ONLINE-W 31.636 50.922 0.174 0.010 0.291 0.949 0.132 0.257 0.405 1-shot JSON format (non-en)
TSU-HITs 20.310 41.368 0.004 0.063 0.104 0.519 0.002 0.189 0.517 0-shot JSON format
Team-J 0.494 32.453 0.020 0.021 0.136 0.114 0.177 0.721 0.638 0-shot JSON format (non-en)
TranssionMT 57.720 75.513 0.998 0.998 0.995 0.995 0.263 0.621 0.269 0-shot
UvA-MT 0.746 36.751 0.000 0.000 0.000 0.000 0.000 0.479 0.669 1-shot JSON format (non-en)

Table 102: Average across all language pairs; strongest attack by SAAvg
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Abstract

This paper presents the submission of the
Árni Magnússon Institute’s team to the
WMT24 test suite subtask, focusing on id-
iomatic expressions and proper names for the
English→Icelandic translation direction.

Intuitively and empirically, idioms and proper
names are known to be a significant challenge
for modern translation models. We create two
different test suites. The first evaluates the com-
petency of MT systems in translating common
English idiomatic expressions, as well as test-
ing whether systems can distinguish between
those expressions and the same phrases when
used in a literal context. The second test suite
consists of place names that should be trans-
lated into their Icelandic exonyms (and cor-
rectly inflected) and pairs of Icelandic names
that share a surface form between the male and
female variants, so that incorrect translations
impact meaning as well as readability.

The scores reported are relatively low, es-
pecially for idiomatic expressions and place
names, and indicate considerable room for im-
provement.

1 Introduction

Significant advances in machine translation have
in recent years been achieved by integrating Large
Language Models (LLMs) into neural translation
systems (Xu et al., 2024). Careful analysis, how-
ever, has repeatedly shown that despite recording
higher scores and producing text with greater flu-
ency compared to previous state-of-the-art neural
systems, the translations produced by LLMs are
still far from perfect and can include significant
biases, misinformation and hallucinations (Hendy
et al., 2023), half-hidden in the impressive-looking
output. Aiming to expose “weaknesses and serious
flaws” of these systems that might otherwise get
“hidden in the average”, the theme of this year’s
WMT test suite subtask is “Help us break LLMs”,

with organizers asking for custom test sets focus-
ing on phenomena that can provide specific chal-
lenges for LLM-based systems. This paper de-
scribes the efforts of the Árni Magnússon Insti-
tute’s team to pick holes in otherwise seemingly
fluent English→Icelandic translations.

We experiment with two main features we be-
lieve should prove particularly challenging for
English→Icelandic LLM-based machine transla-
tion systems; idiomatic expressions and proper
names. More specifically, we focus on:

• Idiomatic expressions in English and their
literal counterparts: In the first of our two
test sets, we investigate idiomatic expressions
in English which do not directly translate to
Icelandic. Where possible, we also include
‘inverse’ examples of usage in a literal form
(as in “Are you supposed to chew the fat from
steak?” or “Blow into the balloon and tie the
knot without letting the air out.”) to give an
idea of the translation models’ ability to cor-
rectly switch between literal and non-literal
translations of the same phrase, depending on
context.

• Proper names: In our second test set, we also
consider names of both people and places. We
carefully curate a list of city and area names in
English that should be translated to their com-
mon Icelandic names (and correctly inflected).
We then include a list of simple sentences
containing both Icelandic and English given
names. For the Icelandic names, we observe
whether they are correctly inflected in the Ice-
landic text (which impacts not only the text’s
readability, but also its meaning). Common
English names, meanwhile, are included to
test that the models don’t ‘translate’ them to
Icelandic – i.e. alter them in some unintended
way.

We release our test suites and evaluation code
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for others to build on and to allow for further com-
parison between future models in these categories.1

2 Related Work

Idiomatic expressions (and multi-word expres-
sions (MWEs) in general) have been the fo-
cus of much work in the field of machine
translation in recent years and the construc-
tion of impressive idiom datasets has been car-
ried out for many other languages and lan-
guage pairs. See e.g. Stap et al. (2024) for
English↔German and Russian→English, Tang
(2022) for Chinese→English, Fadaee et al. (2018)
for English↔German and Haagsma et al. (2020)
and Adewumi et al. (2022) for monolingual
datasets of English idiomatic expressions.

Macketanz et al. (2022) include idioms
among many other interesting linguistic phenom-
ena in their dataset for English↔German and
English→Russian and we took some inspiration
from their work when deciding on our scoring for-
mat. Halldórsson et al. (2022) list Icelandic idioms
with English equivalents, this dataset is described
and discussed in more detail in Steingrímsson et al.
(2024). We are not aware of any dataset for the
English→Icelandic translation direction published
previous to our work.

In recent years, the emergence of LLMs has led
to work investigating how they handle the transla-
tions of idioms and MWEs compared with previous
models. Raunak et al. (2023), using measures of
‘literalness’, find that GPT models produce less lit-
eral translations between English and German, Chi-
nese, and Russian than previous neural models, a
difference most pronounced in the case of idiomatic
expressions. Finally, Shwartz (2021) provide an
accessible overview of the kinds of problems posed
by MWEs for language models in general.

3 Methodology

3.1 Idiomatic Expressions
We make use of the set of potential idiomatic ex-
pressions defined in the PIE Corpus (Adewumi
et al., 2022) and, for each expression we use, ex-
tract two examples of usage from the NewsCrawl
corpus of WMT 2023 (Kocmi et al., 2023)2 For
our purposes, we narrow the PIE set down from
591 expressions to 199. Our aim was to remove

1https://github.com/stofnun-arna-magnussonar/
idioms_names_test_suite

2https://data.statmt.org/news-crawl/

those we deem too rare or obscure to be truly rel-
evant (e.g. horses for courses or monkey’s uncle)
for model comparison, expressions which directly
(or more or less directly) translate between En-
glish and Icelandic (e.g. “open the floodgates” has
an Icelandic equivalent, “opna flóðgáttirnar”) and
those for which we find no example usage in the
NewsCrawl corpus. We make the number of ex-
pressions an even 200 by adding one that was not
in the PIE corpus: “kill two birds with one stone”.

Each of the 400 example sentences - two exam-
ples for each of the 200 selected idioms - is then
manually reviewed to make sure that the relevant
idiomatic expression is being used in the intended,
non-literal sense. To further increase the difficulty
of the task (though still keeping it trivial for flu-
ent human speakers of Icelandic and English), we
also try and test the models on their ability to trans-
late the words in these expressions literally when
appropriate. We include 223 additional example
sentences, for as many expressions as we were able,
where the expression is used in a literal sense (or in
a few cases, very slightly altered to try and exploit
the likelihood bias of LLMs).3 These examples
are largely taken from the NewsCrawl corpus but
synthetic in some cases.

To evaluate the models’ performance, we con-
struct two ‘positive’ sets of Icelandic word forms
or multiword expressions for each idiom. One set
contains words that we would expect to find in a
literal translation of the phrase, the other words or
phrases that could be expected to appear in a suit-
able, non-literal translation of the idiomatic expres-
sion. In many cases, we also construct ‘negative’
sets of words that instantly lead to a sentence being
marked incorrect, such as the Icelandic words for
“weather” or “pink” for idiomatic translations of
the phrases “under the weather” and “in the pink”.
An Icelandic translation of an example sentence
in English is marked as correct if it contains any
of the words in the set of ‘positive’ words (in any
lexical form) and it contains none of the words in
the set of ‘negative’ words (see Table 1).

3Early inspiration for this project was provided by the one
idiomatic expression we added from outside the PIE corpus:
“kill two birds with one stone”. We noticed a prominent online
translation service correctly translated this to the equivalent
Icelandic phrase, “slá tvær flugur í einu höggi” (lit. hit two
flies in one strike), whereas a phrase like “He killed two birds
yesterday” would be wrongly translated as “Hann drap tvær
flugur í gær” (lit. He killed two flies yesterday), exposing a
weakness particular to neural and LLM-based systems. Indeed,
four of the systems tested here made this particular mistake.
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Source sentence Possible translations Evaluation

Why Fleabag is in the pink!
Fleabag er í góðum málum! ✓(Positive match)
Fleabag er í bleiku! ✗ (Negative match)

The young woman in the
pink continued to throw
punches [...]

Unga konan í góðum málum lét
hnefana tala áfram [...]

✗ (No positive
match)

Unga konan í bleiku fötunum lét
hnefana tala áfram [...]

✓(Positive match)

Table 1: Fabricated example translations into Icelandic of two English sentences containing the phrase “in the
pink”, both from our test suite. The first English sentence uses the phrase in an idiomatic sense (meaning in good
health or in a state of well-being) and the second seemingly in a literal sense (the full context, not included in the
table, is: “before another wades in”). For the idiomatic sentence, we automatically mark it as correct if a match is
found from a list of possible Icelandic translations (here the phrase “í góðum málum”) and no match is found from
a list of negative matches (here the lexeme “bleikur”, meaning pink). For the literal sentence, meanwhile, some
form of “bleikur” is required for a correct marking.

During our manual evaluation, we further whit-
tled down our set as we decided a few sentences
we had decided to include were actually not test-
ing what they were meant to test (as some were,
for instance, more linguistically acceptable when
translated directly into Icelandic than we originally
felt during the construction of our test set). We
removed a total of 25 sentences this way, bringing
the total of ‘idiomatic’ examples in our set to 397
and the total of ‘literal’ examples to 201. Note that
although these examples were removed after we
received their translations from the tested models,
they are not included in our scoring.

3.2 Proper Names

For our testing of place names, we construct our
own list of 52 names of cities and areas that we
argue would be highly unusual not to translate into
their Icelandic names.4

As a reference when collecting our place names,
we make use of Wikipedia’s list of Icelandic ex-
onyms.5 We use only a small subset of that list,
however. Aiming to err on the side of caution,
we try to include only place names where native
speakers would be in more or less complete agree-
ment to apply their Icelandic names rather than
the ones used in English (e.g. the name “Kaup-
mannahöfn” for Copenhagen is invariably used,
whereas “Lundúnir” for London is very rare and
mostly used in a colourful or joking manner.6 We

4There exist context-dependent exceptions to this, of
course, such as the name of a sport club or particular insti-
tution from a certain city. Our example sentences, however,
refer clearly to the cities in general.

5https://en.wikipedia.org/wiki/Icelandic_
exonyms

6One anonymous reviewer asked whether we had consid-

also leave out cases where the differences between
the names used in English and in Icelandic only
have to do with pronunciation or minor differences
in spelling. In addition to the Icelandic exonyms we
select, we make sure to also include several exam-
ples of cities where the local name is the one more
generally used and English speakers use a rarer
(typically French-derived) name (e.g. “München”
rather than the English “Munich”).

We then construct example sentences in English
where each of our selected place names is used
in four different contexts, corresponding to each
of the four grammatical cases in Icelandic. (The
exceptions are “Paris” and “Berlin”, which are only
tested in the genitive as they are practically the
same as in English in the other three cases.) Our
motivation is that due to the richer morphology of
Icelandic, an accurate translation model needs to
be able to map the same lexical form in English to
several different forms in Icelandic, depending on
the context (and this particular mapping is perhaps
a problem better suited to older models than state-
of-the-art LLM-based ones).

We try to avoid the possibility that our sentences
will be translated into Icelandic in a way that is gen-
erally correct but uses a different syntactic structure
or wording than we anticipate, which would lend
itself to the use of a different grammatical case than
the one we intend to test for. We do this by keeping
our example sentences short and simple and choose
case-governing words and prepositions carefully
to maximize the probability of a particular trans-
lation in Icelandic (e.g. the sentence “The flight

ered incorporating a native speaker survey in order to validate
our choices. While the suggestion is certainly a good one, it is
beyond the scope of this particular work.
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Source sentence Possible translations Evaluation

Helgi dreams of flying
Helgi dreymir um að fljúga ✗ (Ungrammatical)
Helga dreymir um að fljúga ✓

Helga dreams of flying
Helga dreymir um að fljúga ✗ (Refers to Helgi, not Helga)
Helgu dreymir um að fljúga ✓

Table 2: Examples of possible translations of the phrase “dreams of flying”. In Icelandic, the verb “dreyma”
(to dream) takes a subject argument in the accusative case, which requires a translation system to alter the form
of the given name in the English text. Left unaltered in Icelandic, the male name “Helgi” renders the sentence
ungrammatical and the female name “Helga” would cause the reader to interpret the sentence to refer to a male
called Helgi instead.

from Tórshavn to Gothenburg was delayed until
the morning” should almost certainly be translated
using the prepositions “frá” and “til” for “from”
and “to”, governing the dative and genitive cases
respectively.)

Given names, both in Icelandic and English, con-
stitute the final part of our test suite. As in the case
of the place names, we construct simple sentences
in English containing Icelandic names and meant to
test for each of the four grammatical cases. For this
task, we chose a specific subset of common names
in Icelandic: male-female pairings that take the
weak inflection, e.g. “Helgi”-“Helga” and “Gunni”-
“Gunna”, where the male name has the ending -“i”
in the nominative case but -“a” in oblique cases and
the female name has the ending -“a” in the nomi-
native but -“u” in the oblique cases (and possibly
also a u-umlaut as in “Svala”→ “Svölu”).

These name pairs, of which we select 45 from
the Database of Icelandic Morphology (Bjarnadót-
tir et al., 2019),7 are chosen as they seem to present
a particular challenge for translation systems com-
pared to names that take the strong declension. In
constructing our test suite, we found that available
models seemed to perform at random when asked
to translate sentences containing these names in
different cases, presumably due to the ambiguity
of the lexical forms ending in -“a”, which can be
a male name in an oblique case or a female name
in the nominative. As oblique case nominals are a
distinct and common feature of the Icelandic lan-
guage (Thráinsson, 2007), this problem is highly
relevant in terms of correctly relaying the meaning
of the sentence (see Table 2).

4 Results

All submissions were scored using automatic met-
rics we constructed. Furthermore, we manually

7https://bin.arnastofnun.is/DMII/

reviewed around 150 randomly selected examples
in the case of the idioms (around 100 ‘idiomatic’
examples and around 50 ‘literal’ examples for each
submitted system). The authors reviewed the trans-
lations themselves, manually changing the scores
given by our automatic method (using the ‘positive’
and ‘negative’ keywords discussed in 3.1) if they
deemed it wrong.

The translations of our proper names suite was
only carried out with naive automatic methods. The
translations were lemmatized using a lemmatizer
for Icelandic (Ingólfsdóttir et al., 2019) and com-
pared with a reference of which Icelandic lemmas
should appear in the translation and in which gram-
matical form (being able to look up lemmas is es-
pecially useful for the given names, since the male
and female names share surface forms).

We show the results of our manual evaluation
in Table 3 and the results of automatic metrics for
our idioms test suite in Table 4. For our names test
suite, we show the results of our automatic metrics
in Table 5. Our scripts for running the automatic
evaluations and the manually reviewed examples
are released along with our test sets.

4.1 Scores for Idiomatic Expressions

Our results show a wide range of performance
across different models. The best overall accu-
racy on the idioms test suite is achieved by Claude
3.5, with Unbabel-Tower70B a close second, as
indicated both by our automatic and manual evalua-
tion. Claude 3.5 is also the highest-scoring submis-
sion when we only consider translations of expres-
sions used in an idiomatic sense, both according to
our automatic metrics and the manual review, and
Unbabel-Tower70B the clear runner-up.

When considering the literal translations in isola-
tion, however, the overall two best models are nar-
rowly ‘beaten’ by a few models that score consid-
erably lower overall. According to our automatic
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System Total Idioms Total Literals Idiom Accuracy Literal Accuracy Total Accuracy

AMI 100 65 0.29 0.892308 0.527273
Aya23 93 49 0.0537634 0.122449 0.0774648
Claude-3.5 96 56 0.75 0.857143 0.789474
CommandR-plus 93 47 0.0967742 0.382979 0.192857
CycleL 92 49 0 0.102041 0.035461
Dubformer 91 53 0.340659 0.603774 0.4375
GPT-4 93 48 0.430108 0.833333 0.567376
IKUN-C 95 52 0.494737 0.75 0.585034
IKUN 95 51 0.526316 0.607843 0.554795
IOL_Research 92 47 0.434783 0.702128 0.52518
Llama3-70B 93 50 0.268817 0.62 0.391608
ONLINE-A 188 107 0.265957 0.859813 0.481356
ONLINE-B 102 69 0.22549 0.898551 0.497076
ONLINE-G 97 66 0.185567 0.80303 0.435583
TranssionMT 76 50 0.223684 0.92 0.5
TSU-HITs 92 48 0.0434783 0.104167 0.0642857
Unbabel-Tower70B 95 57 0.631579 0.877193 0.723684

Table 3: Results of manual evaluation of system performance on our idioms test suite. We randomly split up
the translations of the test suite into segments of around 100 ‘idiomatic’ example translations and around 50
‘literal’ example translations (see ‘Total’ columns). The highest scores in each column are in bold. The authors
reviewed the translations themselves and the reviewed examples, along with our grading, can be found at https:
//github.com/stofnun-arna-magnussonar/idioms_names_test_suite/idioms/human_evaluation.

System name Total score Correct idiomatics CI ratio Correct literals CL ratio

AMI 0.447236 83 0.21 184 0.9
Aya23 0.169179 39 0.1 62 0.3
Claude-3.5 0.654941 216 0.55 175 0.86
CommandR-plus 0.293132 66 0.17 109 0.53
CycleL 0.108878 22 0.06 43 0.21
Dubformer 0.427136 112 0.28 143 0.7
GPT-4 0.547739 161 0.41 166 0.81
IKUN-C 0.480737 141 0.36 146 0.72
IKUN 0.509213 161 0.41 143 0.7
IOL_Research 0.482412 133 0.34 155 0.76
Llama3-70B 0.417085 99 0.25 150 0.74
ONLINE-A 0.442211 86 0.22 178 0.87
ONLINE-B 0.447236 85 0.22 182 0.89
ONLINE-G 0.413735 71 0.18 176 0.86
TranssionMT 0.448911 86 0.22 182 0.89
TSU-HITs 0.112228 24 0.06 43 0.21
Unbabel-Tower70B 0.60804 195 0.5 168 0.82

Table 4: Results of automatic evaluation of system performance on our idioms test suite. We show the overall
score for each system but also consider separately the percentage of idiomatic text examples marked as correct
and the percentage of literals marked correct, to try and give an overview of the relationship between the two.
Highest scores in each column are in bold. Our scripts for running automatic evaluation can be found at https:
//github.com/stofnun-arna-magnussonar/idioms_names_test_suite/idioms.
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System name Total score Total city score Total people score

AMI 0.5399 0.4705 0.5861
Aya23 0.3838 0.0432 0.6103
Claude-3.5 0.5091 0.4591 0.5423
CommandR-plus 0.3339 0.1205 0.4758
CycleL 0.0 0.0 0.0
Dubformer 0.4383 0.3614 0.4894
GPT-4 0.5109 0.2773 0.6662
IKUN-C 0.4691 0.2727 0.5997
IKUN 0.4846 0.2886 0.6148
IOL_Research 0.4773 0.2205 0.648
Llama3-70B 0.4138 0.3227 0.4743
ONLINE-A 0.5345 0.4659 0.5801
ONLINE-B 0.5109 0.4273 0.5665
ONLINE-G 0.4065 0.3614 0.4366
TranssionMT 0.5082 0.4227 0.565
TSU-HITs 0.147 0.0932 0.1828
Unbabel-Tower70B 0.5254 0.4114 0.6012

Table 5: Results of automatic evaluation of system performance on our names test suite, given as a proportion of
properly scored city names ‘Total city score’, properly scored given names ‘Total people score’ and overall ‘Total
score’. Highest scores in each column are in bold. Our scripts for running automatic evaluation can be found at
https://github.com/stofnun-arna-magnussonar/idioms_names_test_suite/names. (Note that the zeroes
for CycleL’s submission are not a mistake, this submission performed poorly and our scoring strategy is not
particularly forgiving.)

metrics, our own submission (AMI) scores highest
in that category, only slightly ahead of ONLINE-B
and TranssionMT. These three also come out on top
in the manual evaluation, with TranssionMT record-
ing the highest score (a superb 0.92) and ONLINE-
B and AMI following in second and third.

This discrepancy between performance in trans-
lating phrases in an idiomatic context and a literal
context is very interesting - these three models all
scored under 0.3 in idiomatic accuracy, which sug-
gests that for some models, proficiency in effec-
tively translating text in a literal sense comes at a
cost to their ability to handle more metaphorical
text. The best-performing models overall, how-
ever, were seemingly able to maneuver quite effec-
tively between both use cases. Models, perhaps
predictably, generally score higher when translat-
ing literal usage than when translating idioms.

4.2 Scores for Proper Names

In terms of the proper names suite, place names
prove to be much more difficult for the submitted
models than people’s names. It is the submission
by our own team which narrowly tops the list over-
all, ahead of ONLINE-A and Unbabel. The AMI

submission also ranks highest when place names
are considered in isolation, although it still gets
fewer than half of all names correct. For given
names, GPT-4 scores highest.

For this part of our test set, we report no manual
evaluation. A cursory glance at the output, however,
shows that our naive automatic scoring method still
leaves quite a bit to be desired. A problem with
testing for specific grammatical forms in each case
is that the correct form can change depending on
the sentence structure. As discussed in 3.2, we
tried to control for this by keeping test sentences
brief and unambiguous. Even so, we find there are
examples of different phrasings than we expected
in some translation outputs that call for a differ-
ent grammatical form of a name than our scoring
mechanism supposes, but can still be considered a
decent translation.

This especially applies to the sentence form: X
“cares for” Y. We assumed a correct translation into
Icelandic would be: X “þykir vænt um” Y, where
X would take the dative case and Y the accusative.
The submitted systems, however, had many differ-
ent ideas on how best to phrase this system, not all
of them completely wrong.
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We therefore recognize that our scoring system
needs to be fine-tuned but nevertheless believe the
very low scores are mainly a reflection of the diffi-
culty of this task.

5 Conclusions and Future Work

Scores on both sets are relatively low, indicating
that these particular categories continue to pose
some problems for even state-of-the-art translation
models and that there is considerable room for im-
provement.

Future work can explore further comparison of
performance and fine-tuning of our automatic scor-
ing methods. Given time, we could also have in-
vestigated whether more manual evaluation, ideally
using more evaluators, would have resulted in dif-
ferent scores.

We also note that our test suite can be adapted
with relative ease into other languages and hope
that this allows for further work on other language
directions.

Limitations

There are several judgment calls to be made when
working with our chosen categories and many of
the decisions we made in terms of selecting items to
be translated, defining automatic metrics for ‘right’
and ‘wrong’ translations and manual evaluation
can be argued for or against. We are aware that the
choices we make could be indicative of potential
biases of the authors and that a different team, per-
haps with a different demographic makeup, might
well have constructed the test set and evaluated the
translations in a different way.

These necessary choices are perhaps most ap-
parent in terms of our idioms set. Evaluation of
linguistic acceptability of translations and corre-
spondence of idiomatic phrases between languages
is based on our intuition and we are aware that flu-
ent speakers of English and Icelandic may disagree
on some decisions. Another point to consider is
the degree to which we want our test set to be pre-
scriptive - as a simple search on the Internet can
prove, there are multiple usages of common En-
glish idioms directly translated into Icelandic, e.g.
on social media (Hilmisdóttir et al., 2023). Deter-
mining at what point to say this usage is no longer
‘incorrect’ is an interesting question of ethics and
philosophy of language.

As for our set of proper names, there exists some
speaker variation in how and when place names are

translated into Icelandic, although we have tried
to limit our set to fairly uncontroversial choices
(see discussion in 3.2). The requirement of not
translating English names into Icelandic is less cut
and dried, as it may be appropriate for a machine
translation model in some cases, e.g. in literary text
or the discussion of royal or historical figures. It
can also be noted that some of our English names
are, in fact, given names in Iceland. This should
not affect our results, however, as we allow for the
inflection of a final -“a” into -“u” in female names
like “Pamela” and in other cases, ‘non-Icelandic’
names typically remain completely unchanged in
all grammatical cases.
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Abstract

We present METAMETRICS-MT, an in-
novative metric designed to evaluate ma-
chine translation (MT) tasks by aligning
closely with human preferences through
Bayesian optimization with Gaussian Pro-
cesses. METAMETRICS-MT enhances exist-
ing MT metrics by optimizing their correlation
with human judgments. Our experiments on the
WMT24 metric shared task dataset demonstrate
that METAMETRICS-MT outperforms all ex-
isting baselines, setting a new benchmark for
state-of-the-art performance in the reference-
based setting. Furthermore, it achieves compa-
rable results to leading metrics in the reference-
free setting, offering greater efficiency.

1 Introduction

Evaluating machine translation (MT) tasks is inher-
ently complex, as no single metric can universally
apply to all scenarios. A metric that performs well
for one task may not be suitable for another, and
its effectiveness can vary significantly depending
on the specific language pairs involved. There-
fore, relying solely on a single metric is often in-
adequate. To ensure the usefulness of automatic
metrics, it is crucial to align them with human
annotations (Winata et al., 2024b). To achieve a
more comprehensive evaluation, benchmarks typi-
cally incorporate multiple metrics, such as lexical-
based and semantic-based metrics. However, the
correlation between these metrics can be skewed
due to variations in the models used and the train-
ing data employed for evaluation. For instance,
BERTScore (Zhang et al., 2019) uses contextual
embeddings from pre-trained transformers to as-
sess performance, with different models excelling
in specific language pairs. In contrast, neural-
based metrics like BLEURT (Sellam et al., 2020),
COMET (Rei et al., 2020), and CometKiwi (Rei

∗The work was conducted outside Capital One. †These
authors contributed equally. ‡Senior authors.

et al., 2022) employ distinct methodologies and
training datasets. These differences can affect each
metric’s alignment with human judgments and their
reliability across language pairs. Some metrics,
like XCOMET-Ensemble (Guerreiro et al., 2023),
demand high memory (at least 80GB), prompting
efforts to predict LLM performance using smaller
models (Anugraha et al., 2024).

In this paper, we propose METAMETRICS-MT,
a MT metric inspired by METAMETRICS (Winata
et al., 2024a). This meta-metric is crafted to align
more closely with human preferences through the
use of Bayesian optimization with Gaussian Pro-
cesses (GP). By systematically integrating multiple
existing metrics, METAMETRICS-MT achieves
state-of-the-art performance for reference-based
metrics and shows a strong correlation with human
scores for reference-free metrics in the WMT24
metric shared task (Freitag et al., 2024). Through
the strategic combination of metrics with assigned
weights, METAMETRICS-MT aims to be as com-
petitive as, if not superior to, any individual metric.
Our contributions include the following:

• We present METAMETRICS-MT in reference-
based and reference-free settings, offering
flexibility for various MT scenarios. Our
reference-based model sets the state-of-the-
art for the WMT24 task. We publicly release
the code for easy usability.1

• We demonstrate that the METAMETRICS-MT
metric is easily adjustable to meet the human
preference.

• We show that METAMETRICS-MT is com-
pact and efficient, capable of running on
a commercial GPU with 40GB of memory,
whereas a comparable metric like XCOMET-
Ensemble requires significantly higher mem-
ory with at least 80GB.

1The code is available at https://github.com/
meta-metrics/metametrics.
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2 Methodology

2.1 METAMETRICS-MT
METAMETRICS-MT is designed to leverage mul-
tiple metrics for assessing MT tasks, with each
metric being adjusted by specific weights to op-
timize performance. The idea of utilizing mul-
tiple metrics is to combine scores from multiple
metrics regardless of the metric types. Formally,
let θ1, θ2, . . . , θN represent N distinct metric func-
tions with ŷ1, . . . , ŷN as their respective perfor-
mance on a translation task. We define Φ to
compute a scalar meta-metric score of ŷMM us-
ing ŷ1, . . . , ŷN . Overall, we define θMM as a meta-
metric function where ŷMM is computed as follows:

ŷi = θi(x), (1)

ŷMM = θMM(x) = Φ(ŷ1, · · · , ŷN ). (2)

Our objective is to calibrate a metric func-
tion, θMM, to maximize the correlation ρ(ŷMM, γ),
where ρ is a correlation measure and γ represents
human assessment scores, which include any scores
provided by human evaluators. Each metric oper-
ates within a specific range, defined by minimum
and maximum values. However, some metrics, par-
ticularly those based on neural networks, may fall
outside this range. To ensure consistency, we nor-
malize these metrics to a common scale from 0 to 1,
where 0 signifies poor translation performance and
1 signifies perfect translation performance. In this
process, given an original score yi for a given met-
ric, ỹi represents the normalized score. For more
details on pre-processing, please refer to Section A
of the Appendix.

In this case, we use GP to model the function Φ
and it can be breakdown into a weighted sum as
follows:

yMM = α1ỹ1 + α2ỹ2 + . . .+ αN ỹN , (3)

where α1, α2, . . . , αN are the corresponding
weights assigned to each metric, constrained to
the interval [0, 1]. Our objective is to determine the
best set of weights for α1, α2, . . . , αN , which max-
imizes ρ(yMM, γ). Notice that yMM lies in the in-
terval of [0, N ], so normalizing yMM back to [0, 1]
is unnecessary as linear scaling does not affect the
correlation coefficient for correlation function ρ.

The advantage of METAMETRICS-MT is its
flexibility and adaptability across tasks and do-
mains. By integrating metrics that strongly cor-
relate with human judgments for specific tasks, we

Metric clipping normalization inversion weight

Reference-based (METAMETRICS-MT)

MetricX-23-XXL [0,25] ✓ ✓ 1.0000
COMET [0,1] ✓ × 0.2055
XCOMET-XL [0,1] ✓ × 0.2733

Reference-free (METAMETRICS-MT-QE)

MetricX-23-XXL-QE [0,25] ✓ ✓ 0.9905
CometKiwi (QE) [0,1] ✓ × 0.1267
CometKiwi-XL (QE) [0,1] ✓ × 0.0584

Table 1: Metric configuration for METAMETRICS-MT.
Metrics not listed in the table have been assigned a
weight of zero.

can create a composite metric that improves overall
alignment with human evaluations.

2.2 Bayesian Optimization

We optimize the weights for each metric using
Bayesian optimization with GP as the surrogate
model. Bayesian optimization is particularly useful
in this context because it efficiently explores and
exploits the parameter space when the objective
function is expensive to evaluate. By construct-
ing a probabilistic model of the objective function,
Bayesian optimization balances exploring new ar-
eas with exploiting known promising regions, mak-
ing it effective even when evaluations are costly.

The GP constructs a joint probability distribution
over the variables, assuming a multivariate Gaus-
sian distribution. As the number of observations
increases, the posterior distribution becomes more
precise, enabling the algorithm to more effectively
identify promising regions in the weight space. The
Bayesian optimization process involves several it-
erations. First, the GP model is updated by fitting
it to the observed data. Next, the algorithm selects
the next set of weights by maximizing the acquisi-
tion function, which uses the posterior distribution
to choose the next sample from the search space.
Finally, the objective function is evaluated at these
weights. This iterative process continues until a
convergence criterion is met, ensuring that the opti-
mization effectively identifies the optimal weights
for the metrics.

2.3 METAMETRICS-MT Settings

2.3.1 Hybrid Mode
In the WMT24 shared task dataset, we observe
that some samples lack references in the challenge
sets, even for reference-based metrics. To ad-
dress this issue, we implement a hybrid mode that
switches from reference-based to reference-free
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metrics when reference data is unavailable.

2.3.2 Same Language Optimization
During the optimization process, we train a dedi-
cated model for each known language pair in the
training set to ensure optimal performance. If a
language pair is not present in the training set, we
use the entire dataset for tuning.

3 Experimental Setup

3.1 Training Datasets and Hyper-parameters

We introduce two versions of METAMETRICS-MT
to accommodate both reference-based and
reference-free evaluations: METAMETRICS-MT,
which employs reference-based metrics,
and METAMETRICS-MT-QE, which uti-
lizes reference-free metrics. We train
METAMETRICS-MT and METAMETRICS-MT-
QE using 3 years of MQM datasets from the
WMT shared tasks spanning 2020 to 2022 (Mathur
et al., 2020; Freitag et al., 2021, 2022). The
dataset used for tuning is at the segment level, with
Kendall’s τ correlation as the evaluation metric.
For the Bayesian optimization, we run GP with a
Matérn kernel (Williams and Rasmussen, 2006), a
generalization of the RBF kernel, using ν = 2.5.
The optimization is performed over 100 steps,
starting with 5 initialization points.

3.2 Metrics for METAMETRICS-MT

We describe the reference-based metrics utilized
for METAMETRICS-MT. During the selection pro-
cess, we included only metrics that can run on a
commercial GPU with 40GB of memory. Con-
sequently, XCOMET-XXL and CometKiwi-XXL
were not considered. Additionally, we limited the
use of the OpenAI API to GPT4o-mini, which is
significantly more cost-effective than other GPT-4
model options.

3.2.1 Reference-based Metric
We utilize nine different metrics in our optimiza-
tion, including three variations of MetricX-23 and
two different BERTScore metrics using precision
and F1. The metrics under study are as follows:

BERTScore (Zhang et al., 2019) The metric
calculates cosine similarity scores for each token
in the candidate sentences against each token in
the reference sentences, using contextual embed-
dings derived from pre-trained BERT-based mod-
els. From these similarities, BERTScore computes

precision, recall, and F1 scores. In our metrics,
we utilize the precision and F1 scores, employ-
ing DeBERTa-XL-MNLI (He et al., 2020) as our
model, as recommended by the authors.

YISI-1 (Lo, 2019) The metric computes the se-
mantic similarity between translations from MT
and human references by aggregating lexical se-
mantic similarities, which are weighted by inverse
document frequency (IDF) based on the contextual
embeddings extracted from pre-trained language
model, specifically the last hidden layer of mBERT
in our case.

BLEURT (Sellam et al., 2020) The metric is
fine-tuned using Direct Assessment (DA) dataset.
BLEURT jointly encodes the translation and ref-
erence using the [CLS] token as an embedding to
represent the pair. We employ the BLEURT-20
checkpoint (Pu et al., 2021), which was trained
on RemBERT (Chung et al., 2020) using DA data
from prior shared tasks between 2015 and 2019
and augmented with synthetic data generated from
Wikipedia articles.

COMET-22 (Rei et al., 2022) The metric is an
ensemble of COMET estimator (Rei et al., 2020)
fine-tuned on DA and a Sequence Tagger trained
on Multidimensional Quality Metrics (MQM) an-
notations. We utilize the wmt22-comet-da as our
COMET-22 checkpoint, in which the COMET Es-
timator model and the sequence tagging model are
trained on top of XLM-R using DA from 2017 to
2020 and InfoXLM (Chi et al., 2021), respectively.

XCOMET-XL (Guerreiro et al., 2023) The met-
ric that performs both sentence-level evaluation
and error span detection, making it a more inter-
pretable learned metric. The model utilizes XLM-
R XL (3.5B) (Goyal et al., 2021) which is trained
in stages, starting with DA annotations and then
fine-tuned on MQM data.

MetricX-23 (Juraska et al., 2023) The metric
uses mT5 encoder-decoder language model. We
leverage three different variations of MetricX-23,
each fine-tuned from the mT5-Large, mT5-XL, and
mT5-XXL respectively. The fine-tuning was per-
formed using DA data from 2015-2020, MQM data
from 2020-2021, and synthetic data.

3.2.2 Reference-free Metric
We utilize six different metrics in our optimiza-
tion, including two variations of CometKiwi and
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Model overall en-de en-es ja-zh
r sys/seg r sys r seg r sys r seg r sys r seg
avg. corr SPA acc-t SPA acc-t SPA acc-t

Reference-based

sentinel-ref-mqm 10 0.513 7 0.405 18 0.429 4 0.581 8 0.680 8 0.545 17 0.435
BLEU 9 0.589 4 0.736 16 0.431 6 0.512 8 0.680 6 0.740 17 0.435
spBLEU 9 0.593 4 0.741 17 0.431 6 0.523 7 0.680 6 0.744 16 0.436
chrfS 8 0.606 4 0.742 14 0.434 6 0.549 6 0.682 4 0.788 14 0.444
chrF 8 0.608 4 0.750 15 0.431 5 0.581 8 0.680 5 0.767 16 0.436
MEE4 7 0.609 5 0.731 13 0.437 7 0.504 4 0.683 2 0.855 13 0.446
BERTScore 7 0.617 4 0.749 14 0.435 4 0.587 6 0.682 4 0.799 12 0.451
YiSi-1 6 0.630 4 0.759 13 0.436 4 0.609 7 0.681 3 0.835 11 0.458
PrismRefSmall 5 0.642 4 0.772 14 0.433 4 0.634 8 0.680 2 0.875 11 0.457
PrismRefMedium 5 0.646 4 0.776 14 0.434 3 0.652 7 0.680 2 0.872 10 0.462
BLCOM_1 4 0.664 3 0.840 10 0.455 3 0.680 6 0.681 3 0.843 7 0.488
BLEURT-20 3 0.686 2 0.881 7 0.486 3 0.695 6 0.681 1 0.887 8 0.484
COMET 3 0.688 2 0.879 8 0.482 2 0.778 5 0.683 4 0.813 6 0.496
XCOMET 2 0.719 1 0.906 3 0.530 2 0.788 1 0.688 2 0.890 7 0.510
MetricX-24 (Hybrid) 1 0.721 2 0.874 2 0.532 2 0.799 3 0.685 1 0.897 2 0.539

METAMETRICS-MT 1 0.724 2 0.882 1 0.542 2 0.804 2 0.686 3 0.871 1 0.561
METAMETRICS-MT (Same Lang.) 2 0.723 1 0.883 1 0.542 2 0.803 2 0.686 3 0.874 2 0.550
METAMETRICS-MT (Hybrid) 1 0.725 2 0.883 1 0.542 1 0.804 2 0.686 2 0.873 1 0.561

Reference-free

CometKiwi 5 0.640 5 0.732 9 0.467 3 0.693 4 0.684 5 0.776 7 0.490
sentinel-cand-mqm 5 0.650 3 0.822 4 0.517 2 0.785 4 0.683 7 0.610 8 0.481
bright-qe 4 0.681 3 0.816 6 0.500 2 0.792 1 0.689 4 0.805 8 0.484
XCOMET-QE 3 0.695 1 0.889 4 0.520 1 0.801 2 0.687 4 0.808 10 0.463
CometKiwi-XXL 3 0.703 3 0.839 9 0.481 1 0.843 8 0.680 2 0.881 8 0.494
gemba_esa 2 0.711 4 0.793 5 0.507 1 0.838 5 0.683 1 0.908 2 0.539
MetricX-24-QE (Hybrid) 2 0.714 2 0.878 3 0.526 2 0.789 4 0.685 2 0.875 3 0.530

METAMETRICS-MT-QE 3 0.684 2 0.860 6 0.497 3 0.711 2 0.686 3 0.837 4 0.516
METAMETRICS-MT-QE (Same Lang.) 4 0.688 2 0.860 7 0.497 4 0.709 2 0.686 4 0.853 5 0.524

Table 2: WMT24 results (MQM). Bold and underline values indicate the best and second best performance,
respectively.

three variations of MetricX-23. We describe the
reference-free metrics used for METAMETRICS-
MT-QE as follows:

CometKiwi (Rei et al., 2022) The metric is a
reference-free learned metric fine-tuned on DA
on top of RemBERT (Chung et al., 2020) and
the same sequence tagger as COMET-22. How-
ever, it operates with reference-less inputs dur-
ing inference. We use two distinct metrics
from CometKiwi, each associated with its own
separate checkpoint: wmt22-cometkiwi-da and
wmt23-cometkiwi-da-xl. The latter checkpoint
replaces InfoXLM with XLM-R XL (3.5B) and is
trained on the same dataset, but it also includes
newly released DA for Indian languages, which
were added as additional training data for the 2023
Quality Estimation (QE) shared task.

GEMBA-MQM (Kocmi and Federmann, 2023)
The metric is a GPT-based evaluation metric de-
signed for error quality span marking. It employs

a three-shot prompting approach using the GPT-4
model, specifically GPT-4o mini in our case.

MetricX-23-QE (Juraska et al., 2023) The met-
ric is a reference-free learned metric similar to
MetricX-23. We also utilize three different varia-
tions, each fine-tuned from the mT5-L, mT5-XL,
and mT5-XXL checkpoints, respectively.

4 Results and Discussion

4.1 Optimized Metric Configuration

Table 1 shows the weight proportion of each metric
for METAMETRICS-MT. The optimized configu-
ration is notably sparse. When a metric does not
positively contribute to improving performance, the
GP assigns it a weight of zero. This is supported by
Figure 1, where the GP selects metrics with high
Kendall correlation coefficients relative to other
provided metrics. In contrast, metrics with low
Kendall correlation coefficients are excluded.
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Metric all en-de en-es ja-zh

Reference-based

sentinel-ref-mqm 0.513 0.417 0.631 0.490
BLEU 0.589 0.583 0.596 0.588
spBLEU 0.593 0.586 0.602 0.590
chrF 0.606 0.589 0.615 0.616
chrfS 0.608 0.591 0.630 0.602
BERTScore 0.610 0.584 0.594 0.651
MEE4 0.617 0.592 0.635 0.625
damonmonli 0.640 0.599 0.688 0.633
YiSi-1 0.643 0.603 0.657 0.666
PrismRefSmall 0.646 0.605 0.666 0.667
PrismRefMedium 0.650 0.669 0.734 0.545
BLCOM_1 0.684 0.679 0.698 0.676
BLEURT-20 0.686 0.683 0.688 0.685
COMET-22 0.695 0.705 0.744 0.636
XCOMET 0.719 0.717 0.740 0.700
MetricX-24 (Hybrid) 0.721 0.703 0.742 0.718

METAMETRICS-MT (Hybrid) 0.725 0.713 0.745 0.717

Reference-free

sentinel-src-mqm 0.513 0.418 0.630 0.491
XLsimMqm 0.515 0.531 0.520 0.493
sentinel-cand-mqm 0.630 0.597 0.645 0.647
CometKiwi 0.635 0.569 0.644 0.691
bright-qe 0.665 0.647 0.681 0.665
XCOMET-QE 0.689 0.680 0.730 0.655
MetricX-24-QE (Hybrid) 0.714 0.702 0.737 0.702
gemba_esa 0.711 0.650 0.761 0.724

METAMETRICS-MT-QE 0.681 0.658 0.740 0.644

Table 3: Detailed WMT24 results per language category.
Bold and underline values indicate the best and second
best performance, respectively.

Interestingly, in both reference-based and
reference-free settings, the optimization process
consistently selects only one variant of MetricX-
23, specifically MetricX-23-XXL, even though all
three variants of MetricX-23 exhibit high Kendall
correlation coefficients. The optimization process
favors MetricX-23-XXL as the highest-performing
metric, leading to the exclusion of the other two
variants during the GP assignment. This en-
hances the efficiency of METAMETRICS-MT as
we would only need to use fewer metrics for
METAMETRICS-MT. Thus, given a set of met-
rics, the optimization process would prioritize
high-performing metrics, such as the MetricX-
23 and COMET variants as shown, leading
METAMETRICS-MT and METAMETRICS-MT-
QE to construct a better and more robust metric.

4.2 Results on WMT24 Shared Task

Table 2 presents the WMT24 shared task results,
including system-level soft pairwise ranking accu-
racy (sys SPA) proposed by Thompson et al. (2024),
segment-level pairwise ranking accuracy with tie

Metric all sys seg

Reference-based

sentinel-ref-mqm 0.513 0.510 0.515
BLEU 0.589 0.663 0.515
spBLEU 0.593 0.669 0.516
chrF 0.606 0.693 0.520
chrfS 0.608 0.699 0.516
BERTScore 0.609 0.697 0.522
MEE4 0.617 0.712 0.522
damonmonli 0.640 0.734 0.547
YiSi-1 0.642 0.760 0.524
PrismRefSmall 0.646 0.766 0.526
PrismRefMedium 0.650 0.739 0.560
BLCOM_1 0.684 0.803 0.566
BLEURT-20 0.686 0.821 0.550
COMET-22 0.695 0.833 0.557
XCOMET 0.719 0.862 0.576
MetricX-24 (Hybrid) 0.721 0.857 0.586

METAMETRICS-MT (Hybrid) 0.725 0.853 0.596

Reference-free

sentinel-src-mqm 0.513 0.511 0.515
XLsimMqm 0.515 0.506 0.523
sentinel-cand-mqm 0.630 0.734 0.525
CometKiwi 0.635 0.738 0.532
bright-qe 0.664 0.788 0.541
XCOMET-QE 0.688 0.823 0.554
gemba_esa 0.711 0.846 0.576
MetricX-24-QE (Hybrid) 0.714 0.847 0.580

METAMETRICS-MT-QE 0.681 0.804 0.557

Table 4: Detailed WMT24 results for segment-level and
system-level. Bold and underline values indicate the
best and second best performance, respectively.

calibration (seg acc-t) as described by Deutsch et al.
(2023), and system- and segment-level Pearson cor-
relation (avg. corr), as outlined in the WMT23
Metrics Shared Task (Freitag et al., 2023). Based
on the overall system and segment average corre-
lation and system accuracy, METAMETRICS-MT
outperforms all metrics in the primary submission,
with METAMETRICS-MT (Hybrid) achieving the
highest performance among its variants.

Table 3 further highlights the performance,
where METAMETRICS-MT delivers superior re-
sults for en-es, while also maintaining strong per-
formance in en-de and ja-zh, indicating that our
methods generalize well across different language
pairs. The breakdown in Table 4 shows that
METAMETRICS-MT achieves the best segment-
level performance, consistent with our optimiza-
tion approach targeting Kendall correlation at the
segment level. Given that our metric optimization
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(b)

Figure 1: Heatmaps showing Kendall correlation coef-
ficients between human scores and MT metrics over
3 years of MQM datasets from the WMT shared
tasks (2020-2022). Panel (a) displays correlations
for the metrics used in METAMETRICS-MT, while
panel (b) displays correlations for the metrics used in
METAMETRICS-MT-QE.

focuses solely on segment-level correlation, incor-
porating a different weighting method to account
for system-level settings could further improve
METAMETRICS-MT’s alignment with system-
level accuracy. While METAMETRICS-MT-QE
does not match the performance of gemba_esa,
MetricX-24-QE (Hybrid), or CometKiwi-XXL,
it remains competitive at the segment level for
the en-es language pair. Incorporating better
reference-free models such as CometKiwi-XXL

and GEMBA-MQM with GPT-4o instead of GPT-
4o mini may help improve the performance of
METAMETRICS-MT-QE.

4.3 Compute Efficiency
We only run models that can be executed on GPUs
with 40GB of memory. We limit our resource usage
to GPT-4o mini, a smaller and lower-performing
version of GPT-4o, while GEMBA-MQM is a GPT-
4 based metric. This constraint restricts our abil-
ity to achieve state-of-the-art results or surpass
GEMBA-based metrics using GPT-4. However,
we demonstrate that even without employing high-
memory models like XCOMET-Ensemble in our
reference-based setting, we can still outperform
other models. Additionally, our QE metric remains
competitive and on par with XCOMET-QE.

5 Conclusion

In this paper, we propose METAMETRICS-MT, a
novel metric designed to evaluate MT tasks by
aligning with human preferences through Bayesian
optimization with GP. METAMETRICS-MT effec-
tively combines and optimizes existing MT metrics
based on human feedback, resulting in a highly flex-
ible and efficient evaluation tool. Our findings show
that METAMETRICS-MT surpasses existing base-
lines for reference-based metrics, establishing a
new state-of-the-art, while its reference-free metric
performance rivals the best models available. Ad-
ditionally, METAMETRICS-MT can be tailored to
various factors, such as performance and efficiency,
making it adaptable to diverse requirements.

Ethical Considerations

Our research focuses on evaluating MT systems us-
ing a newly proposed metric. We are committed to
conducting our evaluations with the highest levels
of transparency and fairness. By prioritizing these
principles, we aim to set a standard for reliability
and objectivity in the assessment of the system.

Limitations

We optimize METAMETRICS-MT using segment-
level scores from the MQM dataset. Future work
could extend this to other objective functions or
system-level optimization and explore non-MQM
datasets like DA for further insights. We did not in-
clude metrics such as XCOMET-XXL, XCOMET-
Ensemble, and XCOMET-QE-Ensemble due to
computational constraints.
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A Pre-processing

The pre-processing can be defined as follows:

1. Clipping: Let the valid range for yi be defined
by [ymin

i , ymax
i ]. The clipped metric score y′i

can be defined as:

y′i =





ymin
i if yi < ymin

i ,

yi if ymin
i ≤ yi ≤ ymax

i ,

ymax
i if yi > ymax

i .

(4)

2. Normalization: After clipping, the score is
normalized to a common scale of [0, 1]:

ỹi =
y′i − ymin

i

ymax
i − ymin

i

. (5)

3. Inversion (if applicable): If the metric is
such that higher scores indicate worse perfor-
mance, we invert the normalized score:

ỹi = 1− ỹi. (6)

B Additional Results

We provide additional details for the results of
WMT24 for each task in Tables 5, 6, and 7. Addi-
tional results for each domain are also provided in
Table 8.
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Domain literary news social speech literary news social speech
Metric task1 task2 task3 task4 task5 task6 task7 task8
Level r sys SPA r sys SPA r sys SPA r sys SPA r seg acc-t r seg acc-t r seg acc-t r seg acc-t

Reference-based

sentinel-ref-mqm 4 0.525 4 0.535 6 0.439 6 0.461 9 0.351 9 0.421 16 0.520 13 0.240
BLEU 2 0.795 1 0.807 5 0.691 4 0.709 5 0.535 9 0.421 15 0.522 11 0.433
spBLEU 2 0.785 1 0.810 5 0.697 4 0.700 4 0.540 9 0.421 15 0.522 10 0.446
chrF 2 0.774 1 0.831 4 0.728 3 0.723 4 0.540 9 0.421 14 0.523 10 0.445
chrfS 2 0.797 1 0.826 4 0.712 3 0.736 4 0.543 9 0.421 13 0.525 9 0.449
BERTScore 2 0.777 1 0.821 4 0.708 4 0.712 4 0.550 8 0.424 12 0.526 11 0.436
MEE4 2 0.792 1 0.826 5 0.688 4 0.712 4 0.549 9 0.421 10 0.531 9 0.452
damonmonli 2 0.734 1 0.788 5 0.695 5 0.613 7 0.503 7 0.427 14 0.523 12 0.404
YiSi-1 2 0.761 1 0.822 4 0.719 3 0.760 3 0.555 9 0.421 12 0.526 8 0.456
PrismRefSmall 2 0.786 1 0.829 4 0.750 3 0.736 5 0.526 8 0.423 13 0.524 7 0.464
PrismRefMedium 2 0.761 1 0.831 3 0.756 4 0.722 4 0.536 8 0.424 11 0.528 8 0.461
BLCOM_1 1 0.828 1 0.812 3 0.803 2 0.833 3 0.562 7 0.427 9 0.535 5 0.487
BLEURT-20 1 0.827 2 0.768 2 0.842 3 0.784 4 0.544 5 0.444 7 0.554 4 0.494
COMET-22 1 0.814 1 0.804 2 0.852 2 0.813 2 0.571 6 0.437 6 0.559 3 0.503
XCOMET 1 0.830 1 0.782 1 0.889 2 0.845 2 0.573 3 0.479 2 0.575 2 0.510
MetricX-24 (Hybrid) 1 0.840 1 0.774 1 0.874 2 0.816 2 0.580 3 0.478 2 0.576 1 0.520

METAMETRICS-MT (Hybrid) 1 0.822 2 0.763 1 0.896 3 0.788 1 0.597 2 0.493 1 0.588 2 0.506

Reference-free

sentinel-src-mqm 4 0.525 4 0.534 6 0.438 6 0.461 9 0.351 9 0.421 16 0.520 13 0.240
XLsimMqm 4 0.478 4 0.497 5 0.613 3 0.768 8 0.474 1 0.532 10 0.531 12 0.410
sentinel-cand-mqm 2 0.776 2 0.735 1 0.896 3 0.760 4 0.547 2 0.501 4 0.569 6 0.480
CometKiwi 3 0.722 2 0.723 4 0.732 4 0.685 5 0.535 5 0.445 9 0.532 10 0.443
bright-qe 2 0.795 2 0.755 3 0.760 2 0.827 6 0.517 4 0.457 8 0.547 7 0.469
XCOMET-QE 2 0.758 1 0.790 2 0.850 1 0.882 4 0.541 3 0.480 5 0.565 3 0.498
gemba_esa 1 0.820 2 0.755 3 0.801 2 0.815 3 0.562 5 0.450 3 0.569 6 0.474
MetricX-24-QE (Hybrid) 2 0.809 1 0.783 1 0.863 1 0.860 2 0.575 4 0.460 3 0.573 1 0.518

METAMETRICS-MT-QE 3 0.691 3 0.690 2 0.811 1 0.852 6 0.520 4 0.457 6 0.555 7 0.471

Table 5: Detailed result for language pair en-de. Bold and underline values indicate the best and second best
performance, respectively.

Domain literary news social speech literary news social speech
Metric task9 task10 task11 task12 task13 task14 task15 task16
Level r sys SPA r sys SPA r sys SPA r sys SPA r seg acc-t r seg acc-t r seg acc-t r seg acc-t

Reference-based

sentinel-ref-mqm 3 0.564 4 0.460 5 0.599 4 0.556 5 0.615 4 0.715 8 0.744 6 0.535
BLEU 3 0.595 4 0.557 5 0.624 5 0.480 5 0.615 4 0.715 7 0.745 5 0.536
spBLEU 3 0.602 3 0.595 4 0.635 5 0.486 4 0.615 4 0.715 7 0.745 5 0.536
chrF 3 0.621 3 0.593 4 0.657 5 0.490 4 0.615 4 0.715 8 0.744 4 0.537
chrfS 2 0.648 3 0.604 4 0.667 5 0.472 3 0.617 4 0.715 6 0.746 5 0.537
BERTScore 2 0.665 1 0.715 3 0.679 5 0.488 3 0.617 2 0.717 5 0.747 5 0.537
MEE4 2 0.651 2 0.628 3 0.677 5 0.467 3 0.617 4 0.715 3 0.750 4 0.539
damonmonli 1 0.720 2 0.673 2 0.737 4 0.555 2 0.621 4 0.715 5 0.747 5 0.536
YiSi-1 1 0.706 2 0.673 3 0.715 5 0.505 3 0.617 4 0.715 6 0.745 4 0.538
PrismRefSmall 1 0.727 2 0.624 2 0.724 5 0.518 5 0.615 3 0.716 8 0.745 5 0.537
PrismRefMedium 1 0.733 2 0.649 2 0.745 5 0.518 4 0.616 3 0.716 7 0.745 5 0.536
BLCOM_1 2 0.702 2 0.675 2 0.773 4 0.623 3 0.617 4 0.715 5 0.747 4 0.541
BLEURT-20 2 0.702 2 0.648 1 0.841 4 0.587 2 0.620 4 0.715 6 0.746 6 0.535
COMET-22 1 0.755 1 0.731 1 0.865 3 0.653 1 0.626 4 0.715 4 0.750 3 0.551
XCOMET 1 0.733 1 0.677 1 0.840 2 0.685 1 0.625 2 0.717 1 0.756 3 0.548
MetricX-24 (Hybrid) 1 0.741 1 0.683 1 0.846 2 0.691 2 0.621 4 0.715 3 0.750 2 0.559

METAMETRICS-MT (Hybrid) 1 0.734 1 0.688 1 0.852 2 0.682 2 0.619 1 0.720 2 0.753 3 0.550

Reference-free

sentinel-src-mqm 3 0.565 4 0.456 5 0.598 4 0.554 5 0.615 4 0.715 8 0.744 6 0.535
XLsimMqm 4 0.363 2 0.645 6 0.410 3 0.640 4 0.615 4 0.715 6 0.745 4 0.537
sentinel-cand-mqm 2 0.695 1 0.678 2 0.780 2 0.690 2 0.620 1 0.720 4 0.749 4 0.537
CometKiwi 2 0.641 2 0.661 2 0.767 2 0.681 2 0.620 3 0.716 3 0.751 3 0.553
bright-qe 3 0.583 1 0.677 2 0.764 1 0.772 2 0.621 2 0.718 3 0.751 1 0.571
XCOMET-QE 1 0.731 2 0.673 2 0.779 2 0.700 2 0.622 1 0.721 2 0.754 3 0.547
gemba_esa 1 0.740 1 0.723 1 0.820 2 0.704 2 0.621 2 0.718 5 0.746 3 0.549
MetricX-24-QE (Hybrid) 1 0.727 1 0.694 1 0.818 2 0.703 1 0.622 4 0.715 5 0.748 2 0.563

METAMETRICS-MT-QE 2 0.661 1 0.711 2 0.751 2 0.692 1 0.624 2 0.717 4 0.749 2 0.565

Table 6: Detailed WMT24 result for language pair en-es. Bold and underline values indicate the best and second
best performance, respectively.
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Domain literary news speech literary news speech
Metric task17 task18 task19 task20 task21 task22
Level r sys SPA r sys SPA r sys SPA r seg acc-t r seg acc-t r seg acc-t

Reference-based

sentinel-ref-mqm 5 0.504 7 0.494 8 0.569 11 0.532 8 0.497 12 0.197
BLEU 4 0.637 3 0.762 8 0.562 11 0.532 8 0.497 11 0.205
spBLEU 4 0.699 4 0.755 7 0.743 9 0.535 7 0.497 7 0.506
chrF 4 0.721 3 0.768 6 0.766 9 0.536 8 0.497 6 0.513
chrfS 3 0.768 3 0.773 5 0.823 9 0.537 7 0.497 5 0.526
BERTScore 3 0.786 5 0.748 5 0.833 9 0.536 6 0.500 5 0.524
MEE4 2 0.816 3 0.789 2 0.892 8 0.538 7 0.497 5 0.521
damonmonli 2 0.839 1 0.857 2 0.893 7 0.545 5 0.504 8 0.495
YiSi-1 2 0.813 4 0.758 4 0.853 8 0.539 6 0.502 4 0.535
PrismRefSmall 2 0.850 3 0.786 4 0.854 11 0.532 7 0.498 3 0.541
PrismRefMedium 2 0.839 3 0.794 3 0.875 11 0.532 7 0.499 3 0.544
BLCOM_1 2 0.827 3 0.779 1 0.909 7 0.545 6 0.500 1 0.552
BLEURT-20 1 0.864 3 0.797 2 0.904 8 0.539 5 0.508 4 0.535
COMET-22 2 0.811 5 0.714 2 0.906 6 0.557 4 0.517 1 0.552
XCOMET 2 0.850 2 0.832 1 0.924 5 0.566 3 0.527 1 0.558
MetricX-24 (Hybrid) 1 0.893 3 0.804 3 0.890 2 0.607 2 0.543 2 0.551

METAMETRICS-MT (Hybrid) 1 0.876 3 0.805 2 0.896 1 0.643 1 0.551 3 0.544

Reference-free

sentinel-src-mqm 5 0.522 7 0.491 8 0.570 11 0.532 8 0.497 12 0.197
XLsimMqm 5 0.592 6 0.506 8 0.574 9 0.535 8 0.497 10 0.420
sentinel-cand-mqm 5 0.595 6 0.581 7 0.681 5 0.565 5 0.505 9 0.445
CometKiwi 4 0.667 3 0.797 4 0.858 7 0.549 4 0.519 6 0.516
bright-qe 3 0.738 3 0.786 6 0.759 7 0.547 3 0.528 9 0.438
XCOMET-QE 3 0.740 3 0.806 3 0.868 10 0.534 5 0.504 6 0.514
gemba_esa 2 0.832 1 0.882 1 0.930 3 0.592 2 0.545 3 0.538
MetricX-24-QE (Hybrid) 2 0.853 2 0.814 2 0.907 3 0.597 3 0.529 2 0.548

METAMETRICS-MT-QE 3 0.768 4 0.749 3 0.878 4 0.585 4 0.522 7 0.505

Table 7: Detailed WMT24 result for language pair ja-zh. Bold and underline values indicate the best and second
best performance, respectively.
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Metric all literary news social speech
Task 1,5,9,13,17,20 Task 2,6,10,14,18,21 Task 3,7,11,16 Task 4,8,12,16,19,22

Reference-based

sentinel-ref-mqm 0.513 0.515 0.520 0.576 0.426
BLEU 0.589 0.618 0.626 0.645 0.488
spBLEU 0.593 0.629 0.632 0.650 0.570
chrF 0.606 0.635 0.637 0.663 0.579
chrfS 0.608 0.652 0.640 0.662 0.590
BERTScore 0.609 0.655 0.654 0.665 0.588
MEE4 0.617 0.661 0.646 0.661 0.598
damonmonli 0.640 0.660 0.661 0.676 0.583
YiSi-1 0.642 0.665 0.649 0.676 0.608
PrismRefSmall 0.646 0.672 0.646 0.686 0.608
PrismRefMedium 0.650 0.669 0.652 0.693 0.609
BLCOM_1 0.684 0.680 0.651 0.714 0.658
BLEURT-20 0.686 0.683 0.647 0.746 0.640
COMET-22 0.695 0.689 0.653 0.757 0.663
XCOMET 0.719 0.696 0.669 0.765 0.678
MetricX-24 (Hybrid) 0.721 0.714 0.666 0.761 0.671

METAMETRICS-MT (Hybrid) 0.725 0.715 0.670 0.772 0.661

Reference-free

sentinel-src-mqm 0.513 0.518 0.519 0.575 0.426
XLsimMqm 0.515 0.509 0.565 0.575 0.558
sentinel-cand-mqm 0.630 0.633 0.620 0.748 0.599
CometKiwi 0.635 0.622 0.643 0.695 0.623
bright-qe 0.664 0.634 0.653 0.706 0.639
XCOMET-QE 0.688 0.654 0.662 0.737 0.668
gemba_esa 0.711 0.694 0.679 0.734 0.668
MetricX-24-Hybrid-QE 0.714 0.697 0.666 0.751 0.683

METAMETRICS-MT-QE 0.681 0.641 0.641 0.717 0.660

Table 8: Detailed WMT24 results per domain category. Bold and underline values indicate the best and second best
performance, respectively.
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Abstract

Machine translation (MT) evaluation metrics
like BLEU and chrF++ are widely used
reference-based metrics that do not require
training and are language-independent. How-
ever, these metrics primarily focus on n-
gram matching and often overlook semantic
depth and contextual understanding. To ad-
dress this gap, we introduce chrF-S (Seman-
tic chrF++), an enhanced metric that integrates
sentence embeddings to evaluate translation
quality more comprehensively. By combining
traditional character and word n-gram analysis
with semantic information derived from em-
beddings, chrF-S captures both syntactic ac-
curacy and sentence-level semantics. This pa-
per presents our contributions to the WMT24
shared metrics task, showcasing our partici-
pation and the development of chrF-S. We
also demonstrate that, according to prelimi-
nary results on the leaderboard, our metric
performs on par with other supervised and
LLM-based metrics. By merging semantic in-
sights with n-gram precision, chrF-S offers a
significant enhancement in the assessment of
machine-generated translations, advancing the
field of MT evaluation. Our code and data will
be made available at https://github.com/
AnanyaCoder/chrF-S.

1 Introduction

In the rapidly advancing field of machine transla-
tion (MT), the need for robust and nuanced evalua-
tion metrics has become increasingly critical. The
evaluation landscape has expanded significantly
in recent years, as evidenced by the WMT Met-
rics Shared Task, which provides a platform for
meta-evaluating these metrics. Notably, in re-
cent iterations of the WMT Metrics Shared Task,
apart from learned metrics, lexical-based metrics
such as BLEU (Papineni et al., 2002) and chrF
(Popović, 2015, 2017) have consistently been re-
garded as baselines.

These metrics are widely appreciated for their
language independence, which require no training
and can be applied across diverse languages. How-
ever, they primarily address syntactic accuracy and
often fall short in capturing the deeper semantic
nuances and contextual relevance of translations.

The BLEU metric, with its reliance on modi-
fied precision of n-grams, provides a useful mea-
sure of how closely a machine-generated trans-
lation aligns with reference translations. Simi-
larly, chrF enhances evaluation by incorporating
character-level n-grams, offering greater sensitiv-
ity to morphological variations.

Despite these advancements, both metrics pri-
marily focus on surface-level features, which can
lead to incomplete assessments of translation qual-
ity, especially in complex linguistic contexts. To
address these limitations, we propose chrF-S (Se-
mantic chrF), an extension to the chrF++ metric,
which leverages sentence embeddings to provide
a more comprehensive evaluation by incorporat-
ing semantic analysis alongside traditional n-gram
matching. Sentence embeddings (Reimers and
Gurevych, 2019, 2020) encode entire sentences,
thereby capturing the relationships between words,
the structure of the sentence, and the broader con-
textual meaning. These offer rich semantic rep-
resentations of sentences, enabling a deeper un-
derstanding of meaning and context. By merg-
ing these embeddings with chrF++’s character and
word n-gram analysis, chrF-S aims to capture both
the syntactic and semantic dimensions of transla-
tion quality.

This paper details our contributions to the
WMT24 shared metrics task, where we have ap-
plied chrF-S to evaluate its effectiveness in com-
parison with existing metrics. We present our
methodology of integrating semantic analysis into
the chrF framework and discuss the preliminary
results from the leaderboard, which indicate that
chrF-S performs competitively with other super-
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vised and LLM-based metrics. Our findings sug-
gest that chrF-S not only enhances the evaluation
of translation quality by incorporating semantic
understanding but also provides a significant ad-
vancement over traditional metrics.

2 chrF-S

The main idea behind chrF-S is to have a combi-
nation of character-level match, word-level match
and sentence-level match to provide a more com-
prehensive evaluation of translation quality. While
chrF++ (Popović, 2015, 2017) already accounts
for character and word-level matches, we en-
hanced this metric by introducing a sentence-
level matching component. We achieved this
by adding a sentence-level component that uti-
lizes sentence embeddings to compute a co-
sine similarity score, representing the seman-
tic closeness between the reference and transla-
tion. This flow is clearly illustrated in the figure 1.
This approach allows chrF-S to assess not only the
surface-level accuracy of the translation but also
its deeper semantic fidelity, making it a more ro-
bust and nuanced evaluation metric.

For our experiments, we employed the LaBSE
(Feng et al., 2022) model to generate these sen-
tence embeddings. The ChrF-S score is computed
as per equation 2

chrF-S(ref, hyp) = α · chrF + +(ref, hyp) +
(1 − α) · CosSim (embed(ref), embed(hyp))

In this equation, ref refers to the reference sen-
tence, and hyp is the hypothesis (translation) sen-
tence. chrF + +(ref, hyp) denotes the character-
and word-level similarity from ChrF++. The func-
tion embed represents the sentence embeddings,
which are generated using a sentence embedding
model1. CosSim computes the cosine similar-
ity between the sentence embeddings. Finally, α
is the weighting factor used to balance these two
components; in our experiments, we set α = 2.

3 Experiments

In our experiments, we considered two datasets
released by WMT i.e., Direct Assessments (Bo-
jar et al., 2017, 2018; Barrault et al., 2019, 2020;
Akhbardeh et al., 2021; Kocmi et al., 2022) from
2017-2022 and MQM (Freitag et al., 2021a,b,
2022) assessments from 2020-2022. As the data is
heavily skewed towards west-germanic languages.

1In this case, we used LaBSE

lp #segments #systems
en-de 187 1
en-ru 250 1
cs-uk 3322 17
en-es 240 1
en-zh 120 1
en-cs 202 1
en-ja 242 1
en-uk 226 1
en-is 157 1
en-hi 247 1
ja-zh 243 1
zh-en 239 1
de-en 212 1
es-en 217969 356
en-fr 27730 161
fr-en 17553 117
ru-en 4320 18
pt-en 146508 158
en-arz 27333 156
en-twi 3560 16
en-xho 3285 18
en-luo 1251 6
en-hau 2996 14
en-yor 4774 28
en-som 46340 140
yor-en 25948 156
en-kik 18962 114
ary-fr 19960 120
en-swh 22954 138
en-ibo 19960 120
Total 617290 1865

Table 1: WMT24 Metrics Shared Task Test Set Statis-
tics

Test-set #sentences BLEU BERTScore chrF++ chrF-S
MQM-A 457 0.210 0.333 0.478 0.481
MQM-B 790 0.180 0.282 0.410 0.423
MQM-C 1399 0.140 0.222 0.329 0.355
MQM-D 2425 0.117 0.188 0.272 0.313
MQM-E 4242 0.099 0.110 0.200 0.242

Table 2: Pearson Correlation scores on five different
test sets curated from WMT-MQM (20-22) data

Test-set #sentences BLEU BERTScore chrF++ chrF-S
DA-A 8903 0.186 0.208 0.290 0.328
DA-B 17663 0.183 0.209 0.290 0.336
DA-C 34715 0.180 0.191 0.288 0.333
DA-D 67487 0.180 0.179 0.285 0.333
DA-E 126957 0.191 0.188 0.291 0.336

Table 3: Pearson Correlation scores on five different
test sets curated from WMT-DA (17-22) data
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Figure 1: chrF-S Metric

We created five sub testsets2 of different sizes hav-
ing a fair distribution of sentences across all lan-
guage pairs. We evaluated these five testsets (A,
B, C, D, E) using unsupervised reference based
metrics: BLEU, chrF++, BERTScore and chrF-S
and further computed pearson (Kurtz and Mayo,
1979) correlation to compare the metrics in terms
of their agreement with human judgements.

3.1 Evaluation

Table 2 reports the correlation scores of the met-
rics with MQM assessments on the testsets built
from WMT-MQM (20-22) data. Similarly Table 3
displays the correlation scores of the metrics with
direct assessments on the testsets created from
WMT-DA (17-22) data. In both the tables, it is
clearly evident that chrF-S has performed better.
We notice that the correlation scores of chrF-S in
WMT-DA testset is slightly less (<0.4), however
when compared to other metrics it still stands as
winner.

2code and testsets will be released

By incorporating sentence-level embeddings,
chrF-S enhances its ability to evaluate the seman-
tic closeness between the reference and translation,
leading to better alignment with human judgments
that prioritize meaning and context. This seman-
tic dimension improves correlation scores with hu-
man assessments, making chrF-S a more accurate
and reliable metric, especially when translations
differ lexically but are semantically equivalent.

4 WMT24 Metrics Shared Task
Participation

We have participated in the WMT24 Metric
Shared Task by submitting the translation scores
for official evaluation (en-de, en-es, ja-zh) and
secondary evaluation (for all langauge pairs from
the generalMT task). The test-set statistics are re-
ported in Table 1.

The preliminary leaderboard for the official lan-
guage pairs is released by the shared task is re-
ported at Table 4, displaying the system-level Pear-
son correlations and segment-level Kendall Tau
correlations of of en-de, en-es and ja-zh language
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Rank Participant
En-De

sys-level
Pearson

En-De
seg-level
Kendall

En-Es
sys-level
Pearson

En-Es
seg-level
Kendall

Ja-Zh
sys-level
Pearson

Ja-Zh
seg-level
Kendall

1 mengyao 1.0 0.85 1.0 0.82 1.0 0.98
2 jjuraska 1.0 0.57 0.99 0.59 0.99 0.55
3 gentaiscool 1.0 0.67 0.98 0.69 0.99 0.61
7 GEMBA-ESA 0.98 0.53 0.99 0.51 0.94 0.49
8 chrF-S 0.97 0.51 0.99 0.5 0.97 0.56
12 MetricsTaskBaseline 0.95 0.45 0.92 0.46 0.5 0.17

Table 4: WMT24 Prelimnary Leaderboard reporting system-level and segment-level correlations. Our metric
correlations are highlighted in bold.

pairs. It is noteworthy that chrF-S has not only sur-
passed the baseline but also demonstrated perfor-
mance on par with GEMBA, an LLM-based met-
ric. When compared to other preceding supervised
metrics, chrF-S, an unsupervised metric proves to
be competitive, standing alongside other top per-
formers in the field.

5 Conclusion

This paper contributes to the WMT24 metrics
shared task by introducing chrF-S, an enhanced
version of chrF++ that incorporates sentence-
level semantics for more accurate MT evaluation.
Our metric effectively captures both surface ac-
curacy and deeper semantic meaning by integrat-
ing character-level, word-level, and sentence-level
matching. The use of sentence embeddings en-
ables chrF-S to better assess semantic closeness
between translations and references, leading to im-
proved correlation with human judgments such as
MQM and direct assessments. Preliminary leader-
board results indicate that chrF-S is competitive
with other leading metrics, underscoring its poten-
tial as a reliable and nuanced tool for evaluating
translation quality.

Limitations

One significant limitation of this approach is its
dependency on embedding models for sentence
embeddings. The effectiveness of this method is
restricted to languages for which appropriate sen-
tence embedding models are available.
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Ondřej Bojar, Christian Federmann, Mark Fishel,
Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(WMT18). In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
272–303, Belgium, Brussels. Association for Com-
putational Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2022. Language-
agnostic BERT sentence embedding. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 878–891, Dublin, Ireland. Association
for Computational Linguistics.

Markus Freitag, George Foster, David Grangier, Viresh
Ratnakar, Qijun Tan, and Wolfgang Macherey.
2021a. Experts, errors, and context: A large-scale
study of human evaluation for machine translation.
Transactions of the Association for Computational
Linguistics, 9:1460–1474.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-
kiu Lo, Craig Stewart, Eleftherios Avramidis, Tom
Kocmi, George Foster, Alon Lavie, and André F. T.
Martins. 2022. Results of WMT22 metrics shared
task: Stop using BLEU – neural metrics are better
and more robust. In Proceedings of the Seventh Con-
ference on Machine Translation (WMT), pages 46–
68, Abu Dhabi, United Arab Emirates (Hybrid). As-
sociation for Computational Linguistics.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu
Lo, Craig Stewart, George Foster, Alon Lavie, and
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Abstract

In this second edition of the Metric Score Land-
scape Challenge (MSLC), we examine how
automatic metrics for machine translation per-
form on a wide variety of machine translation
output, ranging from very low quality systems
to the types of high-quality systems submitted
to the General MT shared task at WMT. We
also explore metric results on specific types of
data, such as empty strings, wrong- or mixed-
language text, and more. We raise several
alarms about inconsistencies in metric scores,
some of which can be resolved by increasingly
explicit instructions for metric use, while others
highlight technical flaws.

1 Introduction

This work builds on Lo et al. (2023), which in-
troduced the Metric Score Landscape Challenge
(MSLC).1 At the Conference on Machine Trans-
lation (WMT), the Metrics Shared Task typically
focuses on high-performing machine translation
(MT) systems, in order to determine which new
and improved metrics provide the most accurate
and reliable scores (via comparison to human evalu-
ation). However, the goal is for these metrics to go
on to be used more broadly, which will likely result
in their use on a wider range of systems. Since the
Metrics Task primarily focuses on high-performing
MT systems and their human evaluations, there is
a risk that the new knowledge generated by the
task about metrics may not generalize to lower-
quality MT. For this reason, we submit a challenge
set that covers a wider range of MT quality, in
order to give potential users as well as metrics re-
searchers a view of a broader range of performance.
We also consider specific phenomena that may re-
sult in unexpected results from some metrics. We
focus on three language pairs:English→Spanish

1MSLC data and additional figures can be found at https:
//github.com/nrc-cnrc/MSLC.

(eng→spa), English→German (eng→deu), and
Japanese→Chinese (jpn→zho).

2 Data

We divide this MSLC into two subsets: the first
challenge set (MSLC-A) follows the approach set
out in MSLC23, merging together our low- to mid-
quality systems with the systems submitted to the
General MT shared task, while the second chal-
lenge set focuses on specific phenomena (MSLC-
B; developed based on notable results from 2023
and new aspects of this year’s General MT Task).

2.1 MSLC-A: News Data

We focus only on the “news” subset of the WMT
General Task test set, as this better matches the do-
main of our trained MSLC systems and because of
concerns with some of the other domains. All fig-
ures and values for MSLC-A will be shown over the
subset of the “news” data that was manually eval-
uated with MQM (Multidimensional Quality Met-
rics; Lommel et al., 2013) by the Metrics Shared
Task unless otherwise noted.

The MSLC-A systems we evaluate are a range
of low- to medium-quality sets of MT output for
the three identified language pairs.

The MT models we build for MSLC24 are all
constrained (as per the WMT General Task rules)
models, built using standard WMT training data
(or subsets thereof), without the application of com-
mon additional techniques like backtranslation or
tagging. We train all NMT models using Sock-
eye version 3.1.31 (Hieber et al., 2022), com-
mit 13c63be5 with PyTorch 1.13.1 (Paszke et al.,
2019).

The English→German systems are the same
ones described in Lo et al. (2023); we direct
the reader to that work for more details. The
English→Spanish and Japanese→Chinese systems
are described in more detail in Larkin et al. (2024).
We use checkpoints from training the systems as
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representative of varying levels of quality. The
levels of quality are manually checked by authors
familiar with the relevant target languages on a
small sample of the data. We list the checkpoints
used for the systems in Appendix A. The lowest-
quality systems are indicated with the letter A, and
the quality approximately increases as the system
labels proceed alphabetically.

2.2 MSLC-B: Specific Phenomena

We target three specific phenomena in the MSLC-B
challenge set: empty strings, mixed- and wrong-
language text, and language variants. In addition
to this, across these, we consider an overarching
theme of consistency. We begin by describing and
justifying our study of these phenomena and the
topic of consistency.

Lo et al. (2023) observed unusual performance
around empty strings (which appeared due to a
submitted system’s output in 2023). This may, at
first glance, seem like a trivial and uninteresting
issue. We argue that it is worth exploring, for three
primary reasons: it is a real scenario that we ob-
serve in the WMT submissions and in more general
MT (empty strings do appear in output and some-
times even input or references), it is important to
know how metrics handle the empty string (as dif-
ferent metrics take different approaches to handling
empty strings), and because of the question of con-
sistency (some metrics may score empty strings
in internally-inconsistent or surprising ways). It
would be simple for all implementations of metrics
to treat empty strings (in the source, reference, or
hypothesis) as an edge case to be handled sepa-
rately; in practice this is not what we observe, so
it is important for users of metrics to be aware of
how metrics may perform in these cases.

We also consider questions of how metrics per-
form when the MT output is mixed-language or
wrong-language text. This is a situation that can
arise, for example, due to noise in training data.

In a similar vein, since the General MT Task
specified translation into Latin American Spanish,
we build a very small test set of terms that differ
between variants of Spanish spoken in Latin Amer-
ica and in Spain. For example, the word computer
may commonly be translated as ordenador in Spain
but computadora in Latin America. We use this to
examine how metrics, particularly reference-free
metrics, score translations from different language
variants. This is a very small-scale study, but our

results indicate that this is an area that should be
considered for future work.

We now describe how we build this portion of
the challenge set in order to study these issues.

2.2.1 English→German and
English→Spanish

Here we produce a small data set to explore these
issues more closely. We begin by selecting data
that will be used repeatedly:

• 10 segments (paragraphs and sentences) from
the English language source (WMT news
data) with their Spanish and German2 refer-
ence translations

• 10 short phrases in English with refer-
ence translations (confirmed via wikipedia,
Linguee, and WordReference)3

• 10 words in English with reference transla-
tions

• 10 punctuation marks or other characters

Taking all of these, we consider the following situ-
ations: empty source and reference paired with the
reference segments described above (simulating
an MT system generating fluent text after empty
string input) and empty string hypothesis paired
with the known source and reference (simulating
an MT system outputting the empty string).

Using only the segment (paragraph or sen-
tence length) portion, we also consider the situ-
ation where the output is fluent but in the wrong-
language by pairing the source with the correct ref-
erence but the opposite language hypothesis (e.g.,
English source, Spanish reference, German ref-
erence used as hypothesis). We also consider a
mixed-language hypothesis, manually produced by
substituting substrings of the Spanish reference
with substrings from the German refB reference.4

For German, because we have access to refB, we
also submit a version with English source, refA
as the reference, and refB as the hypothesis; this
permits a full range from incorrect language to

2For the German references we use refA.
3https://en.wikipedia.org/, https://www.

linguee.com/, https://www.wordreference.com/
4This was done in such a way to maintain (approximate)

fluency and adequacy, such that a reader familiar with both
German and Spanish should still be able to understand the text.
We would urge caution, however, in assuming that any results
from this part of the test set would extend to more natural
code-mixing.
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Source Last year, the World Economic Forum forecast that it would take five generations
to achieve gender equality in every nation. Now the World Bank wants to rapidly
accelerate that time frame.

Reference Im vergangenen Jahr hat das Weltwirtschaftsforum vorausgesagt, es würde fünf
Generationen dauern, bis in allen Staaten Geschlechtergleichstellung herrsche. Die
Weltbank hat sich nun zum Ziel gesetzt, diesen Zeitraum deutlich zu verkürzen.

refB Im vergangenen Jahr prognostizierte das Weltwirtschaftsforum, dass es fünf Genera-
tionen dauern werde, die Gleichstellung der Geschlechter in jeder Nation zu erzielen.
Jetzt möchte die Weltbank diesen Zeitrahmen erheblich verkürzen.

Mixed-Lang. El año pasado, prognostizierte das Weltwirtschaftsforum que harían falta cinco
Generationen para lograr la igualdad de género in jeder Nation. Jetzt möchte die
Weltbank acelerar ese plazo rápidamente.

Wrong Lang. El año pasado, el Foro Económico Mundial pronosticó que harían falta cinco gen-
eraciones para lograr la igualdad de género en todas las naciones. Ahora, el Banco
Mundial quiere acelerar ese plazo rápidamente.

Table 1: Example of wrong-language, mixed-language (Spanish shown in italics), and refB (correct language
alternate human reference) as hypotheses in the English→German MSLC-B dataset.

mixed-language to matched language (but different
human translation). We show an example of this in
Table 1.

For Spanish, since the WMT General MT Task
explicitly describes this translation task as “EN
to Spanish (Latin America)”, we provide a very
small sample (8 words) of words that tend to have
differing translations between varieties of Spanish
spoken in Latin America and varieties of Spanish
spoken in Spain. This has very limited coverage
but may permit us to begin asking questions about
whether quality estimation systems have tendencies
or biases towards certain language varieties.

2.2.2 Japanese→Chinese
For Japanese→Chinese, we examine metrics’ per-
formance around empty strings by first selecting
data that will be used repeatedly:

• 5 segments (paragraphs and sentences) from
the Japanese language source with their Chi-
nese reference translations

• 5 short phrases in Japanese with reference
translations

• 5 words in Japanese with reference transla-
tions

• 5 punctuation marks in Japanese with refer-
ence translations

We consider the same two types of empty string
situations as in the other language pairs. The empty

strings challenge examples make up 40 items in the
MSLC-B Japanese→Chinese test set.

Similarly to the other language pairs, we con-
sider wrong-language output (an English transla-
tion of the Japanese source, produced as a human
translation from the Chinese reference by one of
the authors) and mixed-language output (substi-
tuting words or phrases in the Chinese reference
with corresponding Japanese and English words or
phrases); these make up 10 items in the MSLC-B
Japanese→Chinese test set.

3 Metrics

There are dozens of metrics submitted by the task
organizers and participants to the WMT24 Metrics
Shared Task. Given time and space limitations, we
only examine the baseline metrics submitted by
the task organizers and the primary metrics submit-
ted by the participants. We describe the metrics
included in this work in Appendix B.

4 Results and Plots

We divide our examination of the results into the
two parts of the challenge set: MSLC-A and
MSLC-B.

4.1 MSLC-A

Here we present preliminary results for the MSLC-
A subset of the challenge set. We begin with the
segment level and then consider system-level re-
sults. We make use of the MQM results provided
by the Metrics Task organizers.
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4.1.1 Segment Level
The histograms along the diagonal of Figure 1 show
the distributions of segment-level scores produced
by a subset of the baselines and submitted primary
metrics. We can see that different metrics exhibit
very different score distributions. Some show a
somewhat bimodal distribution of scores, others
are closer to normally distributed. For the metrics
that are closer to normally distributed, we also see
different skews. Most metrics are left skewed (i.e.,
they more frequently give segment scores in the
higher-end of their possible score range), while
BLEU is right skewed and more frequently gives
segment scores in the lower end of its possible
score range.

Metrics also differ in whether they exhibit a
strong separation between the segments produced
by the low-quality systems from our challenge set
and the segments produced by the WMT submis-
sions or whether they assign a range of low to high
scores to most systems (i.e., having clear overlap
in score range across all systems). This varia-
tion in characteristics suggests that metrics may
have different strengths and weaknesses across the
translation quality landscape; not all metrics are
equally appropriate for scoring high-quality and
low-quality MT.

XCOMET gives very low scores to segments
from the very low-quality systems, but uses much
more of the score space for the mid-quality sys-
tems. On the low-quality side, this is somewhat
similar to the distribution of BLEU scores, but the
high-quality systems have XCOMET scores that
are much higher due to XCOMET’s bimodal dis-
tribution. Meanwhile, chrF shows a fairly normal
distribution, but with a clear distinction between
the various MSLC systems. We can also see this
reflected when we examine system-level scores.

There are also metrics that use an approximation
of a discrete score space, such as GEMBA-ESA. Lo
et al. (2023) noted several metrics that did this in
2023; GEMBA-ESA is the only one in this year’s
set that does.

4.1.2 System Level
To analyze system-level scores, we compute an
average over all of the segment-level scores in the
news domain for a given MT system. There are two
reasons why we are using this segment average in-
stead of the submitted system-level score: 1) not all
metrics submitted system-level scores and 2) using
averaged segment-level scores allow us to show a

representation of uncertainty (computed with boot-
strap resampling, 1000 times, for p < 0.05) for
the metrics. These system-level scores can also be
used in order to gain a better understanding of the
overall range of a metric’s scores, as well as what
kind of scores are assigned to very low quality ma-
chine translation (e.g., the A and B systems from
the challenge set).

Figure 2 shows the system average scores for
a subset of English→German (see Appendix D.1
for other translation directions). We observe that
metrics show different patterns of scores at the
system level. Both PrismRefMedium and Prism-
RefSmall appear to have serious difficulties in accu-
rately scoring the lowest-quality system and give
it a score higher than some of the better (still low-
quality) systems.5 Some metrics, such as GEMBA-
ESA, XCOMET and XCOMET-QE, give very close
scores to all of the low-scoring systems. For a use
case (e.g., a low-resource language) where one ex-
pects to have low- to medium-quality systems at
least initially, one may want to choose a metric
that provides clearer distinctions between various
systems on the lower range of quality.

For the high-quality systems the string-based
metrics, such as BLEU and chrF, show wider error
bars and thus may not distinguish between them.
We leave analysis of the high-quality systems to
the Metrics Shared Task.

By having our top MSLC system evaluated
alongside the submitted WMT systems, we are
able to observe that for Japanese→Chinese our sys-
tems combined with the high-performing submitted
WMT systems do cover the wide range of quality.
For English→German and English→Spanish, how-
ever, there may be a “missing middle” gap in qual-
ity that is not covered, an issue we aim to address
in future work.

4.1.3 Conclusions: MSLC-A
As we saw in Lo et al. (2023), metrics differ in how
they use their available score space. Some make
fairly full use of their score range, others discretize
the score space, and yet others display bimodal
distributions of scores. All of these impact how
individual segments are scored as well as how the
system-level scores are distributed (i.e., whether
the system-level scores are distributed more uni-
formly over the score space from low quality to

5Though we only do small-scale informal human evalua-
tion, we expect, e.g., system E should not be ranked below
system A.
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Figure 1: Matrix of segment-level scores for English→German. Along the diagonal are stacked histograms of
segment scores across the challenge set (cool colours/bottom) and submitted WMT systems (warm colours/top).
The off-diagonal entries are scatterplots where each point is a single segment positioned according to the score
assigned to it by row and column metrics; each point is coloured according to the same colours as the histogram.
Note: for a full, scalable version of this figure, see https://github.com/nrc-cnrc/MSLC; all other figures in this
paper are scalable.
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Figure 2: System average scores for English→German. MSLC systems (cool colours, left) are ordered by BLEU
score and brief manual examination; WMT submitted systems are ranked by average MQM score.

high quality, or whether most systems are clustered
near the low and high ends of the score space).
This year we noted fewer extremely unusual distri-
butions; we did not see a repeat of the “universal
scores” results observed in Lo et al. (2023).

The MQM evaluation of our top-performing sys-
tem helps us to get a better idea of how to interpret
these scores, though we note the issue of the miss-
ing middle range of human scores in two out of
our three language pairs. We also note a weakness
of error-based evaluations: they may not always
capture non-errors (e.g., ways of translating that
are not incorrect, but may be dispreferred by trans-
lators or end-users).

In future work, we may wish to apply more for-
mal human evaluation to our lower-scoring sys-
tems, to better clarify the full range, but this year’s
introduction of human scores for one system per
language pair takes a step towards that goal.

4.2 MSLC-B: Empty Strings

In MSLC23 (Lo et al., 2023), we observed a va-
riety of system scores on empty strings produced
by one of the participating systems in the WMT
task. Here, we expand on that in a controlled fash-
ion, examining the scores that metrics output when
scoring empty strings.

4.2.1 Empty Source and Reference
We begin with empty source and reference, paired
with four different types of output: single punc-

tuation characters (punct), single words (word),
short phrases (phrase), and full sentences/short
paragraphs (sent). All of the hypothesis text is in
the target language, with the full sentences drawn
from the WMT news data reference (refA, in the
case of German). If these had been produced by an
MT system taking an empty source and generating
text, this might be considered a “hallucination”—
generating fluent text that is not conditioned on any
relevant source text. As such, we would expect that
MT metrics should give these low scores. While
some metrics (BERTScore, BLEU, YiSi-1, chrF, sp-
BLEU, mmm_qe) do consistently give their lowest
score (0) to all of these test segments, others show
a greater variety of results.

Figure 3 shows a subset of the remaining metrics
for English→German, covering a range of the vari-
ations in scores. Each subfigure shows the scores
assigned to the 10 items in each category, with the
vertical red lines indicating the lowest and high-
est scores assigned by this metric to any of the
WMT news test data for any submitted MT sys-
tem. COMET-22 demonstrates the most common
pattern: assigning a range of scores, with a ten-
dency to have slightly higher scores for the shorter
categories (e.g., punctuation—a single character
has a very small edit distance to the empty string,
perhaps making it more similar to the empty string
than longer text) and lower scores to items in the
longer categories (i.e., penalizing generating a full
sentence out of nothing). PrismRefMedium and
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Figure 3: English→German scores assigned to text
when paired with empty source and reference. Red ver-
tical lines indicate the minimum and maximum scores
assigned over all WMT News primary submission data.

chrfS show another common pattern, by assigning
low scores to all items; this is more in line with
the desired and anticipated performance on this set
of data. We note that the scores from chrfS are
quite clustered around the lowest scores assigned
to the WMT news data, while PrismRefMedium has
scores expanding into a much lower range than the
range of scores it assigned to the news data in the
WMT test set. MetricX-24-Hybrid shows concern-
ing results on this test set, assigning scores higher
than any assigned to the WMT news test data to
some of the samples, particularly the punctuation
(perhaps not entirely unreasonably, as MT systems
may need to occasionally generate additional punc-
tuation in the target language), but also in some
word and phrase examples. Finally, GEMBA-ESA
assigns its lowest score most of the time, but occa-
sionally assigns a top score or a score exactly in the
middle of the range, an unexpected inconsistency.

4.2.2 Empty Hypothesis
Next, we flip the empty strings to the output side
and pair them with real sources and references for
the four different types of text mentioned in the

previous subsection. This is simulating the ex-
treme case of omission where the complete output
is missing. We understand that MT users may find
it acceptable to omit translation for a single punc-
tuation. As such, we again may expect that MT
metrics would give gradually lower scores to the
empty string output as the length of the source and
reference increase. Similarly to the empty source
and reference test cases, some metrics (BERTScore,
BLEU, YiSi-1, chrF, spBLEU, mmm_qe) do consis-
tently give their lowest score (0) to all of these test
segments.

Figure 4 shows a subset of metrics for
English→German, covering a range of the vari-
ations in scores. As we observe, PrismRefMedium
and chrfS also give low scores (although not their
lowest possible score) to empty string output. Some
metrics (e.g. COMET-22) indeed give gradually
lower scores to the empty string output according
to the length of the input, with the items in the
sent category receiving the low end of scores. We
find that this is still relatively unsurprising behavior
for metrics scoring empty string output. However,
MetricX-24-Hybrid and XCOMET show concern-
ing results on this test set, assigning mid-range to
high scores to empty string output. Finally, as was
the case in the empty source and reference test set,
GEMBA-ESA assigns its lowest score most of the
time, but occasionally assigns a top score to the
empty string output.

4.2.3 Conclusions: Empty Strings
These empty string test cases (both empty source
and reference and empty output) reveal undesir-
able metric results: giving high scores to extreme
hallucination and omission. This leads us to be
particularly concerned about the decision by the
WMT General MT Task to use MetricX-23-XL
and CometKiwi-DA-XL to decide which partici-
pating systems would receive human annotations,
because related metrics (MetricX-24-Hybrid and
CometKiwi) are two of the metrics showing these
undesirable phenomena.

This may be an opening for a wider discussion
about whether it is better for an MT system to fail
to generate output than to generate output that is in-
correct; nevertheless this would be a departure from
past expectations (where, e.g., in human evaluation,
“no translation” is typically given as a prototypical
example of something that should receive a low
score). In any case, we can likely find common
ground in agreeing that metrics should not give
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Figure 4: English→German scores assigned to the
empty string paired with real source and reference.

high scores to non-empty output when given an
empty input and empty reference. We would en-
courage a broader conversation about this, and in
the meantime would encourage those presenting
new metrics to be sure to specify how their metrics
handle empty strings.

We encourage both metric builders and metric
users to be aware of how metrics treat these edge
cases. They do occur in practice and a user antic-
ipating one type of performance on empty strings
(e.g., low or 0 scores) may come to erroneous con-
clusions if they unknowingly use a metric that treats
empty strings in another way (e.g., as high-scoring).
We were also somewhat surprised to encounter the
level of variation across empty string scores, and
expect that users who are most familiar with string-
matching metrics like BLEU may also not expect
this variety of results.

4.3 MSLC-B: Mixed- or Wrong-Language

In this section, we explore what kind of output the
metrics produce when they are applied to mixed-
language and wrong-language translation hypothe-
ses. We focus on English→German, because ac-
cess to a second human-translated reference (refB),

allows us to explore a range of translation hypothe-
ses, from a good human translation (refB, in Ger-
man), a mixed-language translation (composed of
a mix of the text of refB and the human-translated
Spanish reference), and a wrong-language transla-
tion (the Spanish language reference). Our small
test set for this is composed of 10 English source
sentences, along with the various translations de-
scribed above. We would expect a well-performing
and usable metric to assign high scores to the refB
German translation, lower scores to the mixed-
language translation (portions of which are correct
German translations of words and phrases), and
even lower scores for the Spanish translation (a
fluent and accurate translation, but in the wrong
language).

However, this is not precisely what we observe
in Table 2. Most metrics do give a score to refB
that is greater than or equal to the score given to
the mixed-language text in all 10 examples, while
others score it at or above the mixed-language the
majority of the time (mmm_qe (9), CometKiwi (8),
and damonmonli (6)). Only XLsimMqm scores
the mixed-language text higher than refB in 8 out
of 10 examples. When it comes to the wrong-
language text, most metrics again score refB equal
or higher all of the time, but others at least occa-
sionally rank the wrong-language text above refB—
reference-free metrics in particular tend to make
some errors (with the exceptions of GEMBA-ESA
and MetricX-24-Hybrid-QE), but the two Prism-
Ref* metrics also make these errors. When compar-
ing the scores given to the mixed-language text and
the wrong-language text, we see even more of a
mix. Some systems (both PrismRef* systems, XL-
simMqm, mmm_qe, and MetricX-24-Hybrid-QE)
never score the mixed-language text above the
wrong-language text.

4.3.1 Conclusions: Mixed- and
Wrong-Language

This varies somewhat between language pairs (see
Appendix C), but string-based metrics like BLEU
and chrF consistently score the mixed-language
text above the wrong-language text. The weak-
nesses of string-based methods, such as their re-
liance on exact matches and lack of partial credit
for synonyms (especially when evaluated against a
single reference), have resulted in a shift towards
embedding-based metrics that can provide more
flexible semantic representations. However, given
these results, it raises the question: are all modern
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Metric refB≥Mix refB≥Wrong Mix≥Wrong
BERTScore 10 10 8
BLEU 10 10 10
BLEURT-20 10 10 2
COMET-22 10 10 3
CometKiwi 8 4 1
PrismRefMedium 10 6 0
PrismRefSmall 10 7 0
YiSi-1 10 10 3
chrF 10 10 10
spBLEU 10 10 9
chrfS 10 10 10
MEE4 10 10 10
XLsimMqm 2 1 0
mmm_qe 9 6 0
mmm_hybrid 10 10 1
MetricX-24-Hybrid 10 10 2
MetricX-24-Hybrid-QE 10 10 0
GEMBA-ESA 10 10 10
XCOMET 10 10 1
XCOMET-QE 10 6 2
damonmonli 6 7 7

Table 2: eng→deu: Number of times (out of 10) that
the metric scored refB higher than or equal to its mixed-
language pair (refB≥Mix), higher than or equal to
its wrong-language pair (refB≥Wrong), and a mixed-
language hypothesis higher than or equal to its wrong-
language pair (Mix≥Wrong).

metrics suitable for providing information about
whether a text is a good translation into the target
language, or simply whether it is a good translation
(into some language(s))? We argue that these pre-
liminary, small-scale results suggest the importance
of additional analysis of this question. While this is
unlikely to be a problem in many cases (especially
when, e.g., language ID could also be performed),
this may be particularly risky in low-resource set-
tings where high-quality language ID is not avail-
able (cf. issues described in Kreutzer et al., 2022).
In concurrent work, Zouhar et al. (2024) propose in-
corporating language ID to handle this issue as they
explore it specifically in the context of COMET .

4.4 MSLC-B: Language Variants
The WMT General Task specifically called
on researchers to build MT systems for
English→Spanish using Latin American Spanish.
We choose a small selection of terms that exhibit
some of the vocabulary differences between the
language variants of Spanish spoken in Latin
America and Spain. We note several limitations
to this: this is a very small set of terms, the terms
are evaluated in isolation, and they are certainly
not fully representative of all Spanish language
variants spoken in Latin America or Spain.6

Due to the structure of the challenge set sub-
mission process, each source term was submitted
four times: once for each language variant with
the matching reference and once for each language

6In several of the cases presented here, there exist a number
of other translations that we could have selected.

variant with the opposite reference. Considering
only the reference-free metrics (those that do not
use the provided reference in order to compute
their score), we observe results in Table 3. A
checkmark(✓) indicates that in all cases for that
term, the Latin American term chosen was scored
higher than the term used more commonly in Spain;
an ✗ indicates that the term used in Spain scored
equal to or higher than the term used in Latin Amer-
ica. This somewhat arbitrary choice to include
repeated versions was fortuitous, because it high-
lights a concern with one of the metrics: a question
mark (?) in a cell indicates that the rankings com-
puted were mixed. This means that, on repeated
scoring, the variations within the metric scores re-
turned were great enough (in the case of MetricX-
24-Hybrid-QE) to result in different rankings at
least once. This should be alarming to potential
users of metrics, who would expect consistent re-
sults on repeated strings. That is: a user may rea-
sonably expect that if they submit the same input
to a metric twice in a row, they will get the same
output twice in a row; here we observe that not all
metrics have this as a guarantee. We discuss this
more in Section 5. We note that other metrics also
exhibited some variation in their scores, but the rest
did not vary enough to change which of the two
term variants received the higher score.

We now observe that XLsimMqm is the only
metric to prefer the term used more commonly
in Latin America more than half the time (5/8). We
note that GEMBA-ESA only prefers the term from
Latin America in 1/8 terms, but for the remaining
7 terms, both variants are given identical scores of
100 (GEMBA-ESA is the only metric whose counts
would change, were we to score it as correct if a
term used in Latin America scores equal or greater
than the term used more commonly in Spain).

This raises similar questions to those we consid-
ered in the wrong-language and mixed-language
experiments, albeit at a finer-grained level. Metrics
may not be equally appropriate for use across all
language variants, and may in fact demonstrate a
scoring preference to one or the other. This will
require considerably more experimentation, with
larger test sets, in the future.

5 Consistency

Our experiments in MSLC-B highlighted some
issues in metric score consistency: repeated in-
stances of scoring the same string resulting in dif-
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English source: computer sandwich potato juice waiter tires peanut butter drive
Latin America: computadora sándwich papa jugo mesero llantas mantequilla de maní manejar

Metric Spain: ordenador bocadillo patata zumo camarero neumáticos crema de cacahuete conducir Counts
CometKiwi ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ 4/8
XLsimMqm ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ 5/8
mmm_qe ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ 4/8
MetricX-24-Hybrid-QE ✗ ✓ ✓ ✓ ✗ ✗ ? ✓ 4/8
GEMBA-ESA ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 1/8
XCOMET-QE ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 2/8

Table 3: Metric preferences for terms that are more common in Spanish language variants spoke in Latin America
(✓), for terms more common to language variants spoken in Spain (✗), or inconsistent preferences (?).

ferent scores. The MSLC-B dataset provided only
a small set of examples on which to test this, and
only for reference-free metrics. However, because
we submitted our highest-scoring MSLC MT sys-
tems to the WMT General MT task, we actually
do have a larger set of data with which to explore
repeated scores. This consists of the intersection
between the MSLC-A data (news domain only)
and the full General MT test set (149 segments for
eng→deu and eng→spa and 269 for jpn→zho),
each of which was scored by each metric as part of
the MSLC-A challenge set and as a WMT submit-
ted system.

It is important to highlight that, while the Metrics
Shared Task calls for metrics that provide scores at
the segment level and the system level, it does not
currently specify how or when metrics may make
use of extrasentential information (e.g., informa-
tion from other parts of the test set or document) in
order to produce segment level scores. This could
include approaches that compute some statistics
from the full test set (like YiSi does for TF-IDF)
or that operate on the batch level (like PrismRef*).
This is to say, some of these apparent inconsisten-
cies may be intentional (i.e., giving a segment a
different score depending on the context in which
it appears).

Since metrics have different score ranges, we
first calculate the lowest and highest scores as-
signed by each metric to any of the MSLC-A or
MSLC WMT submission segments within the news
subset. This gives us a range of metric scores.
Then, for each source-reference-hypothesis in the
news subset, we compute the absolute difference in
the score that it was assigned as part of the MSLC-
A dataset and the score it was assigned as part of
the MSLC WMT submission dataset and express
this as a percentage of the metric’s score range
described above.

For many metrics (BERTScore, BLEU, chrF, sp-
BLEU, chrfS, XLsimMqm, mmm_qe, mmm_hybrid,
GEMBA-ESA), there is never any difference
in these two scores. For other metrics, like

CometKiwi, there are some small differences (never
greater than 0.1% of the metric’s score range);
these seem likely attributable to rounding/floating
point errors. In other cases, it is possible that other
even larger differences may be accounted for due to
differences in batch size and hardware used, such
as the case of MetricX-24-Hybrid-QE, which sees
its largest score difference as 7.3% of the score
range for eng→deu.

For YiSi-1, there is a known reason for the ob-
served differences (up to 2.3% eng→deu, 2.8%
eng→spa, 4.4% jpn→zho): the YiSi score is com-
puted taking into account TF-IDF statistics from
the full test set; since MSLC-A included only the
news data while the full WMT General Task sub-
mission for MSLC included other domains, the
scores assigned to individual segments may differ,
as the segment-level scores are conditioned on the
full test set. The largest difference we observe is
for PrismRefMedium, with one score difference of
98.9% of the full score range; this is likely also due
to the model operating at the level of the document
or document chunk. The MSLC-A challenge set
did not include document boundaries, which could
account for the differences we observe. In future
tasks, we would suggest incorporating document in-
formation in the challenge set submission in order
to avoid these issues, and it would also be helpful to
clarify which metrics incorporate extrasentential in-
formation (specifically from other parts of the chal-
lenge set data). We know that there are at least three
different levels on which metrics are operating: the
single-segment level (i.e., each segment is scored
individually, so repeated segments should be scored
identically), incorporating information from the
full test set (in which case repeated segments within
the same test set may receive identical scores), and
incorporating document/batch/multi-segment input
(in which case, scores may depend on how the
batching is performed). It could also be possible to
have more complex interactions (e.g., taking into
account where in a document a segment occurs in
order to score it); metrics users and challenge set
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builders need to be aware of these in order to en-
sure that they are measuring what they think they
are measuring.

As we can see, there are at least two different rea-
sons for these apparent inconsistencies: 1) purpose-
ful differences that arise from metrics that use con-
textual information for computing sentence-level
scores (as in the case of YiSi) and 2) errors and
noise resulting from computational or implemen-
tational factors. In the case of these purposeful
differences, the primary thing for metric users to
be aware of is the scope of the context that is used,
in order to be able to reproduce scores. The latter
issue is a larger problem, especially when we see
score differences that cover substantial portions of
the metric’s score range. If a metric is unstable or
produces different scores based on the hardware
used to compute it, we face an issue at least as
concerning as the preprocessing one identified in
Post (2018). We propose two main (but not entirely
satisfactory) solutions to this: 1) it may be best
to report such metrics as an average over multi-
ple runs and 2) metrics should adopt the proposals
outlined in Zouhar et al. (2024) to include metric
signatures for better reproducibility.

6 Conclusion

We once again show the diversity of ways that met-
rics perform on a wide range of system quality.
We also observe quite a bit of variation in terms
of how systems handle empty strings, which may
influence how they are used (e.g., when comparing
a system that frequently generates empty strings to
one that never does). We also consider questions
of wrong-language text and mixed-language text
as well as language variants, and argue that metrics
researchers should consider whether their metrics
are overgeneralizing (i.e., whether they give high
scores to good translations regardless of whether
the translation is in the desired target language or
not) or are biased towards particular language vari-
ants. Many of our results support the conclusions
that Zouhar et al. (2024) describe in their concur-
rent analysis of COMET , such as the need to better
handle empty strings, questions of target language,
biases, and the importance of metric signatures
when metric variations may introduce score dif-
ferences. In concert with that work, we raise the
concern that as new metrics are introduced, we are
not learning the lessons from our field’s past errors.
We argue for the importance of examining real-

world corner cases and issues of reproducibility in
order to more responsibly introduce new metrics to
the research community. Both metrics researchers
and users should be alarmed by the levels of incon-
sistency that we observe. One of the benefits of
using automatic metrics should be to make fair com-
parisons (for repeated scoring, across papers, and
so forth)—inconsistent metrics cannot serve this
purpose. When there are intentional sources of dif-
ferences in scores for repeated segments (i.e., due
to the context in which they appear), users need to
be aware of the scope and approaches used to incor-
porate context, in order to ensure that they are using
metrics as intended in order to measure what they
intend to measure. This will become increasingly
important as we see a shift to document-level

Limitations

We focus only on three language pairs
(English→German, English→Spanish, and
Japanese→Chinese) in the News domain in this
work, due to the availability of human-annotated
scores for this set. Several of our additional
experiments use extremely small sets of data
(e.g., 5-10 examples); in most cases these are
designed to help us establish whether additional
future study would be helpful, rather than to make
definitive claims about the results. In time for
the camera-ready submission, we had access to
MQM scores, but not to the General MT Task ESA
annotations.
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A MSLC24 MT Systems

In Table 4 we see the checkpoint IDs for systems
included in the challenge set for eng→deu. Table 5
and 6 show the same for eng→spa and jpn→zho.

System Checkpoints BLEU
A 54 0.50
B (50k) 1 1.85
C 79 3.13
D (50k) 7 4.19
E (200k) 2 4.54
F 91 6.88
G (200k) 27 7.87
H (400k) 4 8.73
I (400k) 43 9.64
J 102 9.24
K 129 13.91
L 313 22.79
M (MSLC) 311 22.65

Table 4: Checkpoint IDs and BLEU scores
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1)
on MSLC-A for systems included in challenge set
(eng→deu); parenthetical numbers indicate one of
the pseudo-low-resource systems rather than the full
training data system.

System Checkpoints BLEU
A 52 0.75
B 65 4.94
C 74 8.55
D 84 13.14
E 98 19.91
F 123 25.61
G 207 31.47
H (MSLC) 800 37.97

Table 5: Checkpoint IDs and BLEU scores
(nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1)
on MSLC-A for systems included in challenge set
(eng→spa).
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System Checkpoints BLEU
A 37 0.05
B 70 4.97
C 80 10.74
D 97 15.79
E 133 19.48
F (MSLC) 358 23.12

Table 6: Checkpoint IDs and BLEU scores
(nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.3.1) on
MSLC-A for systems included in challenge set
(jpn→zho).

Metric Name Reference-based
Human annotation
MQM
Metrics
BERTScore ✓
BLEU ✓
BLEURT-20 ✓
chrF ✓
chrfS ✓
COMET-22 ✓
CometKiwi
damonmonli ✓
GEMBA-ESA
MetaMetrics-MT ✓
MetaMetrics-MT-QE
MEE4 ✓
MetricX-24-Hybrid ✓
MetricX-24-Hybrid-QE
prismRefMedium ✓
prismRefSmall ✓
sentinel-cand-mqm
sentinel-ref-mqm ✓
sentinel-src-mqm
spBLEU (flores-200) ✓
XCOMET ✓
XCOMET-QE
XLsimMqm
YiSi-1 ✓

Table 7: Human annotation and metrics included in this
work, with their coverage of language pairs. Metrics
that are not marked as reference-based are reference-
free (a.k.a quality estimation) metrics.

B Metrics

Table 7 shows a summary of the human annota-
tions and metrics included in this work and the
translation directions they participated in. For de-
tail descriptions of the metrics, please refer to the
Metrics Task overview paper (Freitag et al., 2024).

Note: in the main body of the text, for space
reasons, we abbreviate the MetaMetrics-MT-QE
and MetaMetrics-MT names as mmm_qe and
mmm_hybrid, respectively.

Metric Mix≥Wrong
BERTScore 10
BLEU 10
BLEURT-20 5
COMET-22 4
CometKiwi 3
PrismRefMedium 9
PrismRefSmall 8
YiSi-1 10
chrF 10
spBLEU 10
chrfS 10
MEE4 10
XLsimMqm 7
MetaMetrics-MT-QE 2
MetaMetrics-MT 1
MetricX-24-Hybrid 0
MetricX-24-Hybrid-QE 0
GEMBA-ESA 10
XCOMET 1
XCOMET-QE 0
damonmonli 6

Table 8: eng→spa: Number of times (out of 10) that
the metric scored a mixed-language hypothesis higher
than or equal to its wrong-language pair.

C Additional Mixed/wrong-language
Tables

Tables 8 and 9 show the how the metrics scores
mixed-language and wrong-language data for
English→Spanish and Japanese→Chinese. For
English→Spanish, the wrong-language text was
German and the mixed-language was a mix of Ger-
man and Spanish. For Japanese→Chinese, the
mixed-language was a mix of Chinese, English
and Japanese, while the wrong-language was En-
glish. Note that because the Chinese text in the
mixed-language hypotheses is drawn directly from
the reference, this should be a particularly easy task
for string-based metrics.

D Additional Figures

Figures in this paper are produced using Matplotlib
(Hunter, 2007), version 3.7.1.

D.1 MSLC-A System-Level

Figures 5, 6, and 7 show the system average
scores for English→German, English→Spanish,
and Japanese→Chinese across all metrics.
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Figure 5: System average scores for English→German.
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Figure 6: System average scores for English→Spanish.
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Figure 7: System average scores for Japanese→Chinese.
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Metric Mix≥Wrong
BERTScore 5
BLEU 5
BLEURT-20 5
COMET-22 5
CometKiwi 0
PrismRefMedium 0
PrismRefSmall 0
YiSi-1 5
chrF 5
spBLEU 5
chrfS 5
MEE4 5
XLsimMqm 5
MetaMetrics-MT-QE 0
MetaMetrics-MT 4
MetricX-24-Hybrid 1
MetricX-24-Hybrid-QE 0
GEMBA-ESA 0
XCOMET 0
XCOMET-QE 0
damonmonli 3

Table 9: jpn→zho: Number of times (out of 5) that the
metric scored a mixed-language hypothesis higher than
or equal its wrong-language pair.

D.2 Remaining Additional Plots
For other examples of of the empty string plots,
as well as for additional plots showing his-
tograms and scatterplots, see https://github.
com/nrc-cnrc/MSLC.
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Abstract

In this paper, we present the MetricX-24 sub-
missions to the WMT24 Metrics Shared Task
and provide details on the improvements we
made over the previous version of MetricX.
Our primary submission is a hybrid reference-
based/-free metric, which can score a trans-
lation irrespective of whether it is given the
source segment, the reference, or both. The
metric is trained on previous WMT data in
a two-stage fashion, first on the DA ratings
only, then on a mixture of MQM and DA rat-
ings. The training set in both stages is aug-
mented with synthetic examples that we cre-
ated to make the metric more robust to sev-
eral common failure modes, such as fluent but
unrelated translation, or undertranslation. We
demonstrate the benefits of the individual mod-
ifications via an ablation study, and show a sig-
nificant performance increase over MetricX-
23 on the WMT23 MQM ratings, as well as
our new synthetic challenge set.1

1 Introduction

Automatic evaluation metrics are critical to the de-
velopment of machine translation (MT) systems.
In recent years, the landscape of MT evaluation
has changed dramatically since the use of lexical
metrics, like BLEU (Papineni et al., 2002) and
ChrF (Popović, 2015), that compared the tokens
or characters of the candidate translation to a refer-
ence translation to predict a scalar score that repre-
sents the quality of the translation. Evaluation met-
rics based on neural networks opened up the door
for more experimentation, and metrics now vary
based on what type of output they produce, what
they require as input for prediction, and whether
they use a dedicated evaluation model or a general-
purpose large language model.

This paper provides details on MetricX-24, the
successor to MetricX-23. MetricX is a learned

1Our code and models can be found at https://github.
com/google-research/metricx.

regression-based metric trained to predict a float-
ing point score representing the quality of a trans-
lation. This year, we made four submissions to the
WMT24 Metrics Shared Task, all based on the mT5
language model (Xue et al., 2021), which is fur-
ther fine-tuned on direct assessment (DA) ratings,
MQM ratings (Lommel et al., 2014; Freitag et al.,
2021), and newly constructed synthetic data. The
primary submission, denoted MetricX-24-Hybrid,
is a hybrid reference-based/-free metric, which can
score a translation irrespective of whether it is given
the source segment, the reference, or both. The
same model is thus the primary submission for
both the reference-based evaluation and the quality
estimation (QE) task, having predicted the scores
once with and once without the references provided
in the input. Our contrasting submissions, MetricX-
24(-QE), are standalone reference-based/QE mod-
els, trained only for their specific task.

The key takeaways from our experiments, de-
tailed in this report, include:

1. Learned metrics cannot reliably detect under-
translation, duplication, missing punctuation,
and fluent but unrelated translation;

2. Adding a relatively small amount of synthetic
data to the training set can boost the met-
ric’s performance, especially on lower-quality
translations with the above issues;

3. It is possible to effectively train a metric on a
mixture of MQM and DA ratings, thus main-
taining high performance on a larger set of
language pairs;

4. Training a metric in the hybrid input mode,
i.e., with and without the reference included
in the input, allows it to learn to rely less on
the reference when it is of poor quality.

2 Data

Developing MetricX-24, we relied solely on pub-
licly available data from the WMT Metrics shared
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tasks between 2015 and 2023. The translation rat-
ings from these years come in two different flavors:
(1) direct assessment (DA) scores on a scale from 0
to 100, collected in general from non-expert raters,
and (2) MQM scores (Lommel et al., 2014; Freitag
et al., 2021) on a scale from 0 to 25 (with 0 being
the best), which are grounded on error spans and
their corresponding severity levels, annotated by
professional raters. MQM ratings have been col-
lected as part of the WMT campaign only since
2020 and, because the annotations are considerably
more time-consuming and expensive to obtain, they
are only available for a few language pairs. The DA
scores, on the other hand, offer a broader language
coverage of nearly 50 language pairs, but the raw
ratings are noisy (due to different rating strategies)
and generally of lower quality. Therefore, it is of-
ten beneficial to z-normalize DA ratings per rater
before training models on them, so as to make the
ratings more comparable across different annota-
tors. In contrast, models do not benefit from MQM
scores being z-normalized because the scores come
from a rather small group of annotators and they
adhere to a rubric.

In the rest of this section, we provide details on
which data we use for training and evaluation, as
well as how the different datasets are preprocessed.
Furthermore, we describe new synthetic data we
created from the WMT datasets, with the goal of ad-
dressing some of MetricX’s known failure modes.

2.1 Training Data

DA. We utilize most of the DA data from the
2015–2022 period for training, with the following
exceptions. As we observed during the develop-
ment of the previous version of MetricX (Juraska
et al., 2023), the into-English portion of the
WMT21 DA ratings drags the model performance
down. We confirmed this observation again this
year and excluded these language pairs from the
training data. With the gradually declining quality
of DA ratings collected for WMT using the MTurk
platform, we also exclude all into-English language
pairs from WMT22.2 Additionally, we exclude the
en-zh language pair from WMT22, as we use the
equivalent slice of data, but with MQM ratings,
for evaluation. We use z-normalized ratings when
training models on DA data only, but raw ratings

2One exception is zh-en, for which DA ratings were col-
lected in two different ways, including using the same method
and framework as the out-of-English language pairs (Kocmi
et al., 2022).

when training on a mixture of MQM and DA data.

MQM. Besides the DA ratings, we also take ad-
vantage of the higher-quality MQM ratings from
the years up to 2022 for training. These include
four language pairs: en-de, en-ru, en-zh and zh-
en.3 We only use the conversation, e-commerce
and social domains from WMT22 en-zh for train-
ing. In our experiments with different subsets of
MQM ratings, we observed a consistent boost in
performance with the 2020 data excluded, hence,
our final models are only trained on MQM ratings
from 2021 and 2022. We always train models on
raw MQM ratings, i.e., using the 0–25 scale.

2.2 Evaluation Data

MQM. Our primary evaluation set consists of
the WMT23 MQM ratings, which includes three
language pairs: en-de, he-en and zh-en. Since the
zh-en language pair is known to have low-quality
references (Kocmi et al., 2023), we replace them
with newly collected references. Note that this
has no effect on the MQM ratings, as those were
collected in a source-based fashion. Additionally,
given the fact that one of the official WMT24 test
language pairs is ja-zh, we reserve the news domain
subset of the WMT22 en-zh ratings for evaluation,
allowing us to assess our models’ performance on a
language pair with Chinese as the target language.

DA. We use the WMT23 DA ratings as a sec-
ondary evaluation set, taking advantage of its better
language coverage (8 language pairs). Neverthe-
less, with DA ratings generally following a signifi-
cantly different distribution than MQM ratings, a
higher correlation of the metric scores with these
DA ratings does not necessarily imply better per-
formance. For example, fine-tuning a model on
zh-en MQM ratings results in lower performance
than fine-tuning it on DA ratings, according to the
zh-en DA evaluation set (but not the MQM one).
Therefore, we only consider the WMT23 DA eval-
uation set in experiments where we mix MQM and
DA training data together.

2.3 Synthetic Data

After seeing the initial benefits from the simple
synthetic data used for training MetricX-23, we de-
cided to construct a more comprehensive collection

3The en-zh MQM ratings, available at https://github.
com/google/wmt-mqm-human-evaluation, were collected
post-WMT22.
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of synthetic training examples. They cover addi-
tional, less trivial failure modes of MetricX, i.e.,
translation issues commonly unrecognized by the
metric. The DEMETR challenge set (Karpinska
et al., 2022), which we relied on last year, does
not cover several of the failure modes we created
the new synthetic training examples for, hence we
also constructed a set of test examples for each of
them. Next, we describe how we designed both the
training and the test synthetic datasets.

2.3.1 Training Sets
In order for the MetricX models to learn to identify
certain types of bad translations that are not suffi-
ciently (or at all) represented in the regular WMT
training data, we generated synthetic examples that
we augment the training data with. They were cre-
ated by modifying examples from the DA datasets
ranging from WMT15 to WMT22, comprising 49
language pairs. Table 1 provides an overview of the
various failure modes that we considered, including
brief descriptions of how we prepared the synthetic
data to address them. Additional details regarding
the creation process can be found in Appendix A.

2.3.2 Test Set
We constructed a new DEMETR-style test set
based on the WMT23 DA dataset, with examples
generated analogously to our synthetic training ex-
amples, as described in Table 1. Each synthetic
example is paired with its original counterpart (al-
though using the reference instead of the candidate
translation whenever the synthetic translation was
created from the reference), which allows for a met-
ric to be evaluated on how frequently it ranks the
pairs correctly.

3 Metric Descriptions

The MetricX-24 submissions to the WMT24 Met-
rics Shared Task build on top of the successful
MetricX-23 (Juraska et al., 2023; Kocmi et al.,
2023), with several major improvements. We start
this section by summarizing the aspects this year’s
submissions have in common with MetricX-23,
then provide an overview of the modifications, and
finally describe the differences between the indi-
vidual submissions.

3.1 MetricX Model
MetricX is a learned metric, powered by a regres-
sion model trained to predict a floating point num-
ber that represents the quality of a given transla-

tion. The reference-based variant takes the can-
didate translation (hypothesis) and reference seg-
ments as input, and concatenates them, along with
corresponding prefixes (“candidate:” and “refer-
ence:”, respectively). In contrast to the previous
versions, MetricX-24 also prepends the source seg-
ment (along with the prefix “source:”) to the input,
offering the model additional context to make a bet-
ter prediction in the reference-based setting, which
may be beneficial especially in cases where the
reference is inadequate. The model then encodes
this combined input and uses it to predict the trans-
lation quality score. The QE variant works in an
analogous way, but taking only the source segment
and the hypothesis as the input.

With MetricX-24, we continue to rely on
mT5 (Xue et al., 2021) as the pretrained language
model that we fine-tune on translation evaluation
data. We refer the reader to Juraska et al. (2023)
for details on how we adapted this encoder-decoder
model to the regression task. Similar to MetricX-
23, we fine-tune the model in two stages: first
on DA ratings (z-normalized, aggregated per seg-
ment, negated, and finally clipped to the [−1.0, 1.0]
range) and then further on raw MQM ratings. As
a result, the metric produces scores in the [0, 25]
range. The model is trained with a mean squared
error (MSE) loss function. Further implementation
details can be found in §4.

3.2 Design Improvements

We achieve some initial improvement in perfor-
mance by simply including the WMT22 data in
the training set – both the DA and the MQM rat-
ings, which we previously used as the evaluation
set when developing MetricX-23. The additional
MQM ratings (including en-ru, a language pair
not present in the older MQM data) are especially
valuable, considering the scarcity of MQM data.
Besides that, we introduce three major modifica-
tions to the training procedure and data in order to
further improve MetricX’s performance, described
throughout the rest of this section.

3.2.1 Training With Synthetic Data
Although we used synthetic training data along-
side the DA and MQM ratings already for train-
ing MetricX-23, the synthetic examples covered
only the two trivial cases of empty and reference-
matching translations. As described in §2.3, we pre-
pared a significantly more comprehensive synthetic
training set for MetricX-24, which we combine
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Failure mode Synthetic candidate translation description MQM score

Empty translation Empty string. 25

Gibberish Text of a similar length as the reference, generated by sampling words from the
vocabulary built from all references in the data with a matching target language. 25

Fluent but unrelated
translation Arbitrary reference from the dataset of a similar length and in the same language. 25

Undertranslation Candidate translation with an arbitrary sentence removed, if a multi-sentence seg-
ment, otherwise, candidate translation with 20–80% words removed from the end. 5–25

Duplication Candidate translation duplicated, with a space in between. 25

Missing punctuation Reference translation with the end punctuation removed (11 punctuation symbols
considered, such as period, question mark, closing parenthesis or quotation mark). 1

Reference-matching
translation

Reference translation itself (unlike the rest, these synthetic examples are meant to
train the metric to predict a perfect score for translations matching the reference). 0

Table 1: Failure mode categories we prepared synthetic data for, along with brief descriptions of how we created
the synthetic examples from the WMT data, and the MQM scores we label the training examples with.

with the DA and MQM data in both fine-tuning
stages. We experimented with various ratios, and
settled on 1:100 for each synthetic example cat-
egory in the first stage and 1:5000 in the second
stage. We evaluate the effects of adding the syn-
thetic training data by measuring accuracy and av-
erage score differences on the synthetic test set,
also described in §2.3.

3.2.2 Mixing DA and MQM Data
Next, we attempt to address the inevitable decline
in MetricX performance on other languages after
fine-tuning the model on MQM data, which only
covers a few language pairs. The performance, as
measured by the WMT23 DA evaluation set with
8 language pairs, quickly declines after starting to
fine-tune on MQM ratings. While it is expected
that the change in the general score distribution –
caused by the switch from DA to MQM ratings –
results in the Pearson correlations with the ground-
truth scores dropping, we believe the model should
be able to retain its system- and segment-level pair-
wise accuracy from the first stage of fine-tuning on
DA data. Moreover, we observe a significant drop
in system-level performance on the zh-en language
pair of the MQM evaluation set, despite zh-en be-
ing present in the MQM training data.

In order to remedy these behaviors, we mix in
a smaller proportion of DA ratings in the second-
stage fine-tuning. That way the model is trained
primarily on MQM ratings, but has a continued
exposure to the additional 40+ language pairs from
the first stage of fine-tuning. We experimented with
different combinations of DA and MQM rating for-
mats (e.g., raw vs. z-normalized, transformed to
the MQM scale or not, etc.), and the one yielding

the best results was raw MQM ratings combined
with raw DA ratings linearly transformed to the
MQM scale of [0, 25]. Finally, we determined that
a DA:MQM ratio of 1:4 works well for boosting
the performance on the DA evaluation set back to
the levels from the first stage of fine-tuning, with-
out a significant negative impact on the model’s
performance on the MQM evaluation set.4

3.2.3 Hybrid Input Mode
The third major modification we make to the train-
ing procedure when developing MetricX-24, is mix-
ing training examples in three different formats:
(1) source + hypothesis, (2) hypothesis + refer-
ence, and (3) source + hypothesis + reference. This
allows the model to operate in both a QE and a
reference-based mode (and the latter either with or
without the source included). But perhaps more
importantly, it gives the model an opportunity to
learn how much weight to put on the source and the
reference in different scenarios, or possibly to com-
pletely ignore the reference when it is of low qual-
ity. Such a hybrid model is then evaluated as a QE
model by only passing it the source segment and
the hypothesis as input, and as a reference-based
model by additionally passing it the reference.

3.3 MetricX-24 Variants
There are four variants of MetricX-24 that we sub-
mitted to the WMT24 Metrics Shared Task:

• MetricX-24-Hybrid (primary)
• MetricX-24-Hybrid-QE (primary)
• MetricX-24
4After a more extensive post-submission experimentation,

we determined the optimal ratio to be 1:10.
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• MetricX-24-QE

Our primary reference-based and QE submissions
are actually the same hybrid model, with the scores
predicted with and without the references provided
as part of the input. The secondary submissions
are the standalone reference-based and QE coun-
terparts of the hybrid model, i.e., only trained on
examples with the references (as well as the source
segments) included and on examples with the ref-
erences omitted, respectively. Other than that, all
of the submission models are identical in terms
of training data mixtures, as described in §3.2.1
and §3.2.2, as well as training hyperparameters.

4 Experimental Setup

4.1 Meta-Evaluation

As mentioned in §2.2, our primary evaluation set
consists of the MQM ratings from WMT23, as well
as the news domain subset of the en-zh language
pair from WMT22. Considering there is no into-
English language pair among the official test sets
this year, we focus primarily on en-de and en-zh
when evaluating our models, but also keeping zh-
en (the dataset with alternate references) in the mix,
in order to ensure that we do not overfit the models
to out-of-English language pairs. To evaluate our
models, we calculate the agreements between their
predicted scores and the human judgments of trans-
lation quality using the four different correlations
from the WMT23 Metrics Shared Task (Freitag
et al., 2023), detailed in Appendix B.

4.2 Checkpoint Selection

In both the first and the second stage of fine-tuning,
we pick the best checkpoint cbest based on the fol-
lowing linear combination of segment- and system-
level pairwise accuracy:

argmax
c

3

4

∑

l

acc
seg
l (c) +

1

4

∑

l

acc
sys
l (c) ,

where l ∈ {en-de, en-zh, zh-en}, and acc
seg
l (c) and

acc
sys
l (c) are the segment- and the system-level

pairwise accuracy calculated for checkpoint c on
the language pair l of the evaluation set. We down-
weight the system-level component to account for
its greater variance and to thus avoid a checkpoint
being picked due to a rare spike in system-level
accuracy if segment-level accuracy is low.

4.3 Implementation Details

MetricX-24, similar to its predecessor, is imple-
mented with TensorFlow (Abadi et al., 2015) and
the T5X library (Roberts et al., 2023). All of the
metric variants are based on mT5-XXL with 13B
parameters. We defer further implementation de-
tails to Appendix C. We are publicly releasing our
submissions, converted from TensorFlow to Py-
Torch (Paszke et al., 2019) checkpoints.5

5 Results and Discussion

Here we present the results of our experiments, fo-
cusing solely on fully trained models (i.e., those
that went through both stages of fine-tuning) and
modifications in the second stage. Since the abla-
tion studies performed with reference-based and
QE models show similar trends, we discuss the
reference-based experiments in depth in this sec-
tion, and provide the QE results in Appendix D.2.
Due to limited resource availability, we were only
able to run each experiment with one random seed.

5.1 Training With Synthetic Data

We start by examining the benefits of including
synthetic training examples, as described in 2.3.
In Table 2, the bottom four rows – corresponding
to the hybrid model – demonstrate the effects of
progressively adding DA data only, synthetic data
only, and finally both, to the training set in the
second stage of fine-tuning.6 We ended up not
using the duplication synthetic training set, as we
observed that the models learn to correctly identify
such cases even without it.

The first thing to notice is that mixing in DA rat-
ings actually improves the metric’s performance on
the synthetic test set over fine-tuning on MQM rat-
ings alone, especially in the unrelated, undertrans-
lation and duplication failure modes. Adding syn-
thetic data instead is, however, significantly more
effective in general, boosting the accuracy to the
94–100% range in most categories. Finally, aug-
menting the training set with both the DA and the
synthetic data results in an overall similar perfor-
mance as with the synthetic data only.

Missing punctuation is one of two categories in
which our metrics score not so close to perfect. In
fact, the synthetic training examples appear not to
be helpful in improving the performance at all. Our

5https://github.com/google-research/metricx
6The models that did not include synthetic training data in

the second stage, did not use it in the first stage either.
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MetricX
variant +DA +Synth Empty

transl.
Gib-

berish
Unre-
lated

Under-
transl.

Dupli-
cation

Missing
punct.

Ref-
match

23 – ∼ 100.00 100.00 88.14 57.75 38.14 66.01 94.00

24 X X 99.29 99.86 99.29 98.75 99.14 83.01 78.14

24
-H

yb
ri

d – – 51.43 99.86 81.00 68.75 87.57 83.66 76.00
X – 53.57 99.71 92.14 82.25 99.57 85.62 72.86
– X 94.14 99.71 99.14 96.25 94.43 84.97 79.86
X X 97.29 99.71 98.71 96.25 99.43 82.35 75.14

Table 2: Accuracy of reference-based MetricX variants in all 7 categories of our synthetic test set. “23” is the base-
line, the last row of “24-Hybrid” corresponds to our primary submission, and “24” is our secondary submission.

MetricX
variant +DA +Synth Segment-level pairwise accuracy System-level pairwise accuracy

en-de zh-en zh-en† en-zh en-de zh-en zh-en† en-zh

23 – ∼ 60.20 53.12 54.06 55.73 90.91 89.52 86.67 74.36

24 X X 60.71 54.50 55.78 56.16 96.97 92.38 95.00 88.46

24
-H

yb
ri

d – – 61.17 54.63 55.52 57.43 100.00 89.52 91.67 85.90
X – 60.75 54.89 55.58 57.65 98.48 92.38 92.50 84.62
– X 61.75 54.38 55.43 57.73 98.48 90.48 91.67 88.46
X X 61.11 55.00 55.82 57.02 98.48 92.38 94.17 85.90

Table 3: Meta-evaluation scores of reference-based MetricX variants on the WMT23 MQM evaluation set. “23”
is the baseline, the last row of “24-Hybrid” corresponds to our primary submission, and “24” is our secondary
submission. †Alternate references.

hypothesis is that using references to create this
category of synthetic examples results in a signif-
icant proportion of misleading examples because
we assume references to be perfect, but that is not
always the case. That, combined with the fact that
the removal of the punctuation symbol from the
end of the segment warrants just a minor score
change, means that some of the synthetic exam-
ples might have an unreasonably high ground-truth
score associated with them, thus giving the model
the opposite signal to what is desired.

The reference-matching translation synthetic
training set appears not to be effective either, how-
ever, its benefits are somewhat concealed by the
fact that mixing in DA data drags the performance
in this category down. With the non-hybrid model,
we observed a significantly bigger drop with DA
data included (77%→ 64%) and a greater increase
with synthetic data included instead (77%→ 83%).
Granted, that is still far from perfect, however, ex-
pecting a 100% accuracy in this category equates
to expecting that the candidate translation is never
better than the reference, which, as we pointed out
earlier, is not always true when judging the transla-
tion quality based on the source segment.

Overall, thanks to the new synthetic training data,
MetricX-24 (hybrid or not) is clearly more robust
to the failure modes than MetricX-23 (see first row

in the table), with the reference-matching transla-
tions being an exception. That might have to do
with the absence of WMT22 data in the training
set of MetricX-23, or the only synthetic examples
present therein being those of empty and reference-
matching translations.

5.2 Mixing DA and MQM Data

We already discussed the effects of adding DA data
to the training set in the second stage of fine-tuning
in terms of the synthetic test set performance; let
us now have a look at the correlations with human
MQM scores. Comparing the first two rows of the
“24-Hybrid” section in Table 3, we see that there
are just relatively minor changes in either direction
across all language pairs, with score differences
within the expected variance between runs.

What the table does not show, however, is the
huge jump in all correlations across all language
pairs on the WMT23 DA evaluation set, typically
back to the levels from the first stage of fine-tuning
on DA data only, or above. Segment- and system-
level pairwise accuracy increases by up to 2 and
5 points, respectively, and Pearson’s r sees im-
provements of up to 10 points. These are valuable
gains, considering we achieved them without sac-
rificing the performance on the MQM evaluation
set. An overview of the results and a more detailed
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analysis on the DA evaluation set can be found in
Appendix D.1.

5.3 Hybrid Input Mode

To wrap up the evaluation, we discuss the per-
formance difference between MetricX-24 and
MetricX-24-Hybrid (rows 2 and 6 in Table 3). At
the system level, the hybrid variant lags slightly
behind in zh-en and en-zh, but it makes up for it
by outperforming the non-hybrid across the board
at the segment level. Notably, the hybrid metric
achieves an almost 1% higher segment-level accu-
racy on en-zh, and the 0.5% boost on zh-en (with
original references) may be evidence for the hybrid
model handling examples with poor-quality refer-
ences better, especially considering the accuracy
difference on the zh-en set with alternate references
is only 0.04%. The other performance differences
between the two models are largely insignificant.

Finally, comparing our primary submission with
MetricX-23 (row 1 in the table), we can see con-
sistent gains of 1–2 points in segment-level accu-
racy, and substantially bigger gains at the system
level, with the accuracy on en-zh improving by a
whopping 11.5 points. We conclude that this a sig-
nificant improvement over our last year’s submis-
sion, ranked overall second in the WMT23 Metrics
Shared Task.

6 Related Work

Traditionally, evaluation metrics predict a scalar
quality score for the translation. This type of
metric includes BLEU, ChrF, MetricX (Juraska
et al., 2023), BLEURT (Sellam et al., 2020; Pu
et al., 2021), COMET (Rei et al., 2020, 2022a),
COMETKiwi (Rei et al., 2022b), Prism (Thomp-
son and Post, 2020), and more. While these met-
rics have historically been the dominant category of
metric, newly proposed methods provide structured
(Perrella et al., 2022; Fernandes et al., 2023; Kocmi
and Federmann, 2023; Guerreiro et al., 2023) or
natural language explanations (Xu et al., 2023) for
the predicted scores.

Then, evaluation metrics are considered to be
reference-based or reference-free (also known as
“quality estimation”) depending on whether or
not they require a reference to evaluate a trans-
lation. Metric developers usually train separate
models for each type of metric (e.g., COMET and
COMETKiwi, or MetricX-23 and MetricX-23-QE),
but some opt for combining both tasks into a single

model (Wan et al., 2022; Guerreiro et al., 2023),
which is the approach we took in this work with
our hybrid model.

Finally, while most metrics like MetricX-24 use
a dedicated model for scoring translations, some re-
cent works have begun to leverage general-purpose
large language models instead (Fernandes et al.,
2023; Kocmi and Federmann, 2023; Xu et al., 2023;
Leiter et al., 2023; Leiter and Eger, 2024). While
LLM-based metrics have achieved strong system-
level performance, using a learned dedicated model
was the best approach at the segment-level in last
year’s Metrics Shared Task (Freitag et al., 2023).

7 Conclusion

We presented in detail our approach to training
MetricX-24, a regression-based MT evaluation met-
ric. We submitted four versions of MetricX-24
to the WMT24 Metrics Shared Task, including a
reference-based and a QE variant, as well as a new
hybrid variant evaluated with and without the refer-
ences. By evaluating on the WMT23 MQM dataset,
we showed all of them to significantly outperform
our last year’s submission, MetricX-23. In addition,
we made MetricX-24 more robust to various types
of bad translations, which do not frequently occur
in the WMT data, such as undertranslation, or flu-
ent but unrelated translation. Finally, by combining
DA and MQM ratings together in the final stage
of fine-tuning, we were able to dramatically in-
crease the performance on the WMT23 DA dataset
covering 8 language pairs, while maintaining the
high correlations with the MQM ratings at the same
time.
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A Synthetic Data Creation

We sample 500 examples from each language pair,
whose candidate translations (hypotheses) we then
manipulate in different ways to create the synthetic
examples for each failure mode category. The
missing punctuation category is an exception, with
a stratified sample across the 11 end-punctuation
symbols, rather than language pairs, and 250 exam-
ples each.

In general, the synthetic examples have the candi-
date translation manipulated, turning it into a worse,
or an outright bad, translation. One exception is the
reference-matching category, whose purpose is to
actually teach the metric to score translations that
match the reference highly, which it does not learn
to do reliably when only trained on the WMT data.
Table 4 shows a few concrete examples from the
synthetic training set.

B Meta-Evaluation Details

System-Level. At the system level, we measure
pairwise ranking accuracy (Kocmi et al., 2021), as
well as Pearson’s r. Pairwise accuracy assesses
how well a metric ranks MT systems by calculat-
ing the proportion of all possible pairs of systems
that are ranked the same by the metric and human
scores. Pearson’s r, on the other hand, captures
how strong the linear relationship is between the
metric and human scores for MT systems. We
obtain the system-level scores (both metric and
human) as the mean segment-level score for each
system.

Segment-Level. At the segment level, we use the
group-by-item pairwise accuracy with tie calibra-
tion, as described by Deutsch et al. (2023), and the
no-grouping Pearson’s r. The pairwise accuracy
calculates the proportion of all possible pairs of
translations for the same source segment that are
ranked the same by the metric and human, then
averages the accuracies over all input segments. At
the same time, it rewards correct tie predictions
by introducing ties for any two translations with a
metric score difference below an automatically de-
termined threshold. The no-grouping Pearson’s r
quantifies the linear relationship between the met-
ric and human scores across all translations from
every system and document.

C Implementation Details

Having increased the maximum segment length
from 256 to 512 SPM tokens, and including up to
three segments (source, hypothesis and reference)
in the model’s input, each training run requires
256 TPUs. Using a batch size of 256, we train
our models for 16K steps in the first stage, using a
learning rate of 0.001 with an inverse square root
decay after the first 2K steps. We then fine-tune
the best checkpoint for another 8K steps in the
second stage, lowering the learning rate to 0.0002
and decaying it after 1K steps. The models are
trained using the Adafactor optimizer (Shazeer and
Stern, 2018).

D Additional Results

D.1 Mixing DA and MQM Data

Table 5 compiles the results of the meta-evaluation
of a group of reference-based models on the
WMT23 DA evaluation set. All of the models are
standalone reference-based models. In the table,
we contrast four variants of the model fine-tuned in
two stages (DA then MQM data) with a model fine-
tuned on DA data only (i.e., the first stage only).
We present the results on a subset of four language
pairs, two of which are present in our MQM train-
ing data (en-de and zh-en) and two which are not
(en-cs and de-en).

The experiments with mixing DA and MQM
data in the second stage of fine-tuning were moti-
vated by the large differences in performance on
the WMT23 DA evaluation set observed between a
model trained on DA ratings only (row 1 in Table 5)
and the same model further fine-tuned on MQM
ratings (row 2). As already discussed in §2.2, this
can be partly explained by the discrepancy in DA
and MQM rating distributions. This discrepancy
understandably affects Pearson correlations, how-
ever, it should not have a significant effect on how
the metric ranks segments or systems. Neverthe-
less, while we observed large drops in Pearson’s
r, the pairwise accuracy also dropped substantially
for most of the language pairs, both at the segment
and the system level. For example, on en-cs the
segment-level accuracy drops from 59.54 to 57.43,
and the system-level accuracy from 87.62 to 82.86.

Considering the fact that the performance dif-
ference between the models in rows 1 and 2 on
en-de and zh-en (i.e., the language pairs with a
good amount of MQM training data), are relatively
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Gibberish (zh-en example)
Created from: corpus hypothesis vocabulary
src 我希望你们能准时，不是想要你们的优惠券！！
hyp filter two that to also in allegations train 800 city, continuous the
ref I hope you can be on time, and it’s not that I want your coupons! !
label 25

Fluent but unrelated translation (de-en example)
Created from: corpus references
src Damit können doppelt so viele Studierende ausgebildet werden wie bisher.
hyp She booked a return flight and went home the next day.
ref In that way, twice as many students can be educated as before.
label 25

Undertranslation (cs-en example)
Created from: hypothesis

src
Dlouhodobě napjaté vztahy mezi oběma zeměmi se vyostřily v roce 2018 poté, co Washington
odstoupil od jaderné dohody z roku 2015 mezi Íránem a světovými mocnostmi a zavedl vůči
Íránu sankce, které mají tvrdý dopad na jeho ekonomiku.

hyp
Long-tense relations between the two countries sharpened in 2018 after Washington withdrew
from the 2015 nuclear deal between Iran and world powers and imposed sanctions.

ref
Long-term tense relations between both countries escalated in 2018 after that Washington
withdrew from the nuclear deal closed in 2015 between Iran and the world powers and imposed
sanctions against Iran, which have had hard impacts on its economy.

label 12.75

Duplication (fi-en example)
Created from: hypothesis
src Ensi vuoden vaje on yli 2,4 prosenttia kansantuotteesta.

hyp
Next year’s deficit will be over 2.4 per cent of national product. Next year’s deficit will be over
2.4 per cent of national product.

ref Next year’s deficit is over 2.4 per cent of GDP.
label 15

Missing punctuation (ru-en example)
Created from: reference
src Последний альбом Ace вышел в 2016 году.
hyp Their last album, “Ace”, came out in 2016
ref Their last album, “Ace”, came out in 2016.
label 1

Reference-matching translation (ja-en example)
Created from: reference
src グレタさんは、27日の金曜日にも行うことを呼びかけていた。
hyp Now, Greta is calling for further strikes to be held on Friday the 27th.
ref Now, Greta is calling for further strikes to be held on Friday the 27th.
label 0

Table 4: Synthetic examples for the different failure mode categories (except for the trivial empty translation case),
along with the MQM scores we label the training examples with. Each category also has an indication of how
the hypothesis was created/generated in order to produce a synthetic example (e.g., by modifying the original
hypothesis or reference).
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MetricX
variant +DA +Synth Segment-level pairwise accuracy System-level pairwise accuracy

en-de zh-en en-cs de-en en-de zh-en en-cs de-en

DA only N/A N/A 61.77 56.33 59.54 61.14 95.45 79.05 87.62 92.31

DA then
MQM

– – 61.59 55.99 57.43 61.65 93.94 81.90 82.86 85.90
X – 61.88 56.67 60.16 62.29 95.45 80.95 86.67 88.46
– X 62.60 56.35 59.02 61.92 95.45 84.76 81.90 93.59
X X 61.89 56.64 60.04 62.32 93.94 83.81 86.67 93.59

Table 5: Meta-evaluation scores of reference-based MetricX variants on a subset of the language pairs of the
WMT23 DA evaluation set. “DA only” is a model after just the first stage of fine-tuning (i.e., on DA data only),
whereas the “DA then MQM” section contains models fine-tuned in full two stages. The last row thus corresponds
to the “24” row in Tables 2 and 3, i.e., our secondary submission “MetricX-24”.

MetricX
variant +DA +Synth Segment-level Pearson’s r System-level Pearson’s r

en-de zh-en en-cs de-en en-de zh-en en-cs de-en

DA only N/A N/A 60.10 41.52 43.47 52.59 98.48 89.21 92.49 97.20

DA then
MQM

– – 48.18 34.66 39.77 44.09 93.41 87.58 90.60 87.40
X – 53.67 36.29 43.11 52.79 93.67 87.75 90.40 91.53
– X 56.03 35.21 37.24 45.26 99.48 88.40 89.32 96.79
X X 57.92 37.17 42.55 55.23 98.56 88.94 91.58 97.97

Table 6: Same as Table 5, but showing Pearson correlations instead of pairwise accuracies.

small, we conjecture that further fine-tuning on
MQM data alone causes the model to partially “for-
get” other languages from the first stage of fine-
tuning. We attempt to prevent the model from this
sort of forgetting by mixing some DA ratings into
the training set in the second stage.

As the scores of the model in row 3 in the table
demonstrate, we are able, for the most part, to re-
store the performance observed in the first stage
of fine-tuning by adding a small proportion of DA
training data in the second stage too. Adding not
only the DA data, but also the synthetic data, in the
second stage (row 5) sometimes boosts the perfor-
mance further, significantly improving even over
the first-stage performance (row 1). Most impor-
tantly, the gains over fine-tuning on MQM data
alone (row 2) are achieved not at the expense of the
model’s performance on the MQM or the synthetic
test set, as evidenced by the results in Tables 2
and 3.

Finally, Table 6 shows the expected big drops in
Pearson correlation with the DA ratings after fine-
tuning on MQM data (see rows 1 and 2), especially
at the segment level. Adding DA data in the second
stage helps recover most of the performance (com-
pare rows 3 and 5 with row 1), but as expected,
the correlations remain lower particularly for lan-
guage pairs present in the MQM data the model is
fine-tuned on in the second stage (en-de and zh-en).

D.2 QE Models

In Tables 7 and 8, we present the meta-evaluation
results for our QE models. These are analogous
to those presented in §5, only the hybrid model is
evaluated in a reference-free mode, and the non-
hybrid models are ones trained on the source and
hypothesis segments only. Note that the hybrid
model is the same checkpoint as the one for which
we reported the reference-based results in Tables 2
and 3, i.e., not one optimized for QE performance.

Examining first the results on the synthetic test
set, summarized in Table 7, we see similar trends
to those observed with reference-based models (Ta-
ble 2). The main difference is that the QE mod-
els achieve significantly lower performance in the
missing punctuation and the reference-matching
translation categories. This, however, is expected
because both the types of synthetic examples were
created from references. In case of the missing
punctuation examples, the synthetic translation is
simply the reference with the end punctuation re-
moved. Comparing such a hypothesis with the
corresponding reference is arguably a significantly
easier task than comparing it to the source seg-
ment and identifying a missing punctuation symbol.
Moreover, there may be a mismatch in the presence
of punctuation between the source and the refer-
ence in the training examples, making it even more
difficult for a QE model to reliably identify miss-
ing punctuation. As for the reference-matching
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MetricX
variant +DA +Synth Empty

transl.
Gib-

berish
Unre-
lated

Under-
transl.

Dupli-
cation

Missing
punct.

Ref-
match

23 – ∼ 100.00 99.86 96.43 63.25 88.29 69.93 63.00

24 X X 97.86 99.86 99.43 98.50 98.14 65.36 63.43

24
-H

yb
ri

d – – 69.86 99.86 82.43 81.25 63.00 77.78 63.00
X – 66.14 99.57 95.29 93.50 97.86 73.86 62.57
– X 93.57 99.71 99.29 96.50 84.43 69.28 62.14
X X 93.71 99.86 99.43 97.25 98.14 69.28 64.14

Table 7: Accuracy of reference-free (QE) MetricX variants in all 7 categories of our synthetic test set. “23” is the
baseline, the last row of “24-Hybrid” corresponds to our primary submission, and “24” is our secondary submission.
The hybrid model is the same as in Table 2, only evaluated without references provided as input.

MetricX
variant +DA +Synth Segment-level pairwise accuracy System-level pairwise accuracy

en-de zh-en zh-en† en-zh en-de zh-en zh-en† en-zh

23 – ∼ 59.57 52.64 52.89 54.47 92.42 86.67 85.83 74.36

24 X X 59.70 54.30 54.48 56.00 98.48 92.38 90.83 87.18

24
-H

yb
ri

d – – 60.11 53.80 54.00 56.27 100.00 89.52 89.17 84.62
X – 59.18 54.08 54.30 56.14 100.00 92.38 90.00 84.62
– X 60.27 53.76 53.99 55.88 98.48 89.52 90.00 83.33
X X 59.52 54.15 54.41 55.94 98.48 90.48 91.67 83.33

Table 8: Meta-evaluation scores of reference-free (QE) MetricX variants on the WMT23 MQM evaluation set.
“23” is the baseline, the last row of “24-Hybrid” corresponds to our primary submission, and “24” is our secondary
submission. The hybrid model is the same as in Table 3, only evaluated without references provided as input.
†Alternate references.

translation category, a QE model does not have
access to the reference, so it makes perfect sense
for it to score a candidate translation better than
the reference translation if the reference is of low
quality.

Switching over to Table 8, which shows the pair-
wise accuracy of the QE model scores, the trends
are also in line with those of the reference-based
models in Table 3. In contrast to the reference-
based results, however, the hybrid model (row 6)
does not outperform the standalone model (row 2),
although most of the differences are within the ex-
pected variance. An astute reader might notice that
the accuracy scores on the zh-en test set with the
original references and the one with the alternate
references do not match (despite the QE models
not using the references), and that is because the
latter has the original references included as an
additional “human system”.

Finally, we note that our QE models do not
fall far behind their reference-based counterparts.
In fact, both our primary and secondary QE sub-
missions of MetricX-24 outperform our reference-
based MetricX-23 submission from last year, ac-
cording to the WMT23 MQM evaluation set.
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Abstract

The AFRIMTE challenge set from WMT 2024
Metrics Shared Task aims to evaluate the ca-
pabilities of evaluation metrics for machine
translation on low-resource African languages,
which primarily assesses cross-lingual transfer
learning and generalization of machine trans-
lation metrics across a wide range of under-
resourced languages. In this paper, we analyze
the submissions to WMT 2024 Metrics Shared
Task. Our findings indicate that language-
specific adaptation, cross-lingual transfer learn-
ing, and larger language model sizes con-
tribute significantly to improved metric per-
formance. Moreover, supervised models with
relatively moderate sizes demonstrate robust
performance, when augmented with specific
language adaptation for low-resource African
languages. Finally, submissions show promis-
ing results for language pairs including Darija-
French, English-Egyptian Arabic, and English-
Swahili. However, significant challenges per-
sist for extremely low-resource languages such
as English-Luo and English-Twi, highlighting
areas for future research and improvement in
machine translation metrics for African lan-
guages.

1 Introduction

Recent machine translation (MT) research has
scaled dramatically, encompassing hundreds of lan-
guages, including many under-resourced ones (Fan
et al., 2021a; NLLB-Team et al., 2022; Bapna et al.,
2022; Kudugunta et al., 2023). However, accurately
measuring MT quality in low-resource languages
remains challenging. Conventional metrics like
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005), and chrF (Popović, 2015), which
rely on n-gram matching, often fail to capture
deeper semantic similarities (Zhang et al., 2020;
Rei et al., 2020; Sai B et al., 2023).

Newer approaches include embedding-based
metrics like BERTScore (Zhang et al., 2020) and

learned metrics such as COMET (Rei et al., 2020),
which have shown promise in more accurately eval-
uating translations across diverse languages. How-
ever, the application of these neural-based metrics
to under-resourced languages continues to face sig-
nificant challenges (Wang et al., 2024), highlight-
ing ongoing areas of research in multilingual MT
evaluation. These challenges include: (1) data
scarcity impeding metric development, (2) com-
plexity in annotation guidelines challenging non-
expert evaluators, and (3) limited language model
coverage restricting applicability, which under-
score the need for continued innovation in MT eval-
uation methods, particularly for under-resourced
African languages.

In response to these challenges, Wang et al.
(2024) have introduced AFRIMTE, a human evalu-
ation dataset focusing on MT adequacy and fluency
for 13 typologically diverse African languages.
This dataset addresses the data scarcity issue and
employs simplified MQM evaluation guidelines
tailored for non-expert translators, thus tackling
two of the primary challenges in this field. More-
over, the authors establish benchmark systems for
MT Evaluation and reference-free Quality Esti-
mation (QE) by leveraging transfer learning tech-
niques. These techniques draw from existing, well-
resourced Direct Assessment (Graham et al., 2013)
(DA) data and utilize an African-centric multilin-
gual pre-trained language model, thereby address-
ing the challenge of limited language model cover-
age for African languages.

Building on this work, the WMT 2024 Metrics
Shared task incorporates the translation adequacy
test set from AFRIMTE as a challenge set. This
inclusion aims to evaluate the capabilities of metric
systems for machine translation on low-resource
African languages, primarily assessing the cross-
lingual transfer learning ability and generalization
of these systems across a wide range of under-
resourced African languages.
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Our examination of task submissions has yielded
several key findings in the development of ma-
chine translation metrics for African languages. We
observed that language-specific adaptation, cross-
lingual transfer learning, and increased language
model sizes contribute to significant improvements
in metric performance. Even supervised models of
relatively modest scale can achieve robust results
when augmented with language adaptation tech-
niques. In addition, our analysis reveals promising
outcomes for certain language pairs, such as Darija-
French, English-Egyptian Arabic, and English-
Swahili. However, persistent challenges remain
evident in extremely low-resource languages like
English-Luo and English-Twi. These disparities
underscore critical areas requiring further investi-
gation and highlight the need for targeted research
in developing effective metrics across the diverse
linguistic landscape of Africa.

2 AFRIMTE

AFRIMTE (Wang et al., 2024) focuses on the
dev and devtest subsets of the FLORES-200
dataset (NLLB-Team et al., 2022). It covers 13 lan-
guage pairs (LPs), primarily focusing on African
languages with English, plus Darija-French and a
control pair of English-French. In details, there
are Darija-French (ary-fr), English-Egyptian Ara-
bic (en-arz), English-French (en-fr), English-Hausa
(en-hau), English-Igbo (en-ibo), English-Kikuyu
(en-kik), English-Luo (en-luo), English-Somali (en-
som), English-Swahili (en-swh), English-Twi (en-
twi), English-isiXhosa (en-xho), English-Yoruba
(en-yor), and Yoruba-English (yor-en). The an-
notations were also extended on domain-specific
translations for English-Yoruba.

The MT outputs were generated using two open-
source MT engines: NLLB-200 (600M) (NLLB-
Team et al., 2022) and M2M-100 (418M) (Fan
et al., 2021b). Most language pairs use NLLB-200,
except for English-French and English-Swahili,
which use M2M-100 due to their exceptionally
high translation quality based on NLLB-200. The
authors noted that while some language pairs like
English-isiXhosa showed high overall quality, mi-
nor errors at the word level were still present.

AFRIMTE initially provides both fine-grained
word-level error annotations and sentence-level
Direct Assessment scoring for translation ade-
quacy and fluency. For the WMT 2024 Metrics
Shared Task, we utilize the adequacy test set from

LP Test # LP Test #

ary-fr 187 en-som 226
en-arz 250 en-swh 157
en-fr 250 en-twi 247
en-hau 240 en-xho 243
en-ibo 120 en-yor 239
en-kik 202 yor-en 212
en-luo 242

Total: 2815 annotations

Table 1: Counts of adequacy annotations for each lan-
guage pair (LP) in the test set of AFRIMTE.

AFRIMTE as the African Challenge set to evaluate
the sentence-level scoring performance of submit-
ted metrics, focusing specifically on the FLORES-
200 subsets within the dataset. Table 1 presents
the counts of translation annotations in this chal-
lenge set. Due to the limited sizes of annotations
for individual language pairs, we merge test data
from all LPs into a single African-centric dataset to
enhance evaluation significance for MT evaluation
and reference-free quality estimation (QE) metrics.
However, recognizing that different LPs may have
varying score ranges, potentially favoring metrics
that correlate with these distributions more than
actual quality, we also report metric performance
on each LP separately. This approach balances
the need for statistical robustness with LP-specific
insights.

3 Metrics

The WMT 2024 Metrics Shared Task received vari-
ous metric submissions from both task organizers
and participants. Our analysis will concentrate on
the baseline metrics provided by the task organizers
and the primary and contrastive metrics submitted
by the participants.

3.1 Baselines

The baseline metrics for MT evaluation include
BLEU (Papineni et al., 2002), chrF (Popović,
2015), spBLEU (Fan et al., 2021a), prism-
Ref (Thompson and Post, 2020), YiSi-1 (Lo,
2019), COMET-22 (Rei et al., 2022a), BLUERT-
20 (Sellam et al., 2020), and BertScore (Zhang
et al., 2019). For reference-free quality estima-
tion, the baseline metric is CometKiwi (Rei et al.,
2022b). Additionally, we include AfriCOMET
and AfriCOMET-QE for comparison, which are
the African extensions of COMET-22 (Rei et al.,
2022a) and CometKiwi (Rei et al., 2022b) pro-
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posed by Wang et al. (2024). They employ transfer
learning from well-resourced DA data and utilize
an African-centric multilingual pre-trained encoder,
AfroXLMR (Alabi et al., 2022), to build MT evalu-
ation and QE models for African languages.

3.2 Submissions from Participants

The metrics submitted by participants for
MT evaluation include XCOMET (Guerreiro
et al., 2023), METRICX-24 and METRICX-24-
HYBRID (Juraska et al., 2024)1, chrF-S (Mukherjee
and Shrivastava, 2024), METAMETRICS-MT (Anu-
graha et al., 2024), damonmonli, and monmonli2.
For reference-free QE, the submitted metrics are
XCOMET-QE (Guerreiro et al., 2023), METRICX-
24-QE and METRICX-24-HYBRID-QE (Juraska
et al., 2024)3, QE model of METAMETRICS-MT
(Anugraha et al., 2024), GEMBA-ESA (Kocmi and
Federmann, 2023), and XLsimMQM (Mukherjee
and Shrivastava, 2023). Details of all metrics can
be found in Freitag et al. (2024).

3.3 AfriCOMET-1.1 and AfriCOMET-QE-1.1

In the ongoing efforts to enhance performance on
African languages, we explore the use of a more
advanced African pre-trained encoder. Specifi-
cally, we re-train AfriCOMET and AfriCOMET-
QE using AfroXLMR-76 (Adelani et al., 2024)
and conduct the training in single-task learning
mode (Wang et al., 2024).

AfroXLMR-76 (Adelani et al., 2024) is an en-
hanced version of AfroXLMR (Alabi et al., 2022),
which itself was a multilingual adaptation of the
XLM-R-large model for 20 widely spoken African
languages (each with at least 50MB of data).
AfroXLMR-76 scales the language coverage up to
76 languages, including 61 languages with at least
10MB of data and an additional 15 languages with
less than 10MB. To address the scarcity of mono-
lingual data for some African languages, Adelani
et al. (2024) proposed to generate synthetic parallel
sentences by translating an English news commen-
tary dataset (Kocmi et al., 2022) using the NLLB
(600M) model.This expanded language coverage
and increased training data volume have resulted
in AfroXLMR-76 outperforming its predecessor,
AfroXLMR, on the SIB-200 topic classification

1METRICX-24 is the contrastive system to METRICX-24-
HYBRID

2The monmonli is the contrastive system to damonmonli.
3METRICX-24-QE is the contrastive system to METRICX-

24-HYBRID-QE

Metrics Pearson Spearman Kendall

METRICX-24∗ 0.5188 0.3949 0.2714
AfriCOMET-1.1∗ 0.5117 0.4129 0.2865
AfriCOMET-1.0 0.4821 0.3857 0.2675
METRICX-24-HYBRID 0.4764 0.3844 0.2640
METAMETRICS-MT 0.3934 0.3429 0.2360
COMET-22 0.3674 0.2835 0.1943
YiSi-1 0.3058 0.2453 0.1666
chrF-S 0.3121 0.2332 0.1584
chrF 0.2833 0.2193 0.1492
BERTScore 0.2959 0.1834 0.1248
BLEURT-20 0.2284 0.2225 0.1492
XCOMET 0.2224 0.2119 0.1451
spBLEU 0.2159 0.2052 0.1388
monmonli 0.2022 0.1713 0.1152
damonmonli 0.2007 0.1690 0.1138
BLEU 0.1863 0.1897 0.1282
PrismRefMedium 0.1149 0.1799 0.1202
PrismRefSmall 0.1058 0.1642 0.1099

Table 2: Segment-level correlation coefficients of MT
evaluation metrics on the entire AFRIMTE. Metrics
marked with ∗ are ranked first based on the Perm-Input
hypothesis test (Deutsch et al., 2021).

dataset for African languages (Adelani et al., 2024).

We refer to the original models using AfroX-
LMR as AfriCOMET-1.04 and AfriCOMET-
QE-1.05, while the new versions leveraging
AfroXLMR-76 are called AfriCOMET-1.16 and
AfriCOMET-QE-1.17, respectively.

4 Analysis

This section presents a comprehensive analysis
of the metrics outlined in Section 3. Our evalu-
ation framework is structured around two primary
components. First, we assess segment-level per-
formance by examining the correlation between
metric scores and human DA scores. This assess-
ment involves analyzing correlation coefficients
on the entire mixed African Challenge set and cal-
culating weighted average correlation coefficients
across various language pairs. Second, we con-
duct a language-specific analysis by computing
average correlation coefficients for each individual
language pair across all metric systems.

4https://huggingface.co/masakhane/
africomet-stl

5https://huggingface.co/masakhane/
africomet-qe-stl

6https://huggingface.co/masakhane/
africomet-stl-1.1

7https://huggingface.co/masakhane/
africomet-qe-stl-1.1
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Metrics Pearson Spearman Kendall

METRICX-24∗ 0.6269 0.4833 0.3455
METRICX-24-HYBRID 0.5972 0.4695 0.3351
METAMETRICS-MT 0.5295 0.4726 0.3368
AfriCOMET-1.1 0.5399 0.4363 0.3097
AfriCOMET-1.0 0.5260 0.4261 0.3027
XCOMET 0.4108 0.4045 0.2874
COMET-22 0.4513 0.3432 0.2430
YiSi-1 0.4233 0.3125 0.2182
BLEURT-20 0.3604 0.3428 0.2396
BERTScore 0.3997 0.2933 0.2049
chrF-S 0.3763 0.3025 0.2106
damonmonli 0.3627 0.3013 0.2100
chrF 0.3593 0.2955 0.2053
monmonli 0.3215 0.2877 0.1991
PrismRefMedium 0.2389 0.2978 0.2053
PrismRefSmall 0.2250 0.2868 0.1984
spBLEU 0.2585 0.2515 0.1733
BLEU 0.2394 0.2457 0.1691

Table 3: Segment-level weighted average correlation
coefficients of MT evaluation metrics, averaged across
language pairs on AFRIMTE, with weights based on
the size of each language pair group. The metric marked
with ∗ ranks first based on the average of Pearson, Spear-
man, and Kendall correlation coefficients.

4.1 Segment-level Averaged Correlation

For both MT evaluation and reference-free QE
tasks, we assess the metric performance using three
widely adopted correlation coefficients: Pearson,
Spearman-rank, and Kendall-rank. These coef-
ficients measure the correlation between metric
scores and human DA scores, each capturing differ-
ent aspects of the relationship (Deutsch et al., 2023).
To validate the statistical significance of our results,
we additionaly employ the Perm-Input hypothesis
test (Deutsch et al., 2021), which is conducted with
200 re-sampling runs and a significance level of
p = 0.05, producing rankings of the various auto-
matic metrics based on their performance.

4.1.1 MT Evaluation Metric
We present the segment-level correlation coef-
ficients of MT evaluation metrics on the en-
tire AFRIMTE test set in Table 2 and the weighted
average correlation coefficients across various
language pairs in Table 3. Detailed Pearson,
Spearman-rank, and Kendall-rank correlations of
baseline metrics and primary submissions for each
language pair are shown in Figures 3, 4, and 5 of
Appendix A.

For MT evaluation, Table 2 provides valu-
able insights into evaluation metrics’ perfor-
mance on the African Challenge Set. Gener-
ally, Pearson correlations are generally higher

than Spearman and Kendall, with rankings re-
maining largely consistent across correlation
types. The top-performing metrics—METRICX-
24, AfriCOMET-1.1, AfriCOMET-1.0, and
METRICX-24-HYBRID—are all based on pre-
trained multilingual large language models (LLMs)
and utilize supervised learning. These metrics con-
sistently outperform other types across all correla-
tion coefficients. METRICX-24 and AfriCOMET-
1.1 emerge as the best performers, statistically in-
distinguishable from each other. The improved
performance of AfriCOMET-1.1 over its prede-
cessor suggests ongoing enhancements in these
LLM-based metrics. It is evident that African-
centric LLM-based metrics (AfriCOMET variants)
perform exceptionally well, highlighting the im-
portance of language-specific fine-tuning for low-
resource African languages.

Moreover, the weighted average correlation re-
sults presented in Table 3 offer additional valu-
able insights. METRICX-24 still emerges as
the top-performing metric, achieving the high-
est correlation with human judgments across all
three correlation coefficients (Pearson: 0.6269,
Spearman: 0.4833, Kendall: 0.3455). Its hybrid
variant, METRICX-24-HYBRID, follows closely,
suggesting the robustness of this metric family.
METAMETRICS-MT shows strong performance,
ranking third overall with high correlation coef-
ficients. As an ensemble method, it selectively
combines complementary metrics, proves effec-
tive for African languages despite these metrics
being trained on general WMT data. In addition,
AfriCOMET-1.1 and its predecessor AfriCOMET-
1.0 show robust performance indicating their effec-
tiveness for African language pairs.

Traditional metrics like BLEU and its variant
spBLEU demonstrate relatively weak correlations,
reinforcing the need for more advanced metrics
in evaluating MT quality for African languages.
Interestingly, some widely-used metrics such as
BERTScore and BLEURT-20 show moderate per-
formance, outperforming traditional metrics but
falling behind the top-performing ones. The consis-
tent ranking across different correlation coefficients
suggests a reliable performance hierarchy among
these metrics. However, the overall moderate corre-
lation values (mostly below 0.5 for Spearman and
Kendall) highlight the ongoing challenges in accu-
rately evaluating MT quality for African languages.
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Figure 1: Average correlations across MT evaluation metrics for each language pair.

Metrics Pearson Spearman Kendall

METRICX-24-QE∗ 0.4857 0.3810 0.2616
AfriCOMET-QE-1.1∗ 0.4760 0.3961 0.2747
METRICX-24-HYBRID-QE 0.4337 0.3594 0.2464
GEMBA-ESA 0.4033 0.3300 0.2427
METAMETRICS-MT 0.3781 0.3004 0.2050
AfriCOMET-QE-1.0 0.3496 0.2524 0.1729
CometKiwi-XXL 0.2149 0.1814 0.1254
XCOMET-QE 0.1717 0.1528 0.1042
CometKiwi 0.1685 0.1259 0.0838
XLsimMQM 0.0886 0.0925 0.0619

Table 4: Segment-level correlation coefficients of QE
metrics on AFRIMTE. Metrics marked with ∗ are
ranked first based on the Perm-Input hypothesis test
(Deutsch et al., 2021).

Metrics Pearson Spearman Kendall

METRICX-24-QE∗ 0.5790 0.4383 0.3117
METRICX-24-HYBRID-QE 0.5530 0.4289 0.3048
AfriCOMET-QE-1.1 0.4905 0.4117 0.2900
GEMBA-ESA 0.4624 0.3793 0.2900
METAMETRICS-MT 0.5010 0.3610 0.2528
AfriCOMET-QE-1.0 0.4774 0.3743 0.2628
CometKiwi-XXL 0.3709 0.3428 0.2417
XCOMET-QE 0.3087 0.3290 0.2317
CometKiwi 0.3301 0.2914 0.2046
XLsimMQM 0.1548 0.1817 0.1256

Table 5: Segment-level weighted average correlation
coefficients of QE metrics, averaged across language
pairs on AFRIMTE, with weights based on the size of
each language pair group. The metric marked with ∗

ranks first based on the average of Pearson, Spearman,
and Kendall correlation coefficients.

4.1.2 Quality Estimation as a Metric

QE presents a more challenging and purely cross-
lingual task, making its investigation essential. Ta-

bles 4 and 5 presents the segment-level correlation
coefficients of QE metrics on the entire AFRIMTE
and weighted average correlations across language
pairs. Detailed Pearson, Spearman-rank, and
Kendall-rank correlations of baseline metrics and
primary submissions for each language pair are
shown in Figures 6, 7, and 8 of Appendix A.

Comparing results in Tables 2 and 4, and re-
sults in Tables 3 and 5, we have observed signif-
icant performance gaps between MT evaluation
models and their QE counterparts. This is evident
when comparing specific versions, such as the dif-
ferences between METRICX-24 and METRICX-
24-QE, XCOMET and XCOMET-QE, as well as
AfriCOMET-1.1 and AfriCOMET-QE-1.1. These
disparities underscore the increased complexity of
the QE task, which requires assessing translation
quality without access to reference translations.

Tables 4 and 5 reveal the superior performance
of LLM-based supervised-learning metrics in the
QE task. Specifically, METRICX-24-QE and
AfriCOMET-QE-1.1 emerge as the top-performing
metrics on the entire AFRIMTE test set (Ta-
ble 4). These metrics demonstrate statistically in-
distinguishable performance, as confirmed by the
Perm-Input hypothesis test. Furthermore, in the
weighted average correlation across different lan-
guage pairs (Table 5), METRICX-24-QE consis-
tently outperforms other approaches. This trend
in QE metrics mirrors the pattern observed in MT
evaluation metrics, underscoring the effectiveness
of LLM-based supervised-learning approaches in
both contexts for African languages. Additionally,
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METAMETRICS-MT, as a meta-metric, contin-
ues to show strong performance, further validating
the effectiveness of ensemble methods in address-
ing the complexities of African language evalua-
tion. Another LLM-based metric, GEMBA-ESA,
which employs a two-step approach: first collect-
ing MQM error spans, and then assigning the final
score also demonstrates robust performance, fur-
ther highlighting the potential of LLM-based tech-
niques in QE tasks for African languages. How-
ever, supervised QE metrics such as CometKiwi,
CometKiwi-XXL, and XCOMET-QE show rela-
tively poor performance, suggesting they might
not be well-suited for African languages without
specific language adaptation.

4.1.3 Language Adaptation, Cross-lingual
Transfer, and Model Size as Key Factors
in Metric Performance

Our analysis on the baseline and task submissions
reveals that language-specific tuning, cross-lingual
transfer learning, and model size are crucial factors
in MT evaluation and Quality Estimation.

The top-performing systems demonstrate these
principles in various ways. METRICX-24 sys-
tems, based on mT5-XXL (Xue et al., 2020),
cover a wide range of languages, including several
African languages such as Hausa, Igbo, Somali,
Swahili, Xhosa, Yoruba, and Zulu. In contrast,
AfriCOMET models use African-enhanced masked
language models (AfroXLMR and AfroXLMR-76)
with well-resourced DA training data, showcasing
the benefits of language-specific adaptation. Both
METRICX-24 and AfriCOMET variants employ
supervised training and cross-lingual transfer learn-
ing, proving effective for low-resource language
scenarios. The impact of model size is evident,
with AfriCOMET variants (560 million parame-
ters) and METRICX-24 (13 billion parameters)
both achieving strong results. While METRICX-
24’s larger size contributes to its superior perfor-
mance, AfriCOMET’s performance demonstrates
that well-adapted smaller models can also yield
robust results.

Moreover, the excellent performance of
METAMETRICS-MT underscores the potential
of ensembling robust metrics to create effec-
tive meta-metrics. The promising results of
GEMBA-ESA further highlight the effectiveness
of LLM-based prompting techniques in this
domain. These findings collectively emphasize
the potentials of model ensemble and innovative

LLM prompting strategies in developing effective
MT evaluation and QE metrics, particularly for
low-resource languages.

4.2 Language-Specific Performance: Average
Correlations across Metrics

To investigate model performance on specific lan-
guage pairs, we calculate the average correlation co-
efficients for each individual language pair across
all metric systems, providing insights into how well
metrics perform for specific language pairs. Results
are shown in Figure 1 and 2.

4.2.1 Performance on MT Evaluation
Figure 1 depicting the average correlation coeffi-
cients across metric submissions for MT evaluation
reveals significant variations in metric performance
on different language pairs. Consistently across all
pairs, Pearson correlation shows the highest values,
followed by Spearman and then Kendall, suggest-
ing stronger linear relationships between human
and metric scores compared to monotonic or or-
dinal relationships. English-Swahili (en-swh) and
Darija-French (ary-fr) demonstrate the highest cor-
relations across all three metrics, likely due to their
status as more resource-rich or commonly studied
pairs. In contrast, English-Luo (en-luo), English-
Twi (en-twi), and English-isiXhosa (eng-xho) ex-
hibit the lowest correlations, indicating particular
challenges for MT evaluation in these language
pairs.

4.2.2 Performance on QE
A consistent pattern emerges in the QE task (Fig-
ure 2) where Pearson correlations generally show
the highest values. Language pair performance is
notably similar across both figures, with resource-
rich pairs like English-Swahili (en-swh) consis-
tently demonstrating higher correlations, while ex-
tremely low-resource pairs such as English-Luo
(en-luo) and English-Twi (en-twi) show persistently
lower correlations. Interestingly, some language
pairs show improved relative performance in QE
compared to MT Evaluation. For example, English-
Egyptian Arabic (en-arz) and English-Hausa (en-
hau) demonstrate better results in QE, possibly indi-
cating their suitability for reference-free evaluation
methods.

4.2.3 Some Special Cases
Contrary to expectations, English-French (en-fr)
does not emerge as the top-performing language

510



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3

Average Correlation Coefficients across Systems for QE

ary-fr en-arz en-fr en-hau en-ibo en-kik en-luo en-som en-swh en-twi en-xho en-yor yor-en

Pearson Spearman Kendall

Figure 2: Average correlations across QE metrics for each language pair.

pair in either the MT evaluation or the QE task.
This surprising result might be attributed to two
factors. First, as illustrated in Table 7 of Wang
et al. (2024), there is a scarcity of supervised DA
training datasets for English-French. Second, the
performance may be affected by the “curse of mul-
tilinguality” (Pfeiffer et al., 2022), a phenomenon
where model performance on high-resource lan-
guages can degrade when the pre-trained model
is fine-tuned and enhanced with data from multi-
ple low-resource languages, in this case, African
languages.

Another noteworthy case is English-isiXhosa
(en-xho). As previously observed, English-
isiXhosa translations demonstrated high overall
sentence-level quality (median DA: 100 accord-
ing to Wang et al. (2024)) , with only minor er-
rors at the word level. This characteristic makes it
particularly challenging to differentiate and rank
translation quality. Consequently, the relatively
lower performance of Spearman and Kendall for
English-isiXhosa is expected.

5 Conclusion

In conclusion, our analysis on submissions to
the AFRIMTE challenge set of WMT 2024 Met-
rics Shared Task for African languages reveals
that LLM-based supervised-learning metrics, es-
pecially those with African-centric tuning, con-
sistently outperform traditional and other neural-
based approaches in both MT evaluation and Qual-
ity Estimation tasks. Language-specific adaptation,
cross-lingual transfer learning, and larger model

sizes contribute significantly to improved metric
performance. However, challenges persist for ex-
tremely low-resource languages such as Luo and
Twi. Our analysis also highlights unexpected per-
formance patterns in certain language pairs, includ-
ing English-French and English-isiXhosa, demon-
strating the complexities of evaluating machine
translation across diverse African languages.
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correlation coefficients of MT evaluation and QE
metrics for each language pair are shown in Fig-
ures 3, 4, 5, 6, 7, and 8 accordingly.
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Figure 3: Pearson Correlations of MT Evaluation Metrics for each language pair.
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Figure 4: Spearman-rank Correlations of MT Evaluation Metrics for each language pair.
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Figure 5: Kendall-rank Correlations of MT Evaluation Metrics for each language pair.
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Figure 6: Pearson Correlations of QE Metrics for each language pair.
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Figure 7: Spearman-rank Correlations of QE Metrics for each language pair.
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Abstract

This year’s MT metrics challenge set submis-
sion by DFKI expands previous years’ linguis-
tically motivated challenge set. It includes
137,000 items extracted from 100 MT sys-
tems for the two language directions (en!de,
en!ru), covering more than 100 linguistically
motivated phenomena organized in 14 linguis-
tic categories. The metrics with the statistically
significant best performance with regard to our
linguistically motivated analysis are METRICX-
24-HYBRID and METRICX-24 for en!de and
METRICX-24 for en!ru, whereas METAMET-
RICS and XCOMET are in the next ranking po-
sitions in both language pairs. Metrics are more
accurate in detecting linguistic errors among
LLM translations than in translations based on
the encoder-decoder NMT architecture. Some
of the most difficult phenomena for the metrics
to score are the transitive past progressive, the
multiple connectors, and the ditransitive sim-
ple future I for en!de and the pseudogapping,
the contact clause and the cleft sentences for
en!ru. Despite its overall low performance,
the LLM-based metric GEMBA performs best
in scoring German negation errors.

1 Introduction

For almost two decades, the development and eval-
uation of machine translation (MT) have relied on
automatic metrics. MT metrics aim to digest and
automate various aspects of human judgment of
MT output into numerical scores. Over the years,
these metrics have undergone several technological
changes (from measuring overlap to grammatical
features and neural models). Still, at the same time,
they have had to follow the technological evolution
of MT systems, moving from phrase-based statisti-
cal systems to NMT encoder-decoder models and,
more recently, to large language models (LLMs).
As we witness the first efforts to use and evaluate
LLMs in the task of MT, it is of great interest to
see to what extent pre-existing MT methodologies

can adapt to the needs of the new technologies.
An obvious question is to what extent MT metrics
developed and tested for NMT can be applied to
evaluating LLMs.

This year’s Metrics Task (WMT24; Freitag et al.,
2024) provides a very good opportunity to evaluate
the metrics under these particular circumstances,
as the evaluated MT outputs have for the first time
been produced by numerous LLMs (Kocmi et al.,
2024). Meanwhile, the ability of LLMs to act as
judges for translations is being explored through
the participation of an LLM-based metric.

Given this perspective, this paper extends previ-
ous work on linguistically motivated challenge sets
for MT metrics to investigate whether LLMs can
influence MT evaluation. As part of this year’s sub-
mission to the challenge set subtask of the WMT24
Metrics Task, we repeat the methodology of previ-
ous years to evaluate the metrics on a controlled test
set that can rank them with regard to their ability
to detect linguistic errors by providing fine-grained
statistics for each linguistic phenomenon. We then
analyze whether the metrics perform differently on
MT output from LLMs as opposed to output from
encoder-decoder systems. In addition, we see in
which linguistic aspects the LLM-based metric per-
forms better or worse than the specialized metrics.

The rest of the paper is structured as following:
Section 2 describes briefly the generation of the
challenge set. Section 3 presents and discusses the
results, whereas the conclusion is given in section 4

2 Method

This year’s linguistically-motivated challenge set is
an extension of the challenge sets that were submit-
ted the previous years (Avramidis and Macketanz,
2022; Avramidis et al., 2023).

The source sentences s originate from an MT
evaluation test suite (Macketanz et al., 2022a).
Each sentence has been carefully constructed to test
one particular phenomenon. Every phenomenon is
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tested by more sentences (with a minimum of 20
sentences), whereas the phenomena are aggregated
in a few categories. At the moment, there are more
than 100 phenomena and 14 categories.

As part of the WMT shared tasks of the previous
years, these source sentences have been given to a
large amount of MT systems, and their output has
been evaluated by combining regular expressions
and annotations by linguists, labeling every output
as correct (t 2 T ) or incorrect (t̂ 2 T 0).

In order to use this test set to evaluate the
MT metrics, we create examples in the form of
(s, t̂, t, r) 2 S, where each example contains one
source sentence s, one incorrect translation hypoth-
esis t̂, one correct translation hypothesis t and one
reference translation r. The correct translation hy-
potheses t and the reference translations r are sam-
pled with permutations from the same set of cor-
rect translations T . Then, we decompose the set
of examples S into a blind test set S0, where each
example includes either an incorrect translation
(s, t̂, r) or a correct translation (s, t, r) along with
the source and the reference. The separated con-
trastive examples are shuffled, and we set aside a
file that contains the golden truth, indicating which
samples are correct or incorrect.

As part of the Metrics Task, every shuffled trans-
lation t and hatt is scored by every M , given the
reference r in the given blind test set S0, without
knowing if it is correct or incorrect. A contrastive
pair scoring is considered correct if the metric deliv-
ers a score for the incorrect translation hypothesis,
which is lower than the one of the correct transla-
tion hypothesis M(s, t̂, r) < M(s, t, r). Finally,
for every phenomenon and category and for every
metric, the respective accuracy is calculated by di-
viding the number of correctly scored contrastive
pairs by the total amount of examples.

accM =
|M(s, t̂, r) < M(s, t, r)|

|(s, t̂, t, r)|

(s, t̂, r) [ (s, t, r) 2 S0 (s, t̂, t, r) 2 S

Lastly, we provide three types of score averaging:

i) Micro-average: This approach treats all
items equally, aggregating all test items to
compute the average percentages.

ii) Category macro-average: Here, all cate-
gories are treated equally, with the percent-

ages being computed independently for each
category and then averaged.

iii) Phenomenon macro-average: This average
treats all phenomena equally, with the percent-
ages being computed independently for each
phenomenon and then averaged.

The current version of the challenge set contains
MT outputs from the WMT Shared Tasks of the
years 2019-2024 (Avramidis et al., 2019, 2020;
Macketanz et al., 2021, 2022b; Manakhimova et al.,
2023, 2024). The English to German version con-
tains 39,463 contrastive pairs, while the English to
Russian version contains 30,108 pairs.

3 Results

3.1 English-German

The comparison of the metrics based on the accura-
cies per category for English-German can be seen
in table 2, whereas the detailed phenomena in ta-
ble 4. One can see that the metrics which have the
highest accuracy with statistical significance are
METRICX24-HYBRID and METRICX24 (Juraska
et al., 2024), with more than 80.7 % macro-average.
Both metrics are very good at multi-word expres-
sions (mostly verbal MWEs). The former is the
best of all metrics at coordination/ellipsis and non-
verbal agreement (genitive and personal pronoun
coreference). In contrast, the latter performs best
at verb valency (resultative and passive voice). The
metrics “METAMETRICS” (Anugraha et al., 2024)
and XCOMET (Guerreiro et al., 2023) follow in
the ranking, with more than 80% macro-averaged
accuracy.

The LLM-based metric GEMBA (Kocmi and Fe-
dermann, 2023) performs relatively low, with an
average accuracy of 69.7%, even below the base-
line non-tuned metric CHRF (Popović, 2015). It
is nevertheless remarkable that this metric has the
best score on negation, among all metrics (97.4%,
4.5% higher than the best system). The fact that
most of the metrics will miss 10% of the nega-
tions is rather noteworthy, given the implications
of such a mistake on the meaning of the sentence.
It is also remarkable that a reference-less metric,
METRICX24-HYBRID-QE, achieves the highest
accuracy on long-distance dependencies and inter-
rogatives, mainly on the phenomenon of negative
inversion.

Some of the most difficult phenomena for the
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METRICX24 METRICX24-HYB METAMETRICS XCOMET

encdec vs. encdec 73.2 72.3 70.8 69.7
LLM vs. encdec 77.3 76.9 79.9 77.6
LLM vs. LLM 79.9 78.1 80.0 79.1

Table 1: Accuracy of the metrics when they evaluate contrastive pairs containing (a) MT output only by en-
coder/decoder systems, (b) one encoder/decoder output and one LLM output, (c) only LLM output

metrics to score are transitive past progressive, mul-
tiple connectors, and ditransitive simple future I.

3.2 English-Russian

The comparison of the metrics based on the ac-
curacies per category for English-Russian can be
seen in table 3, whereas the detailed phenomena
in table 5. MetricX-24 is the clear winner in this
language direction, achieving a macro-averaged
accuracy of 82.5% MetricX-24 excels in ambigu-
ity, false friends, non-verbal agreement (corefer-
ence & genitive), verb semantics, and verb va-
lency. The ranking of the metrics is similar to
the one for English-German, with METAMETRICS,
METRICX24-HYBRID and XCOMET having the
next position, with more than 79.6% accuracy in
macro-average.

If one focuses again on the phenomenon of nega-
tion, they would notice that in English-Russian,
the highest accuracy is achieved by the baseline
metric CHRF, whereas most metrics perform here
very low (61% on average) Some of the most diffi-
cult phenomena for this language direction are the
pseudogapping, the contract clause, and the cleft
sentences for en!ru.

3.3 Comparing performance of metrics over
LLM vs. encoder-decoder systems

Table 1 presents the accuracies of the 4 best per-
forming metrics on three subsets of the challenge
sets. Here every subset contains contrastive pairs
which consist of
(a) two MT outputs, both by encoder/decoder

NMT systems
(b) one encoder/decoder and one LLM output
(c) two LLM outputs

One can see that all four metrics exhibit higher ac-
curacy when scoring contrastive translations origi-
nating from LLMs. This indicates that despite the
fact that LLM translations achieve very good per-
formance (Kocmi et al., 2024), their fewer errors
are easier to be distinguished by the automatic met-
rics. Whether there is a systematic reason for this
phenomenon remains to be investigated.

4 Conclusion

We presented the MT metrics challenge set of
DFKI for two language directions (en-de, en-ru).
This year, we have expanded the set to include
outputs from encoder-decoder NMT systems and
LLMs. The number of test items (total of 137,000)
allows for producing fine-grained scores for every
linguistic phenomenon and statistically significant
comparisons among the MT metrics. We also iden-
tified the best-performing metric, METRICX-24,
for both language directions.
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Abstract
In machine translation quality estimation
(QE), translation quality is evaluated automat-
ically without the need for reference trans-
lations. This paper describes our contribu-
tion to the sentence-level subtask of Task 1
at the Ninth Machine Translation Conference
(WMT24), which predicts quality scores for
neural MT outputs without reference transla-
tions. We fine-tune GPT-4o mini, a large-
scale language model (LLM), with limited
data for QE. We report results for the direct
assessment (DA) method for four language
pairs: English-Gujarati (En-Gu), English-Hindi
(En-Hi), English-Tamil (En-Ta), and English-
Telugu (En-Te). Experiments under zero-shot,
few-shot prompting, and fine-tuning settings
revealed significantly low performance in the
zero-shot, while fine-tuning achieved accuracy
comparable to last year’s best scores. Our sys-
tem demonstrated the effectiveness of this ap-
proach in low-resource language QE, securing
1st place in both En-Gu and En-Hi, and 4th
place in En-Ta and En-Te. The code used in
our experiments is available at the following
URL 1.

1 Introduction

Machine translation quality estimation evaluates
translation automatically without reference trans-
lation. This practice reduces the cost of manual
translation and enables efficient evaluation. The
subsequent quality score flags the necessity of re-
sorting to a more reliable translation system or revi-
sion from human post-editing. Quality estimation
can be performed at various granularity levels, in-
cluding word, phrase, sentence, and document.

In this paper, we describe our contribution to
the QE shared task at the Ninth Machine Transla-
tion Conference (WMT24). We participate in the
Task 1 of the shared task and we specifically fo-
cus on the sentence-level subtask, which involves

1https://colab.research.google.com/drive/
1p8VMnAkRfuVpbvM_revV2ZaN76sSxmiE?usp=sharing

En-Gu En-Hi En-Ta En-Te

baseline 0.661 0.678 0.592 0.414
gpt4o-mean 0.712 0.735 0.616 0.457
gpt4o-prob 0.712 0.734 0.608 0.460

Table 1: Spearman’s rank correlation coefficient be-
tween our predictions and human DA judgments of
WMT24 test data. The best score obtained for each
language pair is marked in bold.

predicting the quality score of neural MT outputs
at the sentence level without access to reference
translations. There are two different annotation
methods for QE: Multidimensional Quality Metric
(MQM) (Freitag et al., 2021) and Direct Assess-
ment (DA) (Fomicheva et al., 2022), and we report
the results of DA score prediction. Our study tar-
gets four language pairs: English-Gujarati (En-Gu),
English-Hindi (En-Hi), English-Tamil (En-Ta), and
English-Telugu (En-Te). The participating systems
are assigned the task of predicting the quality score
of each source and target sentence pair, and their
performance is evaluated using Spearman’s rank
correlation coefficient as the primary metric, and
Pearson and Kendall coefficients as supplementary
metrics.

We present a system for quality estimation uti-
lizing a large language model (LLM), inspired by
the success of LLMs in regression tasks (Liu et al.,
2023; Enomoto et al., 2024). Specifically, we man-
ually designed a prompt for quality estimation and
employed GPT-4o mini (OpenAI, 2024) to gener-
ate assessment scores multiple times based on this
prompt. We then used either the averaged score
of these generated scores or their weighted sum
based on the generation probability as the final
score. Evaluation experiments were conducted in
both zero-shot and three-shot settings. Noticeably,
we fine-tuned GPT-4o mini using the training data
released at WMT23 (Kocmi et al., 2023) and as-
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sessed its performance.
We first evaluated our systems using the devel-

opment data released at WMT23. The results indi-
cated that the Spearman’s correlations in the zero-
and few-shot settings ranged from 0.2 to 0.4, while
those for the fine-tuned GPT-4o mini ranged from
0.4 to 0.7. Compared to a single generation, the es-
timated score derived from the average or weighted
sum based on multiple output values was found
to perform consistently better. Subsequently, we
evaluated the system based on the fine-tuned GPT-
4o mini using the test data from WMT24. Table 1
presents the results of our system and the base-
line for Task 1 (Rei et al., 2022). The system
achieved Spearman’s correlation scores of 0.712,
0.735, 0.616, and 0.460 in the En-Gu, En-Hi, En-
Ta, and En-Te language pairs, respectively, sur-
passing the baseline system’s performance. We
achieved the 1st place in En-Gu and En-Hi, and 4th
place in En-Ta and En-Te.

2 Related Work

GEMBA (Kocmi and Federmann, 2023) is a trans-
lation quality metric that utilizes a large language
model (LLM). It has been shown to have a high cor-
relation with the human-rated MQM score of the
WMT22 Metrics shared task. Their experiments
covered three language pairs (English to German,
English to Russian, and Chinese to English) of
the WMT22 Metrics shared task using seven GPT
variants from GPT-2 to GPT-4 models. Lu et al.
(2024) investigated various prompts to improve
segment-level evaluation performance. They exper-
imented with Llama2-70B model (Touvron et al.,
2023) and Mixtral-8x7b model (Jiang et al., 2024)
in addition to GPT-3.5-Turbo model, and showed
that the method using GPT-3.5-Turbo had the best
performance. These previous studies highlight the
potential of LLM evaluators as human alternatives.
Our system uses the latest model, GPT-4o mini,
and also estimates quality for more challenging
translations for low-resource languages.

Enomoto et al. (2024) used an LLM to solve the
lexical complexity prediction task. They reported a
bias in the numerical values generated by an LLM
in that certain values occur frequently regardless
of the input. To mitigate the bias and achieve a
more precise numerical output, we run the gener-
ation several times and obtain the final scores by
either average or expectation weighted by genera-
tion probabilities.

3 Methodology

Our system uses LLMs to estimate translation qual-
ity scores. Following GEMBA (Kocmi and Fe-
dermann, 2023), to assess translation quality via
prompting an LLM, the following arguments are
required:

• source language name: {{source language}}

• target language name: {{target language}}

• source sentences: {{src1, ..., srcN}}

• translated sentences: {{hyp1, ..., hypN}}

• few-shot examples: {{examples}} (optional)

We define the instructions to be input into the LLM
as follows:

Please analyze the given source and
translated sentences and output a trans-
lation quality score on a continuous
scale ranging from 0 to 100.
Translation quality should be evaluated
based on both fluency and adequacy.
A score close to 0 indicates a low quality
translation, while a score close to 100
indicates a high quality translation.
Do not provide any explanations or text
apart from the score.

{{examples}}
{{source language}} Sentence: {{srci}}
{{target language}} Sentence: {{hypi}}
Score:

The instruction template is designed to include
a description of the task, the score range, and a
description of the evaluation criteria. To restrict
the output to numerical values only, it is important
to state “Do not provide any explanations or text
apart from the score.” explicitly.

According to Kocmi and Federmann (2023),
there are some numbers that are particularly prone
to output, such as “95”. To mitigate such bias
in the output distribution, the final score is com-
puted from the sampled generated results with
reference to the G-Eval framework (Liu et al.,
2023). Scoremean is the simple average of the
generated scores, while Scoreprob is the score
weighted by the generation probabilities. Let
S = {s1, s2, ..., sn} represent the set of scores
generated by the prompt, and let p(si) be the soft-
max output probability of each generated score.

530



En-Gu En-Hi En-Ta En-Te

Method Setting ρ r τ ρ r τ ρ r τ ρ r τ

Single generation

Zero-shot 0.205 0.501 0.337 0.379 0.434 0.291 0.277 0.514 0.514 0.271 0.280 0.208
Three-shot 0.413 0.491 0.309 0.390 0.400 0.282 0.463 0.420 0.344 0.294 0.305 0.226
Fine-tuned 0.599 0.659 0.453 0.510 0.639 0.367 0.618 0.704 0.453 0.283 0.263 0.205

Multi generation

scoremean

Zero-shot 0.453 0.505 0.328 0.389 0.449 0.277 0.514 0.529 0.373 0.274 0.275 0.193
Three-shot 0.447 0.512 0.319 0.422 0.426 0.294 0.498 0.428 0.358 0.290 0.303 0.205
Fine-tuned 0.680 0.717 0.506 0.564 0.686 0.409 0.661 0.747 0.487 0.392 0.361 0.270

scoreprob
Zero-shot 0.451 0.499 0.323 0.394 0.447 0.275 0.519 0.521 0.368 0.274 0.276 0.190
Three-shot 0.448 0.514 0.319 0.423 0.427 0.295 0.500 0.426 0.358 0.290 0.303 0.202
Fine-tuned 0.683 0.715 0.508 0.568 0.690 0.412 0.663 0.746 0.489 0.399 0.360 0.277

Table 2: Spearman (ρ), Pearson (r) and Kendall (τ ) correlation between the proposed approaches and human DA
judgments of WMT23 dev data. The best Spearman score obtained for each language pair is marked in bold. Single
generation is a prediction method that uses the output value generated only once as the estimated score, and the
other two are methods that calculate the average value or the expected value based on the generation probability,
based on the output values by 20 times generation.

The final scores are calculated using the following
formulae:

scoremean =
1

n

n∑

i=1

si (1)

scoreprob =

n∑

i=1

p(si)× si (2)

In this study, the experiment is conducted with n =
20. Among the generated outputs, non-numeric
tokens and numbers outside the specified range are
excluded from S.

4 Experiments

We conduct experiments to investigate two RQs.
RQ 1: Which methods are more effective in im-
proving performance of low-resource language
QE? RQ 2: How effective are sampling methods
in mitigating numerical output bias?

4.1 Settings

Model We use GPT-4o mini (“gpt-4o-mini-2024-
07-18”) (OpenAI, 2024) for our experiments. It is
priced at 15 cents per million input tokens and 60
cents per million output tokens and more than 60%
cheaper than GPT-3.5 Turbo.

Our system fine-tunes GPT-4o mini. The fine-
tuning process is conducted using OpenAI’s API.

Data For the remaining sections, we only report
results on the WMT23 dev dataset. The examples
used for few-shot prompting are randomly obtained

from the WMT23 training dataset. WMT23 train-
ing data consists of 7,000 sentence pairs in each
language and is also used for fine-tuning.

4.2 Results

Spearman, Pearson, and Kendall correlation coeffi-
cients between predicted and gold scores for each
language pair are shown in Table 2.

4.2.1 Strategies for Low-Resource Languages
For RQ 1, we compare the performance of the three
settings: zero-shot, few-shot prompting, and fine-
tuning. Few-shot in scoremean and scoreprob im-
proved Spearman correlation coefficients slightly
by 0.033 for En-Hi and 0.016 for En-Te, while En-
Gu and En-Ta scores decreased by 0.006 and 0.016
respectively. In other words, the few-shot strategy
is not very effective for low-resource languages.
On the other hand, in the single genaration setting,
En-Gu and En-Ta improved by 0.208 and 0.186,
respectively, indicating that the few-shot is more
effective when the generation times are limited.

Fine-tuning improves performance in almost all
evaluation metrics and is an effective measure for
low-resource languages. Our systems submitted to
the shared task (Table 1) are also the result of the
fine-tuned models.

4.2.2 Strategies for Distributional Bias
For RQ 2, we compare the performance of the
three settings: single generation, scoremean, and
scoreprob. In the fine-tuned model, the difference
in Spearman’s rank correlation coefficient with sin-
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En-Gu En-Hi En-Ta En-Te

Manually 0.451 0.394 0.519 0.274
AutoCoT 0.444 0.387 0.514 0.238

Table 3: Spearman’s rank correlation coefficient be-
tween our predictions in a zero-shot setting using two
different prompt generation methods and human DA
judgments of WMT23 dev data.

gle generation (average of four languages) is 0.072
for scoremean and 0.076 for scoreprob. Compared
to single genaration, the other two sampling meth-
ods performed better, demonstrating the effective-
ness of these methods in mitigating the effects
of bias during generation. The performance of
scoremean and scoreprob is almost equal, and ei-
ther method can be used.

5 Discussion

5.1 Is AutoCoT necessary for G-Eval?

In Chiang and Lee (2023), they find that the auto
Chain-of-Thought (CoT) used in G-Eval does not
always make G-Eval more aligned with human
ratings. In this section, we examine the methods
used to construct the prompt for this task.

To replicate the G-Eval framework (Liu et al.,
2023) procedures, it is necessary to construct an
initial prompt to generate the evaluation steps using
AutoCoT. Specifically, we first manually designed
a prompt that contains the definition of the QE task
and the desired evaluation criteria as follows:

You will be given a source and a trans-
lated sentence. Your task is to rate trans-
lated sentence on one metric. Please
make sure you read and understand these
instructions carefully. Please keep this
document open while reviewing, and re-
fer to it as needed.

Evaluation Criteria:

Translation Quality (0 - 100) - the quality
of a translation based on the adequacy
and fluency of the sentence.

Then, we added a line of “Evaluation Steps:” to
the prompt and let GPT-4 2 generate the following
evaluation steps by CoT automatically:

Evaluation steps:
2We used gpt-4-0613 following Liu et al. (2023)

1. Read the source sentence and the
translated sentence carefully.

2. Evaluate the translated sentence
based on its adequacy and fluency.

- Adequacy: How much of the mean-
ing expressed in the source text is also
expressed in the target text? A score of
100 means all the meaning is transferred,
and 0 means none of it is.

- Fluency: Does the translation sound
like something a native speaker would
say? A score of 100 means it sounds
completely native, and 0 means it doesn’t
sound native at all.

3. Give the translation a score between
0 and 100, where 0 is the worst and 100
is the best.

We compare the performance in a zero-shot set-
ting using prompts created by AutoCoT and those
created manually. As shown in Table 3, manual
prompts performed better than AutoCoT for all lan-
guages. This result follows the findings of Chiang
and Lee (2023), and we decided to use manually
constructed prompts in our systems to get results
that correlated better with human judgment.

5.2 Is it difficult for GPT-4 evaluators to
evaluate Telugu text?

In our results, the performance on Telugu data was
lower than other languages. This may be attributed
to the linguistic complexity of Telugu, which fea-
tures complex noun and verb conjugations, as well
as its status as a low-resource language. Kishore
and Shaik (2024) demonstrated that ChatGPT is
less accurate in Telugu grammar and vocabulary
compared to Gemini. Performance is expected to
improve by using LLMs specialized for each lan-
guage (e.g., Telugu GPT3) rather than relying on a
single, generalized model.

6 Conclusion

Our study demonstrates the efficacy of using a
LLM for sentence-level quality estimation in ma-
chine translation. By leveraging GPT-4o mini, we
achieved improvements over baseline systems in
predicting quality scores for various language pairs.
The fine-tuned GPT-4o mini model exhibited ro-
bust performance in low-resource language QE,

3https://chatgpt.com/g/g-RjoqGo7g0-telugu-gpt
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with Spearman’s correlation scores significantly
higher than those in the zero- and few-shot settings.
These findings emphasize that fine-tuning with an
annotated QE dataset is crucial for enhancing per-
formance in low-resource languages. However, in
practical scenarios, creating and obtaining such
datasets for low-resource languages poses signif-
icant challenges. Therefore, efforts to effectively
improve performance using a small amount of data,
as explored in works like (Lauscher et al., 2020;
Kim and Komachi, 2023), are important directions
for future research.
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Abstract
Quality estimation (QE) is a crucial technique
for evaluating the quality of machine transla-
tions without the need for reference translations.
This paper focuses on Huawei Translation Ser-
vices Center’s (HW-TSC’s) submission to the
sentence-level QE shared task, named LLMs-
enhanced-CrossQE. Our system builds upon
the CrossQE architecture from our submission
from last year, which consists of a multilingual
base model and a task-specific downstream
layer. The model input is a concatenation of
the source and the translated sentences. To en-
hance performance, we fine-tuned and ensem-
bled multiple base models, including XLM-R,
InfoXLM, RemBERT, and CometKiwi. Specif-
ically, we employed two pseudo-data genera-
tion methods: 1) a diverse pseudo-data gen-
eration method based on the corruption-based
data augmentation technique introduced last
year, and 2) a pseudo-data generation method
that simulates machine translation errors using
large language models (LLMs). Our results
demonstrate that the system achieves outstand-
ing performance on sentence-level QE test sets.

1 Introduction

Quality estimation (QE) aims to automatically as-
sess machine translation outputs without requir-
ing reference translations (Specia et al., 2018).
We report the technical details of our approach to
sentence-level quality prediction and fine-grained
error span detection subtasks in the WMT 2024
QE shared task. Our team, Huawei Translation
Services Center (HW-TSC), participated in direct
assessment (DA) score in sentence-level quality
prediction and the fine-grained error span detec-
tion tasks across all language pairs. Fine-tuning
pre-trained language models, which provide rich
semantic information, has become the standard ap-
proach for QE tasks (Rei et al., 2020). In this paper,
we present LLMs-enhanced-CrossQE, HW-TSC’s
system for the sentence-level QE task, which lever-
ages multiple pre-trained language models and data

augmentation techniques. The key aspects of our
system design are summarized as follows:

• Model: We employed our previous year’s ar-
chitecture, CrossQE (Tao et al., 2022), as the
foundation. For every language pair, models
were individually fine-tuned. Additionally, we
used CometKiwi (Rei et al., 2022), a multi-
lingual QE model, and fine-tuned it for single
language pairs.

• Data augmentation: Based on the corruption-
based data generation (CDG) method used last
year (Li et al., 2023), we propose a diverse
CDG (D-CDG) method. Specifically, we gen-
erate more varied corrupted translations by
combining multiple error types. Addition-
ally, we rewrite source sentences using large
language models (LLMs) to create pseudo-
sentences containing errors that closely resem-
ble those produced by machine translation sys-
tems. Finally, we employ a reference-based
QE model to generate pseudo scores.

• Ensemble: For each language pair, we ensem-
ble eight fine-tuned models to achieve opti-
mal performance. These checkpoints origi-
nated from four base models: XLM-R (Con-
neau et al., 2020), InfoXLM (Chi et al.,
2021), RemBERT (Chung et al., 2020), and
CometKiwi (Rei et al., 2022), and three train-
ing dataset configurations: original dataset,
augmented dataset, and augmented dataset
followed by the original dataset. The ensem-
ble weight for each checkpoint was optimized
with Optuna (Akiba et al., 2019). On aver-
age, eight checkpoints were used per language
pair after optimization. Additionally, we ex-
perimented with a naive weight ensemble ap-
proach based on the method proposed by Ya-
dav et al. (2024), but it did not yield significant
improvements.
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Our system ranks first in the English-Tamil di-
rection and second in several other directions in the
direct assessment quality estimation task (Zerva
et al., 2024). It significantly outperforms the base-
line given by the competition organizers by a large
margin. Additionally, we provide detailed results
of each model with and without data augmenta-
tion in Table 3. To analyze the importance of each
model in the ensemble, we present the ensemble
weights in Figure 2 and 1. It is worth noting that
the models fine-tuned with the proposed data aug-
mentation technique were assigned higher weights
in the ensemble.

2 Background

2.1 Task Description 1

Sentence-level QE with direct assessment (DA)
anotations: The goal is to predict the quality score
for each source-target sentence pair. The golden-
truth quality scores were obtained from human
translators who rated each translation from 0 to
100. The scores from three or four translators were
normalized and averaged to get the final score. This
year’s QE shared task has four language pairs with
DA quality scores: English-Hindi (en-hi), English-
Tamil (en-ta), English-Telegu (en-te) and English-
Gujarati (en-gu). All languages have just 7,000
training samples.

Fine-grained error span detection: Partici-
pants of this task need to identify the error span
(start and end indices) and the error severity (major
or minor).

2.2 Base Models
• XLM-R (Conneau et al., 2020): A

transformer-based masked language model
trained on a massive multilingual corpus with
more than two terabytes of data.

• InfoXLM (Chi et al., 2021): A cross-lingual
pre-trained model that leverages multilingual
masked language modeling, translation lan-
guage modeling, and cross-lingual contrast
learning.

• RemBERT (Chung et al., 2020): A rebal-
anced mBERT model with factorization of the
embedding layers. The input embeddings are
smaller and kept for fine-tuning, while the out-
put embeddings are larger and discarded after
pre-training.

1https://wmt-qe-task.github.io/

• CometKiwi (Rei et al., 2022): A multilingual
reference-free QE model that uses a regres-
sion approach and is built on top of InfoXLM.
It has been trained on direct assessments from
WMT17 to WMT20 and the MLQE-PE cor-
pus.

3 Method

3.1 Model Architecture

3.1.1 Task1: Sentence-level QE with direct
assessment (DA)

As shown in Equation 1 and 2, the embeddings
of source sentence s and translated sentence t are
concatenated in both orders [s, t] and [t, s] to form
the input of pre-trained model fbase. The output
token-level embedding sequences are processed by
an average pooling layer to obtain vector repre-
sentations hs1 and ht1 for source and translation
respectively. These feature vectors are enhanced
by taking their absolute difference and element-
wise multiplication, as shown in Equation 3 and 4.
Finally, all feature vectors are concatenated and
fed into a regression head that predicts the final
score y (Equation 5). This architecture enables
information exchange between source and trans-
lated sentences at an early stage of the network
and has proven to be significantly more effective
than combining cross-lingual information after the
pre-trained model.

hs1,ht1 = fbase([s, t]) (1)

ht2,hs2 = fbase([t, s]) (2)

f1 = [hs1,ht1, |hs1 − ht1|,hs1 ⊙ ht1] (3)

f2 = [hs2,ht2, |hs2 − ht2|,hs2 ⊙ ht2] (4)

y = fscore([f1, f2]) (5)

3.1.2 Task2: Error span detection
For this task, we speculate that the understand-
ing ability of large models may be helpful to the
task, so we use the TowerInstruct-7B-v0.2 (Alves
et al., 2024) model and the GPT-4o-mini (Islam
and Moushi, 2024) model to cope with this task.

3.2 Data Augmentation

In this year’s QE shared task, we adapted two data
augmentation methods. 1) Text Editing, we im-
plemented a D-CDG method based on the CDG
proposed last year (Li et al., 2023), in which we
constructed more diverse translation error data by
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Method Description
Deletion A random word in the translation was deleted.
Insertion A random word in the translation was selected and inserted in a random position.
Substitution A random word was replaced with another word in the translation.

Table 1: Three available text editing methods.

Method
You are a Gujarati to English machine translation system. I will give you a correct parallel data pair,
rewrite the target language (English) sentence with mistakes that you may have made while doing the
translation, including but not limited to incorrect words, adding extra words, Omitting crucial words,
wrong numbers or dates, deleting words, exchanging the position of two words, wrong numbers,
incorrect punctuation, incorrect capitalization, grammar errors. The correct parallel data is: "$SRC",
"$TGT". please just output the target language with 20%, 35%, 50% mistake token of the target
length.

Table 2: A prompt example for LLMs to generate pseudo QE training data based on a sample from the Gujarati to
English QE training set, $SRC and $TGT represent the source and target languages in the sample, respectively.

incorporating multiple text editing approaches. 2)
LLMs-generated pseudo-data. We generated trans-
lation data with errors more similar to those pro-
duced by machine translation systems using GPT-
4o-mini and constructed parallel data pairs contain-
ing translation errors through the machine transla-
tion system.

For text editing, we employed three methods
proposed last year to generate translation errors:
Deletion, Insertion, and Substitution. Notably,
this year, we generated translation sentences with
more diverse translation errors by combining these
three text editing methods with a certain probability.
Specifically, each time we performed a text edit,
we modified the original text with equal probability
by sampling a text editing method from a subset
of the three available text editing methods. Addi-
tionally, we also created a version of pseudo-data
by directly translating the source language into the
target language and then back-translating it.

For LLM-generated pseudo-data, we constructed
a prompt using the GPT-4o-mini to generate a
modified source language sentence multiple times
with different proportions, correlating with the
number of tokens in the sentence(see Table 2).
This approach yielded multiple modified source
language sentences containing error tokens that
closely resemble those generated by translation
systems. These modified sentences were then trans-
lated into the target language using a translation
system. Similar to the text editing method, we
scored the pseudo-parallel translation pairs using a

reference-based QE model 2 to create pseudo QE
training data. It is worth noting that we constructed
the scaling factor as the ratio between the corrupted
translation score and the uncorrupted translation
score (fQE(s,t̂,t)

fQE(s,t,t) ), following the approach from last
year.

4 Experiments

4.1 Experimental setups
Our system is built on top of the COMET package 3.
We fine-tuned four pre-trained models, namely
XLM-R, InfoXLM, RemBERT and CometKiWi 4,
on a single Nvidia Tesla V100 GPU with a batch
size of 4, gradient accumulation of 8 and mean
square error loss function. We stopped the training
when there was no improvement in terms of Spear-
man correlation on the dev set for five test runs. For
each language pair, the augmented dataset from
text editing method, which contains more than ten
times data than the original dataset, and the aug-
mented dataset from LLMs, which contains about
three times data than the original dataset, were all
pre-generated instead of generated on-the-fly to
improve training efficiency. Following last year’s
conclusion that the pseudo-data is more effective
compared with the original data, we fine-tuned four
base models by pseudo-data directly. The train-
ing step took around 10 hours with the augmented

2https://huggingface.co/Unbabel/
wmt22-comet-da

3https://github.com/Unbabel/COMET
4https://huggingface.co/Unbabel/

wmt22-cometkiwi-da
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Method en-hi en-ta en-te en-gu Avg.
XLM-R 0.616 0.663 0.434 0.643 0.589

+ aug (D-CDG) 0.614 (-.002) 0.675 (+.012) 0.449 (+.015) 0.657 (+.014) 0.599 (+.010)
+ aug (LLMs) 0.469 (-.147) 0.617 (-.046) 0.412 (-.022) 0.603 (-.040) 0.525 (-.064)

InfoXLM 0.595 0.670 0.443 0.664 0.593
+ aug (D-CDG) 0.608 (+.013) 0.657 (-.013) 0.465 (+.022) 0.671 (+.007) 0.600 (+.007)
+ aug (LLMs) 0.478 (-.117) 0.614 (-.056) 0.418 (-.025) 0.629 (-.035) 0.535 (-.058)

RemBERT 0.606 0.671 0.431 0.688 0.599
+ aug (D-CDG) 0.604 (-.002) 0.672 (+.001) 0.432 (+.001) 0.667 (-.021) 0.594 (-.005)
+ aug (LLMs) 0.458 (-.148) 0.606 (-.065) 0.413 (-.018) 0.617 (-.071) 0.524 (-.075)

CometKiwi 0.590 0.685 0.451 0.691 0.604
+ aug (D-CDG) 0.594 (+.004) 0.683 (-.002) 0.465 (+.014) 0.696 (+.005) 0.610 (+.006)
+ aug (LLMs) 0.475 (-.115) 0.630 (-.055) 0.420 (-.031) 0.662 (-.029) 0.547 (-.057)

Ensemble (D-CDG) 0.652 \ 0.719 0.716 \ 0.675 0.483 \ 0.482 0.717 \ 0.678 0.642 \ 0.637
Ensemble (LLMs) - 0.712 \ 0.683 0.48 \ 0.474 0.714 \ 0.686 0.635 \ 0.614
Ensemble (submit) 0.-79 \ 0.719 0.-79 \ 0.683 0.-79 \ 0.482 0.-79 \ 0.686 0.-79 \ 0.643

Table 3: Results for sentence-level QE in terms of Spearman correlation. We report the performance of using
D-CDG and LLM-generated pseudo-data as a data augmentation approach(aug). Except for the last three rows
which show the results on the dev \ test set, other results were based on the dev set.

Base model(average): 42.5

Aug model(average): 57.5
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Figure 1: The ensemble weights for each base model.

dataset.
With four base models and two data augmenta-

tion approaches, we obtained eight checkpoints for
each language pair. We ensembled these check-
points by taking the weighted average of the pre-
dicted scores. The weights were optimized using
Optuna, an automatic hyperparameter search frame-
work. We used the Spearman correlation as the
optimization objective, setting the step size to 0.05,
and conducted 1000 trials on the dev set.

4.2 Results

4.2.1 Task1

The results of sentence-level QE in terms of Spear-
man correlation are shown in Table 3. Without data
augmentation, CometKiwi has the best average cor-
relation of 0.604, while XLM-R, InfoXLM, and

RemBERT are close behind with around 0.590.
For the two data augmentation methods, we

found that the D-CDG approach led to improve-
ments across nearly all languages and models, as
shown in Table 3. Additionally, this approach out-
performed the original CDG method5. This sug-
gests that rewriting a sentence by combining mul-
tiple diverse text editing methods within the same
sentence is more effective than using only a single
text editing method. Instead, for the pseudo-data
generated by LLMs, we did not observe a positive
effect on the dev set in all language directions, as
shown in Table 3.

Furthermore, in the model ensemble, we ob-
served that models with the D-CDG approach
played a more important role. Specifically, the In-

5Reported in Table 1 of last year’s paper
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Figure 2: The ensemble weights for different training dataset configurations. ‘w/o aug’ and ‘+ aug’ mean using the
original or augmented dataset respectively. ‘+ aug & finetune’ means training on the augmented dataset and then
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Method en-de en-hi en-es
F1 recall precison F1 recall precison F1 recall precison

Tower-Instruct-7B 0.178 0.181 0.175 0.015 0.008 0.300 0.118 0.082 0.209
GPT-4o-mini 0.119 0.315 0.073 0.361 0.398 0.331 0.146 0.249 0.103

Baseline (test set) 0.192 - - 0.481 - - 0.161 - -
Ensemble (test set) 0.178 0.181 0.175 0.361 0.398 0.331 0.141 0.227 0.102

Table 4: Results for error span detection in terms of F1 score.

foXLM model with D-CDG was assigned a larger
weight across all languages, as shown in Figure 1.
We also noticed that the assignment of higher
weights to models with D-CDG in the ensemble
correlated with the base model’s overall impor-
tance, if a base model received substantial attention,
the corresponding model with D-CDG also tended
to receive more weight.

Notably, models with LLM-generated pseudo-
data were not assigned higher weights in the ensem-
ble 2. However, in the test set, models with LLM-
generated pseudo-data achieved better Spearman
correlation scores in two languages(en-ta and en-
gu). This may be attributed to the fact that LLMs
generate more diverse pseudo-data, thereby enhanc-
ing the ensemble model’s generalization ability. On
the other hand, there may be a large gap between
the dev set and the test set, the model with text
editing data is overfitted to the dev set, while the
models with LLMs pseudo-data introduce some
regularization ability, which makes the ensemble
model achieve better results on some languages.

This may be attributed to the fact that LLMs gen-
erate more diverse pseudo-data, thereby enhancing
the ensemble model’s generalization ability. Addi-
tionally, the discrepancy between the development
set and the test set might have caused overfitting in

models trained with text editing data. In contrast,
models incorporating LLM-generated pseudo-data
introduced a regularization effect, enabling the en-
semble model to achieve better results in certain
languages.

4.2.2 Task2
The results for error span detection are displayed
in Table 4. In the Table, we can see that the method
of using the large language model alone to detect
the error segment is lower than the baseline based
on cometkiwi, but it is not far from it. In addition,
we can see that the method based on GPT-4o-mini
is much higher than the method without LLMs
in recall. That’s enough to see the potential of the
large language models, if human preferences can be
injected for fine tuning, there is a good chance that
large language models will outperform cometkiwi-
based methods.

5 Conclusion

This paper mainly presents HW-TSC’s sentence-
level QE system called LLMs-enhanced-CrossQE.
Using our previous year’s model CrossQE as the
foundation, we conducted comprehensive exper-
iments with various pre-trained models. To fur-
ther enhance the robustness of all language pairs
and provide various checkpoints for model ensem-
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ble, we introduced a diverse pseudo-data genera-
tion method based on the corruption-based data
augmentation technique proposed last year. Our
system demonstrates strong performance across all
language pairs with DA annotations in the sentence-
level QE task. In the future, we plan to explore the
use of LLMs to generate more diverse QE pseudo-
data using more effective in-context learning tech-
niques, such as chain-of-thought (CoT) prompt-
ing, or by transferring knowledge from LLMs to
QE models through direct utilization of LLM pa-
rameters. Additionally, this paper presents only
a brief investigation of the error span detection
task. Therefore, we plan to further explore word-
level and document-level QE tasks, which can im-
prove the interpretability of QE and hold significant
promise in the era of LLMs.
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Abstract

The paper presents the submission by HW-
TSC in the WMT 2024 Quality-informed Auto-
matic Post Editing (QEAPE) shared task for the
English-Hindi (En-Hi) and English-Tamil (En-
Ta) language pair. We use LLM for En-Hi and
Transformer for EN-ta respectively. For LLM,
we first continue pertrain the Llama3, and then
use the real APE data to SFT the pre-trained
LLM. As for the transformer in En-Ta, we first
pre-train a Machine Translation (MT) model
by utilizing MT data collected from the web.
Then, we fine-tune the model by employing
real APE data. We also use the data augmenta-
tion method to enhance our model. Specifically,
we incorporate candidate translations obtained
from an external Machine Translation (MT)
system. Given that APE systems tend to exhibit
a tendency of ‘over-correction’, we employ a
sentence-level Quality Estimation (QE) system
to select the final output, deciding between the
original translation and the corresponding out-
put generated by the APE model. Our experi-
ments demonstrate that pre-trained MT models
are effective when being fine-tuned with the
APE corpus of a limited size, and the perfor-
mance can be further improved with external
MT augmentation. our approach improves the
HTER by -15.99 points and -0.47 points on
En-Hi and En-Ta, respectively.

1 Introduction

Automatic Post-Editing (APE) is a post-processing
task in a Machine Translation (MT) workflow, aim-
ing to automatically identify and correct errors in
MT outputs (Chatterjee et al., 2020a). WMT has
been holding APE task competitions in different
languages and fields since 2015. Different from
previous years, this year’s APE task is a subtask
of the QE task, named Quality-informed automatic
post-editing (QEAPE) (Zerva et al., 2024). It pro-
poses to combine quality estimation and automatic

∗Work done during internship at Huawei

post-editing in order to correct the output of ma-
chine translation. Participants are provided with
a training set comprising 7,000 instances, a devel-
opment set, and a test set, with each containing
1,000 instances. Each dataset consists of triplets
— the source (src) sentences, the corresponding
machine-translation (mt) outputs, and the human
post-edited versions (pe) of the translations along
with sentence-level QE annotations. Additionally,
participants are permitted to utilize any additional
data for systems training.

Typically, training an APE model requires large
amount of training data. However, obtaining pe is
an expensive task in terms of time and money. As
a result, there exists a scarcity of large-scale APE
datasets.

To address this challenge, numerous data aug-
mentation techniques have been proposed (Junczys-
Dowmunt and Grundkiewicz, 2016; Negri et al.,
2018; Lee et al., 2020; Wei et al., 2020; Zhang
et al., 2023). Wei et al. (2020) augment the APE
training data with translations generated using a
different MT system. Huang et al. (2022) train an
external MT to obtain more datasets consistent with
APE tasks. They also use Google translation to
back translate the post-edits in the training set. De-
oghare and Bhattacharyya (2022) augment the APE
data by generating phrase-level APE triplets using
SMT phrase tables. To ensure the quality of the
synthetic data, they employ the LaBSE technique
(Feng et al., 2022) to filter low-quality triplets.

We first collect our pre-training MT data from
NLLB (Team et al., 2022), OpenSubtitles 1,
TED2020 (Reimers and Gurevych, 2020), etc. To
ensure the quality of the MT data, we use the
LaBSE technique (Feng et al., 2022) and filter low-
quality data. In our method, we use Google transla-
tion to back translate the post-edits in the training
set. Subsequently, our dataset is structured as fol-
lows: the concatenation of source sentence, back

1https://www.opensubtitles.org/en/search/subs
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translation and machine translation as the input,
while the post-edits serve as the reference output.

Chatterjee et al. (2020b) have proven that APE
systems often make unnecessary edits to translation
output. To mitigate this issue of over-correction,
we employ a sentence-level QE system to deter-
mine the final output, selecting between the APE
system’s output and the original machine-translated
(mt) version.

Reflecting on the historical development, 2023
is recognized as the inaugural year for large-scale
models, with researchers transitioning a variety
of tasks to these models, including APE. Notable
studies include those that combine Neural Machine
Translation (NMT) with Large Language Models
(LLM) for APE (Koneru et al., 2024), and com-
prehensive multi-stage, multilingual large models
such as Tower (Alves et al., 2024b), which inte-
grate both MT and APE. Drawing inspiration from
Tower, our evaluation utilizes the continued pre-
training (CPT) and supervised fine-tuning (SFT) to
explore the potential of LLM.

When being evaluated on the test set, our ap-
proach improves the HTER (Snover et al., 2006)
by -15.99 points and -0.47 points on En-Hi and
En-Ta, respectively.

The contributions of our work are as follows:

• We filter low-quality MT data from the col-
lected data using LaBSE-based filtering.

• We propose an APE paradigm based on LLM,
including CPT and SFT.

• We utilize Google translation to back translate
the post-edits to get src’ for data augmenta-
tion.

• We employ a sentence-level QE system to se-
lect the most appropriate output, choosing be-
tween the APE-generated output and the orig-
inal translation.

2 Related Work

Last year’s WMT23 APE shard task mainly focuses
on transfer learning and data augmentation. Yu
et al. (2023) use a Transformer pre-trained on the
provided synthetic APE data and then fine-tuned
on the real APE data. Additionally, they utilize an
external MT system to generate back-translations
(with Google Translate 2 run on the post-edits in

2https://translate.google.com

the training set). They also integrate En-Mr parallel
sentences from FLORES-200 (Costa-jussà et al.,
2022). R-Drop (Liang et al., 2021), which regular-
izes the training inconsistency induced by dropout,
is used to mitigate overfitting during the training
phase. Besides, they use a sentence-level QE sys-
tem to select the final output between the APE-
generated output and the original translation.

Moon et al. (2023) center on data filtering tech-
niques. With a focus on removing potentially harm-
ful material from a model training perspective, the
proposed method concentrates on eliminating the
two extremes of the training data distribution: the
(near-) perfect MT outputs on one side, and those
that require complete rewriting on the other.

Another team "kaistai" is inspired by the recent
surge of (LLMs) that have been successfully ap-
plied in a variety of language generation tasks.
They use an LLM with specific prompts designed
to generate either (a) post-edits or (b) post-edits
along with the rationales behind them.

With experience in previous competitions, we
also utilize an external MT system to generate back-
translations in our transformer-based system. Ad-
ditionally, we adopt a sentence-level QE system to
select the final output.

3 Dataset

3.1 Data source

We first collect our MT data from the web, mainly
from NLLB, OpenSubtitles, TED2020, etc. Then
we filter the low-quality data using LABSE. After
filtering, we get 3M En-Hi and 3M En-Ta parallel
MT data. We first use our filtered MT data with 3M
instances to pre-train our model. Then, we use the
WMT24 official En-Hi and En-Ta APE datasets for
fine-tuning, which consists of a training set and a
development set. The training set for both language
directions contains 7,000 APE triplets.

4 Method

4.1 LABSE filter

Before using the collected MT data to pretrain our
model, we filter the low-quality parallel data by
using the LaBSE-based filtering (Feng et al., 2022).
We do this to ensure the quality of the MT data. To
do so, we first generate embeddings of the En and
Hi/Ta using the LaBSE model and normalize them.
Then, we compute the cosine similarity between
these normalized embeddings. We select the top
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70% similarity parallel sentences as our filtered MT
data.

4.2 LLM CPT + SFT

Due to the generative nature of the APE task, we
believe that LLMs are well-suited for this purpose.
Based on human evaluations, we have selected the
Llama3-8B-Instruct model, which possesses pro-
ficiency in Hindi, as our foundational model. In-
spired by the TowerInstruct (Alves et al., 2024a),
we adopted a technical approach that combines
CPT and SFT. Specifically, during the CPT phase,
we utilized 3 million English-Hindi parallel cor-
pora and employed LoRA training techniques. In
the SFT phase, we created a customized prompt
that, along with the training set provided by the
organizers, constituted our SFT training dataset.
Our prompt is as follows: "You are a post-editor.
You improve translations from English to Hindi
using the English source and Hindi translation. Do
not provide any explanation or correction." The
training paradigm is structured as [prompt: src
<en2hi> mt <ape> response], where the response
corresponds to the labels predicted by the model.

4.3 Fine-tuned Transformer

We basically treat the APE task as an NMT-like
problem, which takes src and mt as input and gener-
ates pe autoregressively. Following previous works,
we use a special token <s> to concatenate src and
mt to generate the input sentence: [src, <s>, mt],
while the target sentence is pe. Initially, we pre-
train the MT model using the standard Transformer
(Vaswani et al., 2017) structure on 3M En-Ta MT
training data. Furthermore, we fine-tune the MT
model using the APE dataset with the APE train-
ing objective. To further solve the problem of data
scarcity, following (Yu et al., 2023), we use the
Google translation system to create the src’ from
the provided pe text. We simply concatenate the
src’ with the original src and mt to form the new
input: [src, <s>, src’, <s>, mt]. Then, we use
it in the same way as before, aiming to have the
model learn complementary information from src
and src’. During inference, the same input [src,
<s>, src’, <s>, mt] is employed to generate the out-
put, thereby enabling the utilization of the external
information derived from src’. Since there is no pe
during inference, we translate the given mt into src’
using Google Translate.

Figure 1: This figure, adapted from (Vaswani et al.,
2017) shows the architecture of our model, where mt
and augmented src’ are concatenated with src before be-
ing input into the encoder, and post-edits are generated
with the decoder.

4.4 Sentence-Level Quality Estimation
We use wmt22-cometkiwi-da (Rei et al., 2022) as
our sentence-level QE model, which is a COMET
quality estimation model. This model can be used
for reference-free MT evaluation. It receives a
source sentence and the respective translation and
returns a single score between 0 and 1 that reflects
the quality of the translation, where 1 represents
a perfect translation. We use this model to rate
both the original machine translation and the output
generated by our APE system. We then compare
the ratings for both sequences and select the one
with a higher rating as the final output.

5 Experiment

5.1 Settings
Our transformer model on En-Ta is implemented
with fairseq (Ott et al., 2019). Note that the vocabu-
lary and encoder/decoder embeddings of our model
are shared between two languages and contain 30K
subtokens. We use the batch size of 30,720 to-
kens in the pre-training stage and 8,192 tokens in
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System
En-Hi En-Ta

BLEU↑ HTER↓ ChrF↑ COMET↑ BLEU↑ HTER↓ ChrF↑ COMET↑
Baseline (Do nothing) 39.28 46.36 59.48 0.81 70.16 24.71 81.80 0.91

Ours 54.50 30.37 71.06 0.85 69.64 24.24 82.36 0.92

swetaagrawal 58.38 27.08 73.45 0.86 70.05 24.54 82.30 0.92

Table 1: Results on the WMT24 QE-APE En-Hi and En-Ta test set. A situation with a higher BLEU score but a
lower HTER indicates a better result. The official primary evaluation metric for this task is HTER.

the fine-tuning stage. We leverage FP16 (mixed
precision) training technique to accelerate training
process. In all stages, we apply the Adam opti-
mizer(Kingma and Ba, 2015) with β1 = 0.9, β2 =
0.98 to train the model, where the inverse square
root schedule algorithm and warmup strategy are
adopted for the learning rate. Concretely, We use
a learning rate of 5e-4 with 20k warm-up steps in
the pre-training stage and a learning rate of 5e-5
with 4k warm-up steps in the fine-tuning stage. Be-
sides, we set the dropout to 0.1 in the pre-training
stage, 0.3 in the fine-tuning stage, and the value
of label smoothing to 0.1 in all stages. Early stop-
ping is adopted with patience 10 and 30 epochs
during pre-training and fine-tuning, respectively.
During inference, we use beam search with a beam
size of 10. Finally, We employ HTER (Snover
et al., 2006), BLEU (Papineni et al., 2002), ChrF
(Popovic, 2015), and COMET (Rei et al., 2022) as
the evaluation metrics.

Our LLM on En-Hi is implemented with Llama-
Factory(Zheng et al., 2024). The base model we
used is Llama3-8B-Instruction. During the CPT
phase, the batch size is set to 256, the learning rate
to 1e-4, and training runs for 2 epochs with a pre-
cision of bf16. The maximum sequence length is
512 and pre-training is conducted using the LoRA
method with a LoRA rank of 64.In the SFT phase,
the batch size remains 256, the learning rate is ad-
justed to 1e-5, and training extends to 8 epochs
with bf16 precision. We employ the AdamW op-
timizer, maintain a maximum sequence length of
512, and utilize PyTorch full_shard for training.

All our transformer models are trained on a
Nvidia Tesla V100 GPU with 32GB memory and
our LLMs are trained on 64 D910B with 32GB
memory.

5.2 Result
Table 1 shows the experimental results evaluated
on the test set, where the baseline result is produced
by directly calculating scores between the provided

MT and PE. We outperform the baseline on HTER
for -15.99 and -0.47 points on the En-Hi and En-Ta
language pair.

System
En-Hi

BLEU↑ HTER↓
Baseline (Do nothing) 30.52 58.44

Pretrain+finetune 49.68 36.01
+External MT 49.01 37.16

+Sentence-level QE 39.13 43.77

Table 2: Results on the WMT24 QE-APE En-Hi devel-
opment set.

System
En->Ta

BLEU↑ HTER↓
Baseline (Do nothing) 65.31 29.63

Pretrain+finetune 26.33 57.12

+External MT 33.80 45.31

+Sentence-level QE 66.11 27.66

Table 3: Results on the WMT24 QE-APE En-Ta devel-
opment set.

Table 2 shows the En-Hi experimental results
evaluated on the dev set. The baseline denotes
the test MT result. As illustrated in table 2, the
HTER decreased from 58.44 to 36.01 after ap-
plying CPT+SFT, reflecting a reduction of 22.43.
However, no performance improvement was ob-
served with the addition of back-translation data.
We hypothesize that this is due to the sufficiently
robust performance of the CPT+SFT, which di-
minishes the impact of the back-translation data
on further enhancement. Upon integrating QE la-
bels, the HTER increased to 43.77 compared with
CPT+SFT, an increase of 7.76. We think the QE la-
bel may not be accurate enough in En-Hi, resulting
in performance loss.
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Table 3 shows the En-Ta experimental results
evaluated on the dev set. The first experiment
is performed by fine-tuning all parameters of the
pre-trained Transformer on the official training set,
which increases by 27.49 in HTER compared with
the baseline. Due to the lack of high-quality En-Ta
MT data, the pre-training MT datasets we collected
were mostly synthetic and of poor quality. This
hinders the capabilities of MT models, which fur-
ther results in fine-tuned APE models that also
perform poorly. The experiment of adding external
MT for data augmentation shows some improve-
ment in performance. Toward the end, we utilize a
sentence-level QE system to rate both the original
translation and the APE output. We then select one
of them with a higher rating as the final output of
our APE system. With the combination of the APE
model and sentence-level QE system, we see that
the HTER decreases to 27.66, and the BLEU score
increases to 66.11 points.

6 Conclusion

This paper presents our APE system submitted to
the WMT 2024 QEAPE En-Hi and EN-Ta task.
In our approach, we first filter low-quality MT
data from the collected data using LaBSE-based
filtering. Then we employ the data augmentation
method to build the [src, <s>, src’, <s>, mt] ad-
ditional training datasets. Besides, We propose an
APE paradigm based on LLM, including CPT and
SFT. Moreover, we explore the sentence-level QE
system to discard low-quality APE outputs. Evalu-
ation of our APE system shows that our approach
achieves gains on the WMT-24 APE development
and test sets.
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Abstract

In this paper, we describe the process of cre-
ating the FLORES+ datasets for several Ro-
mance languages spoken in Spain, namely
Aragonese, Aranese, Asturian, and Valencian.
The Aragonese and Aranese datasets are en-
tirely new additions to the FLORES+ multi-
lingual benchmark. An initial version of the
Asturian dataset was already available in FLO-
RES+, and our work focused on a thorough
revision. Similarly, FLORES+ included a Cata-
lan dataset, which we adapted to the Valencian
variety spoken in the Valencian Community.
The development of the Aragonese, Aranese,
and revised Asturian FLORES+ datasets was
undertaken as part of a WMT24 shared task
on translation into low-resource languages of
Spain.

1 Introduction

Although notable advances have been reported in
the realm of machine translation (MT) in recent
years, performance for the so-called low-resource
languages (Ranathunga et al., 2023) still lags be-
hind that of languages with more extensive lin-
guistic resources. Increasing the availability of
such resources is a key factor for enabling MT to
progressively and ultimately cover all languages
in the world. Several relevant initiatives, such
as FLORES-101 (Goyal et al., 2022), FLORES-
200 (Costa-jussà et al., 2024), Seed (Maillard et al.,
2023), and NTREX (Federmann et al., 2022), have
recently addressed this challenge by providing mul-
tilingual datasets covering up to 200 languages.
While these datasets were originally created as part
of other projects, the Open Language Data Initia-
tive1 (OLDI) now leads a collective endeavor to ex-

1https://oldi.org

Figure 1: Some of the languages of Spain: Span-
ish, Catalan, Galician, Basque, Asturian, Aragonese
and Aranese. The language names listed are shown
in the corresponding colors of their regions on the
map. Note that Spanish is spoken throughout the en-
tire country, but the map highlights the regions where
other languages are co-official or regionally predomi-
nant. [Source: Wikimedia Commons, https://commons.
wikimedia.org/wiki/File:Spain_languages.svg]

pand the number of supported languages. In partic-
ular, a shared task was proposed to extend OLDI’s
open datasets to more languages for the Ninth Con-
ference on Machine Translation (WMT24).2 This
paper presents our efforts to extend the OLDI’s
FLORES+ dataset to four low-resource Romance
languages spoken in Spain as part of this task,
namely Aragonese, Aranese, Asturian, and Valen-
cian. The resulting datasets can be downloaded
from the repository of the PILAR corpus (Galiano-
Jiménez et al., 2024).3

Most languages spoken in Spain belong to the
Romance language family, except for Basque,
which is a language isolate with no known genetic

2https://www2.statmt.org/wmt24/open-data.html
3https://github.com/transducens/PILAR
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relationship to any other language. Among the
languages of Spain, Spanish is the only one with
official status across the entire country. Other lan-
guages, including Catalan (primarily spoken in Cat-
alonia, the Valencian Community, and the Balearic
Islands, with a few thousand speakers in Aragon),
Galician (mainly spoken in Galicia and some ad-
jacent areas across the border), and Basque (spo-
ken in the Basque Country and parts of Navarre),
have official status in their respective autonomous
regions (in certain areas for Navarre, and not in
Aragon for Catalan). Additionally, Aranese is offi-
cial in the Val d’Aran in accordance with the Statute
of Autonomy of Catalonia. However, Asturian and
Aragonese do not have official status in their re-
spective regions, though they are recognized and
protected as cultural heritage.4 The Acadèmia Va-
lenciana de la Llengua5 (AVL) considers Valencian
to be an alternative name for the Catalan language,
as well as the term used to refer specifically to the
variety of this language spoken in the Valencian
Community.

Figure 1 illustrates the geographical distribution
of these languages, while Table 1 provides esti-
mates of their number of speakers in Spain. It
is important to note that Spanish is spoken na-
tionwide, while proficiency in regional languages
varies among people in bilingual or diglossic areas.

We present our contribution to the FLORES+
benchmark,6 focusing on four Romance languages
spoken in Spain. Our target languages are
Aragonese, Asturian, Aranese, and Valencian.

4It is also worth noting that there are other languages in
Spain that could be considered, but there is less consensus
on whether they are part of an enclosing language or distinct
languages on their own, debates that echo the famous saying
attributed to sociolinguist Max Weinreich that “a language is
a dialect with an army and a navy.” For example, Eonavian
or Galician-Asturian is a set of Romance dialects that has
been classified either as northeastern varieties of Galician, as
a linguistic group of its own, or as a transitional dialect be-
tween western Asturian and Galician. Another example is the
Leonese language, which is currently spoken in the northern
and western parts of the historical region of León in Spain
(the modern provinces of León, Zamora, and Salamanca).
Leonese, however, is considered part of the Asturleonese
linguistic group, along with the dialects of Asturian. Sim-
ilarly, Fala (spoken in the northwestern part of Extremadura)
and Cantabrian also exhibit this ambiguity being classified,
depending on the perspective, as distinct languages, hybrid
dialects, or intermediate linguistic varieties.

5https://www.avl.gva.es
6FLORES+ is OLDI’s evaluation benchmark for multi-

lingual machine translation, building upon the FLORES-200
benchmark (Costa-jussà et al., 2024), which spans over 200
languages and comprises 2 009 sentences split into develop-
ment (dev) and devtest sets. Texts come from English Wiki-
media (more exactly, Wikinews, Wikijunior and Wikivoyage).

These languages were chosen due to the evident so-
cial and governmental interest in preserving them.
For Asturian, there are ongoing efforts to achieve
official language status in Asturias. In contrast,
Aranese is already an official language in the small
central Pyrenees valley where it is moslty spoken,
although it has very few speakers and limited tex-
tual resources. Aragonese is recognized and pro-
tected in Aragon as a heritage language, yet polit-
ical support for granting it official status remains
limited. Lastly, Valencian, a variant of Catalan
with notable lexical differences, was included be-
cause having MT systems generate it directly rather
than adapting from Catalan significantly reduces
the need for additional post-editing.

2 Target Languages Overview

This section provides a brief overview of the lan-
guages covered in this paper.

2.1 The Aragonese Language

Aragonese is a Romance language spoken in the
Pyrenees valleys of Aragon, primarily in the co-
marcas of Somontano de Barbastro, Jacetania,
Alto Gállego, Sobrarbe, Ribagorza and Hoya de
Huesca/Plana de Uesca.

Until recently, Aragonese has had several al-
ternative orthographic norms, none of them offi-
cial. In 1987, a number of associations organized
a congress where a quasi-phonetic spelling system
for Aragonese was approved, called Normas Grafi-
cas de l’Aragonés. It was commonly used in the
subsequent two decades. The Sociedat de Lingüis-
tica Aragonesa (SLA, Aragonese Linguistic Soci-
ety), an association established in 2004, published
a set of spelling rules (SLA rules) in 2006 based
on the written tradition of Medieval Aragonese.
In 2010, the Estudio de Filología Aragonesa –
Academia de l’Aragonés (EFA-ACAR), a private
entity created by the II Congress on Aragonese
Language, approved and published the Propuesta
Ortografica de l’Academia de l’Aragonés, more
aligned with etymology. Finally, the Academia
Aragonesa de la Lengua7 (AAL, Aragonese Lan-
guage Academy), a public body created by the Law
of the Languages of Aragon, was established in
2021, and approved in April 2023 the standard
orthographic norm for Aragonese. This standard
orthography has been adopted by associations (in-
cluding EFA-ACAR) as well as by the main pub-

7https://www.academiaaragonesadelalengua.org
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Language Speakers Bibliographic reference
Spanish 47 000 000 (Instituto Nacional de Estadística, 2022, pages 6–7)
Catalan (incl. Valencian) 9 000 000 (Generalitat de Catalunya, 2007, Table 2)
Valencian 3 500 000 (Generalitat Valenciana, 2021, page 6)
Galician 2 100 000 (Observatorio da Lingua Galega, 2007, page 11)
Basque 1 200 000 (Depto. de Cultura y Política Lingüística, 2023, page 2)
Asturian 250 000 (Llera Ramo, 2018, Figure 6)
Aragonese 25 000 (Reyes et al., 2017, Table 5)
Aranese 4 500 (Generalitat de Catalunya, 2019, page 4)

Table 1: Approximate number of speakers in Spain for some of the languages spoken in the country. When the
reference includes different figures for the number of speakers depending on their ability to speak, understand, read,
or write the language, we provide the data for the number of people who can speak it, including those with even a
basic level of proficiency.

lishers in Aragonese. In August 2024, the Govern-
ment of Aragon established this standard spelling
for administrative and educational uses.8

A recent study reveals that Aragonese remains
alive across the entire area where it is traditionally
spoken (Eito et al., 2024). As of today, it is esti-
mated that around 8 000 people use it on a daily
basis, according to the most optimistic estimates,
within a broader group of approximately 25 000
people who claim to have knowledge of the lan-
guage (Reyes et al., 2017). Its use is much more
prevalent in family and neighbourly interactions,
especially among older individuals and in rural
communities. However, the use of the language
declines significantly in more formal contexts and
outside the immediate environment of the speak-
ers. Consequently, intergenerational transmission
is severely at risk; some initial measures, such as
teaching in schools or the language limited pres-
ence in the media, may not be sufficient to ensure
the language survival.

2.2 The Aranese Language

Aranese is a standardized form of the Pyrenean
Gascon variety of the Occitan language spoken in
the Val d’Aran in northwestern Catalonia. Aranese
is one of the three official languages in Catalonia,
alongside Catalan and Spanish.9 In the case of

8https://www.boa.aragon.es/cgi-bin/EBOA/
BRSCGI?CMD=VEROBJ&MLKOB=1347070761212

9The Val d’Aran was relatively well connected to Occita-
nia in the north, but remained isolated to the south until the
construction of the Vielha Tunnel, first in 1948 and then with
a new one in 2007. The changes experienced by the valley
due to its shift toward the south following the opening of the
Vielha Tunnel, and especially the development of tourism,
have led to a massive influx of migrants initially from the rest
of Spain and later from other countries. This migration has
resulted in drastic changes in the linguistic practices of the

Aranese, its official status is limited to the territory
of the Val d’Aran.

The Aranese language is regulated by the In-
stitut d’Estudis Aranesi–Acadèmia Aranesa dera
Lengua Occitana.10 The main goal of this institu-
tion is to establish and update the linguistic norms
of the Aranese variety of Occitan and ensure that
the standardization process is consistent throughout
its linguistic area.

Regarding education, the Occitan language is
included, along with Catalan, Spanish, English,
and optionally French, in the school system of the
valley at all compulsory levels. However, the pres-
ence of Aranese in higher education, such as in the
baccalaureate program, is virtually non-existent.
According to the Linguistic Census of Aranese
2001,11 only 34.2% of the population in the Val
d’Aran have Aranese as their mother tongue, and
only 25.8% use Aranese exclusively at home. The
estimated number of speakers is approximately
4 500 (Generalitat de Catalunya, 2019).

2.3 The Asturian Language

Asturian is one of the Iberian Romance languages,
closely related to Galician-Portuguese and Castil-
ian Spanish, and a language historically influencing
the Silver Way12 to the Portuguese border (in fact,
Asturian-based Mirandese is official in Miranda do
Douro, in Portugal).

Aranese people. Occitan has increasingly been confronted
with Spanish and Catalan, losing the dominance it once had in
past centuries.

10https://www.institutestudisaranesi.cat
11https://llengua.gencat.cat/web/.content/

documents/altres/arxius/aran_cens.pdf
12The Silver Way is a route of the Camino de Santiago that

runs from southern Spain to Santiago de Compostela.
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The Academia de la Llingua Asturiana13

(Academy of the Asturian Language) is an official
institution of the Government of the Principality of
Asturias that promotes and regulates the Asturian
language. Its main objectives include researching
and standardizing the Asturian language, develop-
ing language usage norms and dictionaries, pro-
moting its use and education, compiling its lexicon,
fostering research related to Asturian, awarding
literary prizes, and protecting the language rights
of Asturian users. As a result, the Asturian lan-
guage has clear and widely accepted spelling and
orthographic rules.

Although it does not have official language sta-
tus, Asturian is protected under the Statute of Au-
tonomy of Asturias. In many schools, children
can take Asturian-language classes, and in some
schools, it is offered as an elective language.

In a report for the BBC, the President of the
Academy of the Asturian Language pointed out
that “at present about 250 000 people are able to
understand, speak, read and write in Asturian, that
is, a 25% of the population of the region” (Hernán-
dez, 2022; Llera Ramo, 2018). As the latest
3rd Sociolinguistic Study on the Asturian Lan-
guage (Llera Ramo, 2018) points out, 87% of the
population identify with both Asturian and Spanish
identities. Of these, 64% have a balanced sense of
both identities, while 18% feels predominantly As-
turian over Spanish. Literacy rates are high: 90%
of the population report understanding Asturian,
though 29% describe their knowledge as passive,
while 38% are able to read and 25% to write.

2.4 The Catalan and Valencian Languages

Catalan is a Romance language with official status
in three autonomous communities in Spain: Catalo-
nia, the Balearic Islands and the Valencian Commu-
nity. It is also the official language of Andorra, a
small state in the Pyrenees, and it has semi-official
status in the Italian comune of Alghero, in the is-
land of Sardinia. Catalan is also spoken in the south
of France and in some parts of the Spanish regions
of Aragon and Murcia.

Catalan is usually named Valencian in the Valen-
cian Community, but both terms academically refer
to the same language. Catalan is divided into two
major dialect groups: Eastern and Western (see Fig-
ure 2). The main difference is in the pronunciation
of unstressed ‘a’ and ‘e’. In Eastern dialects, these

13https://alladixital.org

Figure 2: Catalan’s two main dialects (East-
ern/Western) shown divided by the dashed line.
[Source: modified from the original in Wikime-
dia Commons, https://commons.wikimedia.org/wiki/
File:Catalan_dialects-en.png]

sounds have merged into /@/, while in Western di-
alects, they remain distinct as /a/ and /e/. There are
also some other differences in pronunciation, verb
forms, and vocabulary. Western Catalan includes
the Northwestern Catalan and Valencian dialects.
The Eastern group includes four dialects: Central
Catalan, Balearic, Rossellonese, and Algherese.

The Institut d’Estudis Catalans14 in Catalonia
and the Acadèmia Valenciana de la Llengua15 are
the two institutions that regulate the Catalan and
Valencian varieties, respectively. The relationship
between these two institutions has not always been
easy, but in recent years, they have achieved some
degree of coordination.

In 201816, 94.4% of the population aged 15 or
older in Catalonia could understand Catalan, 81.2%
could speak it, 85.5% could read it, and 65.3%
could write it. In the Valencian Community, 79.4%
of the population aged 15 or older could understand
Valencian, 54.9% could speak it, 60.9% could read
it, and 44.4% could write it (Generalitat Valenciana,
2021). Valencian speakers make up approximately
3.5 million of the total 9 million Catalan speakers
in Spain (Generalitat Valenciana, 2021; Generalitat
de Catalunya, 2007).

Although standard Catalan and Valencian are
highly similar and largely mutually intelligible, the
differences and the effort required to adapt Cata-

14https://www.iec.cat
15https://www.avl.gva.es
16https://www.idescat.cat/indicadors/?id=

basics&n=10367&lang=en
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lan texts into Valencian are significant to justify
the creation of a dedicated FLORES+ dataset for
Valencian. This will support the development and
evaluation of MT systems specifically designed for
this variant.

3 Development of the FLORES+ Datasets

This section describes the workflow and re-
sources used to produce the FLORES+ datasets
for Aragonese, Aranese, Asturian and Valencian.

3.1 The Aragonese FLORES+ Dataset

A first draft of the FLORES+ dev and devtest sen-
tences for Aragonese was initially obtained from
Spanish using the Spanish–Aragonese17 rule-based
machine translation system Apertium (Forcada
et al., 2011). This translation was subsequently
post-edited by specialists proficient in Aragonese.
Finally, the post-edited translation was reviewed
by a member of the Academia Aragonesa de la
Lengua. In this last step, the reviewer had also in
view the English version of the FLORES+ dataset;
an important number of translations were modified
for better agreement with the English original data.

The translators and reviewers relied on the fol-
lowing resources to inform their decisions:

• The orthography of Aragonese18 published
by the Academia Aragonesa de la Lengua in
2023.

• The grammar of Aragonese published by the
EFA-ACAR.19

• The dictionary of Aragonese,20 published by
the EFA-ACAR.

• The Aragonese dictionary Tresoro d’a Lu-
enga Aragonesa,21 a lexicographical research
project developed by the Instituto de Estudios
Altoaragoneses, in collaboration with the Gov-
ernment of Aragon.

17https://github.com/apertium/apertium-spa-arg,
release 0.5.0, the latest release available at the time of
translation.

18https://academiaaragonesadelalengua.
org/sites/default/files/ficheros-pdf/
ortografia-de-laragones_web_an.pdf

19http://www.academiadelaragones.org/biblio/
Edacar10_GBAprovisional.pdf

20http://www.academiadelaragones.org/biblio/
Edacar13.pdf

21http://diccionario.sipca.es/fabla/faces/
index.xhtml

• The Spanish–Aragonese and Aragonese–
Spanish dictionary Aragonario,22 developed
under the project Linguatec and published by
the Government of Aragon.

Justification for the use of MT. While it might
be argued that using machine translation (MT) in a
dataset like FLORES+, conceived as a benchmark
for MT systems, is not the ideal procedure, our
decision is justified by three main reasons: first, the
two-step workflow of MT followed by post-editing
is common practice for this language, with many
existing texts produced in this manner; second, the
scarcity of qualified linguists and translators for
Aragonese made it difficult to complete the task
within the required timeframe without the support
of an MT system; third, rule-based systems like
Apertium typically exhibit strong performance for
closely related Romance languages, resulting in
minimal translationese that does not significantly
impact the overall quality.

3.2 The Aranese FLORES+ Dataset

Similarly to Aragonese (see above), the data for
Aranese was initially obtained by translating the
sentences in the Catalan FLORES+ dev and devtest
datasets using the Apertium rule-based MT sys-
tem (Forcada et al., 2011) for Catalan–Aranese.23

The revision process was then performed in two
steps. Firstly, a professional reviewer with wide
experience in translation and revision with profi-
ciency in Aranese was presented with the French,
Catalan and Occitan versions of the FLORES+,
along with the machine translated version into
Aranese. Finally, the post-edited translation was
reviewed by different individuals, who are native
speakers, from the Institut d’Estudis Aranesi (IEA).
The use of MT is motivated by the same reasons
as those for Aragonese (see the end of the previous
section).

During the post-editing and the subsequent re-
view process, the guidelines provided by the IEA
were strictly followed to ensure that the transla-
tion into Aranese aligned with their recommenda-
tions. Specifically, the translators and reviewers
based their decisions on the following resources
published by the IEA:

22https://aragonario.aragon.es/
23https://github.com/apertium/apertium-oci-cat,

release 1.0.8.

551

https://github.com/apertium/apertium-spa-arg
https://academiaaragonesadelalengua.org/sites/default/files/ficheros-pdf/ortografia-de-laragones_web_an.pdf
https://academiaaragonesadelalengua.org/sites/default/files/ficheros-pdf/ortografia-de-laragones_web_an.pdf
https://academiaaragonesadelalengua.org/sites/default/files/ficheros-pdf/ortografia-de-laragones_web_an.pdf
http://www.academiadelaragones.org/biblio/Edacar10_GBAprovisional.pdf
http://www.academiadelaragones.org/biblio/Edacar10_GBAprovisional.pdf
http://www.academiadelaragones.org/biblio/Edacar13.pdf
http://www.academiadelaragones.org/biblio/Edacar13.pdf
http://diccionario.sipca.es/fabla/faces/index.xhtml
http://diccionario.sipca.es/fabla/faces/index.xhtml
https://aragonario.aragon.es/
https://github.com/apertium/apertium-oci-cat


• Dictionary for Aranese;24 erratum 2021;25 ex-
tensions 2021,26 202227 and 2023.28

• Grammar for Aranese.29

• Orthographic vocabulary of Aranese.30

• Winter sports vocabulary of Aranese.31

• Computer and informatics vocabulary of
Aranese.32

• The Aranese verbs.33

3.3 The Asturian FLORES+ Dataset

The dev and devtest datasets we are contributing
for Asturian are a corrected version of the original
FLORES+ dataset, which were initially translated
from English by Meta using professional transla-
tors as part of their no language left behind initia-
tive (Costa-jussà et al., 2024). We had this trans-
lation into Asturian reviewed by native speakers,
some of whom are members of the Academia de
la Llingua Asturiana, philologists and a renowned
writer, translator and activist for the Asturian lan-
guage. The revision process was carried out twice
by different people. In the first round, the review-
ers were presented with the Spanish text and the
existing version of the Asturian FLORES+, and
in the second round, with the Spanish FLORES+
sentences and the first revised version.

During the review process, special attention was
paid to adhering to the guidelines provided by the
Academia to ensure that the translation aligns with

24http://www.institutestudisaranesi.cat/
wp-content/uploads/2021/04/DICCIONARI-DER-ARAN%
C3%89S.pdf

25http://www.institutestudisaranesi.cat/
wp-content/uploads/2020/12/ERRATA-WEB.pdf

26http://www.institutestudisaranesi.cat/
wp-content/uploads/2020/12/500-1-g%C3%
A8r-2021-WEB.pdf

27http://www.institutestudisaranesi.
cat/wp-content/uploads/2022/01/
WEB-AMPLIACION-01-01-2022.pdf

28http://www.institutestudisaranesi.cat/
wp-content/uploads/2023/03/Ampliacion-2023.pdf

29http://www.institutestudisaranesi.cat/
wp-content/uploads/2021/04/gramatica-aranes.pdf

30http://www.institutestudisaranesi.
cat/wp-content/uploads/2019/11/
33520-vocabulari-ortografic.pdf

31http://www.institutestudisaranesi.
cat/wp-content/uploads/2019/11/
33288-vocabulari-esports-iuern.pdf

32http://www.institutestudisaranesi.cat/
wp-content/uploads/2018/11/TECNOLOGIA.pdf

33http://www.institutestudisaranesi.cat/
wp-content/uploads/2019/11/33287-els-ve%CC%
80rbs.pdf

their recommendations by relying on the following
resources:

• Diccionariu de la Llingua Asturiana.34

• Gramática de la Llingua Asturiana.35

• Normes ortográfiques.36

3.4 The Valencian FLORES+ Dataset

The dataset for Valencian was created by adapting
the existing Catalan version of the FLORES+ de-
vtest set.37 The work was carried out by a single
native speaker of the Valencian variant, who holds
a university degree and has experience translating
into Valencian and reviewing texts in this language.

To expedite the process, LanguageTool38 was
employed to apply an initial set of changes to the
original text. These changes were then manually
reviewed, and additional necessary modifications
were made, considering a list of lexical items that
differ across the various Catalan dialects (see be-
low). In cases of uncertainty, the dictionary of the
Acadèmia Valenciana de la Llengua was consulted.
The following resources were used to guide the
modifications to the original Catalan text:

• List of lexical items that differ across the dif-
ferent dialects of the Catalan language.39

• Diccionari normatiu valencià.40

• Linguistic criteria for the institutional use of
the Valencian dialect in the Valencian univer-
sities.41

3.5 Modifications Across Versions of the
Datasets

As previously mentioned, the datasets for
Aragonese, Aranese, and Asturian have undergone
several iterations during their development. Ta-
ble 2 shows a comparison of the translation error
rate (TER) between these versions, labeled as v1,

34https://diccionariu.alladixital.org/
35https://alladixital.org/wp-content/uploads/

2022/08/Gramatica-de-la-Llingua-Asturiana.pdf
36https://alladixital.org/wp-content/uploads/

2024/01/Normes-Ortografiques-8a-edicion-FINAL-3.
pdf

37It is important to note that Valencian is the only target
language for which only one of the two FLORES+ datasets
(the devtest set) has been translated, instead of both.

38https://languagetool.org
39https://ca.wikipedia.org/wiki/Llista_diat%C3%

B2pica_del_l%C3%A8xic_catal%C3%A0
40https://www.avl.gva.es/lexicval
41https://sl.ua.es/en/assessorament/documentos/

criteris-linguistics.pdf
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Language v1→ v2 v2→ v3 v1→ v3
Aragonese dev 4.8 22.2 24.3
Aragonese devtest 4.0 26.8 28.4
Aranese dev 1.8 54.2 54.7
Aranese devtest 0.1 70.3 70.2
Asturian dev 6.0 4.4 10.0
Asturian devtest 5.5 0.1 5.6

Table 2: TER scores comparing different versions (v1,
v2, and v3) of translations for Aragonese, Aranese, and
Asturian. v1 represents the original translations, v2
the post-edited or improved versions (depending on the
language; see the main text), and v3 the standardized
versions produced under the supervision of language
academies.

v2, and v3.42 The TER metric (Snover et al., 2006)
quantifies the number of edits required to trans-
form one sentence into another, referred to as the
reference. It is calculated by dividing the total num-
ber of edits (insertions, deletions, substitutions, and
shifts) by the total number of words in the reference.
TER is a widely accepted metric in machine transla-
tion evaluation, providing insight into how close a
system’s output is to a human-generated reference.
Lower TER scores correspond to higher translation
quality. In this study, we use TER to compare dif-
ferent versions of the datasets for each language,
offering an estimate of the extent of changes intro-
duced by the reviewers during the revision process.
In our case, higher TER scores correspond to a
larger number of edits.

Version v1 refers to the original translations. As
already mentioned, for Aragonese and Aranese,
the translations in v1 were initially produced by
Apertium, whereas v2 represents the post-edited
translations of v1. For Asturian, the v1 corresponds
to the version already included in the FLORES+
dataset, and v2 incorporates some normative and
stylistic corrections to improve the quality of the
translations. Finally, v3 refers in all cases to a ver-
sion that was further adapted to conform to the
linguistic standards promoted by the respective lan-
guage academies. The revisions carried out under
the direct supervision of these academies were de-
signed to ensure the highest quality and compliance
with current linguistic norms.

The data reveals that in most cases, the second
round of quality checks leading to v3 introduced
significant differences compared to v2. This is par-

42SacreBLEU (Post, 2018) TER signature: nrefs:1 | case:lc
| tok:tercom | norm:no | punct:yes | asian:no | version:2.0.0

ticularly notable for Aragonese and Aranese, where
the adaptation to standard forms resulted in sub-
stantial changes, as reflected in the TER scores.
Asturian is an exception, especially in the devtest
set, where the differences between v2 and v3 were
minimal, suggesting that the initial revisions in v2
already addressed most of the necessary improve-
ments. This underscores the importance of multiple
quality review stages, as the adaptation to standard-
ized forms can introduce notable refinements to the
translations.

4 Validation of the FLORES+ datasets

The dev sets of FLORES+ for Asturian, Aragonese,
and Aranese were distributed and utilized in an
WMT24 shared task43 which focused on translat-
ing from Spanish into low-resource languages of
Spain (Sánchez-Martínez et al., 2024). These re-
sources proved valuable for the participants as val-
idation sets for training neural MT systems. The
corresponding devtest subsets were then used by
the organizers of the shared task to evaluate the
submitted systems. To ensure fairness in the evalu-
ation, the devtest sets were withheld until the end of
the submission period. Several submitted systems
outperformed the respective Apertium-based base-
lines, achieving higher performance scores based
on the BLEU, chrF++ and TER metrics.

The Valencian FLORES+ dataset was utilized
in the development of a Spanish–Valencian neu-
ral MT system. One experiment involved training
models with varying proportions of training data
in the Valencian and Central Catalan dialects. As
expected, results indicated that the higher the pro-
portion of Valencian data in the training set, the
higher the BLEU score achieved on the Valencian
FLORES+ dataset and the greater the presence of
Valencian dialectal forms in the output.

As a tentative indicator of the baseline perfor-
mance expected on the newly created devtest sets,
Table 3 presents standard automatic evaluation met-
rics for Apertium-based systems (Forcada et al.,
2011) translating the Spanish side of the devtest.
The results suggest that the use of MT (specifically
the Apertium system) during the initial phase of cor-
pus creation likely contributed to the significantly
higher evaluation scores for the Aragonese and
Aranese Apertium-based systems compared to As-
turian. This points to a potential bias in the dataset

43https://www2.statmt.org/wmt24/romance-task.
html
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Apertium system BLEU chrF++ TER
Spanish–Aragonese 61.1 79.3 27.2
Spanish–Aranese 28.8 49.4 72.3
Spanish–Asturian 17.0 50.8 80.4

Table 3: Automatic evaluation scores of the Apertium-
based systems on the devtest FLORES+ data. The
Apertium data correspond to the following releases:
spa-arg, 0.6.0; oc-es, 1.0.8; spa-ast, 1.1.1.

favoring rule-based MT approaches over non-rule-
based systems, and even human translations, when
evaluating the devtest translations from Spanish
into these languages. Nonetheless, results from
the WMT24 shared task (Sánchez-Martínez et al.,
2024) show that neural systems can still outper-
form Apertium, even for Aragonese and Aranese.
This suggests that the use of MT in the early stages
of creating the Aragonese and Aranese FLORES+
datasets did not significantly compromise the utility
of the data.

5 Concluding remarks

In this paper, we have detailed the development
of the FLORES+ datasets for four low-resource
Romance languages spoken in Spain: Aragonese,
Aranese, Asturian, and the Valencian variant of
Catalan. Each dataset was meticulously curated
through a two-step manual review process involv-
ing native speakers and professionals from the
respective language academies. The creation of
these datasets is particularly significant given the
ongoing efforts to revitalize and promote these lan-
guages. Our work also highlights several key chal-
lenges in resource development for low-resource
languages, such as the scarcity of expert translators,
or the constraints of limited time and funding for
dataset production.
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Abstract

We contribute a seed dataset for the
Bangla/Bengali language as part of the
WMT24 Open Language Data Initiative shared
task. We validate the quality of the dataset
against a mined and automatically aligned
dataset (NLLBv1) and two other existing
datasets of crowdsourced manual translations.
The validation is performed by investigating
the performance of state-of-the-art translation
models fine-tuned on the different datasets
after controlling for training set size. Machine
translation models fine-tuned on our dataset
outperform models tuned on the other datasets
in both translation directions (English-Bangla
and Bangla-English). These results confirm
the quality of our dataset. We hope our
dataset will support machine translation for
the Bangla/Bengali community and related
low-resource languages.

1 Introduction

The Indian sub-continent is an area of rich linguis-
tic diversity (Saxena and Borin, 2006; Hock and
Bashir, 2016), and it is not uncommon for a lan-
guage in this region to have both millions of speak-
ers and insufficient resources for NLP development.
Bangla/Bengali [ben] is one such language, ranked
the 7th most spoken language in the world in the lat-
est Ethnologue list of 200 most spoken languages
(Eberhard and Fennig, 2024), and classified in the
taxonomy of Joshi et al. (2020) as a Rising Star, "let
down by insufficient efforts in labeled data collec-
tion" despite a "strong web presence and thriving
online community". This classification contrasts
squarely with that of languages such as Standard
German, a "winner" in the Joshi et al. taxonomy
because it has heavy investments in resources and
technology, despite a ranking of 12 in the Ethno-
logue 200, below Bangla/Bengali.

* These authors contributed equally

The relative lack of data resources poses a chal-
lenge for neural machine translation (MT) efforts
in Bangla/Bengali. While creating large-scale
datasets of parallel sentences would be the next step
towards improving Bangla/Bengali MT, efforts to
create these types of resources have only recently
been made (Hasan et al., 2020; Siripragada et al.,
2020; Ramesh et al., 2022). Such efforts often
must use automated methods to crawl and align the
texts between language pairs, with manual checks
and reviews being prohibitively expensive. There
has been little work comparing larger datasets with
smaller, professionally translated and manually cu-
rated datasets to investigate how the differences
between these two types of dataset could impact
the quality of machine translation.

This paper describes the results of one such man-
ual effort, creating translation pairs between En-
glish and Bangla/Bengali for a smaller dataset and
verifying the quality of those translations. Mail-
lard et al. (2023) shows the sizeable impact of
these smaller datasets on MT quality via bilingual
and multilingual translation experiments, with the
high quality manually translated datasets outper-
forming even a back-translation data augmentation
approach with larger train set sizes. Continuing
this line of reasoning, we hypothesize that models
trained using a smaller but professionally trans-
lated dataset of Bangla/Bengali would perform bet-
ter than models trained on larger, automatically
mined and aligned parallel texts with little to no
human intervention or review, once training sizes
are controlled for. To this end, we created a smaller
dataset of manual translations to test our hypothe-
ses, and explored different training set sizes from
larger datasets to check their equivalencies against
our smaller dataset.

Our main contributions are as follows:

1. We contribute to the open datasets of the Open
Language Data Initiative (OLDI) and produce
a seed dataset for Bangla/Bengali by translat-
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ing the English seed dataset.

2. We carry out fine-tuning translation exper-
iments to show that models tuned on our
smaller, manually translated dataset outper-
form, or are on par with, models tuned on sam-
ples of comparable sizes from another dataset
that has been automatically mined and aligned
(NLLBv1).

3. We compare our dataset with other manually
translated datasets for Bangla/Bengali avail-
able via OPUS (Tiedemann, 2012), and show
that our dataset outperforms both correspond-
ing and larger samples from these datasets
(1.5x, 2x larger than our dataset) for a major-
ity of pre-trained models in our experiments.

2 Related Work

Machine translation (MT) efforts in
Bangla/Bengali currently rely on creative
methods such as data augmentation and multi-
lingual transfer to approach state-of-the-art MT.
For example, Mondal et al. (2024), a recent work,
uses back-translation to augment training data for
English-Bengali transformer-based MT. Laskar
et al. (2022a) augment data for English-Bengali
MT using an SMT-based phrase-pair injection
approach (Sen et al., 2021), and transliterate
English texts into Bengali script as a transfer
mechanism to share subword-level information
between source and target sentences. Jasim et al.
(2020) use a partial back-translation method by
translating only selected phrases to the source
language, achieving competitive results for Bengali
MT on the WAT2018 (Nakazawa et al., 2018) test
set. Laskar et al. (2022b) investigate knowledge
transfer among Indic languages for neural MT,
including Bengali, by transliterating all Indic
languages into English script to share subword
information during training. Bala Das et al. (2023)
build a transformer-based multilingual neural MT
system for 15 Indic language pairs, including
Bengali, and English with shared encoder-decoders
and transliteration schemes for related languages.
Gala et al. (2023) build a multilingual NMT system
for 22 Indic languages including Bengali.

Efforts to create large-scale datasets of parallel
sentences for Bangla/Bengali have only recently
been made. For example, Hasan et al. (2020) create
a dataset of 2.75 million sentence pairs for machine
translation, using an automated sentence segmenta-

tion toolkit and an ensemble of aligners for bitext
alignment. Siripragada et al. (2020) collect parallel
corpora across 10 Indian languages, including Ben-
gali, by crawling two Government of India websites
and applying document and sentence level align-
ment methods, producing 126.7K parallel texts for
Bengali-English. Ramesh et al. (2022) create a
dataset of parallel texts for 11 Indian languages,
including 8.6 million parallel texts for Bengali-
English, by crawling news and education/MOOC
websites such as Coursera and passing the data
through automated pipelines. Schwenk et al. (2021)
mine billions of parallel texts from the web for mul-
tiple languages, which include approximately 10
million sentence pairs for Bengali-English aligned
using LASER embeddings (Artetxe and Schwenk,
2019). As part of the No Language Left Behind
project, NLLB Team et al. (2022) mine 62 million
sentence pairs for Bengali-English using LASER3
embeddings (Heffernan et al., 2022); the NLLBv1
dataset created from the project is the largest known
dataset of parallel texts for this language pair to
date.

3 Meet The Data

Here we describe the language, the data collection
process, and the format of the dataset.

3.1 Language description

Bangla/Bengali (ISO-639-3:ben, glot-
tocode:beng1280, ISO-15924:Beng), an
Indo-Aryan language, is the official and na-
tional language of Bangladesh and an official
language of the state of West Bengal and other
states in India. The language is commonly
referred to as Bengali within the Indian states,
and as Bangla in the nation of Bangladesh. The
standardized dialects spoken in these two regions
differ mainly in the morpho-phonological space.
For example, Bangla has separate objective and
genitive case markings for nouns and pronouns
while Bengali has syncretized forms for these. The
mid-back-rounded vowel (/O/) is more common
word-finally in Bangla than in Bengali. Despite
“numerous small differences”, both dialects have
been called "indisputably the same language"
(David, 2015). We refer to the language as Bangla
for the rest of this paper, since the translations
were produced in this dialect.

The script system of Bangla is similar to that of
other South Asian languages in being an abugida
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Figure 1: Glossed examples in Bangla script using redu-
plication and conjunct verbs; examples from (David,
2015)

system organized by syllables with two forms for
each vowel viz., the independent and diacritic
forms, and with a system of conjunct characters for
complex consonant segments. The script (Fig. 1)
is represented in Unicode with range 0980-09FF1,
which we use for our translations.

Bangla has certain features which make trans-
lation between Bangla and English a challenging
task. These include rich morphological systems of
inflection, derivation, and reduplication, a rich case
system, a system of light verbs and conjunct verbs,
and a system of noun classifiers. All these fea-
tures are less prevalent in English. While Bangla is
an SOV type language, scrambling of constituents
within and across clauses for the purpose of altering
information structure is common. This can pose a
challenge for neural translation systems (Belinkov
and Bisk, 2017). An in-depth description of the
features of Bangla/Bengali can be found in David
(2015).

3.2 Data Collection and Translation

The Bangla sentences in our dataset were manually
translated from the English sentences in the Seed
dataset v2.0 (Maillard et al., 2023) maintained by
the Open Language Data Initiative. Details about
the sourcing and composition of the dataset are
described in Maillard et al. (2023). One native
speaker of Bangla, an author of this paper fluent
in English with graduate-level linguistic training
and experience in professional translation from En-
glish to Bangla, translated all 6,193 sentences in
the dataset. The Avro keyboard for Windows2 with
Unicode support was used to generate the Bangla
translations. The translation guidelines3 supplied

1https://www.unicode.org/charts/PDF/U0980.pdf
2https://www.omicronlab.com/avro-keyboard.html
3Translation guidelines:https://oldi.org/guidelines

by the Open Language Data Initiative were fol-
lowed during the translation process.

3.3 Data Format

The Bangla translations are stored as a text file with
a single line per translation, containing sentences in
the same order as in the English seed dataset4. We
follow the dataset formatting guidelines provided
by the Open Language Data Initiative5.

4 Experimental Validation

We compare our Bangla translations of the Seed
dataset with the following three datasets. All
datasets were downloaded from OPUS.
NLLBv1 (NLLB Team et al., 2022). This is the
largest available collection of automatically aligned
Bangla-English sentence pairs with a wide range
of text domains.
Joshua-IPC (Post et al., 2012). This is a dataset of
parallel sentences for six Indic languages includ-
ing Bangla. It was crowd-sourced by the authors
via Amazon Mechanical Turk for translation ex-
periments using the Joshua statistical MT system
(Weese et al., 2011). Sentences for the Indic lan-
guages were extracted from the top 100 viewed
Wikipedia pages for the language, and four English
translations sourced for each sentence.
TED2020 (Reimers and Gurevych, 2020). This is a
dataset of crawled and aligned subtitles of TED
Talks for the month of July 2020 across multi-
ple languages, with subtitling carried out by a
global community of volunteer translators6. We
downloaded all 10,519 sentence pairs for Bangla-
English, with translations in the English to Bangla
direction.

4.1 Controlling for training set sizes

To facilitate comparisons with our translations, we
control for training set sizes by sampling 1K, 3K
and 6K sentence pairs from all datasets, similar to
the approach used in Maillard et al. (2023). We
select these training sizes to test whether mod-
els trained on smaller samples of our translations
outperform models trained on samples of corre-
sponding sizes from the other datasets. In addition,
we sample 9K and 12K sentence pairs from the
NLLBv1 and Joshua-IPC datasets, and 9K and the
full 10,519 sentence pairs from TED2020. We

4github:openlanguagedata/seed/blob/main/seed/eng_Latn
5Formatting guidelines: https://oldi.org/guidelines
6https://www.ted.com/participate/translate
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compare results from these larger sizes with results
trained on 6K sentence pairs from our translations.

We sample using five different seeds for each
training size where possible, averaging results
across all seeds instead of relying on results from a
single sample per training size.

4.2 Translation models
We fine-tune translation models on existing pre-
trained multilingual models and one pre-trained
monolingual model in both directions (Bangla-
English and English-Bangla). Only the sampled
sentence pairs described in section 4.1 are used to
fine-tune the models and no additional data is used.
All models are fine-tuned using the HuggingFace
transformers library (Wolf et al., 2020) and use
a linear learning rate schedule with an initial rate
of 1e-6, with warmup. The following pre-trained
models are used.
NLLB-200. The state-of-the-art NLLB-200 model
(NLLB Team et al., 2022) is pre-trained on 200
languages, including Bangla and English. The
nllb-200-1.3B dense model with 1.3 billion pa-
rameters is used for our fine-tuning.
mBART50 (Tang et al., 2020). This is a multilin-
gual seq2seq model primarily intended for the
task of machine translation through multilingual
fine-tuning. This model is pre-trained on 50 lan-
guages, including Bangla and English. We use the
mbart-large-50 model.
mT5 (Xue et al., 2021). We experiment with the
multilingual variant of the text-to-text transformer
pretrained on a Common Crawl based dataset con-
taining 101 languages, including Bangla and En-
glish. The mt5-large model is used.
BanglaT5 (Bhattacharjee et al., 2023). To investi-
gate the impact of a pre-trained monolingual model
on translation quality, we fine-tune the BanglaT5
model pretrained on the Bangla2B+ corpus (Bhat-
tacharjee et al., 2022). We select this model based
on its open-source availability and relatively large
pre-training corpus size of 27.5GB. We note that
future work could include experiments with other
open-source pre-trained monolingual models as
and when they become available.

4.3 Evaluation Metrics
We evaluate all models with the Bangla/Bengali
and English datasets from the FLORES+ evaluation
benchmark for multilingual machine translation
(NLLB Team et al., 2022), maintained by the Open
Language Data Initiative. We use the development

set for model tuning and early stopping, and the
test set to report translation metrics.

We report the chrF++ scores (Popović, 2017) cal-
culated using the sacrebleu toolkit (Post, 2018),
since the chrF-based score is known to correlate
well with human rankings especially for morpho-
logically rich languages like Bangla, outperform-
ing BLEU (Popović, 2015). BLEU has also been
shown to be less useful for morphologically com-
plex languages, with language-specific customiza-
tions showing better correlations with human rank-
ings (Chauhan et al., 2021; Bouamor et al., 2014).

5 Experiment Results

Comparing the results on our dataset against the
others, we can confirm that our manual translations
yielded high quality parallel sentences between En-
glish and Bangla. Tables 1 and 2 in the Appendix
show the fine-tuned chrF++ scores in the English-
Bangla and Bangla-English directions. Here we
discuss the results in Figures 2, 3, 4 and 5, dis-
played below.

Displaying the results in the English to Bangla
direction, Figure 2 shows that models fine-tuned on
our translations outperform models tuned on sam-
ples of corresponding sizes from the other datasets.
This demonstrates the high quality of our transla-
tions. In the case of NLLB-200 our translations
are on par with the NLLBv1 samples. The results,
interestingly, also hold for the 1K and 3K sample
sizes showing that smaller samples of our transla-
tions are also effective. Given that it is likely the
NLLBv1 dataset was used to pre-train the NLLB-
200 models, it is not surprising that the NLLB-200
models fine-tuned on the NLLBv1 samples in our
experiments show good performance despite the
automatic sentence alignment process.

In Figure 3, it can be seen that in the Bangla to
English direction, models tuned on our translations
outperform other models across all corresponding
sample sizes, except for NLLB-200 where models
tuned on the TED2020 dataset show the best per-
formance. The average performance gap for the 6K
sample size between our translations and the other
datasets is 5.34 points for the mBART50 model and
4.52 points for the mT5 model. These wide mar-
gins show that the quality of the dataset used for
fine-tuning can make a sizeable difference even for
multilingual models with large pre-training corpora
in English.

Considering the test of our translations against
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Figure 2: Averaged fine-tuned English to Bangla chrF++ scores on the FLORES+ test set for the 1K, 3K and 6K
training set sizes. Models tuned on the Bangla seed dataset (red) outperform, or are on par with, models tuned on
the other datasets across pre-trained model types and training sizes. Scores are averaged across five random samples
per training set size and dataset.

Figure 3: Averaged fine-tuned Bangla to English chrF++ scores on the FLORES+ test set for the 1K, 3K and 6K
training set sizes. Models tuned on the Bangla seed dataset (red) outperform models tuned on the other datasets
across pre-trained model types and training set sizes, except for the NLLB-200 models. Scores are averaged across
five random samples per training set size and dataset.
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Figure 4: Averaged fine-tuned English to Bangla chrF++ scores on the FLORES+ test set for the 6K, 9K and 12K
training set sizes; the complete TED2020 dataset is used in the 12K case. Models tuned on the Bangla seed dataset
(red) outperform models tuned on other datasets of larger training sizes (9K, 12K) across pre-trained model types,
except for the NLLB-200 models tuned on the NLLBv1 data. Scores are averaged across five random samples per
training set size and dataset.

Figure 5: Averaged fine-tuned Bangla to English chrF++ scores on the FLORES+ test set for the 6K, 9K and 12K
training set sizes; the complete TED2020 dataset is used in the 12K case. Models tuned on the Bangla seed dataset
(red) outperform models tuned on other datasets of larger training sizes (9K, 12K) across pre-trained model types,
except for the NLLB-200 models. Scores are averaged across five random samples per training set size and dataset.
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samples of larger sizes from the other datasets, i.e
9K and 12K sentence pairs. The results in Fig-
ures 4 and 5 show that our translations outperform
these larger training samples across all pre-trained
model types and datasets except for the NLLB-200
models. The NLLB-200 models tuned on larger
samples of the NLLBv1 dataset in the English to
Bangla direction scored better than our translations.
This is as expected, given the possible overlap be-
tween the NLLBv1 datasets used to pre-train and
fine-tune the models in our experiments. The fact
that models tuned on our translations scored better
than models tuned on larger samples from the other
datasets is another demonstration of the higher qual-
ity of our dataset.

6 Conclusion

We have created a high quality dataset of Bangla-
English seed translations to contribute to the Open
Language Data Initiative, paving the way for more
translations between Bangla and other languages,
including low-resource ones, that are supported
by the initiative. We have demonstrated the high
quality of our translated dataset by comparing it
with a larger dataset that was mined and auto-
matically aligned, as well as with two datasets of
crowdsourced and reviewed translations. The mod-
els tuned on our dataset outperform models tuned
on the other datasets after controlling for training
set size. We hope that our dataset will support
ongoing research in machine translation for the
Bangla/Bengali community and other low-resource
languages.
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A Appendix

A.1 Fine-tuned English to Bangla chrF++
scores

Table 1 shows the fine-tuned English to Bangla
chrF++ scores across all model types, datasets, and
training set sizes.

A.2 Fine-tuned Bangla to English chrF++
scores

Table 2 shows the fine-tuned Bangla to English
chrF++ scores across all model types, datasets, and
training set sizes.

A.3 sacrebleu version string
The sacrebleu version string is
provided below for reproducibility:
nrefs:1|case:mixed|eff:yes|nc:6|nw:2|
space:no|version:2.4.2
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mBART50
1K 3K 6K 9K 12K

NLLBv1 16.6 20.12 22.04 23.6 24.72
Joshua-IPC 14.22 16.58 17.48 18.42 18.44
TED2020 17.42 20.8 22.48 23.82 24.04
Bangla seed 23.12 25.14 27.82 – –

mT5
1K 3K 6K 9K 12K

NLLBv1 12.12 13.62 14.12 13.66 14
Joshua-IPC 11.2 12.46 12.34 12.32 12.28
TED2020 15.74 15.22 15.1 15.28 14.9
Bangla seed 18.2 17.88 18.04 – –

NLLB-200
1K 3K 6K 9K 12K

NLLBv1 34.5 36.84 38.04 39.3 39.6
Joshua-IPC 28.32 28.76 28.92 29.3 29
TED2020 31.6 33.7 34.26 34.76 34.64
Bangla seed 35.12 36.9 37.14 – –

BanglaT5
1K 3K 6K 9K 12K

NLLBv1 26.76 27.36 27.36 27.52 27.32
Joshua-IPC 24.98 25 25.06 25.14 25.08
TED2020 29.64 29.7 29.76 29.94 30.2
Bangla seed 34.4 33.92 33.64 – –

Table 1: Average fine-tuned English to Bangla chrF++ scores on the FLORES+
test set. Scores are averaged across five random samples per training set size
and dataset
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mBART50
1K 3K 6K 9K 12K

NLLBv1 24.54 28.62 29.94 31.14 32.2
Joshua-IPC 24.96 27.68 29.18 30.08 29.76
TED2020 25.46 27.5 29.12 29.58 29.54
Bangla seed 30.62 33.64 34.76 – –

mT5
1K 3K 6K 9K 12K

NLLBv1 21.42 25.68 26.6 26.66 26.84
Joshua-IPC 24.06 26.46 26.74 26.74 26.78
TED2020 23.88 25.84 26.46 26.76 26.48
Bangla seed 30.46 31.66 31.12 – –

NLLB-200
1K 3K 6K 9K 12K

NLLBv1 48.16 48.22 48.3 48.08 48.14
Joshua-IPC 44.36 44.42 44.54 44.48 44.14
TED2020 49.88 49.74 49.94 49.88 49.7
Bangla seed 48 47.78 47.84 – –

BanglaT5
1K 3K 6K 9K 12K

NLLBv1 23.2 22.5 23.08 23.4 23.2
Joshua-IPC 21.74 21.82 21.66 21.98 21.68
TED2020 24.38 24.28 24.66 24.44 24.3
Bangla seed 28.48 28.1 27.92 – –

Table 2: Average fine-tuned Bangla to English chrF++ scores on the FLORES+
test set. Scores are averaged across five random samples per training set size
and dataset
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Abstract

This paper describes the submission of a high-
quality translation of the OLDI Seed dataset
into Italian for the WMT 2024 Open Language
Data Initiative shared task.

The base of this submission is a previous ver-
sion of an Italian OLDI Seed dataset released
by Haberland et al. (2024) via machine trans-
lation and partial post-editing. This data was
subsequently reviewed in its entirety by two
native speakers of Italian, who carried out ex-
tensive post-editing with particular attention to
the idiomatic translation of named entities.

1 Language overview

This paper presents an Italian version of the OLDI
Seed dataset (Maillard et al., 2023; NLLB Team
et al., 2024).

Italian is a Romance language, recognised as an
official language of the Italian Republic, the Re-
public of San Marino and the Canton of Ticino in
Switzerland (Maiden, 2014). Modern Italian fun-
damentally represents cultured Florentine, as first
attested by 14th century authors (Dante, Petrarch
and Boccaccio) and later scholars (Coletti, 2022).
Although it is a variety of Tuscan, standard Italian
is purged of the more typical features of Tuscan,
at a phonetic level represented above all by the so-
called gorgia (i.e. the fricative pronunciation of
certain occlusive consonants in intervocalic posi-
tion) (Marotta, 2008).

The presence of a curated Italian version in the
Seed dataset is of great importance for the regional
languages of the Italian peninsula, six of which are
already represented in the same dataset.1 The cre-
ation of an Italian version enables the training of
machine translation models for these languages to
and from Italian, a direction which is more cultur-
ally relevant than English-centric MT, as the vast

1These are Friulian, Ligurian (Genoese), Lombard, Sicil-
ian, Sardinian, Venetian (Maillard et al., 2023; NLLB Team
et al., 2024).

majority of speakers of such languages (or prospect
learners) are also native Italian speakers (Haberland
et al., 2024; Ramponi, 2024).

2 Data creation

The original source of the data was an initial Ital-
ian version of the Seed dataset released by Haber-
land et al. (2024). The authors created it by ma-
chine translating the original English version with
an OpusMT bilingual English-Italian model (Tiede-
mann and Thottingal, 2020), combined with partial
post-editing. Through personal correspondence
with the authors we learned that their post-editing,
which only affected a small percentage of the over-
all data, involved two steps:

1. A check of the length ratios of Italian and En-
glish sentences, followed by manual checking
and post-editing of sentence pairs with outlier
length ratios.

2. A spellchecker run using Hunspell (Ooms
et al., 2017), followed by manual check-
ing and post-editing of sentence pairs where
spelling mistakes were found.

The submission described in this paper consti-
tutes a further refinement of the dataset of Haber-
land et al. (2024), in order to bring it to a level that
could be seen as comparable to that of translations
produced by highly proficient bilingual individuals.

This project involved the participation of two an-
notators, henceforth A1 and A2, both native speak-
ers of Italian with a university level of education.
The refinement process followed these steps:

1. A manual, sequential review of the entire
dataset by A1, followed by post-editing where
necessary.

2. Following Haberland et al. (2024), a targeted
review of sentence pairs with outlier length
ratios, followed by post-editing where neces-
sary.
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3. A targeted review of sentences involving spe-
cific subsets of the corpus which were found
to have a high incidence of mistranslated
strings: date and time expressions, sentences
about mathematics and sentences about the
history of cinema.

4. A final targeted review of sentence pairs which
were found to be of low-quality using a se-
ries of Quality Estimations approaches using
LLMs, as described in Zhao et al. (2024).

Apart from the first item above, which was car-
ried out by annotator A1 alone, the workload for
all subsequent tasks was split equally between both
annotators.

3 Experimental validation

In order to experimentally validate the quality of
this Seed dataset, we replicate the baseline exper-
iments of Haberland et al. (2024), by training an
Italian-Ligurian machine translation model on a
combination of the 6,193 paired Italian-Ligurian
sentences from the Seed data and the same 1,520
paired Italian-Ligurian sentences from the Tatoeba
project2 used by the authors. The translation model
is trained using Fairseq (Ott et al., 2019), with the
exact same architecture and overall setup of Haber-
land et al. (2024).

Model FLORES

NLLB-3.3B 13.9
Haberland et al. (2024) 14.5
Ours 15.0

Table 1: Italian-Ligurian translation performance mea-
sured with BLEU on FLORES devtest.

In Table 1 we compare the BLEU scores3 ob-
tained by three models on the FLORES (NLLB
Team et al., 2024) devtest data. The first model,
provided only for context, is the massively multi-
lingual 3.3B version of NLLB (NLLB Team et al.,
2024), which was trained on much larger amounts
of data but without any direct Italian-Ligurian su-
pervision. The second is the baseline model of
Haberland et al. (2024). The final row reports the
performance of the best of three training runs of our
model, which is a re-training of Haberland et al.’s,

2https://tatoeba.org/
3SacreBLEU (Post, 2018) signature nrefs:1|case:mixe

d|eff:no|tok:13a|smooth:exp|version:2.4.0.

the only difference being the use of the improved
Seed data.

As can be observed in the results, our model
achieves a performance of 15 BLEU points on the
FLORES devtest set, 1.1 points higher compared
to NLLB-3.3B (NLLB Team et al., 2024) and half
a point higher compared to the baseline model of
Haberland et al. (2024). The relatively small degree
of improvement compared to the latter baseline can
be attributed to the fact that, in general, machine
translation for a high-resource language pair such
as English-Italian is of high quality, so that manual
post-editing (especially in a formal domain such as
Wikipedia text) leads to only minor changes.

This result, although numerically marginal, con-
firms that our post-editing of the seed data for im-
proved idiomaticity does not hurt the downstream
performance of models trained on it but does, in
fact, slightly improve it.

4 Data samples

We provide a selection of samples whose transla-
tions proved to be particularly hard for the OpusMT
bilingual English-Italian model.
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English (original) Italian

He made a series of two-reel comedies, including
One Week (1920), The Playhouse (1921), Cops
(1922), and The Electric House (1922).

Realizzò una serie di commedie a due bobine,
tra cui Una settimana (1920), Il teatro (1921),
Poliziotti (1922) e La casa elettrica (1922).

The development of a regulatory framework con-
cerning genetic engineering began in 1975, at
Asilomar, California.

Lo sviluppo di un quadro normativo
sull’ingegneria genetica è iniziato nel 1975,
ad Asilomar, in California.

But the next major advance in the theory was made
by Georg Cantor; in 1895 he published a book
about his new set theory, introducing, among other
things, transfinite numbers and formulating the
continuum hypothesis.

Ma il successivo importante passo avanti nella teo-
ria fu compiuto da Georg Cantor, che nel 1895
pubblicò un libro sulla sua nuova teoria degli in-
siemi, introducendo, tra l’altro, i numeri transfiniti
e formulando l’ipotesi del continuo.

Aside from Steamboat Bill, Jr. (1928), Keaton’s
most enduring feature-length films include Our
Hospitality (1923), The Navigator (1924), Sher-
lock Jr. (1924), Seven Chances (1925), The Cam-
eraman (1928), and The General (1926).

Oltre a Io. . . e il ciclone (1928), tra i lungome-
traggi più duraturi di Keaton vi sono La legge
dell’ospitalità (1923), Il navigatore (1924), Sher-
lock Jr. (1924), Le sette probabilità (1925), Il
cameraman (1928) e Come vinsi la guerra (1926).

These chains of extensions make the natural num-
bers canonically embedded (identified) in the other
number systems.

Queste catene di estensioni rendono i numeri nat-
urali canonicamente immersi (identificati) negli
altri sistemi numerici.

Table 2: Dataset samples.
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Abstract

This paper describes the corrections made
to the FLORES evaluation (dev and devtest)
dataset for four African languages, namely
Hausa, Northern Sotho (Sepedi), Xitsonga, and
isiZulu. The original dataset, though ground-
breaking in its coverage of low-resource lan-
guages, exhibited various inconsistencies and
inaccuracies in the reviewed languages that
could potentially hinder the integrity of the eval-
uation of downstream tasks in natural language
processing (NLP), especially machine transla-
tion. Through a meticulous review process by
native speakers, several corrections were iden-
tified and implemented, improving the overall
quality and reliability of the dataset. For each
language, we provide a concise summary of
the errors encountered and corrected and also
present some statistical analysis that measures
the difference between the existing and cor-
rected datasets. We believe that our corrections
improve the linguistic accuracy and reliability
of the data and, thereby, contribute to a more
effective evaluation of NLP tasks involving the
four African languages. Finally, we recom-
mend that future translation efforts, particularly
in low-resource languages, prioritize the active
involvement of native speakers at every stage
of the process to ensure linguistic accuracy and
cultural relevance.

1 Introduction

Low-resource languages, especially from Africa,
are greatly under-represented in the Natural Lan-
guage Processing (NLP) landscape, and this is pri-
marily due to the absence of sufficient resources
for both training and evaluation (Adelani et al.,
2022; Kreutzer et al., 2022). Various efforts have
been made to create such resources and these in-
clude initiatives from organizations such as La-
cuna1 that fund new and qualitative open datasets,
and communities such as Masakhane, HausaNLP,

1https://lacunafund.org/

the University of Pretoria’s Data Science for So-
cial Impact (DSFSI) Research Group, and other
individual initiatives (Abdulmumin et al., 2022;
Parida et al., 2023). For machine translation eval-
uation, the FLORES dataset (Goyal et al., 2021;
NLLB Team et al., 2022) is widely accepted as
a benchmark for evaluation, especially because it
was the first of its kind for many languages and
enables many-to-many evaluation, making it eas-
ier to evaluate say a Hausa to Sepedi translation
system without pivoting through a high resource
language, e.g., English. Recently, the MAFAND
dataset (Adelani et al., 2022) was created, but it
only allows bilingual evaluation and is limited to
the news domain.

While all these resources are being developed,
it is imperative to review them for validation to
ensure that they meet the expected standard of
accuracy and representation. A revealing work
by Kreutzer et al. (2022), albeit on mostly web-
crawled datasets, found that many of the datasets
that are being relied upon for low-resource lan-
guages are littered with significant errors such as
misalignments, incorrect translations, and other is-
sues. The significance of evaluation datasets make
them even more deserving of such reviews espe-
cially by literate native speakers that know how
these languages are written and spoken. This pa-
per, therefore, presents a comprehensive review
and correction of the public FLORES evaluation
datasets for four African languages: Hausa, North-
ern Sotho, Xitsonga and isiZulu. We also provide
the corrected datasets for future evaluation tasks2.

2 The FLORES Evaluation Dataset

The FLORES evaluation dataset consists of the first
FLORES-101 (Goyal et al., 2021) and the subse-
quent more expanded FLORES-200 (NLLB Team
et al., 2022) that included more languages.

2https://github.com/dsfsi/flores-fix-4-africa
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FLORES-101: This was the original evaluation
data and was created by translating the English
dataset collected from Wikipedia, consisting of
several topics and domains, into 101 mostly low-
resource languages. The dataset was the first avail-
able evaluation benchmark for several low-resource
languages and it enabled the evaluation of many-to-
many translation systems without pivoting through
another high-resource language such as English.
Several quality control mechanisms were put in
place to ensure that the final dataset was of ac-
ceptable quality. To determine if translations are
good enough for inclusion in FLORES-101, a 20%
sample of the dataset were reviewed by language-
specific evaluators who assess the quality using
a Translation Quality Score (TQS) on a 0 to 100
scale, with a score of 90% deemed acceptable. Er-
rors such as grammar, punctuation, spelling, and
mistranslation were examined, and each was as-
signed a severity level of minor, major, or critical.
Three of the four languages in this paper were in-
cluded in this dataset–Hausa (hau), Northern Sotho
(nso) and Zulu (zul).

FLORES-200: This dataset expanded FLORES-
101 to over 200 languages, including our fourth
target language–Xitsonga (tso). In this data, a
more comprehensive process was developed to en-
sure the quality of the translations. Specifically,
professional translators and reviewers aligned on
language standards before the translators trans-
lated the sentences. Afterwards, automated checks
were first conducted and then followed by man-
ual checks by independent reviewers. Translations
that were found lacking quality were sent back for
post-editing. Similarly to FLORES-101, transla-
tions scoring above 90% TQS were included in the
FLORES-200.

2.1 Problems Identified in FLORES

Prior to this work, we have not found any pub-
lished work that carefully reviews and attempt to
correct mistakes in the FLORES evaluation dataset.
However, some issues have been raised on the FLO-
RES’ public GitHub repositories.3 Some of these
issues include near-identical translations in sev-
eral dialects of Arabic: Mesopotamian (acm_arb),
Ta’izzi-Adeni (acq_arb), Najdi (ars_arb), and
Moroccan (ary_arb) Arabic dialects were found to

3https://github.com/openlanguagedata/flores

be too similar to Standard Arabic (arb),4,5 unspeci-
fying the "orthography" and "variety" used in Lom-
bard (lmo_latn) and Sardinian (srd_latn),6,7 un-
matched quotation marks,8 and using Mandarin
Chinese in Traditional Chinese Script (zho_Hant)
for Cantonese (yue_Hant) translations.

3 Focus Languages and Evaluation

3.1 Languages Covered

In this work, the public9 FLORES dev and devtest
splits of Hausa, Northern Sotho (Sepedi), Xitsonga
and isiZulu were reviewed and corrected by native
speakers of the languages. A description of each
language is presented in Appendix A.

3.2 Correction Guidelines

For reviewing and subsequently correcting the iden-
tified errors in the datasets, the participants were
given the following guidelines.

Reviewing: At this stage, the participants identi-
fied sentences in both data splits that require re-
viewing.

• Read the original text: carefully read the
original English text to understand the in-
tended meaning and context.

• Compare with translated text: compare
each sentence or phrase in the original En-
glish text with its corresponding translation.
Pay attention to both the overall meaning and
the nuances of the language.

• Check for accuracy: look for errors, inaccu-
racies, or deviations from the original mean-
ing in the translation. This includes mistrans-
lations, omissions, additions, and grammatical
mistakes.

• Evaluate clarity and cohesion: assess
whether the translated text is clear and coher-
ent in the target language. Ensure that it flows
naturally and is easy for a target language-
speaking audience to understand.

4https://github.com/openlanguagedata/flores/
issues/8

5https://github.com/facebookresearch/flores/
issues/64

6https://github.com/openlanguagedata/flores/
issues/5

7https://github.com/openlanguagedata/flores/
issues/6

8https://github.com/facebookresearch/flores/
issues/36

9https://github.com/openlanguagedata/flores
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Correcting the translations: To correct the trans-
lations, we followed the guidelines provided in the
shared task description.10 The participants were
trained on and encouraged to follow these guide-
lines when correcting the identified incorrect trans-
lations.

3.3 The Annotators

The correction task was conducted by volunteer
annotators that focused on their native languages.
These annotators were a mix of university students
and researchers holding first, second and third de-
grees in computing and linguistics.

3.4 Evaluating the Corrections

To determine the amounts of corrections and sub-
sequent differences between the original and cor-
rected data, we used the following metrics. The
computations were conducted only on the instances
that were corrected. We used the original dataset
as the supposed predictions and for the reference
translations, we used the corrected data. We used
the Natural Language Toolkit (NLTK) (Bird and
Loper, 2004) for all tokenization.

Token Difference: This is the difference between
the number of all tokens in the original and cor-
rected datasets.

Token Divergence: This was used to measure the
difference or dissimilarity between two sets of to-
kens. Given To and Tc as the set of tokens in the
original and corrected datasets respectively, the fol-
lowing formula was used:

divergence =
|To − Tc|+ |Tc − To|

|To ∪ Tc|
(1)

The formula calculates the proportion of tokens
that are different between the two sets relative to
the total number of unique tokens across both texts.
Higher divergence score indicates that the two texts
are quite different, suggesting significant changes
or corrections were made.

Translation Edit Rate: (Snover et al., 2006) is a
metric used in machine translation and other natu-
ral language processing tasks to measure the num-
ber of edits required to change a system-generated

10https://oldi.org/guidelines#
translation-guidelines

translation into a reference translation, and is com-
puted using the following formula.

TER =
# of edits

# of words in ref. translation
(2)

The fewer the edits, the better the translation quality
and a higher TER score indicates lower quality in
the predicted translations.

BLEU: (Papineni et al., 2002) is an n-gram based
metric that indicates the quality of generated ma-
chine translations. The BLEU is computed as fol-
lows:

BLEU = BP × exp

(
N∑

n=1

wn log pn

)
(3)

where BP is the Brevity Penalty and is used to pe-
nalize instances where shorter translations are gen-
erated when the reference is comparably longer; pn
is the precision between the candidate translation
and a set of ground truths; and wn is the n-gram
weights.

COMET: (Rei et al., 2020) is a metric that lever-
ages pre-trained neural models and cross-lingual
word embeddings to evaluate the quality of ma-
chine translation systems. We used the pre-trained
models provided by Wang et al. (2024).

4 Error Analysis

Tables 1 and 2 present how similar, or different, the
original sentences were to the corrections. Some of
the errors found are analyzed below per language.

Hausa (hau) A significant part of the translations
were suspected to have been automatically gen-
erated, as many of them appeared incoherent or
unclear. To investigate this, we conducted a com-
parison with translations from the Hausa FLORES
dataset and new translations generated by Google
Translate. The comparison revealed that, although
there were limited exact matches11, several incor-
rect lexical choices in the dataset’s translations
aligned with those produced by Google Translate,
supporting the suspicion that the translations may
have been automatically generated. It is important
to note that other translation tools may exist for
Hausa that we did not evaluate. Furthermore, sev-
eral sentence-level translations from Google Trans-
late were found to be more qualitative and coherent

11Google Translate may have evolved since the creation of
the dataset.
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lang dev (997 sentences) devtest (1,012 sentences)

# corr. (%) # tokenso # tokensc ∆ tokens % div. # corr. (%) # tokenso # tokensc ∆ tokens % div.

hau 632 (63.4) 17,948 18,073 125 24.7 70 (6.9) 2,006 1,978 28 49.2
nso 67 (6.7) 2,226 2,271 45 28.9 62 (6.1) 2,082 2,105 23 28.0
tso - - - - - 83 (8.2) 2,919 2,947 28 27.4
zul 190 (19.1) 3,605 3,588 17 23.7 226 (22.3) 4,414 4,396 18 31.8

Table 1: Data statistics; # corr. (%)→ number of sentences requiring at least one correction (percentage of original
data); # tokenso → original token count; # tokensc → corrected token count; ∆ tokens→ token count difference; %
div. → percentage of token divergence.

lang. dev devtest

TER BLEU COMET TER BLEU COMET
Score # Edits Score # Edits

hau 19.2 3,107 72.0 54.1 40.4 711 56.6 42.1
nso 22.4 472 68.5 55.2 21.2 409 71.8 55.9
tso - - - - 20.9 547 73.9 58.4
zul 17.2 524 76.3 53.0 23.6 879 70.6 53.0

Table 2: Similarities between the original and corrected FLORES evaluation data on the four African languages –
original as predictions; corrected as reference translations.

than those in the current dataset. For an illustration,
we examine sentences from the dev and devtest
sets, see Table 3.

In several instance, named entities were trans-
lated instead of reusing them as they are due to
the lack of their equivalents in Hausa. This is il-
lustrated in the first example provided in Table 3.
Planned Parenthood appears as an organization that
was not supposed to be translated (and may only be
explained as hukuma mai kula da tsarin iyali). The
words in the organization name were translated as
Iyayen Tsararru, with their literal word translations
(iyaye→ parents, tsararru→ planned) instead of
the name of the organization as a named-entity. In
the second example, the phrase "standard business
attire" was translated as Kaya masu kala¡aya su ne
cikakkun tufafin mu’amala instead of kayan sawa
na aiki da aka saba dasu. The first translation is at
best an incorrect explanation of the English phrase.
And these are just two examples of the many we
found in the dataset.

In addition to these severe mistakes, the dataset
was littered with a lot of inconsistencies especially
in the use of the standardized Hausa alphabets. Spe-
cial characters are often ommitted and instead re-
placed with their normalized equivalents, e.g.,  →
b, ¡→ d, etc. In some few places, the special ¯ is
written as ’y which is acceptable.

Northern Sotho (nso) Several key challenges
and areas for improvement were identified and cor-

rected, focusing on vocabulary consistency, syntax,
spelling, and the accurate conveyance of technical
terms. Most of the text was accurately translated
and, for the text with problems, only small changes
were required to make it more accurate. Some of
the words like “safatanaga and disafatanaga” have
generally maintained lexical consistency although
they were wrongly translated. These have been
corrected to “sefatanaga or difatanaga (plural)”.

Although sometimes Sepedi uses borrowed
words for many technical and scientific terms,
things such as pavement do have a translation
which could be “tsela ya maoto or tselanathoko”.
These could have been used instead of borrowing
the pavement term to say pabamente. The use of a
borrowed term could have been from the available
corpus or from learned behaviour for borrowing un-
known English terms. Another example is the word
college which was translated to colleje, but Sepedi
has a standard borrowed translation: “kholetšhe”.

Addressing spelling errors and ensuring proper
spacing between words are vital for readability and
comprehension. For instance, the word "tswarelo"
was corrected to "tshwarelo" to reflect the proper
spelling. Similarly, "patlaladitše" was adjusted to
"phatlaladitše", and "bontša" to "bontšha". Addi-
tionally, "mephutso" should be spelt as "meputso",
and "delo" should be corrected to "selo". Spacing
was required when using "begona" so that it is "be
gona" and similar adjustments were made. These
adjustments are crucial to maintain lexical consis-
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SN English Wrong Translation in FLORES Corrected Translation

1. Komen’s policy disqualified
Planned Parenthood due to a
pending investigation on how
Planned Parenthood spends
and reports its money that is
being conducted by Repre-
sentative Cliff Stearns.

Manufar Komen ta hana Iyayen
Tsararru sanadiyyar binciken kashe
kudi kan yadda Tsararren Iyaye
yake ciyarwa kuma ta ba da rahoton
ku¡a¡¡inta wanda Wakilin Cliff
Stearns ke gudanarwa.

Manufar Komen ta dakatar da chan-
chantar Planned Parenthood sanadiy-
yar binciken da akeyi akan yanda
Planned Parenthood take kashewa
da kuma bayar da ba’asin ku¡in ta
wanda Wakili Cliff Stearns yake gu-
danarwa.

2. Suits are standard business at-
tire, and coworkers call each
other by their family names
or by job titles.

Kaya masu kala ¡aya su ne
cikakkun tufafin mu’amala, kuma
abokan aiki kan kira junansu da
sunan iyalinsu ko da mu¨aman aiki.

Kwat sune kayan sawa na aiki da aka
saba dasu kuma abokan aiki suna
kiran juna ne da sunan gidansu ko
kuma matsayin da mutum yake kai.

Table 3: Some Hausa Examples of incorrect and inconsistent translations in FLORES dev and devtest.

tency and to ensure that translations are accurate
and easily understood.

Some terms were left out, like "scientific" as "tša
bo ramahlale" when scientific tools were talked
about, and this greatly affected the meaning of
the sentence. Additionally, in another instance,
a sentence describing the use of Caesarean section
to give birth to Nadia was misleading. Incorrectly,
it implied that Nadia was both the baby being born
and the individual undergoing the operation. This
was corrected to have the intended meaning.

Xitsonga (tso) Some of the problems identified
in the Xitsonga translations included problems to
do with vocabulary accuracy and the use of bor-
rowed words. Among the errors that were identified
is the translation of "Type 1 diabetes" to "vuvabyi
bya chukela bya Type 1". The correct phrase should
therefore be "vuvabyi bya chukela bya muxaka wo
sungula", which captures the type of diabetes and
avoid misunderstanding. Similar trends raise the
importance of using proper terms that might fit
local context as opposed to directly translating En-
glish words.

Another problem was that translations were
mostly uniform, without contextual variations.
Even here, the words "xiyenge xa tlilinikhali na
sayense" (clinical and scientific division) were used
wrongly. The word actually is "xiyenge xa vutshila
ni ntokoto bya sayense" (clinical and scientific divi-
sion), but this clearly passes on the intended mean-
ing. Moreover, the use of pluralization of terms
was arbitrary. While the singular form of the term
"worker" is "mutirhi", the plural form should be
"vatirhi", and the singular form of "methods" is
"maendlelo", which should be in plural throughout
instead of appearing in single forms.

Spelling problems and the usage of borrowed
terms can have a substantial influence on the cor-
rectness of Xitsonga translations. One of the most
illustrative examples of such incongruity of terms is
that the English word "channel" has been translated
as "chanele". Instead, the work should have used
the original term "nongonoko" in order to ensure
a perfect linguistic and connotative translation. To
avoid generation of wrong impressions, the phrase
borrowed from IsiZulu as used to mean "President"
had to be replaced by the word "murhangeri wa
tiko" from Xitsonga. Deficient spelling, as in the
case of writing "dokodela" instead of "Dr", and ex-
amples of slang such as using "mwana wa" instead
of the formal "muongori" indicate how borrowing
and spelling mistakes reduced the quality of the
translations. Fluency and correct spelling as well as
using the native language correctly are a necessity
to maintain the translated material’s effectiveness.

isiZulu (zul) Similar to the errors identified in
the other languages above, isiZulu translations dis-
played several common challenges. These included
inconsistencies in vocabulary, syntax errors, and
issues with the accurate expression of technical and
scientific terms. The agglutinative nature of isiZulu
and its conjunctive writing style further worsen
these issues, leading to specific translation errors
related to morphology and orthography.

A closer examination of these challenges re-
veals issues such as in the translation of "Around
11:29, the protest moved up Whitehall, ..." which
was initially rendered as "Ngawo-11:29 ababhik-
ishi baya Odongeni Olumhlophe, ...". This trans-
lation contains two key issues. First, "Ngawo-
11:29" should have been "Ngabo-11:29" to cor-
rectly match the grammatical structure for time

574



expressions in isiZulu. Second, the literal translit-
eration of "Whitehall" as "Odongeni Olumhlophe"
failed to integrate properly into the sentence. The
correct approach would involve incorporating the
place name with the locative prefix "e-" to produce
"e-Whitehall.". This prefix addition is required in
conjunctive languages when using borrowed words
or terms, but MT systems often fail to capture
these variations. Additionally, another common is-
sue was the unnecessary borrowing of words from
English, despite the availability of standardized
isiZulu terms. This was particularly evident with
month names, scientific terms, and country names,
where inconsistencies were frequent—one trans-
lation might use "January," another "uJanuwari,"
and yet another "uMasingana" Another example
of this can be seen with the country name "Spain,"
which was inconsistently translated as both "Spain"
and "Speyini" in different sections. Similar incon-
sistencies occurred with attempts to translate orga-
nizational names or acronyms, leading to partial
translations that disrupted the linguistic flow.

To address the inconsistencies, standardized
isiZulu terms were consistently applied through-
out the translations. For instance, month names
such as "uMasingana" replaced the inconsistent
use of "January" and "uJanuwari" In dealing with
organizational names and acronyms and countries’
names, the approach was to fully translate these
entities or retain their original form consistently,
avoiding partial translations that could disrupt the
flow.

In addition to the inconsistencies with terminol-
ogy, other errors were also identified and addressed.
These included issues with verb conjugation, where
incorrect tenses or forms were initially used, and
the improper handling of borrowed words that did
not align with isiZulu’s morphosyntactic rules. Mi-
nor spelling errors and incorrect use of prefixes
or suffixes were also corrected to ensure that the
translations were both grammatically accurate and
easily understood.

5 Conclusion

In this work, we highlight the importance of qualita-
tive evaluation datasets for low-resource languages
and present our findings from a comprehensive
review of the FLORES dataset for four African
languages: Hausa, Northern Sotho, Xitsonga, and
isiZulu. The original translations were marred by
vocabulary inconsistencies, syntax errors, and in-

accurate technical terms. After making necessary
corrections, we measured the amount of edits and
resulting difference between the improved datasets
and the original using metrics like BLEU, TER, and
COMET, which showed that significant improve-
ments were made. The results presented highlight
the need for ongoing refinement and human over-
sight in developing accurate translation datasets for
underrepresented languages. For future work, we
intend to expand the corrections to more African
languages.
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Habeebah Kakudi. 2023. HaVQA: A dataset for
visual question answering and multimodal research
in Hausa language. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
10162–10183, Toronto, Canada. Association for
Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223–231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

StatsSA. 2022. Statistics South Africa.

Elsabé Taljard and Sonja E Bosch. 2006. A comparison
of approaches to word class tagging: Disjunctively
vs. conjunctively written bantu languages. Nordic
journal of African studies, 15(4).

Jiayi Wang, David Adelani, Sweta Agrawal, Marek
Masiak, Ricardo Rei, Eleftheria Briakou, Marine
Carpuat, Xuanli He, Sofia Bourhim, Andiswa Bukula,
Muhidin Mohamed, Temitayo Olatoye, Tosin
Adewumi, Hamam Mokayed, Christine Mwase, Wan-
gui Kimotho, Foutse Yuehgoh, Anuoluwapo Aremu,
Jessica Ojo, Shamsuddeen Muhammad, Salomey
Osei, Abdul-Hakeem Omotayo, Chiamaka Chuk-
wuneke, Perez Ogayo, Oumaima Hourrane, Salma
El Anigri, Lolwethu Ndolela, Thabiso Mangwana,
Shafie Mohamed, Hassan Ayinde, Oluwabusayo
Awoyomi, Lama Alkhaled, Sana Al-azzawi, Naome
Etori, Millicent Ochieng, Clemencia Siro, Njoroge
Kiragu, Eric Muchiri, Wangari Kimotho, Toad-
oum Sari Sakayo, Lyse Naomi Wamba, Daud
Abolade, Simbiat Ajao, Iyanuoluwa Shode, Ricky
Macharm, Ruqayya Iro, Saheed Abdullahi, Stephen
Moore, Bernard Opoku, Zainab Akinjobi, Abeeb Afo-
labi, Nnaemeka Obiefuna, Onyekachi Ogbu, Sam
Ochieng’, Verrah Otiende, Chinedu Mbonu, Yao
Lu, and Pontus Stenetorp. 2024. AfriMTE and
AfriCOMET: Enhancing COMET to embrace under-
resourced African languages. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 5997–6023, Mexico City, Mexico. Asso-
ciation for Computational Linguistics.

576

https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.findings-acl.646
https://doi.org/10.18653/v1/2023.findings-acl.646
https://doi.org/10.18653/v1/2023.findings-acl.646
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://doi.org/10.18653/v1/2024.naacl-long.334
https://doi.org/10.18653/v1/2024.naacl-long.334
https://doi.org/10.18653/v1/2024.naacl-long.334


A Description of the Target Languages

Hausa (hau): Hausa is a widely spoken language
across West Africa, particularly in Nigeria, Niger,
Cameroon, and Ghana. It is spoken by approxi-
mately 77 million people worldwide, primarily in
West Africa (Eberhard et al., 2022). Hausa ranks
as the second most spoken language in Africa and
27th globally. The language belongs to the Chadic
branch of the Afroasiatic language family, and it
has a rich history of written communication. It was
first written in Arabic script known as Ajami, re-
flecting the language’s connection to Arabic, with
many Hausa words borrowed from Arabic due to
historical contact and influence. Today, the Boko
script (also known as Roman script), which uses
Latin characters, is the most common writing sys-
tem for Hausa. This script excludes the letters p,
q, v, and x, and includes additional consonants ( ,
¡, ¨, ¯, kw, ¨w, gw, ky, ¨y, gy, sh, ts) and vow-
els (long a, i, o, u, e, and two diphthongs ai and
au). Hausa follows a Subject-Verb-Object (SVO)
sentence structure.

Northern Sotho (nso): Northern Sotho, also
known as Sepedi or Sesotho sa Leboa, is one
of the official languages of South Africa and is
spoken primarily by the Bapedi people in Limpopo
Province. It is a Bantu language that belongs to
the Sotho-Tswana group and shares linguistic
similarities with Sesotho (Southern Sotho) and
Setswana. Sepedi is known for its rich oral
tradition that includes folklore, proverbs, and
praise poetry that have played a significant role in
the preservation of cultural heritage (Nurse and
Philippson, 2006). Sepedi is written using the
Latin alphabet, with the standard 26 letters and a
few additional characters such as the "š" which
are adapted to its unique sounds. The language
primarily follows a Subject-Verb-Object word
order in sentence structure.

Xitsonga (tso): Xitsonga, or Tsonga, is a Bantu
language that is mainly spoken in South Africa and
more especially in the Limpopo province and parts
of Mpumalanga province. The language is esti-
mated to be spoken by about 2.3 million people in
South Africa. Xitsonga belongs to the Niger-Congo
language family, specifically the Tshwa-Ronga sub-
group, and is characterized by the extensive use of
prefixes and suffixes to convey meaning (Mabaso,
2018). This linguistic feature can impact the accu-
racy of translations, especially when dealing with

Language Sentence

English I know them
Hausa Na san su
Northern Sotho Ndza va tiva
Xitsonga Ke a ba tseba
isiZulu Ngiyabazi

Table 4: The grammatical structure of different lan-
guages.

technical and scientific concepts. It also feature
a complex system of writing and syntax, which
are prerequisites to clear and concise language us-
age. Xitsonga is currently used in education and
media section in South Africa, thus is regarded
as relevant in cultural linguistic practices. That is
why, the language being mentioned as a part of the
country’s multiple languages system emphasizes
its relevance and application in different phases of
the people’s activity.

isiZulu (zul): Zulu or isiZulu (in Zulu) is one of
the 12 official languages in South Africa, and it is
considered to be the most widely spoken indige-
nous language in the country. It constitutes approx-
imately a quarter of the population, with around
15.1 million speakers out of the population of 62
million people (StatsSA, 2022). IsiZulu is part
of the Nguni language family, which is made up
of a group of closely related Bantu languages be-
longing to a larger Niger-Congo language family,
and they are widely spoken across Southern Africa
(Mesham et al., 2021). These languages are partic-
ularly notable for their complex morphology, char-
acterized by agglutinative morphology and con-
junctive orthography. Agglutinative morphology
means that words are typically formed by combin-
ing multiple small meaning-carrying units, known
as morpheme. Conjunctive orthography means that
the morphemes are glued together to form a word,
rather than writing them with spaces in between,
as seen in disjunctive orthography, commonly asso-
ciated with the Sotho group, as well as Tshivenda
and Xitsonga in South Africa indigenous languages
(Taljard and Bosch, 2006). To illustrate this dis-
tinction, consider the example in Table 4 which
examines the different grammatical structures of
the phrase I know them.

Table 4 shows that while the phrase’s meaning
is consistent across languages, the writing systems
vary: in disjunctive orthography, morphemes are
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separated by spaces, while in conjunctive orthog-
raphy, as in isiZulu, they are joined into a single
word. For example, in the phrase I know them, each
morpheme serves a specific grammatical function–
‘I’ as the subject, ‘know’ as the verb, and ‘them’ as
the object. In disjunctive orthography, these mor-
phemes are written separately, making each unit
distinct. In conjunctive orthography, they are com-
bined into one continuous word, but the meaning
remains intact. These orthographic variations pose
challenges for machine translation systems, which
must accurately process morphemes in different
writing systems to produce accurate translations.
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Abstract

As part of the Open Language Data Initiative
shared tasks, we have expanded the FLORES+
evaluation set to include Emakhuwa, a low-
resource language widely spoken in Mozam-
bique. We translated the dev and devtest sets
from Portuguese into Emakhuwa, and we de-
tail the translation process and quality assur-
ance measures used. Our methodology in-
volved various quality checks, including post-
editing and adequacy assessments. The re-
sulting datasets consist of multiple reference
sentences for each source. We present base-
line results from training a Neural Machine
Translation system and fine-tuning existing
multilingual translation models. Our find-
ings suggest that spelling inconsistencies re-
main a challenge in Emakhuwa. Additionally,
the baseline models underperformed on this
evaluation set, underscoring the necessity for
further research to enhance machine transla-
tion quality for Emakhuwa. The data is pub-
licly available at https://huggingface.co/
datasets/LIACC/Emakhuwa-FLORES

1 Introduction

Evaluation datasets and benchmarks are essential
for advancing Natural Language Processing (NLP)
models. They provide the necessary tools for as-
sessing model performance and guiding further
enhancements. However, the scarcity of evalu-
ation datasets and benchmarks for low-resource
languages has significantly hindered the progress
of NLP technologies in these languages. Recog-
nizing this challenge, the FLORES+ evaluation
set has emerged as a critical tool for the Machine
Translation (MT) community, especially in low-
resource languages. It promotes a more inclu-
sive approach to language technology development
across diverse linguistic landscapes. This work fo-
cuses on expanding the FLORES+ (NLLB Team
et al., 2022) evaluation set to include Emakhuwa,
a low-resource language spoken in Mozambique

by approximately 9 million people. Our dataset
consists of the dev and devtest sets managed by
the Open Language Data Initiative1(OLDI), which
contain 997 sentences and 1012 sentences, respec-
tively. Throughout our data collection process,
we implemented robust quality assurance mecha-
nisms, including thorough post-editing. The result-
ing dataset features multiple reference translations
derived from these post-editing efforts.

2 Related Works

The Flores v1.0 MT evaluation set was introduced
by Guzmán et al. (2019). This initial version fo-
cused on two language pairs: Nepali–English and
Sinhala–English, with the data divided into dev,
test, and devtest splits. After its release, the dataset
was gradually expanded to include more languages.
A significant expansion came with the work of
Goyal et al. (2021), who introduced Flores-101, ex-
tending the evaluation set to support 101 languages.
Further expansion was done with the release of
Flores-200 by the NLLB team (NLLB Team et al.,
2022) in 2022, which increased the language cov-
erage to 204 languages. Additional contributions
include Doumbouya et al. (2023), who added the
Nko language, as well as AI4Bharat et al. (2023),
who incorporated Bodo, Dogri, Meitei, Sindhi, and
Goan Konkani into the dataset. These contribu-
tions have significantly broadened the opportuni-
ties for low-resource languages in MT, allowing
researchers to track the progress of MT systems on
these expanded evaluations. However, the coverage
remains limited, especially considering that there
are over 7,000 languages worldwide. One such
language that remains underserved is Emakhuwa,
which still lacks datasets for MT.

1https://oldi.org/
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3 Emakhuwa

Emakhuwa, alternatively referred to as Makua,
Macua, or Makhuwa, belongs to the Bantu lan-
guage family and is predominantly spoken in
the northern and central regions of Mozambique,
specifically in the Nampula, Niassa, Cabo Delgado,
and Zambezia provinces. There are eight variants
of Emakhuwa, with Emakhuwa-Central (ISO 639-
3 code vmw) being the standard variety (Ngunga
and Faquir, 2014).

Emakhuwa follows the Subject-Verb-Object
(SVO) structure, use a Latin scripts (ISO 15924
Latn), and is gender-neutral. Furthermore, simi-
larly to other languages in the Bantu family, it is
linguistically rich, with complex morphology fea-
turing agglutinative and tonal attributes.

3.1 Challenges in Emakhuwa

Emakhuwa digital resources are scarce, and the
spelling standards are still under development.
While a fully standardized system is not yet in
place, the existing guidelines (Ngunga and Faquir,
2014) offer a critical framework for contemporary
written communication in Emakhuwa. One prob-
lem stressed in official standardization (Ngunga
and Faquir, 2014) is the lack of guidance on tonal
marking. Consequently, existing materials exhibit
inconsistent spelling, particularly when marking
tone, which is essential in Emakhuwa for disam-
biguation. To give an example, let us consider
two words carrying distinct meanings: omala and
omaala / omàla; omala means “to finish", while
omaala / omàla means “to silence" or "to hush."
In this case, the tonal marker aa / à clarifies the
intended meaning.

Spelling variations are largely evident in existing
Emkahuwa text corpora, where some use diacritics
(e.g., à, è, ì, ò, ù) and consonantal sounds (e.g, kh,
nn) for tonal marking, others use vowel lengthening
(e.g., aa, ee, ii, oo, uu), and some even use a com-
bination of methods. Emakhuwa’s agglutinative
nature with complex morphology further amplifies
spelling discrepancies. Since tonal variations often
occur at the morpheme level, different combina-
tions of morphemes result in varied spellings of the
same word.

These spelling inconsistencies create significant
obstacles for language technology processes. They
lead to data sparsity, as some spelling variants ap-
pear less frequently, which impairs the model’s
ability to learn the language’s nuances effectively.

This sparsity inflates the vocabulary size and can
result in reduced performance of language tech-
nologies.

An additional challenge in Emakhuwa that con-
tributes to inconsistencies is the adaptation of loan-
words. Emakhuwa text corpora frequently con-
tain Portuguese loanwords with inconsistent adapta-
tions due to the absence of standardized guidelines
for integrating borrowed terms (Ali et al., 2024).
These loanwords are adapted in one of three ways:
phonetically to match Portuguese pronunciation,
in alignment with Emakhuwa phonotactics, or re-
tained unchanged from Portuguese.

4 Methodology

We chose to translate the devtest and dev sets from
Portuguese (pt) into Emakhuwa (vmw) because our
translators were only proficient in these two lan-
guages. We focus specifically on the central variant
of Emakhuwa, as it is the standard and established
language variant.

The translators were selected based on their pro-
ficiency in these languages and their proven ex-
perience in Portuguese-Emakhuwa translation. In
total, we collaborated with five experts: two were
assigned the tasks of translation and revision, while
the remaining collaborators were responsible for
evaluating the translations (refer to Table 6 in the
appendix for more details).

In general, we implemented the workflow as a
peer review process, divided into three main steps:
Data Preparation, Translation, and Validation. Be-
low is a detailed description of each step (refer to
Figure 1).

4.1 Data Preparation

We compile the sentences in devtest and dev sets
as segments and then load them to the Matecat2

CAT (Computer-Assisted Translation) tool. Before
assigning translation tasks, we prepare a guideline
and glossary. The guidelines were adapted from the
Open Language Data Initiative guidelines3, written
in Portuguese and suggesting that the translated
text should adhere to the latest orthography stan-
dards of the central variant of Emakhuwa. On the
other hand, the glossary was built by digitizing
existing bilingual dictionaries and the glossary of
Political, Sports, and Social Concepts from Radio
of Mozambique (Moçambique E.P., 2016). We con-

2https://www.matecat.com/
3https://oldi.org/guidelines
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Figure 1: Workflow

ducted a small workshop to familiarize the team
with the guidelines and gather feedback to improve
them. The translation team found the glossary help-
ful, as it prevented using loanwords for existing
Emakhuwa terms and ensured consistency in trans-
lations.

4.2 Translation

Translation tasks were subdivided between two
translators: one worked on the devtest segments,
and the other on the dev segments. Once all seg-
ments were translated, they were submitted to our
spell checker system for an automatic check to
identify potential misspellings (refer to Figure 10
in the appendix). We then provided feedback to the
translators, asking them to review and refine their
work if necessary.

4.3 Validation

The validation corresponds to two steps: revision
and Judgments.

4.3.1 Revision
Following the translation step, we swapped the
translated works between the two translators, ask-
ing them to post-edit each other’s translations on
the Matecat platform. Table 1 provides the Quality
Report generated by Matecat, which includes vari-
ous metrics used to evaluate the translation based
on the revisions made. The report indicates that the
reviewer working on devtest made more sugges-
tions. A closer examination of the error categories
on devtest (refer to Figure 9 in the appendix) re-
veals that most of the issues identified in the transla-
tion fell under the category of "Language Quality",
meaning grammar, punctuation, and spelling er-
rors. On the other hand, the reviewer of the dev set

identified mostly errors related to "terminology and
language consistency", suggesting that the transla-
tor was not consistently using the proper terms and
maintaining uniformity throughout the text.

dev devtest

Post-Editing Effort 99% 95%
Time to edit 02m38s 05m42s

Quality score 23.31 54.22
Avg. Edit Distance 0.23 ± 1.77 7.09 ± 11.94

Table 1: Matecat’s quality report post revision.

4.3.2 Judgments
Once all segments have been revised, we perform
a second translation quality assessment using a
Direct Assessment (DA) pipeline similar to the one
described by Guzmán et al. 2019. Judgments were
collected using our annotation tool (see Figure 7 in
the appendix), and involve the following aspects.

Direct Assessment Three different raters eval-
uate the translation adequacy (i.e., the perceived
translation quality) on a scale from 0 to 100. A
score of 0 means that "no meaning was preserved
in the translation". Scores from 1 to 34 - "the trans-
lation preserves some of the source meaning but
loses significant parts", 35 and 67 - "the translation
retains most of the source meaning", 68 to 99 - "the
translation is consistent with the source text", and
a score of 100 means "the translation is perfect".
These quality intervals are inspired by the study
of Wang et al. 2024.

Control To ensure raters’ attentiveness and im-
prove consistency during the evaluation, we in-
cluded control instances with incorrect translation
pairs. These incorrect pairs were generated using
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the Madland-400-3bt4 model (Kudugunta et al.,
2024), a multilingual MT system that supports the
Emetto variant of Emakhuwa (ISO 639-3 mgh).
While this model typically performs poorly when
translating from Portuguese to Emakhuwa, it pro-
duces similar words that can mislead inattentive
annotators. Based on these control translations, we
provided feedback to the evaluators as they pro-
gressed in their tasks. We used emojis to give the
feedback in our annotation tool: a appeared
if less than 25% of control translations were in-
correctly rated (i.e. scores above 34 points),
if 25%-50% are incorrectly rated, if 50%-75%
are incorrectly rated, and if more than 75% of
control translations are rated too highly.

Post Editing During the validation phase, we
asked evaluators to post-edit translations with lower
scores to enhance fluency and better align them
with the source sentence’s meaning. However, this
task was made optional to prevent evaluators from
inflating scores to avoid additional post-editing
work.

Standard orthography To assess the perceived
usage of standard orthography, raters also judged
whether the translated text used standard orthogra-
phy on a scale from 1 (not using standard orthogra-
phy) to 5 (entirely written in standard orthography).

Finally, we calculate the average score for each
segment. We then returned segments scoring below
70 to the translator for reworking. Figure 2 shows
the histogram of the average translation scores.

Figure 2: Averaged Translation Quality Score His-
togram on both dev and devtest sets. Translations with
an average score below 70 (indicated by the red line)
were returned to the translator for rework.

4https://huggingface.co/google/madlad400-3b-mt

4.4 Analysis
Figures 3 and 4 show the raw scores per annotator
for Direct Assessments. Given the mean scores,
in both the test and devtest sets, Annotator 1 and
Annotator 2 gave higher quality scores, while An-
notator 3 was more critical but still within the spec-
trum of acceptable translations. This suggests a
generally positive perception of the translations
produced. Figure 5 displays the Direct Assess-
ment scores on the control set. Annotator 1 and
Annotator 3 have median scores below the thresh-
old of 34 points, suggesting that, as expected, they
have generally assessed the control translations as
low quality. Annotator 2, however, has a median
score above the threshold, suggesting a trend to a
more positive assessment compared to the other
two annotators and was less attentive among the
annotators.

Figure 3: Direct Assessment adequacy scores per anno-
tator on dev set

Figure 4: Direct Assessment adequacy scores per anno-
tator on devtest set

Table 2 provides the reliability results for ade-
quacy and standard orthography usage assessments.
The inter-class correlation for adequacy is 0.67 for
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Figure 5: Direct Assessment adequacy scores per anno-
tator on control set

Figure 6: Assessment of standard orthography usage on
the control set.

dev and 0.66 for devtest, suggesting moderate re-
liability. However, the inter-class correlations for
standard orthography usage are lower, with values
of 0.35 for dev and 0.27 for devtest, indicating con-
siderable disagreement among annotators. This
discrepancy highlights the ongoing lack of clarity
regarding Emakhuwa spelling standards, as further
illustrated in Figure 6, which depicts the varying
assessments of standard orthography.

Adequacy Orthography

dev devtest dev devtest

ICC 0.67 0.66 0.35 0.27
CI [0.63, 0.71] [0.62, 0.7] [0.27, 0.42] [0.18, 0.35]

Table 2: Intraclass Correlation Coefficient (ICC) and
Confidence Interval (CI) Results for Adequacy and Or-
thography usage annotation.

4.5 Dataset Collected
Table 3 presents the statistics for the devtest and dev
sets resulting from the completion of the translation
tasks. The dev set comprises 997 sentence pairs,

dev devtest

#ref. 997 1,012
#ref. words 18,673 21,011

#post-edited refs 1,848 1,889

Table 3: Statitics for the resulting dataset sets

while the devtest set contains 1,012 sentence pairs.
A sample of the dataset is displayed in Table 7 in
the appendix.

5 Experiments

This section describes the experiment involving
training neural MT models using the training sets
described below. Then, we performed a compre-
hensive benchmark evaluation using the evaluation
sets introduced in this study.

5.1 Training Data

To train the models, we used the data outlined be-
low:

• Ali et al. (2021) dataset: This subset
comprises parallel data in Portuguese and
Emakhuwa from different sources, including
online texts from the Jehovah’s Witness, the
African Story Book websites, and Optical
Character Recognition (OCR) extracted texts.
The corpus contains diverse writing styles,
spelling styles, and genres.

• Parallel News: This subset consists of
news articles translated from Portuguese into
Emakhuwa.

The dataset includes around 63k training parallel
sentences and 964 validation parallel sentences,
spanning a range of topics (see Table 4), where
a significant portion of the data comes from the
religious domain, mainly consisting of translations
of biblical texts.

Sentences Tokens

Source Train Dev pt vmw

Ali et al. (2021) 46,454 399 1,104,279 951,520
News 17,403 565 596,066 541,598

Total 63,857 964 1,700,345 1,493,118

Table 4: Training and Validation data statistics
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dev devtest

Single Ref. Multi Ref. Single Ref. Multi Ref.

BLEU chrF BLEU chrF BLEU chrF BLEU chrF

transformer-base

Baseline pt→vmw 3.7 30.67 3.95(+0.25) 31.32(+0.65) 3.27 29.23 3.57(+0.3) 29.84(+0.61)

vmw→pt 4.36 25.48 - - 2.93 23.96 - -
Multilingual Language Models

afri-byT5 pt→vmw 10.32 41.88 10.81(+0.49) 42.64(+0.76) 7.03 35.87 7.73(+0.7) 36.72(+0.85)

vmw→pt 22.45 47.31 - - 13.74 37.78 - -

afri-mT5 pt→vmw 5.66 35.37 5.96(+0.3) 36.01(+0.64) 4.7 32.7 5.06(+0.36) 33.25(+0.55)

vmw→pt 12.12 38.18 - - 7.39 32.92 - -

byT5 pt→vmw 10.66 42.37 11.2(+0.54) 43.16(+0.79) 7.49 36.33 8.13(+0.64) 37.15(+0.82)

vmw→pt 22.24 47.01 - - 14.1 37.75 - -

mT0 pt→vmw 5.52 30.33 5.76(+0.24) 30.9(+0.57) 4.69 27.89 5.02(+0.33) 28.36(+0.47)

vmw→pt 17.46 38.92 - - 10.63 32.69 - -

mT5 pt→vmw 6.76 34.09 7.18(+0.42) 34.8(+0.71) 5.67 31.67 6.06(+0.39) 32.23(+0.56)

vmw→pt 15.42 37.58 - - 9.65 32.22 - -
Many-to-Many Multilingual Translation Language Models

M2M100 pt→vmw 8.25 39.22 8.79(+0.54) 40.14(+0.92) 6.92 36.33 7.57(+0.65) 37.19(+0.86)

vmw→pt 21.08 45.31 - - 13.67 37.46 - -

NLLB pt→ vmw 8.19 41.44 8.74(+0.54) 42.32(+0.88) 5.88 36.13 6.34(+0.46) 37.01(+0.88)

vmw→pt 17.41 42.88 - - 10.35 35.05 - -

Table 5: BLEU and chrF scores for various models on dev and devtest splits, for single and multiple references

5.2 Setup

We trained MT models in both directions, pt-
vmw (Portuguese to Emakhuwa) and vmw-pt
(Emakhuwa to Portuguese), using two approaches:
training a vanilla transformer model and fine-tuning
existing multilingual language models.

Training We adopt the transformer architec-
ture (Vaswani et al., 2017), implemented through
the OpenNMT toolkit (Klein et al., 2017). The
model consists of an encoder and decoder com-
prising 6 layers, 8 heads, and 512 hidden units in
the feed-forward network. We used an embedding
size of 512 dimensions for both source and target
words and a batch size of 32. We applied layer
normalization and added dropout with a 0.1 prob-
ability to the embedding and transformer layers.
Additionally, the Adam optimizer (Kingma and
Ba, 2014) was used, and a learning rate of 0.0002.
The checkpoints were saved every 1000 updates.
We preprocess the input, applying the Byte Pair
Encoding subword segmentation.

Fine-tuning Multilingual Models Multilingual
language models are one of the most prominent
approaches to low-resource languages nowadays
since it enables knowledge transfer among related
languages, making cross-lingual transfer and zero-
shot learning possible.

In our experiments, we fine-tuned various multi-
lingual language models that are well-established
in the literature, namely: mT5 (Xue et al., 2021),
byT5 (Xue et al., 2022), and the multilingual trans-
lation models M2M-100 (Fan et al., 2021) and
NLLB (NLLBTeam et al., 2024). Specifically,
we use mT5-base (580M parameters), byT5-base
(580M parameters), M2M-100 (418M parameters),
and NLLB-200’s distilled variant (600M parame-
ters). Additionally, we also fine-tuned the African-
centric language models, namely, AfribyT5 (580M
parameters) and AfrimT5 (580M parameters) by
Adelani et al., 2022.

5.3 Evaluation

To assess the systems’ performance, we used
the SacreBLEU toolkit (Post, 2018) to compute
the BLEU (Papineni et al., 2002) and ChrF
scores (Popović, 2015).

6 Results and Discussion

Results are presented in Table 5. Our baseline
results, derived from a vanilla transformer-base
model, set a foundational performance benchmark.
On the devtest set, the baseline model achieved a
BLEU score of 2.93 and a ChrF score of 23.96 for
the vmw → pt translation direction. These mod-
est scores underscore the limitations of the vanilla
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transformer-base model in handling the complex-
ities of translation tasks involving low-resource
languages like Emakhuwa.

However, introducing multilingual language
models enhanced translation performance, partic-
ularly in the vmw → pt direction. Among these,
models based on byT5 demonstrated superior per-
formance. For instance, the fine-tuned byT5 model
achieved a BLEU score of 14.1 and a ChrF score
of 37.75 on the devtest set, which marks a substan-
tial improvement over the baseline. This highlights
the advantage of leveraging tokenization-free ap-
proaches, which are better suited for handling the
morphological richness and orthographic variations
characteristic of Emakhuwa.

Across Table 5, our results show that while
BLEU scores remained relatively low in the pt
→ vmw translation direction, ChrF were consis-
tently higher. This discrepancy between BLEU and
ChrF scores suggests that BLEU may be dispropor-
tionately penalizing spelling variations and minor
orthographic differences, which are more prevalent
in Emakhuwa translations. ChrF, on the other hand,
being more sensitive to character-level n-grams,
captures better the quality of translations. Never-
theless, further studies need to be done to assess the
correlation of these automatic metrics with human
evaluations.

Using multiple references Notably, using multi-
ple references improved scores for both BLEU and
ChrF across all models. Specifically, BLEU scores
increased by +0.24 to +0.54 on the dev set and by
+0.3 on the devtest set.

7 Conclusion

In conclusion, this study expanded the FLO-
RES+ evaluation set to include Emakhuwa, a low-
resource language spoken in Mozambique. By
translating the dev and devtest sets from Portuguese
to Emakhuwa. We discussed key challenges such
as spelling inconsistencies and loanword adapta-
tions, which are prevalent due to Emakhuwa’s un-
derdeveloped spelling standards. Our rigorous
methodology, involving translation, post-editing,
and validation, ensured high-quality datasets used
to benchmark neural MT models. The results indi-
cate that incorporating multiple reference transla-
tions can enhance translation quality, particularly in
languages with underdeveloped orthographies such
as Emakhuwa. The dataset is publicly available,
providing a valuable resource for future research in

low-resource language MT.
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Name Role Tasks Expertise Alias

Araibo Suhamihe Translator Translate devtest,
Revise dev

Professional
experience

Translator1

Salustiano Eurico Ramos Translator Translate dev, Re-
vise devtest

Professional
experience

Translator2

Gito Anastácio Anastácio Evaluator Evaluate and post-
edit devtest / dev

Professional
experience

Annotator1

Júlio José Paulo Evaluator Evaluate and post-
edit devtest / dev

Professional
experience

Annotator2

Vasco André António Evaluator Evaluate and post-
edit devtest / dev

Professional
experience

Annotator3

Table 6: Translation Team

Figure 7: Annotation Tool User Interface.
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pt→ vmw

Source pt A camada é mais fina debaixo dos mares e mais espessa abaixo das montanhas.
Translation en It is thinner under the maria and thicker under the highlands.

References (vmw) A Mpattapatthaaya tiwoyeva vathi wa mphareya ni yowoneya vathi wa miyaako.
B Mpattapatthaaya ti’yottettheeya othi wa iphareya ni yookhoomala vathi wa miyaako.

Systems (vmw)

baseline Khalai atthu yahikhotta vathi-va, khukelela vasulu vaya.
afri-byT5 Okhala wira okathi wa okathi ole ti wootepexa ottuli wa iphareya ni otepexa ottuli wa miyako.
afri-mT5 Nthowa nenlo ninkhala ntoko nsuwa ntoko nsuwa ni ninkhala ntoko nsuwa ni ninkhala ntoko nsuwa ni ninkhala ntoko nsuwa.

byT5 Ekamada eyo yootepa omalela vathi va iphareya ni yootepa omalela vathi va miyaako.
mT0 Okhala wira ematta eyo enniphwanyaneya ottuli wa maasi, nto ematta eyo enniphwanyaneya ottuli wa maasi.
mT5 Ekatana eyo ti yootepa otthuneya ovikana maasi ni yootepa otthuneya ovikana maasi.

M2M100 Ekaaxa ele ti yootepa otthuneya vathi va ephareya ni yootepa otthuneya vathi va mwaako.
NLLB Mukattelo ti woorekama vathi vathi wa ophareya ni wootepa maasi vathi wa miyaako.

vmw→ pt

Source vmw Mpattapatthaaya tiwoyeva vathi wa mphareya ni yowoneya vathi wa miyaako.

References pt A camada é mais fina debaixo dos mares e mais espessa abaixo das montanhas.

Systems (pt)

baseline A sua <unk> ainda é a propriedade que existe no <unk> sistema de coisas <unk>.
afri-byT5 A sua aliança é pequena sobre o mar e visível das montanhas.
afri-mT5 A sua vantagem é pequena sobre o mar e pequena sobre os oceanos.

byT5 O amigo é pequeno sobre o mar e visível sobre os montes.
mT0 O companheiro é pequeno na água e pequeno na água.
mT5 O seu amigo é pequeno na água e pequeno na água.

M2M100 A arca é pequena debaixo do mar e visível debaixo das montanhas.
NLLB A bacia é barata no fundo do mar e muito clara no fundo das margens.

pt→ vmw

Source pt Todos os cidadãos da cidade do Vaticano são católicos romanos.
Translation en All citizens of Vatican City are Roman Catholic.

References (vmw) A Atthu ootheene opooma wo Vatikaanu anatiini a ekirixitawu ya katolika.
B Atthu ootheene opooma ya oVatikaanu anatiini a ekirixitawu katolika.

Systems (vmw)

baseline Anammuttettheni otheene a epooma ya Vatoolika aari aRoma.
afri-byT5 Atthu otheene a epooma ya oVaticano ti makatooliku a oRoma.
afri-mT5 Otheene a epooma ya Vatikaano ti maKatoliko a oRoma. Otheene atthu otheene a epooma ya Vatikaano ti maKatoliko romano.

byT5 Atthu otheene a epooma ya oVatikano ti makatooliku a oRoma.
mT0 Atthu otheene a epooma ya oVaticano ti maKatolika a oRoma.
mT5 Atthu otheene a epooma ya oVaticano ari maKristau a oRoma.

M2M100 Atthu otheene a epooma ya oVaticano ari maKatoolika a oRoma.
NLLB Atthu ootheene anikhala epooma ya Vatikaano ti makatooliku a orooma.

vmw→ pt

Source vmw Atthu ootheene opooma wo Vatikaanu anatiini a ekirixitawu ya katolika.

References pt Todos os cidadãos da cidade do Vaticano são católicos romanos.

Systems (pt)

baseline Todos na cidade do Vaticano apela a terra de <unk>.
afri-byT5 Toda a população na cidade do Vaticano realiza a religião católica.
afri-mT5 Todos os cidadãos em Vaticano são religiosos da igreja católica.

byT5 Toda a população na cidade do Vaticano é religiosa da cristã católica.
mT0 Todos os cidadãos da cidade de Vaticane são cristãos da igreja católica.
mT5 Todos os cidadãos na cidade de Vaticano são cristãos católicos.

M2M100 Todos os cidadãos do Vaticano são cristãos católicos.
NLLB Todos na cidade do Vaticano são religiosos católicos.

Table 7: Example of source-reference sentences pairs from devtest and outputs from translating source text using
models discussed in Section 5.2
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Figure 8: Matecat User Interface

Figure 9: Matecat Quality Report after revision, categorized by the following translation issue typologies: 1)
Style (readability, consistent style, and tone); 2) Tag issues (mismatches, whitespaces); 3) Translation errors
(mistranslation, additions or omissions); 4) Terminology and translation consistency; 5) Language quality (grammar,
punctuation, spelling). The error point count corresponds to the number of segments found with any of the issues
described above.
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Figure 10: Screenshot of a spelling report. The report is organized into two columns: the first column lists the
segment ID along with any potential translation issues (i.e., punctuations, source-target length ratio flag, number
mismatch, loanwords not annotated, case mismatch, etc.). The second column displays the source text and its
translation. Potential misspellings are highlighted within the translation. In the translation, potential misspellings
are highlighted in yellow and red—yellow indicating that suggestions for corrections are available and red indicating
that no suggestions exist. Additionally, the report lists all words that translators have annotated as loanwords from
Portuguese, using the format <donor sequence in Portuguese>:<recipient sequence in Emakhuwa>
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Model Size Hyperparameters
byT5-base / afri-byT5-base 580M

• Max source length: 200

• Max target length: 200

• Batch size: 8

• Beams: 4

mT5-base / afri-mT5-base 580M

• Max source length: 200

• Max target length: 200

• Batch size: 8

• Beams: 4

mT0 580M

• Max source length: 200

• Max target length: 200

• Batch size: 8

• Beams: 4

NLLB-200-distilled-600M 600M

• Max steps: 60000

M2M100 418M

• Max tokens: 1200

• Layers: 12

• Dropout: 0.3

• Attention dropout: 0.1

• Learning rate: 3e-05

• Max update: 40000

• Emakhuwa was mapped to Swahili (sw)

Table 8: MT Models Configurations
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Abstract

FLORES is a benchmark dataset designed for
evaluating machine translation systems, partic-
ularly for low-resource languages. This paper,
conducted as a part of Open Language Data Ini-
tiative (OLDI) shared task, presents our contri-
bution to expanding the FLORES dataset with
high-quality translations from Russian to Tu-
van, an endangered Turkic language. Our ap-
proach combined the linguistic expertise of na-
tive speakers to ensure both accuracy and cul-
tural relevance in the translations. This project
represents a significant step forward in support-
ing Tuvan as a low-resource language in the
realm of natural language processing (NLP)
and machine translation (MT).

1 Introduction
Tuvan is a Turkic language, written using the Cyril-
lic alphabet and spoken by approximately 258,000
people (as of 2020), according toEthnologue (2024).
It is one of two official languages, along with Rus-
sian, of the Republic of Tuva, which is located in
South Central Siberia, Russia. Despite its histor-
ical and cultural significance, Tuvan is classified
as vulnerable by UNESCO, making it a critical tar-
get for preservation and technological integration.
The FLORES (Goyal et al., 2022), spearheaded by
Meta, aims to enhance machine translation systems
by providing high-quality, controlled datasets for
under-resourced languages for evaluation purposes.
This paper, as a part of OLDI shared task (Initia-
tive, 2024b), details our efforts to contribute to this
dataset by providing translations from Russian to
Tuvan.

2 Related work
It is essential to provide a brief overview of the
FLORES (Goyal et al., 2022) dataset for those un-
familiar with this resource. The FLORES dataset,
introduced by Goyal et al. (2022), is a benchmark
for evaluating machine translation models on low-
resource languages, which was translated to over
200 languages. It is comprised of two sets: the

dev set contains 997 sentences and the devtest set
includes 1012 sentences, that were sampled from
Wikinews, Wikijunior and Wikivoyage. FLORES
dataset is crucial in advancing NLP for languages
like Tuvan by providing benchmark specifically
designed to evaluate machine translation systems
across a wide variety of languages. The NLLB
project (NLLB Team et al., 2022) further exem-
plifies efforts to scale human-centered machine
translation across diverse languages.

3 Language overview

3.1 Handling dialectal differences

As the Republic of Tuva is a federal subject of
Russia, the majority of the population is bilingual,
speaking both Russian and Tuvan. For that reason,
Tuvan translators relied on the FLORES dataset in
Russian when developing one in Tuvan. During
the translation process, any variations in interpre-
tation due to dialectal differences were resolved
by defaulting to the Central dialect’s interpretation.
This approach ensured uniformity and consistency
across the dataset, which is crucial for training
machine translation models that need to generalize
well across different contexts.

The language is taught in schools optionally,
but one can get a higher education in the Tuvan
language and Literature in one of the universities of
the Republic. Although the number of youth that
speaks the language fluently decreases, it is still
widely used both in cities and rural areas.

3.2 Linguistic challenges

Tuvan is characterized by its complex phonological
and grammatical structures, including vowel har-
mony and extensive use of suffixes. These features
posed challenges in translation, particularly in en-
suring that the meaning and tone of the original
Russian texts were accurately conveyed in Tuvan.
However, since our work was limited to written
form, we did not address challenges related to vocal
translation or spoken dialects.
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4 Data collection

4.1 Expertise of translators

Our translation team for the FLORES dataset was
led by four native Tuvan speakers who are also pro-
ficient in Russian. The team included professional
linguists and language enthusiasts with formal ed-
ucation in the Tuvan language. Although Tuvan
language education is currently facultative, several
of our translators had attended schools where Tu-
van was the primary medium of instruction. This
deep linguistic knowledge was crucial in ensuring
that translations were not only accurate but also
culturally relevant and sensitive. The following
team of translators put their utmost effort to make
the FLORES dataset available in Tuvan.

• Mongush Salim (Моңгуш Салим)
• Oorzhak Lyudmila (Ооржак Людмила)
• Ongai-ool Choduraa (Оңгай-оол Чодураа)
• Kuzhuget Ali (Кужугет Али)

4.2 Translation guidelines and training

Before beginning the translation tasks, all transla-
tors were provided with comprehensive guidelines,
prepared in Russian, detailing the translation pro-
cess. These guidelines, which are included in
Appendix A, covered key aspects such as:
1. Maintaining the tone and style of the original

text.
2. Handling idiomatic expressions and culturally

specific references.
3. Ensuring pragmatic accuracy, including the

correct use of pronouns and proper nouns.
Translators were instructed to adhere strictly to
these guidelines in order to ensure a high level of
consistency and quality across the entire dataset.

4.3 Managing the translation workflow

The translation process was managed using a
Telegram group, where tasks were assigned, and
progress was tracked using project management
tools. This system allowed for effective coordi-
nation among the translators and ensured that the
project stayed on schedule. It is worth pointing
out that the workflow included multiple rounds of
review and feedback among the translators to check
one another and refine the translations further.

5 Experimental validation

5.1 Contribution to the evaluation of
translation models

Our work makes a significant impact on the evalua-
tion part of the Tuvan translationmodels by creating
a reliable benchmark for this task. As for the cur-
rent model of September 2024 developed by our
team, it was trained on the existing Tuvan-Russian
corpus, which consisted of approximately 200,000
pairs (Kuzhuget and Choigan, 2024) of translations
sourced mainly from Wikipedia and other early
Tuvan language projects (Kuzhuget et al., 2023).
By contributing to the FLORES (Goyal et al., 2022)
dataset, we have provided a more structured and
high-quality resource, developed and checked by
professionals, that is better suited for evaluating
machine translation models.
The new dataset allowed us to run experiments

to compare the quality of the existing translation
models, available in Tuvan (Claude Sonnet 3.5,
Google Translate v2 API, tyvan.ru). The results of
these experiments are demonstrated on the Table 1.

Claude Sonnet 3.5 shows the highest performance
overall, with BLEU scores of 35.65 and 33.04 for
the Tyv-Rus translation in dev and devtest, respec-
tively. The ChrF2++ scores are also the highest,
reflecting good contextual understanding of this
model. Google Translate v2 performs well, partic-
ularly with Tyv-Rus, achieving a BLEU score of
around 28 in both datasets with ChrF2++ scores
being also strong. The tyvan.ru model tends to
have lower scores and lags behind the two above
mentioned models.

Model Dataset Tyv-Rus Rus-Tyv
BLEU ChrF++ BLEU ChrF++

tyvan.ru dev 16.94 43.94 13.12 45.92
devtest 16.41 43.09 13.35 46.11

Google Translate v2 dev 29.78 54.60 14.30 45.50
devtest 27.16 52.87 15.58 46.18

Claude Sonnet 3.5 dev 35.65 59.65 16.67 48.45
devtest 33.04 57.41 17.09 49.08

Table 1: Scores of Russian-Tuvan translation models on
the FLORES dataset.

5.2 Manual evaluation of machine translation
with the FLORES dataset

Objective
The objective of the manual evaluation on the FLO-
RES dataset is to evaluate and compare the per-
ceived translation adequacy of three translation
services: Google Translate v2, Claude Sonnet 3.5,
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and tyvan.ru. For that purpose we asked five Tuvan
native speakers (annotators) to assess the quality of
the translations for adequacy by giving scores on a
scale of 1 to 5, the higher the better.

Data
31 sentences were translated from Russian to Tuvan
using the above mentioned services. The data was
taken from two sets of FLORES dataset:

• dev set: First 16 sentences from the dev set
• devtest set: Last 15 sentences from the devtest
set

Annotators were given a table with the first column
containing sentences in Russian and three other
columns containing translated sentences to Tuvan
by the services, they had no information of the
service that provided the translation to make the
evaluation unbiased.

Results
Google Translate v2

• Median score: ∼ 4
• Distribution: Skewed toward higher scores
(4-5), with some variability and occasional
lower ratings.

Claude Sonnet 3.5
• Median score: ∼ 4
• Distribution: Consistently high (3-5), with
some sentences receiving lower scores (down
to 2).

tyvan.ru
• Median score: ∼ 3− 4
• Distribution: Most variability, with a wider
range of scores (1-5). This service had the
most mixed feedback, with some high and
many low ratings.

Key Insights
Google Translate v2 and Claude Sonnet 3.5 per-
formed relatively well, with consistent high scores.
tyvan.ru showed more variability in performance,
reflecting either inconsistent translation quality or
differences in how annotators perceived adequacy.

Visuals
Box plots (Figure 1) were used to compare the
distribution of scores across services in both dev
and devtest sets. A histogram (Figure 2) illustrated
the overall distribution of scores for each service,
with distinct colors for easy comparison (yellow for
Google Translate v2, blue for Claude Sonnet 3.5,

red for tyvan.ru). This experiment highlights differ-
ences in translation quality as perceived by human
annotators, showing that while Google Translate
v2 and Claude Sonnet 3.5 generally perform well,
tyvan.ru’s performance was less consistent across
annotators.

Figure 1: Direct assessment adequacy scores per Anno-
tator

Figure 2: Perceived translation score distribution by
Service

6 Data sample

As far as the the FLORES dataset in Tuvan is
concerned, it has the following characteristics:

• dev set: 997 sentences, 18.26 average number
of words in a sentence;

• devtest set: 1012 sentences, 18.44 average
number of words in a sentence.

A table 2 showcases the examples of translated
sentences from Russian to Tuvan. English trans-
lations were provided as examples so that English
speakers could understand the general meaning of
these sentences. But it is important to highlight
that our translators were based only on the Russian

595



No. English source Russian translation Tuvan translation
1 Tokyowill be the only city in Asia to

have hosted the Summer Olympics
twice.

Токио станет единственным
городом Азии, который дважды
принимал летние Олимпийские
игры.

Токио Азияга чайгы олимпийжи
оюннарны ийи катап эрттирген
чаңгыс хоорай болуп арттып каар.

2 There were no reports of serious
damage or casualties in Tonga, but
there was a temporary power outage,
which reportedly prevented the au-
thorities from receiving the tsunami
warning sent by the Pacific Tsunami
Warning Center (PTWC).

Из Тонга не поступило
сообщений о серьезных
разрушениях или о пострадавших,
но произошло временное
отключение электроснабжения,
что, по имеющимся данным,
не позволило властям Тонга
получить предупреждение
о цунами, посланное
Тихоокеанским центром
предупреждения о цунами
(PTWC).

Тонгадан шыңгыы
үрегдээшкиннер азы
когарааннар дугайында медээлер
келбээн, ынчалза-даа электри
хандырылгазы түр када хже
берген, ол чүүл, амгы үеде
бар медээлер-биле, Цунами
дыңнадыр Ооожум-океанчы
төптен (PTWC) цунами
дугайында дыңнадыгны алыр
арганы Тонганың чазаанга
бербээн болуп турар.

3 The percentage of people with
multidrug-resistant tuberculosis in
the overall group of tuberculosis pa-
tients still appears low; 6000 out of
330,000 infected in South Africa.

Однако, процент людей с
туберкулёзом с множественной
лекарственной устойчивостью
в целой группе больных
туберкулезом все еще кажется
низким; 6000 от общего числа
330 000 зараженных в ЮАР.

Туберкулез аарыг бөлүкте хөй
санныг эмнер-биле эмнеттинмес
туберкулезтуг кижилерниң хуузу
ам-даа эвээш ышкаш сагындырар;
амгы үеде ЮАР-да аарыг 330 000
кижиниң ниити санындан 6000
кижи.

4 In Japan, the first celebrations of
cherry blossom viewing were ar-
ranged by the emperor only for him-
self and other members of the aris-
tocracy.

В Японии первые празднования
цветения сакуры устраивались
императором только для себя и
других членов аристократии при
императорском дворе.

Японияга сакура частырының
баштайгы байырлалдарын
императорнуң чүгле бодунга
болгаш императорнуң чанында
өске-даа аристократчы
кежигүннерге дээш эрттирип
турган.

5 The airlines offering these services
include: Air Canada, Delta Air
Lines, Lufthansa - for flights depart-
ing from the USA or Canada, and
WestJet.

Авиакомпании, предлагающие
эти услуги включают: Air Canada,
Delta Air Lines, Lufthansa — для
рейсов, отправляющихся из США
или Канады, и WestJet.

Ол ачы-дузаны чедирип турар
авиакомпанияларже Air Canada,
Delta Air Lines, Lufthansa –
АКШ-тан азы Канададан чоруп
турар рейстерге, базаWestJet олар
хамааржыр.

Table 2: Examples of translated sentences from English to Russian and Tuvan.
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FLORES dataset and did not consider the English
part during the development of the FLORES in
Tuvan.

7 tyvan.ru and language preservation

The development of a Tuvan AI translator has been
instrumental in preserving and revitalizing the Tu-
van language, classified as endangered byUNESCO.
Born out of a personal commitment to language
preservation, the project began as a response to
the lack of online translation resources for Tuvan.
The initiative gained momentum with contributions
from David Dale, who recognized the urgent need
for language preservation during his work on the
Erzya language (Dale, 2022), and Ali Kuzhuget,
who has spent over a decade developing Tuvan
language resources (Kuzhuget and Choigan, 2024),
including dictionaries, keyboards, and translations
of major platforms.

tyvan.ru serves as the online hub for these efforts,
offering a range of Tuvan language tools, including
the AI translator. Since its launch, the translator
has been used by over 80,000 individuals, show-
casing the growing interest in and need for Tuvan
language resources. The project also extends its im-
pact through the "One Code - Different Languages"
volunteer initiative, which supports other vulnera-
ble low-resource languages, such as Bashkir, Tatar,
Chuvash, and Mari.

8 Limitations

The main challenge that occurs when dealing with
low-resource languages like Tuvan is the small
number of professionals, who could correctly trans-
late to a low-resource language, abiding by all the
grammar rules and nuances of the language. This
results in a rather long translation process. Another
project we are engaged in is the Seed (Maillard
et al., 2023) project in Tuvan. One of the key
limitations we faced in the second project is the
lack of Tuvan speakers who are bilingual in any
language other than Russian. Due to the historical
context of Tuvans being part of the Soviet Union
and Russia, Tuvan speakers typically only speak
Russian in addition to Tuvan. Consequently, our
extended research group is required to translate the
Seed dataset from English to Russian first, and then
from Russian to Tuvan. This two-step translation
process introduces additional complexity and poten-
tial for translation inaccuracies, but it is a necessary
approach given the linguistic resources available.

9 Conclusion

Our contribution to the FLORES dataset (Goyal
et al., 2022) represents a significant step forward in
supporting Tuvan as a low-resource language in the
field of natural language processing. By focusing on
the Central dialect and leveraging human expertise,
we have created a high-quality resource that will aid
in the development of more accurate and culturally
sensitive machine translation systems.
In addition, we are currently in the process of

translating the Seed (Maillard et al., 2023) dataset
from English to Russian, and subsequently from
Russian to Tuvan. This effort further enhances the
resources available for Tuvan, contributing to the
development ofmultilingual datasets and promoting
the digital presence of the language.

This work not only enhances the digital presence
of the Tuvan language but also contributes to its
preservation and promotion.
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A Appendix. Translation guidelines

These guidelines were adapted and translated to
Russian for the team of translators based on the
OLDI translation guidelines (Initiative, 2024a).
Version 1.01

Author: Күжүгет А.А
Date: 2 марта 2024 г.

A.1 Важное примечание:

Ваши переводы будут использоваться для
обучения или оценки движков машинного
перевода. Поэтому этот проект требует
человеческого перевода.

A.2 Общие рекомендации:

1. Контекст: Вы будете переводить
предложения из разных источников.
В некоторых случаях может быть
предоставлена ссылка на исходный
документ, чтобы дать вам больше
контекста. Если она доступна, пожалуйста,
обратитесь к ней.

2. Единицы измерения: Не переводите
единицы измерения. Переводите их точно
так, как указано в исходном содержании.

3. Сохранение тона: При переводе
сохраняйте тон, используемый в исходном
документе. Например, энциклопедический
контент из источников вроде Википедии
должен переводиться с использованием
формального тона.

4. Плавность перевода: Предоставляйте
плавные переводы, не отклоняясь слишком
сильно от структуры исходного текста.
Допускаются только необходимые
изменения.

5. Точность: Не расширяйте или не заменяйте
информацию по сравнению с тем, что
присутствует в исходных документах.
Не добавляйте никакой поясняющей или
скобочной информации, определений и т.д.

6. Полнота перевода: Не игнорируйте любой
значимый текст, который был в исходнике.

7. Выбор перевода: В случае нескольких
возможных переводов, пожалуйста,
выберите тот, который имеет наибольший
смысл (например, для соответствия
гендеру, культурной адаптации на целевом
языке, уровня формальности и т.д.).

A.3 Именованные сущности:
Именованные сущности - это люди, места,
организации и т.д., которые обычно
упоминаются с использованием собственного
имени. Этот раздел содержит рекомендации
о том, как обращаться с именованными
сущностями:
1. Общепринятые названия: Если в целевом

языке существует общепринятое название
для именованной сущности, используйте
его.

2. Транслитерация: Если общепринятое
название отсутствует, используйте
транслитерацию оригинального термина,
если это возможно. Если транслитерация
не будет широко понята в контексте, вы
можете сохранить оригинальный термин.

A.4 Идиоматические выражения:
Идиоматические выражения не должны
переводиться дословно. Используйте
эквивалентную идиому, если таковая
существует. Если эквивалентная идиома
отсутствует, используйте идиому схожего
смысла. Если в целевом языке не существует
похожих выражений, перефразируйте идиому
так, чтобы значение было сохранено на целевом
языке.

A.5 Неоднозначные местоимения:
Когда переводимое местоимение является
неоднозначным (например, может быть
интерпретировано как он/она или его/ее),
выбирайте гендерно-нейтральные местоимения
(такие как они), если таковые существуют на
целевом языке. Однако, когда местоимение в
исходном тексте четко обозначено по гендеру,
вы должны следовать исходному материалу и
сохранять гендерную маркировку.
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Abstract

Although the population of Wu speakers is the
second largest among languages in China, it
is a textually under-resourced language, creat-
ing significant challenges for building machine
translation systems supporting Wu. In this pa-
per, we describe our Wu Chinese contribution
to the FLORES+1 dataset to serve as a training
corpus and evaluation benchmark for machine
translation models and we demonstrate its or-
thographic compatibility with existing Wu data.
Our contributions include: (1) an open-source,
manually translated dataset, (2) full documen-
tations on the process of dataset creation and
validation experiments, (3) preliminary tools
for Wu Chinese normalization and segmenta-
tion, and (4) benefits and limitations of our
dataset, as well as implications for other under-
resourced languages. The project codes are
stored on Github.2

1 Introduction

Wu Chinese is a Sinitic language spoken in Shang-
hai, Zhejiang, parts of Jiangsu, Anhui, and Jiangxi
of China. It represents a complex and internally di-
vergent dialect group (Pan et al., 1991) with around
83 million speakers (Eberhard et al., 2024). De-
spite having a robust population of speakers, Wu
Chinese has been facing a sharp decline in daily
usage due to the promotion of Standard Chinese.
Meanwhile, Wu Chinese lacks a widely-accepted
writing system and is not commonly written by na-
tive speakers, which has relegated Wu to becoming

*Equal contribution

This work is licensed under the Creative Com-
mons BY-SA 4.0 International License. Visit
https://creativecommons.org/licenses/by-sa/4.0/
to view a copy of this license. For any use beyond those
covered by this license, obtain permission by emailing
info@oldi.org. Copyright is held by the owner/author(s).
Publication rights licensed to the EMNLP Endowment.

1https://github.com/openlanguagedata/flores/
2https://github.com/HongjianYu/FLORES-WU

under-resourced with respect to text data. In this
data-scarce context, machine translation of Wu is
an extremely challenging task.

To assist in the development of language models
in Wu Chinese, we construct a FLORES+ bench-
mark dataset for Wu machine translation models
and conduct evaluations that validate its utility via
a language identification task. FLORES+ is an
extension of the initial FLORES-101 project by
NLLB Team et al. (2022), aiming at expanding
the coverage to more languages worldwide. FLO-
RES features fully aligned data directly translated
from English Wikimedia and is consequently ideal
for multilingual translation systems. Currently, the
FLORES+ benchmark covers 3 language varieties
written in Hanzi: Mandarin Chinese (Standard Bei-
jing), Mandarin Chinese (Taiwanese), and Yue Chi-
nese (Hong Kong Cantonese). The addition of Wu
Chinese would facilitate machine translation across
these similar varieties.

After translating and proofreading the new Wu
Chinese dataset, we validated its consistency and
generalizability with respect to existing Mandarin,
Wu, and Yue Wikimedia resources. We also de-
vised measures to normalize and segment Wu Wiki-
media data in order to enhance their fidelity and
provide a standardized dataset upon which to con-
duct our evaluations. Finally, we discuss the results
of the experiments and suggest future work on Wu
Chinese.

2 Language Overview

2.1 Wu Sounds and Wu Writings

Wu Chinese is mutually unintelligible with other
Sinitic languages such as Mandarin and Yue (Can-
tonese), but shares a common set of Hanzi (Chinese
characters) with these varieties. A significant fea-
ture of Wu Chinese that differentiates it from other
Sinitic languages is its three-way VOT contrast in
the syllable-initial position and its glottalization of
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"checked tones" (Norman, 1988), inherited from
Middle Chinese. A lot of Hanzi in Wu Chinese
bear two ways of pronunciation: Wendu ("文读",
literary reading) and Baidu ("白读", vernacular
reading). Wendu is the borrowing of pronunci-
ation from Northern and Jianghuai Mandarin di-
alects; Baidu is the indigenous pronunciation de-
rived from antecedent tones. For instance, "学"
reads [Cűæ] in Standard Mandarin; as for Wu, it
reads [HoP] (Baidu) in "学堂" (the traditional word
for "school") and [i5P] (Wendu) in "学校" (the
modern word for "school" borrowed from Man-
darin). Although [Cűæ] and [i5P] appear to be un-
related, the sound change is in fact systematically
induced according to the phonotactic constraints of
Wu Chinese. Wendu and Baidu can occur in one
single word too, as "大学" ("university") reads [d5
HoP] where [d5] is Wendu and [HoP] is Baidu.

With the above prerequisite knowledge, it is log-
ical to believe that most syllabary utterances in Wu
have had a Hanzi representation, since most Middle
Chinese pronunciations have traceable documen-
tations. However, through an evolution of sounds
and lexicon over a thousand years, the Benzi ("本
字", original character) of many sounds have been
lost. To recover missing graphemes in Wu Chinese
writings,赵元任 (1956) proposed a guideline that
for every Wu utterance:

1. If the Hanzi of the utterance is known, use
that Hanzi;

2. Otherwise, use a known Hanzi of the same
pronunciation in the target Wu variety.

This logic has constituted the overarching principle
of modern Wu orthographies. In the second case
where we have multiple Hanzi candidates, we ad-
here to the following rules based on简明吴方言
词典(闵家骥et al., 1986):

1. Use the Hanzi that historically appears in
Ming-Qing literature;

2. When no historical usage is found, pick a
Hanzi that best subscribes to the semantic
meaning;

3. Otherwise, choose the Hanzi that most fre-
quently appears in vulgar texts.

2.2 Dialectal Variations

In the past, the Suzhou dialect (a sub-dialect of Su-
Hu-Jia within Northern Wu) has been the prestige
form of Wu Chinese. Beginning from the late 20th

century, the Shanghai dialect (spoken in the urban
central area of Shanghai, also a sub-dialect of Su-

Hu-Jia) has served as the lingua franca of the sur-
rounding regions (Chen and Gussenhoven, 2015)
because of the city’s population and economic im-
portance. There have also been recent attempts
by the community to create "Standard Wu", which
closely relates to Taizhou, Shanghai, and Ningbo
dialects3. That being said, none of the Wu varieties
is influential enough to profoundly alter the pro-
nunciations or lexicons of others, considering the
hegemonic impact of Standard Mandarin.

As a result of multiple factors, Wu dialects have
developed vastly divergent readings of the same
Hanzi. This becomes especially problematic when
no Hanzi is registered to an utterance, i.e. finding a
Hanzi of the same pronunciation in the local dialect
is necessary. To illustrate how complex the spelling
variations can become, below is an incomplete list
of the pronunciations and corresponding common
spellings of the location/time preposition in 33 Wu
dialects transcribed by钱乃荣 (1992):

"Prep. of loc./time"





[l@P] "勒", "了"
[l5P] "辣", "拉", "垃"
[liP] "立"
[le], [læ] "来"
[kE] "该"
[ţEe], [dzE] "在"

Inevitably, adopting one spelling standard means
discarding the rest of equivalently common
spellings. For instance, [l5P l5P] "辣辣" is the
prevalent spelling of the location/time preposition
(double syllable) in the Shanghai dialect, whereas
[l@P l5P] "勒拉" is commonly accepted in many
other dialects and therefore more frequently en-
countered. We shall discuss the Chongming dialect
which is the variety used in our dataset, and its
corresponding orthography in the next section.

2.3 Relevant Resources
Before proceeding, we want to outline the re-
sources available for natural language processing
tasks related to Wu Chinese. The foundation of
Wu Chinese studies was laid by赵元任(Yuen Ren
Chao) with his现代吴语的研究(赵元任, 1956).
Works by later scholars include当代吴语研究(钱
乃荣, 1992) and others. There is 简明吴方言
词典(闵家骥et al., 1986), a dictionary that cov-
ers most Wu dialects with a light emphasis on the
Shanghai dialect lexicon, as well as上海话大词

3https://wuu.m.wikipedia.org/wiki/标准吴语/

601



典(钱乃荣, 2008) specifically for the Shanghai di-
alect. Thanks to community efforts, there is a Wu
Wikipedia4, a forum5, and several online dictionar-
ies67 made by吴语协会and吴语学堂.

3 Methodology

The FLORES+ Wu dataset is directly translated
from English into Wu Chinese. The target Wu va-
riety is the Chongming dialect. The Chongming
dialect (or more broadly the Shadi dialect) is a
Wu dialect within the Su-Hu-Jia division, spoken
in Chongming, Haimen and Qidong districts as
well as in some areas of Zhangjiagang (张惠英,
2009). Although Chongming belongs to the Manu-
cipality of Shanghai, the dialect is distinctive from
the urban variety on many aspects and is known
for preserving many rare characteristics of Middle
Chinese. There is also a large dedicated Chong-
ming dictionary (张惠英et al., 2014), which unfor-
tunately was not accessible to us during our efforts.

While the Chongming dialect is not the most
used or researched Wu dialect, it is a representa-
tive one of Northern Wu along the dialect contin-
uum, because it spreads in between Shanghai and
Suzhou, where the two prestige forms of Northern
Wu are used. Besides, the lexicon of the Chong-
ming dialect has a significant overlap with other
dialects for its preservation of archaic features com-
mon to most Wu dialects. In contrast, the Shanghai
dialect is less generalizable to other Wu dialects
due to its integration with other Chinese languages.
However, the overlap between the Chongming di-
alect and Southern Wu dialects might be less promi-
nent. As a result, our dataset may be less effective
for Southern Wu linguistic tasks.

Data were equally distributed and translated by
2 native speakers of the Chongming dialect who
have earned or are pursuing a university degree in
English. Both translators grew up in Chongming;
one went to Putuo, Shanghai for high school and
college, and the other went to Fengxian, Shanghai
for college. They mainly speak Wu at home, but
also speak it with peers on occasion. They are ex-
posed to the Shanghai urban dialect as well as other
local varieties. All translated data were checked by
a third independent Wu speaker.

The translators worked collaboratively on the
task. They mainly used 简明吴方言词典(闵

4https://wuu.wikipedia.org/wiki/
5https://wu-chinese.com/bbs/
6http://wu-chinese.com/minidict/index.php
7https://www.wugniu.com/dict

家骥et al., 1986) and then 上海话大词典(钱乃
荣, 2008) (see 2.3) if they were unable to recall
the parallel Hanzi that represent the utterances.
Despite the discrepancy between the Chongming
and Shanghai lexicons, the dictionaries provided
enough context to determine the appropriate orthog-
raphy. For example, both "乃末" and "乃么" point
to the same word [ne m@P]; as both dictionaries
only list "乃末", it was easy to make the choice.
When the two dictionaries’ orthographies diverged,
简明吴方言词典was prioritized. When there were
phonetic distinctions between the Chongming and
Shanghai dialect and the original character was in-
determinable, we made sure that the selected Hanzi
had aligned pronunciation. Noticeably, we did not
use "勿" [v@P] but used "弗" [f@P] for the word of
negation. We were also committed to maintaining
a balanced language register, as the translated con-
tent is formal, though Wu Chinese is usually col-
loquial. We referred to the broadcasting-style Wu
Chinese found in Shanghai and Suzhou to achieve
the desired register. Beside the task of translation,
the translators dedicated time to review Wu dictio-
nary entries and online fora to grasp the overall
construct of the written Wu landscape. During the
proofreading process, when an alternative trans-
lation is suggested, the translator responsible for
the line would ask for community guidance from
the aforementioned fora. Proper wordings were se-
lected according to the intuitive preferences of Wu
native speakers from the community. In total, we
have translated and verified the linguistic accuracy
all 997 sentences in the dev set.

4 Data Samples

This sections lists the first 5 lines of translation
along with their English counterparts.

1. 斯坦福医学院个科学家勒礼拜一公布一
种可以按种类划分细胞个新个诊断家生个
发明：一种可以用标准喷墨打印机大量生
产，差弗多小到只有一美分一只个可印芯
片。
On Monday, scientists from the Stanford Uni-
versity School of Medicine announced the in-
vention of a new diagnostic tool that can sort
cells by type: a tiny printable chip that can be
manufactured using standard inkjet printers
for possibly about one U.S. cent each.

2. 首席研究者认为伊作兴可以勒低收入国家
稍为早发现癌症、肺结核、艾滋病、疟疾
个病人，伊拉个乳腺癌等疾病个治愈率是
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只富裕个国家个一半。
Lead researchers say this may bring early
detection of cancer, tuberculosis, HIV and
malaria to patients in low-income countries,
where the survival rates for illnesses such as
breast cancer can be half those of richer coun-
tries.

3. JAS 39C鹰狮战斗机勒当地辰光差弗多早
晨九点半（中央时间两点半）撞向飞机跑
道爆炸，葛商业航班个机场关闭。
The JAS 39C Gripen crashed onto a runway
at around 9:30 am local time (0230 UTC) and
exploded, closing the airport to commercial
flights.

4. 搿只飞行员拨认为是空军中队长迪罗克利
特帕塔维（Dilokrit Pattavee）。
The pilot was identified as Squadron Leader
Dilokrit Pattavee.

5. 当地个媒体报道，一只机场个救火车勒回
应个辰光翻倒哉。
Local media reports an airport fire vehicle
rolled over while responding.

5 Validation

5.1 Task

Language identification models have frequently
been trained to corroborate translation datasets’
correspondence with other texts in the target lan-
guage. We train a language identification model
on the FLORES+ Wu dataset to show its compati-
bility with other Wu Chinese text resources. The
goal of our experimental setup is to train a model
to correctly identify the language of an input sen-
tence from among Mandarin, Wu, and Yue when
prompted a sentence written in Hanzi.

Experiments are split into three parts. In each
part, we trained three binary classification mod-
els: Mandarin-Wu, Mandarin-Yue, and Wu-Yue on
their respective datasets, and a three-way classifi-
cation model on all designated data. We recorded
the performance of the models in terms of their
accuracy on unseen data, collected separately by
languages.

We broke down the experiments into distinct
trials that reflect noteworthy characteristics of the
training and evaluation data. In part 1, we con-
ducted a 9:1 split on FLORES+ datasets to test
their internal consistency. In part 2, we trained the
model on Wikimedia data and tested on FLORES+
to showcase the compatibility of FLORES+ in its
common use cases. In part 3, we reversed the train-

ing and testing data in part 2 to explore the extent of
generalizability of FLORES+ given that it consists
of small but parallel data.

5.2 Dataset Processing

We adopted two data sources, Wikimedia8 and
FLORES+.

We downloaded Wikimedia database XML
dumps for Mandarin, Wu, and Yue. Since Man-
darin and Yue dumps are significantly larger than
Wu, only a portion of the data was extracted. Af-
ter normalization, each dataset comprises 25, 000
lines of texts.

FLORES+ datasets in use include the existing
two Mandarin dev sets and Yue dev set, as well as
the newly built Wu dev set. As a result, there are
1994 lines of sentences in Mandarin, 997 in Wu
and 997 in Yue.

5.2.1 Normalization
The dumps were preprocessed with a simple fil-
ter removing Latin characters and template sym-
bols. Because Mandarin and Yue Wikimedia were
written in Traditional Chinese and Wu Wikime-
dia partially, we utilized OpenCC9 which supports
character-level and phrase-level conversion from
Traditional to Simplified Chinese. OpenCC conver-
sion was also applied to FLORES+ Taiwan Man-
darin and Yue datasets.

For the lack of a standard orthography, Wu Wiki-
media requires an additional step of normaliza-
tion. For some characters and words that are often
spelled differently, we replaced the constituents
by our standard forms. However, the brute force
method does not work for every character and word
that need normalization. For example, "勒海" be-
fore normalization could be interpreted differently:

勒海

{
勒嗨 "In there, over there"
勒海(浪) "In the sea"

The ambiguity of the language results in demands
on more advanced normalization schemes, which
are essential for language models to grasp semantic
understandings.

5.2.2 Segmentation
Since Chinese languages do not depend on spaces
to separate words, segmentation tools tailored to
the respective languages are indispensable. For

8https://dumps.wikimedia.org/
9https://github.com/BYVoid/OpenCC/
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cmn wuu yue total
cmn-wuu 0.995 0.990 - 0.993
cmn-yue 1.000 - 0.970 0.990
wuu-yue - 0.990 0.990 0.990
c-w-y 0.995 0.990 0.979 0.990

Table 1: FastText classification precision rates by lan-
guages (k=1), trained with and evaluated on FLORES+
dev sets, 9:1 split. Rows represent in what languages the
model is trained with; columns represent the language
of the testing data. We use the ISO 639-3 codes for
abbreviation: cmn (Mandarin), wuu (Wu), yue (Yue).

Mandarin, we used jieba10, a popular open-source
segmentation library with a prefix dictionary and a
HMM-based model with Viterbi algorithm for un-
known words; for Cantonese, we used cantoseg11

which is built from jieba and reads in a merged
corpus from jieba and PyCantonese (Lee et al.,
2022).

As for Wu, We decided on adding an auxiliary
dictionary to jieba for frequent words and phrases
in Wu Chinese that are not present in Mandarin.
We found this approach has also been used by
Chen (2023). The entries in the auxiliary dictionary
have been collected from简明吴方言词典(闵家
骥et al., 1986) for its wide coverage on Northern
and Southern Wu dialects and上海话大词典(钱
乃荣, 2008) for its rich lexicon.

5.3 Model

We use fastText12 text classification (Joulin et al.,
2016) for all experiments. FastText is a CPU-based
library for efficient learning of word representa-
tions and sentence classification. We tagged lan-
guage labels to individual lines in every dataset
and called the supervised command to train the
models. When testing, fastText takes a k parameter
and returns both precision and recall rates within
the first k predicted labels. As only 2 or 3 distinct
labels were present in each run, we used k=1 to
compute the classification accuracy.

5.4 Results

In part 1, all four models demonstrate a high accu-
racy in classifying all languages. This validates the
internal consistency of FLORES+ datasets includ-
ing the new Wu Chinese addition.

10https://github.com/fxsjy/jieba/
11https://github.com/ayaka14732/cantoseg/
12https://fasttext.cc/

cmn wuu yue total
cmn-wuu 0.896 0.999 - 0.930
cmn-yue 0.968 - 0.987 0.975
wuu-yue - 0.996 0.986 0.991
c-w-y 0.868 0.997 0.971 0.926

Table 2: FastText classification precision rates by lan-
guages (k=1), evaluated on FLORES+ dev sets, trained
with Wikimedia texts. Rows and columns are the same
as Table 1.

cmn wuu yue total
cmn-wuu 0.944 0.639 - 0.792
cmn-yue 0.949 - 0.796 0.872
wuu-yue - 0.815 0.884 0.849
c-w-y 0.929 0.615 0.735 0.759

Table 3: FastText classification precision rates by lan-
guages (k=1), evaluated on Wikimedia texts, trained
with FLORES+ dev sets. Rows and columns are the
same as Table 1.

In part 2, we can observe a total accuracy over
90% for all four models. However, a drop in ac-
curacy for the Mandarin-Wu model on Mandarin
texts indicates false positives of Mandarin texts
mislabelled as Wu. Alternatively speaking, training
on Mandarin and Wu Wikimedia data allows the
model to capture features of Wu and thus correctly
label Wu data, but is less effective for recognizing
Mandarin features.

In part 3, due to insufficient training data, the
models exhibit tendency to misclassify Wu and
Yue data as Mandarin. There is a more significant
contraction in testing accuracy on Wu data than
Yue. Meanwhile, the accuracy of Mandarin-Yue
and Wu-Yue models is maintained at a relatively
stable level.

Some typical misclassifications are listed below.
These input data are Mandarin but mislabeled as
Wu, presented in the segmented format. The cor-
responding Wu translations are provided as well.
"cmn" denotes Mandarin data (mislabeled as Wu)
and "wuu" denotes Wu data (correctly labeled).

1. (cmn)人类 的 手 比脚 短 ， 指 （ 趾 ）
骨 更 直 。
(wuu)人个 手比脚 短 ， 趾骨 更 直 。

2. (cmn)看到 有人 愿意 支持 我 ， 我 很
高兴 。
(wuu)我蛮 高兴 有人 愿意 支持 我个 。

3. (cmn)越来越 多 超市 开始 提供 更 多样
化 的 即 食品 ， 部分 超市 甚至 提供
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微波炉 或 其他 设备 以 食物 加热 。
(wuu)超市 里个 现成 食品 种类 越来越
多 。 有眼 超市 甚至 提供 微波炉 或者
其他 方式 来 加热 食物 。

From these cases we can observe many common
words in the two languages. There are nuanced
differences in phrasing order and sentence struc-
tures but the presented orders and structures are
generally acceptable in both languages and only
subject to personal habits of the translators. De-
spite lexicon similarity, the model also seems to
have difficulty in recognizing Wu constituents due
to the relatively weak performance of the segmen-
tation tool, evident in "我个" (1, 2), "我蛮” (2).

Overall, the FLORES+ Wu dataset is consis-
tent and capable of evaluating models trained with
common data after appropriate normalization and
segmentation. However, its benchmarking quality
might not be as good as the Mandarin and Yue
dataset for several reasons.

The tokenization scheme could be further op-
timized with a better segmentation tool in use.
The current manually configured word list for Wu
in the auxiliary dictionary of jieba is relatively
small compared to the pre-built Mandarin dictio-
nary in jieba and the independently maintained
Yue dictionary by Lee et al. (2022). As some syn-
tactic structures of Wu have not been recognized
by jieba, the models are unable to learn accurate
representations of the constituents.

Although the spelling standard used in FLO-
RES+ Wu dataset is relatively generalizable to
other dialects, it fails to take account of many ex-
pressions in Southern Wu dialects which are a part
of the Wikimedia data. Therefore, we suggest that
the training and testing datasets should align in the
range of dialects whenever possible.

Moreover, the tendency of Wu Chinese to be in-
fluenced by Mandarin poses problems, exemplified
by our classifier mislabeling Wu data containing
"了" as Mandarin, because this grammar particle is
common in Mandarin but infrequent in older Wu
data.

6 Conclusion

As for now, a contemporary, consistent, and orga-
nized corpus becomes crucial for high-quality Wu
Chinese language models. Meanwhile, it is impor-
tant for AI scientists and engineers to have an un-
derstanding in the linguistic properties of their train-
ing and testing data. We hope that our published

dataset and code contributions provide a founda-
tion for future efforts towards Wu Chinese machine
translation and language modeling.
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Abstract

This study presents several contributions
for the Karakalpak language: a FLORES+
devtest dataset translated to Karakalpak,
parallel corpora for Uzbek-Karakalpak,
Russian-Karakalpak and English-Karakalpak
of 100,000 pairs each and open-sourced
fine-tuned neural models for translation
across these languages. Our experiments
compare different model variants and training
approaches, demonstrating improvements over
existing baselines. This work, conducted as
part of the Open Language Data Initiative
(OLDI) shared task, aims to advance machine
translation capabilities for Karakalpak and
contribute to expanding linguistic diversity in
NLP technologies.

1 Introduction

The Karakalpak language, a member of the Turkic
language family, is primarily spoken in the Re-
public of Karakalpakstan, an autonomous region
within Uzbekistan, Central Asia. Current estimates
suggest a native speaker population to be around
900,000 individuals (Ethnologue, 2024). Linguis-
tically, Karakalpak is an agglutinative language
which belongs to the Kipchak branch of the Tur-
kic language family and shares close affinities with
Kazakh and Nogai (Berdimuratov and Dáwletov,
1979).

As a low-resource language, Karakalpak
presents significant challenges in the field of nat-
ural language processing, particularly in machine
translation. Major translation platforms such as
Google Translate (Google, 2024) currently do not
offer support for this language as of the time of
writing this paper, underscoring the need for dedi-
cated research and development in this area.

This study, conducted as part of the Open Lan-
guage Data Initiative (OLDI) shared task, presents
fine-tuned neural models for Karakalpak transla-
tion, a fine-tuned version the No Language Left

Behind (NLLB) model (NLLB Team et al., 2022).
In line with OLDI’s goals of expanding language
resources, we release several key contributions:

1. A FLORES+ devtest dataset (NLLB Team
et al., 2022) translated to Karakalpak

2. Parallel corpora for Uzbek-Karakalpak,
Russian-Karakalpak and English-Karakalpak
of 100,000 pairs each 1

3. Open-sourced fine-tuned neural models for
translation across Uzbek, Russian, English
and Karakalpak languages 2

4. Scripts for Latin-Cyrillic transliteration for
Karakalpak

Our research aims to advance the state of ma-
chine translation for Karakalpak, contributing to
the broader OLDI objective of improving natural
language processing capabilities for low-resource
languages. This work demonstrates how shared
tasks like OLDI can drive progress in expanding
linguistic diversity in NLP technologies.

2 Related work

The field of machine translation for low-resource
languages has experienced significant advancement
with the advent of the No Language Left Behind
(NLLB) model families. These innovative models
demonstrate the capability to facilitate translation
across more than 200 languages, leveraging exten-
sive collections of online corpora.

Another notable multilingual translation model
is MADLAD-400 (Kudugunta et al., 2024), which
extends the capabilities of large language models to
cover 400 languages, including many low-resource
languages and Karakalpak. This model represents
a significant step forward in expanding the reach of

1https://huggingface.co/datasets/tahrirchi/
dilmash

2https://huggingface.co/collections/tahrirchi
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English Karakalpak
According to Japan’s nuclear agency, radioactive caesium and
iodine has been identified at the plant.

Yaponiya yadro agentligi maǵlıwmatlarına kóre, stanciyada
radioaktiv ceziy hám yod bar ekenligi anıqlanǵan.

The result of plotting analysis will be posted to a public web-
site.

Syujet analiziniń nátiyjesi ǵalabalıq veb-saytqa jaylastırıladı.

The station’s web site describes the show as "old school radio
theater with a new and outrageous geeky spin!"

Stanciya veb-saytında show "jańa hám ádettegiden basqasha
ájáyıp aylandıratuǵın eski mektep radio teatrı!" dep táriyi-
plenedi.

Table 1: Examples from the FLORES+ dataset for English-Karakalpak language pair

machine translation to a broader range of linguistic
communities.

In the specific context of Karakalpak machine
translation, several notable efforts have been made.
A prominent example is the Apertium platform
(Forcada et al., 2011), a rule-based machine
translation system designed for low-resource lan-
guages. Utilizing finite-state algebra and rule-
based methodologies, Apertium has developed mor-
phological analyzers and spell-checking tools for
Karakalpak3. Furthermore, it has produced ma-
chine translation systems for language pairs for
Uzbek-Karakalpak, Kazakh-Karakalpak, and Tatar-
Karakalpak.

A recent contribution to the Karakalpak trans-
lation comes from the Turkic Interlingua (TIL)
team (Mirzakhalov, 2021), who introduced a model
specifically trained on Turkic languages and cor-
pora, with Karakalpak included in its linguistic
scope. This initiative not only enhances the transla-
tion capabilities for Karakalpak but also contributes
to the broader landscape of Turkic language pro-
cessing. Additionally, the team has made signifi-
cant strides in corpus development, introducing par-
allel corpora for numerous Turkic language pairs,
including those involving Karakalpak.

Moreover, a proprietary online translation ser-
vice for Karakalpak exists at https://from-to.
uz/. To provide a comprehensive evaluation of
Karakalpak machine translation capabilities, we
will assess this tool’s performance using its API,
comparing it with our proposed models. This com-
parison will offer insights into both open-source
and commercial solutions for low-resource lan-
guage translation.

To our best knowledge, these developments col-
lectively represent important steps towards improv-
ing machine translation capabilities for Karakalpak
and other low-resource languages within the Turkic
language family.

As an additional benchmark, we will include

3https://github.com/apertium/apertium-uzb-kaa

Claude-3.5-sonnet, a commercial large language
model (LLM) with multilingual capabilities. While
not specifically designed for Karakalpak transla-
tion, Claude-3.5-sonnet represents the current state
of general-purpose language models and can pro-
vide valuable insights into how well such models
perform on low-resource language tasks.

3 Datasets

3.1 FLORES+ Devtest Dataset

This study introduces the Karakalpak FLORES+
devtest dataset, which comprises 1012 sentences
translated from English to Karakalpak. The FLO-
RES+ datasets, derived from Wikimedia content,
have been widely employed in the evaluation of
foundational models within the NLLB family.

This dataset was developed under the auspices
of the Open Language Data Initiative (OLDI). Two
annotators were responsible for the translation of
a devtest split, with subsequent cross-verification
to ensure accuracy. The Karakalpak translations
adhere to the most recent iteration of the Latin
script orthography (see Table 1).

The Karakalpak orthography has experienced
multiple changes recently. Both Latin and Cyrillic
scripts are utilized, with the Latin script, introduced
in 1995, undergoing several revisions. Notable
modifications occurred in 2009 and 2016, with the
latter replacing digraphs with diacritic letters to
overcome previous limitations. Conversion scripts
for Cyrillic and older Latin versions to the current
system are available on GitHub4.

3.2 Training data

The training dataset comprises diverse parallel
corpora sourced from multiple domains, includ-
ing news articles, literary works, lexicographic re-
sources, and educational materials. Specifically,
the corpus encompasses on average across three
languages:

4https://github.com/tahrirchi/kaa-scripts
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• 23% sentences from news sources

• 34% sentences from books (novels, non-
fiction)

• 24% sentences from bilingual dictionaries

• 19% sentences from school textbooks

• 4,000 English-Karakalpak pairs from Gatitos
Project (Jones et al., 2023)

In total, the dataset consists of 100,000 sentence
pairs for Uzbek-Karakalpak, Russian-Karakalpak,
and English-Karakalpak each, making 300,000
pairs in total. Since there were too few bitexts with
English, we decided to create English-Karakalpak
dataset by translating Russian sentences from
the Russian-Karakalpak dataset to English using
Claude 3.5 Sonnet (See Appendix A). To promote
further research and development in this field, we
have made these corpora publicly available.

3.3 Data Mining Process
For mining parallel sentences, we apply only local
mining, when we are sure that parallel sentences
are to be mined from the translations of the same
book, document or article. For alignment, we use
LaBSE embeddings, although Karakalpak is not a
supported language in LaBSE. We found that due
to similarities of Karakalpak to already included
Uzbek and Kazakh languages, LaBSE performed
well for aligning sentences so we skipped this step.

The sentence alignment method we use is iden-
tical to the one applied for Erzya, as described
by (Dale, 2022). We utilize LaBSE (Language-
agnostic BERT Sentence Embedding) (Feng et al.,
2020) to generate embeddings for each sentence
pair. To calculate the alignment score, we first de-
termine the cosine similarity between these embed-
dings. We then adjust this similarity by multiplying
it with a length ratio - specifically, the length of the
shorter sentence divided by the length of the longer
sentence.

Using dynamic programming, we identify the
sequence of sentence pairs that maximizes the total
similarity score. Finally, we apply a threshold to
filter out low-scoring alignments.

4 Translation Experiments

4.1 Model Training
For our experiments, we utilized the nllb-200-
distilled-600M model, which is a transformer-
based neural machine translation model with an

encoder-decoder architecture. This model com-
prises 12 layers and employs the following ap-
proach: the source and target languages are indi-
cated by the first tokens of the encoder and decoder
inputs, respectively. This architecture allows the
model to process and translate between numerous
language pairs. The training process for our experi-
ments consisted of several key steps:

4.1.1 Tokenizer Preparation
Initially, we trained a SentencePiece (Kudo and
Richardson, 2018) tokenizer on an expanded mono-
corpus of approximately 300,000 Karakalpak sen-
tences with a total of 16,000 vocabulary length. We
decided to train a separate tokenizer because we hy-
pothesized that the intial vocabulary of the NLLB
model was not suited for Karakalpak, as there were
some non-ASCII characters in the writing system
(see Table 2). We also provide an evaluation of
a model without training a separate tokenizer and
compare the model’s performance with and without
additional trained tokens.

Á á Ǵ ǵ Í ı Ń ń Ó ó Ú ú

Table 2: Non-ASCII letters from Karakalpak Latin al-
phabet.

4.1.2 Vocabulary Expansion
Following tokenizer training, we augmented the
model’s vocabulary. This expansion resulted in a
total of 269,399 tokens, representing an increase
of 13,195 tokens from the original model configu-
ration. We then resized the model’s token embed-
dings and initialized the new embeddings by av-
eraging the embeddings of their constituent subto-
kens from the original vocabulary.

4.1.3 Model Variants
We developed three distinct model variants to eval-
uate the impact of additional tokens and training
data composition:

1. dilmash-raw5: This model was trained exclu-
sively on a our own parallel corpus compris-
ing 300,000 sentence pairs in Uzbek, Russian,
and English on the original nllb-200-600M.

2. dilmash: Same as dilmash-raw, but it is a
fine-tuned model with additional tokens which

5dilmash [dil-mash] n. (from Karakalpak) an oral inter-
preter
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Model en-kaa ru-kaa uz-kaa kaa-en kaa-ru kaa-uz
madlad-400 2.68 / 22.48 2.01 / 19.93 1.31 / 16.81 28.42 / 53.06 16.95 / 41.12 10.26 / 38.75
apertium-uzb-kaa - - 12.26 / 42.27 - - 5.61 / 35.82
google-from-kaz - - - 20.95 / 44.63 13.55 / 36.91 -
google-from-uzb - - - 21.40 / 45.50 13.78 / 37.64 -
nllb-200-600M-from-kaz - - - 4.32 / 23.35 3.12 / 16.86 3.91 / 25.26
nllb-200-600M-from-uzb - - - 8.89 / 32.26 5.82 / 26.33 4.83 / 29.68
from-to.uz - - 20.18 / 53.22 - - 11.18 / 41.37
claude-3.5-sonnet 11.17 / 33.37 9.02 / 34.02 12.74 / 35.17 37.06 / 61.41 25.70 / 51.23 22.38 / 54.71
dilmash-raw 14.37 / 45.65 11.41 / 42.99 16.16 / 48.88 30.01 / 54.81 16.34 / 42.01 19.19 / 51.92
dilmash 12.31 / 42.22 10.72 / 40.29 16.13 / 48.42 28.75 / 53.70 15.69 / 41.58 18.52 / 51.03
dilmash-TIL 15.02 / 45.43 12.00 / 42.07 17.59 / 49.90 32.07 / 56.45 17.53 / 43.52 19.83 / 52.58

Table 3: Evaluation of several models on sacreBLEU/chrF++ across various language pairs with Karakalpak on
FLORES+ devtest set.

were trained on a bigger Karakalpak monocor-
pus.

3. dilmash-TIL: This variant was trained on the
same dataset and tokenizer configuration as
the dilmash, but supplemented with a strate-
gically sampled subset from the TIL corpus.
The sampling strategy was as follows:

• 20% of parallel datasets containing
Uzbek or Kazakh

• 5% of all other datasets in the TIL corpus

To maintain balance with the Karakalpak dataset,
we imposed an upper limit of 300,000 sentence
pairs on the TIL corpus sample for the dilmash-
TIL. This constraint ensured that the Karakalpak
data was not overwhelmed by the additional multi-
lingual data, while still allowing for potential im-
provements in cross-lingual transfer and overall
model performance.

With a batch size of 1024 and using the AdaFac-
tor (Shazeer and Stern, 2018) optimizer, we trained
each model variant for 3 epochs. We employed
a learning rate of 1e-4 with a linear warmup over
the first 10% steps, followed by a constant learning
rate schedule. Weight decay was set to 0.01 to help
prevent overfitting.

To maximize computational efficiency and en-
able training on larger batch sizes, we utilized
DeepSpeed ZeRO Stage 3 (Rasley et al., 2020)
for model parallelism across 16 GPUs. This con-
figuration allowed us to effectively distribute the
model parameters and optimize memory usage, fa-
cilitating faster training times.

4.2 Evaluation Metrics
To evaluate the performance of our translation mod-
els, we employ two widely used metrics in machine
translation:

• sacreBLEU (Post, 2018)

• chrF++ (Popović, 2017)

sacreBLEU, a standardized BLEU implementa-
tion, calculates the similarity between the machine-
generated translation and one or more reference
translations based on n-gram precision. It addresses
inconsistencies in tokenization and BLEU compu-
tation across different implementations. chrF++,
an extension of the character n-gram F-score, com-
putes the F-score of character n-grams and word
unigrams, which is particularly useful for morpho-
logically rich languages, like Karakalpak or Uzbek.

5 Results and Discussion

Our evaluation on the FLORES+ Karakalpak de-
vtest reveals several interesting insights into the
performance of various translation models. The
results, presented in Table 3, demonstrate the effec-
tiveness of our proposed models, dilmash, dilmash-
raw, and dilmash-TIL, in comparison to existing
approaches.

Notably, the dilmash-raw model, which was
trained on the original nllb-200-600M without addi-
tional tokens, outperforms the dilmash model with
expanded vocabulary in most language pairs. This
result suggests that the initialization of new token
embeddings may have introduced some challenges.
Our hypothesis is that the new token embeddings
weren’t initialized optimally, and before the model
could learn good values for them, they may have af-
fected other model parameters. The limited amount
of Karakalpak data alone might not have been suf-
ficient for the model to fully compensate for this
initial distortion.

The dilmash-TIL model, which incorporates ad-
ditional multilingual data from the TIL corpus, con-
sistently outperforms both dilmash and dilmash-
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raw across all language pairs. This improvement
is particularly notable in the *-kaa directions, with
gains of up to 2.71 BLEU points (en-kaa) compared
to dilmash. These results underscore two important
points: first, the potential of using related Turkic
language data to enhance translation quality for
low-resource languages like Karakalpak; and sec-
ond, that the additional training data and epochs
may have allowed the model to better utilize the
expanded vocabulary, overcoming the initial chal-
lenges faced by the dilmash model. To provide a
more qualitative assessment of our models’ perfor-
mance, we have included translation examples in
Appendix B.

While expanding the vocabulary can potentially
improve model performance, careful consideration
must be given to the initialization of new embed-
dings and the amount of training data available.
The success of the dilmash-TIL model suggests
that incorporating data from related languages and
allowing for longer training periods can help over-
come these challenges, ultimately leading to im-
proved translation quality.

Interestingly, the Claude-3.5-sonnet model
demonstrates superior performance in the kaa-*
directions, surpassing our models by a significant
margin. This suggests that large language models
may have a particular advantage in understanding
content in low-resource languages, possibly due to
their extensive pretraining on diverse multilingual
data.

The performance of other baseline models pro-
vides additional context. Google Translate when
treating Karakalpak as Kazakh or Uzbek, achieves
respectable results but falls short of our models and
Claude-3.5-sonnet. The NLLB-200-600M model,
despite not being originally trained on Karakalpak,
shows some ability to transfer knowledge when
treating Karakalpak as Uzbek rather than Kazakh.
This aligns with linguistic expectations, given the
closer relationship between Karakalpak and Uzbek
(both in linguistic similarity and writing scripts).

6 Conclusion

Our key contributions in this work include:

1. Creation of a FLORES+ devtest dataset for
Karakalpak.

2. Development of parallel corpora for Uzbek-
Karakalpak, Russian-Karakalpak, and

English-Karakalpak, each containing 100,000
sentence pairs.

3. Open-sourcing of fine-tuned neural models for
translation across Uzbek, Russian, English,
and Karakalpak languages.

4. Open-sourcing of scripts for Latin-Cyrillic
transliteration for Karakalpak.

Looking ahead, we plan to explore data augmen-
tation techniques to further enhance our models’
performance. One promising approach is to lever-
age the capabilities of Claude-3.5-sonnet for back-
translation, potentially expanding our training data
with high-quality synthetic examples.

Additionally, we aim to expand our dataset by
mining more data from a wider range of books and
sources. This will not only increase the volume
of our training data but also improve its diversity,
potentially leading to more robust and versatile
translation models.

7 Limitations

While our study presents some advancements in
Karakalpak machine translation, several limitations
should be noted. First, the relatively small size of
our dataset, despite being substantial for a low-
resource language, may limit the model’s ability
to generalize across diverse domains and linguistic
contexts. Second, the reliance on machine trans-
lation for creating the English-Karakalpak dataset
introduces potential biases and errors that could af-
fect model performance. Additionally, our evalua-
tion is primarily based on automatic metrics, which
may not fully capture the nuances of translation
quality, particularly for a morphologically rich lan-
guage like Karakalpak. Future work should address
these limitations through expanded data collection,
human evaluation, and more diverse testing scenar-
ios.
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A Prompt for translating from Russian to English using Claude-3.5-sonnet

You are a professional translator specializing in Russian to English translations.
Your task is to translate the given Russian text into English with the highest level
of accuracy, preserving the original meaning and context. Use proper grammar,
punctuation, and idiomatic expressions appropriate for English speakers.
Do not include any additional explanations or commentary; provide only the translated text.

Russian: {sent}
English:
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B Translation examples from dilmash-TIL

eng kaa dilmash-til (eng → kaa)
The winter can be deceptively
chilly: temperatures rarely go
below freezing, but the wind
and humidity combine to make
it feel colder than what the ther-
mometer says.

Qıs aldamshı dárejede suwıq
bolıwı múmkin: temperatura
kemnen-kem jaǵdaylarda mu-
zlawdan tómenge túsedi, bıraq
samal hám ıǵallıq termometr
aytqanınan kóre suwıqlaw
seziliw ushın birlesedi.

Qıs júdá suwıq bolıwı múmkin:
temperaturanıń buzılıw dáre-
jesinen az ushırasıwı múmkin,
biraq samal hám ıallıqtıń birigi-
winen termometrdiń aytqanına
qaraganda suwiq boladı.

kaa eng dilmash-til (kaa → eng)
Transport joq ekenligi qáwe-
teri oyındı topar tárepdarlarısız
jabıq esikler artında ótkeriwge
májbúr bolıw múmkinshiligın
asırdı.

Fears of lack of transportation
raised the possibility that the
game would be forced to play
behind closed doors without the
team’s supporters.

Concern over the lack of trans-
portation increased the possibil-
ity of being forced to hold the
game behind closed doors with-
out group supporters.

rus kaa dilmash-til (rus → kaa)
Также полезно носить коль-
цо (только не слишком до-
рогое на вид).

Júzik taǵıw da paydalı
bolıp tabıladı (júdá qımbat
kórinetuǵın júzik emes).

Sonday-aq, dóńgelek kiyiwde
paydalı boladı (tek júdá qımbat
kórinetuın emes).

kaa rus dilmash-til (kaa → rus)
Ullı piramida Firaun Xufudı
ullılaw ushın jaratılǵan hám
kóplegen kishi piramidalar,
qábirler hám ibadatcxanalar
Xufunıń hayalları hám
shańaraq aǵzaların ullılaw
ushın qurılǵan.

Великая Пирамида была со-
здана в честь фараона Хео-
пса, а много меньших пира-
мид, гробниц и храмов были
построены в честь жён Хео-
паса и его родственников.

Большая пирамида была
создана для восхваления
фараона Хуфа, а многие
небольшие пирамиды, моги-
лы и храмы были построе-
ны для восхваления жен Ху-
фа и членов его семьи.

uzb kaa dilmash-til (uzb → kaa)
Ayrim atomlar turg‘un
bo‘lmagan yadroga ega,
bu esa ularning kichkina turtki
bilan yoki turtkisiz parchalan-
ishga moyilligini anglatadi.

Ayırım atomlar turaqsız yadro-
larǵa iye, yaǵnıy olar azǵantay
yamasa hesh qanday túrtki
bolmaǵan halda bóleklenedi.

Ayırım atomlar turaqsız
yadroga iye, bul bolsa olardıń
kishi túrtki menen yaki túrtkisiz
bóliniwine beyim ekenligi
anlatadı.

kaa uzb dilmash-til (kaa → uzb)
Keshesi 150 den 200 ge shekem
nusqalar tayarlandı, házirde
"Dunlap broadsides" dep atal-
adı.

Tun davomida 150 dan 200 ga
qadar nusxalar tayyorlandi, ular
hozirda "Danlep yon zambarak-
lari" deb ataladi.

Kechasi 150 dan 200 gacha
nusxalar tayyorlandi, hozirda
"Dunlap broadsides" deb atal-
adi.

Table 4: Some translation examples of dilmash-TIL model on FLORES+ sentences.
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Abstract

This paper introduces a translation of the FLO-
RES+ dataset into the endangered Erzya lan-
guage, with the goal of evaluating machine
translation between this language and any of
the other 200 languages already included into
FLORES+. This translation was carried out as
a part of the Open Language Data shared task
atWMT24. We also present a benchmark of ex-
isting translation models bases on this dataset
and a new translation model that achieves the
state-of-the-art quality of translation into Erzya
from Russian and English.

1 Introduction

The Erzya language is the language of Erzya, one
of the indigenous peoples of Russia. Despite its
official status in the Republic of Mordovia (along
with Russian and Moksha), the use of the Erzya
language is limited mainly to everyday topics, and
its representation in the digital space remains low.
On the one hand, this situation contributes to the
reduced status of language in society and inhibits
its development and intergenerational transfer, and
is one of the factors that make the language endan-
gered (UNESCO, 2010). On the other hand, this
makes it more difficult to develop natural language
processing (NLP) technologies for Erzya, such as
machine translation (MT), the availability of which
could help increase the prestige of the language.
Development of MT technologies for Erzya, in turn,
is hampered by the lack of a generally recognized
dataset for evaluating the translation quality.

In this article, we aim to close this gap by publish-
ing the Erzya version of the FLORES+ dataset. This
dataset, created as part of the No Language Left
Behind project (NLLB Team et al., 2022) and later
transferred to the community-run Open Language
Data Initiative1, became the de facto standard for
evaluating MT quality for low-resource languages.

1https://oldi.org

FLORES+ consists of two thousand sentences sam-
pled from English texts of Wikimedia projects and
translated into more than 200 languages. The emer-
gence of the Erzya version of FLORES+ will allow
researchers to evaluate the quality of MT between
any of these languages and Erzya. This translation
has been submitted to the Open Language Data
shared task at the WMT24 conference2.
The quality of the new FLORES+ translation

has been validated by independent annotators (for
a sample from the dataset) and with a set of auto-
matic metrics of accuracy and fluency which were
themselves validated against human judgements.
In addition, we present a new neural model for

translating between Erzya and other languages (pri-
marily English and Russian), created by fine-tuning
an NLLB-200 model. It achieves a BLEU score
of 22% for translation from Erzya to Russian and
17% in the opposite direction, which implies the
translation quality suitable for practical applica-
tions. Along with our new model, we evaluated
the translation quality of several other models that
also support the Erzya language. The model from
Yankovskaya et al. (2023), also based on NLLB,
achieved the highest scores for translation from
Erzya into Russian, and a Claude model (Anthropic,
2024), into English, whereas our model achieved
the highest scores for translation into Erzya.
In total, the contributions3 of this article are:
1. We release and describe the first complete

translation of the FLORES+ dataset into the
Erzya language and validate its quality.

2. We evaluate the performance of available MT
systems for Erzya on this dataset.

3. We present a model for translation between
Erzya and several high-resourced languages,
a state-of-the-art for translating into Erzya.

2https://www2.statmt.org/wmt24/open-data.html
3Our code, data, and models will be made publicly avail-

able at https://github.com/slone-nlp/myv-nmt.
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2 Related work

2.1 The FLORES+ dataset
FLORES+ is the next stage in the evolution of the
FLORES-200 dataset (NLLB Team et al., 2022),
which, in turn, grew out of FLORES-101 (Goyal
et al., 2022). The dataset is based on 3001 English
sentences taken from three sources: Wikinews (in-
ternational news), Wikijunior (non-fiction literature
for children), and Wikivoyage (travel tips). It is di-
vided into three roughly equal parts (dev, devtest,
and test), of which the first two (2005 sentences)
are included in FLORES+. The sentences were
translated from English into 203 other languages
by professional translators; among these languages
are Russian and three Finno-Ugric ones (related to
Erzya): Finnish, Estonian, and Hungarian.

A small subset of FLORES-200 (the first 250 sen-
tences from the devtest subset, news domain) were
translated by Yankovskaya et al. (2023) into 9 low-
resource Finno-Ugric languages, including Erzya,
and used to evaluate the quality of the machine
translation system from this article.
As far as we know, no other multiway paral-

lel datasets including the Erzya language have
been published (one exception is the dataset of
the Tatoeba project4, however, it currently contains
less than 100 Erzya sentences).

2.2 Erzya datasets
The available corpora of the Erzya language (espe-
cially parallel ones) are not numerous. Rueter and
Tyers (2018) presented the Erzya corpus with mor-
phosyntactic markup, including the translation of
several hundred sentences into English and Finnish.
Arkhangelskiy (2019) has compiled a web corpus
of the Erzya language (available for download);
there is also a corpus of the literary Erzya language,
avaliable only for search5. Another corpus of the
Erzya language, also searchable, is described by
Rueter (2024a).
Medium-scale parallel datasets of Erzya with

other languages have been considered only in recent
papers on neural machine translation for Erzya:
Dale (2022) and Yankovskaya et al. (2023).

2.3 Machine translation for Erzya
TheApertium platform implements amachine trans-
lation system between Erzya and related Moksha

4https://tatoeba.org/
5https://erzya.web-corpora.net/

and Finnish languages6, but this work gives an
impression of being incomplete. In Dale (2022),
one of the first machine translation systems for the
Erzya language was created, based on a parallel
Russian-Erzya corpus consisting of dictionaries and
automatically aligned sentences from books and
web publications (a total of 77K parallel pairs of
sentences, words and phrases, as well as 333K sen-
tences in Erzya without translation). Yankovskaya
et al. (2023) collected parallel and monolingual
datasets for 20 low-resource Finno-Ugric languages
and trained a neural model for their translation, but
the parallel part of their dataset remained unpub-
lished. In both works, the new languages were
added to the pre-trained multilingual translation
models (mBART-50 (Tang et al., 2020) and NLLB-
200 (NLLB Team et al., 2022), respectively) by
adding new tokens to the model vocabulary and
fine-tuning it with parallel and back-translated data.

The third known paper on neural machine trans-
lation for Erzya, Alnajjar et al. (2023), used the
rule-based Apertium system to generate a syn-
thetic Erzya-Moksha corpus, and also fine-tuned
an NLLB-200 model on this data.
Finally, Mordovian State University announced

the development of an Erzya-Russian MT system7,
but no publication on this topic has appeared yet.

2.4 Multilingual MT systems
In addition to MT systems explicitly trained with
Erzya parallel data, some models might have
learned this language from monolingual texts or
parallel texts unintentionally found in web corpora.
One could also hope that multilingual models can
achieve some understanding of the Erzya language
based on the grammar and vocabulary of other
Finno-Ugric languages, as well as on the vocabu-
lary borrowed by Erzya from Russian. Therefore,
we are considering several public and proprietary
systems that do not always explicitly include Erzya,
but may still be suitable for its translation.

One of such systems is the NLLB-200 family of
models, which is still the leader among openmodels
in terms of the translation quality and language cov-
erage trade-off. Their training data did not include
the Erzya language (except perhaps a small number
of web texts mistakenly classified as Russian), so
the NLLB ability to translate Erzya is limited by the
knowledge transferred from other languages. The

6https://github.com/apertium/apertium-myv-mdf
and https://github.com/apertium/apertium-myv-fin

7See the announcement on msru.ru.
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MADLAD-400 models (Kudugunta et al., 2024)
were also not trained with Erzya parallel data, but
used the monolingual web corpora collected in this
paper (including Erzya) for unsupervised training
and back-translation.
Finally, we consider three proprietary systems:

GoogleTranslate, which has recently added 110 new
languages (Caswell, 2024) powered by the PALM-
2 (Google, 2023) large language model (LLM),
and the Claude (Anthropic, 2024) and GPT-4o
(OpenAI, 2023) LLMs. All the three systems were
trained with multilingual web data and with a large
amount of parallel data (including, possibly, parallel
texts for the Erzya language). Unfortunately, the
technical reports for these systems give only very
brief descriptions of their language coverage.

3 About the Erzya language

The Erzya language (myv) is one of the largest
Finno-Ugric languages in the world and belongs to
the Mordvinic branch of the Finno-Ugric group of
the Uralic language family. Linguists distinguish
five main dialects: Central, Western (Insar), north-
western (Alatyr), southeastern (Sura) and Shoksha
(isolated in the northwestern regions). They differ
mostly in their phonetic, and, to a lesser extent,
morphological features. Our translation was based
on the literary standard of the Erzya language (built
primarily upon the Central dialect). Most modern
Erzya is written using the Russian Cyrillic alphabet,
although there are several Latin script proposals.8
Phonetically, the Erzya language contrasts

palatalized and plain consonants and features vowel
harmony. Grammatically, it is an agglutinative lan-
guage with extensive systems of declension (includ-
ing 12 noun cases, possesive suffixes and definitive-
ness marking) and conjugation (including 7 moods
and marking the person and number of subject and
object). The word order is SVO, and postposi-
tions are widely used. Lexically, most words have
Finno-Ugric origins,9 with a significant number of
Russian and Turkic loanwords.
In the XX century, the number of Erzya was

approaching one million people (according to the
1970 census, 1,263 thousand people, along with
Moksha). The dispersed settlement of the people

8Table 2 features an example of a sentence in Erzya along-
side with its Latin transliteration and translation.

9There are numerous, but not always easily recognisable
cognates with other Uralic languages, such as Finnish and
Estonian: for example, “keď / käsi / käsi / hand”, “koto / kuusi
/ kuus / six”, or “ěräms / elää / elama / to live”.

led to accelerated assimilation and the decrease in
the number of native speakers. Thus, the Republic
of Mordovia, where Erzya and Moksha are the
titular nation, and their languages are co-official
with Russian, hosts only about 30% of all Erzya,
with the rest settled in Samara, Orenburg, Nizhny
Novgorod, Penza, Saratov regions and other regions
of Russia.

The status of the official language allows Erzya to
function in the public space: there are newspapers
and magazines, TV shows, theater, and popular
music in this language. In addition, being a state
language, Erzya is studied for 1-2 hours per week
as an elective or mandatory lesson in many schools
in the Republic of Mordovia, and in the settlements
with a predominantly Erzya population, even as the
first language.
Nevertheless, the Erzya language is poorly rep-

resented in the digital space. A few areas where it
nevertheless functions are mentioned below:

• Several documentaries and feature films, mu-
sic videos and video blogs; 10

• The Wikipedia in Erzya with 7877 articles;11
• The Erzya interface of vk.com;12
• A few websites, thematic groups, and channels
on social networks and messengers.

The problem of transferring the Erzya language
to the younger generation is pressing: most children
only understand, but almost do not speak their native
language. We hope that translation of FLORES into
Erzya will facilitate the development of machine
translation for this language, which, in turn, could
spur other technologies, such as speech synthesis,
text and image generation models, contributing to
the preservation, popularization and development
of the language.

4 Translation of FLORES+

We translated FLORES+ from from Russian into
the Erzya language. The translation was carried
out by two native speaker volunteers who are also
teachers of the language and writers (one with a
doctoral degree in philology). The 250 translated
sentences from Yankovskaya et al. (2023) were also
included, but only after a thorough revision. All
2009 translations were revised by one of the native
translators and a linguist with a profound expertise
in the language. In addition, the translations were

10E.g., Azor and Кода эри эрзянь морось movies.
11https://myv.wikipedia.org
12A news article about the interface.
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Neologisms Examples in Erzya, Russian and English
Валдокаямо
(luminosity, from
валдо=light and
каямо=output)

Весе валдокаямось ды чарамось сайневить тештень Россби числанть муеманзо кис, конась
сюлмазь плазмань потоконть марто.
Совокупность светимости и вращения используется для определения числа Россби звезды,
связанного с потоком плазмы.
The luminosity and rotation are used together to determine a star’s Rossby number, which is related
to plasma flow.

Тевконёв
(document, from
тев=business and
конёв=paper)

Ломантненень, конат арсить теемс сымень полавтомань операция омбо масторсо, эряви
парсте ванкшномс, улезт сынст марто мекев самонень эрявикс тевконёвост.
Люди, планирующие пройти операцию по смене пола за границей, должны убедиться, что у
них при себе есть действительные документы для обратного пути.
Voyagers planning sex reassignment surgery abroad must ensure they’re carrying valid documents
for the return trip.

Инедавол
(hurricane, from
ине=great and
давол=storm)

Раськень инедаволонь кунщкакуронть коряс те шкас Джерри а канды кодамояк зыян мода
лангс.
Согласно Национальному ураганному центру, на данный момент Джерри не представляет
никакой угрозы на суше.
The National Hurricane Center (NHC) says that at this point Jerry poses no threat to land.

Озавтозетне
(inmates, “the im-
prisoned”)

Чокшне ланга 10:00 ды 11:00 шканть ютксо пандонь шканть коряс озавтозетне тейсть
кирвазтема вальмалост.
Между 10:00 и 11:00 вечера по горному времени заключенные устроили пожар во дворе.
Between 10:00-11:00 pm MDT, a fire was started by the inmates in the yard.

Кортницятне
(negotiators, “talk-
ers”)

Кортницятне варчизь витемс тевенть, ансяк озавтозетнень вешемаст зть чарькодеве.
Переговорщики попытались исправить ситуацию, но требования заключённых не ясны.
Negotiators tried to rectify the situation, but the prisoners’ demands are not clear.

Превмаксый
(advisor, “intellect-
giver”)

1960 иетнестэ Бзежинский ульнесь ДжонФ. Кеннединь вакссо превмаксыекс, мейле Линдон
Б.Джонсононь администрациясо.
В 1960-х гг. Бжезинский занимал должность советника при Джоне Ф. Кеннеди, затем в
администрации Линдона Б. Джонсона.
Throughout 1960s, Brzezinski worked for John F. Kennedy as his advisor and then the Lyndon B.
Johnson administration.

Table 1: Examples of lexical neologisms created according to the word-formation models of the Erzya language
(the top 3) and semantic neologisms created by assigning a new meaning to already known words (the bottom 3).

scored with automatic quality metrics (Section 5),
which helped identify several omissions and typos.

The successful translation of texts on topics that
are uncommon for Erzya allows us to assess the
capabilities of this language positively. However,
we should note the difficulties in translating special
terminology in various domains (such as science,
politics, and sports). In such cases, we used lexical
and semantic neologisms to solve the problem of
insufficient vocabulary (see the examples in Table
1). For some sentences, to avoid distorting their
meaning, we had to preserve the Russian terminol-
ogy, (e.g. Table 2). In some cases, the neologisms
are translations of one part of a complex word, for
example, “пельсфинал/peĺsfinal” (“полуфинал” in
Russian, “semi final” in English).

It would be difficult to directly evaluate how
acceptable are these neologisms to the native speak-
ers. But a human evaluation by two independent
native speakers (Section 8) resulted in all sampled
translations annotated as at least “acceptable”, and
the majority, as “good”. This suggests that the
new words are not perceived as serious problems
to meaning preservation or fluency.

5 Automatic validation of data quality

To validate the quality of the newly translated Erzya
FLORES dataset experimentally, we applied sev-
eral automatic metrics of translation accuracy and
fluency. To demonstrate the validity of the metrics
themselves and to establish their baseline values,
we needed human judgements of translation quality
on some other dataset, and, fortunately, we had one.
Data. The baseline data consists of 1500 Erzya-

Russian sentence pairs in the dev subset from Dale
(2022), automatically aligned from various parallel
documents. The sentence pairs were manually
annotated by a proficient Erzya speaker for accuracy
and fluency, with 0 standing for “unacceptable”,
0.5 for “barely acceptable”, and 1, for “good”.
The problems with meaning were mostly results
of overly loose translations or incorrect alignment,
whereas most of the fluency problems were caused
by too literal translation from Russian (often by
simply adding Erzya suffixes to the Russian words).
Our simple metrics are rel_sim (computed as

the edit distance between the source and the target,
divided by the maximum of the length of the two
and then subtracted from1) and len_ratio (the ratio
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Examples in Erzya (Cyrillic), Erzya (transliterated to Latin), Russian and English
Докладсонть ули малав эрьва аспектэнь пшти критика малав неень исполнительной властень Ираконь коряс
политиканть коряс ды виев тердема сеске полавтомс улиця курсонть .
Dokladsonť uli malav ěŕva aspektěń pšti kritika malav neeń ispolniteĺnoj vlasteń Irakoń koräs politikanť koräs dy viev
terdema seske polavtoms ulicä kursonť .
В докладе содержится резкая критика почти каждого аспекта нынешней политики исполнительной власти в
отношении Ирака и настоятельный призыв к незамедлительной смене курса .
The Report is highly critical of almost every aspect of the present policy of the Executive towards Iraq and it urges an
immediate change of direction .

Table 2: An example of a translation with multiple loanwords from Russian (the loanwords are highlighted). Note
that 4 out of these 6 words (aspektěń, kritika, politikanť, and kursonť), while being borrowed into Erzya from
Russian, have ultimately Greek or Latin origins and are recognisable internationally.

of the character lengths of the source and target, the
shortest of the two to the longest). We also include
here the LID_rus metric: a probability, according
to the GlotLID model (Kargaran et al., 2023), that
the Erzya sentence is in fact Russian. We expect
len_ratio to correlate with omissions; rel_sim
andLID_rus are expected to correlate with fluency
issues. The rest of the metrics, described below,
target translation accuracy.
Dictionary-basedmetrics are computed by lem-

matizing thewords in a sentence pair and computing
the proportion of words on the one side that has a
counterpart on the other side that can be matched
using a dictionary. WR_rus computes the pro-
portion of Russian words whose translations can
be found in the Erzya sentence, and WR_myv
shows the opposite (they don’t necessarily match
because the Russian and Erzya sentences may have
a different number of words).
Model-based metrics include two cosine sim-

ilarities of sentence embeddings: LaBSE uses
a LaBSE model (Feng et al., 2022) distilled for
Erzya13, and enc_sim uses the mean token embed-
dings from the encoder of the NLLB-based MT
model described in Section 6. The latter model
is also used for computing Ppl: the mean cross-
entropy loss (perplexity) of the model for translat-
ing the Erzya sentence to Russian and in reverse.
The Att metric is based on the encoder-decoder
attention maps for this model: we average the cross-
attentions to each encoder token over the layers and
the heads, add up across the decoder tokens, and
average across all the encoder tokens, except the
first one (language code) and the last one (end of
sentence), as they are expected to serve as “atten-
tion sinks”. This metric is also averaged across two
translation directions.

13https://huggingface.co/slone/
LaBSE-en-ru-myv-v2

Correlations. To evaluate the quality of the
metrics, we report their Spearman correlation with
the quality annotation labels in the two last rows of
Table 3. Aswe expected, rel_sim andLID_rus are
predictive of fluency problems, and all dictionary-
and model-based metrics correlate with accuracy.
Data comparison. The top two rows of Table 3

report the average values of our automatic metrics
on our dev and devtest splits of FLORES. The next
four rows report their values on the baseline data,
depending on the presence or absence of fluency and
meaning preservation problems. According to most
metrics, the FLORES translations are similar or
even better than the “good” (problem-free) subset of
the baseline data. The only exception is WR_rus
which for FLORES is slightly below the baseline;
this might be explained by the difficulty of the
FLORES domains, where many words are not yet
covered by the Erzya dictionaries.

6 A new MT model for Erzya
Our preliminary exploration suggested that few
existing models are capable of producing reliable
Erzya sentences, so we tried training our own trans-
lation model, focused on translation into Erzya.

6.1 Datasets
“Natural” data. To train our model, we used
the same monolingual Erzya and parallel Erzya-
Russian datasets as Dale (2022). In addition, we
collected and aligned some parallel news articles14,
and included several new translated books15 and
pairs of words and phrases from the Russian-Erzya
dictionaries at Emerald (Rueter, 2024a,b) and Pan-
lex (Kamholz et al., 2014). The books and articles
have been aligned at the sentence level using the

14http://e-mordovia.ru
15A physics textbook, two books of Alexander Doronin,

and a translation of The Little Prince. All copyright holders
gave consent to use the texts as training data.
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Dataset rel_sim len_ratio LID_rus WR_rus WR_myv LaBSE enc_sim Ppl Att
FLORES dev 0.28 0.90 0.07 0.55 0.64 0.89 0.82 1.49 0.32
FLORES devtest 0.28 0.90 0.06 0.55 0.64 0.89 0.83 1.51 0.32
BL (good) 0.27 0.83 0.06 0.59 0.62 0.86 0.84 2.51 0.28
BL (fluency problems) 0.38 0.87 0.14 0.70 0.74 0.94 0.90 1.73 0.28
BL (meaning problems) 0.23 0.79 0.07 0.43 0.44 0.66 0.69 3.56 0.25
BL (both problems) 0.23 0.90 0.13 0.35 0.37 0.65 0.69 3.64 0.23
BL, corr. with meaning 0.23 0.01 -0.01 0.38 0.38 0.48 0.43 -0.39 0.30
BL, corr. with fluency -0.30 -0.17 -0.35 -0.17 -0.19 -0.33 -0.26 0.26 0.05

Table 3: The average values of the automatic metrics on our FLORES translation (top 2 rows); their average values
on the baseline data grouped by quality (next 4 rows), and their Spearman correlations with human quality labels
on the baseline data (the last 2 rows).

algorithm from Dale (2022). We filtered out the
pairs for which the Levenshtein distance was less
than 20% of the text length, since their inclusion
could lead to the model learning to copy the source
words too often instead of translating them. We also
dropped the pairs with more than 55% difference in
length, as they were likely incorrect as translations.
The volume of the cleaned Erzya-Russian dataset
was 174460 pairs of sentences, phrases or words.16

Back-translation. To take advantage of the
monolignual Erzya texts, we translated 200K Erzya
sentences with the previous version of our model
(trained only on “natural” data): 50% into Russian
and 50% into 13 other languages previously rep-
resented in NLLB-20017. After filtering by string
edit distances and length ratios, 176462 texts re-
mained. To enhance the model’s ability to translate
from Erzya into languages other than Russian, we
also translated 30K Russian sentences from the
Erzya-Russian parallel dataset into the same 13
other languages using an NLLB-200-600M model.
During the training, the pairs of texts from one

natural and two synthetic sources were randomly
selected in the following proportion: 70% from the
natural data (in both directions), 25% from the data
translated fromErzya (only in the opposite direction,
into Erzya), and 5% from the data translated from
Russian to other languages (in both directions). We
normalized 100% of the texts on the target side
and 80% of the texts on the source side18 using the

16The collected parallel dataset (at least, its part that is free
of copyright restrictions) will be made publicly available in
our repository.

17Arabic, English, Estonian, Finnish, French, German,
Kazakh, Mandarin, Mongolian, Spanish, Turkish, Ukrainian,
and Uzbek. This choice was motivated by the international
importance of the languages, by their connections to the post-
Soviet region where most Erzya live, and by an attempt to
represent diverse language families.

18We kept 20% of the source texts unnormalized to better
prepare the model for potential downstream use cases when
the input is not normalized.

algorithm from NLLB Team et al. (2022)19.

6.2 Model training
When training the model, we followed an approach
similar to Tars et al. (2022) and Dale (2022). As a
basic model, we took NLLB-200 with 600 million
parameters, enriched its dictionary with new tokens
for the Erzya language, further trained embeddings
for these tokens, and then further trained the entire
model on parallel Russian-Erzya data, as well as
on data obtained by reverse translation.
Vocabulary update. To better represent Erzya

words in the model, we trained a new Sentencepiece
tokenizer (Kudo and Richardson, 2018) on the
Erzya side of the training dataset. Most of its
tokens (6208 out of 8192) were missing from the
NLLB vocabulary, so we added them there. The
corresponding embeddings of each new token were
initialized by the mean of the embeddings of the
“old” tokens into which the new token could be
decomposed. We also added a new language code
to the tokenizer: myv_Cyrl.
Fine-tuning. Since the embeddings of the new

tokens were initialized with a naive method, fine-
tuning of the whole model with these parameters
could introduce undesirable disturbances into other
parameters. To avoid this, for the first 45K train-
ing steps, we updated only the embedding matrix,
“freezing” the rest of the model parameters, and
used an additional loss function (with a weight of
100): the mean squared error between the original
and current embeddings of the “old” tokens. We
used a single GPU, a batch of size 6, 4 gradient
accumulation steps, and an Adafactor optimizer
(Shazeer and Stern, 2018) with the learning rate
that linearly warmed up from zero to 10−4 during
the first 3000 steps and then stayed constant. Af-
ter updating the token embeddings this way, we

19The normalization code was adopted from the Sentence-
SplitClean class in the Stopes repository.
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continued training the whole model (with all the
parameters unfrozen), for 220K more steps.

7 Comparing MT systems for Erzya

We used our FLORES+ translation (the dev subset)
to evaluate the current quality of MT between Erzya
on the one side and Russian and English on the
other. We evaluated the translation quality with
BLEU (Papineni et al., 2002).

7.1 The systems

Here we describe each of the systems that we tried
including in our benchmark. For all models except
the LLMs, we use beam search with the beam size
of 5, and keep all other inference parameters at their
default values, unless otherwise specified.
Ours. We used the model described in Section 6.

For this model (and for NLLB), we normalized the
input texts with the NLLB normalization algorithm.
SLONE (Dale, 2022). We use the myv-mul and

mul-myvmodels fromDale (2022) to translate from
and to Erzya, respectively. We use beam size of 5
and repetition penalty of 5, like in the original work
(but we do not use reranking with the LID model).

SMUGRI (Yankovskaya et al., 2023). We used
their latest model, also based on the NLLB-200
(with 1.3B parameters)20, for translation in all 4
directions. We used the fairseq-interactive inter-
face with beam size of 5, penalty of 100 for the
unk token, and a maximum of 4 consecutive tokens
repeating, and ran the model in the fp16 precision.
NLLB. We tried to use the NLLB-200-600M

model to translate from Erzya into English and Rus-
sian. Since NLLB requires specifying the source
language, and Erzya is not included in it, we indi-
cated Estonian as the source language: it is genet-
ically related to Erzya, and also, like Erzya, has
experienced some lexical influence of Russian.
We used the MADLAD-400-3B-MT model

(Kudugunta et al., 2024) in two configurations:
as is (MADLAD), and fine-tuned with our Erzya-
Russian dataset (without other languages) for 60K
steps using a new Erzya token (MADLAD-ft). For
both of them we used the HuggingFace package
with beam size of 3.

20The paper mentions M2M-100 as a base model. But the
model that we used, https://huggingface.co/tartuNLP/
smugri3_14-finno-ugric-nmt, is, apparently, a newer ver-
sion, and it has the language code formats and the size of
NLLB-200-1.3B. According to the model card, it is currently
powering https://translate.ut.ee.

System ru-myv en-myv myv-ru myv-en
NLLB - - 3.23 1.05
SLONE 8.11 4.99 15.12 11.70
SMUGRI 11.46 6.58 28.44 21.12
MADLAD 1.10 1.06 18.48 13.87
MADLAD-ft 15.50 - 25.50 -
Claude 14.13 7.09 34.68 20.18
GPT-4o 3.49 1.24 11.07 8.73
Ours 17.09 7.35 22.06 16.42

Table 4: BLEU scores for the evaluated MT systems
on the dev subset of FLORES+.

Google Translate. We have tried several con-
figurations of the Google Translate API: the gen-
eral/nmt and general/translation-llm models in
theAdvanced v3 interface. Bothmodels proved un-
able to translate from Erzya into Russian or English
either when specifying related languages (Estonian,
Finnish, Udmurt, Mari) as the source language, or
when automatically detecting the language (most
often it was defined as Udmurt, Mari, or Komi).
In most cases, the models simply transliterated the
Erzya text into the Latin alphabet, without trying to
translate most of the words. Based on these results,
we excluded Google Translate from the benchmark.

Claude (Anthropic, 2024) and GPT-4. We used
the API of the Claude 3.5 Sonnet and GPT-4o
models, respectively, to obtain the translations. For
some texts, we obtained the necessary translations
only after several iterations of inference without
changing the prompt, because in the case of GPT,
the prompt did not pass the jailbreak protection, and
in the case of Claude, the prompt could produce
empty translations, which were corrected upon
retranslation. An example of our prompt is given
in Appendix A.

7.2 Evaluation results
The results of MT evaluation with BLEU are in
Table 4. As we had hoped, our model achieved the
best quality of translation into Erzya from Russian
and English. The Claude model won the first
prize for translating from Erzya to Russian, and
the model from Yankovskaya et al. (2023), from
Erzya to English. In addition, the MADLADmodel
demonstrated promising results, with rather good
understanding of Erzya even before fine-tuning.

8 Human validation of human and
machine translation

While the BLEU scores reported above may help
ranking translation systems, they cannot tell how
good the translation is from the human point of
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view. To shed some light on this, we engaged two
new native Erzya speakers (not involved into the
FLORES translation) to evaluate the translations
of 30 randomly chosen FLORES sentences from
Russian into Erzya. We showed them the human
translations and machine translations by SLONE,
Claude, and our new system, without displaying
the system names and in a random order, to reduce
the potential bias. The annotators were asked to
rate each translation on a 1-5 point scale from Dale
(2022), with the label 3 for “acceptable”, 4 for
“good”, and 5 for “great” translations. Their full
guidelines are given in Appendix B.

System Annotator 1 Annotator 2 κ ρ
Human 4.37(0.14) 4.33(0.12) -0.03 -0.02
Claude 4.17(0.14) 4.1(0.13) 0.24 0.41
Our MT 3.9(0.19) 3.87(0.17) 0.29 0.54
SMUGRI 3.47(0.21) 3.57(0.21) 0.27 0.53

Table 5: Mean assigned scores (with standard errors in
brackets), Cohen’s kappa κ and Spearman correlation
ρ of the two annotators’ labels.

Table 5 reports the mean scores assigned by the
annotators to each system, and their agreement
scores. The inter-annotator agreement is fair for the
MT systems, but there is none for human transla-
tions, indicating that more fine-grained annotation
schemes might be needed in the future. Never-
theless, both annotators assign the highest (and
similar) average scores to the human translations,
reaffirming their quality.

OurMT system takes the third place in the human
ranking, after the human translations and Claude.
The reason for this low position is 3 “stupid” trans-
lation errors (out of the 30): two undertranslations
and one cyclical hallucination. We hope that in
the future, simple modifications of the decoding
algorithm would help avoid such errors.

9 Conclusion

Although the endangered and low-resourced sta-
tuses for a language are by no means equivalent
(Hämäläinen, 2021), they reinforce each other in
a vicious circle. Lack of resources for a language
lowers its prestige, which reduces the number of
active speakers, which, in turn, disincentivises cre-
ation and maintenance of the language resources.
As an example, the endangered Erzya language,
with its few hundred thousand speakers and a mod-
est Wikipedia community, did not make it to the
FLORES-200 dataset and the NLLB-200 models —

but if it did, it could have a positive impact at least
on the Erzya Wikipedia.
Such projects as the Open Language Data Ini-

tiative shared task give one more chance to such
languages. By releasing a FLORES+ translation
into Erzya and using it to benchmark the few ex-
isting MT models that support it, we hope to help
rolling the vicious circle in the opposite, virtuous
direction. An Erzya version of FLORES might
open a way to include this language into other
NLP evaluation datasets, such as FLORES-based
FLEURS (Conneau et al., 2023) for speech trans-
lation and Belebele (Bandarkar et al., 2024) for
machine reading comprehension. And the presence
of the language in such datasets, we hope, might
motivate the researchers to include it in foundation
models, which, in turn, might influence the devel-
opment of practical applications, supporting the
speakers of the language and increasing its status
and chances of survival.

More directly, we are hoping that the emergency
of the Erzya version of FLORES will facilitate
improvements in machine translation research and
applications for this language.

Some possible areas of future research based on
the Erzya translation of FLORES+ include:

• Translating new MT training datasets, such as
the Seed (Maillard et al., 2023)), into Erzya.

• Creating an automatic reference-free metric of
translation quality for Erzya that would highly
correlate with human judgments.

• Setting up a system of active learning that
would help collect human translations for the
sentences at which MT most likely fails.

• Creating an MT system suitable for translating
content (such as books) into the Erzya lan-
guage, minimizing the necessary revision and
post-correction by human translators.
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A Example prompts

We used the following prompt format for translat-
ing with Claude: “You are an AI assistant respon-
sible for translating phrases between Russian and
Erzya-Mordvin. Your task is to translate a given
sentence from Erzya-Mordvin into Russian. En-
sure that the translation remains specific to Erzya-
Mordvin, avoiding confusion with Komi, Moksha,
or other Finno-Ugric languages to prevent false
cognates. Verify that each word in the origi-
nal Erzya-Mordvin sentence has a corresponding
translated word in Russian, maintaining the accu-
racy and completeness of the content. The final
translated sentence should retain a similar word
count without omitting any parts of the original

text. Output only the final translated result in Rus-
sian.
{The source sentence}. Output only the translated
result.". With GPT, we used a similar format, with
the first paragraph fed as the system prompt, and
the source sentence as the user prompt.

B Annotation guidelines
For human evaluation of human and machine trans-
lation in Section 8, we provided the annotators
with a short guideline text in Russian. Below is its
translation into English.
We ask you to rate the translations from Russian

to Erzya on a scale of 1-5 points:
5 points - perfect translation (the meaning and

style are fully preserved, the grammar and word
choice are correct, the text looks natural);
4 points - good translation (the meaning is

fully or almost completely preserved, the style and
choice of words are acceptable for the target lan-
guage);
3 points - acceptable translation (the core mean-

ing is preserved; mistakes inword choice and gram-
mar do not interfere with understanding; most of
the text is fluent and in the target language);
2 points - poor translation (the text is mostly un-

derstandable andmostly in the target language, but
there are serious errors in meaning preservation,
grammar or word choice);
1 point - unsuitable translation (most of the text

is in the wrong language, or nonsense, or has little
in common with the original text).
If at least one word is incorrectly translated, the

resulting score should not be 5; the choice between
1 and 4 is at your discretion.
If a word is an overly literary term or a neolo-

gism, but its meaning is clear, it does not lower the
score. However, if the usage of an unusual word is
unclear or it changes the original meaning, lower
the score.
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Abstract

This paper presents the SEED-CAT submis-
sion to the WMT24 Open Language Data Ini-
tiative shared task. We detail our data collec-
tion method, which involves a computer-aided
translation tool developed explicitly for translat-
ing SEED corpora. We release a professionally
translated Spanish corpus and a provenance
dataset documenting the translation process.
The quality of the data was validated on the
FLORES+ benchmark with English-Spanish
neural machine translation models, achieving
an average chrF++ score of 34.9.

1 Introduction

In recent years, the NLP community has made sig-
nificant strides in reducing the data gap for hun-
dreds of languages (Tiedemann, 2012; Bañón et al.,
2020; Federmann et al., 2022; NLLB Team et al.,
2022). Nonetheless, finding parallel corpora for
machine translation and other NLP applications
remains challenging for many language pairs (Had-
dow et al., 2022; Ranathunga et al., 2023). The
WMT24 Open Language Data Initiative shared task
aims to continue expanding language coverage with
contributions from communities of native speakers.

This work describes our data collection method
to expand the SEED dataset (NLLB Team et al.,
2022; Maillard et al., 2023) with the Spanish lan-
guage. Specifically, we focus on Latin American
Spanish varieties to match the existing coverage of
this language in the FLORES+ benchmark (NLLB
Team et al., 2022). While the Spanish language
benefits from the availability of multiple parallel
corpora datasets (Aulamo et al., 2020), the major-
ity of this corpora features other well-resourced
languages such as English and French, and trans-
lation directions of regional significance to other
languages like Asturian and Quechua remains a
challenge (Oliver et al., 2023; Ahmed et al., 2023).

The multilingual alignment of the SEED dataset
(Doumbouya et al., 2023) allows for the addition

of a single corpus to enable dozens of translation
directions into low-resource languages. Including
Spanish represents an essential step toward incorpo-
rating other low-resource languages where finding
English translators is challenging, as was the case
for Ligurian, where half the data was translated
from Italian (NLLB Team et al., 2022).

Considering the impact that high-quality parallel
corpora can have on machine translation perfor-
mance (Maillard et al., 2023), this work aims to
facilitate extending the SEED dataset while sup-
porting quality improvements in Spanish machine
translation. Our main contributions are:

1. The expansion of the SEED dataset with pro-
fessional translations of Latin American Span-
ish, created by native speakers, along with a
neural machine translation baseline.

2. The open-source release of SEED-CAT, a web
computer-aided translation tool explicitly de-
signed to assist human translators in the trans-
lation of SEED files.

3. The automated generation and public release
of a provenance dataset documenting the cre-
ation of each Spanish translation.

2 Background

Language overview According to a 2022 report
from the Cervantes Institute,1 there are more than
496 million native Spanish speakers in the world.
Speakers are mainly concentrated in the Americas
and the Iberian Peninsula, with Mexico having the
largest population.

Spanish is an Ibero-Romance language that
developed from Latin on the Iberian Peninsula.
Thanks to its global expansion, this language has
evolved into several dialectal variations. An exam-
ple of this variation is the absence of the informal

1https://cvc.cervantes.es
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second-person plural ‘vosotros’ in Latin Ameri-
can Spanish, where most varieties use the pronom-
inal form ‘ustedes’ to address speakers in both
formal and informal contexts (Hualde et al., 2012).

Although there are social, phonological, and lex-
ical variations, Spanish retains a fundamental cohe-
siveness (Hualde et al., 2012). The Royal Spanish
Academy and the Association of Academies of the
Spanish Language collaborate to publish a unified
set of orthography, dictionaries, and other language
resources. The Spanish writing system is based on
the Latin script, with the addition of the charac-
ter ⟨ñ⟩ forming an alphabet of 27 letters (Hernán-
dez Gómez, 2015). This script is represented in our
collected data.

Seed dataset The SEED dataset (NLLB Team
et al., 2022; Maillard et al., 2023), currently
managed by the Open Language Data Initiative
(OLDI),2 contains 6,193 parallel sentences in En-
glish along with professional translations into
40 low-resource languages. The English sen-
tences were originally sampled from thousands of
Wikipedia articles across various categories such
as arts, history, mathematics, people, and technol-
ogy, offering diverse content from notable topics
(NLLB Team et al., 2022). In this work, we use the
English corpus (eng_Latn) from the SEED dataset
as the source text for the Spanish translations.

FLORES+ benchmark FLORES+ is an evalu-
ation benchmark for machine translation with sup-
port for 212 languages based on the initial FLORES-
101 dataset (Goyal et al., 2022) and its recent ex-
pansions (NLLB Team et al., 2022; Doumbouya
et al., 2023). The collection of this data involved
a rigorous and iterative quality assurance process
with professional translators, pre-defined standards,
post-editing, and automatic quality assessments.
We rely on this benchmark to assess the quality of
the Spanish translations.

Computer-aided translation CAT, or computer-
aided translation, refers to software tools, such as
word processing, translation memory (TM), and
terminology management, used by human trans-
lators to assist the translation process (Bowker
and Fisher, 2010). Studies have shown that these
tools can enhance the productivity and transla-
tion quality of human translators (Federico et al.,
2012; Koehn, 2009). While machine translation
differs from other CAT tools, as it is the primary

2https://oldi.org/

driver of the translation (Bowker and Fisher, 2010),
modern CAT suites often include machine transla-
tion as a key feature. According to a user survey
study involving 736 translators (Zaretskaya et al.,
2017), machine translation ranked as the third most
commonly used functionality, following transla-
tion memory and terminology management. CAT
users from that study and other usability surveys
(Alotaibi, 2020; Vargas-Sierra, 2019) also reported
dissatisfaction with the ease of use and learnabil-
ity of these systems, highlighting the importance
of user-friendly interfaces for computer-assisted
translation.

3 Data Collection

Seed-CAT Various commercial CAT solutions
exist, with SDL Trados, Memsource, and Wordfast
being recognized as popular options by different
research (Alotaibi, 2020; Picton et al., 2017). Apart
from requiring purchasing a license, these systems
use custom file formats that may not be compatible
with other tools, leading to interoperability issues
in translation projects. Using general-purpose soft-
ware can also result in unaligned parallel sentences
due to translators re-ordering the files, a problem
highlighted by Doumbouya et al. (2023) in their
review of the original NLLB-SEED dataset (NLLB
Team et al., 2022). Furthermore, commercial CAT
systems often integrate machine translation models,
such as Google Translate and DeepL, that restrict
the use of their outputs for training other models.

Recognizing these challenges, we release SEED-
CAT,3 an open-source web application specifically
designed to assist human translators in translating
SEED dataset files. This application was at the cen-
ter of our data collection efforts and was designed
with the three core principles.

• The user interface and features are optimized
for usability, device compatibility, and seam-
less integration with the SEED dataset. The
list of languages and corpora is fetched at run-
time from the dataset’s repository, and meta-
data is displayed alongside each sentence (Fig-
ure 1).

• The system architecture facilitates application
deployment, as it does not require configuring
databases or user accounts. Data persistency
is achieved via IndexedDB,4 a transactional

3https://github.com/josecols/seed-cat
4https://www.w3.org/TR/IndexedDB/
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database for object storage in web browsers.

• The application data model adheres to the
W3C PROV-DM (Missier and Moreau, 2013)
recommendation for data provenance, adding
an additional layer of transparency to the trans-
lation creation process.

SEED-CAT integrates a focused set of fea-
tures, such as machine translation and terminol-
ogy consultation. Machine translation is supported
for local5 and remote inference, with the latter
being recommended for broader device compat-
ibility. The machine translation feature relies
on the facebook/nllb-200-distilled-600M
model (NLLB Team et al., 2022) to generate out-
puts. Likewise, terminology consultation in En-
glish is enabled by WordNet (Miller, 1995).

Users can also compare translations using text
differencing (Myers, 2023), with word-based com-
parison for Latin-based languages and character-
based comparison for other scripts. Additionally,
part-of-speech color highlighting for English words
can be toggled based on user preference. This fea-
ture relies on the Brill tagger (Brill, 1992) and a
Treebank tokenizer (Marcus et al., 1993), both im-
plemented using the natural library.6

Sourcing translators We recruited a team of ten
freelance translators who were individually sourced
through Fiverr, an online marketplace for digital
services. We relied on the platform’s reputation
system and freelancer profiles to identify poten-
tial candidates. The final translators were selected
based on specific criteria: native Latin American
Spanish speakers, a minimum of two years of trans-
lation experience on the platform, at least 500 com-
pleted projects, and a brief English conversation
assessment. The median translator had nine years
of experience, 1,900 completed projects, and 779
reviews. In addition, we sourced an independent
freelance translator with a degree in Applied Lan-
guages who underwent a similar vetting process.
Additional background information on all transla-
tors is reported in Table 1.

Compensation Each translator determined their
compensation separately based on the number of
English words in their assigned task. The tasks
were divided into two stages: translation and re-
view, which had different compensation rates. The

5https://github.com/xenova/transformers.js
6https://github.com/NaturalNode/natural/

Category Detail %

Education

Master’s degree 9.1
Bachelor’s degree 54.5
Course or certificate 27.3
No formal training 9.1

Country

Argentina 9.1
Chile 9.1
Colombia 9.1
Mexico 18.2
Panama 9.1
Venezuela 45.5

Table 1: Percentage distribution of participants by edu-
cational background in translation and country of origin.

median compensation per translated word was
0.017 US dollars, with an average of 0.022, and
the median compensation per reviewed word was
0.012 US dollars. Translators were also given a
user guide to the SEED-CAT application, along
with data samples and translation guidelines, to
help them assess the complexity of the task when
determining their rates.

Translation workflow The translation process
was divided into two stages: first, translating all
sentences from English to Spanish, and second,
reviewing every sentence to ensure accuracy and
quality. Both phases were carried out by the team
of translators using the SEED-CAT application.

A team of ten translators completed the ini-
tial translation phase in 16 days. The translators
worked on a contiguous set of segments for better
contextual reference, with an average task size of
593 sentences. Each translator received a unique
URL to access SEED-CAT, which automatically
configured their browser with the target language
file (spa_Latn), sentence range, and user identifier.
Translators did not need to handle administrative
tasks such as creating user accounts or managing
assignments. When they opened the application
URL, they were prompted to review and acknowl-
edge the translation guidelines, and then they were
directed to their first assigned segment for transla-
tion.

The review phase was carried out by three trans-
lators. Each reviewed segments that were initially
translated by others, finishing the task in five days
and proofreading an average of 2,064 sentences.
The translators received a specific URL to open
SEED-CAT in review mode. In this mode, the ap-
plication automatically loads and deserializes the
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Figure 1: SEED-CAT’s user interface with two resizable panels to display the original sentence and the translation
editor. Users can select different languages, track progress, review guidelines, or access other actions, such as
importing/exporting provenance graphs using the top navigation bar. Translators can also open the source document
and generate machine translations.

provenance information collected up to that point,
enabling the consolidation of the translation and
review history of a sentence into a single PROV-
JSON file (Huynh et al., 2013). A total of 686 trans-
lations were copy-edited, with most corrections
involving mistranslations, syntactic and lexical re-
finements, and grammatical issues such as verb
agreement. Additionally, the decimal and thousand
separators were standardized following established
Spanish orthographic norms (Real Academia Es-
pañola, 2010).

Dataset sample The final dataset contains 6,193
Spanish sentences (152,664 words) professionally
translated by eleven native speakers from six coun-
tries in Latin America. Table 2 provides a brief
excerpt of the parallel sentences.

Provenance dataset According to the World
Wide Web Consortium (W3C) (Groth and Moreau,
2013), “provenance is information about entities,
activities, and people involved in producing a piece
of data or thing, which can be used to form assess-
ments about its quality, reliability or trustworthi-
ness.”

During the translation process, the SEED-CAT
application automatically recorded prove-
nance information on how activities such as

EditTranslation, MachineTranslate, and
QueryWordNet were used to generate, invalidate,
and revise translations. This information can be
serialized into JSON files (Huynh et al., 2013),
enabling data sharing with its complete history.
Users can also import these files and modify the
data entities while maintaining the provenance’s
integrity.

In the PROV data model (Missier and Moreau,
2013), entities, activities, and agents are linked
through relations. These links can be used to create
a directed graph to visualize dependencies and data
interactions. Appendix E provides examples of
these graphs from the Spanish dataset. This dataset
containing 6,193 PROV-JSON files is released as
part of our SEED contribution.

System usability scale The system usability
scale (SUS) (Brooke, 1996) is a standardized 10-
item questionnaire for assessing perceived usability.
Users rate each statement of the survey on a scale
from 1 to 5, enabling the calculation of the SUS
score, which ranges from 0 to 100. Substantial re-
search has found that this score is a reliable metric
of perceived system usability (Lewis, 2018). We
administered the SUS questionnaire to the eleven
translators involved in the project to evaluate the
SEED-CAT application, obtaining an SUS score of

627



# English Spanish

663
For Gibbon, "The decline of Rome was
the natural and inevitable effect of
immoderate greatness.

Para Gibbon, "El declive de Roma fue
el efecto natural e inevitable de la
grandeza excesiva.

2079

By 1843 Richard Hoe developed the
rotary press, and in 1844 Samuel
Morse sent the first public telegraph
message.

En 1843 Richard Hoe inventó la prensa
rotativa, y en 1844 Samuel Morse
envió el primer mensaje público por
telégrafo.

5500

But mental ideas or judgments are
true or false, so how then can
mental states (ideas or judgments)
be natural processes?

Pero las ideas o juicios mentales son
verdaderos o falsos, entonces, ¿cómo
pueden los estados mentales (ideas o
juicios) ser procesos naturales?

Table 2: Sample sentences from the spa_Latn dataset with English source text and corresponding translations.

82.95. Appendix C summarizes the participants’
responses.

4 Experimental Validation

Following the shared task’s recommendation for
experimental validation, we trained four bilingual
machine translation models on the 6,193 newly col-
lected Spanish sentences and evaluated their per-
formance on the FLORES+ benchmark.

4.1 Data

Italic experiments To validate our model train-
ing setup, we reproduced the bilingual results re-
ported by Maillard et al. (2023) for bidirectional
translations between English and three Italic lan-
guages: Friulan (fur_Latn), Venetian (vec_Latn),
and Ligurian (lij_Latn). We focus on these lan-
guages due to their linguistic relation to Spanish
and their complete data availability on the SEED

dataset and the FLORES+ benchmark.

Spanish experiments For our bidirectional En-
glish and Spanish (spa_Latn) machine translation
models, we divided the collected data described in
Section 3 into two versions: one before and one
after the translation review process. This allowed
us to analyze the scoring effect of a more stream-
lined review process based solely on proofreading
and copy-editing in contrast to the iterative quality
assurance pipeline implemented in FLORES-200
(NLLB Team et al., 2022). Table 3 summarizes the
employed corpora with their corresponding source,
size, and split.

Language Split Lines Source

eng, fur
lij, vec

train 6193 Seed
valid 997 FLORES+
test 1012 FLORES+

spa
train 6193 This work
valid 997 FLORES+
test 1012 FLORES+

Table 3: Corpora used in model experiments. Our con-
tribution is highlighted in bold font.

4.2 Tokenization

We trained a SentencePiece model (Kudo and
Richardson, 2018) on the train split for each
language pair using a joined vocabulary of 8k
tokens and byte-pair encoding (BPE) (Sennrich
et al., 2016) for subword segmentation. In total,
we trained three tokenizers for the bilingual Italic
experiments and two tokenizers for the Spanish ex-
periments, one for each version of the translated
dataset.

4.3 Models

The machine translation models in this work
are implemented with the fairseq toolkit (Ott
et al., 2019) using the transformer architecture
(Vaswani et al., 2017). Modifications are also made
to match the bilingual model configurations in Mail-
lard et al. (2023) for comparison purposes. The
resulting architecture consists of 8 attention heads,
6 encoder and decoder layers, each with 4096-
dimensional feedforward networks. We trained
each model with an inverse square root learning
rate of 0.001 and 400 warm-up updates. Training
is conducted on a cloud virtual machine with an
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NVIDIA L4 24GB GPU and an image preloaded
with Debian 11, Python 3.10, PyTorch 1.13, and
CUDA 11.3. Data preparation, model training, and
evaluation recipes are available.7

Italic models We train two models per lan-
guage pair, one for each direction (eng_Latn ↔
xxx_Latn) between English and the three selected
Italic languages from the Seed dataset. We use the
dev split of the FLORES+ benchmark for valida-
tion and the highest BLEU score (Papineni et al.,
2002) on this split as the checkpoint selection cri-
terion. Training is stopped when the validation
BLEU score fails to improve after 10,000 gradient
updates, and the selected checkpoint is used to cal-
culate the chrF++ scores (Popović, 2015) on the
FLORES+ devtest split. These scores provide
a baseline for guiding our training parameters un-
til achieving performance on par with the results
reported by Maillard et al. (2023). This enables
comparing the metrics from our Spanish models
and assessing the quality of our spa_Latn data con-
tribution.

Spanish models Using only the newly collected
Spanish data, we trained four models, two for each
version of the spa_Latn dataset. Model training
and architecture parameters were defined during
the Italic experiments and remained constant for
these models. For validation, we used the dev split
from the FLORES+ dataset. Training was con-
ducted for 2,000 epochs (averaging a total runtime
of 12h 31m), with the best checkpoint selected
based on the highest validation BLEU score.

4.4 Results
Italic experiments We evaluated all model hy-
potheses using the sacrebleu tool (Post, 2018)
against the devtest split of the FLORES+ bench-
mark. Table 4 compares the original performance
of bilingual machine translation models reported
by Maillard et al. (2023) with our reproduction
attempts, which employed a similar model ar-
chitecture and training routine. Our reproduced
models nearly match the average chrF++ score
for the English-to-Italic direction, falling short by
0.2 points while showing an improvement of 2.8
chrF++ points for the Italic-to-English direction.

Spanish experiments We achieved a chrF++
score of 35.0 for English-to-Spanish translation

7https://github.com/josecols/seed-cat/tree/
main/nmt

Language Original Reproduction
eng→ →eng eng→ →eng

fur_Latn 35.4 35.6 35.7 36.8
lij_Latn 34.1 32.1 33.4 36.0
vec_Latn 33.5 32.3 33.2 35.5
Average 34.3 33.3 34.1 36.1

Table 4: Performance comparison (chrF++) between
original (Maillard et al., 2023) and our reproduced
bilingual models for three Italic languages (fur_Latn,
lij_Latn, vec_Latn).

and 34.7 for the reverse direction by training exclu-
sively on the collected spa_Latn data. The average
score of 34.9 is comparable to the 35.1 mean ob-
tained by the Italic models trained on existing SEED

corpora. This result suggests that the new Spanish
training data is representative of the spa_Latn data
in the FLORES+ benchmark.

Analyzing the effect of the translation review
process, we observed an average improvement of
0.3 chrF++ points. Specifically, the English-to-
Spanish model trained on the reviewed data im-
proved from 34.5 to 35.0, while the reverse direc-
tion decreased slightly from 34.8 to 34.7. Figure 2
breaks down the performance of the four bilingual
Spanish models.

eng-spa spa-eng
0

10

20

30

40

34.5 34.835 34.7

ch
rF

++

Initial Reviewed

Figure 2: Performance (chrF++) of the eng_Latn↔
spa_Latn bilingual models trained on two versions of
Spanish data: before (Initial) and after the translation
review process (Reviewed).

5 Discussions

Seed English corpus Each line in the English
corpus is an excerpt from a Wikipedia article,
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which may consist of complete sentences or frag-
ments. Translators identified two primary chal-
lenges when working with this data: incomplete
sentences and a lack of context due to changes in
the original article. For example, segment 5540,
“By way of example, they provide two
proofs of the irrationality of .” is missing
an object at the end. Translations of such sentences
inevitably reflect the original issues.

Furthermore, Wikipedia articles support version-
ing,8 so including the date of compilation in the
metadata or augmenting the dataset with prove-
nance information could enable the correct context
retrieval at the time of translation.

Seed-CAT The SEED-CAT application facili-
tated the translation of the English corpus, the
review of translations, and the generation of the
provenance dataset. Translators rated its us-
ability highly, with an “A” grade based on the
Sauro–Lewis curved grading scale (Lewis and
Sauro, 2018). Notably, the system’s perceived
learnability, identified in Alotaibi (2020) and Zaret-
skaya et al. (2017) as a key area for improvement in
other CAT systems, scored the highest in our study,
with an average of 93.2. This result underscores
our efforts in user-centered design to make partici-
pation by language communities more accessible.

Translation workflow During the review phase,
translators proofread and copy-edited the entire
spa_Latn dataset, modifying 686 sentences and
1,815 words. Although the cost of this phase
was lower than the initial translation, they were
still comparable. Given the marginal improvement
in the post-review model’s metric and the signifi-
cant impact of high-quality parallel sentences on
machine translation performance (Maillard et al.,
2023), teams should consider allocating review re-
sources toward generating more translations. In
our case, this approach could have generated 3,498
additional translations of similar average length.

6 Conclusions

This work presented the SEED-CAT application
and its role in expanding the SEED dataset with a
professionally translated Spanish corpus. By inte-
grating a provenance data model and its serializa-
tion in SEED-CAT, we automatically obtained a

8https://en.wikipedia.org/wiki/Help:Page_
history

JSON dataset detailing the origin of each transla-
tion. Our experimental machine translation valida-
tion on the FLORES+ benchmark demonstrates
that the collected Spanish data is of high quality,
achieving on-par performance with other estab-
lished language pairs in the SEED dataset. The
excellent grade from the system usability scale sur-
vey suggests that the SEED-CAT application has
the potential to facilitate the inclusion of additional
languages in future efforts.

Limitations

To effectively support the expansion of the SEED

dataset, localizing the SEED-CAT user interface
is essential. Future translation projects may in-
volve translators who work in languages other than
English. Identifying these relevant languages and
implementing the UI localization requires further
work. Similarly, the machine translation feature is
constrained by the availability of open models and
their supported translation directions.

While the provenance dataset includes times-
tamps for when activities are performed, this in-
formation is not a reliable source for measuring
the time taken to translate a sentence or other sim-
ilar metrics. Users may experience interruptions,
and the system does not track user engagement or
attention.

Latin American Spanish varieties exhibit dialec-
tal divisions that affect morphosyntactic features
such as word order and verb tense (Hualde et al.,
2012). Our data collection methodology does not
distinguish between these variations. However, the
specific variety spoken by each translator who par-
ticipated in the project is detailed in Appendix D.
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the 6,193 reviewed translations of the spa_Latn
data.

C System usability scale

Table 7 details the responses of each translator
to the system usability scale (SUS) survey. The
columns correspond to each numbered statement as
they appear in the standard questionnaire (Brooke,
1996), while the rows represent the translators in no
particular order. The table also summarizes the av-
erage score per participant, the score per question,
and the total SUS score.
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Model BLEU chrF++
valid test test

eng→fur 10.3 10.4 35.7
eng←fur 10.8 10.0 36.8
eng→lij 7.5 8.0 33.4
eng←lij 9.6 9.3 36.0
eng→vec 7.0 6.3 33.2
eng←vec 9.9 9.4 35.5
Average 9.2 8.9 35.1
spa←eng 8.4 8.1 35.0
spa→eng 7.2 7.2 34.7
Average 7.8 7.7 34.9

Table 5: Performance of the bilingual models evaluated
using automatic metrics on the valid and test splits.

D Spanish varieties

Table 8 relates each translator identifier in the
provenance dataset with their specific Latin Ameri-
can Spanish variety.

E Provenance graphs

Figures 3 and 4 depict the provenance graphs of
two translations. The translation process for each
sentence can vary significantly, leading to graphs of
different complexity. These graphs were generated
using the Python prov package.9

9https://github.com/trungdong/prov
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# English Spanish

663
This behavior oftentimes results in
rifts between the leaders and the
rest of the team.

Este comportamiento de los
resultadosmes inestables entre
los líderes de los líderes y el
resto del equipo.

702

European influence and colonialism
began in the 15th century, as
Portuguese explorer Vasco da Gama
found the Cape Route from Europe to
India.

La influencia europea y el
colonialismo comenzó en el siglo
XV, como Portugués Verés Vasco Gama
fundó la Cautela de Europa desde
Europa.

1009
Japanese work culture is more
hierarchical and formal that what
Westerners may be used to.

La cultura japonés es más jerárquica
y que se puede utilizar en los
occidentales.

Table 6: Sample machine translations from the eng-spa bilingual model. The English source sentences are drawn
from the devtest split of the FLORES+ benchmark.

User 1 2 3 4 5 6 7 8 9 10 Score
1 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 100.00
2 2.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.00 70.00
3 3.00 4.00 4.00 4.00 3.00 4.00 4.00 4.00 4.00 4.00 95.00
4 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 100.00
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 100.00
6 4.00 1.00 4.00 1.00 4.00 1.00 4.00 4.00 4.00 4.00 77.50
7 2.00 3.00 4.00 4.00 2.00 2.00 4.00 3.00 3.00 4.00 77.50
8 1.00 4.00 4.00 4.00 4.00 4.00 4.00 1.00 4.00 4.00 85.00
9 2.00 3.00 3.00 4.00 2.00 2.00 4.00 4.00 4.00 4.00 80.00
10 2.00 2.00 2.00 3.00 2.00 1.00 3.00 2.00 2.00 4.00 57.50
11 2.00 3.00 4.00 4.00 1.00 4.00 2.00 1.00 3.00 4.00 70.00
Score 68.18 79.55 90.91 88.64 75.00 75.00 90.91 77.27 88.64 95.45 82.95

Table 7: System usability scale scores for each translator (normalized).

Translator ID Variety Glottocode
14a33724-59b6-45f3-b056-f9d384e48a59 Caribbean Spanish cari1288
2460a2a5-1a59-4e0a-afff-a83be7af3872 Caribbean Spanish cari1288
d67b54ab-6325-47be-b578-02f4b7ba942c Chilean Spanish chil1286
599ec44e-1b13-4f0c-a71f-296bbf0f2c6a Mexican Spanish mexi1248
ef29b2b9-ecc8-4766-95a7-40b794d0053f Mexican Spanish mexi1248
548b0e62-71a4-448c-ab47-96f58f81a935 Rioplatense Spanish riop1234
237fa953-c66e-4d5c-9f5a-919b171766be Venezuelan Spanish vene1262
142058e1-0375-4b16-bcc3-655af871ff1c Venezuelan Spanish vene1262
8fa01aed-835b-4912-b648-c86ae67e3599 Venezuelan Spanish vene1262
250663c9-8d8e-43da-a116-840b8cf39cf4 Venezuelan Spanish vene1262
e730a639-0928-4801-a97b-f070e661dff9 Venezuelan Spanish vene1262

Table 8: Translator identifiers and their corresponding Latin American Spanish varieties with Glottocodes.
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oldi:seed/eng_Latn seed:target_languages/spa_Latn

seed:activities/CreateTargetLanguage/1722536870550

wasGeneratedBy

seed:translations/spa_Latn/5500/1722639459271

seed:activities/EditTranslation/1722639371057

wasGeneratedBy

seed:sentences/eng_Latn/5500

wasDerivedFrom

seed:activities/ViewSentence/1722639370747

wasGeneratedBy

seed:Translator/548b0e62-71a4-448c-ab47-96f58f81a935

wasAssociatedWith

usedwasInformedBy

wasAssociatedWith

wasAssociatedWith

Figure 3: This provenance graph represents a simple workflow in which the translator consulted the original English
text and translated it into Spanish in a single, continuous edit.

oldi:seed/eng_Latn

seed:target_languages/spa_Latn

seed:activities/CreateTargetLanguage/1721726870435

wasGeneratedBy

seed:translations/spa_Latn/663/1721846655223

seed:translations/spa_Latn/663/1721846595167

wasDerivedFromseed:activities/EditTranslation/1721846638955

wasGeneratedBy

seed:activities/EditTranslation/1721846672666

wasInvalidatedBy

seed:translations/spa_Latn/663/1721846672669

wasDerivedFrom

wasGeneratedBy

seed:machine_translations/spa_Latn/663

seed:activities/MachineTranslate/1721846593586

wasGeneratedBy

wasDerivedFrom

wasInvalidatedBy

wasGeneratedBy

seed:sentences/eng_Latn/663

wasDerivedFrom

seed:activities/ViewSentence/1721846590481

wasGeneratedBy

seed:Translator/237fa953-c66e-4d5c-9f5a-919b171766be

wasAssociatedWith

used

used

wasInformedBy

wasInformedBy
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used

used

wasInformedBy

wasInformedBy

wasAssociatedWith

used used
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Figure 4: This provenance graph represents a workflow that begins with an initial machine translation, followed by
two rounds of copy-editing.
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Abstract

Traditional machine translation methods typi-
cally involve training models directly on large
parallel corpora, with limited emphasis on spe-
cialized terminology. However, In specialized
fields such as patent, finance, or biomedical
domains, terminology is crucial for transla-
tion, with many terms that needs to be trans-
lated following agreed-upon conventions. In
this paper we introduce a methodology that ef-
ficiently trains models with a smaller amount
of data while preserving the accuracy of termi-
nology translation. We achieve this through a
systematic process of term extraction and glos-
sary creation using the Trie Tree algorithm,
followed by data reconstruction to teach the
LLM how to integrate these specialized terms.
This methodology enhances the model’s abil-
ity to handle specialized terminology and en-
sures high-quality translations, particularly in
fields where term consistency is crucial. Our
approach has demonstrated exceptional perfor-
mance, achieving the highest translation score
among participants in the WMT patent task to
date, showcasing its effectiveness and broad
applicability in specialized translation domains
where general methods often fall short.

1 Introduction

Conventional approaches to machine translation
typically rely on training models using extensive
parallel corpora, with little focus on specialized
vocabulary. While this can be an effective approach
in general, it demands large amounts of data and
may lead to inconsistent translations of technical
or domain-specific terminology. This challenge is
particularly acute in specialized fields, where pre-
cise terminology usage is crucial and high-quality
training data is often scarce (Skianis et al., 2020;
Ghazvininejad et al., 2023; Zhang et al., 2023).
Datasets for training models in these specialized
domains are usually limited, and even when they
exist, many are private due to security concerns.

Figure 1: Training method in terminology-based LLM
translation

Consequently, certain industries lag behind in the
advancement of deep learning-based translation.
This disparity is even more pronounced for less
commonly spoken languages, where specialized
translation capabilities are significantly underde-
veloped, resulting in an unequal distribution of
progress in neural machine translation.

Numerous approaches have been explored to in-
tegrate terminology constraints into Neural Ma-
chine Translation (NMT) systems, aiming to im-
prove domain-specific translation quality. Recent
research on terminology-based machine translation
has shifted towards incorporating constraints dur-
ing the training phase, which eliminates the com-
putational overhead during inference and enhances
translation quality. Dinu et al. (2019) introduced
a method where NMT models are trained with
augmented datasets that include terminology con-
straints as inline annotations, allowing the model
to learn the appropriate use of these terms during
training. Building on this, Ailem et al. (2021) pro-
posed further enhancements by using token mask-
ing and a modified cross-entropy loss function,
which biases the model towards generating con-
straint terms more effectively. Additionally, the use
of large language models for post-translation re-
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finement has been explored to improve terminol-
ogy recall, demonstrating the evolving nature of
terminology integration in NMT (Bogoychev and
Chen, 2023; Ghazvininejad et al., 2023; Moslem
et al., 2023). These training-based approaches have
demonstrated significant improvements in both
BLEU scores and terminology usage rates com-
pared to decoding-time methods, indicating their
effectiveness in satisfying lexical constraints with-
out compromising translation quality.

In this paper, we propose a fine-tuning approach
to resolve the domain-specific terminology mis-
match problem using only a small dataset. Our
approach focuses on extracting a glossary from
the existing training datasets and fine-tuning the
model to integrate these terms effectively into trans-
lations. First, we train a terminology extraction
model to generate a glossary from existing training
datasets, which we integrate into our trie data struc-
ture (Bodon and Rónyai, 2003). We then extract
domain-specific terms from the source sentences
using the tree structure and pass them along with
the source texts to instruct our Large Language
Model (LLM) to effectively incorporate special-
ized terminology into translations. This approach
ensures high-quality and consistent results in spe-
cialized fields. Figure 1 illustrates how our ap-
proach differs from traditional fine-tuning meth-
ods. This targeted refinement process enhances the
model’s capacity to manage specialized terminol-
ogy, thereby maximizing the utility of the original
training data and significantly improving transla-
tion accuracy and consistency. Our methodology
has proven to be exceptionally effective, particu-
larly in specialized translation tasks, where gen-
eral translation methods often struggle to maintain
accuracy and consistency. Notably, our approach
achieved the highest translation score among all
participants in the WMT patent task, underscor-
ing its superior performance and broad applicabil-
ity across various specialized translation domains.
Through this systematic and targeted strategy, we
ensure that our translations are not only accurate
but also contextually relevant, thereby providing a
reliable solution for specialized translation needs.

2 Methodology

In this section, we describe the methodol-
ogy employed in developing a domain-specific
terminology-based LLM translation system, focus-
ing on three key processes: (1) the creation of a

terminology glossary, (2) the identification of terms
within the source text, and (3) the application of
these terms during the translation process using
LLM prompts and sLLM fine-tuning.

2.1 Construction of the Terminology Glossary:
Terminology Aligner

Instructions for Term Extraction

System Message:
I will now show you source sentences in
Japanese and target sentences in Korean.
Your task is to extract and pair key terms
from both the original and translation texts.
Maintain the exact form of the terms with-
out modification.
Please follow these instructions for extract-
ing term pairs:

• Extract term pairs that are closely re-
lated to patents.

• Only extract nouns.
• The extracted term pairs will be used

to create a Japanese-Korean glossary.
• Return the results in the form of a

Python dictionary, as shown in the ex-
ample.

• However, if the exact same term ap-
pears more than once include it only
once.

Example 1:

src_sentence = それぞれについて官能評を行っ
た結果を表４２に示す。

tgt_sentence = 각각에 대하여 관능 평가를 행
한 결과를 표 42에 나타낸다。

result = {"官能評": "관능 평가"}

Example 2:

src_sentence = 各種の特許や技術標準化にする
問題が討された。

tgt_sentence = 각종 특허권과 기술 표준화
에 관한 문제가 검토되었다。

result = {"特許": "특허권", "技術標準化": "
기술 표준화"}

Figure 2: Instructions for Term Extraction

To enable the translation model to produce accu-
rate translations that incorporate specialized termi-
nology, we first construct a "Terminology Pair Dic-
tionary," aligning key terms between the source and
target languages. We achieve this by fine-tuning
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the Mistral Nemo model, creating a Terminology
Aligner model whose primary objective is to ex-
tract pairs of key terms from both the original and
translated texts.

For our training data, we leverage the GPT-3.5
API to generate synthetic data by crafting prompts
that instruct the API to extract key term pairs from
existing Japanese-Korean translation pairs in our
dataset, along with the system prompt shown in
Figure 2. From the 1,000,000 training samples pro-
vided by the organizers, we randomly select 1,000
examples to fine-tune Mistral Nemo for a single
epoch. We adopt this conservative approach, rec-
ognizing that Mistral Nemo already possesses a
robust grasp of both Korean and Japanese and is
capable of performing various tasks, including the
one at hand. Our goal is to specialize the model
for our particular task without compromising its
broader capabilities or confusing it with unrelated
tasks.

Furthermore, when the entire dataset was used
for fine-tuning, the model frequently extracts non-
essential term pairs or entire sentences as pairs,
indicating overfitting. By carefully selecting the
amount of data and limiting the number of training
epochs, we ensure that it extracts only the most
relevant, domain-specific term pairs and effectively
fine-tune the Terminology Aligner model.

2.2 Term Identification in the Source Text:
Trie-Tree Algorithm

Figure 3: Overall process of term extraction to transla-
tion

The next step in our methodology involves iden-
tifying and extracting specialized terms from the
source text that must be accurately translated using
the glossary we constructed. To account for indus-
tries where there is often a high volume of technical
terms and the need for efficient text scanning, we
implement the Trie Tree data structure to extract
the domain-specific terms.

The Trie Tree is particularly well-suited for this
task due to its efficiency in string searching and
matching. The algorithm operates by placing a cur-
sor at the first Unicode character of the text, while
another cursor points to the root of the tree. As the
text cursor advances through each character, the
tree cursor checks for corresponding child nodes.
If a match is found, the tree cursor moves to the
next node; if not, it resets to the root. When the
cursor reaches a node marked as a ’term,’ the term
is identified, and its position is recorded. This al-
lows us to quickly retrieve the term’s translation
and include it in the LLM prompt, ensuring that
all relevant terms in the text are accurately and
efficiently identified. The process is visually illus-
trated in Figure 3, which describes the step-by-step
progression of the Trie Tree algorithm from text
scanning to term retrieval and integration into the
LLM prompt.

2.3 Application of Terms in Translation: LLM
Prompting and sLLM Fine-Tuning

Instructions for Term Extraction

System Message:
You are a professional translator. You are
especially familiar with specialized patent
knowledge and terms in chemistry, electric-
ity, mechanical engineering, and physics,
as well as general everyday terms. Trans-
late the following Japanese source text into
Korean.

• Refer to the word pairs in the glossary
when you translate.

• Do not translate the glossary itself.
• Do not include anything but transla-

tion result only.
• If a term in the glossary has multiple

possible translations separated by ’|’,
choose the most appropriate one.

• The translation result must be written
in a single line. There must be no new-
line character at the end.

Glossary:
{セレノール化合物 : 셀레놀 화합물,
端部 : 끝부분 | 단부 | 모서리 ,
絶膜 : 절연막,
送信回路 : 송신 회로 | 전송 회로}

Figure 4: Instructions for Term Extraction
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The final phase of our methodology involves the
use of the extracted terminology during the transla-
tion process. To do this, we first extract term pairs
from all translation pairs in our dataset using the
created tree structure. These extracted term pairs
are then combined with each original translation
pair and the system message in Figure 4 to create
an instruction-based training dataset to fine-tune
our translation model.

Similar to our fine-tuning process with the Termi-
nology Aligner, we observed that both the amount
of data and the number of training epochs signifi-
cantly influence the quality of the translation out-
put, particularly in terms of how natural the trans-
lations sound. Interestingly, when working with
smaller datasets, the model tends to produce more
natural, conversational translations. However, as
the dataset size increases, the model increasingly
adheres to the original sentence structure, resulting
in a more formal and literal style of translation.

To balance these tendencies, we use approxi-
mately 1,000 data points for training and limit the
training to three epochs, with a temperature set-
ting of 0.1. This configuration allows the model to
generate translations that were both accurate and
natural, making an effective use of the specialized
terminology while maintaining a high level of flu-
ency and readability.

3 Experimental Results and Application

Team BLEU RIBES
(mecab)

1 GenAI 70.60 0.939073
2 Chatgpt (w/ glossary) 69.00 0.929945
3 sakura 68.00 0.926839
4 Bering Lab 66.25 0.925226
5 ryan 65.74 0.922837
6 goku20 64.30 0.922486
7 ORGANIZER 62.43 0.915266
8 tpt_wat 61.00 0.918436
9 Chatgpt (w/o glossary) 59.90 0.908637

Table 1: BLEU (mecab) and RIBES scores for the
Japanese-to-Korean translation task

Our proposed methodology has been rigorously
tested and evaluated within the framework of the
WMT patent task, where it achieves the highest
translation score to date among all participants.
This success demonstrates the effectiveness of our
approach in handling domain-specific translations,

particularly in maintaining consistency in terminol-
ogy.

In addition to the translation results generated
by our model, we submitted two additional transla-
tions using ChatGPT. The first result, labeled ’Chat-
GPT (w/ glossary)’ in Tables 1 and 2, was obtained
by replacing our model with ChatGPT while keep-
ing the system prompt and glossary identical to our
methodology. The second result was generated us-
ing ChatGPT alone without any additional inputs.

Several interesting findings emerged: for the
Japanese-to-Korean translation task, ChatGPT
without the glossary scores lower than other mod-
els in the patent translation domain. However, the
score significantly improves when our glossary is
provided. This demonstrates that the integration
of a terminology glossary substantially enhances
translation performance, regardless of the underly-
ing model’s capabilities. By comparing ChatGPT
with and without the glossary, it becomes evident
that our system effectively boosts translation qual-
ity through efficient terminology integration. Our
specialized language model, trained specifically to
use the glossary, outperforms ChatGPT even with
the glossary. Upon reviewing the outputs, we no-
tice that ChatGPT sometimes fails to correctly ap-
ply terms inside the glossay and occasionally uses
Japanese terms instead of their Korean equivalents
in the Japanese-to-Korean translation.

These findings highlight that our model can be
effectively trained with a small dataset, achieving
high-quality translations while remaining a smaller,
more efficient model. Beyond patent translation,
our methodology can be extended to specialized
fields such as legal and financial translation where
accurate term alignment is critical, providing a ro-
bust solution where general translation methods
may fall short.

4 Discussion

4.1 Advantages of Our Methodology Over
Traditional Approaches

The effectiveness of our methodology is further
underscored by several key advantages it holds over
traditional approaches:

4.1.1 Focused Learning on Domain-Specific
Terms

Traditional models typically assign equal impor-
tance to all words in the training data, which can re-
sult in inconsistent translations of specialized terms
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Rank Team BLEU RIBES
juman kytea mecab juman kytea mecab

1 GenAI 67.00 67.40 66.90 0.924474 0.919657 0.923416
2 Chatgpt (w/ glossary) 62.20 62.50 61.90 0.916385 0.912133 0.914275
3 Chatgpt (w/o glossary) 61.60 62.50 61.50 0.912482 0.907932 0.911476
4 EHR 53.83 55.83 54.23 0.907358 0.903857 0.905654
5 sarah 53.59 55.68 53.94 0.903211 0.900313 0.902430
6 KNU_Hyundai 53.56 55.68 54.02 0.901627 0.900091 0.901877
7 TMU 52.85 54.92 53.24 0.906113 0.903179 0.906320
8 Bering Lab 52.74 54.55 53.15 0.902984 0.898627 0.902621
9 ORGANIZER 52.02 53.93 51.99 0.897348 0.896897 0.898316
10 sakura 51.90 54.10 52.30 0.899781 0.896489 0.898412

Table 2: BLEU and RIBES scores for the Korean-to-Japanese translation task

across different contexts. Our methodology ad-
dresses this by prioritizing domain-specific terms,
ensuring they are recognized and used consistently
in relevant translations.

4.1.2 Efficient Data Utilization through
Terminology Extraction

Traditional methods often require large volumes of
data to achieve satisfactory performance, particu-
larly in specialized domains. Our method optimizes
the use of training data by focusing on key term
pairs and creating a dedicated glossary, enabling
more efficient learning even with a smaller dataset.

4.1.3 Enhanced Translation Consistency and
Accuracy

A common challenge with traditional translation
methods is inconsistency in translating specialized
terms, especially when these terms have multiple
possible translations depending on context. Our
approach mitigates this by ensuring the model is
trained with a consistent set of term translations
derived from the glossary.

4.1.4 Improved Model Generalization
Traditional models trained on large corpora may
overfit to specific sentence structures or styles
present in the training data, leading to poor gener-
alization to new texts. Our approach incorporates
the glossary into training, acting as a regularizing
factor that improves generalization to new texts
within the same domain.

4.1.5 Customizability for Different Domains
Our methodology allows for greater flexibility in
adapting the model to different specialized fields.
By updating the glossary with new terms relevant

to a particular domain, the model can be quickly
tailored to perform well without extensive retrain-
ing.

5 Conclusion

Our terminology-based LLM translation method-
ology represents a significant advancement in the
field of machine translation, particularly for spe-
cialized domains requiring precise and consistent
term usage. By constructing a terminology glos-
sary using the Terminology Aligner, implementing
an efficient term identification process with a Trie
Tree algorithm, and fine-tuning the translation pro-
cess using LLM prompts, we present a system that
not only improves translation accuracy but also
maintains a high level of naturalness in the output.
Our approach has proven successful in terms of
performance, operational cost, and training data
efficiency, showing great promise for a wide range
of professional translation applications.
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A Appendix

In this appendix, we provide additional details on
the training procedures, model configurations, and
methodologies employed in our approach for effi-
cient terminology integration in LLM-based trans-
lation within specialized domains.

A.1 Training Details and Additional
Information

For both the translation task and the terminology ex-
traction task, we used the Mistral-Nemo-Instruct-
2407 model as our base language model. This
model was selected due to its strong capability
in following instructions, including tasks such as
translation and terminology extraction.

A.1.1 Training Details
Model Configuration and Training Parameters

Base Model mistralai/Mistral-Nemo-
Instruct-2407

LoRA Adapter Settings
Alpha 8
Rank 8
Dropout Rate 0.1

Target Modules

["q_proj", "k_proj",
"v_proj", "o_proj",

"gate_proj",
"down_proj",
"up_proj"]

Learning Rate 1e-5
Optimizer AdamW
Learning Rate Scheduler Linear
Warmup Ratio 0.01
Epochs 1
Batch Size 4
Gradient Checkpointing Enabled

LoRA was applied to mitigate GPU memory
limitations and prevent catastrophic forgetting.

A.2 Fine-Tuning Challenges and
Considerations

Our preliminary experiments indicated that using
smaller datasets for fine-tuning resulted in more
effective performance for both the terminology
aligner and the translation model. Based on these
observations, we concluded that a smaller dataset
was sufficient to format the model’s outputs ap-
propriately and guide it to produce task-specific
responses without deviating from the desired con-
tent.

The Mistral-Nemo model already exhibited
strong abilities in instruction following, includ-
ing translation and terminology extraction. There-
fore, extensive fine-tuning was unnecessary and
could potentially degrade performance. Training

with larger datasets led to overfitting, where the
model’s training loss decreased, but the actual
translation quality did not improve. In some cases,
the model exhibited issues like repetitive outputs.
We attempted to mitigate overfitting by increasing
dropout rates and weight decay. However, these
adjustments did not yield significant improvements
in our experiments.
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Abstract

This paper introduces our machine transla-
tion system (team sakura), developed for the
2024 WMT Patent Translation Task. Our sys-
tem focuses on translations between Japanese-
English, Japanese-Korean, and Japanese-
Chinese. As large language models have shown
good results for various natural language pro-
cessing tasks, we have adopted the RakutenAI-
7B-chat model, which has demonstrated effec-
tiveness in English and Japanese. We fine-tune
this model with patent-domain parallel texts
and translate using multiple prompts.

1 Introduction

Machine Translation (MT) systems are becoming
increasingly important in the translation industry.
While generic MT models are good at translating
common phrases into everyday language, they of-
ten struggle with specialized domains unless they
have been specifically tuned for those areas. Patent
documents are an example of this specialized con-
tent.

The patent translation shared task1 at Confer-
ence on Machine Translation (WMT) 2024 aims to
bring together Natural Language Processing (NLP)
researchers to assess and explore innovative meth-
ods for translating patents, specifically between
Japanese (Ja) and English (En), Korean (Ko) or
Chinese (Zh), and vice versa.

Recently, significant advancements have been
made in the field of NLP due to the development of
Large Language Models (LLMs). Unlike encoder-
decoder models, which are typically created to
perform a single task such as machine translation,
LLMs are designed for multiple NLP purposes.
As a result, LLMs are often pre-trained on larger
and more diverse texts, which helps improve the
model’s language understanding. In our work, we

1https://www2.statmt.org/wmt24/patent-task.
html

propose using an LLM fine-tuned with parallel data
to perform accurate translations in the patent do-
main.

An LLM that has been specifically adapted to
multiple NLP tasks in both English and Japanese
is the RakutenAI-7B (Rakuten Group, Inc. et al.,
2024) model. It has been pre-trained on a large
volume of data, and its tokenizer has been opti-
mized for the character-per-token rate in Japanese,
making it ideal for complex tasks such as Japanese
translation.

We participated in the patent translation (sakura
team) shared task. In our proposal, we fine-tune the
LLM with patent-domain bilingual data to build a
multilingual model that achieves high-quality trans-
lations in multiple language directions. In addition,
we produce translations using multiple prompts to
further boost performance.

2 Related Work

LLM has been explored in the patent industry
for tasks such as claim generation (Jiang et al.,
2024), Question-Answer, or Classification (Bai
et al., 2024).

Regarding the patent translation, previous partic-
ipants in the JPO shared task have explored various
methodologies, including training encoder-decoder
models as suggested by Park and Lee (2021), uti-
lizing Transformer-based NMT model (Vaswani
et al., 2017) with ensemble decoding (Susanto et al.,
2019) and adapting pre-trained models such as
BART (Lewis et al., 2020) mBART (Liu et al.,
2020) with patent-specific data (Wang and Htun,
2020; Kim and Komachi, 2021).

3 Task Description

The shared task consists of translating a set of sen-
tences from patent publications in the En ↔ Ja,
Ko ↔ Ja and Zh ↔ Ja language directions. The
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text belongs to the domains of Chemistry, Electric-
ity, Mechanical Engineering or Physics.

These sentences, are organized as different test
set according to the year the patents were pub-
lished:

• test-n1: Published between 2011 and 2013
(same test sets used in the past years).

• test-n2: Published between 2016 and 2017
(not available for Ko-Ja).

• test-n3: Published between 2016 and 2017
(but target sentences were manually created
by translating source sentences).

• test-n4: Published between 2019 and 2020.

• test-2022: The union of the previous n1 to n4
sets.

The test-n1 to test-n4 vary in size from 2K to
5K sentences depending on the language. The only
exception is test-n3, which was created manually
and contains between 200 and 700 sentences. The
total size of these tests, i.e. test-2022, ranges from
7K to 10K sentences.

3.1 Evaluation
In order to determine the performance of our model,
we submit the translation of the test sets mentioned
above. The results of the different tasks are pub-
lished in https://lotus.kuee.kyoto-u.ac.jp/
WAT/evaluation/index.html.

The translations are tokenized using Ju-
man (Kurohashi and Kawahara, 2009), KyTea2,
Mecab (Kudo, 2005) or Moses tokenizer3. The
website presents multiple evaluation metrics for
evaluating the translation. In this paper we present
only the BLEU (Papineni et al., 2002) scores. The
other metrics are correlated with BLEU. We refer
to their website for the rest of the metrics.

3.2 Training Data
The organizers of the shared task also provide the
JPO Patent Corpus (JPC) for training. This is a
dataset built by the Japan Patent Office4 consist-
ing of sets of 1M parallel sentences for each lan-
guage pair (English-Japanese, Chinese-Japanese
and Korean-Japanese).

2https://www.phontron.com/kytea/
3https://github.com/moses-smt/mosesdecoder/

blob/RELEASE-2.1.1/scripts/tokenizer/tokenizer.
perl

4https://www.jpo.go.jp/index.htm

Figure 1: Performance of the fine-tuned model on the
dev set using different beam sizes for decoding.

The data also include a dev set in the same do-
main with around 2K sentences each.

4 Experimental Settings

For our experiments, we fine-tune the RakutenAI-
7B-chat5 model, which has been optimized for the
English and Japanese languages. However, it has
not been explicitly adapted for other languages
such as Korean and Chinese.

We use the JPO data described in Section 3.2 for
this fine-tuning and do not incorporate any addi-
tional data other than what has been provided by
the shared task organizers. The training process
involves 200K steps with a batch size of 8. We fine-
tune the model using the prompt “Translate the
following English text to Japanese:” appending the
sentence to be translated and replacing the source
and target languages as needed for each language
direction.

4.1 Influence of Beam Size

For decoding, we chose a beam size of three. While
larger beam sizes involve considering more candi-
date translations, this does not always result in bet-
ter performance. We tested our fine-tuned model
with beam sizes of 1, 3, 5, and 7 on the development
set. The results, measured using CHRF (Popović,
2015) metric, are shown in Figure 1. Although
there is no single optimal beam size, our findings
indicate that increasing the beam size beyond three
does not lead to significant improvements and in
some cases it may even degrade performance.

5https://huggingface.co/Rakuten/
RakutenAI-7B-chat
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Test Direction BLEU ∆

test-2022
En→ Ja 53.4 +4.5
Ja→ En 50.1 +5.6

test-n1
En→ Ja 51.1 +5.8
Ja→ En 49.3 +5.2

test-n2
En→ Ja 46.3 +5.7
Ja→ En 43.9 +6.2

test-n3
En→ Ja 54.9 +7.4
Ja→ En 43.1 +8.1

test-n4
En→ Ja 62.1 +1.6
Ja→ En 59.7 +4.8

Table 1: BLEU scores for Japanese-English transla-
tion (using Moses tokenizer for Ja → En and kytea
for En→ Ja). The column ∆ indicates the difference
between the scores of our model and those of the orga-
nizers.

4.2 Influence of the Prompt
At decoding time, we perform multiple transla-
tions using different variations of the prompt. The
prompts are the following:

• Translate the following English text to
Japanese (same as training data)

• Translate the following English sentence to
Japanese: (replace “text” with “sentence”)

• Translate the following text to Japanese:
(omit the source language)

• Translate the text to Japanese: (above prompt
rephrased)

• Translate the following English patent text to
Japanese: (explicitly indicate that is a patent
text)

We use LASER (Heffernan et al., 2022) scores
compared to the source to retrieve the best trans-
lation. Although all of them are similar, there
are small nuances that can increase the quality by
around 0.5-1 BLEU points.

5 Results

In this section we present the translation perfor-
mance achieve by our model on the different lan-
guage directions.

5.1 Japanese-English
First, Table 1 illustrates the performance of our
model on English-Japanese translation. We ob-
serve that our model achieves the best results for

Test Direction BLEU ∆

test-2022
Zh→ Ja 56.6 +5.5
Ja→ Zh 46.2 +1.5

test-n1
Zh→ Ja 53.4 +6.7
Ja→ Zh 41.7 +2.6

test-n2
Zh→ Ja 51.3 +5.3
Ja→ Zh 40.6 +1.5

test-n3
Zh→ Ja 21.8 +4.0
Ja→ Zh 27.0 +3.2

test-n4
Zh→ Ja 68.7 +3.7
Ja→ Zh 58.7 +1.2

Table 2: BLEU scores for Japanese-Chinese translation
(using Kytea tokenizer). The column ∆ indicates the
difference between the scores of our model and those of
the organizers.

Test Direction BLEU ∆

test-2022
Ko→ Ja 74.3 +0.4
Ja→ Ko 75.4 +2.6

test-n1
Ko→ Ja 73.3 +1.6
Ja→ Ko 72.9 +2.2

test-n3
Ko→ Ja 52.3 +0.3
Ja→ Ko 68.0 +5.6

test-n4
Ko→ Ja 77.3 +0.2
Ja→ Ko 78.4 +3.7

Table 3: BLEU scores for Japanese-Korean translation
(using Mecab tokenizer). The column ∆ indicates the
difference between the scores of our model and those of
the organizers.

this language pair compared to the model of the or-
ganizers, with an average improvement of 5 BLEU
points for English-to-Japanese and 6 BLEU points
for Japanese-to-English. Furthermore, it shows
greater improvements in this pair compared to the
other language pairs. This success can be attributed
to the fact that our model was pre-trained on these
two languages, benefiting from higher exposure.

5.2 Japanese-Chinese

Table 2 presents the results for Chinese-Japanese
translation. Although improvements are observed
across all test sets, there is a notable disparity be-
tween the language directions. While Zh → Ja
shows an improvement of 5 BLEU points, for the
reverse direction there is an improvement of 1.5
BLEU points.

645



5.3 Japanese-Korean

Lastly, in Table 3 we show the performance of the
Japanese-Korean translation. For this language pair
we achieve smaller improvements when compared
to the baseline of the organizers.

6 Conclusion

In this paper, we described our MT model de-
veloped for the 2024 WMT Patent Translation
Task, specifically for English-Japanese, Japanese-
Korean, and Japanese-Chinese translations. The
ranking system has evaluated participating teams
every year from 2016 to 2024. Our model achieved
first place in 20 out of the 28 tasks without using
external data. Our approach involves fine-tuning
the “RakutenAI-7B-chat” model using sentences
from the patent domain and decoding with multi-
ple prompts. Although this model was originally
pre-trained only on English and Japanese data, fine-
tuning with Korean and Chinese text has led to
good translation performance, surpassing the mod-
els submitted in previous years for the same task.
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Abstract

This paper presents SETU-ADAPT’s submis-
sions to the WMT 2024 Biomedical Shared
Task, where we participated for the lan-
guage pairs English-to-French and English-to-
German. Our approach focused on fine-tuning
Large Language Models (LLMs), using in-
domain and synthetic data, employing different
data retrieval strategies. We introduce a novel
MT framework, involving three autonomous
agents: a Translator Agent, an Evaluator Agent
and a Reviewer Agent. We present our findings
and report the quality of the outputs.

1 Introduction

Translating texts in the biomedical domain presents
unique challenges that sets it apart from general do-
main translation tasks. The domain is characterised
by the use of specialised terminology, fixed expres-
sions and relative data scarcity. In recent times,
LLMs (Brown et al., 2020; Przystupa and Abdul-
Mageed, 2019) have become the go-to systems for
building Machine Translation (MT) systems, due
to their impressive performance in generating accu-
rate translations across diverse domains. Precisely,
the ability to fine-tune these models on new data,
adapting them to the specialised terminology used
in the biomedical domains, makes them particularly
suitable for our task.

In our experiments, we built our MT systems us-
ing Llama-3 (Dubey et al., 2024) and No Language
Left Behind (NLLB) (Costa-jussà et al., 2022),
based on the high performance reported in their
relevant publications. We further design and de-
velop strategies to address data scarcity and im-
prove the quality of the outputs. Our first approach

*Both authors are equal contributors to this work.

involves back-translation (Xu et al., 2019), where
we leverage monolingual data and translate them
back into the source language, thus generating syn-
thetic data to be combined with the original dataset.
This approach is widely recognized as an effective
method to overcome the challenges caused by the
translation of low-resource languages and specific
domains. Another data augmentation method that
we adopt is based on terminology-aware mining
(Haque et al., 2020), where we extract a terminol-
ogy list from our training data and use it to mine
semantically similar sentences from the general
domain corpus. We further experimented using
few-shot prompting, where we provided the model
with a few translation samples retrieved through
semantic search based on the source sentence. Fi-
nally, we propose an innovative MT system pow-
ered by GPT-4o (OpenAI et al., 2024) that employs
an agentic workflow (Wang et al., 2024). This sys-
tem follows a collaborative framework, where three
LLM-based agents work together autonomously to
produce translations.

The paper is organised as follows. We present an
overview of our proposed systems in Section 3. We
describe our datasets and our data augmentation
strategies in Section 4 and Section 5. We introduce
our last system, involving LLM-based autonomous
agents in Section 6. We present the results of our
evaluation in Section 7 and draw our conclusions
in Section 8.

2 Related Work

The main difficulties found in biomedical MT have
been the highly specialised domain, the lack of
relevant data, and the importance of using the cor-
rect terminology. To address the issues caused by
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domain-specific terminology, Choi et al. (2022)
adopted a soft-constrained translation approach,
where terminology constraints retrieved from the
training corpus are provided to the MT system as
a suggestion rather than a hard constraint. Soft-
constrained decoding appears to be a promising
solution to drive the systems to include the neces-
sary terminology in the output while preserving the
model’s fluency and flexibility in the translation.

Ballier et al. (2022) trained different systems on
a selection of texts from WMT, Khresmoi (Dušek
et al., 2017) and UFAL (Bojar et al., 2017) datasets,
comparing the results. Interestingly, they find that
mBART-50 (Tang et al., 2021), despite producing
fluent grammatical sentences, fails at translating
consistently domain-specific terminology. Their
study suggests that this well-known model may not
be adequate for the task of biomedical translation,
especially in the context of translating biomedi-
cal abstracts where its small context window may
cause inaccurate translations.

Manchanda and Bhagwat (2022) confirms previ-
ous studies that showed how fine-tuning any model
from a general domain to a specialised one, as is the
case with clinical and biomedical texts, improves
the translation quality in most cases. Their study
introduces a novel approach, based on combining
general-purpose and domain-specific datasets for
fine-tuning while applying a higher learning rate to
the general domain data. Their experiments demon-
strate how this combined fine-tuning approach may
improve translation quality in both domains.

In the last few years, we have seen a general
surge of LLMs applied to MT (Hendy et al., 2023;
He et al., 2024). Several studies have been con-
ducted with a high degree of success on the appli-
cation of LLMs for the translation of biomedical
texts. The first study of this sort was published by
Han et al. (2022), where they compare MT mod-
els of different sizes to investigate the applicability
of Kaplan’s scaling laws (Kaplan et al., 2020) in
biomedical translation. Their findings confirmed
that larger general-purpose models consistently out-
perform smaller models, even when the latter are
fine-tuned on domain-specific data. Interestingly,
the performance gap narrows significantly when
the training data for smaller models is meticulously
curated, bringing their efficacy close to that of the
NLLB model. The efficacy of LLMs in translating
biomedical data is further confirmed by several re-
cent studies (Jahan et al., 2024; Keles et al., 2024;

García-Ferrero et al., 2024).
Finally, we underline one of the latest research

directions in the study of LLMs: multi-agentic
workflows. Agents are instances of LLMs, each
with a tailored system prompt that defines their
behaviour, adhering to specific criteria and output
requirements. Usually, agents also have access
to external features, such as memory mechanism
(Zhang et al., 2024), retrieval-augmented gener-
ation (Gao et al., 2024), and tool use (Qu et al.,
2024). In the experiment conducted by Liang et al.
(2024), the authors exemplify this approach with
a novel translation framework called Multi-Agent
Debate (MAD). Their system is based on a guided
interaction between multiple agents who engage in
a debate to determine the most effective translation
for a given source text. A designated judge agent
oversees this process and ultimately decides on the
final solution. This iterative strategy allows succes-
sive agents to refine the initial translation hypoth-
esis, progressively improving translation quality.
They achieve good performance with the models
gpt-3.5-turbo and gpt-4 (Brown et al., 2020).

3 Systems Overview

We submit five MT systems for evaluation, each
employing different approaches to biomedical
translation. These systems range from traditional
fine-tuning on in-domain data to various data aug-
mentation approaches and the use of LLMs, prompt
engineering, and multi-agent workflows.

Table 1 provides an overview of the five systems
submitted for evaluation. System 1 utilizes the
NLLB model fine-tuned with terminology mining
techniques, applied in both directions (see §5.1).
System 2 also uses NLLB, but we fine-tune it on
both in-domain and synthetic data. For this sys-
tem, we augmented the training data with an ad-
ditional 5,000 backtranslated sentences to address
data scarcity (see §5.2). System 3 uses a combina-
tion of agents powered by NLLB and GPT, who
are tasked with post-editing and refining the NLLB
outputs to make them more fluent and effective.
For System 4, we select the smallest checkpoint
of the most recent models developed by Meta AI,
called LLama-3-8B (Dubey et al., 2024). This sys-
tem uses parameter-efficient fine-tuning on the in-
domain data, and the output is improved with three
fuzzy matches prepended to the prompt. Finally,
our last submission, System 5 uses a multi-agent
crew powered by GPT4-o (OpenAI et al., 2024).
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System Model In-Domain FT Backtranslation Terminology Mining Agents FSP
1 NLLB ✓ ✓
2 NLLB ✓ ✓
3 NLLB ✓ ✓
4 LLama-3 ✓ ✓
5 GPT-4o ✓ ✓

Table 1: Overview of our submitted systems. The checkmark (✓) indicates the presence of a feature. FSP stands for
Few-Shot Prompting.

The multi-agents workflow is described in depth in
the relevant section (see §6).

4 Dataset Selection

In this section, we describe the composition of the
datasets used for our experiments. We curated a
selection of parallel sentences from the corpora
provided by the shared task organisers, including
part of the Biomedical Translation repository and
the UFAL Medical1 corpus. This resulted in two
datasets: 11,190 parallel sentences for English-
German and 13,032 for English-French. We inves-
tigated synthetically increasing the training data by
employing different data augmentation techniques
for the English-to-German language pair. We pro-
vide an overview of the dataset selection in Table 2.

Dataset EN-DE EN-FR
Original 11,190 13,032
+ Term. Mining 14,583 NA
+ Backtranslation 16,190 NA

Table 2: Overview of datasets.

5 Data Augmentation

In this section, we describe the different approaches
we have used to augment the datasets used for our
MT systems. We adopt back-translation, terminol-
ogy mining, and fuzzy matches.

5.1 Terminology Mining

We perform terminology mining on English-to-
German language pairs. We extract biomedi-
cal terms from the training data using the pre-
trained named entity recognition (NER) model
d4data/biomedical-ner-all. This model is de-
signed to identify biomedical entities within the
text, such as diseases, disorders, and therapeutic

1https://ufal.mff.cuni.cz/ufal_medical_corpus

procedures, providing a confidence score and the
specific unit being identified. The implementation
utilises the pipeline function from the Hugging
Face Transformers2 library (Wolf et al., 2020), con-
figured for the task of token classification.

First, the NER model iterates over every term
in the dataset, obtaining a list of identified entities.
We then filter them, collecting only those labeled
as B-Disease-disorder or B-Therapeutic-procedure,
provided that the model’s confidence score for the
entity exceeds 0.98 and the length of the identified
word is greater than five characters. Entities meet-
ing these criteria are then printed for verification
and appended to the list of extracted terms. This ap-
proach ensures that only relevant biomedical terms
are extracted from the dataset, focusing specifically
on diseases, disorders, and therapeutic procedures.
The terminology mining process yielded a total of
14 biomedical terms, that we used to collect 3,393
sentences containing at least one biomedical term.

5.2 Backtranslation

We adopt back-translation for the English-German
language pair, to address data scarcity with semanti-
cally similar sentences, extracted with a pre-trained
sentence embedding model, and then backtrans-
lated with NLLB. We initially filter the EMEA
monolingual dataset (Calzolari et al., 2012), select-
ing only sentences that exceed 100 characters in
length, and further limit our selection to the first
1,000 entries for easier processing. We encode the
text data using the pre-trained sentence embedding
model multi-qa-mpnet-base-dot-v1 from the
Sentence-Transformers library. The sentence em-
beddings are stored as a new column in the dataset,
on which we perform semantic search, using FAISS
index (Douze et al., 2024) for more efficient compu-
tation. The index is then queried to retrieve the top
5 most similar samples from the original dataset.
We collect a total of 5,000 sentences, aggregated

2https://github.com/huggingface/transformers
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and sorted by similarity scores in descending order.
This methodology enables the efficient retrieval

of contextually relevant sentences from large
datasets. We make use of the resulting sentences,
backtranslating them to English using the baseline
NLLB-200-600M and leading to the creation of a
synthetic dataset, that is in the same domain. The
synthetic dataset is added to the original dataset to
fine-tune the baseline model.

5.3 Fuzzy Matches

Fuzzy matches are human translated segments,
stored in parallel datasets. Drawing on find-
ings from Moslem et al. (2023), we incorporate
semantically-similar fuzzy matches in a three-shot
prompting scenario. This approach leverages the
model’s in-context learning ability (Brown et al.,
2020) to further improve the quality of the MT
outputs. A wide range of academic literature has
demonstrated that incorporating fuzzy matches in a
few-shot scenario may improve the model’s under-
standing of domain-specific terminology and fixed
expressions (Castaldo and Monti, 2024; Moslem
et al., 2022; Knowles et al., 2018).

To extract fuzzy matches, we employ semantic
search on sentence embeddings generated by the
all-MiniLM-L6-v2 model. The embeddings are
stored in a flat index created with the FAISS3 li-
brary, from which we retrieve the three most similar
sentences. After extracting the fuzzy matches for
our input sentence, we prepend them to a minimal-
ist prompt that directly maps the source language to
the target language. We incorporate fuzzy matches
in System 4 and 5, achieving substantial improve-
ments over the zero-shot baseline. We present
an overview of the prompt templates used in this
study in Table 3, with the following annotations: ♦

shows the presence of a line break, [src] stands for
source language, [tgt] stands for target language,
and [input] stands for the text to be translated.

Prompt Type Template

Zero-Shot [src]: [input] ♦ [tgt]:
Few-Shots [src]: [source1] ♦ [tgt]: [target1]

♦ ... [src]: [sourcek] ♦ [tgt]:
[targetk] ♦ [src]: [input] ♦ [tgt]:

Table 3: Overview of the prompt templates used in this
study.

3https://github.com/facebookresearch/faiss

6 Multi-Agents Workflow

We design a team composed of three autonomous
agents that collaborate to simulate a translation
agency with the goal of refining an initial transla-
tion hypothesis from multiple perspectives. The
process begins with the creation of our agent crew,
using the CrewAI library4.

The first agent, the Translator Agent, is tasked
with translating a given sentence. Following this,
the Evaluator Agent assesses the translation based
on fluency and accuracy. This assessment is quan-
tified with a numerical quality metric that ranges
from 0 to 100, where 100 signifies a translation that
is both perfectly fluent and accurate.

If the translation receives a score below 80, the
Reviewer Agent intervenes to review the initial
hypothesis, aiming to improve its accuracy. This
iterative process repeats until the Evaluator Agent
awards a quality score greater than 80, indicat-
ing a successful translation. We provide the ref-
erence code used for this experiment in the relevant
GitHub repository.5

7 Evaluation

This section discusses the results that we obtained
from our experiments. Table 4 shows the results
obtained by evaluating our models on the vali-
dation set, using BLEU (Papineni et al., 2002),
ChrF (Popović, 2015) and the COMET model
wmt22-comet-da (Rei et al., 2022a). Our quality
estimation is based on the reference-free COMET
model wmt22-cometkiwi-da (Rei et al., 2022b).
Our systems achieve good results for both language
pairs, and the data augmentation approaches visibly
improve the translation outputs, as documented in
the evaluation of Systems 1, 2 and 3. Terminology
mining seems particularly effective, improving the
BLEU score of our first system significantly above
the others.

In order to confirm the results of our automatic
evaluation and to allow for a more precise compar-
ison of the different systems used for the primary
language pair of our study, we include a manual
evaluation on a small sample of translations, con-
ducted by two professional translators in the EN-
DE language pair, for which we adopt the MQM-
DQF framework (Burchardt, 2013; Lommel and

4https://github.com/crewAIInc/crewAI
5https://github.com/Ancastal/

biomedical-wmt-agents
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Melby, 2018).
The results of the MQM evaluation reveal that

System 5 produces the fewest overall errors, with
the majority of these errors falling under the Flu-
ency category. In contrast, the other systems exhibit
a higher concentration of errors in the Accuracy
category. In System 1, where Terminology Mining
was applied, fewer terminology-related errors were
detected, further confirming the effectiveness of
this strategy. Additionally, we find that in System
3 the involvement of GPT-4o agents in post-editing
led to a reduction in accuracy-related errors.

System BLEU ChrF COMET QE
English-to-German

Baseline 2.97 26.01 70.09 0.62
System 1 25.29 60.13 79.50 0.58
System 2 23.80 58.89 78.33 0.56
System 3 23.97 59.22 78.93 0.63
System 4 22.95 58.90 84.32 0.73
System 5 25.24 63.01 86.13 0.77

English-to-French
System 3 29.18 57.01 75.70 0.65

Table 4: Experiment Results for Different Systems

8 Conclusions

This study presents the approaches we have
adopted to address the challenges caused by
biomedical translation, specifically the need for
consistent translation of domain-specific terminol-
ogy and the lack of in-domain parallel data.

By adopting data augmentation techniques, we
found that our models improved consistently in
translating biomedical terminology, achieving bet-
ter results in our evaluation. Terminology mining
proved particularly effective, resulting in our best
overall submission. We also explored the use of
backtranslation, but we found that its effectiveness
may be limited in fine-tuning LLMs. We speculate
that it may require a different ratio of original to
synthetic data used during training, or a different
weighting. Our experiments with fuzzy matches
demonstrated the potential to use in-context learn-
ing to improve MT quality and adapt LLMs to
domain-specific terminology.

Finally, we introduced a novel MT workflow
based on the collaboration of three autonomous
LLM-based agents. This approach offers an inno-
vative way to refine an initial translation hypothesis
from multiple perspectives, potentially leading to

more accurate outputs.

9 Limitations

We acknowledge that several aspects of our study
have room for improvement. First, the evaluation
was conducted on a relatively small dataset of 50
biomedical abstracts, limiting the objectivity of the
results. Second, while data augmentation helped
improve performance, the training data could be
expanded by incorporating larger corpora and po-
tentially leading to better quality. Additionally, the
models employed in this study may not represent
the best performing MT systems by the time of pub-
lication, requiring further experiments with more
recent models to validate our findings. Finally,
manual evaluation was only conducted for a single
language pair, limiting the scope of our analysis.
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Abstract

This paper presents the results of the low-
resource Indic language translation task, orga-
nized in conjunction with the Ninth Conference
on Machine Translation (WMT) 2024. In this
edition, participants were challenged to develop
machine translation models for four distinct lan-
guage pairs: English–Assamese, English-Mizo,
English-Khasi, and English-Manipuri. The task
utilized the enriched IndicNE-Corp1.0 dataset,
which includes an extensive collection of par-
allel and monolingual corpora for northeastern
Indic languages. The evaluation was conducted
through a comprehensive suite of automatic
metrics—BLEU, TER, RIBES, METEOR, and
ChrF—supplemented by meticulous human as-
sessment to measure the translation systems’
performance and accuracy. This initiative aims
to drive advancements in low-resource machine
translation and make a substantial contribution
to the growing body of knowledge in this dy-
namic field.

1 Introduction

The low-resource Indic language translation field
has witnessed significant advancements, particu-
larly marked by the success of last year’s Indic
MT Shared Task. This initiative, organized along-
side the Eighth Conference on Machine Transla-
tion (WMT) 20231 (Pal et al., 2023), demonstrated
the potential and necessity of focusing on low-
resourced languages. Building on the momentum
and achievements of last year’s task, we are pleased
to continue our efforts with the Indic MT Shared
Task for the Ninth Conference on Machine Trans-
lation (WMT) 20242.

Low-resource Indic languages represent a vast
and diverse array of languages spoken across India.
Despite their deep cultural and linguistic heritage,

1https://www2.statmt.org/wmt23/indic-mt-task.
html

2https://www2.statmt.org/wmt24/indic-mt-task.
html

these languages face significant challenges due to
limited resources and institutional support. The ob-
stacles are multifaceted, including smaller speaker
populations, minimal governmental backing, in-
sufficient documentation, and restricted access to
modern technological tools.

India is celebrated for its linguistic diversity,
with many languages spoken throughout the sub-
continent. The Eighth Schedule of the Indian Con-
stitution officially recognizes 22 languages, grant-
ing them substantial governmental support and re-
sources. However, numerous other languages, par-
ticularly those spoken by indigenous and minor-
ity communities, often remain marginalized and
under-supported. These low-resource languages
encounter additional barriers, such as the absence
of standardized scripts, limited lexical resources,
and a dearth of linguistic research. These factors,
combined with the lack of formal educational re-
sources and declining inter-generational transmis-
sion, threaten their preservation and vitality. As
a result, many of these languages risk becoming
endangered, underscoring the urgent need for tar-
geted efforts to document, revitalize, and sustain
them in the face of ongoing challenges.

Given these challenges, our initiative is dedi-
cated to documenting, revitalizing, and supporting
low-resource Indic languages through innovative
technological solutions. The previous year’s Indic
MT Shared Task concentrated on four language
pairs: English–Assamese, English–Mizo, English–
Khasi, and English–Manipuri — utilizing the en-
riched IndicNE-Corp1.0 dataset (Pal et al., 2023).
The success of this task highlighted the critical
need for sustained efforts in this domain. Our on-
going objective is to foster advancements in ma-
chine translation and natural language processing
tailored to these languages.

The evaluation of this task employs a comprehen-
sive set of metrics, incorporating both automatic
measures—such as BLEU (Papineni et al., 2002),
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TER (Snover et al., 2006), RIBES (Isozaki et al.,
2010), METEOR (Banerjee and Lavie, 2005), and
ChrF (Popović, 2015)—and rigorous human as-
sessments. This dual approach ensures a thorough
evaluation of the translation systems’ performance,
accuracy, and cultural fidelity.

Through this ongoing initiative, we aim to make
a significant contribution to the preservation of lin-
guistic diversity and cultural heritage, thereby sup-
porting the rights and identities of minority lan-
guage communities in India. By leveraging cutting-
edge technologies, we strive to create a lasting im-
pact and propel the field of low-resource language
translation forward, ensuring these languages not
only survive but thrive in the digital age.

2 Languages

2.1 Khasi Language and Its Dialects
Khasi belongs to the Austro-Asiatic family of lan-
guages spoken in the central and eastern regions of
Meghalaya. Before 1813, the Khasi lacked its own
script. During the period from 1813 to 1814, the
Bengali script was employed to translate the Bible
into Khasi, owing to the widespread literacy in Ben-
gali at that time. By 1816, some translated versions
of the Gospel of Matthew had been printed and dis-
tributed among Khasi speakers who were literate
in Bengali. However, it was not until 1841, with
the arrival of a Welsh missionary, that the Roman
script was introduced, and translations were subse-
quently made into the standard dialect, specifically
the Sohra variety.

Khasi exhibits significant dialectal diversity. Gri-
erson (1904) identified four dialects of Khasi: Stan-
dard Khasi, Pnar or Synteng, Lyngngam, and War.
Acharya (1971) reaffirmed Grierson’s classification
and noted the existence of additional sub-dialects,
such as Bhoi, spoken in the northern open lands of
Meghalaya. Bareh (1977) offers a more compre-
hensive list of Khasi dialects, primarily based on
their geographical distribution:

• Amwi in the southern Jaiñtia hills,

• Shella in the southern Khasi hills,

• Warding in the south of the Khasi hills,

• Myriaw, Nongkhlaw, Nongspung, Maram,
and Mawiang in the mid-western area of the
Khasi hills,

• Cherra in the mid-southern hills,

• Mylliem, Laitlyngkot, Nongkrem, and
Lyniong-Khasi in the central parts,

• Jowai in the central Jaintia hills,

• Bhoi in the north-east Khasi hills,

• Manar, Nongwah, and Jirang in the north
Khasi hills,

• Khatarblang (Mawpran) in the mid-southern
region, and

• Nongstoin and Langrin in the west Khasi re-
gion.

Bareh further adds that several sub-dialects ex-
hibit variations within each group, particularly in
phonology. Among these, Amwi is considered the
most typical dialect. Compared to other dialects,
Amwi appears to be the most rudimentary and is
generally not intelligible to speakers of neighbour-
ing dialects such as Jowai or Khad ar Blang. Amwi
is said to be more agglutinative in form, poten-
tially preserving its Mon-Khmer heritage. While
its grammar resembles Jowai’s, notable differences
exist in morphology and phonology. Despite these
distinctions, the Amwi speakers are familiar with
their neighbouring dialects and can adopt them for
communication.

Bareh (1977) categorizes the aforementioned di-
alects into three major branches:

1. Eastern dialects:

• Jowai (Central Highlands),
• Amwi and the War dialects (in the south),

and
• Bhoi Synteng in the north.

2. Central dialects:

• Nongphlang or Nonglum, Cherra, and
related dialects such as Nongkrem, Myl-
liem, Nongkhlaw, Nongspung, Rambrai,
Mawsynram, Maram, Laitlyngkot, Maw-
phlang, etc.,

• Bhoi East (in the north), consisting of
Mawrong, Bhoi Lymbong, etc., and

• Bhoi West (in the north), consisting of
Manar, etc.,

• War Shala (in the south), and
• Warding (in the south).

3. Western dialects:
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• Nongstoin
• Lyngam
• Langrin

Addressing the abovementioned dialects, Bareh
notes that numerous sub-dialects exhibit phono-
logical variations within each group. Daladier
(2007:341), cited in Sidwell (2009), comments on
the Mon-Khmer language group, which includes
Khasi, noting that it comprises three main branches.
Although now standardized and formalized through
written use, Khasi retains conservative unwritten
dialects, particularly in the War region. Other no-
table dialects include Pnar and War, with War fur-
ther subdivided into four sub-dialect groups: Nong-
talang, Amvi, Tremblang, and Shella. The sub-
classification of Pnar dialects remains largely un-
explored. Additionally, Pnar-War and War-Khasi
dialects are spoken in several Jaintia villages. The
War dialects of Khasi are divided into two groups:
War-Khasi and War-Jaintia, spoken in the southeast
corners of the Khasi and Jaintia Hills districts, re-
spectively. Grierson (1904) also discusses the War
dialects.

For the shared task, we have utilized the Sohra
(Cherra) dialect of Khasi as the standard form for
translation purposes. This dialect, recognized for
its historical significance and broad usage in educa-
tional and religious contexts, has been established
as the standardized variant of Khasi following its
formalization through the introduction of the Ro-
man script in 1841. By employing the Sohra di-
alect, we ensure consistency and accessibility for
participants, reflecting the widely accepted linguis-
tic norm within the Khasi-speaking community.

2.2 Introduction: About the Manipuri
Language

Manipuri, also known as Meiteilon, is a Sino-
Tibetan language predominantly spoken in the
northeastern Indian state of Manipur. It is rec-
ognized as one of the 22 scheduled languages of
India and serves as the lingua franca among var-
ious ethnic communities in the region, fostering
communication and cultural exchange.

The language boasts a rich literary heritage, with
a history of written texts dating back to ancient
times. Manipuri uses the Meitei script, also known
as Meitei Mayek, alongside the Bengali script for
writing purposes. Despite its cultural significance,
Manipuri faces linguistic preservation and mod-
ernization challenges, particularly in the digital

era. There is a pressing need for computational
resources and tools to support the language, which
is vital for its continued use and growth.

In recent years, there has been growing in-
terest in developing natural language processing
(NLP)(Allen, 2003) tools and resources for under-
resourced languages like Manipuri. However, sev-
eral challenges persist in this area for the Manipuri
language (Gyanendro Singh et al., 2016). One
of the primary issues is the limited availability of
annotated corpora and linguistic resources, which
are essential for training robust machine learning
models. This scarcity hinders the development of
accurate NLP applications such as machine trans-
lation (Pal et al., 2023), sentiment analysis (Singh
and Singh, 2017), and speech recognition (Gyanen-
dro Singh et al., 2016).

Another significant challenge is the complexity
of the Manipuri script and its morphological struc-
ture. The language exhibits rich inflectional mor-
phology, making it difficult to apply standard NLP
techniques that are typically designed for resource-
rich languages like English. Moreover, the lack
of standardization in digital representation further
complicates computational processing, as existing
tools often struggle with script conversion and text
normalization.

Current research efforts are focused on address-
ing these challenges by creating linguistic re-
sources, developing language-specific algorithms,
and adapting existing NLP frameworks to better ac-
commodate the unique characteristics of Manipuri.
However, much work remains to be done to bridge
the gap between Manipuri and other well-resourced
languages in the digital domain.

2.3 Introduction: About the Assamese
Language

Assamese, an Indo-Aryan language, is predomi-
nantly spoken in the northeastern Indian state of
Assam. It serves as the official language of As-
sam and plays a crucial role as a lingua franca
among various ethnic groups in the region, facili-
tating communication and cultural exchange. As-
samese is also one of the 22 scheduled languages of
India, underscoring its significance in the country’s
linguistic landscape.

The Assamese language has a rich literary tra-
dition, with its roots extending back to the early
medieval period. The script used for Assamese is
derived from the ancient Brahmi script, and over
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time, it evolved into its current form. Despite its
historical and cultural importance, Assamese faces
challenges in the modern era, particularly in the
field of language technology. The development of
computational tools and resources for Assamese is
critical for its preservation and growth, especially
in an increasingly digital world.

2.4 Introduction: About the Mizo Language

Mizo, a member of the Tibeto-Burman language
family, is predominantly spoken in the northeastern
Indian state of Mizoram. It serves as the primary
language of communication among the Mizo peo-
ple and is also spoken by various ethnic groups
in neighbouring states and regions, including Ma-
nipur, Tripura, Assam, and even parts of Myanmar
and Bangladesh. Mizo is recognized for its tonal
nature and distinct phonological features, which
make it a unique language in the Tibeto-Burman
group.

The language has a rich oral tradition, encom-
passing folktales, songs, and cultural narratives
that reflect the heritage of the Mizo people. The
development of the written form of Mizo began
in the late 19th century with the introduction of
the Roman script by Christian missionaries, which
facilitated the transcription of the language and the
creation of written literature. Today, Mizo has a
well-established literary tradition, with a substan-
tial body of work ranging from poetry to modern
prose. Despite its cultural significance, Mizo faces
linguistic preservation and development challenges,
particularly in the context of modern technological
advancements and digital communication.

3 Low-Resource Indic Language
Translation 2024 Shared Task

3.1 Overview and Task Description

Building upon the resounding success of the
“Shared Task: Low-Resource Indic Language
Translation” at WMT 2023, which witnessed en-
thusiastic participation from around the globe, we
are excited to announce the continuation of this ini-
tiative at the Ninth Conference on Machine Trans-
lation (WMT 2024). The advances in machine
translation (MT) have significantly enhanced the
performance of translation systems, especially with
the adoption of techniques such as multilingual
translation and transfer learning. Despite these
advancements, extending coverage to diverse low-
resource languages remains a formidable challenge

due to the scarcity of parallel data needed to train
robust MT systems.

The WMT 2024 Indic Machine Translation
Shared Task addresses this challenge by focus-
ing on low-resource Indic languages from di-
verse language families. This year, the task em-
phasizes the following language pairs: English-
Assamese, English-Mizo, English-Khasi, and
English-Manipuri. Additionally, there was an in-
tended focus on English-Nyishi; however, this cat-
egory was cancelled due to issues with training
data. Similarly, other planned language pairs under
the category with very limited training data, such
as English-Bodo, English-Mising, and English-
Kokborok, were also cancelled for this year.

3.2 Categories

This year’s task features two main categories based
on the availability of training data:

3.2.1 Category 1: Moderate Training Data
Available

• English⇔ Assamese (en-as)

• English⇔Mizo (en-lus)

• English⇔ Khasi (en-kha)

• English⇔Manipuri (en-mni)

3.3 Goal

The central objective of this shared task is to de-
velop machine translation systems that produce
high-quality translations despite the constraints
posed by limited data availability. Participants are
encouraged to explore several innovative strategies,
including:

• Monolingual Data Utilization: Effectively
leveraging monolingual data to enhance trans-
lation quality.

• Multilingual Approaches: Investigating the
benefits of cross-lingual transfer for low-
resource language pairs.

• Transfer Learning: Adapting models trained
on resource-rich language pairs to target low-
resource languages.

• Innovative Techniques: Experimenting with
novel methods specifically tailored to low-
resource settings.
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3.4 Data

3.4.1 Training
The datasets used for this task include parallel and
monolingual corpora for Assamese, Khasi, Mizo,
and Manipuri, drawn from the IndicNE-Corp1.0
dataset. While the dataset for Nyishi was planned,
it remains unavailable this year due to data quality
issues.

3.4.2 Testing
For the testing section, we have created 1000 lan-
guage pair sentences for each of the following lan-
guage pairs:

• English⇔ Assamese (en-as)

• English⇔Mizo (en-lus)

• English⇔ Khasi (en-kha)

• English⇔Manipuri (en-mni)

The first 500 sentences are provided in English
to be translated into the specific target language,
and the last 500 sentences are provided in the target
language to be translated into English.

3.5 Evaluation

The evaluation will be conducted using both auto-
matic and human evaluation methods to ensure a
comprehensive assessment of the translation sys-
tems. Automatic evaluation metrics include BLEU,
TER, RIBES, METEOR, and ChrF. In addition,
native speakers will perform human evaluations
to assess the quality of the translation more rigor-
ously.

4 Dataset

4.1 Training

The dataset for the WMT 2024 Shared Task on
Low-Resource Indic Language Translation is pri-
marily based on the IndicNE-Corp1.0 dataset 3.
This corpus was built by aggregating datasets from
previous research, including significant contribu-
tions from (Laskar et al., 2020) (Laskar et al.,
2022), (Khenglawt et al., 2022), and (Laitonjam
and Ranbir Singh, 2021). The compiled datasets
encompass both parallel and monolingual corpora
across four languages: Assamese, Mizo, Khasi, and
Manipuri.

3https://data.statmt.org/wmt23/indic-mt/

In earlier studies, we focused on developing par-
allel and monolingual corpora for English⇔ As-
samese (en-asm) (Laskar et al., 2020, 2022), En-
glish ⇔ Mizo (en-lus) (Khenglawt et al., 2022),
English ⇔ Khasi (en-kha) (Laskar et al., 2021),
and English⇔Manipuri (en-mni) (Laitonjam and
Ranbir Singh, 2021). The data was sourced from a
variety of online platforms including the Bible, mul-
tilingual dictionaries (such as Xobdo and Glosbe),
multilingual question papers, PMIndia (Haddow
and Kirefu, 2020), web pages, blogs, and online
newspapers.

Table 1 shows the detailed statistics of the par-
allel datasets used for training and validation for
each language pair.

Type Sentences Tokens (eng) Tokens (target)
Assamese 50,000 969,623 825,063

Mizo 50,000 981,468 1,062,414
Khasi 24,000 729,930 875,545

Manipuri 21,687 390,730 330,319

Table 1: Parallel data statistics for train and validation.

In addition to the parallel corpora, we also
made monolingual data available for each language,
which is presented in Table 2.

Language Size (MB) Sentences Tokens
Assamese 805 2,624,715 49,232,154

Mizo 145 1,909,823 27,936,225
Khasi 104 182,737 22,140,361

Manipuri 716 2,144,897 36,514,693

Table 2: Monolingual data statistics for Assamese, Mizo,
Khasi, and Manipuri languages.

4.2 Testing
The testing dataset for the 2024 shared task was
meticulously curated to present a substantial chal-
lenge beyond previous years’ datasets. It comprised
1000 samples for each language pair, spanning four
distinct and diverse domains: News, Travel, Sports,
Entertainment, and Business. This domain-specific
distribution aimed to comprehensively evaluate
models’ performance across varied and complex
linguistic contexts, reflecting real-world transla-
tion demands. A collaborative approach was em-
ployed to create these testing samples, involving
four specialized teams, each dedicated to one do-
main. These teams were provided 1000 English
sentences, which they translated into their assigned
target languages. The translation teams were in-
structed to maintain high fidelity to the source mate-
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Language Pair Domain Source Sentences Target Sentences Task
en-as Sports and Travel 500 500 English to Assamese
en-lus Sports and Travel 500 500 English to Mizo
en-kha Sports and Travel 500 500 English to Khasi
en-mni Sports and Travel 500 500 English to Manipuri
en-as Entertainment and Business 500 500 Assamese to English
en-lus Entertainment and Business 500 500 Mizo to English
en-kha Entertainment and Business 500 500 Khasi to English
en-mni Entertainment and Business 500 500 Manipuri to English

Table 3: Domain-specific distribution of the test dataset for each language pair.

rial while ensuring the translations were idiomatic
and contextually appropriate for each domain.

The test set release process was intentionally
staged to introduce additional complexity and
rigour. In the first phase, 500 English sentences
were released, requiring participants to translate
these into the target languages. This forward trans-
lation task required participants to demonstrate
their models’ proficiency in capturing nuances
and domain-specific terminology in the target lan-
guages. In the second phase, 500 sentences in the
target languages were provided, requiring transla-
tion back into English. This reverse translation task
assessed the models’ ability to accurately render
the meaning, tone, and subtleties of the original sen-
tences in English, thus testing bidirectional transla-
tion capability. The combined forward and reverse
tasks aimed to evaluate the accuracy, fluency, and
idiomatic correctness of the translations. The care-
ful selection of diverse domains and the structured
release of the test set was intended to challenge
the generalization capabilities of the participating
models. The goal was to ensure that only the most
robust models, capable of handling a wide range of
real-world scenarios, would excel.

This approach ensures a rigorous and multi-
faceted evaluation, capturing the subtleties of each
language pair’s translation performance across dif-
ferent domains.

5 Participants and System Descriptions

In this shared task, total of 12 teams registered and
contributed, as indicated in table 8, the released
dataset have been distributed among participants.
In table 7, we have compiled the system outputs
submitted by participants, encompassing both pri-
mary and contrastive submission types.

DLUT-NLP (Ju et al., 2024): The partici-
pant for low-resource translation tasks involving
English-Assamese, English-Mizo, English-Khasi,

Language Pair Submissions
English - Assamese 11 (primary), 6 (contrastive)

English-Mizo 10 (primary), 5 (contrastive)
English-Khasi 10 (primary), 6 (contrastive)

English-Manipuri 10 (primary), 6 (contrastive)

Table 4: Number of participants in the low-resource
Indic language translations

and English-Manipuri language pairs. It utilized a
transformer-based model, with monolingual data
for pre-training and parallel data for fine-tuning.
Enhancements included back-translation, oversam-
pling, and model averaging, along with knn-mt
technology during inference, supported by a datas-
tore created from parallel data.

A3-108 (Yadav et al., 2024): The team tackled
low-resource machine translation by implement-
ing control mechanisms in transformer-based NMT
models. They encoded the target sentence length as
a control token in the source sentence for eight lan-
guage pairs: English-Assamese, Manipuri, Khasi,
and Mizo. Four variations of this encoding were
tested against baseline models. Two systems were
submitted for each language pair: a primary sys-
tem using control tokens based on the target-to-
source token length ratio, and a contrastive baseline
system without control tokens. All models were
trained on the provided dataset.

SRIB-NMT (Patil et al., 2024): The team par-
ticipated in the WMT-24 challenge for translating
English to four low-resource Indic languages. They
used transformer models for both their primary and
contrastive systems. The primary system involved
pre-training language models on large amounts of
text data before fine-tuning them for translation.
The contrastive system improved upon this by fur-
ther fine-tuning a pre-trained translation model us-
ing a technique called LoRA, resulting in better
translation quality.

YES-MT (Bhaskar and Krishnamurthy, 2024):
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The team participated, focusing on four language
pairs: English to Assamese, Khasi, Manipuri, and
Mizo. Their primary systems used Transformer
models trained from scratch. In contrast, con-
trastive systems applied transfer learning with fine-
tuning techniques like LoRA and Supervised Fine-
Tuning (SFT) on pre-trained models such as Indic-
Trans2 and LLaMA 3. Their experiments explored
the effectiveness of these approaches, including
quantization, in enhancing translation quality for
low-resource languages.

HW-TSC (Wei et al., 2024): The team partici-
pated in the WMT-24 challenge for translating En-
glish to four low-resource Indic languages. They
used transformer models for both their primary and
contrastive systems. The primary system involved
pre-training language models on large amounts of
text data before fine-tuning them for translation.
The contrastive system improved upon this by fur-
ther fine-tuning a pre-trained translation model us-
ing a technique called LoRA, resulting in better
translation quality.

CycleL (Sören Dréano, 2024): The team de-
veloped a novel self-supervised Neural Machine
Translation (NMT) model called CycleGN. Un-
like traditional NMT models, CycleGN doesn’t
require parallel data. It utilizes Cycle Consis-
tency Loss (CCL) and Masked Language Modeling
(MLM) for training. The model was tested on low-
resource language pairs Spanish-Aragonese and
Spanish-Asturian using PILAR datasets as part of
the WMT24 Shared Task. Despite computational
challenges and early training termination, the re-
sults demonstrated the potential of self-supervised
learning for low-resource translation scenarios.

NLIP_Lab-IIITH (Sahoo et al., 2024): The
participated team aiming to improve Manipuri and
Khasi translations. They utilized mBART and In-
dicTrans2 models as baselines, incorporating data
augmentation techniques like backtranslation and
data filtering with fine-tuned LaBSE. Despite lim-
ited data, iterative fine-tuning on enhanced datasets
led to significant improvements in translation qual-
ity, as measured by BLEU, chrF, and TER metrics.

MTNLP-IIITH (P M et al., 2024): The team
tackled the WMT24 Low-Resource Indic NMT
challenge for Manipuri and Khasi, employing
mBART and IndicTrans2 models. To overcome
data scarcity, they implemented backtranslation
and LaBSE-based data filtering. Despite computa-
tional constraints, iterative fine-tuning on the pro-

cessed data yielded substantial enhancements in
translation quality as assessed by BLEU, chrF, and
TER metrics.

SPRING-IITM (Sayed et al., 2024): The team
developed a robust translation model for four low-
resource Indic languages: Khasi, Mizo, Manipuri,
and Assamese. They expanded their training cor-
pus using back translation on monolingual datasets
and fine-tuned the pre-trained NLLB 3.3B model
for Assamese, Mizo, and Manipuri, achieving supe-
rior performance over the baseline. For Khasi, they
introduced special tokens and trained the model
on a custom Khasi corpus, demonstrating signif-
icant improvements in translation quality for all
four languages.

JUNLP: The participant focused on develop-
ing a translation system for four low-resource In-
dic languages: Assamese, Manipuri, Mizo, and
Khasi, which are widely spoken in India’s North
Eastern zone. They combined all language data
into a single system using Transformer architec-
ture, enabling translation from English to any of
these languages within the same framework. Their
approach addresses the challenges posed by the
scarcity of data for these languages.

SRPH-LIT (Roquea et al., 2024): The team
from Samsung R&D Institute Philippines joined
the WMT 2024 Low-Resource Indic Language
Translation task, focusing on the translation of the
following pairs: English ⇔ Assamese, English
⇔ Mizo, English ⇔ Khasi, and English ⇔ Ma-
nipuri. In both directions, they adopt the standard
sequence-to-sequence Transformer model for trans-
lation. The following techniques are data augmen-
tation by back-translation, noisy channel reranking,
and checking a multilingual model, which is trained
on all the combined language pairs.

ADAPT-MT (Gajakos et al., 2024): The
ADAPT-MT team participated in the WMT 2024
Low-Resource Indic Language Translation task,
focusing on Assamese-to-English and English-to-
Assamese. They leveraged Large Language Mod-
els (LLMs) as their base systems, employing strate-
gies like fine-tuning with WMT data, few-shot
prompting, and efficient data extraction techniques
to enhance translation quality. Their approaches
were evaluated using BLEU, ChrF, WER, and
COMET metrics, showing effective improvements
in translating low-resource languages.
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Team Name Name of University/Lab/Industry/Group
AI Lab-IITI Indian Institute of Technology Indore
NLIPLab-IITH Natural Language and Information Processing Lab at IIT Hyderabad, India
GUIT-NLP Gauhati University
ATULYA-NITS National Institute of Technology, Silchar
Lokkhi Central Institute of Technology
CFILT-IITB Indian Institute of Technology Bombay
CNLP-NITMZ NIT MIZORAM
NITS-CNLP National Institute of Technology, Silchar
DCU-ADAPT Dublin City University
onemt IIIT-H
CL-IIITM Indian Institute of Information Technology
A3-108 International Institute of Information Technology - Hyderabad
SRIB-NMT Samsung Research Institute
JUNLP Jadavpur University
GNLP GKV
BVSLP Banasthali Vidyapith
LangMavericks IIT Madras
BITS-P Birla Institute of Technology & Science, Pilani
DLUT-NLP Dalian University of Technology
JC-beginners NJIT
GUIT-NLP Gauhati University
SHARK Independent Researcher
bjfu Beijing Forestry University
Yes-MT IIIT Hyderabad
MTNLP-IIITH LTRC, IIIT Hyderabad, India
SRPH-LIT Samsung Research Philippines
MUNI-NLP Masaryk University
CycleL Dublin City University
JUMT Jadavpur University
mbzuai-uhh MBZUAI, Universität Hamburg
Nexus Z-AGI Labs
SPRING-IITM Indian Institute of Technology, Madras
BV-SLP Banasthali Vidyapith
HW-TSC Huawei Technologies Co., Ltd.
SAILors University of New Haven
NLIPLab_IITH Natural Language and Information Processing Lab
ADAPT-MT ADAPT Centre, Dublin City University

Table 5: The following table provides an overview of the teams registered for the low-resource Indic language
translation task at WMT24 and the datasets provided to them. Participation varied across different language pairs,
and only 12 teams in bold completed submissions of both system outputs and system descriptions.

6 Results and Discussion

Results for both directions of the four language
pairs in WMT 2024 are detailed as follows:
English-Assamese in Table 6, English-Mizo in Ta-
ble 10, English-Khasi in Table 12, and English-
Manipuri in Table 8. This section provides the
evaluation scores for teams that submitted system
outputs and corresponding papers.

Quantitative results are evaluated using estab-
lished metrics: BLEU, TER, RIBES, ChrF, and
METER. BLEU measures the precision of n-grams
in candidate translations relative to reference trans-
lations. TER quantifies the number of edits re-
quired to align the candidate translation with the
reference. RIBES evaluates the correlation be-
tween the rank orders of words in candidate and
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Team Test Set BLEU TER RIBES METEOR ChrF

DLUT-NLP
en_to_as_primary 0.0723 85.17 0.183 0.2205 0.3786
as_to_en_primary 0.05 81.7 0.1361 0.2907 0.3398

A3-108

en_to_as_contrastive 0 100.46 0.0347 0.0587 0.1817
as_to_en_contrastive 0 96.44 0.0378 0.0677 0.1803
en_to_as_primary 0 99.79 0.0243 0.05134 0.1773
as_to_en_primary 0 96.19 0.0322 0.0671 0.1883

SRIB-NMT
en_to_as_primary 0.0132 101.83 0.071 0.0744 0.2215
as_en_en_contrastive 0.2959 34.92 0.3505 0.7409 0.6488

YES-MT
en_to_as_contrastive 0.2568 54.63 0.306 0.5029 0.6518
en_to_as_primary 0 101.78 0.0105 0.0292 0.1123

HW-TSC
en_to_as_primary 0.2516 55.43 0.2963 0.5124 0.6569
as_to_en_primary 0.3228 32.71 0.3625 0.7606 0.6593

CycleL
en_to_as_primary 0 123.02 0.0029 0.0061 0.0886
as_to_en_primary 0 101.81 0.0075 0.0249 0.0994

NLIP_Lab-IIITH

en_to_as_primary 0.2058 62.65 0.2674 0.4539 0.6021
as_to_en_primary 0.1685 55.11 0.242 0.5746 0.5286
en_to_as_contrastive 0.185 65.79 0.2583 0.433 0.5891
as_to_en_contrastive 0.1547 58.12 0.2312 0.5326 0.5053

SPRING-IITM
en_to_as_contrastive 0.2726 52.79 0.3032 0.513 0.652
as_to_en_contrastive 0.2669 39.08 0.3308 0.7066 0.6048

JUNLP en_to_as_primary 0 134.69 0 0.0059 0.0563

SRPH-LIT
en_to_as_primary 0 1195.25 0 0.0001 0.1852
as_to_en_primary 0 104.67 0.0175 0.0513 0.166

ADAPT-MT
en_to_as_primary 0.1612 65.96 0.2641 0.3927 0.5673
as_to_en_primary 0.318 33.56 0.3778 0.7537 0.6551
as_to_en_contrastive 0.3227 33.63 0.372 0.7563 0.6573

Table 6: Performance of teams in the WMT24 low-resource Indic language translation task for the English-Assamese
language pair, measured across multiple metrics.

Team Test Set Adequacy Fluency Overall Rating

DLUT-NLP
en_to_as_primary 2.5 3 2.75
as_to_en_primary 1.8 2.4 2.1

A3-108

en_to_as_contrastive 0.6 1 0.8
as_to_en_contrastive 0.1 0.2 0.15
en_to_as_primary 0.1 0.2 0.15
as_to_en_primary 0 0 0

SRIB-NMT
en_to_as_primary 0.4 0.6 0.5
as_en_en_contrastive 3.6 4.1 3.85

YES-MT
en_to_as_contrastive 4.3 4.5 4.4
en_to_as_primary 0 0 0

HW-TSC
en_to_as_primary 4.1 4 4.05
as_to_en_primary 4.6 4.7 4.65

CycleL
en_to_as_primary 0 0 0
as_to_en_primary 0 0 0

NLIP_Lab-IIITH

en_to_as_primary 4.2 4.1 4.15
as_to_en_primary 4.1 4.1 4.1
en_to_as_contrastive 3.4 4.1 3.75
as_to_en_contrastive 3.4 3.5 3.45

SPRING-IITM
en_to_as_contrastive 4.6 4.6 4.6
as_to_en_contrastive 4.3 4.3 4.3

JUNLP en_to_as_primary 0 0 0

SRPH-LIT
en_to_as_primary 0 0 0
as_to_en_primary 0 0 0

ADAPT-MT
en_to_as_primary 4.2 4.4 4.3
as_to_en_primary 4.7 4.7 4.7
as_to_en_contrastive 4.8 4.8 4.8

Table 7: Human evaluation of teams in the WMT24 low-resource Indic language translation task for the English-
Assamese language pair, assessed based on Adequacy, Fluency, and Overall Rating.
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Team Test Set BLEU TER RIBES METEOR ChrF

DLUT-NLP
en_to_mni_primary 0.0077 96.554 0.0697 0.0711 0.2863
mni_to_en_primary 0.0315 87.21 0.1297 0.2131 0.3166

A3-108

en_to_mni_contrastive 0 101.73 0.0084 0.0179 0.1401
mni_to_en_contrastive 0.002 96.45 0.029 0.0615 0.1865
en_to_mni_primary 0 101.55 0.0072 0.0166 0.1415
mni_to_en_primary 0 96.5 0.0271 0.0635 0.1889

SRIB-NMT
en_to_mni_primary 0 104.1 0.0191 0.0307 0.1889
mni_to_en_contrastive 0.1889 53.05 0.2917 0.5943 0.571

Yes-MT
en_to_mni_primary 0 104.03 0.007 0.0214 0.1102
en_to_mni_contrastive 0.0259 84.47 0.1312 0.1605 0.4438

HW-TSC
en_to_mni_primary 0.0211 87.93 0.1077 0.1406 0.4218
mni_to_en_primary 0.2877 42.16 0.3532 0.6646 0.6106

CycleL
en_to_mni_primary 0 ERROR 0.0054 ERROR ERROR
mni_to_en_primary 0 ERROR 0.00542 ERROR ERROR

NLIP_Lab-IIITH

en_to_mni_primary 0.0258 88.53 0.1176 0.1391 0.4062
mni_to_en_primary 0.1106 67.02 0.2303 0.4557 0.4935
en_to_mni_contrastive 0.0279 87.22 0.1235 0.1235 0.414
mni_to_en_contrastive 0.1159 67.49 0.2319 0.4416 0.4748

MTNLP-IIITH

en_to_mni_primary 0 94.77 0.0737 0.0822 0.3325
mni_to_en_primary 0.0362 94.79 0.1136 0.1873 0.2777
en_to_mni_contrastive 0.0064 96.46 0.0628 0.0724 0.3191
mni_to_en_contrastive 0.0484 101.76 0.1087 0.194 0.2662

SPRING-IITM
en_to_mni_contrastive 0.027 84.6 0.1185 0.1567 0.4428
mni_to_en_contrastive 0.2088 48.77 0.3031 0.61 0.5364

JUNLP en_to_mni_primary 0 101.25 0.0044 0.0239 0.1471

SRPH-LIT
en_to_mni_primary 0 940.98 0 0.0001 0.1568
mni_to_en_primary 0 103.28 0.0046 0.0396 0.1729

Table 8: Performance of teams in the WMT24 low-resource Indic language translation task for the English-Manipuri
language pair, measured across multiple metrics.

reference translations. ChrF assesses the charac-
ter n-gram F-score, and METER offers a learned
metric for translation quality evaluation.

Furthermore, linguistic experts proficient in the
target language pairs were engaged for manual
evaluations. Twenty sample sentences from the
primary submission type were randomly selected
for each language pair. Human evaluators assessed
the candidate translations based on three criteria:
adequacy, fluency, and overall rating. Adequacy
gauges how well the candidate translation captures
the meaning of the reference. Fluency assesses
whether the candidate translation constitutes a well-
formed sentence in the target language, indepen-
dent of its correspondence to the reference. Overall
rating integrates both adequacy and fluency to com-
prehensively evaluate translation quality.

For example, if the reference translation is “The
cat sat on the mat,” a candidate translation such as
“The feline rested on the carpet” is deemed ade-
quate as it preserves the meaning of the reference.
In contrast, a candidate translation like “The cat
ran across the street,” although fluent, is considered
inadequate due to the introduction of new informa-
tion not present in the reference.

The human evaluation parameters are rated on a
scale of 0–5, with higher scores reflecting superior
quality. The final adequacy, fluency, and overall
rating scores are the average ratings assigned to
individual test sentences.

Discussion

For the English-Assamese language pair team,
SPRING-IITM achieved a high BLEU score, low
TER and an overall rating of 4.6 in the human eval-
uation. They expanded their training corpus using
back translation on monolingual datasets and fine-
tuned the pre-trained NLLB 3.3B model. For the
Assamese-English language pair team, HW-TSC
reaches a higher BLEU score, which is even more
than the en-as pair, lower TER and team ADAPT-
MT gains a higher overall rating of 4.8 in human
evaluation.

For the English-Manipuri language pair team,
NLIP_Lab_IIITH achieved a higher BLUE score
in automatic evaluation and overall rating in hu-
man evaluation compared to the other teams. They
utilized mBART and In-dicTrans2 models as base-
lines, incorporating data augmentation techniques
like back translation and data filtering with fine-

663



Team Test Set Adequacy Fluency Overall Rating

DLUT-NLP
en_to_mni_primary 1.95 3.6 2.75
mni_to_en_primary 1.9 2.2 2.05

A3-108

en_to_mni_contrastive 1.5 2.2 1.85
mni_to_en_contrastive 1.0 1.15 1.075
en_to_mni_primary 1.15 3.45 2.3
mni_to_en_primary 1.0 1.05 1.025

SRIB-NMT
en_to_mni_primary 1.75 2.4 2.075
mni_to_en_contrastive 3.95 3.75 3.85

YES-MT
en_to_mni_primary 1.1 2.15 3.25
en_to_mni_contrastive 4.4 4.2 4.3

HW-TSC
en_to_mni_primary 4.1 4.6 4.35
mni_to_en_primary 4.8 4.4 4.6

CycleL
en_to_mni_primary 1.25 3.65 2.45
mni_to_en_primary 1.0 1.0 1.0

NLIP_Lab-IIITH

en_to_mni_primary 2.35 3.95 3.15
mni_to_en_primary 3.1 3.65 3.375
en_to_mni_contrastive 3.3 4.2 3.75
mni_to_en_contrastive 3.2 3.35 3.275

MTNLP-IIITH

en_to_mni_primary 3.1 3.7 3.4
mni_to_en_primary 1.0 1.0 1.0
en_to_mni_contrastive 1.6 2.3 1.95
mni_to_en_contrastive 1.0 1.0 1.0

SPRING-IITM
en_to_mni_contrastive 3.25 3.75 3.5
mni_to_en_contrastive 3.8 4.06 3.93

JUNLP en_to_mni_primary 2.7 2.4 2.55

SRPH-LIT
en_to_mni_primary 1.65 2.3 1.975
mni_to_en_primary 1.0 1.0 2.0

Table 9: Human evaluation results for teams in the WMT24 low-resource Indic language translation task for the
English-Manipuri language pair. The results are presented for Adequacy, Fluency, and Overall Rating on a scale
from 0 to 5.

Team Test Set BLEU TER RIBES METEOR ChrF

DLUT-NLP
en_to_lus_primary 0.0075 98.17 0.0725 0.1395 0.2426
lus_to_en_primary 0.0233 86.79 0.0895 0.2622 0.3162

A3-108

en_to_lus_contrastive 0 92.32 0.0406 0.0978 0.18
lus_to_en_contrastive 0 97.75 0.0195 0.0544 0.1633
en_to_lus_primary 0 92.84 0.0328 0.0906 0.173
lus_to_en_primary 0 96.18 0.0181 0.0587 0.1826

SRIB-NMT
en_to_lus_primary 0 102.98 0.0361 0.062 0.1646
lus_to_en_contrastive 0.1127 64.94 0.2026 0.4784 0.4482

YES-MT
en_to_lus_primary 0 97.19 0.0445 0.0802 0.1282
en_to_lus_contrastive 0.0468 73.07 0.176 0.4087 0.4151

HW-TSC
en_to_lus_primary 0.0189 86.38 0.1074 0.1962 0.2873
lus_to_en_primary 0.0492 76.27 0.1492 0.3646 0.3769

CycleL
en_to_lus_primary 0 101.76 0.008 0.0477 0.1645
lus_to_en_primary 0 100.48 0.0064 0.0311 0.1487

NLIP_Lab-IIITH

en_to_lus_primary 0.0303 81.89 0.1479 0.2575 0.3396
lus_to_en_primary 0.0603 76.34 0.1739 0.3716 0.3893
en_to_lus_contrastive 0 98.53 0.0277 0.0807 0.1792
lus_to_en_contrastive 0.0849 70.28 0.1819 0.4374 0.4188

SPRING-IITM
en_to_lus_contrastive 0.066 66.06 0.1746 0.495 0.4979
lus_to_en_contrastive 0.1849 53.19 0.2684 0.588 0.5044

JUNLP en_to_lus_primary 0 98.71 0.0589 0.0837 0.1502

SRPH-LIT
en_to_lus_primary 0.0025 94.46 0.0255 0.0834 0.1891
lus_to_en_primary 0 108.95 0.014 0.0421 0.1431

Table 10: Performance of teams in the WMT24 low-resource Indic language translation task for the English-Mizo
language pair, measured across multiple metrics.
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Team Test Set Adequacy Fluency Overall Quality

DLUT-NLP
en_to_lus_primary 0.6 0.5667 0.5833
lus_to_en_primary 2.7 2.7 2.7

A3-108

en_to_lus_contrastive 0 0 0
lus_to_en_contrastive 0 0 0
en_to_lus_primary 0 0 0
lus_to_en_primary 0 0 0

SRIB-NMT
en_to_lus_primary 0 0 0
lus_to_en_contrastive 4.3667 4.6667 4.5167

YES-MT
en_to_lus_primary 0 0 0
en_to_lus_contrastive 2.65 2.8 2.725

HW-TSC
en_to_lus_primary 0.2333 0.1333 0.1833
lus_to_en_primary 4.2333 4.3 4.2667

CycleL
en_to_lus_primary 0 0 0
lus_to_en_primary 0 0 0

NLIP_Lab-IIITH

en_to_lus_primary 3.0333 3.2667 3.15
lus_to_en_primary 3.3333 3.4333 3.3833
en_to_lus_contrastive 0 0 0
lus_to_en_contrastive 4.6 4.7 4.65

SPRING-IITM
en_to_lus_contrastive 4.5333 4.5667 4.55
lus_to_en_contrastive 4.7667 4.8333 4.8

JUNLP en_to_lus_primary 0 0 0

SRPH-LIT
en_to_lus_primary 0 0 0
lus_to_en_primary 0 0 0

Table 11: Updated human evaluation results for teams in the WMT24 low-resource Indic language translation task
for the English-Mizo language pair, based on Adequacy, Fluency, and Overall Quality scores.

Team Test Set BLEU TER RIBES METEOR ChrF

DLUT-NLP
en_to_kha_primary 0.0665 78.17 0.1583 0.2939 0.3512
kha_to_en_primary 0.0253 81.7 0.1223 0.2834 0.2953

A3-108

en_to_kha_contrastive 0.0108 92.92 0.087 0.1209 0.1905
kha_to_en_contrastive 0 105.76 0.0094 0.0403 0.1358
en_to_kha_primary 0.011 87.69 0.0873 0.1589 0.2296
kha_to_en_primary 0 107.7 0.0071 0.0359 0.1348

SRIB-NMT
en_to_kha_primary 0.0054 103.72 0.0821 0.0969 0.1778
kha_to_en_contrastive 0.042 80.29 0.1205 0.3283 0.318

Yes-MT
en_to_kha_primary 0.0029 159.36 0.0489 0.0511 0.1139
en_to_kha_contrastive 0.0696 80.74 0.2167 0.2797 0.3541

HW-TSC
en_to_kha_primary 0.0454 87.75 0.1509 0.2134 0.2747
kh_en_primary 0.0315 79.83 0.1275 0.3044 0.3137

CycleL
en_to_kha_primary 0.0038 91.86 0.0696 0.1399 0.2245
kha_to_en_primary 0 132.21 0.0062 0.0264 0.0973

NLIP_Lab-IIITH

en_to_kha_primary 0.0475 87.16 0.1406 0.2205 0.2894
kha_to_en_primary 0.0108 92.83 0.0742 0.1612 0.2488
en_to_kha_contrastive 0.0521 88.9 0.1515 0.2173 0.288
kha_to_en_contrastive 0.0312 81.23 0.1263 0.3007 0.312

MTNLP-IIITH

en_to_kha_primary 0.0492 84.79 0.1595 0.2589 0.3316
kha_to_en_primary 0.0049 ERROR 0.25108 ERROR ERROR
en_to_kha_contrastive 0.0359 103.49 0.1106 0.1649 0.2333
kha_to_en_contrastive 0.006 106.6 0.0487 0.102 0.1731

SPRING-IITM
en_to_kha_contrastive 0.1212 63.31 0.1864 0.4453 0.4455
kha_to_en_contrastive 0.1047 61.43 0.2172 0.5042 0.4271

JUNLP en_to_kha_primary 0 138.36 0.0079 0.0094 0.0344

SRPH-LIT
en_to_kha_primary 0.0044 126.94 0.0533 0.0879 0.1425
kha_to_en_primary 0 109.81 0.0106 0.0407 0.1336

Table 12: Performance of teams in the WMT24 low-resource Indic language translation task for the English-Khasi
language pair, measured across multiple metrics.
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Team Test Set Adequacy Fluency Overall Quality

DLUT-NLP
en_to_kha_primary 2.43 3.2 2.815
kha_to_en_primary 2.83 3.53 3.18

A3-108

en_to_kha_contrastive 0.33 0.6 0.465
kha_to_en_contrastive 0.33 0.36 0.345
en_to_kha_primary 0.33 0.7 0.515
kha_to_en_primary 1 1 1

SRIB-NMT
en_to_kha_primary 0.33 0.46 0.395
kha_to_en_contrastive 3.36 3.6 3.48

Yes-MT
en_to_kha_primary 0.33 0.33
en_to_kha_contrastive 2.3 2.5 2.4

HW-TSC
en_to_kha_primary 0.43 0.5 0.465
kha_to_en_primary 4 4.23 4.115

CycleL
en_to_kha_primary 0.33 0.4 0.365
kha_to_en_primary 0.33 0.4 0.365

NLIP_Lab-IIITH

en_to_kha_primary 1.66 1.76 1.71
kha_to_en_primary 2.66 2.93 2.795
en_to_kha_contrastive 2.26 2.3 2.28
kha_to_en_contrastive 3.47 3.23 3.35

MTNLP-IIITH

en_to_kha_primary 1.93 1.93 1.931
kha_to_en_primary 2.83 2.83 2.83
en_to_kha_contrastive 0.76 0.76 0.76
kha_to_en_contrastive 1.76 1.83 1.795

SPRING-IITM
en_to_kha_contrastive 4.56 4.93 4.745
kha_to_en_contrastive 4.93 4.96 4.945

JUNLP en_to_kha_primary 1 1 1

SRPH-LIT
en_to_kha_primary 0 0 0
kha_to_en_primary 0 0 0

Table 13: Human evaluation results for teams in the WMT24 low-resource Indic language translation task for the
English-Khasi language pair, based on Adequacy, Fluency, and Overall Quality scores.

tuned LaBSE.Team HW-TSC achieved higher
BLEU score as well as overall rating in human
evaluation for the Manipuri-Englishwhich is sig-
nificantly higher when compared to the en-mni
language pair. They employed a contrastive system
which improved upon this by further fine-tuning
a pre-trained translation model using a technique
called LoRA, resulting in better translation quality.

For the English-Mizo language pair team,
SPRING-IITM outperforms all the teams in both
directions of the language pairs with higher BLEU
and overall ratings in human evaluation. The team
developed a robust translation model for four low-
resource Indic languages: Khasi, Mizo, Manipuri,
and Assamese. They expanded their training cor-
pus using back translation on monolingual datasets
and fine-tuned the pre-trained NLLB 3.3B model.

Team SPRING-IITM surpassed all the teams in
for the both directions of the language pairs for
English-Khasi in automatic and human evaluation.
They expanded their training corpus using back
translation on monolingual datasets and fine-tuned
the pre-trained NLLB 3.3B model. For Khasi, they
introduced special tokens and trained the model on
a custom Khasi corpus.

Conclusion

The outcomes of the participating teams in the
WMT 2024 translation task for four language pairs
have been meticulously evaluated using both au-
tomated and human metrics. This year’s shared
task on low-resource Indic language translation
utilised the IndicNE-Corp1.0 dataset from WMT
2023, while a newly developed test set was intro-
duced, characterized by a higher difficulty level
than the previous year. This enhanced test set aims
to better assess the translation capabilities of the
models across the participating languages.

The dataset features four under-resourced
languages—Assamese, Mizo, Khasi, and Ma-
nipuri—from the northeastern region of India. Fu-
ture initiatives will focus on expanding the dataset
by adding more northeastern Indic languages and
increasing the corpus size.

We will be incorporating additional languages
in the next iteration of the shared task, including
English⇔ Nyishi (en-nshi), English⇔ Bodo (en-
bodo), English ⇔ Mising (en-mrp), and English
⇔ Kokborok (en-trp). This expansion aims to en-
hance the scope of linguistic diversity, allowing
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participants to engage with a broader range of low-
resource languages.
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Abstract

This paper presents the findings of the WMT
2024’s MultiIndic22MT Shared Task, focusing
on Machine Translation (MT) of 22 Indian Lan-
guages. In this task, we challenged participants
with building MT systems which could trans-
late between any or all of 22 Indian languages
in the 8th schedule of the Indian constitution
and English. For evaluation, we focused on
automatic metrics, namely, chrF, chrF++ and
BLEU.

1 Introduction

India is a linguistically diverse region, with 1,369
distinct natively spoken languages which were iden-
tified in the census conducted in 2011. Among
these native languages, 22 have been listed in the
8th Schedule of the Constitution of India. Fur-
thermore, about 97% of the population of India
speaks one of these 22 languages as their first lan-
guage in their daily lives. It is important to note
that English is widely spoken and serves as the de-
fault medium of formal communication in many
areas, particularly in business, education, govern-
ment, and judiciary. However, the percentage of
the population speaking English is approximately
10% and in the interest of smooth and clear com-
munication, the importance in India of language
translation for effective communication, social in-
clusion, equitable access, and national integrity
cannot be over-emphasized.

Having established that Indian language MT is
important, the only way to improve it is via ac-
tive involvement from MT researchers and MT
system developers to push the boundaries of trans-
lation quality. To this end, we offered the first
of its kind shared task focusing on MT for all 22
scheduled Indian languages. Over half a decade
ago, in the Workshop on Machine Translation 2018
(WAT 2018) (Nakazawa et al., 2018), the organiz-
ers introduced the IndicMT task for the first time

spanning covering 7 Indic languages. Over the
years they gradually added languages in WAT from
2018 to 2023 (Nakazawa et al., 2019, 2020, 2021,
2022, 2023), with WAT 2023 boasting 19 Indian
languages. Over the years, with the increasing num-
ber of languages and datasets for Indian languages,
these tasks have garnered growing attention, how-
ever the challenge still remains since Indian lan-
guages are still resource poor in comparison with
European languages.

This year the multilingual Indian languages MT
task, referred to as MultiIndic22MT, is hosted un-
der the Ninth Conference on Machine Translation
(WMT24) and for the first time ever, the task spans
all 22 scheduled languages of India belonging to
4 language families and written in 12 scripts. The
languages exhibit both genetic and contact related-
ness (Kunchukuttan et al., 2018). Some of these
languages are extremely low-resource. This diver-
sity makes this language group ideal for studies
in multilingual learning, language relatedness and
low-resource MT. Our primary goal behind hav-
ing this shared task was to attract both researchers
and developers to identify effective practices for
pushing the quality of Indian language Machine
Translation, especially for the lower resourced lan-
guages. Our secondary goal was also to identify
some interesting but yet unexplored practices, even
if they do not lead to state-of-the-art MT perfor-
mance.

2 MultiIndic22MT Shared Task

The task covered English and 22 Indic Languages,
as follows:

1. Assamese

2. Bengali

3. Bodo

4. Dogri
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5. Konkani

6. Gujarati

7. Hindi

8. Kannada

9. Kashmiri (Arabic script)

10. Maithili

11. Malayalam

12. Marathi

13. Manipuri (Meitei script)

14. Nepali

15. Oriya

16. Punjabi

17. Sanskrit

18. Santali

19. Sindhi (Devanagari script)

20. Tamil

21. Telugu

22. Urdu.

We evaluated user submissions on 44 translation
directions (English-Indic and Indic-English). We
also evaluate the performance of 5 Indic-Indic pairs:
Bengali-Hindi, Tamil-Telugu, Hindi-Malayalam
and Sindhi-Punjabi. We encouraged the use of
multilingualism and transfer-learning by leverag-
ing monolingual data, back-translation and (po-
tentially) LLMs, to develop high quality systems.
Although the intention is to have users develop
multilingual systems and submit translations for
all directions, we also welcomed submissions for
specific language pairs. The link to the shared task
page is here1.

3 Datasets and Pre-trained Models

For this shared task, we prepared a fairly extensive
list of resources for the participants to train their
MT systems. We also describe the evaluation sets.

1https://www2.statmt.org/wmt24/
multiindicmt-task.html

3.1 Datasets

We allowed participants to use existing mined as
well as back-translated parallel data along with
monolingual data.
Parallel Data: As a source of parallel corpora,
we recommended using the Bharat Parallel Cor-
pus Collection (BPCC) dataset2 (Gala et al., 2023)
which spans all 22 languages in the shared task.
BPCC is a comprehensive and publicly available
parallel corpus that includes both existing and new
data for all 22 scheduled Indic languages. It com-
prises two parts: BPCC-Mined and BPCC-Human,
totaling approximately 230 million bitext pairs.
BPCC-Mined contains about 228 million pairs,
with nearly 126 million pairs newly added as a part
of this work. On the other hand, BPCC-Human
consists of 2.2 million gold standard English-Indic
pairs, with an additional 644K bitext pairs from
English Wikipedia sentences (forming the BPCC-
H-Wiki subset) and 139K sentences covering every-
day use cases (forming the BPCC-H-Daily subset).
It is worth highlighting that BPCC provides the
first available datasets for 7 languages and signifi-
cantly increases the available data for all languages
covered. Note that one may pivot via English to
obtain Indic-Indic parallel corpora.
Parallel Back-translated Data: Additionally,
BPCC also contains back-translation data gener-
ated by intermediate checkpoints of IndicTrans2
(Gala et al., 2023) models for training purposes.
This data consists of English original sentences
translated to 22 Indic languages for a total of
401.9M back-translated sentences and Indian lan-
guage original sentences translated to English for
a total of 400.9M back-translated sentences. The
mined, human curated and back-translated corpora
represent an extensive training dataset which we
expect will be sufficient for training MT systems
of reasonable quality.
Monolingual Data: We also recommended the use
of monolingual data from Varta3 (Aralikatte et al.,
2023), IndicCorp v24 (Doddapaneni et al., 2023)
and Sangraha5 (Khan et al., 2024) corpora. San-
graha subsumes IndicCorp v2 but does not explic-
itly include Varta. Sangraha covers 22 languages,
containing a total of 251B tokens, of which con-

2https://github.com/AI4Bharat/IndicTrans2
3https://huggingface.co/datasets/rahular/varta
4https://github.com/AI4Bharat/IndicBERT/tree/

main#indiccorp-v2
5https://github.com/AI4Bharat/IndicLLMSuite?

tab=readme-ov-file#sangraha
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tains verified6 (64B), unverified7 (24B), and syn-
thetic8 (162B) tokens. On the other hand, Varta
spans only 9B tokens and belongs to the NEWS
domain, whereas Sangraha spans multiple domains.
Our evaluation sets, which we will describe later,
are multi-domain (including news) and hence we
expected Sangaraha to be a better source but could
not neglect Varta due to its domain specificity and
high quality.

3.2 Pre-trained Models

In addition to datasets, following recently followed
trends in shared tasks, we encouraged participants
to leverage one or all of the following publicly
available models for fine-tuning or synthetic data
generation:
IndicTrans2 (Gala et al., 2023): This consists of
the 3 IndicTrans2 models, one-to-many, many-to-
one, and many-to-many, for English to Indic, Indic
to English and Indic to Indic translation. These
are the current state-of-the-art open-source MT
systems, and we encouraged participants to build
on top of these models to improve performance,
especially for the lower resourced languages like
Santali, Sindhi, Bodo, Dogri, Konkani, Kashmiri,
Maithili and Manipuri.
mT5 (Xue et al., 2021): mT5 is a well known pre-
trained model which supports half of the Indian
languages in this shared task. However, it is only
pre-trained and not fine-tuned for MT and is more
suitable for focused domain specific fine-tuning
investigations.
IndicBART (Dabre et al., 2022): IndicBART is
a small pre-trained model for 11 Indic languages
and English which, when fine-tuned, is known to
outperform mBART (Liu et al., 2020) and give
comparable performance as a mT5, despite both
models being twice its size.
VartaT5 (Aralikatte et al., 2023): This is a T5
model specific for Indic languages and is analogous
to IndicBART.
BLOOM (Workshop et al., 2023): BLOOM is
a family of decoder only pre-trained models sup-
porting 44 languages, some of them being a subset
of the Indian languages we focus on in this shared
task. Model sizes range from 500 million parame-

6The URLs of webpages from which the corpora were
crawled were manually verified by linguists.

7The urls of webpages from which the corpora were
crawled were unverifiable.

8These were obtained by translating English documents
into Indian languages.

ters to 176 billion parameters. However, BLOOM
is known to be an under-trained model, and thus
we expected participants to focus more on using
Gemma.
Gemma (Team et al., 2024): Is another family
of decoder only models with 2 and 7 billion pa-
rameters. Gemma is theoretically capable of to-
kenizing all 22 Indian languages of this task but
its primary support is more in favor of the higher
resource languages like Hindi, Marathi, Bengali,
etc. We expected that participants would explore
some prompting approaches on top of Gemma to
determine its viability for Indian language transla-
tion.

4 Submission Criteria

We expected two types of submissions: Con-
strained and Unconstrained. Constrained submis-
sions were those which used the data and mod-
els stipulated by the organizers explicitly. Uncon-
strained submissions were those where any other
data or models were used without confirmation
from the organizers. Furthermore, we encouraged
primary and contrastive submissions, where partic-
ipants could submit one Primary (ranked) and one
Contrastive (unranked, optional).

5 Evaluation Sets and Metrics

Evaluation Sets: We provide participants with a
validation set and 3 test sets. The validation set
is an extension of FLORES-200 for the 22 Indian
languages9, as described in Gala et al. (2023) and
consists of 997 23-way sentences. As for the test
sets, 2 out of 3 are publicly available and one is
a hidden test set. The publicly available sets are
In22-Conv10 and In22-Gen11 spanning 1,503 and
1,024 23-way parallel sentences, for the conversa-
tional and general styles, respectively. The hidden
test set was originally described in Chitale et al.
(2024) and is an Indic language original test set
where Indic sentences were translated into English
by linguists. This is different from all other test sets
which are English original and were translated into
Indic languages. This hidden test set was released
to the participants 2 weeks before the deadline and
unlike In22-Conv and In22-Gen, the references

9https://indictrans2-public.objectstore.
e2enetworks.net/flores-22_dev.zip

10https://huggingface.co/datasets/ai4bharat/
IN22-Conv

11https://huggingface.co/datasets/ai4bharat/
IN22-Gen
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were kept hidden. This test set covered only 13
of the 22 Indic languages namely, Assamese, Ben-
gali, Bodo, Gujarati, Hindi, Kashmiri, Malayalam,
Nepali, Santali, Sanskrit, Sindhi, Telugu and Urdu.
While we asked participants to work on translation
to and from English for In22-Conv and In22-Gen,
for the hidden test set, only translation from Indic
to English direction was possible in order to keep
the test set hidden12.
Evaluation Metrics: We asked participants to sub-
mit their translations to us which we would then
evaluate using BLEU (Papineni et al., 2002), chrF
(Popović, 2015) and chrF++ (Popović, 2017) using
sacreBLEU13 (Post, 2018). We follow the appro-
priate tokenization of Indic languages as done by
Gala et al. (2023) before computing scores.

6 Participants and Submissions

Although 32 teams had registered initially, only 4
teams ended up submitting systems and 3 submitted
system description papers (1 withdrew). The teams
and their submitted systems are as follows:

6.1 BV-SLP Team

The BV-SLP team (Joshi et al., 2024), short for the
Banasthali Vidyapith Speech and Language Pro-
cessing Lab, focused on Sindhi to English transla-
tion and only submitted translations for the hidden
test set. Their approach focuses on special handling
of named entities. They first extract named enti-
ties from the source Sindhi sentence and translate
it first using a knowledge base of Sindhi-English
named entity pairs. This intermediate output is then
translated using a NMT system, which is trained to
retain the translated named entities and only trans-
late the Sindhi part. To develop the NMT system
itself, they converted the existing Sindhi-English
parallel corpus into a form where the Sindhi sen-
tences had their named entities replaced with their
English translations. This pre-translation approach
is well known to work well for handling named
entities. They used two approaches for transla-
tion itself, one (Primary) where Sindhi is directly
translated into English and one (Contrastive) where
Sindhi is first translated into Hindi and then into
English.

12Asking for English to Indic translation meant that we
would have to release English sentences too and this would
lead to the test set references being exposed.

13https://github.com/mjpost/sacrebleu

6.2 NITS-CNLP Team

The NITS-CNLP team (Singh et al., 2024), short
for the National Institute of Technology Silchar’s
Centre for Natural Language Processing, focused
on English to Manipuri translation and submitted a
primary and a contrastive system. Their approach
was rather straightforward, where they used the
English-Manipuri data from BPCC (Gala et al.,
2023) and trained a transformer model. They sub-
mitted results for the In22-Conv and In22-Gen test
sets. They also performed some manual evalua-
tions.

6.3 NLIP-Lab Team

The NLIP-Lab (Brahma et al., 2024), short for the
Natural Language and Information Processing Lab,
was the only team that went all out and submit-
ted translations for all translation directions and
test sets. The NLIP-Lab team use an approach
based on pre-training models using codemixed data
which was synthetically created. Specifically, they
take BPCC parallel data and replace words in En-
glish sentences with semantically similar words
of the target Indic language sentences. They then
pre-train a model with both the original and code-
mixed data. They further refine their pre-trained
model with original and code-mixed data obtained
only from the high quality BPCC-seed datasets.
Finally, they fine-tune their models only on the
seed datasets without the code-mixed counterparts.
They hypothesized that this leads to fairly strong
MT systems.

7 Results and Findings

Overall, the NLIP-Lab team got 1st rank for all
language pairs, directions and test sets, including
In22-Conv, In22-Gen and the hidden test set for
Indic to English translation.

7.1 Sindhi to English Translation

NLIP-Lab had a contender in the form of BV-SLP
team for Sindhi to English translation but where
the primary system of BV-SLP got BLEU, chrF
and chrF++ scores of 19.4, 44.6 and 43.0, respec-
tively. NLIP-Lab translations scored BLEU, chrF
and chrF++ scores of 21.2, 47.1 and 45.5, respec-
tively. This showed that NLIP-Lab’s RASP pre-
training and fine-tuning approach was definitely
better than the named entity handling approach.
The likely explanation was that NLIP-Lab used a
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lot more parallel data and trained a larger model
than their competitior.

7.2 English to Manipuri Translation

Once again, NLIP-Lab’s contender for the English
to Manipuri task was the NITS-CNLP lab. This was
for the In22-Conv and In22-Gen test sets. NITS-
CNLP got BLEU, chrF and chrF++ scores of 6.4,
28.6 and 26.6 for In22-Conv and 8.1, 32.1 and
29.4 for In22-Gen. However, NLIP-Lab got better
scores of 15.2, 43.6 and 41.1 for In22-Conv and
18.2, 48.0 and 45.0 for In22-Gen. This shows that
NLIP-Lab’s systems are substantially better. How-
ever, this is to be expected given that NITS-CNLP
did not train massively multilingual models and the
latter did.

7.3 Did NLIP-Lab Beat IndicTrans2?

Unfortunately, NLIP-Lab’s systems did not beat
IndicTrans2. For the Indic to English directions,
IndicTrans2 was almost 10 BLEU better on In22-
Gen and almost 4 BLEU better on In22-Conv. For
the English to Indic directions, however, the gap
narrowed down to about 2 BLEU. This implies that
despite IndicTrans2 being trained on significantly
larger data (mostly backtranslated) and in multiple
stages, its performance can still be approached by
systems not leveraging massive amounts of data.
This highlights then need for investigating better
approaches for translating into Indic languages. As
a side note, these same observations hold for Indic
to Indic translation.

8 Conclusion

In this report we present the findings of the Mul-
tiIndic22MT shared task for machine translation
involving 22 Indian languages. Despite the initial
enthusiasm shown by participants during task regis-
tration, only 3 out of 32 teams submitted their trans-
lations and system description papers. Of these 3,
only NLIP-Lab submitted translations for all direc-
tions and got first rank for all their submissions.
Approaches explored varied from named entity re-
placement, pivot language translation (using Hindi
as a pivot), code-mixed pretraining and training
from scratch. Overall, code-mixed pre-training
stood tall and led to the best systems. However,
none of the systems could still beat IndicTrans2,
indicating that there is much effort needed for push-
ing the state of the art for translation involving In-
dian languages. Given the advent of LLMs and the

focus on decoder-only architectures which are well
suited for document level MT, we expect that the
next batch of innovations will be focused on the
same. However, most LLMs dont support Indic
languages that well and thus participants may have
to resort to using approaches like transliteration
to bridge the gap or even reduce it between the
type of scripts that LLMs have seen and those that
they have not (J et al., 2024; Dabre et al., 2020,
2022; Gala et al., 2023). We hope that more people
will participate in another iteration of this task with
interesting approaches.
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Kurohashi. 2019. Overview of the 6th workshop on
Asian translation. In Proceedings of the 6th Work-
shop on Asian Translation, pages 1–35, Hong Kong,
China. Association for Computational Linguistics.

Toshiaki Nakazawa, Kazutaka Kinugawa, Hideya Mino,
Isao Goto, Raj Dabre, Shohei Higashiyama, Shan-
tipriya Parida, Makoto Morishita, Ondřej Bojar,
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Abstract

This paper presents the results of the English-
to-Low Resource Multimodal Translation
shared tasks from the Ninth Conference on Ma-
chine Translation (WMT2024). This year, 7
teams submitted their translation results for the
automatic and human evaluation.

1 Introduction

The Ninth Conference on Machine Translation
(WMT24), held in conjunction with EMNLP 2024,
hosted a number of shared tasks covering various
aspects of machine translation (MT). This confer-
ence builds on 17 previous editions of WMT as a
workshop or a conference. This year, Workshop
on Asian Translation (WAT), the most recognized
shared task campaign on Asian languages, merged
with WMT, adding many new shared tasks to the
venue.

Multi-modal translation, which involves incor-
porating non-text sources alongside text input for
machine translation, has gained attention in the
past years (Specia et al., 2016; Elliott et al., 2016).
However, research in this area has focused on
European languages such as English, German,
French, Czech, and mainly used two datasets:
Flickr30k (Young et al., 2014) and MS-COCO
(Lin et al., 2014), where the text caption corre-
sponds to the content of the associated image.

We organized the WMT2024 English-to-
LowRes Multimodal Shared Task for Low-
Resource Asian and African languages. One
important difference is that in our setting, the
text caption is attached to a rectangular region of
the picture and not the picture as a whole. This
approach provides an interesting opportunity to
consider not only the broader image but also the
localized visual context surrounding the described
region, which may provide additional cues for
more accurate translation.

2 Task and Datasets

In this task, participants were provided with cor-
pora from the Visual Genome dataset in four target
language: Hindi, Bengali, Malayalam, and Hausa.
The specific datasets are: Hindi Visual Genome
1.1 (HVG, Parida et al., 2019)1 for Hindi; Bengali
Visual Genome (BVG, Sen et al., 2022)2 for Ben-
gali; Malayalam Visual Genome (MVG, Parida
and Bojar, 2021)3 for Malayalam; and Hausa Vi-
sual Genome (HaVG, Abdulmumin et al., 2022)4

for Hausa. The datasets are split into train, test,
dev and challenge test in a parallel fashion. The
number of sentences in each split is provided in
Table 1. Each split contains items consisting of an
image, a highlighted rectangular region within the
image (x, y, width, height), the original English
caption for this region, and the reference transla-
tion in the respective target language. These com-
ponents are illustrated in Figure 1. Depending on
the task track, some of these components serve as
the source, while others act as references or com-
peting candidate solutions. The specific tracks for
this task are listed below.

2.1 Text-Only Translation

Labeled “TEXT” in WAT official tables, partic-
ipants translate short English captions into the
target language without using visual information.
Additional textual resources are allowed but must
be documented in the system description paper.

2.2 Captioning

Labeled with the target language code, e.g., “HI,”
“BN,” “ML,” “HA”, participants generate captions

1https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-3267

2https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-3722

3https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-3533

4https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-4749
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data split size

train 28,930
dev 998
test 1,595
challenge test 1,400

Table 1: Shared task dataset splits

Figure 1: Example of a Data Point (Image Id, Region
Detail, Source, and Target Languages

in the target language for the highlighted rectangu-
lar region in the input image.

2.3 Multi-Modal Translation

Labeled “MM”, given an image, a rectangular re-
gion within it, and an English caption for that re-
gion, participants translate the caption into the tar-
get language. Both textual and visual information
are available for this task.

3 Evaluation Methods

3.1 Automatic Evaluation

We evaluated translation results by two metrics:
BLEU (Papineni et al., 2002), and RIBES (Isozaki
et al., 2010). BLEU scores were calculated us-
ing SacreBLEU (Post, 2018). RIBES scores were
calculated using RIBES.py version 1.02.4.5 All
scores for each task were calculated automatically
using the corresponding reference translations by
the evaluation system through which the partici-
pants make their submissions.

5http://www.kecl.ntt.co.jp/icl/lirg/ribes/
index.html

Automatic Evaluation System The automatic
evaluation system receives translation results by
participants and automatically gives evaluation
scores to the uploaded results. As shown in Fig-
ure 2, the system requires participants to provide
the following information for each submission:

• Human Evaluation: whether or not they sub-
mit the results for human evaluation;

• Publish the results of the evaluation: whether
or not they permit to publish automatic evalu-
ation scores on the WAT2024 web page;

• Task: the task to which the results belong;
• Used Other Resources: whether or not they

used additional resources; and
• Method: the type of the method includ-

ing SMT, RBMT, SMT and RBMT, EBMT,
NMT and Other.

Evaluation scores of translation results that par-
ticipants permit to be published are disclosed via
the WAT2024 evaluation web page. Participants
can also submit the results for human evaluation
using the same web interface. This automatic
evaluation system will remain available even after
WMT-WAT2024.

3.2 Human Evaluation
In WMT2024, we conducted JPO adequacy eval-
uation.

JPO adequacy evaluation The evaluation was
carried out by translation experts based on the JPO
adequacy evaluation criterion, which was origi-
nally defined by Japan Patent Office to assess the
quality of translated patent documents.

Sentence selection and evaluation For the JPO
adequacy evaluation, the 200 test sentences were
randomly selected from the test sentences. For
each test sentence, input source sentence, transla-
tion by participants’ system, and reference transla-
tion were shown to the annotators. To guarantee
the quality of the evaluation, each sentence was
evaluated by two annotators. Note that the selected
sentences are basically the same as those used in
the previous workshop.

Evaluation Criterion Table 2 shows the JPO ad-
equacy criterion from 5 to 1. The evaluation is
performed subjectively. “Important information”
represents the technical factors and their relation-
ships. The degree of importance of each element
is also considered in evaluating. The percentages
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Figure 2: The interface for translation results submission

Sccore Description

5 All important information is transmitted cor-
rectly. (100%)

4 Almost all important information is transmitted
correctly. (80%–)

3 More than half of important information is trans-
mitted correctly. (50%–)

2 Some of important information is transmitted cor-
rectly. (20%–)

1 Almost all important information is NOT trans-
mitted correctly. (–20%)

Table 2: The JPO adequacy criterion

in each grade are rough indications for the trans-
mission degree of the source sentence meanings.
The detailed criterion is described in the JPO doc-
ument (in Japanese).6

4 Baseline Systems

Human evaluations were conducted as pairwise
comparisons between the translation results for a
specific baseline system and translation results for
each participant’s system. That is, the specific
baseline system served as the standard for human

6http://www.jpo.go.jp/shiryou/toushin/chousa/
tokkyohonyaku_hyouka.htm

evaluation.
At WMT2024, we adopted some of neural ma-

chine translation (NMT) as baseline systems. The
NMT baseline systems consisted of publicly avail-
able software, and the procedures for building the
systems and for translating using the systems were
published on the WAT web page.

Tokenization The shared task datasets come un-
tokenized and we did not use or recommend
any specific external tokenizer. The standard
OpenNMT-py sub-word segmentation was used
for pre/post-processing for the baseline system
and each participant used what they wanted.

NMT Methods We used the NMT mod-
els for all tasks. For the English→Hindi,
English→Malayalam, and English→Bengali Mul-
timodal tasks we used the Transformer model
(Vaswani et al., 2018) as implemented in
OpenNMT-py (Klein et al., 2017) and used the
“base” model with default parameters for the multi-
modal task baseline. We have generated the vo-
cabulary of 32k sub-word types jointly for both
the source and target languages. The vocabulary
is shared between the encoder and decoder.
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5 Participating Teams and Results

We describe the teams’ profiles and submissions
as described in their respective description papers.
Table 3 shows the team IDs, their respective orga-
nizations, and countries.

5.1 Systems’ Descriptions

DCU_NMT participated in the English-to-
Hindi track only, developing both text-only and
multimodal neural machine translation (NMT)
systems. They trained the text-only models
from scratch on constrained data and further
enhanced them with back-translated data. For the
multimodal approach, they used a context-aware
transformer to integrate visual features by first
encoding the image captions with a BERT model
and then concatenating them with the textual in-
put. They reported that while the back-translated
text-only model achieved the best performance
overall, the multimodal systems, despite lacking
back-translated data, outperformed the text-only
baseline, indicating the potential of visual context.
However, their findings revealed that the impact
of visual features was inconsistent, showing less
effectiveness on the challenge set, highlighting
the need for further exploration into effective
multimodal integration.

ODIAGEN participated in and reported results
for all the tracks, including both text-only and mul-
timodal translation. For text-only translation, they
trained the Mistral-7B (Jiang et al., 2023) model
to handle English to multiple low-resource lan-
guages: Hindi, Bengali, Malayalam, and Hausa.
In the multimodal English-to-Hindi task, they em-
ployed the PaliGemma-3B (Beyer et al., 2024)
model, integrating both image and text inputs.
However, their findings revealed that the multi-
modal systems were suboptimal due to improper
normalization of location coordinates, which hin-
dered the models ability to map these coordinates
accurately to the provided images. While the
PaliGemma-3B model demonstrated strong per-
formance in text translation tasks, it struggled to
leverage visual context effectively, underscoring
the importance of refining multimodal techniques
for better accuracy.

Arewa_NLP participated in the English-Hausa
text-only translation task, fine-tuning the OPUS-
MT-en-ha transformer model. While the system
performed well on standard test set, it struggled

with the more complex content in the Challenge
Test, suggesting a need for further training.

v036 participated in the English-to-Indic tracks
only with the help of visual context. They utilized
InternVL2 (Chen et al., 2023) to extract features
from the marked image region, which was then
passed into a Rapid Automatic Keyword Extrac-
tion (RAKE) algorithm to generate keywords for
use as hash-tags to provide context to the source
text. They then used an LLM (Llama 405B) to gen-
erate chain-of-thoughts prompts, consisting the
original source and target sentences, extracted key-
words as hash-tags and some reasoning why that
translation was generated, that serve as training
data. Finally, they fine-tuned Llama 8b Instruct
model, one for each language, on the generated
prompts. They reported that although their predic-
tions were mostly correct, the model failed to gen-
erate similar translations as the ground truth, indi-
cating the need for human evaluation as the best
method to assess the quality of the translations.

Brotherhood participated in all the tracks, lever-
aging LLMs such as GPT-4o and Claude 3.5
Sonnet to enhance cross-lingual image captioning
without traditional training or fine-tuning (Betala
and Chokshi, 2024). They used instruction-tuned
prompting to generate contextual conversations
around cropped images, incorporating the original
English captions as context, and translated these
conversations into target languages. They em-
ployed weighted prompting strategy to balance the
original captions with the translated conversations
for more descriptive outputs. They reported that
their training-free approach minimizes error prop-
agation from flawed datasets while offering flexi-
bility in balancing source fidelity with descriptive-
ness, demonstrating promise for improving low-
resource language datasets. However, they identi-
fied challenges such as dependence on LLM APIs,
hallucination risks, computational demands, and
the limitations of traditional metrics like BLEU for
evaluating enriched descriptions, highlighting the
need for more comprehensive evaluation methods.

UNLP participated in the English-to-Hindi,
Malayalam, Bengali, and Hausa tracks. They used
visual context to improve translation accuracy, em-
ploying a gated fusion mechanism to integrate vi-
sual information with textual data, combining the
outputs of visual and textual encoders to create
context-aware translations. For each language,

680



Team ID Organization Country

DCU_NMT Dublin City University Ireland
ODIAGEN Odia Generative AI India
Arewa_NLP FUTB, BUK, and Arewa Data Science Academy Nigeria
v036 SCB DataX, Walmart Global Tech Thailand, India
Brotherhood Indian Institute of Technology Madras India
UNLP University of Galway, and Lua Health, Galway Ireland
00-7 Krutrim AI India

Table 3: List of participants who submitted translations for the WMT2024 English-to-LowRes Multimodal Trans-
lation Task

they fine-tuned their multimodal model on this
combined input, ensuring a nuanced understand-
ing of both linguistic and visual cues. The team
reported that while their multimodal model con-
sistently outperformed text-only baselines across
BLEU, ChrF2, and TER metrics, some discrep-
ancies with the ground truth translations highlight
the importance of incorporating human evaluation
for a more reliable assessment of translation qual-
ity.

00-7 competed in three tracks—Image Caption-
ing, Text-only, and Multimodal Translation—for
Indic languages, developing a multimodal model
that integrates a multilingual LLM with a vision
module for improved translation. Their method
employs a ViT image encoder to extract visual
token embeddings, which are projected into the
LLM space through an adapter layer, generating
translations autoregressively. They achieved state-
of-the-art results for Hindi on the Challenge set,
while remaining competitive for other languages.
Despite the models success, they observed limited
impact of the vision modality on translation qual-
ity.

5.2 Results

Automatic evaluation results Tables 4 to 8
present the automatic evaluation results of the sub-
mitted systems, indicating that the systems per-
formed competitively against each other. Despite
these promising results, participants expressed a
need for human evaluations, as shown in subse-
quent tables. This reflects a common concern
among participants who suspect that their systems
may outperform the scores they received, under-
scoring the importance of qualitative assessments
in conjunction with automatic metrics.

Human evaluation results Tables 10 and 11
present the adequacy scores after human evalua-

Lang. System ID Type RSRC BLEU RIBES

en-hi 00-7 7190 NMT Yes 53.40 0.842400
en-hi v036 7406 NMT No 43.20 0.812507
en-hi Brotherhood 7378 NMT Yes 37.90 0.795538
en-hi DCU_NMT 7372 NMT No 30.30 0.710342

en-ml 00-7 7195 NMT Yes 39.80 0.739973
en-ml v036 7395 NMT No 33.30 0.606598
en-ml Brotherhood 7377 NMT Yes 13.60 0.428194

en-bn 00-7 7192 NMT Yes 45.30 0.796451
en-bn v036 7414 NMT No 33.90 0.736029
en-bn Brotherhood 7375 NMT Yes 21.70 0.644341

en-ha Brotherhood 7376 NMT Yes 21.10 0.636818

Table 4: MMCHMM24 submissions

Lang. System ID Type RSRC BLEU RIBES

en-hi 00-7 7313 NMT No 54.10 0.858322
en-hi ODIAGEN 7358 Other No 44.10 0.815457
en-hi DCU_NMT 7349 NMT No 35.90 0.762839

en-ml 00-7 7327 NMT Yes 34.00 0.651880
en-ml ODIAGEN 7343 Other No 18.10 0.505942

en-bn 00-7 7321 NMT Yes 44.20 0.789032
en-bn ODIAGEN 7336 Other No 35.60 0.735341

en-ha ODIAGEN 7366 Other No 24.40 0.663630

Table 5: MMCHTEXT24 submissions

Lang. System ID Type RSRC BLEU RIBES

en-hi v036 7411 NMT No 44.60 0.833853
en-hi 00-7 7325 NMT No 43.70 0.813357
en-hi DCU_NMT 7351 NMT No 40.60 0.806358
en-hi UNLP 7392 NMT No 40.30 0.800532
en-hi Brotherhood 7379 NMT Yes 29.70 0.725450

en-ml 00-7 7194 NMT Yes 51.40 0.780907
en-ml v036 7396 NMT No 42.70 0.700828
en-ml UNLP 7393 NMT No 32.20 0.626281
en-ml Brotherhood 7382 NMT Yes 15.10 0.410674

en-bn 00-7 7191 NMT Yes 46.40 0.775597
en-bn v036 7418 NMT No 44.10 0.737924
en-bn UNLP 7391 NMT No 42.10 0.766589
en-bn Brotherhood 7381 NMT Yes 22.10 0.575370

en-ha UNLP 7394 NMT No 41.80 0.723997
en-ha Brotherhood 7380 NMT Yes 17.70 0.580239

Table 6: MMEVMM24 submissions

tion. The scores reinforce the need for human eval-
uations to actually determine the quality of multi-
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Lang. System ID Type RSRC BLEU RIBES

en-hi 00-7 7322 NMT Yes 43.30 0.812578
en-hi DCU_NMT 7348 NMT Yes 42.70 0.817949
en-hi ODIAGEN 7335 Other No 41.60 0.821154

en-ml 00-7 7326 NMT Yes 37.80 0.633752
en-ml ODIAGEN 7365 Other No 33.10 0.668374

en-bn 00-7 7320 NMT No 45.10 0.766452
en-bn ODIAGEN 7363 Other No 43.70 0.789757

en-ha ODIAGEN 7344 Other No 49.80 0.812898
en-ha Arewa_NLP 7314 SMT No 40.70 0.755910

Table 7: MMEVTEXT24 submissions

Lang. System ID Type RSRC BLEU RIBES

en-hi 00-7 7385 NMT Yes 2.80 0.183643

en-ml 00-7 7389 NMT Yes 0.90 0.064375

en-bn 00-7 7386 NMT No 1.80 0.105044

Table 8: MMEVHI24 submissions

Lang. System ID Type RSRC BLEU RIBES

en-hi 00-7 7346 NMT No 1.30 0.125551

en-ml 00-7 7390 NMT Yes 0.30 0.039097

en-bn 00-7 7387 NMT Yes 0.40 0.041301

Table 9: MMCHHI24 submissions

modal generations. The number of sentences that
were marked 4 and 5 (almost all or all informa-
tion transmitted) in system 7375 Brotherhood in
Table 10 indicates a higher performance than what
the automatic metrics suggest for the same system
in Table 4.

Lang. System ID JPO adequacy scores

# 1 2 3 4 5

en-bn v036 7414 1 2 6 29 84 79
2 7 23 47 85 38

en-bn Brotherhood 7375 1 0 1 16 71 112
2 1 10 11 46 132

en-ha Brotherhood 7376 1 11 21 40 48 80
2 16 29 50 68 37

Table 10: MMCHMM24 Human Evaluations on ran-
dom 200 Test Sentences

6 Conclusion and Future Directions

This paper presents an overview of the English-
to-Low Resource Multimodal Translation shared
tasks at WMT2024. The task attracted strong par-
ticipation from numerous teams. Out of these,
7 teams submitted system description papers de-
tailing their approaches and results. In the fu-
ture, we aim to expand the range of low-resource

Lang. System ID JPO adequacy scores

# 1 2 3 4 5

en-bn ODIAGEN 7336 1 15 18 55 66 46
2 46 43 48 40 23

en-ha ODIAGEN 7366 1 18 29 62 61 30
2 26 58 66 36 14

Table 11: MMCHTEXT24 Human Evaluations on ran-
dom 200 Test Sentences

languages, with a particular focus on multimodal
translation, and encourage greater participation
from more teams.
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Panda, Ondřej Bojar, Bashir Shehu Galadanci, and
Bello Shehu Bello. 2022. Hausa Visual Genome:
A Dataset for Multi-Modal English to Hausa Ma-
chine Translation. In Proceedings of the Language
Resources and Evaluation Conference, pages 6471–
6479, Marseille, France. European Language Re-
sources Association.

Siddharth Betala and Ishan Chokshi. 2024. Brother-
hood at wmt 2024: Leveraging llm-generated con-
textual conversations for cross-lingual image cap-
tioning. arXiv preprint arXiv:2409.15052.

Lucas Beyer, Andreas Steiner, André Susano Pinto,
Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael
Tschannen, Emanuele Bugliarello, et al. 2024.
Paligemma: A versatile 3b vlm for transfer. arXiv
preprint arXiv:2407.07726.

682

https://aclanthology.org/2022.lrec-1.694
https://aclanthology.org/2022.lrec-1.694
https://aclanthology.org/2022.lrec-1.694


Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su,
Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo,
Tong Lu, Yu Qiao, and Jifeng Dai. 2023. Internvl:
Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238.

Desmond Elliott, Douwe Kiela, and Angeliki Lazari-
dou. 2016. Multimodal learning and reasoning. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics: Tutorial Ab-
stracts, Berlin, Germany. Association for Computa-
tional Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 944–952, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. Opennmt: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72. Association for Computational Lin-
guistics.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision –
ECCV 2014, pages 740–755, Cham. Springer Inter-
national Publishing.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Shantipriya Parida and Ondřej Bojar. 2021. Malay-
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Abstract

This paper presents the results of the Ninth
Conference on Machine Translation (WMT24)
Shared Task “Translation into Low-Resource
Languages of Spain”. The task focused
on the development of machine translation
systems for three language pairs: Spanish–
Aragonese, Spanish–Aranese, and Spanish–
Asturian. 17 teams participated in the shared
task with a total of 87 submissions. The base-
line system for all language pairs was Aper-
tium, a rule-based machine translation system
that still performs competitively well, even
in an era dominated by more advanced non-
symbolic approaches. We report and discuss
the results of the submitted systems, highlight-
ing the strengths of both neural and rule-based
approaches.

1 Introduction

In Spain, a diverse linguistic landscape exists, in-
cluding, beyond the widely recognized Spanish,
other languages such as Basque, Catalan, and Gali-
cian. Although Spanish is obviously at the fore-
front in terms of the volume of resources available
for training data-driven machine translation (MT)
systems, the capabilities and richness of the other
languages should not be underestimated. Basque,
Catalan, and Galician, which might have been con-
sidered limited in resources in the past, actually
possess a significant amount of data that facili-
tate their integration into modern MT technolo-
gies. In fact, these three languages have been re-
cently included among the list of up to 100 lan-
guages in well-known multilingual systems such as
mBERT1 (Devlin et al., 2019), XLM-R (Conneau
et al., 2020), mBART (Liu et al., 2020), mT5 (Xue
et al., 2021) or NLLB-200 (Costa-jussà et al., 2024).
However, Spain is home to additional languages
with much fewer resources, especially in the form

1https://huggingface.co/google-bert/
bert-base-multilingual-cased

of bilingual data. This task focuses on three of
them, namely, Aragonese, Aranese, and Asturian,
all of them Romance languages. In particular, par-
ticipants were asked to submit MT systems from
Spanish into any of these three languages.

An interesting fact about our three low-resource
languages is that they have open rule-based MT sys-
tems available for the Apertium framework. Aper-
tium (Forcada et al., 2011) is a free/open-source
rule-based architecture for MT that consists of
a pipeline of modules performing morphological
analysis, part-of-speech tagging, lexical transfer,
lexical selection, chunk-level or recursive structural
transfer, and morphological generation.

Another important aspect is that the target lan-
guages of the shared task have undergone various
orthographic conventions and standards, and the
datasets, as well as the MT systems, available may
not necessarily adhere to the current conventions
adopted by the language academies and used in the
test sets.

Submission platform. We utilized the open-
source OCELoT platform2 to collect translation
submissions. The platform offers anonymized pub-
lic leaderboards and has been employed in several
previous WMT tasks. Submission privileges were
restricted to registered and verified teams with accu-
rate contact information, and each team was limited
to a maximum of seven submissions per test set.

Main goals. The primary objectives of this
shared task can be summarized as follows:

• To push the boundaries of MT system devel-
opment when the amount of resources is ex-
tremely scarce.

• To explore the transferability among low-
resource Romance languages when translating
from Spanish.

2https://github.com/AppraiseDev/OCELoT
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• To find the best way to use pre-trained models
of any kind for the translation between Span-
ish and low-resource Romance languages.

• To create publicly available corpora for MT
development and evaluation.

Main findings. The main conclusions of the
shared task and insights gained are outlined next:

• The best systems result in automatic evalua-
tion scores that are statistically significantly
higher than the baseline system, namely, the
Apertium rule-based system.

• However, the absolute differences in BLEU
and chrF2 scores are not very large (up to
2 BLEU and 1 chrF2 points) in the case of
Aragonese and Aranese, which suggests that
the rule-based system may still play a role in
the translation of these languages, given the
fact that they are considerably less resource-
hungry than the neural counterparts.

• In the case of Asturian, while the best sys-
tems generally maintain a similar range of
differences with Apertium, there is one stand-
out system that extends the gap significantly,
achieving up to 5 BLEU and more than 3
chrF2 points higher. It is worth noting that this
winning system primarily leverages a com-
mercial large language model (LLM) through
few-shot learning, sampling a new output if
the LLM generates a translation that is unex-
pectedly short or long compared to the source.
This underscores the increasing potential of
cutting-edge LLMs and the implications for
smaller, specialized systems, which may soon
be outpaced by new models, even for low-
resource languages like Asturian.

The structure of the paper is as follows. Sec. 2
provides an overview of the three target languages.
Sec. 3 then outlines the different submission cate-
gories based on the resources used, whereas Sec. 4
describes the training data and resources provided
to participants, as well as the development and
test data used. Sec. 5 briefly describe the systems
submitted within each category. The automatic
evaluation results are then reported and discussed
in Sec. 6. Finally, Sec. 7 concludes the paper with
summarizing remarks.

2 Languages

Aragonese (Glottocode3 arag1245), a Romance
language mainly spoken in the Pyrenees valleys of
Aragón, is primarily used in rural communities and
among older generations; intergenerational trans-
mission is severely at risk. It has around 25 000
speakers (Reyes et al., 2017, Table 5).4 Although
recognized as cultural heritage, it does not hold
official status, which hampers its broader use and
preservation. Despite these challenges, efforts to
revitalize the language continue, supported by edu-
cational initiatives and cultural programs.

Aranese (Glottocode aran1260) is a variety of
the Occitan language spoken in the Val d’Aran,
Catalonia, where it holds official status alongside
Catalan and Spanish. It is spoken by approx-
imately 4 500 people (Generalitat de Catalunya,
2019, page 4), though its use has been declining
due to the dominance of Spanish and Catalan in
the region. Despite its small number of speakers,
Aranese remains protected by local laws, and ef-
forts to promote its use in education and public life
are ongoing.

Asturian (Glottocode astu1246), another Ro-
mance language, is spoken by around 250 000
people (Llera Ramo, 2018, Figure 6) in Asturias,
though it lacks official status. Like the other lan-
guages, Asturian is recognized and protected as
cultural heritage, and there are efforts to increase
its presence in schools and public life. Many speak-
ers have a passive understanding of the language,
and there is a strong cultural identity linked to it.

3 Submission Categories

Participants could submit their work in one of three
categories,5 depending on the corpora used, the
models employed, and the reproducibility of the
results: constrained, open, and closed.

Constrained submissions. These submissions
are limited to using only the resources (corpora,
dictionaries, Apertium-based systems or data, and
orthographic conventions) listed in Section 4.1.
Participants may also use publicly available pre-
trained language or translation models, as long as
their size does not exceed 1 billion parameters (1B),

3https://glottolog.org
4Here and in the following figures, we provide the data for

the number of people who can speak the language, including
those with even a basic level of proficiency.

5The organizers reserved the right to assign submissions
to the appropriate category if there was any uncertainty.
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as specified in their model cards.6 This size restric-
tion also applies to neural systems used for aux-
iliary purposes, such as generating synthetic data.
The developed systems could be either bilingual
or multilingual, and do not necessarily needed to
cover all the target languages.

Open submissions. Submissions in this category
can utilize any resources (corpora, pre-trained mod-
els, etc.) in any language, with no size restrictions,
as long as the resources are publicly available un-
der open-source licenses to ensure reproducibility.
MT systems or large language models available
online also fall into this category, provided that the
resulting outputs are made available to the public.

Closed submissions. Closed submissions face no
restrictions on the availability of resources (corpora,
pre-trained models, etc.) used for training.

4 Data and Resources

This section describes the training corpora and re-
sources provided to the participants for the con-
strained submissions (Sec. 4.1), as well as the de-
velopment and test corpora used for all submission
categories (Sec. 4.2).

4.1 Training Corpora and Resources
Training data. The shared task included a con-
strained submission category that restricted the re-
sources participants could use to develop their sys-
tems, as outlined in Sec. 3. In addition to the FLO-
RES+ dev set (see Sec. 4.2), which could be used
for training or validation, participants in this cate-
gory were provided with the following resources:

• Any resource from OPUS, particularly the
largely uncurated resources available for
Spanish–Aragonese,7 Spanish–Occitan,8 and
Spanish–Asturian.9 Using data from OPUS
included monolingual data on the source or
target sides or any other bilingual corpus.

• Data from the PILAR dataset (Galiano-
Jiménez et al., 2024b), a collection of low-
resource language corpora from the Iberian

6For example, NLLB-200-600M, among others, meets
this requirement: https://huggingface.co/facebook/
nllb-200-distilled-600M.

7https://opus.nlpl.eu/results/es&an/
corpus-result-table

8https://opus.nlpl.eu/results/es&oc/
corpus-result-table

9https://opus.nlpl.eu/results/es&ast/
corpus-result-table

Peninsula. PILAR contains monolingual and
parallel resources for research and develop-
ment in Romance languages, with data for
Aragonese (monolingual web crawled and
literary texts), Aranese (bilingual Spanish–
Aranese legal provisions from the Diari Ofi-
cial de la Generalitat de Catalunya, web
crawled texts, and classic literary works), and
Asturian (literary and popular science writ-
ings).

Systems submitted to the other categories (open
and closed) could use the resources listed above,
but they were not restricted to them.

Language identification. Participants also had
access to tools such as Idiomata Cognitor (Galiano-
Jiménez et al., 2024a), a highly accurate language
identifier for the target languages and other Ro-
mance languages.10

Apertium data. For participants interested in
integrating linguistic data into their systems or
generating synthetic data, links were provided to
Apertium’s resources for Aragonese,11 Spanish–
Aragonese,12 Aragonese–Catalan,13 Spanish–
Asturian,14 Asturian,15 Occitan–Spanish,16 and
Occitan–Catalan.17

Other MT systems. In addition to Apertium-
based MT systems, participants were informed
of other available MT systems, which could
also follow different orthographic conventions to
those used in the test sets: the traduze18 system
for Aragonese–Spanish; the Softcatalà19 neural
Aranese–Catalan system; and the eslema20 MT sys-
tem for Asturian–Spanish.

Dictionaries. Dictionaries, whether monolingual
or bilingual, could serve as valuable complemen-
tary resources for participants. The following
dictionaries were suggested as potential sources:

10https://github.com/transducens/idiomata_
cognitor

11https://github.com/apertium/apertium-arg
12https://github.com/apertium/apertium-spa-arg
13https://github.com/apertium/apertium-arg-cat
14https://github.com/apertium/apertium-spa-ast
15https://github.com/apertium/apertium-ast
16https://github.com/apertium/apertium-oci-spa
17https://github.com/apertium/apertium-oci-cat
18https://traduze.aragon.es/
19https://github.com/Softcatala/nmt-softcatala
20https://eslema.it.uniovi.es/comun/traductor.

php
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Diccionari der aranés21 by Institut d’Estudis
Aranesi;22 and the Diccionariu de la Llingua As-
turiana, available online23 with a limit of 500 query
results.

Orthographic standards. Participants were in-
formed that the target languages have exhibited
various orthographic conventions over time. The
evaluation and test sets adhere to contemporary
standards, as supported by their respective lan-
guage academies. The following documents re-
flect these standards: Normes ortogràfiques24 by
the Academia de la Llingua Asturiana; Ortografía
de l’aragonés25 by the Academia Aragonesa de
la Lengua; and Gramatica der occitan aranés26

published by the Institut d’Estudis Aranesi.

4.2 Development and Test Data

Ad-hoc versions of the FLORES+ datasets were
purposefully created for the three languages in the
shared task. FLORES+ is a multilingual transla-
tion benchmark that began with a limited set of
languages (Guzmán et al., 2019), was later ex-
panded to 101 languages (Goyal et al., 2022), and
most recently to 200 languages (Costa-jussà et al.,
2024). In late 2023, the Open Language Data Initia-
tive27 (OLDI) took over leadership in extending the
dataset to new languages and renamed it FLORES+.
Specifically, OLDI proposed a shared task28 to ex-
tend FLORES+ to more languages for the Ninth
Conference on Machine Translation (WMT24).
The Aragonese, Aranese and Asturian versions of
FLORES+ used in this shared task were submitted
to the OLDI’s task as well.

The sentences in FLORES+ are translations of
English sentences sampled equally from Wikinews
(an international news source), Wikijunior (a col-
lection of age-appropriate non-fiction books), and
Wikivoyage (a travel guide). The dataset consists

21https://www.diccionari.cat/cerca/
diccionari-der-aranes

22A PDF version can be downloaded from http:
//www.institutestudisaranesi.cat/wp-content/
uploads/2021/04/DICCIONARI-DER-ARANÉS.pdf.

23https://diccionariu.alladixital.org/
24https://alladixital.org/wp-content/uploads/

2024/01/Normes-Ortografiques-8a-edicion-FINAL-3.
pdf

25https://academiaaragonesadelalengua.
org/sites/default/files/ficheros-pdf/
ortografia-aragones.pdf

26http://www.institutestudisaranesi.cat/
wp-content/uploads/2021/04/gramatica-aranes.pdf

27https://oldi.org
28https://www2.statmt.org/wmt24/open-data.html

of a development set (dev) of 997 sentences and a
development test set (devtest) of 1012 sentences.

Participants in this shared task were initially pro-
vided with the FLORES+ dev set in March 2024
and encouraged to use it for system development,
as it closely mirrors the test set in terms of ortho-
graphic, grammatical, and domain aspects. Par-
ticipants had a deadline of July 12, 2024, to sub-
mit translations of the Spanish side of the devtest
set. Only after that deadline, was the devtest set
for Aragonese, Aranese, and Asturian publicly re-
leased.

The following provides a brief overview of the
FLORES+ datasets for each language, whereas a
more detailed explanation of the creation process is
available in the paper by Pérez-Ortiz et al. (2024).

For the Aragonese and Aranese datasets, a first
draft of the dev and devtest sets were initially gen-
erated using the Spanish–Aragonese and Catalan–
Aranese Apertium (Forcada et al., 2011) rule-based
system. These machine translations were post-
edited by language experts and then reviewed by na-
tive speakers, including members of the Academia
Aragonesa de la Lengua29 and the Institut d’Estudis
Aranesi.30 The post-editing step is justified by three
factors: the lack of resources to hire qualified trans-
lators for a from-scratch translation, the common
practice of post-editing for these languages, and
the high degree of similarity between Spanish and
these languages, which makes Apertium transla-
tions reliable and less prone to unnatural transla-
tionese. In the case of Asturian, professional trans-
lations originally included in FLORES-101 were
reviewed twice by native speakers, including mem-
bers of the Academia de la Llingua Asturiana.31

Pérez-Ortiz et al. (2024, Table 2) report the ex-
tent of changes made to the dev and devtest sets
after both the initial and final revisions by the lan-
guage academies. The data reveal significant mod-
ifications to the output of Apertium, with a TER
score32 of approximately 26% for Aragonese, 64%
for Aranese, and 7% for Asturian, after the two
rounds of revision.

29https://academiaaragonesadelalengua.org
30http://www.institutestudisaranesi.cat
31https://www.academiadelallingua.com
32The translation error rate (TER) metric (Snover et al.,

2006) is employed here to quantify the number of edits needed
to transform the sentences from the initial versions into their
corresponding counterparts in the final corpus.
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5 Teams Participating in the Shared Task

We received a total of 87 submissions from 17 dif-
ferent teams. Table 1 lists the teams that partici-
pated in the shared task, along with the language
pairs they worked on and the reference, if available,
to their system description paper.

Along with their translations of the test set, par-
ticipants submitted an extended abstract describing
their systems and the resources used. Based on that
information, we provide a brief overview of the
systems developed by each of the participants.

CUNI-GA. The CUNI-GA team’s contribu-
tion (Hrabal et al., 2024) for the three language
pairs in the shared task involved the QLoRA fine-
tuning of two open-source large language models
(LLMs): Aya-23-8B and Command-R 35B. They
used a small back-translated dataset, specifically
the literary section of the PILAR corpus (Galiano-
Jiménez et al., 2024b), which was back-translated
using Apertium. Both LLMs were fine-tuned with
a single joint model covering all the languages.

CycleL. The Dublin City University presented
two systems (Spanish–Aragonese and Spanish–
Asturian) to the constrained task (Dréano et al.,
2024). They employed CycleGN, a fully self-
supervised NMT framework that does not rely on
parallel data. For this shared task, they exclusively
used the PILAR corpus, applying sentence permu-
tations to ensure the dataset remained non-parallel.

Helsinki-NLP. This team submitted mod-
els (de Gibert et al., 2024) exclusively to the
unconstrained open track. Alongside the data
provided in the task, such as PILAR, they utilized
additional monolingual resources like Wikipedia
dumps and dictionary definitions. To enhance their
training data, they generated synthetic parallel
data through back-translation using an OPUS-MT
model. Their data filtering process incorporated
language identification using the Idiomata Cogni-
tor tool, as well as the OpusCleaner (Bogoychev
et al., 2023) and OpusFilter (Aulamo et al., 2021)
tools, to clean and refine their datasets.

For their models, Helsinki-NLP considered var-
ious initial systems, including OPUS-MT mod-
els (Tiedemann et al., 2024) and different sizes of
NLLB-200 models, ranging from 600M to 3.3B
parameters. They ultimately chose a multilin-
gual OPUS-MT model based on the transformer-
big architecture and produced an ensemble model

after fine-tuning. Their other submissions used
sequence-level distillation to train smaller student
models that integrated rule-based translation. This
was done by translating parallel sentences using
both their neural best system and Apertium, se-
lecting the output with the best chrF score relative
to the reference, and training smaller transformer-
based models on the distilled data. The sizes of
distilled models ranged from the transformer base
architecture to even smaller models obtained via
the OpusDistillery tool.33 Their different models
showed statistically significant differences in most
cases, except for Asturian, with the distilled models
providing competitive translation performance.

HW-TSC. The Huawei Translation Service Cen-
ter participated in the constrained category by sub-
mitting three systems, one for each of the target
languages. Their submissions (Luo et al., 2024)
were based on a transformer-big architecture with
an expanded number of encoder layers (25). They
started by training multilingual systems on sam-
pled training data to obtain both one-to-many and
many-to-one pre-trained models, which were then
further trained on the original bilingual data to
create translation models between Spanish and
Aragonese, Aranese, and Asturian in both direc-
tions. Additionally, they utilized synthetic corpora
generated via Apertium (forward translation) and
through back-translation using the aforementioned
multilingual models. LaBSE (Feng et al., 2022)
denoising was applied to filter out noisy parallel
sentences from both the provided training data and
the generated synthetic data. Finally, transductive
ensemble learning was employed to aggregate mul-
tiple models for inference.

ILENIA-MT. For the constrained submis-
sion (Sant et al., 2024), the team leveraged
synthetic corpus generation through Apertium,
primarily using data from OPUS and PILAR.
Synthetic data was generated by translating from
Spanish to Aragonese and Aranese (pivoting
through Catalan in this case) using Apertium,
while for Asturian, the team directly used
NLLB-200-600M. Additional monolingual data
was sourced from orthography dictionaries as
supplementary resources. A comprehensive
data filtering process was applied, involving the
removal of noisy sentences using LABSE-based

33https://github.com/Helsinki-NLP/
OpusDistillery
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Submission Name Language Pairs System Description
Apertium (baseline) Aragonese, Aranese, Asturian (Forcada et al., 2011)
CUNI-GA Aragonese, Aranese, Asturian (Hrabal et al., 2024)
CycleL Aragonese, Asturian (Dréano et al., 2024)
Helsinki-NLP Aragonese, Aranese, Asturian (de Gibert et al., 2024)
HW-TSC Aragonese, Aranese, Asturian (Luo et al., 2024)
ILENIA-MT Aragonese, Aranese, Asturian (Sant et al., 2024)
imaxin Asturian (González, 2024)
LCT-LAP Aragonese, Aranese, Asturian (Bär et al., 2024)
Mora translate Asturian (Menan et al., 2024)
SJTU-MT Aragonese, Aranese, Asturian (Hu et al., 2024)
SRPH-LIT Aragonese, Aranese, Asturian (Velasco et al., 2024)
Stevens Inst. of Tech. Aragonese (no associated paper)
TAN-IBE Aragonese, Aranese, Asturian (Oliver, 2024)
TIM-UNIGE Aragonese, Aranese (Mutal and Ormaechea, 2024)
TRIBBLE Aragonese, Aranese, Asturian (Kuzmin et al., 2024)
UAlacant Aragonese, Aranese, Asturian (Galiano-Jiménez et al., 2024)
Vicomtech Aragonese, Aranese, Asturian (Ponce et al., 2024)
Z-AGI Labs Aragonese, Aranese, Asturian (no associated paper)

Table 1: Participants in the WMT24 Shared Task “Translation into Low-Resource Languages of Spain”. Apertium
has its own row, but it is not an actual participant; it rather serves as the baseline system.

embeddings (Feng et al., 2022), sentence length
filtering, and language recognition with the
Idiomata Cognitor tool. The NLLB-200-600M
model was then fine-tuned with all the resulting
parallel and synthetic data. To handle unsupported
languages in NLLB, new language tags were
added for Aragonese and Aranese, initialized
with embeddings from Spanish and Occitan,
respectively.

For the open submission (Sant et al., 2024),
ILENIA-MT used Apertium to generate a large
amount of synthetic data, translating 30 million
sentences sourced from Spanish monolingual cor-
pora. A transformer model was then trained from
scratch. This approach resulted in slightly lower
scores than the constrained submission.

imaxin software. This team presented an im-
proved version of the Apertium system for the
Spanish–Asturian language pair (González, 2024).
The team has enhanced Apertium both in terms
of syntax, by developing new constraint grammar
and transfer rules, and in the lexical domain, by
expanding the dictionaries.

LCT-LAP. The University of the Basque Coun-
try submitted three systems to the constrained cat-
egory (Bär et al., 2024). These systems were ob-
tained by fine-tuning OPUS-MT pre-trained mod-

els for two high-resource Romance languages:
Spanish–Galician was used as the starting point for
Spanish–Asturian, and Spanish–Catalan was used
for Spanish–Aragonese and Spanish–Aranese. The
fine-tuning was conducted on OPUS corpora, with
noisy parallel sentences removed from the provided
training data, and on synthetic corpora generated
with Apertium by translating monolingual corpora
in PILAR. Before utilizing the OPUS corpora, Id-
iomata Cognitor was employed to remove parallel
sentences not in the desired language, and Aper-
tium was then employed to translate one side of the
parallel corpus, followed by BLEU scoring to filter
out low-quality parallel sentences.

Mora translate. This team participated in the
Spanish–Asturian language pair with a constrained
submission (Menan et al., 2024). Their main
contribution is a dual-stage data filtering system
that combines statistical methods for both bilin-
gual and monolingual data, along with a filtering
method based on Jensen-Shannon divergence (Lin,
1991). They used the filtered CCMatrix and
Wikimedia corpora, and utilized the PILAR cor-
pus for Asturian and the Spanish portion of the
English–Spanish Wikimedia corpus as monolin-
gual data. Training was conducted in two phases:
(1) training the entire model using the filtered Span-
ish–Asturian CCMatrix, and (2) fine-tuning the
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best model by unfreezing only the decoder. For
fine-tuning, several datasets were combined, in-
cluding monolingual data translated with NLLB-
200-600M.

SJTU-MT. The systems submitted by this
team (Hu et al., 2024) are based on strategies that
differ significantly from traditional methods. The
submissions covered all three target languages with
notable variations in approach for each language
pair.

For Aragonese and Aranese, the team generated
a pseudo-parallel corpus using Apertium. They
sampled one million Spanish sentences from the
NLLB Spanish corpus in OPUS, then translated
these into Aragonese and Aranese using Apertium
to create a synthetic parallel corpus. Both models
used a small LLM, Qwen2-0.5B,34 which was first
fine-tuned on this synthetic corpus.

For Aragonese, the model underwent an addi-
tional step of few-shot fine-tuning. This involved
assembling five-shot examples using sentences
from the FLORES+ dev set, providing these as
context before training the model to translate sen-
tences. At inference time, when a new sentence is
inputted for translation, they use the BM25 rank-
ing function (Robertson and Zaragoza, 2009) to
identify the five most relevant examples from the
FLORES+ dev set to replicate the same few-shot
format introduced during training.35

For Aranese, after supervised fine-tuning of
Qwen2 on the pseudo-corpus, an additional step in-
volved applying the recently proposed contrastive
preference optimization (CPO) algorithm (Xu et al.,
2024). This method, which moves beyond stan-
dard training that replicates a reference translation,
employs reinforcement learning loss functions to
push models towards preferred translations while
steering away from suboptimal ones. In order to
apply CPO to their model, the team used Apertium
translations as the least preferred and the target
references from FLORES+ as the most preferred.
Despite discouraging Apertium-like translations at
times during training, this process improved the
system’s performance for Aranese.36

34https://github.com/QwenLM/Qwen
35Notably, this approach leveraged the dev set not only

during training but also during inference, as opposed to many
other systems.

36This confirms that the use of post-editing of Apertium
translations as an initial step in obtaining the FLORES+ data
for our target languages did not overly bias the translations
toward an Apertium-like style.

For Aragonese and Aranese, if the generated
translations were significantly shorter or longer
than the input, they were replaced with Apertium
translations.

For Asturian, the team employed a completely
different approach and participated in the open
track. They used the large language model Claude
3.5 Sonnet,37 utilizing a simple prompting strat-
egy: when translating a new FLORES+ devtest
sentence, they retrieved the 20 most similar exam-
ples from the FLORES+ dev set using the BM25
ranking function, providing these as suggestions to
the model. If the translations produced were signif-
icantly shorter or longer than the input, rather than
relying on Apertium as before, they simply resam-
pled the model’s output until achieving a translation
within an acceptable length range.

SRPH-LIT. Samsung R&D Institute Philippines
submitted three translation systems to the con-
strained category (Velasco et al., 2024), each ad-
dressing one of the three language pairs with a
standard sequence-to-sequence transformer archi-
tecture. For each language pair, three systems were
trained and combined using a noisy-channel re-
ranking strategy to enhance output selection during
decoding. The training data included filtered OPUS
corpora —using ratio-based and LaBSE-based em-
bedding methods— as well as synthetic data gen-
erated through back-translation with Apertium.
Due to limited direct translation support in Aper-
tium, translations for Aragonese–Spanish followed
the path Aragonese–Catalan, Catalan–Interlingua,
Interlingua–Spanish, while Aranese–Spanish fol-
lowed the path Aranese–Catalan, Catalan–Spanish.

Stevens The Stevens Institute of Technology par-
ticipated with a constrained model for Spanish–
Aragonese. They leveraged NLLB-200 via a
multi-stage fine-tuning process applied to both
Aragonese–Spanish and Spanish–Aragonese trans-
lations. To supplement the limited available paral-
lel data, they developed a back-translation system,
generating synthetic parallel data and refining it
by selecting the top 20% based on L2 cosine sim-
ilarity. This iterative process enhanced both the
back-translation model and the final forward trans-
lation system. The final system was an ensemble,
created by averaging the weights of the two best-
performing models on the development corpus.

37https://www.anthropic.com/news/
claude-3-5-sonnet
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TAN-IBE. The TAN-IBE team (Oliver, 2024)
presented systems for all language pairs in the
shared task. To address the lack of resources and
the low quality of existing corpora, the team: (a)
cleaned the existing corpora; (b) created new cor-
pora from Wikipedia; (c) experimented with back-
translation and synthetic corpora; and (d) explored
multilingual systems. All training was conducted
using a transformer Marian-NMT model. For the
Spanish–Asturian pair, they submitted an open sys-
tem using a cleaned version of the NLLB corpus
and the newly created Wikipedia corpus. For Span-
ish–Aragonese and Spanish–Aranese, they submit-
ted constrained systems, using the cleaned existing
corpora, the new Wikipedia corpus, and synthetic
corpora generated with Apertium.

TIM-UNIGE. This team started by generat-
ing synthetic data for both forward and back-
translation (Mutal and Ormaechea, 2024). They
employed a two-phase synthetic data generation
strategy using the BLOOMZ-560M model (Muen-
nighoff et al., 2023) to fit within the constraints
of the task. In the first phase, they fine-tuned
BLOOMZ38 on monolingual data from the target
and related languages, using the task of predicting
the next token. The FLORES+ dataset served as
the validation set. This approach allowed the model
to generate additional monolingual text, which
they obtained by sampling various prefix lengths
from the FLORES+ sentences and completing them
through the model.

This synthetic monolingual text was then passed
through Apertium to create additional parallel data,
which was used to train their models. The training
involved either building a transformer from scratch,
using a pretrained Helsinki model (72M parame-
ters), or the NLLB-200-600M model. A curricu-
lum learning strategy was employed during train-
ing, where multiple phases gradually incorporated
smaller subsets of higher-quality data, reduced the
learning rate, and shortened the training steps. The
final step involved fine-tuning exclusively on the
FLORES+ dataset.

TRIBBLE. Universitat Pompeu Fabra and the
Polish Academy of Science jointly submitted a
model in the constrained category for translating
into the three languages addressed in the shared
task (Kuzmin et al., 2024). Their system, built on

38BLOOMZ has the characteristic of having been exposed
to the FLORES datasets during its training.

the NLLB-200-600M model, was trained on cor-
pora sampled from OPUS and PILAR, along with
synthetic data generated using Apertium. They fur-
ther refined the data by utilizing Idiomata Cognitor
and fastText to filter out sentence pairs in unde-
sired languages. To reduce noise in the parallel
corpus, they translated the Spanish side into the
target language using Apertium and computed sim-
ilarity scores based on the Levenshtein distance,
discarding low-similarity bilingual sentence pairs.

UAlacant. The models submitted by Universitat
d’Alacant (Galiano-Jiménez et al., 2024) use both
parallel and monolingual corpora, supplemented by
synthetic corpora, in the three translation directions
of this task. The systems use corpora from OPUS
and PILAR, together with synthetic data generated
by Apertium. All submissions are classified as
open due to the use of the NLLB-200-1.3B model,
which exceeds the 1B parameter limit. For each
translation direction, they submitted three models
by fine-tuning NLLB-200.

The first approach combines parallel corpora
for translation with monolingual data used in a
denoising task, helping the system to learn from
target language corpora even in the absence of suffi-
cient bilingual data. A second approach introduces
synthetic data, including both back-translation,
where monolingual target language texts are trans-
lated into Spanish, and synthetic corpora gener-
ated by translating Spanish texts into the target
languages. The third approach trains on multiple
language pairs simultaneously, including Spanish,
Aragonese, Asturian, Aranese and related Romance
languages, such as Catalan, Galician and Valencian,
using their linguistic similarities to enhance knowl-
edge transfer and improve performance across lan-
guages. This results in a multilingual system capa-
ble of translating between all the languages.

Vicomtech. This team submitted systems for
both the constrained and open categories (Ponce
et al., 2024). For the constrained category, they ex-
ploited synthetic data generation using Apertium,
like many other participants, combining it with
the available parallel data. A filtering process that
included language identification using Idiomata
Cognitor, cross-lingual embeddings, and sentence
length ratios was considered to clean the training
data. Their neural translation models were built us-
ing transformer-base architectures (6 layers in the
encoder and 6 in the decoder), alongside the NLLB-
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Rank id Team BLEU
Open submission

1
636 ILENIA-MT 62.7
637 ILENIA-MT 62.6

2
— Apertium 61.1

633 Vicomtech 61.0
3 554 UAlacant 60.2
4 495 UAlacant 59.8
5 577 Helsinki-NLP 52.7
6 549 Helsinki-NLP 51.5
7 563 Helsinki-NLP 50.6
8 523 Helsinki-NLP 49.1
9 548 UAlacant 37.8
10 647 CUNI-GA 36.1
Constrained submission

1
663 SJTU-MT 63.2
607 HW-TSC 63.0

2

529 ILENIA-MT 62.3
558 ILENIA-MT 62.2
634 ILENIA-MT 62.2
642 TIM-UNIGE 61.9

3

526 ILENIA-MT 61.6
— Apertium 61.1

504 Vicomtech 61.1
644 TIM-UNIGE 61.1

4
586 TIM-UNIGE 60.7
539 TIM-UNIGE 60.5

5 649 Stevens 59.8

6
613 Stevens 57.5
584 TAN-IBE 57.3

7 622 TRIBBLE 49.2

8
530 LCT-LAP 38.9
662 Stevens 38.7
513 Stevens 37.5

9 507 SRPH-LIT 28.2
10 534 Z-AGI Labs 24.3
11 533 Z-AGI Labs 22.1
12 591 CycleL 0.2

Table 2: BLEU scores computed over the FLORES+
devtest set for Spanish–Aragonese.

200-600M model, finding the non-pretrained neural
models to work slightly better.

For the open category, a key highlight of their ap-
proach, as emphasized by the authors, was the use
of the Llama3-8B LLM (Dubey, 2024) to generate
synthetic data in the reverse direction, i.e., from
the target low-resource languages into Spanish.
This approach allowed their MT systems to exploit
whatever knowledge of the target languages the

Rank id Team BLEU
Open submission

1
— Apertium 28.8

627 Vicomtech 28.8
2 555 UAlacant 28.5

3
587 ILENIA-MT 27.3
656 CUNI-GA 27.1
552 UAlacant 27.0

4 578 Helsinki-NLP 24.3
5 562 Helsinki-NLP 22.4
6 550 Helsinki-NLP 22.1
7 524 Helsinki-NLP 21.6
Constrained submission

1

621 SJTU-MT 30.4
641 TIM-UNIGE 30.2
527 ILENIA-MT 30.1
619 TIM-UNIGE 30.1
617 TIM-UNIGE 30.0
640 TIM-UNIGE 29.9
625 Vicomtech 29.8

2
575 TIM-UNIGE 28.9
— Apertium 28.8

3 494 TIM-UNIGE 28.2
4 610 TAN-IBE 26.9
5 608 HW-TSC 26.3
6 623 TRIBBLE 23.9
7 531 LCT-LAP 21.8
8 581 SRPH-LIT 7.7
9 536 Z-AGI Labs 3.8
10 535 Z-AGI Labs 3.7

Table 3: BLEU scores computed over the FLORES+
devtest set for Spanish–Aranese.

LLMs might have, even if this knowledge is likely
limited due to exposure to only small amounts of
text. Their open category models combined data
from Apertium, other NMT systems, and LLM-
generated data, resulting in slightly better scores
for Asturian over the constrained models.

Z-AGI Labs. This team participated in all lan-
guage pairs of the shared task. They fine-tuned
the NLLB and Helsinki-NLP/OpusMT models us-
ing the OPUS dataset provided on the shared task
website.

6 Results and Discussion

We measured the translation quality of the different
systems submitted to the shared task when trans-
lating the FLORES+ devtest dataset by means of
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BLEU (Papineni et al., 2002)39 and chrF2 (Popović,
2015).40. We did not use neural-based metrics,
such as COMET (Rei et al., 2020), as they are not
available for the target languages. Neither did we
conduct a manual evaluation because of the lack of
resources to hire qualified translators.

Rank id Team BLEU
Open submission
1 576 SJTU-MT 23.2

2

551 Helsinki-NLP 18.2
564 Helsinki-NLP 18.0
579 Helsinki-NLP 18.0
568 TAN-IBE 18.0
629 Vicomtech 18.0

3 525 Helsinki-NLP 17.9
4 553 UAlacant 17.4

5
— Apertium 17.0

556 UAlacant 16.9
497 UAlacant 16.8

6 632 ILENIA-MT 16.7
7 648 CUNI-GA 15.2
Constrained submission
1 606 HW-TSC 19.8
2 528 ILENIA-MT 18.4

3

624 TRIBBLE 17.9
547 Mora translate 17.6
630 Vicomtech 17.6
532 LCT-LAP 17.5
546 SRPH-LIT 17.5
522 Mora translate 17.4
590 Mora translate 17.4
519 Mora translate 17.4
512 Mora translate 17.4
543 Mora translate 17.3

4 — Apertium 17.0
5 538 Z-AGI Labs 7.6
6 537 Z-AGI Labs 6.4
7 597 CycleL 0.1
Closed submission
1 580 imaxin 17.6
2 — Apertium 17.0

Table 4: BLEU scores computed over the FLORES+
devtest set for Spanish–Asturian.

As already mentioned in the introduction, the
three language pairs have an Apertium MT system

39SacreBLEU BLEU signature: nrefs:1 | case:mixed
| eff:no | tok:13a | smooth:exp | version:2.0.0

40SacreBLEU chrF2 signature: nrefs:1 | case:mixed |
eff:yes | nc:6 | nw:0 | space:no | version:2.0.0

available; we therefore include Apertium among
the systems evalauted in this section. The spe-
cific versions of Apertium used for each language
are: Spanish–Aragonese 0.6.0,41 Spanish–Aranese
1.0.8,42 Spanish–Asturian 1.1.1.43

Tables 2, 3 and 4 show the BLEU scores attained
by each system for Aragonese, Aranese and As-
turian, respectively. Similarly, tables 5, 6 and 7
show the results obtained with chrF2. Each table
reports, in addition to the BLEU or chrF2 scores,
a ranking of the systems from best (#1) to worse.
This ranking was derived using a statistical signifi-
cance test conducted through paired approximate
randomization (Riezler and Maxwell, 2005) with
SacreBLEU.44 Systems within the same rank do
not exhibit statistically significant differences.

The ranking process involved an iterative ap-
proach. We began by selecting the best system for
each metric as the control translation. The trans-
lations provided by other systems were then com-
pared to this control to determine if the differences
were statistically significant. Systems whose out-
put did not differ significantly from the control
were associated with it and removed from the pool
of translations. The next best system then became
the new control translation, and the process was
repeated. This iterative process continued until no
system remained in the pool.

In the Spanish–Aragonese translation task (Ta-
bles 2 and 5), the open submission results show
the ILENIA-MT team achieving the highest BLEU
score of 62.7. Notably, ILENIA-MT’s performance
is consistent, as their second submission scores
nearly identical at 62.6. The Apertium baseline
and the submission by Vicomtech closely follow,
with BLEU scores of 61.1 and 61.0, respectively.
UAlacant’s entries, which rank 3rd and 4th with
scores of 60.2 and 59.8, demonstrate strong com-
petitiveness as well, outperforming the submissions
from Helsinki-NLP, which rank lower.

In the constrained submission category, SJTU-
MT and HW-TSC lead with BLEU scores of 63.2
and 63.0, respectively, surpassing the top scores
from the open submissions —a difference that is
statistically significant—. SJTU-MT’s approach

41https://github.com/apertium/apertium-spa-arg/
releases/tag/v0.6.0

42https://github.com/apertium/apertium-oc-es/
releases/tag/v1.0.8

43https://github.com/apertium/apertium-spa-ast/
releases/tag/v1.1.1

44https://github.com/mjpost/sacrebleu
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Rank id Team chrF2
Open submission

1
636 ILENIA-MT 80.0
637 ILENIA-MT 80.0

2
— Apertium 79.3

633 Vicomtech 79.3
3 554 UAlacant 78.9
4 495 UAlacant 78.8
5 577 Helsinki-NLP 75.9
6 549 Helsinki-NLP 75.6
7 563 Helsinki-NLP 75.4
8 523 Helsinki-NLP 74.6
9 548 UAlacant 67.5
10 647 CUNI-GA 67.8
Constrained submission

1

607 HW-TSC 80.3
663 SJTU-MT 80.1
529 ILENIA-MT 79.9
558 ILENIA-MT 79.9
634 ILENIA-MT 79.9

2

526 ILENIA-MT 79.5
642 TIM-UNIGE 79.5

— Apertium 79.3
504 Vicomtech 79.3

3
586 TIM-UNIGE 79.0
539 TIM-UNIGE 79.0
644 TIM-UNIGE 79.0
649 Stevens 78.7

4 584 TAN-IBE 78.1
5 613 Stevens 77.2
6 622 TRIBBLE 73.6
7 530 LCT-LAP 68.6
8 513 Stevens 67.4

9
662 Stevens 62.0
534 Z-AGI Labs 61.8

10 533 Z-AGI Labs 60.6
11 507 SRPH-LIT 58.4
12 591 CycleL 13.7

Table 5: chrF2 computed over the FLORES+ devtest set
for Spanish–Aragonese.

stands out as one of the most innovative in the
task, employing strategies that diverge significantly
from traditional methods, whereas HW-TSC used
the largest number of layers in the encoder (25)
of all the submissions. ILENIA-MT continues to
perform strongly, with their top entry scoring 62.3,
closely followed by TIM-UNIGE, Apertium and
Vicomtech.

For the Spanish–Aranese pair (Tables 3 and 6),

Rank id Team chrF2
Open submission

1
— Apertium 49.4

627 Vicomtech 49.4
2 555 UAlacant 49.3

3
587 ILENIA-MT 48.8
656 CUNI-GA 48.5
552 UAlacant 48.3

4 578 Helsinki-NLP 46.6
5 562 Helsinki-NLP 45.7
6 550 Helsinki-NLP 45.1
7 524 Helsinki-NLP 45.0
Constrained submission

1

527 ILENIA-MT 50.1
621 SJTU-MT 49.9
619 TIM-UNIGE 49.8
617 TIM-UNIGE 49.7
625 Vicomtech 49.8

2

641 TIM-UNIGE 49.6
— Apertium 49.4

640 TIM-UNIGE 49.3
575 TIM-UNIGE 49.2

3
494 TIM-UNIGE 48.8
610 TAN-IBE 48.8

4 608 HW-TSC 47.9
5 623 TRIBBLE 46.1
6 531 LCT-LAP 45.5
7 581 SRPH-LIT 34.8
8 536 Z-AGI Labs 32.8
9 535 Z-AGI Labs 31.9

Table 6: chrF2 computed over the FLORES+ devtest set
for Spanish–Aranese.

the open submission category presents a narrower
range of BLEU scores compared to Aragonese.
Apertium and Vicomtech share the top position
with a BLEU score of 28.8, closely followed by
UAlacant with 28.5.

In the constrained submission category, SJTU-
MT once again leads, achieving a BLEU score
of 30.4. This time, several other teams —
TIM-UNIGE, ILENIA-MT, and Vicomtech— join
SJTU-MT at the top, all with scores outperforming
the open submissions by a statistically significant
margin.

The lower BLEU scores for the Spanish–
Asturian language pair (Tables 4 and 7), are
likely due to the way the FLORES+ dev and de-
vtest datasets were constructed, with translations
originating from English rather than Spanish. In
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Rank id Team chrF2
Open submission
1 576 SJTU-MT 55.2

2

551 Helsinki-NLP 51.6
564 Helsinki-NLP 51.6
579 Helsinki-NLP 51.5
568 TAN-IBE 51.6
629 Vicomtech 51.6

3 525 Helsinki-NLP 51.4

4

556 UAlacant 50.9
497 UAlacant 50.9
— Apertium 50.8

553 UAlacant 50.7
5 632 ILENIA-MT 50.5
6 648 CUNI-GA 48.9
Constrained submission

1
606 HW-TSC 52.2
528 ILENIA-MT 52.1

2

547 Mora translate 51.4
630 Vicomtech 51.2
519 Mora translate 51.2
590 Mora translate 51.2
522 Mora translate 51.0
512 Mora translate 51.0
543 Mora translate 51.0
— Apertium 50.8

3
532 LCT-LAP 50.7
624 TRIBBLE 50.5
546 SRPH-LIT 50.0

4 538 Z-AGI Labs 44.4
5 537 Z-AGI Labs 42.7
6 597 CycleL 15.9
Closed submission
1 580 imaxin 51.2
2 — Apertium 50.8

Table 7: chrF2 computed over the FLORES+ devtest set
for Spanish–Asturian.

the open submission category, SJTU-MT leads
with a score of 23.2, significantly outperform-
ing the second-best system, Helsinki-NLP, by 5
BLEU points, with the latter’s scores clustering
around 18.0.

The constrained submission results show HW-
TSC leading with a BLEU score of 19.8, followed
by ILENIA-MT at 18.4. Despite the constrained
environment, HW-TSC’s results indicate that their
extensive use of encoder layers and synthetic data
generation proved beneficial.

7 Conclusions

This paper has presented the outcomes of the Ninth
Conference on Machine Translation (WMT24)
Shared Task on Translation into Low-Resource
Languages of Spain. The challenge centred on
building MT systems for three Romance language
pairs: Spanish–Aragonese, Spanish–Aranese, and
Spanish–Asturian. In total, 17 teams took part in
this shared task.

Across all three language pairs, there is some
variability in performance both between and within
the categories (open, constrained, and closed). Top-
performing teams such as SJTU-MT, ILENIA-MT,
and HW-TSC consistently achieved high rankings
across multiple pairs. The results also underscore
the challenges posed by low-resource languages,
where factors such as data availability and the
choice of methods —e.g., synthetic data genera-
tion, fine-tuning strategies, or transformer model
size— significantly affect performance. Notably,
most of the best-performing systems utilized the
Apertium rule-based system to generate synthetic
data, highlighting the ongoing relevance of these
approaches in complementing neural methods.
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Abstract

Following last year’s WMT, we (Tencent AI
Lab and China Literature Ltd.) have continued
to host literary translation shared task (Wang
et al., 2023) this year, the second edition of the
Discourse-Level Literary Translation.

First, we (Tencent AI Lab and China Literature
Ltd.) release a copyrighted and document-level
Chinese-English web novel corpus. Further-
more, we put forth an industry-endorsed cri-
teria to guide human evaluation process. This
year, we totally received 10 submissions from 5
academia and industry teams. We employ both
automatic and human evaluations to measure
the performance of the submitted systems. The
official ranking of the systems is based on the
overall human judgments. In addition, our ex-
tensive analysis reveals a series of interesting
findings on literary and discourse-aware MT.
We release data, system outputs, and leader-
board at https://www2.statmt.org/wmt24/
literary-translation-task.html.

1 Introduction

With the swift progression of MT and the no-
table advancements in Large Language Models
(LLM) (??), our curiosity is piqued regarding the
efficacy of MT and LLM in the realm of literary
translation. We aim to explore the extent to which
these technologies can aid in addressing the intri-
cate challenges of translating literary works. There-
fore, we hold the first edition of the Discourse-
Level Literary Translation in WMT 2023. Literary
texts encompass a wide range of forms, includ-
ing novels, short stories, poetry, plays, essays, and
more. Among these, web novels, also known as
online or internet novels, represent a unique and
rapidly growing subset of literature. Their popular-
ity, accessibility, and diverse genres set them apart.
As they provide not only an extensive volume of
text but also exhibit distinctive linguistic features,
cultural phenomena, and simulations of societies,

web novels can serve as valuable resources and
challenging for MT research.

Limitations

We discuss the potential limitations of this edition
of the shared task as follows:
• Language Pair. This year, we only focus on

Chinese→English direction. However, we have
a long-term plan to continuously organize this
task, and will extend the copyrighted dataset into
Chinese-Russian and Chinese-German language
pairs next year.

• Literary Genre. This year, we mainly used the
Web Fiction Corpus which is only one type of
literary text. We use Web Fiction for two reasons:
(1) its literariness is less complicated than others
(e.g. poetry, masterpiece); (2) such bilingual data
are numerous and continuously increased. We
will consider to extend more literary genres such
as poetric translation in the next year.

• Discourse Benchmark. We have accumulated
some discourse- and context-aware benchmarks
(???). These benchmarks are pivotal for assess-
ing the proficiency of LLMs in handling com-
plex language structures and contextual nuances.
As participation of LLM-based systems in our
shared tasks increases, we anticipate integrating
these benchmarks more comprehensively into
our future evaluations to better measure and un-
derstand the evolution of LLM capabilities in
linguistic context and discourse comprehension.
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Type System Sent-Level Doc-Level

BLEU↑ chrF2↑ COMET↑ TER↓ d-BLEU↑

Baselines
Google⋆ 37.4 57.0 80.50 57.4 47.3

Llama-MT⋆ n/a n/a n/a n/a 43.1
GPT-4⋆ n/a n/a n/a n/a 43.7

Primary

Cloudsheep⋆ 39.5 57.5 81.22 55.5 48.5
HW-TSC 40.5 58.5 82.61 56.0 50.2

NLP2CT-UM⋆ 41.6 58.7 83.56 52.7 50.9
NTU⋆ 20.9 41.9 74.53 73.9 34.6

SJTU-LoveFiction⋆ 35.1 54.7 80.79 62.1 47.2

Contrastive

HW-TSC 40.6 58.6 82.59 55.9 50.3
NLP2CT-UM⋆

1 41.6 58.7 83.54 52.8 50.8
NLP2CT-UM⋆

2 41.5 58.6 83.38 52.8 50.7
SJTU-LoveFiction⋆1 35.7 56.0 82.67 59.7 46.3
SJTU-LoveFiction⋆2 38.6 56.5 82.49 57.1 49.6

Table 1: Evaluation results of baseline and participants’ systems in terms of automatic evaluation methods,
including 1) sentence-level metrics BLEU, chrF, COMET, TER; and 2) document-level metrics d-BLEU. Systems
marked with ⋆ are unconstrained, while others are constrained. The COMET is calculated with unbabel-comet using
Reference 1 while others are calculated with sacrebleu using two references. The best primary constrained and
unconstrained systems are highlighted.

Translation, pages 55–67, Singapore. Association for
Computational Linguistics.

A Example Appendix

This is a section in the appendix.
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Abstract

This paper presents the findings from the third
edition of the Chat Translation Shared Task. As
with previous editions, the task involved trans-
lating bilingual customer support conversations,
specifically focusing on the impact of conver-
sation context in translation quality and evalua-
tion. We also include two new language pairs:
English↔Korean and English↔Dutch, in addi-
tion to the set of language pairs from previous
editions: English↔German, English↔French,
and English↔Brazilian Portuguese.

We received 22 primary submissions and 32
contrastive submissions from eight teams, with
each language pair having participation from
at least three teams. We evaluated the sys-
tems comprehensively using both automatic
metrics and human judgments via a direct as-
sessment framework. The official rankings for
each language pair were determined based on
human evaluation scores, considering perfor-
mance in both translation directions—agent
and customer. Our analysis shows that while
the systems excelled at translating individual
turns, there is room for improvement in overall
conversation-level translation quality.

1 Introduction

Translating conversational text, in particular cus-
tomer support chats, is an important and challeng-
ing application for machine translation (MT) tech-
nology. According to a 2020 survey from CSA
Research, 75% of shoppers are more likely to make
another purchase if customer support is offered
in their native language, making it appealing for
businesses to invest in multilingual support.1 How-
ever, there are several key challenges to translat-
ing chats: customer support chats typically feature
short text exchanges between agents and customers
(see Table 1), leading to fragmented sentences and

1https://csa-research.com/Featured-Content/
For-Global-Enterprises/Global-Growth/
CRWB-Series/CRWB-B2C

omission of information (implied by the context).
This makes it difficult for MT systems to produce
coherent translations that maintain the intended
meaning of the text (Farajian et al., 2020). Further-
more, chats often use colloquial language and are
characterized by informality and grammatical in-
accuracies (Gonçalves et al., 2022). Consequently,
translating such content poses a dual challenge: not
only must a system accurately translate between
languages, but it should also effectively model the
nuances and ambiguity in a dialogue.

While recent advancements in MT systems,
driven by LLMs, have proven effective in vari-
ous tasks, bilingual chat translation remains under-
explored. The Chat Translation Shared Task
aims to bridge this gap by promoting research and
development of MT systems designed specifically
for conversational translation. This year’s edition
places special emphasis on the role of conversa-
tion context, encouraging teams to examine how
context influences translation in the inherently am-
biguous and dynamic nature of chat interactions.
Following the success of the previous two editions
of the Chat Translation Shared Task (Farajian et al.,
2020; Farinha et al., 2022), this year we organized
the third edition of the task with the following im-
provements:

• We expanded the set of language pairs to include
English↔Korean (EN-KO) and English↔Dutch
(EN-NL), in addition to languages from
previous editions: English↔German
(EN-DE), English↔French (EN-FR), and
English↔Brazilian Portuguese (EN-PT).

• We carefully curated the evaluation sets to enable
the evaluation of effective context utilization on
systems’ performance.

• We conducted a comprehensive evaluation of all
systems using: a) automatic metrics (both neural
and lexical) that assess translation quality and
the accuracy of modeling discourse phenomena
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g customer Hallo, ich komme nicht in meine Sum up pos was denn no App rein
Hello, I can not get into my sum up pos what then no app

� agent I am sorry to hear that.
Es tut mir leid, das zu erfahren.

� agent Let me see what I can do for you
Lassen Sie mich sehen, was ich für Sie tun kann.

� agent Could you please tell me what error message you can see while logging in to your POS?
Könnten Sie mir bitte sagen, welche Fehlermeldung Sie sehen können, während Sie sich bei Ihrem POS anmelden?

g customer Wenn ich auf die App gehe, erscheint dieses Gerät hinzufügen.
When I go to the app, it shows Add this device.

� agent Could you please try to connect the App with the POS?
Könnten Sie bitte versuchen, die App mit dem POS zu verbinden?

g customer die App ist die PRS-ORG pos app
the app is the PRS-ORG app

g customer ich habe die Frage daher nicht verstanden
so I did not understand the question

� agent Could you please elaborate on your query?
Könnten Sie bitte Ihre Anfrage näher erläutern?

Table 1: An example of a EN-DE conversation between a customer (g) and an agent (�) from MAIA dataset.

using MUDA (Fernandes et al., 2023b), b) hu-
man direct assessments by professional linguists,
and c) LLM-based fine-grained error analysis
following the MQM framework.

We received a total of 22 primary submissions, 6
submissions for en↔de, 5 for en↔fr, 4 for en↔nl,
4 for en↔pt-br, and 3 for en↔ko. Six out of the
eight teams used large language models (LLMs) as
their base translation model, implementing various
strategies such as finetuning on shared task data,
augmenting training data with synthetic datasets,
prompting strategies, quality-aware decoding, and
several ways of leveraging conversational context
to improve translation quality. With these multi-
faceted solutions explored by several teams, this
year’s shared task yields valuable insights into the
effectiveness of LLMs in translating conversational
texts. We summarize the key findings from the
shared task below:

• Incorporating contextual information from pre-
vious turns almost always improved translation
quality. However, the optimal method for in-
troducing context (whether through summary,
graph, or raw context) still requires further in-
vestigation.

• Human evaluation showed that turn-level transla-
tion quality was consistently high across all par-
ticipating systems and language pairs. Nonethe-
less, there is room for improvement in translating
texts from later turns and at the conversation level
as a whole.

• The UNBABEL-IT submission achieved the best
results across most language pairs and evaluation

criteria, except on the EN-DE and EN-FR tasks
according to automatic metrics.

These findings suggest that future editions of
the shared task could benefit from a) designing
evaluation frameworks, both automatic and human,
that specifically target dialogue-specific criteria to
better understand system limitations (Yeh et al.,
2021; A, 2022; Deriu et al., 2021); b) expanding
the datasets to include more challenging domains
(e.g. patient-physician conversation or everyday
dialogues) and contexts (e.g. multimodal chats) for
a more thorough evaluation of MT systems.

2 Task Description

As in previous editions of the task, we evaluate the
effectiveness of a translation layer in translating
text from the customer’s language to the agent’s
language (e.g., English) and vice versa. We pro-
vide real bilingual customer support data for five
different language pairs and encourage the partici-
pants to use conversation context. They are asked
to submit translations for both directions (agent
and customer). We detail the shared task dataset
provided to the participants and evaluation in § 2.1
and § 2.2 respectively.

2.1 Data: The MAIA 2.0 Corpus
The MAIA 2.0 corpus builds upon the dataset re-
leased in the previous edition (Farinha et al., 2022)
and includes two additional language pairs: Dutch
and Korean. Furthermore, we expanded the sizes of
the existing language pairs, ensuring that each lan-
guage pair contained approximately 20k segments.
The dataset encompasses dialogues across diverse
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train dev test
LP

# seg # conv # length # words # seg # conv # length # words # seg # conv # length #words

EN-NL 15.5k 595 26.0 8.6 2.5k 72 35.4 9.8 2k 58 34.7 10.2
EN-PT 15.0k 435 34.7 8.0 2.5k 96 26.6 8.8 2k 73 27.9 8.8
EN-DE 17.8k 493 36.1 8.5 2.5k 82 31.3 9.4 2k 67 30.5 9.4
EN-KO 16.1k 423 38.1 8.5 1.8k 38 50.9 10.5 2k 42 47.2 9.6
EN-FR 15.0k 264 56.9 7.7 3.0k 90 33.4 10.1 2k 65 32.2 10.1

Table 2: Dataset statistics with the number of segments (#seg), number of conversations (#conv), average conversa-
tion length (#length), and average number of words per turn (#words) in each split. Note that for KO customer parts,
we considered the English reference translation to calculate the number of words.

topics, including account registration issues, pay-
ment and delivery clarifications, and after-sale ser-
vices in various industries such as retail and gaming.
The new dataset was automatically anonymized
using Unbabel’s proprietary anonymization tool,
followed by a manual validation performed by ex-
pert linguists, to comply with the General Data
Protection Regulation (GDPR). The corpus is re-
leased under the CC-BY-NC-4.0 license and can
be freely used for research purposes only. Please
note that, as the license states, no commercial uses
are permitted for this corpus.

Training and Evaluation Datasets. We provide
both training and evaluation (development and test)
sets that participants can use to build their systems.
Table 2 presents each data splits’ statistics, includ-
ing the number of segments, conversations, and
average conversation length. We construct the de-
velopment and test sets by selecting conversations
that exhibit the highest counts of context-dependent
discourse phenomena tags, as extracted using Mul-
tilingual Discourse Aware (MUDA) tagger (Fer-
nandes et al., 2023b).

2.2 Evaluation
We perform a comprehensive evaluation of all sub-
mitted systems, using both automatic and human
evaluation. Official rankings are determined based
on the human assessment scores for both customer
and agent translations. We outline the various eval-
uations conducted below:

2.2.1 Automatic Evaluation
We use COMET (Rei et al., 2022) as our primary
evaluation metric for assessing translation qual-
ity of the submitted systems.2 Additionally, we
report lexical metrics: BLEU and CHRF using
the SacreBLEU library (Post, 2018). We also in-
clude CONTEXTCOMETQE (Agrawal et al., 2024),

2Unbabel/wmt22-comet-da

a reference-free metric that uses bilingual context
(previous two turns) to assess the translation quality
of the current turn. As efficient discourse handling
is not directly reflected in standard MT metrics
(both lexical and neural), we report the F1 accuracy
on the MUDA-tagged discourse phenomena. We
considered 4 context-dependent discourse phenom-
ena in our analysis:

• Lexical cohesion: Entities may have multiple
possible translations in the target language, but
the same entity should be referred to by the same
word in a conversation.

• Formality: Korean uses honorifics to indicate
formality, which are special titles or words ex-
pressing courtesy or respect for position. In
other languages, speakers use second-person pro-
nouns to refer to someone more formally or in-
formally, depending on their relationship with
the addressee. Formality should be consistent
throughout a conversation.

• Pronoun resolution: Some highly inflected lan-
guages use gendered pronouns based on semantic
or morphological rules. To assign the correct pro-
noun, it is therefore necessary to use the conver-
sation’s context to distinguish the grammatical
gender of the pronoun’s antecedent.

• Verb forms: Verbs must be translated consis-
tently using the form that reflects the tone, and
mood of both parties in the conversation.

2.2.2 Manual Evaluation
We use the DA+SQM (Direct Assessment + Scalar
Quality Metric) evaluation framework, following
the campaigns conducted by the WMT General
Translation track over the past years, implemented
via the Appraise framework (Federmann, 2018) to
collect human assessments of translation quality
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Figure 1: Screen capture of the Appraise interface used by professional linguists to perform human evaluation.

LP Threshold # Chats # Systems # annotated
segments

EN-NL 35 27 5 3830
EN-PT 28 41 5 4700
EN-DE 31 36 7 6629
EN-KO 48 24 4 3648
EN-FR 33 37 6 6324

Table 3: Statistics of the conversations and instances
sampled for the human evaluation step.

for the submitted systems. We ask professional lin-
guists hired via the UpWork3 platform to evaluate
each turn in a conversation within the full context
and provide a conversation-level quality score on
a continuous scale from 0 to 100. They were in-
structed to pay special attention to conversation-
level properties such as the consistency of style,
selection of terms, formality, etc in addition to
the correctness criteria. The quality scale includes
seven labeled tick marks representing various qual-
ity levels based on both accuracy and grammatical
correctness (Figure 1).

Data Selection For the human evaluation, we
retain conversations with up to a given number
of turns to make the evaluation manageable. The
number of turns for each language pair is specified
in Table 3 (“Threshold”), together with the number
of conversations and instances retained.

Measure We generate turn-level and
conversation-level system rankings for each
language pair by aggregating the direct assessment
scores provided by the linguists at the turn level
and the conversation level respectively.

3upwork.com

2.2.3 LLM-based Error Assessments

LLM-based evaluation has garnered a lot of inter-
est from the community for conducting human-like
evaluations. This shift is largely driven by the in-
creasing complexity and scale of language models,
making them capable of capturing nuanced under-
standing and performance of models in real-world
tasks. For MT, LLM-based metrics are used to pro-
vide fine-grained error assessments over the nature,
type, and severity of the errors following the MQM
framework (Fernandes et al., 2023a; Lu et al., 2024;
Kocmi and Federmann, 2023). Recently, Agrawal
et al. (2024) show that context-aware prompting
for deriving MQM assessment using LLMs can
achieve better correlation with human judgments
than the standard MQM prompt for chat translation
evaluation, even surpassing COMET.

Hence, we complement our evaluation with an
LLM-based fine-grained assessment of MT out-
puts derived using CONTEXTMQM (Agrawal et al.,
2024). The prompt includes the past eight bilingual
source sentences as context and one in-domain in-
context example with MQM assessment to elicit
MQM-like evaluation from GPT-4o-mini4 for all
systems submitted for the EN-DE track.5 Like
MQM, we compute the segment-level error score
aggregating the number of minor, major, and crit-
ical errors, weighted by factors of 10, 5, and 1,
respectively.

4gpt-4o-mini-2024-07-18 accessed on 10-2-2024.
5Due to budget constraints, we conduct this evaluation

only on EN-DE, which had the highest number (eight) of par-
ticipating teams.
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3 Participants

This section provides a brief description of each
participant’s systems (§ 3.1). Table 4 summarizes
details about the team’s institutions and the lan-
guage directions they participated in. Participants
were asked to submit up to three systems per lan-
guage direction: one primary (explicitly marked)
and up to two contrastive systems. Next, we dis-
cuss the commonalities and differences between
the different submissions § 3.2.

3.1 Systems

3.1.1 NLLB-3.3B (Baseline)
For our baseline model, we used the NLLB-3.3B
multilingual machine translation model (Costa-
jussà et al., 2022) based on an encoder-decoder
Transformer architecture (Vaswani et al., 2017).
NLLB-3.3B is trained to support over 200 lan-
guages, including those of interest in this shared
task: English, German, French, Dutch, Brazilian
Portuguese, and Korean. We opted for a sentence-
level baseline that does not incorporate additional
context and used a beam size of 4 for generating
translation hypotheses.

3.1.2 UNBABEL-IT
The joint submission of Unbabel and IT includes
one primary submission and two contrastive sub-
missions per language pair. The systems are based
on Tower-7B models and are trained on the chat
datasets released by the shared task. Their primary
system uses contextual MBR re-ranking over a set
of 50 candidates to get the best hypothesis. Addi-
tionally, the first contrastive submission is a 70B
variant of the Tower model specialized to have gen-
eral purpose translation capabilities and the second
one uses greedy decoding with the 7B model fine-
tuned on chat datasets.

3.1.3 DEEPTEXT LAB

DEEPTEXT LAB participated in the English-
Korean language pair with a single primary system.
Their submission leverages Google’s Gemma-2-
27B model 6, using the most recent two turns and
summaries of previous turns as context, all within
the same document. The turn summaries are gener-
ated using the GPT-4o-mini model. Their system
was trained solely using the training data provided
by the shared task.

6google/gemma-2-27b-it

TEAM INSTITUTION DIRECTIONS

DeepText Lab Yonsei University EN-KO

HW-TSC Huawei Translation Service
Center

EN-DE

Multitan-GML Université Paris Cité EN-FR

SETU-ADAPT ADAPT research centre &
Dublin City University

EN-DE, EN-FR

SheffieldGATE University of Sheffield EN-DE, EN-NL,
EN-PT

CLTeam Vrije Universiteit Amsterdam EN-DE, EN-NL,
EN-FR, EN-PT

DCUGenNLP Dublin City University ALL

Unbabel-IT Unbabel & Instituto de Tele-
comunicações

ALL

Baseline Organizers ALL

Table 4: The participating teams, their affiliations, and
the language directions that they participated.

3.1.4 HW-TSC

Huawei Translation Service Center (HW-TSC)
team submitted a primary and two contrastive sys-
tems for English↔German language pair. Their
system is a 25-6 transformer encoder-decoder
model with a feed-forward dimension of 4096 and
16 self-attention layers. Their primary submis-
sion uses a model from the previous edition of the
shared task as a baseline, finetuned on this edition’s
training data, followed by a second finetuning on
the validation data. Next, they use MBR reranking
to select the optimal candidate with COMET as the
utility function using outputs generated from a di-
verse set of models. Their system then undergoes
a self-training step on the MBR output. The con-
trastive submissions include models trained with
different finetuning strategies (e.g. excluding the
finetuning on the dev set).

3.1.5 SHEFFIELDGATE

The SHEFFIELDGATE team participated
in English↔German, English↔Dutch, and
English↔Brazilian Portuguese, with one primary
system per language pair. Their system performs
low-rank (Hu et al., 2022) instruction-tuning with
the training and validation datasets provided by the
shared task on the Llama-3-8B-Instruct 7 model.
To incorporate contextual information and depen-
dencies between chat messages, they introduce
a context-aware sliding window approach that
incorporates translations generated at each turn
into the prompt.

7meta-llama/Meta-Llama-3-8B-Instruct
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PARTICIPANT BASE MODEL CHAT CONTEXT? IN-DOMAIN TRAINING? MULTILINGUAL? SYNTHETIC DATA? DECODING

DeepText Lab Gemma-2-27B ✓(summary) ✓ ✗ ✗ NR
HW-TSC Transformer 25-6 ✗ ✓ ✗ ✓ MBR

(from scratch)
Multitan-GML Commercial* ✓ ✓ ✗ ✗ NR
SETU-ADAPT Llama-3-8B (EN-DE) ✓(few-shot) ✓ ✗ ✗ NR

NLLB-200-600M (EN-FR) ✗ ✓ ✗ ✓ NR
SheffieldGATE Llama-8b-Instruct ✓ ✓ ✓ ✗ NR
CLTeam TowerInstruct-7B-v0.2 ✓(graph) ✗ ✓ ✗ NR
DCUGenNLP Llama3.1-8b NR ✓ ✓ ✗ NR
Unbabel-IT TowerBase-7B ✓ ✓ ✓ ✗ MBR

Baseline NLLB-3.3B ✗ ✗ ✓ ✗ Beam (4)

Table 5: Summary of approaches for all primary submissions. NR: Not reported.

3.1.6 SETU-ADAPT

SETU-ADAPT team submitted 3 (one primary
and two contrastive) systems based on different pre-
trained models: NLLB8, MBART-509 and Llama-
3-8B10. Their primary system for EN-DE uses a
Llama-3-8B backbone finetuned on the in-domain
chat and a synthetic dataset generated by back-
translating domain-specific monolingual sentences.
For EN-FR, they finetune an NLLB-600M model.
During inference, with the LLM-based models,
they perform few-shot prompting using examples
retrieved via similarity search from the training
dataset. Their contrastive systems are based on the
encoder-decoder models but use the same datasets
for training.

3.1.7 MULTITAN-GML

MULTITAN-GML’s primary system finetunes a
“Dialog” in-domain specialized model hosted on
the Model Studio Lite server 11 with 2022 Chat
Task (train, valid, test) and 2024 Chat Task
(valid) datasets. Their two contrastive submis-
sions use outputs from NLLB-3.3B model and
the Deep_translator API respectively. All outputs
are post-edited using GPT-4o.

3.1.8 DCUGENNLP

DCUGENNLP team submitted a total of 15 sys-
tems (one primary and two contrastive) for all the
five language pairs. Their primary system fine-
tunes a Llama-3.1-8B model on a mix of the chat
task’s training data and datasets from other WMT
tracks. They also include synthetically generated
customer-service data generated using one of their
contrastive submission. Other contrastive submis-

8facebook/nllb-200-distilled-600M
9facebook/mbart-large-50-many-to-many-mmt

10unsloth/llama-3-8b-bnb-4bit
11modelstudio-lite

sions use Mistral-7B as base models with optional
prompt tuning or finetuning of adapter layers.

3.1.9 CLTEAM

CLTEAM submitted one primary and one con-
trastive systems for each of the English↔German,
English↔French, English↔Dutch, and
English↔Brazilian Portuguese language pairs.
Their system uses TowerInstruct-7B-v0.2 12 model
as the base LLM. For their primary submission,
they prompt the model with both the dialogue
history represented using a graph and the source
sequence to be translated. To generate the graph,
they prompt GPT-4o to extract entities and
relationships from the dialogue data, creating
triples from these elements. For the contrastive
submission, they prompt the model with only the
source sequence to be translated.

3.2 Discussion

Table 5 presents a summary of approaches used by
all the submitted systems. We highlight some key
aspects below:

Model Architecture Most teams except
CLTEAM and HW-TSC finetuned general-
purpose pre-trained LLMs. Where CLTEAM used
an off-the-shelf translation-finetuned LLM, HW-
TSC opted for a custom bilingual encoder-decoder
model for their participation.

Training Data All teams used the provided train-
ing and development data, sourced from the cur-
rent and previous versions of the task. HW-TSC
went a step further by generating a synthetic par-
allel corpus. They did this by forward translating
source-side monolingual data into target-side text
and backtranslating target-side monolingual into
source-side texts. SETU-ADAPT similarly used

12Unbabel/TowerInstruct-7B-v0.2
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EN-DE EN-FR EN-NL EN-PT EN-KOSYSTEM
DE EN FR EN NL EN PT EN KO EN

DeepText Lab 93.03 94.11
HW-TSC 93.58 93.30
MULTITAN-GML 90.09 92.42
ADAPT 90.59 90.97 82.19 82.69
SheffieldGATE 88.67 90.10 88.93 89.71 90.05 88.12
CLTeam 90.90 91.63 91.37 91.90 91.31 91.22 91.77 90.12
DCUGenNLP 90.49 91.10 91.05 90.73 91.32 90.96 93.24 89.66 91.50 93.41
Unbabel-IT 93.22 92.48 92.96 92.71 94.36 93.38 94.76 92.46 94.96 95.16

NLLB-3.3B 90.56 89.03 91.06 89.18 87.86 88.45 86.33 86.10 87.26 88.05
∆ (Best) +3.02 +4.27 +1.9 + 3.53 +6.50 +4.93 +8.43 +6.36 +7.70 +7.11

Table 6: COMET results on the official test set. ∆ (Best): improvement over baseline.

EN-DE EN-FR EN-NL EN-PT EN-KOSYSTEM
DE EN FR EN NL EN PT EN KO EN

DeepText Lab 57.67 77.96
HW-TSC 82.66 84.03
MULTITAN-GML 79.54 82.71
ADAPT 69.50 76.63 63.92 55.98
SheffieldGATE 64.94 72.04 60.01 68.31 67.67 66.38
CLTeam 69.87 75.39 74.66 77.41 63.59 73.00 71.38 69.45
DCUGenNLP 69.84 73.64 73.73 73.78 67.44 70.47 75.24 67.27 49.02 75.35
Unbabel-IT 77.23 79.87 80.51 78.57 80.25 78.60 82.55 76.01 62.29 81.57

NLLB-3.3B 70.22 71.79 76.03 76.37 59.55 68.62 58.60 67.13 34.50 69.87
∆ (Best) +12.44 +12.24 +4.48 +6.34 +20.70 +9.98 +23.95 +8.88 +27.79 +11.70

Table 7: CHRF results on the official test set. ∆ (Best): improvement over baseline.

back translation to generate more in-domain data
for their EN-FR submission.

Inference Both UNBABEL-IT and HW-TSC
leveraged a quality-aware decoding (QAD) ap-
proach (Fernandes et al., 2022) for further improv-
ing the quality of outputs during inference. While
HW-TSC optimized for COMET, UNBABEL-IT
used a context-aware COMET metric as a utility for
selecting the best candidate. HW-TSC also used
MBR outputs to further finetune the model.

Context Usage Different strategies were
employed to incorporate conversation context
into the translation process. UNBABEL-IT,
SHEFFIELDGATE, and MULTITAN-GML uti-
lized the previous turns of the conversation as
context to maintain continuity and coherence
in translations. DEEPTEXT LAB used both the
previous two turns as well as the summary of all
the previous conversation turns except the last

two, generated by GPT-4o-mini. This allowed the
model to focus on the essential part of the previous
content without being overwhelmed by excessive
details. On the other hand, CLTEAM used a
graph representation of the conversation’s history
as context, capturing the connectivity between
various concepts thus serving as a compressed
memory of the dialogue context. SETU-ADAPT
used few shot examples extracted from the training
data using sentence-embedding similarity.

All teams that participated for more than one
language pair opted for a multilingual system ex-
cept for SETU-ADAPT team who submitted two
different systems for each language pair they par-
ticipated in (EN-DE, EN-FR).

4 Overall Results

We present the results of the automatic evaluation
for all participating systems for all language pairs
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EN-DE EN-FR EN-NL EN-PT EN-KOSYSTEM
DE EN FR EN NL EN PT EN KO EN

DeepText Lab 15.99 16.15
HW-TSC 20.79 23.37
MULTITAN-GML 0.31 0.21
ADAPT 15.63 17.97 -23.31 -22.88
SheffieldGATE 17.87 17.54 13.72 14.39 5.87 3.46
CLTeam 19.65 21.15 8.22 7.26 19.00 19.20 8.64 7.68
DCUGenNLP 17.27 20.38 5.11 4.80 16.55 16.09 8.69 6.70 15.84 15.74
Unbabel-IT 24.41 26.15 10.67 10.00 23.93 23.39 12.74 10.59 21.64 21.08

NLLB-3.3B 15.56 19.09 1.24 0.77 9.35 8.04 -5.51 -6.75 4.11 4.13
∆ (Best) +8.85 +7.06 +9.43 +9.23 +14.58 +15.35 +18.25 +17.34 +17.53 +16.95

Table 8: CONTEXTCOMETQE results on the official test set. ∆ (Best): improvement over baseline.

EN-DE EN-FR EN-NL EN-PT EN-KOSYSTEM
DE EN FR EN NL EN PT EN KO EN

DeepText Lab 37.65 66.98
HW-TSC 68.76 71.27
MULTITAN-GML 65.43 71.80
ADAPT 51.39 59.90 33.17 28.56
SheffieldGATE 41.15 50.72 33.62 46.54 42.58 42.25
CLTeam 50.41 55.71 57.05 61.09 39.29 55.41 46.42 49.34
DCUGenNLP 49.97 57.29 56.32 56.39 46.38 52.15 56.36 45.87 27.66 62.13
Unbabel-IT 61.45 62.86 66.41 63.18 65.70 63.75 67.86 59.05 41.54 71.01

NLLB-3.3B 50.43 52.09 59.21 58.07 33.55 48.47 28.25 45.59 12.46 49.76
∆ (Best) +18.33 +19.18 +7.20 +13.73 +32.15 +15.28 +39.61 +13.46 +29.08 +21.25

Table 9: BLEU results on the official test set. ∆ (Best): improvement over baseline.

in § 4.1. We then discuss findings from human
evaluation in § 4.2, followed by an LLM-based
error assessment of submitted systems for the EN-
DE task in § 4.3.

4.1 Automatic Evaluation

Tables 6-9 show the results of automatic evalua-
tions on the official test set using COMET, CHRF
CONTEXTCOMETQE and BLEU respectively -
– most participant systems improve the transla-
tion quality according to both neural (COMET,
CONTEXTCOMETQE) and lexical (CHRF, BLEU)
metrics over the NLLB-3.3B model, except the
SETU-ADAPT system for EN-FR. This can be ex-
plained by the fact that SETU-ADAPT finetunes
an NLLB-600M model for EN-FR, which, albeit
from the same family of models as our baseline
(NLLB-3.3B), is significantly smaller in size.

The UNBABEL-IT submission consistently out-
performs all other systems, except the EN-DE trans-
lation task, where the winning submission accord-
ing to COMET, BLEU, and CHRF is HW-TSC.
Similarly, MULTITAN-GML scores the best on
BLEU and CHRF when translating French into
English. Interestingly both systems (UNBABEL-

IT and HW-TSC) use MBR decoding with CON-
TEXTCOMET and COMET respectively, suggest-
ing that inference optimization techniques like
quality-aware decoding methods (Fernandes et al.,
2022) can be useful in pushing the translation
quality of strong MT systems. However, as we
will see in §4.2, this difference is not reflected
in human assessments and in automatic metrics
(CONTEXTMQM and CONTEXTCOMETQE), with
different methods scoring the two systems differ-
ently. This highlights the importance of carefully
selecting the optimized metrics and the evaluation
criteria, as over-optimizing certain metrics may
lead to mixed or misleading outcomes (Fernandes
et al., 2022).

UNBABEL-IT’s submission also achieves the
highest scores across all settings according to CON-
TEXTCOMETQE. However, we observe that the
range of quality scores produced by the CON-
TEXTCOMETQE model, when aggregated at the
system level, significantly deviates from the typical
range of this metric.13 While Agrawal et al. (2024)
demonstrate its effectiveness as a segment-level

13System-level scores are higher when the context is not
considered.
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metric with improved correlation to human judg-
ments, further investigation is necessary to under-
stand how these system-level scores should be in-
terpreted. For instance, MULTITAN-GML, which
performs well on lexical metrics such as BLEU
and CHRF, receives a notably lower score with
CONTEXTCOMETQE.

System Precision Recall F1

HW-TSC 76.7 86.2 81.2
SETU-ADAPT 75.0 69.2 72.0
SheffieldGATE 73.0 70.8 71.9
CLTeam 75.7 81.5 78.5
DCUGenNLP 74.6 81.5 77.9
Unbabel-IT 75.4 66.2 70.5

NLLB-3.3B 74.3 84.6 79.1

Table 10: MUDA scores for EN-DE pronouns.

Discourse Phenomena Analysis Figure 2 shows
the F1 accuracy for all systems in correctly us-
ing the discourse markers across multiple phenom-
ena for all language pairs. The baseline system
(NLLB-3.3B) has competitive accuracy with sub-
mitted systems on higher resource language pairs
(EN→DE and EN→FR). For all settings except “pro-
nouns” for German and “formality” for German
and French, UNBABEL-IT achieves the highest ac-
curacy across the board. Surprisingly, the MUDA
F1 score for correctly generating German pronouns
is worse for UNBABEL-IT relative to the baseline.
A qualitative analysis shows that this is due to pro-
nouns being under-generated in UNBABEL-IT’s
translations resulting in high precision but low re-
call scores as shown in Table 10.

To validate the observations and findings derived
from automatic metrics, we now turn to human
evaluation of the submitted systems for a more
reliable assessment of translation quality.

4.2 Human Evaluation

We present the human evaluation results at both
turn and conversation levels in Tables 11 and 12
respectively.

Overall results. UNBABEL-IT outperforms all
systems on both turn-level and conversation-level
evaluation, surpassing the HW-TSC system that
achieved the highest COMET scores on EN-DE

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

EN-DE

NLLB-3.3B
SheffieldGATE
ADAPT

Unbabel-IT
CLTeam
DCUGenNLP

HW-TSC
MULTITAN-GML
DeepText Lab

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

EN-FR

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

EN-PT

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

EN-NL

Pronouns Formality Lexical Cohesion Verb Form
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

EN-KO

Figure 2: MUDA F1 scores across all settings.

translation pair.14 The translation quality according
14We note that the human evaluation for EN-DE, like other

LPs, was conducted on a subset of the dataset (limited to a
maximum of 30 turns per conversation).
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EN-DE EN-FR EN-NL EN-PT EN-KOSYSTEM
XX EN XX EN XX EN XX EN XX EN

DeepText Lab 91.35 95.71
HW-TSC 88.47 90.41
MULTITAN-GML 81.83 84.62
ADAPT 82.55 88.83 70.22 65.53
SheffieldGATE 78.63 88.85 85.62 94.18 73.34 81.53
CLTeam 83.12 89.12 84.28 85.79 93.39 95.83 74.14 80.52
DCUGenNLP 84.56 88.60 85.72 83.26 91.30 94.61 80.21 81.55 89.71 96.15
Unbabel-IT 89.42 92.74 90.24 90.00 98.16 97.40 82.04 82.37 93.39 96.31

NLLB-3.3B 78.05 87.57 80.59 77.82 82.66 90.98 61.27 73.98 79.13 90.47

Table 11: Human Evaluation results aggregated at the turn level on the official test set.
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Figure 3: Conversation-level DA scores.

EN-DE EN-FR EN-NL EN-PT EN-KO

DeepText Lab 90.04
HW-TSC 81.19
MULTITAN-GML 68.59
ADAPT 75.75 59.65
SheffieldGATE 75.72 70.81 68.27
CLTeam 78.61 73.32 84.37 69.85
DCUGenNLP 77.03 72.27 76.41 73.78 89.83
Unbabel-IT 84.22 79.62 92.22 78.00 93.21

NLLB-3.3B 74.50 67.81 53.07 56.37 85.63

Table 12: Human Evaluation results aggregated at the
conversation level on the official test set.

to direct assessment scores of all systems evaluated
across all language pairs is high (> 65) at both con-
versation and turn levels. This could be because of
the nature of the chat dataset which contains very
short texts (the number of words per turn across
language pairs is less than 8, see Table 2).

Conversation-level results. Figure 3 shows the
distribution of scores assigned at the conversation

level for all systems and language pairs. Confirm-
ing the automatic results, NLLB-3.3B scores the
lowest and with the highest standard deviation for
EN-KO, EN-NL and EN-PT. We also observe that
EN-NL generally exhibits the largest standard devi-
ation. After analyzing the outputs, we found that
EN-NL has the highest number of segments (and
conversations) receiving either a score of 0 (when
hallucinating or copying source text verbatim) or
100, indicating a significant variation in translation
quality for this language pair. Although there are
sentences with mid-range scores, the dominance of
segments with extremely high or low scores greatly
influences the overall results, substantially raising
the standard deviation.

Turn-level results. Figure 4 illustrates DA scores
with the increase in the number of turns. For most
systems and language pairs, translation quality de-
teriorates over successive turns, indicating a de-
cline in the systems’ ability to maintain consis-
tency and accuracy in prolonged dialogues. This
decline is particularly evident in the baseline sys-
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Figure 4: Turn-level DA score across different language pairs through a chat.
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Figure 5: Turn avg. vs conversation-level DA scores.

tem, which does not leverage contextual informa-
tion from previous turns to generate translations.
Interestingly, however, despite not using contextual
information, HW-TSC’s system maintains transla-
tion quality across successive turns. This can likely
be attributed to rigorous training on in-domain data,
both authentic and synthetically generated.

Turn Vs. Conversation Quality results. Over-
all, conversation-level quality is lower than
turn-level scores suggesting that there are as-
pects beyond translation accuracy that might im-
pact the overall translation quality and user expe-
rience. This is corroborated by the observation
that the Spearman correlation between the average
turn-level score and conversation-level DA score,
though high, is 0.722. For future evaluations, it

might be worth investigating dialogue-oriented hu-
man assessment (Mendonca et al., 2023) to under-
stand how turn-level scores impact conversation-
level quality.

While direct assessments from experts provide a
reliable measure of translation quality, DA scores
fall short in offering insights into when and how er-
rors occur, as well as their types and nature. There-
fore, to assess the severity of errors generated by
these systems, we now turn to LLM-based fine-
grained error assessment of translation outputs.

4.3 LLM-based Evaluation

System % Perfect # Minor # Major # Critical Avg. Score

HW-TSC 89.12 100 88 59 -0.554
SETU-ADAPT 82.61 158 139 99 -0.903
SheffieldGATE 77.95 220 178 95 -1.009
CLTeam 86.28 139 82 79 -0.656
DCUGenNLP 83.10 143 158 80 -0.849
Unbabel-IT 94.41 51 47 18 -0.228

NLLB-3.3B 80.50 161 143 117 -1.002

Table 13: CONTEXTMQM scores for EN-DE.

Table 13 shows the results from using LLM-
based error assessments via CONTEXTMQM.
UNBABEL-IT leads the pack with 94.41% perfect
translations. It also has the lowest number of er-
rors in each category (minor, major, and critical),
with an average error score of -0.228 (less than 1
minor error), the best among all systems. All sys-
tems, however, manage to achieve over 77% perfect
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translations, meaning the overall quality across the
board is strong.

Despite the positive results, there are notable dif-
ferences in error distribution. For example, both
the SHEFFIELDGATE and SETU-ADAPT mod-
els, while maintaining a reasonable percentage of
perfect translations (82.61% and 77.95%, respec-
tively), suffer from a significantly higher number
of errors across all categories—minor, major, and
critical. This suggests that when these systems do
make errors, they tend to be more frequent and
more serious, dragging down their overall perfor-
mance compared to other systems. Interestingly,
contrary to human evaluation but in line with other
automatic measures, DCUGENNLP scores worse
than CLTEAM submission, highlighting limitations
of existing evaluation methods to discern systems
with close translation quality.

5 Conclusions

This paper presents the findings of the Chat Trans-
lation Shared Task 2024. This year, we expanded
the set of language pairs to include two additional
languages (EN-KO and EN-NL). We created the
evaluation sets with a focus on context usage when
assessing system performance. We also employed
a range of complementary evaluation methods to
assess all systems, including automatic metrics that
focus on translation quality, as well as fine-grained
error assessments and analysis of specific discourse
phenomena.

We find that the best systems finetune strong pre-
trained LLMs using multilingual in-domain data
and use contextual information (such as graphs,
summaries or raw context) during training and in-
ference. Additionally, using synthetic data during
training improved translation quality. Furthermore,
QAD strategies were effective in aligning transla-
tions with quality expectations.

As future work, a possible direction is to lever-
age reference-free discourse quality metrics that
can give complementary insights to the translation
evaluation approaches we tried this year. It might
also be worth investigating human and automatic
evaluation frameworks that assess specific dimen-
sions relevant to chat (e.g. fluidity, coherence, con-
sistency, etc).

Limitations

Due to budget constraints, we conducted human
evaluations using DA on a subset of the test set,

which limited the number of turns evaluated for
each language pair. For similar cost-related reasons,
we ran CONTEXTMQM on a single language pair
that received the highest number of submissions.
Additionally, we note that our analysis of discourse-
specific phenomena is constrained by the quality
of taggers, which only annotate specific properties
based on predefined rules and may not fully capture
all levels of ambiguity present in chat datasets.
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to use this data for research purposes as long as
it follows the General Data Protection Regulation
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Abstract
The repetition of words in an English sen-
tence can create a monotonous or awkward
impression. In such cases, repetition should
be avoided appropriately. To evaluate the per-
formance of machine translation (MT) sys-
tems in avoiding such repetition and outputting
more polished translations, we presented the
shared task of controlling the lexical choice
of MT systems. From Japanese–English par-
allel news articles, we collected several hun-
dred sentence pairs in which the source sen-
tences containing repeated words were trans-
lated in a style that avoided repetition. Partici-
pants were required to encourage the MT sys-
tem to output tokens in a non-repetitive man-
ner while maintaining translation quality. We
conducted human and automatic evaluations
of systems submitted by two teams based on
an encoder-decoder Transformer and a large
language model, respectively. From the exper-
imental results and analysis, we report a series
of findings on this task.

1 Introduction

The development of neural models has improved
the performance of machine translation (MT) sig-
nificantly (Sutskever et al., 2014; Bahdanau et al.,
2015; Vaswani et al., 2017). MT systems are now
used in a variety of real-world scenarios; however,
challenges remain for such systems that assist hu-
man writers. Specifically, the MT output must not
only be adequate and fluent but also follow the
writing style of the target domain. For example, it
is advisable for an application in the English news
domain to follow rules such as the use of active
rather than passive voice, the use of the affirmative
rather than the negative, and the avoidance of redun-
dant phrases (Block, 1994; Cappon, 2019; Papper,
2021). Among these writing style rules, we focus
on the rule regarding the repetition of words in the
English news domain. Generally, common words
repeated in a sentence can create a monotonous

� �
Ja: . . .入学予定者７人が教育方針や私立小への入

学などを理由に入学を辞退した。

En(trans): ..., seven students scheduled to enroll with-

drew their enrollment due to reasons such as the educa-

tional policy and enrolling in a private school.

En: ..., seven children dropped plans to enter the school,

with parents citing disagreements with its education pol-

icy, decisions to join private schools or other reasons,

...� �
Figure 1: Motivating example from a Japanese–English
parallel news article along with a consistent transla-
tion (“En(trans)”) for comparison. Repeated words and
their counterparts are highlighted. “入学” is intention-
ally removed (reduction), probably because it is contex-
tually obvious. In this paper, we distinguish this type
of removal from undertranslation. Additionally, “入学”
and “入学” are translated differently as “join” and “en-
ter,” respectively (substitution).

or awkward impression, and in such cases, repeti-
tion should be avoided appropriately (Burstein and
Wolska, 2003). Typical workarounds are (1) the re-
moval of redundant terms, if possible (Strunk and
White, 1999) or (2) the use of alternative words,
such as synonyms, as substitutes.1 In this paper,
we refer to translation techniques (1) and (2) as
reduction and substitution, respectively, and call
the translation style using these techniques a non-
repetitive style. Figure 1 shows an example of a
non-repetitive style translation from a Japanese–
English parallel news article. We observe that
human writers in the English news domain often
translate Japanese text with such reduction and sub-
stitution.2 These translation techniques arise from
the difference between the styles of the source and

1https://effectiviology.com/
writing-tips-from-the-elements-of-style/#Avoid_
repetition

2Other examples are listed in Appendix A.
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target languages; that is, an article in the source
language was originally produced by a writer who
attached importance to conveying content without
the reader misunderstanding it by using the same
expressions consistently, and then it was translated
into the target language by a writer who was encour-
aged to (or preferred to) translate it in a more di-
verse or concise way. The assumption in this task is
that sentences translated in a simple word-by-word
manner cannot be suited to the target domain. We
could thus associate these translation techniques
with a type of rewriting. Although this task focuses
on the news domain, the monotony or awkward-
ness arising from the repetition of words in English
is also a common problem in other domains.

Given this motivation, we presented a shared
task for non-repetitive translation. To configure
appropriate settings, we limited the task to one-to-
one or two-to-two translations. We hypothesized
that the closer the distance between repeated words,
the greater the need to translate using reduction or
substitution. Additionally, we targeted the repeti-
tion of common words because such words tend to
be substituted according to the findings of Guillou
(2013). We qualitatively categorized several pat-
terns of non-repetitive style translations, and then
collected several hundred instances in which some
words were repeated in the source sentence and
translated using reduction or substitution, which
we used as development and test data. In the re-
mainder of this paper, we first explain the research
background of this task (§2). Next, we describe the
task definition (§3), dataset we prepared (§4), eval-
uation methods (§5), and submitted systems (§6).
Finally, we present the results and some analysis
(§7).

2 Related Work

Contrast with Consistent Translation In the
context of MT research, lexically consistent trans-
lation (in this paper, we also refer to this as repeti-
tive style translation) has been studied actively (Pu
et al., 2017; Kuang et al., 2018; Tu et al., 2018;
Lyu et al., 2021, 2022). A representative study is
the hypothesis of “one translation per discourse,”
which was advocated by Carpuat (2009). The mo-
tivation for these studies is the assumption that
translating text in a consistent style should be en-
couraged because this style is unambiguous and
accurate for readers. Moreover, from the viewpoint
of experimental evaluation, many researchers have

reported that BLEU scores improved as a result of
encouraging consistent translation (Lyu et al., 2021,
2022). However, it is debatable whether all words
should be translated consistently. Translation con-
sistency can depend on several factors, such as the
target domain, type of words, and translation direc-
tion (Guillou, 2013). For example, it is indisputable
that technical terms in the patent domain should
be translated consistently. By contrast, Guillou
(2013) reported that high-frequency verbs are of-
ten translated in diverse ways in English–French
translation. While improving document-level con-
sistency based on the postprocess approach, Zhang
et al. (2023) also mentioned the side effect of the
loss of translation diversity. From another point of
view, consistent translation has the risk of leading
to a robotic wording and giving a monotonous or
awkward impression to readers, as shown in Fig-
ure 1. By contrast, Cappon (2019) claimed that
excessive substitution may obscure the meaning
of the sentence. In monolingual writing, this phe-
nomenon is derided as the elegant variation.3 To
summarize, there is a trade-off between ambiguity
and monotony. This task particularly focuses on the
latter aspect, which has not often been addressed in
previous studies. To the best of our knowledge, no
test sets exist for directly evaluating such a transla-
tion style.

Reduction and Substitution Although several
studies have been conducted related to non-
repetitive translation, the scope of our research is
different. First, several researchers have addressed
the problem of controlling the output length of MT
systems (Lakew et al., 2019; Schioppa et al., 2021).
Typically, special tokens representing the output
length at several discrete levels are inserted into
source sentences. Although this approach is as-
sociated with reduction, our task requires a more
meticulous omission of specific words in sentences.
Regarding substitutions, MT systems are some-
times required to select infrequent words from the
vocabulary. However, researchers have reported
that MT systems are biased toward outputting high-
frequency target words (Ott et al., 2018; Gu et al.,
2020) and tend to produce lexically poorer trans-
lations than humans (Vanmassenhove et al., 2019,
2021). Gu et al. (2020) designed the objective
function so that low-frequency target tokens were
more likely to be output. However, they conducted

3https://en.wikipedia.org/wiki/Elegant_
variation
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the experiment using regular corpora and did not
present a perspective on in what scenarios low-
frequency words should be output. By contrast, we
set up a more specific scenario.

This task is also related to research outside
of translation technique. Neural models have
the traditional problem of not outputting the end-
of-sequence token while generating the same to-
kens endlessly. To alleviate this problem, sev-
eral approaches including learning-based meth-
ods (Welleck et al., 2020) and decoding-based
methods (Keskar et al., 2019), have been proposed.
Although the goal is different, these studies are also
relevant to our task in the sense that word repetition
should be avoided.

3 Task Definition

Our task focused on lexical choice in MT, particu-
larly choice regarding repeated words in a source
sentence. The translation direction was Japanese
to English. Participants were required to control an
MT system using reduction or substitution so that it
did not output the same words for certain repeated
words in a source sentence. Simultaneously, partic-
ipants also needed to maintain translation quality
as much as possible.

The challenges underlying this task included the
following:

• Maintaining the balance between translation
quality and controlling the output: Transla-
tion quality can be degraded when the non-
repetitive style is enforced inappropriately.

• Avoiding bias toward high-frequency bilin-
gual word pairs: Generally, for a given source
word, high-frequency target words associated
with it are more likely to be output. This can
make it difficult to determine appropriate sub-
stitutions for some words.

• Predicting which words can be reduced or sub-
stituted: It is not easy to make an appropriate
prediction because it depends on the context
within the sentence.

• Mining training instances: Translations with
reduction can be particularly difficult to iden-
tify in noisy corpora because of the chal-
lenge of discriminating them from undertrans-
lations.

4 Dataset

We prepared the training, development, and test
data for this task. They were all sourced from
Japanese–English news articles published by Jiji
Press LTD., a Japanese news agency. We annotated
the development and test data for this task, whereas
the training data comprised a regular MT corpus.

4.1 Development and Test Data

We provided development and test sets for this task,
which we refer to as Jiji 2023 data and Jiji 2024
data, respectively. These data included 162 and
479 instances, respectively. The Jiji 2023 data were
originally built for the Non-Repetitive Translation
Task in WAT 2023 (Nakazawa et al., 2023). We
reviewed the data and filtered out some instances
this year. By contrast, the Jiji 2024 data were newly
created in this year. In both datasets, all Japanese
sentences contained some repeated words that were
translated into English with reduction or substitu-
tion. From Japanese–English news articles, we first
automatically created sentence pairs based on lexi-
cal similarities using the method of (Utiyama and
Isahara, 2007) and then manually selected appropri-
ate instances. To reduce the negative effects of im-
balanced content in the source and target sentences,
the Japanese sentences in the Jiji 2023 and 2024
data were manually translated from English by pro-
fessional translators while preserving as much of
the vocabulary of the original Japanese sentences
as possible. Both the released development and
test sets contained raw and tagged parallel data. In
the tagged data, we marked repeated words in the
source sentence and their counterparts in the tar-
get sentence with tags, which indicated that these
words were evaluation targets. Examples are shown
in Table 1. The respective attributes inside the tags
indicate the following:

id: This indicates the IDs of repeated words. In
the example, two tagged repeated words are
included, that is, “機能” (“id=0”) and “製品”
(“id=1”). The number of instances including
multiple tagged repeated words, such as this
example, are limited. Additionally, the num-
ber of types of repeated words in one instance
is one or two.

ref: This indicates the IDs of pairs of source words
and their counterparts, such as (“製品,” “mod-
els”) (i.e., “id=1” and “ref=0”) and (“製品,”
“products”) (i.e., “id=1” and “ref=1”).
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Ja
JEMAの担当者は白物家電について、「<target id=0 ref=0 type=s>機能<\target>を絞った低価格
<target id=1 ref=0 type=s>製品<\target>、高価格な高<target id=0 ref=1 type=s>機能<\target>
<target id=1 ref=1 type=s>製品<\target>とも好調だ」と述べている。

En
“Shipments have been robust for both low-priced <target id=1 ref=0 type=s>models<\target> with reduced
<target id=0 ref=0 type=s>functions<\target> and expensive <target id=0 ref=1 type=s>high-spec<\target>
<target id=1 ref=1 type=s>products<\target>,” a JEMA official said.

Table 1: Examples of tagged instances in the development and test data. The tags are highlighted.

Split # Parallel sentences
train 200K
dev 479
test 1851

Table 2: Statistics of the Jiji 2020 data. Note that “dev”
and “test” in the table are different from the Jiji 2023
and 2024 data.

type: This indicates whether tagged source words
are substituted (“s”) or reduced (“r”).

Note that not all words repeated in the source sen-
tence were evaluation targets. This is because some
words, such as proper nouns and technical terms,
should be translated consistently, even if they were
repeated in the sentence. We provided the tagged
development data to help to tune the model dur-
ing training. However, participants could not use
the tagged test data when submitting the system
results. In this task, the systems had to detect re-
peated words that could be reduced or substituted
on their own.

4.2 Training Data

Regarding the training data, we provided
all the data from the WAT 2020 Newswire
tasks (Nakazawa et al., 2020), which were also
constructed from Jiji news articles and have been
continuously used in WAT since 2020 (Nakazawa
et al., 2020, 2021, 2022, 2023). For simplicity, we
refer to these data as Jiji 2020 data. The main files
in the Jiji 2020 data are shown in Table 2. These
data are a regular parallel corpus. They were not
annotated specifically for this task but were in ex-
actly the same domain as the Jiji 2023 and 2024
data. Although the development and test sets in the
Jiji 2020 data, which are described as “dev” and
“test” in Table 2, were not directly related to the
evaluation of this task, they could be used to mea-
sure basic translation performance during training.
Unfortunately, the number of parallel sentences in
the Jiji 2020 data was limited. Thus, we allowed
participants to use any other corpora for training.

5 Evaluation

We conducted both human and automatic evalua-
tion. We based the main results of this task on the
human evaluation and prepared the automatic eval-
uation as secondary metrics. Again, the goal of this
task was to control an MT system to output trans-
lations in a non-repetitive style while maintaining
translation quality.

5.1 Human Evaluation

We evaluated system performance using the total
number of outputs that met both acceptable transla-
tion adequacy and appropriate lexical choice. Both
aspects were checked by three human translators,
who were assigned by the authors.

Translation Style Regarding the evaluation for
lexical choice, the human translators checked
whether the translations for the tagged source
words were correctly written in a non-repetitive
style. Whether untagged repeated words were trans-
lated in a repetitive or non-repetitive way did not
affect this evaluation. Moreover, the technique (i.e.,
reduction or substitution) did not have to be consis-
tent with that of the reference translation. In our
preliminary investigations, we qualitatively stud-
ied the lexical choices of several translators, and
observed cases in which one translator chose substi-
tution, and another chose reduction. Additionally,
the systems did not have to choose the same words
used in the reference, provided the meaning was
appropriate. The determination of substitution or
repetition was essentially based on the word stem.
For example, conversions between voice (e.g., “at-
tack” and “be attacked”), tense (e.g., “study” and
“studied”), and parts of speech (e.g., “problematic”
and “problem”) were not considered to be substitu-
tions. Conversions to idioms (e.g., “visit” and “pay
a visit”) were an exception and handled as substitu-
tions. This evaluation is not trivial. For example,
it is difficult to establish uniform guidelines for
determining the correctness of synonyms in substi-
tution and whether they are appropriate reductions
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そのうち、21団体(id=1)で被害が確認され、11団体(id=1)が調査(id=2)困難とし、14団体(id=1)が調査(id=2)中としている。

Of them, 21 have been confirmed to have suffered damage, 11 have found it difficult to investigate(id=2), and 14 are 
under investigation(id=2).

Translator #1

𝑡!,#
(#) = “M”

𝑡!,&
(#) = “C”

𝑠!
(#) = 4

The 𝑖-th source sentence

The system output for the 𝑖-th source sentence

Translator #2

𝑡!,#
(&) = “C”

𝑡!,&
(&) = “C”

𝑠!
(&) = 3

Translator #3

𝑡!,#
(') = “M”

𝑡!,&
(') = “C”

𝑠!
(') = 4 𝑠! = 3.7

𝑡!,# = “M”

𝑡!,& = “C”

Average

Majority vote 𝑡! = “ < INCORRECT > ”

Majority vote

Map

𝑠!( = 0

Filter

The evaluation results for the 𝑖-th test instance

Adequacy

Style

Figure 2: Example of human evaluation for the i-th test instance. “団体” (id=1) is undertranslated (at least one
counterpart should appear in the output in this case) (the label is thus “M”), and “調査” (id=2) is translated in a
repetitive style (the label is thus “C”). For simplicity, 1-indexed IDs are used for the repeated words.

or inappropriate omissions. Thus, we adopted a
majority vote by the three human translators in this
evaluation process.

Next, we explain the evaluation procedure for
the i-th test instance, which is also illustrated in Fig-
ure 2. Other test instances were also evaluated in
the same manner and all results were finally aggre-
gated. First, each translator labeled the translations
for the tagged source words in the i-th test instance
as “S” (substitution), “R” (reduction), “C” (con-
sistent, i.e., repetitive), or “M” (mistranslation or
undertranslation). Note that “S,” “R,” and “C” im-
plicitly indicate that the meaning of the translation
is correct. Let the label for the j-th evaluation target
in the i-th test instance given by the k-th translator
be t(k)i,j . Next, the three labels t(1)i,j , t(2)i,j , and t(3)i,j

were reduced to one by a majority vote, which we
denote by ti,j . Because the number of types of
labels was more than two, three labels could all be
different. Although we assumed that such a case
was limited, we introduced an additional heuristic
rule to determine the label as follows:

• If the label set was equal to {“C,”“R,”“S”},
“S” was assigned to ti,j : Because two trans-
lators thought it was correctly translated in a
non-repetitive style, the label should be “R”
or “S.” Next, because two translators thought

the word was not reduced, the label was deter-
mined to be “S.”

• If the label set was equal to {“M,”“R,”“S”},
“R” was assigned to ti,j : Because two trans-
lators thought it was correctly translated in a
non-repetitive style, the label should be “R”
or “S.” Next, the label “M” was assigned prob-
ably because that translator thought some nec-
essary word was omitted. Thus, the label was
determined to be “S.”

• If the label set was equal to {“M,”“C,”“S”},
“S” was assigned to ti,j : Because two trans-
lators thought the meaning of the translation
was correct, the label should be “C” or “S.”
Next, the label “M” was assigned probably be-
cause that translator thought some word had a
slightly different nuance. Thus, the label was
determined to be “S.”

• If the label set was equal to {“M,”“C,”“R”},
“R” was assigned to ti,j : Because two trans-
lators thought the meaning of the translation
was correct, the label should be “C” or “S.”
Next, the label “M” was assigned probably
because that translator thought some neces-
sary word was omitted. Thus, the label was
determined to be “R.”
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Finally, one representative label was assigned to
the i-th test instance, which we denote by ti. Repre-
sentative labels were chosen from “<NON-REP>,”
“<REP>,” and “<INCORRECT>.” For test in-
stances including only one target, the representative
label ti was simply mapped from ti,1 as follows:

• If ti,1 was “R” or “S,” “<NON-REP>” was
assigned to ti.

• If ti,1 was “M,” “<INCORRECT>” was as-
signed to ti.

• If ti,1 was “C,” “<REP>” was assigned to ti.

For test instances including two targets, the repre-
sentative label ti was determined as follows:

• If ti,1 was “R” or “S,” and ti,2 was “R” or “S,”
“<NON-REP>” was assigned to ti.

• If ti,1 was “M” or ti,2 was “M,” “<INCOR-
RECT>” was assigned to ti.

• Otherwise, “<REP>” was assigned to ti.

Translation Accuracy In this task, the content
of the system output may be omitted incorrectly
or obscured if reduction or substitution is enforced
inappropriately. Thus, we measured translation ad-
equacy for system outputs. The evaluation frame-
work was based on Japanese Patent Office (JPO)
adequacy.4 This criterion is well established and
has also been used in domains other than patents.

Specifically, the k-th translator assigned a five-
level discrete score s(k)i ∈ {1, 2, 3, 4, 5} to the i-th
system output. Next, we averaged s(1)i , s(2)i , and
s
(3)
i to si. Additionally, to view the balance be-

tween translation style and adequacy, we reflected
the style label ti in the adequacy score si. If the
translation style was not “<NON-REP>,” we re-
duced the adequacy score si to 0. We refer to this
metric as filtered adequacy and denote it by s′i.

5.2 Automatic Evaluation

We also automatically predicted whether the tar-
get word was translated in a repetitive style. Note
that “<NON-REP>” and “<INCORRECT>” could
not be discriminated in this process. Thus, we
introduced one more label “<NOT-REP>,” which
indicated “<NON-REP>” or “<INCORRECT>.”

4https://www.jpo.go.jp/system/laws/sesaku/
kikaihonyaku/tokkyohonyaku_hyouka.html (in Japanese)

Step 1:
Do all content words appear once each? 

<NOT-REP>

Step 2: 
Are estimated counterparts all the same and 
included in the dictionary?

Yes

No

<REP>

Yes

Step 3: 
Do any words included in the dictionary appear 
more than once?

No

<REP>

Yes

<NOT-REP>

No

Figure 3: Yes/no flowchart for predicting translation
styles.

As a preprocess, we built a bilingual dictionary
from the Jiji 2020 data and JParaCrawl v3.0 (Mor-
ishita et al., 2022). We aggregated translations of
evaluation target words in the Jiji 2024 data by
running the AWESOME aligner (Dou and Neubig,
2021) on the above corpora. Let the j-th evalua-
tion target word in the i-th source sentence be wi,j .
Based on the alignment results, we obtained a set
of possible counterparts of wi,j , which we denoted
by Swi,j . We then removed low-frequency counter-
parts from Swi,j to limit the maximum dictionary
size |Swi,j | to 10. We predicted a style label by
applying several simple binary classifications in
order of reliability confidence as follows:

(1) Do all tokens appear once each?: If all content
words appear once each in the i-th system
translation, this output is classified as “<NOT-
REP>.”

(2) Are estimated counterparts all the same and
included in the dictionary?: First, we estimate
counterparts of wi,j using the word aligner. If
these counterparts are all the same and exist
in Swi,j , this output is classified as “<REP>.”

(3) Do any tokens in the dictionary appear more
than once?: If any word in Swx appears more
than once, this output is classified as a repet-
itive style; otherwise, the output is classified
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as “<NOT-REP>.”

We designed the third block to mitigate misclassifi-
cation caused by alignment errors in (2). The above
procedures are illustrated in Figure 3. Finally, we
calculated the percentage of instances labeled as
“<REP>” in the test set. We refer to this metric as
repetition rate.

To measure translation quality, we also com-
puted BLUE scores (Papineni et al., 2002) using
SacreBleu (Post, 2018).5

6 Systems

In this shared task, two teams submitted the sys-
tem and description paper. In this section, we pro-
vide an overview of the submitted systems and the
baseline system that we built. For comparison, re-
sources used by each system are listed in Table 3.

6.1 Baseline

As a baseline, we built an MT system using
fairseq (Ott et al., 2019). We adopted Transformer
(big) (Vaswani et al., 2017) as the architecture, and
used the Jiji 2020 and JParaCrawl v3.0 (Morishita
et al., 2022) as training data. We based the method
on the tagging approach (Sennrich et al., 2016;
Lakew et al., 2019; Johnson et al., 2017; Schioppa
et al., 2021). Specifically, we introduced style and
domain tags, and combined them. First, from the
Jiji 2020 data and JParaCrawl v3.0, we mined sen-
tence pairs in which some content words were re-
peated in the source sentence and no content words
were repeated in the target sentence. We detected
content words in Japanese and English sentences
using GiNZA6 and spaCy,7 respectively. To avoid
selecting noisy instances, we excluded parallel sen-
tences with lexical similarity scores less than 0.7
from the tagging. Specifically, we prepended the
style tag “<NON-REP>” and all repeated words to
the source sentences as follows:

Src: <NON-REP> <文書> 米国立公文書館が
文書を保管していた。

Second, we also attached the domain tag “<JIJI>”
to training instances from the Jiji 2020 data. Sim-
ilarly, we did not tag sentence pairs with lexical
similarity scores less than 0.7. We prepended the
domain tag to the source sentences as follows:

5nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2
6https://megagonlabs.github.io/ginza/
7https://spacy.io/usage

System Resource
Baseline JParaCrawl v3.0, Jiji 2020

SYSTRAN all Ja–En data from OPUS, Jiji 2020

Waseda Riko
Claude 3.5 Sonnet,
examples from the task website8

Table 3: Comparison of resources used by each sys-
tem. Although the Waseda Riko system did not explic-
itly use the data on which Claude 3.5 Sonnet was built,
they are also listed as “Claude 3.5 Sonnet” in the table.

Src: <JIJI> <NON-REP> <文書>米国立公文書
館が文書を保管していた。

For inference, we prepended the style and domain
tags to all the test source sentences. In this system,
we adopted the same hyperparameter settings as
Morishita et al. (2022).

6.2 SYSTRAN (Avila and Crego, 2024)
The team introduced a repetition penalty in the fine-
tuning phase. The method was inspired by label
smoothing (Szegedy et al., 2015). For training
instances including word repetition in the target
sentence, the ground-truth score corresponding to
the repeated word was decreased from 1. The team
automatically detected such instances using the
spaCy tokenizer9 and GIZA++ toolkit (Och and
Ney, 2003). Specifically, the repetition penalty was
combined with label smoothing, and is formulated
as follows:

q′t = (1− ε)(1− αt)qt +
ε

V
,

where qt indicates a one-hot vector used as the
ground-truth label at the t-th time step, at which a
repeated word appears, ε is a hyperparameter for
label smoothing and V is the vocabulary size. αt

is also a hyperparameter used to control the de-
gree to which word repetition is discouraged. The
team first trained a Transformer encoder-decoder
model on parallel sentences from OPUS10 and then
fine-tuned the model on parallel sentences from
the Jiji 2020 data using the above technique. To
avoid feeding noisy instances into the model, the
team used back-translated sentences instead of the
original sentence pairs in the fine-tuning stage.

6.3 Waseda Riko (Wang et al., 2024)
The team built a large language model (LLM)-
based pipeline. The procedure was composed of

8See Appendix A. These data were used for few-shot
prompts.

9https://spacy.io/usage
10https://opus.nlpl.eu/
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System Adequacy (↑) Translation Style Filtered
Adequacy (↑)% <NON-REP> % <REP> % <INCORRECT>

Waseda Riko 4.6 89.8 8.1 2.1 4.1
SYSTRAN 3.9 32.3 53.8 13.6 1.3

Baseline 3.9 50.2 27.4 22.3 2.1

Table 4: Human evaluation results.

System BLEU (%) (↑) Translation Style Repetition Rate (%) (↓)# <NOT-REP> # <REP>
Waseda Riko 24.4 413 57 12.1
SYSTRAN 28.9 214 256 54.5

Baseline 29.1 332 138 29.4

Table 5: Automatic evaluation results.

the following four steps:

(1) Preprocess: Detect repeated words from
the source sentence using the MeCab tok-
enizer (Kudo et al., 2004) and tag these possi-
ble repeated words.

(2) Translation: Instruct the LLM to translate
the tagged source sentence in a non-repetitive
manner using a few-shot prompt (Brown et al.,
2020).

(3) Proofreading: Instruct the LLM to review the
output in the previous step and rewrite the
translation as needed to enhance the result.

(4) Postprocess: Tag the counterparts in the target
sentence.11

The team used Claude 3.5 Sonnet12 and designed
a prompt suited for this task. Specifically, they in-
structed the LLM to output translations along with
the estimated counterparts and translation labels
in JSON format. Because of this structured output
design, the following processes were performed
successfully.

7 Results and Discussion

7.1 Human Evaluation
We summarize the human evaluation scores of all
systems in Table 4.13 The Waseda Riko system
achieved the best results in both translation ade-
quacy and style control. Focusing on the drop from
the adequacy score to the filtered adequacy score,
the baseline system lost 1.8 points, whereas the

11Human evaluation was performed on untagged transla-
tions; thus, it was not necessary to tag the system output.

12https://www.anthropic.com/claude
13Detailed statistics are listed in Appendix B.

Waseda Riko system only decreased by 0.5 points.
This difference highlights that the Waseda Riko
team successfully controlled the translation style
without compromising translation quality. The
SYSTRAN system achieved an adequacy score
competitive with that of the baseline system, but
passed more source sentences in a repetitive style.
By contrast, the baseline system was the worst in
terms of the percentage of incorrect instances. Con-
sidering the difference between the SYSTRAN and
baseline systems, a trade-off existed between style
control and translation adequacy.

The basic idea of the Waseda Riko system is sim-
ilar to that of the baseline system: possible repeated
words in the source sentence were automatically de-
tected using a third-party tokenizer and the model
was explicitly informed about them. ( Wang et al.
(2024) also reported that it was still difficult for
LLMs to consistently identify repeated words in
the input sentence.) Although the baseline system
was trained on parallel sentences that were (possi-
bly) translated in a non-repetitive style, the percent-
age of test instances in the desired style was 50%.
Although the results of the Waseda Riko team were
also supported by the high performance of the com-
mercial LLM, their proposed prompt design and
pipeline configuration were equally important. The
key was how to provide the instruction to “translate
in a non-repetitive style,” which is (probably) new
and complex for many LLMs. We attempted to
instruct GPT-3.5 turbo14 to solve this task using a
simple prompt, such as “Translate the following
Japanese news text into English using as few of the
same content words as possible,” in our preliminary
experiments, but this did not work well.

14https://azure.microsoft.com/en-us/products/
ai-services/openai-service
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7.2 Automatic Evaluation

We also summarize the automatic evaluation scores
of all systems in Table 5. In contrast to the human
evaluation, the baseline and SYSTRAN systems
achieved a better BLEU score than the Waseda
Riko system. This gap depended on whether the
systems used the Jiji 2020 data for training. Al-
though the Waseda Riko team analyzed these data
and then built the heuristic rules to detect repeated
words (Wang et al., 2024), the team did not fully
train the LLM on these data. The LLM learned
the several translations from the Jiji data using the
few-shot prompt, whereas the baseline and SYS-
TRAN models adapted the output translations more
directly to the target domain. Although we config-
ured the primary results of this task based on the
human evaluation, the motivation for this task was
to adapt the lexical choice of MT systems to the
target domain; thus, it should be noted that BLEU
scores were also important metrics in our task.

Regarding the repetition rate, the trend was co-
incident with the human evaluation results. Specif-
ically, the accuracy as a binary classifier (i.e.,
“<REP>” or not) between automatic and human
evaluations was 93.4% in the baseline system,
92.1% in the SYSTRAN system, and 93.0% in
the Waseda Riko system. Importantly, this metric
had a certain degree of reliability independent of
the success rate of style control and the degree of
matching with the target domain.

8 Conclusion and Future Work

In this paper, we presented an overview of the
WMT2024 Shared Task on non-repetitive transla-
tion. Particularly, the experimental results revealed
the effectiveness of the LLM in controlling trans-
lation. We believe that our task will encourage
further research on controlling MT systems. In the
future, we will address several limitations in the
current task settings. First, the test instances were
limited to a comparatively short content. It would
be an interesting challenge to address repetition
observed in longer documents. Second, we will
make both human and automatic evaluations more
established. Currently, (1) evaluation relies heavily
on human evaluation, and (2) the human evaluation
is prone to variance. Regarding (2), specifically,
although the percentage of test instances where the
three translators voted for all different labels was
limited, that of the test instances where the three
translators voted for the same label was approxi-

mately 69%. These were partially because of (1)
the difficulty of automatically detecting mistransla-
tions and undertranslations, and (2) the difficulty of
defining the correct answer for a translation output
using substitution or reduction, respectively. Thus,
we will develop more reliable evaluation guidelines
in collaboration with translators. It would also be
interesting to introduce automatic evaluation using
LLMs.
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Bojar, Chenhui Chu, Akiko Eriguchi, Kaori Abe,
Yusuke Oda, and Sadao Kurohashi. 2022. Overview
of the 9th workshop on Asian translation. In Pro-
ceedings of the 9th Workshop on Asian Translation,
pages 1–36, Gyeongju, Republic of Korea. Interna-
tional Conference on Computational Linguistics.

Toshiaki Nakazawa, Hideki Nakayama, Chenchen
Ding, Raj Dabre, Shohei Higashiyama, Hideya
Mino, Isao Goto, Win Pa Pa, Anoop Kunchukut-
tan, Shantipriya Parida, Ondřej Bojar, Chenhui Chu,
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A Examples of Non-Repetitive Trasnlations

Table 6 shows examples of non-repetitive translations from the task website.15

Reduction

Ja
耐震化を済ませていない４９４団体に今後の対応を尋ねたところ、改修するのは７０団体、

建て替えは２６５団体、移転が１１団体だった。

En(trans)
When the 494 organizations that had not yet completed earthquake proofing were asked about their future
measures, 70 organizations opted for retrofitting, 265 chose rebuilding, and 11 selected relocation.

En
Of the 494 unprepared municipalities, 70 are set to carry out repairs, 265 will construct new buildings
and 11 are planning relocation.

Note In the original English sentence, a noun ellipsis occurs, e.g., “70 municipalities” is expressed as “70.”

Reduction

Ja 開発費を参加国間で分担できるため、国産開発に比べて費用を安く抑えることが可能となる。

En(trans)
Since development expenses can be shared among participating countries, it will be possible to keep costs
lower than domestic development.

En
It will allow the government to cut spending compared with full domestic development by sharing costs
with partner countries.

Note
“Costs” is used instead of “development costs” in the original English sentence probably because it is
contextually inferable.

Reduction

Ja
同社はニューヨーク州のヨンカース工場と中西部ネブラスカ州のリンカーン工場で車両の

製造や試験を行う。

En(trans)
The company will manufacture and test vehicles at its Yonkers, New York, factory and its Lincoln,
Nebraska, factory in the Midwest.

En Kawasaki Rail Car will build and test the subway cars at its facilities in Yonkers and in Lincoln, Nebraska.

Note
The two nouns (“facility”) are merged into one and the noun head is shared by the two prepositional
phrases. Although strictly they are not reduced, we also consider these examples to be a type of reduction.

Substitution

Ja
農作物への影響が心配されるが、農林水産省は「（首都圏などでは）積雪が長引かなかったので

大きな影響はない」（園芸作物課）とみている。

En(trans)
There are concerns about the impact on crops, but an official at the Horticultural Crops Division of
the Ministry of Agriculture, Forestry and Fisheries (MAFF) said, “the snowfall (in the Tokyo metropolitan
area and other regions) was not prolonged, so there will be no major impact.”

En
Although many people are worried about the effects of harsh cold on crops, an official of Japan’s
agricultural ministry predicted that there will be no significant impact, as the snow did not stay
for long in areas such as the Tokyo metropolitan area.

Note Words with similar meaning such as synonyms and hypernyms are typically used for substitution.

Substitution

Ja
物質を構成する素粒子の振る舞いは「標準理論」で説明されるが、宇宙の全質量の４分の１

を占める「暗黒物質」など説明できない部分もある。

En(trans)
The Standard theory explains the behavior of elementary particles, which make up matter, but it cannot
explain some things, such as dark matter, which makes up one quarter of the mass of the universe.

En
The so-called Standard Model explains the behavior of elementary particles, the fundamental building
blocks of matter. But the theory leaves some mysteries, such as dark matter which is thought to
make up about a quarter of the mass of the universe.

Note Repeated words are sometimes translated in a non-literal manner.

Substitution

Ja
当時、テニス部の生徒６人とコーチがコートで練習をしており、生徒の１人がボールを拾おう

としたところ、隣のコートにパラシュート状の物があることに気付いたという。

En(trans)
At the time, six students and the coach from the tennis club were reportedly practicing on the court
when one of the students went to pick up a ball and noticed a parachute-like object on the adjacent court.

En
At the time, the student was practicing tennis with five other students and one coach at another court
next to the one where the parachute was found.

Note Repeated words are sometimes substituted with pronouns or pro-verbs, such as “it” and “do so.”

Table 6: Examples of non-repetitive translations from Jiji Japanese–English news articles. “Ja” and “En” indicate
the original parallel sentences from the articles. “En(trans)” indicates consistent translations by humans, which are
listed for comparison.

15https://www2.statmt.org/wmt24/non-repetitive-translation-task.html
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B Detailed Statistics of the Human Evaluation Results

Table 7 shows detailed statistics of the human evaluation results.

Model Translation Style Total<NON-REP> <REP> <INCORRECT>

Waseda Riko Adequacy (bin)

[5, 5] 127 20 0 147
[4, 5) 280 17 3 300
[3, 4) 15 1 7 23
[2, 3) 0 0 0 0
[1, 2) 0 0 0 0
Total 422 38 10 470

SYSTRAN Adequacy (bin)

[5, 5] 32 45 0 77
[4, 5) 71 121 5 197
[3, 4) 32 66 25 123
[2, 3) 16 21 29 66
[1, 2) 1 0 6 7
Total 152 253 65 470

Baseline Adequacy (bin)

[5, 5] 66 46 0 112
[4, 5) 108 53 6 167
[3, 4) 43 21 41 105
[2, 3) 16 9 40 65
[1, 2) 3 0 18 21
Total 236 129 105 470

Table 7: Statistics of the human evaluation results.
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Abstract
Translating for languages with limited re-
sources poses a persistent challenge due to
the scarcity of high-quality training data.
To enhance translation accuracy, we ex-
plored controlled generation mechanisms,
focusing on the importance of control to-
kens. In our experiments, while training,
we encoded the target sentence length as a
control token to the source sentence, treat-
ing it as an additional feature for the source
sentence. We developed various NMT
models using transformer architecture and
conducted experiments across 8 language
directions (English ⇐⇒ Assamese, Ma-
nipuri, Khasi, and Mizo), exploring four
variations of length encoding mechanisms.
Through comparative analysis against the
baseline model, we submitted two systems
for each language direction. We report our
findings for the same in this work.

1 Introduction
Developing Machine Translation solutions for
low-resource language pairs is one of the most
interesting areas under the umbrella of Ma-
chine Translation. There have been many
ways of adapting Machine Translation for low-
resource language pairs, like,

• Using statistical models instead of neural-
based ones to build a system. (Koehn and
Knowles, 2017)

• Using multiple combinations of word seg-
mentation to tackle data sparsity in this
setting. (Sennrich et al., 2016b; Muja-
dia and Sharma, 2021; Yadav and Shri-
vastava, 2021)

• Using monolingual data to create syn-
thetic bitext and train an improved sys-
tem. (Sennrich et al., 2016a; Burchell
et al., 2022; Fadaee et al., 2017)

• Using a pivot language as a bridge be-
tween high and low resource language
pairs. (Kunchukuttan et al., 2017)

• Using transfer learning (Zoph et al., 2016)
by transferring the knowledge from a high
language pair setting to a related low lan-
guage pair setting.

• Multilingual NMT extended on transfer
learning by sharing learning space be-
tween multiple languages, with the goal of
low-resource pair learning from the high-
resource pair in a system with decent suc-
cess. (Johnson et al., 2017)

For low-resource languages, the scarcity of
high-quality, extensive datasets necessitates
carefully utilising available resources. To max-
imize the extraction of information from these
limited data, we plan to append the target
length at the end of the source sentences. This
approach draws inspiration from previous re-
search, where incorporating the target length
significantly enhanced performance in subtitle
generation (Lakew et al., 2019) and current
work is adapted from Fan et al. (2018) work
on summarization.

In the current work, we consider target to-
ken length, length of target sentence after sub-
word segmentation, as an additional feature
for the source sentence. Intuition is that the
system will learn to produce translations sub-
jected to target length. There is an issue of
accurately predicting the number of target lan-
guage tokens in test cases or real-world scenar-
ios. To predict target length, we used multiple
methods,

• Neural network to predict target length
given source sentence.
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• Mean token length ratio of target
to source sentence from validation set
(Lakew et al., 2019) to predict target
length given a source sentence.

• Sampling from a normal distribution,
where the mean and standard deviation
are calculated based on the ratios ob-
served in the validation dataset.

• And for comparison, we also used the ac-
tual target length from the test set pro-
vided in Pal et al. (2023).

Systems for translating between English and
the languages Assamese, Manipuri, Khasi, and
Mizo (collectively referred to as IL in the rest
of the paper) were developed in this study. It
was observed that utilizing the average ratio
of target-to-source token lengths from the val-
idation set proved to be an effective method
for obtaining control tokens for translation in
a low-resource context.

We summarize the contribution of our work
as follows.

• Using the number of tokens as a control-
ling token to improve system performance
in a low-resource environment.

• Viable strategy to get control tokens for
unseen data.

2 Related Work
Lakew et al. (2019) biased the output length
with a transformer architecture using i) target-
source length ratio and ii) enriching the trans-
former positional embedding with length infor-
mation.

Fan et al. (2018) added the number of tokens
to be generated in abstract summarization dur-
ing training and observed an improvement in
the ROUGE score. However, replicating the
same for machine translation has been chal-
lenging. As Stahlberg (2020) noted, length in-
formation can be provided as additional input
to the decoder network (Fan et al., 2018; Liu
et al., 2018) at each time step as the number
of remaining tokens (Kikuchi et al., 2016), or
by modifying Transformer positional embed-
dings (Takase and Okazaki, 2019). Nonethe-
less, these methods are not directly applicable
to machine translation due to the difficulty in
accurately predicting translation length.

Additionally, Lakew et al. (2019) biased the
output length with a transformer architecture
using i) the target-source length ratio and ii)
enriching the transformer positional embed-
ding with length information.

3 Approach
This section describes our strategies for com-
puting the control token number, datasets
used for training and testing, model archi-
tecture, evaluation and systems submitted in
shared task.

3.1 Control Tokens
Predicting target length accurately in machine
translation remains a complex task, influenced
by various factors such as language pair charac-
teristics, sentence structure, and context. To
address this challenge, we use a few straightfor-
ward heuristics to leverage insights from train-
ing and validation data to estimate control to-
kens effectively. These heuristics aim to give
additional information about output length for
generation to MT systems. Control tokens
(CT) were generated using the following meth-
ods (Figure 1):

• Actual Control Token refers to the ex-
act count of tokens in the target sentence,
derived from a reference or gold standard.

• Predicted Control Token is obtained
by training a transformer model to pre-
dict the number of target tokens given
source sentences, where the model learns
to estimate the length of the target sen-
tence based on the features extracted
from the source sentence. We did this
to leverage the self-attention mechanism
of the transformer to capture contextual
dependencies effectively, making it suit-
able for tasks requiring an understanding
of sentence structure and length predic-
tion.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

(1)

• Ratio Control Token is the target-to-
source token length ratio of the valida-
tion dataset for each language pair. Here,
we utilize the relationship between the
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Figure 1: Illustration of our Control Token Generation (CTG) approach

lengths of target sentences and their cor-
responding source sentences from the val-
idation dataset. For ith source sentence,
the control token (CT) is,

CT = Ravg ∗ lensourcei (2)

where Ravg =
∑

∀j lentargetj /lensourcej

number of sentence pairs and,
lensent is length of token length of sent.

• Sampled Control Token is achieved
by sampling from a normal distribution
where the mean and standard deviation
are derived from the ratios observed in the
validation dataset.

CT = N (Ravg, σ2) ∗ lensourcei (3)

where Ravg =
∑

∀j lentargetj /lensourcej

number of sentence pairs , σ2 is
standard deviation in ratios and, lensent

is token length of sentence sent.

3.2 Datasets
We used the Dataset from Pal et al. (2023),
Pakray et al. (2024) for English ⇐⇒ As-
samese, Manipuri, Khasi, and Mizo. Table
1 gives the statistics for each language pair
and merge operations (mergeOps) used for the
Byte Pair Encoding model of both source and
target sentences (Sennrich et al., 2016b).

Figure 2 gives the distribution of IL sentence
length with English sentence length ratio for
all language pairs. Some sentences in training
data have very high ratios compared to vali-
dation or test sets. This is where our method
can induce learning correspondence between
the number of tokens generated and the Con-
trol token.

Language Pair Train Validation Test mergeOps
English Assamese 50 K 2000 2000 16K

English Mizo 50K 2000 1500 16K
English Khasi 24K 1000 1000 4K

English Manipuri 21K 1000 1000 16K

Table 1: Dataset with merge operation for respec-
tive language pair

3.3 Architecture
For all the models, we trained machine trans-
lation models with the Transformers architec-
ture(Vaswani et al., 2017) using fairseq(Ott
et al., 2019) tool1. During the training, each
source sentence was appended with a ‘control
token number’, the count of target tokens.

4 Experiments

To select the systems as primary and con-
trastive output, we carried out experiments for
English ⇐⇒ Assamese, Khasi, Manipuri and
Mizo and evaluated the translations of the test
set from Pal et al. (2023) using lexical-based
metrics, CHRF++ (Popović, 2017).

4.1 Results and Analysis
Table 2 summarises the performance of trans-
lation systems for EN-IL and IL-EN using
CHRF++. We found statistically significant
improvement in translation performance by
adding a control token as an additional fea-
ture. We observed that,

• In most of the cases, scores improve when
the Actual CT is added to the source.

1We used basic configuration of transformer archi-
tecture
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Figure 2: Distribution of Sentence Length Ratio (IL/English) across Train, Validation, and Test Datasets.
The orange line denotes the average ratio. The X-axis indicates the number of sentences, and the Y-axis
depicts the Sentence Length Ratio (IL/English).

This is expected since it is a gold refer-
ence, ensuring the number of target to-
kens is precise.

• Predicting CT is a challenging problem,
as mentioned earlier. While there were
improvements in systems, there is also a
significant drop in CHRF++ scores for
English to Mizo and English to Khasi.

• Utilizing the ratio from validation to de-
termine CT appears to be an optimal
choice, which becomes more apparent

when examining the distribution of sen-
tence length ratios of Validation and Test
in Figure 2. Here, a clear similarity is ob-
served between the two distributions re-
garding the range of sentence ratios. The
inclusion of Ratio CT led to improved per-
formance for English to IL, and vice-versa
following actual CT.

• Sampled CT demonstrated strong perfor-
mance for English to IL, but it did not
exhibit the same level of effectiveness for
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Language
Direction Baseline Actual

CTG
Predicted

CTG
Ratio
CTG

Sampling
CTG

EN-MZ 38.11 37.72 31.44 36.37 37.23
EN-MN 30.47 32.27 31.96 32.21 32.11
EN-KH 31.69 35.35 26.07 34.28 35.53
EN-AS 18.44 18.62 18.63 17.67 17.49
MZ-EN 31.03 32.77 29.25 31.5 32.68
MN-EN 35 34.24 32.62 34.03 34.45
KH-EN 26.23 27.58 26.42 27.09 27.39
AS-EN 22.76 24.12 23.76 23.98 22.79

Table 2: CHRF++ scores of EN-IL and IL-EN
Translation system. Scores in Bold are statistically
significant improvements compared to the baseline
scores with p<0.05.

IL to English. Despite this, it performed
comparably well to Ratio CTG in the En-
glish to IL direction.

We further analyzed the target-to-source
length ratio for EN-IL direction for all 4 lan-
guage pairs in Figure 3. Examining the av-
erage sentence length ratio between Train ( )
and baseline systems ( ) in comparison to the
reference length ratio ( ), sheds light on the
behaviour of baseline systems and highlights
the advantage of employing CT. In the case of
English to Manipuri and Khasi, where signif-
icant improvements in CHRF++ scores were
noted, the length ratio for baseline systems fell
short of the test set. Conversely, when con-
sidering the Ratio CTG ( ), we observe their
proximity to the Reference Ratio. This sup-
ports the idea of using control tokens as an
additional feature in the source sentence. It
also explains the impact of a poorer predic-
tion system; as seen in the English-to-Mizo ra-
tio, which overshoots by a large margin, there
is also a significant drop in translation perfor-
mance.

Based on these observations, we conclude
that if the target sentence length is pre-
dictable, leveraging it as an additional feature
with the source sentence proves to be a great
choice for training a translation model in a low-
resource setting.

4.2 Submission
For Translation submission, we preprocessed
unseen testset shared by Organizers and sub-
mitted translations from the following two sys-
tems,

• Primary System: is a model trained using
transformer architecture with source sen-

Language
Direction System TER RIBES METEOR ChrF

English to
Assamese

Baseline 100.46 0.0347 0.0587 0.1817
Ratio 99.79 0.0243 0.05134 0.1773

English to
Manipuri

Baseline 101.73 0.0084 0.0179 0.1401
Ratio 101.55 0.0072 0.0166 0.1415

English to
Mizo

Baseline 92.32 0.0406 0.0978 0.18
Ratio 92.84 0.0328 0.0906 0.173

English to
Khasi

Baseline 92.92 0.087 0.1209 0.1905
Ratio 87.69 0.0873 0.1589 0.2296

Assamese to
English

Baseline 96.44 0.0378 0.0677 0.1803
Ratio 96.19 0.0322 0.0671 0.1883

Manipuri to
English

Baseline 96.45 0.029 0.0615 0.1865
Ratio 96.5 0.0271 0.0635 0.1889

Mizo to
English

Baseline 97.75 0.0195 0.0544 0.1633
Ratio 96.18 0.0181 0.0587 0.1826

Khasi to
English

Baseline 105.76 0.0094 0.0403 0.1358
Ratio 107.7 0.0071 0.0359 0.1348

Table 3: Performance on Unseen Testset

tence and target output length predicted
using average Ratio of source and target
sentences in the validation dataset.

• Contrastive System: is a model trained
using transformer architecture without
adding CT (Baseline).

5 Performance on Unseen Testset

Despite the promising results in test sets with
training datasets, on the Unseen test set (3)
provided by the shared task organizer (Pakray
et al., 2024), our approach only gave a slight in-
crease in score compared to the baseline in En-
glish to Manipuri, English to Khasi, Assamese
to English, Manipuri to English and Mizo to
English.

6 Conclusion and Future Work

We address the challenge of translating lan-
guages with limited resources by enhancing
translation accuracy using target sentence
length as an additional feature in the source
sentence. We experimented using transformer
architecture across 8 language directions (En-
glish ⇐⇒ Assamese, Manipuri, Khasi, and
Mizo). Evaluation against baseline models on
a shared test set revealed that our approach
significantly improves translation quality in
some language directions, demonstrating its
effectiveness in improving translation for low-
resource languages. However, for the unseen
dataset, even though there was an improve-
ment, it wasn’t that huge. Overall, we also
found that the baseline systems themselves
were not promising. Hence, we would be repli-
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Figure 3: Distribution of Average Sentence length Ratio (IL/English) for Train, Validation and Test
Dataset for all language pairs in English to IL direction.

cating this work with other datasets and lan-
guage pairs to check the validity of this out-
come.
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Abstract

This paper presents the methodology devel-
oped by the Samsung R&D Institute Philip-
pines (SRPH) Language Intelligence Team
(LIT) for the WMT 2024 Shared Task on Low-
Resource Indic Language Translation. We
trained standard sequence-to-sequence Trans-
former models from scratch for both English-
to-Indic and Indic-to-English translation direc-
tions. Additionally, we explored data aug-
mentation through backtranslation and the ap-
plication of noisy channel reranking to im-
prove translation quality. A multilingual model
trained across all language pairs was also in-
vestigated. Our results demonstrate the effec-
tiveness of the multilingual model, with sig-
nificant performance improvements observed
in most language pairs, highlighting the po-
tential of shared language representations in
low-resource translation scenarios.

1 Introduction

This paper details our primary submission for the
WMT 2024 Shared Task on Low-Resource In-
dic Language Translation. Our submission cov-
ers the following language pairs: English ↔ As-
samese (en-as), English↔Mizo (en-mz), English
↔ Khasi (en-kh), and English ↔ Manipuri (en-
mn). Our approach builds upon the methodology
used in Samsung R&D Philippines’ WMT23 entry
(Cruz, 2023). We employed a standard sequence-to-
sequence Transformer architecture (Vaswani et al.,
2023), combined with data augmentation through
backtranslation (Sennrich et al., 2016), noisy chan-
nel reranking (Yee et al., 2019), and additionally
experiment with a multilingual model trained on
all language pairs.

bWork done while at Samsung R&D Institute Philippines

2 Methodology

2.1 Environment

For preprocessing, training, and generation, we
utilized PyTorch 2.0 and fairseq 0.12.2. All training
was conducted on NVIDIA P100 GPUs.

2.2 Data Analysis

We used the Indic dataset provided from WMT
2023 for all language pairs. First, we conducted
an exploratory data analysis for all the languages
to see if there were noteworthy patterns that could
guide us in our translation in the Indic and English
languages. We used various methods in this data
analysis such as finding N-most common words,
generating N-grams, and histograms of lengths of
sentences.

An interesting pattern emerged when generat-
ing the histograms of sentence lengths as seen in
Figure 1. For the English-Mizo pair, the distri-
butions almost completely overlap. However, for
the English-Assamese, English-Khasi, and English-
Manipuri pairs, the Indic languages generally ex-
hibit slightly longer sequences. We hypothesize
that these longer sequences may cause translation
errors in the Indic to English language directions.
The models might be driven to provide translations
that are driven more by length alignment, and so
may attempt to fill in additional tokens to produce
longer sequences even if it may not necessarily be
semantically accurate.

2.3 Data Preprocessing

We exclusively used the task dataset for all lan-
guage pairs. For the parallel data, we first removed
exact duplicates, then detokenized the text to cor-
rect spacing around punctuation. The statistics of
parallel data are summarized in Table 1. Following
this, we trained a BPE tokenizer (Sennrich et al.,
2015), applied BPE tokenization, and binarized
the data for use with fairseq. Each language pair
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source↔target Pairs Words (source) Words (target) Vocab Size
en↔as 50,000 969,626 825,063 31,448
en↔kh 21,000 729,930 875,545 9,312
en↔mz 50,000 981,468 1,062,414 30,432
en↔mn 21,687 390,730 330,319 30,736

Table 1: Statistics of parallel training data. Note that “Words” refers to word count estimated using the wc command
on the plaintext files.

source→target Unfiltered Pairs Filtered Pairs Words (source) Words (target)
en→as 2,624,715 279,956 3,200,053 3,444,809
en→mz 1,900,848 1,637,838 21,534359 26,367139
en→kh 160,128 19,358 363,441 490,257
en→mn 298,608 10,837 97,418 145,928

Table 2: Statistics of generated backtranslated parallel data. Note that “Words” refers to word count estimated using
the wc command on the plaintext files.

has a shared vocabulary between English and the
respective Indic language. The preprocessed par-
allel data was used to train our translation models.
The same preprocessing steps were applied to the
monolingual data for training the language models.
As no monolingual data was provided for English,
we used the combined English sides of the parallel
data to train the English language model.

2.4 Augmenting Data with Backtranslation

Due to time and data constraints, data augmenta-
tion via backtranslation was applied only in the
English-to-Indic direction. Backtranslated data
was generated by translating the monolingual Indic
data into English using the trained Indic-to-English
models. After generating the backtranslations, we
applied ratio-based filters (Cruz, 2023) to remove
low-quality parallel data, filtering based on sen-
tence length, token length, character-to-token ratio,
pair token ratio, and pair length ratio. For more de-
tails, please refer to the original paper. The dataset
statistics for the backtranslated data are presented
in Table 2.

2.5 Model Training

For each of the four language pairs, we trained
four models: two Translation Models, one for
each translation direction, and two Language Mod-
els, one for each language. The specifics of these
models are described in the following subsections.
Three of these four models were combined for
noisy channel reranking in one direction, as de-
tailed in Section 2.7. Additionally, we experi-
mented with a Multilingual Model using the same

architecture as our translation models, but trained
across all language pairs.

2.5.1 Translation Models
For the translation models (English→Indic, In-
dic→English), we trained encoder-decoder Trans-
former architectures (Vaswani et al., 2023) from
scratch using parallel data. Separate models were
trained for each language pair and for each trans-
lation direction. We used the large variant of the
Transformer model with 213M parameters, train-
ing for 100,000 steps, with the first 10,000 be-
ing warmup steps (Gotmare et al., 2018), with a
maximum of 8,000 tokens per step. The learn-
ing rates varied across language directions, as fol-
lows: en→as (9e-5), en→kh (5e-4), en→mizo (9e-
5), en→mn (9e-5), as→en (5e-4), kh→en (5e-4),
mizo→en (5e-4), and mn→en (5e-4). All other
hyperparameters are detailed in Table 3.

These translation models were not only used as
direct translation models but also served as chan-
nel translation models for noisy channel reranking,
further discussed in Section 2.7.

2.5.2 Language Models
We trained monolingual language models for each
language from scratch using the decoder-only com-
ponent of the original Transformer architecture, as
described by (Vaswani et al., 2023). We used the
base variant of the Transformer, which contains
65M parameters. For the Indic language models
(Assamese, Mizo, Khasi, Manipuri), we trained on
the provided monolingual data. For the English
language model, we concatenated the English side
of the parallel data for training.
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Figure 1: Histogram of Sentence Lengths

All models were trained using the Adam opti-
mizer (Kingma and Ba, 2017) with β1 = 0.90 and
β2 = 0.98. Training was conducted for a maxi-
mum of 100,000 steps, with the first 10,000 steps
as a warmup (Gotmare et al., 2018). The learning
rate started at 1e-7, peaked at 5e-4, and decayed fol-
lowing an inverse square root learning rate sched-
ule. The batch size was set to 32,000 tokens, and a
dropout rate of 0.1 was applied. These models were
later used in noisy channel reranking, as detailed
in Section 2.7.

2.6 Multilingual Model

We trained a large variant of the Transformer model
with 213M parameters on all four language pairs,
in both the English-to-Indic and Indic-to-English
directions, following the approach of last year’s
entries (Zhang, 2023). Given the low-resource na-
ture of each individual pair, we aimed to enable the
language pairs to leverage cross-linguistic knowl-
edge (Aharoni et al., 2019). The training process
spanned 50,000 steps, with the first 5,000 steps
serving as warmup (Gotmare et al., 2018; Neubig
and Hu, 2018). We used 8 P100 GPUs for a max-
imum of 51,200 tokens per step and a learning
rate of 1e-4. The remaining hyperparameters were
consistent with those used in the other translation
models as shown in Table 3.

Curriculum learning has been shown to improve
generalization by introducing tasks progressively,

allowing the model to build on prior knowledge
(Wang et al., 2019). For our multilingual translation
model, we aimed to apply a form of curriculum
learning by training on different language pairs
one at a time. We prepended source and target
language tokens and trained the model sequentially
on one language pair at a time. This structured
training approach, inspired by Bengio et al. (2009),
could help the model learn each language faster and
transfer learned knowledge across language pairs.
Similar to the benefits seen in multi-task learning
by Niehues and Cho (2017), we hypothesized that
this sequential training will enhance the model’s
ability to share representations across languages,
ultimately leading to improved performance.

2.7 Noisy-Channel Reranking (NCR)

We experimented with Noisy Channel Reranking
(Yee et al., 2019) to reevaluate and improve the
translations. For brevity, we refer to this as NCR.
This method utilizes three different models: a di-
rect translation model (source→target), a channel
model (target→source), and a monolingual lan-
guage model (target only). These models are com-
bined to rescore each candidate translation token
during beam search decoding. The score for a can-
didate token ŷ(T )

i at timestep T is recomputed using
the linear combination of the outputs from all three
models:
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Training Hyperparameters
Vocab Size 31,960
Tied Weights Yes
Dropout 0.3
Attention Dropout 0.1
Weight Decay 0.0
Label Smoothing 0.1
Optimizer Adam
Adam Betas β1=0.90, β2=0.98
Adam ϵ ϵ=1e-6
LR Schedule Inverse Sqrt
Batch Size 8,000 tokens

Table 3: Fixed hyperparameters for direct translation
models.

P (ŷ
(T )
i |x; ŷ(T−1))

′
=

1

t
log(P (y|x̂(T−1))

+
1

s
[δchlog(P (x|ŷ(T−1))

+δlmlog(P (ŷ(T−1)))]

(1)

Here, t represents the length of the target sen-
tence y, and s represents the length of the source
sentence x, both of which serve as debiasing terms.
The weights δch and δlm control the influence of
the channel model and the language model, respec-
tively, on the final score.

2.8 Decoding and Noisy-channel Reranking
Hyperparameter Tuning

We determined the optimal length penalty values
by sweeping across four values: 0.5, 1.0, 1.5, and
2.0. This was done for each language direction,
and the length penalty that resulted in the highest
BLEU score on the provided test data was selected.
The optimal length penalties for each direction are
as follows: en→as (1.5), en→kh (2.0), en→mizo
(1.0), en→mn (1.5), as→en (2.0), kh→en (1.5),
mizo→en (0.5), and mn→en (2.0). These values
were then used to tune the channel and language
model weights for NCR.

We applied a similar approach to find the op-
timal values for the channel weight, δch, and the
language model weight, δlm. For the English-to-
Indic models, we fixed δch at 0.1 and varied δlm
across 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. For the Indic-
to-English models, we reversed the setup by fixing
δlm at 0.1 and varying δch across the same values.

These configurations were chosen due to time
constraints, which limited our ability to perform

more exhaustive evaluations of various combina-
tions of δlm and δch. Additionally, based on our
initial evaluation of the translation models, the
English-to-Indic models exhibited stronger perfor-
mance, so we focused on evaluating their impact as
channel models in NCR. Conversely, the Indic lan-
guage models were trained on significantly more
data than the English language model, making it
essential to assess their influence in the reranking
process.

3 Results and Discussion

In this section, we present the results of our ex-
periments and provide an in-depth discussion of
our findings. Tables 4 and 5 summarize the BLEU
and chrF scores for each model and method on last
year’s test set, respectively. Table 6 summarizes
the hyperparameters used for training the models.

3.1 Baseline

Our baseline consists of standard Transformer mod-
els trained from scratch for each language pair,
without any backtranslation, length penalty tun-
ing, noisy channel reranking, or multilingual setup.
These models were trained using the parallel data
provided, with a shared BPE vocabulary between
English and each respective Indic language.

For the English-Khasi pair in particular, we set
the target vocabulary size to 10,000, while for the
other three language pairs, we retained a target of
32,000. Initially, we aimed for a 32,000 vocabu-
lary size across all language pairs, but English-
Khasi’s vocabulary only reached approximately
20,000. Given that this was our worst-performing
pair, we reduced the target size to 10,000, resulting
in a BLEU score improvement of about 3 points.

As shown in Table 4, the baseline models per-
formed adequately for most language pairs, with
BLEU scores ranging from 4.2 (Khasi→English)
to 34.1 (English→Manipuri). Notably, the English-
to-Indic models generally outperformed the Indic-
to-English models across all language pairs.

3.2 Data Augmentation Using Backtranslation

The number of pairs in the backtranslated data, as
shown in Table 2, was greatly reduced after filter-
ing. This reduction most likely stems from the
poor performance of the Indic-to-English models
used for backtranslation. These models may have
produced low-quality translations, leading to a sub-
stantial number of backtranslated pairs being dis-
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source→target BLEU Scores
Baseline w/ BT Data Tuned lenpen NCR Multilingual

en→as 13.8 3.0 14.0 14.0 3.5
as→en 9.5 - 9.8 9.8 10.1
en→mz 29.7 18.6 29.7 28.5 30.2
mz→en 19.9 - 21.3 19.2 19.1
en→kh 8.8 6.5 9.6 10.2 16.1
kh→en 4.2 - 4.4 4.3 7.9
en→mn 34.1 1.1 35.2 34.9 36.4
mn→en 16.7 - 17.0 17.0 21.4

Table 4: BLEU Scores on WMT2023 Indic MT test data. The use of BT Data (training on backtranslated data)
showed a decline in performance. The tuned lenpen (length penalty) generally improves BLEU score while NCR
(Noisy Channel Reranking) yielded mixed results. The multilingual setting outperforms all other settings in all
language pairs except en→as, where tuned lenpen and NCR showed the same score, and mz→en, where tuned
lenpen was best.

source→target chrF Scores
Baseline w/ BT Data Tuned lenpen NCR Multilingual

en→as 26.1 14.8 25.2 25.2 6.9
as→en 27 - 26.3 26.8 28.4
en→mz 44.4 34.5 44.4 42.8 45.2
mz→en 34.4 - 35.4 34.1 35.6
en→kh 29.9 27.9 30 30.4 34.7
kh→en 23.7 - 23.4 23.3 27.8
en→mn 45 11 43.8 43.5 45.1
mn→en 35.3 - 34.2 34.7 44.2

Table 5: chrF Scores from the WMT2023 Indic MT test data. The use of BT Data (training on backtranslated
data) showed a decline in performance. The tuned lenpen (length penalty) and NCR (Noisy Channel Reranking)
was tuned for the BLEU scores and yielded mixed results for chrF. The multilingual setting outperformed all other
settings in all language pairs except en→as, where the baseline was best.

carded during the filtering process. The pairs that
remained after filtering likely were still not of the
best quality, which diminished the overall quality
of the training. As a result, the models trained on
this backtranslated data performed worse, as re-
flected in their BLEU scores in Table 4 and their
chrF scores in Table 5.

3.3 Length Penalty
Our tuning of the length penalty, as shown in Table
6, revealed that most language directions, with the
exception of English-to-Mizo and Mizo-to-English,
preferred shorter translation sequences. As shown
in Figure 1, the distribution of sentence lengths
across the language pairs indicates a reasonable
amount of overlap, though the Indic languages tend
to have slightly longer sequences.

This preference for shorter sequences coincides
with a known issue in Neural Machine Transla-
tion (NMT) models when handling long input se-

quences. NMT models typically rely on absolute
positional encodings, which use fixed sine and co-
sine functions to assign vector positions. This ap-
proach tends to struggle with longer sequences due
to the limitations of these fixed encodings, resulting
in less precise representations as sentence length
increases (Neishi and Yoshinaga, 2019). This is
likely contributing to the models’ difficulty in gen-
erating coherent longer translations, particularly
for underperforming language pairs like English-
Assamese and English-Khasi. As sequence length
increases, the models are more prone to generating
irrelevant or erroneous tokens, leading to a degra-
dation in translation quality.

It is interesting to note that despite the Indic lan-
guages generally having longer sequences, a length
penalty greater than one was found to be optimal
for both directions, even in English-to-Indic transla-
tion. This indicates that the models may be biased
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source→target Hyperparameters
lenpen ch_wt lm_wt

en→as 1.5 0.1 0.2
as→en 2.0 0.6 0.1
en→mz 1.0 0.1 0.1
mz→en 0.5 0.4 0.1
en→kh 2.0 0.1 0.1
kh→en 1.5 0.2 0.1
en→mn 1.5 0.1 0.1
mn→en 2.0 0.3 0.1

Table 6: Final length penalty (lenpen), channel model
weight (ch_wt), and language model weight (lm_wt).

towards shorter outputs across most language pairs,
potentially as a safeguard against these positional
encoding limitations. While this behavior aligns
with our expectations for the English-Assamese
pair based on its performance, the similar tenden-
cies in the English-Khasi pair were more surprising,
given the closer alignment of sentence lengths be-
tween these languages.

3.4 Noisy Channel Reranking
The BLEU scores obtained with NCR, as shown
in Table 4, yielded mixed results. After tuning
the length penalty, we observed that NCR im-
proved performance for only one model out of
eight, specifically English-to-Khasi. The chrF
scores, as shown in Table 5, also indicate slightly
improved performance with NCR solely for the
English-to-Khasi pair. For all other language pairs,
there was either no change in BLEU and chrF
scores or a slight decrease. It is crucial to high-
light that these results reflect the best combination
of hyperparameters we identified; alternative hy-
perparameter settings would have resulted in even
more pronounced variations in scores.

One notable finding is that the optimal language
model weight was consistently around 0.1 across
most language pairs. This suggests that the lan-
guage model contributed minimally to improving
translation quality. This issue may stem from ei-
ther data quality or data quantity limitations. In-
vestigating data quality issues would be valuable,
but addressing them poses a significant challenge
due to the already low-resource nature of the Indic
languages. Further filtering could exacerbate data
scarcity, making it difficult to maintain sufficient
training data.

Conversely, the channel model weights were
found to be more effective, with optimal values

varying by language pair but generally falling in
the mid-range. For the best-performing Indic-
to-English pairs with NCR, specifically Mizo-
to-English and Manipuri-to-English, the channel
model weights were 0.4 and 0.3, respectively.
These language pairs also had the best direct trans-
lation models and channel models, suggesting a
stronger alignment between model quality and
channel model effectiveness for these particular
languages.

3.5 Multilingual Model

The multilingual model trained on all language
pairs demonstrated considerable improvements
over the baseline models, achieving the best per-
formance in 6 out of the 8 language pairs. We
attribute this success to the model’s ability to learn
from a broader context across all five languages,
allowing for the creation of shared language repre-
sentations. This approach is especially beneficial
given the small size of the training datasets, as the
multilingual model can leverage cross-linguistic
knowledge to enhance translation quality.

However, due to time constraints, we were un-
able to explore the potential of using the multi-
lingual model as a channel model within NCR.
This remains a promising avenue for future re-
search. Further studies could also investigate pre-
training on the available monolingual data before
fine-tuning for translation tasks. Additionally, fine-
tuning the multilingual model for language model-
ing could further improve its utility in NCR, poten-
tially acting out all three functions in NCR, lever-
aging shared linguistic knowledge on all languages
and tasks, enhancing performance in low-resource
language pairs.

4 Conclusion

In this paper, we presented our approach to the
WMT 2024 Shared Task on Low-Resource Indic
Language Translation. Our experiments demon-
strated that the multilingual model trained across
all language pairs performed exceptionally well,
particularly in comparison to the baseline models,
achieving the highest BLEU scores in 6 out of 8
language pairs and the highest chrF scores in 7
out of 8 language pairs. This indicates that lever-
aging shared language representations, especially
when dealing with small datasets, can significantly
enhance translation performance by utilizing cross-
linguistic knowledge.
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Despite some success, our attempts to improve
results through data augmentation using backtrans-
lation and noisy channel reranking yielded mixed
outcomes. The poor quality of the Indic-to-English
backtranslated data led to performance degradation,
emphasizing the importance of both data quality
and quantity in low-resource scenarios. Addition-
ally, while noisy channel reranking provided bene-
fits in isolated cases, its overall impact was limited,
potentially due to suboptimal language model and
channel model contributions.

The promising performance of our multilingual
model suggests that further research could explore
its integration within noisy channel reranking, pos-
sibly utilizing it as both a translation and a channel
model. Additionally, future work should focus on
enhancing the quality of backtranslated data and in-
vestigating pre-training strategies on monolingual
data to boost the performance of low-resource lan-
guage pairs.
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Abstract

This paper describes the submission systems of
DLUT-NLP team for the WMT24 low-resource
Indic language translation shared task. We par-
ticipated in the translation task of four language
pairs, including en↔as, en↔mz, en↔kha,
en↔mni. We used a transformer-based neu-
ral network architecture to train the model.
Our system used the following methods: First,
data processing was performed, and then we
used monolingual data for pre-training. Next,
we used parallel data for fine-tuning to ob-
tain a multilingual translation model, and then
we used this model for back-translation. We
merged the back-translated data with the of-
ficial parallel data and used the upsampling
method to train a multilingual translation model
from scratch. In order to improve the transla-
tion ability of the model for each translation
direction, we fine-tuned the model for each lan-
guage pair and used model averaging to obtain
the best model for each language pair. Finally,
we used kNN-MT and established a datastore
using the official parallel data to assist trans-
lation in the inference stage. Experimental re-
sults show that our method greatly improves
the BLEU scores for translation of these four
language pairs.

1 Introduction

This paper introduces our system for WMT24
low-resource Indic language translation shared
task. We participated in 4 language pairs, including
English↔Assamese (en↔as), English↔Mizo
(en↔mz), English↔Khasi (en↔kha) and
English↔Manipuri (en↔mni).

The main methods used by our system are de-
noising language model pre-training (Lample and
Conneau, 2019; Song et al., 2019; Lewis et al.,
2020), back-translation (Sennrich et al., 2016a)
and kNN-MT (Khandelwal et al., 2020). Neu-
ral machine translation is the first choice for ma-
chine translation systems nowadays, but it requires

a large amount of parallel data. Therefore, low-
resource translation is a major challenge due to its
lack of data. In this task, the organizers provided
a large amount of monolingual data in addition to
a small amount of parallel data. So we considered
using some pre-training methods to improve the
performance of the model. At the same time, back-
translation is a commonly used method in the field
of machine translation, which is effective in many
scenarios. Therefore, we used the back translation
method to obtain pseudo-parallel data to train a
strong baseline model. To obtain the best model
for each translation direction, we fine-tuned the
baseline model for each language pair using the
official parallel data. During this process, we used
model averaging technology to improve the transla-
tion quality of the model. In addition to parametric
methods, a large number of non-parametric meth-
ods have recently emerged to help models generate
translations. We adopted the kNN-MT method and
built a datastore for each translation direction to
assist the model in the inference phase.

The rest of the paper is organized as follows: In
Section 2 we describe our data processing meth-
ods; In Section 3 we describe the implementation
process of our translation systems; In Section 4,
we describe the experimental settings; In Section 5,
we discuss about the results; Finally, in Section 6,
the conclusion is drawn.

2 Data

For bilingual data, we only used official bilingual
data. For monolingual data, in addition to the offi-
cial monolingual data for Assamese, Mizo, Khasi
and Manipuri (Pal et al., 2023; Pakray et al., 2024),
we obtained English monolingual data from the
WMT24 general task. Specifically, we used the En-
glish side of bilingual data (English↔German) in
the WMT24 general task as English monolingual
data.The statistics of the dataset is shown in Table
1.
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as kha mni mz en
train (mono) 2.6M 0.2M 2.1M 1.9M 2.5M
train (para) 50k 24k 22k 50k -
dev 2k 1k 1k 1.5k -
test 2k 1k 1k 2k -

Table 1: The number of sentences in the training, dev and test sets.

Since the quality of official data is relatively
high, we did not perform additional preprocessing.
For the English monolingual data, we performed
some additional preprocessing steps. During pre-
processing, we deleted sentences that were too long
or repeated. And then we filtered out sentences in
other languages by applying language identifica-
tion. Finally we used an n-gram language model
trained with KenLM (Heafield, 2011)1 to calcu-
late the perplexity of English monolingual data and
removed sentences with high perplexity (>7,000).
We used the Sentencepiece (Kudo and Richardson,
2018) tool to train a multilingual BPE (Sennrich
et al., 2016b) model for subword segmentation.
The training data includes all the parallel training
data and monolingual data. The vocabulary size is
set to 32,000.

3 System Overview

3.1 Pre-training
Using monolingual data for pre-training tasks is an
effective solution for low-resource situations (Raf-
fel et al., 2020). To this end, we first performed
BART-style pre-training (Lewis et al., 2020) with
all the available monolingual data and then fine-
tuned the pretrained model with bilingual data. Fol-
lowing Lewis et al. (2020), we masked words with
a probability of 0.15 and we randomly swapped
words in the input sentences with a probability of
0.5.

After pre-training, we used all the bilingual data
to fine-tune the pre-trained model. The bilingual
data contains 4 language pairs in 8 translation di-
rections.

3.2 Back-translation
To improve our translation pipeline, we explored
the integration of back-translation as a potential
enhancement. Back-translation involves using a
trained model to translate from the target language
back to the source language, effectively creating a

1https://github.com/kpu/kenlm

synthetic parallel dataset. We used the approach
inspired by Sennrich et al. (2016a) to generate
pseudo-parallel corpus.

Specifically, we used the model fine-tuned in the
pre-training phase. We used this model to trans-
late all non-English monolingual data into English
as pseudo-parallel data. Then we mixed all the
pseudo-parallel data with the official bilingual data.
We used this data to train a multilingual translation
model from scratch. During training, we used up-
sampling method and the official parallel data was
upsampled until it reached to a ratio of 1:1 with the
synthetic data.

3.3 Language-specific Fine-tuning
Although multilingual translation models have
made great progress, there is still the problem of in-
consistent convergence of different language pairs
in joint training (Wu et al., 2021; Huang et al.,
2022). That is, different language pairs reach con-
vergence in various training stages. We hope to
get the best model for each language pair. Due to
the low quality of pseudo-parallel data, we used
the official bilingual data of each language pair to
fine-tune the model trained using pseudo-parallel
data.

During fine-tuning, we used the model averaging
technology. Through model averaging, we com-
bined the advantages of various models into a uni-
fied translation model. This process can not only
improve the stability of the translation output, but
also help improve the overall translation quality.
We kept the three models with the lowest loss on
the validation set for each language pair. We then
used these three models to get the best model for
each language pair.

3.4 kNN-MT
Non-parametric, k -nearest-neighbor algorithms
have recently made inroads to assist generative
models such as language models and machine
translation decoders. Khandelwal et al. (2020) in-
troduced k -nearest-neighbor machine translation

743

https://github.com/kpu/kenlm


(kNN-MT): a simple non-parametric method for
machine translation via nearest-neighbor retrievals
was proposed and has been verified its effective-
ness. According to his method, we constructed a
datastore to store the translation examples to be
accessed during decoding with the official parallel
data. When decoding, we used the current trans-
lation context to retrieve the k -nearest-neighbors
in the datastore. Let x =

(
x1, . . . , x|x|

)
∈ V |x|X

and y =
(
y1, . . . , y|y|

)
∈ V |y|Y denote a source

sentence and target sentence, respectively, where |·|
represents the length of the sentence, and VX and
VY are the vocabularies of the source language and
target language, respectively. Each target token yt
from the translation examples is stored in the datas-
tore with a d -dimensional key (∈ Rd), which is the
representation of the translation context (x,y<t)
obtained from the decoder of the pre-trained NMT
model. The datastoreM ⊆ Rd × VY is formally
defined as a set of tuples as follows:

M = {(f (x,y<t) , yt) |(x,y) ∈ D, 1≤ t≤ |y |}
(1)

The size of the datastore for each translation direc-
tion is shown in Table 2. During decoding, kNN-
MT retrieves the k -nearest-neighbor key–value
pairs {(ki, vi)}ki=1 ⊆ Rd × VY from the datastore
M using the query vector f (x,y<t) at timestep t .
f : V |x|X × Vt−1

Y → Rd represents the intermediate
representation of the final decoder layer from the
source sentence and prefix target tokens. In our
system, the value of k is set to 32 for all translation
directions. In order to speed up the retrieval during
translation, we used FAISS (Johnson et al., 2019).
We then obtained the output probability for each to-
ken by interpolating the kNN-MT probability and
the probability from the translation model. The
formula for calculating the kNN-MT probability
is:

pkNN (yt | x,y<t)

∝∑k
i=1 1yt=vi exp

−∥ki−f(x,y<t)∥22
τ

(2)

The formula for calculating the output probability
is as follows:

P (yt | x,y<t)
=λpkNN (yt |x,y<t)+(1−λ)pNMT(yt |x,y<t).

(3)
For all translation directions, we set λ = 0.3 and τ
= 100 in the kNN-MT decoding.

datastore size
en→as 1,212,711
en→kha 1,024,451
en→mni 574,142
en→mz 1,404,832
as→en 1,253,490
kha→en 878,620
mni→en 524,002
mz→en 1,263,000

Table 2: Datastore size for all translation directions.

4 Experiments

All of our translation models were implemented
based on fairseq (Ott et al., 2019) and trained
on 8 NVIDIA 3090 GPUs. All models use the
same structure of 12 transformer layers (Vaswani
et al., 2017). During training, we used the Adam
(Kingma, 2014) optimizer with β1 = 0.9, β2 = 0.98,
the learning rate scheduling strategy of inverse sqrt,
the number of warmup step set to 4000, the maxi-
mum learning rate set to 0.0005 and FP16 to accel-
erate the training process. We trained our models
till convergence with early stopping criteria with a
patience of 5. The dropout ratio is set to 0.5. We
used a fixed beam size of 4 and a length penalty of
0.8 when doing back-translation.

All experiments were evaluated using the sacre-
bleu (Post, 2018) tool to calculate BLEU (Papineni
et al., 2002) scores on the official validation sets.

5 Results

As shown in Table 3, each method can bring cer-
tain improvements to the model. However, pre-
training and back-translation did not bring much
improvement. For example, pre-training leads to
an improvement of 0.82 BLEU on average, while
back-translation brings BLEU improvements of
0.41. In particular, back-translation has caused
some damage to the performance of the model on
some translation directions. The BLEU in en→mni
direction dropped from 25.17 to 24.04. This may be
caused by the low quality of pseudo-parallel data.
We believe that fine-tuning the model separately us-
ing the data of each language pair is necessary for
a multilingual translation model. And it achieves
1.03 BLEU improvement on average. Doing so
can alleviate the problem of inconsistent conver-
gence of different language pairs in joint training,
although it does not benefit all translation direc-
tions. It can be seen that all translation directions
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System en→as en→kha en→mz en→mni as→en kha→en mz→en mni→en
M2M Baseline 8.75 17.84 22.26 24.49 15.69 13.15 22.45 32.41
Pre-training 9.24 17.77 22.72 25.17 17.70 14.05 22.89 34.08
Back-translation 11.51 18.24 23.29 24.04 17.98 13.22 23.36 35.25
Fine-tuning 12.50 18.29 24.17 26.93 18.55 13.33 24.32 37.06
kNN-MT 12.82 18.78 29.39 28.99 19.69 13.82 31.27 39.02

Table 3: BLEU scores of all translation direction on validation sets

are further improved with kNN-MT (+2.33 BLEU).
The four translation directions of the two language
pairs en↔mni and en↔mz can even get an average
improvement of 4.05 BLEU. This shows the great
potential of kNN-MT in improving data utilization
efficiency, inspiring more research on kNN-MT
in low-resource scenarios. Finally, from the over-
all perspective, some translation directions do not
benefit much from our methods. The translation
performance of the model in these translation di-
rections may be most limited by the size of the
data. However, the results in most translation di-
rections still achieve significant improvements over
the baseline, which demonstrates the effectiveness
of our approach for low-resource machine transla-
tion.

6 Conclusion

In this paper, we describe DLUT-NLP’s submis-
sion to the WMT24 low-resource Indic language
translation shared task. We participated in four sub-
tasks with a total of eight translation directions. We
leveraged methods ranging from pre-training, back-
translation, language-specific fine-tuning and kNN-
MT. Experimental results show that we achieved
large improvements in all directions.

Limitations

We found that our system still has the following
limitations:

• We did not perform effective filtering on the
pseudo-parallel corpus, and we did not per-
form iterative back-translation. This may be
the reason why our back-translation did not
achieve the expected results.

• We believe that we have not made enough use
of monolingual data. Next, we need to explore
other ways to use monolingual data, such as
using other pre-training tasks.

• We did not leverage any existing LLMs be-
cause we were not sure whether they were

trained on languages other than English in-
cluded in the task. This will also be a future
exploration mission.
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Abstract

In the context of the Indic Low Resource Ma-
chine Translation (MT) challenge at WMT-
24 ((Pakray et al., 2024)), we participated in
four language pairs: English-Assamese (en-as),
English-Mizo (en-mz), English-Khasi (en-kh),
and English-Manipuri (en-mn). To address
these tasks, we employed a transformer-based
sequence-to-sequence architecture (Vaswani
et al., 2017). In the PRIMARY system, which
did not utilize external data, we first pretrained
language models (low resource languages) us-
ing available monolingual data before finetun-
ing them on small parallel datasets for transla-
tion. For the CONTRASTIVE submission ap-
proach, we utilized pretrained translation mod-
els like Indic Trans2 (Gala et al., 2023) and
applied LoRA Fine-tuning (Hu et al., 2021)
to adapt them to smaller, low-resource lan-
guages, aiming to leverage cross-lingual lan-
guage transfer capabilities (CONNEAU and
Lample, 2019). These approaches resulted
in significant improvements in SacreBLEU
scores(Post, 2018) for low-resource languages.

1 Introduction

With increasing digital connectivity there is huge
demand for good translations systems for people
to access wide array of digital information in their
native local languages. This gives people flexibility
and ease of access. For any machine learning task,
the quality and quantity of data is of paramount
importance. There are multiple languages which
have either negligible or zero digital footprint. On
top of that presence of good quality parallel/ bitext
data is even more rare event.

Due to increased demand and intangible benefits
from translation systems there has been lot of re-
search in the field of machine translation. One such
area is the low resource machine translation system.
In the above statement "resource" refers to data re-
source. We are working on handling translations
for languages which have very less data available

(both monolingual and parallel).
Some major works for multilingual Machine

translation (approx 200*200 languages) is NLLB
(Costa-jussà et al., 2022). Here the authors use
Mixture of Experts (MoE) to train single large mul-
tilingual model capable of handling approx 200+
languages as source(src) and target(tgt) languages.
One of the objectives behind NLLB is handling low
resource languages.

The details of WMT23 Indic MT findings can
be found here (Pal et al., 2023). For our PRI-
MARY approach (no additional data apart from
what was shared), we pretrained language model
(using monolingual data). We explored 2 pretrain-
ing objectives namely Causal Language Modeling
(Radford et al., 2019) and denoising (Lewis et al.,
2020). Using these Pretrained Language Models as
initial model weights we finetuned for tranlstaion
task using available parallel corpus.

For the CONTRASTIVE submission approach,
we utilized pretrained translation models like Indic
Trans2 (Gala et al., 2023) and applied LoRA Fine-
tuning (Hu et al., 2021) to adapt them to smaller,
low-resource languages, aiming to leverage cross-
lingual language transfer capabilities (CONNEAU
and Lample, 2019).

2 Related Work

Our submissions use the concepts like transfer
learning, denoising pretraining (Lewis et al., 2020),
Causal Language Modeling (Radford et al., 2019).
We use denoising pretraining and causal language
modeling as pretraining tasks. Using transfer learn-
ing we use the pretrained model for new task like
translation. We use pretrained indic translation
model like Indic Trans2 (Gala et al., 2023) for
contrastive submission and adapted them to low
resource languages using LoRA Fine-tuning (Hu
et al., 2021). We aim to take advantage of cross-
lingual language transfer capabilities (CONNEAU
and Lample, 2019) and hence used IndicTrans2
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Monolingual Data # lines
Assamese 2,624,715
Manipuri 2,144,897
Mizo 1,909,823
Khasi 182,737

Parallel Train Data # lines
English <-> Assamese 50,000
English <-> Manipuri 21,687
English <-> Mizo 50,000
English <-> Khasi 24,000

Table 1: Dataset Sizes shared as part of Indic MT Task

machine translation model.

3 System Description

We have submitted in 2 categories i) PRIMARY ii)
CONTRASTIVE

3.1 PRIMARY System
For PRIMARY System we trained the model from
scratch using only the shared data as part of work-
shop. We trained separate model for each direction.

3.1.1 Tokenizer
First we need to train tokenizer for each english
<-> language pair (ie:- one of Assamese, Ma-
nipuri, Mizo, Khasi). We use sentence piece1 to-
kenizer library to train joint dictionary (combined
vocab) for each of english <-> (Assamese, Ma-
nipuri, Mizo, Khasi) language pairs. We use mono
data(each from as,mn,kh,mz languages) + almost
equal amount of english data to train sentence
piece tokenizer (subset choosen from AI4Bharat
Samanantaar dataset (Ramesh et al., 2022)).

3.1.2 Pretraining
We Pretrain the model using monolingual data. We
explored 2 subtasks for the same

1. Causal Language Modeling (Radford et al.,
2019) - Here we train decoder only model
for causal language modeling ie:- predicting
the next word using context words. The pre-
trained decoder from this task is utilized to ini-
tialize the decoder component of our seq2seq
architecture employed for the translation task.

2. Denoising Task (Lewis et al., 2020) - We inte-
grate a seq2seq transformer model that takes
a noisy version of the input (such as perturbed

1https://github.com/google/sentencepiece

mono data, added tokens, or shuffled data)
and expects the output from the decoder to be
the original, unperturbed input. By utilizing
this denoising objective task, we aim for the
model to understand language patterns and
structures. The pretrained model from this
task can be used for translation task.

Both of the above pretraining tasks are explored
independently and we used each tasks pretrained
checkpoints for finetuning separately.

3.1.3 Finetuning

Using the pretrained checkpoint we finetune the
models for translation task (with small amount of
parallel data). Pretraining helps the model to un-
derstand the language nuances and leads to faster
converging of models for translation tasks.

3.2 CONTRASTIVE System

For CONTRASTIVE Submission (where external
data etc is allowed). We use translation model of
other languages eg:- IndicTrans2 (Gala et al., 2023).
As the 4 low resource languages ie:- Mizo, Ma-
nipuri, Khasi and Assamese are near to Indic Lan-
guages supported by (Gala et al., 2023) we believe
the the model will benefit from shared parameters,
vocabs and hence map Cross Lingual language ref-
erences (CONNEAU and Lample, 2019). We use
the same tokenizer as used by IndicTrans2 Model.

LoRA (Hu et al., 2021) adaptation is a
lightweight and resource-friendly technique for cus-
tomizing pretrained models. It involves adding
small adapter weights (to certain layers) alongside
the existing model weights. During training, the
original model weights remain unchanged while
only the adapter weights are updated. At test time,
the adapter weights and the original model weights
are combined to generate predictions. This ap-
proach allows for efficient customization without
requiring extensive modifications to the original
model. Since only a small number of parameters
are updated during training, the overall training
time is reduced. Additionally, this approach helps
mitigate the issue of catastrophic forgetting to some
degree.
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Parameter Value
encoder_layers 4
decoder_layers 4
attention_heads 8
embedding_dimension 512
ffn_embedding_dimension 4096

Table 2: PRIMARY Submission Model Architecture
details

Parameter Value
lora_rank 32
lora_alpha 32
lora_dropout 0.1
device_batch_size 16
device_grad_accumulation_steps 2
max_steps 100,000
eval_steps 5,000
patience 10

Table 3: CONTRASTIVE Submission Model details

4 Experiments

4.1 Implementation

4.1.1 PRIMARY Submission

For Primary submission we use fairseq2 frame-
work for both pretraining and finetuning stage. The
model architecture details can be found in Table 2.
We experimented with lesser #encoder, #decoder
layers as compared to standard (6 encoder and 6
decoder layers) to reduce model complexity and
hence training time.

4.1.2 CONTRASTIVE Submission

For CONTRASTIVE submission we use Indic-
Trans2(Gala et al., 2023) and use huggingface peft
library for LoRA finetuning. The model details can
be found in Table 3

5 Results

The results as shared by conference committee are
attached below. PRIMARY submission results Ta-
ble 4 and CONTRASTIVE submission results in
Table 5.

We use SacreBLEU (Post, 2018) for validation
evaluation. The validation scores (development
set) reported during training for Primary system
are attached in Table 6

2https://github.com/facebookresearch/fairseq

Direction BLEU TER RIBES METEOR ChrF
en -> as 1.32 101.83 7.1 7.44 22.15
en -> mn 0 101.83 1.91 3.07 18.89
en -> mz 0 102.98 3.61 6.20 16.46
en -> kh 0.54 103.72 8.21 9.69 17.78

Table 4: PRIMARY Submission Scores on test suite

Direction BLEU TER RIBES METEOR ChrF
as -> en 29.59 34.92 35.05 74.09 64.88
mn -> en 18.89 53.05 29.17 59.43 57.1
mz -> en 11.27 64.94 20.26 47.84 44.82
kh -> en 4.2 80.89 12.05 32.83 31.8

Table 5: CONTRASTIVE Submission Scores on test
suite

5.1 Learnings

Following are the learnings from our Experiments

1. Transfer Learning benefits translation task.
We saw it in PRIMARY submissions in which
language models are pretrained on denois-
ing/ causal language modeling(CLM) task and
then transferred for translation task. Espe-
cially its evident from initial bleu score and
loss. We saw denoising task led to faster con-
verging of models (lower initial loss) relative
to CLM task objective.

2. Languages that share a common linguistic an-
cestor or follow similar word order patterns
(such as SVO or SOV) can benefit from using
the same vocabulary and sharing parameters
during initialization. This allows for more ef-
ficient training and better performance across
related languages.

3. Using Translation for related language ben-
efits from cross lingual language refer-
ence.(Bleu scores of CONTRASTIVE sub-
mission)

4. LoRA finetuning is effective for adapting a
translation model to new low resource lan-
guage (lesser training time and resources).

Direction SacreBLEU
en -> as 8
en -> mn 16.9
en -> mz 22.3
en -> kh 11.1

Table 6: PRIMARY Submission Scores on development
suite shared along with training data
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5.2 Conclusion
The adpatation of another language translation
model to similar but low resource language is ben-
efitted by sharing params, vocabs etc across lan-
guages (due to cross lingual language learning).
LoRA finetuning leds to quicker converging for
low resource languages (18-19 hours on A100 GPU
with 40GB of RAM).

We have described our submission to WMT2024
Indic Translation Task, leveraging various concepts
like Denoising task(Lewis et al., 2020), Cross Lin-
gual Transfer Learning(CONNEAU and Lample,
2019), IndicTrans2 Model(Gala et al., 2023), LoRA
adaptation(Hu et al., 2021) etc.

Limitations

1. Exploring impact of Iterative Backtransla-
tion(Hoang et al., 2018) benefits using inter-
mediate models in PRIMARY setting.

2. Exploring more pretraining task objectives for
PRIMARY System.

3. Exploring multi task learning impact for PRI-
MARY systems.

4. Exploring the difference in scores, training re-
sources for full precision finetuning vs LoRA
finetuning.
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Abstract

Machine Translation for low-resource lan-
guages poses significant challenges, primar-
ily due to the limited availability of data.The
WMT24 Low-Resource Indic Neural Machine
Translation task challenges us to employ inno-
vative techniques to improve machine transla-
tion for low-resource Indian languages. Our
proposed solution leverages advancements
in neural machine translation, focusing on
methodologies such as back-translation and
fine-tuning. By fine-tuning pretrained models
like mBART, we achieved significant progress
in translating languages such as Manipuri and
Khasi. The best score was achieved for the
English-to-Khasi (en-kh) primary model, with
the highest BLEU score of 0.0492, chrF score
of 0.3316, and METEOR score of 0.2589 (on
scale of 0 to 1) and comparable scores for other
language pairs.

1 Introduction

Machine translation is a sub-field of computational
linguistics that focuses on developing systems ca-
pable of automatically translating text or speech
from one language to another. The WMT24 task
enables us to perform machine translation on those
languages which are considered low-resource that
is with limited data availability due to their lesser
prevalence or documentation. Our work focuses
on translating the ‘En-X’ language pair in both
directions, where ‘En’ stands for English and ‘X’
includes Manipuri, a Tibeto-Burman language, and
Khasi, which belongs to the Austroasiatic language
family.

In recent years, Neural Machine Translation
(NMT) has emerged as a powerful approach within
machine translation, leveraging deep learning to
achieve state-of-the-art results. Although, the NMT
models being the data-hungry lead to peformance

0* These authors contributed equally to this work.

degradation when it comes to low resource lan-
guages. To tackle this problem, we employed fine-
tuning and utilised the mBART (mbart-large-50-
many-to-many-mmt) (Tang et al., 2020) experi-
menting with different configurations and settings
for both preprocessing and training. mBART (Liu
et al., 2020) is a multilingual sequence-to-sequence
model trained on extensive monolingual datasets
using a denoising autoencoder approach. It builds
on the BART framework (Lewis et al., 2019) by
combining a bidirectional encoder with a left-to-
right autoregressive decoder, making it suitable for
various translation tasks across multiple languages.
Even if most of our final systems did not reach a
satisfactory or competitive performance, we argue
that our experiments brought up some interesting
points that deserve more attention.

2 Related Work

In a comprehensive study, (Gaikwad et al., 2023)
examined fine-tuning-based techniques to improve
translation capabilities for low-resource languages
by harnessing the multilingual IndicTrans2 model
and achieved significant results.

In 2023, (Suman et al., 2023) utilized In-
dicBART (Dabre et al., 2022) and mBART-large-
50, adapting them to specific language pairs and
this method led to substantial performance gains
for the Assamese and Manipuri languages.

Another 2023 study, (Jha et al., 2023), proposed
and evaluated a multilingual neural machine trans-
lation system for Indian languages using the mT5
transformer. This system, trained on the modified
Asian Language Treebank (ALT) dataset, demon-
strated strong performance in translations between
English, Hindi, and Bengali, achieving BLEU
scores above 20 for five out of the six language
pairs.

(Saini and Vidhyarthi, 2023) evaluated various
pretrained models for English-to-Marathi trans-
lation, developing a bidirectional system. The
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findings indicated that fine-tuning significantly en-
hanced the mBART model’s performance.

(Signoroni and Rychly, 2023) addressed the chal-
lenges of neural machine translation (NMT) for
low-resource language pairs by using supervised
NMT systems. They experimented with different
configurations and settings for both preprocessing
and training, delving into the complexities of trans-
lating these languages.

3 Dataset

3.1 Languages

Manipuri, also known as Meitei or Meiteilon, is
predominantly spoken in the northeastern Indian
state of Manipur and is one of India’s 22 scheduled
languages having about 1.8 million native speakers
(Signoroni and Rychly, 2023). It is distinguished
by its rich morphological features, including a com-
plex phonological system with tones, an aggluti-
native structure, and a Subject-Object-Verb (SOV)
word order, as shown in Figure1. As a tonal lan-
guage, Manipuri uses various tones and pronunci-
ations to convey meaning and employs primarily
two scripts: Meitei and Bengali. Despite being a
scheduled language, Manipuri is often considered a
low-resource language in natural language process-
ing, presenting valuable opportunities for transfer
learning and the development of multilingual mod-
els.
Khasi primarily spoken in the northeastern Indian
state of Meghalaya by the Khasi people, is one
of the major languages of the region spoken by
over 1 million individuals (Signoroni and Rychly,
2023). Belonging to the Austroasiatic language
family, Khasi is more commonly written using the
Latin alphabet. Structurally, Khasi typically fol-
lows a subject-verb-object (SVO) order, similar to
English, but differs from most Indian languages,
which generally use a subject-object-verb (SOV)
order, as shown in Figure 1.

Figure 1: Translations of "The boy eats an apple" show-
ing word order in Manipuri and Khasi.

3.2 Composition

In this study, we used WMT 2024 (Pal et al., 2023)
(Kakum et al., 2023) to fine-tune which includes

both bilingual and monolingual data. For the bilin-
gual data, we used the language pairs English-
Khasi (en↔ kh) and English-Manipuri (en↔ mn).
The compositions of these datasets are presented
in Table 1 and 2.

Lang. Pair Train Test Validation Monolingual
en ↔ kh 24,000 1000 1000 182,737
en ↔ mn 21,687 1000 1000 2,144,897

Table 1: Number of lines in the dataset for the language
pairs used in the task. The Monolingual column refers
to the size of the non-English side.

Lang. Pair Type:Token Ratio Avg. Sentence Length
en ↔ kh 0.019 (en) 30.41 tokens (en)

0.0093 (kh) 36.48 tokens (kh)
en ↔ mn 0.0573 (en) 18.02 tokens (en)

0.0083 (mn) 15.23 tokens(mn)

Table 2: Training Dataset Statistics for Language Pairs:
Type-Token Ratio and Average Sentence Length

4 System Overview

4.1 Initial Fine-Tuning

We begin by fine-tuning the mBART model (mbart-
large-50-many-to-many-mmt) for the language
pairs: English to Khasi (en → kh), Khasi to En-
glish (kh→ en), English to Manipuri (en→ mn),
and Manipuri to English (mn → en). To ensure
the quality and consistency of the bilingual data,
we perform several preprocessing steps, including
the removal of HTML tags, invisible characters,
newline tabs, and duplicate entries.

For machine translation preparation, we tokenize
both the input and the target texts. Truncating
techniques are applied to standardize the texts by
setting the maximum length of the tokenized se-
quences to 512 tokens. This ensures uniformity
across all the examples in the dataset. This serves
as our baseline model.

4.2 Data Augmentation

4.2.1 Backtranslation

A back-translation strategy (Sennrich et al., 2016)
is employed to augment the training dataset with
more data. Specifically, we back-translate 100,000
monolingual Khasi and Manipuri sentences into
English using the baseline model. However, it is
likely that the backtranslated data contains a signifi-
cant portion of low-quality translations. To remove
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Lang. Pair Filtered Data
kh ↔ en 534
mn ↔ en 662

Table 3: Count of high-quality sentence pairs after
cosine similarity filtering (threshold 0.84) for Khasi-
English (kh↔ en) and Manipuri-English (mn↔ en).

low-quality data and ensure high-quality transla-
tion pairs, we employ a filtering process using the
LaBSE model and cosine similarity.

4.2.2 Data Filtering
LaBSE Fine-tuning The Language-agnostic
BERT Sentence Embedding (LaBSE) model (Feng
et al., 2022) is not originally trained in the Khasi or
Manipuri languages. Therefore, to generate accu-
rate sentence embeddings for these language pairs,
we fine-tune the LaBSE model specifically for en
↔ kh and en↔ mn pairs, despite the limited size
of available bilingual data. This fine-tuned model is
then employed to produce sentence embeddings for
the back-translated Khasi-English and Manipuri-
English pairs.

Embedding and Similarity Calculation To en-
sure the accuracy of the back-translated data, we
use cosine similarity, a metric that measures the
cosine of the angle between two vectors in mul-
tidimensional space, to compare sentence embed-
dings. We apply a threshold of 0.84, effectively
filtering out low-quality translations, and retaining
only those pairs that meet our quality standards.
Consequently, only a small portion of the original
100,000 back-translated sentences remain after fil-
tering using this threshold. The data retained after
filtering are presented in Table 3.

4.2.3 Further Filtering and cleaning
Despite filtering, some sentences with continuous
symbols or non-English characters remain. To ad-
dress this, we conduct an additional data cleaning
round, removing sentences with continuous sym-
bols and residual Manipuri or Khasi words in the
English translations. The cleaned data is then com-
bined with the original training set to create the
augmented dataset as the final dataset.

4.3 Training with Augmented Data

Subsequently, we fine-tune the mBART model
(mbart-large-50-many-to-many-mmt) using the
augmented dataset, which includes both the orig-
inal training data and the filtered back-translated

data. The same data-preprocessing steps are em-
ployed for the augmented dataset as applied for the
baseline model to maintain uniformity. The fine-
tuning process incorporates this augmented data to
enhance the model’s performance and robustness.

5 Results and Analysis

Table 4 shows WMT24 evaluation results, high-
lighting a more challenging test set compared to
last year. The low average semantic similarity
score of 0.0253 as found using the (Reimers and
Gurevych, 2019) sentence-transformer model that
maps sentences to a 384 dimensional dense vector
space to calculate semantic similarity between train
and test data indicating reduced model performance
too.

Among the primary models, the English-to-
Khasi (en→ kh) model, trained on both original
and filtered back-translated data, performed the
best across most metrics. It achieved the highest
BLEU score of 0.0492, a chrF score of 0.3316,
and a METEOR score of 0.2589, indicating strong
performance for this language pair. The high chrF
score shows effective capture of character-level
nuances, while the lowest TER score of 84.79 re-
flects fewer required edits to match reference trans-
lations.

It is important to note that the Khasi-to-English
(kh-en) primary model is excluded from this eval-
uation because of issues encountered during the
evaluation process. Meanwhile, the English-to-
Manipuri (en→ mn) model shows a BLEU score
of 0, highlighting the difficulty in translating from
English to Manipuri. This may be partly due to
the smaller size of the training data for this pair
compared to the en-kh pair. Despite some fluctu-
ations, the overall performance of both models is
comparable in the test data.

When considering all metrics, the primary
model shows slight improvements over the base-
line model, indicating that the additional filtered
back-translated data enhanced translation quality.
However, the baseline model also performs compet-
itively. The filtered back-translated data includes
only 534 sentences for the kh↔ en pair and 662 for
the mn↔ en pair (Table 3), with the small dataset
likely due to stringent filtering.

Table 5 shows that the primary model slightly
outperforms the baseline model in BLEU, chrF, and
TER metrics for the English-to-Khasi (en → kh)
and English-to-Manipuri (en→ mn) models, sug-
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Lang. Pair BLEU (↑) chrF (↑) TER (↓) METEOR (↑) RIBES (↑)
Baseline

en-kh 0.0359 0.2333 103.49 0.1649 0.1106
kh-en 0.0060 0.1731 106.60 0.1020 0.0487
en-mn 0.0064 0.3191 96.46 0.0724 0.0628
mn-en 0.0484 0.2662 101.76 0.1940 0.1087

Primary
en-kh 0.0492 0.3316 84.79 0.2589 0.1595
en-mn 0.0000 0.3325 94.77 0.0822 0.0737
mn-en 0.0362 0.2777 94.79 0.1873 0.1136

Table 4: Results of Primary and Baseline models evaluated on WMT24 evaluation test data (scores calculated on the
scale from 0 to 1)

Lang. Pair BLEU (↑) chrF (↑) TER (↓)
Baseline

en-kh 0.1748 0.3964 0.75699
kh-en 0.1274 0.3566 0.8791
en-mn 0.2089 0.5676 0.6537
mn-en 0.3265 0.5709 0.6522

Primary
en-kh 0.1867 0.4126 0.7275
kh-en 0.1234 0.3570 0.8845
en-mn 0.2097 0.5726 0.6495
mn-en 0.3224 0.5698 0.6483

Table 5: Results of Baseline and Primary models evaluated on WMT23 validation data (scores calculated on the
scale from 0 to 1)

gesting that filtered back-translated data improves
translation quality. However, for the Khasi-to-
English (kh→ en) and Manipuri-to-English (mn→
en) models, the primary model experiences a slight
performance drop. This decrease is likely due to the
filtered back-translated English sentences lacking
coherence and contextual appropriateness, which
affects the model’s effectiveness. Despite these
variations, the primary model still performs slightly
better than the baseline model when considering
all metrics.

6 Conclusion

Improving machine translation for low-resource
languages remains a critical focus in the field. In
this paper, we develop a system for translating low-
resource Indic languages, specifically Manipuri
and Khasi, in both English-to-Indic and Indic-to-
English language pairs. We use back-translation
and then apply cosine similarity for data filtering.
While effective, their success depends on the qual-
ity of the back-translation and fine-tuned LaBSE
models.

The morphological complexity of the Indic lan-
guages along with inability of capturing cultural
and context specific meanings also poses as a chal-
lenge which the model could not solve. We further
encounter challenges including data scarcity and

high computational requirements which we believe
can help produce better results.

7 Future Work

For future work, we aim to focus on enhancing
machine translation for low-resource languages
by leveraging language-specific properties such as
part-of-speech (POS) tags and dependency pars-
ing. By integrating POS tagging one can enable
the model to better understand the syntactic roles
of words, leading to more accurate and contex-
tually appropriate translations. Dependency pars-
ing can also capture the grammatical structure and
relationships between words, allowing the model
to manage complex sentence structures more ef-
fectively. Additionally, the use of more filtered
backtranslated data can provide a richer training
dataset, further improving translation quality. Com-
bining these linguistic techniques with extensive
backtranslation, so that we can capture the nuances
of the individual low-resource languages, we can
significantly address the current challenges in ma-
chine translation.
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Abstract
CycleGN is a Neural Machine Translation
framework relying on the Transformer architec-
ture. Its approach is similar to a Discriminator-
less CycleGAN, specifically tailored for non-
parallel text datasets.

The foundational concept of our research posits
that in an ideal scenario, retro-translations of
generated translations should revert to the orig-
inal source sentences. Consequently, a pair of
models can be trained using a Cycle Consis-
tency Loss only, with one model translating
in one direction and the second model in the
opposite direction.

One of the main advantages of such an ap-
proach is that it makes it possible to learn with
non-parallel datasets, which are by definition
rare and short for low-resource languages. In
order to verify this hypothesis and as a contribu-
tion to the WMT24 challenge, CycleGN mod-
els were trained for both the “Translation into
Low-Resource Languages of Spain” and “Low-
Resource Indic Language Translation” tasks.
These submissions fall under the “constrained”
category, as no pre-trained translation model
was used, and the models were trained using
the provided datasets.

Given that the CycleGN architecture demon-
strated its capacity to learn from non-parallel
datasets, the authors anticipated that it would
similarly be effective in learning from low-
resource languages. However, preliminary re-
sults indicate that, for most low-resource lan-
guage pairs, the models did not exhibit signifi-
cant learning ability. This study explores this
lack of learning.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) marked a significant ad-
vancement in Machine Translation, rapidly gaining
widespread adoption. Its parallelized structure en-
hanced computational efficiency, allowing for the
integration of a larger number of parameters.

Neural Machine Translation (NMT) relies on
extensive text corpora, structured as aligned pairs,
where sentences of equivalent meaning are avail-
able in at least two different languages. This align-
ment is crucial for initiating model training to estab-
lish linguistic connections. Ongoing efforts, such
as OPUS (Tiedemann and Thottingal, 2020) and
Tatoeba (Tiedemann, 2012), focus on providing
public access to these datasets. However, parallel
datasets represent only a small fraction of the total
data available in monolingual datasets.

While large parallel corpora exist for many lan-
guage pairs, the ability to utilize monolingual
datasets alone would greatly increase the available
training data. This approach is particularly advan-
tageous for low-resource languages, with limited
parallel text corpora.

Back-translation (Sennrich et al., 2016) is a tech-
nique that enhances training data by using a pre-
trained machine translation (MT) model to trans-
late sentences from a monolingual dataset, creating
synthetic parallel pairs. This method allows for
the generation of additional training examples in
situations where parallel corpora are scarce.

This research builds on the concept that translat-
ing a sentence from a source language to a target
language, and then back-translating it to the source
language, provides a means to evaluate the effec-
tiveness of the translation models. By comparing
the original sentence with the machine-generated
back-translation, the discrepancy is then quantified
using a Cycle Consistency Loss, which serves as
a metric for model performance and guides the
backpropagation of gradients within the neural net-
works. This approach is analogous to techniques
used in Image-to-Image Translation, such as the Cy-
cleGAN framework proposed by Zhu et al. (2017).

2 Previous work

The TextCycleGAN model (Lorandi et al., 2023),
although not based on the Transformer architecture
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or focused on Machine Translation (MT), intro-
duced a novel approach for text style transfer. This
method applied a CycleGAN to the Yelp dataset,
enabling the model to learn mappings between pos-
itive and negative textual styles without the need
for paired examples.

Shen et al. (2017) demonstrated the potential
of training two encoder-decoder networks in an
unsupervised manner, allowing for the sharing of a
latent space and facilitating style transfer. Similarly,
Lample et al. (2018) extended this technique to the
MT domain, proving that effective translation can
be achieved without relying on parallel datasets.

3 Definitions

Machine Translation models are most commonly
trained using “parallel” datasets, which are struc-
tured collections of text pairs. Each pair comprises
a segment of text in a source language and its trans-
lation in the target language. A non-parallel dataset
on the other hand does not consist in pairs of text
segments, consequently the source and target sen-
tences do not share any explicit correspondence.

In the context of this study, the datasets are “per-
muted”. A permuted dataset is defined as a parallel
dataset wherein the sentences of one language have
been systematically rearranged. Consequently, this
results in a non-parallel corpus where it is guaran-
teed that each sentence has a corresponding trans-
lation located at an unspecified index within the
dataset.

4 Datasets

The PILAR dataset (Galiano-Jiménez et al., 2024)
has been used exclusively for the low-resource lan-
guages of Spain. Using a parallel curated dataset
as a starting point ensures that the dataset is non-
parallel by permuting the sentences. For each
Iberian language, both a literary and a crawled
versions were available in the PILAR datasets and
have been merged for training. The development
sets of the PILAR dataset are translations of the
development sets of the FLORES dataset (NLLB
Team et al., 2022), which is an evaluation bench-
mark for multilingual machine translation.

The Low-Resource Indic Language Translation
task was also part of the WMT23 (Pal et al., 2023).
The datasets were kept the same between the two
editions.

Table 1 references the number of sentences used
for each language-pair.

Language Pair Number of lines Number of epochs
Spanish-Aragonese 84,703 10
Spanish-Asturian 38,869 10
English-Assamese 2,624,715 1

English-Khasi 182,737 3
English-Manipuri 2,144,897 1

English-Mizo 1,909,823 1

Table 1: Number of sentences for each language pair
and number of epochs during training

5 Training

For clarity and consistency, the mathematical no-
tations from the original CycleGAN framework
will be adopted in this study. The objective is to
develop two Neural Machine Translation (NMT)
models for two languages, X and Y , using their re-
spective datasets. Specifically, we aim to construct
models G : X 7→ Y and F : Y 7→ X such that,
in the ideal scenario of perfect translation, the re-
lationships G(F(y)) = y and F(G(x)) = x, with
x ∈ X and for y ∈ Y .

To achieve this, the Cross-Entropy Loss (CEL)
(Zhang and Sabuncu, 2018) is utilised as the Cycle
Consistency Loss (CCL), which measures the dis-
tance between the original sentence and its doubly
translated counterpart, thereby guiding the compu-
tation of gradients.

Furthermore, similar to the original CycleGAN
implementation, our study also incorporates an
Identity Loss (IL) to enhance training stability.
This loss, also based on CEL, ensures that when
the model G, which maps X 7→ Y , receives an
input y ∈ Y , the output remains unchanged, i.e.,
G(y) = y. The same loss function is applied to
F , ensuring that F(x) remains equal to x, as illus-
trated in Figure 1.

Further details of the training process, includ-
ing the specific methodologies, vocabulary orga-
nization and pretraining, are comprehensively dis-
cussed in the CycleGN submission for the WMT24
main translation task. Readers interested in the
full technical details are encouraged to refer to that
publication for a more complete understanding of
the training framework.

5.1 Model architecture

The architecture used for both models, G and F ,
is the Marian framework (Junczys-Dowmunt et al.,
2018) implemented by Huggingface’s Transform-
ers library (Wolf et al., 2020), which is licensed
under the Apache Licence. While most parameters
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Figure 1: CycleGN training process

follow the default configuration, Table 2 references
the changes that were made in order to reduce the
computational cost of the architecture.

Parameter Huggingface Current work
Vocabulary size 58,101 32,000
Encoder layers 12 6
Decoder layers 12 6

Encoder attention heads 16 8
Decoder attention heads 16 8
Encoder feed-forward 4096 2048
Decoder feed-forward 4096 2048
Position embeddings 1024 128
Activation function GELU ReLU

Table 2: Non-default parameters in the configuration of
Marian Transformer models

6 Results

Even if tracking the CCL is an inexpensive manner
to estimate the progress of the training of the Cy-
cleGN architecture, a low loss value can also hide
an absence of translation. Indeed, as there is no
Discriminator to ensure that x̂ belongs to X and
ŷ belongs to Y , G and F will converge towards
x = ŷ = ˆ̂x and y = x̂ = ˆ̂y, as this approach
achieves an optimal outcome on the CCL function,
registering a value of zero. This is why an evalua-
tion metric such as COMET is crucial to assess the
progression of the CycleGN framework. To mea-
sure the performances of CycleGN, every 1,000th

batch the CCL was averaged.

6.1 Indic Languages

Tracking the evolution of the CDC clearly shows
the absence of learning in the four language pairs
examined. The evolution of the CCL is particu-
larly chaotic, which is partly due to an imbalance
of class. Table 3 displays the average number of
tokens in the Indic datasets depending on the lan-
guage. In 3 of the 4 cases, the difference is large,
i.e. sentences where the difference in the number
of tokens is more than 10%.

Language pair Length of source Length of target
English-Assamese 33.10 22.81

Encoder layers 24.09 75.27
English-Manipuri 24.09 26.07

English-Mizo 32.05 17.55

Table 3: Average number of tokens in sentences

Figures 2, 3, 4 and 5 display the respective
evolution of the Cycle Consistency Loss dur-
ing the training of the language-pairs English-
Assamese, English-Khasi, English-Manipuri and
English-Mizo.

Contrary to what the authors had hoped for on
the basis of previous results obtained for the main
task of the WMT24 challenge, no model followed
the expected learning curve, i.e. G and F models
with a close and slowly decreasing Cycle Consis-
tency Loss.

To reduce this imbalance of class, it may be nec-
essary to manually adjust the size of the sentences.
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Figure 2: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Assamese model

Figure 3: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Khasi model

Figure 4: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Manipuri model

This can be done by choosing another tokenization
method, selectively choosing phrases to keep only
those of a similar size, or by trimming sentences to
lengthen or shorten them as required.

Figure 5: Evolution of the Cycle Consistency Loss dur-
ing the training of the English-Mizo model

6.2 Iberian Languages

As with Indic Languages, CycleGN was unable to
learn from the datasets provided. However, it was
not due to an imbalance of classes in this case, but
rather because the classes were too close together,
as the Iberian languages are very close to the source
language, Spanish.

Figure 6: Evolution of the Cycle Consistency Loss dur-
ing the training of the Spanish-Aragonese model

Rather than translating directly from Spanish
into Aranese or Asturian, it is possible that transla-
tion can be achieved by using a different intermedi-
ate language such as English. Thus, two CycleGN
models would have to be trained, the first to trans-
late from Aranese or Asturian into English, and
the second from English into Spanish. This would
double the training time for an already expensive
framework.
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Figure 7: Evolution of the Cycle Consistency Loss dur-
ing the training of the Spanish-Asturian model

7 Conclusion

In conclusion, while the training process demon-
strated significant progress and effective transla-
tion capabilities in the main study, the results pre-
sented in this paper reveal several challenges that
prevented similar success. The issues identified,
particularly in relation to both class imbalance and
class proximity, indicate that further refinement and
investigation are necessary. Future research should
focus on addressing these challenges, with the aim
of optimizing the training process and overcoming
the outlined issues. Resolving these problems is
crucial for realizing the full potential of the frame-
work within the context discussed in this paper.

8 Future Work

Further investigations will benefit from the incor-
poration of a more extensive dataset and an explo-
ration of larger model architectures. Future work
also include methods discussed in Section 6 to al-
low translation training.

8.1 Larget dataset

The current work has been trained on a small
dataset compared to MT standards. Future work
should try to see how convergence progresses with
more iterations. Further computational optimiza-
tions are probably necessary to shorten the training
time required.

8.2 Larger models

The current architecture relies on a total of
158,769,152 parameters, which is only about a third
of the size of the default in the Huggingface library.

9 Source Code

The source code of CycleGN is available at
https://github.com/SorenDreano/CycleGN.

Limitations

The investigation acknowledges certain inherent
limitations which may impact the generalizability
and applicability of the findings.

Language diversity
Another issue that arises from the computing cost
of CycleGN is the lack in language diversity. In-
deed, our current work only used the English-
German and Chinese-English language pairs. Con-
sequently, it cannot be certain that the approach
presented can be applied to other languages and all
alphabets. This is why CycleGN is taking part in
WMT24, to explore the framework’s performance
on a wide range of language pairs.

Training limitations
Due to time constraints and the fact that CycleGN
is a computationally expensive architecture, it was
not possible to train the Spanish-Aranese pair. Sim-
ilarly, the training of all models was stopped early,
before reaching performance stagnation.

Ethics Statement

This study, focusing on the training of NMT mod-
els using non-parallel datasets, adheres to the high-
est ethical standards in research. We recognize
the critical importance of ethical considerations
in computational linguistics and machine learning,
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development, and potential impacts on various lin-
guistic communities.

Our research utilizes publicly available, non-
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is sourced following legal and ethical guidelines,
respecting intellectual property rights and privacy
concerns.

In our commitment to scientific integrity, we
maintain transparency in our research methodolo-
gies, model development, and findings. We aim to
make our results reproducible and accessible to the
scientific community, contributing positively to the
field of machine translation.
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Abstract

This paper presents the SETU-ADAPT’s sub-
missions to the WMT 2024 Low-Resource In-
dic Language Translation task. We participated
in the unconstrained segment of the task, focus-
ing on the Assamese-to-English and English-
to-Assamese language pairs. Our approach
involves leveraging Large Language Models
(LLMs) as the baseline systems for all our MT
tasks. Furthermore, we applied various strate-
gies to improve the baseline systems. In our
first approach, we fine-tuned LLMs using all
the data provided by the task organisers. Our
second approach explores in-context learning
with few-shot prompting. In our final approach
we explore an efficient data extraction tech-
nique based on a fuzzy match-based similarity
measure for fine-tuning. We evaluated our sys-
tems using BLEU, chrF, WER, and COMET.
The experimental results showed that our strate-
gies can effectively improve the quality of trans-
lations in low-resource scenarios.

1 Introduction

Advances in deep learning have led to major im-
provements in present-day MT systems. However,
developing reasonable-quality MT systems for low-
resource languages, especially those from the Indic
language family, remains a challenge (Pal et al.,
2023). India, home to numerous ancient and mor-
phologically rich languages, presents unique ob-
stacles for MT development due to the intricate
morphology, syntax, and scarcity of parallel data
for many regional languages (Suman et al., 2023;
Ahmed et al., 2023). This motivated us to par-
ticipate in the WMT 2024 Low-Resource Indic
Language Translation task and contribute to the
advancements in indic MT systems.

Large-pre-trained models are becoming the norm
in MT due to their accuracy, scalability, and usage
flexibility. Hence, for our experiments we chose
LLMs as our baseline MT systems. More specif-
ically, we used IndicTrans21 as the baseline for
building all our MT systems. We carried out our
experiments for Assamese-to-English and English-
to-Assamese language pairs.

We conducted experiments applying different
methodologies for improving the performance of
our MT systems. Our primary approach involves
fine-tuning LLMs using all the available data.
However, Assamese is a very low-resource lan-
guage, and obtaining good quality data is challeng-
ing. Since there is limited availability of domain-
specific parallel data, in our second approach we
generated synthetic data by retrieving a large cor-
pus of monolingual data from OPUS2. We then
performed similarity search in order to identify
domain-specific sentences of target language from
the generic data and back-translated them into the
source language. Our third approach involves inves-
tigating in-context learning using few-shot prompt-
ing. We augmented the prompt with samples whose
source-side is similar to the source sentence to be
translated.

The rest of the paper is organised as follows:
we discuss related works in Section 2. We detail
the data sets used in Section 3. Our models and
experimental setups are described in Sections 4
and 5. The results are reported and findings are
discussed in Section 6. Section 7 concludes this
work and discusses avenues for future work.

1https://github.com/AI4Bharat/IndicTrans2?tab=
readme-ov-file#indictrans2

2https://opus.nlpl.eu/NLLB/as&en/v1/NLLB
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2 Related Work

In this section, we discuss the papers that are re-
lated to our work. Burchell et al. (2022) introduced
a framework that differentiates between lexical and
syntactic diversity in back translation. Their re-
search highlights that while both types of diversity
improve Neural MT (NMT) performance, lexical
diversity is more critical. They also demonstrated
that nucleus sampling, a method that balances di-
versity with adequacy, provides superior results for
low-resource and mid-resource language pairs.

Ahmed and Buys (2024) introduced the concept
of “Synthetic Pivoting” to address the limitations of
traditional pivot-based methods, which often face
challenges due to structural mismatches between
the pivot and low-resource languages. Synthetic
Pivoting generates synthetic pivot sentences that
better align with the structure of both the source
and target languages, resulting in more accurate
translations. This method has substantially im-
proved translation quality, particularly for Southern
African languages, by simplifying the translation
process and effectively utilising high-quality syn-
thetic data.

Suman et al. (2023) focused on improving
the translation quality for low-resource Indic lan-
guages: Manipuri and Assamese. They leveraged
linguistic and scriptural similarities between these
languages and Bengali to improve translation out-
comes. By utilising pre-trained models on Bengali
and incorporating transliteration techniques, they
were able to overcome the challenges posed by
the limited resources available for Manipuri and
Assamese. Their experiments showed that their
approaches were effective in improving translation.

Moslem et al. (2023) explored using LLMs for
adaptive translation. Their research demonstrated
that in-context learning with LLMs enables real-
time adaptation to specific terminology and stylis-
tic preferences during inference. They showed that
this eliminated the need for extensive fine-tuning.
They found that few-shot in-context learning, es-
pecially when combined with fuzzy matches from
translation memories, can outperform traditional
encoder-decoder models regarding translation qual-
ity, particularly for high-resource language pairs.

Zhang et al. (2023) investigated the potential of
fine-tuning LLMs for MT, focusing on decoder-
based models that had not been extensively studied
before. They evaluated 15 publicly available LLMs
using methodologies such as zero-shot prompting,

few-shot learning, and fine-tuning, with a particular
emphasis on the QLoRA (Dettmers et al. (2023))
fine-tuning method. QLoRA proved a highly effec-
tive technique, reducing memory usage by quan-
tising the model to 4-bit precision and limiting
the number of trainable parameters. Their find-
ings showed that fine-tuning LLMs, especially us-
ing QLoRA, significantly outperformed zero-shot
and few-shot approaches, particularly in document-
level translation tasks.

3 Data

We utilised the data provided by WMT organisers
for our experiments. The data statistics are detailed
in Table 1.

Assamese↔ English
Files Sentences
Train 50,000
Valid 2,000
Test (2023) 2,000
Test (2024) - Blind Test 500

Table 1: Statistics of the datasets used.

4 Models used

4.1 IndicTrans2
We used IndicTrans2, a Transformer-based
(Vaswani et al., 2023) Multilingual NMT
model trained on the BPCC dataset,3 as
our baseline MT system. We used the
ai4bharat/indictrans2-indic-en-1B and
ai4bharat/indictrans2-en-indic-1B check-
points for our systems. For building our MT
systems we set the following hyperparameters:

• the data was tokenised to a fixed length of
128 tokens, where sequences longer than
128 tokens were truncated and shorter ones
were padded to ensure uniform length across
batches,

• the learning rate: 2× 10−5,

• the batch size: 16,

• the training ran for 3 epochs satisfying our
stopping criterion,

• a weight decay of 0.01 for improving the
model’s generalisation capabilities.

3https://ai4bharat.iitm.ac.in/bpcc/

763

https://ai4bharat.iitm.ac.in/bpcc/


We fine-tuned the model in order to adapt it to the
domain and styles of data of Assamese-to-English
translation task.

4.2 GPT-4o

GPT-4o (OpenAI et al., 2024) is a language model
from OpenAI based on Transformer, which serves
as the foundation for many language models today.
It comprises multiple layers of self-attention mech-
anisms and feed-forward neural networks, enabling
the model to efficiently process and generate text
sequences. The model has been trained on a diverse
and extensive dataset, allowing it to capture various
linguistic patterns and contextual knowledge. We
used GPT-4o for our in-context learning strategy.
We used the following set of hyper-parameters for
our experiment: (i) the temperature was set to 0.2,
which controls the randomness of the output, ensur-
ing more deterministic responses, and (ii) all other
hyperparameters were not explicitly set and were
set to the default values.

5 Experiments

In this Section we discuss our experiments. As
discussed in Section 4, we used IndicTrans2 as
our baseline model. We selected this model as the
baseline due to its superiority as far as translation
performance on low-resource Indian languages like
Assamese is concerned (cf. Figure 1). We evalu-
ated our MT models using the test data described in
Section 3. We used BLEU (Papineni et al. (2002)),
chrF (Popović (2015)), WER, and COMET4 (Rei
et al. (2020)) metrics for evaluation. The following
subsections describes our MT systems.

5.1 Assamese-to-English

5.1.1 Primary
Our primary MT system for the Assamese-to-
English translation task is the fine-tuned Indic-
Trans2 model (cf. Section 4). In other words, we
fine-tuned the baseline model on the domain data
provided by the organisers. Our data sets were
detailed in Section 3. We used the same set of
hyperparameters that we described in Section 4.

5.1.2 Contrastive System One
as for our second system, we implemented
an in-context few-shot learning approach, us-
ing which we generated English translations of
Assamese sentences using OpenAI’s GPT-4o.

4COMET version 3.19.1 supports Assamese language.

More specifically, for few-shot learning we cre-
ate prompts for the model with a few samples
of translation pairs (source and target) whose
source-side is similar to the source sentence we
want to translate. We will now explain how
we obtained training instances, whose source-
side is similar to the sentence to be translated.
We first convert all the Assamese training set
sentences into dense vector embeddings using
sentence-transformers/all-MiniLM-L6-v2 5.
The resulting embeddings were then indexed using
FAISS,6 enabling efficient similarity searches to
retrieve the most relevant examples.

Furthermore, for each Assamese sentence of the
test set, we used FAISS to retrieve the top five
closest sentences from the training data based on
the cosine similarity of their embeddings. Then,
we constructed a detailed prompt for the GPT-4o
model using the sentence-pairs that were retrieved
from the training set. In Figure 2, we show an
example of prompt used for in-context learning.

5.1.3 Contrastive system two
For building our second Contrastive system we
used our primary MT model (see Section 5.1.1) as
our baseline. We adapted this MT system by fine-
tuning it with a synthetic data. In order to create the
synthetic data, we used a large English corpus com-
prising 5,000K sentences from the OPUS reposi-
tory’s NLLB project. We took 500k sentences for
that large corpus for our experiment. We further
filtered the sentences to include only those whose
lengths are of 100 to 500 characters. With this, we
omitted very short and excessively long sentences.

To extract domain-similar sentences from the
now filtered corpus, we performed a semantic
search on it using the validation set. All the
corpus sentences were first converted to 768-
dimensional dense vector embeddings using the
sentence-transformers-qa-mpnet-base-dot-v1
7 model. We chose the qa-mpnet-base-dot-v1
model over the all-MiniLM-L6-v2 model used
in 5.1.2 because it can store more detailed
information about a sentence and capture semantic
relationships across a wide range of contexts,

5sentence-transformers/all-MiniLM-L6-v2: https:
//huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

6FAISS: https://github.com/facebookresearch/
faiss

7sentence-transformers-qa-mpnet-base-dot-v1:
https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-dot-v1

764

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1
https://huggingface.co/sentence-transformers/multi-qa-mpnet-base-dot-v1


Figure 1: A visual representation of the advancements in machine translation systems for Indic languages using the
IN22-Gen Evaluation set in the En-Indic direction. IT1, IT2 refers to IndicTrans1 and IndicTrans2 respectively.

Negative chrF++ values indicate poor translation quality or situations where the translation system fails to
generate meaningful or accurate translations. Adapted from (Gala et al., 2023)

essential for extracting accurate and richer
sentence representations from OPUS. These
sentence embeddings were then indexed using
FAISS. Later, we performed similarity searches
by querying the FAISS index with embeddings
of the validation sentences. We retrieved the top
five nearest neighbours from the corpus for each
validation sentence based on cosine similarity. We
then removed sentences with similarity scores
below 0.2. This process ensured that only the most
relevant and contextually similar sentences were
selected.

The final fuzzy matching English sentences were
then back-translated into Assamese using our pri-
mary checkpoint. These new English-Assamese
sentence pairs were used to create a new check-
point by fine-tuning the primary system checkpoint
and translation capabilities.

5.2 English to Assamese

5.2.1 Primary

We build out primary systems using an MT ap-
proach similar to the one we used in Constrative
system one (5.1.2) of the Assamese-to-English
translation section, where we utilised OpenAI’s
GPT-4o model. The primary difference lies in the
prompt structure. In Figure 3, we show the sample

prompt that was modified to treat English sentences
as inputs and Assamese sentences as outputs.

6 Results

This section presents the evaluation results of the
MT systems for both the Assamese-to-English and
English-to-Assamese tasks. We performed the ini-
tial evaluation using the test pairs from the WMT
2023 dataset. Additionally, we present the results
of our evaluation of the blind test set provided by
the organisers. The results are reported in terms of
BLEU, chrF, WER, and COMET metrics.

To ensure the reliability of our findings using the
2023 dataset, we conducted a statistical evaluation
across pairs of models. This involved using boot-
strap resampling (Koehn, 2004), calculating BLEU
scores, and performing paired t-tests. For each
test, we generated 100 bootstrap samples, each con-
taining 100 randomly selected sentences from the
dataset without repetition. This method maintains
the original dataset’s integrity while ensuring diver-
sity in each sample. The results of these statistical
analyses are also presented in this section. In all
comparisons, we tested the null hypothesis that
there is no difference in performance between the
systems by calculating p-values. A low p-value
(less than 0.05) indicates that we can reject the
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Give only the final English
sentence in a single line.

Context:
Assamese 1: <Assamese sentence 1>
Translation in English 1: <

English translation 1>
Assamese 2: <Assamese sentence 2>
Translation in English 2: <

English translation 2>
...
Assamese 5: <Assamese sentence 5>
Translation in English 5: <

English translation 5>

What is the English translation
for Assamese: <input sentence
>?

Figure 2: Prompt structure for GPT-4o model:
Assamese-to-English

null hypothesis, suggesting that the observed dif-
ferences are statistically significant and not due to
random variation.

Four models were evaluated for the Assamese-
to-English translation task: the baseline, primary,
contrastive model one and contrastive model two.
The evaluation results are summarised in Table 2.

Model BLEU ↑ chrF ↑ WER ↓ COMET ↑
B 0.2946 0.5646 0.7000 0.8064
P 0.3418 0.5748 0.6455 0.8086

C1 0.3110 0.5690 0.7035 0.8157
C2 0.3221 0.5724 0.6556 0.8075

Table 2: Evaluation Results for Assamese-to-English
Translation using WMT2023 test pair.
B = Baseline, P = Primary (5.1.1), C1 = Contrastive 1
(5.1.2), C2 = Contrastive 2 (5.1.3). ↑ indicates higher
is better, and ↓ indicates lower is better.

As shown in Table 2, the primary model (P)
outperforms the baseline (B) in all metrics ex-
cept COMET, where Contrastive system one (C1)
achieves slightly higher scores than Contrastive sys-
tem two (C2) . The BLEU and WER improvements
suggest that the primary MT model provides more
accurate and fluent translations compared to those
by the baseline and contrastive models.

The statistical analysis further supports these
findings. When comparing model B and P, the
BLEU score of P (0.3418) was higher than that of

Give only the final Assamese
sentence in a single line.

Context:
English 1: <English sentence 1>
Translation in Assamese 1: <

Assamese translation 1>
English 2: <English sentence 2>
Translation in Assamese 2: <

Assamese translation 2>
...
English 5: <English sentence 5>
Translation in Assamese 5: <

Assamese translation 5>

What is the Assamese translation
for English: <input sentence >?

Figure 3: Prompt structure for GPT-4o model: English
to Assamese

B (0.2946), with a t-statistic of -10.71 and a p-value
of 1.72e-09. Similarly, when comparing P to C1
(0.3110), the t-statistic was -10.17 with a p-value of
7.70e-20. In the comparison with C2 (0.3221), the
t-statistic was -8.64, and the p-value was 5.25e-08.
Across all comparisons, the null hypothesis was
rejected, indicating that p consistently performed
better than the other models.

For the English-to-Assamese translation task,
two models were evaluated: the baseline and the
primary model. The results are summarised in Ta-
ble 3.

Model BLEU ↑ chrF ↑ WER ↓ COMET ↑
B 0.1432 0.4948 0.8105 0.8263
P 0.1768 0.4815 0.7457 0.8220

Table 3: Evaluation Results for English-to-Assamese
Translation using WMT2023 test pair.
B = Baseline, P = Primary (5.2.1). ↑ indicates higher
is better, and ↓ indicates lower is better.

In Table 3, the primary model shows a noticeable
improvement over the baseline in BLEU and WER,
indicating better translation accuracy and reduced
word errors. However, the chrF and COMET scores
are slightly lower than those of the baseline.

The statistical significance tests compares Base-
line and Primary (BLEU scores of 0.1432 for the
Baseline and BLEU scores of 0.1768 for the Pri-
mary) with a t-statistic of -53.11 and a p-value of
1.45e-74. These results clearly indicate that Pri-
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mary produces better translations than those by the
Baseline. The null hypothesis, which assumes no
difference in performance between the two systems,
was rejected, confirming that the Primary system
outperforms the Baseline.

We now present our results on the blind test set
provided by the WMT organisers. The results for
Assamese-to-English translation in WMT24 Low-
Resource Indic Language Translation Task are sum-
marised in Table 4. We observe that contrastive sys-
tem two generally achieves the best results, leading
to 0.3227 BLEU, 0.7563 METEOR, and 0.6573
chrF points, indicating better overall translation
quality and semantic accuracy. The primary system
closely follows the best-performing system (con-
trastive system two), performing slightly better in
TER (33.56 points) and RIBES (0.3778 points),
suggesting that translations require fewer edits,
though it falls slightly behind contrastive system
two on other metrics (0.3180 BLEU, 0.7537 ME-
TEOR, and 0.6551 chrF points). Contrastive sys-
tem one consistently underperforms the other two
systems, with lower scores across all metrics, par-
ticularly 39.03 TER and 0.7219 METEOR points.

Model BLEU ↑ TER ↓ RIBES ↑ METEOR ↑ chrF ↑
P 0.3180 33.56 0.3778 0.7537 0.6551

C1 0.2981 39.03 0.3713 0.7219 0.6437
C2 0.3227 33.63 0.3720 0.7563 0.6573

Table 4: Evaluation Results for Assamese-to-English
Translation (2024).
P = Primary (5.1.1), C1 = Contrastive 1 (5.1.2), C2 =
Contrastive 2 (5.1.3). ↑ indicates higher is better, and ↓
indicates lower is better.

The results for English-to-Assamese translation
in WMT24 Low-Resource Indic Language Transla-
tion Task are summarised in Table 5. We only had
one system for this direction, where we obtained
0.1612 BLEU, 65.96 TER, 0.2641 RIBES, 0.3927
METEOR, and 0.5673 chrF points on the test set.

Model BLEU ↑ TER ↓ RIBES ↑ METEOR ↑ chrF ↑
P 0.1612 65.96 0.2641 0.3927 0.5673

Table 5: Evaluation Results for English-to-Assamese. P
= Primary (5.2.1). ↑ indicates higher is better, and ↓
indicates lower is better.

7 Conclusion

In this work, we presented our MT models devel-
oped for the WMT 2024 Low Resource Indic Trans-
lation Task, focusing on the Assamese-to-English

and English-to-Assamese language pairs. We con-
ducted a comparative analysis using experimen-
tal setups to explore strategies such as fine-tuning,
back translation, and in-context learning with few-
shot prompting. All of these methods demonstrated
significant performance improvements in transla-
tion.

For our future work, we intend to investigate
synthetic pivoting methods for Indic languages and
implement QLoRA technique to improve our cur-
rent in-context learning approach, both discussed
in Section 2. We believe that these techniques hold
the potential to address the challenges associated
with low-resource language translation and further
improve the performance of our models.
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Abstract

We develop a robust translation model for four
low-resource Indic languages: Khasi, Mizo,
Manipuri, and Assamese. Our approach in-
cludes a comprehensive pipeline from data
collection and preprocessing to training and
evaluation, leveraging data from WMT task
datasets, BPCC, PMIndia, and OpenLanguage-
Data. To address the scarcity of bilingual data,
we use back-translation techniques on monolin-
gual datasets for Mizo and Khasi, significantly
expanding our training corpus. We fine-tune the
pre-trained NLLB 3.3B model for Assamese,
Mizo, and Manipuri, achieving improved per-
formance over the baseline. For Khasi, which
is not supported by the NLLB model, we intro-
duce special tokens and train the model on our
Khasi corpus. Our training involves masked
language modelling, followed by fine-tuning
for English-to-Indic and Indic-to-English trans-
lations.

1 Introduction

Translation of low-resource languages poses sig-
nificant challenges in natural language process-
ing. While substantial progress has been made
in developing machine translation models for high-
resource languages, low-resource languages often
suffer from a lack of parallel corpora and digital
resources (Haddow et al., 2022). Languages like
Khasi, Mizo, Manipuri, and Assamese are repre-
sentative of this challenge, where limited data and
unique linguistic complexities hinder the develop-
ment of robust translation systems.

In recent years, efforts to bridge this gap have
gained momentum, driven by initiatives such as the
Bharat Parallel Corpus Collection1 (BPCC) (Gala
et al., 2023) and government-supported projects
like PMIndia (Haddow and Kirefu, 2020), which
aim to provide bilingual data for Indic languages.

1https://ai4bharat.iitm.ac.in/bpcc/

Despite these efforts, translation models for low-
resource Indic languages have yet to achieve per-
formance levels comparable to their high-resource
counterparts (Suman et al., 2023), necessitating
innovative approaches to model training and data
utilization.

In this work, we develop a robust transla-
tion model for four low-resource Indic languages:
Khasi, Mizo, Manipuri, and Assamese. Our ap-
proach involves data collection, preprocessing,
training, and evaluation. We utilize datasets
from WMT, BPCC, PMIndia, and OpenLanguage-
Data2 (Maillard et al., 2023), and enhance bilingual
data through back-translation (Edunov et al., 2018)
techniques, especially for Mizo and Khasi, signifi-
cantly expanding our training corpus.

We follow Meta’s data preprocessing standards
and use LoRA (Low-Rank Adaptation) (Hu et al.,
2021) fine-tuning on the NLLB (et al., 2022) 3.3B
model to improve efficiency and performance with
fewer parameters. Our model initially focuses on
one-way translation from English to the Indic lan-
guages, then on reverse translations (Dabre et al.,
2019). The results show improved performance
over the baseline, particularly for Khasi, where we
address gaps in pre-trained model support.

2 Dataset

In this study, we focus on four low-resource Indic
languages covered in the Low Resource Indic Lan-
guages Shared Task: Khasi, Mizo, Manipuri, and
Assamese. This section highlights the significance
of each language, including their role in their re-
spective regions, their linguistic and cultural impor-
tance, and the details of the datasets used. Statistics
regarding language speakers are according to the
2011 Indian Census3.

2https://github.com/openlanguagedata/seed
3https://censusindia.gov.in/
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Language ISO-693-3 WMT Parallel BPCC PMIndia OLD Back-Translated Total
Assamese asm 50,000 35,354 9,732 0 0 95,086
Manipuri mni 21,687 0 7,419 6,193 0 35,036
Khasi kha 24,000 0 0 0 102,070 126,070
Mizo lus 50,000 0 0 0 30,164 80,164

Table 1: Breakdown of data sources and volumes for each language. "OLD" refers to OpenLanguageData. The
"Back-Translated" data was initially generated using Google Translate4 for the first 500k characters from the
monolingual WMT task data, with subsequent iterations increasing the data size using the trained model.

2.1 Languages

Assamese (Asamiya) is an Indo-Aryan language
spoken primarily in the northeastern Indian state
of Assam, where it serves as an official language
and a regional lingua franca. With over 15 million
native speakers, it is one of the most widely spoken
languages in the region. Historically, Assamese
was the court language of the Ahom kingdom. It is
written in the Assamese script, an abugida system,
known for its unique typographic ligatures.

Manipuri (Meiteilon) is a key Tibeto-Burman
language spoken mainly in Manipur, India, where
it is an official language and it is one of the
constitutionally scheduled official languages of the
Indian Republic. With 1.76 million speakers, it is
the most widely spoken Tibeto-Burman language
in India and holds the third place among the
fastest-growing languages of India, following
Hindi and Kashmiri. It is written in its own Meitei
script as well as the Bengali script.

Khasi (Ka Ktien Khasi) is an Austroasiatic
language primarily spoken by the Khasi people in
Meghalaya, India, with approximately 1 million
native speakers as of the 2011 census. The
language holds an associate official status in
certain districts of Meghalaya. Khasi is written in
the Latin script. The closest relatives of Khasi are
other languages in the Khasic group, such as Pnar
and War.

Mizo (Mizo t.awng) belonging to the Sino-Tibetan
language family, is primarily spoken in the state
of Mizoram, India, with around 800 thousand
speakers. The Mizo language, also known as
Lushai, has a rich oral history and was first written
using the Latin script in the late 19th century. Mizo
is recognized as the official language of Mizoram
and is used in education, government, and media.

3 Methodology

This section covers the preprocessing steps and
training methods used, including dataset prepa-
ration and the fine-tuning of Meta’s multilingual
NLLB 3.3B base pre-trained model. Detailed statis-
tics on data distribution are presented in Table 1.

3.1 Preprocessing
In the preprocessing phase, we followed a series of
steps to ensure the text data was clean and consis-
tent before model training. We began by normaliz-
ing punctuation using Moses (Koehn et al., 2007),
an open-source toolkit designed for preprocessing,
training, and testing translation models. This step
helps maintain consistency in text data, which is
crucial for training robust models.

Non-printable characters, which often interfere
with text processing, were replaced with a space.
This choice ensures that any invisible or non-
standard characters do not disrupt the tokenization
process and ensures that the text is composed of
standard printable characters.

We also applied Unicode normalization (NFKC)
to transform characters into their canonical forms,
making the text more uniform across different Uni-
code representations.

These preprocessing steps are aligned with those
outlined by Meta for their multilingual models, and
further details can be found on their GitHub5. This
approach ensures that the text data used for train-
ing is clean, consistent, and compatible with the
modelling requirements.

3.2 Training
For model training, we employed Meta’s NLLB
(No Language Left Behind) 3.3B parameter model,

4https://google.translate.com/
5https://github.com/facebookresearch/

stopes/blob/main/stopes/pipelines/monolingual/
monolingual_line_processor.py
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a state-of-the-art multilingual machine translation
model built to support over 200 languages, mak-
ing it ideal for tasks involving low-resource lan-
guages (Tran et al., 2021; Yang et al., 2021).
The NLLB 3.3B model is based on a Trans-
former (Vaswani et al., 2023) architecture with
3.3 billion parameters, featuring a dense encoder-
decoder design. It includes the following hyperpa-
rameters:

Hyperparams
embed size 2048
ffn size 8192
attn heads 16
enc/dec layers 48

Table 2: Hyperparameters for the baseline pre-trained
model. 24 Encoder and 24 Decoder Layers.

To fine-tune the model, we employed LoRA, a
technique that significantly reduces computational
demands and training time by adapting only a small
subset of the model’s parameters. LoRA has been
shown to match the performance of traditional fine-
tuning methods while reducing the number of train-
able parameters by a factor of 50 (Alves et al.,
2023). This approach is especially effective for
large-scale models like Meta’s NLLB 3.3B, allow-
ing efficient adaptation without significantly com-
promising on performance.

3.3 Parameters
The training process was conducted in three stages:
first, the model was trained on masked language
modelling (Devlin et al., 2019) to enhance its under-
standing of the target language by leveraging mono-
lingual data. Next, it was fine-tuned for English-to-
Indic translations, followed by further fine-tuning
for Indic-to-English translations. In the case of
Khasi, which was not natively supported by the
NLLB model, special tokens were added to the
tokenizer’s vocabulary to accommodate the Khasi
language. The model was subsequently trained on
the Khasi corpus to ensure proper handling and
integration of this language.

The training was performed across 4 Nvidia
A6000 GPUs. These settings allowed us to op-
timize the model’s performance while managing
computational efficiency.

3.4 Inference
For inference, the trained adapter was loaded onto
the NLLB 3.3B model. The model generated

Training Args
optimizer adafactor
learning Rate 1e-5
epochs 8
precision bf16
pmask 0.15
peft type lora
rank 128
lora alpha 256
lora dropout 0.1
target modules all linear

Table 3: Training parameters and LoRA configuration
used for fine-tuning the NLLB 3.3B model.

predictions using a beam search strategy with 10
beams and a repetition penalty of 2.5 to improve
the diversity and quality of the translations. We
experimented with various beam and penalty con-
figurations, ultimately finding that this particular
setup produced the most accurate and linguistically
coherent outputs.

4 Results

The evaluation of our translation model across var-
ious language pairs and directions is shown in
Table 4, with performance assessed using BLEU
(Papineni et al., 2002), Translation Error Rate
(Snover et al., 2006), RIBES (Isozaki et al., 2010),
METEOR (Banerjee and Lavie, 2005), and chrF
(Popović, 2015) metrics. We found that the scores
in English-to-Manipuri and English-to-Mizo direc-
tion suffered from the poor quality of backtrans-
lated data used in our training.
English-Assamese The model performed relatively
well, with BLEU scores of 27.26 for English-to-
Assamese and 26.69 for Assamese-to-English.
English-Manipuri The model showed lower
BLEU scores for English-to-Manipuri (2.7) com-
pared to Manipuri-to-English (20.88). The TER
score was higher for English-to-Manipuri, reflect-
ing greater translation errors in this direction.
English-Khasi For Khasi, the BLEU score was
12.12 for English-to-Khasi and 10.47 for Khasi-to-
English.
English-Mizo The performance was mixed, with a
BLEU score of 6.6 for English-to-Mizo and 18.49
for Mizo-to-English. The TER score indicates a
higher error rate for English-to-Mizo, while the
METEOR and ChrF scores were relatively bal-
anced across both directions.
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Language Pairs Test Set BLEU TER RIBES METEOR ChrF
English-Assamese en_to_as_contrastive 27.26 52.79 0.3032 0.513 65.2

as_to_en_contrastive 26.69 39.08 0.3308 0.7066 60.48
English-Manipuri en_to_mn_contrastive 2.7 84.6 0.1185 0.1567 44.28

mn_to_en_contrastive 20.88 48.77 0.3031 0.61 53.64
English-Khasi en_to_kh_contrastive 12.12 63.31 0.1864 0.4453 44.55

kh_to_en_contrastive 10.47 61.43 0.2172 0.5042 42.71
English-Mizo en_to_mz_contrastive 6.6 66.06 0.1746 0.495 49.79

mz_to_en_contrastive 18.49 53.19 0.2684 0.588 50.44

Table 4: Translation performance metrics of our MT System reported in the final evaluation.

5 Conclusion

In this work, we utilized Meta’s NLLB 3.3B model,
a large-scale multilingual transformer with 3.3 bil-
lion parameters, to enhance translation between
low-resource Indic languages and English. The
training process included masked language mod-
elling, followed by English-to-Indic and Indic-to-
English translations. Special tokens were added
for Khasi, and LoRA (Low-Rank Adaptation) was
employed to optimize computational efficiency and
reduce training time.
Conducted on 4 NVIDIA A6000 GPUs, our ap-
proach demonstrates that large-scale multilingual
models, when combined with LoRA, effectively
capture diverse linguistic patterns and advance
translation capabilities.

6 Limitations

In this study, we encountered several limitations
that impacted the overall effectiveness of our trans-
lation system. One major challenge was the con-
strained size of our dataset due to computational
resource limitations. The limited dataset size may
have hindered the model’s ability to generalize, par-
ticularly for low-resource languages where larger
and more diverse datasets would have been advan-
tageous.

Another issue we faced was the quality of back-
translated data. The process of augmenting the
dataset through machine translation often resulted
in lower-quality data, which negatively influenced
the model’s performance. This highlights the need
for more robust data generation techniques in fu-
ture work.

We also observed a noticeable performance gap
between translations where English was the tar-
get language and those where an Indic language
was the target. This suggests that while the model
may understand the morphological aspects of Indic

languages, it struggles to generate accurate trans-
lations in these languages. This limitation under-
scores the need for further refinement in handling
the complexities of Indic language generation.

Finally, the potential domain mismatch between
our training data and real-world applications posed
a significant challenge. The training data may not
fully capture the linguistic and contextual nuances
found in practical scenarios, leading to reduced
performance in actual use cases. Addressing this
issue in future work will be crucial for improving
the model’s real-world applicability.
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Abstract
This paper introduces the submission by
Huawei Translation Center (HW-TSC) to the
WMT24 Indian Languages Machine Trans-
lation (MT) Shared Task. To develop a re-
liable machine translation system for low-
resource Indian languages, we employed two
distinct knowledge transfer strategies, taking
into account the characteristics of the lan-
guage scripts and the support available from
existing open-source models for Indian lan-
guages. For Assamese(as) and Manipuri(mn),
we fine-tuned the existing IndicTrans2(Gala
et al., 2023) open-source model to enable bidi-
rectional translation between English and these
languages. For Khasi (kh) and Mizo (mz), We
trained a multilingual model as a baseline using
bilingual data from these four language pairs,
along with an additional about 8kw English-
Bengali bilingual data, all of which share cer-
tain linguistic features. This was followed by
fine-tuning to achieve bidirectional translation
between English and Khasi, as well as English
and Mizo. Our transfer learning experiments
produced impressive results: 23.5 BLEU for
en→as, 31.8 BLEU for en→mn, 36.2 BLEU
for as→en, and 47.9 BLEU for mn→en on their
respective test sets. Similarly, the multilingual
model transfer learning experiments yielded im-
pressive outcomes, achieving 19.7 BLEU for
en→kh, 32.8 BLEU for en→mz, 16.1 BLEU
for kh→en, and 33.9 BLEU for mz→en on
their respective test sets. These results not only
highlight the effectiveness of transfer learning
techniques for low-resource languages but also
contribute to advancing machine translation ca-
pabilities for low-resource Indian languages.

1 Introduction

In the realm of machine translation, Neural Ma-
chine Translation (NMT) has become the domi-
nant technology, as confirmed by previous research.
However, training NMT models requires large
amounts of data, which presents a significant chal-
lenge when dealing with low-resource languages.

To tackle this challenge, we employed transfer
learning, a well-established approach that enhances
model performance by transferring knowledge
gained from one task to other related tasks. To
improve translation capabilities for low-resource
languages, we faced the challenge of limited bilin-
gual resources for Indian languages. To overcome
this issue, we trained a multilingual model using
not only all the bilingual data provided for the task
but also additional Bengali data. Additionally, we
examined the languages supported by the existing
IndicTrans2(Gala et al., 2023) open-source model
and conducted a comparative analysis. Based on
our findings, we selected different baseline models
for knowledge transfer depending on the language
pair: for Assamese and Manipuri, we used the In-
dicTrans2 model as the baseline, while for Khasi
and Mizo, we trained multilingual model by our-
selves as the baseline. This approach enabled us
to effectively leverage existing resources while ad-
dressing the specific challenges associated with
each language pair.

IndicTrans2 is the first open-source transformer-
based multilingual NMT model that supports high-
quality translations across all the 22 scheduled
Indic languages. It was trained on the extensive
Bharat Parallel Corpus Collection (BPCC), a pub-
licly accessible repository encompassing both pre-
existing and freshly curated data for all 22 sched-
uled Indian languages, this model boasts a com-
prehensive understanding of the linguistic diversity
within the Indian subcontinent. To enhance its
linguistic prowess, IndicTrans2 has undergone aux-
iliary training utilizing the rich resource of back-
translated monolingual data. The model was then
trained on human-annotated data to achieve further
improvements. We used this model in the first two
subtasks and fine-tuned it on the training data pro-
vided by WMT24. By adopting this approach, we
aim to capitalize on the acquired knowledge during
training to significantly bolster the performance of
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the model in the specific translation task at hand.
The fine-tuned IndicTrans2 achieves good scores,
so we are using it for our final submission in the
first two subtasks.

For the multilingual model, we first utilized re-
sources from Bengali. The choice of Bengali was
based on its belonging to the Indo-Aryan branch,
its linguistic feature similarities with some of the
target low-resource languages, and its relatively
rich available data. By introducing Bengali data,
we aimed to enable the model to learn features po-
tentially shared with the target languages, thereby
laying a foundation for processing other related
languages. Next, we integrated all available bilin-
gual data from Indic language MT track. This
included parallel corpora between various Indian
languages and English. Although the data for each
language pair might be limited individually, the
combined dataset offered diverse learning samples.
We believe that this integration of multilingual
data helps the model capture both the common-
alities and differences among different Indian lan-
guages. Based on this carefully selected and inte-
grated data, we trained a multilingual model. The
design goal of this model was to handle transla-
tion tasks for multiple Indian languages simultane-
ously, using the commonalities between languages
to compensate for the scarcity of data in any single
language. Through this approach, we expect the
model to learn more generalized language represen-
tations and translation knowledge under resource
constraints, leading to improved performance on
Khasi and Mizo translation tasks.

Ultimately, we adopted a differentiated strategy
for knowledge transfer. This approach thoroughly
considered the characteristics of each language to
achieve optimal transfer effects. In Section 2, we
will discuss the details of the data, the methods and
processes used for data pre-processing. Section
3 will cover the overall architecture and training
strategies of the NMT system, including a detailed
account of the various optimization methods. In
Section 4, we will present the experimental param-
eters, results, and their analysis. The final section
will summarize the key findings of the paper.

2 Data

2.1 Data Details

We have fine-tuned the model using the WMT24
corpus. Additionally, we used 2M monolingual
english dataset to do BT and FT. The amount of

data we used is shown in Tables 1.

language pairs bitext data monolingual data
en-as 50K en: 2M, as: 2.62M
en-mn 21K en: 2M, mn: 2.14M
en-kh 24K en: 2M, kh: 182K
en-mz 50K en: 2M, mz: 1.9M

Table 1: Bilingual and monolingual used for training
NMT models.

2.2 Data Pre-processing

Our data pre-processing methods for NMT include:

• Remove duplicate sentences or sentence pairs.

• Convert full-width symbols to half-width.

• Use fasttext1 (Joulin et al., 2016) to filter other
language sentences.

• Use mosesdecoder2 (Koehn et al., 2007) to
normalize English punctuation.

• Filter out sentences with more than 150 words.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

• Sentencepiece3 (SPM) (Kudo and Richardson,
2018) is used to perform subword segmenta-
tion, and the vocabulary size is set to 32K.

Since there may be some semantically dissimilar
sentence pairs in bilingual data, we use LaBSE4

(Feng et al., 2022) to calculate the semantic similar-
ity of each bilingual sentence pair, and exclude
bilingual sentence pairs with a similarity score
lower than 0.75 from our training corpus.

3 NMT System

3.1 System Overview

We use Transformer (Vaswani, 2017) as our neural
machine translation (NMT)(Bahdanau et al., 2014)
model architecture. For the first two subtasks(en-as,
en-mn), we use the IndicTrans2(Gala et al., 2023)

1https://github.com/facebookresearch/fastText
2https://github.com/moses-smt/mosesdecoder
3https://github.com/google/sentencepiece
4https://huggingface.co/sentence-transformers/

LaBSE
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Figure 1: The overall training flow of NMT system.

model as our baseline model, which is a deep Trans-
former architecture with 18-layers encoder and 18-
layers decoder. with the latter two subtasks(en-
kh, en-mz), we trained a multilingual model as
our baseline model, which is a deep Transformer
architecture with 35-layers encoder and 3-layers
decoder.

Fig. 1 shows the overall training flow of NMT
system. Referred to previous work (Wei et al., 2021,
2022; Wu et al., 2023), We use training strate-
gies such as regularized dropout (R-Drop) (Wu
et al., 2021), data diversification (DD) (Nguyen
et al., 2020), forward translation FT) (Abdulmu-
min, 2021), back translation (BT) (Sennrich et al.,
2016), denoise, Transfer learning(TL) and transduc-
tive ensemble learning (TEL) (Wang et al., 2020)
for training.

3.2 Regularized Dropout

Regularized Dropout (R-Drop)5 (Wu et al., 2021)
is a simple yet more effective alternative to regular-
ize the training inconsistency induced by dropout
(Srivastava et al., 2014). Concretely, in each mini-
batch training, each data sample goes through the
forward pass twice, and each pass is processed by
a different sub model by randomly dropping out
some hidden units. R-Drop forces the two distri-
butions for the same data sample outputted by the
two sub models to be consistent with each other,
through minimizing the bidirectional Kullback-
Leibler (KL) divergence (Van Erven and Harremos,
2014) between the two distributions. That is, R-
Drop regularizes the outputs of two sub models ran-
domly sampled from dropout for each data sample

5https://github.com/dropreg/R-Drop

in training. In this way, the inconsistency between
the training and inference stage can be alleviated.

3.3 Data Diversification

Data Diversification (DD) (Nguyen et al., 2020) is
a data augmentation method to boost NMT perfor-
mance. It diversifies the training data by using the
predictions of multiple forward and backward mod-
els and then merging them with the original dataset
which the final NMT model is trained on. DD is
applicable to all NMT models. It does not require
extra monolingual data, nor does it add more pa-
rameters. To conserve training resources, we only
use one forward model and one backward model to
diversify the training data.

3.4 Forward Translation

Forward translation (FT) (Abdulmumin, 2021),
also known as self-training, is one of the most com-
monly used data augmentation methods. FT has
proven effective for improving NMT performance
by augmenting model training with synthetic paral-
lel data. Generally, FT is performed in three steps:
(1) randomly sample a subset from the large-scale
source monolingual data; (2) use a “teacher” NMT
model to translate the subset data into the target
language to construct the synthetic parallel data;
(3) combine the synthetic and authentic parallel
data to train a “student” NMT model.

3.5 Back Translation

An effective method to improve NMT with tar-
get monolingual data is to augment the parallel
training data with back translation (BT) (Sennrich
et al., 2016; Wei et al., 2023). There are many pub-
lished works that expand the understanding of BT
and investigate methods for generating synthetic
source sentences. Edunov et al. (2018) find that
back translations obtained via sampling or noised
beam outputs are more effective than back transla-
tions generated by beam or greedy search in most
scenarios. Caswell et al. (2019) show that the
main role of such noised beam outputs is not to
diversify the source side, but simply to tell the
model that the given source is synthetic. There-
fore, they propose a simpler alternative strategy:
Tagged BT. This method uses an extra token to
mark back translated source sentences, which gen-
erally outperforms noised BT (Edunov et al., 2018).
For better joint use with FT, we use sampling back
translation (ST) (Edunov et al., 2018).
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3.6 Denoise

In machine translation, denoising improves trans-
lation quality by removing noise from the training
data, such as inaccurate translations, grammatical
errors, or unnatural sentence structures, allowing
the model to focus on high-quality data and pro-
duce more accurate and fluent translations. Addi-
tionally, denoising enhances the model’s robustness
by eliminating noisy data, which helps the model
better learn the target language’s patterns, reduc-
ing errors and leading to more stable and reliable
performance across diverse inputs. It also opti-
mizes training efficiency by decreasing the amount
of data the model needs to process, particularly
by filtering out low-quality data, which results in a
cleaner and more consistent dataset and can shorten
the overall training time. Moreover, denoising re-
duces error propagation by preventing the model
from learning incorrect language patterns, thereby
minimizing the accumulation and spread of errors
in generated translations. Finally, it enhances the
model’s generalization ability, as denoised data is
more representative, enabling the model to better
adapt to different types of input sentences and im-
proving its performance in real-world applications.
Through denoising, machine translation models
can more effectively utilize high-quality data, lead-
ing to superior translation outcomes and greater
overall model stability.

3.7 Transductive Ensemble Learning

Ensemble learning (Garmash and Monz, 2016),
which aggregates multiple diverse models for in-
ference, is a common practice to improve the per-
formance of machine learning models. However,
it has been observed that the conventional ensem-
ble methods only bring marginal improvement for
NMT when individual models are strong or there
are a large number of individual models. Trans-
ductive Ensemble Learning (TEL) (Zhang et al.,
2019) studies how to effectively aggregate multiple
NMT models under the transductive setting where
the source sentences of the test set are known. TEL
uses all individual models to translate the source
test set into the target language space and then fine-
tune a strong model on the translated synthetic data,
which significantly boosts strong individual models
and benefits a lot from more individual models.

3.8 Transfer Learning
Transfer learning(TL) is a machine learning tech-
nique where a model trained on one task is adapted
for a second related task. Instead of starting the
training of a new model from scratch, transfer learn-
ing leverages the knowledge learned from the first
task to improve learning on the second task. For
Assamese(as) and Manipuri(mn), We have used In-
dicTrans2(Gala et al., 2023), a powerful model that
performs well for English-to-Indic and Indic-to En-
glish translation for 22 scheduled Indian languages.
This knowledge can be used to translate other In-
dian languages to and from English. Our approach
entailed the fine-tuning of this model, leveraging
the parallel corpus provided by the WMT24 for the
Indic MT task. This fine-tuning process equipped
the model with the expertise required to proficiently
translate Assamese and Manipuri to and from En-
glish, ultimately yielding the most outstanding re-
sults. Similarly, for Khasi and Mizo, we trained a
multilingual model as the baseline. We also applied
transfer learning techniques to enhance the base-
line model using data specific to these language
pairs. The results on both the test and dev sets were
highly encouraging.

4 Experiment

4.1 Settings
We use Transformer architecture in all the subtasks.
For the first two subtasks, we use IndicTrans2 (Gala
et al., 2023) as our baseline model, which is a deep
Transformer architecture with 18-layers encoder
and 18-layers decoder. With the latter subtasks, the
model is also a Transformer architecture with 35-
layers encoder and 3-layers decoder. For the first
two subtasks, our models apply Adam (Kingma and
Ba, 2014) as optimizer to update the parameters
with β1 = 0.9 and β2 = 0.98. We employ a warm-
up learning rate of 10−7 for 2000 update steps and
a learning rate of 3 ∗ 10−5. For normalization,
we use a dropout value of 0.2 and normalize the
probabilities using smoothed label cross-entropy.
We use GeLU activations (Hendrycks and Gimpel,
2016) for better learning. For the latter subtasks,
parameter update frequency is 2, and learning rate
is 5e-4. The number of warmup steps is 4000, and
model is saved every 1000 steps. R-Drop (Wu et al.,
2021) is used in model training for all subtasks, and
we set λ to 5.

We use the scareBLEU library to calculate our
BLEU (Papineni et al., 2002) and ChrF (Popović,
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Language-pair Training strategies Bleu(test) ChrF2(test) Bleu(dev) ChrF2(dev)

en→as

IndicTrans2 baseline 18.9 51.4 14.7 44.8
+ DD, FT, BT 22.9 52.5 21.1 47.7
+ denoise 23.3 53.1 22.5 48.9
+ TEL 23.5 53.2 22.8 49.0

en→mn

IndicTrans2 baseline 11.9 48.5 11.9 48.5
+ DD, FT, BT 30.9 62.8 31.1 63.4
+ denoise 31.7 64.7 31.7 64.9
+ TEL 31.8 64.6 31.6 64.9

as→en

IndicTrans2 baseline 29.7 56.3 25.6 49.3
+ DD, FT, BT 35.8 58.6 35.0 54.5
+ denoise 36.1 58.6 34.8 54.6
+ TEL 36.2 59.4 33.7 54.2

mn→en

IndicTrans2 baseline 32.6 62.3 33.4 61.8
+ DD, FT, BT 47.5 70.8 47.0 69.7
+ denoise 47.7 70.8 47.2 69.7
+ TEL 47.9 70.8 47.4 69.8

Table 2: The results of en-as and en-mn language pairs
on the test and dev set.

2015) scores with a word order of 2.

4.2 Results
Regarding this four language pair directions, we
use Regularized Dropout, Bidirectional Train-
ing, Data Diversification, Forward Translation,
Back Translation, Alternated Training, Curriculum
Learning, and Transductive Ensemble Learning.
The evaluation results of four language pair direc-
tions NMT system on WMT24 Indic MT test and
dev set are shown in Tables 2 and Tables 3.

As shown in Table 2, IndicTrans2(Gala et al.,
2023) provides a strong baseline. Fine-tuning the
model with FT, BT, and bitext data leads to signif-
icant improvements, particularly in the en-mn di-
rection, where the BLEU score increases by nearly
20 points over the baseline on the test and dev set.
This improvement is largely attributed to Data Di-
versification. Table 3 further illustrates that FT and
BT data contribute the most to model performance,
especially in the en-mz direction, which sees an
increase of nearly six BLEU points compared to
the multilingual baseline. Even after enhancing
the model with BT and FT data, adding filtered
high-quality bilingual data results in an average
gain of about one BLEU point, highlighting the
critical role of data quality. Finally, we all use TEL
technique to obtain a good result, the improvement
is very small, almost less than one bleu score.

5 Conclusion

This paper presents the submission of HW-TSC to
the WMT24 Indic MT Task. For the first two sub-
tasks, we use IndicTrans2 as our baseline model to
fine-tune it with corpus provided by WMT24 on the
en-as and en-mn language pairs, which achieves
remarkable performance. For the latter two sub-
tasks, we train a multilingual model on the en-kh

Language-pair Training strategies Bleu(test) ChrF2(test) Bleu(dev) ChrF2(dev)

en→kh

multilingual baseline 17.4 40.4 17.0 39.7
+ DD, FT, BT 18.1 41.8 17.9 41.3
+ denoise 19.5 43.3 19.2 42.7
+ TEL 19.7 43.5 19.3 42.8

en→mz

multilingual baseline 25.0 51.6 22.3 46.6
+ DD, FT, BT 30.8 55.7 25.2 49.1
+ denoise 32.5 57.1 25.4 49.3
+ TEL 32.8 57.3 25.7 49.4

kh→en

multilingual baseline 15.1 37.7 15.0 38.1
+ DD, FT, BT 15.8 37.8 15.0 38.3
+ denoise 15.9 38.5 15.5 39.0
+ TEL 16.1 38.8 15.6 39.2

mz→en

multilingual baseline 26.7 48.2 22.9 44.0
+ DD, FT, BT 32.9 52.2 25.0 45.4
+ denoise 33.7 52.2 25.8 46.5
+ TEL 33.9 52.7 26.0 46.7

Table 3: The results of en-kh and en-mz language pairs
on the test and dev set.

and en-mz language pairs, and then use training
strategies such as R-Drop, DD, FT, BT, denoise
and TEL to train the NMT model based on the
deep Transformer-big architecture. By applying
these training strategies, our submission achieved
a competitive result in the final evaluation.
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Abstract

In this paper, we describe our system for the
WMT 24 shared task of Low-Resource Indic
Language Translation. We consider eng ↔
{as, kha, lus, mni} as participating language
pairs. In this shared task, we explore finetun-
ing of a pre-trained machine translation model,
where the pretraining objective includes align-
ment of embeddings of tokens from the 22
scheduled Indian languages by a carefully con-
structed alignment augmentation strategy (Lin
et al., 2020). Our primary system1 is based on
language-specific finetuning on this pre-trained
model. We achieve chrF2 scores of 50.6, 42.3,
54.9, and 66.3 on the official public test sets
for eng→as, eng→kha, eng→lus, eng→mni re-
spectively. We also explore multilingual train-
ing with/without language grouping and freez-
ing of encoder and/or embedding layers.

1 Introduction

The WMT 2024 Shared Task on “Low-Resource
Indic Language Translation” (Pakray et al., 2024)
extends the efforts in this direction originally ini-
tiated in WMT 2023 (Pal et al., 2023), which gar-
nered significant participation from the global com-
munity. Recent advancements in machine trans-
lation (MT), particularly through techniques like
multilingual training and transfer learning, have
expanded the scope of MT systems beyond high-
resource languages (Johnson et al., 2017). How-
ever, low-resource languages continue to present
substantial challenges due to the scarcity of paral-
lel data required for effective training (Siddhant
et al., 2020; Wang et al., 2022). The shared
task focuses on low-resource Indic languages with
limited data from diverse language families: As-
samese (as), Mizo (lus), Khasi (kha), and Manipuri
(mni). The task aims to improve translation qual-
ity for the English⇔Assamese, English⇔Mizo,

1Our code, models, and generated translations are available
here: https://github.com/pramitsahoo/WMT2024-LRILT

English⇔Khasi, and English⇔Manipuri given the
data provided in the constrained setting.

To address the challenges inherent in translating
low-resource languages, participants are encour-
aged to explore several strategies. First, leveraging
monolingual data is essential for enhancing transla-
tion quality, especially in the absence of sufficient
parallel data. Second, multilingual approaches of-
fer the potential for cross-lingual transfer, where
knowledge from high-resource languages can be
applied to low-resource pairs (Sen et al., 2019).
Third, transfer learning provides a mechanism for
adapting pre-trained models from high-resource
languages to low-resource settings (Wang et al.,
2020). Lastly, innovative techniques tailored to
low-resource scenarios, such as data augmentation
and language-specific fine-tuning, are crucial for
improving performance.

In this paper, we describe our system for
the WMT 2024 shared task, focusing on fine-
tuning two pre-trained models developed by
us: IndicRASP and IndicRASP-Seed2. Indi-
cRASP model is pre-trained with the objective
of aligning embeddings inspired by alignment
augmentation (Lin et al., 2020) on 22 Indic lan-
guages. Our primary approach involves language-
specific fine-tuning, leveraging multilingual train-
ing setups, language grouping, and layer freez-
ing. We set up experiments in both bilingual
and multilingual settings. We achieve BLEU
scores of 20.1 for English→Assamese, 19.1 for
English→Khasi, 30.0 for English→Mizo, and
35.6 for English→Manipuri on the public test set,
demonstrating the effectiveness of our approach.
Specifically, language-specific fine-tuning yielded
significant improvements in translation quality,
while multilingual setups provided balanced perfor-
mance across all language pairs. Language group-
ing and layer freezing are effective techniques

2These pre-trained models were developed for WAT 2024
MultiIndicMT shared task by the authors.
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for preserving pre-trained knowledge and mitigat-
ing the challenges of multilinguality. Our results
highlight the importance of tailored fine-tuning
strategies for low-resource languages and show
the potential of using alignment-augmented pre-
trained models to improve translation quality in
low-resource settings.

2 Data

In this section, we present the details of the In-
dicNECorp1.0 dataset provided by the IndicMT
shared task3 organizers.

Language pair Script Dataset #parallel sents

English-Assamese Bengali
Training 50000

Validation 2000
Test 2000

English-Khasi Latin
Training 24000

Validation 1000
Test 1000

English-Manipuri Bengali
Training 21687

Validation 1000
Test 1000

English-Mizo Latin
Training 50000

Validation 1500
Test 2000

Table 1: Parallel dataset details. Script refers to the
writing script of the Indic language.

2.1 Monolingual Data
The official data also includes monolingual data
for four languages. The dataset comprises approx-
imately 2.6M sentences for Assamese, 0.1M for
Khasi, 2M for Mizo, and 1M for Manipuri.

2.2 Parallel Data
The dataset includes four bilingual pairs between
English and Indic languages4: English (en) - As-
samese (as), English (en) - Khasi (kha), English
(en) - Mizo (lus), and English (en) - Manipuri (mni).
These languages are mainly spoken in the North-
eastern part of India. The English-Assamese and
English-Mizo training sets contain 50k parallel sen-
tences each, while the English-Khasi and English-
Manipuri training sets contain 24k and 21.6k par-
allel sentences, respectively. Dataset statistics are
presented in Table 1.

3 Approach

In this section, we briefly describe our approaches.
We explore transfer learning, language grouping,

3https://www2.statmt.org/wmt24/indic-mt-task.
html

4Language code as per the dataset provided

and layer-freezing techniques.

3.1 Transfer Learning
We explore transfer learning based on two pre-
trained models IndicRASP and IndicRASP-Seed.
IndicRASP-Seed is a fine-tuned model of Indi-
cRASP on small and high-quality data. Particu-
larly, the pre-trained model is trained on agreement-
based objective (Lin et al., 2020; Yang et al., 2020)
for Indic languages. Specifically, words from
source sentences are randomly substituted by the se-
mantically equivalent words from other languages.
The model is pre-trained in 22 scheduled Indic
languages using a subset of the Bharat Parallel Cor-
pus Collection (BPCC) dataset (Gala et al., 2023).
Out of these 22 languages, two of the shared task
languages, Assamese and Manipuri, are part of
the pre-training. Alignment augmentation is per-
formed using bi-lingual dictionaries from MUSE5

(Conneau et al., 2017) and GATITOS6.

3.2 Language Grouping
We explore the effect of grouping languages based
on script similarity in a multilingual setup. Al-
though our primary focus is on bilingual models,
for language grouping experiments, we utilize a
multilingual approach where languages sharing
similar scripts are trained together. This approach
is motivated by the idea that joint training with sim-
ilar languages can improve translation quality due
to shared vocabulary and linguistic properties (Jiao
et al., 2022; Gala et al., 2023).

• Group 1 (Bengali script): Assamese and Ma-
nipuri

• Group 2 (Latin script): Khasi and Mizo

3.3 Layer Freezing
We explored layer-freezing approaches to see the
impact of freezing different layers of the architec-
ture on final translation performance.
Frozen Encoder: In this approach, we freeze the
encoder components during the fine-tuning pro-
cess to preserve their pre-trained weights from the
parent model while the embedding and decoder
components are updated.
Frozen Embedding + Encoder: In this setup, we
keep the embedding and encoder frozen during

5https://github.com/facebookresearch/MUSE#
ground-truth-bilingual-dictionaries

6https://github.com/google-research/url-nlp/
tree/main/gatitos

782

https://www2.statmt.org/wmt24/indic-mt-task.html
https://www2.statmt.org/wmt24/indic-mt-task.html
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
https://github.com/google-research/url-nlp/tree/main/gatitos
https://github.com/google-research/url-nlp/tree/main/gatitos


fine-tuning to preserve their pre-trained weights
while updating only the parameters of the rest of
the layers.

4 Experimental Setup

Settings: We fine-tune pre-trained checkpoints: In-
dicRASP and IndicRASP-Seed models on official
parallel data using the Adam optimizer (Kingma
and Ba, 2014) with β1 set to 0.9 and β2 set to 0.98.
We set the initial warmup learning rate to 1e-07
and the learning rate to 3e-5, with a warmup step
of 4000. We train the models with a dropout rate
of 0.3 and a label smoothing rate of 0.1. All exper-
iments are conducted on a single NVIDIA A100
GPU. We use a maximum token count of 512 per
batch, accumulating gradients over two steps to
simulate a larger batch size. The model is trained
for up to 1,000,000 updates. We save checkpoints
every 2500 updates. We employed a patience of 10
for early stopping.
Evaluation Metrics: We use the official dev and
test sets of IndicNECorp1.0 for validation and eval-
uation. We evaluate using BLEU (Papineni et al.,
2002), chrF (Popović, 2015), and chrF++ (Popović,
2017) metrics. We use the SacreBLEU toolkit
(Post, 2018) to perform our evaluation7 with a chrF
word order of 2. Additionally, as per the evaluation
metrics used by the organizers, we report results on
TER (Snover et al., 2006), RIBES (Isozaki et al.,
2010), and COMET (Rei et al., 2022) for our pri-
mary and contrastive submissions.
Models: We conducted our experiments in both
bilingual and multilingual settings. In the bilin-
gual setup, we fine-tuned the IndicTrans2 Dis-
tilled model (Gala et al., 2023), IndicRASP, and
IndicRASP-Seed models for both English to Indic
and Indic to English directions. The translation
models are trained separately for each Indic lan-
guage. In the multilingual setup, we fine-tuned pre-
trained checkpoints of IndicRASP and IndicRASP-
Seed for both directions. Inspired by Chiang et al.
(2022), we initialized the bilingual model with a
fine-tuned multilingual model for both English to
Indic and Indic to English.

For experiments with layer freezing, we fine-
tune pre-trained checkpoints of IndicTrans2 Dis-
tilled and IndicRASP-Seed models. Particularly,
we perform experiments by freezing the embed-

7SacreBLEU signature:
nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.3.1

dings and encoder and only the encoder compo-
nent for both English to Indic and Indic to English
directions. We conduct all layer-freezing experi-
ments in a bilingual setup. For language group-
ing experiments, we fine-tune the IndicRASP and
IndicRASP-Seed models based on script similarity
in a multilingual setup.

5 Results and Discussions

In this section, we report our experimental results
and describe our primary and contrastive submis-
sions. The results for our primary and contrastive
systems are shown in Table 4. Tables 2, 3, and 5
reports the chrF2, BLEU, and chrF++ scores re-
spectively.

1 English → Indic: Our primary English
to Indic systems are language pair-specific
(bilingual models) fine-tuned on pre-trained
IndicRASP-Seed, achieving chrF2 scores of
50.6, 42.3, 54.9, and 66.3 for Assamese,
Khasi, Mizo, and Manipuri respectively. For
the contrastive systems, we consider a bilin-
gual model fine-tuned on a pre-trained Indi-
cRASP checkpoint. The contrastive system
achieves chrF2 scores of 49.9, 42.2, 36.5, and
65.8 for Assamese, Khasi, Mizo, and Ma-
nipuri, respectively. The detailed primary and
contrastive system results are reported in Ta-
ble 4.

2 Indic → English: Our primary Indic-to-
English systems for Assamese and Manipuri
are bilingual models fine-tuned on the pre-
trained IndicRASP-Seed model, each achiev-
ing chrF2 scores of 52.8 and 67.9, respectively.
Similarly, for Khasi and Mizo, our primary
systems are bilingual models fine-tuned on a
pre-trained IndicRASP checkpoint, achieving
a chrF2 score of 36.1 and 49.4, respectively.

For the contrastive Indic-to-English system,
we submit a multilingual system fine-tuned on
the pre-trained checkpoint of the IndicRASP
model, achieving chrF2 scores of 51.2, 36.0,
46.5, and 65.3 for Assamese, Khasi, Mizo,
and Manipuri respectively. Table 4 shows the
detailed scores in various metrics.

Bilingual vs. Multilingual: We observe
IndicRASP-Seed outperforms the IndicRASP
model for Assamese and Manipuri. This might
be due to the fact that IndicRASP-Seed performs

783



Models English → Indic Indic → English
as kha lus mni as kha lus mni

BILINGUAL SETUP

INDICTRANS2 DISTILLED FT ON BILINGUAL DATA 49.5 24.9 29.1 60.1 50.9 21.1 22.0 61.9

INDICRASP FT ON BILINGUAL DATA 49.9 42.2 36.5 65.8 50.1 36.1 49.4 67.7

INDICRASP-SEED FT ON BILINGUAL DATA 50.6 42.3 54.9 66.3 52.8 36.1 25.1 67.9

MULTILINGUAL SETUP

INDICRASP FT ON MULTILINGUAL DATA 49.8 34.6 51.5 63.2 51.2 36.0 46.5 65.3

INDICRASP-SEED FT ON MULTILINGUAL DATA 48.7 34.6 50.2 62.2 52.2 35.3 44.3 65.1

MULTILINGUAL MODEL FT ON BILINGUAL DATA

INDICRASP MULTILINGUAL MODEL FT ON BILINGUAL DATA 49.3 42.4 54.7 65.8 50.9 36.3 46.8 67.4

LAYER FREEZING

INDICTRANS2 DISTILLED FT WITH FROZEN ENCODER 47.4 24.4 28.0 57.8 48.7 19.8 18.7 58.8

INDICRASP-SEED FT WITH FROZEN ENCODER 50.4 41.3 48.6 63.4 52.6 26.4 34.2 65.3

INDICTRANS2 DISTILLED FT WITH FROZEN EMBEDDING & ENCODER 46.7 23.1 9.2 15.9 48.8 20.2 19.6 58.1

INDICRASP-SEED FT WITH FROZEN EMBEDDING & ENCODER 50.5 41.2 45.8 62.4 52.9 25.9 29.6 64.1

LANGUAGE GROUPING

INDICRASP FT WITH SCRIPT SIMILARITY 50.2 35.0 52.1 63.3 52.6 36.4 46.5 66.0

INDICRASP-SEED MODEL FT WITH SCRIPT SIMILARITY 50.3 34.9 53.5 63.6 53.6 36.8 47.4 66.8

Table 2: chrF2 scores on IndicMT WMT24 shared task public test set.

Models English → Indic Indic → English
as kha lus mni as kha lus mni

BILINGUAL SETUP

INDICTRANS2 DISTILLED FT ON BILINGUAL DATA 18.0 9.3 13.6 21.6 26.3 2.7 5.0 36.2

INDICRASP FT ON BILINGUAL DATA 20.5 18.9 13.1 33.9 20.0 14.4 29.1 43.6

INDICRASP-SEED FT ON BILINGUAL DATA 20.1 19.1 30.0 35.6 27.4 14.1 6.0 44.1

MULTILINGUAL SETUP

INDICRASP FT ON MULTILINGUAL DATA 18.7 13.5 25.8 29.0 25.8 14.1 25.4 39.3

INDICRASP-SEED FT ON MULTILINGUAL DATA 17.1 13.2 24.4 27.2 26.7 14.1 23.3 38.3

MULTILINGUAL MODEL FT ON BILINGUAL DATA

INDICRASP MULTILINGUAL MODEL FT ON BILINGUAL DATA 19.1 19.0 29.7 34.7 25.8 14.8 26.1 43.5

LAYER FREEZING

INDICTRANS2 DISTILLED FT WITH FROZEN ENCODER 15.6 8.9 13.1 19.6 22.7 1.5 3.0 31.3

INDICRASP-SEED FT WITH FROZEN ENCODER 19.7 18.1 22.4 29.0 26.8 5.6 15.2 40.7

INDICTRANS2 DISTILLED FT WITH FROZEN EMBEDDING & ENCODER 14.8 8.3 2.6 1.3 22.7 1.9 3.8 30.5

INDICRASP-SEED FT WITH FROZEN EMBEDDING & ENCODER 19.4 17.7 19.7 27.2 26.9 5.4 10.9 37.9

LANGUAGE GROUPING

INDICRASP FT WITH SCRIPT SIMILARITY 19.1 13.8 26.6 28.9 26.9 14.6 25.5 39.8

INDICRASP-SEED MODEL FT WITH SCRIPT SIMILARITY 19.4 14.1 28.6 29.4 28.3 14.8 26.4 40.6

Table 3: BLEU scores on IndicMT WMT24 shared task public test set.

an additional pre-training on a small, high-quality
dataset over IndicRASP. However, when the orig-
inal pre-training dataset did not contain the lan-
guages, like the case of Mizo and Khasi languages
here, the comparison shows an opposite trend.

Bilingual models perform better than multilin-
gual models, showing a +4.1 and +7.7 chrF2 score
improvement for English to Manipuri and English
to Khasi, respectively.

Bilingual models initialized with the weights
from multilingual models show improvement over
the standalone multilingual models, achieving a
+7.8 chrF2 score for English to Khasi. This sug-
gests that initializing bilingual models can be help-
ful in low-resource settings.

Language Grouping: We observe that script-
based language grouping shows improvements over
a standalone multilingual model with +1.6, +0.3,
+3.3, and +1.4 for English to Assamese, Khasi,
Mizo, and Manipuri, respectively. It suggests that
grouping languages based on script similarity can
be effective in addressing the curse of multilingual-
ity.

Layer Freezing: We observe that freezing only
the encoder yields better chrF2 scores compared
to freezing both the embedding and the encoder.
However, layer freezing underperforms compared
to full parameter fine-tuned bilingual models.
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BLEU chrF2 TER RIBES COMET

PRIMARY

en→as 20.1 50.6 66.0 0.5543 0.8090
en→kha 19.1 42.3 63.5 0.6470 0.6817
en→lus 30.0 54.9 50.0 0.6764 0.7105
en→mni 35.6 66.3 50.5 0.6995 0.7669

as→en 27.4 52.8 65.3 0.6749 0.7854
kha→en 14.4 36.1 82.0 0.5601 0.5773
lus→en 29.1 49.4 66.7 0.6436 0.7004
mni→en 44.1 67.9 50.2 0.7894 0.8162

CONTRASTIVE

en→as 20.5 49.9 67.2 0.5356 0.8043
en→kha 18.9 42.2 63.5 0.6499 0.6791
en→lus 13.1 36.5 73.8 0.4357 0.6462
en→mni 33.9 65.8 50.5 0.6972 0.7672

as→en 25.8 51.2 66.8 0.6744 0.7802
lus→en 25.4 46.5 69.0 0.6307 0.6882
mni→en 39.3 65.3 52.4 0.7806 0.8034

Table 4: Submission results on the IndicMT WMT24 public
test set.

6 Conclusion

In this paper, we describe NLIP Lab’s Indic
low-resource machine translation systems for the
WMT24 shared task. We explore the translation ca-
pabilities of the alignment-augmented pre-trained
model, IndicRASP and IndicRASP-Seed, to en-
hance translation quality for low-resource Indic
languages. Experimentally, we found that the Indi-
cRASP model performs better than the IndicTrans2
Distilled model. Additionally, we experiment with
layer-freezing and language grouping techniques.
In the future, we will focus on refining these tech-
niques and utilizing monolingual data to enhance
MT performance for low-resource Indic languages.

Limitations

The pre-trained models use bilingual dictionaries
whose domains might differ from the shared task
training corpus. Additionally, the considered pre-
trained models cover only a limited number of
shared task languages. Our submission does not
utilize the provided monolingual data, which could
further improve model performance through back-
translation.
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Models English → Indic Indic → English
as kha lus mni as kha lus mni

BILINGUAL SETUP

INDICTRANS2 DISTILLED FT ON BILINGUAL DATA 45.8 25.6 30.3 55.4 49 20 21 59.6

INDICRASP FT ON BILINGUAL DATA 46.4 41.3 35.2 61.8 46.5 35.3 48.2 65.4

INDICRASP-SEED FT ON BILINGUAL DATA 47 41.4 53.2 62.3 50.6 35.3 24 65.7

MULTILINGUAL SETUP

INDICRASP FT ON MULTILINGUAL DATA 46.2 33.4 49.8 58.9 49.1 35.2 45.4 63

INDICRASP-SEED FT ON MULTILINGUAL DATA 45.1 33.4 48.5 57.9 50.1 34.6 43.2 62.6

MULTILINGUAL MODEL FT ON BILINGUAL DATA

INDICRASP MULTILINGUAL MODEL FT ON BILINGUAL DATA 45.7 41.5 53.1 61.9 48.8 35.5 45.7 65.2

LAYER FREEZING

INDICTRANS2 DISTILLED FT WITH FROZEN ENCODER 43.7 25.1 29.3 53 46.7 18.5 17.6 59.8

INDICRASP-SEED FT WITH FROZEN ENCODER 46.8 40.3 46.9 59.1 50.4 25.3 33.1 63

INDICTRANS2 DISTILLED FT WITH FROZEN ENCODER & EMBEDDINGS 43 24 11.3 13.1 46.8 18.9 18.5 55.6

INDICRASP-SEED FT WITH FROZEN ENCODER & EMBEDDINGS 46.8 40.2 44.1 58 50.6 24.9 28.6 61.7

LANGUAGE GROUPING

INDICRASP FT WITH SCRIPT SIMILARITY 46.6 33.8 50.4 59 50.4 35.6 45.4 63.6

INDICRASP-SEED MODEL FT WITH SCRIPT SIMILARITY 46.7 33.7 51.8 59.4 51.5 36 46.3 64.4

Table 5: chrF2++ scores on IndicMT WMT24 shared task public test set.
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Abstract

This paper presents the systems submitted by
the Yes-MT team for the Low-Resource Indic
Language Translation Shared Task at WMT
2024 (Pakray et al., 2024), focusing on translat-
ing between English and the Assamese, Mizo,
Khasi, and Manipuri languages. The experi-
ments explored various approaches, including
fine-tuning pre-trained models like mT5 (Xue
et al., 2020) and IndicBart (Dabre et al., 2021)
in both Multilingual and Monolingual settings,
LoRA (Hu et al., 2021) finetune IndicTrans2
(Gala et al., 2023), zero-shot and few-shot
prompting (Brown, 2020) with large language
models (LLMs) like Llama 3 (Dubey et al.,
2024) and Mixtral 8x7b (Jiang et al., 2024),
LoRA Supervised Fine Tuning (Mecklenburg
et al., 2024) Llama 3, and training Transform-
ers (Vaswani, 2017) from scratch. The results
were evaluated on the WMT23 Low-Resource
Indic Language Translation Shared Task’s test
data using SacreBLEU (Post, 2018) and CHRF
(Popović, 2015) highlighting the challenges of
low-resource translation and show the poten-
tial of LLMs for these tasks, particularly with
fine-tuning.

1 Introduction

Developing robust machine translation systems
for India’s diverse languages is crucial given the
country’s growing economic importance and the
increasing availability of digital content. How-
ever, a significant challenge in developing effec-
tive translation tools arises from the limited avail-
ability of data for many Indian languages, partic-
ularly those spoken in the northeastern regions.
This paper describes the Yes-MT team’s efforts
to address this challenge by participating in the
WMT 2024 Low-Resource Indic Language Trans-
lation Shared Task, focusing on English to As-
samese, Mizo, Khasi, and Manipuri translation.
We explored techniques like fine-tuning pre-trained
models (mT5, IndicBart) and utilizing large lan-

guage models (LLMs) like Llama 3 and Mixtral
for zero-shot and few-shot learning. Furthermore,
we explored using the LoRA technique to fine-tune
the IndicTrans2 model, and we also trained Trans-
former models from scratch. Our findings provide
valuable insights into the strengths and weaknesses
of different approaches, highlighting the potential
of LLMs and fine-tuning techniques in overcoming
the limitations of data scarcity.

2 Dataset

The dataset used in this study consists of parallel
bilingual data provided by the WMT 2024 Low-
Resource Indic Language Translation Shared Task
organizers (Pal et al., 2023) & (Pakray et al., 2024).
The training, validation, and test splits for each
language pair are detailed in Table 1.

Language Pair Train Val Test
Assamese (en-as) 50,000 2,000 2,000

Mizo (en-lus) 50,000 1,500 2,000
Khasi (en-kha) 24,000 1,000 1,000

Manipuri (en-mni) 21,000 1,000 1,000

Table 1: Number of Sentences in Train, Validation, and
Test Sets

In addition to the bilingual data, we also had
access to a significant amount of Monolingual data
for each of the target languages, which included
2.60 million sentences in Assamese, 1.90 million
sentences in Mizo, 0.18 million sentences in Khasi,
and 2.10 million sentences in Manipuri. However,
for the scope of this work, we focused exclusively
on utilizing the provided bilingual data for training
and evaluation, aiming to explore the capabilities
of the models under truly low-resource conditions.

Limiting our study to the provided bilingual data
allowed us to maintain a consistent and controlled
experimental environment, ensuring the results re-
flected the performance of our approaches under
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the typical constraints of low-resource language
translation tasks. In the future, we may explore in-
corporating the available monolingual data, such as
through back-translation, to further improve trans-
lation quality.

3 Experiments

This section details the experimental setup used
for the various models and training strategies em-
ployed in our submission.

3.1 Primary Submission
Our primary submission involved training a Trans-
former model from scratch using the Fairseq frame-
work (Ott et al., 2019). This model was trained
for Multilingual translation, handling all four lan-
guage directions (English to Assamese, Manipuri,
Mizo, and Khasi) simultaneously. We utilized BPE
tokenizer (Araabi et al., 2022) and Transformer ar-
chitecture. The architectural details are shown in
Table 2.

Parameter Value
Embedding Dimension 512

FFN Dimension 1024
Attention Heads 4
Encoder Layers 6
Decoder Layers 6

Table 2: Transformer Architecture Details

3.2 Contrastive Submission
The contrastive submission explored fine-tuning
pre-trained models in two settings: language-
specific and Multilingual.

3.2.1 Multilingual Fine-tuning:
Both mT5 and IndicBart were fine-tuned in a Multi-
lingual setting, where a single model was trained to
handle all four language directions. To enable the
models to distinguish between the target languages,
we added language-specific tokens to their existing
vocabularies, as suggested by previous work (John-
son et al., 2017). The language-specific tokens
used are shown in Table 3. A single model was
trained for one-to-many translation across all four
language directions for each of the indicBart, mT5-
small, and IndicTrans2 systems. The results are in
Table 4. IndicBart and mT5-small were fine-tuned
using Full Fine-Tuning (FFT), while IndicTrans2
was fine-tuned employing the LoRA (Low-Rank
Adaptation) technique (Hu et al., 2021).

Language Token
Assamese (asm) ‘<asm_Beng>‘
Manipuri (mni) ‘<mni_Beng>‘

Khasi (kha) ‘<kha_Latn>‘
Mizo (lus) ‘<lus_Latn>‘

Table 3: Language-Specific Tokens

3.2.2 Monolingual Fine-tuning:
We also trained separate models for each language
pair, as these focused on a single translation direc-
tion and did not require language-specific tokens.

For each language direction, we trained four dis-
tinct models using mT5-Small and IndicBart with
Full Fine-Tuning (FFT). The results are in Table 4.

3.3 Experiments with LLMs

Additionally, we explored the use of the Llama3
model in conjunction with the LoRA (Low-Rank
Adaptation) technique.

Zero-Shot and Few-Shot Translation Evalua-
tion We tested Zero Shot Translation capabilities
of Llama 3-8B-8192, Llama 3-70B-8192, mixtral-
8x7B-32768, Llama3-8B-instruct and Llama3.1-
8B-instruct. We also tested the few-shot translation
capabilities of Llama3.1-8B-instruct with 3-shot,
5-shot, and 10-shot prompting.

Supervised Fine-Tuning with LoRA We fine-
tuned a 4-bit quantized (Liu et al., 2023) Llama3
model using the LoRA technique with Supervised
Fine-Tuning (SFT), employing the LlamaFactory
framework (Zheng et al., 2024). We used a prompt-
based approach for translation, providing the model
with a system prompt and a prompt template speci-
fying the source and target languages.

The following template was used for fine-tuning
the Large Language Models (LLMs):

System Prompt : You are a helpful assistant.
Prompt Template : Translate the following
English sentence to {target_language} in
{target_script} Script:\n{input_sent}

4 Results

4.1 Multilingual vs. Monolingual
Performance

One key finding from our experiments was the
performance comparison between the Multilingual
and Monolingual training approaches for the mT5
and IndicBart models. As shown in Table 4, the
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Model Training Type en-as en-kha en-mz en-mni
Transformers Multilingual 16.06 19.67 5.49 20.60

IndicBart Monolingual 6.4 11.2 25.1 8.8
Multilingual 6.5 11.4 25.3 9.1

mT5-small Monolingual 14.3 12.9 31.4 19.2
Multilingual 15.6 13.6 32.3 23.9

IndicTrans2-2B ZeroShot 49.2 - - 44.9
IndicTrans2-200M ZeroShot 49.5 - - 45.3

Multilingual 47.27 - - 49.12

Table 4: ChrF Scores for Monolingual : Models fine-tuned for one-to-one language translation
Multilingual : Models fine-tuned for one-to-many language translation

Multilingual versions of both mT5 and IndicBart
consistently outperformed their Monolingual coun-
terparts across the translation tasks.

• For mT5, the Multilingual model outper-
formed the Monolingual model across all lan-
guage pairs, with ChrF score improvements
ranging from 1.3 to 4.7 points. This suggests
that mT5 benefits from the shared linguis-
tic knowledge across different languages in a
Multilingual setting, which enhances its abil-
ity to generalize to low-resource languages.

• Likewise, IndicBart demonstrated a slight per-
formance boost in the Multilingual setting
compared to the Monolingual models, sug-
gesting that the Multilingual training approach
provided a benefit.

The better performance of the Multilingual mod-
els is likely due to the shared linguistic knowledge
they gained during training, which may have pro-
vided a richer context and improved their ability
to generalize. This indicates that leveraging Mul-
tilingual data, even in limited-resource scenarios,
can be a more effective approach than focusing on
Monolingual training.

4.2 Expected Structured Output
A challenge observed during the experiments was
the generation of structured output. Ideally, the out-
put should directly provide the translated sentence
without additional, unnecessary text. However, we
noticed that the LLM models sometimes wrapped
the translation in extraneous text, such as “The
translation of the given sentence is: Translation”,
followed by further analysis and explaination mak-
ing it difficult to extract the translation. This adds
noise to the output and complicates the process of
extracting the actual translation.

Figure 1: Inconsistent Output Format with Few Shot
Prompting

We analyzed the percentage of outputs that were
wrapped with unnecessary text across different set-
tings:

This issue of unnecessary text in the output was
more common in the zero-shot setting, where 66.%
of the outputs included additional text. As the num-
ber of shots increased, the percentage of such out-
puts decreased significantly to 0.18% in 10 Shot
Prompting, indicating that few-shot prompting can
help guide the LLM to produce more structured
and concise translations.

To improve the usability of LLM-based machine
translation systems, it’s crucial to fine-tune the
models or design prompts that consistently yield
clean and structured outputs, particularly in low-
resource settings where post-processing resources
might be limited.

5 WMT 2024 Results

The performance of our models on the WMT 2024
Low-Resource Indic Language Translation Shared
Task dataset is summarized in the following table,
focusing on the ChrF (Popović, 2015) metrics:

For the primary submissions, we utilized Trans-
formers trained from scratch without additional
data. As indicated by the scores, the primary
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Model Inference en-as en-kha en-mz en-mni
Llama3-8B-8192 Zero Shot 18.56 14.92 15.57 13.45
Llama3-70B-8192 Zero Shot 27.54 18.57 20.62 15.53

mixtral-8x7B-32768 Zero Shot 6.79 15.45 16.57 2.65
Llama3-8B-instruct Zero Shot 26.13 8.38 18.06 15.29

1 Epoch 29.82 33.19 32.72 37.85
2 Epoch 31.68 35.26 37.73 44.51

Llama3.1-8B-instruct Zero Shot 22.93 12.03 15.23 14.47
3 Shot 23.26 13.66 18.89 15.30
5 Shot 23.48 15.11 18.77 15.29

10 Shot 23.89 16.03 19.39 15.43

Table 5: ChrF Scores for Various Models, Shot Types, and Language Pairs

Language Pair Submission Type ChrF
Eng-Asm primary 0.1123

contrastive 0.6518
Eng-Mni primary 0.1102

contrastive 0.4438
Eng-Lus primary 0.1282

contrastive 0.4151
Eng-Kha primary 0.1139

contrastive 0.3541

Table 6: ChrF Scores for WMT 2024 Shared Task

systems struggled significantly, yielding very low
ChrF values across all language pairs.

In contrast, the models fine-tuned for the con-
trastive submissions demonstrated noticeable im-
provements. For Assamese and Manipuri, we
fine-tuned IndicTrans2, achieving the highest ChrF
scores in these language pairs. For Mizo and Khasi,
we fine-tuned Llama3, which also resulted in en-
hanced performance compared to the primary sys-
tems. These findings highlight the effectiveness
of fine-tuning pre-trained models, even in low-
resource settings.

6 Potential Test Set Bias

One of the noteworthy observations in this year
(2024) WMT 2024 results is the significant dif-
ference in the performance of the primary Trans-
formers trained from scratch when evaluated on
this year’s (2024) test set compared to last year’s
(2023) test set. Specifically, we observed that the
models performed better on last year’s test set de-
spite using the same training data.

This discrepancy could be indicative of a transla-
tion bias present in last year’s dataset, which might
have inadvertently favored the models trained on

that data. The primary systems, having been trained
exclusively on the previous year’s data, may have
overfitted to patterns specific to that dataset, lead-
ing to better performance on the older test set but
struggling on the newer one.

This implies that the primary models may have
difficulty generalizing to entirely new data distri-
butions, an important factor to consider in low-
resource settings where the training data is limited
and may not be representative of future data. It
also underscores the importance of using diverse
and varied datasets during training to help mitigate
such biases and improve the overall robustness of
the models.

7 Conclusion

This paper presented the systems and results of
the Yes-MT team’s participation in the WMT 2024
Low-Resource Indic Language Translation Shared
Task. The experiments highlighted the poten-
tial of LLMs, especially when fine-tuned with
techniques such as LoRA, in enhancing transla-
tion quality even under low-resource conditions.
The contrastive submissions, which utilized fine-
tuned LLMs, demonstrated significant improve-
ments over the primary submissions that relied on
training Transformers from scratch.

Our findings suggest that while training models
from scratch can be challenging in low-resource
settings due to data scarcity and generalization
issues, fine-tuning pre-trained models can effec-
tively bridge the gap, leveraging shared knowledge
across languages to achieve better translation per-
formance.

Future work could explore integrating monolin-
gual data through back-translation or other data
augmentation techniques, as well as further refin-
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ing prompt engineering strategies to improve the
structure and clarity of LLM outputs. Additionally,
focusing on addressing potential biases in test data
to help create more reliable translation systems.
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1 

Abstract 

This paper presents our machine translation 

system that was developed for the 

WAT2024 MultiIndic MT shared task. We 

built our system for the Sindhi-English 

language pair. We developed two MT 

systems. The first system was our baseline 

system where Sindhi was translated into 

English. In the second system, we used 

Hindi as a pivot for the translation of text. 

In both the cases, we had identified the 

name entities and translated them into 

English as a preprocessing step. Once this 

was done, the standard NMT process was 

followed to train and generate MT outputs 

for the task. The systems were tested on the 

hidden dataset of the shared task 

1 Introduction 

This paper presents the system description of 

our neural machine translation system developed 

for the MultiIndic shared task organized at WMT 

2024. We collected around two lac English-Hindi 

parallel corpus from Press Information Bureau’s 

website1  which had collection of news articles in 

English as well as in Hindi and then translated it 

into Sindhi (in Devanagari script). Thus, two NMT 

systems were trained on using this corpus. The first 

system was the baseline system which was trained 

using the Sindhi-English language pair. The second 

system had two NMT systems, Sindhi-Hindi and 

Hindi-English. This system used Hindi as the pivot 

language for translation.  

2 System Overview 

2.1 Preprocessing 

Here, we did tokenization of text and also 

performed spelling correction. Then named entities 

 
1 https://pib.gov.in/ 

from Sindhi text were extracted using the Bi-

LSTM Sindhi POS tagger that was developed in-

house (Nathani et al. 2023). The identified named 

entities were then classified into MUC-6 category 

(Grishman et al. 1996) through a rule-based 

approach. These tagged named entities were 

searched in a knowledge base which had 

translations of Sindhi/Hindi Organization and 

Location named entities in English. We extracted 

the named entities from the Sindhi/Hindi corpus 

using a rule-based NER system. Once the named 

entities were extracted, they were searched in a 

knowledge base that had translations of these 

named entities in English (Organization and 

Location names). If they were found then the same 

were replaced in the Sindhi/Hindi Corpus. In cases 

where the named entity translations were not 

present in the knowledge base, then they were 

transliterated and were replaced in Sindhi/Hindi 

corpus. This became our Named Entity Translation 

module which identified the named entities and 

accordingly translated/transliterated them into 

English (Sharma et al. 2023; Joshi & Katyayan 

2023).  The work of this module is shown in Figure 

1.  

2.2 Byte Pair Encoding 

Here the source and the target corpus were 

divided into smaller units known as subwords. This 

task was performed to convert the words into 

smaller basic units which helped neural MT models 

in better handling of out of vocabulary (OOV) 

words. 

 

2.3 Training of the Model 

In training both systems we applied the same 

steps. For system 1 which was the baseline system, 

we had only one named entity translation module 

(Sindhi-English) while for the system 2 the named 

entity translation module performed Hindi-English 

translation/transliteration. The process followed 
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was; the POS tagging of Sindhi sentence was 

performed and NER was performed using a rule-

based module. The identified named entities were 

translated as explained in the previous section. This 

produced an augmented corpus-based source 

sentence. For example, let us consider a Sindhi 

sentence, “निशीथ जोशी िई दिल्ली जे इंदिरा गांधी 
अंतरााष्ट्रीय हवाई अड्डे खां जयपुर जो सफर करे 
रदहयो आहे।” Here “निशीथ जोशी (Person)”, “िई 
दिल्ली (location)”, “जयपुर (location)”, and “इंदिरा 
गांधी अंतरााष्ट्रीय हवाई अड्डे (organization)” are 

named entities. Among these since “निशीथ जोशी” 

and “जयपुर” were not available in the knowledge 

base, so they were transliterated to “Nisheeth 

Joshi” and “Jaipur” respectively. The rest of the 

named entities had their categories in the 

knowledge base; thus, they were looked up in a 

sequential manner. “िई दिल्ली” was not found and 

was transliterated to “New Delhi”, similarly “इंदिरा 
गांधी अंतरााष्ट्रीय हवाई अड्डे” was translated to 

Indra Gandhi International Airport”. The entire 

training corpus was augmented using this 

methodology. Figure 2 shows the working of the 

entire system.  

The hyperparameters used in training both the 

systems are shown in table 1. 

 

Parameter Value 

No. of Encoding Layers 6 

No. of Decoding Layers 6 

Early Stopping 

metric 

min_improvement 

steps 

 

bleu 

0.2 

6 

Optimizer 

beta_1 

beta_2 

learning_rate 

Adam 

0.8 

0.998 

1.0 

droupout 0.25 

Regularization 

type 

scale 

 

l1_l2 

1e-4 

Minimum_learning_rate 0.00001 

Max_steps 1000000 

Tabel 1: Hyperparameters Used in Training NMT 

Models 

 

3 Evaluation 

We participated in the shared task using the 

hidden corpus and submitted the outputs for both 

the systems viz baseline and pivot MT systems. 

The results of the same are shown in table 2. 

 

System BLEU chrF chrF++ 

System 1 19.4 44.6 43 

System 2 20 44.7 43.2 

Tabel 2: Evaluation Results 

 

The baseline system which translated Sindhi text 

into English had a BLEU score (Papineni et al. 

2002) of 19.4, chrF score (Popović 2015) of 44.6 

and chrF++ score (Popović 2017) of 43. From a 

human annotators perspective, this system 

produced fluent translations but in some cases 

lacked the desired quality. The second system 

which used Hindi as a pivot language (where 

Sindhi was translated into Hindi and then this Hindi 

translation was translated into English) produced 

slightly better results. Its BLEU score was 20, chrF 

score was 44.7 and chrF++ score was 43.2. This 

system generated translation which had improved 

adequacy and fluency scores. 
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Abstract

This paper presents a Transformer-based Neu-

ral Machine Translation (NMT) system devel-

oped by the Centre for Natural Language Pro-

cessing and the Department of Computer Sci-

ence and Engineering at the National Institute

of Technology Silchar, India (NITS-CNLP) for

the MultiIndic22MT 2024 Shared Task. The

system focused on the English-Manipuri lan-

guage pair for the WMT24 shared task. The

proposedWMT system shows a BLEU score of

6.4, a chrF score of 28.6, and a chrF++ score of

26.6 on the public test set Indic-Conv dataset.

Further, in the public test set Indic-Gen dataset,

it achieved a BLEU score of 8.1, a chrF score of

32.1, and a chrF++ score of 29.4 on the English-

to-Manipuri translation.

1 Introduction

The Centre for Natural Language Processing and

the Department of Computer Science and Engi-

neering at the National Institute of Technology

Silchar, India (NITS-CNLP) participated in The

MultiIndic22MT 2024 Shared Task (Dabre and

Kunchukuttan, 2024) for English-Manipuri lan-

guage pair in the WMT2024 shared task. The

shared task involves developing Machine Trans-

lation (MT) for English and 22 Indic Languages

(Assamese, Bengali, Bodo, Dogri, Konkani, Gu-

jarati, Hindi, Kannada, Kashmiri (Arabic script),

Maithili, Malayalam, Marathi, Manipuri (Meitei

script), Nepali, Oriya, Punjabi, Sanskrit, Santali,

Sindhi (Devanagari script), Tamil, Telugu, Urdu).

In recent years, there has been growing inter-

est in developing effective machine translation sys-

tems for Manipuri (Singh et al., 2023a) (Singh and

Singh, 2020) (Singh and Singh, 2022b) (Singh et al.,

2023b), which is a language with a complex linguis-

tic structure (Singh and Bandyopadhyay, 2010) and

limited bitext. Various approaches have been ex-

plored to create models that can accurately translate

between Manipuri and other languages(Singh and

Singh, 2022a). These efforts include the develop-

ment of translation models that handle different

scripts, such as Bengali and Meitei Mayek, and

the integration of linguistic (Singh and Bandyopad-

hyay, 2005) (Singh and Bandyopadhyay, 2010) and

that are essential for producing high-quality trans-

lations.

1.1 Brief Description of Manipuri language

The Manipuri language can be written in: Bengali

and Meitei Mayek. It is one of the 22 official lan-

guages of India included in the 8th schedule of the

Indian constitution. Historically, computational

linguistics research and translation efforts for Ma-

nipuri have predominantly focused on the Bengali

script, due to its extensive availability of digital

resources.

Most English-to-Manipuri translation models

and linguistic resources have been developed using

the Bengali script. Numerous projects have cre-

ated bitext and bilingual dictionaries in this script,

significantly advancing machine translation for Ma-

nipuri.

In contrast, the Meitei Mayek script, which holds

cultural and historical significance for the Manipuri

people, has not received similar attention. Although

recent years have seen a revival of theMeiteiMayek

script, highlighting the need for computational re-

sources and tools to support its use inmodern digital

contexts, it still faces challenges due to the limited

availability of textual data and digital resources.

Efforts to address this gap include digitizing an-

cient manuscripts and developing new textual re-

sources in Meitei Mayek.

2 Our Approaches

2.1 Dataset and Preprocessing

The training dataset (Gala et al., 2023) provided

by the WMT Shared Task 2024 consists of 42,740

bitext. After incorporating additional data from the

797



Language Sentence Word

English-Training 63506 1093014

Manipuri-Training 63506 894411

English-Validation 997 30772

Manipuri-Validation 997 31799

English-Testingconv 1502 14849

Manipuri-Testing conv 1502 12621

English-Testing gen 1023 25347

Manipuri-Testing gen 1023 23421

Table 1: This table presents the BLEU, chrF, and chrF++

scores for the English-to-Manipuri machine translation

system.

Ministry of Electronics and Information Technol-

ogy (MeitY), we ensure that the dataset is properly

aligned to each other to confirm that it consists of

bitext, along with removing duplicates and noise.

As a result, we obtain a clean training dataset of

63,506 bitext. The validation dataset, also provided

by the WMT Shared Task 2024, contains 997 bi-

text. For testing, we use the test set from the WMT

Shared Task 2024, which includes the Indic-Conv

and Indic-Gen datasets, comprising 1,502 and 1,023

bitext, respectively.

2.2 Hyperparameter

2.2.1 Sentencepiece Model

We train a model (MTsp) system based on a basic

Transformer architecture (Vaswani et al., 2017),

utilizing the OpenNMT toolkit (Klein et al., 2017)1.

In this model, we employ the SentencePiece (Kudo,

2018)2 tokenization technique with a vocabulary

size of 8,000 for both English and Manipuri. The

model consists of 6 encoder and 6 decoder layers,

each with 8 attention heads. The MTsp system is

trained for 200,000 steps, with validation conducted

every 5,000 steps, and model checkpoints saved at

5,000-step intervals.

It utilizes a bucket size of 262,144 and a batch

size of 2048, along with 8,000 warmup steps. Op-

timization is performed using the Adam optimizer

(Kingma and Ba, 2014). The (MTsp) is trained with

a feed-forward layer size of 2048, a hidden size of

512, and a label smoothing of 0.1.

2.2.2 Proposed Subword Model

Our proposed model (WMT24proposed) is also a

transformer model trained using the OpenNMT

toolkit. For tokenization, we employ the Byte Pair

1https://github.com/OpenNMT/OpenNMT
2https://github.com/google/sentencepiece

Encoding (BPE) method (Sennrich et al., 2016)3

with the same vocab size 8000 for English and Ma-

nipuri. The proposed model shares the same hy-

perparameters as the (MTsp), including training for

200,000 steps, with validation every 5,000 steps,

and model checkpoints saved at 5,000-step inter-

vals. It also uses the same bucket size of 262,144

and a batch size of 2048.

Both the (MTsp) and (WMT24proposed) models

are configured with 8 attention heads, 6 encoder lay-

ers, 6 decoder layers, and a learning rate of 2, along

with an attention dropout rate of 0.1. Optimization

is performed using the Adam optimizer (Kingma

and Ba, 2014), and the models share identical hy-

perparameters, including a feed-forward layer size

of 2048, a hidden size of 512, and label smoothing

of 0.1.

We train both theWMT24proposed andMTsp mod-

els using the complete set of 63,506 sentence pairs,

which includes data from both the WMT Shared

Task data and additional data provided by MeitY.

We utilize the same validation sentences, and the

testing data remains unchanged.

The performance of each model is evaluated us-

ing BLEU (Papineni et al., 2002), chrF (Popović,

2015), and chrF++ (Popović, 2017) metrics, uti-

lizing the sacreBLEU tool (Post, 2018)4 for score

evaluation.

3 Results and Discussion

In this section, we discuss the experimental re-

sults and performance of the models. The re-

ported BLEU, chrF, and chrF++ scores are cal-

culated based on the de-tokenized text. The

scores of the systems are given in Table 2. The

English-to-Manipuri translation WMT24proposed
model achieves a BLEU score of 6.4, a chrF score of

28.6, and a chrF++ score of 26.6 on the Indic-Conv

dataset. In contrast, the MTsp achieves a BLEU

score of 5.1, a chrF score of 30.9, and a chrF++

score of 27.1 on the same dataset.

For the Indic-Gen dataset, the WMT24proposed
achieves a BLEU score of 8.1, a chrF score of

32.1, and a chrF++ score of 29.4, while the MTsp

achieves a BLEU score of 6.8, a chrF score of 32.8,

and a chrF++ score of 28.7. These results highlight

the superior performance of the WMT24proposed
compared to the MTsp model across all evaluation

metrics.

3https://github.com/rsennrich/subword-nmt
4https://github.com/mjpost/sacrebleu
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MT systems Test Set BLEU chrF chrF++

WMT24 proposed conv 6.4 28.6 26.6

MTsp conv 5.1 30.9 27.1
WMT24 proposed gen 8.1 32.1 29.4

MTsp gen 6.8 32.8 28.7

Table 2: This table presents the BLEU, chrF, and chrF++ scores for the English-to-Manipuri machine translation

system.

3.1 Qualitative Analysis

In the table 3, sample 1, the word ꯍꯌꯦꯡ, meaning

“tomorrow” is correctly translated in both models.

The word “movie” has been translated to a more

beautiful word in both translations as ꯃꯃꯤ ꯀꯨꯝꯍ,

which we call movies in the early period, while in

the reference, it is translated as cinema, which is not

so accurate. While “Mom” has been translated as

ꯍꯥꯣꯝ in the reference but it is transliterated in MTsp
ꯃꯣꯝ. In the second sample, the phrase “school and

I” is accurately translated; the reference ꯑꯩ ꯁ꯭ꯀꯨꯜ

is correctly represented in the output as ꯑꯩꯅ ꯁ꯭ꯀꯨꯜ,

but the overall meaning of the sentence is not con-

veyed as the reference text is “not to go” while

both translations have translated it as “go”. In the

third sample, the word “holiday” is translated prop-

erly, with the reference being ꯁꯨꯇꯤꯅꯦ꯫, here both

models show a better translation than the reference

text. In the fourth sample, the phrase “14 April

right” is accurately translated as ꯑꯦꯄ꯭ꯔꯤꯜ ꯱꯴, but

in the WMT24proposed, the word o.t.p ꯑꯣ.ꯇꯤ.ꯄꯤ

has been included, which changes the overall mean-

ing. In the fifth sample, the name “Lelina” is cor-

rectly translated as ꯂꯦꯂꯤꯅꯥ in the WMT24proposed,

but the meaning of the sentence cannot be con-

veyed as the phrase “thank you” has not been trans-

lated. The word “thank you” has been translated

in the MTsp. Still, the name “Lelina” is not trans-

lated. In the sixth sample, “Ambedkar Jayanti” is

correctly translated as ꯑꯝꯕꯦꯗꯀꯔ ꯖꯌꯟꯇꯤ in the

WMT24proposed model; however, the adequacy is

hampered by the missing translation of “tomorrow”

in the output, and the fluency is also affected by the

ill-formed sentence structure. Meanwhile, in the

MTsp model, the word “Jayanti” is missing. In sam-

ple 7, the word “municipal” ꯃ꯭ꯌꯨꯅꯤꯁꯤꯄꯥꯜ has been

translated in both models, while MTsp performs

better. Some keywords have been translated like

the “senior citizen” ꯁꯤꯅꯤꯌꯔ ꯁꯤꯇꯤꯖꯦꯟꯁꯤꯡꯅ. In

sample 8, the word “motorcycle” ꯒꯔꯦꯟꯤꯁꯤꯡꯒꯤ

is included in the WMT24proposed, which is an extra

word.

In the table 4, sample 1, the words “shoes,”

“clothes,” “tie,” “jewelry,” “hairstyle,” “make-up,”

“watch,” “cosmetics,” and “perfume” have been

translated in both models. In the second sample,

“dry” is translated as ꯑꯀꯪꯕ and “stone” as ꯅꯨꯡꯅ;

in both samples, the overall meaning is conveyed.

In sample 3, “chilli powder” ꯆꯤꯂꯤ ꯃꯀꯨꯞ has been

translated correctly. In sample 4, the phrase “metro

station” has been translated correctly in both mod-

els, but in this case, the MTsp model performs bet-

ter. In the sample 5, the word “Xeres” has not been

translated, and the overall meaning of the sentence

cannot be conveyed. In the last sample, while the

output contains some keywords from the reference,

it fails to translate the overall meaning of the sen-

tence.

Four native speakers assessed the adequacy and

fluency of the translations. The overall output of the

sample has been shown in the figure 1. This eval-

uation indicates the quality of the sample outputs,

reflecting how fluent and adequate the translations

are in conveying the intended meaning.

1

2

3

4

5

Adequacy Fluency

WMT proposed MT sp

Figure 1: Adequacy and Fluency for the output samples

4 Conclusion

We develop and evaluate two Transformer-based

machine translation (MT) systems tested on two

different datasets (Indic-Conv and Indic-Gen) for

translating English to Manipuri. One system

(MTsp) utilizes the OpenNMT toolkit with Senten-
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Result Samples for Indic22-Conv test dataset

Source 1: Mom, let’s go for a movie tomorrow.

Reference 1: ꯏꯃꯥ, ꯍꯌꯦꯡ ꯁꯤꯅꯦꯃꯥ ꯑꯃ ꯌꯦꯡꯕ ꯆꯠꯂꯨꯁꯦ꯫

WMT24proposed 1: ꯍꯥꯣꯝ ꯑꯁꯤ ꯍꯌꯦꯡꯒꯤ ꯃꯃꯤ ꯀꯨꯝꯍꯩ ꯑꯃꯒꯤꯗꯃꯛ ꯆꯠꯄ ꯑꯣꯏ ꯫

MTsp 1: ꯃꯣꯝ, ꯍꯌꯦꯡ ꯃꯃꯤ ꯀꯨꯝꯍꯩ ꯑꯃ ꯆꯠꯂꯤ꯫

Source 2: I don’t have to go to school.

Reference 2: ꯑꯩ ꯁ꯭ꯀꯨꯜ ꯆꯠꯂꯣꯏ ꯫

WMT24proposed 2: ꯑꯩꯅ ꯁ꯭ꯀꯨꯜ ꯀꯥꯕ ꯇꯥꯈꯤ꯫

MTsp 2: ꯑꯩ ꯁ꯭ꯀꯨꯜ ꯆꯠꯂꯤ ꯫

Source 3: It is a holiday.

Reference 3: ꯁꯨꯇꯤꯅꯦ꯫

WMT24proposed 3: ꯃꯁꯤ ꯁꯨꯇꯤ ꯑꯃꯅꯤ꯫

MTsp 3: ꯃꯁꯤ ꯁꯨꯇꯤ ꯅꯨꯃꯤꯠꯅꯤ꯫

Source 4: Oh, tomorrow is the 14th of April right?

Reference 4: ꯑꯣ, ꯍꯌꯦꯡꯁꯦ ꯑꯦꯄ꯭ꯔꯤꯜꯒꯤ ꯱꯴ ꯅꯠꯇ꯭ꯔꯣ ?
WMT24proposed 4: ꯑꯣ.ꯇꯤ.ꯄꯤ. ꯑꯁꯤ ꯑꯦꯄ꯭ꯔꯤꯜ ꯱꯴ꯗꯅꯤ꯫

MTsp 4: ꯑꯣ, ꯍꯌꯦꯡꯒꯤ ꯑꯦꯄ꯭ꯔꯤꯜ ꯱꯴ ꯑꯁꯤꯅꯤ

Source 5: Thank you, Lelina.

Reference 5: ꯊꯥꯒꯠꯆꯔꯤ, ꯂꯦꯂꯤꯅꯥ꯫

WMT24proposed 5: ꯅꯍꯥꯛꯅ ꯉꯝꯂꯕꯗꯤ, ꯂꯦꯂꯤꯅꯥ ꯍꯥꯏꯕꯤꯌꯨ꯫

MTsp 5: ꯑꯗꯣꯝꯕꯨ ꯊꯥꯒꯠꯆꯔꯤ

Source 6: It is Ambedkar Jayanti tomorrow!

Reference 6: ꯍꯌꯦꯡ ꯑꯝꯕꯦꯗꯀꯔ ꯖꯌꯦꯟꯇꯤ ꯅꯦ!
WMT24proposed 6: ꯃꯁꯤ ꯑꯝꯕꯦꯗꯀꯔ ꯖꯌꯟꯇꯤ!
MTsp 6: ꯃꯁꯤ ꯍꯌꯦꯡꯗꯤ ꯑꯝꯕꯦꯗꯛꯔ

Source 7: Even the municipal corporation people also worked round the clock so that they can

get the electricity back on time as there were kids and senior citizens present who were

facing a lot of difficulties.

Reference 7: ꯑꯉꯥꯡꯁꯤꯡ ꯑꯃꯁꯨꯡ ꯑꯍꯟ ꯑꯣꯏꯔꯕꯁꯤꯡ ꯑꯋꯥꯕ ꯌꯥꯝꯅ ꯃꯥꯏꯌꯣꯛꯅꯗꯨꯅ ꯂꯩꯕꯅ ꯃꯇꯝ ꯆꯥꯟꯅ

ꯃꯩ ꯑꯗꯨ ꯂꯥꯛꯍꯟꯅꯕ ꯃ꯭ꯌꯨꯅꯤꯁꯤꯄꯥꯜ ꯀꯣꯔꯄꯣꯔꯦꯁꯟꯒꯤ ꯃꯤꯁꯤꯡꯁꯨ ꯃꯇꯝ ꯄꯨꯝꯅꯃꯛꯇ ꯊꯕꯛ

ꯁꯨꯈꯤ ꯫

WMT24proposed 7: ꯃ꯭ꯌꯨꯅꯤꯁꯤꯄꯥꯜ ꯀꯣꯔꯄꯣꯔꯦꯁꯟꯅ ꯂꯥꯛꯄ ꯃꯤꯑꯣꯏꯁꯤꯡꯁꯨ ꯄꯨꯡ ꯀꯌꯥꯗ ꯂꯩꯕꯒꯤ ꯃꯇꯝ

ꯆꯨꯞꯄꯒꯤ ꯑꯣꯏꯅ ꯊꯕꯛ ꯇꯧꯔꯝꯃꯤ ꯃꯗꯨꯅ ꯃꯔꯝ ꯑꯣꯏꯗꯨꯅ ꯃꯈꯣꯏꯗ ꯑꯔꯨꯕ ꯊꯧꯗꯣꯛ ꯀꯌꯥ

ꯑꯃ ꯊꯣꯛꯈꯤ꯫

MTsp 7: ꯃ꯭ꯌꯨꯅꯤꯁꯤꯄꯥꯜ ꯀꯣꯔꯄꯣꯔꯦꯁꯟꯁꯨ ꯃꯤꯌꯥꯝꯅ ꯑꯋꯥꯕ ꯀꯌꯥ ꯑꯃ ꯊꯦꯡꯅꯔꯝꯕ ꯑꯗꯨꯁꯨ

ꯍꯣꯡꯗꯣꯛꯄ ꯉꯝꯅꯕ ꯀ꯭ꯂꯣꯛ ꯑꯗꯨꯗ ꯊꯕꯛ ꯇꯧꯈꯤ, ꯃꯁꯤꯅ ꯃꯔꯝ ꯑꯣꯏꯗꯨꯅ ꯃꯩ ꯄꯤꯕ ꯉꯝꯒꯅꯤ

ꯑꯃꯁꯨꯡ ꯁꯤꯅꯤꯌꯔ ꯁꯤꯇꯤꯖꯦꯟꯁꯤꯡꯅ ꯈꯨꯗꯣꯡꯆꯥꯗꯕ ꯀꯌꯥ ꯑꯃꯥ ꯊꯦꯡꯅꯔꯝꯕ ꯌꯥꯢ꯫

Source 8: There are a lot of organisations here which are catering help to the people, in terms of

groceries, medical facilties and medicines and all the necessary items as and when it

is needed.

Reference 8: ꯆꯥꯟꯅ ꯊꯛꯅꯕ, ꯑꯅꯥ ꯂꯥꯏꯌꯦꯡꯕꯒꯤ ꯈꯨꯗꯣꯡ ꯆꯥꯕ ꯑꯃꯁꯨꯡ ꯍꯤꯗꯥꯛ ꯂꯥꯡꯊꯛꯁꯤꯡ ꯑꯃꯁꯨꯡ ꯃꯊꯧ

ꯇꯥꯔꯛꯄ ꯄꯣꯠꯁꯤꯡ ꯑꯃꯁꯨꯡ ꯃꯇꯝ ꯆꯥꯅ ꯄꯤꯅꯕ ꯃꯊꯧ ꯇꯥꯕ ꯄꯣꯠ ꯄꯨꯝꯅꯃꯛꯀꯤ ꯃꯇꯥꯡꯗ

ꯃꯤꯌꯥꯝꯗ ꯃꯇꯦꯡ ꯄꯤꯔꯤꯕ ꯀꯥꯡꯂꯨꯞ ꯀꯌꯥ ꯑꯃ ꯂꯩ ꯫

WMT24proposed 8: ꯃꯐꯝ ꯑꯁꯤꯗ ꯃꯤꯑꯣꯏ ꯀꯌꯥ ꯑꯃ ꯂꯩ, ꯃꯈꯣꯏ ꯑꯗꯨꯗꯤ ꯒ꯭ꯔꯣꯁꯔꯤꯁꯤꯡ,
ꯃꯣꯇꯣꯔꯁꯥꯏꯀꯜꯁꯤꯡꯒꯤ ꯅꯠꯇꯕꯁꯤꯡ, ꯑꯅꯥ−ꯂꯥꯌꯦꯡꯁꯪꯁꯤꯡ, ꯍꯤꯗꯥꯛ−ꯂꯥꯡꯊꯛꯀꯤ ꯑꯣꯏꯕ

ꯄꯥꯝꯕꯤꯁꯤꯡ ꯑꯃꯁꯨꯡ ꯃꯊꯧ ꯇꯥꯕ ꯃꯇꯝꯗꯇꯅꯤ ꯫

MTsp 8: ꯒꯔꯦꯟꯇꯤꯁꯤꯡꯒꯤ ꯃꯤꯌꯥꯝꯗ ꯃꯇꯦꯡ ꯄꯥꯡꯂꯤꯕ ꯂꯨꯞ ꯀꯌ ꯂꯩꯔꯤ, ꯄꯣꯠ ꯆꯩꯁꯤꯡ ꯑꯃꯗꯤ ꯃꯊꯧ

ꯇꯥꯕ ꯄꯣꯠꯂꯝ ꯈꯨꯗꯤꯡꯃꯛ ꯑꯃꯗꯤ ꯍꯤꯗꯥꯛꯀꯤ ꯃꯊꯧ ꯇꯥꯕ ꯃꯇꯝꯗ꯫

Table 3: Sample input and output of the English to Manipuri MT system on the Indic22-Conv test dataset.
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Result Samples for Indic22-Gen test dataset

Source 1: An appearance is a bunch of attributes related to the service person, like their shoes,

clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc

Reference 1: ꯁꯛꯐꯝ ꯍꯥꯏꯕꯁꯤ ꯊꯕꯛ ꯇꯧꯕ ꯃꯤ ꯑꯗꯨꯒ ꯃꯔꯤ ꯂꯩꯅꯕ ꯃꯈꯣꯏꯒꯤ ꯈꯣꯡꯉꯨꯞ, ꯐꯤꯔꯣꯟ,
ꯇꯥꯏ, ꯁꯅꯥꯂꯨꯄ, ꯁꯝꯒꯤ ꯃꯑꯣꯡ, ꯀꯦꯕ, ꯘꯔꯤ, ꯀꯦꯅꯕ ꯄꯣꯠꯆꯩ, ꯄꯔꯐ꯭ꯌꯨꯝꯒꯨꯝꯕ ꯃꯒꯨꯟ

ꯀꯌꯥꯑꯃꯅꯤ꯫

WMT24proposed 1: ꯁꯦꯕꯥꯗ ꯑꯁꯤ ꯃꯈꯣꯏꯒꯤ ꯈꯣꯡꯎꯞ, ꯐꯤ, ꯂꯨꯄ,ꯥ ꯂ,ꯨ ꯁꯅꯥꯂꯨꯄꯥ, ꯎꯄꯨꯕꯒꯤ, ꯘ꯭ꯔꯥ, ꯈꯣꯡꯎꯞ, ꯁꯅꯥ,
ꯏꯪꯇꯞꯄ, ꯃꯅꯝ ꯅꯨꯡꯁꯤꯕ, ꯄꯔꯐ꯭ꯂꯨꯃꯥ, ꯁꯅꯆꯤꯡꯕꯒ ꯃꯔꯤ ꯂꯩꯅꯩ꯫

MTsp 1: ꯑꯅꯥꯕ ꯃꯤꯒ ꯃꯔꯤ ꯂꯩꯅꯕ ꯁꯔꯚꯤꯁꯁꯤꯡ, ꯃꯈꯣꯏꯒꯤ ꯈꯣꯡꯎꯞ, ꯐꯤꯁꯤꯡ, ꯖꯦꯁꯦꯔꯤ, ꯍꯦꯂꯤꯞꯁ,
ꯑꯣꯏꯗꯨꯛ, ꯎꯞꯄ, ꯂꯩꯇꯦꯡꯒꯤ ꯑꯣꯏꯕ, ꯑꯀꯦꯑꯃꯧꯒꯤ ꯑꯣꯏꯕ, ꯃꯅꯝ ꯅꯨꯡꯁꯤꯕ, ꯄꯔꯐ꯭ꯌꯨꯝ꯫

Source 2: Make this into powder with a dry grinder or in a stone pestle.

Reference 2: ꯃꯁꯤ ꯗ꯭ꯔꯥꯏ ꯒ꯭ꯔꯥꯏꯟꯗꯔ ꯑꯃꯗ ꯅꯠꯇ꯭ꯔꯒ ꯅꯨꯡꯒꯤ ꯈꯣꯟꯗ ꯃꯀꯨꯞ ꯇꯥꯍꯜꯂꯨ꯫

WMT24proposed 2: ꯃꯁꯤ ꯑꯀꯪꯕ ꯆꯤꯡꯁꯥꯡ ꯑꯃꯗ ꯅꯠꯇ꯭ꯔꯒ ꯅꯨꯡꯅ ꯆꯣꯠꯂꯕ ꯃꯀꯨꯞꯕꯨ ꯀꯨꯞꯁꯤꯜꯂꯤ꯫

MTsp 2: ꯃꯁꯤ ꯑꯀꯪꯕ ꯃꯐꯝ ꯅꯠꯇ꯭ꯔꯒ ꯅꯨꯡ ꯑꯃꯗ ꯀꯪꯍꯟꯕꯤꯒꯗꯕꯅꯤ ꯫

Source 3: The use of chilli powder in this region is done cautiously.

Reference 3: ꯃꯐꯝ ꯑꯁꯤꯗ ꯃꯣꯔꯣꯛ ꯑꯁꯨꯕ ꯁꯤꯖꯤꯟꯅꯕ ꯑꯁꯤ ꯆꯦꯛꯁꯤꯟꯅ ꯇꯧꯋꯤ꯫

WMT24proposed 3: ꯂꯃꯗꯝ ꯑꯁꯤꯗ ꯆꯤꯂꯤ ꯃꯀꯨꯞ ꯑꯁꯤ ꯀꯧꯅꯩ ꯫

MTspOutput 3: ꯂꯝꯗꯝ ꯑꯁꯤꯗ ꯆꯤꯂꯤ ꯃꯀꯨꯞꯁꯤꯡ ꯁꯤꯖꯤꯟꯅꯕ ꯑꯁꯤ ꯌꯥꯝꯅ ꯂꯥꯡꯉꯤ ꯫

Source 4: The nearest Delhi Metro station is Arjan Garh, on the Yellow Line.

Reference 4: ꯈ꯭ꯋꯥꯏꯗꯒꯤ ꯅꯛꯄ ꯃꯦꯇ꯭ꯔꯣ ꯏꯁꯇꯦꯁꯟꯗꯤ ꯌꯦꯂꯣ ꯂꯥꯏꯟꯗ ꯂꯩꯕ ꯑꯔꯖꯥꯟ ꯒꯔꯅꯤ꯫

WMT24proposed 4: ꯈ꯭ꯋꯥꯏꯗꯒꯤ ꯅꯛꯄ ꯃꯦꯇ꯭ꯔꯣ ꯁ꯭ꯇꯦꯁꯟ ꯑꯁꯤ ꯌꯦꯂꯣ ꯂꯤꯟ ꯂꯥꯏꯟꯗ ꯂꯩ ꯫

MTsp 4: ꯈ꯭ꯋꯥꯏꯗꯒꯤ ꯅꯛꯄ ꯗꯤꯜꯂꯤ ꯃꯦꯇ꯭ꯔꯣ ꯁ꯭ꯇꯦꯁꯟ ꯑꯁꯤ ꯌꯦꯂꯣ ꯂꯥꯌꯟꯗ ꯂꯩꯕ ꯑꯔꯖꯟ ꯒꯔꯅꯤ꯫

Source 5: After him, came Xerxes II for a short while.

Reference 5: ꯃꯍꯥꯛꯀꯤ ꯃꯇꯨꯡꯗ ꯃꯇꯝ ꯈꯔꯒꯤ ꯑꯣꯏꯅ ꯖꯔꯛꯁꯤꯁ II ꯂꯥꯛꯈꯤ꯫

WMT24proposed 5: ꯃꯍꯥꯛꯀꯤ ꯃꯇꯨꯡꯗ ꯂꯥꯛꯈꯤꯕ XII ꯑꯗꯨ ꯑꯇꯦꯟꯕ ꯃꯇꯝꯗ ꯌꯣꯜꯂꯤ꯫

MTsp 5: ꯃꯍꯥꯛꯀꯤ ꯃꯇꯨꯡꯗ, ꯃꯍꯥꯛꯅ ꯃꯇꯝ ꯈꯔꯒꯤ ꯑꯣꯏꯅ XI ꯐꯪꯈꯤ꯫

Source 6: In Karaikal liquor is cheaper than in the neighbouring Tamil Nadu, there are quite a

few decent bars in Karaikal - the Niagra bar in the Nanda hotel, the Thunder bar in the

Paris International, the City bar - a very famous one in the town, and The Sea Gulls

Restaurant owned by the government of Pondicherry which is at the sea shore and is

good to hang out in the evenings.

Reference 6: ꯀꯔꯥꯏꯀꯜꯗ ꯌꯨ ꯑꯁꯤ ꯌꯨꯝꯊꯪꯅꯕ ꯇꯥꯃꯤꯜ ꯅꯥꯗꯨꯗꯒꯤ ꯍꯦꯟꯅ ꯍꯣꯡꯉꯤ, ꯀꯔꯥꯏꯀꯜꯗ ꯃꯤ ꯆꯪꯕꯗ

ꯆꯤꯡ ꯂꯦꯝꯕ ꯑꯣꯏꯕ ꯕꯥꯔ ꯀꯌꯥ ꯑꯃ ꯂꯩ −− ꯅꯟꯗ ꯍꯣꯇꯦꯜꯗ ꯗ ꯅꯥꯏꯒ꯭ꯔꯥ ꯕꯥꯔ− ꯄꯦꯔꯤꯁ

ꯏꯟꯇꯔꯅꯦꯁꯅꯦꯜꯗ ꯗ ꯊꯟꯗꯔ ꯕꯥꯔ− ꯁꯣꯍꯔ ꯃꯆꯥ ꯑꯗꯨꯗ ꯌꯥꯝꯅ ꯃꯃꯤꯡ ꯆꯠꯄ ꯁꯤꯇꯤ

ꯕꯥꯔ−ꯄꯣꯟꯗꯤꯆꯦꯔꯤꯒꯤ ꯁꯔꯀꯥꯔꯅ ꯃꯄꯨ ꯑꯣꯏꯕ ꯗ ꯁꯤ ꯒꯜꯁ ꯔꯦꯁꯇꯨꯔꯦꯟꯇ ꯑꯁꯤ ꯁꯥꯃꯨꯗ꯭ꯔ

ꯃꯄꯥꯟꯗ ꯂꯩ ꯑꯃꯁꯨꯡ ꯃꯁꯤ ꯅꯨꯃꯤꯗꯥꯡ ꯋꯥꯏꯔꯝꯒꯤ ꯃꯇꯝꯗ ꯌꯥꯝꯅ ꯅꯨꯉꯥꯏꯕ ꯃꯤ ꯄꯨꯟꯐꯝꯅꯤ꯫

WMT24proposed 6: ꯀꯥꯔꯥꯏꯀꯜ ꯅꯠꯇ꯭ꯔꯒ ꯌꯨꯝꯂꯣꯟꯅꯔꯤꯕ ꯇꯥꯃꯤꯜ ꯅꯥꯗꯨꯗ ꯂꯩꯕ ꯀꯔꯥꯏꯀꯥꯜꯗ ꯈꯔ ꯍꯦꯟꯅ ꯁꯤꯠꯄ

ꯌꯥꯏ− ꯃꯈꯣꯏ ꯑꯁꯤ ꯀꯔꯅꯗꯥ ꯍꯣꯇꯦꯜ, ꯊꯥꯔꯕꯥꯔꯒꯤ ꯃꯈꯥꯗ ꯂꯩꯕ ꯇꯥꯡꯕꯜ ꯈꯔ ꯂꯩꯕ ꯅꯤꯌꯥꯒꯥꯔ

ꯖꯥꯇꯤꯒꯤ ꯂꯩ ꯑꯃꯗꯤ ꯃꯁꯤ ꯑꯄꯤꯛꯄ ꯁꯍꯔ ꯑꯁꯤꯗ ꯂꯩꯕ ꯂꯥꯜ ꯍꯧꯔꯤꯕ ꯒꯜꯕꯥꯔ ꯑꯁꯤ ꯌꯥꯝꯅ

ꯃꯃꯤꯡ ꯆꯠꯂꯤ꯫ ꯃꯌꯥꯏꯊꯡꯕ ꯖꯨꯒꯥꯜ ꯑꯃꯁꯨꯡ ꯁꯃꯨꯗ꯭ꯔ ꯃꯅꯨꯡꯗ ꯑꯃꯅꯤ ꯫

MTspOutput 6: ꯀꯚꯔꯦꯖ ꯑꯁꯤ ꯌꯨꯑꯦꯟꯗ ꯃꯌꯦꯛ ꯁꯦꯡꯅ ꯇꯥꯛꯄ, ꯇꯥꯃꯤꯜ ꯅꯥꯗꯨꯗ, ꯇꯥꯃꯤꯜ ꯅꯥꯗꯨꯗ ꯄꯨꯔꯛꯂꯤ,
ꯃꯁꯤ ꯖꯦꯅꯤꯌꯥꯅ ꯌꯣꯖꯅ ꯑꯃꯁꯨꯡ ꯍꯥꯏꯋꯦ ꯄ꯭ꯔꯣꯖꯦꯛꯠꯁꯤꯕꯨ ꯁꯤꯖꯤꯟꯅꯩ−ꯋꯤꯁꯋꯥꯍꯩꯔꯣꯏꯁꯤꯡ,
ꯑꯁꯥꯃꯤꯁ, ꯌꯨꯝꯁꯤꯡꯗ, ꯊꯥꯎꯒꯤ ꯑꯍꯣꯡꯕ ꯄꯨꯔꯛꯅꯕ ꯑꯃꯗꯤ ꯆꯦ ꯆꯥꯡ ꯃꯌꯥꯝ ꯑꯃ ꯄꯤꯈꯤ꯫

Table 4: Sample Input and Output of the English to Manipuri MT System on the Indic22-Gen test dataset.

cepiece tokenization for tokenization, while the pro-

posed model (WMT24proposed) employs the Open-

NMT toolkit with Byte Pair Encoding (BPE). Both

models are trained on a comprehensive dataset that

includes data from WMT24 and MeitY.

The model is optimized with the Adam optimizer

and is evaluated using BLEU, chrF, and chrF++

metrics. Additionally, the translations are assessed
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for both adequacy and fluency. The models suc-

cessfully convey the overall meaning of the source

sentences, but they often lack fluency, producing

disjointed or grammatically incorrect outputs.

Overall, the WMT24proposed produces transla-

tions that are more syntactically correct, contex-

tually appropriate, and idiomatically fluent, while

MTsp offers more direct, simpler translations that

sometimes lose nuance or complex structure.

Limitations

The proposed (WMT24proposed) model translation

conveys the main ideas of the reference sentence,

despite certain errors and structural challenges. It

captures some aspects of the overall meaning of the

reference sentences. In the case of longer sentences,

there is a large amount of adequacy. However,

the fluency of these translations deteriorates as the

length of the input sentences increases.
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Abstract

This paper describes NLIP Lab’s multilingual
machine translation system for the WAT24
shared task on multilingual Indic MT task for
22 scheduled languages belonging to 4 lan-
guage families. We explore pre-training for In-
dic languages using alignment agreement objec-
tives. We utilize bi-lingual dictionaries to sub-
stitute words from source sentences. Further-
more, we fine-tuned language direction-specific
multilingual translation models using small and
high-quality seed data. Our primary submis-
sion is a 243M parameters multilingual trans-
lation model covering 22 Indic languages. In
the IN22-Gen benchmark, we achieved an av-
erage chrF++ score of 46.80 and 18.19 BLEU
score for the En-Indic direction. In the Indic-
En direction, we achieved an average chrF++
score of 56.34 and 30.82 BLEU score. In the
In22-Conv benchmark, we achieved an aver-
age chrF++ score of 43.43 and BLEU score of
16.58 in the En-Indic direction, and in the Indic-
En direction, we achieved an average of 52.44
and 29.77 for chrF++ and BLEU respectively.
Our model1 is competitive with IndicTransv1
(474M parameter model).

1 Introduction

Multilingual Neural Machine Translation (MNMT)
has shown remarkable success in building transla-
tion systems for world languages in a single model
(Johnson et al., 2017). These successes have led
researchers to increase the model capacity catering
to hundreds of world languages (Fan et al., 2020),
(NLLB Team et al., 2022). It also led to multi-
lingual translation models for particular languages
under particular geographical groups such as Indic
(Ramesh et al., 2022; Gala et al., 2023), African
(Nekoto et al., 2020). Indic languages are interest-
ing, with diverse languages belonging to various
language families and written scripts.

1Our code and models are available at https://github.
com/maharajbrahma/WAT2024-MultiIndicMT

This paper describes our system submission for
the WAT 24 MultiIndic22MT task (Dabre and
Kunchukuttan, 2024), which includes 22 sched-
uled Indian languages belonging to 4 language
families across 12 written scripts. We participated
in the constrained translation task. We explore
an alignment agreement-based pre-training objec-
tive. Specifically, we substitute words from source
sentences for equivalent words in a random lan-
guage. The pre-training data consists of a sentence
pair from the original data and code-switched aug-
mented sentences. Our primary submission is a
fine-tuned transformer-based multilingual model
with 243M parameters. Experimental results show
that our system achieves an average chrF++ score
of 46.80 for the En-Indic direction in the IN22-Gen
benchmark. We achieved an average chrF++ score
of 46.80 and 18.19 BLEU score for the En-Indic
direction. In the Indic-En direction, we achieved
an average chrF++ score of 56.34 and 30.82 BLEU
score. Compared with the IndicTransv2 model
for Indic-Indic translation, our system lags most
minor for pan_Guru-snd_Deva with 0.3 chrF++
scores. Due to computational constraints, we train
our model on a reduced corpus.

2 Dataset

2.1 Pre-training data

In this section, we describe the dataset used for
pre-training. We use the official Bharat Parallel
Collection Corpus (BPCC) (Gala et al., 2023) but
reduce the corpus size due to computational limita-
tions. We also exclude sentences from the compa-
rable directory. For languages with over 10 million
parallel sentences, we reduce the no. of sentences
by half. The corpus statistics are shown in Table
1. To handle skew data distribution and have good
representation for low-resource languages, we use
heuristic-based temperature sampling (Arivazha-
gan et al., 2019; Conneau et al., 2020) for data
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sampling with temperature sampling (T = 5) shown
in Figure 1. We utilize small, high-quality data
from BPCC, namely ILCI, Massive, NLLB Seed,
Daily, and Wiki, for direction-specific fine-tuning.

2.2 Alignment Augmentation
For alignment augmentation we English-centric bi-
lingual dictionaries from MUSE2 and GATITOS3.
We use top 4000 words in dictionaries, replaced
with a probability of 30% from the bi-lingual dic-
tionary. We consider only replacing words in the
languages that have dictionaries.

3 Methodology

Our pre-training approach is inspired by aligning
embeddings (Lin et al., 2020; Yang et al., 2020)
through substituting words from a bi-lingual dictio-
nary. We pre-trained a universal model that covers
En-Indic and Indic-En. We named this model “Ind-
icRASP”. IndicRASP is fine-tuned into a language
direction-specific model called “IndicRASP-Seed”
using small and high-quality seed data.
IndicRASP (IR): IndicRASP is pre-trained on data
from 22 Indic languages sourced from BPCC. Dur-
ing pre-training, we randomly substitute English
words for corresponding Indic language words, re-
sulting in code-switched augmented sentences. The
alignment augmentation technique helps to bring
semantically similar embeddings closer together.
We get 56M sentences after alignment augmen-
tation. We combined training sentences from the
original En-Indic and Indic-En4 and obtained 282M
sentences for pre-training.
IndicRASP-Seed (IR Seed): To further enhance
the performance of IndicRASP, we fine-tuned the
model to be language-direction specific. We con-
sider high-quality seed data from the BPCC corpus:
ILCI, NLLB Seed, Massive, Daily, and Wiki. We
sampled a total of 2.26M sentences and fine-tuned
IndicRASP for both En-Indic and Indic-En direc-
tions.

4 Experiments

Setting: We use the standard sequence-to-
sequence Transformer big model as our architec-
ture for pre-training. It uses 6 encoder and 6 de-
coder layers, with an embedding size of 1024. The

2https://github.com/facebookresearch/MUSE#
ground-truth-bilingual-dictionaries

3https://github.com/google-research/url-nlp/
tree/main/gatitos

4Reverse sentence pairs of En-Indic corpus

embeddings between the encoder and decoder are
shared, with a feed-forward network size of 4096
and 16 attention heads.
Training: We pre-train the model with the Adam
optimizer (Kingma and Ba, 2014) with β1 set to 0.9
and β2 set to 0.98. We set the warmup initial learn-
ing rate to 1e-07 and the learning rate to 5e-4, with
a warmup step of 4000. We train the models with
a dropout rate of 0.1 and a label smoothing rate of
0.1. During fine-tuning, we consider a learning rate
of 3e-5 and a dropout rate of 0.2. All experiments
are conducted on 8 NVIDIA A100 GPUs.
Baseline Models: We consider two baselines:

1. IndicTransv1 (Ramesh et al., 2022): Indic-
Transv1 (IT1) is a multilingual transformer
(Vaswani et al., 2017) translation model for 11
Indic languages trained. It is a 474M parame-
ter trained on the 49.7M sentence pair on the
Samanantar dataset.

2. IndicTransv2 (Gala et al., 2023): Indic-
Transv2 (IT2) is a 1B parameter model trained
on the BPCC corpus for 22 Scheduled Indian
languages.

Language-Direction Specific Models: For our
primary submission, we fine-tune IndicRASP with
direction-specific small seed data for En-Indic and
Indic-En. For the Indic-Indic model, we fine-tune
the IndicRASP-Seed (En-Indic direction) on the
Indic-Indic corpus extracted from the BPCC cor-
pus.
Evaluation: We use the dev set of BPCC IN-Gen
as our validation and evaluate our model on the test
set of BPCC IN-Gen and IN-Conv. We report our
results on lexical-based automatic metrics BLEU
(Papineni et al., 2002), and chrF++ (Popović, 2017).
We use the sacreBLEU library for evaluation, with
a chrF word order of 2.

5 Results

We list the results of our model on the IN22-Gen in
Table 3, 4 for chrF++ and BLEU, respectively. Sim-
ilarly, Table 5 and 6 results for chrF++ and BLEU
in IN22-Conv. Table 2 shows the performance of
our primary submission on a hidden test set. Our
findings described for IN22-Gen are:

• IndicRASP achieves an average chrF++ score
of 45.50, and IndicRASP-Seed achieves 46.80
with an improvement of (+1.30) for the
En-Indic direction. Similarly, IndicRASP
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Language Script # of sentences (M) Language Script # of sentences (M)

Assamese Bengali 1.42 Manipuri Metei 0.04
Bodo Devanagari 0.12 Manipuri Bengali 0.37

Bengali Bengali 16.39 Marathi Devanagari 9.37
Dogri Devanagari 0.02 Nepali Devanagari 1.68

Konkani Devanagari 0.10 Odia Oriya 5.80
Gujarati Gujarati 10.12 Punjabi Gurmuki 9.75
Hindi Devanagari 19.24 Sanskrit Devanagari 0.28

Kannada Kannada 11.60 Santali Olck 0.02
Kashmiri Devanagari 0.20 Sindhi Devanagari 0.01
Kashmiri Arabic 0.15 Tamil Tamil 10.18
Maithili Devanagari 0.09 Telugu Telugu 11.54

Malayalam Malayalam 11.69 Urdu Arabic 2.99

Table 1: Statistics of the dataset. Total of 113.65 million bi-texts.
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Figure 1: Number of sentences in each language and the sampled distribution with the T=5

Language pair BLEU chrF chrF++

asm_Beng-eng_Latn 19.9 50.4 47.8
ben_Beng-eng_Latn 22.1 50.1 48.0
brx_Deva-eng_Latn 17.8 47.6 45.3
guj_Gujr-eng_Latn 16.8 45.4 43.2
hin_Deva-eng_Latn 23.1 50.5 48.5
kas_Arab-eng_Latn 12.4 38.5 36.5
mal_Mlym-eng_Latn 20.3 48.3 46.2
npi_Deva-eng_Latn 18.0 46.7 44.5
san_Deva-eng_Latn 9.3 34.7 32.6
sat_Olck-eng_Latn 11.0 36.3 34.0
snd_Deva-eng_Latn 21.2 47.1 45.5
tel_Telu-eng_Latn 13.8 40.6 38.4
urd_Arab-eng_Latn 20.3 45.6 43.9

Table 2: Indic-En scores results on hidden test set

achieves an average BLEU score of 16.82 and
18.19 for the IndicRASP-Seed. It suggests
that fine-tuning small, high-quality language
directions improves the alignment augmented
IndicRASP model. We can observe similar
results for Indic-En.

• By comparing IT1 and IndicRASP-Seed, we
find that IndicRASP-Seed has a chrF++ im-
provement of +1.30 for En-Indic; however,
in the Indic-En direction, IndicRASP-Seed is
lagging behind by 1.63.

• By comparing IT2 and IndicRASP-Seed, we
find that IndicRASP-Seed lags behind by 1.74
chrF++ scores for En-Indic direction. In the
Indic-En direction, the IndicRASP-Seed lags
behind significantly by a 7.13 chrF++ score
from IT2.

• For En-Indic languages highlighted in bold in
Table 3, namely Manipuri, Oriya, and Santali,
IndicRASP-Seed performs better than Indic-
Transv2 with chrF++ score difference of 0.5,
2.3, and 6.5 respectively.

• We observe that our setup performs better in
the En-Indic direction than in Indic-En. This
is possibly due to the reduction of the dataset.

In Table 7, we show the performance of
IndicRASP-Seed for Indic-Indic direction in the
IN22-Gen and IN22-Conv datasets. We ob-
serve that the IT2 is better than the IndicRASP-
Seed in all language pairs, particularly for
mal_Mlym-hin_Deva, IndicRASP-Seed lags high-
est behind by a 5.6 chrF++ score, and
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Language En − Indic Indic − En
IT1 IT2 IR IR Seed IT1 IT2 IR IR Seed

asm_Beng 35.9 47.1 43.0 44.8 56.1 66.5 57.2 58.4
ben_Beng 48.6 51.8 47.3 48.5 58.4 64.5 55.6 56.9
brx_Deva – 47.8 46.3 46.5 – 61.8 53.5 54.5
doi_Deva – 57.9 58.1 58.0 – 72.7 64.0 64.5
gom_Deva – 45.2 42.1 42.9 – 58.7 50.7 51.6
guj_Gujr 47.2 53.4 47.6 48.8 60.3 66.9 57.7 59.2
hin_Deva 53.3 56.6 52.4 54.8 60.7 65.0 57.6 58.7
kan_Knda 46.7 50.9 46.3 47.9 58.8 65.1 55.4 56.5
kas_Arab – 40.2 37.6 39.5 – 60.5 52.6 53.8
mai_Deva – 48.7 46.7 47.3 – 66.4 58.5 59.5
mal_Mlym 45.7 50.8 45.6 47.4 56.9 64.5 54.2 56.0
mni_Mtei – 44.5 44.5 45.0 – 60.3 51.9 52.7
mar_Deva 44.3 50.9 44.2 46.7 57.7 65.1 55.8 57.3
npi_Deva – 49.0 44.8 47.8 – 69.4 60.6 62.1
ory_Orya 40.3 43.8 43.0 46.1 60.0 67.6 57.6 59.3
pan_Guru 48.0 50.7 48.3 47.9 57.2 63.0 54.5 56.1
san_Deva – 38.6 34.6 36.2 – 56.0 45.9 46.9
sat_Olck – 33.4 39.6 39.9 – 47.7 47.2 48.2
snd_Deva – 36.5 34.2 35.2 – 57.0 51.3 52.6
tam_Taml 45.5 49.6 45.4 46.4 53.9 59.7 51.3 53.2
tel_Telu 46.5 52.5 47.2 48.8 57.7 64.9 55.7 56.8
urd_Arab – 68.0 63.1 62.4 – 73.1 63.5 64.7

Avg. 45.64 48.54 45.50 46.80 57.97 63.47 55.10 56.34

Table 3: chrF++ (↑) scores on IN22-Gen

Language En − Indic Indic − En
IT1 IT2 IR IR Seed IT1 IT2 IR IR Seed

asm_Beng 9.9 19.3 15.0 17.8 32.5 42.5 30.7 31.6
ben_Beng 18.1 20.7 15.6 17.2 33.4 40.9 29.2 30.3
brx_Deva – 17.0 15.9 16.2 – 39.0 27.2 28.2
doi_Deva – 33.8 33.7 33.4 – 53.7 41.2 41.7
gom_Deva – 18.7 14.7 16.4 – 34.0 23.8 24.9
guj_Gujr 17.9 25.6 18.2 19.6 36.3 43.5 31.3 32.6
hin_Deva 28.3 33.5 27.0 28.0 36.1 40.4 29.8 30.6
kan_Knda 13.4 17.7 13.0 15.6 34.8 40.5 29.0 30.0
kas_Arab – 14.4 12.4 13.4 – 38.6 28.3 29.5
mai_Deva – 19.2 17.0 17.8 – 43.2 32.8 33.8
mal_Mlym 13.9 16.4 12.0 13.1 31.4 41.0 28.2 30.1
mni_Mtei – 17.4 17.5 18.2 – 39.0 27.7 28.9
mar_Deva 13.9 21.4 13.8 17.5 33.5 41.9 29.8 31.1
npi_Deva – 16.8 12.6 15.6 – 48.2 35.7 38.0
ory_Orya 10.2 14.4 12.3 17.4 – 45.1 31.4 32.6
pan_Guru 23.5 25.8 23.7 22.6 33.5 41.1 29.5 30.9
san_Deva – 10.9 8.4 9.1 – 31.9 20.6 21.8
sat_Olck – 5.5 8.7 8.8 – 25.1 23.1 24.3
snd_Deva – 13.9 10.1 11.1 – 33.4 25.8 27.0
tam_Taml 11.9 14.7 11.3 11.7 28.9 36.1 25.6 27.1
tel_Telu 15.5 19.7 15.3 16.2 33.5 42.5 30.5 31.5
urd_Arab – 49.4 41.8 43.4 – 53.8 40.1 41.6

Avg. 16.0 20.28 16.82 18.19 30.0 40.7 29.60 30.82

Table 4: BLEU (↑) scores on IN22-Gen

Language En − Indic Indic − En
IT1 IT2 IR IR Seed IT1 IT2 IR IR Seed

asm_Beng 36.4 46.8 40.9 44.9 52.5 62.9 52.7 57.7
ben_Beng 47.5 49.7 45.1 47.6 55.2 58.4 51.7 55.3
brx_Deva – 45.3 43.8 44.2 – 56.3 50.1 50.9
doi_Deva – 53.9 55.4 55.2 – 65.0 59.1 59.9
gom_Deva – 42.5 39.8 39.9 – 51.7 46.6 47.3
guj_Gujr 49.1 53.1 46.9 48.5 56.9 62.0 54.7 58.1
hin_Deva 48.6 49.6 48.0 48.2 57.4 60.1 54.8 56.7
kan_Knda 32.6 33.8 31.7 32.3 44.0 47.5 40.4 43.9
kas_Arab – 35.6 28.7 34.3 – 52.6 45.9 47.6
mai_Deva – 44.3 39.8 43.0 – 57.8 52.3 52.9
mal_Mlym 43.8 45.7 41.7 42.9 50.6 54.3 47.2 50.7
mni_Mtei – 40.2 40.8 41.1 – 52.5 48.5 49.1
mar_Deva 43.7 48.6 42.2 44.7 54.2 58.5 50.9 55.2
npi_Deva – 51.5 44.4 49.9 – 63.0 56.0 59.1
ory_Orya 38.9 40.2 39.1 41.6 55.6 60.3 52.4 56.6
pan_Guru 54.0 57.8 53.1 54.1 58.1 62.7 54.8 58.5
san_Deva – 35.5 29.3 33.5 – 48.3 40.2 42.6
sat_Olck – 34.6 41.7 41.7 – 43.5 46.4 47.4
snd_Deva – 30.3 31.8 33.2 – 49.6 49.5 50.1
tam_Taml 37.7 39.1 37.4 38.3 44.1 45.8 40.8 43.6
tel_Telu 42.5 45.5 40.8 42.4 48.5 52.9 45.8 49.3
urd_Arab – 61.6 54.6 53.9 – 65.5 57.4 61.2

Avg. 43.16 44.78 41.66 43.43 52.46 53.22 49.92 52.44

Table 5: chrF++ (↑) scores on IN22-Conv

Language En − Indic Indic − En
IT1 IT2 IR IR Seed IT1 IT2 IR IR Seed

asm_Beng 11.6 19.7 15.3 18.5 31.3 43.8 31.8 36.7
ben_Beng 20.1 21.3 17.5 19.1 32.9 36.4 29.0 32.2
brx_Deva – 15.4 13.6 14.7 – 35.5 26.8 27.9
doi_Deva – 32.4 34.1 34.4 – 45.6 36.8 38.1
gom_Deva – 14.2 11.3 11.2 – 29.9 23.2 23.7
guj_Gujr 23.2 27.2 20.9 22.3 34.7 41.1 32.0 35.4
hin_Deva 28.4 30.1 27.4 27.5 35.5 39.3 32.5 34.0
kan_Knda 6.1 6.7 5.1 5.8 21.1 24.9 17.8 19.8
kas_Arab – 11.3 6.5 9.4 – 31.8 23.1 25.2
mai_Deva – 18.9 15.3 18.0 – 36.6 28.7 29.3
mal_Mlym 11.1 11.3 9.1 9.4 27.6 31.6 23.8 27.4
mni_Mtei – 14.2 14.6 15.2 – 31.9 26.1 26.9
mar_Deva 15.5 19.4 14.7 16.2 32.2 36.7 28.5 32.6
npi_Deva – 21.2 14.3 19.4 – 42.4 33.5 36.9
ory_Orya 11.3 12.3 11.7 13.9 33.6 38.8 30.4 34.1
pan_Guru 32.0 35.7 30.8 31.5 36.8 43.0 33.2 37.0
san_Deva – 6.3 3.9 5.5 – 26.1 17.8 19.5
sat_Olck – 6.6 10.9 10.6 – 23.1 23.7 25.0
snd_Deva – 7.4 8.3 9.2 – 27.5 26.5 27.2
tam_Taml 7.7 7.6 7.2 7.2 20.8 22.7 18.0 19.7
tel_Telu 12 14.1 10.9 11.2 26.3 31.0 23.6 26.3
urd_Arab – 43.7 33.5 34.6 – 45.9 35.7 40.0

Avg. 16.27 18.14 15.31 16.58 30.25 33.36 27.39 29.77

Table 6: BLEU (↑) scores on IN22-Conv

pan_Guru-snd_Deva lags behind by a 0.3 chrF++
score.

Language pair IT2 IR Seed

IN22-Gen

ben_Beng-hin_Deva 48.7 44.0 (-4.7)
hin_Deva-ben_Beng 45.7 41.3 (-4.4)
hin_Deva-mal_Mlym 44.4 39.2 (-5.2)
mal_Mlym-hin_Deva 48.0 42.4 (-5.6)
pan_Guru-snd_Deva 30.8 30.5 (-0.3)
snd_Deva-pan_Guru 41.1 37.5 (-3.6)
tam_Taml-tel_Telu 43.5 38.3 (-5.2)
tel_Telu-tam_Taml 45.4 41.5 (-3.9)

IN22-Conv

ben_Beng-hin_Deva 44.3 40.8 (-3.5)
hin_Deva-ben_Beng 44.0 39.2 (-4.8)
hin_Deva-mal_Mlym 40.9 36.8 (-4.1)
mal_Mlym-hin_Deva 40.8 37.6 (-3.2)
pan_Guru-snd_Deva 29.4 28.5 (-0.9)
snd_Deva-pan_Guru 43.8 40.8 (-3.0)
tam_Taml-tel_Telu 37.4 32.5 (-4.9)
tel_Telu-tam_Taml 36.6 33.5 (-3.1)

Table 7: Indic-Indic chrF++ (↑) scores results on IN22-Gen
and IN22-Conv dataset

6 Conclusion

This paper presents our system for the WAT24
shared task on the MultiIndic22MT 2024 Shared
Task. We focus on a universal model using pretrain-

ing Indic languages with alignment augmentation
and further obtaining direction-specific models us-
ing finetuning on small and high-quality seed data.
We submit a competitive 243M parameter model
covering 22 Indic languages that achieves a compa-
rable performance with a 474M parameter model
covering 11 languages.

Limitations

The present study particularly focuses on pre-
training objectives on a parallel corpus. However,
techniques such as utilizing monolingual corpus
(Pan et al., 2021) along with alignment objective
remain unexplored. Also, large language models
can be potentially leveraged to generate datasets
for low-resource Indic languages. Further, we
restricted the alignment augmentation of substi-
tute words from source sentences (English words).
However, words from target sentences can also be
substituted can explored.
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Abstract

This paper presents the system description
of "DCU_NMT’s" submission to the WMT-
WAT24 English-to-Low-Resource Multimodal
Translation Task. We participated in the
English-to-Hindi track, developing both text-
only and multimodal neural machine transla-
tion (NMT) systems. The text-only systems
were trained from scratch on constrained data
and augmented with back-translated data. For
the multimodal approach, we implemented
a context-aware transformer model that inte-
grates visual features as additional contextual
information. Specifically, image descriptions
generated by an image captioning model were
encoded using BERT and concatenated with
the textual input.

The results indicate that our multimodal system,
trained solely on limited data, showed improve-
ments over the text-only baseline in both the
challenge and evaluation sets, suggesting the
potential benefits of incorporating visual infor-
mation.

1 Introduction

The increasing prominence of multimodal content
in the machine translation (MT) community high-
lights its potential to improve translation quality by
incorporating visual context, which is otherwise in-
accessible through textual information alone. This
approach has significant implications for commer-
cial applications, including the translation of image
captions in online news articles and the transla-
tion of product descriptions in e-commerce plat-
forms (Belz et al., 2017; Calixto et al., 2017; Lala
et al., 2017; Zhou et al., 2018). By integrating
visual information, multimodal MT systems can
achieve more accurate and contextually appropriate
translations.

Despite MT achieving near-human performance
for many high-resource languages, significant chal-
lenges remain, particularly for low-resource lan-
guages (Popel et al., 2020; Costa-jussà et al., 2022).

In recent years, the integration of additional modal-
ities, such as images, into MT systems has gained
prominence as a critical area of research (Suluba-
cak et al., 2020; Parida et al., 2021b,a). This multi-
modal approach seeks to address the limitations of
traditional text-only MT by incorporating supple-
mentary contextual information, thereby improving
translation accuracy and expanding the applicabil-
ity of MT across a broader spectrum of languages
and specialised domains.

The WMT-WAT 2024 Shared Task1 introduces
the "English to Lowres Multi-Modal Translation
Task," utilizing the Hindi, Bengali, Malayalam, and
Hausa Visual Genome datasets. Participants are
given an image, a specific rectangular region within
it, and a short English caption describing the region.
The task is to translate the caption into one of the
target languages: Hindi, Bengali, Malayalam, or
Hausa.

In this system description paper, we explain our
approach for the tasks in which we participated in
English (EN) to Hindi (HI) (i) Text only and (ii)
Multimodal translation. We released the code and
data produced during research through GitHub2.

2 Dataset

We use the data sets provided by the organizers for
the relevant tasks. The Visual Genome datasets
for Hindi, Bengali, Malayalam, and Hausa in-
clude 29,000 training examples, 1,000 examples
for development, and 1,600 examples for evalu-
ation. These datasets are based on a shared set
of images, with some variations due to indepen-
dent sanity checks conducted for each language.
For evaluation, the WMT-WAT 2024 Multimodal
Shared Task utilises 1,600 examples from the eval-
uation set and 1,400 examples from the challenge

1https://www2.statmt.org/wmt24/
multimodallowresmt-task.html

2https://github.com/sami-haq99/DCU_NMT_
WMT-WAT24
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set. In this submission, we denote evaluation set as
"EV" and challenge set as "CH" respectively. The
statistics of the dataset are shown in Table 1. Due
to time constrained, We only trained our systems
for English-Hindi language pair.

Tokens
Set Sentences English Hindi
Train 28930 143164 145448
D-Test 998 4922 4978
E-Test 1595 7853 7852
C-Test 1400 8186 8639

Table 1: Statistics of our data used in the En-
glish→Hindi Multimodal translation task.

3 Experimental Details

In this section, we present our experimental details
for the tasks we participated in.

3.1 Text-only translation

For the EN-HI text-only translation task, we have
two submissions: one restricted and the other using
additional monolingual data.

Back-translation enables the effective use of
monolingual data to improve the MT system, es-
pecially in a low-resource context (Sennrich et al.,
2016; Ul Haq et al., 2020) where model struggles
to learn reliable alignments from limited parallel
data. For our experiments, we used backtranslated
data generated from Flickr8k image captioning data
set to enrich text-only data (Parida et al., 2022).
For our text-only baseline, we trained the sentence-
level transformer model from scratch using all train-
ing data until convergence.

3.2 Multimodal translation

For the EN-HI multimodal translation system, we
employ a context-aware model, an extension of the
Transformer architecture designed to incorporate
additional contextual information during transla-
tion. Unlike traditional neural machine translation
(NMT) models that translate sentences indepen-
dently, context-aware NMT relaxes this assump-
tion by conditioning the translation not only on
the current source sentence but also on auxiliary
information from within or outside the document.
Given that the HVG data set is limited to the cap-
tion translation of specific image regions, we hy-
pothesize that providing the model with additional
context, such as a comprehensive description of

the entire image, could enhance the accuracy of
the generated translations. To take advantage of
visual features, we extracted image captions from
HVG image dataset and used them as additional
context for translation. Additionally, we used pre-
trained BERT as additional encoder to encode and
aggregate contextual features (Wu et al., 2022).

We used BLIP3, an image caption model, to gen-
erate a description of the HVG image dataset. As
HVG contains short descriptions of specified re-
gions of images in English and Hindi, we generate
captions of entire image to be fed as additional
information to multimodal context-aware model.
Since our context-aware model expects context dur-
ing the training and evaluation stage, we generated
captions for the entire HVG dataset, including the
evaluation (EV) and Challenge (CH) test sets. The
overview of our multimodal translation system is
depicted in Figure 1.

Two step training strategy is followed, we first
train a strong sentence-level transformer model us-
ing all the training data until convergence, then
the context-aware model is initialized from best
checkpoint and fine-tuned on context-aware data.
We select the best model on the validation data.
Contextual features are encoded using pre-trained
bert-base model released under transformers pack-
age 4.The model incorporates two special tokens:
[CLS], which is added at the beginning of a sen-
tence, and [SEP], which is employed to separate
different sequences. The context is concatenated
with sentences as follows:

xctx = [CLS] surfer on a surfboard rid-
ing a wave in the ocean [SEP] man surf-
ing in ocean [SEP]

Several techniques exist for context integration
(Castilho et al., 2020; Wu et al., 2022; Haq et al.,
2022), we used 1−fixed−sequence on the source
and target side as context. In this approach, a single
previous sentence or external sequence is consid-
ered context for current sentence being translated.
After that Bert encoded features are extracted as
defined in equation 1. Although the context-aware
multi-encoder models are exposed to additional
contextual information, the translation is still per-
formed at sentence level.

C = BERT (xctx) (1)
3https://huggingface.co/Salesforce/

blip-image-captioning-large
4https://github.com/huggingface/transformers

811

https://huggingface.co/Salesforce/blip-image-captioning-large
https://huggingface.co/Salesforce/blip-image-captioning-large
https://github.com/huggingface/transformers


Figure 1: Overview of multimodal translation system.

Our translation models are based on transformer
architecture with 6 encoder/decoder blocks, 512
embedding input, and 1024 FFN layer dimension
size. Dropout rate is 0.3 for all tasks. We use the
Adam optimizer and 5 × 10−4 learning rate sched-
ule with 4000 warmup steps. Model training was
conducted on two GPUs, with a batch size of 6000
tokens per GPU. Our Transformer implementation
is based on the Fairseq (Ott et al., 2019) toolkit.

4 Results

Our results for EN-HI text-only and multimodal
translation are presented in Table 2.

Modality System BLEU
EV CH

text-only Transformer 40.20 29.20
text-only Transformerbt 42.70 35.90

multimodal Context-awaresrc_tgt 40.60 28.60
multimodal Context-awaresrc 40.60 30.30

Table 2: WMT_WAT2024 Automatic evaluation re-
sults for EN→HI on Evaluation (EV) and Challenge
(CH) test sets. "Transformerbt" denotes NMT model
trained with back-translated data. For multimodal task,
"src_tgt" represents context-aware model with visual
contextual features used on both encoder and decoder
side while src indicates context used only on the en-
coder side.

For text-only translation, the baseline system
(Transformer) obtains BLEU scores of 40.20 on the
evaluation set (EV) and 29.20 on the challenge test
(CH). In contrast, the Transformerbt (Transformer
with back-translated data) system demonstrates im-
proved results, with BLEU scores of 42.70 for EV
and 35.90 for CH. This improvement suggests that
back-translation enhances translation quality by in-
corporating additional synthetic data, which is par-
ticularly advantageous for the challenge set (CH).

In multimodal translation, the context-
awaresrc_tgt approach achieves BLEU scores of
40.60 for EV and 28.60 for CH. Compared with a
text-only restricted baseline, the EV score slightly
exceeds that of the Transformer (40.20), the CH
score is lower, indicating that while the multimodal
context benefits the evaluation set, it does not
consistently improve performance on the challenge
set. Conversely, the context-awaresrc (source
only context) method achieves BLEU scores of
40.60 for EV and 30.30 for CH, showing a modest
improvement for the challenge set compared
to the src_tgt and text-only methods (except
Transformerbt).

5 Discussion

The baseline Transformer model achieves BLEU
scores of 40.20 for the evaluation set (EV)
and 29.20 for the challenge test (CH). The
Transformerbt model shows marked improvement,
with BLEU scores of 42.70 for EV and 35.90 for
CH, highlighting back-translation’s effectiveness in
enhancing performance, particularly in challenging
scenarios.

In multimodal translation, the context-
awaresrc_tgt method, which utilises visual context
on both the encoder and decoder sides, scores
40.60 for EV and 28.60 for CH. It slightly
outperforms the baseline Transformer on EV
but underperforms on CH, suggesting that while
visual context can help in simpler cases, it may
complicate results in more difficult scenarios.

The context-aware src only approach, using vi-
sual context only with the source text, achieves
BLEU scores of 40.60 for EV and 30.30 for CH.
It shows modest improvement over src_tgt for
CH but does not surpass the Transformer + Back-
translation in overall performance. This is obvious
because multimodal translation systems are trained
on constrained resources while Transfomerbt use 8k
additional synthetic parallel sentences for training.
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These findings underscore the value of back-
translation in improving text-only translation, es-
pecially for more challenging tasks. For multi-
modal translation, while visual context can be ben-
eficial, its effectiveness varies with context inte-
gration choice. The results suggest that different
methods may be better suited to different types of
translation challenge, indicating a need for further
research to optimize the use of visual context.

6 Conclusion

Our results have showed that the Transformer with
back-translated data consistently outperforms the
text-only and multimodal systems in both evalua-
tion tasks, demonstrating a significant benefit of
back-translation, particularly for challenging sce-
narios. Our multimodal systems, despite not utiliz-
ing back-translated data, still outperformed the text-
only baseline, highlighting the potential of visual
context in improving translation accuracy. How-
ever, multimodal systems employing visual context
on both the encoder and decoder sides do not ex-
hibit a clear advantage over the text-only model or
other multimodal approaches. Notably, the multi-
modal method shows diminished effectiveness for
the challenge test (CH), suggesting that while addi-
tional visual context may enhance performance in
certain cases, it can also introduce complexities that
potentially undermine translation accuracy. These
findings highlight the need for further investigation
into optimizing the integration of visual context to
improve translation outcomes across varying task
difficulties.
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Abstract
Multimodal machine translation leverages mul-
tiple data modalities to enhance translation
quality, particularly for low-resourced lan-
guages. This paper uses a multimodal model
that integrates visual information with textual
data to improve translation accuracy from En-
glish to Hindi, Malayalam, Bengali, and Hausa.
This approach employs a gated fusion mech-
anism to effectively combine the outputs of
textual and visual encoders, enabling more nu-
anced translations that consider both language
and contextual visual cues. The model’s perfor-
mance was evaluated against the text-only ma-
chine translation model based on BLEU, ChrF2
and TER. Experimental results demonstrate
that the multimodal approach consistently out-
performs the text-only baseline, highlighting
the potential of integrating visual information
in low-resourced language translation tasks.

1 Introduction

In recent years, neural network-based translation
models have been widely used in translation tasks,
demonstrating remarkable performance in terms of
fluency and precision compared to previous gener-
ations of machine translation systems (Cho et al.,
2014). The Transformer model, in particular, has
shown significant improvements in machine transla-
tion tasks. A crucial component of the Transformer
model is the cross-attention mechanism, which en-
hances the model’s ability to capture semantic de-
pendencies by combining self-attention—allowing
source words to interact with one another—with
attention mechanisms that involve target words
(Vaswani et al., 2017).

Despite the broader context focus in text-only
translation models, understanding the input text
remains a challenge. In natural language, lexical
ambiguity (Rios Gonzales et al., 2017) occurs when
a single word has multiple meanings or interpre-
tations, complicating text comprehension. For ex-
ample, in the domain of finance and economics,

the word "bank" almost always refers to a financial
institution rather than the side of a river.

Multimodal Machine Translation (MMT), a sub-
area of NMT, has been introduced to utilise visual
information from other modalities, such as images,
to translate an aligned sentence in a source lan-
guage into a target language. Recent studies (Yao
and Wan, 2020; Zhao et al., 2022; Wang and Xiong,
2021) demonstrate the potential of leveraging mul-
timodal information, alongside textual content, to
enhance translation quality. Visual cues, as an ad-
ditional source of information, can provide valu-
able insights that complement textual information,
enabling MMT models to better understand and
produce more accurate and contextually appropri-
ate translations. The concept behind MMT is to
integrate visual information to help disambiguate
input words, detect the correct scenes in the source
language, and select the appropriate translation in
the target language (Hatami et al., 2022). MMT
is particularly beneficial when dealing with low-
resource languages where there is not sufficient
parallel data to train the model.

This paper aims to explore the benefit of using
visual information in translating English into four
different low-resource languages, Hindi, Malay-
alam, Bengali and Hausa. We used a gated fusion
approach to integrate textual and visual information
in the encoder and generate the text in the target
language on the decoder side. In the baseline, we
train the model on the input text without consider-
ing the aligned image. For the multimodal model,
we trained four different models for each language.
We explain our methodology in Section 3, our ex-
perimental setup in Section 4, results in Section 5,
and we conclude our findings in Section 6.

2 Related Work

There are various approaches proposed to integrate
visual information with text-only translation mod-
els. These approaches typically utilise a visual
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attention mechanism in either the decoder or en-
coder to capture the relationships between words
in a sentence and image features. The common
method involves extracting visual information by
employing Convolutional Neural Networks (CNN)
and then integrating this information with textual
features.

Regarding visual features, existing studies on
MMT employ two types of visual features: global
and local visual features. Global features repre-
sent the entire image as a single vector without
attention to the spatial layout of the image. On the
other hand, local features describe an image as a
sequence of equally sized patches (Calixto et al.,
2017). Local features are extracted from multiple
points in the image and are more robust to clutter
than global features (Lisin et al., 2005). CNNs can
be used to extract both global and local features
from the image (Zheng et al., 2019).

Global image features are used in the encoder in
addition to word sequences (Huang et al., 2016).
Alternatively, they can be used to initialise the
hidden parameters of the encoder and decoder of
a RNN (Calixto and Liu, 2017). Element-wise
multiplication was used to initialise the hidden
states of the encoder/decoder in the attention-based
model (Caglayan et al., 2017). Visual attention
mechanism was employed to link visual and corre-
sponding text semantically (Zhou et al., 2018).

Several approaches have been proposed to im-
prove the quality of the visual modality in Multi-
modal Machine Translation (MMT). For instance, a
multimodal Transformer-based self-attention mech-
anism was introduced to encode relevant informa-
tion in images (Yao and Wan, 2020). A graph-
based multimodal fusion encoder was developed
to capture various relationships between modali-
ties (Yin et al., 2020). Additionally, a translate-
and-refine mechanism was implemented using im-
ages in a second-stage decoder to refine a text-only
Neural Machine Translation (NMT) model, par-
ticularly for handling ambiguous words. A latent
variable model was also employed to extract the
multimodal relationships between image and text
modalities (Calixto et al., 2019).

Recent methods aim to reduce noise in visual
information and select visual features relevant to
the text. For example, object-level visual mod-
elling has been used to mask irrelevant objects
and specific words in the source text to enhance
visual feature learning (Wang and Xiong, 2021).

Object detection in the image encoder has been
employed to extract visual features from object re-
gions within an image, which are then applied to a
doubly-attentive decoder model (Zhao et al., 2022).

In this paper, we adopt the gated fusion MMT
model (Wu et al., 2021), which integrates visual
and textual representations through a gate mech-
anism. This gated fusion mechanism allows the
model to adjust the amount of visual information
that contributes to the translation process.

3 Methodology

The objective of our experiments is to evaluate
the impact of visual features on translation quality
in low-resource languages. Following Wu et al.
(2021), we conduct experiments to assess both the
text-only Transformer and the gated fusion multi-
modal Transformer (gated fusion MMT) using the
shared task data for Hindi, Bengali, Malayalam,
and Hausa. In this section, we provide descriptions
of the model architectures mentioned above.

3.1 Text-only Machine Translation

For the text-only translation model, we use the
training and development sets for Hindi, Bengali,
Malayalam, and Hausa to train the Transformer-
based model. This model serves as our baseline
for evaluating the multimodal model. The text-
only Transformer architecture was introduced by
Vaswani et al. (2017). It consists of an encoder-
decoder structure, where both the encoder and
decoder are composed of stacked layers of self-
attention, and feed-forward neural networks.

First, we tokenize the sentences into subwords
in the training, development, and test sets. We then
train four translation models on the tokenized sen-
tences for these language pairs. Tokenization helps
the model better learn the language and handle out-
of-vocabulary words, especially in low-resource
languages. During the inference step, we translate
the tokenized test sentences from English into the
four low-resource languages.

3.2 Multimodal Machine Translation

For the multimodal model, we use the gated fusion
approach (Wu et al., 2021) to fuse both textual and
visual information. Gated fusion MMT incorpo-
rates visual information into the translation process
in a controlled and interpretable manner using a
gating mechanism. The textual component is simi-
lar to the text-only model, with tokenized sentences
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Dataset Hindi Bengali Malayalam Hausa
Training Set 28,932 28,930 29,000 28,930
Development Set (D-Test) 998 998 1,000 998
Evaluation Set (E-Test) 1,595 1,595 1,600 1,595
Challenge Test Set (C-Test) 1,400 1,400 1,400 1,400
Total 32,925 32,923 33,000 32,923

Table 1: Number of sentences of Visual Genome dataset for Hindi, Bengali, Malayalam and Hausa.

fed into the model. On the visual side, each sen-
tence is paired with an image, and for each image,
we have the coordinates of the rectangular region
corresponding to the part of the image that relates
to the sentence (see Figure 1).

For each language, we trained two models: one
that considers the entire image and another that
considers only the specific rectangular region. We
use the pre-trained ResNet-101 CNN (He et al.,
2016) to extract visual features from the images. In
this study, we extract visual representations from
both the whole image and the designated rectangu-
lar region, which is aligned with the text caption.
The motivation for using the partial image (rather
than the full image) is that objects outside the rect-
angular region may be irrelevant to the text caption
and could potentially degrade translation model
performance (Hatami et al., 2023).

Both the textual and visual representations are
fed into the gated fusion model, allowing it to be
trained based on both modalities. We then use these
multimodal models to translate test sentences that
are aligned with images. More detailed informa-
tion about the multimodal models can be found in
Section 4.2.2.

4 Experimental Setup

4.1 Dataset
The Hindi Visual Genome (HVG) (Parida et al.,
2019), Bengali Visual Genome (BVG) (Sen et al.,
2022), Malayalam Visual Genome (MVG) (Parida
et al., 2019), and Hausa Visual Genome
(HaVG) (Abdulmumin et al., 2022) datasets are
multimodal datasets designed for English-to-Hindi,
English-to-Bengali, English-to-Malayalam, and
English-to-Hausa machine translation, respectively
(Figure 1). These datasets, based on the original Vi-
sual Genome dataset, contain real-world images an-
notated with region-specific captions. The captions
have been translated into the respective languages
through a combination of automated translation and
manual post-editing by native speakers to ensure

contextual accuracy.
The MVG, HVG, BVG, and HaVG datasets are

divided into training, development, evaluation, and
challenge test sets, as outlined in Table 1.

Training Set: The training sets for Malayalam,
Hindi, Bengali, and Hausa contain 29,000, 28,932,
28,930, and 28,930 image-caption pairs, respec-
tively. Each pair consists of an image, a selected
region in the image, and its corresponding En-
glish and Malayalam/Hindi/Bengali/Hausa cap-
tions. The captions have been manually refined
to align with the visual context of the images.

Development Set (D-Test): The development
sets contain 1,000 image-caption pairs in the
Malayalam dataset and 998 pairs in the Hindi, Ben-
gali, and Hausa datasets. These sets are used to
validate and fine-tune model performance during
the training process.

Evaluation Set (E-Test): The evaluation sets in-
clude 1,600 image-caption pairs in the Malayalam
dataset and 1,595 pairs in the Hindi, Bengali, and
Hausa datasets. These sets are used for evaluating
model performance on unseen data, providing a
benchmark for generalization capabilities.

Challenge Test Set (C-Test): The challenge test
sets for all four languages consist of 1,400 image-
caption pairs. These sets are designed to focus
on ambiguous English words that require visual
context to resolve their meaning in Malayalam,
Hindi, Bengali, or Hausa. The ambiguous words
were identified based on embedding similarity, and
the corresponding images help disambiguate their
meaning, providing a robust test for multimodal
translation systems (Hatami et al., 2024).

4.2 Machine Translation Models

4.2.1 Text-only Translation Model
A text-only Transformer model serves as the base-
line in our experiment, utilizing only the textual
captions of images for translation. The model is
trained using the OpenNMT toolkit (Klein et al.,
2018) on the Visual Genome dataset for English-
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Figure 1: Examples from the Visual Genome dataset show English caption of the rectangular region (solid red line)
with translation in Hindi, Bengali, Malayalam and Hausa.

to-Hindi, Bengali, Malayalam, and Hausa transla-
tions. It comprises a 6-layer Transformer architec-
ture with attention mechanisms in both the encoder
and decoder stages, trained for 50k steps.

The encoder processes a sequence of tokens
(words or subword units) and generates context-
aware representations for each token. The decoder
generates the output sequence (e.g., translated text)
by leveraging the encoded representations from
the encoder along with the previously generated to-
kens. It employs multi-head self-attention and feed-
forward layers, incorporating additional attention
mechanisms to effectively focus on the encoded
input. The core innovation of the Transformer is
the self-attention mechanism, which computes
attention scores across all tokens in the sequence,
creating weighted representations that capture con-
textual relationships between tokens.

Since the Transformer model does not inherently
process sequences in a fixed order, as recurrent
neural networks (RNNs) do, it uses positional en-
codings to inject information about the position of
tokens in the sequence. These positional encod-
ings are added to the input embeddings, enabling
the model to differentiate between tokens based on
their positions within the sequence. To enhance
its ability to capture different types of relation-
ships between tokens, the Transformer employs
multi-head attention. This involves splitting the
self-attention process into multiple parallel atten-
tion heads, each learning a different set of attention
weights. The outputs from all heads are then con-

catenated and linearly transformed to provide a
richer, more comprehensive representation of the
input sequence.

SentencePiece (Kudo and Richardson, 2018) is
employed to segment words into subword units,
offering a language-independent approach to tok-
enization without requiring pre-processing steps,
thereby enhancing the model’s adaptability and ver-
satility in handling raw text.

4.2.2 Multimodal Machine Translation
In the MMT model, we adopt the gated fusion
MMT model (Wu et al., 2021), which fuses vi-
sual and text representations by employing a gate
mechanism. Gated fusion is a mechanism used to
integrate visual information from images with tex-
tual information from source sentences during the
translation process. The main idea behind gated fu-
sion is to control the amount of visual information
that is blended into the textual representation using
a gating matrix.

The source sentence x is fed into a vanilla Trans-
former encoder to obtain a textual representation
Htext of dimension T×d 1. The image z is pro-
cessed using a pre-trained ResNet-101 CNN (He
et al., 2016), which has been trained on the Ima-
geNet dataset (Russakovsky et al., 2014), to extract
a 2048-dimensional average-pooled visual repre-
sentation, denoted as Embedimage(z). The visual
representation Embedimage(z) is projected to the

1T is the number of tokens (words) in the input sentence,
and d is the dimensionality of the representation
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English→ Hindi BLEU ↑ ChrF2 ↑ TER ↓
Text-only MT 38.26 58.65 42.54

Multimodal MT (entire image) 39.65* 59.34* 41.92*
Multimodal MT (partial image) 38.64 58.84 42.62

English→ Bengali BLEU ↑ ChrF2 ↑ TER ↓
Text-only MT 39.85 64.32 39.24

Multimodal MT (entire image) 41.92* 65.96* 38.37*
Multimodal MT (partial image) 39.45 64.75 39.65

English→Malayalam BLEU ↑ ChrF2 ↑ TER ↓
Text-only MT 28.94 58.74 54.87

Multimodal MT (entire image) 32.34* 61.15* 53.94*
Multimodal MT (partial image) 28.76 58.63 54.58

English→ Hausa BLEU ↑ ChrF2 ↑ TER ↓
Text-only MT 39.86 61.21 47.59

Multimodal MT (entire image) 41.25* 62.94* 46.48*
Multimodal MT (partial image) 38.31 60.87 47.62

Table 2: BLEU, ChrF2 and TER scores for text-only and multimodal models for English to Hindi, Bengali,
Malayalam and Hausa on the test set (* represents a statistically significant result compared to the baseline text-only
model at a significance level of p < 0.05).

same dimension as Htext using a weight matrix
Wz , denoted as:

Embedimage(z) = WzResNetpool(z)

where Wz is a learned projection matrix.
To determine the amount of visual information

to fuse with the textual representation, a gating
matrix Λ of dimension T×d is generated ([0, 1]T×d).
This matrix is computed using a sigmoid function
applied to both the projected visual representation
and the textual representation:

Λ = σ
(
WΛEmbedimage(z) + UΛHtext

)

where WΛ and UΛ are learned parameters, and
σ is the sigmoid function. The gating matrix Λ
makes the fusion process interpretable, as it con-
trols how much visual context is used in translation.
A larger value in Λ indicates that the model is re-
lying more on the visual context, while a smaller
value indicates a stronger reliance on the textual
representation alone.

The final representation H that combines both
textual and visual information is given by:

H = Htext + ΛEmbedimage(z)

This fused representation H is then passed into
the Transformer decoder for generating the target
translation.

4.3 Evaluation Metrics

We use three evaluation metrics: BLEU (Pap-
ineni et al., 2002), ChrF2 (Popović, 2015), and
TER (Snover et al., 2006). BLEU assesses the pre-
cision of translation by comparing candidate trans-
lations to reference translations based on n-grams.
ChrF2 evaluates the similarity between character
n-grams in machine-generated and reference trans-
lations, particularly beneficial for languages with
complex writing systems. TER quantifies the num-
ber of edits needed to align machine translations
with human-generated references. We conduct sta-
tistical significance testing using the sacreBLEU2

toolbox.

2https://github.com/mjpost/sacrebleu
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5 Results and Discussion

In this section, we present the results of our experi-
ments, where we trained our models on the Visual
Genome dataset and evaluated the translation qual-
ity using the BLEU, ChrF2, and TER metrics. We
compare the translation quality of our proposed
models with text-only baseline models, where the
text-only NMT model was trained solely on text
captions without images, across test sets for four
languages.The MMT models were trained on both
text captions and original images with entire im-
ages and just considering the coordinates of a part
of the image related to the caption (partial image).

The results in Table 2 demonstrate the perfor-
mance of both text-only and multimodal models
across four language pairs: English to Hindi, Ben-
gali, Malayalam, and Hausa. For English to Hindi,
the MMT model that utilizes the entire image out-
performs the text-only model, achieving a BLEU
score of 39.65, ChrF2 score of 59.34, and TER
score of 41.92. These improvements are statisti-
cally significant over the text-only MT model at
p < 0.05, highlighting the benefit of incorporating
visual context into the translation process. Similar
trends are observed for English to Bengali, where
the entire image-based MMT achieves a BLEU
score of 41.92, a ChrF2 score of 65.96, and a TER
score of 38.37, all of which are significantly better
than the text-only model.

For English to Malayalam, the entire image-
based multimodal model also shows clear advan-
tages, with a BLEU score of 32.34, ChrF2 of 61.15,
and TER of 53.94, outperforming the text-only
model on all metrics. Finally, in the case of English
to Hausa, the entire image-based multimodal MT
model again demonstrates superior performance,
achieving a BLEU score of 41.25, ChrF2 of 62.94,
and TER of 46.48, compared to the text-only model.
Across all language pairs, the partial image-based
multimodal models do not consistently outperform
the text-only models, suggesting that complete vi-
sual context is necessary for achieving the best
translation quality.

6 Conclusion

This paper demonstrates the significant advantages
of employing a multimodal machine translation
approach that integrates visual information with
textual data, especially in the case of low-resourced
languages like Hindi, Malayalam, Bengali, and
Hausa. The results indicate that the gated fusion

MMT model enhances translation accuracy and
provides a more nuanced understanding of context,
leading to improved performance over traditional
text-only models. By leveraging visual context, we
can address the challenges faced in translating low-
resourced languages, highlighting the importance
of incorporating diverse data modalities to enrich
the translation process.
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Abstract
This paper covers the system description
of the team “ODIAGEN’s” submission
to the 11th Workshop on Asian Trans-
lation (WAT 2024). We participated in
the English-to-LowRes Multimodal Trans-
lation Task, in two of the tasks, i.e. Text-
only Translation and Multi-modal Trans-
lation. For Text-only Translation, we
trained the Mistral-7B model for English
to Multi-lingual (Hindi, Bengali, Malay-
alam, Hausa). For Multi-modal Trans-
lation (using both image and text), we
trained the PaliGemma-3B model for En-
glish to Hindi translation.

1 Introduction
Machine translation (MT) is a well-established
area within Natural Language Processing
(NLP), focusing on the development of soft-
ware that can automatically translate text or
speech between languages. While substantial
progress has been made in achieving human-
level translation for high-resource languages,
significant challenges persist for low-resource
languages (Popel et al., 2020) (Parida et al.,
2023). Recent research has also investigated
how to effectively incorporate other modalities,
such as images, into the translation process.

Since 2013, the WAT (Workshop on Asian
Translation) has been an open evaluation cam-
paign centered on Asian languages (Nakazawa
et al., 2021). The multimodal translation
tasks in WAT2024 involve image caption trans-
lation, where the input includes a descriptive
caption in the source language paired with the
image it describes, and the output is a caption
in the target language. This multimodal in-
put leverages image context to clarify source
words with multiple meanings.

The evaluation of these translation tasks is
conducted using established metrics such as

Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) and Rank-based Intuitive
Bilingual Evaluation Score (RIBES) (Isozaki
et al., 2010). In this system description paper,
we (team “ODIAGEN”) outline our approach
to the tasks and sub-tasks in which we partic-
ipated.

• Task 1: English→Hindi (EN-HI) Multi-
modal Translation

– EN-HI text-only translation
– EN-HI multimodal translation

• Task 2: English→Malayalam (EN-ML)
Text-only Translation

• Task 3: English→Bengali (EN-BN) Text-
only Translation

• Task 4: English→Hausa (EN-HA) Text-
only Translation

2 Datasets
We used only Hindi (Parida et al., 2019), Ben-
gali (Sen et al., 2022), Malayala, and Hausa
(Abdulmumin et al., 2022) Visual Genome
datasets specified by the organizer for text-
only and multi-modal translation without any
additional synthetic data.

2.1 Pre-processing
2.1.1 For Text-only
A few Hindi samples were excluded due to
identical Hindi and English text in the Hindi
dataset, and one Malayalam sample was re-
moved for similar reasons. Formatting issues
in the Hindi dataset were corrected, and dupli-
cate samples were excluded from all language
datasets. Image metadata (image_id, X, Y,
Width, Height) was excluded from the text-to-
text translation task. The final dataset sen-
tence/sample count is provided in Table 1.

All four different language datasets were
combined to make a common translation
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Language Sentence Count
Hindi 28,927
Bengali 28,927
Malayalam 28,922
Hausa 28,927

Table 1: Training Dataset Sentence Count

dataset with a single task of translating from
English to instructed Target Language like
Hindi, Bengali, Malayalam, and Hausa.

Figure 1: Instruction set in different language

2.1.2 For Multimodal involving both Text
and Image

The multimodal dataset comprises both text
and images. The text portions of the dataset
(train and test sets) are organized in simple
tab-delimited plain text files. Each text file
contains seven columns as follows:

• Column 1: imageid,
• Column 2: X,
• Column 3: Y,
• Column 4: Width,
• Column 5: Height,
• Column 6: English text,
• Column 7: Hindi Text.

The X, Y, Width, and Height columns define
the rectangular region in the image described
by the caption.

The Mistral-7B model (Beyer et al.,
2024) requires data in the format
[xmin, ymin, xmax, ymax]. We interpreted
the provided X and Y coordinates as the

center coordinates of the rectangular region
and calculated [xmin, ymin, xmax, ymax]
as the coordinates of the bottom-left and
top-right corners of the rectangular box.

2.2 Instruction Dataset
2.2.1 For Text-only
Alpaca prompt format was used to prepare in-
struction data sets for text-to-text translation
for all languages. Sample prompt format is
given below.

""" Below is an instruction that describes a
translation task, paired with an input that
provides context in Source Language. Write
a response that appropriately completes
translation to desired Target Language.

### Instruction:
{}

### Input:
{}

### Response:
{}"""

A raw training sample data for Hindi transla-
tion after prompt formatting is shown below,
similar method was used for other language
translations.

Below is an instruction that describes a
translation task, paired with an input that pro-
vides context in the Source Language. Write
a response that appropriately completes trans-
lation to desired Target Language.
Instruction: Translate to Hindi
Input: it is an indoor scene
Response: यह एक इनडोर दृश्य है
2.2.2 For Multi-modal involving both Image

and Text
We passed the prompts in a CSV file with fields
‘image id’, and ‘message’. The prompt in the
”message” field is in the below format:
‘message’: [‘content’: ‘describe the im-
age in Hindi <loc ymin><loc xmin><loc
ymax><loc xmax>’, ‘role’: ‘user’,‘content’:
English text, ‘role’:‘assistant’]

2.3 Tokenization
Both model unsloth/mistral-7b-v0.3 and to-
kenizer were used from unsloth library, tok-
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Set Sentences Tokens
English Hindi Malayalam Bengali Hausa

Train 28,927 143,164 145,448 107,126 113,978 113,978
D-Test 998 4,922 4,978 3,619 3,936 3,936
E-Test 1,595 7,853 7,852 5,689 6,408 6,408
C-Test 1,400 8,186 8,639 6,044 6,657 6,657

Table 2: Statistics of our data used in the English→Hindi, English→Malayalam, English→Bengali, and
English→Hausa tasks: the number of sentences and tokens in text-text translation.

Set Images English Words Hindi Words
Train 28,927 143,164 145,448

D-Test 998 4,922 4,978
E-Test 1,595 7,853 7,852
C-Test 1,400 8,186 8,639

Table 3: Statistics of our data used in the English→Hindi multi-modal translation.

enizer is based on SentencePiece with Byte-
Pair Encoding (BPE). This is the standard
approach for tokenization in many modern
transformer-based language models, including
those similar to Mistral.

Figure 2: Instruction set in English-Hindi for multi-
modal translation

3 Experimental Details
This section describes the complete pipeline
used to produce the translation systems for the
WAT English-to-Low Resource Multimodal
shared task submission.

3.1 EN-HI, EN-ML, EN-BN, EN-HA
Text-only Translation

For EN–HI, EN-BN, EN-ML, and EN–HA
text-only (E-Test and C-Test) translation, the
study fine-tunes the pre-trained Mistral-7B
model (Jiang et al., 2023), which has been
fine-tuned utilizing only HVG, BVG, MVG,
and HaVG Datasets; aiming to develop a high-
quality machine translation system.

The Mistral-7B model is a cutting-edge lan-
guage model that has been fine-tuned specif-
ically for developing high-quality machine

translation systems. Leveraging its 7 billion
parameters, Mistral-7B (Jiang et al., 2023) ex-
cels in capturing linguistic nuances and con-
text, making it exceptionally adept at trans-
lating between languages with high accuracy.
The fine-tuning process involves training the
model on extensive and diverse datasets, allow-
ing it to understand and generate translations
that are not only precise but also contextually
relevant.

3.2 EN-HI Multimodal Translation
This section discusses the multimodal trans-
lation pipeline for EN-HI. For EN-HI multi-
modal (E-Test and C-Test) translation, we
used the object tags extracted from the HVG
dataset images for image features and concate-
nated them with the text. The PaliGemma-
3B model (Beyer et al., 2024) is finetuned on
the Hindi-Visual-Genome dataset for English
to Hindi Translation when a specific location
is given in the input prompt as explained in
Section 2.2.2. We used the script from LLaMa
Factory (Zheng et al., 2024) with our config-
uration to fine-tune this model. During fine-
tuning, we froze the vision tower and adjusted
the parameters in the language model and pro-
jector layer. The hyperparameters are shown
in Table 4.

4 Results

4.1 Text-only Translation
We present the official automatic evaluation re-
sults of our models for all the tasks we partic-
ipated in Table 2, along with sample outputs
in Table 3. After the fine-tuning process, these
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Hyperparameter Value
Train Batch Size 2
Eval Batch Size 8
Learning Rate 3× 10−6

Epochs 10
Warm-up Steps 50
LR Scheduler Cosine
Gradient Accumulation Steps 8
Optimizer “Adam”

Table 4: Training Hyperparameters.

models were used to generate translations for
two distinct sets in each language: the eval-
uation set and the challenge set. The trans-
lation quality was assessed using the BLEU
(Bilingual Evaluation Understudy) score and
the RIBES (Ranking by Incremental Bilingual
Evaluation System) score.

The English-to-Hindi model achieved a
BLEU score of 41.60 on the evaluation set and
44.10 on the challenge set. Similarly, it at-
tained a RIBES score of 0.82115 on the evalua-
tion set and 0.8154 on the challenge set. These
results underscore the model’s robust perfor-
mance and its ability to manage more complex
or less typical translation tasks.

In the case of the English-to-Bengali model,
a BLEU score of 43.70 was achieved on the
evaluation set, with a slightly lower score of
35.60 on the challenge set. Similarly, it at-
tained a RIBES score of 0.78975 on the eval-
uation set and 0.73534 on the challenge set.
This indicates a robust overall performance
and a commendable capability to handle nu-
anced translations specific to the Bengali lan-
guage.

For the English-to-Malayalam model, the
system achieved a BLEU score of 33.10 on the
evaluation set and 18.10 on the challenge set.
Similarly, it attained a RIBES score of 0.66837
on the evaluation set and 0.50594 on the chal-
lenge set. Despite a slightly lower score on the
challenge set, the model still demonstrates a
respectable performance in translating English
to Malayalam.

Lastly, for the English-to-Hausa model, the
system achieved a BLEU score of 49.80 on
the evaluation set and 24.40 on the challenge
set. Similarly, it attained a RIBES score of
0.81289 on the evaluation set and 0.66363 on
the challenge set. This indicates a robust over-
all performance and a commendable capability

to handle nuanced translations specific to the
Hausa language.

4.2 Multi-modal Translation Involving both
Image and Text

Contrary to our expectations, the PaliGemma-
3B model showed very poor results on the men-
tioned dataset and we tried to investigate the
factors behind it. By qualitative analysis, we
figured out that the location coordinates that
we normalized during pre-processing may not
be the right approach required for PaliGemma-
3B. We found that the normalized [xmin,
ymin, xmax, ymax] coordinates provided in
the input prompt did not perfectly align with
the model-generated captions. Instead, they
pointed to a neighboring location in the im-
age with a significant overlap. However, this
mismatch in location led to a very poor BLEU
score for the predicted captions.

5 Availability

The text-to-text and multimodal datasets, as
well as the models, are freely available for re-
search and non-commercial use under a Cre-
ative Commons Attribution-NonCommercial-
ShareAlike 4.0 License via Hugging Face.

We have also released our experimental code
on GitHub.1

5.1 EN-HI/ML/BN/HA Text-only
Translation

Dataset: https://huggingface.co/datasets/
OdiaGenAIdata/wat24_text_to_text_
translation

Model: https://huggingface.co/
OdiaGenAI-LLM/wat_mistral_7b_translate

5.2 EN-HI Multimodal Translation
Dataset: https://huggingface.co/datasets/
sahoosk/Hindi-visual-genome_Train

Model: https://huggingface.co/sam2ai/
odia-paligemma-2b-9900-v1.1

6 Conclusion

In this system description paper, we presented
our approach for four tasks in WAT2024:
(a) English→Hindi text-only and multimodal
translation, (b) English→Malayalam text-only

1https://github.com/shantipriyap/ODIAGEN_
WAT2024
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Translation Model Translation Type BLEU Score (Evalua-
tion Set)

BLEU Score (Chal-
lenge Set)

English to Hindi Text-to-Text 41.60 44.10
Multimodal 0.50 -

English to Bengali Text-to-Text 43.70 35.60
English to Malayalam Text-to-Text 33.10 18.10
English to Hausa Text-to-Text 49.80 24.40

Table 5: Comparison of BLEU Scores for Different Translation Models and Types

Translation Model Translation Type RIBES Score (Evalu-
ation Set)

RIBES Score (Chal-
lenge Set)

English to Hindi Text-to-Text 0.8212 0.8155
Multimodal 0.1512 -

English to Bengali Text-to-Text 0.7898 0.7353
English to Malayalam Text-to-Text 0.6684 0.5059
English to Hausa Text-to-Text 0.8129 0.6636

Table 6: Comparison of RIBES Scores for Different Translation Models and Types

MALAYALAM HINDI BENGALI HAUSA
English-Sentence-1 silver car is parked fine thin red hair A stop light A stop light

Target-Original സിൽവർ കാർ പാർക്ക് െചയ്തു सूÛम पतले लाल बाल একিটƲপ লাইট Hasken tasha
Target-Translated െവള്ളി കാർ പാർക്ക് െചയ്തിരിക്കുന്നു ठʎक पतले लाल बाल একিটƲপআেলা Hasken tasha

Gloss Silver car has been parked Correct thin red hair A stop light A stop light
Remarks (Comparison) Translated version is more formal Original version is better; ”Fine” mistranslated by our model. Original version is more colloquial Both are identical

English-Sentence-2 eye of the pumpkin the cross is black This is a person three zebras in the wild
Target-Original മത്തങ്ങയുെട കണ്ണ് क्रॉस काला है এিট একজন বয্Ǭğ alfadarai uku a cikin daji

Target-Translated പമ്മിക്കിെന്‍റ കണ്ണ് क्रॉस काला है এিট একজন বয্Ǭğ alfadarai uku a cikin daji
Gloss Pumpkin’s eyes The cross is black This is a person Three zebras in the wild

Remarks (Comparison) Model doesn’t translate ”pumpkin,” which is colloquial Both are identical Both are identical Both are identical

English-Sentence-3 pen on the paper date and time of photo the bird is black a girl is standing.
Target-Original േപപ്പറിൽ േപന फोटो कʏ तारीख और समय পািখিট কােলা yarinya tana tsaye

Target-Translated േപപ്പറിൽ േപന फोटो कʏ तारीख और समय পািখিট কােলা yarinya tana tsaye
Gloss Pen on the paper Date and time of photo The bird is black A girl is standing

Remarks (Comparison) Both are identical Both are identical Both are identical Both are identical

Table 7: Comparison between original translations and our model’s translations for English-Malayalam,
English-Hindi, and English-Bengali language pairs.

translation, (c) English→Bengali text-only
translation, and (d) English→Hausa text-only
translation. The results for the multimodal
English→Hindi translation, which involves
both image and text, were suboptimal due to
improper normalization of the location coordi-
nates for the PaliGemma-3B model. As a re-
sult, the model was unable to accurately map
the provided coordinates in the prompt to the
original image. We utilized the PaliGemma-3B
model with a resolution of 448, which per-
formed well in the translation tasks but failed
to generate results relevant to the precise co-
ordinates. Due to limitations in time and
computing resources, addressing this issue has
been deferred to future work. The code has
been released on GitHub for use by other re-
searchers.
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Abstract

This paper presents the work of our team,
“ArewaNLP,” for the WMT 2024 shared task.
The paper describes the system submitted to
the Ninth Conference on Machine Translation
(WMT24). We participated in the English-
Hausa text-only translation task. We fine-tuned
the OPUS-MT-en-ha transformer model and
our submission achieved competitive results in
this task. We achieve a BLUE score of 27.76,
40.31 and 15.85 on the Development Test, Eval-
uation Test and Challenge Test respectively.

1 Introduction

Machine translation (MT) is widely regarded as
one of the most successful applications of natural
language processing (NLP). It has seen significant
advancements, particularly in the accuracy of its
results. While MT has achieved near-human perfor-
mance for several language pairs, it still faces chal-
lenges when dealing with low-resource languages
or when incorporating other modalities (such as
images.(Parida et al., 2021).

In the broader field of machine learning and deep
learning, multimodal processing involves train-
ing models using a combination of different in-
formation sources such as images, audio, text, or
video. By incorporating multimodal data, models
can learn features from various subsets of these
sources (depending on the data modality), lead-
ing to improved prediction accuracy. Multimodal
machine translation leverages information from
multiple modalities, with the expectation that these
additional modalities will offer valuable alternative
perspectives on the input data. Despite machine
translation’s near-human performance for several
language pairs, it still faces difficulties in translat-
ing low-resource languages and effectively utiliz-
ing other modalities. (Sen et al., 2022).

WMT is a workshop on Machine Translation.
WMT24 features the English-to-Low-Resource

Multimodal Translation Shared Task, which in-
volves Bengali, Hausa, Hindi, and Malayalam
datasets from the Visual Genome project. These
datasets include both text and images, providing
a rich resource for research in English-to-[Hindi,
Bengali, Malayalam, Hausa] Machine Translation
and Multimodal studies.(Parida et al., 2024; Scien-
tist, 2024).

In this system description paper, we outline our
approach to the English-Hausa text-only transla-
tion task.

2 Dataset

We utilized the Hausa Visual Genome (HaVG)
dataset (Abdulmumin et al., 2022) provided by
the organizers. This dataset comprises 32,923 im-
ages with corresponding descriptions, divided into
training, development, test, and challenge-test sets.
The training set includes 28,930 English and Hausa
sentence pairs, while the development set contains
998 sentences, the evaluation test set has 1,595 sen-
tences, and the challenge test set consists of 1,400
sentences. A summary of the sentence statistics is
provided in Table 1.

3 Experimental Details

The experimental setup involved fine-tuning a
pre-trained sequence-to-sequence language model,
specifically the OPUS-MT-en-ha model, which
was pre-trained on English-Hausa data. Fine-
tuning was performed using PyTorch and Hugging
Face Transformers. For the English-Hausa text-
only translation task, we fine-tuned the OPUS-MT-
en-ha model1, a translation model pre-trained on
English-Hausa data by the Language Technology
Research Group at the University of Helsinki2 .

1https://huggingface.co/Helsinki-NLP/opus-mt-ha-en
2https://github.com/Helsinki-NLP
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Set Sentences Tokens
English Hausa

Training set 28,930 147,219 144,864
Development test 998 5,068 4,978
Evaluation test 1,595 8,079 7,952
Challenge test 1,400 8,411 9,514
Total 32,923 - -

Table 1: Statistics of data used in the English-Hausa text-only translation: the number of sentences and tokens.

3.1 Preprocessing

The Hausa Visual Genome dataset was prepared
to train the translation model. The preprocess-
ing phase involved preparing the Hausa Visual
Genome (HaVG) dataset for training the transla-
tion model, The data was loaded using ‘pandas‘
and converted into Hugging Face ‘Dataset‘ objects
for both English and Hausa texts. We employed
the ‘Helsinki-NLP/opus-mt-en-ha‘ tokenizer to to-
kenize the text, truncating or padding sequences to
a maximum length of 128 tokens. The tokenized
data was then formatted for PyTorch, including
input IDs, attention masks, and labels, to ready it
for training.

3.2 Model Fine-Tuning

Model fine-tuning is a crucial step in which the
pre-trained model is adapted to the specific task
of English-Hausa translation. We fine-tuned a pre-
trained sequence-to-sequence language model us-
ing PyTorch and Hugging Face Transformers. The
model was trained for 3 epochs with an AdamW3

optimizer and a linear learning rate scheduler.
Training was conducted on a GPU in batches of 8,
with evaluation performed after each epoch. Upon
completion, the fine-tuned model and tokenizer
were saved. Fine-tuning not only enhanced the
model’s translation accuracy but also allowed it
to perform well on different test sets, although it
faced challenges with more difficult content as seen
in the Challenge Test results.

This methodology enabled the model to achieve
competitive BLEU scores on the various test sets,
demonstrating its effectiveness in translating be-
tween English and Hausa, albeit with some room
for improvement in handling more complex or less
familiar content

3https://keras.io/api/optimizers/adamw

4 Results

Table 4 presents the results of automatic evaluation
of our model.

Development Test (D-Test BLEU: 27.76): The
model scored 27.76 on the Development Test set.
This is a solid result, indicating that the model
produces translations that are reasonably accurate,
though there’s some room for improvement. This
test set is typically used during the model’s devel-
opment phase to fine-tune its performance.

Evaluation Test (E-Test BLEU: 40.31): On the
Evaluation Test set, the model achieved a BLEU
score of 40.31, which is quite a bit higher than on
the Development Test set. This suggests that the
model is particularly good at translating the kinds
of sentences found in this set, perhaps because
they are similar to what the model has seen during
training.

Challenge Test (C-Test BLEU: 15.85):The
model scored 15.85 on the Challenge Test set,
which is significantly lower than the other two
scores. This suggests that the Challenge Test set
contains more difficult or unfamiliar content, mak-
ing it harder for the model to produce accurate
translations.

Zero-shot vs. Finetuned Scenarios
The zero-shot evaluation BLEU scores (table 3) are
very low compared to the fine-tuned results (table
4). This demonstrates that without prior exposure
or training on this specific data, the model struggles
to perform accurate translations. These low BLEU
scores suggest that the model’s ability to generalize
to completely unseen data (zero-shot scenario) is
limited.

The significant difference between fine-tuned
and zero-shot BLEU scores across all sets illus-
trates the importance of HaVG data. Fine-tuning
has allowed the model to learn the translation pat-
terns within the datasets, leading to far superior
performance compared to the zero-shot setting.
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English-Hausa Translation Examples

Table 2 presents sample English sentences along-
side their Hausa translations, sourced from the chal-
lenge test set. Some examples are straightforward,
where the model successfully translated simple,
clear sentence structures. However, other exam-
ples are more challenging, showcasing the model’s
ability to handle complex or ambiguous transla-
tions. For instance, in examples 7 and 8, the word
"cross" appears, which can refer to either a cruci-
form symbol or the act of crossing a street. The
model accurately interpreted the context in both
cases, delivering correct translations for each mean-
ing. These more difficult examples illustrate the
differences between the Dev, Eval, and Challenge
sets, with the Challenge set specifically designed to
test the model’s performance by including context-
dependent and nuanced sentences. The model’s
ability to navigate these complexities demonstrates
its overall effectiveness.

S/N English Hausa Translation

1
A second pizza in a
pan.

Pizza na biyu a
cikin kwanon suya.

2
A girl on the tennis
court is preparing to
hit the ball.

Wata yarinya a filin
wasan tanis tana
shirin buga kwal-
lon.

3
Knife block sitting
on counter with
knives in it.

Sandar wuka zaune
akan kan tebur tare
da wukake a ciki.

4
The players’ socks
are blue.

Yan wasan safa
sune shui.

5
Balconies on the
second story of the
buildings.

Baranda akan bene
na biyu na gine-
ginen.

6
Beige stairway go-
ing to second level.

Matakala na beige
zuwa bene na biyu.

7
The woman is wait-
ing to cross the
street.

Matar tana jira ta
tsallaka titi.

8
A black cross on a
vertical stabilizer.

Gicciye mai baar
fata akan mai tsaye
tsaye.

9
Man cross country
skiing.

Mutum ya tsallaka
kan asa a lokacin
tsere.

Table 2: Sample of English to Hausa translations gener-
ated by our model.

D-Test BLEU E-Test BLEU C-Test BLEU
1.87 1.95 2.56

Table 3: Results of text-only translation task: Zero-shot

D-Test BLEU E-Test BLEU C-Test BLEU
27.76 40.31 15.85

Table 4: Results of text-only translation task: Fine-
tuned model

5 Conclusion

This paper describes our system for English-to-
Hausa text-only translation. The system performs
well on more standard test sets (especially the Eval-
uation Test) but struggles with more challenging
or unusual content, as seen in the Challenge Test
results. This indicates that while the system is ef-
fective in many scenarios, it may need further train-
ing to handle more complex translation tasks. We
plan to extend our work to include English-Hausa
multimodal translation and image captioning tasks
in the future.

Ethics Statement

In our work on the English-to-Hausa text-only
translation task, we adhered to the highest stan-
dards of ethical research and data use. The datasets
employed, including the Hausa Visual Genome
dataset, were provided under appropriate licenses,
and we ensured that all data used was handled in ac-
cordance with the terms specified by the providers.
Our research also followed guidelines for respon-
sible AI development, including fairness, trans-
parency, and privacy considerations. We took par-
ticular care to avoid biases in our models that
could negatively impact the communities whose
languages we are working with. Additionally, we
acknowledge the potential risks of deploying ma-
chine translation systems in sensitive contexts and
emphasize the importance of human oversight in
such applications.
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Abstract

This paper presents the approach and results
of team v036 in the English-to-Low-Resource
Multi-Modal Translation Task at the Ninth
Conference on Machine Translation (WMT24).
Our team tackled the challenge of translating
English source text to low-resource Indic lan-
guages, specifically Hindi, Malayalam, and
Bengali, while leveraging visual context pro-
vided alongside the text data. We used In-
ternVL2 for extracting the image context along
with Knowledge Distillation from bigger LLMs
to train Small Language Model on the tranlsa-
tion task. During current shared task phase,
we submitted best models (for this task), and
overall we got rank 3 on Hindi, Bengali, and
Malyalam datasets. We also open source our
models on huggingface.1

1 Introduction

With the recent advances in text generative AI
Achiam et al. (2023); Dubey et al. (2024); Yang
et al. (2024) and Diffusion based Dhariwal and
Nichol (2021); Nichol and Dhariwal (2021); Sa-
haria et al. (2022); Ramesh et al. (2022) mod-
els, multimodal approaches have gained significant
traction. The concept of a model to understand
both text and visual contexts provides a unique ad-
vantage for these models to understand the real
world. On the other end, Machine Translation
has been one of the most important task in NLP
world. Since its origin, the MT task has undergone
large shifts from rule based Nirenburg (1989); Chen
et al. (2007) to complex Neural network based ap-
proaches and recently Transformer Vaswani (2017);
Yin and Read (2020); Xu et al. (2024) based ap-
proaches. In the recent days with the advance-
ments in the field of NLP, Multimodal Machine
Translation (MMT) has evolved as an important re-
search field, wherein the Model utilizes both vision

1https://huggingface.co/team-v036
*Authors contributed equally to this work

and text information to achieve the translation task.
This would better equip the model with additional
context information and thus reducing the issues
due to polysemy or missing text context. MMT
finds its application in various fields like Media,
Retail, Automobile etc. In this work we explore the
problem of English to Lowres Multimodal Trans-
lation for Hindi, Bengali and Malyalam languages.
The task requires translating a short English caption
of the rectangular region to one of these languages,
given the image context. There are multiple ap-
proaches possible which can be largely classified
into :

• Text-only translation (Source image not used)

• Image captioning (English source text not
used)

• Multi-modal translation (uses both the image
and the text)

We strongly feel that Multi-modal translation ap-
proach would best solve the problem due to more
context information. In this paper, we propose a
novel unconstrained approach to solve the Lowres
MMT task for Hindi, Bengali and Malyalam lan-
guages. Our solution tries to merge the best of both
text and language contexts. In particular, our key
contributions are:

• Fusing Multimodal image context with im-
proved language understanding : We provide
a concise yet effective approach to combine
context information from vision to text de-
scription

• Advanced Chain of Thought reasoning for
language translation: Our approach to step
by step reasoning ustilizing the COT, gives a
whole new perspective to enhance the ability
of the model to comprehend better.
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• Custom finetuning : Our approach of custom
finetuning on target languages on training sam-
ples, equips the model to better perform on
the MMT task.

2 Data

Visual Genome introduced by Krishna et al. (2017)
is a rich dataset to enable the modelling of com-
plex cognitive interactions and relations between
objects in an image. Based on this dataset, Parida
et al. (2019) introduce the Hindi Visual Genome
dataset, which is a multi-modal dataset consisting
of text and images suitable for English-Hindi multi-
modal machine translation task. They select short
English segments (captions) from Visual Genome
along with the associated images and automatically
translate them to Hindi with a careful manual post-
editing( Parida et al. (2019) ) The dataset takes
into account ambiguous English words based on
the embedding. similarity and manual selection
of certain cases where image helps to resolve the
ambiguity( Parida et al. (2019) ). Hence this is a
perfect dataset suited for the task. Similarly Sen
et al. (2022) propose the Bengali Visual Genome
Dataset which is manually labelled on HVG sam-
ples and Parida et al. (2019) curated the malyalam
Visual Genome Dataset.

All three (Hindi, Bengali and Malyalam) dataset
consists of 29k training samples, 1k dev set, 1.6k
evaluation set and 1.4k challenge set.

The evaluation of the models were performed
with BLEU metrics (Papineni et al. (2002)) on
challenge and evaluation set independently. Along
with these a manual labeller evaluation is also per-
formed, subject to availability.

3 Related Work

MMT has gained increasing attention in recent
years as a way to leverage visual information to im-
prove translation quality. Several shared tasks and
datasets have been introduced to advance research
in this area, with a particular focus on low-resource
languages. The Workshop on Asian Translation
(WAT) has played a key role in promoting MMT
research for Asian languages. Parida et al. (2019)
introduced the first Hindi Visual Genome task at
WAT 2019, using the Hindi Visual Genome 1.0
dataset (Parida et al. (2019)). This dataset contains
English image captions paired with Hindi trans-
lations and associated image regions. The task
evaluates systems on their ability to translate from

English to Hindi while incorporating visual con-
text. Subsequent iterations of WAT expanded the
Hindi Visual Genome used an updated Hindi Vi-
sual Genome 1.1 dataset and introduced new eval-
uation tracks, including Hindi image captioning.
The latest WAT 2021 (Nakazawa et al. (2021)) fur-
ther refined the Hindi task and introduced a new
English-Malayalam MMT task using the Malay-
alam Visual Genome dataset (Parida and Bojar,
2021). This represented the first multimodal trans-
lation dataset for Malayalam. For the Hindi task, re-
cent approaches have focused on leveraging object
tags extracted from images (Gupta et al. (2021))
and region-specific captioning (Parida et al. (2021))
to enhance translation quality. The introduction
of the Malayalam task provides an opportunity to
evaluate MMT techniques on a new low-resource
language. While Hindi and Malayalam have been
addressed in shared tasks, Bengali has seen less at-
tention for MMT despite being widely spoken. The
creation of a Bengali Visual Genome dataset, fol-
lowing the model of Hindi and Malayalam, would
fill an important gap and enable MMT research
for another major South Asian language. Overall,
the development of these language-specific visual
genome datasets has been crucial for advancing
MMT for low-resource Indian languages. They pro-
vide much-needed benchmarks and drive innova-
tion in incorporating visual context for translation.
Expanding to additional languages like Bengali rep-
resents an important direction for broadening the
scope of MMT research in the Indian context.

4 Approach

Our overall approach follow a three step process as
seen in Figure 1.

4.1 Stage 1: Fusing Multimodal image context
with improved language understanding

In this stage, we first extract context from cropped
visual data using a powerful open-source Multi-
modal Large Language Model (MLLM)- InternVl2-
8B (Chen et al. (2023, 2024)). This model demon-
strates powerful capabilities in handling complex
multimodal data and achieves state of art numbers
on many open VQA tasks. Figure 2 shows a sam-
ple image and its description. We feed the output
of segement description as an input into a Rapid
Automatic Keyword Extraction (RAKE) algorithm
(Rose et al. (2012)) which is an efficient keyword
extraction algorithm. The top extracted key phrases
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Figure 1: Overall Approach.

are selected and used as hastags to provide context
to the source English text. This way we condense
the full description into short and concise informa-
tion for the next stage. This ensures that the further
step do not completely rely on the image context
also but rather use the original text but still use the
relevant information from the image descriptors.
This step is common for both train and evaluation
process.

4.2 Stage 2: Advanced Chain of Thought
reasoning for language translation

Chain-of-thought (CoT) (Wei et al. (2022)) prompt-
ing enables complex reasoning capabilities through
intermediate reasoning steps. It is shown that the
models ability is substantially improved by making
them produce step by step reasoning. We employ
this ability of Large Language model to solve the
task in a more understandable and reasonable ap-
proach by decomposing the problem into multiple
sub-problems. We use State of the Art LLaMa
405B (Dubey et al. (2024)) model to generate the
CoTs for the training data. The model is provided
with the English caption text that needs to be trans-
lated along, the hashtags generated in previous step,
and the target language caption. The model is then
asked to generate the step by step reasoning for con-
verting the source caption text to target language
text along with the condensed context information
provided. Following prompt (Table 1) template is
used to get the CoT from the bigger model.

Table 1: Prompt for CoT reasoning generation from
bigger model (LLAMA 3.1 405B)

TASK:
ASSUMING YOU ARE A ENGLISH - HINDI translation
expert, For given context of an image related to a original
sentence, English sentence and translation of the sentence in
hindi. Give reason on why this translation is the correct trans-
lation....ASsume that you secretly know the answer......DO
NOT TRY TO FIX Translation...reason for whatever is given
only.....reason SHOULD be proper Chain of Thought format
in properly divided steps for the answer......give maximum 5
steps which are most important ones .......
Context: {RAKE HASTAGS}
English Sentence: {SOURCE TEXT}
Hindi Sentence: {TARGET TEXT}

Table 2: Prompt for SFT LLAMA 3.1 8B

TASK:
ASSUME YOU ARE AN ENGLISH-HINDI translation ex-
pert. Given an image description in English, image context
and reasoning/CoT in English, translate the image description
in Hindi. Use the image context to solve ambiguity if required.
Note: DO NOT USE the image context in translations, just
use them for disambiguation.
IMAGE DESCRIPTION:
{SOURCE TEXT}
IMAGE CONTEXT:
{RAKE HASHTAGS}
REASONING:
{GENERATED CoT}
RESPONSE:
{TARGET TEXT}

4.3 Stage 3: Custom fine-tuning

In stage 3 we train a smaller model to perform
the task of translation, we finetune a LLaMA 3.1-
8B-Instruct model on training samples using data
from previous stages. The model is trained by
providing the English caption along with hashtag
contexts, CoT reasoning and the final answer. A
sample prompt is shown in Table 2. We use LORA
finetuning with rank=64 and alpha=128. We use
following template for the training data so that the
CoT step is more aligned to as what humans think,
that is first source, then CoT and finally the target
text.

During inference, we provide the finetuned
model with source English caption and context and
ask it to come up with the Reasoning and the an-
swer. We then use a post processor script to filter
out the final answer from the model output.

These 3 fundamental steps are performed for all
3 languages and we curate one PEFT model for
each language.
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Figure 2: Sample Data with reference the image segment, its corresponding source and target text along with the
key phrase extraction from Internvl2 descriptions

5 Experimental setup

In our experimental setup, we fine-tuned the
LLaMA 3.1-8B-Instruct model for the transla-
tion task using Quantized Low-Rank Adaptation
(QLoRA) (Hu et al. (2021); Dettmers et al. (2024)).
The LoRA configuration was carefully selected to
balance performance and computational efficiency.
We set the rank (r) to 64 and the alpha parameter to
128, with a lora_alpha value of 0.05. Notably, we
applied LoRA to all target modules in the model
architecture, ensuring a comprehensive adaptation
across the entire network.

For the optimization process, we employed a
learning rate (lr) of 0.003, coupled with a cosine
learning rate scheduler. This scheduling strategy al-
lowed for dynamic adjustments to lr, potentially
aiding in convergence and generalization. The
model was trained for two epochs, striking a bal-
ance between sufficient learning and computational
constraints.

The chosen LoRA hyperparameters strike a bal-
ance between model capacity and computational
efficiency, with the rank of 64 providing sufficient
expressiveness for the adaptation.

By leveraging Quantized LoRA and carefully
selected training parameters, we aim to achieve
high-quality translation performance while mini-
mizing computational resources and training time.
We used A100 40GB VRAM and 84GB RAM
single node machine to fine tune our models.

6 Results

The results show that our Multimodal approach
of using multistage image description extraction
clubbed with CoT is an effective approach to solve
this task leveraging the knowledge of Large lan-
guage models. Table 3 shows the results for all 3
Indic languages on Evaluation and Challenge set.

Our numbers are very close to SOTA numbers. The
SOTA (baseline) approach is based on a fine-tuning
of NLLB model on captions of Object tags of origi-
nal along with synthetic images using DETR model.
However, we do not use any additional image set
in our process

Table 3: Results (BLEU Scores) on languages compar-
ing to SOTA .

Language Evaluation Set Challenge Set

Hindi 0.446/0.45 0.432/0.534
Bengali 0.441/0.506 0.339/0.487
Malyalam 0.427/0.519 0.333/0.422

The data analysis of the final output revealed
a set of cases where the output is technically cor-
rect, yet contains variations in tokens compared to
the gold set. This suggests that human evaluation
could potentially yield higher accuracy, and relying
solely on the BLEU score for this task may not
fully capture the quality of the output.

Limitations

Given that our approach heavily depends on multi-
ple stages involving large language models, it may
not be ideally suited for environments with lim-
ited resources. The complexity and computational
demands of such models could pose challenges
in settings where processing power, memory, or
bandwidth are constrained. Additionally, this ap-
proach leverages the inherent knowledge embedded
within the LLMs being used. The effectiveness of
the method is closely tied to the pre-existing infor-
mation and understanding that these models have
acquired during training, which may be influenced
by the data used for its training.
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Ethics Statement

Our work proposes an innovative approach to ad-
dressing the challenge of translating low-resource
English to Indic languages - Hindi, Bengali, and
Malayalam. In conducting our research, we have
carefully considered the ethical implications of data
usage. As a result, we have chosen to exclusively
rely on the data provided by the Task administrators
for our experiments, refraining from incorporating
any additional external data sources. This ensures
that our approach remains transparent and aligns
with the ethical standards expected in this field.
However, while using this approach for real world
application, data privacy and consent should be
given careful considerations.
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A Appendix

A sample example of COT generation is shown
below:

Figure 3: Sample COT training data

A few data analysis samples where we note that
the translation is mostly valid but the gold may
have different set of words.
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Abstract
In this work, we provide the system descrip-
tion of our submission as part of the English-
to-Lowres Multimodal Translation Task at the
Workshop on Asian Translation (WAT2024).
We introduce Chitranuvad, a multimodal model
that effectively integrates Multilingual LLM
and a vision module for Multimodal Transla-
tion. Our method uses a ViT image encoder to
extract visual representations as visual token
embeddings which are projected to the LLM
space by an adapter layer and generates trans-
lation in an autoregressive fashion. We par-
ticipated in all the three tracks (Image Cap-
tioning, Text-only and Multimodal translation
tasks) for Indic languages (ie. English trans-
lation to Hindi, Bengali and Malyalam) and
achieved SOTA results for Hindi in all of them
on the Challenge set while remaining competi-
tive for the other languages in the shared task.

1 Introduction

Recently, there has been an increased interest in
Multimodal Machine Translation (MMT) task (Cal-
ixto and Liu, 2017; Delbrouck and Dupont, 2017;
Elliott and Kádár, 2017; Yao and Wan, 2020) which
involves translation between language pairs, in-
corporating other modalities (like images) as an
auxiliary information. The visual cues act as ‘sym-
bol grounding’ (Fodor, 1975; Harnad, 1990, 2003,
2005), helping to resolve ambiguities in language
(Rainie et al., 2012; Hu et al., 2014; Specia et al.,
2016; van Miltenburg et al., 2019; Caglayan et al.,
2020) by learning to connect language and per-
ception (Mooney, 2008; Bisk et al., 2020). For
example, in order to correctly translate the word
court in Figure 1, the model has to infer from the
image that the statement is about tennis court and
not the court as government institution.

Prior works mostly focused on translation from
English to European languages (Elliott et al., 2016;
Specia et al., 2016) while the Indic languages re-
main largely unexplored, with an exception of the

MMT shared task at the Workshop on Asian Trans-
lation (WAT) (Nakazawa et al., 2019, 2020, 2021,
2022, 2023).

The English-to-Lowres Multimodal Translation
Task at WAT-2024 targets the MMT task for three
Indic medium-to-low-resource languages (Hindi,
Bengali, Malayalam) and a low-resource African
language Hausa. To assess the importance of the
image modality, the task has been decoupled into
three tracks: 1). Text-only translation where the
source image is not used, 2). Image Captioning
where English source text is not used and 3). Mul-
timodal translation which uses both the image and
the text. We participated in all the three tracks for
Indic languages only (Hindi, Bengali, Malayalam)
under a non-constrained and proprietary multi-
lingual and multimodal Large Language Model
(LLM): Chitranuvad1.

In this paper, we provide a description of our
multimodal LLM where we leverage a multi-
lingual LLM backbone Krutrim (Team, 2024b),
coupled with a visual image encoder. Our contribu-
tions could thus be summarized as follows:

• We introduce Chitranuvad, a Large Multi-
modal model, adapted for multi-lingual trans-
lation, which leverages images and language
modalities to provide an image grounded
translation of the English sentence in the tar-
get Indic languages.

• We showcase the effectiveness of task specific
finetuning on the Visual Genome translation
datasets and achieve SOTA performance.

• We evaluate Chitranuvad and prior baselines
on the English-to-Lowres Multimodal Trans-
lation Task and demonstrate the ability of our
model to perform grounded translation, using
different training strategies and ablations.

The rest of the paper is organized as: Section 2
presents related research on multimodal machine

1Chitranuvad literally means Image Translate in Hindi
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English: Tennis player in a court
Object Tags: person,tennis racket,sports ball
Hindi: एक अदालत में टेनिस खिलाड़ी
Bengali: টেনিস খেলোয়াড় একটি আদালতে
Malayalam: ഒരു കോർട്ടിൽ ടെന്നീസ് കളിക്കാരൻ

English: A bears right black ear.
Object Tags: bear
Hindi: एक भालू सही काले कान।
Bengali: একটি ভালুক কানের কান ভালুক।
Malayalam: ഒരു കരടിയുടെ വലത് കറുത്ത ചെവി

Figure 1: Multimodal Machine Translation task as part of English-to-lowres track where the source sentence is
translated to multiple Indic languages (Hindi, Bengali, Malayalam) grounded in the image. Meaning of words like
"court" and "right" in the translations can vary significantly depending on the visual context.

translation while Section 3 explains our Chitranu-
vad model recipe in detail. We present the datasets
used in Section 4, followed by experimental find-
ings in Section 5 and conclusion in Section 6.

2 Related Work

Early Neural Machine Translation (NMT) and Im-
age captioning systems (Show, 2015; Gao et al.,
2018) were based on Recurrent Neural Networks
(RNNs) and their variants (Cho et al., 2014;
Sutskever et al., 2014; Cho, 2014; Hochreiter and
Schmidhuber, 1997), often incorporating attention
mechanisms (Bahdanau et al., 2014). The seminal
work of transformers (Vaswani, 2017) paved the
way for the development of high-quality image cap-
tioning (Chen et al., 2021) as well as translation
systems (Lewis, 2019), even for low-resource lan-
guages (Dabre et al., 2021; Gala et al., 2023a). Mul-
timodal Machine Translation (MMT) systems wit-
nessed a similar shift in their approrach (Caglayan
et al., 2016; Yao and Wan, 2020; Guo et al., 2023).
Prior submissions to the MMT task at Workshop on
Asian Translation (Gain et al., 2021; Gupta et al.,
2021; Parida et al., 2022; Dash et al., 2023; Shahid
et al., 2023) also fall in this category.

The next generation of Multimodal LLMs (Lu
et al., 2024a; Laurençon et al., 2024; Tong et al.,
2024; Xue et al., 2024) can handle a variety of
complex tasks, including machine translation and
captioning, by utilizing cutting-edge architectures

as an unified general purpose agent. These models
often rely on pre-trained LLMs, with an exception
of few, which train the models from scratch (Team,
2024a; Lu et al., 2024b). Most of these Vision Lan-
guage Models (VLMs) follow the architecture of
(Liu et al., 2023a) where a CLIP (Radford et al.,
2021) or a similar encoder is used to encode the im-
age and projected into LLM’s representation space
using an adapter layer. Notably, Wang et al. (2023)
offers a departure from conventional architectures
by using distinct matrices and Feed Forward Net-
works for image modalities. Recent developments
replace the image encoder with SigLIP (Zhai et al.,
2023a) and the single-layer MLP projector with
attention-based pooling (Laurençon et al., 2024).

Advanced backbone LLMs (Brown et al., 2020;
Touvron et al., 2023; Achiam et al., 2023; Team
et al., 2023; Jiang et al., 2024; Team et al., 2024)
however have a primary focus for English and
European languages. There have been relatively
few LLMs for Indic languages, such as Airavata
(Gala et al., 2024), Navarsa (Labs, 2023), Kannada
LLaMA, Tamil LLaMA (Balachandran, 2023),
Odia LLaMA (Kohli et al., 2023), to name a few.
However, most of these LLMs are an extension
and finetuned version of LLaMA/Gemma for Indic
languages, which don’t fully capture the nuances
of the language. This could be attributed to the
fact that Indic languages are under-represented in
Common Crawl (which majorly forms the train-

840



Stage 1: Feature alignment Stage 2: Instruction tuning Stage 3: Task specific Finetuning

Visual Genome Data

Tokenizer &
Embedding

LLM (Krutrim)

Modality
Projector

Vision
Encoder

Instruction tuning dataAlignment data

Tokenizer &
Embedding

LLM (Krutrim)

Modality
Projector

Vision
Encoder

Tokenizer &
Embedding

LLM (Krutrim)

Modality
Projector

Vision
Encoder

Translation: सिंक की एक पंक्ति

{Prompt} ..
translate the english
sentence into {lang}:

'''A row of sinks'''

Figure 2: Chitranuvad model architecture with the three stage training pipeline described in Section 3.

ing corpus of LLMs), despite India constituting
18% of the global population. Hindi, for example,
does not show-up in the top 20 languages despite
being the 3rd most spoken (Buck et al., 2014;
Penedo et al., 2023). Closed-source models such as
Krutrim (Team, 2024b) and Sutra (Bendale et al.,
2024) represent exceptions, as they are trained from
scratch. Currently, PALO (Maaz et al., 2024) is a
multimodal LLM that supports only Hindi and Ben-
gali. However, to the best of our knowledge, there
are no other open-source multimodal LLMs trained
specifically for low-resource Indic languages. In
contrast, we developed a multilingual multimodal
system that supports 10 Indic languages.

3 Model and Training Recipes

Figure 2 provides an overview of our architec-
ture and the multi-stage training pipeline. Our
Chitranuvad model architecture borrows heavily
from LLaVA-like models (Liu et al., 2023a, 2024),
where we use pre-trained Krutrim LLM (Team,
2024b) instead, as the autoregressive multi-lingual
LLM backbone. Our Krutrim LLM is trained
across 10 languages and natively supports all the 3
Indic languages (Hindi, Bengali, Malayalam) used
as part of the shared task.

For the multimodal training, we first encode im-
ages through a vision encoder. Next, the modal-
ity projection (adapter/connector) layer projects
the vision embeddings into the LLM embedding

space, creating a sequence of visual tokens. The
multi-lingual LLM then generates the response con-
ditioned on these visual embedding tokens. The
Krutrim LLM model supports a context length of
4096 tokens, out of which 576 tokens are used for
the image representation, obtained after the modal-
ity projector layer. For the projection layer, we
experiment with both single layer projection (Liu
et al., 2023b) as well as a two-layer MLP vision-
language connector with non-linearity (Liu et al.,
2023a). We also experiment with pre-trained CLIP
ViT-L/14@336px (Radford et al., 2021) as well as
SigLIP-SO400M (Zhai et al., 2023b) for the vision
encoder. Similar to the LLaVA model, we generate
multi-turn conversational data for instruction tun-
ing our model, which we expand upon in Section 4.
We train our model in multiple stages:

Stage 1: Pre-Training (PT) for Feature Align-
ment. In this stage, we do the pre-training with
image-text pairs, where the projector layer is
trained while the vision encoder and LLM is kept
frozen. Here, each sample is treated as a single-turn
conversational instruction tuning data.

Stage 2: Instruction Tuning. Similar to LLaVA
models (Liu et al., 2023b,a), we also keep the
vision encoder frozen during the second stage of
training. However, here we also update the LLM
weights apart from tuning the modality projection
layer. This stage aims to build a general purpose
Multimodal agent (chatbot) which can follow com-
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Split #Instances English Hindi Bengali Malayalam

Train 28930 5.09 5.13 4.07 3.86
Valid 998 5.08 5.04 4.06 3.75
Test 1595 5.07 4.95 4.14 3.76
Challenge 1400 6.04 6.35 4.92 4.48

Table 1: Total number of instances and average number
of tokens for the text in English and splits of different
Visual Genome datasets in other languages.

Multimodal Translation:
Human: You are given an image and coordinates of a
bounding box as: x1={x1}, y1={y1}, x2={x1+x2},
y2={y1+y2}. Using the context of the objects or
items available in the bounding box translate the fol-
lowing sentence from English into {lang} language.
You are also provided labels of the objects in the im-
age as: {labels}. English sentence is: {sentence}.
System: {translation}.
Text only translation:
Human: Translate the following sentence from En-
glish into {lang} language. English sentence is: {sen-
tence}.
System: {translation}.
Image captioning: Human: You are given an im-
age and coordinates of a bounding box as: x1={x1},
y1={y1}, x2={x1+x2}, y2={y1+y2}. You are also
provided labels of the objects in the image as: {la-
bels}. Provide a short caption of the object in {lang}
language.
System: {caption}.

Table 2: Different prompt templates for creating task
specific fine-tuning data, used in Stage 3 training.

plex instructions across multiple-turns of the con-
versation. We focus on developing a specialized
multimodal translation system in the Stage 3.

Stage 3: Task-specific Fine-Tuning. We follow
a similar recipe to that of Stage 2 for the (Machine
Translation) task-specific fine-tuning and update
weights for the projection layer and the LLM while
keeping the vision encoder frozen. Here, we ex-
periment with both LoRA style training (Hu et al.,
2021; Houlsby et al., 2019) as well as full parame-
ter fine-tuning on the shared task translation data.

4 Dataset

In this section, we describe the data resources uti-
lized throughout our experiments.

Stage 1: In our initial experiments, we use the
LLaVA-Pretrain-LCS-558K data for pre-training
our model in Stage 1. However, recent works (Tong
et al., 2024) showed that more adapter data is bene-
ficial for the model, such as the 1.2M ShareGPT4V-
PT (Chen et al., 2023) image-captioning dataset,
which we use in Stage 1 training. We also trans-

lated this data in the 10 Indic languages that our
LLM natively supports, using an in-house text Ma-
chine Translation system. We sample translations
across different languages (including English) in an
equal ratio and ensure that PT data limits to 1.2M
data points in our final data mix.

Stage 2: For the second stage instruction tun-
ing, eliciting visual reasoning abilities, we experi-
ment with both LLaVA-Instruct-150K (Liu et al.,
2023b) and LLaVA-1.5-665K (Liu et al., 2024)
where we find continued improvements with the
665K version. Similar to pre-training data, we also
translated the LLaVA-1.5-665K into multiple lan-
guages. Recently released Cauldron dataset (Lau-
rençon et al., 2024) is a collection of 50 academic
Vision-language tasks. In our final submission, we
also include the translated versions and the origi-
nal English language based Cauldron apart from
the proprietary multi-modal dataset in the training
mix. It must be noted that the English only Visual
Genome might be a part of this stage’s training data
through various academic datasets, though not for
the translation task.

Stage 3: For the Stage 3, we work with the
aligned multi-lingual Visual Genome (Krishna
et al., 2017) datasets, i.e. Hindi (Parida et al., 2019),
Bengali (Sen et al., 2022) and Malayalam (Parida
and Bojar, 2021), bundled as part of the shared task.
Each row in the dataset consists of the following
fields: i). MS COCO (Lin et al., 2014) image id
ii). English utterance iii). Translated utterance in
Hindi/ Bengali/ Malayalam iv). Bounding box of
the area in the image that the utterance is based on.
While there is also a track for Hausa language (Ab-
dulmumin et al., 2022), we don’t include this in
our training data. Table 1 provides the statistics
of the different versions of the dataset, which we
transform into instruct tuning format, similar to
Stage 1 and 2 data (see Table 2). To increase the
efficacy of our model, we enrich the dataset with
the labels of different objects in the image (object
tags), similar to (Gupta et al., 2021). We use SOTA
(state-of-the-art) YOLOv8 (Varghese and Sambath,
2024) for object detection compared to the prior
works, which relied on Faster R-CNN models (Wu
et al., 2019; Girshick, 2015). We also calculate
the Intersection-over-union (IoU) for the detected
and the dataset provided bounding boxes to get the
most relevant object tag. However, we found a de-
creased performance against including the labels
of all the detected objects.
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Hi-Ch Hi-Test Bn-Ch Bn-Test Ml-Ch Ml-Test

Submission BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑
SILO NLP 29.6 0.73 36.2 0.79 22.6 0.61 41.0 0.77 14.6 0.39 30.8 0.60
NLP Voices 41.8 0.81 43.1 0.82 32.9 0.71 39.8 0.75 19.6 0.54 30.6 0.64
Volta 51.7 0.86 44.1 0.82 - - - - - - - -
ODIAGEN 53.6 0.86 44.6 0.83 47.8 0.82 49.2 0.8 39.7 0.75 46.6 0.75
Ours (leaderboard) 54.1 0.86 43.3 0.81 44.2 0.79 45.1 0.77 34.0 0.65 37.8 0.63
Ours† 55.3 0.87 44.7 0.83 46.7 0.81 48.1 0.79 40.6 0.75 51.7 0.88

Table 3: English-to-lowres leaderboard scores for Text-only task for Indic languages (Team 007). In the following
tables, †denotes the results after submission deadline using the IndicTrans2 evaluation scripts, all the other results
are reported using the shared task dashboard.

Hi-Ch Hi-Test Bn-Ch Bn-Test Ml-Ch Ml-Test

Method BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑
ODIANLP 0 0.04 0.8 0.06 - - - - - - - -
NLPHUT - - - - - - - - 0.9 0.02 0.9 0.05
Ours (leaderboard) 1.3 0.13 2.8 0.18 0.4 0.04 1.8 0.11 0.3 0.04 0.9 0.06

Table 4: English-to-lowres leaderboard scores for Image captioning track. Ours is the only multi-lingual model
which can handle all the 3 Indic languages for image captioning.

5 Experimental Results and Discussion

This section details our experimental setup and
presents the results of our comparative studies.

5.1 Implementation

We use HuggingFace Transformers (Wolf et al.,
2019) based on PyTorch (Paszke et al., 2019) for
our experiments. We consider PALO (Maaz et al.,
2024) as a multi-lingual multi-modal baseline and
use the code provided with the repository2. The
shared task provides a leaderboard based on the
automatics metrics of BLEU (Papineni et al., 2002)
and RIBES (Isozaki et al., 2010). For reporting
BLEU, we used the evaluation scripts3 provided
with (Gala et al., 2023b) and the official reposi-
tory for RIBES4. Similar to previous works (Gupta
et al., 2021), we also report the results after tokeniz-
ing the outputs using indic-tokenizer5. Our Stage
1 and Stage 2 tuning follow similar hyperparame-
ters as the LLaVA model (Liu et al., 2023b) unless
specified otherwise. For Stage 3 fine-tuning, we
conducted multiple experiments for hyperparame-
ter search of learning rate (1e-3, 1e-4, and 1e-5);
as well as multiple epochs (1, 2, 3, and 5). We
observed rapid over fitting after only one epoch
while a learning rate of 1e-4 yielded the highest
overall performance. All our further experiments
are reported based on this configuration.

2https://github.com/mbzuai-oryx/PALO
3https://github.com/AI4Bharat/IndicTrans2
4https://github.com/nttcslab-nlp/RIBES
5https://github.com/ltrc/indic-tokenizer

5.2 Results for different tracks

Table 3, 4 and 5 present the results for text-only, im-
age captioning and the Multimodal translation task
respectively. For the text-only task, our Chitranu-
vad model was trained with image data till Stage 2.
In Stage 3, we only finetune with text only transla-
tions. During inference, we prompt the model with
text only translations and dont provide images. Our
model achieves SOTA on Hindi and Malayalam
Challenge and Test sets while being competitive
on the Bengali dataset (see Table 3). We were the
only submission which could do image captioning
in all the 3 languages (see Table 4). For the MMT
task, we achieved SOTA on Hindi Challenge and
Malayalam test set while being competitive on the
other languages. We also provide cherry-picked
system outputs of our best Multimodal LLM in Ta-
ble 3. From our manual inspection, we saw that our
generated translations are better than the ground
truth. For example, in the last snippet, our model
correctly translates the word ‘downhill’, which the
gold translation fails to capture.

5.3 0-shot on the Shared task data

We evaluate the efficacy of our model after Stage
2 as the 0-shot setting, where we don’t fine-tune
specifically for the shared task translation data. In
our preliminary experiments, we only use the En-
glish versions of the datasets mentioned in Section
4 for both Adapter tuning (Stage 1) and Instruc-
tion tuning (Stage 2). Exceptionally, our Krutrim
LLM still retained multi-lingual capabilities, ev-
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Hi-Ch Hi-Test Bn-Ch Bn-Test Ml-Ch Ml-Test

Submission BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑
IIT-P 37.5 0.79 42.5 0.81 - - - - - - - -
ODIAGEN 42.8 0.82 41.6 0.81 30.5 0.69 42.4 0.76 - - - -
Volta 51.6 0.86 44.6 0.82 - - - - - - - -
BITS-P 52.1 0.85 45.0 0.83 48.7 0.83 50.6 0.81 42.2 0.76 51.9 0.80
Ours (leaderboard) 53.4 0.842 43.7 0.81 44.8 0.78 44.5 0.76 39.8 0.74 51.9 0.78
Ours† 54.7 0.86 43.9 0.83 46.9 0.81 47.7 0.79 40.3 0.74 51.9 0.93

Table 5: English-to-lowres leaderboard Scores for Multimodal translation track across multiple languages (Team
007). †denotes the results after submission deadline using the IndicTrans2 evaluation scripts

Hi-Ch Hi-Test Bn-Ch Bn-Test Ml-Ch Ml-Test

Method BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑
PALO-7B 14.8 0.585 13.3 0.567 7.9 0.469 9.6 0.464 0.1 0.001 0 0
PALO-13B 15.8 0.605 14.9 0.605 6.7 0.44 7.0 0.45 0.1 0.004 0 0
Chitranuvad (Eng) 18.3 0.629 12.9 0.585 8.7 0.512 8.3 0.477 8.7 0.487 7.3 0.426
Chitranuvad (Eng+Hindi) 20.0 0.698 14.8 0.653 9.4 0.537 8.9 0.494 9.2 0.511 8.6 0.466
Chitranuvad (Multilingual) 25.0 0.694 19.0 0.66 11.4 0.569 9.7 0.515 12.2 0.54 10.3 0.486

Table 6: 0-shot results for Multimodal Machine Translation track as discussed in Section 5.3. Eng denotes only
English data is used in Stage 1 and 2. Eng+Hindi denotes English and Hindi data in Stage 2. As expected, we find
the best scores when the training data mix consists of data from the 10 Indic languages.

ident from the scores in Table 6. When we also
include Hindi data in the training mix, we find
an uplift on the Hindi translation task. Including
multi-lingual data in both the stages further showed
improvement on all three language translation tasks
in the 0-shot setting. We thus use this as the base
model in the Stage 3 training. We also evaluate
against the open-source baseline of PALO-7/13B
(Maaz et al., 2024) in the 0-shot setting. To our
surprise, our Chitranuvad model consistently out-
performs the 0-shot PALO baseline, even when
our model is fine-tuned with English only data in
both the stages. We hypothesis that this is because
the base LLM Vicuna (Zheng et al., 2024) used in
PALO is not inherently multi-lingual in nature.

5.4 Other fine-tuning approaches

In this section, we elaborate on key findings with
different fine-tuning approaches, with all the results
reported in Table 7.

LoRA vs Full finetuning. We investigated the
efficacy of full fine-tuning versus Low-Rank Adap-
tation (LoRA) using Visual Genome data. Our ex-
periments (see Table 7) reveal that full fine-tuning
consistently outperforms LoRA, i.e. LoRA learns
less (Biderman et al., 2024).

Bi-lingual vs Multi-lingual For Stage 3 training,
we experiment with training specialized models for
each language (Hindi and Bengali) compared to
multi-lingual setting with a mix of data from all
the three Indic languages. We didn’t find any im-

provement over multi-lingual model but instead
observe catastrophic forgetting (Zhai et al., 2023c;
Tong et al., 2024), where the translation abilities of
the model in the other languages deteriorate com-
pletely. We hypothesize that a mix of multiple lan-
guages probably act as regularizaton and enhance
the general translation capabilities.

Do we need second stage training? Similar to
(Tong et al., 2024), we investigate if we even need
Stage 2 instruction tuning. We find that our model,
if finetuned directly on Visual Genome translation
data (i.e. Stage 1 and 3 training only) performed
comparable to the previous baselines. Including
Stage 2 training provided an uplift in the scores
with an added advantage of building a general pur-
pose Multimodal agent.

Back translation Back translations, i.e. using
the reverse translations have been a popular tech-
nique both for data augmentation as well as post-
processing or re-ranking techniques in traditional
Machine Translation and Natural Language Gener-
ation systems (Sennrich et al., 2015; Li et al., 2015;
Agarwal et al., 2018; Edunov, 2018; Graça et al.,
2019). This involves re-translating content from
the target language to its source language. Thus,
apart from the original task of En -> Hi/Bn/Ml, we
also included in our training corpus, the task of re-
verse translation from Hi/Bn/Ml -> En in the Stage
3 training mix. However, in our experiments, we
found that this strategy showed decreased perfor-
mance in terms of automatic metrics.

844



Object tags: person, person, person, tennis racket
Bbox tag: tennis racket
English: A TENNIS RACKET

Hindi GT: एक टेनिस रेके ट
Hindi Translated: एक टेनिस रैके ट
Bengali GT: একটি টেনিস র‌্যাকেট
Bengali Translated: একটি টেনিস র‌্যাকেট
Malayalam GT: ഒരു ടെന്നീസ് റാക്കറ്റ്
Malayalam Translated: ഒരു ടെന്നീസ് റാക്കറ്റ്

Object tags: person, snowboard, backpack
Bbox tag: person
English: snow on the ground

Hindi GT: बर्फ़  जमीन पर
Hindi Translated: जमीन पर बर्फ
Bengali GT: মাটিতে বরফ
Bengali Translated: মাটিতে তু ষার
Malayalam GT: നിലത്ത് മഞ്ഞ്
Malayalam Translated: നിലത്ത് മഞ്ഞ്

Object tags: dog
Bbox tag: dog
English: white flower on curtain

Hindi GT: पर्दे  पर सफे द फू ल
Hindi Translated: पर्दे  पर सफे द फू ल
Bengali GT: পর্দার উপর সাদা ফু ল
Bengali Translated: পর্দায় সাদা ফু ল
Malayalam GT: തിരശ്ശീലയിൽ വെളുത്ത പുഷ്പം
Malayalam Translated: വെളുത്ത പുഷ്പം

Object tags: person, skis
Bbox tag: person
English: Woman going fast downhill.

Hindi GT: तेज गति से जा रही महिला।
Hindi Translated: नीचे की ओर तेजी से जा रही महिला।
Bengali GT: মহিলা দ্রুত উতরাইয়ের দিকে যাচ্ছে।
Bengali Translated: মহিলা দ্রুত নিচে যাচ্ছে।
Malayalam GT: വേഗത്തിൽ താഴേക്ക് പോകുന്ന സ്ത്രീ.
Malayalam Translated: മലയിറങ്ങുന്ന വേഗത്തിൽ സ്ത്രീ.

Object tags: person, bowl, oven, dog
Bbox tag: dog
English: a woman holding a dog

Hindi GT: एक स्त्री जो कु त्ता रखती है
Hindi Translated: एक महिला एक कु त्ते को पकड़े हुए
Bengali GT: একটি মহিলা একটি কু কু র ধরে
Bengali Translated: একটি মহিলা একটি কু কু র ধরে
Malayalam GT: ഒരു സ്ത്രീ നായയെ പിടിക്കുന്നു
Malayalam Translated: ഒരു സ്ത്രീ നായയെ പിടിക്കുന്നു

Figure 3: English-to-lowres Multimodal Machine Translation track supports translation of source sentence into
multiple Indic languages (Hindi, Bengali, Malayalam). We enrich the dataset to include labels of all the identified
objects. We show the outputs of our best model which is trained with a mix of multi-lingual data in all the 3 stages.
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Hi-Ch Hi-Test Bn-Ch Bn-Test Ml-Ch Ml-Test

Method BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑ BLEU ↑ RIBES ↑
LoRA 42.1 0.721 34.5 0.770 28.3 0.69 30.4 0.669 23.2 0.61 27.0 0.601
Bi-lingual (Hi Stage 3) 53.0 0.848 43.3 0.833 0.3 0.006 0.1 0.001 0.2 0.003 0 0
Bi-lingual (Bn Stage 3) 0.3 0.005 0.1 0.001 45.4 0.797 46.6 0.781 0.3 0.003 0.1 0.001
Only Stage 1, 3 53.6 0.853 43.4 0.826 45.2 0.801 46.4 0.788 38.2 0.735 50.3 0.781
Back Translation mix 53.8 0.856 43.6 0.828 46.0 0.806 46.8 0.792 37.5 0.729 46.3 0.738

Table 7: Different finetuning strategies for Multimodal Machine Translation track as described in Section 5.4 in the
order of discussion. Our Stage 3 full finetuning training performs the best compared to the other training recipes.

6 Conclusion

We present Chitranuvad, a multimodal LLM that is
adapted for image grounded Machine translation.
Our model encodes images using a pre-trained im-
age encoder (Alexey, 2020) and translates the En-
glish sentences autoregressively into different Indic
languages (Hindi, Bengali, Malayalam) using a pre-
trained LLM. Empirically, our model outperforms
previous baselines for different tasks. However, we
also observed that vision modality had little impact
on the translation, echoing the observations from
(Grönroos et al., 2018; Lala et al., 2018; Wu et al.,
2021; Li et al., 2022).

Broader Impact: We believe our work paves
way for building next generation assistants which
can do multimodal machine translation. We be-
lieve these systems can empower different sectors
like education, healthcare, banking and financial
services, etc. to name a few.

Limitations and Future Work: While this
work is focused to three Indic languages (Hindi,
Bengali, Malayalam), we consider our approach as
a first step towards building general purpose multi-
lingual system which can handle various Indic lan-
guages. While in our current setup, we freeze the
vision encoder during training, recent works have
shown that unfreezing the vision encoder with Per-
ceiver Resampler (Jaegle et al., 2021), helps learn
better representations (Laurençon et al., 2024; Tong
et al., 2024), which we plan to explore in the future.

Acknowledgements

We thank Bhavish Aggarwal and the rest of the
Krutrim team which helped with model develop-
ment at various stages. Specifically, we want to
thank Anagha Bhangare, Raja Kolla and Aditya
Kallappa for the discussions. Our models were
trained with generous support from Krutrim cloud
using Krutrim credits. We also thank the challenge
organizers as well as the reviewers for their valu-
able feedback and suggestions.

References
Idris Abdulmumin, Satya Ranjan Dash, Musa Abdul-

lahi Dawud, Shantipriya Parida, Shamsuddeen Has-
san Muhammad, Ibrahim Sa’id Ahmad, Subhadarshi
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Abstract
In this paper, we describe our system
under the team name Brotherhood for
the English-to-Lowres Multi-Modal Trans-
lation Task. We participate in the
multi-modal translation tasks for English-
Hindi, English-Hausa, English-Bengali,
and English-Malayalam language pairs.
We present a method leveraging multi-
modal Large Language Models (LLMs),
specifically GPT-4o and Claude 3.5 Sonnet,
to enhance cross-lingual image captioning
without traditional training or fine-tuning.
Our approach utilizes instruction-tuned
prompting to generate rich, contextual con-
versations about cropped images, using
their English captions as additional con-
text. These synthetic conversations are
then translated into the target languages.
Finally, we employ a weighted prompt-
ing strategy, balancing the original English
caption with the translated conversation to
generate captions in the target language.
This method achieved competitive results,
scoring 37.90 BLEU on the English-Hindi
Challenge Set and ranking 1st and 2nd for
English-Hausa on the Challenge and Evalu-
ation Leaderboards, respectively. We con-
duct additional experiments on a subset
of 250 images, exploring the trade-offs be-
tween BLEU scores and semantic similarity
across various weighting schemes.

1 Introduction
Machine translation (MT) is a classic sub-
field in NLP that investigates the usage of
computer software to translate text or speech
from one language to another without hu-
man involvement (Yang et al., 2020). Ma-
chine translation (MT) has seen remarkable
advancements in recent years, primarily due to
the success of neural approaches (Bahdanau,
2014; Vaswani, 2017). However, these im-
provements have been predominantly observed

in high-resource language pairs, leaving low-
resource languages significantly behind (Sen-
nrich and Zhang, 2019; Costa-jussà et al.,
2022). The challenges in low-resource MT
are multifaceted, including limited parallel cor-
pora, lack of linguistic diversity in training
data, and the absence of specialized tools and
resources.

One promising direction to address these
challenges is the incorporation of visual infor-
mation into the translation process, known as
multimodal machine translation (MMT) (El-
liott et al., 2016; Specia et al., 2016; Cal-
ixto et al., 2017). The underlying hypoth-
esis is that visual context can provide cru-
cial disambiguating cues, especially for lan-
guages with limited textual resources. This
approach aligns with the human cognitive pro-
cess of language understanding, which often re-
lies on multiple sensory inputs (Beinborn et al.,
2018).

The Workshop on Machine Translation
(WMT) 2024 has presented a shared task on
English-to-Low-Resource Multi-Modal Trans-
lation, focusing on Hindi (Parida et al., 2019),
Bengali (Sen et al., 2022), Malayalam1, and
Hausa (Abdulmumin et al., 2022). This task
utilizes variants of the Visual Genome (Kr-
ishna et al., 2017) dataset, adapted for these
target languages. While these datasets pro-
vide a valuable resource for research, they also
present unique challenges. First, the quality
of translations in low-resource languages can
be inconsistent (see Table 1), potentially in-
troducing noise into the training process. Sec-
ond, the limited size of these datasets makes it
difficult to train robust neural models without
overfitting. Lastly, the cultural and linguistic
nuances of these languages may not be fully

1https://ufal.mff.cuni.cz/
malayalam-visual-genome

852

https://ufal.mff.cuni.cz/malayalam-visual-genome
https://ufal.mff.cuni.cz/malayalam-visual-genome


Source English Caption:
soap is in the dish

Target Hindi Caption:
साबुन पकवान में है

Table 1: Illustration of a translation ambiguity in
the dataset. The English caption for the bounded
region “soap is in the dish” is mistranslated
into Hindi as “साबुन पकवान में है” (“soap is in the
food”). The Hindi word “पकवान” typically means
“food dish”, whereas the visual context clearly in-
dicates that “dish” refers to a soap holder. This
example also highlights the importance of visual
context in resolving lexical ambiguities in multi-
modal translation tasks.

captured in direct translations (Hershcovich
et al., 2022) of English captions.

Existing approaches (Calixto and Liu, 2017)
to MMT often involve training complex neu-
ral architectures on large parallel corpora
with paired images. However, such meth-
ods may struggle with the limited and po-
tentially noisy data available for low-resource
languages. Moreover, these approaches often
fail to leverage the rich semantic understand-
ing capabilities of recent large language mod-
els (LLMs) along with their proficiency in vi-
sual (Liu et al., 2024; Radford et al., 2021)
and multilingual (Üstün et al., 2024; Work-
shop et al., 2022; Dubey et al., 2024; Touvron
et al., 2023; Jiang et al., 2023) understanding
gained through training on large corpora of
data across domains.

In this paper, we propose a pipeline
that addresses these challenges by leverag-
ing multi-modal LLMs, specifically GPT-4o2

and Claude 3.5 Sonnet3, to enhance cross-
lingual image captioning. Our approach uses

2gpt-4o-2024-08-06: https://platform.openai.com/
docs/models/gpt-4o.

3Claude 3.5 Sonnet: https://www.anthropic.com/
api.

instruction-tuned prompting to generate rich,
contextual conversations about images using
the English captions as context along with the
image. These synthetic conversations, com-
prising detailed descriptions, simple question-
answer (QA) pairs, and complex reasoning
question-answer pairs, are then translated into
the target languages and used to inform the fi-
nal caption generation in the target language.
This method allows us to:

• Mitigate the impact of limited and noisy
training data by generating synthetic,
high-quality contextual information.

• Leverage the advanced reasoning capabil-
ities of LLMs to provide culturally and
linguistically nuanced translations.

• Explore the balance between source fi-
delity and enhanced description through
a weighted prompting strategy.

The main contributions of our work are:

• A pipeline for low-resource MMT that
requires no traditional training or fine-
tuning.

• A weighted prompting mechanism that
calibrates between source caption fidelity
and LLM-generated contextual informa-
tion, facilitating a nuanced balance of
translation accuracy, caption diversity,
and exhaustive visual description cover-
age.

• A framework for dataset enrichment
through the generation of detailed descrip-
tions and complex reasoning QA pairs to
augment existing multimodal datasets.

• Empirical analysis of LLMs’ capabilities
in direct translation and target language
summarization, providing insights into
their potential for low-resource languages.

2 Dataset
We utilized only the datasets specified by the
organizers for the related tasks. However, our
use of the GPT-4o and Claude 3.5 Sonnet mod-
els places our submissions in the unconstrained
track. The provided datasets contain captions
in English and the target language, describing

853

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://www.anthropic.com/api
https://www.anthropic.com/api


rectangular regions in images of various scenes.
The task involves generating captions in the
target language using either the text, the im-
age, or both. Across all languages, the training
set consists of 29,000 examples. The dataset is
complemented by three test sets: development
(D-Test), evaluation (EV-Test), and challenge
(CH-Test). Our submissions were evaluated
on the EV-Test and CH-Test sets, which con-
tain approximately 1,600 and 1,400 examples,
respectively. The development set comprises
around 1,000 examples.

Table 2 shows the parallel corpus statistics
across the various languages. Table 3 shows
that data sources of datasets for each task.

3 Methodology
The overall pipeline of our approach is shown
in Figure 1.

3.1 Preprocessing
For the text data, all utterances are converted
to lowercase, and punctuation is removed. The
dataset includes images of complete scenes
along with the coordinates of the bottom-left
corner and the dimensions of the rectangular
region corresponding to each caption. This
information is used to crop the relevant rect-
angular regions from the images. Since these
images are later used as part of prompts for
LLMs, base64 encodings of all images in the
EV and CH sets are generated.

3.2 Multi-Model Context Generation
in English with a Fusion approach

In this step , we leverage the capabilities of
two large language models (LLMs) - GPT-4o
and Claude 3.5 Sonnet - to generate rich, con-
textual conversations about the input image
and its associated English caption. This pro-
cess involves two key stages: individual LLM
processing and conversation fusion.

We separately prompt GPT-4o and Claude
3.5 using Prompt-1 from Table 4. The format
of the conversation and prompt design is in-
spired by an example prompt from Liu et al.
(2024). Both models are given the same in-
put: the cropped image and its English cap-
tion. This parallel processing allows us to cap-
italize on the unique strengths of each model.

After obtaining separate conversations from
GPT-4o and Claude 3.5, we employ a fusion

Figure 1: Overview of the system pipeline.
Prompt-1, detailed in Table 4, and Prompt-2, de-
tailed in Table 5, respectively. The weight x% must
be specified during querying.

model, implemented using the GPT-4o API,
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Set Sentences English Hindi Malayalam Bengali Hausa
Train 28930 143164 145448 107126 113978 140981
D-Test 998 4922 4978 3619 3936 4857
E-Test 1595 7853 7852 5689 6408 7736
C-Test 1400 8186 8639 6044 6657 8752

Table 2: Parallel Corpus Token statistics for each dataset split across different languages.

Task Source
English→Hindi HindiVisualGenome1.1

(Parida et al., 2019)
English→Malayalam MalayalamVisualGenome1.04

English→Bengali BengaliVisualGenome1.0
(Sen et al., 2022)

English→Hausa HausaVisualGenome1.0 (Ab-
dulmumin et al., 2022)

Table 3: Tasks and their corresponding dataset
sources.

to integrate these conversations. This fusion
process is designed to create a single, coher-
ent dialogue that encompasses three response
types: (1) Short QA pairs, (2) Detailed
descriptions, and (3) Complex reasoning
QA. The prompt has been designed to gen-
erate such types of responses to ensure that
the responses can capture the context effec-
tively. The fusion prompt is carefully crafted
to ensure that the final conversation retains
the most relevant and insightful elements from
both initial conversations.

This fusion approach is aimed at using com-
plementary strengths of the models for error
mitigation and rich context consolidation. Re-
cent work has shown the advantage of such
fusion and ensembling approaches in mitigat-
ing hallucination across tasks such as machine
translation, definition modeling, and para-
phrase generation (Mehta et al., 2024). Ad-
ditionally, such an approach has a flexibility
advantage as it allows for future integration of
additional LLMs or specialized models.

3.3 Translation of Context to Target
Languages

This stage involves translating the rich contex-
tual information generated in English to the
target languages. This step is essential for pre-
serving the nuanced understanding developed
in the previous stages while adapting it to the
linguistic and cultural context of each target
language. For the translation of the generated
conversations, we employ different approaches
based on the target language:

• Hindi, Bengali, and Malayalam: For
these Indic languages, we utilize the
IndicTrans2 (Gala et al., 2023) model.
This state-of-the-art translation model
is specifically designed for Indian lan-
guages and has demonstrated strong
performance in multilingual translation
tasks.

• Hausa: Due to the limited availability of
specialized translation models for Hausa,
we leverage the GPT-4o’s translation ca-
pabilities.

3.4 Weighted Prompt-Based Caption
Generation

The final stage of our pipeline employs a
weighted prompting strategy to generate the
target language caption, balancing fidelity to
the original English caption with the rich con-
textual information derived from our LLM-
generated conversations. We utilize GPT-4o
API for this crucial step, employing a carefully
crafted prompt (Prompt-2, detailed in Table 5)
that takes two primary inputs along with the
weight value:

1. The original English caption (weight: 100-
x%)

2. The translated conversation in the target
language (weight: x%)

The weighting mechanism allows us to control
the influence of each input on the final cap-
tion. This approach offers flexibility in bal-
ancing between direct translation fidelity and
contextual enrichment. For our submissions
we provide equal weightage to the given En-
glish caption and the generated conversation
in the target language.

4 Results
The BLEU score (Papineni et al., 2002) serves
as the primary metric for evaluating model per-
formance on the leaderboard, complemented
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You are an AI visual assistant, and you are seeing a single image. You are provided with an English
caption describing the image you are looking at. Answer all questions as if you are seeing the image.
Design a conversation between you and a person asking about this photo. The answers should be in a

tone that a visual AI assistant would use while seeing the image and answering the questions. Ask
diverse questions and give corresponding answers.

Include questions asking about the visual content of the image, including the object types, counting the
objects, object actions, object locations, relative positions between objects, etc. Only include questions

that have definite answers:
(1) one can see the content in the image that the question asks about and can answer confidently;

(2) one can determine confidently from the image that it is not in the image. Do not ask any question
that cannot be answered confidently.

Also, include complex questions that are relevant to the content in the image, for example, asking about
background knowledge of the objects in the image, asking to discuss events happening in the image, etc.
Again, do not ask about uncertain details. Provide detailed answers when answering complex questions.

For example, give detailed examples or reasoning steps to make the content more convincing and
well-organized. You can include multiple paragraphs if necessary. You must include a question-answer

pair asking about the number of words in the English caption.
I am giving you an example of a conversation too, so that you can follow a format in the conversation

you generate.
Example Image: {example_image_link}

Associated Caption in English: A group of people standing outside of a black SUV with various
luggage.

Associated Conversation in English:
Response type 1: conversation

Question: What type of vehicle is featured in the image?
Answer: The image features a black sport utility vehicle (SUV).

Question: Where is the vehicle parked?
Answer: The vehicle is parked in an underground parking area, likely in a public garage.

Question: What are the people in the image doing?
Answer: The people are trying to fit all of their luggage into the SUV, likely preparing for a

trip.
Response type 2: detailed description

The image shows an underground parking area with a black SUV. Three people are packing
luggage into the vehicle, with one person on the left, one in the middle, and one on the right. Scattered

around the SUV are two backpacks—one near the left rear wheel, another on the right—and two
suitcases, one beside the car and another near the center of the lot. A bicycle is visible on the left.

Other cars are parked nearby: one directly behind, one slightly to the left, and another to the right.
Response type 3: complex reasoning

Question: What challenges do these people face?
Answer: A group of people stands outside a black SUV in a parking area, surrounded by

suitcases and backpacks. They face the challenge of fitting all their luggage into the vehicle, indicating
they have a lot to pack. They need to arrange the luggage efficiently to ensure everything fits and

consider the comfort of passengers and the driver’s visibility during the trip.
As you can see from the example, the generated text should have 3 response types: A short

question-and-answer type conversation, a detailed description, and a question-answer pair for complex
reasoning. Now, here is the caption and the image I want you to generate the conversation for:

{english_caption}, {image_link}. Do not hallucinate!

Table 4: Prompt-1: This illustrates the prompt construction process for generating the conversation
response using an AI visual assistant. The code snippet generates a prompt for GPT-4 to create a
conversation based on an image and caption. The conversation includes three response types: a short
Q&A, a detailed description, and complex reasoning. The generated response is capped to a maximum
of 1024 tokens for this step.
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Task: Generate a caption in {target_language} for an image, balancing information from the English
caption and additional context.
Context:
1. English caption (Weight: {english_weight}%): {english_caption}
2. Additional context in {target_language} (Weight: {context_weight}%): {translated_conversation}
Requirements:
1. Create a caption that combines information from both sources according to their weights:
- {english_weight}% of the information should come from the English caption’s structure and details.
- {context_weight}% of the information can be enriched or modified based on the additional context.
2. Maintain a level of detail appropriate to the weighted combination of sources.
3. Use natural, fluent {target_language} appropriate for image captions.
4. Ensure the final caption length is similar to the English caption, adjusting slightly if necessary for
language differences.
Output:
Provide ONLY the {target_language} caption. The output must be exclusively in {target_language}
without any additional text or explanations. Do not hallucinate!

Table 5: Prompt-2: This prompt guides the generation of a caption in the target language by balancing
the original English caption with additional context, weighted according to specified ratios. The generated
caption should reflect the natural fluency of the target language and match the original caption’s length.
The generated response is capped to a maximum of 300 tokens for this step.

by the RIBES metric (Isozaki et al., 2010)
for a more comprehensive assessment. Ta-
ble 6 presents our results across all language
pairs and datasets. Notably, our approach
achieves significant success in the English-
Hausa task, securing the 1st position on the
Challenge Leaderboard and the 2nd position
on the Evaluation Leaderboard. For the
English-Hindi task, we demonstrate competi-
tive performance, obtaining strong BLEU and
RIBES scores on both the evaluation and chal-
lenge sets. Our method, which requires no
training, yields competitive results across all
8 submissions, underscoring its effectiveness
and versatility. However, we observe relatively
limited performance in the Bengali, Hausa,
and Malayalam tasks. This performance dis-
crepancy likely reflects the current limitations
of state-of-the-art LLMs, whose training data
may not adequately represent low-resource lan-
guages and their unique semantic characteris-
tics.

4.1 Weight Tuning Analysis and
Performance Metrics

To thoroughly evaluate our weighted prompt-
based approach, we conducted extensive exper-
iments across different weight combinations
for each target language. This section presents
our findings and analyzes the impact of various
weight distributions on caption quality and se-
mantic preservation. We employed three pri-

System and Task BLEU RIBES Position
English→Hindi

MMEVMM22en-hi 29.70 0.725 5th

MMCHMM22en-hi 37.90 0.796 3rd

English→Malayalam
MMEVMM22en-ml 15.10 0.411 4th

MMCHMM22en-ml 13.60 0.428 3rd

English→Bengali
MMEVMM22en-bn 22.10 0.575 5th

MMCHMM22en-bn 21.70 0.644 4th

English→Hausa
MMEVMM22en-ha 17.70 0.580 2nd

MMCHMM22en-ha 21.10 0.637 1st

Table 6: Summary of results for various English-to-
target language multimodal tasks. The table shows
BLEU, RIBES scores, and positions for different
tasks.

Weight BLEU Sem. Sim. Norm. Sem.
0 28.56 0.9238 0.9738
10 23.10 0.8978 0.9715
20 21.46 0.8866 0.9726
30 18.73 0.8504 0.9723
40 16.52 0.8381 0.9800
50 16.51 0.8503 0.9747
60 13.71 0.7972 0.9850
70 13.01 0.8103 0.9822
80 11.57 0.8066 0.9784
90 11.26 0.8158 0.9761
100 10.22 0.7893 0.9722

Table 7: Results for Hindi (hi) with varying con-
text weights. The table shows Average BLEU, Se-
mantic Similarity (hi-hi), and Normalized Seman-
tic Similarity (en-hi).

mary metrics to assess the performance of our
model under different weight configurations:
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Weight BLEU Sem. Sim. Norm. Sem.
0 12.24 0.7575 0.9380
10 16.47 0.7379 0.9426
20 11.67 0.6992 0.9215
30 14.29 0.6189 0.9437
40 10.06 0.5780 0.9532
50 8.83 0.5998 0.9611
60 8.43 0.5446 0.9570
70 7.10 0.5091 0.9559
80 8.50 0.5460 0.9617
90 8.81 0.5185 0.9583
100 6.43 0.5091 0.9474

Table 8: Results for Malayalam (ml) with varying
context weights. The table shows Average BLEU,
Semantic Similarity (ml-ml), and Normalized Se-
mantic Similarity (en-ml).

Weight BLEU Sem. Sim. Norm. Sem.
0 24.23 0.9348 0.9617
10 20.07 0.9266 0.9699
20 17.21 0.9072 0.9677
30 14.53 0.8957 0.9811
40 14.98 0.8607 0.9681
50 13.92 0.8670 0.9653
60 10.11 0.8319 0.9829
70 10.29 0.8380 0.9925
80 10.23 0.8545 0.9827
90 11.24 0.8498 0.9789
100 9.35 0.8486 0.9653

Table 9: Results for Bengali (bn) with varying con-
text weights. The table shows Average BLEU, Se-
mantic Similarity (bn-bn), and Normalized Seman-
tic Similarity (en-bn).

Weight BLEU Sem. Sim. Norm. Sem.
0 51.58 0.6187 0.9126
10 46.38 0.5599 0.9629
20 45.36 0.5358 0.9505
30 42.23 0.5031 0.9598
40 37.58 0.4829 0.9701
50 36.14 0.4712 0.9556
60 30.48 0.4366 0.9667
70 28.68 0.4344 0.9708
80 29.20 0.4407 0.9757
90 29.41 0.4361 0.9642
100 32.01 0.4442 0.9738

Table 10: Results for Hausa (ha) with varying con-
text weights. The table shows Average BLEU, Se-
mantic Similarity (ha-ha), and Normalized Seman-
tic Similarity (en-ha).

• BLEU Score: Bilingual Evaluation Un-
derstudy (BLEU) (Papineni et al., 2002)
measures the similarity between the gener-
ated caption and the reference caption. It
provides a quantitative measure of trans-
lation quality.

• Semantic Similarity (Sem. Sim.):
We use cosine similarity between sen-

tence embeddings to measure the se-
mantic closeness of the generated cap-
tion to the reference caption in the
target language. This metric is cal-
culated using the SentenceTransformer’s
SentenceBERT (Reimers and Gurevych,
2019) model ’distiluse-base-multilingual-
cased-v1’, which provides multilingual
sentence embeddings.

• Normalized Semantic Similarity
(Norm. Sem.): This metric compares
the semantic similarity of the generated
caption to the English source with that
of the reference translation to the English
source as the ratio of the two. It helps
assess how well the generated caption
preserves the meaning of the original
English caption relative to the reference
translation.

To ensure a comprehensive evaluation of our
approach across various scenarios, we con-
ducted an in-depth analysis on a diverse sub-
set of the corpus. This subset comprises 250
image-caption pairs, randomly selected from
the training, development, evaluation, and
challenge sets. Tables 7, 8, 9, and 10 present
the results for Hindi, Malayalam, Bengali, and
Hausa, respectively. The ’Weight’ column rep-
resents the percentage weight given to the
translated conversation, with the complemen-
tary weight assigned to the original English
caption. The reported metrics are averaged
over all 250 data points for each weight config-
uration.

Generally, BLEU scores decrease as more
weight is given to the translated conversation.
This suggests that higher weights on the orig-
inal caption produce translations more closely
aligned with the reference.

The semantic similarity between the gener-
ated and reference captions in the target lan-
guage tends to decrease with increasing weight
on the translated conversation. This indicates
that while the generated captions may become
more descriptive, they may deviate from the
reference in terms of semantic content.

Interestingly, the normalized semantic sim-
ilarity remains relatively stable across weight
distributions. This suggests that our approach
consistently preserves the semantic relation-
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ship between the English source and the gen-
erated caption, regardless of the weight distri-
bution.

While the highest BLEU scores are gener-
ally achieved with lower weights on the trans-
lated conversation, there’s a trade-off between
BLEU score and the richness of the generated
caption. A balanced approach (e.g., 50-50
weighting) often provides a good compromise
between translation accuracy and contextual
enrichment.

Notably, setting a 100% weight for the origi-
nal English caption allows us to evaluate GPT-
4’s zero-shot cross-lingual transfer capabilities
in direct translation tasks from English to
Hindi, Bengali, Malayalam, and Hausa. Con-
versely, assigning a 100% weight to the ad-
ditional context—which consists of the trans-
lated LLM-generated conversation in the tar-
get language—enables us to assess the model’s
abstractive summarization abilities in these
non-English languages. This analysis provides
insights into the models’ multilingual compe-
tence and their capacity for language under-
standing and generation across diverse linguis-
tic contexts.

5 Conclusion

Key strengths of our approach include its
training-free nature, which avoids propagating
errors from potentially flawed datasets, and
its flexibility in balancing source fidelity with
enhanced descriptiveness through a weighted
prompting strategy. The method’s multilin-
gual capability and rich context generation
offer promising avenues for dataset enrich-
ment and improvement in low-resource lan-
guages. In Section 4.1, we demonstrated
how our weighted prompting strategy serves
as a probe for assessing LLMs’ capabilities
in zero-shot cross-lingual transfer for direct
translation tasks, as well as their abstractive
summarization abilities in low-resource target
languages. However, we acknowledge limita-
tions such as reliance on LLM APIs, potential
for hallucination, and computational intensity.
The challenge of evaluating enhanced descrip-
tions with traditional metrics like BLEU also
highlights the need for more comprehensive
evaluation methods. Future work should focus
on:

• Conducting human evaluations to better
assess caption quality and appropriate-
ness.

• Analyzing specific cases of significant im-
provements or detractions from original
captions.

• Exploring applications in dataset error
correction and enhancement.

• Investigating performance across diverse
image types and caption complexities.

By addressing these areas, we aim to further
refine and expand the capabilities of our ap-
proach, potentially leading to more robust and
versatile multimodal translation systems. This
work represents a step towards bridging the
gap between high-resource and low-resource
languages in multimodal machine translation,
opening new possibilities for cross-lingual im-
age understanding and dataset enrichment.
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Abstract

We present the results of our constrained sub-
mission to the WMT 2024 shared task, which
focuses on translating from Spanish into two
low-resource languages of Spain: Aranese
(spa-arn) and Aragonese (spa-arg). Our sys-
tem integrates real and synthetic data generated
by large language models (e.g., BLOOMZ) and
rule-based Apertium translation systems. Built
upon the pre-trained NLLB system, our transla-
tion model utilizes a multistage approach, pro-
gressively refining the initial model through
the sequential use of different datasets, starting
with large-scale synthetic or crawled data and
advancing to smaller, high-quality parallel cor-
pora. This approach resulted in BLEU scores
of 30.1 for Spanish to Aranese and 61.9 for
Spanish to Aragonese.

1 Introduction

This work presents the results of our
constrained submission for the Translation
into Low-Resource Languages of Spain shared task
at WMT24.1 The task involves translating from
Spanish into two low-resource languages spoken in
the northeast of the Iberian Peninsula: Aragonese
(spa-arg) and Aranese (spa-arn).

Despite the existence of monolingual corpora
for these languages, parallel data from Spanish to
Aragonese is extremely scarce, amounting to only
about 60, 000 parallel sentences in OPUS (Tiede-
mann, 2016). In the case of Aranese, fewer than
a thousand parallel sentences are available (FLO-
RES+, Guzmán et al., 2019). In addition to that,
these Romance languages are notable for their
graphemic instability. Although proposals for or-
thographic standardization (Estudio de Filología
Aragonesa, 2010) and official recognition (Bo-
letín Oficial del Estado, 2006) have been intro-

1The source code for the experiments discussed in this ar-
ticle is available at https://github.com/jonathanmutal/
WMT-24-Submission.

duced, the absence of a commonly accepted writ-
ing system has hindered the development of ma-
chine translation (MT) systems into Aragonese and
Aranese (Forcada, 2020).

A few previous works have explored MT for
these language combinations. For instance, Aper-
tium MT systems (Forcada et al., 2011) provided
translations for the above-mentioned pairs using a
rule-based approach, achieving better results than
neural-based MT systems (Oliver, 2020). Simi-
larly, Cortés et al. (2012) complemented Apertium
with an additional orthographic module, and pro-
posed a bidirectional spa-arg MT system. More
recently, a multilingual MT model (No Language
Left Behind, NLLB Team et al., 2022) included
under-resourced Iberian languages like Asturian in
its training set. However, it did not cover Aranese
or Aragonese.

Given the characteristics of this low-resource
scenario, we addressed the translation from Span-
ish into Aragonese and Aranese using a multilin-
gual multistage approach. The multilingual aspect
involved leveraging data from linguistically related
languages (such as Occitan for Aranese transla-
tion), and employing multilingual pre-trained mod-
els (specifically, NLLB2) to facilitate generaliza-
tion across different languages. The multistage
approach was designed to consecutively enhance
translation performance in the target languages us-
ing increasingly specific fine-tuning data sets.

Additionally, we applied data augmentation tech-
niques to increase the volume of relevant data in our
training set. This involved: i) resorting to LLMs
within the constraint of one thousand million pa-
rameters (in particular, BLOOMZ3) to synthetically
create more data in the target languages, and ii) pro-
ducing aligned data through Apertium systems on

2Particularly, the following model: https://
huggingface.co/facebook/nllb-200-distilled-600M.

3Specifically: https://huggingface.co/bigscience/
bloomz-560m.
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the basis of real and synthetic monolingual data
from both sides of the languages pairs.

The structure of this paper is as follows: Sec-
tion 2 describes the methods employed to gather
parallel and monolingual data for our experiments.
Section 3 introduces the multistage fine-tuning ap-
proach. In Section 4, we discuss the experiments
conducted on both language combinations and the
results obtained. Lastly, Section 5 summarizes our
findings and suggests directions for future research.

2 Data

To train our MT spa-arn and spa-arg models, we
first compiled parallel data from OPUS and FLO-
RES+ (FLORES+DEV) bilingual corpora. We then
compiled monolingual data from two sources: i) we
sub-sampled 19 million sentences from Wikimedia
and NLLB datasets available in OPUS for Spanish,
and ii) we collected all monolingual corpora for
Aragonese, Aranese and Occitan from OPUS and
PILAR (Galiano-Jiménez et al., 2024) when avail-
able. Table 1 details the number of segments in the
bilingual corpora, and Table 2 reports the segments
counts for each monolingual corpus. The notation
“k” denotes thousands, and “M” signifies millions.
A ✗ indicates the absence of available data.

Corpus spa-arn spa-oci spa-arg

OPUS ✗ 1.11M∗ 60k
FLORES+DEV 997 997∗∗ 997

Table 1: Number of parallel segments for the avail-
able bilingual dataset. ∗CCMATRIX was not utilized.
∗∗These sentences were not used in any experiment.

Corpus spa arn oci arg

OPUS 19M ✗ 739k 213k
PILAR ✗ 322k∗ ✗ 84k

Table 2: Number of monolingual segments for each
available dataset. ∗Monolingual paragraphs were not
utilized.

2.1 Synthetic Monolingual Data

We generated synthetic monolingual data in
Aranese using BLOOMZ (Muennighoff et al.,
2023). To do so, we fine-tuned BLOOMZ with
the monolingual data (i.e., PILAR) using a causal
language modeling objective, which involves pre-
dicting the next token in a sequence. We used

a learning rate of 5 × 10−5 with an early stop-
ping mechanism based on accuracy with a patient
value of 5. As for the validation data, we randomly
picked 1, 000 segments extracted from the same
data distribution.

To generate new sentences in the target lan-
guage, we took the beginnings of sentences in
FLORES+DEV. Then, the model completed seg-
ments from varying numbers of input words (rang-
ing from 1 to 60 words) and generated up to a maxi-
mum of 65 tokens. We produced 59, 820 (997×60)
sentences in Aranese using multinomial sampling.
All other generation hyperparameters were set to
their default values.4

2.2 Synthetic Parallel Data
Using the monolingual and synthetic data described
above, we produced parallel data through Apertium
systems (see Table 3). The following strategies
were employed to synthetically create parallel sets:

• Forward translation (Burlot and Yvon,
2018). We generated synthetic Aranese, Occi-
tan and Aragonese from monolingual Spanish
(see Table 2).

• Backtranslation (Sennrich et al., 2016). We
backtranslated the segments from monolin-
gual Occitan, Aranese, and Aragonese. We
also backtranslated synthetic segments in
Aranese produced by BLOOMZ (see Sec-
tion 2.1).

Strategy Corpus spa-arn spa-oci spa-arg

FT OPUS 20M 20M 20M

BT
OPUS ✗ 1.8M 273k
PILAR 322k ✗ ✗

BLOOMZ 59k ✗ ✗

Total 20.3M 21.8M 20.2M

Table 3: Training data synthetically generated using
forward translation (FT) and backtranslation (BT).

3 Approach

Our approach, termed “multistage fine-tuning” in-
volves sequentially refining a model using multiple
datasets arranged in a specific order – a method
proven to improve performance in machine transla-
tion for low-resource language pairs (Dabre et al.,
2019).

4See documentation: https://huggingface.co/docs/
transformers/en/main_classes/text_generation.
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System Stage Data BLEU↑ ChrF↑ TER↓
Apertium - - 28.8 49.4 72.3
MarianNMT 1 OPUS+PILAR (38M) 25.0 47.1 76.4
Helsinki-NLP 1 OPUS+PILAR (38M) 22.3 45.6 81.9
NLLB 1 OPUS+PILAR (38M) 29.0 49.4 72.3
NLLB 2.i PILAR 28.2 48.8 73.0
NLLB 2.ii PILAR+BLOOMZ 28.9 49.2 72.5
NLLB 3.i FLORES+DEV

∗30.0 ∗49.7 ∗71.8
NLLB 3.ii FLORES+DEV

∗30.1 ∗49.8 ∗71.5

Table 4: BLEU, ChrF and TER calculated on the test data for spa-arn. Scores with ∗ are significantly better than
the baseline Apertium with p < 0.01, calculated using paired approximate randomization with 10, 000 trials.

In this work, the models were initially trained
using large-scale synthetic or crawled data aiming
to match or surpass the performance of the open-
source Apertium MT systems. Following this, the
models underwent further fine-tuning with smaller,
high-quality parallel corpora to improve their per-
formance.

Performance comparisons for the initial models
were conducted among three systems: i) a model
built from scratch using MarianNMT (Junczys-
Dowmunt et al., 2018); ii) a fine-tuned Helsinki-
NLP model with ≈72M parameters; and iii) a fine-
tuned large language model, NLLB, trained on 200
different languages with a larger number of param-
eters (600M). This enabled us to identify the best
performing model for the first stage.

4 Experiments and Results

All our systems are Encoder-Decoder models based
on the Transformer architecture (Vaswani et al.,
2017). The models were trained until convergence,
with training progress monitored using BLEU score
each 5, 000 steps and an early stopping patience
value of 10 using FLORES+DEV as validation data.
The details of the training procedure and the results
obtained for validation are detailed in Appendix A
and B.

In the following sections, we describe the evalu-
ation setup as well as the experiments and results
obtained for each language pair.

4.1 Evaluation Setup

We evaluated our models using the FLORES+ test
data (1, 012 sentences). We calculated accuracy-
based metrics BLEU (Papineni et al., 2002) and
ChrF (Popović, 2015), and also computed an error-
based metric, i.e., Translation Error Rate (TER,
Snover et al., 2006). All metrics were calculated

using the Sacrebleu implementation (Post, 2018).5

We used paired approximate randomization with
10, 000 trials to calculate the level of significance
of the results.

We compared the performance of our models
with Apertium MT systems, which are strong base-
lines for these language pairs.

4.2 Spanish-Aranese

For this specific language pair, we had almost no
parallel sentences, but we did have a larger corpus
of parallel sentences from a linguistically close lan-
guage, Occitan (see Tables 1 and 2). To leverage
the non-negligible quantity of data in this language,
we built an MT model using all available data in
Occitan and Aranese. In previous experiments,
we observed that fine-tuning NLLB with multi-
lingual data (i.e., Spanish-Aranese and Spanish-
Occitan) outperformed its bilingual version (i.e.,
Spanish-Aranese). We also observed that using
special tokens to differentiate the two languages is
beneficial, and thus used them whenever possible.
Appendix A.1 and A.2 show the results of these
experiments.

Consequently, in the first stage, the models lever-
aged all available multilingual data from the OPUS
and PILAR (including also synthetic data pro-
duced by forward and backtranslation), comprising
roughly 42M sentences in Occitan and Aranese.
We excluded sentences longer than 100 tokens, re-
sulting in a total of 38M segments. We deliberately
omitted synthetic data from BLOOMZ and the val-
idation set to mitigate the risk of overfitting and
ensure generalization in the first stage.

In the second stage, the NLLB model, identified

5The signatures are:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no
nrefs:1|case:lc|tok:tercom|norm:no|punct:yes|asian:no.
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System Stage Data BLEU↑ ChrF↑ TER↓
Apertium - - 61.1 79.3 27.2
MarianNMT 1 OPUS (15M) 58.2 77.8 29.9
Helsinki-NLP 1 OPUS (15M) 57.5 77.2 30.5
NLLB 1 OPUS (15M) ∗60.5 ∗79.0 ∗27.7
NLLB-Post-Edition 2 FLORES+DEV 61.0 ∗78.9 27.2
NLLB-Translation 2 FLORES+DEV

∗61.9 79.5 ∗26.8

Table 5: BLEU, ChrF and TER calculated on the test data for spa-arg. Scores with ∗ are significantly better or
worse than the baseline Apertium with p < 0.01, calculated using paired approximate randomization with 10, 000
trials.

as the most performing from the first stage, was
fine-tuned using two different data combinations:
PILAR data (2.i), and a combination of PILAR
and synthetic Aranese data from BLOOMZ (2.ii).
To mitigate the risk of overfitting in 2.ii, we fine-
tuned the model using a fixed number of steps to
reach a slightly higher validation BLEU score than
the model trained in 2.i. During the third and fi-
nal stage, the two models from the previous stage
underwent 7, 500 additional training steps on the
FLORES+DEV (3.i and 3.ii).

Results Results from the first stage showed
that NLLB slightly outperformed the Apertium
spa-arn system by 0.2 BLEU points, although
this improvement was not statistically significant.
MarianNMT and Helsinki-NLP performed worse
than Apertium, which appears to agree to the find-
ings in Oliver (2020). Interestingly, MarianNMT
outperformed Helsinki-NLP, which might indicate
that knowledge acquired during pre-training does
not help to the task at hand. The underlying reasons
for this discrepancy should be explored in future
research.

The most performing model, NLLB (stage 3.ii),
which was trained through a three-stage process,
surpassed all previous models, improving the Aper-
tium systems by 1.3 BLEU points and 0.4 ChrF
points, and reduced the TER by 0.8 points.

The results indicate that the multistage approach
enhance model performance. They also under-
score the importance of a high-capacity model pre-
trained on a diverse set of languages to improve
translation from Spanish to Aranese. Additionally,
the findings suggest that integrating synthetic data
generated by BLOOMZ is beneficial in the third
stage of fine-tuning (NLLB 3.i vs. NLLB 3.ii).6

6We also fine-tuned the resulting NLLB model from the
first stage with FLORES+DEV data using 7, 500 steps. It un-
derperformed the systems from the third stage.

4.3 Spanish-Aragonese

The model training for spa-arg was conducted in
two stages. In the first stage, we used all OPUS-
based synthetic data from Spanish to Aragonese
to fine-tune NLLB.7 This initial corpus amounted
to roughly 20M parallel sentences, but we later
filtered out the source or target sentences exceeding
100 tokens, which resulted in 15M pairs. With this
set, we achieved comparable performance to the
Apertium MT system in the validation data.

In the second stage, the model was fine-tuned
with a lower learning rate, and utilized the
FLORES+DEV in two different approaches:

• Translation, using as source the original sen-
tences in Spanish.

• Post-Edition (PE), using the Aragonese gen-
erated by the Apertium rule-based system
as the source to train a post-edition model
(apertium_arg-arg).

Results The experiments indicate that the perfor-
mance is superior for translation tasks compared
to post-edition tasks. Specifically, our optimal sys-
tem, NLLB-Translation, surpassed the Apertium
baseline by 0.8 BLEU points and reduced the trans-
lation error rate by 0.4 points.

Regarding the PE model, we assumed that a sys-
tem trained using apertium_arg-arg could only
help correct the mistakes made by such rule-based
approach and thus improve its performance. Sur-
prisingly, the resulting model (NLLB-Post-Edition)
did not outperform the rule-based system, and in-
stead degraded its results (see Table 5). One pos-
sible explanation for this is that the NLLB model
from stage 1 was trained on spa-arg translation

7In previous experiments, we observed that PILAR was
not helpful for the spa-arg task, so we decided to exclude it
from the training set in our final models.
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data rather than post-edition data. Further experi-
ments need to be conducted in order to better un-
derstand the behavior of the PE model.

On another note, the results obtained for the
fine-tuned Helsinki-NLP model revealed that the
knowledge gained during pre-training does not ap-
pear to improve the results on the task. As can be
observed, the model trained from scratch (Mari-
anNMT) slightly outperforms the small-scale fine-
tuned one (Helsinki-NLP), verified by the paired
bootstrap statistical test.

5 Conclusions

Our experiments demonstrate the potential of com-
bining synthetic data with multilingual pre-trained
models to improve translation from Spanish into
Iberian low-resource languages like Aranese and
Aragonese. By leveraging data from linguisti-
cally related languages and employing a multistage
approach, the spa-arn model achieved a BLEU
score of 30.1, while the spa-arg model (NLLB-
Translation) achieved 61.9 BLEU points. Our find-
ings also indicate that the NLLB model, which
benefited from a large number of pre-trained lan-
guages and high model capacity, delivered the best
performances.

While these results are promising, we have iden-
tified several avenues for future research. One key
area is to explore the impact of the ratio of real
vs. synthetic data for training, as it can help eval-
uate how changes in data composition influence
automatic metrics. Additionally, we plan to investi-
gate the integration of external resources, such as
dictionaries (Institut d’Estudis Aranesi, 2019) and
orthographic standards (Academia Aragonesa de
la Lengua, 2023), to determine whether these can
further enhance the performance of our models.
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A Training Setup NLLB and
Helsinki-NLP

We employed the Adam optimizer with a batch size
of 16. We used 50 warm-up steps, and the number
of beams was set to 5. The maximum sequence
length was set to 100, and the remaining hyper-
parameters were left unchanged8, except for the
learning rates which are reported in the following
sections. All experiments were conducted using
the Transformers library (Wolf et al., 2020) and the
University of Geneva HPC clusters, Baobab and
Yggdrasil. We used a fixed seed (111) for repro-
ducibility purposes.

A.1 Helsinki-NLP Results
Given the absence of Aragonese or Aranese as tar-
gets in any of the existing OPUS-based Helsinki-
NLP MT models, we decided to fine-tune them
using different target languages. More specifically,
our goal was to determine which of the available
Romance languages (namely, Galician, Catalan,
French, Italian and Romanian) would be most rele-
vant for the spa-arg and spa-arn tasks.

After conducting an initial round of experiments,
we observed that a geographically close language,
Italian (i.e., Helsinki-NLP/opus-mt-es-it),
most aided the translation into Aragonese on
the validation set. Similarly, Catalan (i.e.,
Helsinki-NLP/opus-mt-es-ca) proved to be
the most helpful target language for Aranese
translation. For this language combination, we also
conducted experiments to evaluate the potential
gain from the use of two dedicated special tokens
for Aranese and Occitan. Specifically, we used
<arn> for Aranese and <ca> for Occitan.

LR BLEU ChrF
1× 10−5 59.1 78.6
2× 10−5 61.9 80.1
3× 10−5 62.1 80.3
4× 10−5 62.1 80.3
5× 10−5 62.2 80.3

Table 6: Results of Helsinki-NLP spa-arg models on
validation data with different learning rates.

Once we selected the most relevant model for
each language pair, we used different learning rates
to fine-tune them for our task at hand. Table 6
reports the BLEU and ChrF results for spa-arg

8Refer to: https://huggingface.co/docs/autotrain/
en/seq2seq_params.

translation. Table 7 shows the results for the two
versions of our spa-arn models: one that uses a
single special token (<ca>) and another one that
distinguishes between the two languages with dis-
tinct special tokens (<ca>|<arn>). All experiments
were conducted using the Trainer class.9

LR BLEU ChrF

Helsinki-NLP<ca>

1× 10−5 26.0 52.7
2× 10−5 26.5 53.2
3× 10−5 24.8 52.2
4× 10−5 25.8 52.8

Helsinki-NLP<ca>|<arn>

1× 10−5 29.7 54.9
2× 10−5 28.6 54.3
3× 10−5 28.8 54.2
4× 10−5 29.0 54.9

Table 7: Results of Helsinki-NLP spa-arn models on
validation data with different learning rates and different
special token configurations.

A.2 NLLB Results
To generate Aranese, we used the Occitan spe-
cial token (oci_Latn) in the target, which is pre-
sumably the closest language to Aranese covered
by NLLB. Similarly to the Helsinki-NLP models,
we used the Italian special token (ita_Latn) for
Aragonese.

LR BLEU ChrF

NLLB-Bi<oci>

9× 10−6 37.7 59.9
1× 10−5 37.7 59.9
3× 10−5 37.6 59.8

NLLB-Multi<oci>

9× 10−6 29.5 55.0
1× 10−5 28.3 54.3
3× 10−5 26.5 53.2

NLLB-Multi<oci>|<cat>

9× 10−6 37.8 60.0
1× 10−5 38.1 60.1
3× 10−5 37.9 60.0

Table 8: Results of NLLB spa-arn bilingual (NLLB-
Bi<oci>) and multilingual models (NLLB-Multi<oci> and
NLLB-Multi<oci>|<cat>) on validation data with different
learning rates and special token configurations.

For Aranese translation, we carried out exper-
iments to evaluate the gain of using a dedicated
special token for Aranese and Occitan. In partic-
ular, we compared the performance of a multilin-
gual model trained with Aranese and Occitan us-
ing the same token (oci_Latn), NLLB-Multi<oci>,
and another model using two special tokens: one
for Aranese (oci_Latn) and a different one for

9Refer to: https://huggingface.co/docs/
transformers/main_classes/trainer.
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Occitan (cat_Latn), NLLB-Multi<oci>|<cat>. We
also assessed the performance of a bilingual model
trained only with Spanish-Aranese data for com-
parison purposes (NLLB-Bi<oci>). Table 8 shows
the results on the validation data for the three ap-
proaches, indicating that the use of special tokens
to differentiate the language is beneficial, and so is
including Occitan in the training set.

Data PILAR PILAR+BLOOMZ
LR BLEU ChrF BLEU ChrF
1× 10−8 35.2 57.5 38.1 60.1
5× 10−8 36.0 58.4 38.0 60.0
1× 10−6 37.7 59.9 39.2 60.5
9× 10−6 37.4 59.6 39.9 60.9

Table 9: Results of NLLB on stage two with PILAR
and BLOOMZ on validation data with different learning
rates.

Table 9 shows the results of NLLB on stage
two and Table 10 shows the results of NLLB on
spa-arg.

LR BLEU ChrF
5× 10−7 64.2 81.4
1× 10−6 63.6 81.1
3× 10−6 65.2 81.9
9× 10−6 65.2 81.9
1× 10−5 65.4 82.0
3× 10−5 65.3 81.9

Table 10: Results of NLLB-Baseline spa-arg on vali-
dation data with different learning rates.

B MarianNMT Setup and Results

LR BLEU ChrF
3× 10−5 26.6 53.2
5× 10−5 29.6 54.9
3.5× 10−4 30.5 55.5
3× 10−3 n.a.n n.a.n

Table 11: Results of MarianNMT spa-arn models on
validation data with different learning rates.

We used the default hyperparameters from the
Marian toolkit (Junczys-Dowmunt et al., 2018) to
train the models.10 We conducted all experiments
employing three random seeds and averaging the
results measured by the automatic metrics. This

10Refer to: https://marian-nmt.github.io/docs/
cmd/marian/.

LR BLEU ChrF
3× 10−5 55.7 78.6
5× 10−5 53.3 77.7
3.5× 10−4 50.9 76.8
3× 10−3 n.a.n n.a.n

Table 12: Results of MarianNMT spa-arg models on
validation data with different learning rates.

approach is intended to reduce the variability of
results inherent to individual models randomly ini-
tialized.

Tables 11 and 12 present the results for spa-arn
and spa-arg across different learning rates. The
notation “n.a.n” indicates that the model diverged
at that particular learning rate.
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Abstract

This paper describes the systems presented by
the TAN-IBE team into the WMT24 Shared
task Translation into Low-Resource Languages
of Spain. The aim of this joint task was to
train systems for Spanish-Asturian, Spanish-
Aragonese and Spanish-Aranesian. Our team
presented systems for all three language pairs
and for two types of submission: for Spanish-
Aragonese and Spanish-Aranese we partici-
pated with constrained submissions, and for
Spanish-Asturian with an open submission.

1 Introduction

The TAN-IBE team, consisting of participants from
the project TAN-IBE: Neural Machine Translation
for the Romance Languages of the Iberian Penin-
sula (Oliver et al., 2023), has developed systems for
all language pairs in the task and participated with
two types of submissions: Spanish-Asturian (open
submission), Spanish-Aragonese (constrained sub-
mission), and Spanish-Aranese (constrained sub-
mission).

The principal concern of the team was not only
the scarcity of resources for these language pairs
but also the inadequate quality of the available re-
sources. In order to address these issues, we de-
cided to:
• Clean the existing parallel corpora using a tool de-

veloped during the project that rechecks the lan-
guage of the segments and calculates the cosine
similarity between source and target segments.

• Create parallel corpora from Wikipedia for all
three language pairs.

• Experiment with the use of backtranslation.
• Experiment with the use of synthetic corpora.
• Experiment with the use of multilingual systems.

For some of the language pairs and direction of
the shared task, a freely available rule-based MT
system exists: Apertium1 (Forcada et al., 2011;

1https://apertium.org/

Khanna et al., 2021). In previous research (Oliver,
2020), it was demonstrated that Apertium achieves
highly competitive quality, and that it is challeng-
ing for a neural system to achieve superior quality
results. Consequently, this system has been em-
ployed to create backtranslated and synthetic cor-
pora. Furthermore, Apertium will be employed as
a reference system to facilitate the evaluation of the
trained systems prior to submission to the shared
task. The specific versions of Apertium used for
each language pair are: Spanish–Aragonese 0.6.0,2

Spanish–Aranese 1.0.8,3 Spanish–Asturian 1.1.1.4

2 Tools

To train the NMT systems we have used the marian-
nmt5 (Junczys-Dowmunt et al., 2018). All the sys-
tems have been trained with a Transformer-big con-
figuration. To calculate the subwords units, we
have used SentencePiece6 (Kudo and Richardson,
2018). Additional information on other training pa-
rameters can be found in the subsections for each
system.

In order to create the parallel corpora and to
clean and preprocess the corpora, several compo-
nents of the MTUOC project7 (Oliver and Alvarez,
2023) have been employed. It should be noted that
several of these components have been developed
during the course of the TAN-IBE project. The
components that have been used are as follows:
• To create parallel corpora from the Wikipedia:

MTUOC-WikipediaDump8 and MTUOC-

2https://github.com/apertium/apertium-spa-arg/
releases/tag/v0.6.0

3https://github.com/apertium/apertium-oc-es/
releases/tag/v1.0.8

4https://github.com/apertium/apertium-spa-ast/
releases/tag/v1.1.1

5https://marian-nmt.github.io/
6https://github.com/google/sentencepiece
7https://mtuoc.github.io/
8https://github.com/mtuoc/

MTUOC-WikipediaDumps
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aligner.9

• To clean both the existing and the newly cre-
ated parallel corpora: MTUOC-clean-parallel-
corpus,10 that performs several cleaning oper-
ations; and MTUOC-PCorpus-rescorer,11 that
rechecks the language of the segments and cal-
culates the cosine similarity using a multilingual
model, as SBERT, for example.

• To select from a large corpus the most similar
segments from a large corpus: MTUOC-corpus-
combination.12

• To preprocess the parallel corpora to train the
systems: MTUOC-corpus-preprocessing.13

For some cleaning operations the language of the
segments should be detected. As Asturian, Aranese
and Aragonses are underrepresented in available
language detection models, we decided to develop
our own language detection model using fasttext14

(Joulin et al., 2016). We trained a model able to de-
tect the following languages: Aragonese, Aranese,
Asturian, Catalan, English, French, Galician, Occi-
tan, Portuguese and Spanish. For all the languages,
except for Aranese, we used 400K segments from
the Wikipedia. As no Wikipedia is available for
Aranese, we used 297,557 segments from the PI-
LAR corpus.15

The trained model performs similarly to Id-
iomata Cognitor16 (Galiano-Jiménez et al., 2024),
with the difference than Italian is included in this
tool. In Table 1, the precisions calculated using the
FLORES+ dev corpus for Idiomata Cognitor and
our trained language detection model are presented.

We decided to train our own language detection
model because fasttext models integrate seamlessly
in our corpus cleaning scripts, and the same train-
ing strategy can be used in future experiments with
language not present in Idomata Cognitor.

3 Existing resources

Table 2 provides an overview of the existing cor-
pora that have been employed for system training,

9https://github.com/mtuoc/MTUOC-aligner
10https://github.com/mtuoc/

MTUOC-clean-parallel-corpus
11https://github.com/mtuoc/

MTUOC-PCorpus-rescorer
12https://github.com/mtuoc/

MTUOC-corpus-combination
13https://github.com/mtuoc/

MTUOC-corpus-preprocessing
14https://fasttext.cc/
15https://github.com/transducens/PILAR
16https://github.com/transducens/idiomata_

cognitor

Language Idiomata
Cognitor

TAN-IBE
fasttext model

Spanish 0.95 0.95
Catalan 1.00 0.99
Aragonese 0.96 1.00
Aranese 0.96 1.00
Occitan 0.94 0.93
Asturian 0.99 0.98
Galician 0.98 0.99
French 1.00 1.00
Portuguese 1.00 0.99

Table 1: Precision on language detection for Idiomata
Cognitor and our trained fasttext model.

accompanied by the number of segments in the
original corpora and the number of segments re-
sulting from the cleaning process peformed with
MTUOC-PCorpus-rescorer. As previously stated,
this tool performs a second language detection of
the segments using fasttext and calculates a cosine
similarity between the source and target segments
using SBERT. As the default language detection
model used in fasttext have been trained with under-
represented texts for Asturian, Aragonese and Oc-
citan (Aranese), we decided to retrain a language
model for the cleaning of corpora for these lan-
guages, as explained in section 2. Please, note that
there are no available parallel corpora for Aranese,
and in the table we state the figures for the Spanish-
Occitan parallel corpus used.

Langs Corpus Raw Clean
spa-ast NLLB 6,470,015 504,532
spa-arg Wikimatrix 33,724 16,456
spa-oci NLLB 925,448 108,440

Table 2: Size of the existing corpora in segments used
for training the systems

4 Newly created resources

As the available corpora for the working language
pairs are clearly insufficient to train NMT sys-
tems we have created a new parallel corpus from
Wikipedia dumps. To this end, we have developed
a series of scripts, which are freely available at
the MUTOC-WikipediaDumps repository, that are
capable of:
• Extract all the text from the Wikipedia dump,

along with a file containing the titles of the arti-
cles. This process is performed for the smaller
Wikipedias, in this case the Asturian, Aragonese
and Aranese.

• Translate the list of titles of the extracted articles
into Spanish using the langlinks database dump.
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• Extract the text of the articles of the larger
Wikipedia, in our case the Spanish one, restrict-
ing the extracted articles to the titles in the trans-
lated title list.
It should be noted that this process is car-

ried out separately for Spanish-Asturian, Spanish-
Aragonese and Spanish-Occitan. Once the text has
been obtained, it is segmented and the resulting
segments are deduplicated and a file is generated
for each language pair, containing all the source
segments and a file for all the target segments. For
the creation of the Wikipedia corpora we have used
the dumps of first of May of 2024. All the created
corpora can be downloaded from Github.17

To align the files we use a bitext mining strat-
egy using SBERT, implemented in the MTUOC-
Aligner. The alignment process gives sets of
aligned files that contain source segment, target
segment and a margin score. The resulting aligned
files are cleaned using MTUOC-PCorpus-rescorer,
using a confidence of 0.75 for language detection
and SBERT score. In table 3 illustrates the raw
and cleaned number of parallel segments obtained
through this process.

Langs Raw Clean Backtrans.
spa-ast 2,194,031 1,193,264 4,023,140
spa-arg 153,863 32,374 386,666
spa-oci 295,476 55,112 1,151,205

Table 3: Size of the Wikipedia corpora created

Additionally, the extracted text from Wikipedia
in Asturian, Aragonese and Occitan has been
employed to generate back-translated Spanish-
Asturian, Spanish-Aragonese and Spanish-Occitan
corpora. In order to achieve this, it is necessary
to have access to machine translation systems that
are capable of functioning in the opposite direction.
Fortunately, Apertium provides translation systems
for Aragonese-Spanish and Occitan-Spanish, but
not for Asturian-Spanish. To address this gap, we
have trained a Transformer Neural system using
the cleaned NLLB and the Wikipedia corpus cre-
ated for this purpose. This system was then used
for backtranslation. In subsection 5.1 more details
on this system, along with evaluation figures are
presented. Table 3 shows the number of segments
in the backtranslated Wikipedia corpus.

As previously stated, there are no available cor-
pora for the Spanish-Aranese language pair, and
there is no Wikipedia version for Aranese either.

17https://github.com/mtuoc/WikipediaCorpora

Therefore, no parallel resources for this language
pair can be employed. For this language pair, we
have utilised the monolingual data available in the
PILAR (Pan-Iberian Language Archival Resource)
and backtranslated it into Spanish using Apertium.
This process yielded 297,557 backtranslated paral-
lel segments.

In order to augment the number of parallel cor-
pora, we devised a method for the generation
of synthetic data utilising the Spanish-Catalan
Paracrawl corpus, which had been previously sub-
jected to cleaning procedures. The 13 million
Spanish segments were translated into Asturian,
Aragonese and Aranese using Apertium. For each
translated segment, a confidence score was calcu-
lated as the ratio of the unknown words (marked
with an asterisk by Apertium) to the total number
of words.

In the case of the multilingual system under ex-
perimentation, the parallel corpora presented in
Table 4 were also employed. With regard to the
Spanish-Catalan and Spanish-Galician languages,
a parallel corpus was created from Wikipedia, as
previously described.

Langs Corpus Raw Clean
spa-cat Paracrawl 17,238,953 13,931,594
spa-cat Wikipedia 5,790,903 2,586,448
spa-fra MultiParacrawl 39,026,138 -
spa-fra WikiMatrix 905,761 -
spa-glg Paracrawl 1,879,649 -
spa-glg Wikipedia 1,697,307 729,840
spa-por MultiParacrawl 26,181,054 -
spa-por WikiMatrix 923,725 -

Table 4: Additional parallel corpora used to train the
multilingual system

5 Trained systems and evaluation

In this section we will present all the trained sys-
tems for this shared task, along with evaluation fig-
ures using the FLORES+ devtest sets developed by
the organisers of the shared task. To calculate the
evaluation metrics (BLEU, TER and chrF will be
presented), we have used Sacrebleu18 (Post, 2018).
In Appendix 8 we present the metric signatures for
these metrics.

5.1 Neural Asturian-Spanish for
backtranslation

In order to create back-translated corpora for
Aragonese and Aranese, the Apertium system was

18https://github.com/mjpost/sacrebleu
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employed, given that it is available for these lan-
guage pairs. However, the Asturian-Spanish pair is
not available in Apertium. Consequently, a neural
system was trained using Marian and the following
parallel corpora: NLLB cleaned (see table 2) and
the newly created Wikipedia corpus (see table 3).
A transformer configuration using SentencePiece
with a vocabulary size of 32K has been used.

Table 5 presents the evaluation metrics for
the trained systems, along with the metrics for
the Apertium system for Aragonese-Spanish and
Aranese-Spanish, using the FLORES+ devtest
sets.19 For purposes of comparison, the evalua-
tion figures for all reverse translation directions are
also provided. It should be noted that Apertium
systems are available for all reverse directions.

System BLEU chrF TER
Marian ast-spa 24.0 53.5 57.4
Apertium arg-spa 61.4 77.9 26.7
Apertium oci-aran–spa 26.7 47.2 70.8
Apertium spa-ast 17.0 50.8 80.4
Apertium spa-arg 61.1 79.3 27.2
Apertium spa–oci-aran 28.8 49.4 72.3

Table 5: Evaluation figures for the systems used to
create backtranslated corpora.

A number of conclusions can be drawn from
Table 5. The Apertium systems for Aragonese-
Spanish and Spanish-Aragonese achieve highly
comparable results, as do the pairs Aranese-
Spanish and Spanish-Aranese. Consequently, given
that the Marian system for Asturian-Spanish attains
superior outcomes compared to the reverse system
Spanish-Asturian, it can be inferred that the quality
of the training system is analogous to, and even
surpasses, that of the Apertium systems utilised for
backtranslation.

The Asturian-Spanish NMT system was em-
ployed to backtranslate the segments from the
NLLB corpus that were identified as Asturian, but
with translations in languages other than Spanish
or with Spanish translations with SBERT scores
below 0.75. The resulting backtranslated Spanish-
Asturian corpus comprises 2,084,594 segments.

5.2 Basic neural Spanish-Asturian system

The basic neural system for Spanish-Asturian has
been trained using the same configuration than
the Asturian-Spanish for backtranslation, that is:
NLLB cleaned (see table 2) and the newly cre-

19Apertium v 3.9.4; linguistic data versions: spa-ast v.1.1.1-
1; spa.arg v.0.6.0-1; es-oc v1.0.8-1

ated Wikipedia corpus (see table 3). A transformer
configuration using SentencePiece with a vocabu-
lary size of 32K has been used. In table 6 we can
observe the evaluation figures for this system. It
can be observed that this basic system attains infe-
rior results in comparison to Apertium (see Table
5). The BLEU score is 15.3, whereas Apertium
achieves 17.0.

5.3 Basic neural Spanish-Aragonese system

The basic neural system for Spanish-Aragonese
has been trained using the same configuration than
the Asturian-Spanish, using the following corpora:
Wikimatrix cleaned (see table 2), the newly cre-
ated Wikipedia corpus (see table 3, and the newly
created backtranslated Wikipedia corpus (see table
3).

In table 6 we can observe the evaluation figures
for this system. The evaluation results obtained
by this system are significantly lower (18.8 BLEU)
than the obtained by Apertium (see Table 5) (61.1
BLEU).

5.4 Multilingual system

As no parallel corpora are available for Aranese,
and the available for Aragonese are very small,
we experimented with multilingual systems to see
whether the multilingual configuration may pro-
duce good results for these two languages, and may
also improve the results obtained for Asturian.

We have trained a multilingual system from
Spanish to the following languages: Aragonese,
Aranese, Asturian, Catalan, Galician, French, Occ-
itan and Portuguese. To train this system we have
used the following corpora:
• Spanish-Aragonese: WikiMatrix cleaned (see

table 2), newly created Wikipedia corpus (see ta-
ble 3), Wikipedia backtranslated using Apertium
(see table 3).

• Spanish-Aranese: Pilar backtranslated using
Apertium.

• Spanish-Asturian: NLLB cleaned (see table 2),
Wikipedia clean (see table 3) and the backtrans-
lated corpus described in 5.1

• Spanish-Catalan: 10 M segments automatically
selected form Paracrawl cleaned (see table 4)

• Spanish-Galician: all segments available in
Paracrawl cleaned (see table 4)

• Spanish-French: 10 M segments automatically
selected form MultiParacrawl cleaned (see table
4)
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• Spanish-Occitan: NLLB cleaned (see table 2),
newly created Wikipedia corpus (see table 3),
Wikipedia backtranslated using Apertium (see
table 3).

• Spanish-Portuguese: 10 M segments automati-
cally selected form MultiParacrawl cleaned (see
table 4)
To calculate the SentencePiece model for the

multilingual system we have randomly selected
1M segments from each language pair, except for
Aragonese and Aranese, for which we have used
all the available segments. The final multilingual
system uses an ensemble of the three best check
points regarding BLEU DETOK.

Table 6 presents the evaluation figures for the
multilingual system. With regard to Spanish-
Asturian, the multilingual configuration exhibits
an increase of 0.9 BLEU points in comparison to
the basic system. However, this figure remains 0.8
BLEU points below the level achieved by Aper-
tium. In the case of Spanish-Aragonese, the multi-
lingual system exhibits a noteworthy enhancement
of 13.3 BLEU points. Nevertheless, it remains
considerably distant (29 BLEU points) from the
performance of Apertium. In the case of Spanish-
Aranese, the multilingual configuration yielded a
BLEU score that was 8.7 points lower than that
obtained with Apertium.

System langs. BLEU chrF TER
Basic spa-ast 15.3 48.0 77.5
Basic spa-arg 18.8 51.5 67.2
Multilingual spa-ast 16.2 50.0 75.8
Multilingual spa-arg 32.1 65.3 48.0
Multilingual spa–oci-aran 20.1 44.5 77.8
Synth. val Flores spa-ast 16.3 50.6 77.1
Synth. val Flores spa-arg 57.2 78.1 29.4
Synth. val Flores spa–oci-aran 26.9 48.8 72.7
Backt. val Flores spa-ast 18.0 51.6 74.5
Apertium spa-ast 17.0 50.8 80.4
Apertium spa-arg 61.1 79.3 27.2
Apertium spa–oci-aran 28.8 49.4 72.3

Table 6: Evaluation figures for the different systems
trained and Apertium

5.5 Synthetic val Flores Spanish-Asturian

This systems uses the same configuration as the
Basic Spanish-Aranese system, but adding the syn-
thetic corpus from Paracrawl described in subsec-
tion 4. In this system we use the Flores dev corpus
for validation. The final system uses an ensemble
of the model corresponding the the 3 best check-
points using the BLEU DETOK metric.

From table 6 we can observe that with this con-
figuration we improve the basic system by 1 BLEU
point, but we are still below Apertium.

5.6 Synthetic val Flores Spanish-Aragonese
This systems uses the same configuration as the
Basic Spanish-Aragonese system, but adding the
synthetic corpus from Paracrawl described in sub-
section 4. In this system we use the Flores dev
corpus for validation. The final system uses an en-
semble of the model corresponding the the 3 best
checkpoints using the BLEU DETOK metric.

This configuration achieves an impressive im-
provement of 38.4 BLEU points in comparison
with the basic configuration (see table 6), but Aper-
tium keeps an advantage of 3.9 BLEU points. At
this point, we can try to explain two key obser-
vations: why does Apertium achieve such strong
evaluation metrics for Spanish-Aragonese? And
why does the system trained with synthetic corpora
created by Apertium show such a remarkable im-
provement? The answer may lie in how the Flores
corpus was developed for this language pair. Since
it was generated through machine translation from
the Spanish Flores using Apertium, the system has
a clear advantage when calculating automatic eval-
uation metrics.

This is the final submission for the Open systems
for Spanish-Asturian, with id 568.

5.7 Synthetic val Flores Spanish-Aranese
This system have been trained using the backtrans-
lated Pilar corpus and the synthetic corpus from
Paracrawl described in subsection 4. For the vali-
dation set we have used the Flores dev corpus. The
final system uses an ensemble of the model cor-
responding the the 3 best checkpoints using the
BLEU DETOK metric.

This system achieves an improvement of 6.8
BLEU points in comparison with the multilingual
configuration (see table 6), but it is still 1.9 BLEU
points below Apertium.

This is the final submission for the Open systems
for Spanish-Aranese, with id 610.

5.8 Backtranslation val Flores
Spanish-Asturian

We have followed the same configuration than the
Basic Spanish-Asturian, but using also the back-
translated Wikipedia corpus. For the validation set
we have used the Flores dev corpus. The final sys-
tem uses an ensemble of the models corresponding
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the the 3 best checkpoints using the BLEU DETOK
metric.

This system achieves an improvement of 2.7
BLEU points in comparison with the basic sys-
tem, and 1.7 BLEU points in comparison with the
synthetic one (see table 6), and also outperforms
Apertium by 1 BLEU point.

This is the final submission for the Open systems
for Spanish-Asturian, with id 568.

6 Final submissions

Table 7 contains a comprehensive overview of the
systems that have been submitted to the shared task.
With regard to the Spanish-Asturian task, an open
system has been submitted, whereas for Spanish-
Aragonese and Spanish-Aranese, constrained sys-
tems have been submitted.

7 Energy consumption report

The training scripts generate a log with the times-
tamp and the GPU consumption every second
throughout the entirety of the training process. This
enables the calculation of the total training time and
the approximate energy consumption in kWh. The
total training time and the consumption of each of
the two GPU units utilized, along with the total
consumption, are presented in Table 8. The final
submitted systems are highlighted in bold.

As we can see, all the systems are trained in
short times (from 1 h. 10 m. to 3 h. 23 m.) in a
relativelly modest computer wit two NVIDIA RTX
A5000 GPU units with 24 GB each, a AMD Ryzen
Threadripper PRO 3945WX CPU with 12-Cores
and 64 GB of RAM. As the training times are short,
the energy consumption is very low in all trainings,
ranging from 0.481 to 1.292 kWh.

8 Conclusions and future work

In this paper we have presented the systems that
the TAN-IBE team have submitted to the WMT24
Shared Task Translation into Low-Resource Lan-
guages of Spain. We have presented an open sys-
tem for the Spanish-Asturian language pair, and
constrained systems for Spanish-Aragonese and
Spanish-Aranese.

The primary challenge in completing the task
was the unavailability of high-quality parallel cor-
pora for the specified language pairs. Fortunately,
all the language pairs in question have an Aper-
tium system, and Apertium is also available for all
the reverse language pairs except Asturian-Spanish.

This enabled us to conduct experiments with syn-
thetic and backtranslated corpora. To perform back-
translation experiments for Spanish-Asturian, we
trained a basic neural Asturian-Spanish system.

Additionally, monolingual and parallel corpora
were generated from Wikipedia dumps for Span-
ish to Asturian, Aragonese and Occitan (given the
unavailability of an Aranese Wikipedia).

Regarding the training strategies, we experi-
mented with bilingual and multilingual systems.
While multilingual systems demonstrated enhanced
performance relative to basic systems, the use of
synthetic and backtranslated corpora yielded supe-
rior outcomes.

In the period preceding the conclusion of the
TAN-IBE project in July 2025, it is our intention
to undertake the following actions:

• During the course of the project, a corpus of
monolingual and bilingual texts in Asturian,
Aragonese, Aranese and Spanish has been com-
piled. The next stage is to process and align these
texts in order to increase the number of available
parallel segments.

• We plan to train new systems using the paral-
lel corpora and the training techniques presented
in this paper. The quality of the resulting sys-
tems will then be evaluated in order to ascertain
whether the inclusion of the new parallel texts
has had a positive impact.

• Furthermore, we intend to learn from the other
participants in the shared task and attempt to re-
produce the training techniques that have yielded
the most favourable outcomes, utilising the newly
created parallel corpora.

• We plan to develop neural systems for Span-
ish to the other languages of the TAN-IBE
project, namely, Portuguese, Galician, Asturian,
Argonese, Catalan and Aranese. These systems
will be freely released.

• We also plan to train a multilingual system able
to translate to and from all the languages of the
TAN-IBE project.

After the completion of the TAN-IBE project,
we plan to increase the size of the Apertium mono-
lingual and transfer dictionaries for Spanish to As-
turian, Aragonese and Aranese using automatic
techniques that make use of monolingual and par-
allel corpora. The quality of the Apertium systems
is noteworthy, and the enhancement of the dictio-
naries has the potential to further optimise the effi-
ciency of the Apertium systems for the generation
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Submission Type Section langs. BLEU chrF TER
#568 Open 5.8 spa-ast 18.0 51.6 74.5
#584 Constrained 5.6 spa-arg 57.2 78.1 29.4
#610 Constrained 5.7 spa–oci-aran 26.9 48.8 72.7

Table 7: Information about the systems submitted to the shared task.

System langs. Section Time. GPU0 (kWh) GPU1 (kWh) Total (kWh)
Backtranslation ast-spa 5.1 2 h. 51 m. 0.594 0.598 1.191
Basic spa-ast 5.2 3 h. 23 m. 0.704 0.709 1.414
Basic spa-arg 5.3 1 h. 38 m. 0.332 0.339 0.671
Multilingual spa-MULT 5.4 3 h. 7 m. 0.627 0.643 1.270
Synthetic spa-ast 5.5 3 h. 13 m. 0.645 0.650 1.292
Synthetic spa-arg 5.6 1 h. 31 m. 0.302 0.305 0.606
Synthetic spa–oci-aran 5.7 2 h. 53 m. 0.577 0.583 1.160
Backtranslation spa-ast 5.8 1 h. 10 m. 0.240 0.241 0.481

Table 8: Total time and energy consumption for all the trainings.

of synthetic and backtranslated corpora.
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Abstract
We present the Spanish–Asturian Apertium
translation system, which has been enhanced
and refined by our team of linguists for the
shared task: Low Resource Languages of Spain
of this WMT24 under the closed submission.
While our system did not rank among the top 10
in terms of results, we believe that Apertium’s
translations are of a commendable standard and
demonstrate competitiveness with respect to the
other systems.

1 Introduction

In this shared task: Translation into Low-Resource
Languages of Spain, we present an enhancement of
the machine translator Eslema system for Spanish–
Asturian pair (Viejo et al., 2008). We present our
system under the closed submission.

Asturian is not an officially recognised language
in the Spanish state. The 1981 Statute of Auton-
omy of Asturias makes only passing reference to
Asturian, citing the need to protect and dissemi-
nate it. However, it does not accord the language
the same privileges as are enjoyed by other offi-
cial languages of Spain, such as Galician, Catalan
or Basque. Subsequently, on 23 March 1998, the
Asturian Parliament enacted the Law on the Use
and Promotion of Asturian. The aforementioned
legislation stipulates that all citizens are entitled
to utilise Asturian in verbal and written commu-
nication, and that such communication shall be
deemed valid. Furthermore, it acknowledges the
necessity for the dissemination of Asturian in ed-
ucational and media contexts (Galán y González,
2015). Consequently, Asturian is categorised as a
minority and Low-Resource Language (LRL), ex-
hibiting a paucity of resources and a diminished
presence in Natural Language Processing (NLP)
relative to other co-official languages of Spain.

The objective of this shared task is to develop
innovative systems and data resources for this
low-resource language, the Aragonese and the

Aranese. In light of the aforementioned consid-
erations, we present an enhacement of Apertium
(Forcada et al., 2011), the foundational system of
the current Spanish–Asturian MT translator, Es-
lema. Based on this open-source system, a series
of grammatical, syntactic and lexical improvements
have been implemented in order to participate in
this shared task. While the results obtained have
not been sufficient to maintain a position within the
top 10, they have been noteworthy.

2 Eslema

Eslema was initiated as a project of the University
of Oviedo in 2004 with the objective of assem-
bling corpora in Asturian language. The Asturian
Philology Group (Seminariu de Filoloxía Asturi-
ana) within the Spanish Philology Department was
responsible for its research, with the aim of compil-
ing texts of diverse typology, format and historical
periods (Viejo et al., 2008).

Subsequently, at the conclusion of 2008, the
Principality of Asturies (Conseyería de Cultura
del Principáu d’Asturies) assumed the economic
responsibility for the establishment of the regula-
tory framework for the development of a rule-based
machine translator for the Spanish–Asturian lan-
guage pair. This project was carried out in col-
laboration between the University of Oviedo and
the Apertium community. The report published in
early 2010 about this translator acknowledged that
its functionality was satisfactory, especially in the
Spanish–Asturian direction. However, it was also
noted that the software still presented some resid-
ual problems that would be solved in subsequent
updates (Universidad de Oviedo, 2010).

Nevertheless, it is important to recognise that, de-
spite the best efforts of the developers to rectify all
potential errors, no machine translator can be con-
sidered perfect. In particular, Rule Based Machine
Translators require ongoing maintenance and revi-
sion to ensure optimal performance. Subsequently,
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Eslema has been provided to the Administration
and citizens free of charge until nowadays. Right
now there is a new version of the machine transla-
tor in the Linguistic Policy (Política Llingüística)
webpage.1

3 Apertium

Apertium is a free/open-source platform for Rule-
Based Machine Translation (RBMT) (Forcada
et al., 2011). It is designed to provide high-quality
translation tools for several LRL pairs. Apertium
was initially developed as part of a project devel-
oped by the Alacant University and different pub-
lic and private Spanish institutions and companies
such as imaxin|software2 and El Huyar.3 But since
then, it has evolved into a collaborative endeav-
our involving developers, linguists and researches
(Khanna et al., 2021). The platform is constructed
on a rule-based translation system, which relies on
predefined linguistic rules and a modular architec-
ture. In the most recent versions of Apertium, these
modules are divided into two monolingual pack-
ages and one bilingual package for each language
pair. The following subsections will provide an ex-
planation of the monolingual packages 3.1 and the
bilingual package 3.2.4 These modules constitute
the various components of the Apertium engine
pipeline. Modifications have been made to them
with the objective of enhancing the original Eslema
translator.

3.1 Monolingual Packages

There is a monolingual package for each language
in the language-pair. For example, in this case, an
Asturian package and a Spanish package. Each
of these packages is formed by a dictionary 3.1.1,
a post-generator 3.1.2 and a Constraint Grammar
3.1.3.

3.1.1 Monolingual Dictionary
Monolingual dictionaries5 serve the function of
regulatory modules for the system’s lexicon. The
dictionary is comprised of two principal sections.

1https://politicallinguistica.asturias.es/
eslema

2https://imaxin.com/gl/
3https://www.elhuyar.eus/eu
4The majority of the information pertaining to these mod-

ules has been derived from the Apertium Wiki: https:
//wiki.apertium.org/wiki/Main_Page

5See:https://wiki.apertium.org/wiki/Monodix_
basicshttps://wiki.apertium.org/wiki/Monodix_
basics

The initial one is the paradigm section, wherein
paradigms are defined as patterns or models that
delineate the potential declensions of each term,
contingent on its category or morphology. The sub-
sequent section is where the lexicon is incorporated.
Each novel word is introduced in the format of an
entry, which encompasses the term in its fundamen-
tal form and the paradigm ascribed to it.

3.1.2 Post-generator
The post-generator6 is a module that is employed
to rectify minor spelling issues in each language.
To illustrate, in languages where contractions or the
use of apostrophes is prevalent, these orthographic
phenomena are regulated by the post-generator. It
is typically a module that remains consistent for
each language and does not necessitate significant
updates.

3.1.3 Constraint Grammar
As posited by Bick and Didriksen (2015), the Con-
straint Grammar (CG) may be conceived of as a
declarative whole of contextual possibilities and
impossibilities for a language or genre. However,
in programming terms, it is implemented procedu-
rally as a set of consecutively iterated rules that
add, remove or select tagged-encoded information.

In Apertium, each language package is equipped
with a CG tool, which serves to clarify the source
text. One illustrative example of a CG rule is as
follows7:

The rule “SELECT VERB IF (1 (det))” indicates
that the verb category must be selected whenever
the following word is a determiner.

This tool is of vital importance in an RBMT
engine, as disambiguation errors can lead to signif-
icant translation errors. Therefore, the more devel-
oped the CG is, the more accurate the translation
will be. For this particular pair, the Spanish CG8

has been used, which was previously created by the
Apertium community and, due to errors detected,
has had to be modified on some occasions.

3.2 Bilingual Package

There is one bilingual package for each language
pair. Each bilingual package is formed by a bilin-

6See:https://wiki.apertium.org/wiki/
Post-generator

7See:https://wiki.apertium.org/wiki/
Constraint_Grammar

8See: https://github.com/apertium/apertium-spa/
blob/master/apertium-spa.spa.rlx
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gual dictionary 3.2.1, the transfer rules 3.2.2 and
the lexical selection rules 3.2.3.

3.2.1 Dictionary

In bilingual dictionaries,9 the terms of both lan-
guages are aligned with one another. As a gen-
eral rule, in this type of engine, each term in the
source language can only have one correspondence
in the target language. In other words, a term in
the source language will be translated by the same
term in all contexts, with the exception of specific
cases which will be addressed in the subsequent
modules.10

3.2.2 Transfer Rules

Transfer rules11 are employed to oversee the most
intricate structural divergences between two lan-
guages, whether pertaining to syntax, morphology,
or grammar. To illustrate, transfer rules facilitate
the rearrangement of a sentence in the target lan-
guage, the alteration or insertion of tags by cat-
egory, and other modifications that enhance the
coherence of the target language. In essence, this
module is responsible for managing the majority
of complex changes that are contingent upon gram-
matical or lexical context.

3.2.3 Lexical Selection Rules

In instances where a term in the source language
has two or more potential translations in the tar-
get language, the lexical transfer rules module12 is
responsible for selecting one or the other option, de-
pending on the surrounding context. This context
may be either grammatical or lexical in nature.

4 Dependencies

The dependencies of our translation system are pre-
sented in the following list. It is imperative that
all modules are in place for the correct function-
ing of the pair: Apertium-3.8.3, lttoolbox-3.7.1,
apertium-lex-tools-0.4.2 and cg3-3.9.

9See:https://wiki.apertium.org/wiki/Bilingual_
dictionary

10The latest versions of Apertium include the Lexical Se-
lection Rules module 3.2.3, which enables to assign a specific
meaning and translation to the target language depending on
the context. This module will be explained in subsection.

11See:https://wiki.apertium.org/wiki/A_long_
introduction_to_transfer_rules

12See:https://wiki.apertium.org/wiki/
Constraint-based_lexical_selection_module

5 Methodology

In order to participate in this shared task, the team
at imaxin|software has utilized the open-source
translator published in 2010 by Eslema13 and made
available on the Apertium project website,14 to en-
hance it in the morphological 5.1 and lexical 5.2
linguistic areas. The implementation of these alter-
ations and enhancements was overseen at all times
by a team of linguists with expertise in Asturian,
over a period of 18 months, during which not only
the Spanish–Asturian direction was considered, but
also the Asturian–Spanish.

5.1 Morphological Enhacement

With regard to morphological errors, three princi-
pal categories may be identified. Firstly, this pair
presented a multitude of disambiguation issues. To
illustrate, the preposition para (for) in Spanish was
frequently analyzed as the third person singular of
the verb parar (to stop). This resulted in errors
such as: Ir para casa (go home) in Spanish was
translated to Asturian as ir para casa innstead of Ir
pa casa. These types of errors were corrected in a
generic way by making use of the Constraint Gram-
mar that had already been created by the Apertium
community. However, it was also necessary to cre-
ate new rules for specific cases.

Furthermore, the paradigms created for different
grammatical categories contained various errors, ei-
ther because the term had been assigned the wrong
paradigm or because the assigned paradigm con-
tained errors in its definition. To illustrate, Asturian
verbs ending in -ñir or -xir (e.g. teñir (to dye ) and
dirixir (to address)) exhibited erroneous conjuga-
tion of the third person singular present indicative
and subjunctive forms. This resulted in the gen-
eration of incorrect forms, such as tiñió (dyed) or
dirixió (addressed), rather than the intended tiñó
and dirixó. This was due to an erroneous assign-
ment of the paradigm. It was thus necessary to
create a specific paradigm for this type of verbs.
Furthermore, a considerable number of Asturian
verbs with enclitic pronouns were not correctly
translated, resulting in the translation of their infini-
tive form instead of the expected conjugation. To
address this issue, it was imperative to rectify the
verb paradigms, which, due to inconsistencies with
the paradigms of the Spanish dictionary, led to this

13https://eslema.it.uniovi.es/comun/traductor.
php

14https://github.com/apertium/apertium-spa-ast
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type of error.
Finally, the transfer rules for this pair were found

to contain numerous errors, which resulted in a sig-
nificant decline in the quality of the translation.
These errors manifested in various ways, including
inconsistencies in gender or number between re-
lated nouns and adjectives, the absence of verb con-
jugation or declension, incorrect disambiguation,
and other issues that affected the whole translation.

The aforementioned examples illustrate the work
that has been carried out on the monolingual and
bilingual packages. As a result, 172 transfer se-
lection rules were corrected for both translation
directions and 11 paradigms for each monolingual
dictionary.

5.2 Lexical Enhacement

The dictionaries have been expanded to include
new terms drawn from a number of fields, includ-
ing administration, toponymy from both Asturias
and Spain, and anthroponymy. In total, 3100 new
terms have been incorporated into the dictionar-
ies, with the inclusion of each new term informed
by the preferences of the Dictionary of the As-
turian Academy (Diccionariu de la Academia de
la Llingua Asturiana) (DALLA15). Indeed, one of
the most significant alterations implemented at the
generic level within the Apertium dictionaries has
been the selection of the cultured form in lieu of
the vocalised form of the term. To illustrate, the
choice of -pt- instead of -ut- in terms such as con-
ceptu/conceutu, the choice of -ps- instead of -us-
in terms like cápsula/cáusula, the choice of -cd-
instead of -ud- in terms such as anécdota/anéuduta
and the preference for the intervocalic -x- rather
than the -s- found in terms such as exame/esame
are examples of the aforementioned changes. Sim-
ilarly, the -zar ending is preferred for verbs such
as forzar/forciar, in contrast to the -ciar ending.
Otherwise, as mentioned above, the DALLA shape
was always preferred in all cases where there were
two possibilities.

6 Results

Table 1 presents the BLEU (Papineni et al., 2002)
and chrF++ (Popović, 2015) scores received from
the OCELoT system. The table includes the ten
best systems presented to this shared task and our
own system, identified by the ID 580.

15See:https://www.diccionariu.alladixital.org/

ID BLEU chrF++
576 23.2 55.2
606 19.8 52.2
574 19.7 52.2
528 18.4 52.1
609 19.8 52.1
551 18.2 51.6
557 17.9 51.6
629 18.0 51.6
568 18.0 51.6
564 18.0 51.6
580 17.6 51.2

Table 1: The best 10 scores obtained in the OCELoT
system in the WMT24 Shared Task: Low Resource
Languages in Spain (Spanish–Asturian) and the enhaced
Apertium system, ID 580.

7 Analysis

In order to elucidate the outcomes yielded by our
system and the top ten in this shared task, it is es-
sential to examine the functioning of the BLEU and
chrF++ metrics, on the one hand, and the FLORES
test, on the other.

From one perspective, BLEU and chrF++ are
lexical-based metrics that rely on a reference cor-
pus to assess the quality of a translation. In essence,
BLEU assesses the quality of the system by com-
paring the MT output with the reference test token
by token at sentence or corpus level (Papineni et al.,
2002). In contrast, the chrF++ metric functions in a
comparable manner, albeit by comparing character
by character rather than token by token (Popović,
2015). Both metrics have been the subject of criti-
cism on the grounds of their reliance on a reference
corpus, which presents a significant challenge for
low-resource languages, such as Asturian. In the
absence of the requisite test datasets, the evaluation
with these metrics is often impractical. Further-
more, these metrics fail to account for the inherent
variability and versatility of languages. In many
cases, multiple translations may be equally valid
for a given source sentence. However, these met-
rics treat any deviation from the reference corpus
as an error, leading to artificially low metrics when
the deviation is linguistically correct (Lee et al.,
2023).

In light of the aforementioned considerations,
it is pertinent to highlight that the FLORES+ cor-
pus, which serves as the basis for the evaluation
of the systems in this shared task, comprises 3001
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English sentences extracted from Wikimedia and
translated manually by linguists into 200 minor-
ity languages, including Asturian. Subsequently,
these translations are subjected to automatic revi-
sion and post-editing as required (Costa-jussà et al.,
2022). It should be noted that the parallel corpora
generated by this project are not direct translations.
However, the translated text maintains the mean-
ing of the original sentence while deviating from
the structure of the source language. This may be
due to the fact that the corpus was generated from
English. Furthermore, as stipulated in the terms of
reference for this shared task, the Asturian corpus
has been duly revised by the Asturian Academy for
use as a reference corpus in this shared task.

For illustrative purposes, three examples can be
found in Table 2. In this table it can be found the
original sentence in Spanish from the FLORES+
devtest in the first column, the original sentence in
Asturian from the FLORES+ devtest in the second
column and the version of the same sentence in
English in the third column. This version in En-
glish is also taken from FLORES+ devtest. It is
evident from these sentences that the translation
from Spanish to Asturian is not a literal one, but
rather a free rendering. In some cases, the mean-
ing may even change. For instance, in the first
sentence, the English meaning is retained in the
Spanish sentence, but is lost in the Asturian trans-
lation. The direct translation of the sentence from
Asturian to English would be: “They all ran back
when the accident happened”. “From where the
accident had happened” and “when the accident
happened” is not meaning the same. Furthermore,
information can also be lost, as evidenced by the
second sentence. Once more, the Asturian transla-
tion does not convey the same information as the
original English sentence and the Spanish transla-
tion. In this instance, information is lost. Rather
than referencing the navigable canals, the transla-
tion merely states that they are located inland, and
instead of indicating that they are an optimal desti-
nation for “holidays”, the translation simply uses
the word viaxes (travels) which is not an equivalent
expression. Furthermore, as evidenced in the third
sentence, this phenomenon also occurs in the con-
text of English–Spanish sentence translation. In
such instances, the order of the sentence may un-
dergo a change from English to Spanish, even when
there is no necessity to align with the grammatical
conventions of the target language. Even minor al-

terations such as this one have a deleterious impact
on evaluation using lexical-based metrics.

These discrepancies within the parallel test cor-
pora give rise to suboptimal results in metrics such
as BLEU or chrF++, particularly in instances where
the translated text may not be technically incorrect.
This is not only the case for our system, but for
all of them. The highest metric for BLEU is 23.2,
while for chrF++ it is 55.2. These results are con-
siderably low.

In regard to the results obtained by our system,
it can be stated that Apertium, as a RBMT, pro-
duces translations that are literal in nature. In other
words, unless it is a syntactic or grammatical fea-
ture intrinsic to the target language, the structure
of the source language will always be replicated.
In the case of Spanish and Asturian, which are two
closely related languages, the MT output produced
by Apertium will invariably adhere to the structure
of Spanish, rather than exhibiting a more Asturian-
specific structure. For illustrative purposes, con-
sider the sentences presented in Table 3. This table
presents the same sentences as in Table 2, with the
second column displaying the translations gener-
ated by our system instead of the FLORES+ devtest
Asturian sentences. The examples illustrate that
the translation produced by Apertium preserves the
structure of the source sentence in Spanish, but the
translations are all accurate. It should be noted,
however, that the system itself is not without lim-
itations. It should first be noted that a word in
Spanish has only one possible translation into As-
turian, irrespective of context. While this can be
managed in some specific cases, it may result in the
translation failing in other sentences. It is possible
that the inflexibility of this system, which does not
always permit adaptation to context, may have had
an adverse effect on our results, extending beyond
the aforementioned metrics and the test employed.
Nevertheless, we consider the output of our sys-
tem to be a satisfactory translation that could be
competitive with other systems despite the results.
However, it would be necessary to carry out more
tests in order to go deeper and identify the aspects
in which the quality of our translation system could
be improved, since the RBMT systems, as already
mentioned, require constant revision and improve-
ment.

Finally, and this is a strong point of our pro-
posal, this type of system does not have a high com-
putational consumption like Statistical Machine
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Original Sen-
tences in
Spanish

Original Sen-
tences in
Asturian

Original Sen-
tences in
English

Todos volvieron
corriendo desde
el lugar del acci-
dente.

Volvieron
p’atrás
corriendo
cuando ocurrió
l’accidente.

They all ran
back from
where the
accident had
happened.

Los canales
navegables
internos pueden
ser una buena
temática para
las vacaciones.

Les canales
d’interior son
un bon tema de
viaxe.

Inland water-
ways can be a
good theme to
base a holiday
around.

En Inglaterra,
las vías de tren
ya se habían
instalado hacia
el siglo XVI.

Les primeres
víes foron
construyíes
n’Inglaterra nel
sieglu XVI.

Wagonways
were built in
England as
early as the 16th
Century.

Table 2: Illustrative sentences of the FLORES test
dataset taken from the FLORES+ devtest in Spanish,
Asturian and English languages.

Translation (SMT) and Neural Machine Translation
(NMT) in its training, as signalled by Shterionov
and Vanmassenhove (2023). Comparing the qual-
ity produced by this system with its consumption,
both for training/development and for use, Aper-
tium is still a competitive system for low-resource
languages such as Asturian. Furthermore, it is also
more cost-effective to produce than other types of
systems. Therefore, it is essential to consider the
trade-off between quality, consumption and price
in order to assess the performance of the different
systems.

8 Conclusions

In conclusion, although our enhanced Apertium
system has not yet achieved a position among the
top ten systems in this shared task, the results ob-
tained in terms of machine translation quality have
been exemplary. As previously stated in the Sec-
tion 7, the test employed and the metrics utilized do
not permit an accurate assessment of the quality of
a MT system. Additionally, it is noteworthy that a
RBMT exhibits a markedly lower consumption rate
in comparison to NMTs. Consequently, we regard
our system as being competitive with those submit-
ted to this shared task, although it still necessitates
further enhancements and revisions.

Original Sen-
tences in
Spanish

Apertium MT
output

Original Sen-
tences in
English

Todos volvieron
corriendo desde
el lugar del acci-
dente.

Toos volvieron
corriendo
dende’l llugar
del accidente.

They all ran
back from
where the
accident had
happened.

Los canales
navegables
internos pueden
ser una buena
temática para
las vacaciones.

Les canales
navegables
internos puen
ser una bona
temática pa les
vacaciones.

Inland water-
ways can be a
good theme to
base a holiday
around.

En Inglaterra,
las vías de tren
ya se habían
instalado hacia
el siglo XVI.

N’Inglaterra,
les víes de tren
yá s’instalaren
escontra’l sieglu
XVI.

Wagonways
were built in
England as
early as the 16th
Century.

Table 3: Apertium MT output from the Spanish–
Asturian translation of three sentences taken from FLO-
RES+ devtest in their Spanish and English version.
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Abstract

This paper describes the submissions of the
Transducens group of the Universitat d’Alacant
to the WMT 2024 Shared Task on Translation
into Low-Resource Languages of Spain; in par-
ticular, the task focuses on the translation from
Spanish into Aragonese, Aranese and Asturian.
Our submissions use parallel and monolingual
data to fine-tune the NLLB-1.3B model and to
investigate the effectiveness of synthetic cor-
pora and transfer-learning between related lan-
guages such as Catalan, Galician and Valencian.
We also present a many-to-many multilingual
neural machine translation model focused on
the Romance languages of Spain.

1 Introduction

Spain is home to several languages, each with dif-
ferent levels of representation in neural machine
translation (NMT) technologies and availability of
training data. For example, Spanish (spa) has abun-
dant data resources and is included in many multi-
lingual translation models and large language mod-
els (LLM). Other languages, such as Catalan (cat)
and Galician (glg), are relatively well-supported
and have enough data to train NMT models from
scratch. However, languages such as Asturian (ast),
Aragonese (arg) and Aranese (arn) face significant
challenges due to the limited availability of data
needed to train these systems.

Despite these challenges, the linguistic simi-
larity between some of these languages simpli-
fies their integration into multilingual translation
models, allowing them to benefit from transfer-
learning from more widely represented languages;
an example of this is the inclusion of Asturian in
NLLB-200 (NLLB Team et al., 2022). In addi-
tion, shallow-transfer rule-based machine transla-
tion (MT) systems such as Apertium (Forcada et al.,
2011), exist for some of these languages, includ-

Figure 1: Submitted models for the shared task. Blue in
src or tgt indicates text generated by MT. The Denoising
and Mix models were trained for a single translation
direction, whereas the Many2Many model was trained
with multiple language pairs and in both translation
directions for each pair. xxx represents any of the target
languages: Aragonese, Aranese and Asturian.

ing Spanish–Asturian1, Spanish–Aragonese2 and
Occitan–Spanish3; the development of rule-based
systems does not require large amounts of training
data, but linguistic knowledge to construct dictio-
naries and translation rules.

Our approach to developing NMT systems
for the WMT 2024 Shared Task on Translation
into Low-Resource Languages of Spain (Sánchez-
Martínez et al., 2024) for Aragonese, Aranese and
Asturian is based on pre-trained models that in-
clude similar languages, such as NLLB-200, to
incorporate languages that were not originally seen
during training. Given the scarcity of corpora for
Asturian, Aragonese and Aranese, we used Aper-
tium to generate synthetic corpora. This involved
translating monolingual corpora into Spanish and
vice versa to generate additional resources for fine-

1https://github.com/apertium/apertium-spa-ast
2https://github.com/apertium/apertium-spa-arg
3https://github.com/apertium/apertium-oci-spa
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tuning NLLB-200.
By combining pre-trained multilingual models,

synthetic data generation and rule-based translation
systems, we aim to improve the quality and acces-
sibility of NMT for these low-resource languages.

All of our submissions, shown in Figure 1, are
classified as open because they are based on the
NLLB-200 model with 1.3B parameters, exceeding
the 1B parameters limit for constrained submis-
sions. However, we only used the corpora allowed
for constrained submissions, as described in Sec-
tion 3.

2 State-of-the-Art Methods Used

Our submission makes use of well-established tech-
niques such as denoising pre-training (Lewis et al.,
2020), transfer-learning (Zoph et al., 2016), back-
translation (Sennrich et al., 2016) and sequence-
level knowledge distillation (Kim and Rush, 2016).
The languages involved in this shared task are re-
lated, making knowledge transfer by a multilingual
model an effective solution. This transfer can be
achieved by bilingual fine-tuning of a pre-trained
model (Zoph et al., 2016), using the knowledge it
already possesses, or by multilingual training from
scratch (Bommasani et al., 2021), using multiple
languages simultaneously during the training pro-
cess. In our approach, we fine-tune the NLLB-200
model and investigate the effects of training with
only one specific translation direction with differ-
ent types of data, as well as adding more languages
during training.

A common technique is to pretrain a system
on monolingual corpora with the denoising task4

to learn language generation, and then train the
system on parallel bilingual corpora for transla-
tion (Lewis et al., 2020). It is well known that
combining both tasks simultaneously improves the
translation results (Kamboj et al., 2022). Since
NLLB-200 was trained in this way (NLLB Team
et al., 2022), it is reasonable to use the same
technique for fine-tuning to leverage the available
monolingual corpus.

Another method of exploiting monolingual cor-
pora is to create synthetic parallel corpora. For this
purpose, we used the rule-based MT systems built
using the Apertium platform (Forcada et al., 2011).

4The denoising task is a self-supervised learning strategy
that helps models learn effective representations from mono-
lingual data by training them to restore original sentences from
corrupted inputs.

Corpus Sentences Src words Tgt words
spa-arg 33,723 3,706,154 3,589,002
spa-arn 85,491 14,720,677 14,266,772
spa-ast 45,506 6,844,424 6,663,424
spa 500,000 62,004,331 —
arg 24,675 2,718,855 —
arn 229,886 29,110,670 —
ast 38,868 5,504,371 —
spa-cat 559,805 91,543,160 88,057,754
spa-glg 184,861 30,716,538 28,753,332
spa-val 287,403 52,836,299 53,137,411

Table 1: Number of sentences and words in each of the
corpora used.

Specifically, we used Catalan–Spanish, Aragonese–
Spanish, Aranese–Spanish, Spanish–Aragonese,
Spanish–Aranese and Spanish–Asturian systems.
Translating from source (spa) to target and using
this synthetic corpus as a target for training is a
type of sequence-level knowledge distillation (Lai
et al., 2021; Yu et al., 2021). In contrast, translating
from the target language and using this synthetic
corpus as the source for training is called back-
translation (Sennrich et al., 2016). The latter has
the advantage that potential translation errors in
the synthetic corpus do not affect the generation of
the target language, as the synthetic corpus is used
as input during training rather than as the desired
output.

3 Data

We used only the corpora allowed for the con-
strained submissions: Opus5 and PILAR (Galiano-
Jiménez et al., 2024)6. For the development set, we
used the FLORES+7 (NLLB Team et al., 2022) dev
versions (997 sentences) for Spanish (spa), Aranese
(arn), Aragonese (arg) and Asturian (ast) (Pérez-
Ortiz et al., 2024). The specific details of the cor-
pora used are described below and shown in Ta-
ble 1.

3.1 Parallel Corpora

Aragonese and Asturian: We used parallel cor-
pora with Spanish available in OPUS,8 consist-
ing of 33,723 Spanish–Aragonese sentences and
45,506 Spanish–Asturian sentences.

5https://opus.nlpl.eu/
6https://github.com/transducens/PILAR
7https://github.com/openlanguagedata/flores
8https://opus.nlpl.eu/
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Aranese: We used the parallel Catalan-Aranese
corpus available in PILAR (85,491 sentences) and
translated the Catalan part into Spanish using Aper-
tium. This corpus was not included in the synthetic
data description in section 3.3, as it was not auto-
matically translated from or into Aranese.

3.2 Monolingual Corpora

We used the monolingual corpora available in
PILAR, which contains 24,675 sentences in
Aragonese, 229,886 in Aranese and 38,868 in As-
turian.

3.3 Synthetic Corpora Generation

We used Apertium to generate different synthetic
corpora. By translating the above monolingual cor-
pora into Spanish, we created two corpora (there
is no Asturian–Spanish system for Apertium) that
were used for back-translation. Since these cor-
pus sizes are relatively small for training NMT
models, we also translated 500,000 Spanish sen-
tences extracted from Paracrawl9 into Aranese10,
Aragonese11 and Asturian12. This resulted in syn-
thetic corpora with the target language as the syn-
thetic part.

3.4 Additional data

For our multilingual system, we used all the
above corpora and added Wikimedia Spanish–
Catalan (559,805 sentences) and Spanish–Galician
(184,861 sentences) corpora from OPUS, as well
as the Spanish–Valencian (val) corpus available in
PILAR, making 287,403 sentences.

4 Methodology

We trained several models for each language pair
to analyse the effects of different types of corpora
and transfer-learning between different tasks and
languages. Below we describe the methodology
we used and the different systems we trained.

4.1 Model Architecture and Baseline

All our models are based on a fine-tuning of the
NLLB-200 (NLLB Team et al., 2022) model with

9https://opus.nlpl.eu/ParaCrawl/es&ca/v9/
ParaCrawl

10https://github.com/apertium/apertium-oc-es/
releases/tag/v1.0.8

11https://github.com/apertium/apertium-spa-arg/
releases/tag/v0.6.0

12https://github.com/apertium/apertium-spa-ast/
releases/tag/v1.1.1

1.3 billion parameters. We chose this model be-
cause it is a transformer (Vaswani et al., 2017) pre-
trained with 200 languages and specialised in trans-
lation tasks. These 200 languages include Spanish
and Asturian, which correspond to one of the trans-
lation directions in this shared task, as well as other
related languages, such as Catalan, Galician and
Occitan.

As a baseline, we used Apertium to compare the
effectiveness of a rule-based system with a neural-
based system.

4.2 Training Approaches

In this section, we describe the different approaches
we used to train the translation models for each
language pair.

Bilingual parallel: For each translation direction,
we trained a specific model using only the paral-
lel corpus available for that language pair. These
models correspond to the Parallel row in tables 2
and 3.

Bilingual Parallel + Monolingual: We trained
a model for each translation direction by combin-
ing the translation task using the parallel corpus
with a denoising task using monolingual data of the
target language. This approach helps to improve
translation quality by exploiting additional mono-
lingual resources. These models correspond to the
Denoising row in tables 2 and 3.

Bilingual Synthetic Generated with Apertium:
For each translation direction, we trained a model
using only synthetic parallel corpora generated by
translating the Spanish monolingual corpora into
the target language using Apertium. These models
correspond to the Synthetic row in tables 2 and
3.

Bilingual Parallel with Synthetic and Back-
translation: For each translation direction, we
trained a model using a combination of parallel cor-
pora, synthetic corpora generated with Apertium,
and back-translation. For back-translation, we used
Apertium to translate the monolingual target lan-
guage data into Spanish. These models correspond
to the Mix row in tables 2 and 3.

Multilingual Parallel with Synthetic and Back-
translation: This model extends the previous ap-
proach by training a single model on all three trans-
lation directions. This multilingual training allows
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the model to benefit from common linguistic fea-
tures across languages. This model corresponds to
the Multilingual row in tables 2 and 3.

Multilingual Many-to-Many: This model ex-
tends the multilingual approach by incorporating
parallel corpora from related languages and includ-
ing both translation directions for each language
pair. This model can translate between Spanish,
Aragonese, Aranese, Asturian, Catalan, Galician
and Valencian. This model corresponds to the
Many2Many row in tables 2 and 3.

4.3 Evaluation Metrics
To measure the quality of the translation mod-
els, we used BLEU (Papineni et al., 2002)13 and
chrF2 (Popović, 2015)14 scores on the translation
of the development set. For the NLLB-200 based
models, we translated using beam search (Graves,
2012) with a beam size of 5.

5 Experiments and Results

In this section, we present the experimental setup,
including hyperparameters and training configura-
tions. We compare the performance of each system
against the baseline provided by Apertium and dis-
cuss the results for each translation direction.

5.1 Experimental Setup
All our translation models were trained using the
Transformers (Wolf et al., 2020) library on an
Nvidia A100 GPU with 40 GB of memory. We
extended the library to support simultaneous train-
ing with multiple tasks, including different datasets
with different languages and combining translation
and denoising tasks15. To balance the training data
from datasets of different sizes, we used temper-
ature upsampling with 1/T = 0.3, following the
approach used in NLLB-200 training (NLLB Team
et al., 2022).

Due to GPU memory constraints, we used a
batch size of 16 and accumulated gradients as many
times as the number of different datasets used in
the training to ensure that all tasks were seen be-
fore updating the model weights. The learning rate
was set to 5e-5, and we used the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with β1=0.9,

13SacreBLEU BLEU signature: nrefs:1 | case:mixed
| eff:no | tok:13a | smooth:exp | version:2.0.0

14SacreBLEU chrF2 signature: nrefs:1 | case:mixed |
eff:yes | nc:6 | nw:0 | space:no | version:2.0.0

15The code is available at https://github.com/
transducens/transformers-multilingual-training

Model spa-arg spa-arn spa-ast
Apertium 66.0 38.0 17.1
Parallel 41.4 34.4 17.9
Denoising* 41.6 35.7 17.8
Synthetic 65.3 37.6 17.0
Mix* 65.1 37.8 17.0
Multilingual 64.8 37.5 17.0
Many2Many* 65.2 37.9 17.0

Table 2: BLEU scores on the FLORES+ dev. Models
marked with an asterisk are those we submitted for the
Shared Task.

β2=0.999 and ε=10−8. Models were trained for
a maximum of 100 epochs with early stopping,
and evaluations were performed every 1000 train-
ing steps. The stopping criterion was based on
the BLEU score on the development set, with a
patience of 6 evaluations.

We used the NllbTokenizer16 class for corpus
segmentation. This tokenizer uses the Sentence-
Piece (Kudo and Richardson, 2018) model used by
NLLB-200 and applies language tokens to both the
source and target texts.

NLLB-200 uses language tokens in both the
source and target sentences. When training with
a new language, it is possible to use the language
token of a similar language, but this eliminates
the possibility of translating to or from the lan-
guage of the original token. In our case, we added
new language tokens for Aragonese, Aranese and
Valencian. To avoid learning the embeddings for
these tokens from scratch, we initialised them with
the embeddings of the most similar languages in-
cluded in NLLB-200. Specifically, we initialized
the embeddings for Aragonese and Valencian with
the Catalan embedding, and the embedding for
Aranese with the Occitan embedding15.

5.2 Results

Tables 2 and 3 show the results of the translation
models in terms of BLEU and chrF scores, respec-
tively. The first row corresponds to the Apertium
baseline and the remaining rows show the results
of each trained model.

For the shared task, we submitted specific De-
noising and Mix models for each translation di-
rection, and the Many2Many model for all three

16https://github.com/huggingface/transformers/
blob/v4.42.0/src/transformers/models/nllb/
tokenization_nllb.py
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Model spa-arg spa-arn spa-ast
Apertium 82.2 60.0 50.7
Parallel 70.8 57.9 50.8
Denoising* 69.5 58.6 50.7
Synthetic 81.9 59.9 50.7
Mix* 81.8 59.9 50.8
Multilingual 81.8 59.8 50.8
Many2Many* 81.9 60.0 50.8

Table 3: chrF2 scores on the FLORES+ dev. Models
marked with an asterisk are those we submitted for the
Shared Task on Translation into Low-Resource Lan-
guages of Spain.

Model spa-arg spa-arn spa-ast
Denoising 37.8 27.0 17.4
Mix 60.2 28.5 16.9
Many2Many 59.8 28.5 16.8

Table 4: BLEU scores on the WMT 2024 Shared Task
on Translation into Low-Resource Languages of Spain
test.

directions 17. This allows us to compare a model
trained only on the available corpus for each lan-
guage, another that incorporates a synthetic corpus,
and one that includes multiple translation directions
and additional languages. The results on the test
set of the task, which correspond to the FLORES+
devtest versions of these languages, are shown in
Tables 4 and 5.

When analysing the results, it is important
to consider how the development sets were cre-
ated (Pérez-Ortiz et al., 2024). The Asturian sen-
tences were first professionally translated from En-
glish by Meta (NLLB Team et al., 2022) and then
revised by academics. In contrast, the Aragonese
and Aranese sentences were first machine trans-
lated from Spanish using Apertium, then manually
edited by language specialists and finally reviewed
by academics. This means that the development
sets for Aragonese and Aranese may be biased to-
wards the results produced by Apertium.

We conducted paired significance tests to deter-
mine whether the submitted models outputs were
significantly different despite the similarity of some
results. Specifically, we calculated paired approxi-
mate randomisation (Riezler and Maxwell, 2005)
as implemented by SacreBLEU on the devtest us-
ing BLEU and chrF2. The results indicated that the

17The Many2Many model is available at https://
huggingface.co/Transducens/IbRo-nllb

Model spa-arg spa-arn spa-ast
Denoising 67.5 48.3 50.7
Mix 78.9 49.3 50.9
Many2Many 78.8 49.3 50.9

Table 5: chrF2 scores on the WMT 2024 Shared Task
on Translation into Low-Resource Languages of Spain
test.

differences between the Mix and Many2Many mod-
els for Asturian and Aranese were not statistically
significant, whereas the differences between all the
other pairs of models were statistically significant.

Effect of adding a monolingual corpus: The
results show a minimal difference when adding
a monolingual corpus compared to training only
with parallel corpora (rows 2 and 3 of Tables 2 and
3). However, this could be due to the amount of
training data available. The improvement in the
quality of the translations for the Aranese direction
is particularly remarkable, since it is the largest
monolingual corpus.

Effect of using the synthetic corpus produced by
Apertium: The increase in performace for the
synthetic models compared to the Denoising mod-
els for Aragonese and Aranese can be explained
both by the difference in data volume and by the
bias of the development sets. Conversely, there is
a decrease in the results for Asturian, suggesting a
bias in the other sets.

The combination of parallel and synthetic cor-
pora in both target and source (Mix models) shows
minimal variation in the results. Again, this may
be due to the difference in the proportion of the
corpus generated by the spa-xxx translation and
that generated by the xxx-spa translation.

Effect of multilingual training: Combining mul-
tiple translation directions in the same training ses-
sion complicates the learning task for the model,
but also increases the amount of data available.
Adding more languages slightly improves the re-
sults compared to training with only the languages
of the common task.

6 Conclusions

Overall, the results highlight the critical role of
training data volume in the development of effec-
tive NMT models. The challenge with large neural
models lies in the insufficient amount of training
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data available for low-resource languages, which
limits the full potential of these architectures.

However, rule-based systems remain a viable op-
tion for these languages, although they require lin-
guistic expertise to build. The use of these systems
to generate synthetic corpora is proving beneficial
in integrating low-resource languages into neural
translation models and exploiting the advantages
they offer.
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Abstract

This paper details the submission of Sam-
sung R&D Institute Philippines (SRPH) Lan-
guage Intelligence Team (LIT) to the WMT
2024 Low-resource Languages of Spain shared
task. We trained translation models for Span-
ish to Aragonese, Spanish to Aranese/Occ-
itan, and Spanish to Asturian using a stan-
dard sequence-to-sequence Transformer archi-
tecture, augmenting it with a noisy-channel
reranking strategy to select better outputs dur-
ing decoding. For Spanish to Asturian trans-
lation, our method reaches comparable BLEU
scores to a strong commercial baseline transla-
tion system using only constrained data, back-
translations, noisy channel reranking, and a
shared vocabulary spanning all four languages.

1 Introduction

This paper details our constrained system
for translating from Spanish to Aragonese
(spa→arg), Aranese/Occitan (spa→arn), and As-
turian (spa→ast) for the WMT24 Shared Task:
Translation into Low-Resource Languages of Spain.
We trained standard sequence-to-sequence Trans-
former architecture (Vaswani et al., 2017) from
scratch combined with heavy data preprocessing
(Cruz, 2023), data augmentation via backtransla-
tion (Sennrich et al., 2016a), and noisy channel
reranking (Yee et al., 2019) to achieve performance
that is comparable to Apertium (Khanna et al.,
2021) v3.9.6 for spa→ast. We present ablation
results of the effect of data augmentation via back-
translation and noisy channel reranking with re-
spect to BLEU scores. Furthermore, we analyzed
the generated translations and we found that the
model learned to regurgitate, i.e. repeat with minor
modifications, the source Spanish sentences for the
spa→ast case. We also identify rarely occurring
characters that the model failed to learn. Lastly, we

bWork done while at Samsung R&D Institute Philippines

also investigated the effect of the length of back-
translated data on improving model performance.

2 Methodology

2.1 Environment
For preprocessing, training, and generation, we
used fairseq 0.12.2 and PyTorch 1.12.1. The train-
ing was done on either 2x NVIDIA Quadro GPUs
or 8x NVIDIA P100 GPUs. We used Apertium1

v3.9.6 for generating baseline results and generat-
ing backtranslated (BT) data whenever available
for the language pair.

2.2 Data Preprocessing
We trained on the OPUS dataset (Tiedemann,
2016) for all language pairs. The data prepro-
cessing pipeline utilizes the ratio-based filters and
embedding-based filters of Samsung R&D Insti-
tute Philippines’ WMT23 entry (Cruz, 2023). The
dataset statistics before and after preprocessing can
be found in Table 1.

For the parallel data, the data preprocessing
pipeline are as follows: remove exact duplicate
parallel data → ratio-based filters → embeddings-
based filters. The ratio-based filters remove sen-
tences based on sentence length, token length, char-
acter to token ratio, pair token ratio, and pair length
ratio. Exact details on these criteria are explained
in (Cruz, 2023). Similar to last year’s paper, we
tokenized and detokenized sentences using Sacre-
Moses2 before and after running our filters, respec-
tively. The embeddings-based filter filters data
based on the cosine similarity of a sentence pair
using LaBSE (Feng et al., 2022). Using the method-
ology of (Cruz, 2023), pairs with a cosine similarity
0.7 ≤ s ≤ 0.96 are kept.

For monolingual data, we combined the mono-
lingual data of the target language and the target

1https://wiki.apertium.org/wiki/Install_
Apertium_core_using_packaging

2https://github.com/alvations/sacremoses
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source→target Pairs Words (source) Words (target) % Kept
spa→arg 58,284 746,567 733,985 100
spa→arg Filtered 21,362 181,523 190,724 36.6
spa→arg Filtered + BT† 81,195 849,031 857,111 -
spa→ast 13,393,052 310,197,263 298,687,582 100
spa→ast Filtered 620,168 6,495,284 6,442,051 4.6
spa→ast Filtered + BT 920,168 11,758,510 11,629,822 -
spa→arn 2,032,440 14,046,448 13,891,193 100
spa→arn Filtered 779,615 4,807,268 5,020,187 38.4
spa→arn Filtered + BT† 1,079,615 8,835,974 9,040,705 -

Table 1: Statistics of OPUS parallel data before and after filtering and the addition of backtranslated data (BT). The
% Kept is the percentage of pairs left after filtering ("-" means not applicable). † means BT data was generated via
Apertium.

side of parallel data from OPUS and then removed
exact duplicates. We used this monolingual data to
train language models for each target language.

After preprocessing of parallel and monolingual
data, we apply train and validation split of 95% and
5%, respectively.

Lastly, for the training corpus of the tokenizer,
we combined the filtered parallel data of all three
language pairs. We used this combined data to
learn a shared BPE (Sennrich et al., 2016b) vocab-
ulary that spans Spanish, Aragonese, Aranese, and
Asturian consisting of 31,960 tokens using Senten-
cePiece (Kudo and Richardson, 2018). This shared
vocabulary was used by all models for generating
submissions to WMT24. We used this approach
as the four languages belong to the same language
family.

2.3 Augmenting Data with Backtranslation
We augmented the filtered training data using back-
translation (Sennrich et al., 2016a). For each
language pairs for both source→target (except
spa→ast) and target→source directions, Apertium
3.9.6 was used to generate BT data. Due to
the lack of direct translation support for some
language pairs in Apertium, the translation for
arg→spa went through the following translation
path: Aragonese → Catalan → Interlingua → Span-
ish3. For arn→spa, it goes through Aranese →
Catalan → Spanish4.

Translation from Asturian to Spanish is not sup-
ported by Apertium. Alternatively, we used the
ast→spa model that was originally intended for
noisy channel reranking (NCR), a technique which
will be explained in Section 2.5, to generate BT

3Apertium language codes: arg-cat→cat-ina→ina-spa
4Apertium language codes: oc_aran-ca→cat-spa

data. For decoding, we used combined top-k and
nucleus sampling:

δk∑

i=0

P (ŷ
(T )
i |x; ŷ(T−1)) · δtemp ≤ δp (1)

where δk is the top values considered for top-k
sampling, δtemp is temperature, δp is the maximum
total probability for nucleus sampling. For these
hyperparameters, we used the same values as (Cruz,
2023) which are as follows: δk = 50, δtemp = 0.7,
and δp = 0.93.

Once the BT data for each language pairs and
translation direction are generated we took a subset
in different ways. For BT data for training Direct
Translation Models (spa→arg/ast/arn), we used all
the generated BT data for spa→arg since it’s less
than 300K. For BT data of spa→ast and spa→arn,
we keep the longest 300K sentences.

For BT data for training Channel Translation
Models (arg/ast/arn→spa), we used all the BT data
for arg→spa since it’s less than 100K. For ast→spa,
we randomly sampled 100K sentences. Due to
time constraints, we did not generate BT data for
arn→spa.

2.4 Model Training
For each language pair, we trained three types of
models: a Direct Translation Model, a Chan-
nel Model, and a Language Model which will
be detailed in the following subsections. These
three models will be combined via Noisy Chan-
nel Reranking (Yee et al., 2019) which will be ex-
plained in Section 2.5.

2.4.1 Direct Translation Models
For each direct translation models
(spa→arg/arn/ast), we trained encoder-decoder
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Transformer architecture (Vaswani et al., 2017)
from scratch with and without BT data. We
used the large variant of transformers which has
213M parameters5. We describe two training
configurations: tf-large60k which was trained for
60,000 steps of which 3,000 are warmup steps,
and tf-large100k which was trained for 100,000
steps of which 10,000 are warmup steps. Training
settings with “-plusbt” suffix indicates that the
model was trained on a mixture of provided
training data and BT data. Otherwise, it indicates
the model is trained only on the provided training
data. For example, tf-large100k-plusbt means
the model was trained on the mixture of provided
training data and BT data for 100,000 steps of
which 10,000 are warm up steps.

For both settings and all language directions,
unless stated otherwise, we used the same hyperpa-
rameters in Table 2. For generating WMT24 sub-
missions, we used models trained on tf-large100k-
plusbt setting as our Direct Translation Model.

2.4.2 Channel Translation Models
For the channel translation models
(arg/arn/ast→spa), we used the same archi-
tecture and hyperparameters as the direct
translation models, except it was trained on
tf-large60k-plusbt setting, batch size/max tokens
of 10,000, and learning rate of 7e-4 (arg→spa and
arn→spa) and 5e-5 (ast→spa). These were used
as channel models for noisy channel reranking
which is explained further in Section 2.5 and
for performing hyperparameter sweeps of noisy
channel reranking parameters detailed in Section
2.6.

2.4.3 Language Models
We trained monolingual language models for
Aragonese, Aranese, and Asturian from scratch
using the decoder-only part of the original Trans-
former architecture as described in (Vaswani et al.,
2017). We used the base variant which has 65M
parameters6. For all languages, we used Adam
optimizer (Kingma and Ba, 2017) with β1=0.90,
β2=0.98. We trained for a maximum of 250,000
steps of which 4,000 are warmup steps. The
warmup initial learning rate is 1e-7 and the max
learning rate is 5e-4 and then decayed following
an Inverse Square root learning rate schedule. The
batch size / max tokens is 40,000, and the dropout

5Fairseq model code: transformer_wmt_en_de_big
6Fairseq model code: transformer_lm

Training Hyperparameters
Vocab Size 31,960
Tied Weights Yes
Dropout 0.3
Attention Dropout 0.1
Weight Decay 0.0
Label Smoothing 0.1
Optimizer Adam
Adam Betas β1=0.90, β2=0.98
Adam ϵ ϵ=1e-6
Learning Rate 5e-5
LR Schedule Inverse Sqrt
Batch Size 8,000 tokens

Table 2: Fixed hyperparameters for direct translation
models.

is 0.1. These models were used in noisy channel
reranking which is explained further in Section 2.5
and for performing hyperparameter sweeps of noisy
channel reranking parameters detailed in Section
2.6.

2.5 Noisy-Channel Reranking
Similar to (Cruz, 2023), we experimented with us-
ing Noisy Channel Reranking (Yee et al., 2019)
to improve translations. This works by using a
direct translation model (source→target), chan-
nel model (target→source) and a monolingual lan-
guage model (target only) to rescore every candi-
date translation token during beam search decoding.
The score of the candidate translation token ŷ

(T )
i at

time step T is recomputed using a linear combina-
tion of all three models:

P (ŷ
(T )
i |x; ŷ(T−1))

′
=

1

t
log(P (y|x̂(T−1))

+
1

s
[δch log(P (x|ŷ(T−1))

+δlm log(P (ŷ(T−1)))]

(2)

where t is the length of target sentence y and s
is the length of source sentence x which serves as
debiasing terms. The δch and δlm are weights of the
channel model and language model, respectively,
which controls the influence of the models to the
final score. For this paper, both δch and δlm were
set to 0.5

2.6 Hyperparameter Sweeping
Similar to (Cruz, 2023), we utilized a Bayesian
hyperparameter search to find an optimal value for
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BLEU
Setting FLORES+ dev WMT24 Test

spa→arg spa→ast spa→arn spa→arg spa→ast spa→arn
Apertium (baseline) 70.3 22.6 42.4 - - -

No BT; No NCR 18.3 23.9 8.7 13.4 16.8 7.2
No BT; w/ NCR 21.3 24.0 8.7 16.5 16.9 7.2
w/ BT; No NCR 35.4 24.4 14.4 26.7 17.5 7.7
w/ BT; w/ NCR 37.1 24.3 13.7 28.2 17.2 7.2

Table 3: BLEU scores of various system configurations compared to Apertium. BT and NCR denotes backtranslated
data and noisy channel reranking, respectively. Highest score per language pair are in bold.

Model configuration BLEU
tf-base100k w/o NCR 19.3
tf-base100k w/ NCR 20.7
tf-base100k-plusbt w/o NCR 36.4
tf-base100k-plusbt w/ NCR 37.6
tf-large100k w/o NCR 18.3
tf-large100k w/ NCR 21.3
tf-large100k-plusbt w/o NCR 35.4
tf-large100k-plusbt w/ NCR 37.1

Table 4: Ablation results for spa→arg. NCR denotes
noisy channel reranking.

length penalty. The length penalty sweep was per-
formed for 137 iterations sampling from a uniform
distribution with minimum 0.0 and maximum 2.0.
Hyperparameter sweeping was performed using
the tf-large60k-plusbt direct translation models
with noisy channel reranking enabled on the Span-
ish to Aragonese language pair. Translations for
the hyperparameter sweep were generated from the
copy of FLORES+ (Team et al., 2022) found in the
PILAR (Galiano-Jiménez et al., 2024) repository7.
The results of this sweep were used on all language
pairs. We performed the sweep on spa→arg only
and on a tf-large60k-plusbt model due to hard-
ware and time constraints. Our sweeps showed that
setting length penalty to 1.726 is optimal.

3 Results and Discussion

In this section, we discuss the results of our ex-
periments and discuss our findings. Experiments
were performed using the copy of FLORES+ (Team
et al., 2022) found in the PILAR (Galiano-Jiménez
et al., 2024) repository were computed using Sacre-
BLEU8 (Post, 2018).

7https://github.com/transducens/PILAR
8SacreBLEU signature:

nrefs:1|case:mixed|eff:no|tok:flores101|smooth:exp|version:2.4.2

Setting BLEU
whole mid long

no-BT (baseline) 8.2 8.4 8.2
short-BT 10.5 9.6 10.4
mid-BT 11.6 10.7 11.6
long-BT 14.3 11.4 14.3

Table 5: BLEU scores per length group of BT data.
long-BT outperforms all other settings in all test setups.

For all translations, we used the following de-
coding hyperparameters: top_k=50, top_p= 0.93,
temperature=0.7, beam=5. Additional hyperparam-
eters are specified per experiment.

3.1 Comparison Against Baselines

We compare our system against Apertium 3.9.6.
Results are listed in Table 3. We observe that Aper-
tium yields the highest BLEU score for spa→arg
and spa→arn. For spa→ast, the systems trained
with BT data both outperform the Apertium base-
line.

Our method performs worst on the spa→arn
language pair while it performs best for spa→arg.
However for both of these pairs our system is out-
performed by Apertium. From this we can con-
clude that our current pipeline cannot overcome
the low resource nature of these language pairs in
order to close the gap with Apertium. For spa→ast,
we were able to outperform Apertium with a differ-
ence of 1.8 BLEU.

3.2 Ablations

We perform an ablation study by varying model
size, use of BT data, and use of noisy channel
reranking. Due to hardware and time constraints,
we only perform our ablations in the spa→arg di-
rection. Results are summarized in Table 4.

We observe that the addition of BT data and

895



Figure 1: Sequence length distribution of the target side of the train (filtered) and test set per language pair. spa-arn
has the least overlap between train and test and has the most short examples in training data which hints why the
BLEU score is relatively lower compared to other language pairs.

noisy channel reranking resulted in an increased
BLEU score. Using both strategies yields the high-
est BLEU score for both base and large model
sizes. It is notable that the base model with both
BT data and noisy channel reranking yields the
highest BLEU score in our ablation study. We
speculate that this be due to the large model having
too many parameters for the given task or a lack
of data. Another reason is that spa-arn is relatively
easier compared to other language pairs because
the source and target are more similar with each
other as shown in Table 6. More experiments are
needed to confirm these.

3.3 Adding Longer Examples Improves
BLEU Better than Shorter Examples

For the spa→arn baseline model (No BT), we ob-
served a BLEU score of 8.7 on FLORES+ dev set.
One possible explanation for the low score is the
mismatch between the length distribution of train-
ing and test data. We observed that the training data
is comprised mostly of short examples while the
FLORES+ dev set is relatively longer (see Figure
1). We hypothesize that adding longer examples
to the training set will improve BLEU score, espe-
cially on longer examples.

To provide evidence for the hypothesis, we gen-
erated BT data of size 100,000 for different length
groups namely, short-BT (1-10 words), mid-BT
(11-20 words), long-BT (20+ words). We mixed
the BT data with the training data then trained
a model for each setup. We trained each model
for 50,000 of which 5,000 are warmup steps. We
used the same training hyperparameters as in Ta-
ble 2. For fair comparison, we trained a baseline
model (no-BT) using the same training hyperpa-
rameters. For generating the translations, we did
not use noisy channel reranking and we fix the

length penalty to 1.0. The results are summarized
in Table 5.

The result shows that long-BT gives an abso-
lute BLEU score improvement of +6.1 over base-
line, followed by mid-BT (+3.4), and then short-BT
(+2.3). This tells us that while augmenting with BT
data generally improves the performance, strate-
gically adding more long examples can give the
most improvements in a resource-constrained set-
ting. To strengthen this claim further, we performed
a fine-grained test by grouping FLORES+ dev set
by length groups (mid/long). For this experiment,
we did not include the short length group because
it only contains 3 examples after grouping. The
results shows that long-BT gives the most improve-
ments on mid and long test groups, followed by
mid-BT and short-BT (see Table 5). This suggests
that training on longer sequences also improves
performance on shorter sequences.

While this experiment shows empirical results
that adding longer examples improves the over-
all BLEU score better than adding shorter exam-
ples, it does not say something about the quality
and diversity of the text. It is possible that these
findings might not hold if the long examples are
of low quality. Another possible explanation on
why long-BT outperforms its shorter counterparts
is because, with the same number of examples
of 100,000, long-BT contains more tokens than
short-BT and mid-BT. To further solidify the claim
that adding longer examples improves the overall
BLEU score better than adding shorter examples,
more experiments are needed where total token
count per length group are equal or close to each
other.
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Language Pair JS (generated) ↑ ED (generated) ↓ JS (ground truth) ↑ ED (ground truth) ↓
spa→arg 0.34 0.59 0.34 0.57
spa→arn 0.23 0.69 0.13 0.83
spa→ast 0.44 0.44 0.23 0.76

Table 6: Average Jaccard similarity (JS) and average normalized edit distance (ED) between source and generated
translations and ground truth translations. Results confirm our observatoin that our system is regurgitating Spanish
source sentences in the spa→ast direction. Results also suggest that the Spanish and Aragonese sentences in the
FLORES+ dev set are more similar to each other compared to others.

3.4 Regurgitation of Spanish Sentences in
Generated Translations

We observed that our model was producing some
translations that were only slightly altered versions
of the source Spanish sentence. To empirically
evaluate the extent of this problem for our system,
we compare the BPE tokenized source Spanish
sentences of the FLORES+ dataset from PILAR
to the corresponding generated translations made
by our system and the corresponding ground truth.
We compared this system via two metrics: Jaccard
similarity (JS) and normalized edit distance (ED).
To compute the two metrics between two BPE en-
coded sentences S1 and S2, we get the set of tokens
of each sentence T1 and T2 and compute Jaccard
similarity as

JS =
|T1 ∩ T2|
|T1 ∪ T2|

and normalized edit distance as

ED =
D(S1, S2)

max(|S1|, |S2|)
where D(S1, S2) denotes token-level Levenshtein
distance between BPE encoded sentences S1 and
S2. We divide by the maximum length between S1

and S2 to ensure that we get a value between 0 and
1. Results of this analysis are summarized in Table
6.

We observe that spa→ast shows the highest av-
erage Jaccard similarity and the lowest normalized
edit distance among language pairs for generated
translations; however, the corresponding metrics
for the spa→ast ground truth translations tell a dif-
ferent story. Ground truth translations for spa→ast
show a lower Jaccard similarity and a higher nor-
malized edit distance, indicating that we may be
regurgitating Spanish sentences.

Below is a sample of a Spanish sentence together
with a generated Asturian translation which ex-
hibits regurgitation and the corresponding ground

truth translation. Notice how the generated transla-
tion is closer in similarity to the Spanish sentence
than the correct Asturian translation. In the below
example, “S -” is the source spanish sentence, “H
-” is the generated Asturian translation, “T -” is
the ground truth Asturian translation, “J -” is the
jaccard similarity compared to the source Spanish
sentence, and “E -” is the normalized edit distance
compared to the source Spanish sentence. All sen-
tences are BPE encoded.
S - _Apenas _pas adas _las _11: 00 _h , _los

_integrantes _de _la _manifestación _bloque
aron _la _circulación _del _car ril _de
_White h all _que _va _hacia _el _norte .

H - _Ap enes _pasa es _les _11: 00 _h , _los
_integrantes _de _la _manifestación _blo qui
aron _la _circulación _del _car ril _de
_White h all _que _va _escontra ' l _norte .

J - 0.553
E - 0.303

T - _X usto _depués _de _les _11: 00, _los
_manifestantes _blo qui aron _el _trá ficu
_nel _sentíu _norte _en _White h all .

J - 0.244
E - 0.833

For spa→arg, Jaccard similarity and normal-
ized edit distance are similar for both generated
translations and ground truth translations. We
note that this language pair has the highest Jac-
card similarity and lowest normalized edit distance
between its source Spanish sentences and ground
truth Aragonese translations. This indicates that
there is a degree of similarity between the Spanish
and Aragonese sentences in the dataset which may
explain why the spa→arg model exhibited the high-
est BLEU score in our baseline comparison. We
provide a sample below where the source Spanish
sentence is similar to the ground truth Aragonese
translation.
S - _En _el _partido , _Nadal _acumul ó _un _8

8% _de _puntos _ne tos _y _ganó _76 _en _el
_primer _servicio .

H - _En _o _parti to , _Nadal _acumul ó _un _8
8% _de _puntos _ne tos _y _ganó _76 _en _o
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_primer _servicio .
J - 0.792
E - 0.174

T - _En _o _parti u , _Nadal _acumul ó _un _8
8% _de _puntos _ne tos _y _ganó _76 _en _o
_primer _servicio .

J - 0.792
E - 0.174

We plot the histogram of Jaccard similarity and
normalized edit distance for all language pairs in
Figures 2, 3, and 4.

3.5 Character Set Analysis

We observe that our generated translations do not
contain all characters present in the ground truth as
shown in Table 7. For all languages, the missing
characters are present in the training data with the
exception of Õ for Asturian and Aragonese. All
missing characters constitute less than 1% of the
training data which may explain why they were not
learned by our models.

4 Conclusions

We detailed our constrained system for translat-
ing from Spanish to Aragonese (spa→arg), Arane-
se/Occitan (spa→arn), and Asturian (spa→ast).
These systems were trained from scratch on con-
strained data, augmented by backtranslated (BT)
data. Translations were further improved by uti-
lizing Noisy Channel Reranking. This approach
outperformed Apertium on the spa→ast translation
direction. Our ablation study for spa→arg showed
that utilizing backtranslation and noisy channel
reranking improves BLEU score. However, more
experiment is needed for other language pairs. Our
ablation experiment also suggests that smaller mod-
els are capable enough for spa→arg, at least for this
train and test set.

We investigated the cause of low BLEU score
for spa→arn despite having more data (after filter-
ing) than spa→arg and spa→ast. We linked it to
the train-test mismatch of spa-ast data in terms of
sequence length. We also found that adding longer
backtranslated data improves overall BLEU score
even in shorter sequences.

Lastly, we observed that our model for spa→ast
was regurgitating Spanish sentences in Asturian
translations and that characters with low frequen-
cies in the training data are not being learned by
our models.

Limitations

We are unable to evaluate whether the translations
we generate are syntactically or semantically sound
due to the fact that none of us speak Spanish,
Aragonese, Asturian, or Aranese/Occitan.
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Language Missing Characters Frequency in Training Data # Characters in Training Data
Aragonese » « ] & õ [ Õ 1,583 4,713,907
Aranese/Occitan & « » Ç Ò Õ U+0301 ’ 96,233 36,014,337
Asturian " Õ Ú U+1E24 h. – — ’ 56,798 42,897,857

Table 7: Characters present in ground truth translations but missing in generated translations together with their
frequency in training data compared to the total number of characters in training data. Unicode symbol code in
italics listed when a character is unsupported by LATEX. All missing characters constitute less that 1% of the training
data.

(a) (b)

Figure 2: Distribution of Jaccard similarity and normalized edit distance for spa→arg of source sentences vs
generated translations and ground truth translations. We can see that the distributions for both Jaccard similarity and
normalized edit distance almost entirely overlap. Taken together with the means from Table 6, these show that any
regurgitation our model exhibits can also be seen in the ground truth test data.

(a) (b)

Figure 3: Distribution of Jaccard similarity and normalized edit distance for spa→arn of source sentences vs
generated translations and ground truth translations. We can see in (a) that while Jaccard similarity of generated
translations vs. source Spanish sentences is higher compared to that of ground truth translations vs. source Spanish
sentences, they both tend to be less than 0.4. In (b), we see that while normalized of generated translations vs.
source Spanish sentences is lower compared to that of ground truth translations vs. source Spanish sentences, they
both tend to be greater than 0.6. This indicate low amounts of regurgitation in the case of our spa→arn system.
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(a) (b)

Figure 4: Distribution of Jaccard similarity and normalized edit distance for spa→ast of source sentences vs
generated translations and ground truth translations. We see in (a) that the Jaccard similarity of generated Asturian
translations compared to source Spanish sentences is higher than that of ground truth translations compared to
source sentences. In (b), we see that the normalized edit distance of generated translations compared to source
sentences is lower than that of ground truth vs. source sentences. This indicates that our model is regurgitating more
Spanish words rather than translating to Asturian.
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Abstract
This paper describes our submission to the
WMT24 shared task for Low-Resource Lan-
guages of Spain in the Constrained task cat-
egory. Due to the lack of deep learning-based
data filtration methods for these languages, we
propose a purely statistical-based, two-stage
pipeline for data filtration. In the primary stage,
we begin by removing spaces and punctuation
from the source sentences (Spanish) and dedu-
plicating them. We then filter out sentence
pairs with inconsistent language predictions by
the language identification model, followed by
the removal of pairs with anomalous sentence
length and word count ratios, using the devel-
opment set statistics as the threshold. In the
secondary stage, for corpora of significant size,
we employ a Jensen-Shannon divergence-based
method to curate training data of the desired
size. Our filtered data allowed us to complete
a two-step training process in under 3 hours,
with GPU power consumption kept below 1
kWh, making our system both economical and
eco-friendly. The source code, training data,
and best models are available on the project’s
GitHub page1.

1 Introduction

We2 participated in the Constrained submission
category of the WMT24 shared task for Low-
Resource Languages of Spain (Sánchez-Martínez
et al., 2024), focusing on the Spanish-Asturian
language pair. For the Constrained submission
category, we are limited to using only the resources
provided on the official shared task site3, and all
models utilized must not exceed 1 billion parame-
ters.

Previous shared tasks on data filtering have
used deep learning-based scoring methods like

1https://github.com/vmenan/wmt24-lowres-spain
2Team Mora-translate, Primary submission id 547
3https://www2.statmt.org/wmt24/romance-task.

html

LASER (Heffernan et al., 2022) and LaBSE (Feng
et al., 2022), as well as sentence alignment methods
such as SentAlign (Steingrimsson, 2023) and Ve-
calign (Thompson and Koehn, 2019). However,
these methods often fail with low-resource lan-
guages (LRL) due to a lack language of support.

Following prior work (Cruz and Sutawika, 2022;
Vegi et al., 2022; Zhang, 2023), we focus on sta-
tistical data filtration and sampling techniques to
curate our datasets, ensuring our method is not
limited to specific languages. Given our compute
resource constraints, we design our pipeline to uti-
lize small dataset sizes, enabling a larger volume of
experiments. As noted in Ranathunga et al. (2024),
randomly sampling a large corpus and training on
that sample yields sub-optimal results. Therefore,
we use the Jensen-Shannon Divergence (JSD) (Lu
et al., 2020) to filter subsets from large corpora
(see Section 3.1.1). We favor JSD over Kullback-
Leibler (KL) divergence and higher-order domain
discriminators due to its symmetric property and
relatively simple implementation.

In addition to data filtration, we experiment with
a two-step training schema. First, we train the
entire model on a larger filtered dataset. Then, in
the second step, we freeze the encoder layers and
fine-tune the model on the filtered dataset for fine-
tuning. This approach proved effective for the task.
We select models with under 1 billion parameters
for all experiments to adhere to the rules of the
Constrained task.

Our key contributions are:

• We propose a two-stage data filtration system
that can be applied to any language. This sys-
tem includes statistical data filtration methods
for bilingual and monolingual data, along with
a Jensen-Shannon divergence-based filtration
method.
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• We achieve competitive results in a compute
resource-constrained environment (Table 4).

• Based on our experiments, we show that fine-
tuning a multilingual translation model for
a high-resource source language and a low-
resource target language is most effective
when high-quality monolingual target data is
leveraged, and the encoder is frozen to pre-
serve the source language knowledge while
training the model.

• We maintain an effective training time well
under 3 hours and keep the total GPU power
consumption of our best model (training +
fine-tuning) under 1 kWh, resulting in a mini-
mal carbon footprint and enhancing the eco-
friendliness of our training schema.

2 Related Work

Bilingual parallel data curated from web-mined cor-
pora are prone to various types of noise. Kreutzer
et al. (2022) investigated the issue of noise in web-
mined corpora by analyzing a sample of 100 sen-
tence pairs, providing evidence of the problem.
In a similar vein, Khayrallah and Koehn (2018)
examined how different types of noise in paral-
lel training data impact the quality of neural ma-
chine translation systems. Building on this body
of work, Ranathunga et al. (2024) further estab-
lished that data quality is more critical than data
quantity, particularly for low-resource languages.
These studies collectively highlight the importance
of addressing bad data in web-mined corpora.

Handling noisy parallel data in machine trans-
lation had been extensively studied, with vari-
ous methods proposed in the literature. Below,
we present these methods, grouping them into
two main categories: (1) deep learning-based ap-
proaches and (2) statistical-based approaches. Ad-
ditionally, we include methods that do not fit
broadly into these categories under the section
Other Approaches.

Deep Learning-Based Approaches. Recent ad-
vances in deep learning have introduced several
methods to handle unclean data. Zhang (2023)
proposed a denoising approach by pretraining on
corrupted data and regenerating the original con-
tent. They utilized text corruption techniques as
proposed by Lewis et al. (2020), including token
masking, sentence permutation, document rotation,
token deletion, and text infilling. They pretrained

models on synthetic and monolingual data and fine-
tuned them on clean parallel corpora, achieving
translation perplexity scores by training two models
and analyzing prediction difficulties. Ensembling
methods were also employed to enhance perfor-
mance. Chaudhary et al. (2019) utilized LASER
and an ensemble of scoring methods to check the
similarity between embeddings and cross-entropy
scores for both directions, penalizing significant
differences. Abdulmumin et al. (2022) developed a
binary classifier to predict translation accuracy, col-
lecting positive data from a gold standard dataset
and negative data from the worst LASER alignment
scores. Unfortunately, majority of the methods and
models mentioned above do not support Asturian,
Aragonese, or Aranese.

Statistical Approaches. Steingrímsson et al.
(2023) applied rules such as filtering sentences
with three tokens or less, ensuring 60% or more
token overlap between languages, and requiring at
least 70% alphabetical characters in both sentences.
Vegi et al. (2022) introduced constraints such as fil-
tering sentences where the source or target exceeds
800 characters, where the length ratio is greater
than 2.5 or less than 0.4, or where words exceed
10 characters. Cruz and Sutawika (2022) extended
these rules to include sentences with too many con-
tiguous punctuations (three or more), a large per-
centage of numbers or punctuations, and additional
filtering criteria. Minh-Cong et al. (2023) pro-
posed building a dictionary using MGiza++ and
clean parallel corpora, translating source sentences,
calculating edit distances, and iteratively training
NMT models, assuming the availability of clean
parallel corpora.

Other Approaches. Other approaches for han-
dling unclean data include additional filtering rules
proposed by Vegi et al. (2022), such as remov-
ing sentences that are empty or identical between
source and target. Cruz and Sutawika (2022) sug-
gested removing sentences with missing punctua-
tions in one language, sentences containing HTML
or URLs, ensuring numbers appear in both source
and target, and deduplicating data after preprocess-
ing. Steingrímsson et al. (2023) recommended
using a language filter to ensure both languages
are in the top two predictions and removing near-
duplicate pairs.
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3 Methodology

Training Datasets: For training, we use bilin-
gual datasets from OPUS4 CCMatrix and WikiMe-
dia (Spanish-Asturian), subjected to the filtration
outlined in section 3.1.1. We also use monolingual
datasets, specifically the PILAR (Galiano-Jiménez
et al., 2024b) Asturian monolingual dataset and
the Spanish side of the English-Spanish Wikime-
dia dataset from OPUS, with filtration procedures
detailed in section 3.1.2.

Development Set: We evaluate the trained mod-
els using the FLORES+5 Spanish-Asturian devel-
opment set, referred to as the development set
throughout the paper.

Hardware Specifications: All experiments were
conducted on a single machine with an Intel i9-
9900K CPU, 64GB of RAM, and an Nvidia Quadro
RTX 6000 (24GB VRAM).

Software Specifications: All models and train-
ing code were developed using the HuggingFace
(HF) Transformers (Wolf et al., 2020) library. For
evaluation, we use chrF and BLEU scores from
the evaluate6 library of HF. We utilized the work
done by Nayak et al. (2023) to obtain the Jensen-
Shannon divergence scores.

Models: We use NLLB-200-600M (NLLB Team
et al., 2022) (we will address it as NLLB-600M
throughout the paper), M2M100-418M (Fan et al.,
2020) (we will address it as M2M100 through-
out the paper), and SMaLL-100 (Mohammadshahi
et al., 2022) to conduct experiments. All training
and fine-tuning was performed on SMaLL-100 (see
section 3.2)

Training Details: We use the HF Transformers
Trainer API with the AdamW optimizer, a learning
rate of 1× 10−5, and a batch size of 16. Gradient
accumulation steps of 16 were used to increase the
effective batch size to 256. Training is conducted
in two steps: first, training the entire model us-
ing the filtered Spanish-Asturian CCMatrix dataset
(Table 3); then, fine-tuning the best model from
the training phase by freezing the encoder layers
(Table 4).

Dataset used in fine-tuning step: For fine-
tuning, we combined multiple datasets as follows

4https://opus.nlpl.eu/
5https://github.com/transducens/PILAR
6https://github.com/huggingface/evaluate

(see Table 4 for results): Dataset A is the filtered
Spanish-Asturian Wikimedia; Dataset B includes
A + the filtered PILAR crawled monolingual data;
Dataset C includes B + the filtered PILAR liter-
ary monolingual data; Dataset D includes C + the
Spanish monolingual data from English-Spanish
Wikimedia. All monolingual data were translated
using NLLB-600M.

3.1 Data Filtration and Curation

3.1.1 Bilingual Data Filtration

Our Bilingual Data Filtration pipeline consists of
two stages: Primary and Secondary.

Primary Filtration: We start by removing punc-
tuation and whitespace from the Spanish text, then
deduplicate it. Using Idiomata Cognitor (Galiano-
Jiménez et al., 2024a), we classify the language
of each sentence, removing those with inconsis-
tent predictions. We analyze sentence length ratios
and word counts, using the development set as a
benchmark to remove anomalies.

Dataset Before
(M)

After
(M)

%
drop

Wikimedia - es_ast 0.04 0.03 38.99
CCMatrix - es_ast 5.39 2.01 62.72
Wikipedia - es_en 2.80 1.26 55.19
Wikimedia - es_en 1.81 1.31 27.47

Table 1: The table presents the sample count (in mil-
lions) before and after primary filtration, along with the
percentage of samples dropped during this phase.

Secondary Filtration: For datasets over 300K
sentences, we limit the size to 50K-300K sentences.
We use the Jensen-Shannon divergence to refine
the data. We sample sets of 2000 sentence pairs
(with replacement) to form 1000 sets, remove Span-
ish stop words and punctuation with the NLTK li-
brary7, and calculate word frequency distributions
for each sample and the development set. We sort
the samples by their divergence scores (Nayak et al.,
2023) against the development set, and iteratively
merge and deduplicate low-divergence samples un-
til we have the target dataset size (as specified in
Table 3). The implementation of the secondary
filtration method is detailed in Algorithm 1.

7https://www.nltk.org/
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Algorithm 1: Secondary Filtration
Input: Dataset D with |D| ≥ 500K,

development set E, number of
batches N , batch size L, desired size
S

Output: Deduplicated batch set Bfinal of
size S

// Initialize empty batch list
B ← {}
for i← 1 to N do

// Randomly sample L rows with
replacement

Bi ← RandomSample(D,L)
B ← B ∪ {Bi}

end
// Initialize empty scores list
scores← {}
for each batch Bi ∈ B do

// Jensen-Shannon Divergence
between Bi and E

JSi ← JS_div(Bi, E)
scores← scores ∪ {(Bi, JSi)}

end
Sort(scores) by JSi in ascending order
// Initialize final batch List
Bfinal ← {}
current_size← 0
while current_size < S do

Bcandidate ← scores[i].batch
Bfinal ← Bfinal ∪ {Bcandidate}
De-duplicate(Bfinal)
current_size← Length(Bfinal)

end
return Bfinal

3.1.2 Monolingual Data Filtration
We extract monolingual data from PILAR crawled
and literacy datasets for Asturian, and Wikime-
dia OPUS datasets for Spanish using the English-
Spanish direction. Using sentence-splitter8, we
segment the PILAR text into sentences using the
Spanish setting, achieving good performance de-
spite the library’s lack of support for Asturian. We
removed URL links and retained sentences with a
word count between four and sixty (the maximum
in the development set). Sentences were then clas-
sified using the language identifier model Idiomata
Cognitor (Galiano-Jiménez et al., 2024a), and those

8https://github.com/mediacloud/
sentence-splitter

not identified as Spanish or Asturian were removed.

3.2 Model Selection
Translation Model Selection: Based on zero-
shot performance scores, NLLB-600M was se-
lected as the best model for translating the filtered
monolingual dataset, outperforming both M2M-
100 and SMaLL-100 in chrF and BLEU scores
(Table 2).

Training Model Selection: Given the limited
GPU resources in our training environment, we
selected SMaLL-100 as the model for training and
experimentation due to its smaller size and superior
performance compared to M2M-100 (Table 2).

4 Results and Discussion

In this section, we present the results of our exper-
iments using the proposed methods. The results
from our primary data filtration step (Section 3.1.1)
demonstrate the row counts of each dataset before
and after filtration. Notably, our filtration method
had the most significant impact on the CCMatrix
(es-ast) and Wikipedia (es-en) datasets, with data
reduction percentages exceeding 50%. Further in-
vestigation could be conducted to understand the
factors contributing to this substantial data drop in
these sources and to determine whether this obser-
vation is consistent across other language pairs in
these datasets.

Table 2 displays the zero-shot performance of
three state-of-the-art open-source models: NLLB-
600M, M2M100, and SMaLL-100. NLLB-600M
was selected as the model for generating transla-
tions for monolingual sentences due to its signif-
icantly better performance compared to the other
two models. Given its smaller size and superior per-
formance compared to M2M100, SMaLL-100 was
chosen as the model for training and experimen-
tation. By choosing the SMaLL-100 model, we
gained the added advantage of using larger batch
sizes due to the model’s small size. This proved
crucial in our low-compute resource environment.

Table 3 presents the results from the first step
of the two-step training regime described in Sec-
tion 3, applied to the CCMatrix filtered dataset. The
data was incrementally filtered based on increasing
Jensen-Shannon divergence scores in steps of 50k.
We observe that model performance improves up
to a subset size of 100K, after which it gradually
declines. This observation aligns with the findings
of Ranathunga et al. (2024), emphasizing that data
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Model chrF BLEU # of Trainable
Params (M)

NLLB-600M 49.77 17.16 615.07
M2M100 46.27 14.71 483.91
SMaLL-100 48.47 14.85 332.74

Table 2: Scores for the zero-shot performance of the
models evaluated on FLORES+ Spanish-Asturian dev
set and number of trainable parameters for each model.

quality is more important than the sheer size of the
dataset. Selecting smaller, higher-quality datasets
not only enhances performance but also offers the
additional benefits of reduced training time and
lower computational requirements, which in turn
minimizes the carbon footprint. As shown in Ta-
ble 3, the best-performing subset required only 1.48
hours of training and consumed just 0.44 kWh of
GPU power.

Size
(k) chrF BLEU Time

(hrs)
Power
(kWh)

50 49.63 17.25 0.72 0.21
100 50.04 17.52 1.48 0.44
150 49.84 17.26 2.25 0.66
200 49.95 17.34 2.92 0.86
250 49.81 17.36 3.68 1.09
300 49.70 17.02 4.42 1.30

Table 3: Scores, training durations, and GPU power
consumption for training CC-Matrix Spanish-Asturian
filtered datasets at intervals of 50K jumps. This is the
first step in the training phase.

The results of our second step of model train-
ing (fine-tuning), where the encoder layers were
frozen, are presented in Table 4. Among the various
combinations, Dataset C demonstrated the best per-
formance. This dataset includes Spanish-Asturian
Wikimedia data as well as Spanish-Asturian PILAR
crawled and literary datasets. Notably, the Spanish
side of this dataset was generated using the transla-
tion model (NLLB-600M) for the PILAR Asturian
monolingual crawled and literary datasets.

Interestingly, the performance drops when us-
ing Dataset D, which consists of Dataset C com-
bined with Spanish data (Spanish-English Wikime-
dia) translated into Asturian using the translation
model. This observation underscores the impor-
tance of high-quality target-side sentences, as the
monolingual PILAR dataset comprises carefully
curated, high-quality Asturian data. We hypothe-

Size
(k) chrF BLEU Time

(hrs)
Power
(kWh)

A 24.8 51.14 17.80 0.28 0.08
B 38.5 51.38 18.02 0.60 0.18
C 60.2 51.47 18.17 0.95 0.28
D 84.9 50.92 17.97 1.35 0.40

Table 4: Dataset name, Size, Scores, Time duration and
the GPU Power consumption of fine-tuning the best
model from Table 3. A = filtered Spanish-Asturian
Wikimedia; B = A + filtered and translated PILAR
crawled data; C = B + filtered and translated PILAR lit-
erary data; D = C + Spanish-Asturian data from English-
Spanish Wikimedia.

size that since Spanish is a high-resource language,
the model’s encoder has likely been exposed to ex-
tensive Spanish data. By freezing the encoder and
allowing the model to learn during this fine-tuning
step, the model was better able to focus on the
target language. Based on these observations, we
conclude that when fine-tuning a pre-trained multi-
lingual translation model for a high-resource source
language and a low-resource target language, it is
essential to leverage high-quality monolingual data
for the target language and freeze the encoder to re-
tain the learned knowledge of the source language
while making the other layers trainable.

The training time and GPU power consumption
for the best datasets from our two-step training pro-
cedure (as shown in Table 3 and Table 4) remains
well within 3 hours and consumes less than 1 kWh
of GPU power. This makes our proposed method
highly suitable for low-compute environments.

5 Conclusion

We presented a purely statistical-based pipeline
for data filtering, demonstrating that simple sta-
tistical methods should not be overlooked, par-
ticularly for low-resource languages where deep
learning-based methods may fail to provide ade-
quate support. Our proposed pipeline achieved
competitive performance in a low-compute envi-
ronment for the constrained task, proving to be
both economical, with training times well under
3 hours as well as eco-friendly, with GPU power
consumption kept under 1 kWh. This work rein-
forces the findings of previous studies that empha-
size the importance of data quality over quantity.
We hope that our methodology will encourage and
empower researchers in low-compute environments
to contribute to an egalitarian representation of lan-
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Abstract
The Helsinki-NLP team participated in the
2024 Shared Task on Translation into Low-
Resource languages of Spain with four multilin-
gual systems covering all language pairs in the
open submission track. The task consists in de-
veloping Machine Translation (MT) models to
translate from Spanish into Aragonese, Aranese
and Asturian. Our models leverage known ap-
proaches for multilingual MT; namely, data fil-
tering, fine-tuning, data tagging, and distilla-
tion. We use distillation to merge the knowl-
edge from neural and rule-based systems and
explore the trade-offs between translation qual-
ity and computational efficiency. We demon-
strate that our distilled models can achieve
competitive results while significantly reducing
computational costs. Our best models ranked
4th, 5th, and 2nd in the open submission track
for Spanish–Aragonese, Spanish–Aranese, and
Spanish–Asturian, respectively. We release
our code and data publicly at https://github.
com/Helsinki-NLP/lowres-spain-st.

1 Introduction

In this work, we describe the participation of
our team to the Shared Task on Translation into
Low-Resource Languages of Spain 2024 (Sánchez-
Martínez et al., 2024), the first edition of its kind.
The task involves developing Machine Transla-
tion (MT) systems for translating from Spanish
(spa) into three closely related Romance target lan-
guages: Aranese (arn), Aragonese (arg) and As-
turian (ast). Aranese is a variety of Occitan spoken
in the northwestern part of Catalonia; Aragonese
is spoken in Aragon, in northwest Spain; and As-
turian is spoken in Asturias, in northeast Spain.

Although these minority languages have some
form of official status in their respective regions,
they are all considered endangered. According to
the linguistic taxonomy proposed by Joshi et al.
(2020), these languages fall into the category of
the "Scraping Bys". This means that, while there is

some available unlabeled data, substantial and coor-
dinated efforts are necessary to raise awareness and
gather labeled datasets to improve the prospects of
these languages in the future. This task is designed
precisely to address these challenges by fostering
the development of resources and tools for these
under-resourced languages.

In terms of current technological support, some
linguistic resources are available for these lan-
guages, including online dictionaries and estab-
lished orthographic standards. Apertium (Forcada
et al., 2011) is an open-source Rule-Based MT
(RBMT) toolkit initially developed for related lan-
guages, that offers substantial coverage for the
three target languages. Nevertheless, resources
remain notably sparse for data-driven approaches
like Neural Machine Translation (NMT). By con-
tributing to this task, we aim to change this picture.

We focus our participation efforts on data collec-
tion – by gathering additional data from Wikipedia
and online dictionaries –, data augmentation – by
producing back-translations (Sennrich et al., 2016)
of monolingual data –, and data preparation – by
carrying out corpus-targeted cleaning. We also
experiment with different data tagging strategies.
We submit four multilingual models, which arise
from fine-tuning and applying Knowledge Distil-
lation (KD), by leveraging both neural and RBMT
outputs, similarly to Aulamo et al. (2021). We eval-
uate our models both for translation quality and
efficiency, resulting in a diverse set of submissions
that balance accuracy and speed. Our contributions,
including our code and data, are publicly available
for further research in our Github repository.

The rest of the paper is organised as follows.
Section 2 describes the benchmarking of existing
models. Section 3 provides a detailed description
of our data collection and preparation efforts. Sec-
tion 4 describes the submitted models in detail.
Section 5 outlines the results and, finally, section 6
concludes our work.
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spa–xxx xxx–spa
Model Params (M) spa–arg spa–arn spa–ast arg–spa arn–spa ast–spa Speed (s)

Apertium – 53.8 32.5 14.4 56.4 31.3 17 99.00

opus-mt/itc-itc 212 42.0 9.4 15.3 70.1 32.9 22 284.24
opus-mt/deu+eng+fra+por+spa-itc* 222 42.6 9.6 16.9 – – – 307.06
opus-mt/roa-deu+eng+fra+por+spa** 222 – – – 71.1 37.5 22.4 289.09
opus-mt/itc-deu+eng+fra+por+spa 222 – – – 70.4 37.7 22.3 245.22

nllb-200-distilled-600M 600 – 8.55 13.38 – 30.38 21.66 442.94
nllb-200-distilled-1.3B 1,300 – 8.66 13.95 – 32.59 22.48 800.38
nllb-200-1.3B 1,300 – 8.62 12.46 – 34.35 22.85 822.73
nllb-200-3.3B 3,300 – 8.75 13.38 – 35.16 23.65 914.43

Table 1: BLEU scores on the development set for all language pairs in both directions of existing MT models. We
also report the average decoding speed in seconds on a single Nvidia V100 GPU. The asterisks (* and **) indicate
that we use those models for our work.

2 Benchmarking of Existing Models

The first step we took when approaching this task
was to benchmark existing models for the target lan-
guages. This process enabled us to assess the cur-
rent landscape of available models, identify those
suitable for fine-tuning, and determine which mod-
els could be utilized for back-translation.

We evaluate three types of models: OPUS-MT
models1, the smaller NLLB variants (Costa-jussà
et al., 2022), and the rule-based Apertium systems.
OPUS-MT models are trained with the Tatoeba
Translation Challenge dataset2 (Tiedemann, 2020)
and data from the massively parallel Bible corpus
(Mayer and Cysouw, 2014) as part of the JHUBC
corpus (McCarthy et al., 2020). These are all
transformer-big (Vaswani et al., 2017) systems.
The NLLB models are trained on a diverse col-
lection of multilingual text and come in different
sizes. Apertium and OPUS-MT cover all three tar-
get languages, whereas NLLB does not support
Aragonese.

We evaluate the systems with the provided devel-
opment set by the organizers and BLEU (Papineni
et al., 2002), as implemented in sacreBLEU (Post,
2018). The development set consists on a manually-
crafted revision of the 997 sentences from Flores+
(Goyal et al., 2022). Results are shown in Table 1.

We can see how OPUS-MT models, although
much smaller in size, outperform all NLLB variants
when the target language is the Romance minority
language. All NLLB variants perform similarly,
independently of their size. We attribute the lower
score on the Spanish–Aranese language pair to the

1https://github.com/Helsinki-NLP/
OPUS-MT-train

2Version v2023-09-26.

models being trained on Occitan data rather than
Aranese. Additionally, the remarkable performance
of the Apertium models in translating from Span-
ish stands out, as they surpass the neural systems,
except in the case of Asturian.3 This demonstrates
the effectiveness of rule-based systems in handling
closely related languages.

With Spanish as the target language, the NLLB
models follow the scaling laws and their score
increases along their size, as would be expected.
The OPUS-MT models exhibit comparable perfor-
mance. As expected, the compact OPUS-MT mod-
els are much faster when considering the decoding
speed of the different models. OPUS-MT models
have been trained using Marian (Junczys-Dowmunt
et al., 2018), while the NLLB family was trained
using Fairseq (Ott et al., 2019).

Taking this into account, we decide to select
two OPUS-MT models from Table 1 for our work:
the model marked with * for fine-tuning; and
model ** for producing back-translations. Given
that the NMT models significantly outperform the
Apertium systems for translation into Spanish, the
rule-based back-translation strategy employed by
Aulamo et al. (2021) did not suit our context.

3 Data

The data used to train our NMT systems consists of
parallel and monolingual datasets provided by the
organizers, as well as additional Wikipedia and dic-
tionary data. We utilize the monolingual datasets
by back-translating them to create synthetic parallel

3Asturian sentences were professionally translated from
English, while Aragonese and Aranese sentences were ma-
chine translated from Spanish using Apertium and later post-
edited. Hence, the higher score for Apertium and the language
pairs involving Aragonese and Aranese.
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Monolingual Parallel
PILAR
crawled

PILAR
literary

PILAR
cat–arn Dictionary Wikipedia Wikipedia

Discussions
Tatoeba

Challenge TOTAL

arg
raw 60,028 24,675 – – 255,149 – 41,623 381,475

langid 60,028 20,241 – – 241,415 – 22,354 344,038
filtered 56,103 19,328 – – 237,793 – 19,479 332,703

arn/oci
raw 7,358 229,886 85,491 14,874 616,530 14,591 744,731 1,713,461
arn

langid 7,358 228,512 64,141 14,874 29,627 2,429 106,248 453,189
filtered 7,243 213,960 64,141 14,874 27,160 2,249 87,189 337,801

oci
langid 0 474 0 0 511,713 11,415 354,202 877,804

filtered 0 357 0 0 493,216 10,810 299,440 803,823

ast
raw 14,776 24,093 – 82,009 2,230,855 – 5,511,336 7,863,069

langid 10,538 17,112 – 82,009 1,920,758 – 3,705,483 5,735,900
filtered 9,975 16,072 – 82,009 1,862,821 – 991,617 2,880,485

Table 2: Number of sentence pairs in training datasets. The "raw" line shows the sizes before any filtering, the
"langid" line shows the number of sentence pairs in the correct language according to Idiomata Cognitor, and the
"filtered" line shows the final sizes of the clean datasets. The Aranese and Occitan data are separated into two sets
after language identification. The final cleaned data size for each language is shown in bold.

training data. We remove noise from the training
data using the Idiomata Cognitor (Galiano-Jiménez
et al., 2024a) language identification tool, Opus-
Cleaner (Bogoychev et al., 2023) and its visual
user interface, and the configurable filtering tool-
box OpusFilter (Aulamo et al., 2020).

3.1 Data Collection

Table 2 shows the sizes of the datasets used for
training. As original parallel data, we use only the
Tatoeba Challenge data4 (Tiedemann, 2020), which
contains all data in OPUS (Tiedemann, 2012), de-
duplicated and shuffled. We also use the crawled
and literary PILAR corpora (Galiano-Jiménez et al.,
2024b) as monolingual data for all three language
pairs. Additionally, we use the Aranese side of the
Catalan-Aranese PILAR corpus also as monolin-
gual data.

We also leverage monolingual data that is not
provided by the organizers, which puts our models
in the open track: Wikipedia and online dictionar-
ies for Aranese5 and Asturian6. From Wikipedia,
we obtain the latest dump per language. More-
over, for Occitan, we also make use of OcWikiDisc
(Miletic and Scherrer, 2022), a corpus extracted
from the talk pages associated with the Occitan

4We use the same version as the original OPUS-MT model.
5https://www.diccionari.cat/cerca/

diccionari-der-aranes
6https://diccionariu.alladixital.org/

Wikipedia. We assume that Occitan datasets in-
clude Aranese data, since it is a variety of Gascon,
one of the main dialects of Occitan. For the online
dictionaries, we develop our own scraping scripts
to gather definitions. The scripts can be found in
our Github repository. For the monolingual data,
we produce back-translations into Spanish with the
openly available OPUS-MT model (marked with
** in Table 1) to produce synthetic parallel data.

3.2 Data Cleaning

The first step of our data cleaning pipeline is lan-
guage identification. We use the Idiomata Cognitor
tool (Galiano-Jiménez et al., 2024a) to identify the
correct target languages in all data sets. Idiomata
Cognitor also allows us to distinguish Aranese from
other Occitan varieties. Hence, from this point on-
wards, we treat Aranese and (non-Aranese) Occ-
itan data separately in order to experiment with
different model training strategies as described in
Section 4.

Next, we create customized filtering configura-
tions for each corpus (and for each subcorpus in
Tatoeba) to apply optimal data cleaning based on
the style and domain of the texts. To this end, we
use OpusCleaner (Bogoychev et al., 2023), which
is a parallel data cleaning tool that allows the user
to add and adjust filters and see their effects on
a sample of the corpus in real time in a graphi-
cal interface. The filters most commonly applied
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Model Submission oci tag arn tag spa–arg spa–arn spa–ast

OPUS-MT - - - 42.6 9.6 16.9

A.1 1 »oci« »oci« 54.8 12.3 18.5
A.2 1 – »oci« 51.5 28.2 18.5

B.1 – »oci« »xxx« 51.6 26.1 18.5
B.2 – »xxx« »oci« 51.5 26.8 18.5
B.3 – »oci«»oci« »oci«»xxx« 55.2 26.0 18.5
B.4 – »oci«»xxx« »oci«»oci« 52.8 25.7 18.5

Table 3: BLEU scores on the development set of fine-tuning the OPUS-MT model with different tagging strategies.
We provide the scores of the OPUS-MT model for reference. We report the best checkpoint score per language pair.
Model A.2 does not use Occitan data.

to our training sets are: (1) src_trg_ratio: The
ratio between the number of source and target to-
kens. (2) num_mismatch: The ratio between the
number of overlapping and differing numerals. (3)
alpha_ratio: The ratio between the number of
words and non-words, and the ratio between the
number of language and non-language characters.

Additionally, some corpora contain unwanted
structures, such as HTML tags or transcription con-
tent between double square brackets in Wikipedia
data, which we remove from the sentences. Fi-
nally, we apply OpusFilter to concatenate the dif-
ferent corpora, normalize whitespace characters,
remove all sentences shorter than 3 or longer than
150 words and remove all duplicate sentence pairs.
Table 2 shows the data sizes for each language pair
after applying language identification and corpus
cleaning. The final size of our corpus is 4,35M
sentences, with 66.14% spa–ast, 7.63% spa–arg,
7.75% spa–arn, and 18.45% spa–oci. All of our
data cleaning configuration files can be found in
our Github repository.

4 Models

In this section, we detail our modeling choices for
the four submissions, all of which employ one-to-
many multilingual models. Our models leverage
fine-tuning and data tagging, and the integration
of RBMT with neural models via Sequence-Level
KD (Seq-KD) (Kim and Rush, 2016). All models
are based on the Transformer architecture (Vaswani
et al., 2017) and use the OPUS-MT model, as de-
scribed earlier, as the initial checkpoint in some
form. For tokenization, we use the OPUS-MT
model’s SentencePiece vocabularies (Kudo and
Richardson, 2018), two distinct 32k piece vocabu-
laries: one shared among all source languages (in

our case, only Spanish) and another shared among
all targets. All models are trained on 4 Nvidia
V100 GPUs, except models C.2 and D.2, which are
trained on 8 AMD MI250x GPUs. Further configu-
ration details are provided in Appendix A.

4.1 Models A: Fine-tuning

As an initial step, we use the openly available
OPUS-MT model described in Section 2 and fine-
tune it using different data sampling schemes. We
train one model with all available training data
(model A.1) and another excluding the Occitan
data (A.2). The decision to exclude Occitan data
was made because both languages share the same
language tag, which could potentially confuse the
model, since there is much more training data on
Occitan than on Aranese. The development set
scores are presented in Table 3.

Compared to the original OPUS-MT model, we
observe a significant increase in BLEU scores for
the spa–arg language pair (+12.2) and for spa–arn
(+18.6). However, for Asturian, the increase is
more modest (+1.6). Removing the Occitan data
results in an increased score of almost +16 BLEU
points for the spa–arn language pair. Interestingly,
despite having the largest amount of new data for
Asturian, the model quickly reaches a performance
plateau during training, as shown in Figure 2 in
Appendix B. This trend persists throughout our
experiments, leading us to conclude that the spa–
ast language pair is the most challenging task.

For our Submission #1, we ensemble the best n
checkpoints per language pair across both A.1 and
A.2 models.7

7We perform ensembling using the top 10 best checkpoints
for each language pair and submit the ensemble with the high-
est score on the development set.
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Model Teacher(s) Size Submission spa–arg spa–arn spa–ast

C.1 A base 2 53.6 28.1 18.5
C.2 A tiny – 51.3 25.5 18.2
C.3 B.3 base – 55.4 26.6 18.5

D.1 A + RBMT base 2 54.2 27.3 18.5
D.2 A + RBMT tiny 3 52.8 27.1 18.2
D.3 B.3 + RBMT base 4 56.9 30.2 18.5
D.3_fixed B.3 + RBMT base – 57.0 26.9 18.5
D.4 RBMT base – 62.4 36.8 16.9

Table 4: Comparison of BLEU scores for our distillation experiments between NMT-only models and NMT+RBMT
systems across different language pairs on the development set. We report the best checkpoint score per language
pair, except for models D, where we use the same single checkpoint.

4.2 Models B: Data tagging
In multilingual systems, it is a common practice to
prepend a language tag to the source sentence to
indicate the target language. For consistency, we
applied uniform tagging across all models. Nev-
ertheless, for Aranese, we experimented with dif-
ferent tagging schemes, given that it is a variety of
Gascon, a dialect of Occitan.

Exploring the OPUS-MT vocabulary, we iden-
tified an unused tag, »xxx«, which prompted us
to experiment with various combinations of the
»oci« and »xxx« tags, including the use of double
tags. We fine-tune the original OPUS-MT model
with all available training data and different tagging
schemes. Results of are provided in Table 3.

While the performance of Asturian remained
unaffected, using different tags for Aranese and
Occitan led to a much higher BLEU on the spa–ara
language pair compared to model A.1; due to the
effectiveness of the data tagging schemes. Notably,
Aragonese appeared to be the most impacted by
data tagging, although we are unsure why. On av-
erage, the best performing model leverages double
tags (B.3). We do not submit any of these, but use
B.3 as a teacher in our distillation experiments.

4.3 Sequence-Level Distillation
Seq-KD (Kim and Rush, 2016) is a technique
where a student model is trained using translations
generated by one or more teacher model(s), with
the goal of transferring knowledge from a large,
powerful teacher model to a smaller, more efficient
student model. We experiment with Seq-KD to
train fast students.

Models C: NMT-distilled
First, we distill student models using the previ-
ously fine-tuned transformer-big NMT systems as

teachers. We leverage Sequence-Level Interpola-
tion (Kim and Rush, 2016), generating 8-best can-
didate translations for all the training data using
the best checkpoint for each language pair. From
these, we select the translation with the highest
ChrF (Popović, 2015) with the reference to create
a distilled dataset, which is then used to train the
student model. We use ChrF instead of BLEU as a
more fine-grained metric at character level.

To explore the tradeoff between translation qual-
ity and speed, we use models A8 as the teachers and
train two students of different sizes. Model C.1 is a
transformer-base model (67.5M parameters), while
model C.2 follows the tiny architecture described
in Bogoychev et al. (2020), its size is 20.4M pa-
rameters (3.3 times smaller). We train model C.2
using the OpusDistillery9, a pipeline for multilin-
gual Seq-KD of open NMT models. In addition, to
investigate the effect of multi-teacher distillation,
we distill another transformer-base model (C.3)
using a single NMT teacher, in this case, model
B.3. The development set scores for these student
systems are shown in Table 4.

When comparing models C.1 and C.2, it be-
comes evident that the capacity gap between the
teacher and student models significantly impacts
student performance. In KD, student models are
typically smaller than their teacher counterparts,
which can hinder their ability to effectively learn
and fit noisy data. This is reflected in the lower
scores of the smaller C.2 model across all language
pairs compared to C.1. On the other hand, models
C.1 and C.3 share the same size, but their training

8For Occitan, we use the original OPUS-MT model, as
our fine-tuned model has a lower score on Occitan, due to
the catastrophic forgetting phenomenon (Goodfellow et al.,
2013).

9https://github.com/Helsinki-NLP/OpusDistillery

912

https://github.com/Helsinki-NLP/OpusDistillery


RBMT
S 

NMT

H      (S)  

H     (S)   

argmax​ 
ChrF(H,G(S))

H*(S)  

NMT

RBMT

D

Figure 1: Overview of our Seq-KD distillation process to merge NMT and RBMT data. Given a source sentence (S),
we produce a hypothesis translation (H) with both our RBMT and NMT models. Then, we choose the translation
(H*) that has the maximum ChrF with the ground truth (G) to create the distilled dataset (D).

strategies differ. Model C.1 is distilled from mul-
tiple teachers, while C.3 is distilled from a single
teacher. Notably, distilling from a single model in
C.3 appears to offer greater stability.

Models D: Hybrid-distilled

Since rule-based translation models are remarkably
good for the given language pairs, as shown in
Table 1, we further experiment with Seq-KD to
train student models that benefit from both RBMT
and NMT outputs.

In this case, we use two types of teachers: (1)
the best checkpoint per language pair of the NMT
model(s) (as in the previous section) and (2) the
Apertium RBMT models. We forward translate the
training data with both teachers. For each source
sentence, we select the translation that has the high-
est ChrF score with the ground truth to create the
distilled dataset. Finally, we train a new student
model on the distilled dataset. An overview of this
process is depicted in Figure 1.

For each of the former models C, we train a
comparable hybrid-distilled student using a com-
bination of the NMT and RBMT data. The devel-
opment set scores for these models (D.1–D.3) are
shown in Table 4. The proportions of RBMT data
selected for the final distilled dataset are provided
in Appendix C.

The inclusion of RBMT data in the distillation
process leads to better performance across all lan-
guage pairs overall. For model D.1, the addition of
rule-based distilled data results in a slight decrease
for spa–arn, in comparison to C.1. For spa–ast, the
performance is identical across all models. It is
remarkable to note that model D.3 surpasses the
performance of its own teacher with +1.7 BLEU
for spa–arg and +4.2 BLEU for spa–arn.

After the submission deadline, we discovered
that the NMT distilled dataset for model D.3
had been generated using incorrect language
tags for Aranese and Occitan (»oci« instead of
»oci«»oci« and »oci«»xxx«, respectively). We
provide the corrected results for the D.3 model

(model D.3_fixed in Table 4). Interestingly, the
initial D.3 model performed better for Aranese due
to the higher proportion of RBMT data for that lan-
guage (as shown in Appendix C, 15% vs. 2.3%),
which favored the RBMT-heavy development set.
Motivated by this finding, we trained a student us-
ing RBMT-only distilled data after the submission
deadline (model D.4 in Table 4), which outper-
forms all other models except for Asturian. This
opens up a new avenue of research, leveraging lin-
guistically informed methods for distillation.

Table 4 demonstrates the effectiveness of using
distillation to train a single model that performs
well across all three language pairs. Among the lan-
guage pairs, Aragonese shows the most significant
improvement when RBMT data is incorporated,
highlighting the particular benefit of combining
rule-based and neural translation methods for this
language. This aligns with our expectations since
as can be seen from Table 1, the spa–arg Apertium
model achieves the highest BLEU score.

Out of our distillation experiments, we make
three submissions. For submission #2, we ensem-
ble the best n checkpoints per language pair across
models C.1 and D.2. For submission #3, we sub-
mit model D.2. In this case, we do not use ensem-
bling because we want to test it for speed. Finally,
for submission #4, we ensemble the best n check-
points per language pair from model D.3.

5 Results

We make four submissions in the open submission
track. The test set corresponds to the 1,012 lines
of Flores+ evaluation set. We summarize our sub-
missions’ test results in Table 5, as provided by
the organizers of the Shared Task. For comparison,
we also include the scores of the top-performing
competitor, overall and in the open submission
track. The official evaluation metrics of the task
are BLEU and ChrF. Additionally, we report the
average decoding speed and the model sizes.

Our best models ranked 4th, 5th, and 2nd in the
open submission track for spa–arg, spa–ara, and
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# Method BLEU / ChrF Params (M) Speed (s)
arg arn ast

1
Fine-tuning

Data Sampling
Ensembling

51.5 / 75.6 22.1 / 45.1 18.2 / 51.6 222.9 852.22

2
Distillation

RBMT+NMT
Ensembling

50.6 / 75.4 22.4 / 45.7 18.0 / 51.6 65.7 361.33

3
Distillation

RBMT+NMT
49.1 / 75.4 21.6 / 45.0 17.9 / 51.4 20.4 4.06

4

Distillation
Data Tagging
RBMT+NMT
Ensembling

52.7 / 75.9 24.3 / 46.6 18.0 / 51.5 67.5 891.76

Best (overall) – 63.0 / 80.3 30.4 / 50.1 23.2 / 55.2 – –
Best (open) – 62.7 / 80.0 28.8 / 49.4 23.2 / 55.2 – –

Table 5: Summary of our submissions. BLEU refers to the score obtained by the best ensemble on the development
set; Speed refers to the averaged decoding speed for submission across language pairs on one single AMD MI250x
GPU. In addition, we provide the best competitor scores for each target language.

spa–ast, respectively. On average, our best sub-
mission for each language pair falls short of the
top competitor by 4 BLEU points and 3.8 ChrF
points. This narrow margin reflects the competi-
tive nature of this year’s task, which saw over 178
submissions.

Our best model is submission #4, followed
closely by submissions #1, #2 and, finally #3, in
that order. It is noteworthy that our distilled mod-
els perform really well compared to their teachers.
Submission #2, a distilled model from Submission
#1, demonstrates an increase of +0.3 BLEU for
spa–arn over its teacher, highlighting the potential
of distillation to not only preserve but even enhance
translation quality. Moreover, our smallest model,
Submission #3, although showing a slight average
decrease of –1.1 BLEU compared to its teacher,
offers a significant advantage in terms of speed—it
is 210 times faster.

6 Conclusions

In this work, we have presented our participation in
the Shared Task of Translation into Low-Resource
Languages of Spain 2024. We have described our
data collection and preparation efforts, as well as
our four submissions based on multilingual models.
We explore fine-tuning of an existing open model
with different data tagging schemes and use Seq-

KD to train small efficient student models. Further-
more, to our knowledge, we are the first to leverage
RBMT to improve distillation for similarly related
languages and prove its effectiveness.

This study opens up new research directions for
advancing in low-resource MT by demonstrating
the potential of data tagging strategies and hybrid
distillation methods, ensuring these languages are
both preserved and accessible in the digital age.

7 Ethical Considerations

In addition to evaluating the performance of our
models in terms of translation quality, it is equally
important to consider the computational resources
required for their training and deployment. By ana-
lyzing the GPU consumption of our experiments,
including the time spent and energy consumed for
each task, we aim to provide a comprehensive as-
sessment of the efficiency and sustainability of our
approaches. This will allow the community to take
informed decisions about model selection and op-
timization in real-world applications, where com-
putational efficiency is often as critical as accuracy.
We report the energy consumption of the totality of
our experiments in Table 6, which amounts to 508
kWh.
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Task Model Time (h) Energy (kWh)

Back-translation 18.9 19.5

Fine-tune

A.1 35.3 37.0
A.2 22.4 23.0
B.1 50.5 52.2
B.2 27.4 28.9
B.3 28.9 29.6
B.4 28.0 28.8

Forward translation 7.9 6.6

Train via Seq-KD

C.1 64.6 66.9
C.2 11.5 18.1
C.3 57.1 54.2
D.1 53.4 55.3
D.2 11.2 17.8
D.3 66.6 68.6

D.3_fixed 55.9 57.1
D.4 56.0 57.8

Ensembling 30.2 3.52

Submission 1.7 0.19

Total 627.3 625.1

Table 6: Energy consumption of our work. We report
the time (hours) and energy consumption across the
different tasks of our experiments, run on 4 Nvidia V100
GPUs. The training of models D has been run on 8
AMD MI250x GPUs. Ensembling and translations for
submission have been run on 1 Nvidia V100 GPUs.
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A Hyperparameters

All models are based on the transformer architec-
ture. They all share the following: the Adam op-
timizer is used with β1=0.9 and β2=0.998. The
models are trained until convergence with early-
stopping on development data after BLEU has
stalled 10 times. Next, we specify each model’s
unique configuration details.

Models A and B are transformer-big models.
They use a 6-layered transformer with 16 heads,
1024 dimensions in the embeddings and 4,096 di-
mensions in the feed-forward layers.

Models C.1, C.3, D.1 and D.3 use a 6-layered
transformer with 8 heads, 512 dimensions in the
embeddings and 2,048 dimensions in the feed-
forward layers.

Models C.2 and D.2 are trained using tiny archi-
tecture proposed in Bogoychev et al. (2020). The
student model has a transformer encoder with 6
layers and a light-weight RNN based decoder with
Simpler Simple Recurrent Unit (SSRU) (Kim et al.,
2019) with 2 layers; 8 heads, 256 dimensions in
the embeddings and 1,536 dimenstions in the feed-
forward layers.

B Learning Curves

Figure 2 shows the BLEU score progression over
training updates per language pair for model A.2.
It shows how the performance for spa–ast quickly
reaches a plateau.

Figure 2: BLEU score progression over training updates
and epochs for model A.2.

C Rule-based MT Data

For the distilled models D, we use a combination
of NMT and RBMT teachers to build a distilled
dataset. The RBMT teachers are the Apertium
models. For each source sentence, we generate
a hypothesis translation using both teachers and
then compute the ChrF score against the ground
truth. We retain the hypothesis with the highest
ChrF score for each sentence. Table 7 shows the
proportion of sentences originating from RBMT
across our experiments.

Teacher(s) A.1, A.3 B.3 B.3
Model(s) C.1, C.2 D.3 D.3_fixed
Submission #2 #3 #4 -
Pair % % %

spa–arg 4.39 7.37 7.37
spa–arn 1.32 15.32 2.33
spa–ast 3.85 3.75 3.75
spa–oci 8.95 1.69 1.64

Table 7: Distribution of distilled data coming from
RBMT in sentence count and percentage (%).
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Abstract

We present the LCT-LAP proposal for the
shared task on Translation into Low-Resource
Languages of Spain at WMT24 within the con-
strained submission category. Our work har-
nesses encoder-decoder models pretrained on
higher-resource Iberian languages to facilitate
MT model training for Asturian, Aranese and
Aragonese. Furthermore, we explore the ro-
bustness of these models when fine-tuned on
datasets with varying levels of alignment noise.
We fine-tuned a Spanish-Galician model using
Asturian data filtered by BLEU score thresh-
olds of 5, 15, 30 and 60, identifying BLEU
15 as the most effective. This threshold was
then applied to the Aranese and Aragonese
datasets. Our findings indicate that filtering the
corpora reduces computational costs and im-
proves performance compared to using nearly
raw data or data filtered with language iden-
tification. However, it still falls short of the
performance achieved by the rule-based system
Apertium in Aranese and Aragonese.

1 Introduction

Spain is home to a rich linguistic landscape, yet
this diversity is accompanied by disparities in terms
of speaker numbers and language resources. Lan-
guages with co-official status, such as Basque, Cata-
lan and Galician, were previously considered to
have limited resources but are now included in nu-
merous popular LLMs. Consequently, research
in this field has shifted towards cases where data
scarcity is even more pronounced, such as Asturian,
Aragonese and Aranese. These languages are the
focus of a shared task at the Conference on Ma-
chine Translation 2024. The objectives of this
task include investigating transferability among
Romance languages and determining the most ef-
fective methods for utilizing pretrained models in
translations between Spanish and low-resource Ro-
mance languages.

The methodology employed involved the follow-
ing steps:

1. Implementing automated methods for curat-
ing data. The constrained submission frame-
work enables researchers to utilize corpora
that may be notably noisy. Our work aims to
propose solutions to this challenge.

2. Creating synthetic data for the monolingual
PILAR Galiano-Jiménez et al. (2024b) cor-
pora.

3. Harnessing models trained on other, resource-
richer (Iberian) Romance languages with the
presumption that this facilitates cross-lingual
transfer. The model fine-tuned for Asturian
was originally trained on Galician, while the
models fine-tuned for Aranese and Aragonese
were originally trained on Catalan.

The official metrics for the shared task are BLEU
and chrF. The metrics employed in this study are
BLEU and chrF++, as they are relatively straight-
forward to calculate and there is currently no robust
neural-based metric for our target languages.

2 Background

2.1 Spanish Linguistic Landscape

Although the official language in Spain is Span-
ish, it coexists with other co-official and minority
languages. The predominance of Spanish over the
other languages and dialects is associated with his-
torical reasons: since the Middle Ages, Spain had
undergone a process of Castilianisation, which be-
came very important in the 14th century, when the
dominance of the Kingdom of Castile in the centre
of the Iberian Peninsula led to the expansion of
the use of Castilian. This continued until the 20th
century, with the consequent marginalisation of the
other vernacular languages (Martínez, 1982). The
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co-official languages, Basque, Catalan and Gali-
cian, were considered to have limited resources
in the past. This picture has changed, as efforts
from both research and industry have contributed
significantly to integrating them into the field of
Language Technology. However, there are also
non-official Ibero-Romance languages that are con-
sidered as having limited resources:

• Asturian: spoken in Asturias, the northeastern
part of Leon, Zamora and the north of Portugal
(ARIAS, 2002).

• Aragonese: spoken in the north of the
province of Huesca and in the extreme north-
west of Zaragoza (Marco Villanueva, 2012).

• Aranese: a variant of Occitan, spoken in the
province of Aran (Rey and Canalís, 2006).

In this context, initiatives such as PILAR (Pan-
Iberian Language Archival Resource) work to en-
rich and expand the resource availability of these
languages (see Section 3).

2.2 Other related works

The interest in low-resource languages has recently
increased, leading to a considerable amount of re-
search on the subject (Ranathunga et al., 2023).
Several studies on machine translation for low-
resource languages can be found, such as the article
by Karakanta et al. (2018), which works with non-
parallel corpora, or Kumar et al. (2021), which
focuses on recasting systems from high-resource
languages to low-resource languages.

As far as Iberian languages are concerned, there
are other investigations, such as the one published
by Oliver et al. (2023), which explores techniques
for training NMT systems applied to high- and
low-resource Iberian languages or the work by Ko
et al. (2021), which adapts high-resource NMT
models to translate low-resource languages related
to Spanish.

With respect to WMT, since its first edition in
2016, there have been three shared tasks related to
the field: In 2020, a task was proposed on unsuper-
vised and very low-resource languages, focusing on
Upper Sorbian (Fraser, 2020). The following year,
a workshop on multilingual low-resource transla-
tion for Indo-European languages was presented,
focusing on North Germanic languages such as
Icelandic and Romance languages such as Occi-
tan (Libovickỳ and Fraser, 2021). Finally, in 2022,

a task related to unsupervised MT and very low-
resource supervised MT was suggested, with Upper
and Lower Sorbian languages (Weller-Di Marco
and Fraser, 2022).

3 Data

This research falls into the constrained submission
category, as all data used was obtained from the
mentioned sources in the shared task: the Open Par-
allel Corpora, also known as OPUS (Tiedemann,
2009), and the Pan-Iberian Language Archival
Resource, shortened as PILAR (Galiano-Jiménez
et al., 2024b).

The Spanish development set is part of the FLO-
RES+ Evaluation Benchmark (NLLB Team et al.,
2022). The Asturian, Aragonese, and Aranese
counterparts of FLORES+ are published alongside
PILAR.

Finally, both the BLEU reference translations
for the OPUS data and the synthetic Spanish coun-
terparts for the PILAR data were generated with
Apertium (Forcada and Tyers, 2016).

3.1 OPUS corpora

OPUS is a public multilingual collection of par-
allel corpora that gathers open-source documents
available on the Internet (Tiedemann and Thottin-
gal, 2020) and supports 744 languages. The con-
straint submission is limited to all data in OPUS,
thereby enabling researchers to create synthetic
translations from other languages into Asturian
(ast), Aragonese (arg), Aranese (arn), or Spanish
(es). However, the data utilized in this work exclu-
sively employs the corpora for the combinations es
<> ast/arg/arn.

Given that the collected corpora were not con-
sistently well-aligned, we implemented a filtering
pipeline, as detailed in Section 3.2, to produce a
smaller but cleaner dataset. The effectiveness of
this approach is reflected in the "BLEU 15" column
of Table 1.

3.2 OPUS Data filtering

Around 8 million aligned sentences were collected
from OPUS for the three target languages, although
this number was significantly reduced when apply-
ing a filtering pipeline. Three main steps were
followed to filter out invalid sentences:

• Basic filtering: removing unnecessary white
spaces, empty lines, and characters not sup-
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ported by the file encoding for all target lan-
guages.

• Idiomata Cognitor: filtering out all sentence
pairs whose target language was not labeled
as Asturian, Aragonese or Aranese and whose
source language was not labeled as Spanish
by Idiomata Cognitor (Galiano-Jiménez et al.,
2024a), a high-precision classifier trained us-
ing Bayesian methods and capable of identi-
fying 10 Romance languages.

• BLEU threshold filtering1: we first trans-
lated the Spanish counterparts of the As-
turian/Aragonese/Aranese datasets into the
respective target languages using Apertium.
Next, we calculated BLEU scores for the orig-
inal Asturian/Aragonese/Aranese sentences as
references and their translations as hypotheses.
Then, we filtered the datasets to various BLEU
thresholds, assuming that alignments are more
likely to be correct if the sentence pairs have
high BLEU scores2. For Asturian, this was
done using four different BLEU thresholds:
60, 30, 15 and 5 BLEU. For Aragonese and
Aranese, we only used one threshold.

3.3 PILAR Corpora

PILAR is a recently created corpus of texts from
different languages spoken in the Iberian Peninsula,
including Asturian, Aragonese, Aranese, Balearic
and Valencian.

For our purposes, the monolingual data from As-
turian, Aragonese and Aranese, and the Aranese
counterpart from the Catalan-Aranese parallel cor-
pora was backtranslated into Spanish (see Table
2) using Apertium: backtranslation can be under-
stood as providing monolingual training data with
a synthetic sentence source obtained by automati-
cally translating the target sentence into the source
language (Sennrich et al., 2015).

1We used Bleualign as a reference (Sennrich and Volk,
2010). However, we did not calculate the BLEU score between
the hypothesis and reference sentences for both languages, nor
did we compute the subsequent harmonic mean, given the fact
that Apertium web tool does not support translations from
Asturian into Spanish. Instead, we limited our calculations to
the BLEU score of the original Asturian/Aragonese/Aranese
sentences as references and the translation of its Spanish coun-
terpart obtained with Apertium as hypotheses.

2BLEU evaluates translations by comparing n-grams be-
tween the model output and a reference, favouring those that
are closest in terms of word and order. This may favour sen-
tences in both the source and target languages that are easier
to translate for Apertium.

Asturian Aragonese Aranese
BLEU 15 Raw BLEU 15 Raw BLEU 15 Raw

GNOME 18,435 68,668 2,004 5,529 0 77
KDE4 4,515 26,023 - - 667 49,593
NLLB 585,683 6,470,015 - - 65,797 925,448
QED 125 421 18 222 45 282
Tatoeba 58 159 3 13 5 189
TED2020 40 116 - - - -
WikiMatrix - - 13,639 33,724 7,398 35,805
wikimedia 27,776 45,506 2,908 4,457 629 1,980
XLEnt 0 274,257 3 16,822 0 99,472

636,632 6,884,903 18,575 60,767 74,502 1,112,879

Table 1: Number of raw sentence pairs obtained from
the OPUS repository and the final number of sentences
after filtering them with a BLEU score threshold of 15.

Asturian Aragonese Aranese
crawled 14,776 60,028 7,358
literary 24,093 24,675 229,886
paragraphs - - 86,568
sentences - - 64,141
Total 38,869 84,703 387,953

Table 2: Number of monolingual sentences from PILAR
that were backtranslated with Apertium.

4 Methodology

The methodology of this work involved fine-tuning
two pretrained models (see section 4.1) on back-
translated PILAR and filtered OPUS data (see sec-
tion 3 and section 3.2). The total number of sen-
tences for each language is presented in Table 3.

The experimental setup utilized a Tesla V100-
PCIE-32GB GPU running with NVIDIA driver ver-
sion 535.104.12 and CUDA version 12.2, alongside
the HuggingFace Transformers library for model
loading and fine-tuning.

All models underwent training for at least 1
epoch (Table 3 shows when each model converged).
The best model selection was based on the BLEU
score derived from the development set. Addition-
ally, zero-shot translation without fine-tuning was
conducted as a baseline for comparing results.

4.1 Models

Two models from Helsinki-NLP (Tiedemann and
Thottingal, 2020) were used for our experiment:

• opus-mt-es-gl: a transformer-align model
from Spanish into Galician that achieved a
BLEU 67.6 and a chr-F score of 80 in the
Tatoeba test. Given the close linguistic re-
lationship between Asturian and Galician-
Portuguese, we aimed to explore transfer
learning when fine-tuning on Asturian data.
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Model Data Sentences Epochs Steps BLEU chrF++
A

ST

apertium - - - - 17.1 50.69
es-gl-noft-ast - - - - 5.75 38.66
es-gl-ft-basic basic clean 6,884,903 0.87 55k 17.07 49.89
es-gl-ft-idiomata idiomata cognitor 4,521,302 1.76 36k 17.32 50.24
es-gl-ft-bleu bleu_60 440,794 2.61 14k 17.61 50.39
es-gl-ft-bleu bleu_30 582,883 3.95 22k 17.79 50.48
es-gl-ft-bleu bleu_5 743,846 3.44 25k 17.84 50.57
es-gl-ft-bleu bleu_15 636,632 2.61 18k 17.85 50.46
es-gl-ft-backtr bleu_15 + PILAR 675,501 3.22 22k 17.90 50.58

A
R

G

apertium - - - - 66.05 82.23
es-ca-noft-arg - - - - 8.38 46.23
es-ca-ft-arg idiomata cognitor 27,335 4.67 1k 32.87 64.79
es-ca-ft-arg basic clean 60,767 2.91 1k 33.17 65
es-ca-ft-arg bleu_15 18,575 47.95 7k 41.39 70.38
es-ca-ft-arg bleu_15 + PILAR 103,278 7.43 8k 41.53 70.84

A
R

N

apertium - - - - 38.02 60.01
es-ca-noft-arn - - - - 5.75 38.66
es-ca-ft-arn idiomata cognitor 383,575 4.67 14k 9.61 40.67
es-ca-ft-arn basic clean 1,112,879 2.65 14k 9.70 40.74
es-ca-ft-arn bleu_15 74,502 6.86 9k 10.19 41.88
es-ca-ft-arn bleu_15 + PILAR 462,455 0.83 8k 29.04 54.85

Table 3: BLEU and chrF++ scores on the FLORES+ devset comparing baselines (apertium and models with noft
in their names) and fine-tuned models (-ft-) across varying levels of alignment noise. Baselines always occupy the
first two rows for each language. Subsequent models are listed in ascending order of BLEU scores. Best performing
architectures are highlighted in bold.

• opus-mt-es-ca: a transformer-align from
Spanish into Catalan with a BLEU score of
68.9 and a chr-F score of 0.832 in the Tatoeba
test. We aimed to explore transfer learning
when fine-tuning Catalan for Aranese and
Aragonese.

5 Results

As Table 3 shows, the results of our experiments
were compared with two baselines: Apertium, a
rule-base system that supports translations in the
same languages as those investigated in this work,
and the respectively selected model for our exper-
iments with zero-shot translations (i.e. without
fine-tuning).

Overall, the results for Aragonese and Aranese
show the same trend: the highest performance
was achieved by fine-tuning on data filtered with
a BLEU threshold of 15, combined with the back-
translated PILAR corpora. While the backtrans-

lated data yielded improvements of 18.85 BLEU
for Aranese, this improvement was only 0.14
BLEU for Aragonese. Interestingly, fine-tuning
on data that had only undergone basic cleaning
outperformed our approach of filtering out sen-
tences in other languages. The zero-shot trans-
lation approach yielded the lowest results by a sig-
nificant margin. Despite these efforts, our results
still fall short of the baseline Apertium by approxi-
mately 9 points in Aranese and nearly 25 points in
Aragonese.

Our best result for Asturian is the only one com-
parable to the baseline Apertium. Our fine-tuned
model, which uses a BLEU score threshold of 15
and the PILAR corpora, outperforms the baseline
by 0.8 BLEU points. However, it falls short of the
baseline by 0.11 chrF++ points.

See the following sections for a more detailed
description of each language’s results.
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5.1 Asturian

Our results show that setting a threshold of 15
BLEU for OPUS-aligned corpora yields the best
performance in Asturian. It slightly outperforms
thresholds of 5 and 30 BLEU and achieves an im-
provement of almost 0.25 over the cleanest filtered
set of corpora with a threshold of 60 BLEU.

Note that an Asturian tokenizer was trained and
implemented; however, its performance did not ex-
ceed a BLEU score of 17.6 and it was consequently
omitted from Table 3. Consequently, no tokenizer
was trained for Aranese and Aragonese.

Integrating backtranslated Asturian PILAR re-
sults in almost a 1-point BLEU score improvement
compared to the slightly preprocessed raw OPUS
data (basic clean in Table 3), and a slight improve-
ment of 0.05 compared to the filtered OPUS data
with 15 BLEU threshold without PILAR data.

Regarding the baselines, our best method (data
filtered with a 15 BLEU threshold and backtrans-
lated PILAR) achieves similar performance as
Apertium, with a 0.8 BLEU score improvement
and a 0.11 lower chrF++ score. The zero-shot
translation results are by far the worst, with scores
approximately 12 points below the best results.

5.2 Aragonese

As detailed in section 7, only the best filtering
threshold for OPUS data in Asturian was also ap-
plied to Aragonese.

Our best result is again the result of fine-tuning
the bleu_15 + PILAR corpora on a model initially
fine-tuned for Spanish-Catalan translation. It out-
performs the model finetuned on almost raw data
by 8.36 BLEU points. Comparing these results to a
model only trained on the bleu_15 data, reveals that
using the backtranslated data only yielded an im-
provement of 0.14 BLEU. However, these results
lag behind the Apertium baseline, which obtains
scores with approximately 25 points difference in
BLEU and around 12 points in chrF++.

The zero-shot baseline model
(es-ca-noft-arg) achieved a similarly low
score as the zero-shot models in the other lan-
guages and performed significantly worse than the
other approaches. It lags behind the best result
from Apertium by approximately 58 BLEU points
and around 36 chrF++ points.

5.3 Aranese

As detailed in section 7, only the best filtering
threshold for OPUS data in Asturian was applied
to Aranese.

Showing the same trend as the results for the
other two languages, the approach using bleu_15 +
PILAR corpora is the most effective. It achieves an
improvement of about 20 BLEU points and approx-
imately 14 chrF++ points over the other data sets,
which only underwent basic cleaning or language
filtering with Idiomata Cognitor. In contrast to our
results for Aragonese, the Aranese backtranslated
data helped to increase performance tremendously
(+18.8 BLEU). As expected, the zero-shot base-
line performs the worst, with even greater score
disparities.

Despite this significant improvement compared
to our other techniques, the BLEU filtering ap-
proach fails to outperform the Apertium baseline.
Apertium performs significantly better, with ap-
proximately 9 points difference in BLEU and over
5 points in chrF++.

6 Conclusions

This work was conducted within the constrained
category of the shared task Translation into Low-
Resource Languages of Spain at WMT24. It intro-
duces a pipeline for filtering low-quality alignments
in parallel corpora and subsequently fine-tuning
translation models to assess the noise robustness of
Neural Machine Translation. The paper details the
data collection and curation processes for the three
target languages selected for this task (Asturian,
Aragonese and Aranese), with a particular focus on
fine-tuning models for Spanish to Asturian under
varying levels of noise and generalizing the results
to the other two language pairs.

The initial phase involved curating the OPUS
corpora for the Asturian-Spanish pair. This pipeline
included 1) cleaning unsupported characters and
blank spaces, 2) filtering out sentence pairs that
were not in Spanish or one of the target languages
using Idiomata Cognitor, and 3) generating transla-
tions with Apertium to determine alignment quality
of the sentence pairs and establishing four differ-
ent BLEU thresholds for filtering. After observing
that a BLEU threshold of 15 yielded the best per-
formance, we incorporated backtranslated PILAR
data into the filtered OPUS corpora. Part of step
3 was omitted for Aranese and Aragonese due to
computational constraints.
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Despite these filtering approaches resulting in
the loss of some significant portions of the available
corpora, we observed that the fine-tuned models
effectively leveraged prior knowledge from the cho-
sen related languages (Galician and Catalan).

• Our best performing fine-tuned model for
Asturian outperformed the baseline Spanish-
Galician model by 12.15 BLEU points.

• Our best performing fine-tuned model for
Aragonese outperformed the baseline Spanish-
Catalan model by 33.15 BLEU points.

• Our best performing fine-tuned model for
Aranese outperformed the baseline Spanish-
Catalan model by 23.29 BLEU points.

The results for our best fine-tuned Asturian
model were relatively strong, achieving compet-
itive scores compared to Apertium. Although
the same approach was applied to Aranese and
Aragonese, it did not surpass the Apertium base-
line by a significant margin.

Overall, we demonstrated that 1) filtering out
low-quality translations from a noisy parallel
dataset improves fine-tuning results and yields
faster training times, and 2) results for Asturian can
reach baseline levels with a smaller, cleaner and
more computationally efficient corpus, suggesting
that the selected models can handle noise only to a
certain degree. However, we cannot assert that this
approach is effective for Aranese and Aragonese,
as the results for these languages fall short of the
rule-based baseline.

7 Limitations

The scope of this work is mainly limited by com-
putational resources. The HiTZ Basque Center for
Language Technology kindly allowed the authors
access their resources, but understandably, priority
was given to projects more closely related to their
main research focus at the time. This led us to 1)
implement our own BLEU score filter and dispense
with newer, more accurate sentence alignment algo-
rithms, 2) generalize the best BLEU score threshold
in Asturian to the other two languages, Aranese and
Aragonese.

One potential improvement to our approach
would be the application of curriculum learning,
where initial fine-tuning is performed on large syn-
thetic data, followed by further fine-tuning on high-
quality parallel data.

8 Further Work

Future work could address the limitations discussed
in Section 7 by 1) exploring the outcomes of fine-
tuning a language model on corpora cleaned using
not just one, but various sentence alignment al-
gorithms such us Bertalign (Liu and Zhu, 2022)
or Vecalign (Thompson and Koehn, 2019), and 2)
investigating whether Aranese and Aragonese toler-
ate different noise thresholds compared to Asturian.
Additionally, future research might:

• estimate the amount of KWh required to fine-
tune different amounts of corpora,

• examine whether data augmentation through
backtranslation of additional OPUS corpora
could enhance performance, as this is permit-
ted in the constrained category,

• explore whether a tokenizer trained on a larger
corpus and specialized in Asturian, Aranese,
and Aragonese could improve results.
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Abstract

In this paper, we present the two strategies
employed for the WMT24 Shared Task on
Translation into Low-Resource Languages of
Spain. We participated in the language pairs
of Spanish-to-Aragonese, Spanish-to-Aranese,
and Spanish-to-Asturian, developing neural-
based translation systems and moving away
from rule-based approaches for these language
directions. To create these models, two distinct
strategies were employed. The first strategy
involved a thorough cleaning process and cura-
tion of the limited provided data, followed by
fine-tuning the multilingual NLLB-200-600M
model (Constrained Submission). The other
strategy involved training a transformer from
scratch using a vast amount of synthetic data
(Open Submission). Both approaches relied on
generated synthetic data and resulted in high
ChrF and BLEU scores. However, given the
characteristics of the task, the strategy used in
the Constrained Submission resulted in higher
scores that surpassed the baselines across the
three translation directions, whereas the strat-
egy employed in the Open Submission yielded
slightly lower scores than the highest baseline.

1 Introduction

This article presents the work done by the ILE-
NIA team, which includes researchers from the
Barcelona Supercomputing Center and Proxecto
Nós (CiTIUS - Universidade de Santiago de Com-
postela), for the WMT24 Shared Task on Trans-
lation into Low-Resource Languages of Spain1.
Our participation covered three translation direc-
tions: Spanish-to-Aragonese, Spanish-to-Aranese,
and Spanish-to-Asturian, all of which are Romance
languages.

1https://www2.statmt.org/wmt24/romance-task.
html

Aragonese is spoken in several valleys of the
Pyrenees in the autonomous community of Aragon.
It is one of Europe’s smallest language communi-
ties, with around 8,500 native speakers and 25,000
total speakers. According to UNESCO, Aragonese
is an increasingly endangered language (Moseley,
2010).

Aranese is spoken in Vall d’Aran, in the north-
west of Catalonia. It is the native language of this
unique region, with approximately 5,090 native
speakers. Aranese is a variant of Gascon, one of
the main dialects of the Occitan language.

Asturian is the variant of Astur-Leonese spoken
in the autonomous community of Asturias, in north-
ern Spain. Currently, around 250,000 people have
the ability to understand, speak, read, and write
Asturian, representing the 25% of this autonomous
community.

For this Shared Task, we participated in two
types of submissions. In the Constrained Sub-
mission, we were allowed to use the specified re-
sources, such as corpora, dictionaries, Apertium-
based systems, and documents defining the contem-
porary orthographic conventions for each language.
Regarding the models, we could use publicly avail-
able models, provided they did not exceed 1 bil-
lion parameters. To meet these requirements, we
collected and generated synthetic data from the
available resources, built and applied a comprehen-
sive cleaning pipeline to preprocess the data, and
fine-tuned three separate NLLB-200-600M (Costa-
jussà et al., 2022) on the corresponding Spanish-
to-Aragonese, Spanish-to-Aranese, and Spanish-to-
Asturian translation directions. BSC researchers
conducted the experiments for this submission.

For the Open Submission, we were allowed to
use any publicly available resources, including cor-
pora and models of any size, as long as the resulting
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outputs were made available. For this submission,
we chose to generate large amounts of synthetic cor-
pora from data released by ILENIA and the Prox-
ecto Nós using Apertium, a rule-based translator
(Khanna et al., 2021). We then trained three mod-
els based on the transformer architecture (Vaswani
et al., 2017) from scratch using OpenNMT-py 3.22

(Klein et al., 2018). The researchers from Proxecto
Nós were responsible for this second submission.

2 Data

2.1 Data Collection and Synthetic Creation

2.1.1 Constrained Submission
OPUS The organizers created the Aragonese and
Aranese FLORES+ dev and devtest sets using
Apertium, translating the corresponding Spanish
texts from the FLORES-200 multilingual dataset
(NLLB Team, 2022) into these languages. We con-
sider this to be a limitation of the Shared Task since
the reference test sets are biased towards Apertium-
generated data. Nevertheless, in order to achieve
the highest possible score on our submission for the
Shared Task, we decided to use Apertium to gener-
ate synthetic Aragonese and Aranese translations
from Spanish monolingual data, instead of directly
using the parallel data provided by OPUS (Nygaard
and Tiedemann, 2003). Specifically, we used the
Spanish side of the es-arg and es-oc parallel cor-
pora from OPUS to generate synthetic data. For
Aragonese, we used the GNOME, Ubuntu, Wiki-
matrix, and Wikimedia corpora, and for Aranese,
we used these same corpora in addition to Kde4
and NLLB.

For Asturian, we did not generate any synthetic
data from OPUS since the Asturian FLORES+ dev
and devtest sets were simply enhanced versions of
the original FLORES-200. Instead, we downloaded
the following es-ast parallel data: GNOME, Kde4,
NLLB, Tatoeba, Ubuntu, and Wikimedia.

PILAR3 We generated synthetic Spanish transla-
tions from the monolingual data provided by the or-
ganizers in the three respective Romance languages
(Galiano-Jiménez et al., 2024b). For Aragonese
and Aranese, we used Apertium, while for As-
turian, we employed NLLB-200-600M, which fell
within the submission’s limits. Given the simi-
larity between Aranese and Aragonese to Cata-
lan, we explored whether cascading through Cata-

2https://github.com/OpenNMT/OpenNMT-py
3https://github.com/transducens/PILAR

lan could enhance translation quality. In machine
translation, cascading refers to the sequential use
of multiple translation systems to improve overall
translation accuracy. As demonstrated in Table 1,
this method yielded higher scores when translat-
ing from Aranese. Consequently, we generated
synthetic Spanish translations from Aranese by cas-
cading through Catalan, while for Aragonese and
Asturian, we produced the translations directly into
Spanish.

Aragonese → Spanish Aranese → Spanish

ChrF BLEU ChrF BLEU

Direct 80.93 66.09 68.79 45.02
Cascade 79.41 63.00 69.67 47.29

Table 1: Scores obtained with and without cascading
through Catalan for FLORES+ dev test.

Provided PDFs We extracted monolingual
data in Aragonese and Aranese from the
provided ortografia-aragones.pdf and
DICCIONARI-DER-ARANÉS.pdf respectively. After
the text extraction, we semi-automatically post-
processed the data to obtain a structured and clean
corpus. Then we generated the corresponding
Spanish translations using Apertium following the
same method described in the previous paragraph.

FLORES+ It consists of an extension of
FLORES-200 (NLLB Team, 2022), a multilin-
gual English-centric machine translation dataset
involving 200 languages, that includes Aragonese,
Aranese, and an improved version of Asturian. The
FLORES+ dev set for each language served as the
validation set during the training phase to optimize
our MT engines, while the devtest set was used to
evaluate participants’ models in the competition.
After the final submissions, the devtest set was re-
leased, allowing us to obtain scores for the baseline
models in this additional set.

2.1.2 Open Submission
For this submission, we used Apertium to gener-
ate synthetic data. We created synthetic datasets
using a parallel corpus of 30M Galician-Spanish
sentence pairs. We only kept the Spanish side of the
corpus as the source language data, and then used
Apertium to translate it into Aragonese and As-
turian, resulting in two 30M sentence parallel cor-
pora (Spanish-Aragonese and Spanish-Asturian).
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In the case of Aranese, we used a high-quality
30M sentence Spanish-Catalan parallel dataset. We
translated the Catalan side into Aranese using Aper-
tium, creating a Spanish-Aranese corpus.

2.2 Data Preprocessing and Cleaning

2.2.1 Constrained Submission
For this submission, we dedicated substantial ef-
fort to cleaning, curating, and normalizing the
provided data. We designed a comprehensive
cleaning pipeline that processed all the paral-
lel data described in the previous section, re-
sulting in well-structured parallel corpora for
the Spanish-Aragonese, Spanish-Aranese, and
Spanish-Asturian language pairs.

Following the automatic cleaning, we curated
the resulting data to ensure it aligned to the ortho-
graphic standards outlined in the task statement and
matched the characteristics of the corresponding
FLORES+ sets for each language.

Blank Spaces, Hard- and Soft-Duplicates Re-
moval The initial step involved removing any un-
necessary blank spaces and exact duplicates within
the corpus. Then, NLPDedup4 was used to remove
near duplicates.

Idiomata Cognitor5 This language identifier
(Galiano-Jiménez et al., 2024a), specifically de-
signed for certain Romance languages, was em-
ployed to accurately determine the languages of
each data pair and exclude pairs with sentences
belonging to other languages. This method ensures
that the translator model is trained on appropriate
data.

Perl Corpus Cleaner We employed Moses
(Koehn et al., 2007) preprocessing script
clean-corpus-n.perl to further clean the
parallel corpus. It eliminates sentences containing
more than 150 tokens and discards sentence pairs
with a length ratio exceeding 3.

Linguistic Data Normalization Since the re-
leased corpora included text in various orthogra-
phies, and both the FLORES+ dev and devtest sets
adhered to the current standards endorsed by their
respective language academies, we ensured that
our training data conformed to these established

4https://github.com/saattrupdan/NLPDedup
5https://github.com/transducens/idiomata_

cognitor

norms through a normalization process. This pro-
cess was carried out semi-automatically: incorrect
patterns in the data were detected and replaced with
the correct ones according to the relevant linguistic
rules. This normalization was primarily applied to
the Aragonese and Aranese monolingual data. For
example, in Aragonese, we encountered different
types of definite articles used interchangeably, such
as "o"/"lo", "a"/"la", "os"/"los", and "as"/"las", as
well as various ways to write the word "university",
including "unibersidad", "unibersidá", and "univer-
sidat". In the case of definite articles, all forms
needed to be standardized to "lo"/"la"/"los"/"las",
except when following a word ending in ‘n’, where
the forms are "o"/"a"/"os"/"as". For the term "uni-
versity", the officially accepted word is "universi-
dat".

Data Curation Using the FLORES+ dev set as
our reference, we further examined the parallel
data to identify misleading translations in the
training data. This curation process involved both
semi-automatic and manual methods, primarily
focusing on the word level. For example, Apertium
often leaves unknown words unchanged in the
target sentence or produces incorrect translations
due to insufficient contextual understanding of the
source sentence. These are common behaviors of
rule-based translators. We aimed to detect these
issues and correct these translation errors.

According to Table 2, a large number of sentence
pairs are discarded, mainly due to the high volume
of duplicates in the three corpora, with Aranese
and, particularly, Asturian exhibiting the highest
number of duplicates.

Aragonese Aranese Asturian

Original 74,014 1,336,229 6,603,733

Filtered 47,521 407,397 704,933

Table 2: Parallel corpus statistics per target language.
Original refers to all the collected data pairs before go-
ing through the pipeline. Filtered refers to the number
of pairs resulting from the data cleaning pipeline.

LaBSE scoring To evaluate the quality of transla-
tions in the parallel datasets, we used a sentence em-
bedding model. Specifically, we employed LaBSE
(Feng et al., 2022) to generate embeddings for both
source and target sentences and calculated the co-
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 σ

ChrF 84.6 84.59 84.59 84.61 84.59 84.63 84.58 84.62 84.5 0.6752
Aragonese

BLEU 71.05 71.05 71 71.09 71.03 71.14 70.99 71.05 70.84 0.0832

ChrF 75.95 76.04 76.02 75.99 75.97 75.97 75.91 75.84 75.32 0.2218
Aranese

BLEU 55.39 55.5 55.57 55.43 55.39 55.43 55.3 55.2 54.39 0.3535

ChrF 52.25 52.25 52.26 52.25 52.21 52.19 52.21 52.22 52.19 0.1897
Asturian

BLEU 19.35 19.34 19.33 19.32 19.28 19.23 19.26 19.27 19.24 0.1737

Table 3: Scores for different LaBSE thresholds on FLORES+ dev set.

sine similarity score between them. Following the
approach outlined in (Garcia Gilabert et al., 2024),
we obtained scores across various thresholds of
cosine similarity to determine the most suitable
training dataset for fine-tuning (Table 3). However,
the low standard deviation among the results indi-
cates no considerable differences in performance
between the sets. We selected a threshold of 0.6 for
Aragonese, a threshold of 0.3 for Aranese, and a
threshold of 0.1 for Asturian, prioritizing a higher
BLEU over a ChrF.

2.2.2 Open Submission
No extra preprocessing or cleaning was performed
on the synthetic corpora generated with Apertium
for this submission. The source data had previously
been processed before publication with their own
pipeline 6. This preprossessing includes fixing en-
coding issues, deduplication, perplexity filtering
and language recognition.

3 Methodology

3.1 Baselines

In Table 4, ChrF and BLEU scores on the FLO-
RES+ dev set for the state-of-the-art models includ-
ing the directions of interest are shown. Except for
the NLLB models, which employ deep learning, all
the other evaluated engines are rule-based.

3.2 Constrained Submission: Fine-tuning

3.2.1 Model
NLLB-200-600M is the smallest model from the
NLLB family of multilingual machine translation
models. It is a dense transformer model distilled
from the pre-trained NLLB-200, a 54.5B sparsely
gated mixture-of-experts model, designed to sup-
port translations between 202 languages, includ-
ing many low-resource languages. Therefore, it

6https://github.com/proxectonos/corpora

incorporates substantial cross-lingua knowledge,
making it suitable for further fine-tuning to other
languages. It has a vocabulary size of 256k tokens,
plus additional tokens for the language tags cor-
responding to all the languages supported by the
model. With respect to our languages of interest, it
just handles Asturian. Occitan is also in the list of
languages, but not the Aranese variant.

3.2.2 Fine-tuning
For this approach, we fully fine-tuned three sep-
arate NLLB-200-600M models for Spanish-to-
Aranese, Spanish-to-Aragonese, and Spanish-to-
Asturian, leveraging the cross-lingua knowledge
NLLB possesses.

Adding New Language Tags Among the lan-
guages of interest, NLLB only supports Asturian
natively. To extend NLLB’s translation capabilities
to translate to Aragonese and to Aranese, we incor-
porated new tokens referring to their respective
language tags (arn_Latn and arg_Latn), since
these languages are not present in NLLB7. Lan-
guage tags enable NLLB to identify the source
and target languages for translation. Adding new
language tags implies extending the embedding
matrix with additional embeddings. These new em-
beddings were initialized using the embeddings of
other language tags already supported by NLLB,
which were linguistically close to our target lan-
guage. Specifically, we used the spa_Latn em-
bedding for Aragonese and the oci_Latn embed-
ding for Aranese. Finally, we retrained the embed-
ding matrix during the fine-tuning to enable cor-
rect Spanish-to-Aragonese and Spanish-to-Aranese
translation. For Asturian, since NLLB already sup-
ports translation to this language, our objective
was simply to improve the model’s performance

7Aranese is a variant of Occitan, but due to observed differ-
ences in the test sets, we treated Aranese as a distinct language
with its own language tag.
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Spanish → Aragonese Spanish → Aranese Spanish → Asturian

ChrF BLEU ChrF BLEU ChrF BLEU

Baselines Apertium 82 65.34 72.63 48.96 50.57 16.66
Traduze 69.51 37.43 - - - -

Softcatala 73.97 50.21 58.61 34.43 - -
Eslema - - - - 50.77 17.3

NLLB-600M - - - - 49.72 17.23
NLLB-1.3B - - - - 50.04 17.44
NLLB-3.3B - - - - 50.15 17.96

Constrained NLLB-600M
Submission fine-tuned

84.63 71.14 76.04 55.5 52.26 19.33

Open Transformer
Submission from scratch

81.35 63.95 71.48 45.92 50.37 16.86

Table 4: Evaluations computed on the FLORES+ dev set.

through fine-tuning.

Treatment of "«" and "»" tokens Given that
"«" and "»" symbols are not in the NLLB vocab-
ulary and they were present in the reference test
sets, we decided to preprocess the training data by
replacing "«" and "»" with "<<" and ">>" (as these
tokens are in the vocabulary) and then revert this
replacement after the model’s inference.

3.2.3 Inference experiments
The generated translation is restricted to a length
of 512 tokens. Testing on FLORES+ dev, we con-
ducted a grid search on the top-performing model
obtained from the LaBSE scoring step. We exper-
imented with various beam sizes (B) and repeti-
tion penalty terms (β). We tried all combinations
between B = [3, 5, 10] and β = [1, 3, 4]. Never-
theless, no significant differences in performance
were observed for these languages, so we ended up
using the same hyperparameters employed during
training: B = 5 and β = 1. For detailed results,
see Appendix.

3.2.4 Configurations
In the fine-tuning, we used the AdamW optimizer
(Loshchilov and Hutter, 2019) with β1 = 0.9, β2 =
0.98, ϵ = 10−6, and λ = 0.001. The learning rate
was set to 3× 10−4. We applied an inverse square
root scheduler with 15,000 warmup steps.

For Aragonese, the batch size was set to 16, the
gradient accumulation steps to 8, and the model
was trained for 15 epochs. For Aranese and As-
turian, the batch size was set to 8, the gradient ac-

cumulation steps to 4, and the models were trained
for 10 epochs. All models were fine-tuned using
the Transformers8 library on H100 GPUs. Every
1,000 training steps, the ChrF score was computed
on the FLORES+ dev set, and the model check-
points were saved when the score improved.

3.3 Open Submission: Training

3.3.1 Model

We trained three transformer models from scratch
using OpenNMT-py 3.2, each with its own BPE
vocabulary. The vocabulary size for each model
was set to 20,000 units, based on previous internal
research investigating the impact of vocabulary size
on BLEU scores (Outeirinho et al., 2024).

3.3.2 Configurations

All three models were trained on a single A100
GPU using the AdamW optimizer with β1 = 0.9,
β2 = 0.9998, ϵ = 10−8, and learning rate 5×10−4.
The batch size was set to 2048 sentences, with a
maximum length of 150 tokens per sentence. All
models were trained for a maximum of 10 epochs.

3.4 Evaluation

To evaluate the performance of our models during
the development phase, we used the FLORES+ dev
set, which contains 997 general domain sentences.
The results obtained on this test set for the two
developed strategies can be seen in Table 4.

8https://huggingface.co/docs/transformers/
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Spanish → Aragonese Spanish → Aranese Spanish → Asturian

ChrF BLEU ChrF BLEU ChrF BLEU

Baselines Apertium 79.31 61.11 49.42 28.85 50.84 16.99
Traduze 67.66 35.47 - - - -

Softcatala 71.99 47.08 48.29 26.07 - -
Eslema - - - - 50.91 17.17

NLLB-600M - - - - 49.05 16.21
NLLB-1.3B - - - - 49.71 16.54
NLLB-3.3B - - - - 50.03 17.09

Constrained NLLB-600M
Submission fine-tuned

79.88 62.32 50.05 30.12 52.14 18.43

Open Transformer
Submission from scratch

78.61 59.76 48.84 27.31 50.54 16.68

Table 5: Evaluations computed on the FLORES+ devtest set.

3.4.1 Constrained Submission
Following this strategy, we surpassed the baselines
across the three languages, achieving better per-
formance than the state-of-the-art. We observed
an increase of +2.63 in ChrF and +5.8 in BLEU
for Aragonese (compared to Apertium), +3.41 in
ChrF and +6.54 in BLEU for Aranese (compared to
Apertium), and +1.49 in ChrF and +1.37 in BLEU
for Asturian (compared to Eslema and NLLB-200-
3.3B, respectively). These results suggest that
both the thorough curation of data and the cross-
lingual knowledge possessed by NLLB contributed
to these improvements.

3.4.2 Open Submission
Leveraging transformer models has led to results
that are only slightly behind the best rule-based
approaches. However, the significance of these re-
sults lies in the fact that they enable the community
to access and develop neural models that perform
competently in a relatively short time compared
to developing a new rule-based system from the
ground up. These neural models, particularly trans-
formers, offer new possibilities, such as the ability
to learn from limited data and improved scalability,
which can help prevent languages with fewer speak-
ers from being marginalized in the online world.

4 Results

The FLORES+ devtest set, containing 1,012 sen-
tences, was used to evaluate and rank the partici-
pants’ models. Once the competition ended, the
organizers made the FLORES+ devtest set public.

To further expand the evaluation of our new models,
we also obtained scores for the baselines using this
test set. Consult Table 5 for all the scores. We see
the same trend as with the FLORES+ dev set. Us-
ing the fine-tuned version of NLLB-200-600M on
the cleaned data, we surpass all the baseline models
for the three languages, whereas training the mod-
els with OpenNMT-py 3.2 lags behind. Specifically,
we enhance the scores by +0.57 in ChrF and +1.21
in BLEU for Aragonese (compared to Apertium),
+0.63 in ChrF and +1.27 in BLEU for Aranese
(compared to Apertium), and +1.23 in ChrF and
+1.26 in BLEU for Asturian (compared to Eslema).
At the time of writing this paper, the final ranking
scores were not available, so no mention of our
final positions in the competition is included in this
paper.

5 Discussion

Compared to traditional rule-based translation sys-
tems, neural models offer greater flexibility, scala-
bility, and adaptability, making them the state-of-
the-art in Machine Translation. Hence, our work in
developing neural systems for Aragonese, Aranese
and Asturian represents an advance in the preserva-
tion and promotion of the use of these languages.
It also allows the research community to use our
models for further advancements in language tech-
nology, linguistic research, and the development
of more sophisticated and accurate translation sys-
tems.
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6 Conclusions

This paper summarizes the work done by the ILE-
NIA team for the Shared Task on Translation into
Low-Resource Languages of Spain. By participat-
ing in this public competition, we have contributed
to the creation and improvement of NMT models
for Aragonese, Aranese, and Asturian - three minor-
ity languages of Spain. Prior to this task, no NMT
models were available for Spanish-to-Aragonese
and Spanish-to-Aranese translation.

We presented a Constrained and an Open Sub-
mission, each employing different approaches. For
the Constrained Submission, adhering to data and
model restrictions, we fine-tuned the NLLB-200-
600M model, with considerable effort devoted to
data cleaning and curation. For the Open Submis-
sion, we generated a large amount of synthetic data
using Apertium, a rule-based MT system, and used
it to train a transformer-based model from scratch.

Results on both FLORES+ dev and devtest sets
across the three language directions show that the
first strategy achieves better performance and im-
proves translation quality compared to the base-
lines, whereas the second strategy lags slightly be-
hind the best baseline models.
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Appendices

A Spanish-to-Aragonese

Beam Width

3 5 10

R
ep

.P
en

. 1 84.63 84.63 84.63

3 84.64 84.64 84.66

4 86.63 84.64 84.63

Table 6: ChrF scores obtained using grid
search in inference.

Beam Width

3 5 10

R
ep

.P
en

. 1 71.12 71.14 71.14

3 71.15 71.16 71.16

4 71.15 71.16 71.15

Table 7: BLEU scores obtained using grid
search in inference.

B Spanish-to-Aranese

Beam Width

3 5 10

R
ep

.P
en

. 1 76.04 76.04 76.04

3 76.04 76.04 76.04

4 76.04 76.04 76.04

Table 8: ChrF scores obtained using grid
search in inference.

Beam Width

3 5 10
R

ep
.P

en
. 1 55.5 55.5 55.5

3 55.6 55.6 55.6

4 55.6 55.6 55.6

Table 9: BLEU scores obtained using grid
search in inference.

C Spanish-to-Asturian

Beam Width

3 5 10

R
ep

.P
en

. 1 52.28 52.26 52.23

3 52.26 52.24 52.22

4 52.25 52.25 52.23

Table 10: ChrF scores obtained using grid
search in inference.

Beam Width

3 5 10

R
ep

.P
en

. 1 19.34 19.33 19.21

3 19.25 19.24 19.22

4 19.21 19.24 19.21

Table 11: BLEU scores obtained using grid
search in inference.
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Abstract

We describe Vicomtech’s participation in the
WMT 2024 Shared Task on translation into low-
resource languages of Spain. We addressed all
three languages of the task, namely Aragonese,
Aranese and Asturian, in both constrained and
open settings. Our work mainly centred on
exploiting different types of corpora via data
filtering, selection and combination methods,
along with synthetic data generated with trans-
lation models based on rules, neural sequence-
to-sequence or large language models. We im-
proved or matched the best baselines in all three
language pairs and present complementary re-
sults on additional test sets.

1 Introduction

Despite significant progress in Machine Transla-
tion (MT) in recent years, notably with the advent
of Neural Machine Translation (NMT) approaches
(Bahdanau et al., 2015; Vaswani et al., 2017), trans-
lation from and into low-resource languages re-
mains a challenge.

Spain features a large variety of languages be-
yond Spanish, with varying degrees of MT support.
Important quality gains have thus been achieved
for the Basque language within the NMT frame-
work (Etchegoyhen et al., 2018), with large public
deployments of quality MT systems1. For Cata-
lan, a romance language with closer proximity to
Spanish, earlier NMT improved over rule-based
(RMT) and statistical (SMT) models, although
with performance losses on out-of-domain test sets
(Costa-jussà, 2017); more recent work on trans-
lation between similar languages, that included
Catalan-Spanish, showed a predominance of NMT
approaches to the task (Akhbardeh et al., 2021).

In addition to the aforementioned languages,
there are languages such as Aragonese, Aranese

*Equal contribution.
1https://www.euskadi.eus/traductor/

and Asturian which could be viewed as extremely
low-resourced in terms of MT technological sup-
port. For most, the main technology is still RBMT,
based on the Apertium framework (Forcada and
Tyers, 2016). The WMT 2024 shared task on trans-
lation into low-resourced languages of Spain ad-
dresses translation from Spanish into all three of
these languages. In this work, we describe Vi-
comtech’s participation in the shared task, where
we submitted entries to both the constrained and
open tracks.

In the remainder of this paper, we describe our
approaches to improve MT performance for the
three selected language pairs. We explored data
selection, generation, and combination, comparing
the use of different types of data to train end-to-
end NMT models as well as fine-tuning pretrained
multilingual MT models. In addition to typical par-
allel data curation, where we filtered the available
parallel and comparable data according to sentence
similarity, length differences and language identifi-
cation, we also explored the generation of synthetic
data along different lines. We notably compared
the use of RBMT systems and large language mod-
els (LLM) to generate synthetic parallel datasets
from the available monolingual data. The latter
approach in particular showcased the potential of
LLMs to create back-translations from the selected
three low-resource Romance languages into the
high-resource Spanish language.

2 Methodology

2.1 Parallel Data Curation

Despite the limited amount of data available for the
languages addressed in this task, several crawled
corpora were made available. However, after man-
ually examining sampled of the data, they appeared
to feature large amounts of noise, including poor
alignments, language identification errors, or sen-
tence pairs with empty information in one of the

934



languages. We therefore performed various types
of filtering, described below.

Language Identification. We performed lan-
guage identification with the Idiomata Cognitor
tool2, a Bayesian language identifier specialised
on Romance Languages (Galiano-Jiménez et al.,
2024a). We filtered all sentence pairs where the
identified language on either side mismatched the
expected language in the parallel dataset.

Length Ratio. We filtered all sentence pairs
where the ratio of lengths, in terms of characters,
was above a predefined threshold. Unless other-
wise specified, we used a default ratio of 3.0. Our
goal with this type of filtering was to remove obvi-
ous erroneous alignments rather than determine an
optimal threshold in terms of length differences.

Sentence Similarity. We filtered all sentence
pairs whose similarity score was below a prede-
fined threshold. Similarity was computed as the
cosine similarity of the sentence embeddings for
each sentence pair. After preliminary experiments
with different models, we opted for the all-MiniLM-
L6-v2 model of the Transformers library3, as it
provided sufficient quality for the considered pairs,
while also supporting sufficiently fast processing
to run multiple filtering experiments. For each lan-
guage pair, we assigned similarity scores to the
parallel corpora after language and length filter-
ing, manually examined samples of the data and
determined a similarity threshold accordingly.

2.2 Synthetic Data Creation

For low-resource languages, parallel data are typ-
ically scarce and monolingual corpora are a rich
source of complementary data. We aimed to ex-
plore different approaches to exploit this type of
data, generating synthetic data by translating via
RBMT systems, NMT models and LLMs (see Fron-
tull and Moser (2024) for a similar approach). De-
pending on model availability and/or quality, we
generated data to be used as either back-translations
(BT) (Sennrich et al., 2016) from the low-resource
languages into Spanish, or as forward-translations
(FT) (Li and Specia, 2019) in the opposite trans-
lation direction. In either case, the synthetic data
generated from monolingual data were used as par-
allel data to translate into the low-resource lan-

2https://github.com/transducens/idiomata_cognitor
3https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2

guages. Additionally, we used pivot machine-
translation from Catalan to Spanish to complement
the Spanish-Aranese parallel datasets, as described
below.

RBMT data (BT + FT). As back-translations,
we translated the available monolingual corpora
in Aragonese and Aranese into Spanish with the
corresponding Apertium systems.4 As forward-
translations, we generated synthetic data from
Spanish into all three low-resource languages, since
Apertium covered all three language pairs in that
direction. Our goal in both the BT and FT cases
was to evaluate the impact of data translated via
transformation rules that tend to closely follow the
structure of the original Spanish data.

NMT data (BT). We generated back-translations
into Spanish for all three language pairs with base-
line NMT models, either trained from scratch or
pretrained and fine-tuned, on the curated parallel
data, as described in Section 2.3. Considering the
low volumes of clean parallel data and the rela-
tively low quality of the baselines, we discarded the
use of forward-translations in this scenario. Back-
translations are more robust in this type of scenario,
as the target language monolingual data are ex-
pected to be correct for the decoder to model and
the noise in corresponding synthetic source data
can be handled relatively well by NMT models
in general. Our aim with NMT-based NMT data
was to generate synthetic data of relatively fluid
translations that would differ from, and could com-
plement, RBMT translations.

LLM data (BT). We also leveraged a general-
purpose language model in zero-shot fashion to
generate back-translations, querying the model
to translate from the low-resource language into
Spanish. Our preliminary assessment on the three
language pairs was that translation into the low-
resource languages could not constitute a reason-
able alternative, as most translations from Spanish
into either low-resource language were of low qual-
ity, irrespective of the size of the selected model.
However, in the reverse direction, in all three pairs
translation quality was markedly better, indicating
that the meaning of the text in the low-resource
language could be properly captured by the model,
while generating correct output in the high-resource
Spanish language.

4https://www.apertium.org/ Note that there was no readily
available system for Asturian to Spanish.
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Pivot MT data. Among the available corpora
for the task were data in Catalan-Aranese (see Sec-
tion 3.1), which could be exploited as well via pivot
MT. To this end, we translated the available cor-
pora from Catalan to Spanish with a high-quality
in-house NMT model trained on OPUS parallel
data (see Appendix C for further details).

2.3 Models & Training
Models. We trained two main types of models:
Transformer-base encoder-decoder models trained
from scratch on the available parallel, with or with-
out complementary synthetic data, and a pretrained
multilingual model fine-tuned with the same data,
namely an NLLB-200-600M model (Costa-jussà
et al., 2022). By opting for two parallel approaches,
we aimed to evaluate the positive or negative impact
of accessing pretrained multilingual knowledge on
the task. With either type of model, we trained
baseline variants on the curated parallel data, which
were used used to generate back-translations, as de-
scribed in Section 2.2. Both types of models were
also used on the combined datasets to train final
models, as our main aim was to contrast and com-
pare the use of pre-trained multilingual knowledge
vs. focused training on a specific low-resource
language pair.

Tagging. To train the model variants, we per-
formed several experiments around data tagging,
which has been shown to be an efficient approach to
training data discrimination, for back-translations
(Caswell et al., 2019) or comparable data (Gete
and Etchegoyhen, 2022), for instance. We used
specific tags, prepended to each training instance,
to indicate the type of data at hand, namely <BT>
or <FT>. We aimed to investigate in particular
whether data tags would be beneficial or detrimen-
tal in the case of low amounts of parallel data, com-
bined with larger sets of synthetic data.

3 Experimental Setup

3.1 Corpora
For the constrained track, we selected the paral-
lel corpora for Asturian, Aranese, and Aragonese
from the PILAR collection (Galiano-Jiménez et al.,
2024b), the monolingual WikiMedia data for Span-
ish and Asturian, the parallel data for Spanish-
Asturian and Spanish-Occitan (with Occitan re-
lated to Aranese) from CCMatrix (Schwenk et al.,
2021b) and WikiMatrix (Schwenk et al., 2021a) for
Spanish-Aragonese, all of which were downloaded

Corpus Lang. # Sent. # Filt. Constr.

PILAR

ast 38.8K - ✓
arg 84.7K - ✓
arn 273.2K - ✓

cat-arn 64.1K - ✓

WikiMedia es 3.9M 2.7M ✓
ast 65.7K 65.6K ✓

CCMatrix es-ast 6.5M 533.7K ✓
es-oci 925.5K 55.5K / 8.9K ✓

WikiMatrix es-arg 33.7K 19.2K / 13.7K ✓

WikiDump ast 3.2M 2.1M ✗
arg 508.5K 255.1K ✗

Table 1: Corpora statistics. We indicate the number of
initial (# Sent.) and filtered (# Filt.) sentences and cor-
pus use in the constrained track (Constr.). x/y indicates
filtering with similarity thresholds of 0.5 (x) and 0.7 (y).

from the OPUS repository (Tiedemann, 2012). We
performed language identification to keep only the
Aranese sentences from Occitan, and also trans-
lated the Catalan portion of the Catalan-Aranese
dataset via pivot translation into Spanish. For the
open track, we included Asturian and Aragonese
monolingual data extracted from WikiDump5, for
additional back-translations.

Excepting the PILAR datasets, which were used
as is, we filtered the contents from the parallel
corpora using the methods described in Section
2.1. The similarity threshold was set at 0.7 af-
ter manually reviewing portions of the data. For
Aragonese and Aranese, since significant portions
of the datasets were discarded at this threshold, we
also created an additional dataset with a 0.5 thresh-
old. For the constrained task, we selected these
larger, though noisier, datasets. For the open task,
we opted for the smaller, higher-quality datasets,
due to the greater availability of data.

As evaluation data, we selected the dev sets avail-
able in PILAR, as well as a filtered subset of 3,000
highquality sentence pairs from CCMatrix for As-
turian, with a similarity threshold set at 0.9. The
latter was created as all models consistently yielded
significantly lower scores on the Asturian PILAR
dev set, compared to the other language pairs, and
Marian models trained with this development set
struggled to converge effectively. We report re-
sults on the official development set throughout the
paper, but discuss additional results on our own
development set in Section 5.

Corpora statistics are summarised in Table 1.

5https://dumps.wikimedia.org/, accessed June 2024
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3.2 Models
In this section, we describe the translation models
we used for the task, including the baselines and
the models trained on the selected data described
in the previous section. Since we generated syn-
thetic data for both forward (from Spanish) and
backward (into Spanish) translation, we present
each type of model in turn. Training details, includ-
ing additional model characteristics and training
hyper-parameters are described in Appendix A. All
models were evaluated in terms of BLEU and chrF,
computed with the sacreBLEU toolkit 6. Statistical
significance was computed via bootstrap resam-
pling (Koehn, 2004) for all results. Best results, for
p < 0.05, are indicated in bold in all tables.

3.2.1 Translation from Spanish
For translation from Spanish, we first assessed
the quality of three baseline models not trained
on any of the selected data: the rule-based Aper-
tium for each language pair, as a reference MT
system for these languages; the multilingual NLLB-
200-distilled-600M model, pretrained on a broad
range of languages including Asturian and Occitan,
as a neural baseline under the constrained track
limitation of pretrained models with fewer than
one billion parameters; and the Llama3-8B instruc-
tion model (AI@Meta, 2024), as an experimental
testbed for zero-shot LLM-based translation.

Lang. Model Dev

BLEU chrF

ES→AST
Apertium 17.1 50.7
NLLB 14.3 44.2
Llama3 15.2 48.9

ES→ARG
Apertium 66.0 82.2
NLLB 7.9 42.1
Llama3 30.4 64.5

ES→ARN
Apertium 38.0 60.0
NLLB 8.5 39.2
Llama3 4.5 32.6

Table 2: Baseline model results on the development sets
for translation from Spanish

Table 2 presents the results for each baseline
model in this translation direction, in terms of
BLEU (Papineni et al., 2002) and chrF (Popović,
2015). Apertium achieved the highest scores in all
three language pairs, demonstrating the value of an
RBMT approach for the selected languages. NLLB
and Llama3 were notably both outperformed by

6https://github.com/mjpost/sacrebleu

large margins on ES-ARN; the former performed
equally poorly on ES-ARG but the latter achieved a
more reasonable performance of 30.4 BLEU points
in this case, still far from the scores obtained by
the Apertium baseline. The only language pair
where all three models achieved relatively similar
low scores was ES-AST, which might be due to the
specifics of this development set (see Section 5 for
further discussion).

Considering these results, we used Apertium to
generate forward synthetic data for all ES→XX
translation pairs. To prepare the final models, all
related to translation from Spanish in the task,
we used two types of approaches: fine-tuning the
NLLB model on the selected data and training from
scratch a Transformer-base model with 6 encoder
layers and 6 decoder layers, trained with the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018).

3.2.2 Translation into Spanish

Model Aranese Aragonese Asturian

Apertium 34.8 66.2 -
NLLB 31.0 55.6 64.1
Llama3 33.1 64.3 71.5
Marian 34.0 69.6 86.5

Table 3: BLEU scores for translation into Spanish on the
PILAR development sets for Aranese and Aragonese,
and on a custom development set for Asturian.

Translation into Spanish was performed to gen-
erate synthetic back-translations. For this task, we
used the three baseline approaches described in
the previous section (except for AST-ES with Aper-
tium, as it is not currently supported) and trained an
additional XX→ES Marian model on the selected
parallel and forward-translation data.

Table 3 presents the BLEU scores for these
models on the task-provided development sets for
Aranese and Aragonese, and on our custom devel-
opment set for Asturian. For Aranese, there was
no statistically significant difference between the
Marian and Apertium models, both outperforming
NLLB and Llama3; in Aragonese, Marian outper-
formed all other models, with NLLB performing
notably worse; in Asturian, it again significantly
outperformed both NLLB and Llama3. Consider-
ing these results, we selected the Marian model to
generate all back-translations. Additionally, since
forward-translations were all generated using Aper-
tium, the incorporation of a neural model could add
more variety to the synthetic data.
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Lang. Model Data # Sent. Source Dev Test

BLEU chrF BLEU chrF

ast

Apertium - - - 17.1 50.7 17.0 50.8

NLLB
Parallel 533.7K CCMatrix

18.1 51.3 17.6 51.2FT - -
BT 638.1K PILAR+CCMatrix+WikiMedia

arg

Apertium - - - 66.0 82.2 61.1 79.3

Marian
Parallel 19.22K WikiMatrix

66.0 82.2 61.1 79.3FT 2.7M WikiMedia
BT 103.9K PILAR+WikiMatrix

arn

Apertium - - - 38.0 60.0 28.8 49.4

Marian

Parallel - -

38.7 60.3 29.8 49.8MT 64.1K PILAR cat-arn
FT 2.7M WikiMedia [Tagged]
BT 392.8K PILAR + CCMatrix + PILARcat-arn

Table 4: BLEU and chrF scores for our primary submissions in the constrained track

Lang. Model Data # Sent. Source Dev Test

BLEU chrF BLEU chrF

ast

Apertium - - - 17.1 50.7 17.0 50.8

NLLB
Parallel 533.7K CCMatrix

18.6 51.6 18.0 51.6FT - -
BT 2.7M WikiDump+PILAR+CCMatrix+WikiMedia

arg

Apertium - - - 66.0 82.2 61.1 79.3

Marian
Parallel 13.7K WikiMatrix

65.9 82.2 61.0 79.3FT 2.7M WikiMedia
BT 353.5K WikiDump+PILAR+WikiMatrix

arn

Apertium - - - 38.0 60.0 28.8 49.4

Marian

Parallel 8.9K CCMatrix (es-oci)

37.9 60.0 28.8 49.4MT 64.1K PILARcat-arn
FT 2.7M WikiMedia
BT 346.2K PILAR+CCMatrix+PILARcat-arn

Table 5: BLEU and chrF scores for our primary submissions in the open track

A notable result are the relatively high scores of
Llama3 zero-shot translation into Spanish, confirm-
ing our initial assessments of the potential leverag-
ing this type of LLM to translate from low-resource
into high-resource languages. Further variants such
as few-shot translation might be worth exploring in
this type of scenarios.

4 Main Results

The best results for our shared task submissions
are summarised in Table 4 and Table 5 for the con-
strained and open tracks, respectively. We report
BLEU and chrF scores on the PILAR development
sets and on the task test sets, as reported on the
OCELoT website.

4.1 Constrained Track

In the constrained setup, our focus was on opti-
mising translation models within the set limits of
OPUS data and pretrained models under one bil-
lion parameters. For Asturian, the best results were
achieved via a fine-tuning of NLLB using both
parallel data from CCMatrix and back-translations
generated from the PILAR, CCMatrix and Wiki-
Media corpora using our custom Marian model.

In the case of Aragonese and Aranese, train-
ing Marian models from scratch proved to be the
most successful strategy. Given that NLLB was not
specifically trained on these languages, this result
was not unexpected. For these languages, we also
incorporated forward-translations generated using
Apertium and back-translations created with our
Marian models. For Aranese, the use of parallel
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Lang. Model Data # Sent. Source Not tagged Tagged

ast

Apertium - - - 17.1 -

Marian
Parallel 533.7K CCMatrix

16.9 17.4FT 2.7M WikiMedia
BT - -

arg

Apertium - - - 66.0 -

Marian
Parallel 19.2K WikiMatrix

66.0 46.5FT 2.7M WikiMedia
BT 103.9K PILAR+WikiMatrix

arn

Apertium - - - 38.0 -

Marian

Parallel - -

37.9 38.7MT 64.1K PILAR cat-arn
FT 2.7M WikiMedia
BT 392.8K PILAR + CCMatrix + PILARcat-arn

Table 6: BLEU scores comparison between models trained with and without tags in the forward-translated data.

data from CCMatrix resulted in lower performance,
likely due to the lower quality of these data, which
were originally Spanish-Occitan alignments. The
inclusion of the pivot translations from Catalan was
also beneficial for the Spanish-Aranese pair.

Overall, when comparing our results to the base-
lines in Table 2, our custom models consistently
outperformed the vanilla NLLB across all lan-
guages, particularly for Aragonese and Aranese,
which were unseen by this model. The models
trained for Asturian and Aranese also achieved
higher scores than the Apertium baseline. For
Aragonese however, our best submission could only
match the Apertium baseline scores. This limita-
tion is likely due to the influence of the forward-
translations from the rule-based Apertium system,
a factor which was not mitigated with data tagging.

4.2 Open Track

Our contributions to the open track were twofold:
augmenting the training data by incorporating As-
turian and Aragonese Wikipedia content, and gener-
ating back-translations using Llama3 in a zero-shot
setting.

As shown in Table 5, these additions improved
the BLEU score for Asturian by 0.5 points com-
pared to the constrained track. However, the re-
sults for Aragonese did not benefit from the extra
data, showing a slight decrease of 0.1 BLEU. For
Aranese, the use of back-translations from Llama3
appeared to be detrimental, resulting in a perfor-
mance drop of 0.8 BLEU points.

Overall, the open track models yielded mixed
results, as the augmented data generated via back-
translation and zero-shot LLM translation resulted

in either minor gains or losses. This might be due
to the specifics of the development and test sets, in
the sense that the augmented data might come from
domains of little benefit to improve the translation
on these datasets. The results of Section 3.2 are
still important in our view, notably the quality of
NMT and LLM translations for either direct use or
data augmentation.

5 Discussion

As previously indicated, given the low performance
of all models in Asturian in preliminary experi-
ments, we used a filtered subset of 3,000 sentences
from CCMatrix as development set. However, to
ensure consistency across languages, we relied on
the best-performing model on the original PILAR
dev set as the criterion for model selection for sub-
mission, leading to the exclusion of models that
performed better on our custom dev set.

Model Source Official Dev Custom Dev

Apertium - 17.1 79.8
Open Submission - 18.6 78.4
Marian CCMatrix 17.2 87.4

Table 7: BLEU scores in Spanish-Asturian on the offi-
cial WMT development set and on our custom develop-
ment set from CCMatrix.

For reference, Table 7 presents the results of the
top-performing model on our dev set: a Marian
model trained exclusively on CCMatrix data with-
out any synthetic data. While this model shows
lower performance than the one chosen for the offi-
cial submission and is comparable to the baseline
obtained with Apertium, it performed notably bet-
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ter on our own development set. Considering the
large differences in scores between the PILAR and
custom dev sets, it would be interesting to examine
in detail the differences between the two datasets
in future work.

Among our best submissions to both tracks,
only one dataset was tagged, namely the forward-
translations based on Wikimedia in ES-ARG. We
performed several additional experiments on the
use of tags to discriminate between types of data,
with the most salient results shown in Table 6.
Tags on forward-translations were beneficial for As-
turian and Aranese, but for Aragonese their use re-
sulted in a substantial decrease of almost 20 BLEU
points on the dev set. This variation might be due
to the differing amounts of data available: Asturian
and Aranese featured 500K and 364K sentence
pairs without tags, respectively, while Aragonese
only counted with 119K such pairs. Whereas tags
have been shown to be a successful means to dis-
criminate between parallel and other types of data,
their use might thus be detrimental when tagged
data largely dominate the other types of data.

6 Conclusions

We described our submission to the WMT 2024
shared task on translation into low-resource lan-
guages of Spain. We followed a multi-pronged
approach based on data filtering and augmentation,
with multiple types of models trained on differ-
ent combinations of data with or without tagging.
Although we improved over the baselines in gen-
eral, the gains were minor overall on the devel-
opment sets provided for the task. Nonetheless,
our experiments showed the benefits of training
dedicated NMT models, which proved optimal in
most cases over fine-tuning pre-trained translation
models. We also demonstrated the potential of zero-
shot LLM-based translation for translation of the
selected low-resource languages into Spanish, an
interesting path for future research as standalone
translation or as a source of data augmentation.
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A Training Hyperparameters

The Marian models were transformer-base models. Optimization was performed with Adam (Diederik
P. Kingma, 2015), with α = 0.0003, β1 = 0.9, β2 = 0.98, and ϵ = 10−9. We used a working memory
of 20GB and automatically chose the largest mini-batch that fit the specified memory. The learning rate
was set to increase linearly for the first 16,000 training steps and decrease afterward proportionally to the
inverse square root of the corresponding step. The validation data was evaluated every 5000 steps.

For fine-tuning the NLLB model, optimization was performed using Adafactor (Shazeer and Stern,
2018), with a learning rate of 0.0001, a clipping threshold of 1.0, and weight decay set to 0.001. The
training used a batch size of 32 and a maximum sequence length of 128 tokens.

Each model was trained on a Nvidia L40 with 48GB of VRAM. Early stopping was applied with a
patience of 10 epochs to prevent overfitting.

B Generation Parameters

For inference with Marian, we set a beam size of 6 and a normalization factor of 0.6.
For the NLLB model, implemented on the transformer library, the maximum input length was configured

to 200 tokens, with a beam size of 4.
For Llama3, we set a maximum of 256 new tokens, enabled sampling with a temperature of 0.1, and set

top-p to 0.9. We used the following prompt to direct the model to generate translations in the specified
target language without additional commentary: "Traduce a [Español|Aragonés|Aranés|Asturiano] la
siguiente frase. No añadas ningún otro comentario." .

C Catalan-Spanish MT Model

We considered two main options to translate Catalan into Spanish, as a means to create additional Aranese-
Spanish data via pivot translation: the pretrained multilingual NLLB model or an in-house Marian model
trained on parallel corpora from OPUS (namely: dogc, gnome, opensubs, tatoeba, ubuntu, globalvoices,
wikimatrix, ted and paracrawl). The latter achieved significantly better results, as shown in Table 8 on a
test set of 2,000 sentence pairs randomly sampled from OPUS data.

Translation Model BLEU Score

NLLB Model 55.4
Marian Model 70.7

Table 8: BLEU scores for Catalan to Spanish translation.
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Abstract
This paper describes Shanghai Jiao Tong Uni-
versity low-resource languages of Spain trans-
lation systems for WMT24 shared task. We
participate in the translation task on Spanish
→ Aragonese, Spanish→ Aranese and Span-
ish→ Asturian. Initially, we conduct prelim-
inary experiments to assess the basic transla-
tion capabilities of various models and eval-
uate the impact of fine-tuning with different
data types. We then choose to fine-tune the
Qwen2-0.5B model using a forward synthe-
sized pseudo-corpus from the Apertium transla-
tion system to replicate its fundamental perfor-
mance. Building on this distillation model, we
explore three optimization strategies across the
three language directions: (1) Assembling the
provided FLORES+ dev sets into a 5-shot for-
mat translation training dataset and performing
few-shot fine-tuning to enhance model perfor-
mance. (2) Utilizing the FLORES+ dev sets as
training data and applying the Contrastive Pref-
erence Optimization (CPO) strategy for further
refinement. (3) Retrieving the 20 most similar
translation examples from the FLORES+ dev
sets using the BM25 algorithm and performing
20-shot translations with the Claude 3.5-sonnet
model. After evaluating these strategies, we
select the best-performing approach for each
language pair as our submission result.

1 Introduction

This paper introduces our submissions to the
WMT24 Low-Resource Languages of Spain Task.
We participate in the competitions for three transla-
tion directions: Spanish→ Aragonese, Spanish→
Aranese, and Spanish→ Asturian. For the Spanish
→ Aragonese and Spanish→ Aranese directions,
we ultimately submit constrained results, while for
Spanish → Asturian, we provide unconstrained
(open system) results.

∗ Tianxiang and Pei contributed equally. Work was done
when Tianxiang was interning at Tongyi Lab.

† Rui Wang and Baosong Yang are co-corresponding
authors.

Neural machine translation (NMT) systems
have achieved substantial advancements in recent
years (Vaswani et al., 2017). However, training neu-
ral translation models typically necessitates large-
scale parallel corpora (Ranathunga et al., 2021). In
many low-resource scenarios, the availability of
sufficient parallel data for training is limited, mak-
ing low-resource translation a critical and valuable
research area (Arivazhagan et al., 2019; Wang et al.,
2021; Ranathunga et al., 2021). This competition
task focuses on translating between Spanish and
three other languages: Aragonese, Aranese, and
Asturian. Of these, Aragonese and Aranese face
particular challenges due to their relatively scarce
parallel corpora. While the OPUS1 website pro-
vides a considerable amount of parallel data, the
quality of this data remains relatively low.

We initially conduct a preliminary evaluation
of translation capabilities using models such as
Apertium2, GPT4 (Achiam et al., 2023), Llama-
3 (AI@Meta, 2024), and Qwen2 (Yang et al., 2024)
across the three language pairs. Our findings indi-
cate that the Apertium translation system serves as
a strong baseline, particularly in terms of BLEU
(Papineni et al., 2002; Post, 2018) scores. Subse-
quently, we explore fine-tuning the Qwen2-0.5B
model with various types of synthetic data and data
from diverse domains. This exploration reveals that
this task presents unique challenges compared to
previous low-resource translation tasks. Specifi-
cally, forward-translated (Zhang and Zong, 2016)
data and data from the OPUS NLLB corpus re-
sult in improved performance on dev test sets. We
ultimately select the NLLB Spanish corpus from
OPUS and perform forward translation using Aper-
tium to generate the corresponding parallel pseudo-
corpus. Fine-tuning Qwen2-0.5B with this syn-
thetic data enables us to closely replicate the per-
formance of the Apertium translation system.

1https://opus.nlpl.eu
2https://apertium.org
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Although simple forward distillation can effec-
tively replicate the performance of the Apertium
system, it does not exceed it, and the distilled
model does not yield further performance improve-
ments. To enhance the model’s effectiveness, high-
quality data is crucial. We randomly select a por-
tion of the provided dev test set for additional
fine-tuning, with the remaining portion designated
as the new dev set. Building on this distilled
model, we explore three optimization strategies
across three language pairs: (1) We aggregate the
provided FLORES+ dev sets into a 5-shot format
translation training dataset and perform few-shot
fine-tuning (Alves et al., 2023) to further refine
the model. (2) We use the FLORES+ dev sets
as training data and apply the Contrastive Prefer-
ence Optimization (CPO) (Xu et al., 2024) strategy
to improve model performance. (3) We retrieve
the 20 most similar translation examples from the
FLORES+ dev sets using the BM25 algorithm and
employ the Claude 3.5-sonnet model3 for 20-shot
translations (Agrawal et al., 2022).

2 Preliminary Experiment

In this section, we first investigate the basic trans-
lation capabilities of various models and identify
the Apertium translation system as a particularly
strong baseline. We then examine the fine-tuning
of the Qwen2-0.5B model using different types of
data, which reveals that this task presents unique
challenges compared to previous low-resource sce-
narios. Ultimately, we select the NLLB4 Span-
ish corpus from OPUS, forward-translate it using
Apertium to create a parallel pseudo-corpus, and
fine-tune Qwen2-0.5B with this synthetic data.

Data The results presented in this section are de-
rived from experiments conducted on the official
FLORES+ dev test sets5, which come from Pan-
Iberian Language Archival Resource (PILAR). The
three language pairs under consideration are Span-
ish → Aragonese (spa-arg), Spanish → Aranese
(spa-arn), and Spanish→ Asturian (spa-ast), each
comprising 997 sentences.

2.1 Translation capabilities of different
models

We begin by evaluating the BLEU (Papineni et al.,
2002; Post, 2018) performance of five models

3https://claude.ai
4https://opus.nlpl.eu/NLLB/corpus/version/NLLB
5https://github.com/transducens/PILAR

(Apertium, GPT-4, Llama3-8B, Llama3-70B, and
Qwen2-0.5B) on the three language pairs in this
task using the FLORES+ dev sets. For the 1-shot
scenario, the format used is as follows: "Translate
the following sentence from <src lang> into <tgt
lang>.\n <src lang>: <src example1>.\n <tgt lang>:
<tgt example1>.\n \n Translate the following sen-
tence from <src lang> into <tgt lang>.\n <src lang>:
<src sentence>.\n <tgt lang>:". In the 5-shot sce-
nario, this format is extended by providing five
examples instead of one. The few-shot examples
are randomly sampled from the corresponding lan-
guage FLORES+ dev sets without repetition.

As shown in Table 1, our results indicate that
the Apertium translation system serves as a very
strong baseline, significantly outperforming other
large models in BLEU scores for the Spanish→
Aragonese (spa-arg) and Spanish→ Aranese (spa-
arn) language pairs. Notably, even the widely
used GPT-4 scores considerably lower in BLEU
compared to the Apertium system. This supe-
rior performance of Apertium may be attributed
to the fact that the dev test sets for these two lan-
guage pairs were derived from Apertium’s transla-
tions with post-editing. Additionally, we observed
that increasing the number of example shots in
translation leads to a substantial improvement in
performance. This suggests that, for these low-
resource languages, providing translation examples
enhances the ability of large models to learn and
perform the translation task more effectively.

spa-arg spa-arn spa-ast
Apertium 66.0 38.0 17.1
GPT4 1shot 35.9 16.1 18.6
GPT4 5shot 37.4 17.7 19.1
Llama3-8B 1shot 36.3 7.8 16.6
Llama3-8B 5shot 41.0 10.6 18.3
Llama3-70B 1shot 46.4 15.6 19.4
Llama3-70B 5shot 52.4 19.9 22.4
Qwen2-0.5B 1shot 22.7 4.1 8.6
Qwen2-0.5B 5shot 22.7 4.2 8.9

Table 1: BLEU evaluation of different models on dev
test sets for three language pairs. Apertium translation
system demonstrates a strong baseline.

2.2 Effects of different types of data

To explore the types of data that can be used for
fine-tuning the base model, we conduct preliminary
experiments focusing exclusively on Aragonese.
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As shown in Table 2, we evaluate the impact of
different data types on fine-tuning performance.
Our findings indicate that forward translation
(FT) (Zhang and Zong, 2016) outperforms back
translation (Sennrich et al., 2016). This result may
be attributed to the fact that the dev test set is
derived from Apertium with post-editing, which
means that the Aragonese side of the dev test set
reflects Apertium’s translation style rather than the
natural language style of Aragonese. In contrast,
back translation targets the authentic Aragonese
language style, which does not align with the style
of the dev test set, potentially leading to BLEU
scores that do not accurately represent the actual
translation quality. However, due to the extremely
low-resource nature of this language, we have to
rely on the official dev test set and BLEU scores
for optimization.

Additionally, the table highlights another critical
factor affecting performance: the source of the fine-
tuning data. Using Spanish monolingual data from
the OPUS NLLB corpus6 provides a noticeable
performance advantage over using WMT news7,
Pilar8 or random samples from OPUS9. This sug-
gests that the domain of the dev test set is more
closely aligned with the OPUS NLLB corpus, facil-
itating better adaptation to the dev set for this task.
Furthermore, we observe that mixing data from
different domains or simultaneously using both BT
and FT does not enhance performance, despite in-
creasing the volume of data. In fact, this approach
slightly degrades the original performance.

2.3 Final Distillation Experiment

Based on the experimental results discussed above,
we first perform basic filtering on the NLLB Span-
ish corpus from OPUS and then randomly sample
1 million sentences. We use the Apertium trans-
lation system to translate these 1 million Spanish
sentences into the three target languages, creat-
ing a parallel pseudo-corpus. We then fine-tune
the open-source Qwen2-0.5B model separately for
each language using this pseudo-corpus. During
training, we fine-tune the model for 1.5 epochs
with a batch size of 64, a learning rate of 1e-05,
and a weight decay of 0.1. For decoding, we em-
ploy beam search with a beam size of 4. As shown

6https://opus.nlpl.eu/NLLB/corpus/version/NLLB
7https://www.statmt.org/wmt11/

translation-task.html
8https://github.com/transducens/PILAR
9https://opus.nlpl.eu

Data size Data source Data type BLEU
16k OPUS bilingual 37.7
16k OPUS FT 61.7
16k News FT 53.0
16k OPUS NLLB FT 63.8
16k OPUS BT 41.1
16k Pilar BT 34.3
32k OPUS FT+BT 59.6
32k OPUS+News FT 59.8

Table 2: BLEU evaluation on fine-tuning Qwen2-0.5B
using different types of data. Data size refers to the
training data size. FT refers to forward translation of
Spanish to comprise synthesized parallel data; BT refers
to backward translation of Aragonese to comprise syn-
thesized parallel data; News referes to the WMT news.

in Table 3, this approach effectively replicates the
baseline performance of the Apertium translation
system.

spa-arg spa-arn spa-ast
Apertium 66.0 38.0 17.1
distillation model 66.0 38.0 17.0

Table 3: BLEU evaluation of the distillation model on
dev test sets for three language pairs. We have replicated
the baseline capability of Apertium translation system.

3 Method

In Section 3, we initially replicate the performance
of the strong baseline system Apertium using the
Qwen2-0.5B model but are unable to surpass it.
We also observe that fine-tuning the model with
filtered bilingual data resulted in decreased BLEU
scores, likely due to the low quality of available
bilingual data. The synthetic pseudo-corpus gen-
erated through forward translation reach its perfor-
mance limits, as further improvements could not
be achieved with the distilled model. To address
this, we randomly select 700 sentences from the
provided dev test set for additional fine-tuning, re-
serving the remaining 297 sentences as the new
dev set. We next explore three optimization strate-
gies to further enhance translation performance for
these three language pairs.

3.1 Dev 5shot SFT

In Table 1, we observe that providing few-shot
examples to large language models improves trans-
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lation performance. However, supervised fine-
tuning can reduce some of these few-shot capabili-
ties (Alves et al., 2023). To maintain consistency in
the inference format, we structure the fine-tuning
data into a 5-shot format during training. For infer-
ence, we also use the 5-shot format, with few-shot
examples randomly selected from the dev test set.
The fine-tuning data consists of 700 sentences from
the previously mentioned dev test set.

3.2 Dev CPO
Given that the official dev test set is derived from
post-edited results, our goal is to assist the model in
learning the subtle distinctions between pre-edited
and post-edited translations, thereby enhancing its
translation capabilities. DPO (Rafailov et al., 2023)
is a training strategy focused on optimizing pref-
erences, while CPO (Xu et al., 2024) builds upon
DPO by providing further refinements. The follow-
ing is the formulation of CPO loss:

L(πθ) =− E(x,yw,yl)∼D
[
log σ

(
β log πθ(yw|x)

− β log πθ(yl|x)
)]

, (1)

min
θ
L(πθ)︸ ︷︷ ︸
Lprefer

−E(x,yw)∼D[log πθ(yw|x)]︸ ︷︷ ︸
LNLL

, (2)

where x is source sentence, yw is preferred transla-
tion, yl is less preferred translation, D is a dataset
of comparisons.

In our approach, we use translations produced
by Apertium as negative examples and the corre-
sponding results from the dev test set as positive
examples. This CPO training allows the model to
learn the nuanced differences between positive and
negative instances.

3.3 Dev fewshot BM25 with LLM
Previous research suggests that providing simi-
lar parallel translation pairs as guidance can im-
prove translation quality with large language mod-
els (Agrawal et al., 2022). To leverage this, we use
the BM25 algorithm to retrieve several of the most
similar translation examples from the dev test set
based on the source sentences. These examples
are concatenated into the previously described few-
shot translation format and positioned before the
sentence to be translated. We then employ state-of-
the-art LLMs, such as GPT-4 and Claude-3.5, for
the translation process.

3.4 Post-processing

We observe that translations produced by large lan-
guage models may encounter issues such as omis-
sions, over-translation, and non-following with in-
structions (Jiao et al., 2023; Xu et al., 2023). To
address these issues, we apply the following rule-
based post-processing:

1. For translations generated by the Dev 20-
shot BM25 method with LLMs, if the output
fails to adhere to instructions, for instance, if
it includes phrases such as "I apologize" or
"sorry", we perform a retranslation. If the
correct translation is not achieved after three
attempts, we revert to the translation produced
by the Apertium software.

2. Replace any translations where language de-
tection is incorrect with those generated by
Apertium software.

3. Replace any translations where the ratio of
the length of the source text to the translated
text is less than 0.75 or greater than 1.3 with
translations generated by Apertium software.

4 Experiment

Data In this Section, we randomly selected 700
sentences from the provided dev test set for addi-
tional fine-tuning, leaving the remaining 297 sen-
tences as the new dev set.

Experiment Details For SFT, we fine-tune the
distillation model for 5 epochs with a batch size
of 8, a learning rate of 1e-05, and a weight decay
of 0.1. For decoding, we use beam search with a
beam number of 4. For few-shot BM25, we use
the BM25 algorithm to select a number of the most
similar examples (excluding the sentence itself)
from the 997 sentences in the dev set for few-shot
translation.

Results As illustrated in Table 4, the BLEU
scores for the three language pairs across various
methods demonstrate noticeable performance im-
provements over the Distillation model. Specif-
ically, the best performance for Spanish →
Aragonese (spa-arg) is achieved with the Distil-
lation model + dev 5-shot SFT, for Spanish →
Aranese (spa-arn) with the Distillation model + dev
CPO, and for Spanish→ Asturian (spa-ast) with
Claude 3.5-sonnet + 20-shot BM25.
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Furthermore, the dev 5-shot SFT method yields
a more consistent performance improvement com-
pared to direct dev SFT. Among the models eval-
uated, Claude 3.5-sonnet generally outperforms
GPT-4-turbo across these three low-resource lan-
guage pairs, and BM25 retrieval of similar exam-
ples significantly boosts translation performance.

spa-arg spa-arn spa-ast
Distillation model 67.4 39.5 17.0
+ dev SFT 69.3 40.5 17.3
+ dev 5shot SFT 69.9 40.8 17.4
+ dev CPO 69.7 41.4 17.3
GPT4-turbo
+ 5shot 40.5 32.3 20.1
+ 5shot BM25 44.3 33.2 20.5
+ 20shot BM25 47.5 33.6 21.4
Claude3.5-sonnet
+ 5shot 47.8 35.2 22.9
+ 5shot BM25 53.6 37.4 24.2
+ 20shot BM25 59.9 38.1 25.2

Table 4: BLEU evaluation of different methods on parti-
tioned dev test sets for three language pairs. Our meth-
ods all achieve certain performance improvements. For
the Aragonese language pair, the best strategy is dev
5-shot SFT. For the Aranese language pair, the optimal
strategy is dev CPO. For Asturian language pair, the
best approach is using Claude 3.5-sonnet for 20-shot
BM25 translation.

5 Conclusion

This paper presents the Shanghai Jiao Tong Univer-
sity translation systems for low-resource Spanish
languages in the WMT24 shared task. We first cre-
ate synthetic data through forward distillation using
the Apertium translation system, then fine-tune the
Qwen2-0.5B model to establish a basic baseline ca-
pability. Subsequently, we apply three optimization
strategies using the dev test sets: 5-shot format fine-
tuning, Contrastive Preference Optimization, and
20-shot translation with BM25 retrieval. Our ex-
periments demonstrate that all three methods lead
to performance improvements.
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Abstract

This article introduces the submission status of
the Translation into Low-Resource Languages
of Spain task at (WMT 2024) by Huawei
Translation Service Center (HW-TSC). We
participated in three translation tasks: span-
ish to aragonese (es→arg), spanish to aranese
(es→arn), and spanish to asturian (es→ast).
For these three translation tasks, we use train-
ing strategies such as multilingual transfer, reg-
ularized dropout, forward translation and back
translation, labse denoising, transduction en-
semble learning and other strategies to neural
machine translation (NMT) model based on
training deep transformer-big architecture. By
using these enhancement strategies, our submis-
sion achieved a competitive result in the final
evaluation.

1 Introduction

Neural machine translation (MT) (Lyu et al., 2019;
Bahdanau et al., 2014; Gehring et al., 2017) al-
lows translation systems to be trained end-to-end
without having to deal with issues like word align-
ment, translation rules, and complex decoding al-
gorithms that characterize statistical machine trans-
lation systems (SMT) (Koehn et al., 2007). Re-
cently, MT technology has evolved towards large
language models (LLMs) (Guo et al., 2024). Al-
though neural machine translation has developed
rapidly in recent years, it relies heavily on big data
- large-scale, high-quality bilingual corpora. Due
to the cost and scarcity of real corpora, synthetic
data plays an important role in improving trans-
lation quality. Existing methods for synthesizing
data in NMT focus on leveraging monolingual data
during training. Among them, forward translation
(Abdulmumin et al., 2021), back translation (Ab-
dulmumin et al., 2021) and data diversity (Nguyen
et al., 2020) have been widely used to generate
synthetic bilingual corpora. Such synthetic data
can be used to improve the performance of NMT

models(Wu et al., 2023b). (Wei et al., 2023) also
considers the style of the training data and exploits
it to improve performance. Although synthetic
data is efficient, synthetic data inevitably contains
noise and erroneous translations. Denoising can
prevent the training of NMT models from being
interfered by noisy synthetic data by introducing
high-quality real data as guidance. Another direc-
tion to improve the performance of NMT models
is to use more efficient training strategies. For ex-
ample, by mixing similar language data together to
train a multi-language pre-training model (Li et al.,
2022), due to the shared vocabulary, encoding layer
and decoding layer parameters and language sim-
ilarity, languages with less data can benefit from
languages with more data. Regularized dropout
(Wu et al., 2021) allows the NMT model to more
effectively utilize limited data during the training
process. Transduction ensemble learning (Wang
et al., 2020) can aggregate the translation capabili-
ties of multiple models into one model.

For the Translation into Low-Resource Lan-
guages of Spain task of WMT 2024, we partici-
pated in the es→arg, es→arn and es→ast language
pair. We use training strategies such as multi-
language pre-training models (Li et al., 2022), reg-
ularized dropout (Wu et al., 2021), forward trans-
lation (Abdulmumin et al., 2021), back translation
(Abdulmumin et al., 2021), Labse denoise (Feng
et al., 2020) and transduction ensemble learning
(Wang et al., 2020) to train neural machine trans-
lation (NMT) models based on deep Transformer
architecture.

Next, this article will expand on the details of
our translation system in different translation tasks.
The structure of the remaining sections is as fol-
lows: Section 2 introduces the data scale and data
preprocessing process; Section 3 describes the
overview of the NMT system; Section 4 gives the
parameter settings, data processing results and ex-
perimental results; Section 6 gives System conclu-

949



sions were drawn.

2 Dataset

2.1 Data Size

In accordance with the requirements of the WMT
2024 outline, on the Translation into Low-Resource
Languages of Spain machine translation task, we
used the officially provided data to train the NMT
system from scratch. Table 1 shows the training
data size for each language pair of the bilingual
machine translation task. These language pairs
include Spanish to Aragonese (es→arg), Spanish to
Arabic (es→arn) and Spanish to Asturian (es→ast).

es→arg es→arn es→ast
Bilingual 0.06M 2.04M 13.36M
Source Monolingual 0.4M 8M 8M
Target Monolingual 0.26M 6M 3M

Table 1: Data size for each bilingual machine
translation task

2.2 Data Pre-processing

The data pre-processing process is as follows:

• Remove duplicate sentences or sentence pairs.

• Remove invisible characters and xml escape
characters.

• Convert full-width symbols to half-width sym-
bols.

• Use fast_align (Dyer et al., 2013) to filter
poorly aligned sentence pairs.

• Filter out sentences with more than 80 tokens
in bilingual data.

• Remove sentences with duplicate tokens.

• When performing subword segmentation,
joint sentencepiece (Kudo and Richardson,
2018) is used for es→arg, es→arn and es→ast
translation tasks.

3 NMT System

3.1 System Overview

Transformer is the state-of-the-art model structure
in recent MT evaluations. There are two parts of re-
search to improve this kind: the first part uses wide
networks (eg: Transformer-Big (Vaswani, 2017)),

Regularization
Dropout

Multilingual Transfer

Labse Denoising

Forward translation
and Back translation

Labse Denoising

Transductive
Ensemble Learning

Figure 1: The overall training flow chart of our NMT
system on the different translation tasks.

and the other part uses deeper language representa-
tions (eg: Deep Transformer (Wang et al., 2019)).
For all MT tasks, we combine these two improve-
ments, adopting the Deep Transformer-Big (Wu
et al., 2023a) model structure to train the NMT
system. Deep Transformer-Big uses pre-layer nor-
malization, features 25-layer encoder, 6-layer de-
coder, 16-heads self-attention, 1024-dimensional
word embedding and 4096-dimensional ffn embed-
ding.

Fig. 1 shows the overall training flow chart of our
NMT system on the Translation into Low-Resource
Languages of Spain task, we use multilingual trans-
fer (Li et al., 2022), regularization dropout (Wu
et al., 2021), forward translation (Abdulmumin
et al., 2021), back translation (Abdulmumin et al.,
2021), Labse denoise (Feng et al., 2020) and trans-
duction ensemble learning (Wang et al., 2020) and
other training strategies are used to train neural
machine translation (NMT) models based on deep
Transformer-big architecture.

3.2 Multilingual Transfer

Recent researches have shown that multilingual
models outperform their bilingual counterparts,
particularly when the number of languages in the
system is limited and those languages are related
(Li et al., 2022). This is mainly due to the ca-
pability of the model to learn interlingual knowl-
edge (shared semantic representation between lan-
guages). Transfer learning using pre-trained mul-
tilingual model has shown very promising results
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for low resource tasks. In this task, we first se-
lect a multilingual system as the base system, then
fine-tune the system with low resource language
pairs.

Specifically, we add the "<arg>" tag to the Span-
ish side of the es→arg bilingual data, the "<arn>"
tag to the Spanish side of the es→arn bilingual
data, and the "<ast>" tag to the Spanish side of the
es→ast bilingual data, and sample them. Mix shuf
to train a one-to-many pre-training model; sam-
ple the es→arg, es→arn and es→ast original bilin-
gual data and then mix shuf to train a many-to-one
pre-training model. Then, the one-to-many pre-
training model and the many-to-one pre-training
model are trained by using the original bilingual
data, and three translation models from Spanish to
Aragonese, Arabic, and Asturian and three transla-
tion models from Aragonese, Arabic, and Asturian
to Spanish are obtained.

3.3 Regularization Dropout
Dropout (Srivastava et al., 2014) is a widely used
technique for regularizing deep neural network
training, which is crucial to prevent over-fitting and
improve the generalization ability of deep mod-
els. Dropout performs implicit ensemble by sim-
ply dropping a certain proportion of hidden units
from the neural network during training, which may
cause an unnegligible inconsistency between train-
ing and inference. Regularized Dropout (R-Drop)
(Wu et al., 2021) is a simple yet more effective
alternative to regularize the training inconsistency
induced by dropout. Concretely, in each mini-batch
training, each data sample goes through the forward
pass twice, and each pass is processed by a different
sub model by randomly dropping out some hidden
units. R-Drop forces the two distributions for the
same data sample outputted by the two sub models
to be consistent with each other, through minimiz-
ing the bidirectional Kullback-Leibler (KL) diver-
gence (Van Erven and Harremos, 2014) between
the two distributions. In this way, the inconsistency
between the training and inference stage can be
alleviated.

3.4 Forward translation and Back translation
Forward translation, also known as self-training
(Abdulmumin et al., 2021), is one of the most com-
monly used data augmentation methods. FT has
proven effective for improving NMT performance
by augmenting model training with synthetic paral-
lel data. Generally, FT is performed in three steps:

(1) randomly sample a subset from the large-scale
source monolingual data; (2) use a “teacher” NMT
model to translate the subset data into the target
language to construct the synthetic parallel data;
(3) combine the synthetic and authentic parallel
data to train a “student” NMT model.

Apertium is a free/open-source rule-based ar-
chitecture for MT that consists of a pipeline of
modules performing part-of-speech disambigua-
tion and tagging, lexical transfer, lexical selection,
chunk-level or recursive structural transfer, and
morphological generation. To make our model
better, we use Apertium as a "teacher" model to
produce pseudo-corpus.

Back translation (BT) (Abdulmumin et al., 2021)
refers to translating the target monolingual data into
the source language, and then using the synthetic
data to increase the training data size. This method
has been proven effective to improve the NMT
model performance.

We use the machine translation model obtained
by Multilingual Transfer to produce back transla-
tion synthetic parallel data, and mix it with forward
translation synthetic parallel data and authentic par-
allel data for training, which can achieve better
results than FT or BT.

3.5 Labse Denoising

Due to the low quality of our bilingual data, we
use LaBSE (Feng et al., 2020) to calculate the se-
mantic similarity of each bilingual sentence pair
and exclude bilingual sentence pairs with similarity
scores below 0.7 from our training corpus. Use
these clean data to better train the model.

3.6 Transductive Ensemble Learning

Ensemble learning (Garmash and Monz, 2016),
which aggregates multiple diverse models for infer-
ence, is a common practice to improve the accuracy
of machine learning tasks. However, it has been
observed that the conventional ensemble methods
only bring marginal improvement for NMT when
individual models are strong or there are a large
number of individual models. Transductive En-
semble Learning (TEL) (Wang et al., 2020) study
how to effectively aggregate multiple NMT models
under the transductive setting where the source sen-
tences of the test set are known. TEL uses dev sets
finetune a strong model, which boosts strong indi-
vidual models with significant improvement and
benefits a lot from more individual models.
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BLEU ChrF++
FLORES+ dev sets es→arg es→arn es→ast es→arg es→arn es→ast
NMT baseline 38.5 8.5 17.3 64.6 34.3 46.6
+ FT & BT 41.7 9.5 16.9 64.8 34.9 45.5
+ Labse denoising 48 10.1 17.5 72.4 38.8 47.5
FLORES+ devtest sets es→arg es→arn es→ast es→arg es→arn es→ast
+ TEL 63 26.3 19.8 80.3 47.9 52.2

Table 2: BLEU and ChrF++ scores of es→arg, es→arn and es→ast NMT systems

4 Experiment

4.1 Setup

We use the open-source fairseq (Ott et al., 2019)
to train NMT models, and then use SacreBLEU
(Post, 2018) and Chrf++ to measure system perfor-
mance. The main parameters are as follows: each
model is trained using 8 V100 GPUs, batch size is
4096, parameter update frequency is 1, and learn-
ing rate is 5e-4. The number of warmup steps is
4000, and model is saved every 1000 steps. The
architecture we used is described in section 3.1. We
adopt dropout, and the rate varies across different
training phases. R-Drop (Srivastava et al., 2014) is
used in model training, and we set λ to 5.

4.2 Data processing

es→arg es→arn es→ast
Bilingual 0.06M 2.04M 13.36M
Data Pre-processing 0.04M 1.51M 3.91M
Labse Filter 0.03M 1.16M 1.92M
Upsampling 0.56M 1.74M 1.92M

Table 3: Data size for each bilingual machine
translation task after data pre-processing

Due to the poor quality of bilingual data in low-
resource languages, after the rule cleaning men-
tioned in section 2.2 and the labse model cleaning
mentioned in section 3.2, the amount of data is
smaller, and the data amount of es→arg, es→arn
and es→ast is quite different. When training one-
to-many and many-to-one pre-training models, if
the amount of bilingual data for a certain language
direction is too small, the translation quality will
be extremely poor. Therefore, Following (Conneau
and Lample, 2019; Liu et al., 2020) we re-balance
the training set by upsampling data from each lan-
guage l with a ratio:

λl =
1

pl

p
1/T
l∑n

l=1 p
1/T
l

with pl =
nl∑n
l=1 nl

where, T is the temperature parameter and we set
T to 2. nl is the number of utterances for language
l in the training set. The data amount changes as
shown in the following table 3.

4.3 Results

Tables 2 shows the evaluation results of es→arg,
es→arn and es→ast NMT systems on the brand
new FLORES+ dev sets and devtest sets, the re-
sults of dev test sets are obtained through OCELoT
submission. We use Multilingual Transfer and R-
Drop to build a strong baseline, then use FT and
BT for data enhancement, and use Labse denoising
for more efficient training, and finally use Trans-
ductive Ensemble Learning to ensemble multiple
models ability.

As can be seen from the table above, after FT
& BT and Labse denoising, the translation qual-
ity from Spanish to three directions has been im-
proved to varying degrees. This shows that for
low-resource scenarios, these two strategies can
expand the amount of data and improve the qual-
ity of the data. Enhance the translation quality
of machine translation models. Among them, the
improvement of both strategies in the es→arg direc-
tion is higher than that of the other two directions,
and the bilingual data of es→arg is also the least.
This shows that FT & BT’s strategy of expanding
the amount of data and labse denoising’s strategy of
improving data quality are both in situations where
the amount of bilingual data is small, The effect is
more obvious.

In addition, after Transductive Ensemble Learn-
ing, the BLEU value of FLORES+ devtest sets has
been greatly improved compared to the FLORES+
dev sets test set. Although it is not the same test
set, the BLEU value has improved across latitudes,
which shows that The fields of dev sets and devtest
sets are very consistent, and Transductive Ensem-
ble Learning, a strategy that utilizes dev sets, can
maximize the translation effect of the model on the
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test set in the same field.

5 Conclusion

This paper presents HW-TSC’s submission to the
Translation into Low-Resource Languages of Spain
task of WMT 2024. For both translation tasks, we
use a series of training strategies to train NMT
models based on the deep Transformer-big archi-
tecture. By using these enhancement strategies, our
submission achieves a competitive result in the fi-
nal evaluation. For example, #607 in the spanish
to aragonese constrained submissions, #608 in the
spanish to aranese constrained submissions, and
#606 in the spanish to asturian constrained submis-
sions.
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Figure 1: Language family tree diagram (partial) focus-
ing on the Iberian peninsula

1 Introduction

In this short overview paper1, we describe
our system submission for the language pairs
Spanish→Aragonese (spa-arg), Spanish→Aranese
(spa-arn), and Spanish→Asturian (spa-ast)2. We
train a unified model for all language pairs in the
constrained scenario. In addition, we add two lan-
guage control tokens for Aragonese and Aranese
Occitan, as there is already one present for As-
turian.

1.1 Linguistic background
The Iberian peninsula - which includes the terri-
tory of Spain, Portugal and Gibraltar - is a hotspot
for linguistic diversity, especially among languages
in the Romance family. Spanish, Portuguese and
English have official status across these three re-
spective territories.

Basque (a non-Indo-European language) has co-
official status in the Spanish Autonomous Commu-
nities of the Basque Country and the northern por-

1Igor Kuzmin and Euan McGill are corresponding authors
2Submission IDs #622, #623, and #624 respectively

tion of Navarre. In Galicia, Galician is co-official
and in the Balaeric Islands, the Valencian Commu-
nity and Catalonia Catalan/Valencian also enjoys
this status.

This status ensures visibility of these languages
in the socio-political space as well as a sizeable
presence online. Catalan, Basque and Galician
are included in many high-performing machine
translation (MT) systems (and large language mod-
els (LLMs) capable of the task) (Armengol-Estapé
et al., 2021) and benchmarks (Federmann et al.,
2022).

This is not necessarily the case for the languages
which are the focus of this challenge. They are
a diverse set of languages, all from different sub-
branches of the Romance language family. Figure
1 shows their relation to other languages in the Ro-
mance family, and to each other, using the wave
model (Heggarty et al., 2010) of linguistic evolu-
tion. Note the dialect continuum which appears to
form between Portuguese→ Asturian→ Spanish
→ Aragonese→ Catalan and Gascon Occitan.

Figure 2 provides a visual overview of the lan-
guages that are translated into from Spanish as part
of this challenge. Aranese, a dialect of Gascon
Occitan, also has co-official status in Catalonia but
provision is only made in the Aran Valley for its
use.

Aragonese and Asturian are spoken by larger
numbers of people, but mostly as either second
language learners or legacy speakers such as the
elderly. It is for this reason that these languages all
fall under the category of “Endangered” languages
according to Ethnologue (Eberhard et al., 2024).
All three languages are, however, considered “Vi-
tal" in terms of Digital Language Support (Simons
et al., 2022). This is the second highest category
behind “Thriving", meaning that there are extant
corpora and resources available. However, this
does not necessarily mean that there is decent qual-
ity technology such as MT available for these lan-
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Figure 2: The languages involved in the WMT shared task and some demographic information

guages.

1.2 Extant technology for these languages

There is a recent increased push towards includ-
ing languages with a small digital presence in lan-
guage technology (Bapna et al., 2022), and effort
has been made already to cover the languages of
this challenge, including efforts to generate clean
corpora from multilingual content from the inter-
net (González and Álvarez, 2023; Ruder et al.,
2023).

The first rule-based system to involve trans-
lation into and between the present languages
is the open source Apertium (Forcada et al.,
2011). Other systems and improvements have
been built on top of this service such as Soft-
català (Ivars-Ribes and Sánchez-Cartagena, 2011)
which focuses on translation into and out of Cata-
lan, and a neural MT translator (NMT) between
Spanish→Aragonese (Cortés et al., 2012).

In addition, the Spanish government-funded
TAN-IBE project (Oliver et al., 2023) - of which
this challenge is a part - seeks to apply modern tech-
niques across NMT and LLM-based approaches to
improve this low-resource MT task.

2 System description

We take the distilled NLLB-200 model (Costa-jussà
et al., 2022) with 600M parameters and extend spe-
cial tokens with 2 tokens that denote target lan-
guages (arn_Latn, arg_Latn) because Asturian was
already presented in NLLB-200 model. After we
initialized the weights of the new tokens using
weights from existing tokens in the vocabulary. We
used oci_Latn (Occitan) for arn_Latn (Aranese)

and spa_Latn (Spanish) for arg_Latn (Aragonese)
because this languages are from the corresponding
language family.

2.1 Training and data filtering
To create our corpus, we sampled OPUS3 and
PILAR4 FLORES+ (revised pairs), which con-
tain Catalan->Aranese (from PILAR), Spanish-
>Aranese, Spanish->Occitan, Spanish->Asturian
and Spanish->Aragonese directions. We used Aper-
tium (Khanna et al., 2021) to translate Catalan
to Spanish, but we kept both source languages
in our training set. Additionally, for the Occi-
tan target language, we used idiomata cognitor
(Galiano-Jiménez et al., 2024) to keep only corre-
sponding target languages. We applied the adapted
MOSES Punctuation Normalizer provided by Meta
Research group under the stopes library5 for all
language pairs because NLLB was trained on pre-
processed texts. Further data filtering followed the
NLLB paper (Costa-jussà et al., 2022). We used
fastText6 to delete all pairs with English examples.
After that, we computed length ratios and kept all
sentences where the length was from five to 1050
characters, with a max length ratio lower than 0.9
and a unique ratio higher than 0.125. Finally, we
de-duplicated all translation language pairs, keep-
ing a maximum of two source duplicates and three
target duplicates. Additionally we kept all pairs
where distance score was in [0.6;1.0]. The result
distribution of the source and target languages in

3https://opus.nlpl.eu/
4https://github.com/transducens/PILAR
5https://github.com/facebookresearch/stopes/

blob/main/stopes/pipelines/monolingual
6https://fasttext.cc/
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Figure 3: Distribution of language pairs from processed
dataset.

our result corpora is captured at the Figure 3.
For the rest of the language pairs, we excluded

all samples where the target language did not match
the language predicted by idiomata cognitor.

2.2 Data augmentation
We adapt the model by training on a special regime
of data augmentation with both monolingual and
bilingual training data for the language pairs in this
challenge.

The OPUS data were filtered in order to discard
the spurious sentence pairs. We do that by per-
forming translation of the Spanish sentence to the
appropriate target language using Apertium and
comparing the translation to the sentence present
in the corpus. We assume that certain differences
are possible due to imperfect performance of Aper-
tium and natural variability of language, but the
two variants should preserve some resemblance.
To quantify that, we compute the Levenshtein (Lev-
enshtein, 1966) edit distance (d(s1, s2)) between
the two strings (s1, s2) and transform it into a simi-
larity score defined as:

sim(s1, s2) = 1.0− d(s1, s2)

max(|s1|, |s2|)
Based on manual analysis of the scores, we assume
the similarity score of minimum 0.6 to be sufficient
for the sentence pair to be used. Otherwise, it is
discarded.

2.3 Fine tuning
The NLLB-200 model with 600M parameters, dis-
tilled from a 54B parameter Mixture-of-Experts
model, demonstrated superior performance com-
pared to the baseline version. Building on this

foundation, we implemented a series of adapta-
tion steps described above to further enhance the
model’s capabilities on a new target languages. In
this sections, we detail our training methodology
and the specific hyperparameters employed to op-
timize the model’s performance across diverse lin-
guistic tasks. The fine-tuning process was done
with one T4 GPU using Hugging Face Transform-
ers (Wolf et al., 2020) library with the following hy-
perparameters presented at the Table 1. Our result
model is available at the Hugging Face repository7.

Hyperparameter Value
Learning Rate 1e-4
Weight Decay 1e-3
Train Batch Size 4
Eval Batch Size 4
Training Epochs 2
Optimizer Adafactor
Clip Threshold 1.0
Warmup Steps 10% of total steps

Table 1: Hyperparameters for NLLB-200 Fine-tuning.

3 Results

Our results for the translation task from the Span-
ish language test set8 to the target languages, as
evaluated through OCELoT9 submission system
are reasonably positive, with respective BLEU and
chrF+ scores of 49.2 and 73.6 for spa-arg, 17.9 and
15.5 for spa-arn, and 23.9 and 46.1 for spa-ast.

In terms of comparing the current approach with
previous approaches such as Apertium and its suc-
cessors, many of these studies only report word
error rate whereas we used BLEU and chrF+. In
those studies where BLEU is reported, it is known
that BLEU favours SMT and NMT systems over
rule-based ones. Moreover, this challenge intro-
duces the present test set - so there is no previous
work on the same data for direct comparison.

We find that this method of training is relatively
efficient, with energy usage of 2.93kWh and emis-
sions of approximately 1.81kg of CO2

10.

7https://huggingface.co/igorktech/
tribble-600m

8https://github.com/transducens/
wmt2024-romance-tests

9https://ocelot-west-europe.azurewebsites.
net/leaderboard/4

10https://wandb.ai/igorktech01/wmt24-tribble/
runs/5z9r7tjt
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Abstract

This paper describes the CloudSheep transla-
tion system for WMT24 Discourse-Level Lit-
erary Translation shared task. We participated
in the Chinese-English direction on the uncon-
strained track. Our approach to the task used
a pipeline of different tools in order to maxi-
mize the translation accuracy and flow of the
text by combining the strengths of each tool.
In particular, our focus was to translate names
consistently and idioms correctly. To achieve
consistent names throughout a text, a custom
name dictionary was generated for each text,
containing person and place names, along with
their translations. A common honorific dictio-
nary was applied for consistency with titles, es-
pecially in historical or cultivation novels. The
names were found and translated with GPT 3.5-
turbo. To achieve accurate and concise trans-
lations of idioms, which are often translated
literally and verbosely, we integrated the CC-
CEDICT library to provide official definitions.
Then, we used GPT-4 to pick the best dictionary
definition that fit the context and rephrase it to
fit grammatically within a sentence. For the
translation of non-name and non-idiom terms,
we used Google Translate. We compared our
approach’s performance with Google Translate
as a baseline using BLEU, chrF, and COMET,
as well as A/B testing.

1 Introduction

Machine translation techniques customized for
webnovels have been researched more during the
past few years (Wang et al., 2023). With the wide-
spread availability of commercial and open-source
large language models, it has become easier to fine
tune existing models for a specific kind of data.
Many of the top translation solutions to last year’s
task approach the problem of webnovel translation
from the fine tuning perspective, experimenting
with combining and tuning different machine learn-
ing models to find the best method for translation
(Lopez et al., 2023; An et al., 2023).

When scored by human annotators, each of last
year’s machine translation systems, without excep-
tion, had more errors in the categories of Accuracy
and Fluency compared to the other categories of
Style, Terminology, Localization, and Other (Wang
et al., 2023). This may indicate that inconsistency
and inaccuracy are still issues that need more atten-
tion.

With a background in reading and translating
webnovels as human translators, specifically in
the Chinese to English direction, we wanted to
approach the machine translation problem from the
human readability perspective. As a reader, one of
the biggest qualities of a translation is consistency.
When a character is referred to as A in one sentence
and referred to as B in the next, it is very hard to
follow the translation, even if the writing style and
vocabulary choices are immaculate. On the other
hand, even if the character is wrongly referred to as
B the whole time, the consistency allows the reader
to follow the translation and the events. At the time
of our background research, the most up-to-date
version of DeepL, a popular machine translation
tool in the webnovel translation community, still
had name translation inconsistencies even within
the same sentence, as shown in Figure 1.

Another important aspect of a good translation
from a reader’s perspective is correctly translating
Chinese phrases with an English equivalent that
matches it in tone. As a translator, that means
that we often aim to convey the figurative mean-
ing, rather than the literal meaning. This is espe-
cially common for idioms, or "chengyu" in Chi-
nese. These phrases often originated from ancient
texts, and their meaning often comes from the myth,
story, or historical event they were derived from,
rather than the actual characters. Due to this, a
literal translation fails to convey the meaning, and
often is too formal for the modern settings where
they are used as a casual part of speech. For exam-
ple, the phrase "脑子进水" literally translates to
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Figure 1: Name inconsistencies within DeepL transla-
tion for a single passage.

"water entered the brain," but the meaning is "lost
one’s mind" or "gone crazy." Making the appropri-
ate choice between them depends on the sentence’s
tone and context.

With these two aspects in mind, our translation
system aims to target inconsistencies in name trans-
lation and inaccuracies in idiom translation. We ac-
complished the former through generating a dictio-
nary of the names found in the Chinese raws along
with their English translations. We accomplished
the latter through finding the figurative meaning
of idioms from an open-source dictionary and us-
ing GPT-4 to rephrase the best definition to fit the
sentence.

2 Data and Tools

We primarily used the GuoFeng Webnovel Corpus
provided by the organizers (WMT23, 2023) (Wang
et al., 2024). The data we used for self-evaluation
came from the test data in last year’s dataset, be-
cause of the relatively short lengths of the texts
provided per novel and the reference English trans-
lation provided as well. We also looked for short
excerpts of novels through publicly available trans-
lations (found through NovelUpdates) and their
original Chinese texts (found through JJWXC) to

test our system’s ability to translate idioms and
names.

We also used public blog posts to compile a dic-
tionary of honorific translations, in order to main-
tain consistent translations across novels and texts.
We used open-source dictionaries like CC-CEDICT
to obtain the most accurate translation for idioms.
Finally, we used prompt engineering and GPT mod-
els to tie together the different translation tools we
used to create a comprehensive translation.

3 Translation Pipeline

3.1 Text Segmentation (Name Translation)

We wanted to find a way to reliably build a name
dictionary that would get a majority of the names
without incurring too much cost. The first place
submission in last year’s task’s unconstrained task,
DUTNLP (Zhao et al., 2023), used Jieba, a seg-
mentation tool for Chinese. Text segmentation is
the process of dividing text into meaningful words
or phrases. Different segmentation granularities
can significantly impact translation performance,
especially for languages like Chinese (Zhao et al.,
2013). In Chinese, spaces are not used to separate
words, which can be made up of multiple charac-
ters, making good text segmentation very important
for determining which words are present in a sen-
tence.

We tested Jieba in our own system, aiming to
use its ability to identify proper nouns to form a
basic dictionary of names in the text. Specifically,
we filtered for phrases tagged "nr" (person name)
and "ns" (place name) (Jieba, 2020). Unfortunately,
Jieba had a high false positive rate, and often split
up phrases or names, which made it unsuitable to
form our name dictionary. For example, if the name
contained a common noun that could be part of
many phrases, replacing that part of the name with
the English meaning would be very unhelpful and
create a weird-sounding name. However, although
Jieba was not suitable for identifying proper nouns,
it was still useful for determining a phrase’s part of
speech.

A name dictionary’s main purpose is to trans-
late names consistently, and is more useful when it
contains names that appear often. If a character or
place appears only once within the story, readers do
not need a consistent translation across mentions to
recognize it. Additionally, it is likely to be insignif-
icant to the story, so even if the translation is not
the best, it is unlikely to affect enjoyment much.
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Names commonly occurring in the text are likely
to be re-occurring characters, such as the main pro-
tagonist or important supporting characters.

We decided to try to feed a percentage of lines
to GPT-3.5 for name identification. GPT-3.5 was
good at identifying names, rarely returning false
positives. However, we didn’t need to get ev-
ery single name from a text, just the re-occurring
ones. This meant that GPT was sifting through a
large number of duplicates, and incurring extra cost
through the API.

We manually identified the names within the
sample dataset from last year’s task, and for each
text, we calculated the total number of unique
names, the total percentage of characters within
the text that belonged to a name, and the average
number of lines that would contain a name. We
found that the character percentages ranged from
5% to 10%, and the line percentages ranged from
11% to 22%.

By only giving GPT a certain percentage of lines
that were randomly selected from the text, we intro-
duced an element of chance into our pipeline that
meant GPT may not be able to see all the names
from the text it is given. We selected 20% as a num-
ber on the higher end of the range we found, so it
was likelier that GPT would be given a majority of
the names.

In order to pick lines more likely to contain
names, we used Jieba to identify the number of
nouns within a line. We theorized that it was un-
likely for lines to contain no names, so if Jieba
didn’t identify any nouns at all within a sentence,
it likely missed a name, which may be a combina-
tion of characters that are verbs or adjectives on
their own. We first ran Jieba’s segmentation on the
text, and then selected only from a pool of longer
sentences without any nouns identified.

We also theorized that for characters such as
these, their introductions are more likely to be con-
centrated within the beginning or middle of the
text, rather than the end. As we only need to get
one occurrence of each name, we decided to weigh
sentences earlier as more likely to be selected. We
picked 15% of the lines from the first 3

4 of the text,
and 5% of the lines from the last 1

4 of the text.1

1"Lines" in the text file are sometimes multiple sentences
in the Chinese raws; so if Jieba identifies 0 nouns in a "line",
that can equate to 0 nouns in a paragraph.

Figure 2: Flow chart describing name translation pro-
cess.

3.2 Honorifics (Name Translation)

We compiled a list of honorifics, ranging from com-
mon honorifics such as "哥哥" (brother) to mar-
tial art novel honorifics such as "师爷" (grandmas-
ter) (Mountain, 2017) to historical novel honorifics
such as "公公" (eunuch) (Wyhcwe, 2022). We ac-
knowledge that the translations of such terms can
sometimes vary across different translations, but
we wanted to make a standard translation across all
of our translations.

The names identified by Jieba and GPT-3.5 in
the previous subsection include these honorifics,
so by first applying the honorific translation and
only asking GPT to translate the remaining charac-
ters left behind as the name, it can standardize the
name translations and also ensure the honorifics
aren’t translated as pinyin directly. For example,
our code would go through these steps to translate a
name: 韩少爷→ Young Master韩→ Young Mas-
ter Han. We used the prompt: "Translate this name
to English: [name]. Only list the English name."

3.3 CC-CEDICT (Idiom Translation)

We used the Chinese-English dictionary, CC-
CEDICT. It is an free online dictionary that is
regularly updated through crowdsourcing, and ev-
ery contribution is verified regularly and added to
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Figure 3: Flow chart describing idiom replacement pro-
cess.

the database (CC-CEDICT, 2020). Due to contin-
ual updates by the owners, CC-CEDICT is a good
choice for getting the most updated figurative mean-
ings of idioms, slang, and other culturally specific
terms. For example, the phrase "脑子进水" from
the introduction section has the CC-CEDICT entry
"to have lost one’s mind crazy soft in the head."

We searched through all entries labelled as "id-
ioms" within the CC-CEDICT dictionary. If any
such idioms were found within a line of the orig-
inal Chinese text, the Chinese idiom would be re-
placed directly with its corresponding CC-CEDICT
English entry. Other Chinese text in the line not
identified as idioms would not be translated at this
step. The raw dictionary replacements did not ac-
count for grammatical context surrounding the id-
ioms, and some entries contained more than one
English translation phrase per Chinese idiom. Fur-
thermore, in their raw formatting these entries were
surrounded by brackets and contained a text flag
"(idiom)". We kept the raw replacement format-
ting as-is, which we then processed further after
translating the rest of the text.

3.4 Overall Translation

We were left with text that was primarily still in the
original Chinese, but with names and idioms pro-
grammatically replaced with English translations.
We experimented with two different translation en-
gines, DeepL and Google Translate, to translate
the remainder of the text. These engines are the
two most mentioned translation engines amongst
online webnovel forums before ChatGPT. The en-

Figure 4: Flow chart describing final rephrasing process.

gines translated the remaining Chinese text without
any modification to the already-present English id-
iom replacements, thus requiring a step to smooth
out the sentences containing idioms.

3.5 GPT Rephrasing (Idiom Translation)

We decided to use GPT-4 and LangChain
(LangChain, 2024) to replace every line that con-
tained a raw idiom definition, as identified by
their surrounding brackets and accompanying "(id-
iom)" flag, with a grammatically correct rephrasing.
Langchain is an open-source framework that makes
it easier to develop using GPT’s API. We found that
GPT-4 was better than GPT-3.5 at rephrasing only
the sentences with idiom definitions within a given
line. Because any output from this section would
be inserted directly into the text as the final step, we
decided to switch to GPT-4 for this step for better
quality. To minimize the API cost in the rephras-
ing phase, we recorded the line numbers for the
lines modified in the CC-CEDICT step, and only
gave those lines to Langchain. Only about 2%-11%
of lines across the samples we encountered con-
tained idioms, so GPT-4 was only used on a small
percentage of the text.
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We used the prompt: "Please pick the idiom def-
inition that best fits the context for the following
sentences and rephrase only the part of the sentence
with the idiom grammatically. Only output the new
translation. Don’t change the sentences without id-
ioms. Favor the more concise meaning and find an
English equivalent if possible." We added many in-
structions to our prompt as a result of experimenta-
tion; not asking for the "more concise meaning" or
"English equivalent" often resulted in translations
that were complicated amalgamations of every def-
inition provided by the dictionary entry; not asking
for "don’t change the sentences without idioms"
often resulted in sentences without idioms being
changed and other content given being cut out.

Once the GPT-4 rephrasing was complete, the
text translation was considered to be finished.

3.6 Evaluation

We used three metrics for automatically evaluating
machine-translated text: BLEU, chrF, and COMET.
BLEU evaluates word-level n-grams, calculating
the precision between the machine translation and
the reference, weighted by a brevity penalty (Pap-
ineni et al., 2002). ChrF evaluates character-level
n-grams, scoring the overlap of short sequences of
characters between the machine translation and the
reference (Popović, 2015). COMET is a fine-tuned
neural framework that takes in sentence embed-
dings from the source text, translation, and refer-
ence (Rei et al., 2020). We used these because
last year’s conference proceedings summary paper
used them for the automatic evaluation (Wang et al.,
2023).

A shortcoming of automatic metrics such as
BLEU is that they lack the ability to evaluate based
upon semantics, instead favoring direct word-to-
word matches between a translation and reference
(Callison-Burch et al., 2006). This means a transla-
tion that achieves high grammatical quality but uses
different words than a provided reference could po-
tentially score poorly. As such, we also surveyed
human readers to compare the quality of our sys-
tem’s translations. Participants were given 4 sepa-
rate translations of a text sample ranging from 200-
300 English words, each generated using a different
method: one generated by our translation system
using Google Translate ("pipeline Google Trans-
late"), one generated by our translation system us-
ing DeepL ("pipeline DeepL"), one generated using
only Google Translate ("pure Google Translate"),

Figure 5: random sample 1, video games (20%)

Figure 6: random sample 2, science fiction (23%)

and one using only DeepL ("pure DeepL"). These
translations were given in a random order, and par-
ticipants were not informed of which translation
came from which source. After reading the trans-
lations, participants were asked to rank them from
best to worst based on how readable they found
the translations. This process was repeated over
several different samples, and the rankings were
recorded for each sample.

4 Results

We used the automated metrics to evaluate the re-
sults of the four techniques: pure Google Translate,
pipeline Google Translate, pure DeepL, pipeline
DeepL. To decide between Google Translate and
DeepL for our final submission, we decided to com-
pare the pure Google Translate and pure DeepL
results. In this paper, we show the results for three
random samples selected across the dataset, shown
in Figures 5, 6, and 7. The genre of the sample is
labelled, along with their distribution percentage in
the training set (Wang et al., 2023). Google Trans-
late and DeepL performed about the same for the
first two samples, but Google Translate was signifi-
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Figure 7: random sample 3, martial arts (2%)

cantly better than DeepL in the third sample, which
was a classical martial arts novel. Although mar-
tial arts novels only make up a small percentage of
the dataset, because idioms originate from classical
Chinese literature, we decided to employ the trans-
lation pipeline with Google Translate ("pipeline
Google Translate") for our final conference submis-
sion.

In our A/B testing, across all the samples, we
found that participants ranked the pipeline Google
Translate output the highest most, and the pure
DeepL the lowest, as shown in Table 1. However,
the distribution was mostly even, and about half
the time, participants reported that the difference
between translations was slight, which could be
due to the limitations mentioned in the following
limitations section.

Technique 1st 2nd 3rd 4th
pure Google (2) 2 2 1 2
pipeline Google (1) 3 1 3 0
pure DeepL (4) 1 3 0 3
pipeline DeepL (3) 2 0 4 1

Table 1: Times each technique was ranked 1st, 2nd, 3rd,
or 4th across 7 samples. Ties were allowed.

5 Conclusion

We created a machine translation system that cre-
ates consistent translations for names and accurate
translations for idioms, both of which enhance hu-
man readability despite making up a small ratio
of the overall text. Even though our pipeline did
not see any major improvements in the automated
evaluation metrics, the positive reception among
human survey participants points to the potential
value that our process provides.

6 Limitations

When providing lines of text for ChatGPT to iden-
tify names, we randomly selected a certain percent-
age of lines to use in order to reduce API usage
costs. Though the selected lines were weighted
based on factors such as whether or not Jieba found
any proper nouns in a line, there is nonetheless
a slight element of randomness that is introduced
during our process. One limitation that could be
further explored is how consistently our pipeline
performs over multiple runs on the same input.

Another limitation in our results lay in our use of
human evaluators. Participants were asked to rank
translations that used our system against transla-
tions that did not. Though they were not informed
which translations did or did not use our system,
they also were not given any specific metrics to
quantify their decisions. Participants also some-
times reported that the passages provided were too
long to quickly judge the difference, and that read-
ing four passages in a row that described the same
content made it hard to evaluate the difference with-
out an earnest effort to study the differences within
the text. In the future, our team could work on
developing a more robust approach to the human
side of evaluations that addresses these limitations.
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Abstract
This paper describes Shanghai Jiao Tong Uni-
versity (SJTU LoveFiction) Discourse-Level
Literary Translation systems for the WMT24
shared task. We participate in the literary trans-
lation task on Chinese→ English, Chinese→
German and Chinese→ Russian with uncon-
strained tack. Our system is based on Qwen2-
72B(Yang et al., 2024), Claude3.5(Anthropic,
2023) and GPT-4o(OpenAI, 2024) with novel
techniques that improve literary translation per-
formance on the target language pairs. (1)
Chunk-based SFT and inference: we put sev-
eral sentences together to form a chunk and try
different chunksize during SFT and inference.
(2) Merge multi-model translations by agents:
we design a Translation Editor Agent based on
GPT-4o to generate a better new translation by
referencing the source text and merge 3 can-
didate translations generated by Qwen2-72B,
Claude-3.5 and GPT-4o. (3) Terminology Inter-
vention: to ensure terminology consistency, a
Term Proofreader Agent, based on GPT-4o, is
utilized to extract term pairs from source texts
and translations. For each Chinese term, we
decide its optimal translation and request the
Term Proofreader to modify the translation gen-
erated by Translation Editor Agent. In model
evaluation:(1) We employ d-BLEU for single
model evaluation. (2) We design a Client Agent
based on Claude-3.5 to assess the win-tie rate
between two translations for cross-model eval-
uation.

1 Introduction

Despite great advancements in machine translation
(MT) these years(Artetxe et al., 2017; Wang et al.,
2022), achieving high-quality translations for lit-
erary texts remains a formidable task, primarily
due to the complexities involved in maintaining
coherence, consistency, and cultural context across
larger text spans (Voita et al., 2019; Lopes et al.,

*Work done during internship at Alibaba Group

2020).

This paper describes SJTU LoveFiction’s submis-
sion to WMT24 Discourse-Level Literary Transla-
tion. We participate in all 3 language pairs (Chi-
nese→ English, Chinese→ German and Chinese
→ Russian) with unconstrained tack.

Our system builds upon Qwen2-72B, Claude-3.5
and GPT-4o models with various practical tech-
niques. We adopt a chunk-based strategy, grouping
several sentences into a chunk during supervised
fine-tuning (SFT) and inference phase.

Multi-agent structure demonstrates strong perfor-
mance in discourse-level machine transaltion(Wu
et al., 2024). To enhance translation quality, we de-
velop a Translation Editor Agent based on GPT-4o.
This agent references the source text and merges
muliti-model translations to produce a refined out-
put. While different models may generate varied
translations for the same Chinese term, we also
implement a Term Proofreader Agent powered by
GPT-4o. This agent extracts term pairs from source
text and corresponding translations. For each Chi-
nese term, the optimal translation is determined
manually, then the term proofreader applies these
optimal terms to the merged translations.

In terms of evaluation, we use d-BLEU to assess
the performance of a single model under different
experimental settings. For cross-model evaluation,
we design a Client Agent based on Claude-3.5.
This agent references the Chinese source text to
evaluate and rank the translations produced by dif-
ferent models by accuracy, fluency, and the preser-
vation of stylistic elements.

This paper is structured as follows: Section 2 de-
scribes our data pre-processing strategies, followed
by the details of our method in Section 3. Section 4
presents the experimental results and analysis, then
we draw conclusions in Section 5.
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2 Data Processing

We perform Supervised Fine-Tuning (SFT) on the
GuoFeng Webnovel Corpus (Wang et al., 2023)
. Handling the noise within the dataset is crucial
as it can significantly impact LLM’s translation
performance. We adopt a series of rigorous data
filtering strategies.

2.1 Chinese-English Data Filtering

1. Remove lines without Chinese-English
pairs: Delete any line that contains only a
single Chinese or English sentence.

2. Eliminate garbled text, emojis, foreign lan-
guage characters, and emoticons: These el-
ements can degrade model performance. We
use Unicode range identification and regular
expressions for precise removal.

3. Delete lines containing only punctuation
marks: Such lines typically lack linguistic
value and retaining them would introduce
noise, thereby impairing model training.

4. Standardize punctuation: Convert all Chi-
nese punctuation to English punctuation to
enhance model consistency and coherence in
translation results.

2.2 Chinese-German and Chinese-Russian
Data Filtering

Chinese-German/Russian data has the following
features.

1. Chapter-Level Alignment Only: The align-
ment is maintained only at chapter level.
Within chapters, paragraph or sentence level
alignment is not achieved.

2. Chapter Containment Differences: In the
Chinese files, each file contains a single chap-
ter. In contrast, the German and Russian files
may contain multiple chapters per file.

The following filtering strategies are employed:

1. Remove Unaligned Chapter Pairs: Delete
Chinese-German/Russian file pairs that are
not aligned at the chapter level.

2. Eliminate garbled text, emojis, foreign lan-
guage characters, and emoticons.

3. Remove Chapters Exceeding 8k Tokens:
LLMs struggle with long passages, thus chap-
ters exceeding 8k tokens are excluded.

3 Method

In this section, we describe our method and pro-
vide a comprehensive explanation of the key com-
ponents.

3.1 System Overview
We depict the overview of our system in Figure 1,
which can be divided into four steps:

Chinese Webnovel

Qwen2-72B

Claude-3.5

GPT-4o

Chunk Division

Multi-Model Translator

Merge

Translation Editor

Merged Translation

Glossaries

Term Extraction

Term Application

Term Proofreader

Term Proofreader

Final Translation

Figure 1: System Overview

1. Chunk Division: To maintain contextual in-
formation, we combine several sentences into
a single chunk.

2. Supervised Fine-Tuning & 1-shot Inference
for Multi-Model Translator: We SFT the
Qwen2-72B model on Guofeng Webnovel
Corpus. Afterwards, we use the fine-tuned
Qwen2-72B, Claude-3.5, and GPT-4o to per-
form 1-shot inference on the test set, generat-
ing translation results.

3. Translation Merging: We employ a Transla-
tion Editor Agent based on GPT-4o to merge
the translation outputs of the three models.

4. Terminology Intervention: We utilize a Term
Proofreader Agent based on GPT-4o to extract
term glossaries from source texts and transla-
tions. We select the optimal term pairs man-
ually and ask the term proofreader to apply
them to the merged translation as the final
output.

3.2 Chunk Division
The lack of contextual information in sentence-
level data poses a significant challenge for achiev-
ing high-quality translation results. Combining
multiple sentences within each chapter into chunks
can alleviate this problem(Zhao et al., 2023). Dur-
ing the SFT phase, we experiment with various
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chunksizes of 5, 10, and 20 sentences to determine
the optimal size for training. In the inference phase,
we further extend our experiments to chunksizes
of 1, 5, 10, 20, 40, and 80 sentences. This strat-
egy aims to provide the model with more contex-
tual information, thereby improving the translation
quality.

3.3 Supervised Fine-Tuning (SFT) & 1-shot
Inference

In order to find the best setting for Qwen2-72B,
we SFT Qwen2-7B on the Guofeng Webnovel Cor-
pus and conduct inference on the in-domain dev
set. Given consistent distribution between the two
datasets, this approach will reveal the best set-
ting for LLM to learn the knowledge embedded
in Guofeng Webnovel Corpus. d-BLEU scores un-
der different settings are shown in Figure 2.

201051
Inference Chunk Size

28.0

28.2

28.4

28.6

28.8

29.0

29.2

29.4

d-
BL

EU

Training Chunk Size 5
Training Chunk Size 10
Training Chunk Size 20

Figure 2: d-BLEU for Qwen2-7B on In-domain Dev Set

Although training with 5-sentence chunks and in-
ferring with 1-sentence chunks yields the highest
d-BLEU score of 29.35, we prefer 10-sentence
chunks for training and 5-sentence chunks for in-
ference. This configuration, with a d-BLEU score
of 29.17, maintains nearly equivalent performance
while preserving contextual information during in-
ference.

As we aim to capture more context, the model must
handle longer inputs. However, LLM’s ability to
handle long inputs is inherently limited. It’s essen-
tial to acknowledge that we need to strike a balance,
i.e. maintaining sufficient contextual informa-
tion without exceeding the model’s capacity for
processing long inputs.

In our inference experiments with Claude-3.5 and
GPT-4o, we employed 1-shot inference, a form
of few-shot learning. Few-shot learning aims to

enable models to generalize from a limited number
of examples(Brown et al., 2020).We determine the
best inference chunksize according to the following
results.

8040201051
Inference Chunk Size

16

17

18

19

20

21

d-
BL

EU

Claude-3.5
GPT-4o

Figure 3: d-BLEU for Claude-3.5 & GPT-4o on OOD
Dev Set

Both models perform best with 5-sentence chunk
size, achieving d-BLEU scores of 19.98 and 21.15,
respectively. We choose 5-sentence chunksize as
the inference setting for Claude-3.5 and GPT-4o.

3.4 Translation Merging
After obtaining multi-model translations, we ran-
domly select a chapter for manual verification
and observe that different models exhibit distinct
strengths in their translations for the same chunk.
To leverage the advantages of all three trans-
lations, we employ a Translation Editor agent
based on GPT-4o, which is prompted to merge
the three candidate translations into an im-
proved version. Workflow of the Translation Edi-
tor is as follows.

? ? ?  ? ? ? ? \n? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? \n? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
source text

Chapter 1 A New Journey\nA fierce wind blew through the canyon, stirring waves 

across the prairie.\nThe bison, which had been grazing on the tender green grass, 

lifted its head and gazed at the sky.

Chapter 1 A New Journey\nThe gale blew through the canyon, stirring up waves across 

the grassland.\nThe wild oxen that were grazing on the fresh grass raised their heads 

and looked up at the sky.candidate1

candidate2

Chapter 1 A New Journey\nThe strong wind blew across the canyon and raised ripples 

on the grassland.\nThe wild buffalo grazing on tender grass leaves raised their heads, 

looking towards the sky.
candidate3

Translation Editor

Chapter 1 A New Journey\nA fierce wind blew through the canyon, stirring up waves 

across the grassland.\nThe wild buffalo grazing on tender grass leaves raised their 

heads, looking towards the sky.
Merged

 Translation

PROMPT?

You are able to assess the 

translation quality of 

different candidate 

translations, after that you 

merge these candidates 

according to their qualities 

to generate the best 

translation.

Merge

Figure 4: Workflow of The Translation Editor

1. Quality Assessment. Assess the quality of
different translation referencing the source
text. After this step, the agent knows the rela-
tively better part in each translation.
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2. Translation Merging. Put these parts to-
gether to form the merged translation.

This process allows the Translation Editor agent to
integrate the best elements (highlighted in red in
Figure 4) of the three candidate translations, gener-
ating a superior translation.

3.5 Terminology Intervention
While the Translation Editor agent generates im-
proved results by blending three candidate trans-
lations, different models may produce different
translations for the same Chinese term, leading
to consistency issues. To address this, we develop
a Term Proofreader Agent. Workflow of the agent
is as follows.

?? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

"What are you all doing?!" The elder of the Dong Palace knocked on his cane, his voice 

filled with anger.

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ?? ? ? ? ?

"Our ancestor will be here soon. Please stay calm, Lord Dong Palace. You'll find out 

what's going on in a moment."

Mr. Old Donggong naturally knew who he meant by 'ancestor.'

source text

Merged
 Translation

? ? ? ? ?

The elder of the Donggong palace

Lord Dong Palace

Mr. Old Donggong                           Glossaries

    Term 
Extraction

Term Proofreader

     Term
Application

Term Proofreader

Mr. Old Donggong

Figure 5: Workflow of The Term Proofreader

1. Term Extraction. The terminology proof-
reader agent begins by extracting term pairs
from the Translation Editor’s output, refer-
encing its Chinese source. Glossaries are ob-
tained after this step.

2. Manual Determination. For each Chinese
term in the glossaries, we manually determine
the optimal translation. This step involves re-
viewing the context and ensuring that the cho-
sen translation accurately reflects the meaning
and nuance of the original term.

3. Term Application. Once the optimal transla-
tions are determined, the terminology proof-
reader agent applies these optimal translations
to Translation Editor’s output.

3.6 Evaluation
3.6.1 Single Model Evaluation
We calculate d-BLEU scores between our transla-
tions and reference texts to evaluate single model
performance and determine the optimal experimen-
tal settings (i.e. training & inference chunksize).

d-BLEU measures N-gram matching, reflecting the
similarity between two distributions.The distribu-
tion of the in-domain dev set and the train set are
consistent. Thus d-BLEU can assess the model’s
learning of train set during SFT stage, enabling us
to select the optimal SFT setting by d-BLEU. On
the other hand, distribution of the ood dev set is
inconsistent with the train set. d-BLEU can assess
the model’s fitting to the ood dev set distribution.
Thus we can select the optimal inference setting by
d-BLEU.

3.6.2 Cross-model Evaluation
For cross-model evaluation, we find that human-
preferred translation can have low d-BLEU score.
This discrepancy arises because d-BLEU relies
solely on N-gram matching and is unable to capture
deeper semantic information. For human-preferred
translation, there can be significant lexical differ-
ences from the reference translations, even though
the semantic content is accurately conveyed. d-
BLEU is ineffective in evaluating such cases.

Previous works reveal that LLM-Evaluators can
achieve high consistency with human expert on
system-level evaluation(Kocmi and Federmann,
2023; Moosa et al., 2024). We build a Client Agent
based on Claude-3.5, which considers accuracy,
fluency, and the preservation of stylistic elements.

Chapter 1 A New Journey\nThe strong wind blew across the canyon and raised ripples 

on the grassland.\nThe wild buffalo grazing on tender grass leaves raised their heads, 

looking towards the sky.
translation1

Chapter 1 A New Journey\nA fierce wind blew through the canyon, stirring up waves 

across the grassland.\nThe wild buffalo grazing on tender grass leaves raised their 

heads, looking towards the sky.
translation2

? ? ?  ? ? ? ? \n? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? \n? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
source text

 PROMPT?  You are a professional translator skilled in translating between Chinese and              
English. Evaluate the following two translations based on semantic accuracy, language 
fluency, and style preservation to determine which translation is better.

T 1> T2, output 1    
T 1= T2, output 0
T 1< T2, output 2    

Figure 6: Workflow of The Client

3.6.3 Human Evaluation
We employ 3 language experts to do fine-grained
evaluation. They are requested to perform Linguis-
tic Quality Rating (LQR) by the following standard
in Table 1.

4 Results

We present the effect of our method in this section.
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Score Quality Description

1 Incomprehensible or incorrect.
2 Severe errors, hard to understand.
3 Some errors, but understandable.
4 Mostly correct, minor errors.
5 Completely correct and fluent.

Table 1: LQR Scoring Standards

4.1 Supervised Fine-Tuning (SFT) &
Inference

We train Qwen2-72B on GuoFeng Webnovel Cor-
pus with 10-sentence chunksize. The following ta-
ble shows the d-BLEU scores for various inference
chunksizes on both in-domain and out-of-domain
dev sets.

Inference Chunksize In-domain OOD

1 27.32 22.51
5 27.05 24.64

10 26.05 24.74
20 27.74 24.65
40 28.11 24.25
80 20.49 24.04

Table 2: d-BLEU of Qwen2-72B on In-domain & OOD
Dev Set

Qwen2-72B achieves best performance under 40-
sentence inference chunksize on in-domain dev
set while the best performance on OOD dev set
is achieved with the 10-sentence chunksize. This
indicates that although Qwen2-72B has a stronger
capability for handling long texts, out-of-domain
data distribution still poses difficulties for transla-
tion.

Results for Claude-3.5 and GPT-4o on OOD dev
set is in Figure 3.

4.2 Translation Merging
We randomly selected 200 chunks from the final
test set to evaluate the performance of individual
models and our translation merging strategy.

GPT-4o ranks 1st place in single model perfor-
mance while our translation merging strategy sur-
passes every single model, indicating that better
translation is generated by the Translation Editor
Agent.

Model LQR3 LQR4 LQR5

Translation Merging 65% 44% 24%
GPT-4o 60% 30% 9%
Claude-3.5 54% 33% 12%
Qwen2-72b 42% 24% 3%

Table 3: LQR Scores for Different Models

We also employed the Client Agent to compare
GPT-4o’s results and the merged translations. Table
4 presents the win-tie rate relative to GPT-4o.

Metric Rate

Win 41%
Tie 21%
Lose 38%
Net Win Rate 3%

Table 4: Win-tie Rate Compared to GPT-4o

The LLM evaluator also acknowledges that our
translation merging strategy brings a slight im-
provement.

4.3 Terminology Intervention
We employ the Term Proofreader Agent to extract
term pairs from the entire test set. The following
table presents the results before and after the termi-
nology intervention.

Before After

Chinese Terms 806 806
English Translations 3012 902
Average Correspondence 3.73 1.12

Table 5: Term Correspondence Before and After Inter-
vention

Before the intervention, 806 unique Chinese terms
correspond to 3012 English translations, with an
average of 3.73 English translations per Chinese
term, indicating high variability and inconsistency.

After the intervention, the number of English trans-
lations is reduced to 902. This significant reduction
demonstrates that the Term Proofreader Agent ef-
fectively standardized the terminology, ensuring
consistent translations for each Chinese term.
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5 Conclusion

Through chunk splitting, multi-model translation
merging, and terminology intervention, our system
demonstrates strong performance in the WMT24
Discourse-Level Literary Translation task. The
translation merging strategy surpasses all individ-
ual models in LQR scores. Terminology inter-
vention significantly improves terminology consis-
tency, reducing the average correspondence from
3.73 translations to 1.12. Future work will focus on
further optimizing these techniques and exploring
new strategies to enhance translation quality, espe-
cially in handling long texts and preserving literary
styles.
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Abstract

This report outlines our approach for the
WMT24 Discourse-Level Literary Translation
Task, focusing on the Chinese-English lan-
guage pair in the Constrained Track. Trans-
lating literary texts poses significant challenges
due to the nuanced meanings, idiomatic expres-
sions, and intricate narrative structures inherent
in such works. To address these challenges, we
leveraged the Chinese-Llama2 model, specif-
ically enhanced for this task through a com-
bination of Continual Pre-training (CPT) and
Supervised Fine-Tuning (SFT). Our method-
ology includes a novel Incremental Decoding
framework, which ensures that each sentence is
translated with consideration of its broader con-
text, maintaining coherence and consistency
throughout the text. This approach allows
the model to capture long-range dependencies
and stylistic elements, producing translations
that faithfully preserve the original literary
quality. Our experiments demonstrate signifi-
cant improvements in both sentence-level and
document-level BLEU scores, underscoring the
effectiveness of our proposed framework in ad-
dressing the complexities of document-level
literary translation.

1 Introduction

Machine Translation (MT) (Brown et al., 2020;
Chowdhery et al., 2023; Touvron et al., 2023) has
become an essential tool in breaking language barri-
ers, enabling the automatic translation of text from
one language to another. While significant advance-
ments (Vaswani et al., 2017; Sennrich et al., 2016;
Wei et al., 2023; Gu et al., 2018; Ghazvininejad
et al., 2019; Wang et al., 2021; Guo et al., 2021;
Yu et al., 2021) have been made in MT for vari-
ous text genres, translating literary texts remains
a formidable challenge. Literary texts are rich in
complex linguistic phenomena, such as nuanced
meanings, idiomatic expressions, and intricate nar-
rative structures. Unlike technical or news-related

texts, literary works demand a deeper understand-
ing of context, tone, and style, making them partic-
ularly challenging for MT systems. This difficulty
is compounded by the scarcity of high-quality par-
allel datasets in the literary domain, limiting the
ability of MT models to learn from extensive, di-
verse examples.

Document-level translation (Sun et al., 2020; Du
et al., 2024; Wu et al., 2024) introduces another
layer of complexity to MT, especially when dealing
with longer texts such as novels. Unlike sentence-
level translation, where context is limited to a sin-
gle sentence, document-level translation requires
the model to consider the broader discourse context
to maintain coherence and consistency throughout
the entire text. This is particularly crucial in liter-
ary translation, where the narrative thread, charac-
ter development, and thematic elements must be
preserved across sentences and paragraphs. Long-
range dependencies, where information introduced
early in a text influences later parts, pose a signifi-
cant challenge for MT systems, which often strug-
gle to retain and apply such context effectively over
extended texts.

In this system report, we describe our partic-
ipation in the WMT24 Discourse-Level Literary
Translation Task, focusing on the Chinese-English
language pair under the Constrained Track. Our
approach leverages the Chinese-Llama2 model,
specifically designed for this task, through a combi-
nation of Continual Pre-training (CPT) and Super-
vised Fine-Tuning (SFT). This methodology allows
us to refine the model’s understanding of literary
texts while adapting it to the specific nuances of
Chinese-English translation. Additionally, we em-
ploy an Incremental Decoding framework, which
enables the model to translate documents sentence
by sentence, ensuring that each translation is in-
formed by the broader context. This approach is
designed to tackle the challenges of document-level
literary translation, aiming to produce translations
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Figure 1: The overall of our approach.

that are not only accurate but also faithful to the
original text’s literary quality.

2 Background: TP3

Machine Translation (MT) is the automated process
of converting text from one language to another us-
ing computational methods. Traditionally, MT re-
lies on encoder-decoder models, where the encoder
processes the source language and the decoder gen-
erates the translation, often requiring large bilin-
gual datasets and data augmentation to improve
performance. Recently, Large Language Models
(LLMs) like GPT have become prominent in MT,
enabling translation through zero-shot or few-shot
learning by conditioning on a source sentence (Jiao
et al., 2023; Zeng et al., 2023; Chen et al., 2023; Xu
et al., 2023; Yang et al., 2023; Zhang et al., 2023).
These models can also be fine-tuned with high-
quality bilingual data and tailored instructions to
enhance translation accuracy and robustness, offer-
ing new possibilities for MT with limited resources.

TP3 Guo et al. (2024) propose a novel training
paradigm, consisting of Three-Stages Translation
Pipeline (TP3), to boost the translation capabilities
of LLMs. The training paradigm includes:

Stage 1: Continual Pre-training using Exten-
sive Monolingual Data. This stage aims to expand
the multilingual generation capabilities of LLMs.
While it is inherently related to machine translation
tasks, it is not essential.

Stage 2: Continual Pre-training with Interlinear
Text Format Documents. They construct interlinear
text format from sentence-aligned bilingual paral-

lel data and utilize them for continual pre-training
of LLMs. Experimental results demonstrate the
critical importance of this stage, resulting in a sig-
nificant improvement in translation quality, partic-
ularly for English-Other translations.

Stage 3: Leveraging Source-Language Consis-
tent Instruction for Supervised Fine-Tuning. In
this stage, they discover that setting instructions
consistent with the source language benefits the
supervised fine-tuning process.

3 Methods

3.1 TP3 for Discourse-Level Literary
We introduce the TP3 training paradigm into the
literary translation task, with the entire training
process illustrated in Figure 1.

Stage 1: Continual Pre-training using Chinese
and English Monolingual Literary Data In this
stage, we adapt a general-purpose large language
model (LLM) into a specialized Literary LLM by
using monolingual literary data in both Chinese and
English. While existing LLMs like Llama perform
well in English-centric tasks, their capabilities in
other languages, especially in literary contexts, are
often limited. To improve this, we employ contin-
ual pre-training with extensive monolingual literary
texts, enhancing the model’s understanding of nu-
anced language, stylistic elements, and narrative
structures. This step is critical for enabling the
model to generate more coherent and contextually
appropriate translations.

For this task, continual pre-training is essential,
transforming a general LLM into one tailored for
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Style-related pair:
 - ...
 - sent_srcn,sent_tgtn

Context-aware pair:
 - ...
 - sent_srci-1,sent_tgti-1

Based on the preceding information, translate the
following <src> to <tgt>:  <sent_srci>

sent_srcl, sent_tgtl
sent_srcm, sent_tgtm
sent_srcn, sent_tgtn

sent_srci-3, sent_tgti-3
sent_srci-2,sent_tgti-2
sent_srci-1,sent_tgti-1

sent_src1, sent_tgt1
...
...

sent_srcl, sent_tgtl
...

sent_srcm, sent_tgtm
...

sent_srcn, sent_tgtn
...
...

sent_srci-3, sent_tgti-3
sent_srci-2, sent_tgti-2
sent_srci-1, sent_tgti-1

Context-aware

Style-related

Datastore

Search Style and Context Sents

sent_srci

sent_tgti

Inference

Add DataStore

Figure 2: The overall of our incremental decoding framework.

literary translation. We treat each novel as a dis-
tinct training unit, combining sentences within each
chapter into paragraphs to capture long-range de-
pendencies and context. This approach is vital for
maintaining consistency and preserving the literary
quality of translations. By focusing on both Chi-
nese and English literary data, the model gains a
balanced understanding of the stylistic and struc-
tural intricacies in both languages.

Stage 2: Continual Pre-training with Aligned
Chinese-English Interlinear Text Format Lit-
erary Documents In Stage 2, we enhance the
model’s cross-lingual translation capabilities by us-
ing aligned Chinese-English interlinear text format
literary documents, building on the foundation es-
tablished in Stage 1. The interlinear text format,
where each source sentence is directly aligned with
its translation at the word or phrase level, is essen-
tial for enabling the model to understand and map
the syntactic and semantic structures between Chi-
nese and English, which is crucial for producing
high-quality translations. We implement a contin-
ual pre-training approach using LoRA (Low-Rank
Adaptation of Large Language Models) (Hu et al.,
2021) to efficiently adapt the model with these in-
terlinear text documents.

Initially, the model was trained on general
sentence-aligned parallel data to establish a
strong cross-lingual alignment foundation. Sub-
sequently, we performed incremental pre-training

with literary-specific interlinear data. By focus-
ing on literary documents, we ensure the model
becomes finely attuned not only to general cross-
lingual translation but also to the unique stylistic
and structural nuances of literary texts. This ap-
proach enables the model to capture the intricate
relationships between Chinese and English in a lit-
erary context, significantly improving translation
quality and fidelity.

Stage 3: Supervised Fine-Tuning with Context-
aware and Style-related Instructions In the fi-
nal stage of our approach, we conduct supervised
fine-tuning using context-aware and style-related
instructions, specifically tailored to address the
challenges of semantic coherence and stylistic con-
sistency in literary translation. Unlike the tradi-
tional approach of using Source-Language Consis-
tent Instruction, which emphasizes alignment with
the source language, our method focuses on ensur-
ing that the translated output maintains a consistent
narrative flow and adheres to the stylistic nuances
of the original text. This adjustment is crucial for
literary translation, where preserving the author’s
voice and the overall tone of the work is just as
important as achieving accurate translation.

The fine-tuning process leverages the LoRA to
refine specific parameters of the model efficiently.
By applying LoRA, we can update the model with
low-rank adaptations, which helps in preventing
overfitting while ensuring that the model adapts ef-
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fectively to the task-specific requirements. This tar-
geted fine-tuning allows the model to better capture
the long-range dependencies and stylistic elements
that are essential for producing translations that are
not only accurate but also faithful to the literary
qualities of the source text.

3.2 Incremental Decoding framework

In traditional machine translation, sentences are of-
ten translated independently of one another, leading
to issues with semantic coherence and stylistic con-
sistency when viewed from a broader, document-
level perspective. To address these challenges, we
propose an Incremental Decoding framework that
considers the translation of each sentence as part
of a continuous process, taking into account the
translations of previous sentences. This method
ensures that the translated text maintains a cohe-
sive flow and consistent style throughout the entire
document.

The Incremental Decoding framework incorpo-
rates two key components: Context-aware informa-
tion and Style-related information. Context-aware
information involves using the translations of the
previous n sentences as historical context when
translating the current sentence. This helps main-
tain continuity in the narrative and ensures that the
translation aligns with the broader context estab-
lished in earlier sentences.

Style-related information further refines this pro-
cess by incorporating translations of sentences that
are similar to the current sentence in terms of con-
tent and style. These sentences are selected based
on sentence and keyword similarity, ensuring that
the translation reflects the stylistic nuances present
in the original text. By integrating both context-
aware and style-related information, the Incremen-
tal Decoding framework produces translations that
are not only accurate but also harmonious in tone
and structure, closely mirroring the original literary
work.

4 Experiments

4.1 Datasets and Evaluation Metrics

We utilized data from the general MT shared task
and the GuoFeng Webnovel Corpus. The GuoFeng
Webnovel Corpus was employed in Stages 1, 2,
and 3, while the general MT data was used exclu-
sively in Stage 2. Detailed statistics of the data are
presented in Table 2.

For the evaluation metrics, we utilized Sacre-
BLEU (Papineni et al., 2002) to assess system per-
formance. Given that the test set was segmented
into sentence-level units, we conducted evaluations
using both s-BLEU (sentence-level BLEU) and d-
BLEU (document-level BLEU) scores to provide a
comprehensive analysis of the translation quality.

4.2 Experiment Settings

In our experiments, we used Chinese-LLaMA2
(Cui et al., 2023) as the foundation model. Chinese-
LLaMA2 is an enhanced and optimized version
of Llama-2, specifically designed for Chinese lan-
guage understanding and instruction comprehen-
sion. This model includes a larger Chinese vocabu-
lary and benefits from incremental pretraining on
a large-scale Chinese dataset, which significantly
improves its semantic understanding capabilities.

For both the Continual Pre-training and Super-
vised Fine-Tuning stages, we adhered to the hy-
perparameters utilized in the Chinese-LLaMA2
project. During Stage 2, the model was trained for
1 epoch, while in Stage 3, the training was extended
to 3 epochs to ensure more refined adjustments.

All experiments were conducted using 8 Nvidia
GPUs, each with 64GB of memory, and employed
DeepSpeed (Rasley et al., 2020) ZeRO 2 for model
parallelization, which allowed for efficient han-
dling of the large-scale model and dataset.

4.3 Compared Baselines

• General Sent-Trans: In this baseline, we di-
rectly create sentence-level translation instruc-
tion data and use it to perform Supervised
Fine-Tuning on the Chinese-LLaMA2 model.
This approach focuses on training the model
with general sentence-level translation tasks
without any specialized pre-training.

• Literary Sent-Trans: This baseline builds
on the previous stages, as outlined in Stage
1 and Stage 2. We first subject the Chinese-
LLaMA2 model to Continual Pre-training us-
ing monolingual and bilingual literary data.
Following this pre-training, the model under-
goes Supervised Fine-Tuning using the same
sentence-level translation instruction data as
in the General Sent-Trans baseline. This ap-
proach is designed to adapt the model to the
literary domain before fine-tuning it with gen-
eral sentence-level instructions.
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Valid 1 Valid 2 Test 1 Test 2
s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU s-BLEU d-BLEU

General Sent-Trans 16.81 24.1 10.74 17.39 17.97 25.87 13.32 20.37
Literary Sent-Trans 23.35 30.51 14.64 21.81 20.91 28.51 18.02 25.38
Literary Doc-Trans 23.78 31.85 14.94 22.12 20.97 29.43 18.28 25.62

Table 1: The overall results.

Data Source Data Size
General MT 25M

GuoFeng Webnovel Corpus 1.9M

Table 2: Data Statistics.

• Literary Sent-Trans: This represents our fi-
nal proposed approach. After the Continual
Pre-training conducted in Stage 1 and Stage
2, we further train the model using the Su-
pervised Fine-Tuning method from Stage 3,
which incorporates Context-aware and Style-
related Instructions. This method aims to en-
hance the model’s ability to maintain semantic
coherence and stylistic consistency across sen-
tences in literary document translation.

4.4 Results

The comparison between Literary Sent-Trans and
General Sent-Trans reveals significant improve-
ments in both s-BLEU and d-BLEU scores across
various test sets, indicating that Stage 1 and Stage
2 effectively incorporated literary knowledge into
the model. Furthermore, when comparing Liter-
ary Doc-Trans with Literary Sent-Trans, we ob-
serve additional gains in both s-BLEU and d-BLEU
metrics, demonstrating the effectiveness of Stage
3’s Context-aware and Style-related Instructions.
These results collectively highlight the incremen-
tal benefits of each stage in enhancing the model’s
performance in literary translation. The detailed
results are presented in Table 1.

5 Conclusion

In this work, we addressed the complex task of liter-
ary translation within the WMT24 Discourse-Level
Literary Translation Task, focusing on the Chinese-
English language pair. By leveraging the Chinese-
Llama2 model, enhanced through Continual Pre-
training and Supervised Fine-Tuning, we success-
fully adapted the model to capture the unique nu-
ances of literary texts. Our Incremental Decoding
framework further ensured that each sentence was

translated with awareness of its broader context,
resulting in more coherent and stylistically con-
sistent translations. The improvements observed
in both sentence-level and document-level BLEU
scores validate the effectiveness of our approach.
These results highlight the potential of combining
advanced language models with specialized train-
ing strategies to tackle the intricacies of literary
translation, paving the way for further research in
this challenging domain.
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Abstract

This paper describes our submission system,
NovelTrans, from NLP2CT and DeepTranx for
the WMT24 Discourse-Level Literary Transla-
tion Task in Chinese-English, Chinese-German,
and Chinese-Russian language pairs under un-
constrained conditions. For our primary sys-
tem, three translations are done by GPT4o us-
ing three different settings of additional infor-
mation and a terminology table generated by
online models. The final result is composed
of sentences that have the highest xCOMET
score compared with the corresponding sen-
tences in other results. Our system achieved an
xCOMET score of 79.14 which is higher than
performing a direct chapter-level translation on
our dataset.

1 Introduction

In the rapidly evolving field of natural language
processing (NLP), discourse-level literary machine
translation remains a challenging task. It involves
not only complex semantic phenomena but also
long-term dependency, rare or new terminologies,
and cultural background (Pang et al., 2024; Liu
et al., 2023). These factors pose a high require-
ment for the translation model. Training or fine-
tuning such a model is extremely costly. To address
this, pretrained large language models (LLMs)
and training-free methods like in-context learn-
ing (Brown et al., 2020) are widely used. Up to
now, significant advancements have been made in
sentence-level machine translation using training-
free methods. These methods, such as TEaR (Feng
et al., 2024), DUAL-REFLECT (Chen et al., 2024),
Multi-Aspect Prompting and Selection (He et al.,
2024), and Multi-Agent Debate (Liang et al., 2024),
have proven effective. However, few studies have
been conducted on the document level.

This paper presents our submission to the
WMT24 Discourse-Level Literary Translation

∗Corresponding Author.

shared task. We utilize online commercial general-
purpose LLMs, DeepSeek (DeepSeek-AI et al.,
2024) and GPT4o (OpenAI et al., 2024), to perform
the translation with the help of techniques including
Document-level Multi-Aspect Prompting and Selec-
tion (d-MAPS), LLM-generated terminology table
and dynamic retrieval of in-context learning ex-
amples using Reranked BM25 (R-BM25; Agrawal
et al. 2023). We also explore the potential of post-
correction of punctuation errors in LLMs’ transla-
tion results. Using the above method, NovelTrans
achieves an xCOMET score of 79.14, 0.68 points
higher than the GPT4o baseline. Moreover, the
consistency of rare or unseen terminologies has
significantly improved and the number of mistrans-
lated or awkwardly translated phrases is greatly
reduced. The remaining part of this paper is struc-
tured as follows. Section 2 contains an overview
of our pipelines and detailed descriptions of each
procedure in the pipelines. Experiments and re-
sults analysis of our method are given in Section 3.
Finally, the conclusion is presented in Section 4.

2 System Overview

2.1 Pipeline

For our pipeline, we implemented three variants
which were named Primary, Contrastive-1, and
Contrastive-2. The Primary system has a pipeline
shown in Figure 1. For each input document, we
first generate a terminology table and then replace
all terminologies in the document with their corre-
sponding translations, ensuring the consistency of
terminology translation throughout the document.
Then the document is split into chapters using regu-
lar expressions. Each chapter is divided into 20-line
segments. Each segment is translated using GPT4o,
with MAPS and R-BM25 enhancing the translation
quality. The translated text will then proceed to
the post-correction stage, where the GPT4o model
will detect and resolve punctuation errors. For the
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Figure 1: The translation flowchart of our NovelTrans
system where post-correction is not included.

Contrastive-2 system, the MAPS uses a different
way to determine the quality of translation and will
be discussed in Section 2.2. The Contrastive-1 sys-
tem is the same as the primary system except for
the removal of the post-correction stage. As the
API service for GPT4o we used contains a content
filter, if a segment’s translation is filtered by the
content filter, the process will be handled using the
DeepSeek API.

2.2 Document-level Multi-Aspect Prompting
and Selection

Multi-Aspect Prompting and Selection (MAPS)
is a powerful prompting strategy that can help a
model understand the complicated relationships
in discourse-level corpus better. Inspired by
the MAPS, we chose to transfer MAPS to the
document-level (d-MAPS). Considering both re-
source limitations and characteristics of web nov-
els, we implemented d-MAPS as follows. We
first acquire explanations for colloquialisms and
the segment summary through the cooperation of
DeepSeek and GPT4o. Then, three different trans-
lations are produced by GPT4o: one with explana-
tions, one with the summary, and one without any
extra information. Afterward, the COMET-22-kiwi
reference-free translation quality evaluation model
(Rei et al., 2022) is applied to obtain the quality
score of each sentence in these three results. To
select the final translation result, we employ two
different strategies. In the Primary and Contrastive-

1 system, the final result is composed of sentences
that have the highest xCOMET score compared to
the corresponding sentences in other translations.
In Contrastive-2, the final translation is determined
by choosing the result with the highest average
xCOMET score.

2.3 LLM-generated Terminology Table
In the traditional novel translation pipeline, it is
crucial to set up a terminology table before the
translation to unify the translations of those rare
terms throughout the corpus. To generate the termi-
nology table, we use the DeepSeek API which has
better knowledge of Chinese cultural backgrounds
to retrieve proper nouns and then translate these
words into the target language considering their
context. With the terminology table acquired, we
then replace all the terms in the source corpus with
their corresponding translations to ensure consis-
tency. The consistency mentioned above refers to
the uniformity of special terminology translation.

2.4 Re-ranked BM25
Re-ranked BM25 (R-BM25; Agrawal et al. 2023)
is an in-context example retriever that can ensure
both sample quality and retrieving speed. After 100
sentences are retrieved by a normal BM25 retriever,
a score will be computed for each sentence using
the following formula, in which S and Q denote the
source and retrieved sentence’s n-grams separately.

Rn =

∑
ngram ∈S∩QCountmatched ( ngram )
∑

ngram ∈S CountS( ngram )
(1)

Score = exp

(
1

n

∑

n

log (Rn)

)
(2)

Then these sentences are re-ranked using these
scores to solve the problems that BM25 favors
rare words (Robertson and Zaragoza, 2009). To
form the sentence pool for the R-BM25 to search,
we utilize the GuoFeng Webnovel Corpus1 (Wang
et al., 2023) which has three subsets named TRAIN,
VALID1, and VALID2. By combining all three sub-
sets, we formed a large dataset and then filtered out
sentences with low xCOMET scores. During the
experiment, VALID2 is not included because our
valid set is sampled from VALID2. To generate the
in-context learning examples for a particular seg-
ment, we retrieve three samples for each sentence

1http://www2.statmt.org/wmt23/
literary-translation-task.html
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Zh-En Zh-Ru Zh-De
xCOMET d-BLEU xCOMET d-BLEU xCOMET d-BLEU

DeepSeek 76.58 18.03 - - - -
GPT3.5-Turbo-16k 77.33 17.92 - - - -
GPT4o baseline 78.46 18.85 83.74 26.51 80.69 38.33
NovelTrans (Ours) 79.14 18.69 84.42 26.44 80.85 39.78

Table 1: Experiment result compared with other models. Results listed here expect NovelTrans are all generated by
direct chapter-level translation. xCOMET scores in this and tables below are all computed using XCOMET-XL.

Method xCOMET BLEU d-BLEU

GPT4o baseline 78.46 20.17 18.85
NovelTrans 79.14 19.94 18.69

w/o ICL 78.85 19.67 18.63
w/o ICL & Terminology Table 78.71 20.60 18.63
w/o ICL, Terminology Table & d-MAPS 78.68 20.80 18.97

Table 2: Ablation study of our proposed pipeline. ICL examples are selected by R-BM25 score. Terminology table
represents the terminology table obtained by the cooperation of GPT4o and DeepSeek. The GPT4o baseline is
generated by directly translating the text at the chapter level.

in that segment using R-BM25 and then randomly
sample eight sentences to form the final in-context
learning example. It is tested that choosing eight
examples will result in the best performance boost.

2.5 Post-Correction of Translation

After reviewing the translation results, we observed
that punctuation errors, such as comma splices, ap-
peared at a high frequency due to the inappropriate
use of punctuation in the source corpus. To solve
this, we employed a post-processing method that
uses GPT4o to correct punctuation errors at the
sentence level. Given the sentence above and be-
low the target sentence, we asked the model to
check and resolve punctuation errors. This method
resulted in a better version of the target sentence.

3 Experiments

3.1 Experiments Setup

The datasets we used are GuoFeng Webnovel Cor-
pus V1 and V2. V1 contains a Chinese-English
parallel corpus while V2 contains Chinese-German
and Chinese-Russian nonparallel corpus. For the
Chinese-English direction, we performed experi-
ments on 10 chapters in VALID2 of the dataset.
These chapters are taken from different books to
avoid bias. For Chinese-German and Chinese-
Russian direction, we chose 4 chapters from dif-
ferent books and aligned them separately using

GPT4o API before experimenting. The GPT4o API
we used is provided by OpenAI. The DeepSeek API
is provided by DeepSeek Open Platform2. Since
the BLEU score faces the problem of inaccuracy in
evaluating Zero Pronoun Translation tasks (Zhan
et al., 2023; Xu et al., 2023), we focused more on
the COMET score. To be better aligned with the
human evaluation, we chose to use XCOMET-XL
(Guerreiro et al., 2023) to compute the xCOMET
score. BLEU and d-BLEU scores are all computed
by SacreBleu (Post, 2018). To compute d-BLEU,
we join all sentences in the document together and
treat them as a single sentence since it is the method
used to compute the d-BLEU score in the previous
year’s WMT literary translation task (Wang et al.,
2023).

3.2 Results

Table 1 shows the comparison between our sys-
tem and other online models in Chinese-English,
Chinese-German, and Chinese-Russian transla-
tion direction. The result shows that our system
achieves a higher xCOMET score in exchange for
the d-BLUE performance.

3.3 Ablation Study

We conduct ablation study on Chinese-English di-
rection. The result, provided in Table 2, shows that

2https://platform.deepseek.com/
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Source GPT4o Baseline NovelTrans

走，全部跟我走，去破坏对
方的 (rival)世界级传送阵.

Go, all of you come with me to
destroy the other side’s (Wrong)
world-class teleportation array.

Let’s go, everyone follows me
to destroy the enemy’s (Correct)
world-class teleportation array.

这四个字，是郑州城人类
最后的绝唱 (the last song
of mankind in the city of
Zhengzhou).

These four words were the last
human song of Zhengzhou (Bad
Phrase Translation).

These four words were the last
elegy of humanity in Zhengzhou
city (Correct).

Table 3: Case study where examples are taken from different pipeline methods.

Source Without Correction With Correction

“别紧张，自己人。” "Don’t be nervous, I’m one of
you."

"Don’t be nervous; I’m one of
you."

他们打开背后的涡旋引擎跳
了下去

They activated the vortex engine
on their backs, jumping down

They activated the vortex engine
on their backs before jumping
down.

Table 4: Comparison of translation results with or without post-translation correction.

Position Source Without Term Table With Term Table

Near the start of a chap-
ter

若非此刻在天渡船
上,可能已经大打出
手.

If they weren’t on the
Tian Du ship, he might
have already started a
fight.

If they weren’t on the
Heavenly Ferry, he
might have already
started a fight.

Near the end of the
same chapter

不多时,天渡船抵达对
岸.

Before long, the
Heaven Crossing Boat
(Inconsistent) reached
the other side.

Before long, the Heav-
enly Ferry (Consistent)
reached the opposite
bank.

Table 5: Comparison of translation results with or without LLM-generated terminology table.

removal of component in our system will result in
a performance drop on xCOMET.

3.4 Analysis

Table 3 shows two examples taken from our exper-
iment. In the first example, the direct translation
of GPT4o uses an ambiguous phrase, “other side”,
which can mean both an enemy and a geograph-
ically opposite side. However, with the context,
we can easily determine that the “other side” here
conveys only the meaning of “rival”. In the second
example, the Chinese word “绝唱” which means
the best art piece an artist has ever made is mis-
used as “last song before their death” in the source
sentence. Our system understood what the author
wanted to convey and chose a suitable word, “el-
egy”, rather than doing a literal translation. These
examples show that, compared with the baseline,
our method has a stronger understanding of the

context and Chinese cultural background. Table
4 demonstrates the effect of post-correction. The
GPT4o model can detect and correct punctuation
errors, especially comma splices that occur at high
frequency, in various ways. Table 5 shows an ex-
ample of inconsistency in the translation of special
terms and our method can greatly reduce this type
of problem.

4 Conclusion

We successfully deployed a discourse-level trans-
lation pipeline using online language models
and adapted several sentence-level techniques for
discourse-level translation. Our system achieved
a higher xCOMET score than direct translation
using GPT-4o. However, our research has some
limitations. Adapting MAPS to discourse-level
translation may disrupt long-term dependencies,
indicating a need for further investigation in this

983



area. Additionally, our method utilizes significantly
more tokens than direct translation, necessitating
further discussion on how to reduce token usage.
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Abstract

The rapid growth of deep learning has spurred
significant advancements across industries, par-
ticularly in machine translation through large
language models (LLMs). However, translat-
ing literary still presents challenges, including
cross-cultural nuances, complex language struc-
tures, metaphorical expressions, and cultural
differences. To address these issues, this study
utilizes the Llama and Phi models using both
LoRA and full-parameter techniques, along-
side a prompt-based translation system. Full-
parameter tuning of the Llama-3-Chinese-8B-
Instruct model was unsuccessful due to mem-
ory constraints. In terms of the WMT task,
the fully fine-tuned Phi 3 model was selected
for submission due to its more natural and flu-
ent translations. Nonetheless, results showed
that LoRA and the prompt-based system sig-
nificantly improved the Llama3 model’s perfor-
mance, surpassing other models in BLEU and
ROUGE evaluations.

1 Introduction

In recent years, the development of deep learn-
ing has spread across various industries (Ji et al.,
2024), and the impact of large language models
(LLMs) on these industries has been particularly
significant (Lyu et al., 2023). Despite the fact that
many challenges in machine translation (MT) have
been overcome (Wang et al., 2023), literary trans-
lation still encounters cross-cultural issues, includ-
ing such as processing complex languages, under-
standing metaphorical expressions, and address-
ing cultural differences (Lyu et al., 2020). Mean-
while, choosing the right model has become a key
topic in terms of neural network-based (NN-based)
MT (Xia, 2020), as models based on the source
language typically have advantages in handling
tasks regarding that language. Two main models
are involved in this research: Llama3-Chinese-8B-

Instruct1 and Phi-3-mini-128k-instruct-Chinese2.
The former fine-tuned the Llama3 model (Dubey
et al., 2024) with 5 million instruction data points
from the community, which significantly enhances
its performance in Chinese-language tasks with a
better ability of understanding Chinese contexts.
The latter is with less than half the size (3.8B pa-
rameters) of the Llama3 8B version, which can
surpass the performance of Llama3 with less com-
putational resources.

LoRA (Sundaram et al., 2019) is a lightweight
fine-tuning technique mainly used for efficiently
training large models. Compared to traditional
full-parameter fine-tuning, LoRA decomposes the
trained parameter matrices into low-rank forms, re-
sulting in a reducing number of parameters and
less computational cost of training. It is especially
appropriate for fine-tuning LLMs with constrained
resources while maintaining high performance. In
this research, we utilize Llama-Factory3 (Zheng
et al., 2024), an optimized framework designed
specifically for fine-tuning LLMs like Llama. It
supports various advanced training techniques, in-
cluding mixed precision training and gradient accu-
mulation, to improve training efficiency and reduce
computational resource requirements. By integrat-
ing lightweight methods like LoRA, it can achieve
efficient and stable model fine-tuning in resource-
constrained environments, helping to quick adjust-
ment and deployment of LLMs.

In general, our contributions can be summarized
as follows:

• We conduct a comprehensive experiment of
two major large language models, Llama-
3-Chinese-8B-Instruct and Phi-3-mini-128k-
instruct-Chinese, for the task of WMT2024

1https://huggingface.co/hfl/Llama-3-chinese-8
b-instruct

2https://huggingface.co/shareAI/Phi-3-mini-1
28k-instruct-Chinese

3https://github.com/hiyouga/Llama-Factory
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Literary Translation. Our results demonstrate
that both models perform excellently in han-
dling Chinese tasks, especially when facing
cross-cultural challenges in literary transla-
tion.

• We applied the LoRA technique to efficiently
fine-tune the Llama model, significantly re-
ducing computational costs while maintaining
high translation quality. We additionally op-
timized the fine-tuning process by leveraging
the Llama-Factory framework. Our experi-
mental results demonstrate that the combina-
tion of LoRA and Llama-Factory can effec-
tively support the adaptation and deployment
of large-scale models in resource-constrained
environments.

• We investigate the strengths and weaknesses
of each model, particularly in terms of fluency
and diversity (captured by ROUGE) as well
as accuracy (captured by BLEU).

2 Related Work

Large Language Models (LLMs) for Machine
Translation The application of Large Language
Models (LLMs) in machine translation (MT) has
seen significant advancements, particularly in gen-
eral domain translation (Wang et al., 2023). Pre-
trained models such as Llama and Phi3 have been
increasingly employed for tasks requiring seman-
tic understanding across languages. Studies have
highlighted how instruction-tuned LLMs can im-
prove translation quality by adapting to the syn-
tactic structures and cultural nuances of target lan-
guages. This is particularly relevant for our work as
we evaluate the Llama-3 Chinese model (Cui et al.,
2023), which is fine-tuned for literary translation.
Challenges in Literary Translation While MT
systems have progressed in many domains (Du
et al., 2024), the translation of literary texts remains
particularly challenging due to the need to capture
nuanced expressions, idioms, and stylistic elements.
Literary translation (Jones, 2019) is often consid-
ered the “last frontier” for MT. Prior work has ex-
plored how traditional sentence-based MT systems
struggle with long, complex passages found in lit-
erary texts (Aliguliyev, 2009). This is in line with
the focus of our experiments, which attempt to han-
dle these unique challenges using Llama-3 Chinese
models and fine-tuning techniques.
Fine-Tuning Techniques for MT In order to ad-

dress the computational limitations and language
understanding challenges associated with large
models, various fine-tuning approaches have been
proposed (Nicholas and Bhatia, 2023). Recent stud-
ies on Low-Rank Adaptation (LoRA) have demon-
strated that memory-efficient fine-tuning methods
allow for high-quality performance on GPUs with
limited memory. LoRA’s success in reducing mem-
ory consumption while maintaining model accu-
racy has been a key technique in our experiments,
particularly with the Llama-3 Chinese model.
Evaluation of Translation Quality The evaluation
of literary translations poses its own challenges, as
traditional metrics like BLEU may not fully cap-
ture the nuances of a good translation. (Pang et al.,
2024) Newer approaches, such as Monolingual Hu-
man Preference (MHP) and Bilingual LLM Pref-
erence (BLP), have been proposed to better assess
translation quality in a literary context. (Wu et al.,
2024) Our experiments draw on these evaluation
techniques, comparing model outputs through both
automated metrics and human preference assess-
ments to gauge the effectiveness of different fine-
tuning strategies.

3 Experiment

3.1 Evaluation Metrics

To achieve accurate evaluation of MT result (Chang
et al., 2024), two prevailing evaluation metrics
are utilized: BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). BLEU is an automated evalu-
ation metric based on n-gram matching, primar-
ily used to measure the similarity between ma-
chine translation outputs and reference translations.
By calculating the overlap of n-grams of differ-
ent lengths between the model’s output and the
reference translation, BLEU can reflect the accu-
racy of the translation to a certain extent. ROUGE
is a widely used automatic text evaluation met-
ric mainly used to compare the similarity between
generated text and reference text. ROUGE-L, in
particular, is based on the Longest Common Subse-
quence (LCS) (Bergroth et al., 2000) and measures
the similarity between generated text and reference
text in terms of length matching and word order.
Compared to BLEU, ROUGE captures both text
diversity and fluency.

3.2 Prompt Engineering

The prompt design focuses on the task of trans-
lating Guofeng (traditional Chinese-style) novels,
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aiming to ensure that the translated text faithfully
conveys the literary and cultural nuances of the
original, while maintaining translation efficiency
and accuracy. By establishing clear guidelines, the
prompt emphasizes fidelity to the original text, con-
cise output, and quality control to ensure that the
translation remains fluent while preserving the orig-
inal style and tone. The prompt is designed follow-
ing the CoT (Chain of Thoughts) framework (Wei
et al., 2022), with the specific approach outlined
below:

First, the prompt introduces automatic language
detection and translation features, enabling effi-
cient Chinese-to-English translation of Guofeng
novels to enhance processing speed and coherence.
Secondly, fidelity to the original is critical, requir-
ing the preservation of the original tone, style, and
expression. Special attention is given to details
such as pronouns, with a focus on word-for-word
translation to avoid distorting the literary essence
due to cultural or linguistic differences. The prompt
further emphasizes objectivity in translation, avoid-
ing any omissions or commentary, ensuring the
completeness and authenticity of the translated text.

Additionally, the translated text must be concise,
with no added annotations, ensuring that the clas-
sical charm and cultural context of the novel are
naturally conveyed, enhancing the reader’s experi-
ence. To ensure quality, the prompt requires thor-
ough review and correction of the translated output,
avoiding mistranslations or omissions, and ensur-
ing that the text aligns with the target language’s flu-
ency and conventions. The prompt is task-oriented,
providing only the final, revised translation, avoid-
ing irrelevant information or excessive explanation,
which improves processing efficiency and suits
large-scale Guofeng novel translation projects.

3.3 Experiment 1: Training with
Llama-3-Chinese-8B-Instruct

An initial attempt was made to fully train the Llama-
3-Chinese-8B-Instruct model on the dataset. How-
ever, the process failed due to insufficient memory.
The model’s large size and the memory require-
ments exceeded the capabilities of the available
hardware, necessitating use a smaller model or shift
to a more memory-efficient fine-tuning method.

3.4 Experiment 2: Fine-Tuning Llama3 8B
Model with LoRA

Given the memory constraints, the Llama3 8B
model was fine-tuned using the LoRA technique

on a dataset of 10,000 samples. The fine-tuning
was performed with several key hyperparameters to
optimize model performance and manage computa-
tional resources effectively. The learning rate was
set to 1e-5 (Jin et al., 2023), using a cosine learn-
ing rate scheduler to gradually reduce the learning
rate and improve training efficiency (Kim et al.,
2021). A per-device train batch size of 2 was cho-
sen to balance between memory usage and model
update frequency, with gradient accumulation over
16 steps to simulate a larger batch size without
requiring additional GPU memory. The training
process was conducted over 10 epochs to ensure
sufficient learning from the data, utilizing a maxi-
mum of 10,000 samples. Additionally, the model
was trained with mixed precision (fp16) (Le Gallo
et al., 2018) to reduce memory usage and acceler-
ate computation. The evaluation strategy was set
to evaluate the model performance at regular steps
to monitor its progress closely. The results of this
fine-tuning experiment are summarized in Table 1.

Table 1: Results of Fine-Tuning Llama3 8B Model with
LoRA

Metric Value Description

BLEU-4 55.28 A metric which evaluates
the quality of a candidate
by computing the n-gram
(n = 4) precision with
references.

ROUGE-1 60.18 A variation of ROUGE
where 1 means unigrams.

ROUGE-2 37.40 A variation of ROUGE
where 2 means bigrams.

ROUGE-L 55.91 A variation of ROUGE
where L means longest
common subsequences
(LCS).

Runtime 3m8s Total runtime
Sample/s 1.594 Samples processed per

second
Step/s 1.594 Training steps per second

Analysis: The results from this experiment were
quite promising, with high BLEU and ROUGE
scores. The LoRA technique allowed the model to
be fine-tuned without running into memory issues,
demonstrating that it is an effective method for
working with large models on limited hardware.
The high ROUGE scores suggest that the model
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was able to generate translations that were both
accurate and fluent.

3.5 Experiment 3: Full Fine-Tuning with Phi
Chinese Model

The Phi Chinese model was fully fine-tuned on a
smaller dataset of 2,000 samples.

Table 2: Results of Full Fine-Tuning with Phi Chinese
Model

Metric Value

BLEU-4 50.93
ROUGE-1 51.90
ROUGE-2 27.19
ROUGE-L 46.41

Runtime 16m34s
Sample/s 0.503

Step/s 0.503

Analysis: The performance of the Phi Chinese
model, while adequate, was noticeably lower than
that of the Llama3 8B model fine-tuned with LoRA.
The lower BLEU and ROUGE scores could be
attributed to the smaller model size and the limited
dataset, which may not have provided enough data
for the model to generalize well.

3.6 Experiment 4: Full Fine-Tuning with Phi3
Chinese 3.5B Model

The Phi3 Chinese 3.5B model was fully fine-tuned
on a dataset of 1,500,000 samples. The fine-tuning
process was carefully configured with a set of key
hyperparameters to optimize the model’s perfor-
mance while efficiently managing computational
resources. We set the learning rate to 1e-5, which
is low enough to ensure stable training and prevent
the model from overshooting optimal weights but
sufficient to allow for meaningful updates to the
model parameters. A batch size of 128 was cho-
sen to strike a balance between training speed and
memory constraints. To further accommodate large
batch sizes, a gradient accumulation step of 16 was
used, effectively increasing the batch size without
exceeding GPU memory limits. The model was
trained using mixed-precision floating-point, allow-
ing for faster computation and reduced memory
usage, which is crucial when dealing with large-
scale models. We set the number of epochs to 3.0 to
provide sufficient training cycles while minimizing
the risk of overfitting. A temperature parameter of

Figure 1: Loss Over Time for the Phi-3-mini-128k-
instruct-Chinese (3.8B) model.

0.4 was employed during the generation phase to
control the randomness and diversity of the model’s
output, balancing between creativity and coherence.
The results of this fine-tuning experiment are sum-
marized in Table 3.

Table 3: Results of Full Fine-Tuning with Phi3 Chinese
3.5B Model

Metric Value

BLEU-4 49.14
ROUGE-1 49.80
ROUGE-2 25.09
ROUGE-L 45.24

Runtime 2m36s
Sample/s 1.278

Step/s 1.278

Training and Evaluation Loss: To evaluate the
fine-tuning process of the Phi-3-mini-128k-instruct-
Chinese model, we tracked the training and evalua-
tion loss over time, as illustrated in Figure 1. The
model, which consists of 3.8 billion parameters,
was fine-tuned on a diverse dataset using LoRA
and full-parameter tuning techniques. Both the
training and evaluation losses were monitored to
assess model convergence and stability during the
fine-tuning process.

Loss Over Time: As shown in Figure 1, the
initial training loss starts relatively high, around
1.9, and decreases sharply during the early stages
of training. By the end of the first epoch, the
loss drops to approximately 1.3, indicating that
the model quickly learns to generalize to the under-
lying patterns in the training data. The evaluation
loss follows a similar trend, closely mirroring the
training loss, which suggests that the model gener-
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alizes well without overfitting during the training
process. By the second epoch, the loss stabilizes
around 1.2 for both training and evaluation, demon-
strating the model’s ability to maintain consistent
performance throughout the training process. The
convergence of the loss indicates that the model
is reaching its optimal capacity under the current
fine-tuning setup.

Observations and Insights: The relatively close
alignment of training and evaluation losses sug-
gests that the fine-tuning process successfully miti-
gated the risk of overfitting, which is often a con-
cern when dealing with large models and smaller,
task-specific datasets. Moreover, the overall re-
duction in loss suggests that the Phi-3-mini-128k-
instruct-Chinese model was able to effectively cap-
ture the nuances of the Chinese language and the
intricate nature of literary translation tasks, as in-
tended in this study.

4 Conclusion and Future Work

In this paper, we conduct experiments to pro-
vide valuable insights into the performance of dif-
ferent models and fine-tuning techniques for the
WMT2024 Literary Translation Task. The Llama3
8B model, when fine-tuned using the LoRA tech-
nique, demonstrated the best performance, high-
lighting the importance of memory-efficient train-
ing methods in dealing with large models on lim-
ited hardware. The results from the Phi and Phi3
models suggest that model size alone may not guar-
antee the better performance, and the choices of
fine-tuning method and dataset size are critical fac-
tors in achieving high-quality translations. In the
future, we plan to investigate the performance of
even larger models (e.g., Llama3 70B) to explore
the trade-offs between model size, computational
resources, and translation quality. In addition, since
the metrics we used may correlate negatively with
human judgements (Ji et al., 2022), developing
task-specific evaluation metrics would be valuable
for the accurate assessment of model performance.
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Abstract
This paper describes Unbabel+IT’s submission
to the Chat Shared Task held at the Workshop
of Machine Translation 2024. The task fo-
cuses on translating customer support chats
between agents and customers communicat-
ing in different languages. We present two
strategies for adapting state-of-the-art language
models to better utilize contextual information
when translating such conversations. Our train-
ing strategy involves finetuning the model on
chat datasets with context-augmented instruc-
tions, resulting in a specialized model, TOW-
ERCHAT. For inference, we propose a novel
quality-aware decoding approach that leverages
a context-aware metric, CONTEXTCOMET, to
select the optimal translation from a pool of
candidates. We evaluate our proposed approach
on the official shared task datasets for ten lan-
guage pairs, showing that our submission con-
sistently outperforms baselines on all and com-
peting systems on 8 out of 10 language pairs
across multiple automated metrics. Remark-
ably, TOWERCHAT outperforms our contrastive
submission based on the much larger TOWER-
V2-70B model while being 10× smaller. Ac-
cording to human evaluation, our system out-
performs all other systems and baselines across
all language pairs. These results underscore the
importance of context-aware training and infer-
ence in handling complex bilingual dialogues.

1 Introduction

The focus of this year’s chat translation (Chat MT)
shared task is the translation of conversations in
customer service applications. This task differs
from classical MT in that the interactions are bilin-
gual and the texts are often more dynamic, con-
textualized, and informal than the structured con-
tent typically found in news or Wikipedia articles.
In such scenarios, leveraging conversation context
could potentially help avoid cases of lexical incon-
sistency and incoherence (Läubli et al., 2018; Toral

*Equal contribution.

Gostaria de ajuda sobre o dme do 
PRS-ORG

Gostaria de receber os jogadores de 
volta ou receber os que faltam, no 
caso capitaes do PRS-ORG

May I know what you referring 
with dme?

I am sorry the term is not clear to 
me.

Desafio de montagem de 
elencos

Casting Challenge
I am sorry, I am not familiar 
with that term.

Translation without context

Squad Building Challenge
Thank you for the 
clarification.

Translation with context

(identical to the reference)

I would like to retrieve the players 
or receive the missing ones in the 
case of PRS-ORG captains.

I would like help with PRS-ORG 
dme

Customer (Brazilian Portuguese)

Agent (English)

Figure 1: A WMT24 sample conversation (some turns
omitted) with reference English translations. With-
out context, TOWERCHAT mistranslates “montagem de
elencos” to “casting”. With context, it correctly trans-
lates the source, understanding the customer is talking
about a squad building challenge (“dme”).

et al., 2018). However, previous editions of the
Chat MT shared task have shown that standard MT
models are still incapable of doing so (Farajian
et al., 2020; Farinha et al., 2022).

Large Language Models (LLMs) present a
promising avenue to address this issue. Not only
are they becoming the state-of-the-art solution
for multilingual machine translation (Zhang et al.,
2023; Wei et al., 2023; Alves et al., 2023; Reinauer
et al., 2023; Zhu et al., 2024), but they are also
known to handle context adeptly (Karpinska and
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Iyyer, 2023; Wang et al., 2023; He et al., 2024).
Despite their potential, the application of LLMs in
understanding and translating bilingual chat conver-
sations remains underexplored. We aim to bridge
this gap by investigating how translation LLMs
can be adapted for the Chat MT task and how they
can effectively leverage conversational context to
produce better translations.

Using TOWER LLM (Alves et al., 2024), a strong
LLM specialized for MT and related tasks, we show
that an LLM not fine-tuned for the chat domain
struggles to leverage context for disambiguation,
often resulting in translations that are worse than
those produced without context. We thus propose
two solutions to improve context usage for transla-
tion LLMs. First, we build a translation model tai-
lored for Chat MT – TOWERCHAT – finetuned on
a carefully constructed context-augmented dataset.
Second, to further improve the usage of contextual
information during inference, we take a novel ap-
proach of performing quality-aware decoding (Fer-
nandes et al., 2022, QAD) with a context-aware
MT evaluation metric, CONTEXTCOMET (Agrawal
et al., 2024). QAD approaches select one best hy-
pothesis from a pool of candidates using an MT
metric, and have been shown to improve translation
quality (Freitag et al., 2022; Fernandes et al., 2022;
Farinhas et al., 2023).

This serves as our primary submission to the
WMT24 Chat MT shared task, along with two con-
trastive ones – TOWERCHAT without QAD, and
TOWER-V2-70B. The TOWER-V2-70B model is
the strongest version of TOWER, which was devel-
oped for the General MT shared task.1 The trans-
lations obtained from our approach consistently
achieve the best scores across all language pairs
tested, as measured by both automatic MT metrics
(neural and lexical) and lexical cohesion metrics
(MUDA accuracy) and human evaluation, beating
strong baselines that disregard the context of con-
versations. Furthermore, TOWERCHAT without
QAD maintains general translation capabilities and
achieves better or comparable quality to TOWER-
V2-70B, outlining the importance of in-domain
adaptation of translation LLMs on Chat MT data.

2 Chat Translation Shared Task: Dataset
and Challenges

This year’s chat MT dataset includes bilingual on-
line customer service chats between an English-

1Private model, but since we developed it, we have access.

speaking agent and clients who speak Portuguese,
French, Italian, Dutch, or Korean. These conversa-
tions are often unplanned, informal, and nonstan-
dard, contrasting with the well-formed text of most
other translation domains. An example conversa-
tion is shown in Figure 1.

We present the general statistics from this year’s
shared task datasets in Table 1, including (i) the
number of instances in the dataset for each lan-
guage pair; (ii) the average character length of the
source segments; (iii) the average number of seg-
ments in a conversation and (iv) the percentage of
segments tagged with MUDA (Fernandes et al.,
2023), an automatic tagger for identifying tokens
belonging to certain discourse classes (lexical co-
hesion, verb forms, pronouns, formality) of poten-
tially ambiguous translations. While the develop-
ment and test sets exhibit a similar distribution in
terms of segment length and count, they differ sig-
nificantly from the training dataset. Furthermore,
up to 30% en↔fr instances are tagged as requiring
disambiguation according to MUDA, highlighting
the complexity and the need for contextual infor-
mation to generate high-quality translations.2

Next, we describe the process of building TOW-
ERCHAT, which was conditioned by the aforemen-
tioned inherent complexities of Chat MT.

3 Adapting TOWER for Chat Translation

LLMs have shown the potential to use contextual
information to perform many NLP tasks (Karpin-
ska and Iyyer, 2023). In this work, we investigate
whether providing contextual information can im-
prove translation quality for bilingual chats using
strong translation LLMs like TOWERINSTRUCT.
Contrary to our expectations, our preliminary re-
sults indicate that incorporating context into the
prompt instruction diminishes overall translation
quality. We believe this is due to TOWERIN-
STRUCT’s training data lacking chat-specific MT
examples, which results in the model’s unfamil-
iarity with the context format and the inability to
adequately use context (Section 5). To mitigate this
and improve the usage of contextual information,
we propose two strategies – one for training and
one for inference.

2Note that MUDA only tags formality for Korean and does
not detect instances of semantic ambiguity. The dataset likely
features many more complex context phenomena.
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Language Pair # Instances Avg. Source Length Avg. # Segments per Conversation % MuDA tagged
Train Dev Test Train Dev Test Train Dev Test Dev Test

en↔de 17805 2569 2041 47.40 52.26 53.09 36.12 31.33 30.46 15.65 15.78
en↔fr 15027 3007 2091 41.84 54.90 56.23 56.92 33.41 32.17 29.43 29.65
en↔pt-br 15092 2550 2040 42.72 46.46 46.49 34.69 26.56 27.95 13.02 12.99
en↔ko 16122 1935 1982 39.86 47.67 46.90 38.11 50.92 47.19 0.41 0.50
en↔nl 15463 2549 2015 45.40 52.31 54.31 25.99 35.40 34.74 22.01 23.13

Table 1: Statistics for each language pair and split of the data for the WMT24 Chat MT shared task.

Context: {context}
Translate the following {source_lang} source text to
{target_lang}, given the context.
{source_lang}: {source_seg}
{target_lang}: {target_seg}

Figure 2: Instructions with context for Chat MT. Parts
in purple are only included when a context is available.

3.1 Finetuning on Context-augmented Chats

For a conversation C of length L with segments
{(xt, yt, ct)}Li=1, where xt is a text generated by
the agent or the customer, yt is its reference trans-
lation in the target language, and ct is the preced-
ing bilingual context, we train the model to mini-
mize the cross-entropy loss using the input prompt
shown in Figure 2:

L = − logP (yt|xt, ct). (1)

The context ct includes all previous turns of the
conversation, capturing important discourse-level
information such as pronoun references, formal-
ity, and other pragmatic elements that influence
the translation. For the first turn, no context is
available, so the prompt reduces to the standard
format used for zero-shot MT, as described in
Alves et al. (2024). We train TOWERCHAT by
finetuning TOWERBASE 7B on the concatenation
of TOWERBLOCKS and the entire training dataset
of the shared task, using context-aware prompts.
This endows the model with the capacity to bet-
ter understand and leverage conversational context,
enabling it to generate high-quality translations.

3.2 QAD with Context-aware Metrics

Decoding strategies informed by translation qual-
ity metrics such as Minimum Bayes Risk De-
coding (MBR) and Tuned Reranking (TRR) have
been shown to consistently improve output qual-
ity over greedy decoding (Fernandes et al., 2022;
Freitag et al., 2022; Nowakowski et al., 2022; Far-
inhas et al., 2023). In QAD, the goal is to find

a translation among a set of candidates that max-
imizes the expected utility function, often mea-
sured using an MT metric like reference-based
COMET. Recently, Agrawal et al. (2024) showed
that context-aware MT metrics correlate better with
human judgments compared to their non-contextual
counterparts, especially when evaluating out-of-
English chat translations. The context-aware ver-
sions of COMET (Vernikos et al., 2022; Agrawal
et al., 2024) compute quality scores for a source-
reference-hypothesis tuple, (x, y, ŷ), using the rep-
resentations extracted from a context-augmented
input, ([c;x], [c; y], [c; ŷ]).

As such, we use CONTEXTCOMET for MBR
decoding in our submission. For a given source
text x, the previous bilingual context, c, and a set
of candidate translations sampled from the model
Y , the utility of each candidate ŷ ∈ Y , is given by

u =
1

|Y|
∑

y∈Y
CONTEXTCOMET([c;x], [c; y], [c; ŷ]).

(2)
The best translation is selected using:

ymbr := arg maxŷ∈Y [u(ŷ,Y)]. (3)

This enables the model to select a translation
amongst alternative hypotheses, potentially lead-
ing to more accurate and contextually appropriate
outputs. QAD with TOWERCHAT serves as our
primary submission to the Chat Shared Task.

4 Experimental Configurations

Baselines. We report the shared task’s official
baseline: NLLB-3.3B with beam search decoding
(beam width: 4). Additionally, we report greedy
decoding results with TOWERINSTRUCT-7B, and
TOWER-V2-70B, the strongest TOWER model. The
former serves as a direct baseline for our method,
while the latter is a state-of-the-art baseline for MT.

TOWERCHAT. We report greedy and QAD re-
sults with the TOWERCHAT-7B model. For
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EN-XX XX-EN
MODEL

CHRF↑ COMET↑ METRICX↓ CONTEXT-QE↑ CHRF↑ COMET↑ METRICX↓ CONTEXT-QE↑
Baselines
NLLB 59.78 9 88.61 8 1.04 6 4.95 6 70.76 9 88.16 7 0.74 5 5.06 6
TOWERINSTRUCT 7B (0-shot)

w/o context 64.95 8 91.69 6 0.38 3 16.29 4 76.04 6 92.17 5 0.56 4 15.73 4
w/ context 63.39 9 91.09 7 0.49 5 14.53 5 74.32 8 91.36 6 0.60 4 14.67 4

TOWERINSTRUCT 7B (5-shot)
w/o context 65.20 8 91.75 6 0.39 3 16.62 3 75.84 7 92.22 5 0.54 4 15.97 3
w/ context 63.62 9 91.03 7 0.50 5 15.02 4 73.52 9 91.64 6 0.59 4 14.67 4

TOWER-V2 70B (5-shot)
w/o context 68.26 5 92.68 4 0.30 2 18.24 2 77.17 4 92.69 3 0.47 2 17.71 1
w/ context 68.26 6 92.50 4 0.30 2 17.53 2 76.03 6 92.37 4 0.46 2 17.28 2

TOWERCHAT
w/o context 71.68 5 93.01 4 0.32 3 16.77 3 77.97 3 92.72 4 0.51 3 16.40 3
w/ context 75.93 3 93.63 3 0.32 3 16.61 3 78.87 2 93.01 3 0.47 2 16.15 3

+ QAD (COMET) 76.36 2 94.18 1 0.25 2 18.78 1 78.92 2 93.39 1 0.44 1 18.18 1
+ QAD (CONTEXTCOMET) 76.56 1 94.05 2 0.26 2 18.68 1 78.92 2 93.24 2 0.44 1 18.24 1

Table 2: Main Results on Official Test Set: QAD with TOWERCHAT outperforms all baselines across the board.
Models with statistically significant performance improvements are grouped in quality clusters

QAD, we perform MBR with COMET or CON-
TEXTCOMET on 100 candidates obtained via ep-
silon sampling with ϵ = 0.02 (Hewitt et al., 2022).

Instruction settings. To assess whether systems
can properly leverage conversational context, we
prompt the LLM-based MT with two instruction
formats (see Figure 2): 1) w/o context, where the
model is prompted without any conversational con-
text (without the purple highlighted text). 2) w/
context, where the entire previous bilingual con-
versation is provided as the context in the prompt.3

Evaluation. We report the final results on the
shared task’s test set on all ten language pairs. As
exemplified in Figure 1, ambiguous contextual phe-
nomena often arise in Chat MT that require nu-
anced evaluation. As such, we leverage three types
of assessments: 1) automatic metrics for measuring
overall translation quality – two neural and one lexi-
cal – COMET-22 (Rei et al., 2022), CHRF (Popović,
2015) and METRICX-XL (Juraska et al., 2023); 2)
a reference-free neural metric that uses context for
quality assessment, CONTEXT-QE (Agrawal et al.,
2024); 3) F1-score on MUDA tags for measuring
whether models correctly resolve lexical ambigu-
ities (Fernandes et al., 2023). Considering MET-
RICX, CHRF, and MUDA is crucial in our case, as
COMET may favor the QAD strategies we use.

On Tables 2 and 3 we report performance clus-
ters based on statistically significant performance

3Note that {target_seg} is unavailable during inference
and the model is asked to perform prompt completion.

gaps at a 95% confidence threshold.4 We create per-
language groups for systems with similar perfor-
mance, following Freitag et al. (2023), and obtain
system-level rankings using a normalized Borda
count (Colombo et al., 2022), which is defined as
an average of the obtained clusters. Note that a
first cluster will not exist if no model significantly
outperforms all others on a majority of languages.

5 Main Results

Table 2 presents the average results for EN→XX
and XX→EN translation directions. TOWERCHAT

with QAD outperforms all baselines across all set-
tings on automatic metrics and human evaluation.

TOWERCHAT leverages context more adeptly
than TOWERINSTRUCT. Our primary goal in
this task was to create a model that can effectively
leverage context to generate high-quality transla-
tions with LLMs. As shown in Table 2, TOWER-
CHAT consistently outperforms TOWERINSTRUCT

across all settings, language pairs and evaluation
metrics. Furthermore, TOWERCHAT shows an aver-
age improvement of 4 CHRF points for en-xx when
using context (w/ context), compared to a context-
agnostic prompt (w/o context).5 This trend also
holds when evaluating translation quality using the
primary metric, COMET, for 8 out of 10 language

4For segment-level metrics, such as COMET, we perform
significance testing at the segment level. For CHRF, we substi-
tute segment-level scores with corpus-level scores calculated
over 100 random samples, each with a size equal to 50% of
the total number of segments.

5The improvement is statistically significant with a 92.1%
accuracy (Kocmi et al., 2024).
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EN-XX XX-EN
MODEL

DE FR PT KO NL DE FR PT KO NL

Baselines
NLLB 90.56 7 91.06 6 86.33 9 87.26 9 87.86 8 89.03 6 89.18 6 86.1 8 88.05 9 88.45 8
TOWERINSTRUCT 7B (0-shot)

w/o context 91.71 5 91.89 5 91.9 7 91.64 5 91.3 7 92.08 4 92.78 2 90.43 7 93.13 6 92.45 5
w/ context 91.48 6 91.08 6 90.79 8 91.13 7 91.0 7 91.33 5 91.89 5 90.63 6 91.88 7 91.08 7

TOWERINSTRUCT 7B (5-shot)
w/o context 91.75 5 91.75 5 92.32 6 91.41 6 91.55 6 92.06 4 92.28 4 90.63 6 93.55 5 92.6 5
w/ context 91.41 6 90.88 6 90.85 8 90.45 8 91.58 6 92.06 4 92.14 5 90.82 5 90.89 8 92.29 6

TOWER-V2 70B (5-shot)
w/o context 92.81 2 92.21 4 93.06 5 92.55 4 92.76 5 92.68 1 93.23 1 91.46 4 93.08 6 92.98 3
w/ context 92.61 3 92.08 4 93.03 5 91.76 5 93.02 4 92.07 4 92.44 4 91.42 4 93.05 6 92.89 3

TOWERCHAT
w/o context 92.36 4 92.26 4 93.89 4 93.73 3 92.81 4 92.28 3 92.79 2 91.06 5 94.69 4 92.78 4
w/ context 92.74 2 92.64 3 94.53 3 94.16 2 94.09 3 92.24 3 92.67 3 92.09 3 94.98 3 93.06 3

said + QAD (COMET) 93.28 1 93.13 1 94.91 1 95.01 1 94.54 1 92.58 1 92.95 2 92.63 1 95.32 1 93.49 1
+ QAD (CONTEXTCOMET) 93.22 1 92.96 2 94.76 2 94.96 1 94.36 2 92.48 2 92.71 3 92.46 1 95.16 2 93.38 2

Official Rank (COMET) 2nd 1st 1st 1st 1st 2nd 1st 1st 1st 1st

Official Rank (Human) 1st 1st 1st 1st 1st 1st 1st 1st 1st 1st

Table 3: Main Results by COMET on Official Test Set by Language Pair. Models with statistically significant
performance improvements are grouped in quality clusters.

Model Lexical Cohesion Verb Form Pronouns Formality

NLLB 72.43 52.97 72.31 56.44
TOWERCHAT 85.13 47.80 79.71 81.93
QAD (COMET) 85.94 61.22 80.56 82.46
QAD (CONTEXTCOMET) 86.21 64.38 79.28 83.16

Table 4: MuDA F1 results. On average, QAD with
CONTEXTCOMET has the best F1 score.

pairs as shown in Table 3. We attribute this to the in-
clusion of context-augmented Chat MT instruction
dataset in TOWERCHAT’s training, highlighting the
effectiveness of in-domain fine-tuning.

QAD results in consistent gains over greedy de-
coding, surpassing 70B models. The highest-
quality translations according to all metrics con-
sidered are obtained after performing QAD with
COMET or CONTEXTCOMET on top of TOWER-
CHAT-7B, even outperforming the much larger
TOWER-V2-70B, which uses few-shot examples.
Moreover, QAD closes the gap in quality as mea-
sured by METRICX and CONTEXT-QE between
TOWERCHAT-7B (greedy) and TOWER-V2-70B
models, demonstrating that advanced inference
techniques can effectively make smaller models
competitive against much larger ones.

Context-aware QAD improves MUDA F1 over
Context-agnostic QAD. While all neural and
lexical metrics indicate that QAD with CON-
TEXTCOMET and COMET perform comparably,
these metrics may not fully capture nuanced dif-

Models EN→XX xx→en

TOWERINSTRUCT-7B 84.28 82.77
TOWERCHAT-7B 83.95 82.54

Table 5: COMET scores for TOWERINSTRUCT and
TOWERCHAT on the WMT23 test set.

ferences in translation quality. To address this, we
evaluate MUDA F1 accuracy scores for a subset
of models in Table 4. The results show that QAD
with CONTEXTCOMET consistently outperforms
QAD with COMET across all dimensions, except
pronouns. Our qualitative analysis suggests that
the pronoun accuracy might have been lower due
to potential paraphrasing. Coupled with the previ-
ous results, these findings strongly motivate further
exploration of QAD with context-aware metrics.

Finetuning on Chat data does not degrade gen-
eral translation capabilities. To ensure that
adding chat MT dataset in the mix does not im-
pact the generic translation capabilities of LLMs,
we report COMET on the standard WMT23 bench-
mark (Kocmi et al., 2023) averaged across EN→XX

and XX→EN directions for TOWERINSTRUCT and
TOWERCHAT in Table 5. TOWERCHAT suffers
only minor degradation (−0.3) relative to TOW-
ERINSTRUCT, validating the viability and effective-
ness of our finetuning approach.
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EN-DE EN-FR EN-NL EN-PT EN-KOSYSTEM
T (XX) T (EN) C T (XX) T (EN) C T (XX) T (EN) C T (XX) T (EN) C T (XX) T (EN) C

Baseline 78.05 87.57 74.50 80.59 77.82 67.81 82.66 90.98 53.07 61.27 73.98 56.37 79.13 90.47 85.63
Unbabel-IT 89.42 92.74 84.22 90.24 90.00 79.62 98.16 97.40 92.22 82.04 82.37 78.00 93.39 96.31 93.21

Table 6: Human Evaluation results on the official test set. T and C represent aggregated turn-level and conversation-
level direct-assessment scores respectively.

6 Human Evaluation

TOWERCHAT is the winner of the WMT24 Chat
MT Shared Task across all language pairs accord-
ing to human evaluation. Table 6 shows that our
model significantly surpasses the baseline on both
turn-level (T) and conversation-level (C) evalua-
tions in all language directions. Notably, it reaches
an average direct assessment score of > 90 at both
turn-level and conversation-level for EN-FR, EN-
NL, and EN-KO translation pairs. The victory on
conversation-level evaluation outlines the superior
capacity of TOWERCHAT to incorporate bilingual
conversational context when translating.

That said, there is a visible drop between turn-
level and conversation-level scores, leaving room
for improvement on how well TOWERCHAT lever-
ages context for translation. In future work, we
wish to explore thoroughly under what circum-
stances context is useful to produce a better transla-
tion, and to what extent TOWERCHAT can leverage
it appropriately.

7 Conclusion

In this work, we present two strategies for im-
proving context usage for bilingual chat translation
using LLMs. Our training strategy involves fine-
tuning LLMs on context-augmented instructions
resulting in higher-quality translations during infer-
ence when using bilingual context. Second, we pro-
pose a novel quality-aware decoding strategy with a
context-aware metric (CONTEXTCOMET) that sig-
nificantly improves translation quality across the
board, surpassing a state-of-the-art 70B translation
model and all other baselines. Our findings show
successful usage of contextual information as mea-
sured by MUDA in resolving ambiguities for the
highly contextual domain of chat translation. Cru-
cially, our system finished first in human evaluation
across all the shared task’s language pairs.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Raphael Reinauer, Patrick Simianer, Kaden Uhlig, Jo-
hannes E. M. Mosig, and Joern Wuebker. 2023. Neu-
ral machine translation models can learn to be few-
shot learners. Preprint, arXiv:2309.08590.

Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way.
2018. Attaining the unattainable? reassessing claims
of human parity in neural machine translation. arXiv
preprint arXiv:1808.10432.

Giorgos Vernikos, Brian Thompson, Prashant Mathur,
and Marcello Federico. 2022. Embarrassingly easy
document-level MT metrics: How to convert any

999

https://doi.org/10.18653/v1/2023.emnlp-main.733
https://doi.org/10.18653/v1/2023.emnlp-main.733
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2023.acl-long.36
https://doi.org/10.18653/v1/2023.acl-long.36
https://doi.org/10.18653/v1/2023.acl-long.36
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://aclanthology.org/2023.wmt-1.51
https://aclanthology.org/2023.wmt-1.51
https://aclanthology.org/2023.wmt-1.51
https://doi.org/10.1162/tacl_a_00642
https://doi.org/10.1162/tacl_a_00642
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.41
https://doi.org/10.18653/v1/2023.wmt-1.41
https://doi.org/10.18653/v1/2023.wmt-1.41
https://doi.org/10.18653/v1/2023.wmt-1.41
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://aclanthology.org/2022.wmt-1.26
https://aclanthology.org/2022.wmt-1.26
https://aclanthology.org/2022.wmt-1.26
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://arxiv.org/abs/2309.08590
https://arxiv.org/abs/2309.08590
https://arxiv.org/abs/2309.08590
https://aclanthology.org/2022.wmt-1.6
https://aclanthology.org/2022.wmt-1.6


pretrained metric into a document-level metric. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 118–128, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang,
Dian Yu, Shuming Shi, and Zhaopeng Tu. 2023.
Document-level machine translation with large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 16646–16661, Singapore. Association
for Computational Linguistics.

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei
Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei Cao,
Binbin Xie, Tianxiang Hu, Shangjie Li, Binyuan Hui,
Bowen Yu, Dayiheng Liu, Baosong Yang, Fei Huang,
and Jun Xie. 2023. Polylm: An open source polyglot
large language model. Preprint, arXiv:2307.06018.

Shaolei Zhang, Qingkai Fang, Zhuocheng Zhang, Zhen-
grui Ma, Yan Zhou, Langlin Huang, Mengyu Bu,
Shangtong Gui, Yunji Chen, Xilin Chen, and Yang
Feng. 2023. Bayling: Bridging cross-lingual align-
ment and instruction following through interactive
translation for large language models. Preprint,
arXiv:2306.10968.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual machine translation with
large language models: Empirical results and anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 2765–2781,
Mexico City, Mexico. Association for Computational
Linguistics.

1000

https://aclanthology.org/2022.wmt-1.6
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://doi.org/10.18653/v1/2023.emnlp-main.1036
https://arxiv.org/abs/2307.06018
https://arxiv.org/abs/2307.06018
https://arxiv.org/abs/2306.10968
https://arxiv.org/abs/2306.10968
https://arxiv.org/abs/2306.10968
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176


A Validation Results

EN-XX XX-ENMODEL
CHRF COMET CHRF COMET

Baselines
NLLB 3.3B 58.41 86.97 65.39 85.51
TOWERINSTRUCT 7B (0-shot)

w/o context 63.69 90.69 71.57 90.62
w/ context 63.51 90.53 70.16 89.84

TOWER-V2 70B (5-shot)
w/o context 67.08 91.95 73.41 91.41
w/ context 66.85 91.69 71.87 90.94

TOWERCHAT
w/o context 70.63 92.21 73.42 91.13
w/ context 74.17 92.76 73.81 91.35

+ QAD (COMET) 74.49 93.49 73.93 91.85
+ QAD (CONTEXTCOMET) 74.54 93.31 74.15 91.70

Table 7: Results on the Validation Set: TOWERCHAT with QAD outperforms all baselines.

B Test Results by Language Pair

EN-XX XX-EN
MODEL

DE FR PT KO NL DE FR PT KO NL

Baselines
NLLB 70.22 76.03 58.60 34.50 59.55 71.79 76.37 67.13 69.87 68.62
TOWERINSTRUCT 7B (0-shot)

w/o context 71.81 74.59 72.26 43.18 62.90 77.57 79.02 72.06 75.73 75.80
w/ context 71.16 74.38 68.50 41.70 61.23 75.68 78.31 71.83 72.63 73.15

TOWERINSTRUCT 7B (5-shot)
w/o context 71.38 74.72 72.59 42.76 64.55 76.64 78.67 71.68 76.23 75.96
w/ context 71.48 73.66 66.15 40.94 65.86 75.05 77.56 70.39 70.87 73.74

TOWER-V2 70B (5-shot)
w/o context 75.58 75.53 75.02 47.16 68.00 78.07 80.49 73.58 76.57 77.12
w/ context 74.60 75.28 74.05 46.99 70.38 77.54 77.63 73.16 75.69 76.10

TOWERCHAT
w/o context 74.04 77.12 79.71 57.63 69.91 79.31 79.36 74.00 80.17 77.01
w/ context 76.41 79.97 82.24 61.27 79.78 79.91 79.26 75.72 81.30 78.15

+ QAD (COMET) 77.09 80.34 82.25 61.79 80.33 79.70 78.78 75.88 81.56 78.67
+ QAD (CONTEXTCOMET) 77.23 80.51 82.55 62.29 80.25 79.87 78.57 76.01 81.57 78.60

Table 8: Results by CHRF (higher is better) on Official Test Set by Language Pair.
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EN-XX XX-EN
MODEL

DE FR PT KO NL DE FR PT KO NL

Baselines
NLLB 0.62 0.38 1.57 1.51 1.13 0.65 0.70 1.07 0.59 0.68
TOWERINSTRUCT 7B (0-shot)

w/o context 0.28 0.23 0.43 0.57 0.37 0.50 0.53 0.86 0.37 0.53
w/ context 0.38 0.29 0.69 0.60 0.49 0.56 0.55 0.74 0.46 0.69

TOWERINSTRUCT 7B (5-shot)
w/o context 0.29 0.25 0.39 0.62 0.39 0.50 0.55 0.79 0.37 0.52
w/ context 0.35 0.32 0.69 0.75 0.39 0.54 0.59 0.72 0.60 0.51

TOWER-V2 70B (5-shot)
w/o context 0.24 0.22 0.27 0.45 0.30 0.48 0.46 0.63 0.33 0.45
w/ context 0.25 0.21 0.28 0.45 0.29 0.50 0.48 0.58 0.31 0.42

TOWERCHAT
w/o context 0.27 0.24 0.29 0.42 0.37 0.50 0.51 0.71 0.33 0.52
w/ context 0.34 0.26 0.27 0.45 0.27 0.47 0.48 0.60 0.30 0.48

+ QAD (COMET) 0.30 0.22 0.24 0.31 0.21 0.46 0.46 0.55 0.27 0.45
+ QAD (CONTEXTCOMET) 0.31 0.22 0.24 0.29 0.23 0.47 0.47 0.56 0.27 0.45

Table 9: Results by METRICX (lower is better) on Official Test Set by Language Pair.

EN-XX XX-EN
MODEL

DE FR PT KO NL DE FR PT KO NL

Baselines
NLLB 15.56 1.24 -5.51 4.11 9.35 19.09 0.77 -6.75 4.13 8.04
TOWERINSTRUCT 7B (0-shot)

w/o context 21.84 8.96 9.11 19.73 21.83 23.41 7.46 7.49 18.66 21.64
w/ context 21.26 7.22 6.89 17.50 19.79 22.52 7.45 7.12 17.72 18.53

TOWERINSTRUCT 7B (5-shot)
w/o context 21.75 9.41 10.47 19.50 21.95 23.37 8.29 8.51 18.35 21.33
w/ context 21.83 8.20 8.17 15.22 21.68 22.93 6.75 7.16 15.49 21.02

TOWER-V2 70B (5-shot)
w/o context 23.42 10.47 12.38 20.84 24.07 25.21 9.77 10.26 20.08 23.21
w/ context 23.13 9.74 12.30 18.91 23.56 25.11 9.91 9.72 18.88 22.80

TOWERCHAT
w/o context 22.31 9.15 10.55 20.08 21.75 24.12 7.72 8.81 19.48 21.85
w/ context 22.39 8.69 11.36 18.58 22.05 24.28 7.45 9.06 17.96 21.97

+ QAD (COMET) 24.27 10.92 13.01 21.65 24.04 26.12 9.67 10.77 21.02 23.31
+ QAD (CONTEXTCOMET) 24.41 10.67 12.74 21.64 23.93 26.15 10.00 10.59 21.08 23.39

Table 10: Results by CONTEXT-QE (higher is better) on Official Test Set by Language Pair.

C MUDA F1 Scores by Language Pair
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Figure 3: MUDA accuracy scores by LPs. Plots are left empty for the cases MUDA does not return tags (e.g., verb
form for Korean).
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Abstract

This paper describes SheffieldGATE’s submis-
sion to WMT 2024 Chat Shared Translation
Task. We participate in three language pairs:
English-German, English-Dutch, and English-
Portuguese (Brazil). In this work, we intro-
duce a context-aware sliding window decod-
ing method to track dependencies between chat
messages. We fine-tune a large pre-trained lan-
guage model based on the training data pro-
vided by the shared task Our experiments (i)
compare the model performance between mul-
tilingual and bilingual fine-tuning and (ii) as-
sess the impact of different window sizes. Our
experimental results demonstrate that utilising
contextual information yields superior perfor-
mance in document-level translation compared
to translating documents as isolated text seg-
ments, and that models fine-tuned with multilin-
gual data perform better than those fine-tuned
with bilingual data.

1 Introduction

Translating chat text is an important and challeng-
ing application of machine translation technology
(Farajian et al., 2020; Farinha et al., 2022). The pur-
pose of this task is to build a translation model that
addresses the challenges of multilingual customer
support for multinational companies. In informal
conversations, people often use abbreviations and
incomplete sentences and may include spelling er-
rors, leading to significant noise in the dialogue
text (Varnhagen et al., 2010). These factors compli-
cate the translation of such texts, a challenge that
traditional machine translation methods struggle to
address (Almansor et al., 2020).

Recently, large language models (LLMs) have
gradually taken over the mainstream in the field of
natural language processing (Ouyang et al., 2022).
LLMs have demonstrated impressive capabilities
in a wide range of domains such as computational
social science (Mu et al., 2024), question answering
(Tan et al., 2023), and machine translation(Wang

et al., 2023). Their ability to be well robust to noise
in the input data provides new ideas to address the
challenges of chat translation.

At the sentence level, Neural Machine Transla-
tion (NMT), represented by pre-trained large lan-
guage models, is approaching the quality of profes-
sional human translations or even exceeding that
of crowd-sourced non-professional translations in
a few resource-rich languages (Hassan et al., 2018).
For document-level translation, NMT systems still
have certain errors that are difficult to detect in
sentence-level translation (Läubli et al., 2018).
Such as language ambiguity, which frequently re-
sults in numerous translation errors. Depending on
the context, a single word or phrase can have mul-
tiple meanings (Abeysiriwardana and Sumanathi-
laka, 2024). Without the use of contextual infor-
mation, problems including co-reference (Guillou
and Hardmeier, 2016), lexical cohesion (Carpuat,
2009), or lexical disambiguation (Rios Gonzales
et al., 2017) will be difficult to address (Jin et al.,
2023).

In this work, we focus on modelling strategies
based on contextual information. Our submission
is based on an existing pre-trained model and fine-
tuned using multilingual chat data, behaviour with-
out incorporating additional contextual information
during the fine-tuning process. We implemented
context-aware sliding windows for the inference
stage to perform translation tasks. We also con-
ducted the following experiments (i) to compare
the performance difference between using multi-
lingual data and bilingual data in the fine-tuning
process and (ii) the impact of window size, or the
extent of contextual information, on the quality of
translation.

With this study, we aim to shed light on the great
potential of large language models for machine
translation tasks and their ability to utilise contex-
tual information for document-level translation and
learn from migrating across linguistic data.
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Language Pair Train Val. Test

EN <-> DE 17,805 2,569 2,041
EN <-> FR 15,027 3,007 2,091
EN <-> PT-BR 15,092 2,550 2,040
EN <-> KO 16,122 1,935 1,982
EN <-> NL 15,463 2,549 2,015

Table 1: Number of source segments in the released
dataset.

2 Data

The dataset for this task comprises authentic bilin-
gual customer support conversations across five
language pairs: English-German, English-French,
English-Korean, English-Dutch, and English-
Portuguese (Brazil). Table 1 displays the number
of training, validation and test samples for each
language pair in the dataset.

2.1 Dataset Characteristics

The chat content flows freely without strict format
constraints, authentically reflecting the characteris-
tics of real conversations. This natural language use
includes incomplete sentences, interjections, and
context-dependent responses, which, while repre-
sentative of genuine dialogue, increases the com-
plexity of processing and translation.

3 System Description

3.1 Context-Aware Sliding Window

To effectively utilise contextual information, we
use a context-aware sliding window mechanism.
This approach allows model to consider context
sentences when translating each individual mes-
sage, thereby enhancing the overall coherence and
accuracy of the translation. In addition, we improve
translation efficiency by reusing the Key-Value
(KV) cache. KV caching is a crucial technique
in transformer models, involves storing and reusing
previously computed Key and Value matrices in
the self-attention mechanism. This method signif-
icantly enhances inference speed by eliminating
redundant calculations, particularly beneficial for
long sequences or auto-regressive generation tasks
such as machine translation. It enables the model
to efficiently leverage information from the source
language when generating the target sequence, sub-
stantially reducing computational overhead, espe-
cially for longer texts.

Structure of the Sliding Window Our context-
aware sliding window comprises four key compo-
nents:

• Task Description: Provides the model with
clear instructions about the translation task.

• Source language tag: Identifies the beginning
of the original text.

• Original Text: Contains the message to be
translated along with its context.

• Target Language Label: Indicates the end of
the original text and directs the model to give
the translation.

Figure 1 illustrates the structure of the Context-
Aware Sliding Window. This system comprises
a task description and a window containing a se-
quence of source sentences, which together func-
tion as input to the model. The model generates
new translations based on the contextual informa-
tion available within the window. After each trans-
lation is produced, it is inserted into the list of
translated sentences, and the window shifts to in-
corporate new source sentences. If the number of
sentences in the source text window exceeds a pre-
defined limit, the earliest sentence in the window is
removed to maintain the set window size. This slid-
ing mechanism ensures that the model consistently
has track dependencies throughout the translation
process.

Figure 1: Context-Aware Sliding Window

Prompt We used the following prompt for trans-
lation:
You are a translation specialist serving multina-
tional companies. Your task is to translate the given
text from [source language] to [target language].
Provide the translation result in [target language]
directly without including any additional content.

Workflow The operation of our context-aware
sliding window can be described as follows:
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• Initialisation: The sliding window starts
empty and gradually fills with sentences from
the chat log up to the predefined window size.

• Generation: The language model generates
the translation for the most recent sentence,
considering both the original sentences in the
window and their existing translations.

• Window Shift: After generating a translation,
the window shifts by one position. It incor-
porates the next sentence from the chat log
and removes the earliest one and its corre-
sponding translation if the window is full. If
the translation direction of the next sentence
changes , the windows storing the original
text and the translated text are swapped. This
approach allows for seamless handling of bidi-
rectional translations within the same conver-
sation, maintaining context in both languages.

• Iteration: Steps 2 and 3 are repeated until all
sentences in the chat log have been processed.

The workflow of the context-aware sliding win-
dow is illustrated in pseudocode in Algorithm 1.

Advantages This approach offers several bene-
fits:

• Improved Coherence: By considering the sur-
rounding context, the model can maintain bet-
ter consistency in tone, style, and terminology
across the translation.

• Enhanced Accuracy: Contextual information
helps resolve ambiguities and choose more
appropriate translations for words or phrases
with multiple meanings.

4 Experiments

In this section, we describe the experiments con-
ducted to select the fine-tuning strategy and deter-
mine the optimal window size for our system. The
hyperparameters used in this experiment are listed
in Table 2. All experiments were executed on a
single Nvidia A100 GPU equipped with 40GB of
memory.

Three evaluation metrics are used in this experi-
ment, aligned with the automatic evaluation metrics
of the shared task, they are:

• BLEU (Bilingual Evaluation Understudy) (Pa-
pineni et al., 2002): Measures translation qual-

Algorithm 1 Context-Aware Sliding Window
Translation Algorithm with Bidirectional Support

1: Initialise:
2: source-window← [ ]
3: target-window← [ ]
4: window-size← predefined window size
5: translation-result← [ ]
6: current-direction← initial translation direc-

tion
7: for each sentence in input text do
8: if sentence-direction ̸= current-direction

then
9: source-window, target-window ←

target-window, source-window
10: current-direction← sentence-direction
11: end if
12: if len(source-window) < window-size then
13: source-window.append(sentence)
14: translation ← Generate(source-

window, target-window)
15: target-window.append(translation)
16: translation-result.append(translation)
17: else
18: source-window.pop(0)
19: target-window.pop(0)
20: source-window.append(sentence)
21: translation ← Generate(source-

window, target-window)
22: target-window.append(translation)
23: translation-result.append(translation)
24: end if
25: end for
26: Output translation-result

ity based on n-gram overlap between the can-
didate and reference translations. BLEU pri-
marily assesses fluency and adequacy at the
phrase level. It is widely used but may not
always capture deeper semantic nuances.

• chrF (Character n-gram F-score) (Popović,
2015): Evaluates translation quality at the
character level. It is particularly effective for
capturing morphological accuracy and subtle
differences in word forms. chrF is sensitive
to grammatical correctness and precise word
choice.

• COMET (Cross-lingual Optimised Metric for
Evaluation of Translation) (Rei et al., 2020):
A more recent metric that focuses on seman-
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Hyperparameter Value
LoRA rank (r) 8
LoRA alpha 16
LoRA dropout 0.05
Learning rate 2.5e-5
Weight decay 0.001
Batch size 8
Training epochs 10
Warmup ratio 0.3
Max gradient norm 0.3
LR scheduler Linear

Table 2: Fine-tuning Hyperparameters

tic similarity between the source, translation,
and reference. COMET uses contextual em-
bedding to evaluate meaning preservation and
overall translation quality, aiming to correlate
better with human judgements.

4.1 Multilingual and bilingual Fine-tuning
Given the computational resources and time con-
straints, we choose the LLaMA3-8B instruct model
(LLaMA) (Dubey et al., 2024) as our base model.
We fine-tune LLaMA using Low-Rank Adaptation
(LoRA) (Hu et al., 2022) with training and valida-
tion data provided by the shared task. We employed
two distinct fine-tuning strategies, i.e., (i) multilin-
gual fine-tuning and (ii) bilingual fine-tuning.

For the multilingual fine-tuning, we feed five
language pairs simultaneously: English <-> Ger-
man, English <-> French, English <-> Brazilian
Portuguese, English <-> Korean, and English <-
> Dutch. This strategy allows the model to learn
from multiple languages concurrently and poten-
tially leverage cross-lingual information.

In contrast, our bilingual strategy involved fine-
tuning separate models for each language pair, us-
ing solely the training and validation data specific
to that pair. This approach enables more focused
adaptation to each language pair.

The motivation for employing these two strate-
gies was to explore the cross-linguistic learning
and transfer capabilities of large language mod-
els (Lample and Conneau, 2019). By comparing
these approaches, we aim to investigate whether
the model can extract universally applicable trans-
lation patterns and linguistic features from multiple
language pairs, thereby potentially improving its
performance on new language pairs.

The experiment results are shown in Table 3.

The multilingual fine-tuned models outperform
bilingual fine-tuned models. This may be because
multilingual dataset provide more samples than
each bilingual datasets, offering a broader and
more diverse set of data, which helps prevent the
model from overfitting. Also, the model can learn
translation patterns through transfer learning from
other languages. Hence, in our final submission,
the model was fine-tuned using the multilingual
dataset.

4.2 Impact of Window Size

We also investigated the effect of different win-
dow sizes on the translation quality. In this work,
the window size determines the amount of con-
text available to the model during the translation
process.

To that end, we conducted experiments with win-
dow sizes ranging from 1 to 3 sentences. For each
window size, we translated five language pairs from
the validation set provided by shared task and eval-
uated the results using automated metrics. Table 4
presents the detailed results for chrF, BLEU, and
COMET scores across different window sizes and
language pairs.

The window size used in our submission is 3.
Our findings indicate that the translation quality
generally improves as the window size increases,
but the extent and nature of improvement varies
across translation directions and metrics. We ob-
serve that the COMET metric tends to favour
larger window sizes more consistently than chrF or
BLEU.

COMET scores show improvement or maintain
high performance with larger windows in 5 out of 6
translation directions (de-en, en-de, pt-br-en, nl-en,
en-nl).

For en-pt-br, small windows have the best per-
formance across all metrics. This unique behavior
might be attributed to several factors. Firstly, the
structural similarities between English and Brazil-
ian Portuguese allow for effective translation with
minimal context.(Angeli and Mota, 2023) The rel-
atively simple morphology of English compared
to Portuguese’s more complex system might also
contribute to this phenomenon. Additionally, the di-
rect lexical correspondence between many English
and Portuguese words could lead to high accuracy
in word-to-word translations, which is particularly
well-captured by chrF and BLEU metrics.

In contrast, chrF and BLEU metrics often peak
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multilingual bilingual
Language Pair chrF Bleu COMET chrF Bleu COMET
de->en 67.45 44.46 88.13 65.63 41.11 86.55
en->de 60.95 35.74 86.41 60.03 34.82 85.59
pt-br->en 65.50 43.74 87.10 63.17 36.52 84.68
en->pt-br 66.94 42.02 89.43 65.21 39.43 87.67
nl->en 68.05 45.94 88.66 65.77 42.58 86.38
en->nl 62.26 35.94 89.29 59.65 32.41 87.09

Table 3: Translation Quality Metrics for Multilingual and bilingual Models. The highest scores for each metric are
marked in bold.

Window Size = 1 Window Size = 2 Window Size = 3
Language Pair chrF BLEU COMET chrF BLEU COMET chrF BLEU COMET
de-en 64.37 39.75 84.78 68.16 45.53 88.35 67.45 44.46 88.12
en-de 60.86 35.47 86.31 61.15 35.92 86.11 60.95 35.74 86.40
pt-br-en 62.96 39.24 83.44 65.62 44.24 87.35 65.50 43.74 87.10
en-pt-br 67.82 45.49 89.94 67.34 43.04 89.48 66.94 42.02 89.43
nl-en 64.02 40.94 83.23 68.15 48.01 88.26 68.05 45.94 88.66
en-nl 60.16 33.06 87.67 60.32 33.34 88.15 62.26 35.94 89.29

Table 4: Translation Quality Metrics for Different Window Sizes. The highest scores for each metric are marked in
bold.

at window size 2 or even size 1 for some transla-
tion directions. For example, en-pt-br achieves its
highest chrF and BLEU scores with window size
1. The en-nl pair is a notable exception, showing
consistent improvement across all metrics as the
window size increases.

This pattern suggests that the COMET metric
may be more sensitive to the broader context pro-
vided by larger window sizes, while chrF and
BLEU might prioritise local fluency or accuracy
that can sometimes be captured effectively with
smaller windows.

5 Conclusion

In this paper, we compared the performance of
fine-tuning using multilingual data and bilingual
data. Additionally, we conducted an ablation study
by evaluating the translation quality with different
window sizes. Our research indicates that fine-
tuning models on multilingual data results in supe-
rior translation capabilities compared to fine-tuning
on a single language. This approach could improve
translation quality for low-resource languages. Fur-
thermore, we also found that increasing the contex-
tual information provided to the model can enhance
its semantic performance in translation. Our future
work will focus on:

• Named Entity Handling We plan to integrate

a named entity recognition system and lever-
age external knowledge resources, such as
Wikipedia, to ensure accurate translations of
named entities.

• Model Fine-tuning Comparison We also
aim to conduct a comparative analysis be-
tween fine-tuning the foundation model and
the instruction-tuned model, exploring the
trade-offs between general and task-specific
performance.
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Abstract

Translating conversational text, particularly in
customer support contexts, presents unique
challenges due to its informal and unstructured
nature. We propose a context-aware LLM trans-
lation system that leverages conversation sum-
marization and dialogue history to enhance
translation quality for the English-Korean lan-
guage pair. Our approach incorporates the two
most recent dialogues as raw data and a sum-
mary of earlier conversations to manage con-
text length effectively. We demonstrate that this
method significantly improves translation ac-
curacy, maintaining coherence and consistency
across conversations. This system offers a prac-
tical solution for customer support translation
tasks, addressing the complexities of conversa-
tional text.

1 Introduction

The WMT 2024 Chat Shared Task addresses the
unique challenges of translating conversational text,
with a particular focus on customer support chats.
Unlike formal or structured texts, conversations are
typically spontaneous and casual, presenting sev-
eral key challenges. First, the system must compre-
hend the dialogue’s flow while accurately translat-
ing content from one language to another. Second,
it is crucial to maintain logical continuity through-
out entire conversations, preserving the context and
intent of each exchange. Third, the task requires ef-
fectively handling the inherent noise and colloquial
nature of chat data.

To tackle these challenges, we developed a
context-aware LLM translation system that lever-
ages both dialogue history and conversation sum-
marization. Our approach is designed to maintain
coherence and accuracy in translation by referenc-
ing two key elements: (1)‘History’ field: The two
most recent dialogues of the target conversation,
provided as raw data. (2)‘History Summary’ field:
A concise summary (maximum 200 characters) of

earlier conversations, excluding the two most re-
cent dialogues.

We utilize both history and history summary in
our approach for the following reasons. Dialogues
often require multi-turn information for accurate
understanding, as context within a single turn can
be insufficient or misleading. Furthermore, while
referencing all previous conversations would be
ideal, it is often prohibited by the context length
limitations of LLMs. Our method addresses these
challenges by using recent parts of the conversa-
tion verbatim and summarizing earlier parts of the
dialogue, effectively reducing context length while
maintaining overall contextual information.

Our approach is informed by previous research
demonstrating the effectiveness of context-aware
models. Current study has shown that stimulat-
ing LLMs to memorize small dialogue contexts
first and then recursively produce new memory us-
ing previous memory helps the chatbot generate
highly consistent response (Wang et al., 2023). The
History-Aware Hierarchical Transformer (Zhang
et al., 2022) also used historical information to
improve the understanding of the current conversa-
tion context. The TiM (Think-in-Memory) frame-
work (Liu et al., 2023), a LLM agent also recalls
relevant thoughts from memory before generating
response, and then integrates both historical and
new thoughts to update the memory. By incorpo-
rating these insights, our system aims to produce
translations that are not only accurate in language
conversion but also maintain the coherent tone and
appropriate word selection crucial in conversational
contexts.

The Gemma-2-27B-it model (Team, 2024) is
used as the foundation for our translation system,
specifically focusing on the English-Korean lan-
guage pair. Our experiments demonstrated that in-
corporating recent dialogues and previous dialogue
summaries significantly improved translation per-
formance compared to methods that did not utilize
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this contextual information. We further refined our
system by implementing more detailed instructions,
which yielded additional improvements in transla-
tion accuracy. Furthermore, we used the GPT-4o
mini (OpenAI, 2024) model for efficient conversa-
tion summarization. These combined methods re-
sulted in substantial enhancements to overall trans-
lation quality, clearly demonstrating the effective-
ness of our approach in boosting translation accu-
racy.

2 Methodology

2.1 Data Preparation

Among the five language pairs provided by the
WMT 2024 Chat Shared Task, we selected the
en-ko dataset for our experiments. The dataset
provided by WMT consists of 16,122 training in-
stances, 1,935 validation instances, and 1,982 test
instances.

Example 1
“source_language”: “ko”,
“target_language”: “en”,
“source”: “비밀번호 재설정 메일이 도착하지
않습니다.”,
“reference”: “I don’t receive a password
reset email.”,
“doc_id”: “64619c16ab8523e90010b544”,
“client_id”: “0015800001EMz0vAAD”,
“sender”: “customer”,
“history”: “As I understand you are unable
to login to your account as it asks you to
reset the password and you are not getting
reset password email.”,
“제가 알기로는 비밀번호를 재설정하라는 메시
지가 표시된 후 비밀번호 이메일을 재설정하지
않기 때문에 계정에 로그인할 수 없으십니다.”
“Am I correct?”,
“맞습니까?”

“Instruction”: “You are tasked with
translating the following sentences from
Korean to English. These sentences are part
of conversations between a customer and a
customer service agent.\nWhen translating,
keep the following instructions in
mind:\n- Provide only the translation of
the ‘source’ text.\n- Keep the translated
text in a single line.\n- The context
involves a game user contacting a game
company’s customer service center online.
Since the inquiries are typed, there
may be many typos. Please translate with
this in mind.\n- Consider the summary
of the previous conversation, referred
to as ‘Dialogue Context’, if it is
given.\n- Refer to the context from the
previous conversation if it is provided.\n-
Ensure your translations maintain the
intended meaning and tone of the original

dialogue.\nDialogue Context: The customer,
NAME-N, contacted PRS-ORG for help signing
in and reported not receiving a password
reset email.”,
“History_summary”: “Dialogue Context: The
customer, NAME-N, contacted PRS-ORG for
help signing in and reported not receiving
a password reset email.”,
“System”: “You are a professional
translator fluent in both Korean and
English.”

During the data preparation process, we uti-
lized several fields from the provided dataset
and introduced two new ones to enhance
context awareness. The original fields are
source_language, target_language, source,
reference, and doc_id. The newly inserted
fields are history and history_summary. Ex-
ample 1 shows the final preprocessed dataset
used for model training. The source_language
and target_language fields specify the language
pair to be translated, source contains the text
to be translated, reference provides the correct
translation, and doc_id is used to uniquely iden-
tify each conversation session. The history and
history_summary refer to the conversation con-
text as described in the following sections.

2.1.1 History
The history field includes the raw data from the
two previous dialogues of the targeted dialogue that
needs to be translated. This information enables
the model to capture the conversation’s flow and
maintain coherence in the generated translation.

2.1.2 History Summary
The history_summary field contains a concise
summary of earlier conversations, excluding the
two most recent dialogues. It helps to understand
the overall context and background of the current
conversation. For summary generation, we used
the GPT-4o mini model with a prompt that lim-
its the summary to a maximum of 200 characters.
This approach allows the model to focus on the
essential part of the previous content without being
overwhelmed by excessive details.

2.1.3 System Prompt and Translation
Instructions

To ensure consistency in model training and trans-
lation tasks, we developed a prompt strategy. We
defined a base prompt that positioned the model as
a professional translator fluent in both Korean and
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English. We provided detailed guidelines for in-
struction, making the model focus on maintaining
the context and tone of customer service dialogues,
accounting for possible typos, and incorporating
provided conversation summaries. To effectively
guide the model, we supplied detailed prompts and
instructions separately. The content of the system
prompt and translation instructions can be found
in the ‘system’ and ‘instruction’ fields in Example
1. This approach enhances translation quality by
providing clear, context-specific guidance to the
model.

2.2 Context-Aware LLM Translation System
Using Conversation Summarization and
Dialogue History

After data preparation, we used the provided Chat
Template for Gemma’s Instruct-Tuning to structure
our data and fine-tuned the Gemma-2-27B-it model
for translating customer support dialogues in Ko-
rean and English. We used DeepSpeed library to
quantize the model and applied LoRA (Low-Rank
Adaptation) for model compression. The key pa-
rameters of our training setup were as follows: per
device train batch size of 4, gradient accumulation
steps of 8, learning rate of 1.0e-4, 5 training epochs,
cosine learning rate scheduler, warmup ratio of 0.1
and bfloat16 precision enabled. The GPU we used
was NVIDIA H100 and the training process took
about one hour to complete.

While optimizing our model’s performance, we
also addressed the unique challenges of dialogue
translation. Context plays a pivotal role, signifi-
cantly influencing the accuracy of interpreting and
translating each turn. However, this importance
presents a dual challenge. On one hand, preserving
the conversation’s history is crucial for coherent
translations. On the other hand, as dialogues ex-
tend, managing this context becomes increasingly
complex. Including all previous turns becomes im-
practical and can degrade the quality of subsequent
translations.

To address these challenges, we implemented
the following strategy:

• Recent Dialogues (history): We utilized the
history field to include the two most recent
dialogue in their raw form. This preserves the
immediate context necessary for accurate and
coherent translations.

• Dialogue Context (history_summary): For
earlier parts, we provided a condensed sum-

mary of essential points, generated prior to
inference. This helps the model grasp the
broader context without being overwhelmed
by excessive information (Bae et al., 2022).

This approach balances detailed immediate context
with summarized background, allowing the model
to capture both current dynamics and overall dia-
logue context.

Our prompt structure consists of three key com-
ponents: a system role-play definition, a task in-
struction, and the sentence to be translated. This
setup was critical for guiding the model’s perfor-
mance in customer support dialogue contexts. By
structuring the context using natural language and
leveraging the model’s instruction-tuned capabil-
ities, we aimed to enhance its ability to generate
translations that are not only accurate but also con-
textually appropriate. This method allowed us to
capture the natural flow and nuances of conversa-
tions more effectively.

3 Experimental Results and Application

The performance of our translation model was
evaluated through both human assessment and
various automated metrics. Table 1 shows trans-
lation performance scores by human evaluation.
The ‘sentence’ columns indicate the evaluation
scores for translation quality at the individual sen-
tence level, while the ‘Document’ column reflects
how well the translation maintains consistency and
context across a full conversation. Our DeepText-
Lab team received notably high evaluations, with
scores of 91.35 for translating sentences from En-
glish to Korean and 95.71 for translating sentences
from Korean to English. Our team also received a
score of 90.04 at the document level. These results
demonstrate our system’s strong performance at
both sentence and document levels.

Besides human evaluation, the performance on
the test dataset was also evaluated using several au-
tomated metrics, including COMET, chrF, BLEU,
and Contextual-Comet-QE. The results are summa-
rized in Table 2. We achieved strong results across
all metrics. The COMET score of 93.5 indicates
high translation quality, while the chrF score of
66.0, BLEU score of 47.6, and Contextual-Comet-
QE score of 0.161 demonstrate solid performance.

Beyond assessing overall performance, we ex-
plored how the inclusion of conversation history,
history summaries, and detailed prompts influenced
our model’s translation quality. Table 3 illustrates
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Team Sentence (en→ko) Sentence (ko→en) Document
unbabel+it 93.39 96.31 93.21
DeepText_Lab 91.35 95.71 90.04
DCUGenNLP 89.71 96.15 89.83
baseline 79.13 90.47 85.63

Table 1: Human Evaluation of Sentence and Document-Level Translation (Test Dataset Results)

Team COMET chrF BLEU C-COMET-QE
unbabel+it 95.0 70.2 51.5 0.214
DeepText_Lab 93.5 66.0 47.6 0.161
DCUGenNLP 92.3 59.8 39.4 0.158
baseline 87.6 48.9 26.0 0.041

Table 2: Automatic Evaluation Using Multiple Metrics (Test Dataset Results)

Configuration Direction COMET chrF BLEU C-COMET-QE

w/ recent dialogues and dialogue context en→ko 0.916 51.52 32.97 0.138
ko→en 0.893 61.57 40.73 -

w/o recent dialogues and dialogue context en→ko 0.910 48.96 29.82 0.126
ko→en 0.889 59.65 38.86 -

w/o prompt modification en→ko 0.911 49.96 31.30 0.135
ko→en 0.894 61.15 40.64 -

Table 3: Impact of Contextual Elements on Translation Performance (Validation Dataset Results)

the significant impact of these elements on various
performance metrics, especially chrF and BLEU
scores. The absence of these contextual elements
led to a significant decrease in translation quality,
emphasizing the importance of context preserva-
tion and precise guidance in producing high-quality
translations.

In addition to the above evaluations, we also
assessed our model’s performance in terms of for-
mality and lexical cohesion using the MuDA (Fer-
nandes et al., 2023) framework. The results of these
assessments are presented in Table 4 and Table 5.
For formality, the model achieved a precision score
of 73.0, and a recall of 35.1, resulting in an overall
F1-Score of 47.4. For lexical cohesion, the model
demonstrated strong performance with a precision
of 70.5, and a recall of 73.8, leading to an F1-Score
of 72.1.

Team Precision Recall F1
unbabel+it 69.4 44.2 54.0
DeepText_Lab 73.0 35.1 47.4
DCUGenNLP 25.5 18.2 21.2
baseline 50.0 10.4 17.2

Table 4: Formality Results

Team Precision Recall F1
unbabel+it 73.3 76.2 74.7
DeepText_Lab 70.5 73.8 72.1
DCUGenNLP 73.5 68.3 70.8
baseline 66.1 65.1 65.6

Table 5: Lexical Cohesion Results

4 Conclusion

We participated in the WMT English-Korean Chat
Translation Task using the Gemma-2-27B-it model
enhanced with dialogue history for context-aware
translations. We effectively reduced the context
length by summarizing earlier conversations and
enhanced the model’s translation performance by
including the history of the two most recent dia-
logues and the summary of the previous dialogues,
excluding the most recent two.

As a result, the translation performance has sig-
nificantly improved, though there is still room for
enhancement. Despite our team’s high score, cer-
tain issues were identified in the generated transla-
tions. For instance, the Gemma 2 model occasion-
ally produces translations in unexpected languages
like Turkish, French, and Polish. This stems from
the model’s multilingual pretraining and presents
an area for further exploration in future work.
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Abstract

For this shared task, we have used several ma-
chine translation engines to produce transla-
tions (en ⇔ fr) by fine-tuning a dialog-oriented
NMT engine and having NMT baseline trans-
lations post-edited through prompt engineer-
ing. Our objectives are to assess the effec-
tiveness of a fine-tuning strategy with a robust
NMT model, to advance towards a comprehen-
sive pipeline that covers the entire translation
process (from fine-tuning and machine trans-
lation to automatic post-editing (APE)), and to
evaluate the strengths and weaknesses of NMT
systems.

1 Introduction

We had three research objectives in carrying out
our experiments. The first objective was to assess
the feasibility of fine-tuning an in-domain neural
machine translation (NMT) baseline model using
minimal unlabelled data. The second objective
involved utilising large language models (LLMs)
and prompt engineering techniques to post-edit
translations within the same domain. The third
objective was to examine the linguistic features
of various models’ erroneous translations, partic-
ularly in bilingual customer service conversations.
For example, in their description of the data of the
first edition of the Chat Task, (Farajian et al., 2020)
noted the excessive use of pronouns in the dataset.

The remaining sections of the paper are organ-
ised as follows: section 2 mentions previous re-
search, section 3 outlines our methods and de-
scribes our NMT systems, section 4 delves into
our results1, section 5 provides a discussion of
these results, and section 6 outlines future work.

1https://github.com/lichaozhu/team_
MULTITAN-GML_WMT24_Chat_Shared_Task

2 Previous Research

2.1 Fine-tuning Strategies for NMT and
Domain Adaptation

Fine-tuning a pre-trained LLM baseline model
with low-resource NMT has been the subject of
previous MT empirical studies (Galiano-Jiménez
et al., 2023) and the back-translation approach
is often used to improve the accuracy of models
(Hoang et al., 2018). Open source toolkits are
available for building pipelines, such as fairseq2.
However, some models require a higher level of ex-
pertise in pipeline construction and rely on cutting-
edge hardware for optimal performance3. In terms
of domain adaptation, filtering back-translations
is considered one of the most frugal and efficient
techniques (Kumari et al., 2021). In addition,
more and more domain adaptations rely on prompt
engineering.

Based on what was reported in the findings of
the Chat Task 2022 (Farinha et al., 2022), MT sys-
tems handle source-related issues more or less sim-
ilarly. Analysing the distribution of error types
presented in the task indicates that "mistransla-
tion" is the most frequent error across all sys-
tems. Furthermore, prompt-based machine transla-
tion has shown a significant impact in medical do-
mains. For example, Ramachandran et al. (2023)
demonstrated that using GPT-4 for extracting So-
cial Determinants of Health (SDOH) from elec-
tronic health records achieved a 0.652 F1 score,
which is comparable to the 7th best system among
traditional supervised approaches.

2https://github.com/facebookresearch/fairseq
3For example, NLLB-200-3.3.B requires Hydra (Yadan,

2019) and very high GPU resources. We were unable to load
and train the model using a dual A100 40GB setup due to
persistent memory overflow problems.
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2.2 Automatic Post-editing of MT and
Prompt Engineering

Automatic post-editing (APE) systems are de-
signed to enhance the quality of machine transla-
tion (MT) by leveraging data (Raunak et al., 2023;
Gao et al., 2023). These systems work by tak-
ing both the source text and the initial MT out-
put as inputs, then applying learned post-editing
patterns to refine the translation, and the final out-
put is an improved translation (Chollampatt et al.,
2020; Sharma et al., 2021; Bhattacharyya et al.,
2023). To further improve performance, APE sys-
tems often employ domain adaptation and fine-
tuning on in-domain data (Moslem et al., 2023).
Based on previous studies, prompting for machine
translation still suffers from issues such as copy-
ing, mistranslation of entities, and hallucinations
(Zhang et al., 2023). Furthermore, previous com-
prehensive evaluations of GPT models for ma-
chine translation across various language pairs in-
dicate that GPT models perform competitively for
high-resource languages, but face limitations with
low-resource languages (Hendy et al., 2023; Jiao
et al., 2023; Peng et al., 2023).

3 Methods and Tools

3.1 Fine-tuning via NMT Engine

For our primary submission, we have used a neural
machine translation (NMT) engine, its in-domain
baseline model, and in-domain training data to
fine-tune the model. To create our fine-tuning
dataset, we used the Chat Task 2022’s valid and
test sets (en ⇔ fr) as well as the Chat Task
2024’s train and valid sets and compiled 13,622
aligned segments (122,905 words in English and
127,335 words in French). We used this dataset to
fine-tune the Dialog in-domain model on the train-
ing server Model Studio Lite of Systran®4 since
we did not manage to fine-tune Facebook’s NLLB-
200-3.3B model, which was our first choice.

3.2 Translation and Post-editing with LLMs

For our two contrastive submissions, we have used
NLLB-200-3.3B (NLLB Team et al.) baseline
model and deep-translator5 which was used by
ChatGPT (GPT-4-turbo) to generate translations.
All translations are then post-edited using prompt
engineering via ChatGPT-4o.

4https://modelstudio-lite.systran.net/
5https://github.com/nidhaloff/deep-translator

4 Results

4.1 Qualitative Assessment

We have then compared three models in Systran
Model Studio Lite to verify whether the in-domain
Dialog model is adapted or not to the custom ser-
vice conversation domain, by using the test set
and reference translations published by the organ-
isers of the Chat Task 2024. Table 1 compares
the performance of three different models for lan-
guage translation tasks: a fine-tuned model, an
in-domain baseline model, and a generic baseline
model. The performance is measured for two
translation directions: English to French (en → fr)
and French to English (fr → en).

Fine-tuned
model

In-domain
baseline
model

Generic
baseline
model

en → fr 57.19 48.05 50.47
fr → en 55.02 48.28 48.19

Table 1: Comparison of generic baseline, in-domain
baseline and fine-tuned models of Systran®

The fine-tuned model shows a significant im-
provement over both baseline models in both trans-
lation directions. This highlights the effectiveness
of fine-tuning in enhancing model performance
for specific tasks. The in-domain baseline model
performs slightly worse than the generic baseline
model for en → fr but slightly better for fr → en.
This suggests that the in-domain data may not al-
ways provide a consistent advantage over generic
data without further fine-tuning. The results indi-
cate the importance of model fine-tuning in achiev-
ing superior translation quality and accuracy, espe-
cially in specialised domains. They seem to sup-
port our approach and the effectiveness of our fine-
tuning dataset.

To compare translations, we used quantita-
tive methods such as vocabulary growth, char-
acteristic elements computation, and correspon-
dence analysis (Lebart et al., 1997; Fleury and
Zimina, 2014; Zimina-Poirot et al., 2020) im-
plemented in iTrameur6 and Voyant Tools7. In
Figure 1, generated with iTrameur, the vocabu-
lary growth curves of three predictions, fine-tuned
Systran (systran_ft), NLLB-200-3.3B (nllb), and
Deep translator (deep-translator) can be compared

6https://itrameur.clillac-arp.
univ-paris-diderot.fr

7https://voyant-tools.org
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Figure 1: Vocabulary growth curve of reference transla-
tion and predictions of fine-tuned Systran, NLLB-200-
3.3B and Deep translator.

Figure 2: Characteristic elements computation for
comparison of specific lexical features of refer-
ence translation and predictions of fine-tuned Systran
(systran_ft), NLLB-200-3.3B (nllb) and Deep trans-
lator (deep_translator).

with the (reference) translation. While the refer-
ence translation is the longest (Nb occurrences:
22,834), it is followed by fine-tuned Systran (Nb
occurrences: 22,291), which is the closest to the
reference in terms of vocabulary growth.

In Figure 2 generated with iTrameur, we used
characteristic elements computation to compare
three predictions with the reference translation.
The results show that many translation errors (in-
cluding the occurrences of E, S, t, Thank, etc.)
are over-represented in NLLB-200-3.3B predic-
tion, while the reference translation and fine-tuned
Systran prediction share common lexical features,
such as identical translations Are you still there?
⇒ Êtes-vous toujours là ? attested by the over-
representation of Êtes.

In Figure 3, we used correspondence analysis
in Voyant Tools to compare our three predictions
with the reference translation. The results sug-
gest that the reference translation was carried out
with human intervention, as it is clearly opposed

Figure 3: Correspondence analysis of the reference
translation and tree predictions: fine-tuned Systran (sys-
tran_ft), NLLB-200-3.3B (nllb), and Deep translator
deep-translator.

to three predictions (Zimina-Poirot et al. (2020)
provides a discussion on this phenomenon). Al-
though fined-tuned Systran is closer to reference,
it is also very close to Deep translator, with NLLB-
200-3.3B having a distinct profile.

Table 2 presents examples of segments that
were incorrectly translated in our primary submis-
sion. It includes a comparison between the origi-
nal source text, the reference translation, and our
system’s primary output, along with correspond-
ing sentence-level BLEU and TER scores.

4.2 Comparisons of Primary and Contrastive
Translations

In Table 3, we compared sentenceBLEU and TER
scores of our Primary predicted by fine-tuned
Systran model and two Contrastives predicted re-
spectively by NLLB-200-3.3 baseline and Deep
Translator. Except NLLB-200-3.3’s predictions
which have noticeably lower score, Deep Transla-
tor and fine-tuned Systran model have higher sim-
ilar scores, which confirms our analysis of Figure
3. Deep Translator gets a slightly higher mean sen-
tenceBLEU score, but its TER score is also higher.
We noticed however that Deep Translator provided
more literal or inaccurate translations of pragmatic
expressions. It has translated Bonjour (greetings
in French used in the daytime) by Good morning,
and wrongly translated You’re welcome by Vous
êtes les bienvenus, which means "You are most
welcome" in French.

Following the release of human evaluations, we
have focused on mistranslations which scored 0
points, e.g. I hope you have an excellent day
(source) is translated to Merci pour l’information
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Source Reference Primary sentenceBLEU TER

1 Is there anything else I
can assist you with to-
day?

Avez-vous besoin d’aide
pour autre chose au-
jourd’hui ?

Y a-t-il autre chose que
je puisse faire pour vous
aider aujourd’hui ?

0.25 1.125

2 I am so sorry to hear that. Je regrette sincèrement
d’apprendre cela.

Je suis vraiment désolé
de l’apprendre.

0.00 1.0

3 You are welcome! Avec plaisir ! Je vous en prie. 0.00 1.33

4 You are welcome! Ce fut un plaisir de vous
parler.

C’était agréable de parler
avec vous.

0.00 1.0

5 ok merci Ok, thanks Ok, thank you 0.00 1.0

Table 2: Mistranslated segments in our primary submission

("Thank you for the information"). The presence
of these translation segments probably reflects
misalignments in the fine-tuning data, as Systran
Model Studio Lite does not necessarily filter out
mismatching segments during the training process.
These segments of the translation memory can be
deemed correct as part of the normalisation pro-
cess.

5 Discussion

5.1 Automatic Post-editing vs. Prompt
Engineering

Pipelines for translation and post-editing using
LLM engines were proposed with LLM engines
(Vidal et al., 2022). The primary submission
and the two contrasting submissions were subse-
quently post-edited by ChatGPT-4o using instruc-
tions such as:

"Post-edit the translations in
file XX according to the source
texts in file YY where English
sentences are translated into
French, and French sentences
translated into English. Send me
back in one single file",

where two raw text files are given: XX is line-
separated source file and YY translation file.
We noticed that when we asked ChatGPT-4o to
post-edit by performing domain adaptation consid-
ering our dataset as a reference or knowledge base,
it did not work.

The default instructions are ineffective when
used with Anthropic Claude. To detect the lan-
guage accurately, it is necessary to use language
columns. In this context, using tags enhances
the precision of the translation (without them, the

translation will default to a single language). Ad-
hering to the token limit is crucial, as failure to do
so may lead to overlooking the total number of to-
kens in the input. Although the tag has been mod-
ified to "tear", it still functions as the translated
message.

Another hallucination occurred when the in-
structions themselves were translated. Figure 4 il-
lustrates the interface and the applied prompt. The
French text contained several misspellings, homo-
phonic confusions, such as est versus ait, partici-
ple versus infinitive confusions, and various con-
jugation errors. We also attempted to prompt
LLMs to translate from the initial CSV file, but
this strategy has limitations. The LLMs may sug-
gest Python code to extract sentences in both lan-
guages, translate only one language, or perform
the task for a limited number of sentences.

Using Anthropic Claude for translation also
highlights the variability in LLM translations. For
example, for the sentence Pardonnez-moi je n’ai
pas du bien formuler ma question. Three trans-
lations were obtained: 1) "I’m sorry I must not
have formulated my question well." 2) "I apolo-
gize I must not have phrased my question well." 3)
"I apologize, I may not have phrased my question
well."

6 Further Research

6.1 Retrieval-Augmented Generation (RAG)

The database serves as a vital resource for ad-
dressing the challenges posed by rare or com-
plex structures that may not be well-represented
in translation models (Gao et al., 2024). Retrieval-
augmented generation (RAG) is a technique for
enhancing the accuracy and reliability of genera-
tive AI models with facts fetched from external
sources. Future improvements could involve aug-
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Primary (Systran® fine-tuned) Contrastive 1 (NLLB-200-3.3) Contrastive 2 (Deep translator)

sentenceBLEU TER sentenceBLEU TER sentenceBLEU TER
0.70 0.25 0.57 0.50 0.71 0.28

Table 3: Primary and Contrastives metrics comparison (arithmetic mean)

Figure 4: Anthropic Claude’s interface with a prompt based on the URL of the WMT shared task test set

menting the training set with more examples, ei-
ther through synthetic data or diverse real-world
instances, to enhance the model’s performance to
translate challenging constructions, such as dislo-
cations.

6.2 Explainability: Probing MT Systems for
Trustworthy Outputs

Controlling LLM outputs and their repeatability
is crucial for trustworthy AI. We tried to probe
LLMs with (a) the detection of explicit represen-
tations and (b) their potential use in the LLM out-
puts. Similarly, in NMT, information might be
available but not used by the system, as seen in
the case of gender information discrepancies (Wis-
niewski et al. (2022a,b).

7 Conclusion

In this paper, we outline our methods for partic-
ipating in the Chat Task 2024, focusing on en-
hancing translation quality in dialog-oriented ma-
chine translation systems through fine-tuning and
prompt engineering. Our translation data files
are available on GitHub8. Key findings indi-

8https://github.com/lichaozhu/team_
MULTITAN-GML_WMT24_Chat_Shared_Task

cate that fine-tuning an in-domain NMT model is
feasible with minimal unlabelled data, resulting
in significant improvements in translation quality.
The research also emphasises the importance of
analysing linguistic features in translations to iden-
tify strengths and weaknesses of different machine
translation models. The study also highlights the
necessity of ensuring explainability in LLM out-
puts to foster trust in AI systems.

Acknowledgements

This publication is the result of research sup-
ported by the scientific platform Pure Neu-
ral Server (PNS-UP)9, partially funded by the
2024 research equipment grant MULTITAN-
GML10 (COPES-2024-12, financement Fonds
d’intervention Recherche, Université Paris Cité)
and the 2021 research equipment grant PAPTAN11

from the Scientific Platforms and Equipment Com-
mittee, under the ANR grant (ANR-18-IDEX-
0001, financement IdEx Université de Paris).

9https://plateformes.u-paris.fr/category/
plateformes/traitement-automatique

10https://u-paris.fr/eila/
actualites-projet-multitan-gml

11https://u-paris.fr/plateforme-paptan

1020

https://github.com/lichaozhu/team_MULTITAN-GML_WMT24_Chat_Shared_Task
https://github.com/lichaozhu/team_MULTITAN-GML_WMT24_Chat_Shared_Task
https://plateformes.u-paris.fr/category/plateformes/traitement-automatique
https://plateformes.u-paris.fr/category/plateformes/traitement-automatique
https://u-paris.fr/eila/actualites-projet-multitan-gml
https://u-paris.fr/eila/actualites-projet-multitan-gml
https://u-paris.fr/plateforme-paptan


References
Pushpak Bhattacharyya, Rajen Chatterjee, Markus Fre-

itag, Diptesh Kanojia, Matteo Negri, and Marco
Turchi. 2023. Findings of the WMT 2023 shared
task on automatic post-editing. In Proceedings
of the Eighth Conference on Machine Translation,
pages 672–681, Singapore. Association for Compu-
tational Linguistics.

Shamil Chollampatt, Raymond Hendy Susanto, Liling
Tan, and Ewa Szymanska. 2020. Can automatic
post-editing improve NMT? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2736–2746,
Online. Association for Computational Linguistics.

M. Amin Farajian, António V. Lopes, André F. T. Mar-
tins, Sameen Maruf, and Gholamreza Haffari. 2020.
Findings of the WMT 2020 shared task on chat trans-
lation. In Proceedings of the Fifth Conference on
Machine Translation, pages 65–75, Online. Associa-
tion for Computational Linguistics.

Ana C Farinha, M. Amin Farajian, Marianna Buchic-
chio, Patrick Fernandes, José G. C. de Souza, He-
lena Moniz, and André F. T. Martins. 2022. Find-
ings of the WMT 2022 shared task on chat transla-
tion. In Proceedings of the Seventh Conference on
Machine Translation (WMT), pages 724–743, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Serge Fleury and Maria Zimina. 2014. Trameur: A
framework for annotated text corpora exploration.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 57–61, Dublin, Ire-
land. Dublin City University and Association for
Computational Linguistics.

Aarón Galiano-Jiménez, Felipe Sánchez-Martínez,
Víctor M. Sánchez-Cartagena, and Juan Antonio
Pérez-Ortiz. 2023. Exploiting large pre-trained
models for low-resource neural machine translation.
In Proceedings of the 24th Annual Conference of
the European Association for Machine Translation,
pages 59–68, Tampere, Finland. European Associa-
tion for Machine Translation.

Yuan Gao, Ruili Wang, and Feng Hou. 2023. How to
design translation prompts for chatgpt: An empirical
study. arXiv preprint arXiv:2304.02182.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gen-
eration for large language models: A survey. arXiv
preprint arXiv:2312.10997.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany
Awadalla. 2023. How good are GPT models at
machine translation? a comprehensive evaluation.
arXiv preprint arXiv:2302.09210.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24, Mel-
bourne, Australia. Association for Computational
Linguistics.

Wenxiang Jiao, Wenxuan Wang, Jen-Tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is
ChatGPT a good translator? a preliminary study.
arXiv preprint arXiv:2301.08745.

Surabhi Kumari, Nikhil Jaiswal, Mayur Patidar, Man-
asi Patwardhan, Shirish Karande, Puneet Agarwal,
and Lovekesh Vig. 2021. Domain adaptation for
NMT via filtered iterative back-translation. In Pro-
ceedings of the Second Workshop on Domain Adap-
tation for NLP, pages 263–271, Kyiv, Ukraine. As-
sociation for Computational Linguistics.

Ludovic. Lebart, André Salem, and Lisette Berry. 1997.
Exploring Textual Data. Text, Speech and Language
Technology. Springer Netherlands.

Yasmin Moslem, Gianfranco Romani, Mahdi Molaei,
Rejwanul Haque, John D. Kelleher, and Andy Way.
2023. Domain terminology integration into ma-
chine translation: Leveraging large language models.
ArXiv, abs/2310.14451.

NLLB Team, Marta R. Costa-jussà, James Cross,
Onur Çelebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam,
Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi
Akula, Loic Barrault, Gabriel Mejia-Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jar-
rett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil
Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan,
Cynthia Gao, Vedanuj Goswami, Francisco Guzmán,
Philipp Koehn, Alexandre Mourachko, Christophe
Ropers, Safiyyah Saleem, Holger Schwenk, and
Jeff Wang. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023. Towards making the most of
ChatGPT for machine translation. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 5622–5633, Singapore. Association for
Computational Linguistics.

Giridhar Kaushik Ramachandran, Yujuan Fu, Bin Han,
Kevin Lybarger, Nic Dobbins, Ozlem Uzuner, and
Meliha Yetisgen. 2023. Prompt-based extraction of
social determinants of health using few-shot learn-
ing. In Proceedings of the 5th Clinical Natural
Language Processing Workshop, pages 385–393,
Toronto, Canada. Association for Computational
Linguistics.

1021

https://doi.org/10.18653/v1/2023.wmt-1.55
https://doi.org/10.18653/v1/2023.wmt-1.55
https://doi.org/10.18653/v1/2020.emnlp-main.217
https://doi.org/10.18653/v1/2020.emnlp-main.217
https://aclanthology.org/2020.wmt-1.3
https://aclanthology.org/2020.wmt-1.3
https://aclanthology.org/2022.wmt-1.70
https://aclanthology.org/2022.wmt-1.70
https://aclanthology.org/2022.wmt-1.70
https://aclanthology.org/C14-2013
https://aclanthology.org/C14-2013
https://aclanthology.org/2023.eamt-1.7
https://aclanthology.org/2023.eamt-1.7
https://arxiv.org/abs/2304.02182
https://arxiv.org/abs/2304.02182
https://arxiv.org/abs/2304.02182
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://doi.org/10.48550/arXiv.2302.09210
https://doi.org/10.48550/arXiv.2302.09210
https://doi.org/10.18653/v1/W18-2703
https://doi.org/10.18653/v1/W18-2703
https://aclanthology.org/2021.adaptnlp-1.26
https://aclanthology.org/2021.adaptnlp-1.26
https://books.google.ru/books?id=24nvLSkVcJsC
https://api.semanticscholar.org/CorpusID:264426476
https://api.semanticscholar.org/CorpusID:264426476
https://doi.org/10.18653/v1/2023.findings-emnlp.373
https://doi.org/10.18653/v1/2023.findings-emnlp.373
https://doi.org/10.18653/v1/2023.clinicalnlp-1.41
https://doi.org/10.18653/v1/2023.clinicalnlp-1.41
https://doi.org/10.18653/v1/2023.clinicalnlp-1.41


Vikas Raunak, Amr Sharaf, Yiren Wang, Hany
Awadalla, and Arul Menezes. 2023. Leveraging
GPT-4 for automatic translation post-editing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 12009–12024, Singa-
pore. Association for Computational Linguistics.

Abhishek Sharma, Prabhakar Gupta, and Anil
Nelakanti. 2021. Adapting neural machine transla-
tion for automatic post-editing. In EMNLP 2021
Sixth Conference on Machine Translation (WMT21),
pages 315–319.

Blanca Vidal, Albert Llorens, and Juan Alonso. 2022.
Automatic post-editing of MT output using large lan-
guage models. In Proceedings of the 15th Biennial
Conference of the Association for Machine Transla-
tion in the Americas (Volume 2: Users and Providers
Track and Government Track), pages 84–106, Or-
lando, USA. Association for Machine Translation in
the Americas.

Guillaume Wisniewski, Lichao Zhu, Nicolas Ballier,
and François Yvon. 2022a. Analyzing gender trans-
lation errors to identify information flows between
the encoder and decoder of a NMT system. In Pro-
ceedings of the Fifth BlackboxNLP Workshop on An-
alyzing and Interpreting Neural Networks for NLP,
pages 153–163, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguis-
tics.

Guillaume Wisniewski, Lichao Zhu, Nicolas Ballier,
and François Yvon. 2022b. Biais de genre dans
un système de traduction automatique neuronale :
une étude des mécanismes de transfert cross-langue
[gender bias in a neural machine translation sys-
tem: a study of crosslingual transfer mechanisms].
In Traitement Automatique des Langues, Volume 63,
Numéro 1 : Varia [Varia], pages 37–61, France.
ATALA (Association pour le Traitement Automa-
tique des Langues).

Omry Yadan. 2019. Hydra - a framework for ele-
gantly configuring complex applications. Github
https://github.com/facebookresearch/hydra.

Biao Zhang, Barry Haddow, and Alexandra Birch.
2023. Prompting large language model for machine
translation: a case study. pages 41092–41110.

Maria Zimina-Poirot, Nicolas Ballier, and Jean-
Baptiste Yunès. 2020. Approches quantitatives
de l’analyse des prédictions en traduction automa-
tique neuronale (TAN). In JADT 2020 : 15èmes
Journées Internationales d’Analyse statistique des
Données Textuelles, Toulouse, France. Université de
Toulouse.

1022

https://doi.org/10.18653/v1/2023.findings-emnlp.804
https://doi.org/10.18653/v1/2023.findings-emnlp.804
https://www.amazon.science/publications/adapting-neural-machine-translation-for-automatic-post-editing
https://www.amazon.science/publications/adapting-neural-machine-translation-for-automatic-post-editing
https://aclanthology.org/2022.amta-upg.7
https://aclanthology.org/2022.amta-upg.7
https://doi.org/10.18653/v1/2022.blackboxnlp-1.13
https://doi.org/10.18653/v1/2022.blackboxnlp-1.13
https://doi.org/10.18653/v1/2022.blackboxnlp-1.13
https://aclanthology.org/2022.tal-1.2
https://aclanthology.org/2022.tal-1.2
https://aclanthology.org/2022.tal-1.2
https://aclanthology.org/2022.tal-1.2
https://aclanthology.org/2022.tal-1.2
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://hal.science/hal-03049589
https://hal.science/hal-03049589
https://hal.science/hal-03049589


Proceedings of the Ninth Conference on Machine Translation, pages 1023–1030
November 15-16, 2024 ©2024 Association for Computational Linguistics

The SETU-ADAPT Submissions to WMT 2024 Chat Translation Tasks

Maria Zafar, Antonio Castaldoa, Prashanth Nayakb, Rejwanul Haque, Andy Wayc

South East Technological University, Carlow, Ireland
aUniversity of Pisa, Tuscany, Italy

bKantanAI, Dublin, Ireland
cADAPT Centre, Dublin City University, Dublin, Ireland

c00304029@setu.ie,antonio.castaldo@phd.unipi.it,pnayak@kantanai.io
rejwanul.haque@setu.ie,andy.way@adaptcentre.ie

Abstract

This paper presents the SETU-ADAPT submis-
sions to the WMT24 Chat Translation Task.
Large language models (LLM) currently pro-
vides the state-of-the-art solutions in many
natural language processing (NLP) problems
including machine translation (MT). For the
WMT24 Chat Translation Task we leveraged
LLMs for their MT capabilities. In order to
adapt the LLMs for a specific domain of in-
terest, we explored different fine-tuning and
prompting strategies. We also employed effi-
cient data retrieval methods to curate the data
used for fine-tuning. We carried out exper-
iments for two language pairs: German-to-
English and French-to-English. Our MT mod-
els were evaluated using three metrics: BLEU,
chrF and COMET. In this paper we describes
our experiments including training setups, re-
sults and findings.

1 Introduction

There have been drastic transformation in many ar-
eas of natural language processing (NLP) in recent
times mainly due to the emergence of powerful
LLMs. The LLM-based solutions are becoming
more powerful and accurate than ever before. No-
tably, we have seen the unprecedented successes
in many MT tasks in recent years, thanks to mul-
tilingual LLMs. In sum, the LLMs are the current
state-of-the-art in MT research and development.

In our submission for the French-to-English and
German-to-English Chat Translation Tasks, we
built our MT systems using multilingual LLMs
such as NLLB-200-600M (Team et al., 2022),1

1NLLB-200: https://ai.meta.com/research/
no-language-left-behind/

Llama-3-8B (Dubey et al., 2024), 2 and mBART-
50 (Tang et al., 2021).3 We fine-tuned these mod-
els using both domain-specific and synthetic back-
translated data.

Due to the lack of high-quality domain parallel
data, we used a data generation approach. For this,
we utilised a freely available monolingual data. We
retrieved domain-specific monolingual sentences of
target language and translated them back to source
language for creating new synthetic data (Sennrich
et al., 2016). This synthetic data was then com-
bined with the original data for fine-tuning the
LLMs. This approach ensured that our MT mod-
els are better adapted to the domain, thereby im-
proving the quality of translations. We retrieved
domain-specific monolingual German sentences
from OPUS ELRC-4992 Customer Support MT 4

for creating our synthetic data. We also explored
the idea of in-context learning by fine-tuning LLMs
with a few-shot approach. These techniques helped
our MT systems better adapt in translating agent in-
put from the source language to the target language
and customer response from the target language to
the source.

The rest of the paper is organised as follows. Sec-
tion 2 describes our related work. Our datasets are
explained in Section 3 and Section 4 tells about the
models and their fine-tuning. Section 5 discusses
the experimental setup describing the parameters
tuned in our systems. In Section 6, we discuss our
results. Finally, Section 7 presents the conclusion
of our work.

2Llama-3: https://github.com/unslothai/unsloth/
3mBART-50: https://huggingface.co/facebook/

mbart-large-50
4OPUS: https://opus.nlpl.eu/

ELRC-4992-Customer_Support_MT/de&en/v1/
ELRC-4992-Customer_Support_MT
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2 Related Works

In this section we discuss the papers that are re-
lated to our work. Alves et al. (2022) conducted ex-
periments on fine-tuning mBART-50 using domain-
specific data retrieved through semantic search. For
this, they used LaBSE (Language-Agnostic BERT
Sentence Embedding) (Feng et al., 2020). They
demonstrated how this approach leads them to large
gains across all language pairs under evaluation.
They also performed experiments using this data to
further adapt the model using KNN-MT (Khandel-
wal et al., 2021). Note that this approach involves a
nearest neighbor retrieval strategy, through which
a set of relevant examples are provided at decoding
time. They demonstrate how combining these ap-
proach leads to improved translation quality, over
regular fine-tuning.

Liang et al. (2022a) used pre-trained LLMs and
fine-tuned them to the domain of interest. For this,
they first trained their models on general domain
data and then fine-tuned them with chat transla-
tion training data. They used strategies such as
including the multi-encoder framework, speaker
tag prompt-based fine-tuning and boosted Self-
COMET-based (Rei et al., 2020a) ensemble models
to incorporate the potential context. They found
their strategies helpful in improving the quality of
translations produced by their MT models.

Yang et al. (2022) participated in the English-to-
German task of the WMT22 Chat Translation Task.
For this, they utilised the models previously sub-
mitted to the WMT215 news task (Wei et al., 2021)
as their MT baseline systems. These baseline mod-
els are built upon a deep Transformer architecture
(Vaswani et al., 2017). They used widely adopted
optimisation strategies to improve model perfor-
mance, including domain transfer, data selection,
back-translation, self-training, noisy self-training,
fine-tuning, and model averaging. Their results
showed the effectiveness of their approached in
improving the quality of translations.

Zhou et al. (2022) presented a multi-task multi-
stage transitional (MMT) training framework,
where they trained their model using the bilingual
chat translation dataset and additional monolin-
gual dialogues. To incorporate dialogue coherence
and speaker characteristics in their model, they
designed two auxiliary tasks: utterance discrimi-
nation and speaker discrimination. Their training
had three stages: sentence-level pre-training on

5https://www.statmt.org/wmt21/index.html

the large-scale parallel corpus, intermediate train-
ing with auxiliary tasks using additional monolin-
gual dialogues and context-aware fine-tuning with
a gradual transition. They found that the second
stage served as a medium to reduce the training dis-
crepancy between the pre-training and fine-tuning
stages. They also trained their model using a grad-
ual transition strategy, i.e. gradually transition-
ing from monolingual to bilingual dialogues, to
make their stage transition smoother. Their results
demonstrated the effectiveness of their framework,
giving them better translations.

Liang et al. (2022b) contributed to the two
large-scale in-domain paired bilingual dialogue cor-
pora (28M for English-to-Chinese and English-to-
German) through their framework. Their frame-
work consisted of scheduled multi-task learning
with three training stages, in which a gradient-
based scheduling strategy was designed to take
advantage of the auxiliary tasks for their model
for higher translation quality. They conducted ex-
tensive experiments on four chat translation tasks,
and their model achieved new state-of-the-art per-
formance and outperformed the existing chat MT
models by a significant margin.

3 Data Statistics

For our experiments we used the data provided
by the WMT-24 Chat Translation Task6 organisers.
The dataset consists of authentic bilingual customer
support conversations. This includes parallel data
of interactions between an agent and a customer
within the customer support domain. We detail the
data description in Table 1. Note that we removed
duplicates from the training data.

4 The LLMs

This section details the configurations of the LLMs
that were used for our experiments.

4.1 mBART

mBART (Liu et al., 2020) is a pre-trained encoder-
decoder Transformer model that was first trained
on an auto-denoising task with monolingual data
of twenty five languages. For adapting the mBART
to the MT task, Tang et al. (2021) performed
multilingual fine-tuning using data from fifty
supported languages. For our experiments we used
facebook/mbart-large-50-many-to-many-mmt

6https://www2.statmt.org/wmt24/chat-task.html
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Dataset EN–to–DE EN–to–FR

WMT-24

Train 10,556 7,856
Validation 2,569 3,007
Blind Test 2,041 2,091
+ Back-translation 1,317 -

WMT-22

Train 2,110 2,754
Validation - -

WMT-20

Train 10,248 -
Validation 1,619 -

Table 1: Overview of datasets.

checkpoint. We used the following hyperpa-
rameters setup for our experiments: batch
size: 4, number of training epochs: 5,
predict_with_generate: True, evaluation
strategy: epoch, logging steps: 2,000,
and checkpoint save steps: 500. The
remaining parameters were set to default values.

4.2 NLLB
NLLB is a cutting-edge multilingual transla-
tion model developed to support many lan-
guages, mainly low-resource languages. Ini-
tially, the model was trained using diverse, mul-
tilingual data that includes various underrep-
resented languages. This comprehensive pre-
training allows NLLB to effectively handle trans-
lation tasks across many languages that typi-
cally lack sufficient data. For our experiments
we used facebook/nllb-200-distilled-600M
checkpoint for building our MT systems. Our
training configuration is as follows: batch size:
4, 8; max sequence length: 128
tokens; training steps: 10,000, 20,000,
40,000; learning rate: 0.0001; optimiser:
Adafactor; weight decay and gradient
clipping applied; and model saved every
1000 steps.

4.3 Llama
Llama is an auto-regressive language model that
pretrained and fine-tuned in different sizes of data.
We used unsloth/llama-3-8b-bnb-4bit check-
point for building our MT systems. Our training pa-
rameters we set are as follows: max seq length:

2048 tokens, batch size: 2 per device,
gradient accumulation steps: 4, learning
rate: 2e-4, mixed precision training
enabled: (fp16 or bf16), learning rate
scheduler: linear with 5-step warmup,
maximum training steps: 500, optimiser:
adamw-8bit, logging steps: 1, seed: 3407.

5 Methodology

In this section, we discuss our methodologies.

5.1 mBART50

We used mBART for building three different MT
systems for German-to-English. More specifically,
mBART was fine-tuned on three distinct datasets:
WMT-20,7 WMT-22,8 and WMT-249. For French-
to-English we used two datasets from WMT: WMT-
22 and WMT-24. we detailed the datasets and
hyperparameters setups in Section 3 and 4, respec-
tively.

We performed data preprocessing the original
data such as normalisation by removing special
characters, removing duplicates and performing
lowercase conversions. The source and target sen-
tences were then tokenized using a predefined tok-
enizer.

In order to handle data during train-
ing and evaluation, a collator named as
DataCollatorForSeq2Seq10 is instantiated
with the tokenizer and pretrained model checkpoint
from Transformers library. This collator is de-
signed to dynamically pad inputs to the maximum
length within a batch, ensuring efficient processing.
The Seq2SeqTrainer is then instantiated with the
pretrained model checkpoint, training arguments,
tokenized datasets, evaluation function, data colla-
tor, and tokenizer. This setup ensures a structured
and efficient fine-tuning process, evaluating the
model’s performance at each epoch.

Fine-tuning is performed using the
Seq2SeqTrainer class from the Transform-
ers library. The training arguments are specified
through Seq2SeqTrainingArguments, where
parameters such as the output directory, batch
sizes for training and evaluation and the number of
training epochs were defined in Section 4.

7https://www.statmt.org/wmt20/chat-task.html
8https://wmt-chat-task.github.io
9https://www2.statmt.org/wmt24/chat-task.html

10https://huggingface.co/docs/transformers/en/
main_classes/data_collator
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5.2 NLLB

We built four MT systems for English-to-German
and two MT systems for English-to-French con-
sidering NLLB as the baselines. We evaluated our
MT systems on the development and blind test sets.
The MT training setups are detailed below. Our
first MT systems involves fine-tuning the baseline
NLLB model on the original data. For our second
MT system we used normalised data (i.e. removing
special characters and duplicates, and lowercasing)
for fine tuning to observe any impact of data clean-
ing on performance.

We build two additional MT systems for for
English–German. We back-translated monolingual
data in order to create a synthetic bilingual data.
For this, we mined monolingual data from OPUS
11. The domain of the monolingual data is customer
support. We combined the generated synthetic data
with the original data for fine-tuning. The first and
second MT systems were fine-tuned on the com-
bined data, and this gave us the third and fourth
MT systems, respectively.

For training we handled out-of-memory errors
by dynamically creating training batches, i.e. the
Adafactor (Shazeer and Stern, 2018) optimizer is
employed instead of AdamW (Loshchilov and Hut-
ter, 2017) to save GPU memory. Weight decay and
gradient clipping (Loshchilov and Hutter, 2017)
were applied to stabilize the training. Training
batches were created by randomly choosing the
translation direction (source to target or reverse)
and sampling sentence pairs. To enhance robust-
ness against memory issues, a function was imple-
mented to release memory, with parameters set to
different batch-sizes, maximum sentence length,
and different training-steps. For the German-to-
English and French-to-English tasks the best per-
forming models were found to be the ones with
40,000 and 10,000 training steps, respectively. The
model is saved every 1,000 steps, allowing for in-
terruptions to adjust parameters or evaluate transla-
tions. Training typically runs for a short period of
time, which is sufficient for a language similar to
those already known by NLLB.

Post-training evaluation involves testing transla-
tion quality using parameters like num−beams =
4, which affects accuracy, speed, and memory con-
sumption, and parameters a and b, which control

11https://opus.nlpl.eu/ELRC-4992-Customer_
Support_MT/de&en/v1/ELRC-4992-Customer_Support_
MT

the maximum length of a generated text. The num-
ber of beams (or beam size) controls how many
alternative sequences are kept during the search.
This means that the model keeps the top 4 transla-
tions at each step during decoding.

5.3 Llama
We also used LLaMA for English-to-German and
English-to-French. We built two MT systems for
each of the translation tasks. This time, we fo-
cused on a specific learning technique, i.e. few-
shot in-context learning. For this, we constructed
a sentence retrieval system based on dense vec-
tor embeddings. Initially, sentence embeddings
were generated using SentenceTransformer. More
specifically, we used all-MiniLM-L6-v2 12 for our
task. This model was applied to the source sen-
tences of the dataset, transforming them into high-
dimensional vector representations. These embed-
dings were then indexed using FAISS (Facebook
AI Similarity Search) (Douze et al., 2024)13, cre-
ating a searchable database of vectors. In other
words, in order to create in-context learning exam-
ples, we encode the source test sentence using the
pre-trained SentenceTransformer model. The re-
sulting embedding is then used to query the FAISS
index, which retrieves the most semantically simi-
lar sentences from the training dataset (note that we
set k = 3). For constructing prompts, we retrieve
the source sentences, their corresponding target
sentences, and the associated language labels from
the training dataset using the indices returned by
FAISS. These sentences are then iteratively com-
bined to construct three-shot prompts. Figure 1
shows the structure of a prompt. As can be seen
from Figure 1, the prompt consists of initial instruc-
tion followed by three components: an instruction,
an input, and a response. The instruction guides the
task of translating from English-to-German/French
or German/French-to-English. The language in an
instruction is set dynamically based on labels pro-
vided with the sentence in our dataset. The input
provides context, and the response is the desired
output.

For the fine-tuning process tokenizer was instan-
tiated using the FastLanguageModel class with
parameters tailored to support efficient training
on large sequences. The model is loaded from
the unsloth/llama-3-8b-bnb-4bit pre-trained

12https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

13https://github.com/facebookresearch/faiss
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checkpoint. Subsequently, the model was further
configured with get−peft−model, which applies
Parameter-Efficient Fine-Tuning (PEFT) (Xu et al.,
2023) techniques.

The fine tuning process was managed
by SFTTrainer, which was integrated into
TrainingArguments from the Transformers
library. The training configurations were discussed
in Section 4. Throughout the training, logging
was performed at every step and the training
process was seeded with a fixed value to ensure
reproducibility. This training approach leveraged
the state-of-the-art techniques to enable fine-tuning
LLMs on extensive datasets while minimizing the
computational overhead. The same parameters
were tuned for both language-pairs.

The construction of a prompt for inference is
identical to those constructed for training. The
prompt instructs the model to translate a chat ab-
stract from one language (source) to another (tar-
get). The instruction is specifically tailored to the
languages involved in the translation, which are
specified in the input-row. The source text is in-
cluded in the prompt, while the output field is left
blank, allowing the model to generate the transla-
tion. The prompt is tokenized using the pre-trained
tokenizer, and the inputs are formatted as tensors
compatible with PyTorch, with the computation
offloaded to a GPU. The tokenized inputs are then
passed to the model’s generate method, which
performs the translation. The generated output is
then decoded from the tokenized format back into
a human-readable string using the batch-decode
method.

6 Results

This section describes the results obtained. Table 2
shows the performance of our MT systems on the
validation sets. Tables 3 and 4 show the results
obtained on the blind test set provided by the task
organisers.

As mentioned in Section 5, we normalised the
original data by removing special characters and du-
plicate sentences and lowercasing to see the impact
of data cleaning on performance. We see from Ta-
ble 2 that the MT models fine-tuned on normalised
data are better than those fine-tuned on original
data for the German-to-English translation task.
This clearly shows us the effectiveness of data nor-
malisation. Our primary submission for German-
to-English was based on fine-tuned Llama with

Below is an instruction that
describes a task , paired with
an input that provides further
context. Write a response

that appropriately completes
the request.

Instruction:
Translate this chat from German

to English:
Input:
German 1: <German sentence 1>
English 1: <English sentence 1>
German 2: <German sentence 2>
English 2: <English sentence 2>
German 3: <German sentence 3>
English 3: <English sentence 3>
German 4: <German sentence 4>
English 4:
Response:
<English sentence 4>

Figure 1: The structure of a generated prompt.

few-shot prompting. For this setup, we obtained
42.08 BLEU, 66.84 chrF and 85.25 COMET points
on the validation set (cf. row 12 of Table 2). We
also submitted two contrastive systems, i.e. NLLB
and mBART50 fine-tuned on augmented data. The
performance fine-tuned NLLB and mBART50 are
shown in rows 9 and 3 of Table 2, respectively. Our
constrastive submission 1 was based on NLLB. For
this setup, we obtained 48.21 BLEU, 70.31 chrF
and 84.60 COMET points on the validation set (cf.
row 9 of Table 2). Our constrastive submission 2
was based on mBART50. For this setup, we ob-
tained 47.73 BLEU, 69.17 chrF and 84.09 COMET
points on the validation set (cf. row 3 of Table 2).

As for primary submission of the French-to-
English task, we considered NLLB as our base-
line and its performance is reported in row 19 of
Table 2). We see from the table that this setup
provided us 54.79 BLEU, 73.88 chrF, and 85.5
COMET points on the validation set. As in the
German-to-English-task, we also submitted two
contrastive systems for the French-to-English task.
We fine-tuned Llama-3-8B and mBART50 follow-
ing the few-shots prompt generation strategies de-
scribed in Section 5. Our constrastive submission
1 was based on fine-tuned Llama-3-8B. For this
setup, we obtained 38.23 BLEU, 66.54 chrF and
89.08 COMET points on the validation set (cf. row
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Model BLEU chrF COMET

German-English

mBART50 WMT20 53.27 72.43 86.042
mBART50 WMT22 32.50 55.66 76.94
mBART50 WMT24 47.73 69.17 84.096
NLLB WMT24 SrcNorm→ TgtNorm 35.54 61.37 82.93
NLLB WMT24 TgtNorm→ SrcNorm 46.08 68.75 83.73
NLLB WMT24 Src→ Tgt 20.43 50.81 77.69
NLLB WMT24 Tgt→ Src 16.10 51.44 76.16
NLLB WMT24 + BT SrcNorm→ TgtNorm 39.62 64.02 84.30
NLLB WMT24 + BT TgtNorm→ SrcNorm 48.21 70.31 84.60
NLLB WMT24 + BT Src→ Tgt 23.32 53.10 79.05
NLLB WMT24 + BT Tgt→ Src 17.33 52.50 77.10
LLaMA WMT24 FS SrcNorm→ TgtNorm 42.08 66.84 85.25
LLaMA WMT24 FS TgtNorm→ SrcNorm 20.05 52.90 83.03
LLaMA WMT24 FS Src→ Tgt 20.07 57.60 85.71
LLaMA WMT24 FS Tgt→ Src 35.54 59.79 87.66

French-English

mBART50 WMT22 43.51 64.64 80.27
mBART50 WMT24 53.15 72.68 84.55
NLLB WMT24 SrcNorm→ TgtNorm 46.24 68.78 85.42
NLLB WMT24 TgtNorm→ SrcNorm 54.79 73.88 85.50
NLLB WMT24 Src→ Tgt 31.45 59.69 80.65
NLLB WMT24 Tgt→ Src 34.07 63.20 79.80
LLaMA WMT24 FS SrcNorm→ TgtNorm 31.11 60.02 85.90
LLaMA WMT24 FS TgtNorm→ SrcNorm 5.64 30.87 80.42
LLaMA WMT24 FS Src→ Tgt 38.23 66.54 89.08
LLaMA WMT24 FS Tgt→ Src 24.71 58.38 82.91

Table 2: Performance of our MT systems on the validation set. SrcNorm and TgtNorm stand for Source and Target
normalised, respectively. BT stands for back-translation and FS stands for Few-Shot.

Tag Precision Recall F1

French-English

formality 90.2 78.8 84.1
lexical cohesion 46.4 42.5 44.3
pronouns 90.8 72 80.3
verb form 62.9 56.8 59.7

Table 3: Official results for the French-English transla-
tion task (blind set).

24 of Table 2). Our constrastive submission 2 was
based on mBART50. For this setup, we obtained
53.15 BLEU, 72.67 chrF and 84.55 COMET points
on the validation set (cf. row 17 of Table 2).

Our primary submission of the German-to-
English task was based on Llama. As can be seen

from Table 4, we obtained 55.0 BLEU, 72.1 chrF,
90.8 COMET and 0.167827 CONTEXT-COMET-
QE (Rei et al., 2020b) points on the WMT 2024
blind test sets. Our primary submission of French-
to-English was based on NLLB. For this setup we
obtained 31.3 BLEU, 60.9 chrF, 82.4 COMET and
-0.23095 CONTEXT-COMET-QE points. Our best-
performing system of the German-to-English task
is Llama with few-shot learning. We secured the
top place for German-to-English in this competi-
tion. Table 3 shows our precision for pronouns
in the French-to-English system. Our submission
for the French-to-English translation task is in fact
the best-performing system in terms of pronoun
translatiosn.
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Model COMET ChrF BLEU COMET-QE

German-English

LlaMa WMT24 FS 90.8 72.1 55.0 0.16

French-English

NLLB WMT24 82.4 60.9 31.3 -0.23

Table 4: Official results. Performance of our MT systems on the blind set (primary submissions).

7 Conclusion

This paper described our submissions to the WMT
2024 Chat Translation Task for German-to-English
and French-to-English language pairs. We applied
several training and fine-tuning strategies such as
standard fine-tuning and fine-tuning with few-shot
prompting. We investigated our approaches using
three different LLMs: NLLB, Llama and mBART.
This allowed us to make a comparative analysis
between different architectures and strategies. One
of the key findings of our investigation is that the
performance of the MT systems on translating con-
versational messages can be improved with knowl-
edge transfer. We also found that our MT systems
exhibit robustness on this difficult-to-translate do-
main.

For future investigations, given the shortage of
conversational data, we plan to focus on exploring
the use of advanced data augmentation techniques.
We also intend to further investigate to what extent
synthetic data can be beneficial in chat translation
scenarios.
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Abstract

This paper describes the submissions of
Huawei Translation Services Center(HW-TSC)
to WMT24 chat translation shared task on
English↔Germany (en-de) bidirection. The
experiments involved fine-tuning models us-
ing chat data and exploring various strategies,
including Minimum Bayesian Risk (MBR) de-
coding and self-training. The results show sig-
nificant performance improvements in certain
directions, with the MBR self-training method
achieving the best results. The Large Language
Model also discusses the challenges and poten-
tial avenues for further research in the field of
chat translation.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015; Gehring
et al., 2017; Wu et al., 2023) has made substantial
progress in recent years, largely due to the adoption
of the transformer (Vaswani et al., 2017) architec-
ture. NMT has demonstrated promising translation
results across various scenarios. However, research
in the field of chat translation remains limited, pri-
marily due to the scarcity of chat data. In prior
chat-related tasks, we utilized data from related
domains, such as spoken dialogue and subtitles, to
augment our translation models, but the outcomes
were only mediocre.

Like the preceding two chat shared tasks, the
WMT24 chat shard task concentrates on translating
conversations between consumers and servers in
different languages. We participated in the en-de
bidirectional translation task. The en-de bidirec-
tional models we submitted to the WMT22 chat
task (Yang et al., 2022) function as our baseline
models, leveraging the deep transformer (Dou et al.,
2018) architecture. Building on this foundation,
we employed the Minimum Bayesian Risk (MBR)
strategy to select the optimal translation outcomes,

and iterative self-training yielded the best results
on the development set.

Beyond traditional NMT models, the emergence
of large language model(LLM) has introduced a
new paradigm to translation tasks(Wang et al.;
Moslem et al., 2023; Guo et al., 2024). Due to
its extensive context length and powerful language
modeling capabilities, large language models sig-
nificantly outperform NMT in the translation of
lengthy texts and the fluency of translation results.
We input the translation output from the NMT
model into the LLM as a prompt, allowing the LLM
to combine the reference translatio from traditional
NMT model to produce an improved translation.
However, the comet metric of the LLM’s output did
not surpass the optimal results of the NMT model.

Recognizing that chat translation is a context-
aware task, we conducted a series of context-aware
experiments(Wu et al., 2024) using LLMs with
WMT and IWSLT document data . We fine-tuned
the LLM by constructing streamed translations and
contextualized translation data, and translated the
development set in the same format. Unfortunately,
the results were unsatisfactory.

The structure of this paper is as follows: Sec-
tion 2 describes our data volume and format for
fine-tuning the LLM. The model structure and key
methods utilized are presented in Section 3. Sec-
tion 4 outlines our experiment setting. Results and
analysis are presented in Section 5, and we con-
clude our work in Section 6.

2 Data

2.1 Data Size

All experiments conducted for this task are based
on the model developed by our team, as partici-
pated in the WMT22 chat shared task. For details
on the training data and strategies used for this
model, please refer to the system report Yang et al.
(2022); Wei et al. (2021). Table 1 and Table 2 list all
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24 train 24 valid 22 valid 22 test
17805 2569 2109 2488

Table 1: Chat shared task en-de bilingual data lines used
for training

Dataset lines documents
iwslt_2017_ted 209522 1705

news-commentary-v18 449333 11396

Table 2: Document-level data used for LLM related
experiments

the data used in this experiment. Based on the prior
tasks experience, the contribution of out-domain
data to the improvement of translation quality is
limited. Therefore, we only further optimize our
translation model using the data shown in Table 1,
which consists of historical chat tasks. The data in
Table 2 is used for fine-tuning the LLM, enabling
it to translate context-aware texts and validate the
impact of paragraph information on dialogue trans-
lation quality.

2.2 Data pre-processing

Since the domain-specific data listed in Table 1 is
limited, no special treatment was applied to this
portion of the data; it was simply tokenized and
input into the NMT model. For the document data
in Table 2, we constructed the two formats shown
in Table 3 by considering the characteristics of chat
tasks, and used them to fine-tune the LLM, sepa-
rately validating the impact of only preceding infor-
mation and both preceding and context information
on chat translation quality.

In the format of streamlined translation, during
each translation session, only preceding informa-
tion is visible. The LLM generates results based on
this preceding information and the previews trans-
lation output, resulting in a translation that leans
more towards the style of the reference.

In the context-aware translation format, during
each translation session, preceding and following N
sentences are provided along with the output of the
NMT model, guiding the LLM to combine context
information to produce a more natural translation.

3 System Overview

3.1 Model

The baseline models for WMT24 chat task use the
Transformer-Big architecture. Deep transformer is
an improvement of Transformer, which increases

the number of encoder layers and uses pre-layer-
normalization to further improve model perfor-
mance. Therefore, in this task, we adopt the fol-
lowing model architecture:

• Deep 25-6 large Model: This model features
25-layer encoder, 6-layer decoder, 1024 di-
mensions of word vector, 4096 domensions
of FFN, 16-head self-attention, and pre-layer-
normalization.

For experiments related to large language model,
we choose llama2-8b as the base.

3.2 MBR Decoding

Minimum Bayesian Risk (MBR) decoding was ini-
tially introduced during the era of statistical ma-
chine translation(Kumar and Byrne, 2004; Jinnai
et al., 2024). This strategy calculates the output
with the minimum expected error among multiple
candidates, rather than simply selecting the result
with the highest probability during the decoding
process. In our experimental approach, we uti-
lize the outputs of 10 distinct models as candidates.
These candidates are then used to score each other’s
comet, and the candidate with the highest average
comet is chosen as the final output. Algorithm 1
show the detail.

3.3 Regularized Dropout

Regularized Dropout (R-Drop) 1(Liang et al., 2021)
presents a simple yet more effective approach
to regulate the training inconsistency caused by
dropout (Srivastava et al., 2014). Specifically, dur-
ing each mini-batch training, each data sample is
processed twice through the forward pass, with
each pass utilizing a distinct sub-model and ran-
domly dropping out some hidden units. R-Drop
minimizes the bidirectional Kullback-Leibler (KL)
divergence (van Erven and Harremos, 2014) be-
tween the two distributions outputted by the two
sub-models for the same data sample, thereby regu-
lating the outputs of two sub-models randomly sam-
pled from dropout for each data sample in training.
This method effectively alleviates the inconsistency
between the training and inference stages.

3.4 Self-Training

Self-Training(ST) (Imamura and Sumita, 2018),
also known as forward translation (FT) (Wu et al.,
2019), typically involves utilizing a forward NMT

1https://github.com/dropreg/R-Drop
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Streaming Translation Data Format
Natural English: <src1>, Translated German: <mt1>, Natural German:<ref1>
Natural German: <src2>, Translated English: <mt2>, Natural English:<ref2>
Natural English: <src3>, Translated German: <mt3>, Natural German:<ref3>

Translate the following sentence into German with a style bias towards Natural:
Natural English: <src4>, Translated German: <mt4>, Natural German: <ref4>

Context-aware Translation Data Format
Natural English: <src1>, Translated German: <mt1>
Natural German: <src2>, Translated English: <mt2>
Natural English: <src3>, Translated German: <mt3>
Natural German: <src4>, Translated English: <mt4>
Natural English: <src5>, Translated German: <mt5>

Translate the following sentence into German with a style bias towards Natural:
Natural English: <src3>, Natural German: <ref3>

Table 3: LLM Supervised fine-tuning(SFT) data format

Algorithm 1 MBR decoding algorithm

Input:
The set of translation candidates file, MTn;
The source text file, SRC;
Comet metric model, Mcomet;

Output: final translation output
1: initialize output list out[]
2: for each line ∈ [MT1, ...,MTn, SRC] do
3: initialize tmp_max_comet = 0
4: initialize candidate_mt =′′

5: for each candidate ∈ [mt1,mt2, ...,mtn]
do

6: let each mtx as ref, candidate as mt and
calculate the comet score with source text
using Mcomet

7: mean_comet =

∑n

x=1
cometx
n

8: if mean_comet > tmp_max_comet
then

9: tmp_max_comet = mean_comet
10: candidate_mt = candidate
11: end if
12: end for
13: out.append(candidate_mt)
14: end for
15: return out

model to translate source-side monolingual data
into target-side text, thereby generating synthetic
bilingual data. The generated data is then employed
to train the forward translation model. Typically,
beam search (Freitag and Al-Onaizan, 2017) is ap-
plied for forward translation. In our experimen-
tal approach, we set the beam size to 4. Further-
more, we utilized the MBR selection results as
self-training data, which led to the best results on
the validation set.

3.5 Back Translation

Back-translation (Edunov et al., 2018; Wei et al.,
2023) is acknowledged as a highly effective data
augmentation strategy to boost NMT model per-
formance. Unlike forward translation, back-
translation converts target-side monolinguals into
source-side text, thereby producing synthetic paral-
lel corpora. Numerous back-translation techniques
have been explored, with sampling (Graça et al.,
2019), noise (Edunov et al., 2018), and tagged back-
translation (Caswell et al.) demonstrating superior
results. In our experimental setup, we opted for
sampling back-translation.

3.6 Model Averaging

Model averaging (Dormann et al., 2018) is a widely
utilized technique to enhance translation quality.
Typically, models (in our experiment, 5 models)
that exhibit the highest performance on the devel-
opment set are chosen for parameter averaging,
which leads to substantial improvements.

1033



3.7 LLM Few-shot Prompting
Although large language models exhibit impres-
sive zero-shot capabilities, they still struggle with
more complex tasks in the zero-shot setting. To ad-
dress this, few-shot prompting can be employed as
a technique for in-context learning, where demon-
strations are provided in the prompt to guide the
model towards enhanced performance. In our ap-
proach, we provide 5 reference translations to assist
the large language model in producing superior re-
sults.

3.8 LLM SFT with LoRA
LLM SFT (Supervised Fine-Tuning) is a technique
for fine-tuning large language models using spe-
cific datasets, which effectively enhances the per-
formance of large language models on tasks such as
text generation, machine translation, or sentiment
analysis. LoRA (Low-Rank Adaptation)(Hu et al.,
2022) is a technique that reduces the computational
burden during large language model training by de-
creasing the number of model parameters through
matrix decomposition. This technique maintains
performance while lowering computational and
memory requirements. By applying LoRA, large
language models can perform better under limited
computational resources, reducing training costs
and resource consumption.

4 Experiment Setting

During the NMT model training phase, we use
Pytorch-based Fairseq2 (Ott et al., 2019) open-
source framework as our benchmark system. Each
model is trained using 8 GPUs with a batch size
of 2048. The update frequency is 4 and the learn-
ing rate is 5e-4. The label smoothing rate is set to
0.1, the warm-up steps to 4000, and the dropout to
0.3. Adam optimizer (Kingma and Ba, 2015) with
β1=0.9 and β2=0.98 is also used. Beyond that,
we have configured the hyper parameter reg-alpha
of the R-Drop technique to a value of 5. In the
evaluation phase, We employ the official automatic
evaluation scripts and primarily base our model
and result selection on the comet metric(Rei et al.,
2022)3.

In the experiments related to large models, we
utilize the open-source model llama2_8b_instruct
from Meta and the training scripts from HF to train
our models, setting the max_seq_length to 1024.

2https://github.com/facebookresearch/fairseq
3https://github.com/Unbabel/COMET

For inference on large models, we employ the vllm
tool.

5 Result and Analysis

Table 4 displays the results of the official test set,
ranked according to the comet-22 score, where our
system achieved the top position in comet-22, chrF,
and BLEU metrics.

The primary results we submit are obtained by
translating the source text of the test set with multi-
ple NMT models, selecting the optimal output us-
ing MBR strategy, then training on the best models
from the validation set using self-training method.
The models are averaged over 5 epochs before be-
ing used to translate the test set to yield the final
results.

5.1 Sentence-level NMT

In the previous chat tasks, we have tried various
strategies to optimize the model, and the results
from the validation set indicate that the baseline
model from 2022 was already sufficiently powerful.
On this basis, we combined this year’s training set,
the 2022 validation and test sets, and conducted
BT and ST reinforcement strategies, only in the
direction of translation from English to German has
there been a noticeable improvement. The results
shown in Table 5.

To further improve the results, we attempted
the MBR decoding strategy, generating 10 alterna-
tive outputs for the validation set using different
NMT models in previous steps. These outputs were
scored using comet, and the output with the lowest
Bayesian risk was selected as the final result. The
results in Table 5 indicate that improvement was
only seen in the en→de direction. Further, we uti-
lized the MBR results to perform another ST on
each direction, ultimately achieving the best results
in both directions in the validation set. The reason
for the improvement we observed is that the MBR
algorithm can integrate the capabilities of multiple
models. When performing self training, it essen-
tially utilizes the optimal results of multiple models
for a round of knowledge distillation.

5.2 Document-level MT with LLM

According to the test results shown in Table 6,
on the chat task valid set, the results of LLM
(Large Language Model) are significantly worse
than sentence-level under both comet or doc-comet
metrics. The few-shot capabilities of LLM is in-
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team comet↑ chrf↑ bleu↑ context-comet-qe↑
HW-TSC 93.4 83.2 69.8 0.221
unbabel+it 92.9 78.2 62 0.253
clteam 91.3 71.9 53 0.204
ADAPT 90.8 72.1 55 0.168
DCUGenNLP 90.8 71.2 53 0.188
baseline 89.8 70.8 51.1 0.173
SheffieldGate 89.4 67.5 45.2 0.177

Table 4: The official automatic evaluation results of the test set, ranked based on the COMET-22 score

System en→de de→en
baseline 86.76 85.88
22_denoise 90.06 91.42

+ ST 91.23 91.40
+ ST&BT 91.23 91.53

+ MBR ST 91.91 91.86
MBR 91.75 90.87

Table 5: Sentence-level NMT results.

deed far better than zero-shot, but it still falls short
of sentence-level results. After using the document-
level data for LLM SFT, the results became even
worse. We analyzed that the reason is the large
domain shift, as the IWSLT and WMT datasets we
used are far from the domain of the chat task.

To validate the capability of LLM in translating
document-level content, we tested the results on
the iwslt2017 en-de document-level test set. The
results in the right half of Table 6 demonstrate
that LLM’s few-shot capability surpassed that of
the chat task’s sentence-level model on this test
set. Further, by fine-tuning the large model with
document-level data, we obtained better results.

Comparing the results of stream translation and
context-aware translation, we originally expected
context-aware format data to yield better results be-
cause the model could refer to contextual informa-
tion during translation. However, we analyzed that
stream translation sees the previous step’s trans-
lation result each time, which is more consistent
with the translation style of large model. On the
contrary, context-aware requires input of the refer-
ence MT result from sentence-level model in one
go, which is less consistent with the style of large
model, causing the model to fail to effectively uti-
lize these information.

6 Conclusion

This paper presents the submissions of HW-TSC
to the WMT 2024 Chat Translation Shared Task.
For both direction in en↔de translation task, we
perform experiments with a series of training strate-
gies. The results show that MBR self-training
achieves the best results. In the future, we will
continue to explore the applicability of MBR strat-
egy mentioned in this paper.

Beyond that, due to time constraints, further
fine-tuning of large language models using chat
task data was not conducted to assess its perfor-
mance. Additionally, there is room for continued
exploration of the translation capabilities of large
language models.
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Abstract

In this paper, we present our approach to the
WMT24 - Chat Task, addressing the challenge
of translating chat conversations. Chat con-
versations are characterised by their informal,
ungrammatical nature and strong reliance on
context posing significant challenges for ma-
chine translation systems. To address these
challenges, we augment large language mod-
els with explicit memory mechanisms designed
to enhance coherence and consistency across
dialogues. Specifically, we employ graph rep-
resentations to capture and utilise dialogue con-
text, leveraging concept connectivity as a com-
pressed memory. Our approach ranked second
place for Dutch and French, and third place for
Portuguese and German, based on COMET-22
scores and human evaluation.

1 Introduction

Machine translation (MT) has been a prominent
area of research, leading to the development of
various approaches over the years (Maruf et al.,
2021). While significant progress has been made,
the majority of research has concentrated on refin-
ing methodologies rather than exploring the dif-
ferent types of text that require translation. A no-
table gap exists in the automatic translation of chat
conversations—a gap that the WMT24 - Chat task
specifically aims to address.

Chat conversations present unique challenges
due to their informal, spontaneous nature, and
frequent grammatical inconsistencies (Gonçalves
et al., 2022). These characteristics starkly contrast
with the more structured and formal text types, such
as news articles, technical manuals, and political
or medical documents, which have been the tradi-
tional focus of MT systems. In the context of chat
translation, it is crucial to incorporate dialogue con-
text effectively and to model the speakers and their
language direction.

* Corresponding author.

Graph Constructor

Output 
text

Target: Können 
Sie mir bitte Ihre 
E-Mail-Adresse 
für das 
PRS-ORG Konto 
nennen?

TowerInstruct

Translation 
model

Triple history

Input text

Assistant: Thank you for 
contacting PRS-ORG Help. 
Assistant: How can I help 
you?
User: Ich kann mich nicht 
einloggen!

Dialogue 
history

Source: May I know your 
email for the PRS-ORG 
Account please?

Figure 1: Approach 1: Triple-TowerInstruct

Recent advances in machine translation have
increasingly leveraged large language models
(LLMs). However, as noted by Maharana et al.
(2024), LLMs often struggle with tasks requiring
long-term memory, reasoning over historical con-
text, and establishing long-range temporal or causal
connections. These limitations are particularly
problematic to dialogue tasks, where maintaining
coherence and consistency across a conversation is
vital.

To address these challenges, our system pro-
poses enhancing LLMs with explicit memory
mechanisms designed to support the generation
of more consistent and coherent translations in dia-
logue settings1. We hypothesise that utilising graph
representations will further improve the translation
of chat conversations by capturing the connectivity
between concepts, thus serving as a compressed
memory of the dialogue context.

2 Related Work

In this section, we provide a brief overview of re-
lated work in the areas of conversational NLP, ma-
chine translation of conversational text, and text
generation methods that incorporate knowledge
graphs as an additional source of information.

1All code and data related available at https://github.
com/selBaez/chat-task-2024-data.
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Conversational NLP Dialogue systems have a
long-standing history in NLP. The advent of LLMs
has led to significant improvements in the quality of
these systems. However, a persistent challenge has
been the limited context window of LMs, which re-
stricts their ability to manage long chat histories ef-
fectively (Xu et al., 2021). To address this, retrieval-
augmented models have been developed, which
retrieve relevant passages from prior interactions
to maintain coherence in dialogue over extended
conversations (Xu et al., 2021). Recently, advance-
ments in model architecture have resulted in sub-
stantially larger context windows, enabling state-of-
the-art dialogue systems, such as ChatGPT, to op-
erate effectively with this extensive LMs (Achiam
et al., 2023).

Machine Translation Machine translation has
seen remarkable advancements with the rise of
large language models (Wang et al., 2023; Robin-
son et al., 2023). However, translating dialogues
remains a particularly challenging task due to the
informal and often context-dependent nature of
conversational text (Gonçalves et al., 2022). The
findings of recently shared tasks highlight ongoing
difficulties and emerging solutions in this area (Far-
inha et al., 2022).

Our work is particularly related to the use of
knowledge graphs in translation tasks (Moussallem
et al., 2018; Zhao et al., 2021). In most exist-
ing approaches, multilingual knowledge graphs are
leveraged to disambiguate and translate key entities
within the text. This approach differs significantly
from our method, as we employ a monolingual
graph to store key information from the dialogue
in a compressed format, facilitating more accurate
and context-aware translations.

Graph-based Dialogue Systems Knowledge
graphs have proven to be a valuable resource for
grounding dialogue systems. The most common
approach involves integrating large, external knowl-
edge graphs to provide additional context and in-
formation that can enhance the dialogue’s quality
and relevance (Liu et al., 2019; Tuan et al., 2019;
Zhang et al., 2020). While these approaches share
a similar objective with our work, they fundamen-
tally differ in that the knowledge graphs used are
independent of the dialogue content itself.

In contrast, other approaches leverage graphs to
represent the dialogue history, offering a structured
way to maintain and utilise past interactions (Xu
et al., 2020; Chen et al., 2023). This method en-

hances transparency, reduces the likelihood of hal-
lucinations, and improves the system’s ability to
manage long-term conversations (Baez Santamaria
et al., 2023). Our work aligns with this approach
by utilising a graph to capture and organise key
dialogue information, enabling more effective and
contextually grounded dialogue systems.

3 Shared Task description

A dataset of original bilingual customer support
conversations is provided. The language pairs avail-
able are English ⇌ German (en-de), English ⇌
Dutch (en-nl), English ⇌ French (en-fr), En-
glish ⇌ Brazilian Portuguese (en-pt_br), and En-
glish ⇌ Korean (en-ko). Due to our team’s lan-
guage expertise, we decided to focus on the first
four pairs.

4 System Overview

All our systems work with graphs extracted from
dialogues. We employ a multi-step process to ex-
tract entities and relationships from the dialogue
data and utilise these in various model settings. Our
primary submission, Triple-TowerInstruct, inte-
grates dialogue history into the translation process
at inference, leveraging contextual cues to enhance
performance across four language pairs. In addi-
tion to this, we explored an ablation study (Tow-
erInstruct without dialogue history) and a novel
model, GraphFlanT5, which combines graph and
text embeddings within a unified framework.

4.1 Pre-processing
For generating the graphs, we perform entity and
relation extraction by prompting GPT-4o. The
prompt used for this process (see Prompt 1) is de-
signed to extract relevant triples from the dialogue
data, capturing the essence of interactions in a struc-
tured format. The system is instructed to analyse
the dialogue and break it down into triples, each
consisting of a subject, predicate, and object. These
triples serve as the fundamental building blocks of
the graph, representing the interactions between
speakers.

In addition to extracting these triples, the prompt
also instructs the system to annotate each triple
with several attributes that provide deeper insights
into the nature of the interactions. These annota-
tions include:

• Sentiment: This attribute captures the emo-
tional tone of the interaction, with values rang-
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ing from -1 for negative sentiment, 0 for neu-
tral, and 1 for positive sentiment. This al-
lows us to understand the emotional context
in which the interaction takes place.

• Polarity: Polarity indicates whether the inter-
action involves a negation, affirmation, or is
neutral or questioning. It is coded as -1 for
negation, 0 for neutral or questioning, and 1
for affirmation. This helps in identifying the
stance or intent behind the speaker’s words
and keeps the predicates uniform across nega-
tion, statements and questions (e.g. "don’t
travel" and "travel" receive the same predicate
travel with different polarity scores)

• Certainty: This attribute is on a scale from
0 (uncertain) to 1 (certain), reflecting the
speaker’s confidence or the definitiveness of
the statement. This helps in distinguishing
between statements of fact and those that are
speculative or uncertain and can subsequently
be used by the model to communicate cer-
tainty about its knowledge more effectively.

• Dialogue Act: Dialogue acts categorise the
type of speech act being performed, with pre-
defined categories such as greeting, farewell,
negative reaction, positive reaction, concern,
query, and others.

4.2 Approach 1: Triple-TowerInstruct

In our first approach, we use the TowerInstruct-7B-
v0.22 model, a variant of the Tower (Alves et al.,
2024) family specifically designed for translation-
related tasks.

TowerInstruct-7B-v0.2 is based on the LLaMA-
2 architecture, which has been extended through
additional pretraining and fine-tuning to enhance its
multilingual capabilities, outperforming other open
models of similar scale. The model’s foundation,
TowerBase, was developed by continuing the pre-
training on a diverse multilingual dataset across 10
languages (including Dutch, German, French, and
Portuguese) incorporating both monolingual and
parallel data to improve translation quality. Sub-
sequently, TowerInstruct was fine-tuned using the
TowerBlocks dataset, which includes a broad range
of translation-related tasks and, relevant for the task

2https://huggingface.co/Unbabel/
TowerInstruct-7B-v0.2.

of chat translation, multi-turn dialogue data from
UltraChat (Ding et al., 2023). This fine-tuning pro-
cess tailored the model specifically for translation
workflows, making it adept at handling complex,
multilingual interactions.

Prompt 1: Triple extraction with GPT-4o

system_prompt =
You will analyze a dialogue and break it down
into triples consisting of a subject, predicate,
and object. Each triple should capture the
essence of interactions between speakers.
Additionally, annotate each triple with:
- Sentiment (-1 for negative, 0 for neutral,
1 for positive)
- Polarity (-1 for negation, 0 for neutral/
questioning, 1 for affirmation)
- Certainty (a scale between 0 for uncertain
and 1 for certain)
- Dialogue act (

0 : "greeting",
1 : "farewell",
2 : "negative_reaction",
3 : "positive_reaction",
4 : "concern",
5 : "query",
6 : "other")

Ensure that predicates are semantically
meaningful. Separate multi-word items with
an underscore.

Save it as a JSON with this format:
{
"Conversation ID": "60250de4b",
"dialogue": [

{
"sender": "customer",
"text": "I can't find my order. It was
supposed to arrive yesterday.",
"triples": [
{

"subject": "I",
"predicate": "cannot_find",
"object": "my_order",
"sentiment": -1,
"polarity": -1,
"certainty": 1,
"dialogue_act": 4

},
{

"subject": "It",
"predicate": "was_supposed_to_arrive",
"object": "yesterday",
"sentiment": -1,
"polarity": 1,
"certainty": 0.7,
"dialogue_act": 4

}]},
{

"sender": "agent",
"text": "I will help you with that.",
"triples": [
{

"subject": "I",
"predicate": "will_help",
"object": "you_with_that",
"sentiment": 1,
"polarity": 1,
"certainty": 1,
"dialogue_act": 3

}]}]}

user_prompt = f"Analyze the following con-
versation with ID {conversation_id}:
{conversation_text}"

Triple-TowerInstruct During inference, we
merge the triple-based dialogue history, generated
in the pre-processing stage (see Section 4.1), with
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Input text
HS: In the West, women have legal equality, equal rights, and are protected 
from discrimination: they should stop busting our balls and whining.

Dialogue history:
S1: Women should stop whining: there are no professions barred to 

them in Western Society.
S2: Not according to the law, but many fields are still not welcoming to 

women, especially STEM.

Input graph
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Output text

Counter-narrative: Are 
you sure? Women truck 
drivers, for example, earn 
about 76% the wages of 
male truck drivers. It's still 
a long way to equality.

Figure 2: Approach 2: GraphFlanT5

the current source sentence. This combined input,
which encapsulates both the conversational con-
text and the immediate translation task, is then fed
into the model to ensure that the output accurately
reflects the dialogue’s ongoing flow and context.

As an ablation, we also evaluated the model’s
performance without providing dialogue history
graphs.

4.3 Approach 2: GraphFlanT5
We have developed a unified framework named
GraphFlanT5 (see Figure 2), which integrates both
graph and text input into a single architecture, sim-
ilar to (Yao et al., 2023). This model is designed to
generate target sequences in text based on the dia-
logue history and the source sequence represented
in text and graph forms.

As further preprocessing for this approach, we
use spaCy’s NeuralCoref3 to resolve co-references,
limiting the number of nodes to a maximum of 100.
These are then represented as an adjacency matrix
and fed into the main model.

To encode the graph, we employ a Graph At-
tention Network (GAT) (Veličković et al., 2018)
with a single attention layer, followed by a dense
layer and normalization. On the text side, we use a
Transformer encoder for encoding. We specifically
used FlanT5-base4 for its multilingual capabilities.
After obtaining the encoded features from both the
graph and text, we apply cross-attention to align
the text representation with the graph representa-
tion. A gated fusion mechanism (Wu et al., 2021)
is then used to combine the outputs of the cross-
attention. Finally, the fused features are passed
into the Transformer decoder to generate the final
textual answer.

We fine-tuned our model for 25 epochs with a
learning rate of 5e-5 and a weight decay of 0.05.

3https://github.com/huggingface/neuralcoref
4https://huggingface.co/google/flan-t5-base

Training was conducted using mixed precision on
two A10 GPUs.

5 Results & Discussion

5.1 Automated Metrics

Our primary submission, Triple-TowerInstruct, and
its ablation variant without dialogue history graphs
(NH) are compared against our second approach
GraphFlanT5, the baseline (NLLB-200’s (Team
et al., 2022) 3.3B variant5), and the top-performing
Unbabel system, using COMET-22 (Rei et al.,
2022), Contextual-COMET-QE (Vernikos et al.,
2022), BLEU (Papineni et al., 2002), and ChrF
(Popović, 2015) scores 6.

Tables 1 and 2 show the results from our exper-
iments across four language pairs: en-de, en-nl,
en-nl, and en-pt_br. While we only submitted
Approach 1 (Triple-TowerInstruct), we include the
evaluation of the other approaches which were con-
ducted after the shared task submission deadline.
From the submitted approach, our team ranked sec-
ond place for en-nl and en-fr, and third place for
en-pt_br and en-de on the COMET-22 (Rei et al.,
2020a) score.

Triple-TowerInstruct performed well across all
language pairs, consistently outperforming the
baseline based on COMET and in the majority
of instances for the other metrics. For instance,
in the en-de task, Triple-TowerInstruct achieved
a COMET score of 91.3, outperforming the base-
line’s 89.8. The BLEU and ChrF scores further sup-
port this, with Triple-TowerInstruct scoring 53.0 in
BLEU and 71.9 in ChrF for en-de, both above the
baseline scores of 51.1 and 70.8, respectively. The

5https://huggingface.co/facebook/nllb-200-3.
3B

6Sacrebleu is used for the implementation of BLEU and
ChrF (Post, 2018).
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Model en-de en-nl

COMET ChrF BLEU Context-
COMET-
QE

COMET ChrF BLEU Context-
COMET-
QE

Triple-TowerInstruct 91.3 71.9 53.0 0.2039 90.9 70.6 48.0 0.0816

TowerInstruct NH 91.2 72.2 53.9 0.2128 91.3 66.2 44.7 0.1982

GraphFlanT5 85.3 65.1 44.5 0.0120 88.4 68.5 48.7 0.0697

Baseline 89.8 70.8 51.1 0.1730 88.1 62.6 38.7 0.0873

Unbabel+it 92.9 78.2 62.0 0.2526 93.6 79.8 63.9 0.1167

Table 1: Translation Results for German (en-de) and Dutch (en-nl). NH models refer to ablations without dialogue
history. Results for the baseline and best performing system in the task (Unbabel+it) are included for comparison.

Model en-fr en-pt

COMET ChrF BLEU Context-
COMET-
QE

COMET ChrF BLEU Context-
COMET-
QE

Triple-TowerInstruct 91.6 75.7 58.8 0.0775 91.3 66.8 45.3 0.1909

TowerInstruct NH 91.7 75.2 57.9 0.0756 90.6 71.0 50.9 0.0686

GraphFlanT5 85.8 67.4 47.0 -0.1007 90.4 75.0 56.7 -0.0095

Baseline 90.1 76.2 58.7 0.0101 86.2 62.2 35.3 -0.0613

Unbabel+it 92.8 79.8 65.7 0.1034 93.9 79.7 65.0 0.2367

Table 2: Translation Results for French (en-fr) and Portuguese (en-pt). NH models refer to ablations without
dialogue history. Results for the baseline and the best performing system in the task (Unbabel+it) are included for
comparison.

NH variant, which omits dialogue history, saw a mi-
nor drop in performance for en-de and en-pt_br,
with a drop in COMET score of 0.1 and 0.7 re-
spectively, and slightly lower BLEU and ChrF
scores. Interestingly, the opposite is true for the
en-nl and en-nl language pairs. The Context-
COMET-QE scores (Rei et al., 2020b), which are
intended for reference-free machine translation
evaluation and trained to reflect human judgements
of the quality of translations, also demonstrated
variability. For en-de, Triple-TowerInstruct scored
0.2039 in Context-COMET-QE (Rei et al., 2020b),
while the NH variant scored 0.2128, showing a
slight improvement when dialogue history was re-
moved. While for en-pt_br including the history
increased the score by 0.03837. We also observed
that COMET-based metrics and n-gram matching
metrics (ChrF and BLEU) disagreed in ranking our

7See Kocmi et al. (2024) for an explanation of the different
dynamic ranges of the mentioned metrics.

TowerInstruct variants. When COMET favoured
one variant, the n-gram metrics ranked it lower, and
vice-versa. Underscoring the importance of using
a combination of metrics, as relying on a single
metric could give an incomplete picture of model
performance.

GraphFlanT5 which integrates graph and text
input within a unified framework, showed moderate
results and did not outperform our TowerInstruct
variants or the baseline in most cases. In the en-de
task, GraphFlanT5 recorded a COMET score of
85.3, lower than both TowerInstruct and the base-
line. Its BLEU and ChrF scores were also lower,
at 44.5 and 65.1, respectively. However, in some
tasks like en-nl, GraphFlanT5 performed compet-
itively with a BLEU score of 48.7, suggesting that
the integration of graph representations may offer
benefits in certain contexts, but requires further
optimisation to be competitive to more traditional
approaches.
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Model en-de en-nl

Formality Lexical
Cohesion

Pronouns Verb
Form

Formality Lexical
Cohesion

Pronouns Verb
Form

Triple-
TowerInstruct

86.3 74.1 78.5 – 35.5 66.4 – 40.0

Baseline 79.4 76.0 79.1 – 53.0 57.4 – 35.7

Unbabel+it 88.6 82.9 70.5 – 93.9 87.7 – 54.5

Table 3: F1 Scores for German (en-de) and Dutch (en-nl) across different evaluation dimensions of MUDA. Where
entries are left blank, the metric does not evaluate the language for that dimension.

Model en-fr en-pt

Formality Lexical
Cohesion

Pronouns Verb
Form

Formality Lexical
Cohesion

Pronouns Verb
Form

Triple-
TowerInstruct

89.6 78.6 88.6 68.1 78.7 88.5 55.0 –

Baseline 86.9 82.1 82.0 70.2 45.7 81.0 55.8 –

Unbabel+it 91.3 90.2 92.9 74.2 88.0 95.5 74.4 –

Table 4: F1 Scores for French (en-fr) and Portuguese (en-pt) across different evaluation dimensions of MUDA.

5.1.1 MUDA

Tables 3 and 4 present the F1 scores for different
evaluation dimensions—Formality, Lexical Cohe-
sion, Pronouns, and Verb Form—of the Multilin-
gual Discourse-Aware (MuDA) benchmark (Fer-
nandes et al., 2023). We compared our primary
model, Triple-TowerInstruct, against the baseline
and the top-performing system, Unbabel+it. MuDA
is designed to systematically evaluate machine
translation models on their handling of discourse
phenomena that require context. Unlike traditional
metrics that focus broadly on translation accuracy,
it specifically targets the model’s ability to correctly
translate discourse elements, such as pronouns and
verb forms, that depend heavily on the surrounding
context.

The performance of our model varied across dif-
ferent dimensions and language pairs, outperform-
ing the baseline in 7 out of 13 cases. Overall, it
demonstrated relatively strong performance on the
Formality dimension, achieving competitive F1
scores in language pairs such as en-de, en-nl, and
en-pt_br, with a notable increase of 33 points
over the baseline for the latter. The exception was
the en-nl pair, where the model’s formality score

was notably lower compared to both the baseline
and top-performing systems, indicating a need for
targeted improvements in handling formality spe-
cific to Dutch translations. However, performance
on Lexical Cohesion, Pronouns, and Verb Form
was less consistent across language pairs, with the
model outperforming the baseline in only half of
the cases.

5.2 Human Evaluation
Human evaluation confirms that our approach out-
performs the baseline, and ranked second place for
en-nl and en-fr, and third place for en-pt_br
and en-de across all submitted approaches.

en-de en-nl en-fr en-pt

Triple-
TowerInstruct

78.6 84.37 73.32 69.85

Baseline 74.5 53.07 67.81 56.37

Unbabel+it 84.22 92.22 79.62 78.0

Table 5: Human Evaluation Scores on document level
for German (en-de), Dutch (en-nl), French (en-fr), and
Portuguese (en-pt) across models.
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The human evaluation was facilitated by the task
organisers. It was conducted by professional lin-
guists and translators using a combination of Direct
Assessment and scalar quality metric (DA+SQM)
implemented via the Appraise framework (Feder-
mann, 2018).

6 Conclusion & Future Work

Our results underscore the importance of incorpo-
rating dialogue history in improving translation
quality, highlighting its role in maintaining coher-
ence and context throughout chat-based transla-
tions. The integration of graph-based representa-
tions also shows promise, particularly in capturing
and leveraging the structural relationships within
dialogue contexts. However, our findings indicate
that further optimisation is required to fully realise
the benefits of this approach, especially in terms
of consistently outperforming more traditional text-
based models.

In future work, one of our key objectives is to
combine the strengths of TowerInstruct’s transla-
tion capabilities with the advanced context mod-
elling offered by our graph-based approach. By
integrating these two methodologies, we aim to
create a more robust system that can better handle
the complexities of chat dialogue translation.

Furthermore, we plan to investigate the incorpo-
ration of additional contextual information, such
as certainty or sentiment scores derived during pre-
processing. These scores could potentially enhance
the model’s ability to weigh different parts of the di-
alogue based on their reliability and emotional tone,
thereby improving overall translation accuracy. By
factoring in sentiment, the model can better pre-
serve the nuances of emotional expression within
the conversation, leading to more contextually ap-
propriate translations, which is particularly impor-
tant in the task’s customer service domain where
frustration is common. By pursuing these direc-
tions, we aim to refine our models further, making
them more adaptable and effective in real-world
chat translation and dialogue tasks.
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Abstract

This paper presents a multi-pipeline
Japanese-to-English machine translation
(MT) system designed to address the chal-
lenge of translating repeated elements from
Japanese into fluent and lexically diverse
English. The system was developed as part
of the Non-Repetitive Translation Task at
WMT24, which focuses on minimizing re-
dundancy while maintaining high transla-
tion quality. Our approach utilizes MeCab,
the de facto Natural Language Processing
(NLP) tool for Japanese, to identify re-
peated elements, and Claude Sonnet 3.5,
a Large Language Model (LLM), for trans-
lation and proofreading. The system effec-
tively accomplishes the shared task by iden-
tifying and translating in a diversified man-
ner 89.79% of the 470 repeated instances
in the test dataset and achieving an av-
erage translation quality score of 4.60 out
of 5, significantly surpassing the baseline
score of 3.88. The analysis also revealed
challenges, particularly in identifying stan-
dalone noun-suffix elements and occasional
cases of consistent translations or mistrans-
lations.

1 Introduction

In the Japanese language, repetition at the
word and phrasal levels is frequently employed
(Fujimura-Wilson, 2007). One reason for this
is that Japanese is a topic-prominent language,
where the topic of the sentence is often explic-
itly stated and reiterated to ensure clarity and
prominence (Tsujimura, 2013). Additionally,
Japanese is highly context-dependent and typ-
ically omits subject pronouns, relying on the
repetition of key nouns and verbs to maintain
coherence (Maynard, 1997). Specifically for
personal names, repetition is commonly used
instead of pronouns to convey politeness and
respect (Mogi, 2000).

In contrast, English typically favors variety
and succinctness to maintain reader engage-
ment (Hinkel, 2002; Halliday, 1994). Research
in translation studies emphasizes the impor-
tance of lexical variety to ensure fluency and
readability in translated texts (Baker, 1992;
Newmark, 1988). Therefore, effectively trans-
lating repeated elements from Japanese to En-
glish may require the use of more diverse ex-
pressions while ensuring consistency and clar-
ity.

The Non-Repetitive Translation Task at
WMT24 addresses the challenge of translat-
ing repeated elements from Japanese into En-
glish (Kinugawa et al., 2024). This task aims
to develop machine translation (MT) systems
capable of identifying repeated expressions in
Japanese text and translating them into lexi-
cally diverse and fluent English sentences. Par-
ticipants are provided with training and test
datasets comprising Japanese-English parallel
corpora, in both raw and annotated formats
with repeated targets tagged. Systems are
evaluated on their ability to minimize redun-
dancy while maintaining high translation qual-
ity.

Our contribution includes the development
of a multi-pipeline MT system that effec-
tively avoids redundancy in translating re-
peated words and phrases from the source
Japanese text. Specifically, we utilized MeCab
(Kudo, 2005) for tokenization and lemmati-
zation of Japanese sentences to identify re-
peated elements and adopted the Large Lan-
guage Model (LLM) Claude Sonnet 3.5 (An-
thropic, 2024) for translation and proofread-
ing. When compared with the baseline system
provided by the task organizers, our system
achieved an average translation score of 4.60,
significantly higher than that of the baseline
system at 3.88; and a BLEU metric of 24.4
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compared with human benchmark translation.

2 Related work
The identification of repeated elements in
Japanese poses unique challenges due to the
language’s agglutinative nature (Tsujimura,
2013). Unlike Indo-European languages where
word boundaries are clearly delineated (Baker,
1992), Japanese requires sophisticated tok-
enization methods to accurately segment text
into meaningful units. As far as we are
aware, no previous NLP studies have specif-
ically focused on identifying repeated tokens
in Japanese, although some have explored
the identification of repetition at the seman-
tic level, not necessarily of the same words
(Kawamoto, 2022). However, the repeated ele-
ments in this shared task need to be identical,
the most straightforward method is to adopt
an Natural Language Processing (NLP) tool
designed specifically for the Japanese language.
Previous studies have recommended MeCab as
the de facto text segmentation library capable
of part-of-speech (POS) tagging, tokenization
and lemmatization for Japanese (Kudo, 2005).
Even with MeCab, challenges in identifying
repeated elements persist. For example, for
“国文学” (Japanese literature) and “漢文学”
(Chinese literature), humans may easily detect
the repeated element “文学” (literature). How-
ever, for MeCab, “国文学” is regarded as one
token, while “漢文学” is regarded as two to-
kens, “漢” and “文学”. As such, no repetition
can be detected as the tokens do not match.

Recent advancements in LLMs have
prompted us to explore them for identifying
repeated elements in Japanese text. Prior to
building our system, we experimented with
GPT-3.51 (fine-tuned on the WMT24 training
dataset), GPT-42 (used direct prompting),
and Claude Sonnet 3.53 (also used direct
prompting) to assess their ability to detect
repeated tokens. However, none of these
LLMs consistently identified repetitions. This
indicates that rule-based approaches using
MeCab remain necessary.

Machine translation (MT) between
1https://platform.openai.com/docs/models/

gpt-3-5
2https://platform.openai.com/docs/models/

gpt-4
3https://www.anthropic.com/index/claude

Japanese and English has long been chal-
lenging due to the significant linguistic
differences between the two languages (Wang
et al., 2022). While Neural Machine Trans-
lation (NMT) systems, particularly those
based on Transformer models (Vaswani et al.,
2023), have demonstrated success in handling
structured text, they face limitations when
dealing with informal language, idiomatic
expressions, and culturally specific references.
Meanwhile, LLMs such as GPT-3.5 and
GPT-4 have shown considerable promise in
improving translation quality in Japanese-
English (JA-EN) tasks (Vincent et al., 2024).
These models benefit from extensive training
on diverse datasets, which allows them to
generate more contextually appropriate trans-
lations, particularly in cases where traditional
supervised NMT systems may struggle (Siu,
2023).

Previous studies have compared NMT sys-
tems and LLMs in translating high-resource
and low-resource languages and found that
LLMs such as GPT series perform better in
high but not low-resource languages (Robin-
son et al., 2023). Since Japanese is not con-
sidered a low-resource language, we expect
LLMs to perform better in this shared task.
As thus, we piloted with Google Translate4,
GPT4o and Claude Sonnet 3.5 with the train-
ing dataset and found the Claude Sonnet 3.5
performed the best in translating the Japanese
texts.

In addition to translation, we aimed to incor-
porate a proofreading pipeline to enhance over-
all translation quality. This idea was inspired
by the translation-review-revise methodology,
which emphasizes iterative improvement of
translated content through multiple stages of
refinement (Ng, 2024). In line with this
methodology, we aimed to incorporate a proof-
reading process with LLMs as well. In the fol-
lowing, we’ll describe in detail the system de-
sign and implementation results of our system
for the shared task.

3 System description
Our system comprises of four pipelines: 1) the
preprocessing pipeline for identifying and sub-
sequently assigning IDs and reference numbers

4https://translate.google.com/
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Figure 1: Workflow of the system

(ref numbers) to repeated elements, i.e., tar-
gets, in Japanese sentences; 2) the translation
pipeline for translating the Japanese sentences
into English while trying to reduce redun-
dancy; 3) the proofreading pipeline for revis-
ing the translated sentences; and 4) the post-
processing pipeline for appending the types of
strategies, i.e., substitution or reduction, to
the IDs and ref numbers of the repeated tar-
gets in the Japanese sentences. The input
of the system is the raw Japanese sentences
while the output includes the Japanese sen-
tences with repeated targets assigned IDs, ref
numbers and types, and raw translated En-
glish texts. Figure 1 shows the workflow of
the four pipelines. The source code of the de-
veloped system can be found at our GitHub
repository5.

3.1 Preprocessing pipeline

For identifying and subsequently assigning
IDs and ref numbers to repeated targets in
Japanese sentences, we adopted MeCab. The
POS tags in MeCab are structured into a maxi-
mum of three hierarchical layers. For example,
a three-layered POS tag can be “名詞-普通名
詞-副詞可能” (noun-common-adverbial), with
the top layer indicating the token is a noun,
the second layer further explaining it is a com-
mon noun, and the third layer showing that
the noun can also be used as an adverb.

5https://github.com/judywq/
non-repetitive-translation

Step 1: POS tagging We performed POS
tagging on all the Japanese sentences in the
training dataset, creating a pool of tokens with
their POS tags.

Step 2: POS screening From the pool,
we first did a simple token match to find re-
peated tokens. Then, we compared the re-
peated tokens with the tagged repeated tar-
gets in the training dataset to decide what
POS tags should be included and what should
not in identifying repeated tokens. The result
was a ‘whitelist’ of POS tags at different lay-
ers. In the first layer, we focused only on con-
tent words, including nouns, verbs, adjectives,
adverbs and prefixes, while excluding function
words such as auxiliaries, conjunctions and
particles. For the POS tags from the second
layer on, we maximized the coverage of POS
tags found in the training dataset while reduc-
ing noises. Table 1 shows the POS tags in the
‘whitelist’. Blanks in the third layer indicate
that all the third-layer tags have been selected.

Step 3: Identifying targets When identi-
fying the repeated targets, the easiest way is
to do exact match. However, for some POS
tags, special treatment was necessary. These
include Verb, Noun-Suffix, and Prefix-Noun
connection.

For Verb, we adopted their lemmatized
forms using MeCab. This is due to the fact
that Japanese verbs are rich in inflections. For
example, the verb “食べる” (taberu, mean-
ing “to eat”) can appear in various forms de-
pending on the tense, politeness level, and
grammatical context, such as “食べた” (tabeta,
past tense “ate”), “食べます”(tabemasu, po-
lite form “eat”), or “食べられる” (taberareru,
potential form “can eat”).

For Noun-Suffix and Prefix-Noun, as they
are suffixes or prefixes, they should be bound
to another token. We thus added a rule where
when tokens with the two POS tags are re-
peated, their neighboring tokens, i.e., the to-
ken before the suffix and the token after the
prefix, should also be bound together with
them. If the bound elements still match, then
they are valid targets. Otherwise, they will
be dismissed. For example, with the Noun-
Suffix “者” (person), if it is preceded twice by
the verb “容疑”(suspect), the compound noun
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Layer 1 Layer 2 Layer 3
Adverb (副詞) General (一般)

Verb (動詞) Independent (自立)

Noun (名詞)

Suffix (接尾)

Adjectival noun stem (形容動詞語幹)
Personal name (人名)

Area (地域)
Special (特殊)

Dependent (非自立) Adverbial (副詞可能)
Suru verb (サ変接続)

Nai adjective stem (ナイ形容詞語幹)
General (一般)

Proper noun (固有名詞)
Adverbial (副詞可能)

Adjectival noun stem (形容動詞語幹)
Adjective (形容詞) Independent (自立)

Prefix (接頭詞) Noun connection (名詞接続)

Table 1: POS tags in the ‘whitelist’

“容疑者”(a suspected person) will be the valid
target. However, if it is preceded by “容疑”
once and by “被爆”(be bombed) the second
time, they will be dismissed as “容疑者” does
not match “被爆者”(an atomic bomb victim).

Step 4: Assigning IDs and ref num-
bers We assigned IDs and ref numbers to
targets based on their order of occurrence in
the Japanese sentence. The output of step 4
are Japanese sentences with repeated targets
tagged.

3.2 Translation pipeline
The translation pipeline is responsible for
translating the Japanese sentences into En-
glish while trying to adopt diversified expres-
sions for the repeated targets tagged in the
Japanese sentences; singling out the transla-
tion for each occurrence of the targets; and
deciding which type and subtype of strategy
was used. It should be noted that to facilitate
understanding of output from the pipeline, we
introduced two new types: “first occurrence”
and “consistency” and another subtype: “lit-
eral translation”, to the original types (substi-
tution and reduction) and subtypes from the
official website of the task (WMT24, 2024).
First occurrence is assigned to translation of
a target where the translation appeared for
the first time and thus there is no need to re-

duce redundancy. Consistency refers to situ-
ations where the target is translated into the
same English expressions across multiple oc-
currences. The subtype “literal translation” is
added to complement “non-literal translation”
original included in the examples from the of-
ficial website.

For this pipeline, we adopted Claude Sonnet
3.5 with few-shot in-context learning prompt-
ing techniques. In our prompt, we included
the explanation of the shared task and the
examples of reduction and substitution from
the task’s official website. Then we asked the
translation pipeline to translate the sentences
while trying its best to adopt diversified ex-
pressions for the repeated targets tagged in
the Japanese sentences, single out the trans-
lations for the targets and decide which type
and subtype of strategy was used.

For example, for the input sentence:

RCEP では、7 月 1 日に東京で閣僚
<target id=0 ref=0>会合 </target>
が開かれ、妥結に向け 11 月下旬に
シンガポールで首脳 <target id=0
ref=1> 会合 </target> が開催でき
るよう、交渉に注力する方針を確認。

the output from the translation pipeline is as
follows:
{
"en_translation": "For RCEP, a ministerial
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meeting was held in Tokyo on July 1,
confirming the policy to focus on negotiations
with the aim of holding a summit in Singapore
in late November to reach an agreement.",

"targets":
[

{
"id": "0",
"ref": "0",
"ja_element": "会合",
"en_element": "meeting",
"type": "f",
"subtype": "lt"

},
{

"id": "0",
"ref": "1",
"ja_element": "会合",
"en_element": "summit",
"type": "s",
"subtype": "syn"

}
]

}

3.3 Proofreading pipeline
For the proofreading pipeline, we also adopted
Claude Sonnet 3.5. Few-shot in-context learn-
ing prompt was also designed for this pipeline
as for the translation pipeline. The proofread-
ing pipeline receives the Japanese sentence and
the translated text, the translations for each
occurrence of repeated targets and the types
and subtypes of strategies used. It is asked
to check if the translation is faithful to the
Japanese sentence and if redundancy can be
further reduced. If changes are not necessary,
it returns

{"changed": "No"}

Otherwise, it returns
{"changed": "Yes"}

followed by a revised output in the same for-
mat as the translation pipeline. A sample out-
put from the pipeline is shown below:
{

"changed": "Yes",
"en_translation_updated": "Toshiba stated
that there is no change to its previous
projection, as the reversal is already
incorporated into the full-year earnings
outlook for the fiscal year ending
March 2019.",
"targets_updated":
[

{
"id": "0",
"ref": "0",
"ja_element": "予想",
"en_element": "outlook",
"type": "f",

"subtype": "lt"
},
{

"id": "0",
"ref": "1",
"ja_element": "予想",
"en_element": "projection",
"type": "s",
"subtype": "syn"

}
]

}

3.4 Post-processing pipeline

With the proofread sentence translation and
translations of each occurrence of repeated tar-
gets together with the types and subtypes of
strategies, the post-processing pipeline first ap-
pends the types of the translations to the ID
and ref number of each occurrence of repeated
targets in the Japanese text. Then it replaces
the two types we added with the two official
types, reduction or substitution. Specifically,
in the case of first occurrence, the type of same
ID but the following/previous ref number tar-
get will be adopted. For example, if for a tar-
get A where it appears twice in a sentence,
it has two occurrences: ID=0, Ref=0, Type=
first occurrence; and ID=0, Ref=1, Type=
substitution. The type in ref=0 is replaced
by the type in ref=1, substitution. For consis-
tency, which means our system deems it un-
necessary to reduce redundancy, we remove
the IDs and ref numbers of the targets in the
Japanese text. This is based on the official
dataset where only the targets that require re-
dundancy reduction are tagged with IDs and
ref numbers.

After the post-processing pipeline, the sys-
tem outputs the Japanese sentences with IDs,
ref numbers and types tagged for repeated tar-
gets and the raw English translation without
any tags.

We also considered situations where our sys-
tem may fail to identify any repeated targets
in the pre-processing pipeline. In such cases,
the raw Japanese sentences will be translated
into English by Claude Sonnet 3.5 and the sys-
tem will directly output the raw Japanese sen-
tence and its English translation.
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JPO Adequacy <NON-REP> <REP> <INCORRECT> Total

[5,5] 127 20 0 147

[4,5) 280 17 3 300

[3,4) 15 1 7 23

[2,3) 0 0 0 0

[1,2) 0 0 0 0

Total 422 38 10 470

Table 2: JPO adequacy and translation style

4 System implementation and
results

Our system was applied to translate 470 sen-
tences from the test dataset provided by the
Non-Repetitive Translation Task at WMT24.
The output from our system was rigorously
evaluated by three human raters assigned by
the task organizers. Each rater independently
reviewed the translation of the repeated tar-
gets and assigned each target a translation
quality score ranging from 1 to 5 based on cri-
terion for translated patent documents from
the Japanese Patent Office (JPO), with 5 rep-
resenting the highest quality (JPO adequacy).
The raters also labelled each translation target
with one of the following translation styles: “c”
(consistent/repetitive translation), “s” (substi-
tution), “r” (reduction), or “m” (mistake in
translation). The final evaluation score for
each sentence was determined by averaging
the scores given by the three raters and the
label was determined by a majority vote.

In the 470 sentences, there are a total of
489 repeated targets tagged by the organizers
in the dataset, meaning that some sentences
contain more than 1 repeated target. When
there are multiple targets in one sentence, the
evaluation of all targets is aggregated to one by
the organizers, resulting in 470 evaluation in-
stances for the 470 sentences in total. Results
suggest that our system produced 38 instances
of repetitive translations, 422 instances of cor-
rect non-repetitive translations, and 10 incor-
rect translations. This shows a correct non-
repetitive translation rate of 89.79% for our
system.

Table 2 shows the detailed evaluation results

including the instance counts of translation
styles (non-repetitive, repetitive and incorrect
translation) and translation quality (JPO ade-
quacy).

The average JPO adequacy of our system
is 4.60, significantly higher than that of the
baseline system at 3.88 (t=14.09, p<0.00). To
view the balance between translation quality
and style, the JPO adequacy score for each
instance are converted to 0 if its style is not
‘<NON-REP>’, i.e., correct non-repetitive
translation. The average of this filtered JPO
scores is 4.13. This is significantly higher than
the baseline system at 2.13 (t=16.60, p<0.00).

For reference purposes, our system’s perfor-
mance was also evaluated using the BLEU met-
ric (Papineni et al., 2002). The BLEU score
for our system was 24.4, indicating moderate
similarity to the human benchmark transla-
tions provided by the organizers. The ver-
bose BLEU score breakdown shows a preci-
sion of 58.3% for 1-grams, 30.0% for 2-grams,
18.0% for 3-grams, and 11.3% for 4-grams.
No Brevity Penalty (BP) was applied, as the
length of the system’s output (15,700 words)
closely matched that of the benchmark (15,579
words), with a length ratio of 1.008.

5 Discussions

Our system demonstrated high performance in
the shared task, effectively combining multiple
NLP and LLMs pipelines to achieve impressive
results. However, some issues were observed
that highlight the challenges of this task and
the limitations of our approach.

One challenge our system faced was in cer-
tain tagging targets deemed repetitive by hu-
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man raters, particularly those related to stan-
dalone noun-suffix elements. For example:

Japanese: 専門家の 1 人は、鑑
定した 110 個の遺骨の中で日
本人の DNA<target_1> 型 </tar-
get_1> は 5 個、フィリピン人の
<target_1> 型 </target_1> が 54
個だったと報告。
System Translation: One of the
experts reported that among the 110
bone samples examined, 5 had DNA
patterns matching Japanese individ-
uals, while 54 had patterns matching
Filipino individuals.

In this instance, our system failed to iden-
tify the target “型” (type), a noun-suffix, as a
repeated element and subsequently the trans-
lation style was consistent. According to Step
3 in the pre-processing pipeline, noun-suffixes
are only identified as repeated targets if their
preceding tokens also match. This rule was im-
plemented to reduce noise; however, it led to
the negligence of independent suffixes tagged
by humans in the benchmark dataset. A sim-
ilar issue occurred with the word “量” (quan-
tity) in the following sentence:

Japanese: 国際貨物 <target_1>
量 </target_1> は 10％減の 16 万
8510トン。||ジェット燃料給油 <tar-
get_1> 量 </target_1> は 2％減の
37 万 3805 キロリットルだった。
System Translation: International
cargo volume decreased by 10% to
168,510 tons. Jet fuel supply volume
fell by 2% to 373,805 kiloliters.

In this example, “量” was not identified as
a repeated target, resulting in the translation
being repeated instead of diversified.

Moreover, there were instances where our
system correctly identified repeated targets
but still opted for consistent translations. This
occurred in cases where the system judged con-
sistent translation to be preferable or where it
misinterpreted derivatives or inflected forms of
a word as non-repetitive. For example:

Japanese: 同氏は <target_1> 五
輪 </target_1> には 04 年アテネ

<target_1>五輪 </target_1>から
4 大会連続で出場した。
System Translation: He com-
peted in four consecutive Olympic
Games, starting with the 2004
Athens Olympics.

In this case, our system treated “Olympic
Games” and “Olympics” as substitutions.
However, human raters considered these terms
to be consistent translations, as the word
“Olympic” and its inflected form “Olympics”
are essentially the same. Though we stated
specifically in our prompts to Claude that
derivatives and inflected forms are consistent
translations, it failed to perform the trans-
lation/proofreading task adequately in some
cases.

In the 10 instances where the system pro-
duced incorrect translations, these errors oc-
cur because the translations are too flexible
and non-literal, compromising the “faithful-
ness” of translation. An example of such an
error is:

Japanese: 一方、66歳以降も働きた
いと答えた人が挙げた理由は、「<tar-
get_1>経済的 </target_1>にゆと
りある生活を送りたい」が 28.9％、「働
き続けないと生活費が足りないと思
う」24.9％などで、<target_1>経済
的 </target_1> な理由が半数を超
えた。
System Translation: On the other
hand, among those who expressed a
desire to continue working beyond
the age of 66, over half cited financial
reasons. The most common reasons
were ‘wanting to maintain a comfort-
able lifestyle’ (28.9%) and ‘believing
that living expenses would be insuffi-
cient without continued employment’
(24.9%).

In this example, “the most common reasons”
should be interpreted as “the most common
comments given by those who cited financial
reasons”. However, the translation assumes
that readers can infer from the text, but the
same word “reasons” makes the sentence con-
fusing.
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6 Conclusions
In conclusion, the proposed multi-pipeline
Japanese-to-English machine translation sys-
tem successfully addresses the challenge of
translating repeated elements from Japanese
into fluent and varied English. By integrating
MeCab for accurate tokenization and Claude
Sonnet 3.5 for translation and proofreading,
the system achieved a high rate of correct non-
repetitive translations, with a translation qual-
ity score that significantly exceeded the base-
line. However, certain challenges remain, par-
ticularly in identifying and translating stan-
dalone noun-suffix elements and in cases where
consistent translation is deemed preferable.
Additionally, the study highlighted the limi-
tations of current human evaluation processes,
where inter-rater reliability was low, affecting
the consistency of the evaluation results. Fu-
ture work could explore more advanced lan-
guage models and refined evaluation method-
ologies to further enhance the system’s perfor-
mance and address these challenges.

Limitations
In our translation pipeline, we compared the
performance of Claude with Google Translate
and GPT-4 before selecting Claude as the
translation model. However, it is important
to acknowledge that more effective LLMs may
emerge in the future, which could offer im-
proved performance. Besides, one of the inher-
ent issues of relying on commercial LLMs like
Claude is the issue of token limits, which can
pose challenges in large-scale projects where
the tasks requires days to complete.

Furthermore, the inter-rater reliability
among the human raters was relatively low.
We noticed that one of the raters was conspic-
uously more severe in their evaluations com-
pared to the other two raters. The inter-
rater reliability analysis also revealed only a
slight agreement among the raters for JPO Ad-
equacy, with an average Weighted Kappa (Co-
hen, 1968) of 0.161. The Fleiss’ Kappa (Fleiss,
1971) for Style was -0.204, suggesting that the
agreement among the raters was not only poor
but worse than what would be expected by
chance. This means that the evaluation results
may have differed if the inter-rater reliability
was higher. To illustrate, the raters did not

reach consensus on some mistranslations. The
following shows an example:

Japanese: JAXA によると、<tar-
get_1>クレーター </target_1>は
直径 10メートル規模と推測され、小
惑星への人工 <target_1>クレータ
ー </target_1> 生成に成功したの
は世界で初めてだという。
System Translation: According to
JAXA, the crater is estimated to be
about 10 meters in diameter, mark-
ing the world’s first successful artifi-
cial impact on an asteroid.

In this example, the word “impact” can
be considered a term referring to “a collision
between astronomical objects causing measur-
able effects” (Rumpf et al., 2017) in planetary
science, which usually results in the formation
of an impact crater. In this sense, it may be
a substitution to “crater”. Indeed, one rater
regarded it as an appropriate substitution and
scored it a 5, while the other two raters con-
sidered it an incorrect translation. Such dis-
agreement highlights the importance of a more
rigorous and standardized human evaluation
process in future tasks.
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Abstract
Many contemporary NLP systems rely on neu-
ral decoders for text generation, which demon-
strate an impressive ability to generate text ap-
proaching human fluency levels. However, in
the case of neural machine translation networks,
they often grapple with the production of repet-
itive content, also known as repetitive diction
or word repetition, an aspect they weren’t ex-
plicitly trained to address. While not inherently
negative, this repetition can make writing seem
monotonous or awkward if not used intention-
ally for emphasis or stylistic purposes. This pa-
per presents our submission to the WMT 2024
Non-Repetitive Translation Task, for which
we adopt a repetition penalty method applied
at learning inspired by the principles of label
smoothing. No additional work is needed at
inference time. We modify the ground-truth
distribution to steer the model towards discour-
aging repetitions. Experiments show the ability
of the proposed methods in reducing repeti-
tions within neural machine translation engines,
without compromising efficiency or translation
quality.

1 Introduction

The Non-Repetitive Translation Task of the ninth
Conference on Machine Translation (WMT24) fo-
cuses on lexical choice in machine translation, espe-
cially choice regarding repeated words in a source
sentence. Generally, the repetition of the same
words can create a monotonous or awkward im-
pression in English, and it should be appropriately
avoided. Typical workarounds in monolingual writ-
ing are to

1) remove redundant terms if possible (reduc-
tion) or

2) use alternative words such as synonyms as
substitutes (substitution).

These techniques are also observed in human trans-
lations. The goal of this task is to study how these

techniques can be incorporated into machine trans-
lation systems to enrich lexical choice capabilities.
From a practical standpoint, such capability would
be important, for example, in news production,
where high quality text that goes beyond robotic
word-by-word translation is required.

In addition, repetitions do not always have a neg-
ative impact on readability. Without aiming to be
exhaustive : i) repetitions play a role when sum-
marizing information or reinforcing a concept ; ii)
common expressions are formed using word rep-
etitions, and altering them to eliminate repetition
would alter their intended meaning ; iii) in highly
specialized domains, expressions convey precise
meanings that disallow being reformulated. The
following examples illustrate these observations :

i) once closed, the door stays closed

ii) over and over ; to be or not to be ; step by step

iii) the congenital muscular dystrophy in new-
borns presenting with muscular hypotonia

As previously introduced, finding suitable alter-
natives without altering the meaning of a sentence
can be a challenging task.

Participants are required to control a machine
translation system using reduction or substitution
so that it does not output the same words for certain
repeated words in a source sentence. The transla-
tion direction is Japanese to English.

2 Related Work

The fluency levels achieved by LLMs are widely
acknowledged to be high, primarily owing to the ex-
tensive availability of monolingual datasets, which
surpasses that of standard neural machine transla-
tion (NMT) models trained solely on parallel texts.
To the best of our knowledge, no dedicated research
has been conducted on addressing the repetition
issue tackled in this work within NMT systems.
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Closely related, Welleck et al. (2019) describe a
method to train neural language models that in addi-
tion to maximizing likelihood to model the overall
sequence probability distribution, also includes an
unlikelihood term in the loss function to correct
known biases such as repeated tokens. Li et al.
(2020) use the same approach to control copy ef-
fect and repetitions observed in dialogue tasks. Su
et al. (2022) present a contrastive solution to en-
courage diversity while maintaining coherence in
the generated text.

Various studies have addressed diversity in neu-
ral MT systems, which is a closely related topic.
Sampling predictions from the output distribution
can be an effective decoding strategy for back-
translation, as described by Edunov et al. (2018),
or sampling from less likely tokens Holtzman et al.
(2020). Results show that such techniques en-
large diversity and richness of the generated trans-
lations when compared to data generated by beam
or greedy search, but introduce semantic inconsis-
tency in translations. In Lin et al. (2022) is pro-
posed a multi-candidate optimization framework
for augmenting diversity. The authors propose to
guide an NMT model to learn more diverse trans-
lations from its candidate translations based on
reinforcement learning. During training, the model
generates multiple candidate translations, of which
rewards are quantified according to their diversity
and quality.

A different approach attempts to condition the
decoding procedure with diverse signals. Typically,
Shu et al. (2019) use syntactic codes to condition
the translation process. Lachaux et al. (2020) re-
place the syntactic codes with latent domain vari-
ables derived from target sentences. Similarly,
Schioppa et al. (2021) use prefix-based control
tokens and vector-based interventions for control-
ling output translations from a NMT system. In
the context of paraphrase generation Vahtola et al.
(2023) propose a translation-based guided para-
phrase generation model that learns useful features
for promoting surface form variation in generated
paraphrases.

3 Adjusting the ground-truth distribution

Throughout the training process, at every time-step
t, neural machine translation networks generate
predictions over the target-side vocabulary based
on the input x and previous predictions y<t:

pit = p(yit|x, y<t), i ∈ [1, ..., V ]

where V indicates the size of the target vocabulary.
The loss function evaluates the neural network’s

capacity to model the training data by compar-
ing its predictions to a reference target vector
r = [r1, r2, ..., rT ], where T denotes the sequence
length. This loss is utilized to update the network’s
parameters, aiming to minimize the observed error
in the model. The loss at time-step t is usually
computed as the cross-entropy between the model
predictions pt = [p1t , ..., p

V
t ] and the ground-truth

distribution qt = [q1t , ..., q
V
t ]:

t= −
V∑

i=1

qit log(p
i
t) (1)

Note that the vector qt is a one-hot encoding
representation of rt, with all entries set to 0 except
for the token indicated by rt, which is set to 1.
Addressing the over-fitting risk illustrated by the
previous qt distribution, label smoothing Szegedy
et al. (2015); Müller et al. (2019) (LS) is widely
employed to achieve a smoother distribution:

qϵLSt = (1− ϵ)qt +
ϵ

V
(2)

with ϵ being a commonly small hyper-parameter.1

t 1 2 3 4 5 6
r I like cookies and cookies .

. 0 0 0 0 0 0
I 0 0 0 0 0 0

and 0 0 0 0 0 0
like 0 0 0 0 0 0

cookies 0 0 0 0 1 0

Figure 1: Matrix for the ground-truth r =’I like cook-
ies and cookies.’. Rows t and r represent respectively
the time-step and the corresponding ground-truth token.
A reduced model vocabulary (matrix rows) is used to
facilitate reading.

LS can be interpreted as penalizing the probabil-
ity of the ground-truth class by a factor of 1 − ϵ,
while evenly distributing the removed probability
mass among all classes, ϵ/V . Building upon a strat-
egy akin to label smoothing, we make additional
adjustments to the ground-truth distribution and
reduce the likelihood of repeated tokens, with the

1ϵ = 0 yields the initial distribution qt, whereas ϵ = 1
implies a uniform distribution.
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Figure 2: Ground-truth distributions for the 5th time-step of our example: the original one-hot encoding q; adjusted
with label smoothing qϵLS ; and further adjusted with repetitions qϵLα.

goal of enabling the model to learn to predict repe-
titions with lower probability. We introduce a ma-
trix, denoted as V×T , which indicates whether the
ground-truth token rt is also present in the preced-
ing time-steps.2 Figure 1 illustrates an example of
matrix with ground-truth I like cookies and cookies.
as translation of the Japanese sentenceクッキー
とビスケットが好き with a model vocabulary of
5 tokens (matrix rows). Both Japanese termsクッ
キー [cookies] andビスケット [biscuits] are cor-
rectly translated into English as cookies, yet this
choice clearly reduces the fluency and clarity of the
translation. As it can be seen, only [i=5,t=5] is set
to 1 since only r5 =’cookies’ occurs in a preceding
time-step (t = 3).

We consequently update the ground-truth distri-
bution following:

qϵLSαt = (1− ϵ)(1− αt) qt +
ϵ

V
(3)

where α is a hyper-parameter, and α is used as a
penalty, much like ϵ in the case of LS. Note that
only the label smoothing probabilities discounted
are distributed among all classes. As a result, time-
steps with repeated tokens (such as t = 5 in our
example) do not constitute proper probability dis-
tributions, as their sum does not add to 1. Fig-
ure 2 illustrates ground-truth distributions for our
example at time-step t = 5: the original one-hot
encoding q; the original distribution adjusted using
label smoothing qϵLS , and further adjusted using
repetitions qϵLSα.3 A significant challenge with the
aforementioned techniques that modify q distribu-
tion with repetitions is their limited impact on the
training process, primarily caused by the scarcity

2Note that repetitions are computed over words while ma-
trix refers to tokens r ∈ V for each time-step t ∈ T .

3As previously discussed, distribution qϵLSα does not form
a proper distribution since probabilities do not add to 1 (0, 02+
0, 02+0, 02+0, 02+0, 0092 = 0, 0892). We leave for future
experiments the normalization of the output scores in order to
allow for a valid probability distribution.

of repeated tokens in datasets. In the following sec-
tion, we present alternative approaches to address
this challenge.

4 Gathering Examples with Repetitions

As previously depicted, our intention is to instruct
the model to minimize certain repetitions while pre-
serving others deemed necessary for an accurate
translation. To achieve this, we must compile a rel-
atively large dataset of examples that demonstrate
this behavior to the model. We initially focus on
repetitions of content words such as nouns, adjec-
tives, verbs, and adverbs. Function words, which
serve a distinct grammatical role in a sentence, are
excluded from this analysis. Current MT networks
reliably generate these words based on their under-
standing of grammatical correctness.

We back-translate the Japanese side of the JiJi
corpus (further detailed in Section 5.1) into English
and annotate word (or sequence) repetitions of con-
tent words based on automatic morpho-syntactic
annotations performed by Spacy4. We employ
word-alignments between Japanese and English
words performed by the Giza++ Och and Ney
(2003) toolkit5 in order to consider only repetitions
of English content words aligned to Japanese con-
tent words (Verbs, Nouns, Adjectives and Adverbs).
The resulting set of examples with repetitions from
src/tgt training pairs will be regarded as instances
that the model needs to learn to discourage. Con-
sequently, we utilize them for training after anno-
tating the repeated target words in their respective
matrices.

It’s worth noting that the presented approach
does not require any alterations to the network ar-
chitecture and maintains the same training and in-
ference efficiency.

4https://spacy.io/
5https://github.com/moses-smt/giza-pp.
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Jap JEMAの担当者は白物家電について、「機能を絞った低価格製品、高価格な高機
能製品とも好調だ」と述べている。

Eng "Shipments have been robust for both low-priced models with reduced functions and expen-
sive high-spec products," a JEMA official said.

Jap JEMAの担当者は白物家電について、「<target id=0 ref=0 type=s>機能<\target>を
絞った低価格<target id=1 ref=0 type=s>製品<\target>、高価格な高<target id=0 ref=1
type=s>機能<><target id=1 ref=1 type=s>製品<\target>とも好調だ」と述べている。

Eng "Shipments have been robust for both low-priced <target id=1 ref=0 type=s>models<\target>
with reduced <target id=0 ref=0 type=s>functions<\target> and expensive <target id=0 ref=1
type=s>high-spec<\target> <target id=1 ref=1 type=s>products<\target>," a JEMA official
said.

Table 1: example of Japanese-English translation: raw translation is shown at the top, and the tagged translation to
annotate repetitions is shown at the bottom.

5 Experimental Framework

5.1 Datasets
We evaluate the proposed methods in a Japanese-to-
English translation task. Thus, we utilize Japanese-
English parallel corpora freely obtained from the
WMT24 for Non-Repetitive Translation Task web-
site6. The corpus is compiled by Jiji Press Ltd in
collaboration with the National Institute of Infor-
mation and Communication Technology (NICT)
with various categories, including politics, econ-
omy, nation, business, markets, sports, etc., for use
in machine translation, in particular for previous
the Workshop on Asian Translation (WAT)7.

Table 2 presents various statistics of the corpora
used in this work, including the total number of sen-
tences, vocabularies, words, and average sentence
length. Statistics are computed after performing a
light tokenization aiming to split-off punctuation.
For testing, we use the supplied Japanese-English
datasets made available by the task organizers.

Lang #Sents #Vocab Words Length
Training-set

Jap
200k

49K 6.9M 4.46
Eng 118K 4.5M 24.64

Repetition-set
Jap

470
3, 297 23, 472 4.22

Eng 4, 341 13, 814 11.91

Table 2: Corpora statistics. M and K stand for millions
and thousands respectively.

Due to the poor alignment quality of the
Japanese-English parallel sentences present in the

6https://www2.statmt.org/wmt24/
non-repetitive-translation-task.html

7https://lotus.kuee.kyoto-u.ac.jp/WAT/

provided dataset (sentence pairs are coupled us-
ing an automatic cross-lingual sentence similarity
score) we decided to back-translate the English side
using an in-house English-Japanese model. Then,
using the resulting Japanese8-English dataset we
fine-tune our baseline Japanese-English model.

In addition, we use a test set of repetitions also
provided by the challenge, consisting of reference
English machine translations and their correspond-
ing Japanese machine translations that include at
least one word repeated on the target (English) side
for a more nuanced analysis of repetition. Among
the files corresponding to the test datasets are those
containing tagged files in which repeated words and
their translations in each sentence pair are marked
with tags <target> and </target>. Marked words
indicate that they are evaluated repetitions. Three
labels, ‘id‘, ‘ref‘ and ‘type‘ are embedded within
the tags. Table 1 illustrates an example, where:

id indicates IDs of repated words. In the above
example, two tagged repeated words are in-
cluded, i.e.,機能 (id=0) and製品 (id=1). The
number of instances including multiple id’s,
such as the above example, are limited.

ref indicates IDs of pairs of source/target words,
such as 製品/models (id=1, ref=0) and 製
品/products (id=1, ref=1).

type indicates whether they are substituted (s) or
reduced (r).

The Repetition-set is mainly used to evaluate the
performance of our models in handling repetition
problems, as well as to assess overall translation
accuracy.

8Back-translated from English.
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5.2 NMT Models
Our NMT model is built using an in-house im-
plementation of the state-of-the-art Transformer
architecture Vaswani et al. (2017). Details of the
network hyper-parameters emplooy for training are
given in Table 3.

size of word embedding 512
size of hidden layers 512
size of inner feed forward layer 2, 048
number of heads 8
number of layers 6
batch size 4, 000 (tokens)
batch accumulation 25 (batches)

Table 3: Network hyperparameters.

For optimization work we use the lazy Adam
algorithm Kingma and Ba (2014). We set warmup
steps to 4, 000 and update learning rate for every
8 iterations. All models are trained using a single
NVIDIA V100 GPU.

We limit the source and target sentence lengths
to 150 tokens based on BPE Sennrich et al. (2016)
preprocessing. A total of 28K BPE merge opera-
tions are separately computed for each language.
We finally use a joint Japanese and English vocab-
ulary of 58K tokens. In inference we use a beam
size of 5.

Our baseline English-to-Japanese model is
trained during more than 3 million iterations using
all the parallel data available in the Opus website9.

6 Results

To evaluate the method presented in this paper we
consider the previous baseline model that we up-
date with 15K additional iterations for two different
configurations of the ground-truth distribution:

qϵLS follows the same configuration than our base-
line model with label smoothing set to ϵ =
0.1.

qϵLSα further penalizes the ground-truth distribu-
tion with repetition penalties as detailed in
Section 3 with ϵ = 0.1 and for different val-
ues of α.

Note that for both configurations, we use the same
training corpus detailed in Table 2 (Training-set).

We also assess the effectiveness of two large lan-
guage models (LLM) with translation capabilities
to overcome the repetition issue:

9https://opus.nlpl.eu/

GPT3.5 consists of the GPT3.5-turbo version of
the OpenAI LLM. Built upon the Generative
Pre-trained Transformer architecture Radford
and Sutskever (2018) which employs only
a transformer decoder. Following an auto-
regressive approach, the model ensures that
the generated text maintains coherence and
relevance to the context provided by the in-
put text. Translations are conducted using the
OpenAI API, while emphasizing the impor-
tance of minimizing word repetitions through
the provided prompt: Translate the follow-
ing text from English to Japanese, ensuring
that the translated output maintains coher-
ence and fluency while minimizing the repe-
tition of words or phrases. Pay attention to
using synonyms, varied sentence structures,
and appropriate linguistic devices to enhance
the overall quality of the translation. Feel free
to creatively adapt the language to achieve a
natural and engaging tone in the target lan-
guage. I want you to only reply the translation,
do not write explanations.

NLLB is a family of machine translation models
based on the Transformer encoder-decoder
architecture, enabling translation between any
of the 202 language varieties NLLB Team
et al. (2022). We use the nllb-200-distilled-
600M10 version and perform translations with
the efficient CTranslate211 inference toolkit.

To evaluate the presented methods, we re-
port BLEU results computed by sacrebleu12 Post
(2018) respectively over test sets. We also report
the number of word repetitions that hinder fluency,
Degrading, after a human evaluation performed on
translation hypotheses. Table 4 summarize results
obtained by different system configurations.

Models fine-tuned from the baseline network ex-
hibit nearly identical quality scores across the test
set. This suggests that training with the method pre-
sented to adjust the ground-truth distribution does
not compromise translation quality. On the con-
trary, unlike Configuration qϵLS , Configurations
qϵLSα demonstrate a significant decrease in the
number of repetitions that degrade fluency over the
Repetition-set, while retaining most of the accept-
able repetitions in the translated output.

10https://huggingface.co/facebook/
nllb-200-distilled-600M

11https://github.com/OpenNMT/CTranslate2
12https://github.com/mjpost/sacrebleu
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Results from both LLMs demonstrate a reduced
number of repetitions, suggesting an elevated level
of diversity and fluency of such models. However,
the translation quality scores of LLMs do not align
with those achieved by the models presented in this
study in either of the test sets, especially transla-
tions obtained by GPT-3.5. These findings are con-
sistent with those presented by Bawden and Yvon
(2023) where the authors note the challenge of con-
trolling translations performed by BLOOM13, a
multilingual LLM.

Configuration BLEU Degrading
qϵLS 28.41 77
qϵLSα, 1− α = 10−6 28.91 60

GPT3.5 19.29 64
NLLB 16.12 74

Table 4: Translation accuracy results and number of
repetitions present in translations performed by models
under different configurations. ϵ is always set to 0.1.

7 Conclusions and Further Work

We presented SYSTRAN submission to the
WMT24 Non-Repetitive Translation Task. Our
NMT systems introduce a method to reduce the
occurrence of repetitions in translation hypothe-
ses, which significantly affects the readability of
the generated texts. The method is solely imple-
mented during fine-tuning at the conclusion of the
training phase, without any modifications to the
inference process. Experiments indicate the ability
of our proposed methods in reducing the repetition
problem.

We aim to further study the impact of the ratio
between the number of reference sentences and
synthetic translations that include repetitions dur-
ing the training process. Additionally, we plan to
analyze the influence of the distance (measured in
number of words) between repetitions and explore
the possibility of replacing the binary penalty in
matrix with a softer approach.
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Abstract

While Minimum Bayes Risk (MBR) decod-
ing using metrics such as COMET or MetricX
has outperformed traditional decoding meth-
ods such as greedy or beam search, it intro-
duces a challenge we refer to as metric bias.
As MBR decoding aims to produce transla-
tions that score highly according to a specific
utility metric, this very process makes it impos-
sible to use the same metric for both decoding
and evaluation, as improvements might simply
be due to reward hacking rather than reflect-
ing real quality improvements. In this work
we find that compared to human ratings, neu-
ral metrics not only overestimate the quality of
MBR decoding when the same metric is used
as the utility metric, but they also overestimate
the quality of MBR/QE decoding with other
neural utility metrics as well. We also show
that the metric bias issue can be mitigated by
using an ensemble of utility metrics during
MBR decoding: human evaluations show that
MBR decoding using an ensemble of utility
metrics outperforms a single utility metric.

1 Introduction

Minimum bayes risk (MBR) decoding is a decod-
ing approach where n candidate translations are
sampled from the MT system, and they are used
as pseudoreferences for a reference-based utility
metric. MBR decoding computes the utility metric
for all O(n2) pairs of candidates and pseudorefer-
ences, selecting the candidate that achieves the best
average score across all pseudoreferences. Qual-
ity Estimation (QE) decoding1 selects the candi-
date that scores best according to a QE utility met-
ric. Previous work on MBR decoding has shown
that it results in improvements on the utility met-
ric (Amrhein and Sennrich, 2022; Cheng and Vla-
chos, 2023; Eikema and Aziz, 2022), however other
metrics do not improve as much as the utility met-
ric (Guttmann et al., 2024; Vamvas and Sennrich,

1Also known as QE reranking or QE filtering.

2024). This issue of MBR/QE decoding exhibit-
ing bias towards the utility metric complicates our
ability to use automatic metrics to compare the
quality of MBR/QE-based MT systems, as we can-
not tell whether improvements in automatic metrics
from MBR/QE decoding correspond to actual im-
provements in quality, or if it simply reward hack-
ing. Prior work has assumed that this issue can
be avoided by using a different metric for evaluat-
ing MBR decoding outputs (Tomani et al., 2023),
though this assumption has never been tested.

In this work we compare the results of human vs
metric-based evaluation of MBR/QE decoding with
a wide variety of metrics to show that the quality
of MBR/QE decoding is overestimated by not only
the utility metric, but also other similar metrics.
While MBR/QE decoding with a single utility met-
ric results in significant gains in automatic metrics,
it does not perform better than greedy decoding
in our human evaluations. This may be due to
MBR decoding preferring fluent yet inaccurate can-
didates. Using an ensemble of metrics as the utility
helps us mitigate the metric bias issue, with human
evaluations showing that MBR decoding with an
ensemble utility metric results in significantly bet-
ter translations than greedy decoding or MBR/QE
decoding with a single utility metric.

In this paper we contribute:

1. A large-scale analysis of metric bias in MBR
and QE decoding with metrics commonly
used in MT, showing that this metric bias is-
sue holds across many different metrics and
language pairs, and is not resolved by simply
using a different metric for evaluation.

2. Mitigation strategies for MBR bias using QE
filtering followed by MBR decoding, as well
as MBR decoding using an ensemble of met-
rics as the utility function.

3. A human evaluation showing that MBR de-
coding with ensembles outperforms MBR de-
coding with a single metric.
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2 Related Work

Cheng and Vlachos (2023); Eikema and Aziz
(2022); Guttmann et al. (2024) find that MBR
decoding improves automated metrics on vari-
ous high, medium, and low resource language
pairs. Freitag et al. (2023a, 2022); Tomani et al.
(2023) find that human raters prefer the outputs of
MBR/QE decoding over greedy decoding.

MBR variants achieve speedups via heuristics
(Trabelsi et al., 2024; Jinnai and Ariu, 2024), fil-
tering pseudoreferences via a QE metric (Deguchi
et al., 2024, 2023) or filtering via another reference-
based metric (Vamvas and Sennrich, 2024; Eikema
and Aziz, 2022). Quality-aware translation, which
incorporates quality estimation into the training
process, has been found to improve translation qual-
ity over standard MBR (Tomani et al., 2023).

Other techniques for aligning translation models
with human preferences include direct preference
optimization (Rafailov et al., 2024; Yang et al.,
2024), reinforcement learning from human feed-
back (Christiano et al., 2017), and reinforcement
learning from AI feedback (Bai et al., 2022).

Guttmann et al. (2024); Vamvas and Sennrich
(2024) show evidence of metric bias in MBR decod-
ing, as they find that neural evaluation metrics favor
models using MBR on the metric used as the utility
function. However, these papers only cover only 2
metrics, and neither have human evaluations.

Sellam et al. (2020b); Freitag et al. (2023b);
Glushkova et al. (2023) find that ensembling met-
rics can improve their ability to detect critical errors
and improve agreement with human preferences,
though they do not investigate the effects of ensem-
bling utility metrics on MBR decoding.

Reward hacking (Skalse et al., 2022) is an is-
sue in reinforcement learning where the reward
function improves but the system’s behavior is not
aligned with human preferences. The metric bias
problem in MBR decoding can be viewed as an
instance of reward hacking, as the utility function
improves while not necessarily improving quality.

3 Study 1: Metric Bias in MBR Decoding

3.1 Methodology

To investigate metric bias in MBR/QE decoding,
we perform MBR/QE decoding via various utility
metrics and compare how they perform on various
evaluation metrics. We investigate MBR decoding
using these reference-based utility metrics:

1. MetricX-23 (Juraska et al., 2023)
2. XCOMET-XXL (Guerreiro et al., 2023)
3. XCOMET-XL (Guerreiro et al., 2023)
4. COMET22 (Rei et al., 2022a)
5. AfriCOMET (Wang et al., 2024)
6. IndicCOMET (Sai B et al., 2023)
7. BLEURT (Sellam et al., 2020a)
8. YiSi-1 (Lo, 2019)
9. sentBLEU (Papineni et al., 2002)

10. chrF (Popović, 2015)
11. chrF++ (Popović, 2017)
12. TER (Snover et al., 2006)

We also investigate QE decoding (Fernandes
et al., 2022) using the following QE metrics:

1. MetricX-QE (Juraska et al., 2023)
2. CometKiwi23-XXL (Rei et al., 2023)
3. CometKiwi23-XL (Rei et al., 2023)
4. CometKiwi22 (Rei et al., 2022b)
5. AfriCOMET-QE (Wang et al., 2024)

We used a dev set for selecting ensembles, and a
test set for reporting final results and human evalu-
ation. The dev datasets and language pairs are:

1. FLORES-200 dev set (Costa-jussà et al.,
2022): English-Swahili (en-sw), Igbo (en-ig),
Hindi (en-hi), Tamil (en-ta), Somali (en-so),
Hausa (en-ha), Malayalam (en-ml), Gujarati
(en-gu), Hungarian (en-hu), Vietnamese (en-
vi)

2. WMT2022 (Kocmi et al., 2022): English-
Chinese (en-zh), Chinese-English (zh-en),
English-German (en-de), German-English
(de-en)

The test set datasets and language pairs are:

1. FLORES-200 test set: en-sw, en-ig, en-hi, en-
ta, en-so, en-ha, en-ml, en-gu, en-hu, en-vi

2. WMT2023 (Kocmi et al., 2023): en-zh, zh-
en2, en-de, de-en

We produced translations using Gemini 1.0
Pro (Gemini Team Google, 2023) with prompts
including 5-shot examples. We used epsilon sam-
pling as recommended by Freitag et al. (2023a)
with a sample size of 128. See Appendix A for
prompts used for generating translations and in-
structions for computing scores from metrics.

2Due to errors in the WMT2023 zh-en reference transla-
tions, we use the references from Liu et al. (2024) for zh-en.
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Greedy 1.58 1.16 82.3 77.8 76.8 68.2 77.5 85.2 77.3 84.3 57.2 54.2 26.4 63.4
MetricX 0.656‡ 0.557‡ 85.5‡ 79.6‡ 79.0‡ 69.4‡ 77.7‡ 84.9‡ 76.6‡ 81.2‡ 50.3‡ 46.9‡ 18.1‡ 75.7‡
MetricX-QE 0.899‡ 0.349‡ 84.4‡ 78.2‡ 78.3‡ 68.8‡ 77.6‡ 84.4‡ 75.6‡ 81.1‡ 49.3‡ 45.9‡ 17.6‡ 75.3‡
XCOMET-XXL 1.25‡ 0.868‡ 89.9‡ 80.4‡ 80.8‡ 69.9‡ 78.1‡ 85.0‡ 76.6‡ 81.5‡ 50.4‡ 47.0‡ 18.5‡ 73.6‡
XCOMET-XL 1.38‡ 1.00‡ 86.4‡ 85.0‡ 80.2‡ 71.5‡ 78.7‡ 85.3‡ 77.6‡ 82.2‡ 51.9‡ 48.7‡ 20.1‡ 71.5‡
CometKiwi23-XXL 1.43‡ 0.940‡ 86.6‡ 80.4‡ 85.5‡ 71.4‡ 78.7‡ 85.2 76.7‡ 82.2‡ 51.7‡ 48.4‡ 19.9‡ 71.7‡
CometKiwi23-XL 1.46‡ 0.978‡ 85.0‡ 81.5‡ 81.3‡ 74.8‡ 78.8‡ 85.2 76.8‡ 82.1‡ 51.7‡ 48.4‡ 19.8‡ 72.6‡
CometKiwi22 1.57‡ 1.07‡ 84.0‡ 79.6‡ 79.7‡ 70.5‡ 81.9‡ 85.4‡ 76.8‡ 82.3‡ 51.9‡ 48.6‡ 20.1‡ 71.0‡
COMET22 1.40‡ 1.02‡ 84.7‡ 80.0‡ 79.3‡ 70.0‡ 78.7‡ 87.4‡ 78.1‡ 83.5‡ 55.3‡ 52.0‡ 23.2‡ 67.0‡
BLEURT 1.35‡ 0.986‡ 83.8‡ 79.1‡ 78.6‡ 69.4‡ 78.1‡ 85.5‡ 82.3‡ 82.6‡ 53.2‡ 49.8‡ 21.0‡ 71.3‡
YiSi 1.57 1.14† 82.6‡ 78.0* 77.3‡ 68.7‡ 77.7‡ 85.6‡ 77.7‡ 85.0‡ 57.7‡ 54.5‡ 26.1* 62.6
chrF 1.54‡ 1.13† 82.6‡ 78.0* 77.6‡ 68.9‡ 77.7‡ 85.7‡ 77.8‡ 84.5‡ 58.6‡ 55.3‡ 25.8‡ 65.1‡
chrF++ 1.54‡ 1.13† 82.6‡ 78.0† 77.5‡ 68.9‡ 77.7‡ 85.6‡ 77.9‡ 84.6‡ 58.6‡ 55.4‡ 26.2 64.6†
sentBLEU 1.61 1.18* 82.2* 77.8* 76.8 68.2 77.5 85.2 77.3* 84.3 57.0‡ 54.1* 27.1‡ 62.3
TER 1.74‡ 1.27‡ 81.9‡ 77.2‡ 75.9‡ 67.5‡ 77.2‡ 84.7‡ 76.7‡ 83.9‡ 55.7‡ 52.7‡ 25.6‡ 59.7‡

rankAvg:all 1.08‡ 0.739‡ 86.5‡ 81.7‡ 81.2‡ 71.4‡ 79.3‡ 86.5‡ 79.3‡ 84.3 57.1 53.9 25.3‡ 63.7
rankAvg:qe 1.04‡ 0.580‡ 86.6‡ 81.8‡ 83.2‡ 73.0‡ 80.3‡ 85.9‡ 77.7‡ 82.6‡ 52.8‡ 49.5‡ 20.8‡ 70.7‡
rankAvg:top 0.899‡ 0.566‡ 88.2‡ 83.0‡ 83.0‡ 72.7‡ 78.9‡ 85.8‡ 78.1‡ 82.5‡ 52.8‡ 49.5‡ 20.7‡ 71.0‡
rankAvg:topQe 1.00‡ 0.527‡ 86.8‡ 81.7‡ 83.7‡ 73.3‡ 78.9‡ 85.6‡ 77.5 82.4‡ 52.3‡ 48.9‡ 20.2‡ 71.7‡
rankAvg:mxmxqe 0.700‡ 0.417‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.4‡ 47.0‡ 18.2‡ 75.1‡
rankAvg:noLex 0.993‡ 0.657‡ 87.3‡ 82.4‡ 82.0‡ 72.0‡ 79.6‡ 86.6‡ 79.5‡ 83.8‡ 55.6‡ 52.3‡ 23.4‡ 66.7‡
rankAvg:noNC 1.09‡ 0.734‡ 85.2‡ 80.4‡ 79.5‡ 70.1‡ 78.5‡ 86.4‡ 79.2‡ 84.4‡ 57.4‡ 54.1* 25.7‡ 63.0*
rankAvg:noNCnoLex 0.968‡ 0.636‡ 85.8‡ 80.8‡ 80.0‡ 70.4‡ 78.6‡ 86.6‡ 79.7‡ 84.0‡ 56.1‡ 52.8‡ 24.0‡ 66.0‡
allQE(32)allMBR 1.06‡ 0.733‡ 86.7‡ 81.9‡ 81.3‡ 71.4‡ 79.2‡ 86.5‡ 79.2‡ 84.1‡ 56.6‡ 53.4‡ 24.9‡ 64.5
allQE(32)nolexMBR 0.978‡ 0.680‡ 87.5‡ 82.6‡ 81.6‡ 71.7‡ 79.2‡ 86.6‡ 79.5‡ 83.7‡ 55.6‡ 52.3‡ 23.6‡ 66.6‡
topQE(32)topMBR 0.861‡ 0.599‡ 88.4‡ 83.3‡ 82.0‡ 71.9‡ 78.8‡ 85.7‡ 78.1‡ 82.4‡ 52.7‡ 49.4‡ 20.7‡ 70.9‡
noncQE(32)noncMBR 0.992‡ 0.629‡ 85.6‡ 80.6‡ 79.8‡ 70.2‡ 78.5‡ 86.3‡ 78.9‡ 83.9‡ 56.1‡ 52.8‡ 24.2‡ 65.2‡
noncQE(32)noncnolexMBR 0.911‡ 0.596‡ 86.0‡ 81.0‡ 80.1‡ 70.4‡ 78.7‡ 86.5‡ 79.4‡ 83.6‡ 55.1‡ 51.7‡ 22.9‡ 67.5‡
mxQE(32)mxMBR 0.662‡ 0.475‡ 85.6‡ 79.8‡ 79.2‡ 69.5‡ 77.8‡ 85.0‡ 76.8‡ 81.5‡ 50.7‡ 47.3‡ 18.5‡ 74.9‡
ckQE(32)xcMBR 1.24‡ 0.847‡ 89.6‡ 80.8‡ 82.8‡ 70.7‡ 78.4‡ 85.2 77.0‡ 81.9‡ 51.3‡ 48.0‡ 19.5‡ 72.2‡
mxQE(32)xcMBR 1.03‡ 0.593‡ 89.5‡ 80.6‡ 80.9‡ 70.1‡ 78.2‡ 85.1 76.9‡ 81.7‡ 50.7‡ 47.4‡ 18.8‡ 73.1‡
ckQE(32)mxMBR 0.728‡ 0.557‡ 86.5‡ 80.6‡ 82.2‡ 70.7‡ 78.3‡ 85.4‡ 77.3 81.9‡ 51.7‡ 48.3‡ 19.5‡ 73.3‡

Table 1: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), averaged across all languages (test datasets). Higher scores are better, except MetricX, MetricX-QE,
and TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2.
Significant differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The
green diagonal in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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all
qe
top
topQe
mxmxqe
noLex
noNC
noNCnoLex
noNCQe
allQE(N)allMBR 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
allQE(N)nolexMBR 1 1 1 1 1 2 2 2 2 2 2 2 2
topQE(N)topMBR 1 1 1 2 2 2
noncQE(N)noncMBR 1 1 2 2 2 2 2 2 2 2 2 2
noncQE(N)noncnolexMBR 1 1 2 2 2 2 2 2
mxQE(N)xcMBR 1 2
ckQE(N)xcMBR 1 2
mxQE(N)mxMBR 1 2
ckQE(N)mxMBR 1 2

Table 2: Metrics included in each ensemble. Rows are ensembles, columns are metrics. Black cells indicate that
the metric is included in a single-step ensemble. Green cells indicate the metric is used for the 1st step (QE filtering)
in a 2-step ensemble. Red cells indicate the metric is used for the 2nd step (MBR decoding) in a 2-step ensemble.
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3.2 Results

Results are shown in Table 1 for average scores
across all language pairs on the test datasets. We
observe that for all reference-based metrics, the
best-performing system is MBR decoding using
the same utility metric. This result also holds for
all QE metrics, but that is by definition, because QE
decoding picks the sample with the best QE score.
These results also hold on individual languages and
the dev set (Appendix G and E).

We can also see that MBR decoding outputs for
utility metrics which are similar to the evaluation
metric tend to score better than when the MBR util-
ity metric is dissimilar to the evaluation metric. For
example, MBR/QE decoding with neural metrics
(MetricX and COMET families) performs better
than greedy when evaluated with other neural met-
rics, but worse than greedy if evaluated via lexical
metrics. Likewise, MBR decoding with lexical
metrics (sentBLEU, chrF, chrF++, and TER) and
semantic metrics (YiSi) perform highly when eval-
uated by lexical and semantic metrics, but poorly
when evaluated via neural metrics. The pattern also
holds for similar metrics within the same family
– XCOMET-XXL prefers MBR/QE decoding us-
ing CometKiwi23-XXL and XCOMET-XL, and
MetricX prefers outputs from MetricX-QE.

These results suggest the existence of metric
bias in MBR decoding – that is, they suggest that
MBR decoding will result in a disproportionately
large improvement in the utility metric and metrics
similar to the utility metric, relative to the actual
improvement in quality. In order to address this
issue, in the next section we will investigate ensem-
bling metrics during MBR decoding as a means of
avoiding overfitting to a particular utility metric.

4 Study 2: MBR Decoding using
Ensembles of Metrics

4.1 Methodology

As a mitigation strategy for utility metric bias in
MBR decoding, we investigate how using an en-
semble of metrics performs for MBR decoding. We
explore the following ensembling techniques (see
Appendix C for pseudocode for these techniques):

1. rankAvg: For each metric, assigns a rank to
each of the 128 samples (where 0 is best and
127 is worst). Select the sample where the
average rank across metrics is minimized.

2. rankMed: Select the sample where the median

rank across metrics is minimized.
3. rankMax: Select the sample where the maxi-

mum rank across metrics is minimized.
4. rank75q: Select the sample where the 0.75th

quartile rank across metrics is minimized.

For each of these ensembling techniques, we
compute ensembles with the following groups of
metrics (see Table 2 and Appendix B for the com-
plete list of metrics included in each ensemble):

1. all: All metrics
2. qe: All QE metrics
3. top: Top-performing metrics in WMT2023

metrics shared task (Freitag et al., 2023b)
4. topQe: Top-performing QE metrics
5. mxmxqe: MetricX + MetricX-QE ensemble
6. noLex: Non-lexical metrics
7. noNC: Metrics that permit commercial use
8. noNCnoLex: Non-lexical metrics that permit

commercial use
9. noNCQe: QE metrics that permit commercial

use

In addition to the ensembles above, we also in-
vestigate QE filtering followed by MBR decoding
(QE filtering selects the top N candidates accord-
ing to a QE metric, where N can be either 4, 8,
16, 32, 64). This two-step approach is faster than
standard MBR decoding, as QE filtering is linear-
time whereas MBR decoding is quadratic time. We
include the following two-step ensembles:

1. allQE(N)allMBR: QE filter with all QE met-
rics, then MBR decode with all reference-
based metrics

2. allQE(N)nolexMBR: QE filter with all QE
metrics, then MBR decode with non-lexical
reference-based metrics

3. topQE(N)topMBR: QE filter with top QE met-
rics, then MBR decode with top reference-
based metrics

4. noncQE(N)noncMBR: QE filter with QE met-
rics that permit commercial use, then MBR
decode with reference-based metrics that per-
mit commercial use

5. noncQE(N)noncnolexMBR: QE filter with
QE metrics that permit commerical use, then
MBR decode with non-lexical reference-
based metrics that permit commercial use

6. mxQE(N)xcMBR: QE filter with MetricX-
QE, then MBR decode with XCOMET-XXL

7. ckQE(N)xcMBR: QE filter with
CometKiwi23-XXL, then MBR decode
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with XCOMET-XXL
8. mxQE(N)mxMBR: QE filter with MetricX-

QE, then MBR decode with MetricX
9. ckQE(N)mxMBR: QE filter with

CometKiwi23-XXL, then MBR decode
with MetricX

The metrics included in each ensemble is shown
in Table 2 and Appendix B.

4.2 Results

Results for a subset of ensembles averaged across
all language pairs on the test sets are at Ta-
ble 1 with additional ensembles shown in Ap-
pendix F. Results on the dev sets are shown in
Appendix E. Breakdowns per language pair can
be found in Appendix G. As expected, ensembles
tend to perform better if judged by metrics that
are better represented in the ensemble; for exam-
ple, if judging by MetricX, the best ensembles are
mxQE(32)mxMBR and rankAvg:mxmxqe, both of
which are ensembles consisting of MetricX and
MetricX-QE.

That said, observe that compared to MBR/QE de-
coding with a single utility metric, ensembles often
improve on automated evaluations even according
to metrics not included in the ensemble. For exam-
ple, if we use the XCOMET or CometKiwi families
of metrics to evaluate rankAvg:noNCnoLex and
noncQE(32)noncnolexMBR (which do not include
any metrics from the XCOMET or CometKiwi
families), they outperform MBR/QE decoding
with any single metric outside the XCOMET or
CometKiwi families. Similarly, if lexical metrics
are used to evaluate the rankAvg:noLex and al-
lQE(32)nolexMBR ensembles, which do not in-
clude any lexical metrics, they still outperform
MBR/QE decoding with any single neural metric.
This suggests that ensembles help reduce metric
bias towards a single metric, which results in im-
proved automated evaluation scores according to
other metrics not included in the ensemble.

5 Study 3: Human Evaluation

5.1 Methodology

For the human evaluation, we chose the following
baselines and ensembles to evaluate:

1. Greedy decoding
2. Reference translation
3. MetricX (MBR decoding)
4. MetricX-QE (QE decoding)

5. AfriCOMET for African languages (MBR de-
coding)

6. AfriCOMET-QE for African languages (QE
decoding)

7. IndicCOMET for Indic langauges (MBR de-
coding)

8. rankAvg:noNC (single-step ensemble)
9. rankAvg:noNCnoLex (single-step ensemble)

10. mxQE(32)mxMBR (multi-step ensemble)
11. noncQE(32)noncnolexMBR (multi-step en-

semble)

We evaluated the following conditions only on
en-de and zh-en due to budget constraints:

1. XCOMET-XXL (MBR decoding)
2. CometKiwi23-XXL (QE decoding)
3. COMET22 (MBR decoding)
4. rankAvg:all (single-step ensemble)

We chose MetricX, MetricX-QE, AfriCOMET,
AfriCOMET-QE, and IndicCOMET because they
had shown good performance in previously-
published evaluations (Tomani et al., 2023; Wang
et al., 2024; Sai B et al., 2023; Freitag et al., 2023b),
had good performance in automated evaluations on
the dev set (Appendix E), and lacked restrictions
on commercial use. In our en-de and zh-en eval-
uations we also included metrics and ensembles
with restrictions on commercial use (XCOMET,
CometKiwi, rankAvg:all) for comparison. The 6
language pairs and datasets we evaluate are en-
ha en-sw en-ml en-hi (from FLORES200 test) and
en-de zh-en (from WMT2023). We chose these lan-
guages to have a wide distribution in resource level.
For each language pair, we sampled 400 source seg-
ments to evaluate. WMT2023 was evaluated with
document context, whereas FLORES200 segments
were evaluated in isolation. We asked each rater to
provide MQM annotations for all translation can-
didates for each source segment (we evaluted 15
systems on en-de and zh-en and 11 systems on oth-
ers), and compute scores as described in Freitag
et al. (2021). Scores range from 0 to 25, lower is
better. To control for variance between raters, the
same rater was used to score all candidate transla-
tions resulting from each source segment.

5.2 Results

Results are shown in Table 3. We observe that over-
all the best-performing system is rankAvg:noNC,
which significantly outperforms greedy (p<0.001
on pairwise t-test). rankAvg:noNC also performs
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all:total 1.52 1.80† 1.59 1.77† 1.27‡ 1.28‡ 1.53 1.27‡
en-de:total 2.22 2.52 2.38 2.32 2.74 2.96* 2.07 2.07 1.89 1.83 2.13 1.69*
zh-en:total 2.56 2.42 3.15† 3.05 3.04* 2.98 2.65 2.43 2.49 2.53 2.81 2.55
en-sw:total 1.03 1.41 1.08 0.95 0.97 1.44* 0.75* 0.82 0.99 0.86
en-ha:total 1.02 1.25 1.07 1.04 1.17 1.29 0.85 0.95 0.98 0.87
en-hi:total 0.95 1.50‡ 0.70 1.09 0.93 0.78 0.71 0.86 0.70*
en-ml:total 1.74 1.94 1.70 2.60‡ 2.29† 1.31* 1.28* 1.84 1.39*

all:fluency 0.29 0.38† 0.30 0.33† 0.30‡ 0.32‡ 0.26 0.26‡
en-de:fluency 0.46 0.45 0.50 0.39 0.46 0.75* 0.38 0.45 0.47 0.45 0.29 0.37*
zh-en:fluency 0.42 0.43 0.28† 0.24 0.27* 0.39 0.32 0.35 0.37 0.39 0.19 0.30
en-sw:fluency 0.14 0.18 0.17 0.27 0.21 0.26* 0.13* 0.12 0.19 0.13
en-ha:fluency 0.37 0.49 0.38 0.36 0.48 0.47 0.33 0.37 0.32 0.33
en-hi:fluency 0.17 0.32‡ 0.24 0.30 0.20 0.26 0.26 0.24 0.16*
en-ml:fluency 0.24 0.42 0.26 0.37‡ 0.30† 0.26* 0.33* 0.31 0.29*

all:accuracy 0.80 0.94† 0.98 1.06† 0.70‡ 0.70‡ 0.95 0.74‡
en-de:accuracy 1.06 1.45 1.24 1.42 1.62 1.53* 1.12 1.11 0.86 0.90 1.14 0.85*
zh-en:accuracy 1.72 1.67 2.57† 2.54 2.44* 2.25 2.00 1.74 1.80 1.79 2.34 1.96
en-sw:accuracy 0.58 0.48 0.59 0.44 0.52 0.76* 0.40* 0.44 0.51 0.47
en-ha:accuracy 0.50 0.62 0.59 0.44 0.54 0.70 0.45 0.45 0.58 0.46
en-hi:accuracy 0.32 0.65‡ 0.32 0.46 0.44 0.25 0.22 0.41 0.32*
en-ml:accuracy 0.94 1.07 1.11 1.56‡ 1.65† 0.80* 0.75* 1.19 0.77*

all:other 0.43 0.48† 0.30 0.38† 0.28‡ 0.26‡ 0.32 0.27‡
en-de:other 0.69 0.62 0.64 0.51 0.66 0.68* 0.58 0.51 0.56 0.47 0.71 0.46*
zh-en:other 0.42 0.32 0.30† 0.27 0.33* 0.35 0.32 0.35 0.32 0.35 0.27 0.30
en-sw:other 0.31 0.74 0.32 0.24 0.24 0.42* 0.22* 0.25 0.29 0.25
en-ha:other 0.15 0.13 0.10 0.23 0.15 0.12 0.06 0.13 0.08 0.08
en-hi:other 0.46 0.52‡ 0.14 0.33 0.29 0.26 0.22 0.21 0.22*
en-ml:other 0.56 0.46 0.33 0.67‡ 0.33† 0.25* 0.20* 0.34 0.32*

Table 3: Human evaluation results broken down by language and MQM error type. Columns indicate the system
used for MBR/QE decoding; ensembles are defined in Table 2. Rows starting with “all” shows results across all
languages. 1st block is total error scores, 2nd is fluency error scores, 3rd is accuracy error scores, 4th is other error
scores. For each system, average human evaluation scores across the evaluated segments are shown. Lower scores
are better. Colors are relative to greedy, green is better than greedy, red is worse. Black cells were not evaluated.
Significant differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001.

the best on each language pair except en-hi. In-
terestingly, rankAvg:noNC and greedy decoding
beat the reference translation in all language pairs,
suggesting either that the reference translations in
WMT2023 and FLORES200 are of poor quality,
or that Gemini’s translation quality has achieved
human parity for these language pairs.

A surprising result from our human evaluation
was that although MBR decoding with an en-
sembles of metrics was judged as having supe-
rior quality to greedy decoding, MBR/QE decod-
ing with a single metric (MetricX, MetricX-QE,
XCOMET-XXL, CometKiwi23-XXL, COMET22,
AfriCOMET, AfriCOMET-QE, IndicCOMET) did

not generally improve over greedy decoding (Ta-
ble 3). In fact, translations from MetricX MBR
decoding for zh-en, MetricX-QE decoding for en-
ml, AfriCOMET-QE decoding for en-sw, and In-
dicCOMET MBR decoding for en-ml were rated
by humans as significantly worse than greedy de-
coding (Table 3), even though automatic evalua-
tion with other neural metrics such as MetricX and
XCOMET-XXL estimated those translations as be-
ing significantly better than greedy (Appendix G).
This suggests that evaluation with neutral metrics
overestimates the quality of MBR/QE decoding,
even if different metrics are used for decoding and
evaluation. Our findings contrast with previous
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Greedy The seller said not yet, and it
will be shipped in the afternoon.

1.0 0.0 0.0 0.659 0.88 0.999 0.83 0.74

MetricX
/XCOMET-XXL

The seller said that they don’t
have it in stock yet, and will be
able to ship it out this afternoon.

1.0 10.0 0.0 0.259 0.94 1.000 0.70 0.68

MetricX-QE The seller said he hadn’t shipped it,
but could ship it that afternoon.

0.0 0.0 0.0 0.438 0.49 0.997 0.78 0.68

CometKiwi23-XXL The seller said that it was not ready yet
and that it would be shipped that afternoon.

0.0 0.0 0.0 0.264 0.67 0.998 0.87 0.73

COMET22 The seller said not yet, it
will be sent in the afternoon.

1.0 0.0 0.0 0.981 1.06 0.998 0.86 0.76

noncQE32noncnolexMBR
/rankAvg:noNCnoLex

The seller said no, it won’t be
shipped until this afternoon.

1.0 0.0 1.0 0.552 0.60 0.998 0.76 0.77

rankAvg:noNC
/rankAvg:all

The seller said not yet,
it will be shipped in the afternoon.

2.0 0.0 0.0 0.608 0.90 0.998 0.84 0.71

mxQE32mxMBR The seller said that it is not yet ready,
and it will be shipped in the afternoon.

0.0 5.0 0.0 0.432 0.75 0.998 0.84 0.73

Table 4: An example where MetricX and XCOMET-XXL MBR decoding result in an inaccurate translation. The
source text is 卖家说还没，下午才能发。 (“Seller says not yet, can ship in the afternoon.”) The preceding
sentence is结果，第二天打电话问，发货了吗？ (“So the next day I called to ask, has it shipped?”). MetricX
and XCOMET-XXL MBR decoding, as well as the reference-based MetricX and XCOMET-XXL evaluations, all
prefer a translation which inaccurately states the item is out of stock. The other metrics assign a lower score to the
inaccurate translation. Lower scores are better for MQM, MetricX, and MetricX-QE, for other metrics higher is
better. Green is better than greedy, red is worse. Spans marked as errors by the rater are bolded.

studies which find that MBR decoding with a sin-
gle metric outperforms greedy decoding in human
evaluations (Freitag et al., 2022, 2023a; Tomani
et al., 2023).

We hypothesize a few potential causes of the fail-
ure of single-metric MBR/QE decoding to outper-
form greedy decoding: firstly, machine translation
quality has improved considerably in recent years.
This is reflected by how in our study the greedy
decoding outputs achieved better human evaluation
results compared to the references generated by
professional human translators, especially when
looking at fluency scores (Table 3), in contrast with
previous work where reference translations were
rated as better (Freitag et al., 2022, 2023a). There-
fore, it is possible that improvements in greedy
translation quality have reduced the quality gains
from MBR/QE decoding, and have resulted in the
adverse effects of metric bias from MBR/QE de-
coding with a single utility metric outweighing the
benefits to translation quality. For example, in Ta-
ble 3 we can see that single-metric MBR/QE decod-
ing generally improves fluency on high-resource
languages, and reduces errors in style, terminol-
ogy, and locale convention (labeled “other”). How-

ever, accuracy suffers with single-metric MBR/QE
decoding for most language pairs (Table 3). We
show an example in Table 4, where MetricX and
XCOMET-XXL MBR decoding favor a fluent yet
inaccurate translation. Perhaps part of the reason
for this decrease in accuracy is that MBR decoding
with metrics such as MetricX considers only simi-
larity to the pseudoreferences and does not consider
the source sentence, so fluent hallucinations that
occur in a large number of pseudoreferences will be
favored by MBR decoding. Therefore, we hypoth-
esize that past gains from single-metric MBR/QE
decoding might have been driven by improvements
in fluency and style, but modern LLMs have be-
come good at producing fluent outputs (as indi-
cated by the low fluency error scores for the greedy
condition in Table 3), so we are no longer seeing
overall quality improvements from single-metric
MQM/QE decoding.

We also considered the effects of domain on
the quality of single-metric MBR/QE decoding.
Since the WMT2023 datasets which were used
include novel domains such as speech transcripts
and mastodon posts which are not well-represented
in the data that metrics such as MetricX and
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en-de@news:total 1.95 2.97 3.47 3.28 2.52 3.74 1.99 1.99 2.16 1.91 2.05 1.78
en-de@user-review:total 3.66 2.79 3.30 2.80 3.11 4.07 3.90 3.71 2.81 3.12 3.09 2.68
en-de@mastodon:total 1.29 1.70 1.17 1.60 1.60 1.87* 1.13 1.19 1.04 1.03 1.65 0.98
en-de@speech:total 3.59 3.78 3.37 2.60 5.43* 3.83 2.97 2.97 2.88 2.65 2.61 2.48
zh-en@news:total 3.56 4.51 3.90 3.90 3.83 4.16 3.36 2.98 3.90 3.15 3.83 4.11
zh-en@user-review:total 2.28 1.73 2.93* 2.71 2.83* 2.62 2.45 2.22 2.06 2.42 2.39 2.01
zh-en@manuals:total 1.70 1.32 2.60* 2.98 2.28 2.21 2.01 2.35 1.58 1.55 2.76 1.89

en-de@news:fluency 0.38 0.69 1.33 0.77 0.31 1.49 0.44 0.46 0.84 0.66 0.36 0.42
en-de@user-review:fluency 0.57 0.65 0.37 0.70 0.52 0.89 0.88 0.53 0.49 0.79 0.18 0.60
en-de@mastodon:fluency 0.15 0.21 0.17 0.13 0.25 0.30* 0.15 0.18 0.12 0.15 0.22 0.21
en-de@speech:fluency 1.21 0.63 0.48 0.34 1.05* 0.90 0.47 1.03 0.87 0.70 0.48 0.55
zh-en@news:fluency 0.29 1.02 0.42 0.36 0.38 0.46 0.29 0.32 0.37 0.42 0.25 0.33
zh-en@user-review:fluency 0.51 0.18 0.22* 0.18 0.23* 0.31 0.32 0.33 0.34 0.37 0.10 0.22
zh-en@manuals:fluency 0.20 0.47 0.29* 0.37 0.28 0.71 0.43 0.58 0.51 0.43 0.57 0.70

en-de@news:accuracy 0.65 1.55 1.63 2.14 1.59 1.63 0.96 0.97 0.59 0.78 1.12 0.95
en-de@user-review:accuracy 2.32 1.25 0.89 1.47 1.16 1.96 1.79 2.37 1.25 1.32 1.00 0.82
en-de@mastodon:accuracy 0.54 1.06 0.68 0.97 0.95 1.10* 0.63 0.57 0.57 0.53 1.01 0.47
en-de@speech:accuracy 1.77 2.41 2.44 1.66 3.65* 2.13 1.94 1.56 1.56 1.61 1.56 1.66
zh-en@news:accuracy 3.03 3.10 3.21 3.39 3.14 3.36 2.79 2.40 3.21 2.39 3.39 3.56
zh-en@user-review:accuracy 1.23 1.21 2.36* 2.20 2.24* 1.92 1.75 1.48 1.35 1.66 1.99 1.46
zh-en@manuals:accuracy 1.38 0.81 2.19* 2.46 1.88 1.38 1.50 1.62 0.96 1.04 1.85 0.88

en-de@news:other 0.92 0.73 0.51 0.37 0.62 0.62 0.59 0.55 0.73 0.46 0.58 0.41
en-de@user-review:other 0.77 0.89 2.04 0.63 1.44 1.21 1.23 0.81 1.07 1.02 1.91 1.26
en-de@mastodon:other 0.60 0.43 0.31 0.49 0.39 0.47* 0.36 0.44 0.36 0.35 0.42 0.30
en-de@speech:other 0.61 0.75 0.45 0.61 0.73* 0.80 0.55 0.38 0.45 0.34 0.56 0.27
zh-en@news:other 0.24 0.39 0.27 0.16 0.31 0.34 0.29 0.26 0.31 0.34 0.19 0.23
zh-en@user-review:other 0.54 0.34 0.35* 0.33 0.36* 0.38 0.38 0.41 0.36 0.39 0.30 0.32
zh-en@manuals:other 0.12 0.04 0.12* 0.15 0.12 0.12 0.08 0.15 0.12 0.08 0.35 0.31

Table 5: Human evaluation results broken down by domain and MQM error type for en-de and zh-en. Columns
indicate the system used for MBR/QE decoding; ensembles are defined in Table 2. 1st block is total error scores,
2nd is fluency error scores, 3rd is accuracy error scores, 4th is other error scores. For each system, average human
evaluation scores across the evaluated segments are shown. Lower scores are better. Colors are relative to greedy,
green is better than greedy, red is worse. Significant differences from greedy (pairwise t-test) indicated by * for
p<0.05, † for p<0.01, ‡ for p<0.001.

XCOMET-XXL were trained on, we hypothesized
that this may adversely impacting MBR quality.
However, contrary to our expectations, as we can
observe in Table 5 there is no clear effect of the
domain on the quality of MBR decoding results.
Thus, we do not believe effects of domain to be the
primary factor behind our findings.

We also considered whether MBR decoding with
other metrics we did not evaluate with human raters,
such as BLEURT, would have performed better
than the metrics we evaluated. To do so, we looked
at the correlation between the MQM scores from
our human evaluation, compared to the scores as-
signed by metrics. We include scores from QE

metrics (to simulate QE decoding), scores from
reference-based metrics based on the 128 pseu-
doreferences (to simulate MBR decoding), as well
as scores form reference-based metrics using the ac-
tual references (to simulate a reference-based met-
ric oracle). Table 6 shows Kendall-Tau correlation
and Table 7 shows Pearson correlation. Note that
this an imperfect simulation of what would happen
if we actually performed human evaluation with
the MBR/QE decoding outputs for these metrics, as
we are considering correlations with human judge-
ments only the subset of candidates which were
evaluated (which is a biased sample, as they are the
results of MBR/QE decoding), not all 128 samples.
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We observe that among the individual metrics that
we did not evaluate, simulated XCOMET-XL MBR
decoding seems to correlate the best with human
judgements, and the other metrics are generally
worse than MetricX/XCOMET-XXL MBR decod-
ing. We also include some ensembles, finding that
they are generally better correlated with human
judgements than individual metrics in our simula-
tion. Therefore, we do not expect that changing to
another metric for MBR/QE decoding would have
resulted in significantly better translation quality.

6 Discussion

While previous work has sometimes assumed that
MBR decoding outputs can be evaluated by au-
tomated metrics so long as a non-utility metric is
used (Tomani et al., 2023), we find MBR/QE decod-
ing outputs are often preferred by automated met-
rics despite the fact that human raters believe they
are worse quality. For example, while MetricX-
QE decoding outputs are considered by human
raters to be of worse quality than greedy decod-
ing (Table 3), they still achieve higher scores
when evaluated by XCOMET-XXL, XCOMET-
XL, MetricX, CometKiwi22, CometKiwi23-XL,
and CometKiwi23-XXL (Table 1 and Appendix G).
Thus, the metric bias issue that results from
MBR/QE decoding complicates evaluation with
automated metrics.

That said, while we have shown that MBR/QE
decoding generated translations with higher auto-
mated evaluation scores are not always judged as
having better quality by humans, this does not mean
that automated metrics are no longer useful. In our
study, automatic reference-based metrics, QE met-
rics, and ensembles of metrics are still somewhat
correlated with MQM scores, as shown in Table 6.
Therefore, while it is advisable to perform a human
evaluation when feasible if evaluating systems that
make use of MBR/QE decoding, existing metrics
still correlate with human preferences. Addition-
ally, using an ensemble of metrics for MBR de-
coding results in improved translation quality com-
pared to greedy decoding and MBR/QE decoding
with a single metric (Table 3).

Why is it that using an ensemble of metrics for
MBR decoding improves translation quality com-
pared to just using a single metric (Table 3)? We
hypothesize that each metric has its own biases
that lead it to prefer bad translations, but different
metrics have different biases, so using an ensemble

zh-en en-de en-ha en-sw en-hi en-ml
XCOMET-XXL 0.278 0.110 0.114 0.201 0.073 0.152
XCOMET-XXL:mbr 0.275 0.111 0.125 0.212 0.094 0.152
XCOMET-XL 0.335 0.126 0.123 0.187 0.087 0.179
XCOMET-XL:mbr 0.336 0.134 0.137 0.201 0.093 0.168
MetricX 0.252 0.065 0.077 0.192 0.087 0.154
MetricX:mbr 0.289 0.089 0.111 0.211 0.097 0.149
MetricX-QE 0.291 0.046 0.093 0.166 0.065 0.130
CometKiwi23-XXL 0.264 0.080 0.115 0.160 0.085 0.140
CometKiwi23-XL 0.281 0.094 0.113 0.138 0.101 0.165
CometKiwi22 0.274 0.107 0.032 0.173 0.087 0.179
COMET22 0.271 0.100 0.062 0.179 0.076 0.166
COMET22:mbr 0.290 0.125 0.067 0.183 0.088 0.159
BLEURT 0.279 0.128 0.098 0.173 0.083 0.146
BLEURT:mbr 0.271 0.134 0.119 0.187 0.108 0.132
YiSi 0.178 0.049 0.072 0.105 0.061 0.138
YiSi:mbr 0.183 0.068 0.096 0.119 0.065 0.154
chrF 0.044 0.040 0.083 0.115 0.067 0.129
chrF:mbr 0.091 0.049 0.098 0.135 0.056 0.146
chrF++ 0.057 0.045 0.084 0.118 0.064 0.123
chrF++:mbr 0.103 0.052 0.098 0.135 0.057 0.141
sentBLEU 0.102 0.059 0.072 0.106 0.052 0.083
sentBLEU:mbr 0.155 0.058 0.082 0.121 0.058 0.103
TER 0.129 0.061 0.084 0.086 0.077 0.087
TER:mbr 0.114 0.060 0.088 0.097 0.067 0.116
MetricX
+MetricX-QE

0.287 0.055 0.084 0.196 0.088 0.155

MetricX
+MetricX-QE

0.304 0.070 0.107 0.203 0.097 0.151

XCOMET-XXL
+XCOMET-XL

0.326 0.124 0.121 0.210 0.088 0.186

XCOMET-XXL:mbr
+XCOMET-XL:mbr

0.324 0.131 0.136 0.216 0.098 0.177

XCOMET-XXL
+XCOMET-XL
+COMET22

0.346 0.127 0.116 0.213 0.090 0.193

XCOMET-XXL:mbr
+XCOMET-XL:mbr
+COMET22:mbr

0.348 0.140 0.129 0.220 0.100 0.184

Table 6: Kendall-Tau correlation between MQM eval-
uation scores and automated evaluation scores. For
reference-based metrics, rows with “:mbr” indicate
pseudoreference-based evaluation. Bottom rows are en-
sembles that take the average between the listed met-
rics. Higher scores indicate better agreement with hu-
man raters. See Table 7 for Pearson correlation.

reduces metric bias. We see an example of this in
Table 4 where MetricX and XCOMET-XXL assign
high scores to an inaccurate translation, but this
translation is rated poorly by CometKiwi23-XXL
and COMET22, so the ensemble ends up picking a
good translation that is preferred by all metrics.

Techniques other than MBR/QE decoding for
making use of human preferences to improve trans-
lation quality, such as DPO (direct preference opti-
mization) (Rafailov et al., 2024; Yang et al., 2024))
and RLHF (reinforcement learning from human
feedback) (Christiano et al., 2017), might be more
resilient to this metric bias issue, as they do not
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directly make use of the evaluation metric. How-
ever, given that the data used for DPO/RLHF is
similar to the data used to train evaluation metrics,
and given that the reward hacking issue is prevalent
throughout reinforcement learning (Skalse et al.,
2022), issues similar to metric bias may still occur
with these techniques.

An open question that remains is how to de-
velop new evaluation techniques that are resilient
to metric bias in MBR/QE decoding. One potential
way is to develop metrics specialized for evalu-
ating MBR/QE decoding outputs from a particu-
lar system, by generating MBR/QE decoding out-
puts from a translation model, obtaining human
annotations for those, and training a metric with
them. This process is unfortunately costly and time-
intensive, and the learned metric might not be able
to generalize beyond translations generated by the
particular utility metric and translation model it
was trained on. Perhaps a better approach would
be to view the metric bias problem as an adversar-
ial learning problem, and apply techniques such as
generative adversarial training (Yang et al., 2018)
to help train metrics resilient to MBR bias.

7 Conclusion

In this paper we have explored the problem of met-
ric bias, where MBR or QE decoding with a single
utility metric shows improvements on automated
evaluation with the utility metric and related met-
rics, but does not actually improve quality when
judged by a human rater. We find that the metric
bias issue is most severe when using a single utility
metric, and using an ensemble of metrics to per-
form MBR decoding can help improve quality as
judged by a human rater. While we have shown
that metric bias can result in overly-optimistic au-
tomatic evaluations of systems that make use of
MBR/QE decoding, the question of how to resolve
this issue and automatically evaluate systems that
make use of MBR/QE decoding is still an open
problem which we leave to future work.

Dataset

Dataset is at https://mbrbias.github.io/

Limitations

In this work we compare to only full MBR de-
coding and QE filtering as baselines, but there are
many alternative approaches, such as MBR approx-
imation heuristics (Trabelsi et al., 2024; Jinnai and

Ariu, 2024; Deguchi et al., 2024, 2023; Vamvas
and Sennrich, 2024; Eikema and Aziz, 2022), di-
rect preference optimization training (Yang et al.,
2024), quality-aware training (Tomani et al., 2023),
or training on MBR decoding outputs (Finkelstein
and Freitag, 2023), that are more practical to use
if translation latency is important. In this work we
only look at translations coming from Gemini 1.0
Pro with 5-shot sample prompts and epsilon sam-
pling, and it is possible that results may differ if us-
ing a different translation system, different prompts,
or a different sampling technique. In this work we
only look at using 128 samples due to the computa-
tionally expensive O(n2) cost of running full MBR
decoding, but it is possible that using additional
samples can achieve further quality improvements.
In this work we only looked at segment-level trans-
lation, and it is possible that results may differ if
performing document-level translation. However,
MetricX and the COMET families of models have
input token limits – 1024 tokens for MetricX, 512
tokens for COMET – which make it difficult to
use them for document-level MBR decoding. Our
human evaluation used only a single rater for each
translation, which introduces the question of how
reliable and consistent the ratings are – using mul-
tiple raters and looking at inter-rater agreement is
preferable, but was beyond our budget constraints.

Ethics Statement

MBR decoding is resource-intensive, and using
ensembles of multiple metrics increases compu-
tational complexity compared to a single utility
metric. To mitigate this issue, we presented two-
step ensembles that use QE filtering followed by
MBR decoding, which reduce the computational
cost below the cost of standard MBR decoding with
a single metric.
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A Methodology Details

A.1 Prompts Used for Generating Samples

For each language pair, we obtained 5-shot exam-
ples for our prompts from the dev split of FLORES-
200 by randomly sampling among those reference
pairs that had perfect MetricX QE scores (scores
of 0). We used MetricX QE filtering to ensure we
used high-quality examples as our 5-shot examples.
The sampled examples and prompt text for each
language pair is included in our dataset release.

A.2 Instructions for Computing Metrics

sentBLEU, chrF, chrF++, and TER scores were
computed with sacreBLEU 2.4.2 (Post, 2018) on
python 3.11.8 with the following parameters:

chrF: -m chrf
chrF++: -m chrf –chrf-word-order 2
sentBLEU: -m bleu –sentence-level
TER: -m ter
For other metrics, we used the publicly released

models on HuggingFace, running with the unbabel-
comet package version 2.2.1 available on pip, on
Python 3.10.14. We ran on an NVIDIA A100
GPU for all metrics except XCOMET-XXL and
CometKiwi23-XXL, which required an NVIDIA
A100 80GB GPU.

B Metrics Included in Each Ensemble

This section presents the same information that
is present in Table 2, but in textual format. The
following are the groups of metrics included in
the single-step ensembles that we include in our
study. For each of these metric groups the rankAvg,
rankMed, rankMax, and rank75q ensembling tech-
niques are used to generate an ensemble.

1. all: All metrics, both reference-based and
QE (MetricX, MetricX-QE, XCOMET-
XXL, XCOMET-XL, CometKiwi23-
XXL, CometKiwi23-XL, CometKiwi22,
COMET22, BLEURT, YiSi, chrF, chrF++,
sentBLEU, TER, AfriCOMET and
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AfriCOMET-QE for African languages,
IndicCOMET for Indic languages)

2. qe: All QE metrics (MetricX-QE,
CometKiwi23-XXL, CometKiwi23-XL,
CometKiwi22, and AfriCOMET-QE for
African languages)

3. top: MetricX, MetricX-QE, XCOMET-
XXL, XCOMET-XL, CometKiwi23-XXL,
CometKiwi23-XL

4. topQe: MetricX-QE, CometKiwi23-XXL,
CometKiwi23-XL

5. mxmxqe: MetricX, MetricX-QE
6. noLex: All non-lexical metrics (MetricX,

MetricX-QE, XCOMET-XXL, XCOMET-
XL, CometKiwi23-XXL, CometKiwi23-XL,
CometKiwi22, COMET22, BLEURT, YiSi,
AfriCOMET and AfriCOMET-QE for African
languages, IndicCOMET for Indic languages)

7. noNC: All metrics that permit commercial
use (MetricX, MetricX-QE, CometKiwi22,
COMET22, BLEURT, YiSi, chrF, chrF++,
sentBLEU, TER, AfriCOMET and
AfriCOMET-QE for African languages,
IndicCOMET for Indic languages)

8. noNCnoLex: All non-lexical metrics that per-
mit commercial use (MetricX, MetricX-QE,
COMET22, BLEURT, YiSi, AfriCOMET and
AfriCOMET-QE for African languages, Indic-
COMET for Indic languages)

9. noNCQe: All QE metrics that permit commer-
cial use (MetricX-QE, and AfriCOMET-QE
for African languages)

In addition, we also investigate QE filtering fol-
lowed by MBR decoding (here we define QE filter-
ing as selecting the top N candidates according to a
QE metric, where N can be either 4, 8, 16, 32, 64).
We include the following ensembles of this form:

1. allQE(N)allMBR: Use QE filtering with
an ensemble of all QE metrics (MetricX-
QE, CometKiwi23-XXL, CometKiwi23-XL,
CometKiwi22, AfriCOMET-QE for African
languages), then perform MBR decoding on
the N resulting candidates with all reference-
based metrics (MetricX, XCOMET-XXL,
XCOMET-XL, COMET22, BLEURT, YiSi,
chrF, chrF++, sentBLEU, TER, AfriCOMET
for African languages, IndicCOMET for Indic
languages).

2. allQE(N)nolexMBR: Use QE filtering with
an ensemble of all QE metrics (MetricX-
QE, CometKiwi23-XXL, CometKiwi23-XL,

CometKiwi22, AfriCOMET-QE for African
languages), then perform MBR decoding on
the N resulting candidates with all non-lexical
reference-based metrics (MetricX, XCOMET-
XXL, XCOMET-XL, COMET22, BLEURT,
YiSi, AfriCOMET for African languages, In-
dicCOMET for Indic languages).

3. topQE(N)topMBR: Use QE filtering with an
ensemble of top-performing QE metrics (Met-
ricX QE, CometKiwi23-XXL, CometKiwi23-
XL), then perform MBR decoding on the N
resulting candidates with an ensemble of top-
performing reference-based metrics (MetricX,
XCOMET-XXL, XCOMET-XL).

4. noncQE(N)noncMBR: Use QE filtering with
an ensemble of QE metrics that permit com-
mercial use (MetricX-QE, AfriCOMET-QE
for African languages), then perform MBR de-
coding with an ensemble of reference-based
metrics that permit commercial use (MetricX,
COMET22, BLEURT, YiSi, chrF, chrF++,
sentBLEU, TER, AfriCOMET for African lan-
guages, IndicCOMET for Indic languages).

5. noncQE(N)noncnolexMBR: Use QE filtering
with an ensemble of QE metrics that permit
commercial use (MetricX-QE, AfriCOMET-
QE for African languages), then perform
MBR decoding with an ensemble of non-
lexical reference-based metrics that per-
mit commercial use (MetricX, COMET22,
BLEURT, YiSi, AfriCOMET for African lan-
guages, IndicCOMET for Indic languages).

6. mxQE(N)xcMBR: Use QE filtering with
MetricX-QE, then perform MBR decoding
with XCOMET-XXL

7. ckQE(N)xcMBR: Use QE filtering with
CometKiwi23-XXL, then perform MBR de-
coding with XCOMET-XXL

8. mxQE(N)mxMBR: Use QE filtering with
MetricX-QE, then perform MBR decoding
with MetricX

9. ckQE(N)mxMBR: Use QE filtering with
CometKiwi23-XXL, then perform MBR de-
coding with MetricX

C Pseudocode for Ensembles

rankAvg ensembling strategy:

def rankAvg(
sample_list: List[str], metric_list: List[str]

):
sample_ranks =

get_ranks_for_samples_by_ensemble(sample_list,
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metric_list)
score_list = [np.mean(x) for x in

sample_ranks]
return select_samples_by_score(sample_list,

score_list)

rankMed ensembling strategy:

def rankMed(
sample_list: List[str], metric_list: List[str]

):
sample_ranks =

get_ranks_for_samples_by_ensemble(sample_list,
metric_list)

score_list = [np.median(x) for x in
sample_ranks]

return select_samples_by_score(sample_list,
score_list)

rankMax ensembling strategy:

def rankMax(
sample_list: List[str], metric_list: List[str]

):
sample_ranks =

get_ranks_for_samples_by_ensemble(sample_list,
metric_list)

score_list = [np.max(x) for x in sample_ranks]
return select_samples_by_score(sample_list,

score_list)

rank75q ensembling strategy:

def rank75q(
sample_list: List[str], metric_list: List[str]

):
sample_ranks =

get_ranks_for_samples_by_ensemble(sample_list,
metric_list)

score_list = [np.quantile(x, q=[0.75])[0] for
x in sample_ranks]

return select_samples_by_score(sample_list,
score_list)

Here are helper functions that were used:

def get_ranks_for_samples_by_ensemble(
sample_list: List[str], metric_list: List[str]

):
output = [[None for y in metric_list] for x

in sample_list]
for metric_idx, metric in

enumerate(metric_list):
sample_to_rank =

rank_samples_by_metric(sample_list,
metric)

for sample_idx, sample in
enumerate(sample_list):

output[sample_idx][metric_idx] =
sample_to_rank[sample]

return output

def select_samples_by_score(
sample_list: List[str],
score_list: List[float]

):
sample_with_score = zip(sample_list,

score_list)

top_candidate, top_score =
min(sample_with_score, key=lambda x: x[1])

return top_candidate

D Correlation Between Human
Evaluation MQM Scores and Metrics

zh-en en-de en-ha en-sw en-hi en-ml
XCOMET-XXL 0.391 0.084 0.146 0.139 0.111 0.202
XCOMET-XXL:mbr 0.389 0.076 0.178 0.145 0.141 0.198
XCOMET-XL 0.543 0.126 0.154 0.160 0.141 0.208
XCOMET-XL:mbr 0.550 0.124 0.170 0.174 0.156 0.194
MetricX 0.391 0.105 0.077 0.146 0.100 0.216
MetricX:mbr 0.431 0.127 0.173 0.150 0.153 0.200
MetricX-QE 0.485 0.120 0.115 0.132 0.074 0.170
CometKiwi23-XXL 0.241 0.088 0.116 0.121 0.128 0.208
CometKiwi23-XL 0.284 0.092 0.098 0.118 0.124 0.202
CometKiwi22 0.277 0.148 0.050 0.156 0.116 0.235
COMET22 0.298 0.170 0.058 0.146 0.099 0.195
COMET22:mbr 0.312 0.209 0.069 0.149 0.118 0.190
BLEURT 0.308 0.152 0.134 0.143 0.115 0.205
BLEURT:mbr 0.322 0.170 0.143 0.150 0.149 0.191
YiSi 0.211 0.088 0.105 0.100 0.092 0.187
YiSi:mbr 0.214 0.124 0.138 0.105 0.100 0.202
chrF 0.054 0.055 0.106 0.106 0.086 0.164
chrF:mbr 0.083 0.069 0.111 0.115 0.084 0.189
chrF++ 0.062 0.058 0.109 0.108 0.087 0.157
chrF++:mbr 0.091 0.069 0.110 0.113 0.088 0.183
sentBLEU 0.128 0.072 0.095 0.094 0.073 0.091
sentBLEU:mbr 0.160 0.072 0.098 0.111 0.088 0.113
TER 0.101 0.071 0.104 0.061 0.105 0.118
TER:mbr 0.096 0.085 0.105 0.067 0.107 0.149
MetricX
+MetricX-QE

0.463 0.124 0.101 0.152 0.101 0.229

MetricX
+MetricX-QE

0.483 0.130 0.160 0.151 0.131 0.209

XCOMET-XXL
+XCOMET-XL

0.532 0.110 0.159 0.161 0.144 0.228

XCOMET-XXL:mbr
+XCOMET-XL:mbr

0.537 0.105 0.183 0.171 0.166 0.215

XCOMET-XXL
+XCOMET-XL
+COMET22

0.521 0.136 0.150 0.169 0.144 0.235

XCOMET-XXL:mbr
+XCOMET-XL:mbr
+COMET22:mbr

0.529 0.136 0.173 0.176 0.167 0.223

Table 7: Pearson correlation between MQM evalu-
ation scores and automated evaluation scores. For
reference-based metrics, rows with “:mbr” indicate
pseudoreference-based evaluation. Bottom rows are en-
sembles that take the average between the listed met-
rics. Higher scores indicate better agreement with hu-
man raters. See Table 6 for Kendall-Tau correlation.
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E Results on Dev Datasets (WMT2022 and FLORES200 dev)
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Greedy 1.58 1.16 82.3 77.8 76.8 68.2 77.5 85.2 77.3 84.3 57.2 54.2 26.4 63.4
rankAvg:all 1.08‡ 0.739‡ 86.5‡ 81.7‡ 81.2‡ 71.4‡ 79.3‡ 86.5‡ 79.3‡ 84.3 57.1 53.9 25.3‡ 63.7
rankAvg:qe 1.04‡ 0.580‡ 86.6‡ 81.8‡ 83.2‡ 73.0‡ 80.3‡ 85.9‡ 77.7‡ 82.6‡ 52.8‡ 49.5‡ 20.8‡ 70.7‡
rankAvg:top 0.899‡ 0.566‡ 88.2‡ 83.0‡ 83.0‡ 72.7‡ 78.9‡ 85.8‡ 78.1‡ 82.5‡ 52.8‡ 49.5‡ 20.7‡ 71.0‡
rankAvg:topQe 1.00‡ 0.527‡ 86.8‡ 81.7‡ 83.7‡ 73.3‡ 78.9‡ 85.6‡ 77.5 82.4‡ 52.3‡ 48.9‡ 20.2‡ 71.7‡
rankAvg:mxmxqe 0.700‡ 0.417‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.4‡ 47.0‡ 18.2‡ 75.1‡
rankAvg:noLex 0.993‡ 0.657‡ 87.3‡ 82.4‡ 82.0‡ 72.0‡ 79.6‡ 86.6‡ 79.5‡ 83.8‡ 55.6‡ 52.3‡ 23.4‡ 66.7‡
rankAvg:noNC 1.09‡ 0.734‡ 85.2‡ 80.4‡ 79.5‡ 70.1‡ 78.5‡ 86.4‡ 79.2‡ 84.4‡ 57.4‡ 54.1* 25.7‡ 63.0*
rankAvg:noNCnoLex 0.968‡ 0.636‡ 85.8‡ 80.8‡ 80.0‡ 70.4‡ 78.6‡ 86.6‡ 79.7‡ 84.0‡ 56.1‡ 52.8‡ 24.0‡ 66.0‡
rankAvg:noNCQe 0.934‡ 0.400‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.7‡ 84.6‡ 75.6‡ 81.1‡ 49.5‡ 46.1‡ 17.6‡ 75.5‡
rankMax:all 1.16‡ 0.776‡ 86.1‡ 81.0‡ 80.8‡ 71.1‡ 79.2‡ 86.3‡ 78.9‡ 83.9‡ 56.1‡ 52.8‡ 24.3‡ 64.1
rankMax:qe 1.06‡ 0.595‡ 86.3‡ 81.5‡ 82.8‡ 72.6‡ 80.2‡ 85.9‡ 77.7‡ 82.7‡ 53.0‡ 49.6‡ 20.9‡ 70.5‡
rankMax:top 0.929‡ 0.586‡ 88.0‡ 82.7‡ 82.7‡ 71.4‡ 78.8‡ 85.7‡ 78.0‡ 82.5‡ 52.8‡ 49.5‡ 20.8‡ 70.6‡
rankMax:topQe 0.964‡ 0.480‡ 86.7‡ 80.7‡ 84.0‡ 71.2‡ 78.6‡ 85.4‡ 77.0‡ 82.1‡ 51.7‡ 48.3‡ 19.7‡ 72.0‡
rankMax:mxmxqe 0.704‡ 0.420‡ 85.6‡ 79.7‡ 79.3‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.5‡ 47.1‡ 18.2‡ 75.0‡
rankMax:noLex 1.11‡ 0.739‡ 86.6‡ 81.5‡ 81.3‡ 71.4‡ 79.4‡ 86.4‡ 79.1‡ 83.8‡ 55.5‡ 52.2‡ 23.4‡ 66.5‡
rankMax:noNC 1.11‡ 0.733‡ 85.1‡ 80.1‡ 79.3‡ 69.9‡ 78.4‡ 86.3‡ 79.1‡ 84.0‡ 56.3‡ 53.1‡ 24.7‡ 63.6
rankMax:noNCnoLex 1.05‡ 0.685‡ 85.4‡ 80.4‡ 79.6‡ 70.2‡ 78.5‡ 86.4‡ 79.5‡ 83.9‡ 55.9‡ 52.6‡ 23.8‡ 66.0‡
rankMax:noNCQe 0.937‡ 0.405‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.6‡ 84.6‡ 75.6‡ 81.1‡ 49.4‡ 46.0‡ 17.6‡ 75.5‡
rankMed:all 1.06‡ 0.733‡ 86.5‡ 81.9‡ 81.0‡ 71.3‡ 79.1‡ 86.5‡ 79.2‡ 84.1‡ 56.8‡ 53.6‡ 25.1‡ 64.5*
rankMed:qe 1.14‡ 0.679‡ 86.5‡ 81.7‡ 83.3‡ 73.0‡ 79.9‡ 85.7‡ 77.5 82.4‡ 52.3‡ 49.0‡ 20.3‡ 71.6‡
rankMed:top 0.895‡ 0.573‡ 88.2‡ 83.1‡ 82.8‡ 72.5‡ 78.9‡ 85.6‡ 77.9‡ 82.2‡ 52.3‡ 48.9‡ 20.1‡ 71.9‡
rankMed:topQe 1.21‡ 0.726‡ 86.5‡ 81.4‡ 83.8‡ 73.2‡ 78.9‡ 85.3‡ 77.1‡ 82.1‡ 51.7‡ 48.3‡ 19.7‡ 72.4‡
rankMed:mxmxqe 0.700‡ 0.417‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.4‡ 47.0‡ 18.2‡ 75.1‡
rankMed:noLex 0.935‡ 0.611‡ 87.6‡ 82.8‡ 82.2‡ 72.2‡ 79.4‡ 86.4‡ 79.1‡ 83.1‡ 54.3‡ 51.0‡ 22.1‡ 69.0‡
rankMed:noNC 1.28‡ 0.927‡ 84.2‡ 79.6‡ 78.6‡ 69.5‡ 78.2‡ 86.2‡ 78.7‡ 84.6‡ 57.9‡ 54.7‡ 26.3 62.6*
rankMed:noNCnoLex 0.910‡ 0.607‡ 85.8‡ 80.9‡ 80.0‡ 70.4‡ 78.6‡ 86.5‡ 79.3‡ 83.5‡ 55.1‡ 51.8‡ 23.0‡ 67.9‡
rankMed:noNCQe 0.934‡ 0.400‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.7‡ 84.6‡ 75.6‡ 81.1‡ 49.5‡ 46.1‡ 17.6‡ 75.5‡
rank75q:all 1.09‡ 0.743‡ 86.5‡ 81.7‡ 81.1‡ 71.3‡ 79.1‡ 86.5‡ 79.2‡ 84.2 56.9‡ 53.6‡ 25.0‡ 64.2
rank75q:qe 1.06‡ 0.600‡ 86.5‡ 81.7‡ 83.2‡ 72.9‡ 80.0‡ 85.9‡ 77.6‡ 82.6‡ 52.7‡ 49.4‡ 20.7‡ 70.9‡
rank75q:top 0.892‡ 0.564‡ 88.0‡ 82.9‡ 82.8‡ 72.6‡ 78.9‡ 85.7‡ 78.0‡ 82.4‡ 52.7‡ 49.4‡ 20.6‡ 71.2‡
rank75q:topQe 1.00‡ 0.526‡ 86.7‡ 81.7‡ 83.6‡ 73.3‡ 78.9‡ 85.6‡ 77.5 82.4‡ 52.3‡ 49.0‡ 20.3‡ 71.6‡
rank75q:mxmxqe 0.705‡ 0.419‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.5‡ 47.0‡ 18.2‡ 75.1‡
rank75q:noLex 0.990‡ 0.651‡ 87.3‡ 82.5‡ 82.0‡ 72.0‡ 79.5‡ 86.5‡ 79.4‡ 83.5‡ 55.2‡ 51.9‡ 23.0‡ 67.4‡
rank75q:noNC 1.13‡ 0.780‡ 85.0‡ 80.2‡ 79.3‡ 69.9‡ 78.4‡ 86.4‡ 79.0‡ 84.3‡ 57.3* 54.1 25.6‡ 63.3
rank75q:noNCnoLex 0.955‡ 0.628‡ 85.8‡ 80.9‡ 80.0‡ 70.4‡ 78.6‡ 86.6‡ 79.6‡ 83.7‡ 55.6‡ 52.2‡ 23.4‡ 67.0‡
rank75q:noNCQe 0.937‡ 0.403‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.6‡ 84.6‡ 75.6‡ 81.1‡ 49.4‡ 46.1‡ 17.6‡ 75.5‡

Table 8: Reference-based and QE evaluation scores for greedy, MBR, and QE decoding using a single-step en-
semble utility metric, averaged across all languages (test datasets). Higher scores are better, except MetricX,
MetricX-QE, and TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined
in Table 2. Significant differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for
p<0.001.
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F Results for Additional Ensembles

F.1 Additional Single-Step Ensembles on Test Datasets
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Greedy 1.58 1.16 82.3 77.8 76.8 68.2 77.5 85.2 77.3 84.3 57.2 54.2 26.4 63.4
rankAvg:all 1.08‡ 0.739‡ 86.5‡ 81.7‡ 81.2‡ 71.4‡ 79.3‡ 86.5‡ 79.3‡ 84.3 57.1 53.9 25.3‡ 63.7
rankAvg:qe 1.04‡ 0.580‡ 86.6‡ 81.8‡ 83.2‡ 73.0‡ 80.3‡ 85.9‡ 77.7‡ 82.6‡ 52.8‡ 49.5‡ 20.8‡ 70.7‡
rankAvg:top 0.899‡ 0.566‡ 88.2‡ 83.0‡ 83.0‡ 72.7‡ 78.9‡ 85.8‡ 78.1‡ 82.5‡ 52.8‡ 49.5‡ 20.7‡ 71.0‡
rankAvg:topQe 1.00‡ 0.527‡ 86.8‡ 81.7‡ 83.7‡ 73.3‡ 78.9‡ 85.6‡ 77.5 82.4‡ 52.3‡ 48.9‡ 20.2‡ 71.7‡
rankAvg:mxmxqe 0.700‡ 0.417‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.4‡ 47.0‡ 18.2‡ 75.1‡
rankAvg:noLex 0.993‡ 0.657‡ 87.3‡ 82.4‡ 82.0‡ 72.0‡ 79.6‡ 86.6‡ 79.5‡ 83.8‡ 55.6‡ 52.3‡ 23.4‡ 66.7‡
rankAvg:noNC 1.09‡ 0.734‡ 85.2‡ 80.4‡ 79.5‡ 70.1‡ 78.5‡ 86.4‡ 79.2‡ 84.4‡ 57.4‡ 54.1* 25.7‡ 63.0*
rankAvg:noNCnoLex 0.968‡ 0.636‡ 85.8‡ 80.8‡ 80.0‡ 70.4‡ 78.6‡ 86.6‡ 79.7‡ 84.0‡ 56.1‡ 52.8‡ 24.0‡ 66.0‡
rankAvg:noNCQe 0.934‡ 0.400‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.7‡ 84.6‡ 75.6‡ 81.1‡ 49.5‡ 46.1‡ 17.6‡ 75.5‡
rankMax:all 1.16‡ 0.776‡ 86.1‡ 81.0‡ 80.8‡ 71.1‡ 79.2‡ 86.3‡ 78.9‡ 83.9‡ 56.1‡ 52.8‡ 24.3‡ 64.1
rankMax:qe 1.06‡ 0.595‡ 86.3‡ 81.5‡ 82.8‡ 72.6‡ 80.2‡ 85.9‡ 77.7‡ 82.7‡ 53.0‡ 49.6‡ 20.9‡ 70.5‡
rankMax:top 0.929‡ 0.586‡ 88.0‡ 82.7‡ 82.7‡ 71.4‡ 78.8‡ 85.7‡ 78.0‡ 82.5‡ 52.8‡ 49.5‡ 20.8‡ 70.6‡
rankMax:topQe 0.964‡ 0.480‡ 86.7‡ 80.7‡ 84.0‡ 71.2‡ 78.6‡ 85.4‡ 77.0‡ 82.1‡ 51.7‡ 48.3‡ 19.7‡ 72.0‡
rankMax:mxmxqe 0.704‡ 0.420‡ 85.6‡ 79.7‡ 79.3‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.5‡ 47.1‡ 18.2‡ 75.0‡
rankMax:noLex 1.11‡ 0.739‡ 86.6‡ 81.5‡ 81.3‡ 71.4‡ 79.4‡ 86.4‡ 79.1‡ 83.8‡ 55.5‡ 52.2‡ 23.4‡ 66.5‡
rankMax:noNC 1.11‡ 0.733‡ 85.1‡ 80.1‡ 79.3‡ 69.9‡ 78.4‡ 86.3‡ 79.1‡ 84.0‡ 56.3‡ 53.1‡ 24.7‡ 63.6
rankMax:noNCnoLex 1.05‡ 0.685‡ 85.4‡ 80.4‡ 79.6‡ 70.2‡ 78.5‡ 86.4‡ 79.5‡ 83.9‡ 55.9‡ 52.6‡ 23.8‡ 66.0‡
rankMax:noNCQe 0.937‡ 0.405‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.6‡ 84.6‡ 75.6‡ 81.1‡ 49.4‡ 46.0‡ 17.6‡ 75.5‡
rankMed:all 1.06‡ 0.733‡ 86.5‡ 81.9‡ 81.0‡ 71.3‡ 79.1‡ 86.5‡ 79.2‡ 84.1‡ 56.8‡ 53.6‡ 25.1‡ 64.5*
rankMed:qe 1.14‡ 0.679‡ 86.5‡ 81.7‡ 83.3‡ 73.0‡ 79.9‡ 85.7‡ 77.5 82.4‡ 52.3‡ 49.0‡ 20.3‡ 71.6‡
rankMed:top 0.895‡ 0.573‡ 88.2‡ 83.1‡ 82.8‡ 72.5‡ 78.9‡ 85.6‡ 77.9‡ 82.2‡ 52.3‡ 48.9‡ 20.1‡ 71.9‡
rankMed:topQe 1.21‡ 0.726‡ 86.5‡ 81.4‡ 83.8‡ 73.2‡ 78.9‡ 85.3‡ 77.1‡ 82.1‡ 51.7‡ 48.3‡ 19.7‡ 72.4‡
rankMed:mxmxqe 0.700‡ 0.417‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.4‡ 47.0‡ 18.2‡ 75.1‡
rankMed:noLex 0.935‡ 0.611‡ 87.6‡ 82.8‡ 82.2‡ 72.2‡ 79.4‡ 86.4‡ 79.1‡ 83.1‡ 54.3‡ 51.0‡ 22.1‡ 69.0‡
rankMed:noNC 1.28‡ 0.927‡ 84.2‡ 79.6‡ 78.6‡ 69.5‡ 78.2‡ 86.2‡ 78.7‡ 84.6‡ 57.9‡ 54.7‡ 26.3 62.6*
rankMed:noNCnoLex 0.910‡ 0.607‡ 85.8‡ 80.9‡ 80.0‡ 70.4‡ 78.6‡ 86.5‡ 79.3‡ 83.5‡ 55.1‡ 51.8‡ 23.0‡ 67.9‡
rankMed:noNCQe 0.934‡ 0.400‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.7‡ 84.6‡ 75.6‡ 81.1‡ 49.5‡ 46.1‡ 17.6‡ 75.5‡
rank75q:all 1.09‡ 0.743‡ 86.5‡ 81.7‡ 81.1‡ 71.3‡ 79.1‡ 86.5‡ 79.2‡ 84.2 56.9‡ 53.6‡ 25.0‡ 64.2
rank75q:qe 1.06‡ 0.600‡ 86.5‡ 81.7‡ 83.2‡ 72.9‡ 80.0‡ 85.9‡ 77.6‡ 82.6‡ 52.7‡ 49.4‡ 20.7‡ 70.9‡
rank75q:top 0.892‡ 0.564‡ 88.0‡ 82.9‡ 82.8‡ 72.6‡ 78.9‡ 85.7‡ 78.0‡ 82.4‡ 52.7‡ 49.4‡ 20.6‡ 71.2‡
rank75q:topQe 1.00‡ 0.526‡ 86.7‡ 81.7‡ 83.6‡ 73.3‡ 78.9‡ 85.6‡ 77.5 82.4‡ 52.3‡ 49.0‡ 20.3‡ 71.6‡
rank75q:mxmxqe 0.705‡ 0.419‡ 85.6‡ 79.7‡ 79.2‡ 69.6‡ 77.8‡ 84.9‡ 76.7‡ 81.3‡ 50.5‡ 47.0‡ 18.2‡ 75.1‡
rank75q:noLex 0.990‡ 0.651‡ 87.3‡ 82.5‡ 82.0‡ 72.0‡ 79.5‡ 86.5‡ 79.4‡ 83.5‡ 55.2‡ 51.9‡ 23.0‡ 67.4‡
rank75q:noNC 1.13‡ 0.780‡ 85.0‡ 80.2‡ 79.3‡ 69.9‡ 78.4‡ 86.4‡ 79.0‡ 84.3‡ 57.3* 54.1 25.6‡ 63.3
rank75q:noNCnoLex 0.955‡ 0.628‡ 85.8‡ 80.9‡ 80.0‡ 70.4‡ 78.6‡ 86.6‡ 79.6‡ 83.7‡ 55.6‡ 52.2‡ 23.4‡ 67.0‡
rank75q:noNCQe 0.937‡ 0.403‡ 84.5‡ 78.3‡ 78.5‡ 69.0‡ 77.6‡ 84.6‡ 75.6‡ 81.1‡ 49.4‡ 46.1‡ 17.6‡ 75.5‡

Table 9: Reference-based and QE evaluation scores for greedy, MBR, and QE decoding using a single-step en-
semble utility metric, averaged across all languages (test datasets). Higher scores are better, except MetricX,
MetricX-QE, and TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined
in Table 2. Significant differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for
p<0.001.
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F.2 Additional Two-Step Ensembles on Test Datasets
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Greedy 1.58 1.16 82.3 77.8 76.8 68.2 77.5 85.2 77.3 84.3 57.2 54.2 26.4 63.4
allQE(64)allMBR 1.09‡ 0.781‡ 86.5‡ 81.7‡ 80.6‡ 71.0‡ 78.9‡ 86.5‡ 79.3‡ 84.3 57.1 53.9 25.4‡ 63.6
allQE(32)allMBR 1.06‡ 0.733‡ 86.7‡ 81.9‡ 81.3‡ 71.4‡ 79.2‡ 86.5‡ 79.2‡ 84.1‡ 56.6‡ 53.4‡ 24.9‡ 64.5
allQE(16)allMBR 1.04‡ 0.688‡ 86.8‡ 82.0‡ 81.8‡ 71.9‡ 79.4‡ 86.4‡ 79.1‡ 83.9‡ 56.2‡ 52.9‡ 24.3‡ 65.4‡
allQE(8)allMBR 1.04‡ 0.654‡ 86.8‡ 82.0‡ 82.2‡ 72.2‡ 79.7‡ 86.3‡ 78.7‡ 83.6‡ 55.4‡ 52.1‡ 23.4‡ 66.8‡
allQE(4)allMBR 1.04‡ 0.629‡ 86.8‡ 82.0‡ 82.7‡ 72.5‡ 79.9‡ 86.2‡ 78.4‡ 83.2‡ 54.5‡ 51.2‡ 22.3‡ 68.3‡
allQE(64)nolexMBR 0.991‡ 0.708‡ 87.4‡ 82.4‡ 81.1‡ 71.3‡ 79.0‡ 86.6‡ 79.7‡ 83.9‡ 55.9‡ 52.6‡ 23.9‡ 66.0‡
allQE(32)nolexMBR 0.978‡ 0.680‡ 87.5‡ 82.6‡ 81.6‡ 71.7‡ 79.2‡ 86.6‡ 79.5‡ 83.7‡ 55.6‡ 52.3‡ 23.6‡ 66.6‡
allQE(16)nolexMBR 0.972‡ 0.647‡ 87.5‡ 82.6‡ 82.1‡ 72.0‡ 79.4‡ 86.5‡ 79.3‡ 83.5‡ 55.2‡ 51.9‡ 23.2‡ 67.2‡
allQE(8)nolexMBR 0.977‡ 0.625‡ 87.3‡ 82.5‡ 82.4‡ 72.3‡ 79.7‡ 86.4‡ 79.0‡ 83.3‡ 54.6‡ 51.3‡ 22.5‡ 68.3‡
allQE(4)nolexMBR 0.988‡ 0.608‡ 87.2‡ 82.4‡ 82.8‡ 72.6‡ 79.9‡ 86.2‡ 78.6‡ 83.0‡ 53.9‡ 50.5‡ 21.7‡ 69.4‡
topQE(64)topMBR 0.868‡ 0.621‡ 88.5‡ 83.3‡ 81.5‡ 71.5‡ 78.7‡ 85.6‡ 78.1‡ 82.3‡ 52.4‡ 49.1‡ 20.4‡ 71.2‡
topQE(32)topMBR 0.861‡ 0.599‡ 88.4‡ 83.3‡ 82.0‡ 71.9‡ 78.8‡ 85.7‡ 78.1‡ 82.4‡ 52.7‡ 49.4‡ 20.7‡ 70.9‡
topQE(16)topMBR 0.879‡ 0.585‡ 88.3‡ 83.2‡ 82.4‡ 72.2‡ 78.9‡ 85.7‡ 78.1‡ 82.5‡ 52.8‡ 49.4‡ 20.8‡ 70.8‡
topQE(8)topMBR 0.897‡ 0.567‡ 88.1‡ 82.9‡ 82.8‡ 72.6‡ 78.9‡ 85.7‡ 78.0‡ 82.5‡ 52.8‡ 49.5‡ 20.7‡ 71.0‡
topQE(4)topMBR 0.925‡ 0.548‡ 87.7‡ 82.6‡ 83.2‡ 72.9‡ 78.9‡ 85.7‡ 77.8‡ 82.4‡ 52.6‡ 49.2‡ 20.5‡ 71.3‡
noncQE(64)noncnolexMBR 0.955‡ 0.668‡ 85.9‡ 81.0‡ 80.0‡ 70.4‡ 78.7‡ 86.6‡ 79.8‡ 83.9‡ 55.9‡ 52.6‡ 23.8‡ 66.3‡
noncQE(32)noncnolexMBR 0.911‡ 0.596‡ 86.0‡ 81.0‡ 80.1‡ 70.4‡ 78.7‡ 86.5‡ 79.4‡ 83.6‡ 55.1‡ 51.7‡ 22.9‡ 67.5‡
noncQE(16)noncnolexMBR 0.883‡ 0.533‡ 86.0‡ 80.8‡ 80.0‡ 70.3‡ 78.6‡ 86.2‡ 78.8‡ 83.1‡ 54.1‡ 50.7‡ 21.8‡ 69.2‡
noncQE(8)noncnolexMBR 0.877‡ 0.487‡ 85.8‡ 80.5‡ 79.8‡ 70.2‡ 78.4‡ 85.9‡ 78.2‡ 82.6‡ 53.0‡ 49.6‡ 20.7‡ 70.7‡
noncQE(4)noncnolexMBR 0.890‡ 0.450‡ 85.4‡ 79.8‡ 79.5‡ 69.9‡ 78.2‡ 85.5‡ 77.4 82.0‡ 51.5‡ 48.1‡ 19.4‡ 72.9‡
noncQE(64)noncMBR 1.06‡ 0.728‡ 85.3‡ 80.6‡ 79.6‡ 70.1‡ 78.5‡ 86.4‡ 79.2‡ 84.3 57.0 53.8‡ 25.3‡ 63.7
noncQE(32)noncMBR 0.992‡ 0.629‡ 85.6‡ 80.6‡ 79.8‡ 70.2‡ 78.5‡ 86.3‡ 78.9‡ 83.9‡ 56.1‡ 52.8‡ 24.2‡ 65.2‡
noncQE(16)noncMBR 0.960‡ 0.559‡ 85.6‡ 80.4‡ 79.7‡ 70.1‡ 78.5‡ 86.0‡ 78.4‡ 83.5‡ 54.9‡ 51.7‡ 22.9‡ 67.1‡
noncQE(8)noncMBR 0.942‡ 0.506‡ 85.5‡ 80.1‡ 79.6‡ 69.9‡ 78.3‡ 85.8‡ 77.8‡ 82.9‡ 53.7‡ 50.3‡ 21.5‡ 69.2‡
noncQE(4)noncMBR 0.931‡ 0.461‡ 85.2‡ 79.5‡ 79.3‡ 69.7‡ 78.1‡ 85.4‡ 77.0‡ 82.2‡ 52.1‡ 48.7‡ 19.9‡ 71.8‡
mxQE(64)xcMBR 1.11‡ 0.690‡ 89.8‡ 80.6‡ 80.9‡ 70.1‡ 78.2‡ 85.1 76.9‡ 81.7‡ 50.7‡ 47.3‡ 18.8‡ 73.1‡
mxQE(32)xcMBR 1.03‡ 0.593‡ 89.5‡ 80.6‡ 80.9‡ 70.1‡ 78.2‡ 85.1 76.9‡ 81.7‡ 50.7‡ 47.4‡ 18.8‡ 73.1‡
mxQE(16)xcMBR 0.965‡ 0.517‡ 89.1‡ 80.5‡ 80.7‡ 70.0‡ 78.2‡ 85.1* 76.9‡ 81.6‡ 50.6‡ 47.2‡ 18.7‡ 73.4‡
mxQE(8)xcMBR 0.924‡ 0.459‡ 88.4‡ 80.3‡ 80.3‡ 69.9‡ 78.1‡ 85.0‡ 76.7‡ 81.6‡ 50.4‡ 47.1‡ 18.6‡ 73.4‡
mxQE(4)xcMBR 0.904‡ 0.411‡ 87.5‡ 79.8‡ 79.9‡ 69.8‡ 78.0‡ 84.9‡ 76.4‡ 81.4‡ 50.1‡ 46.8‡ 18.3‡ 73.9‡
ckQE(64)xcMBR 1.23‡ 0.851‡ 89.8‡ 80.7‡ 81.9‡ 70.4‡ 78.3‡ 85.1 76.9‡ 81.8‡ 50.9‡ 47.6‡ 19.1‡ 72.8‡
ckQE(32)xcMBR 1.24‡ 0.847‡ 89.6‡ 80.8‡ 82.8‡ 70.7‡ 78.4‡ 85.2 77.0‡ 81.9‡ 51.3‡ 48.0‡ 19.5‡ 72.2‡
ckQE(16)xcMBR 1.25‡ 0.850‡ 89.3‡ 81.0‡ 83.5‡ 71.0‡ 78.6‡ 85.3‡ 77.1‡ 82.1‡ 51.6‡ 48.3‡ 19.9‡ 71.6‡
ckQE(8)xcMBR 1.30‡ 0.870‡ 88.9‡ 80.9‡ 84.1‡ 71.2‡ 78.7‡ 85.3‡ 77.0‡ 82.2‡ 51.8‡ 48.5‡ 19.9‡ 71.5‡
ckQE(4)xcMBR 1.33‡ 0.883‡ 88.3‡ 80.8‡ 84.7‡ 71.4‡ 78.7‡ 85.3‡ 76.9‡ 82.2‡ 51.8‡ 48.5‡ 20.0‡ 71.5‡
mxQE(64)mxMBR 0.653‡ 0.508‡ 85.6‡ 79.8‡ 79.2‡ 69.5‡ 77.8‡ 85.0‡ 76.8‡ 81.4‡ 50.6‡ 47.2‡ 18.4‡ 75.2‡
mxQE(32)mxMBR 0.662‡ 0.475‡ 85.6‡ 79.8‡ 79.2‡ 69.5‡ 77.8‡ 85.0‡ 76.8‡ 81.5‡ 50.7‡ 47.3‡ 18.5‡ 74.9‡
mxQE(16)mxMBR 0.681‡ 0.450‡ 85.5‡ 79.6‡ 79.1‡ 69.4‡ 77.8‡ 85.0‡ 76.7‡ 81.5‡ 50.5‡ 47.1‡ 18.4‡ 74.9‡
mxQE(8)mxMBR 0.712‡ 0.421‡ 85.3‡ 79.5‡ 79.0‡ 69.4‡ 77.8‡ 84.9‡ 76.4‡ 81.4‡ 50.3‡ 46.9‡ 18.3‡ 74.9‡
mxQE(4)mxMBR 0.762‡ 0.395‡ 85.0‡ 79.0‡ 78.8‡ 69.3‡ 77.7‡ 84.7‡ 76.2‡ 81.3‡ 50.1‡ 46.7‡ 18.1‡ 75.1‡
ckQE(64)mxMBR 0.687‡ 0.553‡ 86.1‡ 80.3‡ 81.0‡ 70.2‡ 78.1‡ 85.2 77.1‡ 81.7‡ 51.2‡ 47.7‡ 19.0‡ 74.2‡
ckQE(32)mxMBR 0.728‡ 0.557‡ 86.5‡ 80.6‡ 82.2‡ 70.7‡ 78.3‡ 85.4‡ 77.3 81.9‡ 51.7‡ 48.3‡ 19.5‡ 73.3‡
ckQE(16)mxMBR 0.798‡ 0.594‡ 86.8‡ 80.9‡ 83.2‡ 71.1‡ 78.5‡ 85.4‡ 77.4 82.1‡ 51.9‡ 48.5‡ 19.8‡ 72.7‡
ckQE(8)mxMBR 0.892‡ 0.644‡ 87.0‡ 81.0‡ 84.0‡ 71.3‡ 78.7‡ 85.5‡ 77.4 82.2‡ 52.1‡ 48.8‡ 20.1‡ 72.0‡
ckQE(4)mxMBR 1.01‡ 0.714‡ 86.9‡ 80.9‡ 84.6‡ 71.4‡ 78.7‡ 85.4‡ 77.2† 82.2‡ 52.0‡ 48.7‡ 20.0‡ 71.9‡

Table 10: Reference-based and QE evaluation scores for greedy, MBR, and QE decoding using a two-step ensemble
(QE filtering followed by MBR) utility metric, averaged across all languages (test datasets). Higher scores are
better, except MetricX, MetricX-QE, and TER, where lower is better. Green is better than greedy, red is worse.
Ensembles are defined in Table 2. Significant differences from greedy (pairwise t-test) indicated by * for p<0.05,
† for p<0.01, ‡ for p<0.001.
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G Breakdown of Results on Individual Language Pairs

G.1 Results for English-Swahili (en-sw) on FLORES200 test dataset
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Greedy 1.70 1.28 83.7 85.0 84.6 73.2 83.8 86.0 85.7 76.9 77.5 86.3 65.0 62.6 34.9 51.7
MetricX 0.598‡ 0.477‡ 88.9‡ 87.7‡ 89.0‡ 75.5‡ 84.9‡ 85.9 87.4‡ 79.7‡ 76.3‡ 83.0‡ 58.1‡ 55.1‡ 24.4‡ 61.1*
MetricX-QE 0.811‡ 0.293‡ 87.5‡ 86.6‡ 88.4‡ 75.0‡ 84.7‡ 85.2‡ 86.6‡ 79.3‡ 75.3‡ 82.7‡ 57.2‡ 54.1‡ 23.8‡ 61.4*
XCOMET-XXL 1.03‡ 0.698‡ 94.2‡ 89.1‡ 91.3‡ 76.4‡ 85.3‡ 86.3* 87.6‡ 79.5‡ 76.9* 83.5‡ 58.8‡ 56.0‡ 25.6‡ 59.3
XCOMET-XL 1.08‡ 0.788‡ 89.9‡ 92.4‡ 89.9‡ 77.9‡ 85.4‡ 86.4† 87.9‡ 79.5‡ 77.8 83.7‡ 59.3‡ 56.4‡ 26.1‡ 58.5
CometKiwi23-XXL 1.23‡ 0.784‡ 90.6‡ 88.3‡ 93.6‡ 76.9‡ 85.5‡ 86.0 87.1‡ 79.4‡ 76.6‡ 83.5‡ 58.7‡ 55.8‡ 25.6‡ 58.8
CometKiwi23-XL 1.26‡ 0.816‡ 88.3‡ 90.2‡ 90.1‡ 79.9‡ 85.5‡ 86.2 87.3‡ 79.3‡ 77.1 83.7‡ 59.5‡ 56.7‡ 26.4‡ 58.4
CometKiwi22 1.26‡ 0.852‡ 87.6‡ 87.8‡ 89.1‡ 76.4‡ 87.3‡ 86.7‡ 87.9‡ 79.8‡ 77.0 83.7‡ 59.4‡ 56.4‡ 25.8‡ 58.3
COMET22 1.25‡ 0.927‡ 87.5‡ 88.0‡ 88.4‡ 75.9‡ 85.4‡ 88.3‡ 87.8‡ 79.7‡ 78.5‡ 85.2‡ 62.8‡ 60.0‡ 30.2‡ 52.7
AfriCOMET 1.10‡ 0.769‡ 88.7‡ 88.4‡ 89.2‡ 75.9‡ 85.7‡ 86.7‡ 90.0‡ 80.7‡ 77.5 84.2‡ 60.7‡ 57.8‡ 27.5‡ 56.3
AfriCOMET-QE 1.42‡ 0.964‡ 85.1‡ 85.3 87.1‡ 74.5‡ 84.6‡ 85.8 87.6‡ 83.3‡ 74.6‡ 82.9‡ 57.6‡ 54.5‡ 23.5‡ 61.8*
BLEURT 1.37‡ 1.05‡ 86.3‡ 86.9‡ 87.3‡ 75.0‡ 84.8‡ 86.2 86.7‡ 78.5‡ 82.9‡ 84.0‡ 60.0‡ 57.0‡ 25.8‡ 58.0
YiSi 1.62 1.26 84.2 85.3 84.9 73.4 83.9 86.2* 85.7 76.9 77.9 86.9‡ 65.7† 63.2† 35.1 46.7
chrF 1.57† 1.23 84.7‡ 85.7† 85.5‡ 74.0‡ 84.1* 86.5‡ 86.2‡ 77.3‡ 78.3‡ 86.4 66.4‡ 63.7‡ 34.3* 49.3
chrF++ 1.57† 1.22 84.8‡ 85.8† 85.5‡ 74.0‡ 84.1* 86.5‡ 86.2‡ 77.2† 78.4‡ 86.5† 66.4‡ 63.9‡ 34.7 48.8
sentBLEU 1.64 1.29 84.1 85.4 84.7 73.4 83.9 86.1 85.7 76.8 77.6 86.5* 65.3 63.0 35.8† 46.3
TER 1.73 1.36* 83.2 84.2‡ 83.7† 72.7* 83.6* 85.8 85.0‡ 76.3‡ 77.3 86.2 64.4† 62.0† 34.6 45.1

rankAvg:all 1.01‡ 0.711‡ 89.8‡ 89.7‡ 90.1‡ 77.1‡ 85.9‡ 87.5‡ 88.5‡ 79.8‡ 79.4‡ 85.9‡ 64.5* 61.9† 33.0‡ 49.7
rankAvg:qe 0.893‡ 0.506‡ 90.3‡ 89.8‡ 91.9‡ 78.3‡ 86.5‡ 86.9‡ 88.5‡ 81.3‡ 77.4 83.8‡ 59.7‡ 56.8‡ 26.2‡ 58.6
rankAvg:top 0.781‡ 0.484‡ 92.2‡ 90.9‡ 92.0‡ 78.4‡ 85.8‡ 86.7‡ 88.2‡ 80.0‡ 77.8 83.8‡ 59.8‡ 57.0‡ 26.7‡ 58.3
rankAvg:topQe 0.900‡ 0.455‡ 90.7‡ 89.8‡ 92.3‡ 78.7‡ 85.7‡ 86.4† 87.9‡ 79.9‡ 77.4 83.5‡ 59.0‡ 56.0‡ 25.7‡ 59.4
rankAvg:mxmxqe 0.638‡ 0.347‡ 88.8‡ 87.4‡ 89.0‡ 75.7‡ 85.0‡ 85.8 87.3‡ 79.7‡ 76.2‡ 83.0‡ 58.2‡ 55.1‡ 24.4‡ 60.8*
rankAvg:noLex 0.899‡ 0.606‡ 91.2‡ 90.5‡ 91.0‡ 77.7‡ 86.2‡ 87.5‡ 88.9‡ 80.4‡ 79.7‡ 85.2‡ 62.7‡ 60.0‡ 30.2‡ 53.4
rankAvg:noNC 1.06‡ 0.724‡ 88.0‡ 88.4‡ 88.4‡ 75.8‡ 85.3‡ 87.4‡ 88.3‡ 79.7‡ 79.5‡ 86.2 64.8 62.3 33.7‡ 48.6
rankAvg:noNCnoLex 0.919‡ 0.597‡ 89.2‡ 89.0‡ 89.4‡ 76.5‡ 85.7‡ 87.6‡ 88.7‡ 80.6‡ 80.1‡ 85.7‡ 63.6‡ 60.9‡ 31.4‡ 51.8
allQE(32)allMBR 0.992‡ 0.705‡ 90.2‡ 89.8‡ 90.2‡ 77.1‡ 85.8‡ 87.4‡ 88.5‡ 79.8‡ 79.4‡ 85.8‡ 64.1‡ 61.5‡ 32.6‡ 50.4
allQE(32)nolexMBR 0.904‡ 0.636‡ 91.2‡ 90.6‡ 90.7‡ 77.5‡ 86.0‡ 87.5‡ 88.8‡ 80.1‡ 79.5‡ 85.2‡ 62.7‡ 60.0‡ 30.6‡ 53.3
topQE(32)topMBR 0.761‡ 0.552‡ 92.4‡ 90.9‡ 91.2‡ 77.7‡ 85.7‡ 86.6‡ 88.1‡ 79.9‡ 78.0 83.7‡ 59.6‡ 56.8‡ 26.9‡ 58.1
noncQE(32)noncMBR 0.968‡ 0.648‡ 88.7‡ 88.7‡ 89.0‡ 76.1‡ 85.5‡ 87.3‡ 88.5‡ 80.1‡ 79.4‡ 85.8‡ 64.3† 61.7‡ 32.8‡ 49.9
noncQE(32)noncnolexMBR 0.885‡ 0.604‡ 89.3‡ 89.1‡ 89.5‡ 76.5‡ 85.7‡ 87.5‡ 88.8‡ 80.4‡ 79.7‡ 85.4‡ 63.1‡ 60.3‡ 30.7‡ 52.7
mxQE(32)mxMBR 0.628‡ 0.434‡ 89.2‡ 87.7‡ 88.9‡ 75.6‡ 85.0‡ 86.0 87.4‡ 79.7‡ 76.5‡ 83.2‡ 58.5‡ 55.5‡ 25.0‡ 60.3*
ckQE(32)xcMBR 1.05‡ 0.696‡ 94.0‡ 89.1‡ 91.8‡ 76.6‡ 85.4‡ 86.3* 87.6‡ 79.6‡ 77.2 83.6‡ 59.1‡ 56.2‡ 25.9‡ 59.1
mxQE(32)xcMBR 0.928‡ 0.538‡ 93.6‡ 89.0‡ 91.2‡ 76.5‡ 85.4‡ 86.2 87.6‡ 79.7‡ 77.0* 83.5‡ 58.7‡ 55.8‡ 25.4‡ 59.4
ckQE(32)mxMBR 0.657‡ 0.499‡ 90.0‡ 88.3‡ 90.9‡ 76.2‡ 85.3‡ 86.2 87.5‡ 79.8‡ 76.8* 83.4‡ 58.7‡ 55.8‡ 25.4‡ 59.6

Table 11: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-sw (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.2 Results for English-Hausa (en-ha) on FLORES200 test dataset
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Greedy 2.31 1.46 74.7 70.3 79.9 66.2 60.1 81.5 79.3 72.3 84.1 79.5 52.5 49.8 21.3 65.9
MetricX 0.818‡ 0.515‡ 76.7‡ 70.5 82.8‡ 67.5‡ 60.0 81.5 81.3‡ 76.2‡ 81.2‡ 77.0‡ 47.5‡ 44.3‡ 14.3‡ 80.2‡
MetricX-QE 1.19‡ 0.278‡ 76.5‡ 69.6 82.4‡ 67.1† 59.5 81.0† 80.7‡ 75.6‡ 80.0‡ 76.9‡ 46.6‡ 43.3‡ 13.7‡ 78.7‡
XCOMET-XXL 1.65‡ 0.909‡ 87.5‡ 73.9‡ 86.9‡ 69.8‡ 61.4‡ 82.5‡ 81.5‡ 75.4‡ 82.6‡ 77.7‡ 48.6‡ 45.5‡ 15.3‡ 75.9‡
XCOMET-XL 1.75‡ 0.990‡ 80.9‡ 80.6‡ 85.1‡ 71.8‡ 62.8‡ 82.5‡ 81.7‡ 75.4‡ 83.2† 77.8‡ 48.8‡ 45.8‡ 15.9‡ 74.2‡
CometKiwi23-XXL 1.97‡ 0.989‡ 82.2‡ 72.9‡ 90.2‡ 70.5‡ 62.2‡ 82.2‡ 81.1‡ 75.6‡ 81.8‡ 77.6‡ 48.0‡ 45.0‡ 15.4‡ 75.4‡
CometKiwi23-XL 1.99‡ 1.12‡ 78.5‡ 75.4‡ 85.4‡ 74.5‡ 62.6‡ 82.3‡ 80.6‡ 74.9‡ 82.0‡ 77.7‡ 48.3‡ 45.3‡ 15.5‡ 76.1‡
CometKiwi22 2.55† 1.51 73.5* 69.0† 81.2‡ 67.8‡ 74.8‡ 82.0† 78.8* 73.1‡ 81.6‡ 77.5‡ 47.5‡ 44.4‡ 14.8‡ 75.6‡
COMET22 1.94‡ 1.14‡ 77.7‡ 72.4‡ 84.0‡ 69.0‡ 63.4‡ 84.9‡ 81.6‡ 75.9‡ 83.6 78.4‡ 50.0‡ 46.9‡ 16.4‡ 74.3‡
AfriCOMET 1.71‡ 0.956‡ 77.8‡ 71.3* 83.2‡ 68.0‡ 60.2 82.0* 85.4‡ 77.5‡ 81.8‡ 77.8‡ 48.9‡ 45.7‡ 15.7‡ 75.6‡
AfriCOMET-QE 1.93‡ 1.07‡ 73.4* 67.6‡ 81.3‡ 66.5 59.0‡ 81.3 82.2‡ 80.3‡ 78.9‡ 76.8‡ 46.6‡ 43.3‡ 13.4‡ 81.1‡
BLEURT 2.10‡ 1.34* 75.8* 71.2* 81.3‡ 67.5‡ 61.4‡ 82.2‡ 80.2‡ 73.7‡ 89.8‡ 78.3‡ 49.9‡ 46.9‡ 16.8‡ 73.3‡
YiSi 2.37 1.46 73.7* 69.2† 79.4 66.2 60.5 81.7 79.1 72.5 83.6 80.4‡ 52.3 49.6 20.2‡ 66.6
chrF 2.30 1.40 74.7 69.7 80.3 67.0‡ 60.6* 82.1‡ 80.0† 73.5‡ 84.3 79.4 53.7‡ 50.6‡ 19.4‡ 71.9‡
chrF++ 2.34 1.43 74.4 69.9 80.2 66.9† 60.7* 82.1‡ 79.9† 73.4‡ 84.4 79.5 53.5‡ 50.6‡ 19.8‡ 71.4‡
sentBLEU 2.36 1.50 73.6† 69.8 78.8‡ 65.7 60.1 81.5 79.0 72.3 83.7 79.6 52.3 49.7 21.2 65.1*
TER 2.66‡ 1.69‡ 72.8‡ 68.8‡ 77.3‡ 64.4‡ 59.6* 80.8‡ 77.9‡ 71.3‡ 82.9‡ 79.6 51.3‡ 48.8‡ 21.1 61.3‡

rankAvg:all 1.47‡ 0.782‡ 81.8‡ 75.8‡ 85.9‡ 70.8‡ 64.8‡ 83.6‡ 82.9‡ 76.1‡ 85.7‡ 79.3 51.9* 49.0‡ 19.3‡ 68.8‡
rankAvg:qe 1.40‡ 0.581‡ 81.1‡ 75.1‡ 87.5‡ 71.9‡ 68.1‡ 83.0‡ 82.7‡ 77.5‡ 82.8‡ 77.7‡ 48.9‡ 45.7‡ 15.5‡ 76.7‡
rankAvg:top 1.15‡ 0.524‡ 84.1‡ 77.5‡ 88.0‡ 72.4‡ 62.4‡ 82.6‡ 82.4‡ 76.3‡ 83.3* 77.8‡ 49.1‡ 46.0‡ 16.1‡ 76.0‡
rankAvg:topQe 1.36‡ 0.491‡ 81.8‡ 75.8‡ 88.4‡ 72.8‡ 62.7‡ 82.5‡ 82.0‡ 76.0‡ 82.5‡ 77.6‡ 48.4‡ 45.4‡ 15.7‡ 75.9‡
rankAvg:mxmxqe 0.891‡ 0.336‡ 77.4‡ 70.9 82.8‡ 67.6‡ 60.1 81.4 81.5‡ 76.1‡ 81.1‡ 77.0‡ 47.3‡ 44.1‡ 14.2‡ 79.4‡
rankAvg:noLex 1.34‡ 0.657‡ 82.8‡ 76.4‡ 86.9‡ 71.6‡ 65.8‡ 83.7‡ 83.3‡ 76.9‡ 85.1‡ 78.7‡ 50.5‡ 47.5‡ 17.5‡ 72.8‡
rankAvg:noNC 1.43‡ 0.736‡ 79.4‡ 73.4‡ 83.6‡ 68.9‡ 62.0‡ 83.4‡ 82.9‡ 76.2‡ 85.5‡ 79.5 52.1 49.2† 19.8‡ 68.0‡
rankAvg:noNCnoLex 1.27‡ 0.625‡ 80.1‡ 73.9‡ 84.4‡ 69.3‡ 62.3‡ 83.7‡ 83.5‡ 77.2‡ 85.5‡ 79.0‡ 51.0‡ 48.0‡ 17.9‡ 72.4‡
allQE(32)allMBR 1.45‡ 0.802‡ 82.0‡ 76.1‡ 85.8‡ 70.6‡ 63.7‡ 83.6‡ 83.0‡ 76.1‡ 85.6‡ 79.1‡ 51.6‡ 48.7‡ 19.1‡ 70.0‡
allQE(32)nolexMBR 1.31‡ 0.715‡ 83.4‡ 76.9‡ 86.4‡ 71.2‡ 63.7‡ 83.7‡ 83.4‡ 76.6‡ 85.3‡ 78.6‡ 50.5‡ 47.6‡ 17.7‡ 73.1‡
topQE(32)topMBR 1.12‡ 0.595‡ 84.6‡ 78.0‡ 87.0‡ 71.6‡ 62.4‡ 82.6‡ 82.4‡ 76.1‡ 83.5 77.8‡ 49.1‡ 46.1‡ 16.2‡ 75.6‡
noncQE(32)noncMBR 1.35‡ 0.704‡ 79.4‡ 73.6‡ 83.7‡ 69.0‡ 61.9‡ 83.4‡ 83.0‡ 76.5‡ 84.9* 79.0‡ 51.5‡ 48.5‡ 18.7‡ 70.2‡
noncQE(32)noncnolexMBR 1.22‡ 0.653‡ 80.4‡ 74.3‡ 84.6‡ 69.3‡ 62.3‡ 83.7‡ 83.6‡ 76.9‡ 85.1† 78.8‡ 50.6‡ 47.6‡ 17.7‡ 73.0‡
mxQE(32)mxMBR 0.859‡ 0.444‡ 76.7‡ 70.7 82.8‡ 67.6‡ 60.3 81.6 81.3‡ 76.1‡ 81.1‡ 77.1‡ 47.7‡ 44.5‡ 14.6‡ 79.5‡
ckQE(32)xcMBR 1.60‡ 0.865‡ 87.2‡ 74.2‡ 87.7‡ 70.1‡ 61.3‡ 82.4‡ 81.6‡ 75.7‡ 82.4‡ 77.7‡ 48.6‡ 45.5‡ 15.3‡ 76.6‡
mxQE(32)xcMBR 1.39‡ 0.613‡ 86.4‡ 73.9‡ 86.9‡ 69.9‡ 61.5‡ 82.3‡ 81.9‡ 75.8‡ 82.2‡ 77.6‡ 48.5‡ 45.3‡ 15.3‡ 76.8‡
ckQE(32)mxMBR 0.908‡ 0.516‡ 79.6‡ 72.8‡ 86.6‡ 69.3‡ 61.1‡ 82.1‡ 82.0‡ 76.3‡ 81.7‡ 77.3‡ 48.0‡ 44.9‡ 14.7‡ 78.9‡

Table 12: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-ha (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.3 Results for English-Igbo (en-ig) on FLORES200 test dataset
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Greedy 3.73 2.67 27.3 19.8 16.9 16.8 30.2 72.1 68.9 66.4 33.5 78.3 42.7 40.7 15.2 74.2
MetricX 1.68‡ 1.31‡ 26.7‡ 18.9‡ 18.0‡ 17.8‡ 30.3 72.1 71.7‡ 69.7‡ 28.8‡ 77.2‡ 40.7‡ 38.6‡ 12.8‡ 79.6‡
MetricX-QE 2.15‡ 0.937‡ 26.7‡ 19.2* 17.4 17.7‡ 30.6* 72.1 71.2‡ 69.3‡ 29.0‡ 77.3‡ 40.7‡ 38.5‡ 12.8‡ 78.8‡
XCOMET-XXL 5.12‡ 3.55‡ 31.4‡ 21.0‡ 20.3‡ 18.9‡ 32.1‡ 72.2 66.5‡ 65.6‡ 31.2‡ 77.5‡ 40.1‡ 38.0‡ 12.8‡ 74.1
XCOMET-XL 6.81‡ 5.12‡ 27.2 26.7‡ 20.0‡ 19.6‡ 33.1‡ 69.1‡ 62.6‡ 64.3‡ 29.2‡ 75.9‡ 37.2‡ 35.2‡ 11.8‡ 79.5‡
CometKiwi23-XXL 6.08‡ 4.17‡ 26.4‡ 20.1 36.6‡ 21.7‡ 32.3‡ 70.2‡ 64.5‡ 64.9‡ 27.1‡ 76.0‡ 37.9‡ 35.8‡ 11.4‡ 83.2‡
CometKiwi23-XL 5.94‡ 3.99‡ 26.2‡ 20.7† 24.8‡ 29.3‡ 32.6‡ 70.2‡ 64.5‡ 65.5‡ 27.4‡ 75.8‡ 38.0‡ 35.7‡ 10.9‡ 83.6‡
CometKiwi22 6.13‡ 4.33‡ 26.7† 21.9‡ 21.0‡ 20.1‡ 40.6‡ 69.6‡ 63.9‡ 65.3‡ 28.8‡ 75.9‡ 37.0‡ 35.0‡ 11.3‡ 77.6‡
COMET22 5.28‡ 3.80‡ 27.2 18.5‡ 17.4 17.3† 30.7† 76.3‡ 66.7‡ 66.1 29.1‡ 77.7‡ 41.0‡ 38.9‡ 13.0‡ 78.9‡
AfriCOMET 3.26‡ 2.26‡ 26.8† 19.0† 18.4‡ 17.6‡ 30.6* 72.3 77.3‡ 72.6‡ 28.8‡ 77.4‡ 40.9‡ 38.6‡ 12.7‡ 79.7‡
AfriCOMET-QE 4.16‡ 2.87* 26.4‡ 19.0† 17.9† 18.0‡ 31.0‡ 71.8 73.4‡ 75.3‡ 24.7‡ 76.6‡ 38.8‡ 36.6‡ 11.4‡ 81.8‡
BLEURT 4.20‡ 3.05‡ 27.2 19.9 19.0‡ 17.6‡ 30.7† 71.9 69.0 66.3 40.9‡ 77.8‡ 41.8‡ 39.8‡ 14.1‡ 74.9
YiSi 4.03‡ 2.87† 27.9† 19.2* 17.1 17.3† 30.0 73.2‡ 69.6† 66.9† 33.9 79.2‡ 43.5‡ 41.5‡ 15.3 73.7
chrF 4.01† 2.86† 27.3 18.8‡ 17.7† 17.8‡ 29.9† 73.0‡ 69.9‡ 66.9† 33.1 78.5* 44.5‡ 42.3‡ 15.3 77.2‡
chrF++ 3.95* 2.84† 27.3 18.9‡ 17.6† 17.7‡ 30.0* 72.8‡ 69.7‡ 66.8* 33.7 78.5† 44.4‡ 42.3‡ 15.4 76.8‡
sentBLEU 4.05‡ 2.94‡ 27.7* 20.0 18.2‡ 17.5‡ 30.9‡ 72.2 68.8 66.1 34.6† 78.3 42.9 41.1* 15.8‡ 72.4†
TER 4.30‡ 3.07‡ 28.2‡ 20.7‡ 18.1‡ 17.2* 31.5‡ 71.7† 68.2† 65.9† 34.8‡ 78.2 42.1† 40.3* 15.3 69.5‡

rankAvg:all 3.05‡ 2.05‡ 28.6‡ 20.8‡ 22.1‡ 20.6‡ 32.5‡ 73.6‡ 72.4‡ 69.3‡ 34.8† 78.5* 43.2† 41.1* 15.4 73.0
rankAvg:qe 3.34‡ 1.94‡ 27.5 21.1‡ 27.2‡ 24.1‡ 35.1‡ 71.6† 71.7‡ 71.2‡ 29.5‡ 76.9‡ 40.2‡ 37.9‡ 12.3‡ 78.2‡
rankAvg:top 2.86‡ 1.77‡ 29.1‡ 22.0‡ 26.2‡ 23.1‡ 32.5‡ 72.0 70.4‡ 68.4‡ 31.6‡ 77.4‡ 41.1‡ 38.9‡ 13.4‡ 75.5*
rankAvg:topQe 3.17‡ 1.70‡ 27.2 20.4* 28.9‡ 24.8‡ 32.0‡ 71.6† 69.8‡ 68.4‡ 29.4‡ 76.8‡ 40.4‡ 38.1‡ 12.4‡ 80.1‡
rankAvg:mxmxqe 1.83‡ 1.03‡ 26.8† 19.2* 17.9† 17.9‡ 30.4 72.1 71.9‡ 69.6‡ 29.5‡ 77.3‡ 41.0‡ 38.8‡ 12.9‡ 79.0‡
rankAvg:noLex 2.98‡ 1.93‡ 28.8‡ 21.2‡ 23.4‡ 21.3‡ 33.1‡ 73.8‡ 72.9‡ 70.0‡ 34.1 78.3 42.7 40.5 14.8 73.7
rankAvg:noNC 2.74‡ 1.85‡ 28.0‡ 19.7 18.5‡ 18.1‡ 30.8‡ 73.6‡ 73.1‡ 69.7‡ 34.6† 78.6‡ 43.4‡ 41.3‡ 15.4 73.4
rankAvg:noNCnoLex 2.60‡ 1.67‡ 27.7* 19.5 17.9‡ 18.0‡ 30.7‡ 74.1‡ 73.9‡ 70.8‡ 34.6* 78.6† 42.9 40.7 14.7* 74.9
allQE(32)allMBR 3.06‡ 2.06‡ 28.6‡ 20.9‡ 21.9‡ 20.4‡ 32.5‡ 73.2‡ 72.3‡ 69.3‡ 34.3 78.3 42.9 40.8 15.1 73.3
allQE(32)nolexMBR 2.90‡ 1.97‡ 28.8‡ 21.3‡ 22.1‡ 20.3‡ 32.5‡ 73.5‡ 72.9‡ 69.7‡ 34.6* 78.3 42.7 40.5 14.7* 73.6
topQE(32)topMBR 2.71‡ 1.80‡ 29.3‡ 22.3‡ 23.5‡ 21.5‡ 32.6‡ 71.9 70.6‡ 68.4‡ 32.3† 77.6‡ 41.3‡ 39.1‡ 13.7‡ 74.3
noncQE(32)noncMBR 2.64‡ 1.76‡ 27.8† 19.7 18.4‡ 18.0‡ 30.7‡ 73.3‡ 73.6‡ 70.1‡ 34.2 78.6† 43.4‡ 41.3† 15.1 73.9
noncQE(32)noncnolexMBR 2.51‡ 1.69‡ 27.9† 19.6 18.1‡ 17.9‡ 30.7‡ 73.9‡ 74.2‡ 70.6‡ 34.3 78.5† 43.0 40.8 14.6* 75.0
mxQE(32)mxMBR 1.73‡ 1.24‡ 26.7‡ 19.0† 18.0‡ 17.6‡ 30.4 72.1 71.8‡ 69.6‡ 29.4‡ 77.3‡ 40.9‡ 38.8‡ 13.0‡ 78.9‡
ckQE(32)xcMBR 5.07‡ 3.53‡ 30.4‡ 21.3‡ 26.6‡ 20.4‡ 32.4‡ 71.9 66.6‡ 66.0* 30.2‡ 77.2‡ 39.8‡ 37.7‡ 12.7‡ 75.8*
mxQE(32)xcMBR 3.41‡ 1.90‡ 30.5‡ 21.0‡ 20.6‡ 18.7‡ 32.0‡ 72.5* 69.3 67.6‡ 31.6‡ 77.7‡ 41.0‡ 38.8‡ 13.3‡ 74.2
ckQE(32)mxMBR 2.11‡ 1.56‡ 27.0 19.4 25.4‡ 19.6‡ 30.9‡ 72.0 71.2‡ 69.2‡ 29.0‡ 77.1‡ 40.7‡ 38.5‡ 12.7‡ 80.2‡

Table 13: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-ig (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.4 Results for English-Somali (en-so) on FLORES200 test dataset
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Greedy 2.66 1.89 67.9 66.0 78.3 65.8 70.0 80.7 75.9 73.4 108. 77.7 46.7 42.4 11.3 86.7
MetricX 0.996‡ 0.635‡ 71.5‡ 69.2‡ 83.8‡ 69.5‡ 70.5* 81.9‡ 79.8‡ 78.4‡ 110.‡ 76.2‡ 44.2‡ 39.5‡ 8.89‡ 91.9
MetricX-QE 1.34‡ 0.396‡ 70.6‡ 68.3‡ 83.0‡ 68.6‡ 70.3 81.5‡ 79.0‡ 77.8‡ 109.† 76.3‡ 43.8‡ 39.2‡ 8.94‡ 89.2
XCOMET-XXL 1.69‡ 0.998‡ 81.0‡ 72.3‡ 87.2‡ 70.5‡ 71.5‡ 82.1‡ 79.8‡ 78.0‡ 110.‡ 76.5‡ 44.2‡ 39.7‡ 9.14‡ 89.0
XCOMET-XL 1.82‡ 1.08‡ 74.7‡ 78.7‡ 85.4‡ 72.7‡ 72.6‡ 82.5‡ 80.1‡ 77.7‡ 111.‡ 76.8‡ 45.0‡ 40.5‡ 9.85‡ 88.2
CometKiwi23-XXL 1.89‡ 1.09‡ 75.6‡ 71.6‡ 90.4‡ 71.4‡ 72.3‡ 82.1‡ 79.6‡ 78.0‡ 110.‡ 76.4‡ 44.1‡ 39.6‡ 9.34‡ 89.0
CometKiwi23-XL 2.00‡ 1.17‡ 72.8‡ 74.6‡ 85.9‡ 75.1‡ 72.7‡ 82.2‡ 79.5‡ 77.6‡ 110.‡ 76.5‡ 44.4‡ 39.9‡ 9.64‡ 89.8
CometKiwi22 2.56 1.65† 68.0 66.9* 81.4‡ 68.4‡ 80.3‡ 81.7‡ 77.1‡ 75.7‡ 109.* 76.7‡ 44.3‡ 39.7‡ 9.49‡ 87.8
COMET22 2.01‡ 1.30‡ 72.1‡ 69.9‡ 83.5‡ 69.6‡ 73.0‡ 84.6‡ 79.8‡ 78.3‡ 111.‡ 77.2‡ 45.8‡ 41.2‡ 9.93‡ 87.7
AfriCOMET 1.78‡ 1.08‡ 73.7‡ 71.2‡ 84.7‡ 70.0‡ 71.5‡ 82.4‡ 83.9‡ 80.2‡ 110.‡ 76.8‡ 45.1‡ 40.5‡ 9.66‡ 88.5
AfriCOMET-QE 2.01‡ 1.25‡ 69.3† 67.3† 82.1‡ 68.6‡ 70.2 82.2‡ 81.1‡ 82.6‡ 108. 76.1‡ 43.9‡ 39.1‡ 8.55‡ 92.1
BLEURT 2.23‡ 1.52‡ 68.4 67.5† 81.7‡ 68.2‡ 71.0‡ 81.5‡ 77.6‡ 76.6‡ 120.‡ 76.0‡ 43.9‡ 39.2‡ 8.29‡ 96.9‡
YiSi 2.66 1.71* 68.0 65.8 79.4† 66.4* 70.5* 81.3‡ 76.6† 74.3‡ 108. 78.6‡ 47.2* 42.7 11.2 82.9
chrF 2.48* 1.66† 68.2 66.4 80.1‡ 67.1‡ 70.3 81.5‡ 77.4‡ 74.9‡ 109.‡ 77.9 48.3‡ 43.6‡ 11.2 87.1
chrF++ 2.52 1.67† 68.5 66.5 79.9‡ 66.9‡ 70.4* 81.4‡ 77.1‡ 74.6‡ 109.‡ 77.9* 48.2‡ 43.7‡ 11.2 87.1
sentBLEU 2.65 1.76 67.9 66.4 79.0 66.2 69.8 80.8 76.3 73.7 108. 77.8 46.9 42.6 11.8† 81.9
TER 2.85* 1.95 67.9 65.2 77.4* 65.1† 69.8 80.5 75.3* 73.0* 106.‡ 77.7 45.9‡ 41.7† 11.6 77.1‡

rankAvg:all 1.63‡ 0.909‡ 75.8‡ 73.5‡ 85.9‡ 71.4‡ 74.2‡ 83.1‡ 81.1‡ 78.4‡ 112.‡ 77.8 47.0 42.5 11.0 84.1
rankAvg:qe 1.55‡ 0.724‡ 74.9‡ 73.5‡ 87.8‡ 72.7‡ 76.4‡ 82.9‡ 81.1‡ 80.0‡ 111.‡ 76.7‡ 44.7‡ 40.1‡ 9.39‡ 89.5
rankAvg:top 1.34‡ 0.658‡ 77.7‡ 75.6‡ 88.1‡ 73.1‡ 72.5‡ 82.7‡ 81.0‡ 78.7‡ 112.‡ 76.6‡ 44.8‡ 40.3‡ 9.54‡ 89.5
rankAvg:topQe 1.42‡ 0.623‡ 75.8‡ 74.0‡ 88.6‡ 73.4‡ 72.3‡ 82.6‡ 80.6‡ 78.6‡ 111.‡ 76.6‡ 44.7‡ 40.2‡ 9.60‡ 89.6
rankAvg:mxmxqe 1.08‡ 0.458‡ 71.8‡ 69.4‡ 83.9‡ 69.4‡ 70.7† 81.9‡ 79.7‡ 78.3‡ 110.‡ 76.3‡ 44.1‡ 39.4‡ 8.78‡ 90.9
rankAvg:noLex 1.45‡ 0.786‡ 76.8‡ 74.7‡ 87.1‡ 72.3‡ 75.0‡ 83.3‡ 81.7‡ 79.3‡ 113.‡ 77.4* 46.0† 41.4‡ 10.1‡ 87.7
rankAvg:noNC 1.66‡ 0.928‡ 73.5‡ 71.1‡ 83.9‡ 69.8‡ 72.3‡ 82.9‡ 80.8‡ 78.3‡ 112.‡ 77.9 47.2* 42.7 11.2 83.8
rankAvg:noNCnoLex 1.41‡ 0.764‡ 74.4‡ 71.9‡ 85.1‡ 70.5‡ 72.5‡ 83.3‡ 81.7‡ 79.5‡ 114.‡ 77.6 46.4 41.8* 10.2‡ 87.9
allQE(32)allMBR 1.55‡ 0.903‡ 76.1‡ 74.0‡ 85.8‡ 71.4‡ 73.2‡ 83.1‡ 81.2‡ 78.4‡ 112.‡ 77.5 46.6 42.1 10.7† 85.7
allQE(32)nolexMBR 1.43‡ 0.841‡ 77.4‡ 75.0‡ 86.8‡ 71.9‡ 73.5‡ 83.3‡ 81.9‡ 79.1‡ 114.‡ 77.3† 46.1† 41.5‡ 10.1‡ 87.9
topQE(32)topMBR 1.25‡ 0.740‡ 78.4‡ 76.1‡ 87.2‡ 72.3‡ 72.2‡ 82.5‡ 80.9‡ 78.5‡ 111.‡ 76.6‡ 44.7‡ 40.2‡ 9.68‡ 89.4
noncQE(32)noncMBR 1.54‡ 0.887‡ 74.4‡ 71.7‡ 84.5‡ 70.1‡ 72.3‡ 83.0‡ 81.2‡ 78.8‡ 112.‡ 77.6 46.7 42.2 10.7† 85.5
noncQE(32)noncnolexMBR 1.41‡ 0.809‡ 74.7‡ 72.1‡ 85.2‡ 70.7‡ 72.7‡ 83.3‡ 81.9‡ 79.3‡ 114.‡ 77.4† 46.2* 41.6‡ 9.95‡ 88.4
mxQE(32)mxMBR 1.03‡ 0.590‡ 71.6‡ 69.1‡ 83.9‡ 69.3‡ 70.5* 81.9‡ 79.9‡ 78.3‡ 110.‡ 76.3‡ 44.3‡ 39.6‡ 9.03‡ 91.2
ckQE(32)xcMBR 1.68‡ 0.974‡ 80.4‡ 72.2‡ 88.0‡ 70.9‡ 71.8‡ 82.2‡ 79.9‡ 78.1‡ 110.‡ 76.3‡ 44.0‡ 39.6‡ 9.26‡ 89.4
mxQE(32)xcMBR 1.51‡ 0.770‡ 80.3‡ 72.4‡ 87.1‡ 70.7‡ 71.5‡ 82.2‡ 80.1‡ 78.2‡ 110.‡ 76.5‡ 44.4‡ 39.9‡ 9.40‡ 89.3
ckQE(32)mxMBR 1.09‡ 0.650‡ 73.8‡ 70.6‡ 86.6‡ 70.3‡ 71.1‡ 82.1‡ 80.2‡ 78.6‡ 111.‡ 76.4‡ 44.4‡ 39.8‡ 8.90‡ 91.4

Table 14: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-so (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.5 Results for English-Hindi (en-hi) on FLORES200 test dataset
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Greedy 0.815 0.455 84.9 75.9 77.5 68.7 85.5 82.4 80.5 74.3 86.6 59.8 57.8 32.9 51.4
MetricX 0.257‡ 0.0928‡ 92.1‡ 81.4‡ 78.7‡ 68.9 86.0‡ 82.0† 80.8 73.1‡ 83.1‡ 50.9‡ 48.7‡ 21.5‡ 66.8‡
MetricX-QE 0.463‡ 0.0413‡ 89.6‡ 77.3‡ 76.9* 67.6‡ 85.6 81.1‡ 79.8‡ 72.1‡ 82.9‡ 49.4‡ 47.2‡ 20.7‡ 65.9‡
XCOMET-XXL 0.462‡ 0.158‡ 96.4‡ 80.5‡ 79.5‡ 68.5 85.9‡ 81.6‡ 80.2 72.8‡ 83.0‡ 49.8‡ 47.6‡ 20.8‡ 65.5‡
XCOMET-XL 0.455‡ 0.176‡ 91.9‡ 87.7‡ 79.4‡ 70.1‡ 86.3‡ 82.6 81.2‡ 73.9† 83.8‡ 52.3‡ 50.2‡ 23.5‡ 62.8‡
CometKiwi23-XXL 0.531‡ 0.195‡ 91.7‡ 80.7‡ 84.3‡ 70.4‡ 86.4‡ 82.3 80.6 73.7‡ 84.2‡ 53.0‡ 50.8‡ 23.8‡ 61.7‡
CometKiwi23-XL 0.590‡ 0.238‡ 89.4‡ 81.4‡ 80.3‡ 73.3‡ 86.4‡ 82.4 80.4 73.5‡ 84.3‡ 53.1‡ 50.9‡ 23.8‡ 61.7‡
CometKiwi22 0.581‡ 0.202‡ 90.1‡ 80.5‡ 79.7‡ 69.9‡ 87.6‡ 82.8† 81.1‡ 74.0* 83.9‡ 52.5‡ 50.4‡ 23.2‡ 62.8‡
COMET22 0.563‡ 0.244‡ 89.3‡ 80.4‡ 79.2‡ 69.8‡ 86.5‡ 84.7‡ 81.9‡ 75.0‡ 85.6‡ 57.1‡ 55.0‡ 28.9‡ 55.6‡
IndicCOMET 0.641‡ 0.306‡ 88.7‡ 78.4‡ 77.8 68.4* 86.0‡ 82.6 85.4‡ 73.7‡ 84.4‡ 53.7‡ 51.5‡ 24.8‡ 59.7‡
BLEURT 0.579‡ 0.259‡ 89.1‡ 80.1‡ 79.0‡ 69.4‡ 86.3‡ 83.1‡ 81.2‡ 76.6‡ 85.3‡ 56.5‡ 54.5‡ 28.3‡ 55.7‡
YiSi 0.772* 0.403† 85.7* 76.4 77.9* 69.0* 85.8‡ 82.8‡ 80.6 74.8‡ 86.9‡ 59.8 57.8 32.7 51.4
chrF 0.746‡ 0.397‡ 85.9† 76.6* 78.0‡ 69.1‡ 85.8‡ 82.9‡ 80.8* 74.8‡ 86.8 60.6‡ 58.5‡ 32.6 52.4†
chrF++ 0.752† 0.404† 85.9† 76.6† 78.0‡ 69.0† 85.8‡ 82.9‡ 80.7 74.9‡ 86.8* 60.6‡ 58.7‡ 33.1 52.0
sentBLEU 0.779 0.419* 85.2 76.1 77.4 68.6 85.5 82.6* 80.5 74.5 86.6 59.8 57.9 33.1 50.9
TER 0.803 0.431 85.4 75.8 77.0† 68.1‡ 85.3* 82.4 80.4 74.3 86.5 58.8‡ 56.9‡ 32.1† 50.0‡

rankAvg:all 0.477‡ 0.175‡ 91.4‡ 82.2‡ 80.7‡ 70.7‡ 86.7‡ 83.9‡ 82.4‡ 75.5‡ 86.3‡ 58.7‡ 56.7‡ 30.7‡ 53.1‡
rankAvg:qe 0.442‡ 0.0972‡ 91.8‡ 83.1‡ 82.5‡ 72.0‡ 87.1‡ 83.0‡ 81.4‡ 74.3 84.4‡ 53.8‡ 51.5‡ 24.3‡ 61.5‡
rankAvg:top 0.349‡ 0.0980‡ 94.2‡ 85.0‡ 82.3‡ 71.7‡ 86.7‡ 82.9‡ 81.5‡ 74.2 84.2‡ 53.4‡ 51.1‡ 23.9‡ 62.4‡
rankAvg:topQe 0.442‡ 0.0875‡ 92.1‡ 82.6‡ 82.9‡ 72.2‡ 86.6‡ 82.7* 81.2‡ 73.9* 84.3‡ 53.3‡ 51.0‡ 24.0‡ 62.0‡
rankAvg:mxmxqe 0.257‡ 0.0579‡ 92.1‡ 81.4‡ 78.8‡ 68.9 86.0‡ 82.0† 80.8 73.1‡ 83.0‡ 50.7‡ 48.4‡ 21.5‡ 66.7‡
rankAvg:noLex 0.420‡ 0.141‡ 92.8‡ 83.7‡ 81.5‡ 71.2‡ 86.8‡ 83.9‡ 82.8‡ 75.5‡ 85.8‡ 57.3‡ 55.2‡ 28.7‡ 55.8‡
rankAvg:noNC 0.491‡ 0.186‡ 89.8‡ 80.4‡ 79.5‡ 69.8‡ 86.3‡ 83.8‡ 82.4‡ 75.5‡ 86.4* 59.2* 57.2† 31.5‡ 52.3†
rankAvg:noNCnoLex 0.431‡ 0.144‡ 90.7‡ 81.7‡ 79.9‡ 70.1‡ 86.5‡ 84.0‡ 83.0‡ 75.6‡ 86.1‡ 57.9‡ 55.8‡ 29.7‡ 54.6‡
allQE(32)allMBR 0.464‡ 0.171‡ 91.6‡ 82.7‡ 80.8‡ 70.8‡ 86.7‡ 83.7‡ 82.3‡ 75.4‡ 86.1‡ 58.1‡ 56.0‡ 29.9‡ 54.0‡
allQE(32)nolexMBR 0.421‡ 0.146‡ 92.6‡ 83.8‡ 81.1‡ 70.9‡ 86.8‡ 83.8‡ 82.8‡ 75.4‡ 85.6‡ 56.9‡ 54.8‡ 28.4‡ 56.2‡
topQE(32)topMBR 0.323‡ 0.110‡ 94.7‡ 85.7‡ 81.3‡ 70.8‡ 86.5‡ 82.8† 81.5‡ 74.2 84.0‡ 53.0‡ 50.8‡ 23.5‡ 62.9‡
noncQE(32)noncMBR 0.446‡ 0.121‡ 90.4‡ 81.2‡ 79.4‡ 69.8‡ 86.4‡ 83.5‡ 82.1‡ 75.1‡ 85.8‡ 57.3‡ 55.2‡ 29.2‡ 54.8‡
noncQE(32)noncnolexMBR 0.398‡ 0.109‡ 91.0‡ 82.2‡ 79.6‡ 69.9‡ 86.5‡ 83.6‡ 82.7‡ 75.1‡ 85.4‡ 56.2‡ 54.1‡ 27.6‡ 56.9‡
mxQE(32)mxMBR 0.266‡ 0.0795‡ 92.1‡ 81.4‡ 78.9‡ 68.9 86.1‡ 82.2 80.8 73.3‡ 83.4‡ 51.5‡ 49.3‡ 22.2‡ 65.7‡
ckQE(32)xcMBR 0.445‡ 0.157‡ 95.8‡ 81.4‡ 81.9‡ 69.6‡ 86.3‡ 82.1* 80.6 73.5‡ 83.6‡ 51.3‡ 49.1‡ 22.2‡ 63.6‡
mxQE(32)xcMBR 0.412‡ 0.104‡ 95.9‡ 80.8‡ 79.5‡ 68.5 85.9‡ 81.7‡ 80.5 73.0‡ 83.2‡ 50.0‡ 47.9‡ 21.1‡ 65.0‡
ckQE(32)mxMBR 0.282‡ 0.0967‡ 92.8‡ 82.7‡ 81.7‡ 70.0‡ 86.5‡ 82.5 81.0† 73.9† 83.7‡ 52.5‡ 50.2‡ 22.9‡ 64.3‡

Table 15: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-hi (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.6 Results for English-Tamil (en-ta) on FLORES200 test dataset
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Greedy 0.789 0.491 80.6 65.9 83.4 76.6 86.7 90.2 71.9 80.9 83.7 60.2 54.4 17.6 73.4
MetricX 0.215‡ 0.100‡ 87.5‡ 67.9‡ 85.5‡ 77.6‡ 86.8 90.2 72.1 82.1‡ 80.8‡ 53.8‡ 47.3‡ 11.0‡ 87.1‡
MetricX-QE 0.424‡ 0.0432‡ 84.1‡ 65.3 84.4‡ 76.7 86.7 89.7‡ 71.1‡ 81.0 80.7‡ 53.0‡ 46.7‡ 10.9‡ 85.6‡
XCOMET-XXL 0.442‡ 0.185‡ 93.6‡ 69.1‡ 86.7‡ 77.9‡ 87.0† 90.3 72.0 82.1‡ 81.0‡ 53.4‡ 47.1‡ 11.4‡ 84.9‡
XCOMET-XL 0.471‡ 0.225‡ 87.4‡ 76.7‡ 86.1‡ 79.1‡ 87.3‡ 90.6‡ 72.6‡ 82.5‡ 81.7‡ 55.3‡ 49.0‡ 12.5‡ 82.4‡
CometKiwi23-XXL 0.492‡ 0.215‡ 88.4‡ 69.4‡ 90.1‡ 79.4‡ 87.5‡ 90.6‡ 72.3* 82.4‡ 81.7‡ 55.0‡ 48.6‡ 12.0‡ 82.0‡
CometKiwi23-XL 0.549‡ 0.256‡ 85.4‡ 70.1‡ 87.2‡ 82.3‡ 87.5‡ 90.6‡ 72.1 82.8‡ 81.5‡ 54.9‡ 48.4‡ 11.5‡ 84.6‡
CometKiwi22 0.578‡ 0.263‡ 83.9‡ 68.0‡ 86.2‡ 78.9‡ 88.5‡ 90.8‡ 72.4† 81.6‡ 81.9‡ 55.1‡ 48.7‡ 12.0‡ 80.8‡
COMET22 0.509‡ 0.274‡ 84.8‡ 69.3‡ 86.0‡ 78.9‡ 87.6‡ 92.1‡ 73.7‡ 82.7‡ 82.9‡ 58.2‡ 52.0‡ 14.5‡ 78.8‡
IndicCOMET 0.628‡ 0.356‡ 82.3‡ 66.4 83.9* 77.1* 87.0† 90.7‡ 76.9‡ 82.1‡ 82.0‡ 55.7‡ 49.3‡ 12.5‡ 81.5‡
BLEURT 0.636‡ 0.347‡ 82.2‡ 65.0* 84.6‡ 77.9‡ 86.7 90.0 71.4† 87.0‡ 80.7‡ 53.6‡ 46.9‡ 10.3‡ 89.7‡
YiSi 0.698* 0.416* 80.9 66.3 84.0† 77.4‡ 87.0‡ 90.6‡ 72.1 81.3† 84.2‡ 60.4 54.4 16.7† 73.6
chrF 0.679† 0.418* 80.9 66.3 84.1‡ 77.7‡ 86.9* 90.6‡ 72.1 81.8‡ 83.9 61.4‡ 55.0‡ 16.4‡ 76.3*
chrF++ 0.686* 0.439 80.9 66.2 83.9* 77.6‡ 86.9† 90.5‡ 72.2† 81.6‡ 83.9* 61.3‡ 55.2‡ 17.1* 75.2
sentBLEU 0.772 0.490 80.4 66.0 83.2 76.7 86.8 90.3 71.9 80.8 83.8 59.9 54.2 17.9 71.5
TER 0.835 0.495 79.8* 65.2* 82.5‡ 75.9‡ 86.5 89.9* 71.6* 80.2‡ 83.6 59.0‡ 53.2‡ 17.2 69.5‡

rankAvg:all 0.419‡ 0.175‡ 87.2‡ 71.3‡ 87.5‡ 79.7‡ 87.8‡ 91.4‡ 73.8‡ 83.2‡ 83.5* 59.6† 53.5‡ 16.0‡ 75.6
rankAvg:qe 0.388‡ 0.105‡ 87.8‡ 71.3‡ 88.8‡ 81.0‡ 88.1‡ 91.1‡ 72.8‡ 82.8‡ 82.2‡ 56.1‡ 49.7‡ 12.5‡ 81.3‡
rankAvg:top 0.321‡ 0.0985‡ 90.8‡ 73.1‡ 88.7‡ 80.8‡ 87.7‡ 91.0‡ 72.9‡ 83.1‡ 81.8‡ 55.6‡ 49.1‡ 12.2‡ 83.3‡
rankAvg:topQe 0.385‡ 0.0913‡ 88.4‡ 70.9‡ 89.1‡ 81.3‡ 87.7‡ 90.8‡ 72.7‡ 82.8‡ 81.8‡ 55.2‡ 48.8‡ 12.0‡ 83.3‡
rankAvg:mxmxqe 0.229‡ 0.0563‡ 87.4‡ 67.9‡ 85.8‡ 77.8‡ 86.9 90.2 72.1 82.2‡ 80.8‡ 53.9‡ 47.4‡ 11.0‡ 86.3‡
rankAvg:noLex 0.368‡ 0.136‡ 88.8‡ 72.5‡ 88.1‡ 80.2‡ 87.9‡ 91.5‡ 74.1‡ 83.7‡ 83.0‡ 58.0‡ 51.7‡ 13.9‡ 79.3‡
rankAvg:noNC 0.441‡ 0.181‡ 85.2‡ 69.5‡ 86.1‡ 78.7‡ 87.5‡ 91.4‡ 74.0‡ 83.2‡ 83.7 60.1 54.0 16.6‡ 74.0
rankAvg:noNCnoLex 0.366‡ 0.136‡ 86.2‡ 70.1‡ 86.5‡ 79.0‡ 87.5‡ 91.5‡ 74.5‡ 83.9‡ 83.2‡ 58.5‡ 52.2‡ 14.5‡ 78.4‡
allQE(32)allMBR 0.414‡ 0.184‡ 87.6‡ 71.3‡ 87.3‡ 79.6‡ 87.7‡ 91.4‡ 73.8‡ 83.0‡ 83.4‡ 59.3‡ 53.1‡ 15.4‡ 76.3*
allQE(32)nolexMBR 0.370‡ 0.151‡ 89.2‡ 72.5‡ 87.8‡ 79.9‡ 87.8‡ 91.5‡ 74.2‡ 83.7‡ 82.9‡ 57.9‡ 51.7‡ 14.2‡ 79.3‡
topQE(32)topMBR 0.308‡ 0.121‡ 91.0‡ 73.6‡ 88.1‡ 79.8‡ 87.5‡ 90.8‡ 72.8‡ 82.7‡ 81.8‡ 55.5‡ 49.2‡ 12.7‡ 82.5‡
noncQE(32)noncMBR 0.399‡ 0.138‡ 85.6‡ 69.1‡ 86.3‡ 78.4‡ 87.5‡ 91.3‡ 73.6‡ 82.8‡ 83.4‡ 59.1‡ 53.0‡ 15.9‡ 75.8*
noncQE(32)noncnolexMBR 0.343‡ 0.117‡ 86.8‡ 69.9‡ 86.7‡ 78.9‡ 87.5‡ 91.4‡ 74.3‡ 83.7‡ 82.9‡ 57.8‡ 51.5‡ 14.2‡ 78.9‡
mxQE(32)mxMBR 0.230‡ 0.0857‡ 87.5‡ 68.2‡ 85.7‡ 77.8‡ 86.9* 90.3 72.2 82.3‡ 81.0‡ 54.2‡ 47.7‡ 11.2‡ 85.9‡
ckQE(32)xcMBR 0.432‡ 0.176‡ 93.2‡ 69.5‡ 88.3‡ 78.7‡ 87.3‡ 90.4* 72.1 82.3‡ 81.2‡ 54.1‡ 47.7‡ 11.6‡ 84.1‡
mxQE(32)xcMBR 0.387‡ 0.115‡ 93.2‡ 68.9‡ 86.9‡ 77.9‡ 87.1‡ 90.3 72.0 82.3‡ 81.0‡ 53.4‡ 47.1‡ 11.4‡ 84.4‡
ckQE(32)mxMBR 0.254‡ 0.102‡ 88.2‡ 69.8‡ 88.0‡ 78.9‡ 87.3‡ 90.6‡ 72.5‡ 82.7‡ 81.5‡ 54.9‡ 48.4‡ 11.8‡ 84.6‡

Table 16: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-ta (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.

1086



G.7 Results for English-Gujarati (en-gu) on FLORES200 test dataset
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Greedy 0.794 0.263 94.3 86.2 76.2 69.1 87.7 89.1 95.2 83.2 84.7 54.9 51.7 21.8 65.0
MetricX 0.196‡ 0.0327‡ 96.2‡ 87.9‡ 76.5 68.6* 87.7 89.1 95.3 84.0‡ 81.8‡ 48.0‡ 44.5‡ 14.7‡ 78.9‡
MetricX-QE 0.583‡ 0.00737‡ 94.5 84.1‡ 73.5‡ 67.0‡ 87.2‡ 88.0‡ 93.6‡ 81.8‡ 81.3‡ 45.6‡ 42.4‡ 14.0‡ 78.3‡
XCOMET-XXL 0.547‡ 0.107‡ 98.5‡ 87.4‡ 77.6‡ 68.3‡ 87.6 88.7‡ 94.3‡ 82.8 81.5‡ 46.5‡ 43.1‡ 14.1‡ 77.9‡
XCOMET-XL 0.468‡ 0.0935‡ 96.5‡ 92.9‡ 78.3‡ 70.5‡ 88.2‡ 89.5‡ 95.2 84.4‡ 82.7‡ 49.3‡ 45.9‡ 16.0‡ 74.7‡
CometKiwi23-XXL 0.609‡ 0.133‡ 96.2‡ 87.9‡ 86.2‡ 71.7‡ 88.2‡ 89.1 94.8† 83.3 82.6‡ 49.2‡ 45.8‡ 15.7‡ 74.9‡
CometKiwi23-XL 0.713† 0.186‡ 94.7* 88.0‡ 79.8‡ 75.8‡ 88.1‡ 88.8† 94.3‡ 82.7* 82.3‡ 48.3‡ 45.0‡ 15.0‡ 77.7‡
CometKiwi22 0.631‡ 0.132‡ 95.2‡ 87.9‡ 79.2‡ 70.8‡ 89.3‡ 89.6‡ 95.4* 83.6* 82.6‡ 48.5‡ 45.2‡ 15.4‡ 74.5‡
COMET22 0.578‡ 0.134‡ 95.6‡ 88.7‡ 78.5‡ 70.5‡ 88.5‡ 91.0‡ 96.5‡ 84.2‡ 83.8‡ 51.9‡ 48.6‡ 17.9‡ 70.3‡
IndicCOMET 0.745 0.233 94.4 85.4* 75.4* 68.5† 87.8 89.3* 99.4‡ 83.2 82.8‡ 49.5‡ 46.1‡ 16.1‡ 73.4‡
BLEURT 0.608‡ 0.168‡ 94.9† 87.3‡ 77.0* 69.2 87.9‡ 89.1 95.1 88.0‡ 82.3‡ 48.1‡ 44.6‡ 14.4‡ 77.7‡
YiSi 0.762 0.252 94.3 86.4 77.6‡ 69.9‡ 87.8 89.5‡ 95.4* 83.6† 85.3‡ 55.1 51.8 21.0† 65.1
chrF 0.772 0.269 94.2 86.5 77.4‡ 70.2‡ 87.8 89.4‡ 95.4† 83.6† 84.9* 55.8‡ 52.4‡ 21.2* 66.9‡
chrF++ 0.767 0.266 94.2 86.4 77.4‡ 70.2‡ 87.8 89.4‡ 95.4* 83.6† 85.0† 55.8‡ 52.5‡ 21.5 66.7‡
sentBLEU 0.813 0.290 94.0 85.7 75.8 68.7* 87.5† 89.1 95.0* 82.9 84.7 54.4* 51.4 21.8 64.1*
TER 0.827 0.298 94.0 85.2‡ 74.6‡ 67.6‡ 87.4‡ 88.9† 94.7‡ 82.5‡ 84.5* 53.6‡ 50.5‡ 21.4 62.4‡

rankAvg:all 0.449‡ 0.0762‡ 96.7‡ 90.0‡ 81.3‡ 72.0‡ 88.6‡ 90.3‡ 96.7‡ 84.9‡ 84.6 54.2† 50.8‡ 20.1‡ 67.1‡
rankAvg:qe 0.466‡ 0.0402‡ 96.4‡ 89.7‡ 83.7‡ 73.8‡ 88.9‡ 89.8‡ 95.6‡ 83.9‡ 83.0‡ 49.9‡ 46.5‡ 16.3‡ 74.6‡
rankAvg:top 0.346‡ 0.0339‡ 97.4‡ 91.1‡ 83.3‡ 73.3‡ 88.4‡ 89.7‡ 95.7‡ 84.4‡ 83.1‡ 50.5‡ 47.1‡ 16.5‡ 74.8‡
rankAvg:topQe 0.487‡ 0.0313‡ 96.4‡ 89.5‡ 84.3‡ 74.3‡ 88.4‡ 89.4† 95.1 83.5 82.8‡ 49.7‡ 46.3‡ 16.1‡ 75.3‡
rankAvg:mxmxqe 0.201‡ 0.0128‡ 96.1‡ 87.9‡ 76.5 68.5* 87.7 89.0 95.3 84.0‡ 81.8‡ 47.8‡ 44.3‡ 14.5‡ 79.0‡
rankAvg:noLex 0.397‡ 0.0527‡ 97.0‡ 90.6‡ 82.2‡ 72.6‡ 88.7‡ 90.3‡ 97.0‡ 85.4‡ 84.1‡ 52.6‡ 49.2‡ 18.3‡ 70.6‡
rankAvg:noNC 0.467‡ 0.0805‡ 95.7‡ 88.8‡ 78.9‡ 70.2‡ 88.2‡ 90.2‡ 96.7‡ 84.9‡ 84.6 54.3† 51.0† 20.6‡ 66.2†
rankAvg:noNCnoLex 0.381‡ 0.0535‡ 96.2‡ 89.3‡ 79.1‡ 70.4‡ 88.3‡ 90.3‡ 97.3‡ 85.7‡ 84.4‡ 53.2‡ 49.8‡ 18.8‡ 69.3‡
allQE(32)allMBR 0.450‡ 0.0803‡ 96.7‡ 90.1‡ 81.4‡ 71.8‡ 88.6‡ 90.3‡ 96.6‡ 84.9‡ 84.5† 54.0‡ 50.7‡ 20.0‡ 67.6‡
allQE(32)nolexMBR 0.384‡ 0.0615‡ 97.2‡ 90.9‡ 81.6‡ 71.8‡ 88.6‡ 90.3‡ 97.0‡ 85.5‡ 84.0‡ 52.7‡ 49.3‡ 18.6‡ 70.5‡
topQE(32)topMBR 0.312‡ 0.0438‡ 97.7‡ 91.5‡ 81.8‡ 71.8‡ 88.4‡ 89.7‡ 95.7‡ 84.6‡ 82.8‡ 50.0‡ 46.5‡ 16.3‡ 75.0‡
noncQE(32)noncMBR 0.417‡ 0.0465‡ 95.9‡ 88.6‡ 78.7‡ 69.9‡ 88.2‡ 90.0‡ 96.3‡ 84.7‡ 84.2‡ 53.2‡ 49.9‡ 19.5‡ 68.2‡
noncQE(32)noncnolexMBR 0.361‡ 0.0395‡ 96.2‡ 89.0‡ 79.1‡ 70.2‡ 88.3‡ 90.1‡ 96.8‡ 85.4‡ 83.7‡ 51.6‡ 48.2‡ 17.7‡ 71.9‡
mxQE(32)mxMBR 0.217‡ 0.0204‡ 96.3‡ 88.1‡ 76.7 68.6* 87.7 89.1 95.1 83.9‡ 82.1‡ 48.2‡ 44.8‡ 15.1‡ 77.4‡
ckQE(32)xcMBR 0.550‡ 0.0946‡ 98.2‡ 88.1‡ 82.1‡ 70.0‡ 88.0‡ 89.1 94.7‡ 83.4 82.3‡ 48.2‡ 44.8‡ 15.0‡ 76.0‡
mxQE(32)xcMBR 0.455‡ 0.0397‡ 98.3‡ 87.8‡ 77.7‡ 68.3‡ 87.7 88.8* 94.5‡ 83.2 81.7‡ 46.7‡ 43.3‡ 14.0‡ 77.5‡
ckQE(32)mxMBR 0.244‡ 0.0348‡ 96.7‡ 89.0‡ 82.1‡ 70.8‡ 88.2‡ 89.5‡ 95.5* 84.4‡ 82.5‡ 49.5‡ 46.0‡ 15.7‡ 76.6‡

Table 17: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-gu (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.8 Results for English-Malayalam (en-ml) on FLORES200 test dataset
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Greedy 0.849 0.393 91.7 83.6 82.6 77.1 86.9 88.5 94.3 80.9 82.4 56.5 50.9 15.9 74.9
MetricX 0.245‡ 0.0652‡ 95.8‡ 86.3‡ 84.6‡ 77.8‡ 86.9 89.0† 94.5 81.8‡ 79.4‡ 50.4‡ 44.3‡ 10.3‡ 87.7‡
MetricX-QE 0.572‡ 0.0197‡ 93.3‡ 82.5† 82.5 76.4‡ 86.4‡ 87.7‡ 92.8‡ 79.6‡ 78.8‡ 48.2‡ 42.2‡ 9.63‡ 89.1‡
XCOMET-XXL 0.526‡ 0.150‡ 98.5‡ 86.3‡ 85.1‡ 77.8‡ 87.1* 88.9 93.7† 81.2 79.7‡ 50.6‡ 44.5‡ 10.1‡ 86.9‡
XCOMET-XL 0.464‡ 0.129‡ 96.0‡ 91.9‡ 85.8‡ 79.6‡ 87.7‡ 89.8‡ 95.0‡ 83.0‡ 80.7‡ 52.6‡ 46.7‡ 12.2‡ 82.4‡
CometKiwi23-XXL 0.553‡ 0.134‡ 96.5‡ 87.4‡ 89.3‡ 79.5‡ 87.9‡ 89.5‡ 94.6 82.0‡ 80.6‡ 51.8‡ 45.8‡ 11.1‡ 82.9‡
CometKiwi23-XL 0.577‡ 0.165‡ 95.0‡ 88.9‡ 86.4‡ 81.6‡ 87.9‡ 89.5‡ 94.5 82.1‡ 80.5‡ 52.1‡ 46.1‡ 11.4‡ 84.2‡
CometKiwi22 0.623‡ 0.208‡ 94.0‡ 86.7‡ 85.3‡ 78.9‡ 88.9‡ 89.6‡ 94.7† 81.7‡ 80.7‡ 52.0‡ 46.1‡ 11.6‡ 82.5‡
COMET22 0.519‡ 0.181‡ 94.7‡ 87.4‡ 85.5‡ 78.9‡ 87.9‡ 91.2‡ 96.2‡ 83.0‡ 81.7‡ 55.1‡ 49.0‡ 13.0‡ 79.4‡
IndicCOMET 0.738† 0.295† 92.3 83.7 82.9 77.1 87.2† 89.5‡ 99.1‡ 81.6‡ 80.5‡ 52.0‡ 45.9‡ 11.1‡ 83.3‡
BLEURT 0.621‡ 0.237‡ 93.3‡ 84.8‡ 84.0‡ 77.8‡ 87.4‡ 89.2‡ 94.3 87.0‡ 79.9‡ 50.9‡ 44.7‡ 9.60‡ 89.5‡
YiSi 0.754* 0.332* 92.1 84.1 83.5‡ 77.7‡ 87.3‡ 89.5‡ 95.1‡ 81.9‡ 83.3‡ 57.9‡ 52.0‡ 15.4 74.3
chrF 0.790 0.348 91.2 83.4 83.3† 77.5† 87.2‡ 89.5‡ 95.1‡ 81.9‡ 83.0‡ 59.1‡ 52.9‡ 14.9‡ 76.9‡
chrF++ 0.789 0.384 91.3 83.6 83.1* 77.5† 87.2‡ 89.4‡ 94.8‡ 81.9‡ 82.9‡ 58.7‡ 52.8‡ 15.2* 76.5†
sentBLEU 0.877 0.415 91.1* 83.0 82.1* 76.7* 86.8 89.0† 94.4 81.1 82.7* 56.8 51.5 16.9‡ 72.4‡
TER 0.914 0.454 91.1* 82.7* 80.9‡ 75.9‡ 86.4‡ 88.5 94.1 80.5 82.4 55.5† 50.2* 15.9 70.0‡

rankAvg:all 0.424‡ 0.114‡ 96.1‡ 88.9‡ 86.7‡ 79.7‡ 88.2‡ 90.5‡ 96.5‡ 83.6‡ 82.6 57.1 51.2 15.1* 75.2
rankAvg:qe 0.435‡ 0.0638‡ 96.1‡ 89.1‡ 88.1‡ 80.6‡ 88.5‡ 90.1‡ 95.5‡ 83.0‡ 81.1‡ 53.3‡ 47.2‡ 12.0‡ 82.1‡
rankAvg:top 0.345‡ 0.0578‡ 97.6‡ 90.1‡ 87.9‡ 80.4‡ 88.0‡ 90.1‡ 95.4‡ 83.3‡ 81.0‡ 53.3‡ 47.3‡ 12.5‡ 82.1‡
rankAvg:topQe 0.422‡ 0.0521‡ 96.2‡ 89.0‡ 88.4‡ 80.9‡ 88.0‡ 89.9‡ 95.1‡ 82.7‡ 80.9‡ 52.8‡ 46.7‡ 11.6‡ 82.9‡
rankAvg:mxmxqe 0.264‡ 0.0280‡ 95.9‡ 86.2‡ 84.8‡ 77.9‡ 86.9 89.0* 94.5 81.6† 79.4‡ 50.3‡ 44.2‡ 10.3‡ 87.6‡
rankAvg:noLex 0.375‡ 0.0845‡ 96.8‡ 89.8‡ 87.3‡ 80.1‡ 88.3‡ 90.6‡ 96.9‡ 84.2‡ 82.2 55.8 49.7‡ 13.6‡ 79.2‡
rankAvg:noNC 0.464‡ 0.127‡ 94.7‡ 87.4‡ 85.5‡ 78.8‡ 87.9‡ 90.5‡ 96.5‡ 83.6‡ 82.7* 57.4† 51.5 15.3 74.4
rankAvg:noNCnoLex 0.385‡ 0.0801‡ 95.6‡ 88.2‡ 86.1‡ 79.2‡ 88.0‡ 90.6‡ 97.1‡ 84.5‡ 82.2 55.9 49.7‡ 13.5‡ 79.1‡
allQE(32)allMBR 0.413‡ 0.112‡ 96.2‡ 89.2‡ 86.6‡ 79.6‡ 88.1‡ 90.5‡ 96.4‡ 83.7‡ 82.5 56.8 50.9 14.8‡ 76.1*
allQE(32)nolexMBR 0.367‡ 0.0948‡ 96.8‡ 90.0‡ 86.8‡ 79.8‡ 88.1‡ 90.6‡ 96.9‡ 84.3‡ 82.1* 55.6* 49.5‡ 13.7‡ 79.1‡
topQE(32)topMBR 0.325‡ 0.0696‡ 97.7‡ 90.5‡ 86.9‡ 79.7‡ 87.8‡ 89.9‡ 95.3‡ 83.1‡ 80.8‡ 53.0‡ 46.9‡ 12.2‡ 82.7‡
noncQE(32)noncMBR 0.427‡ 0.0816‡ 95.0‡ 87.5‡ 85.5‡ 78.7‡ 87.8‡ 90.1‡ 96.2‡ 83.0‡ 82.2 56.2 50.3 14.5‡ 76.8†
noncQE(32)noncnolexMBR 0.376‡ 0.0669‡ 95.7‡ 88.0‡ 85.8‡ 79.0‡ 87.9‡ 90.4‡ 96.7‡ 84.0‡ 81.8‡ 54.8‡ 48.8‡ 13.1‡ 80.1‡
mxQE(32)mxMBR 0.259‡ 0.0452‡ 95.9‡ 86.6‡ 84.9‡ 78.0‡ 87.0 89.0* 94.5 81.8‡ 79.7‡ 50.8‡ 44.7‡ 10.5‡ 87.1‡
ckQE(32)xcMBR 0.487‡ 0.131‡ 98.4‡ 87.2‡ 86.9‡ 78.5‡ 87.5‡ 89.4‡ 94.5 81.9‡ 80.3‡ 51.6‡ 45.6‡ 11.2‡ 83.7‡
mxQE(32)xcMBR 0.453‡ 0.0756‡ 98.4‡ 87.0‡ 85.3‡ 77.9‡ 87.2* 89.1† 94.1 81.3 79.9‡ 50.6‡ 44.6‡ 10.7‡ 85.8‡
ckQE(32)mxMBR 0.266‡ 0.0570‡ 96.4‡ 87.6‡ 87.0‡ 78.9‡ 87.5‡ 89.5‡ 95.1‡ 82.5‡ 80.1‡ 51.6‡ 45.4‡ 11.0‡ 85.1‡

Table 18: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-ml (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.9 Results for English-Vietnamese (en-vi) on FLORES200 test dataset
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Greedy 1.16 0.555 93.7 92.7 91.6 79.6 85.9 90.4 76.8 89.2 62.6 62.6 42.7 41.3
MetricX 0.486‡ 0.211‡ 96.6‡ 94.7‡ 93.8‡ 81.0‡ 86.4‡ 90.2† 75.9‡ 86.8‡ 56.4‡ 56.2‡ 32.7‡ 53.4‡
MetricX-QE 0.673‡ 0.117‡ 95.7‡ 93.8‡ 93.3‡ 80.5‡ 86.2‡ 89.8‡ 74.7‡ 86.4‡ 54.5‡ 54.3‡ 31.6‡ 53.5‡
XCOMET-XXL 0.755‡ 0.298‡ 98.4‡ 94.8‡ 94.6‡ 81.1‡ 86.4‡ 90.1† 75.4‡ 86.9‡ 56.2‡ 56.0‡ 33.1‡ 52.5‡
XCOMET-XL 0.725‡ 0.303‡ 96.9‡ 96.6‡ 94.1‡ 82.1‡ 86.6‡ 90.5 76.6 87.6‡ 57.9‡ 57.8‡ 35.3‡ 49.4‡
CometKiwi23-XXL 0.809‡ 0.310‡ 97.0‡ 94.7‡ 96.0‡ 81.7‡ 86.7‡ 90.4 76.0‡ 87.5‡ 57.3‡ 57.1‡ 34.7‡ 50.2‡
CometKiwi23-XL 0.832‡ 0.328‡ 96.1‡ 95.3‡ 94.4‡ 83.6‡ 86.7‡ 90.5 76.1‡ 87.4‡ 57.3‡ 57.2‡ 34.5‡ 50.5‡
CometKiwi22 0.912‡ 0.366‡ 95.4‡ 94.3‡ 93.8‡ 81.4‡ 87.6‡ 90.4 75.9‡ 87.3‡ 57.1‡ 56.9‡ 34.2‡ 50.7‡
COMET22 0.907‡ 0.410‡ 95.4‡ 94.3‡ 93.3‡ 81.0‡ 86.6‡ 91.5‡ 77.2‡ 88.6‡ 60.9‡ 60.9‡ 39.2‡ 44.5‡
BLEURT 0.923‡ 0.420‡ 95.0‡ 94.2‡ 93.1‡ 80.7‡ 86.5‡ 90.7‡ 78.9‡ 88.6‡ 60.4‡ 60.4‡ 39.2‡ 44.8‡
YiSi 1.08* 0.519† 94.0 93.1* 92.1† 80.0‡ 86.1‡ 90.5† 76.8 89.3* 62.5 62.5 42.1* 42.1†
chrF 1.09 0.531 94.1* 92.9 92.1† 80.0‡ 86.0† 90.5 76.7 89.1 63.1† 63.0* 41.4‡ 43.4‡
chrF++ 1.09* 0.527* 94.1† 92.9 92.1‡ 79.9‡ 86.0† 90.5 76.7 89.1 63.1† 63.1* 41.5‡ 43.4‡
sentBLEU 1.11 0.546 93.9 92.9 91.7 79.8 86.0 90.4 76.8 89.2 62.6 62.6 42.5 41.3
TER 1.21 0.592* 93.6 92.5 91.3* 79.4* 85.8* 90.4 76.5 89.2 62.1* 62.2* 42.5 39.7‡

rankAvg:all 0.759‡ 0.302‡ 96.4‡ 95.3‡ 94.4‡ 81.7‡ 86.8‡ 91.1‡ 77.8‡ 89.0* 62.3 62.2 41.2‡ 43.1‡
rankAvg:qe 0.688‡ 0.198‡ 97.0‡ 95.4‡ 95.4‡ 82.7‡ 87.3‡ 90.6† 76.5 87.6‡ 57.8‡ 57.7‡ 35.2‡ 49.7‡
rankAvg:top 0.608‡ 0.203‡ 97.8‡ 95.9‡ 95.3‡ 82.5‡ 86.8‡ 90.6† 76.7 87.5‡ 58.1‡ 57.9‡ 35.3‡ 50.4‡
rankAvg:topQe 0.670‡ 0.185‡ 97.2‡ 95.4‡ 95.5‡ 82.8‡ 86.9‡ 90.5 76.3* 87.4‡ 57.6‡ 57.4‡ 34.8‡ 50.7‡
rankAvg:mxmxqe 0.518‡ 0.144‡ 96.7‡ 94.7‡ 94.0‡ 81.1‡ 86.5‡ 90.1† 75.6‡ 86.7‡ 56.0‡ 55.8‡ 32.3‡ 53.8‡
rankAvg:noLex 0.680‡ 0.254‡ 97.2‡ 95.8‡ 94.9‡ 82.2‡ 87.0‡ 91.1‡ 77.9‡ 88.6‡ 60.9‡ 60.8‡ 39.1‡ 45.4‡
rankAvg:noNC 0.795‡ 0.324‡ 95.7‡ 94.5‡ 93.4‡ 81.0‡ 86.5‡ 91.0‡ 77.9‡ 89.2 62.5 62.5 41.6‡ 42.3‡
rankAvg:noNCnoLex 0.715‡ 0.264‡ 96.1‡ 94.9‡ 93.8‡ 81.3‡ 86.7‡ 91.2‡ 78.1‡ 89.0† 61.8‡ 61.8‡ 40.5‡ 43.7‡
allQE(32)allMBR 0.735‡ 0.287‡ 96.7‡ 95.4‡ 94.6‡ 81.8‡ 86.9‡ 91.0‡ 77.8‡ 88.8‡ 61.5‡ 61.5‡ 40.4‡ 44.1‡
allQE(32)nolexMBR 0.681‡ 0.261‡ 97.2‡ 95.8‡ 94.8‡ 82.0‡ 86.9‡ 91.1‡ 77.9‡ 88.6‡ 60.7‡ 60.7‡ 39.1‡ 45.4‡
topQE(32)topMBR 0.589‡ 0.220‡ 97.8‡ 96.0‡ 94.9‡ 82.2‡ 86.8‡ 90.5 76.5 87.4‡ 57.8‡ 57.7‡ 35.1‡ 50.8‡
noncQE(32)noncMBR 0.717‡ 0.242‡ 96.2‡ 94.8‡ 93.8‡ 81.2‡ 86.6‡ 91.0‡ 77.7‡ 88.8‡ 61.3‡ 61.2‡ 40.1‡ 44.1‡
noncQE(32)noncnolexMBR 0.650‡ 0.226‡ 96.3‡ 95.0‡ 94.0‡ 81.4‡ 86.7‡ 91.1‡ 77.8‡ 88.6‡ 60.9‡ 60.8‡ 39.5‡ 44.8‡
mxQE(32)mxMBR 0.520‡ 0.177‡ 96.5‡ 94.6‡ 93.9‡ 81.1‡ 86.5‡ 90.2† 75.7‡ 86.9‡ 56.4‡ 56.2‡ 33.1‡ 53.2‡
ckQE(32)xcMBR 0.739‡ 0.280‡ 98.3‡ 94.9‡ 95.2‡ 81.6‡ 86.5‡ 90.3 75.7‡ 87.1‡ 56.7‡ 56.6‡ 34.0‡ 51.4‡
mxQE(32)xcMBR 0.684‡ 0.213‡ 98.1‡ 94.8‡ 94.7‡ 81.3‡ 86.4‡ 90.1† 75.6‡ 87.0‡ 56.1‡ 55.9‡ 33.1‡ 52.1‡
ckQE(32)mxMBR 0.529‡ 0.213‡ 97.1‡ 95.0‡ 94.9‡ 81.6‡ 86.6‡ 90.4 76.3† 87.2‡ 57.3‡ 57.2‡ 34.1‡ 51.9‡

Table 19: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-vi (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.10 Results for English-Hungarian (en-hu) on FLORES200 test dataset
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Greedy 0.589 0.338 96.2 94.1 93.7 82.7 87.9 90.9 90.5 84.6 60.6 57.4 26.7 58.7
MetricX 0.117‡ 0.0585‡ 97.1‡ 95.8‡ 95.4‡ 83.7‡ 88.0 90.6† 92.5‡ 81.6‡ 54.1‡ 50.3‡ 18.5‡ 71.5‡
MetricX-QE 0.344‡ 0.0166‡ 96.0 94.2 93.9 82.6 87.6‡ 89.9‡ 90.6 81.1‡ 52.5‡ 48.6‡ 17.2‡ 71.9‡
XCOMET-XXL 0.367‡ 0.162‡ 99.2‡ 95.6‡ 96.0‡ 83.5‡ 87.9 90.4‡ 91.4‡ 81.8‡ 54.1‡ 50.4‡ 18.7‡ 69.8‡
XCOMET-XL 0.336‡ 0.140‡ 97.9‡ 98.0‡ 96.0‡ 85.6‡ 88.5‡ 91.2‡ 92.9‡ 82.9‡ 56.3‡ 52.8‡ 21.2‡ 67.0‡
CometKiwi23-XXL 0.369‡ 0.149‡ 98.1‡ 96.1‡ 97.7‡ 85.2‡ 88.5‡ 91.1* 92.1‡ 83.0‡ 56.3‡ 52.8‡ 21.3‡ 66.6‡
CometKiwi23-XL 0.375‡ 0.155‡ 97.5‡ 96.9‡ 96.3‡ 87.5‡ 88.6‡ 91.1 92.2‡ 82.8‡ 56.1‡ 52.5‡ 20.8‡ 66.6‡
CometKiwi22 0.449‡ 0.179‡ 96.7* 95.7‡ 95.5‡ 84.5‡ 89.5‡ 91.3‡ 91.8‡ 83.1‡ 56.6‡ 53.0‡ 20.9‡ 66.1‡
COMET22 0.414‡ 0.212‡ 97.1‡ 95.7‡ 95.3‡ 84.4‡ 88.7‡ 92.4‡ 92.2‡ 84.4* 59.6‡ 56.2‡ 24.6‡ 61.7‡
BLEURT 0.402‡ 0.205‡ 96.5 95.5‡ 95.0‡ 83.7‡ 88.1† 90.5‡ 96.4‡ 81.3‡ 53.6‡ 49.8‡ 17.4‡ 75.1‡
YiSi 0.561 0.330 96.0 94.4 94.0 83.1† 88.1† 91.1‡ 90.9† 85.3‡ 61.2† 58.0† 27.4* 57.8*
chrF 0.506‡ 0.317 96.0 94.4 94.1* 83.2* 88.0* 91.2‡ 91.0‡ 85.1‡ 62.4‡ 59.0‡ 27.3 59.0
chrF++ 0.516‡ 0.317 96.0 94.4 94.2* 83.1* 88.1† 91.2‡ 91.1‡ 85.1‡ 62.1‡ 58.8‡ 27.6† 59.1
sentBLEU 0.589 0.338 95.8* 94.1 93.6 82.7 87.8 90.8 90.4 84.8* 60.6 57.6 28.0‡ 57.2‡
TER 0.621 0.351 95.7† 93.8 93.0‡ 82.2‡ 87.6‡ 90.6‡ 89.7‡ 84.6 59.7‡ 56.7* 27.4 55.4‡

rankAvg:all 0.282‡ 0.116‡ 98.1‡ 96.8‡ 96.4‡ 85.5‡ 88.8‡ 91.9‡ 93.0‡ 84.9† 61.2* 57.8 26.8 58.9
rankAvg:qe 0.274‡ 0.0509‡ 97.9‡ 97.0‡ 97.1‡ 86.6‡ 89.2‡ 91.5‡ 92.8‡ 83.3‡ 57.3‡ 53.8‡ 22.2‡ 65.2‡
rankAvg:top 0.196‡ 0.0476‡ 98.7‡ 97.4‡ 97.1‡ 86.4‡ 88.7‡ 91.4‡ 93.0‡ 83.1‡ 57.1‡ 53.5‡ 21.6‡ 66.4‡
rankAvg:topQe 0.280‡ 0.0397‡ 98.1‡ 97.0‡ 97.3‡ 86.8‡ 88.7‡ 91.3‡ 92.6‡ 83.0‡ 56.6‡ 53.1‡ 21.4‡ 65.9‡
rankAvg:mxmxqe 0.127‡ 0.0239‡ 97.3‡ 95.9‡ 95.5‡ 83.9‡ 88.0 90.6† 92.5‡ 81.6‡ 54.1‡ 50.3‡ 18.5‡ 71.2‡
rankAvg:noLex 0.231‡ 0.0761‡ 98.5‡ 97.2‡ 96.8‡ 86.0‡ 89.0‡ 92.0‡ 93.7‡ 84.5 60.0* 56.5† 25.0‡ 61.9‡
rankAvg:noNC 0.296‡ 0.117‡ 97.3‡ 95.9‡ 95.6‡ 84.5‡ 88.5‡ 91.8‡ 92.8‡ 85.1‡ 61.5‡ 58.3‡ 27.5* 57.8*
rankAvg:noNCnoLex 0.226‡ 0.0690‡ 97.5‡ 96.3‡ 95.9‡ 84.8‡ 88.6‡ 92.0‡ 93.7‡ 84.6 60.1* 56.7* 25.4‡ 61.2‡
allQE(32)allMBR 0.288‡ 0.119‡ 98.1‡ 96.8‡ 96.4‡ 85.6‡ 88.8‡ 91.9‡ 93.0‡ 84.8 60.8 57.5 26.7 59.2
allQE(32)nolexMBR 0.228‡ 0.0929‡ 98.5‡ 97.2‡ 96.7‡ 85.8‡ 88.8‡ 91.9‡ 93.7‡ 84.3* 59.8† 56.4‡ 24.6‡ 61.6‡
topQE(32)topMBR 0.182‡ 0.0686‡ 98.7‡ 97.4‡ 96.7‡ 85.7‡ 88.6‡ 91.3‡ 93.0‡ 82.9‡ 56.5‡ 52.9‡ 21.0‡ 66.9‡
noncQE(32)noncMBR 0.265‡ 0.0709‡ 97.4‡ 96.1‡ 95.6‡ 84.5‡ 88.4‡ 91.6‡ 92.7‡ 84.4 59.8† 56.4‡ 25.3‡ 60.3†
noncQE(32)noncnolexMBR 0.206‡ 0.0591‡ 97.5‡ 96.4‡ 95.8‡ 84.8‡ 88.5‡ 91.8‡ 93.6‡ 84.0‡ 58.7‡ 55.2‡ 23.7‡ 63.2‡
mxQE(32)mxMBR 0.126‡ 0.0373‡ 97.2‡ 95.8‡ 95.4‡ 83.9‡ 88.0 90.6† 92.4‡ 81.6‡ 53.9‡ 50.1‡ 18.3‡ 71.2‡
ckQE(32)xcMBR 0.346‡ 0.139‡ 99.1‡ 95.9‡ 96.9‡ 84.5‡ 88.3‡ 90.8 92.0‡ 82.4‡ 55.2‡ 51.5‡ 19.9‡ 68.1‡
mxQE(32)xcMBR 0.298‡ 0.0600‡ 98.9‡ 95.8‡ 96.0‡ 83.8‡ 88.0 90.5‡ 91.4‡ 81.9‡ 54.1‡ 50.4‡ 18.7‡ 69.2‡
ckQE(32)mxMBR 0.132‡ 0.0554‡ 98.0‡ 96.3‡ 96.8‡ 84.8‡ 88.3‡ 91.0 92.8‡ 82.3‡ 55.5‡ 51.8‡ 19.8‡ 68.8‡

Table 20: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-hu (FLORES200 test dataset). Higher scores are better, except MetricX, MetricX-QE, and
TER, where lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant
differences from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal
in the 1st block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.11 Results for English-German (en-de) on WMT2023 dataset
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Greedy 1.24 1.42 90.1 87.2 79.6 70.7 81.3 85.6 73.5 87.9 70.1 68.2 45.4 42.1
MetricX 0.571‡ 0.794‡ 92.0‡ 87.8* 79.7 70.4 80.1‡ 83.9‡ 73.2 82.2‡ 58.9‡ 55.9‡ 27.4‡ 63.4‡
MetricX-QE 0.630‡ 0.494‡ 91.8‡ 87.5 79.9 70.3 80.3‡ 83.7‡ 72.8* 82.2‡ 58.2‡ 55.1‡ 26.3‡ 64.8‡
XCOMET-XXL 0.915‡ 1.03‡ 94.5‡ 88.3‡ 81.6‡ 71.6† 80.6‡ 84.0‡ 72.9 83.1‡ 59.7‡ 57.0‡ 29.8‡ 60.3‡
XCOMET-XL 0.907‡ 1.04‡ 92.1‡ 90.8‡ 81.1‡ 72.5‡ 81.2 84.5‡ 73.3 83.8‡ 61.1‡ 58.4‡ 31.3‡ 59.0‡
CometKiwi23-XXL 1.06† 1.09‡ 92.0‡ 88.4‡ 85.5‡ 72.6‡ 81.5* 85.1* 73.2 84.9‡ 63.4‡ 60.9‡ 34.0‡ 54.7‡
CometKiwi23-XL 1.05‡ 1.15‡ 91.5‡ 89.1‡ 82.6‡ 75.7‡ 81.9‡ 85.1† 73.5 84.9‡ 63.8‡ 61.3‡ 34.5‡ 55.3‡
CometKiwi22 1.11‡ 1.20‡ 91.0‡ 88.0‡ 81.5‡ 72.3‡ 83.4‡ 85.5 73.3 85.5‡ 64.7‡ 62.2‡ 35.8‡ 52.7‡
COMET22 1.01‡ 1.23† 91.4‡ 88.1‡ 80.6‡ 71.3† 81.6* 87.0‡ 74.7‡ 86.4‡ 67.3‡ 65.0‡ 39.7‡ 47.3‡
BLEURT 0.874‡ 0.999‡ 91.5‡ 88.2‡ 80.8‡ 71.4† 81.3 85.4 77.4‡ 84.8‡ 63.9‡ 61.3‡ 34.0‡ 54.6‡
YiSi 1.27 1.43 90.1 87.2 79.2 70.5 81.1 85.7 73.8 88.1 70.0 67.9 44.3* 42.4
chrF 1.22 1.42 90.1 87.2 79.7 71.0 81.4 85.8 73.8 87.7 70.4 68.2 43.3‡ 44.7‡
chrF++ 1.23 1.42 90.2 87.3 79.7 70.9 81.3 85.7 73.8 87.7 70.3 68.3 44.0† 43.7†
sentBLEU 1.29 1.48 90.0 87.2 79.3 70.3* 81.0† 85.5 73.6 87.8 69.7 67.8 44.9 42.2
TER 1.40* 1.55* 90.0 87.2 78.6‡ 69.8‡ 80.7‡ 85.0† 73.3 87.2† 68.5‡ 66.5‡ 44.0† 41.5

rankAvg:all 0.948‡ 1.09‡ 92.2‡ 89.1‡ 82.0‡ 72.6‡ 81.9‡ 86.3‡ 75.4‡ 87.1† 68.7‡ 66.5‡ 42.0‡ 44.7‡
rankAvg:qe 0.868‡ 0.800‡ 92.3‡ 88.9‡ 83.9‡ 74.1‡ 82.6‡ 85.6 74.4† 85.2‡ 64.3‡ 61.8‡ 35.3‡ 53.7‡
rankAvg:top 0.762‡ 0.822‡ 93.3‡ 89.7‡ 83.3‡ 73.7‡ 81.6* 85.2 74.4† 84.3‡ 63.1‡ 60.5‡ 33.4‡ 56.0‡
rankAvg:topQe 0.798‡ 0.738‡ 92.5‡ 88.9‡ 84.1‡ 74.3‡ 81.8‡ 85.2* 74.0 84.6‡ 62.8‡ 60.2‡ 33.3‡ 56.3‡
rankAvg:mxmxqe 0.616‡ 0.633‡ 92.1‡ 87.7* 79.9 70.6 80.2‡ 83.8‡ 73.2 82.2‡ 58.9‡ 55.8‡ 27.1‡ 63.6‡
rankAvg:noLex 0.873‡ 0.964‡ 92.7‡ 89.4‡ 82.8‡ 73.2‡ 82.1‡ 86.1† 75.6‡ 86.2‡ 66.8‡ 64.4‡ 38.5‡ 48.9‡
rankAvg:noNC 0.964‡ 1.07‡ 91.4‡ 88.1‡ 80.6‡ 71.5‡ 81.5* 86.2‡ 75.2‡ 87.1† 68.8‡ 66.7‡ 42.2‡ 44.4‡
rankAvg:noNCnoLex 0.856‡ 0.931‡ 91.9‡ 88.2‡ 81.0‡ 71.7‡ 81.6† 86.3‡ 75.7‡ 86.5‡ 67.2‡ 64.9‡ 39.7‡ 47.6‡
allQE(32)allMBR 0.945‡ 1.09‡ 92.2‡ 89.1‡ 82.1‡ 72.7‡ 82.0‡ 86.2† 75.1‡ 86.8‡ 68.0‡ 65.7‡ 40.9‡ 46.1‡
allQE(32)nolexMBR 0.861‡ 0.986‡ 92.8‡ 89.6‡ 82.3‡ 72.8‡ 81.9‡ 86.1† 75.6‡ 86.2‡ 66.5‡ 64.2‡ 38.7‡ 48.9‡
topQE(32)topMBR 0.739‡ 0.828‡ 93.6‡ 89.9‡ 82.4‡ 72.8‡ 81.4 85.0* 74.3* 84.2‡ 62.7‡ 60.0‡ 33.3‡ 55.6‡
noncQE(32)noncMBR 0.825‡ 0.862‡ 91.7‡ 88.3‡ 81.0‡ 71.4‡ 81.6† 85.9 74.9‡ 86.3‡ 66.6‡ 64.2‡ 38.6‡ 48.1‡
noncQE(32)noncnolexMBR 0.774‡ 0.834‡ 92.1‡ 88.4‡ 81.1‡ 71.6‡ 81.4 85.8 75.4‡ 85.6‡ 65.1‡ 62.5‡ 36.3‡ 51.3‡
mxQE(32)mxMBR 0.552‡ 0.666‡ 92.0‡ 87.9† 80.0 70.4 80.2‡ 83.9‡ 73.3 82.5‡ 59.2‡ 56.1‡ 27.5‡ 63.5‡
ckQE(32)xcMBR 0.951‡ 1.04‡ 94.2‡ 88.4‡ 83.4‡ 72.2‡ 81.1 84.7‡ 73.5 83.9‡ 61.7‡ 59.1‡ 32.1‡ 56.8‡
mxQE(32)xcMBR 0.810‡ 0.826‡ 94.3‡ 88.4‡ 81.6‡ 71.4† 80.9† 84.4‡ 73.6 83.3‡ 60.2‡ 57.4‡ 30.1‡ 59.6‡
ckQE(32)mxMBR 0.627‡ 0.776‡ 92.7‡ 88.4‡ 83.0‡ 71.9‡ 81.2 84.7‡ 74.0 83.6‡ 61.3‡ 58.5‡ 30.8‡ 58.6‡

Table 21: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-de (WMT2023 dataset). Higher scores are better, except MetricX, MetricX-QE, and TER, where
lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant differences
from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal in the 1st

block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.12 Results for German-English (de-en) on WMT2023 dataset
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Greedy 2.00 1.82 87.3 89.0 76.5 68.4 79.3 85.4 74.7 88.8 68.1 66.5 46.0 39.5
MetricX 1.31‡ 1.59 89.0‡ 89.2 77.3 68.4 78.7† 83.9‡ 72.0‡ 83.8‡ 58.9‡ 56.7‡ 31.2‡ 57.5‡
MetricX-QE 1.33‡ 0.839‡ 89.4‡ 89.0 78.5‡ 69.3* 79.3 84.3‡ 72.2‡ 85.0‡ 59.4‡ 57.1‡ 31.7‡ 56.2‡
XCOMET-XXL 1.71* 1.70 93.6‡ 89.8† 79.4‡ 69.6‡ 79.4 84.2‡ 72.3‡ 85.0‡ 60.3‡ 58.1‡ 33.7‡ 54.8‡
XCOMET-XL 1.65‡ 1.64 90.4‡ 92.4‡ 79.3‡ 71.0‡ 80.0‡ 85.1 74.0 86.4‡ 62.6‡ 60.7‡ 36.9‡ 50.2‡
CometKiwi23-XXL 1.72‡ 1.53‡ 90.2‡ 90.3‡ 83.2‡ 70.8‡ 80.3‡ 84.9* 73.3‡ 86.4‡ 62.6‡ 60.6‡ 36.8‡ 50.1‡
CometKiwi23-XL 1.83 1.66* 89.4‡ 90.5‡ 80.0‡ 73.6‡ 80.0‡ 84.5‡ 72.8‡ 86.0‡ 62.0‡ 60.0‡ 35.4‡ 51.9‡
CometKiwi22 1.88 1.65* 88.8‡ 89.9‡ 78.8‡ 70.3‡ 81.8‡ 85.0 73.7† 86.3‡ 63.3‡ 61.2‡ 37.1‡ 49.2‡
COMET22 1.84 1.75 89.3‡ 89.8† 77.8‡ 69.1‡ 79.7† 86.2† 75.1 87.2‡ 65.8‡ 64.0‡ 42.1‡ 42.9‡
BLEURT 1.66‡ 1.56‡ 89.2‡ 89.9‡ 78.0‡ 69.2‡ 79.8‡ 85.8† 76.6‡ 88.0‡ 66.2‡ 64.3‡ 42.2‡ 42.5‡
YiSi 1.98 1.77 88.0* 89.4 77.5† 68.9† 79.5 85.7* 75.4† 89.3† 68.3 66.7 46.1 38.8
chrF 1.91 1.80 88.1* 89.3 77.7‡ 69.0† 79.5* 85.6 75.0 89.0 69.0 67.2 45.2 41.1
chrF++ 1.91 1.80 88.0* 89.2 77.7‡ 69.0† 79.5 85.7* 75.2 89.1 69.1* 67.5* 46.3 39.7
sentBLEU 2.00 1.79 87.4 89.2 76.9 68.7 79.3 85.4 75.1 88.9 68.0 66.5 46.5 38.5
TER 2.46† 2.18† 86.1‡ 88.2† 75.6* 67.7† 78.6‡ 83.5‡ 73.5‡ 86.2‡ 63.8‡ 62.0‡ 41.7‡ 39.5

rankAvg:all 1.73† 1.53† 90.2‡ 90.6‡ 79.3‡ 70.3‡ 80.1‡ 85.9* 75.9‡ 88.4 67.8 66.1 44.9 40.0
rankAvg:qe 1.54‡ 1.17‡ 90.9‡ 90.8‡ 81.5‡ 72.1‡ 81.0‡ 85.6 74.6 87.2‡ 64.4‡ 62.5‡ 38.6‡ 47.2‡
rankAvg:top 1.47‡ 1.26‡ 91.8‡ 91.2‡ 81.0‡ 71.4‡ 80.1‡ 85.3 74.5 86.5‡ 63.8‡ 61.9‡ 38.4‡ 48.4‡
rankAvg:topQe 1.46‡ 1.09‡ 90.8‡ 90.7‡ 81.9‡ 72.3‡ 80.3‡ 85.4 74.1 86.9‡ 63.4‡ 61.4‡ 37.1‡ 49.2‡
rankAvg:mxmxqe 1.36‡ 1.14‡ 89.1‡ 89.0 78.0‡ 69.1* 79.1 84.2‡ 72.4‡ 84.4‡ 60.1‡ 58.0‡ 33.0‡ 54.9‡
rankAvg:noLex 1.60‡ 1.41‡ 91.2‡ 90.9‡ 80.2‡ 70.9‡ 80.4‡ 86.0* 76.0‡ 88.0* 66.7* 64.9† 42.6‡ 42.2‡
rankAvg:noNC 1.78* 1.56* 89.2‡ 89.8† 78.1‡ 69.3‡ 79.7* 85.7 75.7‡ 88.1 67.6 66.0 45.2 39.9
rankAvg:noNCnoLex 1.63‡ 1.43‡ 89.7‡ 89.9‡ 78.4‡ 69.5‡ 79.7† 85.8 75.8‡ 87.9* 66.6* 64.9† 43.5‡ 41.6†
allQE(32)allMBR 1.69† 1.50‡ 90.4‡ 90.8‡ 79.8‡ 70.5‡ 80.3‡ 86.0* 75.9‡ 88.5 67.9 66.3 44.7 40.5
allQE(32)nolexMBR 1.56‡ 1.42‡ 91.1‡ 91.0‡ 80.0‡ 70.7‡ 80.4‡ 86.1† 76.0‡ 88.2 67.1 65.3* 43.4‡ 41.6†
topQE(32)topMBR 1.45‡ 1.30‡ 92.2‡ 91.5‡ 80.4‡ 70.9‡ 80.1‡ 85.4 74.5 86.6‡ 64.0‡ 62.1‡ 38.7‡ 47.9‡
noncQE(32)noncMBR 1.51‡ 1.24‡ 89.8‡ 90.1‡ 78.6‡ 69.6‡ 79.8‡ 85.8† 75.4* 88.2* 66.4‡ 64.6‡ 42.8‡ 42.0‡
noncQE(32)noncnolexMBR 1.40‡ 1.20‡ 90.2‡ 90.1‡ 78.5‡ 69.6‡ 79.9‡ 86.0‡ 75.6† 88.1† 65.8‡ 64.0‡ 41.9‡ 43.2‡
mxQE(32)mxMBR 1.11‡ 1.08‡ 89.7‡ 89.5* 78.3‡ 69.2* 79.2 84.7† 72.8‡ 85.2‡ 60.8‡ 58.6‡ 33.4‡ 55.0‡
ckQE(32)xcMBR 1.67† 1.61 93.2‡ 90.5‡ 81.2‡ 70.3‡ 80.0‡ 84.7* 73.3‡ 85.8‡ 62.2‡ 60.1‡ 36.0‡ 50.9‡
mxQE(32)xcMBR 1.43‡ 1.17‡ 93.3‡ 90.3‡ 79.7‡ 69.9‡ 79.7† 84.9 73.3‡ 85.9‡ 61.8‡ 59.6‡ 35.1‡ 52.3‡
ckQE(32)mxMBR 1.25‡ 1.31‡ 90.7‡ 90.1‡ 80.6‡ 70.0‡ 79.8† 85.0 73.8† 86.0‡ 62.5‡ 60.5‡ 36.0‡ 51.8‡

Table 22: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on de-en (WMT2023 dataset). Higher scores are better, except MetricX, MetricX-QE, and TER, where
lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant differences
from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal in the 1st

block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.13 Results for English-Chinese (en-zh) on WMT2023 dataset
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Greedy 1.36 1.24 89.4 85.9 75.5 70.1 80.2 87.0 73.3 88.0 46.9 41.0 11.6 97.1
MetricX 0.682‡ 0.711‡ 92.8‡ 88.1‡ 82.4‡ 74.1‡ 81.8‡ 86.3‡ 71.1‡ 83.9‡ 33.2‡ 28.8‡ 6.39‡ 102.‡
MetricX-QE 0.827‡ 0.553‡ 92.2‡ 87.5‡ 82.3‡ 74.0‡ 81.7‡ 85.6‡ 70.0‡ 83.5‡ 32.2‡ 27.8‡ 6.04‡ 103.‡
XCOMET-XXL 0.925‡ 0.837‡ 96.2‡ 88.5‡ 84.1‡ 74.4‡ 81.7‡ 86.5‡ 70.9‡ 84.4‡ 34.7‡ 29.9‡ 6.55‡ 101.‡
XCOMET-XL 0.927‡ 0.864‡ 93.5‡ 92.3‡ 82.3‡ 75.7‡ 82.0‡ 87.1 72.4‡ 85.2‡ 37.1‡ 32.1‡ 6.63‡ 101.†
CometKiwi23-XXL 0.996‡ 0.842‡ 93.5‡ 87.8‡ 88.4‡ 75.3‡ 82.1‡ 86.2‡ 70.6‡ 84.5‡ 34.3‡ 29.8‡ 6.50‡ 102.‡
CometKiwi23-XL 1.02‡ 0.876‡ 92.4‡ 89.1‡ 83.6‡ 78.9‡ 82.3‡ 86.4‡ 70.9‡ 84.6‡ 34.4‡ 29.8‡ 6.31‡ 101.‡
CometKiwi22 0.995‡ 0.869‡ 92.2‡ 88.2‡ 82.5‡ 75.0‡ 84.2‡ 87.1 71.8‡ 85.2‡ 35.9‡ 31.1‡ 7.23‡ 103.‡
COMET22 1.04‡ 0.999‡ 91.6‡ 87.9‡ 80.2‡ 73.3‡ 81.9‡ 89.3‡ 74.0‡ 87.4‡ 43.4‡ 37.9‡ 10.4† 97.6
BLEURT 1.08‡ 1.05‡ 91.1‡ 87.6‡ 79.3‡ 72.5‡ 81.4‡ 87.5‡ 76.7‡ 87.2‡ 42.6‡ 37.1‡ 8.42‡ 98.0
YiSi 1.29‡ 1.21* 89.9‡ 86.3† 77.0‡ 71.0‡ 80.7‡ 87.7‡ 74.2‡ 89.0‡ 48.4‡ 42.3‡ 11.5 96.6
chrF 1.28‡ 1.20† 90.0‡ 86.3† 77.1‡ 71.0‡ 80.7‡ 87.8‡ 74.2‡ 88.8‡ 49.6‡ 43.4‡ 12.4 97.6
chrF++ 1.28‡ 1.19† 89.9‡ 86.3† 77.1‡ 71.0‡ 80.7‡ 87.8‡ 74.2‡ 88.8‡ 49.4‡ 43.6‡ 12.7† 97.5
sentBLEU 1.40 1.26 88.7‡ 84.8‡ 75.4 69.7* 79.9† 86.5‡ 71.9‡ 86.9‡ 43.3‡ 38.2‡ 15.1‡ 106.‡
TER 1.43† 1.26 88.5‡ 84.3‡ 75.6 69.6† 79.7‡ 86.0‡ 71.7‡ 86.5‡ 41.8‡ 36.5‡ 8.65‡ 94.3*

rankAvg:all 0.931‡ 0.869‡ 93.4‡ 89.7‡ 83.0‡ 74.9‡ 82.4‡ 88.6‡ 75.3‡ 88.2* 46.7 40.9 11.6 94.5†
rankAvg:qe 0.853‡ 0.694‡ 93.9‡ 89.8‡ 86.2‡ 77.2‡ 83.4‡ 87.2 72.2‡ 85.1‡ 36.1‡ 31.4‡ 7.69‡ 100.†
rankAvg:top 0.792‡ 0.698‡ 94.9‡ 90.9‡ 85.8‡ 76.9‡ 82.7‡ 87.3* 72.6‡ 85.2‡ 37.0‡ 32.2‡ 7.70‡ 99.4*
rankAvg:topQe 0.854‡ 0.673‡ 93.8‡ 89.6‡ 86.7‡ 77.5‡ 82.6‡ 86.7 71.6‡ 84.7‡ 35.2‡ 30.6‡ 7.23‡ 100.†
rankAvg:mxmxqe 0.712‡ 0.608‡ 93.1‡ 88.3‡ 82.9‡ 74.4‡ 81.9‡ 86.3‡ 71.1‡ 83.9‡ 33.4‡ 29.0‡ 6.49‡ 101.‡
rankAvg:noLex 0.860‡ 0.802‡ 94.0‡ 90.3‡ 84.2‡ 75.9‡ 82.9‡ 88.5‡ 75.2‡ 87.5‡ 43.7‡ 38.1‡ 10.1† 96.2
rankAvg:noNC 0.997‡ 0.920‡ 91.9‡ 88.3‡ 80.3‡ 73.1‡ 81.8‡ 88.5‡ 75.4‡ 88.5‡ 47.8† 41.9† 11.9 94.0†
rankAvg:noNCnoLex 0.911‡ 0.835‡ 92.4‡ 88.8‡ 81.4‡ 73.8‡ 82.1‡ 88.6‡ 75.4‡ 88.0 45.0‡ 39.3‡ 10.5† 96.5
allQE(32)allMBR 0.901‡ 0.841‡ 93.6‡ 89.8‡ 83.4‡ 75.2‡ 82.6‡ 88.5‡ 75.0‡ 87.7† 44.9‡ 39.3‡ 10.8 95.2
allQE(32)nolexMBR 0.868‡ 0.813‡ 94.0‡ 90.2‡ 83.9‡ 75.6‡ 82.7‡ 88.5‡ 74.9‡ 87.4‡ 43.4‡ 38.0‡ 10.2† 96.4
topQE(32)topMBR 0.778‡ 0.730‡ 95.1‡ 91.0‡ 84.8‡ 76.2‡ 82.4‡ 87.3* 72.6† 85.3‡ 37.2‡ 32.4‡ 8.18‡ 99.0
noncQE(32)noncMBR 0.915‡ 0.781‡ 92.6‡ 88.7‡ 81.7‡ 73.9‡ 82.1‡ 88.1‡ 74.5‡ 87.5‡ 44.3‡ 38.7‡ 9.85‡ 97.2
noncQE(32)noncnolexMBR 0.862‡ 0.755‡ 92.9‡ 89.0‡ 82.3‡ 74.3‡ 82.3‡ 88.2‡ 74.6‡ 87.2‡ 42.8‡ 37.3‡ 9.37‡ 97.8
mxQE(32)mxMBR 0.695‡ 0.664‡ 93.1‡ 88.3‡ 82.7‡ 74.2‡ 81.8‡ 86.3‡ 71.2‡ 84.0‡ 33.6‡ 29.1‡ 6.46‡ 102.‡
ckQE(32)xcMBR 0.912‡ 0.823‡ 96.0‡ 88.7‡ 85.8‡ 75.0‡ 82.0‡ 86.6‡ 71.2‡ 84.5‡ 35.1‡ 30.4‡ 7.20‡ 100.*
mxQE(32)xcMBR 0.860‡ 0.724‡ 95.9‡ 88.8‡ 84.4‡ 74.8‡ 82.1‡ 86.5‡ 71.2‡ 84.4‡ 34.8‡ 30.1‡ 6.93‡ 101.†
ckQE(32)mxMBR 0.723‡ 0.720‡ 93.5‡ 88.6‡ 85.2‡ 74.9‡ 82.1‡ 86.7* 71.7‡ 84.5‡ 34.8‡ 30.2‡ 7.37‡ 100.†

Table 23: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on en-zh (WMT2023 dataset). Higher scores are better, except MetricX, MetricX-QE, and TER, where
lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant differences
from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal in the 1st

block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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G.14 Results for Chinese-English (zh-en) on WMT2023 dataset
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Greedy 2.19 2.00 90.9 88.1 78.4 70.3 79.6 82.7 71.4 82.5 55.0 52.4 26.2 65.2
MetricX 1.01‡ 1.20‡ 93.9‡ 89.6‡ 78.7 70.3 79.3* 82.1‡ 70.8† 80.4‡ 49.5‡ 46.6‡ 19.1‡ 78.9‡
MetricX-QE 1.25‡ 0.853‡ 93.4‡ 89.3‡ 79.3‡ 71.0‡ 80.0‡ 81.9‡ 70.7‡ 80.5‡ 49.0‡ 46.2‡ 19.0‡ 78.2‡
XCOMET-XXL 1.41‡ 1.38‡ 96.2‡ 89.8‡ 80.2‡ 70.9‡ 79.7 81.8‡ 70.6‡ 80.1‡ 48.7‡ 45.8‡ 18.2‡ 78.6‡
XCOMET-XL 1.45‡ 1.41‡ 93.9‡ 92.4‡ 80.3‡ 72.5‡ 80.7‡ 83.1‡ 72.5‡ 81.9‡ 52.4‡ 49.7‡ 22.3‡ 72.8‡
CometKiwi23-XXL 1.69‡ 1.52‡ 93.6‡ 89.9‡ 85.1‡ 72.7‡ 80.8‡ 82.8 71.6 81.6‡ 51.8‡ 49.0‡ 21.4‡ 72.7‡
CometKiwi23-XL 1.74‡ 1.59‡ 92.9‡ 90.3‡ 81.3‡ 75.9‡ 81.0‡ 82.7 71.5 81.5‡ 51.8‡ 49.0‡ 21.5‡ 74.1‡
CometKiwi22 1.74‡ 1.51‡ 92.8‡ 89.7‡ 80.7‡ 72.4‡ 82.8‡ 83.1† 72.2‡ 81.9† 52.1‡ 49.4‡ 22.2‡ 72.6‡
COMET22 1.73‡ 1.63‡ 92.5‡ 89.6‡ 79.8‡ 71.6‡ 80.6‡ 84.6‡ 72.6‡ 82.8 54.8 52.0 25.1‡ 65.7
BLEURT 1.68‡ 1.60‡ 92.8‡ 89.9‡ 79.9‡ 71.5‡ 80.5‡ 83.4‡ 74.4‡ 82.5 54.1‡ 51.3‡ 24.5‡ 67.8‡
YiSi 2.12* 1.95* 91.2† 88.4* 78.9‡ 70.5 79.8† 83.0‡ 71.8† 83.7‡ 55.9† 53.3† 26.6 64.8
chrF 2.16 2.01 91.1 88.1 78.8† 70.7‡ 79.8† 82.9* 71.8† 83.2‡ 56.9‡ 54.1‡ 26.5 67.4‡
chrF++ 2.14 1.99 91.1* 88.2 78.9† 70.8‡ 79.9‡ 83.0‡ 72.0‡ 83.3‡ 56.9‡ 54.3‡ 26.9* 66.6†
sentBLEU 2.17 2.01 91.0 88.0 78.5 70.2 79.6 82.9* 71.5 83.3‡ 56.0‡ 53.5‡ 27.7‡ 62.8‡
TER 2.28† 2.11‡ 90.5* 87.3‡ 77.2‡ 69.2‡ 78.8‡ 82.1‡ 70.5‡ 82.4 53.1‡ 50.5‡ 25.3* 60.4‡

rankAvg:all 1.57‡ 1.44‡ 93.6‡ 90.5‡ 81.3‡ 72.6‡ 81.0‡ 84.0‡ 73.4‡ 83.5‡ 56.4‡ 53.7‡ 27.0† 63.7‡
rankAvg:qe 1.44‡ 1.16‡ 94.0‡ 90.9‡ 83.3‡ 74.4‡ 81.9‡ 83.6‡ 73.0‡ 82.2 53.2‡ 50.5‡ 23.2‡ 71.1‡
rankAvg:top 1.26‡ 1.17‡ 95.0‡ 91.6‡ 82.7‡ 73.9‡ 81.1‡ 83.5‡ 72.9‡ 82.1* 53.1‡ 50.4‡ 22.7‡ 71.8‡
rankAvg:topQe 1.39‡ 1.11‡ 94.0‡ 90.8‡ 83.4‡ 74.5‡ 81.1‡ 83.3‡ 72.6‡ 82.0† 52.7‡ 49.9‡ 22.4‡ 71.9‡
rankAvg:mxmxqe 1.07‡ 0.972‡ 93.9‡ 89.9‡ 79.6‡ 71.1‡ 80.0‡ 82.3* 71.4 80.8‡ 50.5‡ 47.6‡ 20.0‡ 76.9‡
rankAvg:noLex 1.43‡ 1.30‡ 94.2‡ 91.1‡ 82.1‡ 73.3‡ 81.4‡ 84.1‡ 73.7‡ 83.2‡ 55.4 52.7 25.7 66.8†
rankAvg:noNC 1.64‡ 1.47‡ 92.8‡ 89.7‡ 80.0‡ 71.4‡ 80.4‡ 83.7‡ 73.0‡ 83.4‡ 56.2‡ 53.5‡ 26.9* 63.2‡
rankAvg:noNCnoLex 1.45‡ 1.30‡ 93.4‡ 90.2‡ 80.4‡ 71.8‡ 80.7‡ 84.0‡ 73.4‡ 83.2‡ 55.4 52.7 25.8 65.6
allQE(32)allMBR 1.52‡ 1.41‡ 93.8‡ 90.8‡ 81.6‡ 72.8‡ 81.2‡ 84.1‡ 73.6‡ 83.5‡ 56.3‡ 53.7‡ 27.1† 64.4
allQE(32)nolexMBR 1.40‡ 1.33‡ 94.3‡ 91.2‡ 81.7‡ 73.0‡ 81.3‡ 84.2‡ 73.8‡ 83.3‡ 55.7† 53.1* 26.3 65.8
topQE(32)topMBR 1.22‡ 1.21‡ 95.1‡ 91.8‡ 81.8‡ 73.1‡ 80.9‡ 83.4‡ 72.9‡ 82.1* 53.1‡ 50.4‡ 23.1‡ 71.5‡
noncQE(32)noncMBR 1.47‡ 1.23‡ 93.3‡ 90.1‡ 80.4‡ 71.8‡ 80.7‡ 83.7‡ 73.1‡ 82.9* 54.9 52.2 25.3† 66.0
noncQE(32)noncnolexMBR 1.36‡ 1.18‡ 93.6‡ 90.4‡ 80.6‡ 71.9‡ 80.8‡ 83.9‡ 73.4‡ 82.7 54.2† 51.5‡ 24.4‡ 67.6‡
mxQE(32)mxMBR 1.04‡ 1.08‡ 93.9‡ 89.7‡ 79.3‡ 70.8† 79.7 82.3† 71.1* 80.5‡ 49.8‡ 46.9‡ 19.6‡ 77.8‡
ckQE(32)xcMBR 1.42‡ 1.36‡ 95.8‡ 90.3‡ 82.8‡ 72.0‡ 80.5‡ 82.5 71.6 81.0‡ 50.6‡ 47.7‡ 20.4‡ 75.4‡
mxQE(32)xcMBR 1.32‡ 1.16‡ 95.8‡ 90.0‡ 80.5‡ 71.4‡ 80.0‡ 82.2† 71.3 80.5‡ 49.7‡ 46.7‡ 19.4‡ 77.3‡
ckQE(32)mxMBR 1.12‡ 1.21‡ 94.4‡ 90.5‡ 82.4‡ 72.1‡ 80.5‡ 83.0† 72.2‡ 81.5‡ 51.8‡ 49.0‡ 21.5‡ 73.7‡

Table 24: Reference-based and QE evaluation scores for greedy and MBR/QE decoding (1st block), and ensembles
(2nd block), on zh-en (WMT2023 dataset). Higher scores are better, except MetricX, MetricX-QE, and TER, where
lower is better. Green is better than greedy, red is worse. Ensembles are defined in Table 2. Significant differences
from greedy (pairwise t-test) indicated by * for p<0.05, † for p<0.01, ‡ for p<0.001. The green diagonal in the 1st

block shows metrics prefer outputs from MBR/QE decoding using the same utility metric.
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Abstract

Collecting high-quality translations is crucial
for the development and evaluation of machine
translation systems. However, traditional
human-only approaches are costly and slow.
This study presents a comprehensive investi-
gation of 11 approaches for acquiring trans-
lation data, including human-only, machine-
only, and hybrid approaches. Our findings
demonstrate that human-machine collabora-
tion can match or even exceed the quality
of human-only translations, while being more
cost-efficient. Error analysis reveals the com-
plementary strengths between human and ma-
chine contributions, highlighting the effective-
ness of collaborative methods. Cost analysis
further demonstrates the economic benefits of
human-machine collaboration methods, with
some approaches achieving top-tier quality at
around 60% of the cost of traditional meth-
ods. We release a publicly available dataset1

containing nearly 18,000 segments of varying
translation quality with corresponding human
ratings to facilitate future research.

1 Introduction

Collecting high-quality translations efficiently
presents significant challenges. Traditional ap-
proaches rely heavily on different tiers of human
translators, ranging from professional linguists
to junior bilingual speakers (Zouhar and Bojar,
2024). While these approaches can produce high-
quality translations, they are often expensive, time-
consuming, and challenging to scale for large
datasets.

Recent advancements in machine translation
with large language models (OpenAI, 2024; Gem-
ini, 2024) have demonstrated models’ impressive
abilities to generate human-like translations. How-
ever, recent research (Yan et al., 2024) tends to

1The dataset can be found at https://github.com/
google-research/google-research/tree/master/
collaborative-tr-collection.
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Figure 1: Our 11 translation systems, organized by
initial translation type (human or machine) and post-
editing type (none, human, or machine). Detailed sys-
tem descriptions are provided in Section 2.2.

position human translators and machine transla-
tion systems as competitors rather than potential
collaborators, which could result in efficient alter-
natives for addressing the limitations of traditional
translation data collection methods.

In this paper, we aim to fill the gap by com-
prehensively investigating the potential of human-
machine collaboration to efficiently collect high-
quality translation data. We hypothesize that com-
bining the strengths of humans and machines could
lead to higher quality, cost-efficient translation col-
lection methods. To verify the hypothesis, we ex-
plore 11 different methods for acquiring translation
data, including human-only, machine-only, and var-
ious hybrid methods.

Our research seeks to answer the following key
questions:

• Can human-machine collaborative approaches
produce translations of comparable or higher
quality than traditional human-only or
machine-only methods?

• How do different collaborative methods im-
pact translation quality, and where do the im-
provements primarily originate?

• What are the cost implications of these various
approaches, and can human-machine collabo-
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ration offer a more cost-efficient solution for
high-quality translation collection?

Our findings demonstrate that human-machine
collaboration can match or even exceed human-
only translation quality while being more cost-
efficient. We present detailed error analyses to re-
veal the complementary strengths of the collabora-
tive methods and conduct a thorough cost analysis
to illustrate the economic benefits of collaborative
approaches.

To support future research, we also release a
publicly available dataset containing nearly 18,000
segments of varying translation quality with corre-
sponding human ratings.

2 Collecting Translations

Translating text from one language to another can
either be done by bilingual annotators or machine
translation systems. However, both cases are prone
to producing errors in their translations, including
well-trained expert translators (Freitag et al., 2023).
As such, translations can be post-edited, a process
of correcting a translation, either manually or with
a model, that often yields higher-quality transla-
tions.

Both steps of this process — the initial transla-
tion collection and the post-editing — can either
be done with humans or with models, each with
their own advantages and disadvantages in terms
of speed, quality, cost, and scalability. In this work,
we explore how combinations of human and ma-
chines for both steps of this pipeline can combine
to produce high-quality translations.

2.1 Data Sources

We use the test sets provided by the WMT23
General MT Shared Task (Kocmi et al., 2023)
and collect new translations using several meth-
ods. These data sets comprise 460 English-
German (EnDe) paragraph-level segments and
1175 Chinese-English (ZhEn) sentence-level seg-
ments with human rating annotations.

2.2 Data Collection Systems

Figure 1 illustrates the combinations from the two
dimensions: initial translation and post-editing
methods from either human annotators or machines.
Machines may be either large language models
(LLMs) or machine translation (MT) systems. This
results in the 11 systems in the figure, named ac-

cording to the source of the initial translation with
a suffix representing the post-editing approach.

In this work, we use several different sources for
the initial translation:

• OrigHumanRef and HumanRef are human
translations collected by professional transla-
tors. We refer to the original reference pro-
vided by the WMT23 General MT Shared
Task (Kocmi et al., 2023) as ORIGHUMAN-
REF. We collected a new from-scratch profes-
sional translation HUMANREF following the
standard annotation steps.

• BestWMT is the top-ranked MT system
picked from the official results of WMT23
General Translation Task: GPT4-5shot (Ope-
nAI, 2024) for EnDe and Lan-BridgeMT (Wu
and Hu, 2023) for ZhEn, representing the
state-of-the-art MT capability we can access.

• MidWMT is a middle-ranked MT system
from the official results of WMT23 General
Translation Task: ONLINE-G for both EnDe
and ZhEn, representing the conventional MT
quality we can use.

We additionally explore the following different
methods for post-editing translations:

• HumanPE refers to the post-edit service
provided by a separate batch of linguists.
HumanPEx2 means the translation going
through two independent rounds of post-edits
from professional translators. There is no
translator overlap between the two batches.

• LLMRefine (Xu et al., 2024) is one of the
state-of-the-art post-edit approaches leverag-
ing error feedback for pin-pointing correc-
tions. Here we reproduced its error-feedback
process and leverage Gemini-1.0 Ultra (Gem-
ini, 2024) with the reported prompts to gener-
ate post-edited text.

2.3 Evaluation
In this paper, we use Multidimensional Quality
Metrics (MQM; Lommel et al., 2014; Freitag et al.,
2021) to evaluate translation quality. MQM is the
state-of-the-art human evaluation framework for
MT. In MQM, expert raters identify error spans
within translations, which are automatically con-
verted to numeric scores. Lower scores indicate
fewer errors and thus higher quality.
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Figure 2: Cross-BLEU scores for different EnDe trans-
lation collection approaches.

3 Data Quality Analysis

In this section, we seek to understand how our
collected translations differ from each other (§3.1),
how those differences correspond to changes in
quality (§3.2), and what those results indicate about
the value of human-machine collaboration in terms
of quality (§3.3).

3.1 Lexical Overlap and Similarity

Figure 2 presents a cross-BLEU (Freitag et al.,
2022) similarity matrix for English-German trans-
lations, which measures lexical similarity between
pairs of translations. See Figure 8 in Appendix A.1
for Chinese-English results. Higher scores indicate
greater similarity.

One prominent pattern in these results is that
systems based on the same initial translation re-
tain high similarity even after post-editing. This
indicates that post-editing still preserves some
characteristics of the original translation. Also,
translation systems based on MT (BESTWMT,
MIDWMT, and their post-edited versions) are
more similar to each other than to translations
based on an initial human translation.

Table 1 presents a subset of the information in
Figures 2 and 8, to emphasize the interaction be-
tween using human- vs. model-based approaches
for the initial translation and post-edit. This illus-
trates the trend that humans and machines tend
to make more changes to translations from the
other group.

Source + HUMANPE + LLMREFINE

EN-DE

HUMANREF 95 72
BESTWMT 81 83
MIDWMT 70 77

ZH-EN

HUMANREF 88 79
BESTWMT 84 89
MIDWMT 68 71

Table 1: Cross-BLEU score comparison between differ-
ent post-edited versions of the same translation. Lower
numbers indicate less similarity and more changes
from the initial translation.

Reference MQM per segment

HUMANREF+LLMREFINE 2.76
ORIGHUMANREF 2.80
BESTWMT+HUMANPE 2.98

BESTWMT 3.30
BESTWMT+LLMREFINE 3.36
HUMANREF+HUMANPE 3.53
HUMANREF+HUMANPEX2 3.70

HUMANREF 3.79
MIDWMT+HUMANPE 3.83
MIDWMT+LLMREFINE 4.02

MIDWMT 6.45

Table 2: English-German MQM human evaluation re-
sults. Lower scores represent higher translation quality.

3.2 MQM Quality Evaluation

Tables 2 and 3 present the MQM human evalu-
ation results. The solid lines denote significance
clusters, where every system in a cluster is statisti-
cally significantly better than every system below
that cluster, based on random permutation tests
with 10,000 trials, where a p-value of less than
α = 0.05 is considered significant.

The results reveal that HumanRef+LLMRefine
and BestWMT+HumanPE are the overall win-
ners, with each appearing in the best significance
cluster in both language pairs.

Tables 2 and 3 show that post-edits, both HU-
MANPE and LLMREFINE, demonstrate a posi-
tive impact on initial translations. These meth-
ods consistently either elevate the translation qual-
ity to a higher level of significance or preserve the
existing quality.
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Reference MQM per segment

HUMANREF+LLMREFINE 1.82
HUMANREF+HUMANPEX2 1.82
BESTWMT+HUMANPE 1.87
HUMANREF+HUMANPE 1.91
BESTWMT+LLMREFINE 1.94

HUMANREF 2.05
BESTWMT 2.22
MIDWMT+HUMANPE 2.23

MIDWMT+LLMREFINE 2.45

MIDWMT 3.98

ORIGHUMANREF 5.63

Table 3: Chinese-English MQM human evaluation re-
sults. Lower scores represent higher translation quality.

3.3 Human-Machine Collaboration

Table 4 and Figure 3 present a detailed analysis that
highlights the quality benefits of human-machine
collaboration.

Figure 3 shows the gains in quality that can be
provided by our post-edit approaches. The gains
are more pronounced when starting with a lower-
quality translation (MIDMT), but even high-quality
translations (HUMANREF, BESTWMT) can be im-
proved. The quality differences between initial
translations are greatly reduced after post-editing,
but not eliminated.

Table 4 provides a finer-grain analysis of the ef-
fect of each post-edit approach on different initial
translations. In both language pairs, an LLM-based
method provides the most benefit when starting
with human translation, while human post-editing
provides the most benefit for machine translation.
Recall that in Table 1 we showed that model-based
methods and humans make more changes to trans-
lations from the other group; here we see that
these changes are also net-positive. This indicates
that human-machine collaboration is an effec-
tive way to achieve high-quality translations.

4 Error Analysis

Here we present more detailed error analysis of
both initial translation and post-edit stages to inves-
tigate where the quality improvements originate.
Using English-German as an example, we first
present analysis of the initial translations in Sec-
tion 4.1 to understand the initial error distributions.
Then, we further investigate the error-correction
dynamics during post-editing in Section 4.2 to un-
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Figure 3: MQM Scores for different translation sys-
tems across two language pairs: Chinese-English and
English-German. Bars represents the average MQM
scores for each translation system. The systems are
grouped and colored by initial translation and further
categorized by post-editing method with different fill
patterns. Lower MQM scores indicate better quality.

derstand why human-machine collaboration stands
out from other approaches.

4.1 Error distribution from Initial
Translation

We present the error type and severity distribution
of the English-German initial translations in Ta-
ble 5 and that of Chinese-English in Appendix A.2.
It shows that accuracy-related errors are the pri-
mary source of major errors and that the distribu-
tion of minor errors is more evenly spread across
different categories. Importantly, these error distri-
butions are similar for both human and machine-
based initial translations. This consistency pro-
vides a solid foundation for comparing different
post-editing techniques in our downstream analy-
sis.

4.2 Error Correction from Post-Editing

To understand the error-correction dynamics of dif-
ferent post-editing methods and find the origin of
the improvements of human-machine collaboration,
we explored three key questions:

• Do different post-editing methods agree on
which segments to modify?

• How do different post-editing methods affect
the total number of major and minor errors?

• How do different post-editing methods affect
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Source Init. Translation + HumanPE + HumanPEx2 + LLMRefine
Score ↓ ∆ Score ↓ ∆ Score ↓ ∆

EN-DE

HUMANREF 3.79 3.53 -0.26 3.70 -0.09 2.76 -1.03
BESTWMT 3.30 2.98 -0.32 - - 3.36 +0.06
MIDWMT 6.45 3.83 -2.62 - - 4.02 -2.43

ZH-EN

HUMANREF 2.05 1.91 -0.14 1.82 -0.23 1.82 -0.23
BESTWMT 2.22 1.87 -0.35 - - 1.94 -0.28
MIDWMT 3.98 2.23 -1.75 - - 2.45 -1.53

Table 4: MQM human evaluation comparison of each post-edit approach on different initial translations. Lower
MQM scores indicates better quality.

Error Type OrigHumanRef HumanRef BestWMT MidWMT

No-error 200 175 144 116

Major 186 263 211 470

Fluency 27 (15%) 29 (11%) 25 (12%) 88 (19%)
Accuracy 114 (61%) 149 (57%) 108 (51%) 275 (59%)

Style 22 (12%) 54 (21%) 45 (21%) 60 (13%)

Minor 659 745 891 1084

Fluency 257 (39%) 242 (32%) 439 (49%) 538 (50%)
Accuracy 181 (27%) 211 (28%) 186 (21%) 226 (21%)

Style 141 (21%) 190 (26%) 178 (20%) 213 (20%)

Table 5: Error type and severity distributions of
English-German MQM human evaluation results.

the total number of high- and low-quality seg-
ments?

We first examine how often human post-editors
(HUMANPE) and machine post-editing methods
(LLMREFINE) agree on which segments need cor-
rection. Figure 4 shows that both methods iden-
tify more segments for editing in lower-quality
initial translations as evidenced by the shrinking
"No Change" (yellow) section. Notably, agreement
between HUMANPE and LLMREFINE increased
from 23.9% for high-quality HUMANREF transla-
tions to 67.4% for lower-quality MidWMT trans-
lations as observed by the expanded "HumanPE &
LLMRefine" (purple) section. This suggests more
consensus on obvious errors in lower-quality texts
while greater divergence for higher-quality transla-
tions in editing approaches. A detailed numerical
breakdown is shown in Table 8 in Appendix A.3.

Another interesting observation from Figure 4 is
that HUMANPE (purple + red) identifies a larger
proportion of segments needing correction in BEST-
WMT (48.9% + 19.3% = 68.2%) compared to
HUMANREF (23.9% + 11.5% = 35.4%), despite

2Tabular statistics are provided in Tables 8 and 9 in Ap-
pendix A.3.

23.9%

27.2%
37.4%

11.5%

Total
460

HumanRef

48.9%

12.2%

19.6%

19.3%

Total
460

BestWMT

67.4% 3.0%
10.0%

19.6%

Total
460

MidWMT

HumanPE & LLMRefine
LLMRefine Only

No Change
HumanPE only

Figure 4: Agreement between HumanPE and LLM-
Refine in identifying segments requiring post-edit on
English-German data. Each pie chart2represents a dif-
ferent initial translation source.

the superior quality of BESTWMT over HUMAN-
REF as shown in Table 2. This suggests that hu-
man post-editors might overlook certain errors in
human translations due to their familiar patterns.
Conversely, the unfamiliar patterns in machine-
generated text may make errors more salient to
human editors. This interpretation is consistent
with the pattern depicted in Figure 2, where hu-
man post-editors make fewer changes to human
translations than to machine translations. This ob-
servation provides one plausible explanation for
the necessity of human-machine collaboration in
achieving high-quality translations. Detailed statis-
tics for English-German are shown in Table 8 and
similar trends are also observed in Chinese-English
in Table 9 in Appendix A.3.

We wish to investigate how many errors are cor-
rected during post-editing, but because it is difficult
to automatically determine whether an individual
error was corrected, we instead examine how the
total number of errors changes after post-editing,
also considering severity. Figure 5 shows that both
human and machine post-editing reduce overall
error counts across different initial translation qual-
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Figure 5: Error changes percentages by different post-
editing approaches on English-German data. The per-
centages present the changes in error counts for each
post-editing method compared to its initial translation.
A negative indicates a decrease in errors, while positive
value indicates an increase in the error type.

ities. LLMREFINE outperforms HUMANPE on
HUMANREF initial translation in reducing major
errors (-27.8% vs. -2.7%), while HUMANPE is su-
perior for BESTWMT, decreasing major-error seg-
ments compared to the increase for LLMREFINE

(-4.3% vs. +8.5%). On MIDWMT, both methods
show substantial improvements, with HUMANPE
moderately ahead of LLMREFINE (-41.3% vs. -
37.0% decrease in major-error segments). These
findings highlight the complementary strengths of
human and machine post-editing methods, indi-
cating that a hybrid method is likely the most ef-
fective strategy for reducing errors, regardless of
the initial translation’s origin. Similar trends are
also observed in Chinese-English in Figure 9 in
Appendix A.3.

To understand the error correction dynamics
for each segment, we analyzed how MQM scores
change before and after post-editing. Ideally, post-
editing would fix existing errors while minimizing
the introduction of new ones. However, as Fig-
ure 6 illustrates, post-editing is not guaranteed to
improve every segment: while some segments are
improved, others are worsened.

Figure 6 compares HUMANPE and LLM-
REFINE on HUMANREF initial translations for
English-German data. Both methods reduce
the number of high-scoring (low-quality) seg-
ments (MQM >= 5). Notably, LLMREFINE out-
performs HUMANPE by showing fewer quality-
degrading corrections and more quality-improving
ones. LLMREFINE minimizes low-to-high-scoring

(a) From HUMANREF to HUMANREF+HUMANPE

(b) From HUMANREF to HUMANREF+LLMREFINE

Figure 6: Segment-level quality shift through HU-
MANPE and LLMREFINE from English-German HU-
MANREF. Each segment is categorized into one of
three groups based on its MQM score: 1) high-scoring
segments with MQM >= 5; 2) low-scoring segments
with 0 < MQM < 5; 3) error-free segments with
MQM=0. Higher MQM scores indicate more nu-
merous/severe errors and accordingly lower translation
quality.

transitions with a narrower flow from low-scoring
segments (0 < MQM < 5) to high-scoring seg-
ments compared to HUMANPE. Moreover, LLM-
REFINE achieves a significant reduction in high-
scoring segments by 6.5% (from 29.1% to 22.6%)
compared to HUMANPE’s 1.3% (from 29.1% to
27.8%), suggesting that it is more effective at
achieving post-editing gains while preserving origi-
nally good translations. A similar trend is observed
for Chinese-English with HUMANREF initial trans-
lation in Figure 10 in Appendix A.3.

To demonstrate that the quality improvement
is not solely due to the capabilities of LLMRE-
FINE, we conducted further experiments as shown
in Figure 7. This figure compares HUMANPE and
LLMREFINE with BESTWMT initial translations.
Interestingly, the results are reversed: HUMANPE

1100



(a) From BESTWMT to BESTWMT+HUMANPE

(b) From BESTWMT to BESTWMT+LLMREFINE

Figure 7: Segment-level quality shift through HU-
MANPE and LLMREFINE from English-German
BESTWMT.

outperforms LLMREFINE in this scenario, show-
ing fewer quality-degrading corrections and more
quality-improving ones. HUMANPE demonstrates
a significantly wider flow from high-scoring seg-
ments to low-scoring ones. It achieves a notable
reduction in high-scoring segments by 3.2% (from
26.5% to 23.3%), while LLMREFINE sees an in-
crease of 0.7% (from 26.5% to 27.2%). Further-
more, HUMANPE significantly increases the No-
Error segments (MQM=0) by 12.2% (from 33.5%
to 45.7%) compared to LLMREFINE’s 2.2% in-
crease.

The distinct performance differences of LLM-
REFINE and HUMANPE in these two sets of
experiments highlight that the quality improve-
ment stems primarily from the complementary
strengths of human and machine collaboration,
rather than the superior capability of either LLM-
REFINE or HUMANPE alone. This underscores the
importance of leveraging both human and machine
strengths in achieving optimal translation quality.

Systems Quality Rank Costs
EnDe ZhEn

HUMANREF 3 2 1X
HUMANREF+HUMANPE 2 1 1.6X
HUMANREF+HUMANPEX2 2 1 2.2X
HUMANREF+LLMREFINE 1 1 1X
BESTWMT+HUMANPE 1 1 0.6X

Table 6: Quality rank and costs comparison of different
data collection systems. 1st rank indicates the transla-
tion quality belongs to the highest quality significance
cluster in Table 2 and 3.

5 Costs Analysis

So far we have focused on comparing quality
between various translation data collection ap-
proaches. However, practical considerations make
it important to consider the trade-off between qual-
ity and costs. Table 6 analyzes relative human an-
notation costs between various approaches, along
with the rank of the significance cluster that each
method appeared in. The exact costs for the human
annotation conducted in this study are confiden-
tial (although all annotators were paid fair market
wages), so we instead use relative costs, based on
the industry standard that post-editing text of a
given length takes less time (and accordingly costs
less) than producing a translation of that length. We
specifically assume that human post-editing costs
around 60% of what human translation does. Ac-
cording to existing literature (Plitt and Masselot,
2010; Zouhar et al., 2021; Green et al., 2013) and
internal statistics, we believe it’s a fair assumption,
although the exact costs can vary upon different
vendors, languages, task size, etc.

With this framework, the best combination of
quality and cost appears to be human post-editing
of high-quality MT (BESTWMT+HUMANPE), at-
taining quality in the top significance cluster in
both language pairs with only 60% of the human
annotation cost of collecting an initial human trans-
lation. Meanwhile, we see that one or two rounds
of human post-editing of an initial human trans-
lation increases costs without a meaningful gain
in quality, while just applying an LLM post-editor
(HUMANREF+LLMREFINE) brings quality to the
top significant cluster with no additional human
annotation cost, making it a viable option when
human translations are already collected. It’s worth
noting that LLM inference costs are negligible (on
the order of dollars per million tokens) compared
to human annotation costs, further enhancing the
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cost-effectiveness of LLM-based approaches. This
indicates that human-machine collaboration can
be a faster, more cost-efficient alternative to tra-
ditional collection of translations from humans, op-
timizing both quality and resource allocation by
leveraging the strengths of both humans and ma-
chines.

6 Related Work

There have been a few studies investigating meth-
ods of acquiring high-quality translations. Re-
cently, Zouhar et al. (2024) proposed collecting
high-quality translations by building consensus
between multiple translators. Zouhar and Bojar
(2024) proposed collecting multiple translations
from different tiers of human translators with care-
ful budget calculations to optimize cost-efficiency.

Human Post-Edits Computer-aided translation
tools are now widely used by professional transla-
tors for interactive translation and post-editing (Al-
abau et al., 2014; Federico et al., 2014; Green et al.,
2014; Denkowski, 2015; Sin-wai, 2014; Kenny,
2012). Carl et al. (2011) have shown that human
translators work faster and make fewer mistakes
when editing machine translations than when trans-
lating from scratch. Toral et al. (2018) supports this,
demonstrating even greater improvements with neu-
ral machine translation compared to phrase-based
systems. Zouhar et al. (2021) investigates the rela-
tionship between machine translation quality and
post-editing efforts and found no straightfoward re-
lationship. On the other hand, Popovic et al. (2016)
suggested that post-edits should be used carefully
for MT evaluation due to the bias of each post-
edit towards its MT system. Further, Toral (2019)
showed that human post-edits are simpler and more
normalised in language than human translations
from scratch.

Automatic Refinement Lin et al. (2022) showed
how the errors that humans make differ from those
made by MT systems. They constructed a Trans-
lation Error Correction (TEC) corpus with profes-
sional translators and showed that models trained
on it outperform Automatic Post-Editing (APE)
models (Knight and Chander, 1994) that are trained
to correct MT output. Since the emergence of
LLMs, new refinement approaches based on de-
tailed MQM annotations have appeared (Xu et al.,
2023; Fernandes et al., 2023). Xu et al. (2024)
showed that these refinement method can be used

to improve the quality of human translations.
Meanwhile, machines have been extensively

evaluated and utilized as an alternative to human
annotators for data collection (Zouhar et al., 2021;
Yan et al., 2024).

In contrast to the above methods, we investigate
the interaction between humans and machines in
the initial translation and post-editing stages, in-
cluding detailed analysis of the resulting changes
in quality while also considering cost-efficiency.

7 Conclusion

We investigate various approaches for gathering
translation data, including human-only, machine-
only, and hybrid approaches. Our results demon-
strate that human-machine collaboration can consis-
tently generate high-quality translations at a lower
cost than human-only methods. Through detailed
error analysis, we uncovered the nuances of er-
ror correction dynamics and highlighted the ad-
vantages of human-machine collaborative meth-
ods. Our cost analysis also demonstrates the cost-
efficiency of human-machine collaboration meth-
ods. Finally, we release to the public a dataset
of roughly 18,000 translation segments of vary-
ing quality from different collection methods along
with human ratings, to facilitate further research in
this area.
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Limitations

This study focuses on two language pairs, English-
German and Chinese-English. They are chosen
due to the extensive study in the WMT23 metrics
shared task (Freitag et al., 2023) and the availability
of data from various translation systems from the
WMT23 general shared task (Kocmi et al., 2023).
While our analysis provides support for the find-
ings presented in this work and we offer a plausible
explanation for the observed results, it is impor-
tant to acknowledge certain variables are not ac-
counted for in this work, including using translators
or post-editors with varying quality levels, different
systems for translation and post-editing, utilizing
sentence or paragraph datasets from other domains,
and higher or lower resource language pairs beyond
the two investigated here. Therefore, we cannot
guarantee the observed trends will generalize to
different datasets.

We want to especially highlight the need for fur-
ther exploration of the quality variance observed
among human translators, such as ORIGHUMAN-
REF and HUMANREF in the English-German trans-
lation task. The current study’s limited annota-
tion budget and timeline restricted the depth of
this investigation. Future experiments aimed at ex-
amining the impact of post-editing on annotator
agreement would be particularly interesting and
valuable.

Ethical Statement

The source data used for translation and post-edits
is accessible to the public. We’re certain that the
data annotated by human labors is free from risk
or toxic content. We used an internal, proprietary
tool to collect human translation, post-edits, and
evaluation data. The annotators were compensated
fairly and were not required to disclose any per-
sonal details during the annotation process. All the
test data used in this study are publicly available
and annotators were allowed to label sensitive in-
formation if necessary. The annotators are fully
informed that the data they collected will be used
for research purposes.
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A Appendix

A.1 Cross-BLUE scores

Figure 8 presents the cross-BLEU similarity matrix
for Chinese-English translation systems.

A.2 Error Distribution of Initial Translation

Table 7 presents the error type and severity distribu-
tions of Chinese-English MQM human evaluation
results.
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Figure 8: Cross-BLEU scores for different Chinese-
English translation collection approaches

Error Type OrigHumanRef HumanRef BestWMT MidWMT

No-error 225 453 490 304

Major

Total 955 284 260 648

Fluency 18 (2%) 15 (5%) 5 (2%) 23 (4%)
Accuracy 851 (89%) 229 (81%) 221 (85%) 568 (88%)

Style 31 (3%) 12 (4%) 5 (2%) 18 (3%)

Minor

Total 1902 1303 1238 1704

Fluency 625 (33%) 431 (33%) 364 (29%) 522 (31%)
Accuracy 599 (31%) 412 (32%) 388 (31%) 447 (26%)

Style 629 (33%) 402 (31%) 436 (35%) 677 (40%)

Table 7: Error type and severity distributions of
Chinese-English MQM human evaluation results.

A.3 Error Correction from Post-Editing
Figures 9, 10, and 11 present Chinese-English re-
sults comparable to the English-German results
presented in Section 4.2. Table 8 presents the same
data as in Figure 4 for English-German, and Table 9
presents the same for Chinese-English.

-60% -50% -40% -30% -20% -10% 0% 10%
Error Change Percentage

HumanRef
+HumanPE

HumanRef
+HumanPEx2

HumanRef
+LLMRefine

BestWMT
+HumanPE

BestWMT
+LLMRefine

MidWMT
+HumanPE

MidWMT
+LLMRefine

 -4.6%
 -7.8%

 -8.1%
 -11.7%

 -10.9%
 -8.7%

 -7.5%
 -22.2%

 -15.7%
 -9.4%

 -51.1%
 -21.1%

 -47.1%
 -15.8%

Major Errors
Minor Errors

Figure 9: Error changes percentages by different post-
editing approaches on Chinese-English data. The per-
centages present the changes in error counts for each
post-editing method compared to its initial translation.
A negative indicates a decrease in errors, while positive
value indicates an increase in the error type.

(a) From HUMANREF to HUMANREF+HUMANPE

(b) From HUMANREF to HUMANREF+LLMREFINE

Figure 10: Segment-level quality shift through HU-
MANPE and LLMREFINE from Chinese-English HU-
MANREF.
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Initial
Translation Total Seg HumanPE LLMRefine

HumanPE
&

LLMRefine

Human
Only

LLMRefine
Only

HumanRef 460 163 (35.4%) 235 (51.1%) 110 (23.9%) 53 (11.5%) 125 (27.2%)
BestWMT 460 314(68.3%) 281 (61.1%) 225 (48.9%) 89 (19.3%) 56 (12.2%)
MidWMT 460 400 (87.0%) 324 (70.4%) 310 (67.4%) 90 (19.6%) 14 (3%)

Table 8: Numerical breakdown of the agreement between HUMANPE and LLMREFINE in identifying segments
requiring post-editing in English-German

Initial
Translation Total Seg HumanPE LLMRefine

HumanPE
&

LLMRefine

Human
Only

LLMRefine
Only

HumanRef 1175 558 (47.5%) 225 (19.1%) 161 (13.7%) 397 (33.8%) 64 (5.4%)
BestWMT 1175 830 (70.6%) 133 (11.3%) 123 (10.5%) 707 (60.2%) 10 (0.9%)
MidWMT 1175 1006 (85.6%) 408 (34.7%) 399 (34.0%) 607 (51.7%) 9 (0.8%)

Table 9: Numerical breakdown of the agreement between HumanPE and LLMRefine in identifying segments
requiring post-editing in Chinese-English

(a) From BESTWMT to BESTWMT+HUMANPE

(b) From BESTWMT to BESTWMT+LLMREFINE

Figure 11: Segment-level quality shift through HU-
MANPE and LLMREFINE from Chinese-English
BESTWMT.
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Abstract

Transformers are the current architecture of
choice for NLP, but their attention layers do not
scale well to long contexts. Recent works pro-
pose to replace attention with linear recurrent
layers—this is the case for state space mod-
els, which enjoy efficient training and infer-
ence. However, it remains unclear whether
these models are competitive with transformers
in machine translation (MT). In this paper, we
provide a rigorous and comprehensive experi-
mental comparison between transformers and
linear recurrent models for MT. Concretely, we
experiment with RetNet, Mamba, and hybrid
versions of Mamba which incorporate attention
mechanisms. Our findings demonstrate that
Mamba is highly competitive with transform-
ers on sentence and paragraph-level datasets,
where in the latter both models benefit from
shifting the training distribution towards longer
sequences. Further analysis show that integrat-
ing attention into Mamba improves translation
quality, robustness to sequence length extrapo-
lation, and the ability to recall named entities.

1 Introduction

The inherent design of attention—the underlying
mechanism of transformers—leads to quadratic
computational costs and challenges in length gen-
eralization (Varis and Bojar, 2021). As an alterna-
tive, recent works propose to replace attention with
linear recurrent approaches, which enjoy efficient
training and inference, and obtain competitive re-
sults in language modeling tasks (Katharopoulos
et al., 2020; Gu et al., 2022; Peng et al., 2023; Sun
et al., 2023a; Gu and Dao, 2023).

In machine translation (MT), there is an increas-
ing demand for supporting longer context lengths,
such as paragraphs or entire documents (Fernan-
des et al., 2021; Wang et al., 2023; Kocmi et al.,
2023). Given this trend, it has become increasingly
important to design models capable of efficiently

∗Equal contribution.

handling longer sequences. Previous research indi-
cates that models like state space models (SSMs),
exemplified by S4 (Gu et al., 2022), still lag be-
hind transformers in MT (Vardasbi et al., 2023).
However, it remains unclear whether these findings
hold true for recent, more expressive variations of
linear recurrent models, such as RetNet (Sun et al.,
2023a) and Mamba (Gu and Dao, 2023), especially
on settings that involve the use of pretrained models
and long context datasets.

In this paper, we provide a rigorous and compre-
hensive experimental comparison between trans-
formers, RetNet, Mamba, as well as hybrid ver-
sions of Mamba that incorporate attention mech-
anisms (§4). We also compare with pretrained
Mamba and Pythia (Biderman et al., 2023) at two
parameter scales,∼400M and 1.4B. Building on ex-
isting literature that explores the capabilities of lin-
ear recurrent models in language modeling (Arora
et al., 2024a; Jelassi et al., 2024), we further in-
vestigate the performance of models trained from
scratch in recalling context tokens during the trans-
lation process (§4.2). Moreover, we extend our
analysis by investigating the models’ ability to han-
dle long contexts, on paragraph-level datasets (§5),
along with measuring their sensitivity to different
sequence lengths (§5.2) and inference cost (§5.4).
Overall, our main findings are:1

• For sentence-level experiments, we show that
Mamba exhibits competitive performance com-
pared to transformers, for both trained-from-
scratch and pretrained models.

• At the paragraph level, we find that Mamba is
sensitive to the training distribution’s sequence
length and struggles with longer inputs. However,
shifting the distribution towards longer sequence
lengths helps to close the gap with transformers.

• We observe that integrating attention and state
1https://github.com/deep-spin/ssm-mt

1107

https://github.com/deep-spin/ssm-mt


space models creates a strong model in terms of
translation quality, robustness to sequence length
extrapolation, and ability to recall named entities.

2 Background

In this section, we present an overview of trans-
formers, and the foundation of the linear recurrent
models covered in this paper: linear attention (Ret-
Net) and state space models (Mamba).

2.1 Transformers
The key component in the transformer architecture
is the attention mechanism, which is responsible for
contextualizing information within and across in-
put sequences. Concretely, given query Q ∈ Rn×d,
key K ∈ Rn×d, and value V ∈ Rn×d matrices as
input, where n is the sequence length and d the hid-
den size, the single head self-attention mechanism
is defined as follows (Vaswani et al., 2017):

Y = softmax

(
QK⊤
√
d

)
V ∈ Rn×d. (1)

For decoder-only models, a causal mask is used to
ignore future tokens. Notably, the QK⊤ operation
leads to a O

(
n2
)

cost during training, and O (n)
during inference with caching and causal masking.

2.2 Linear Attention
Denote by qi,ki,vi,yi ∈ Rd respectively the (col-
umn) vectors corresponding to the ith rows of the
matrices Q,K,V ,Y defined above. Katharopou-
los et al. (2020) reformulate the attention mecha-
nism by casting the role of the softmax as a simi-
larity function sim (q,k) = exp

(
q⊤k/

√
d
)
:

yi =

∑n
j=1 sim(qi,kj)vj∑n
j=1 sim(qi,kj)

. (2)

However, any kernel k(x,y) : Rd × Rd → R
is a suitable candidate for the similarity func-
tion (Smola and Schölkopf, 1998; Tsai et al., 2019).
In particular, a kernel k(x,y) = ϕ(x)⊤ϕ(y),
where ϕ : Rd → Rr is a feature map, leads to:

yi =

∑n
j=1ϕ(qi)

⊤ϕ(kj)vj∑n
j=1ϕ(qi)

⊤ϕ(kj)

=

∑n
j=1 vjϕ(kj)

⊤ϕ(qi)∑n
j=1ϕ(kj)⊤ϕ(qi)

=
S⊤ϕ(qi)
z⊤ϕ(qi)

, (3)

where S =
∑n

j=1ϕ(kj)v
⊤
j ∈ Rr×d and z =∑n

j=1ϕ(kj) ∈ Rr. Notably, if initial states are
initialized as S0 = 0r×d and z0 = 0r, intermedi-
ate states can be computed in a recurrent fashion:

Si = Si−1 + ϕ(ki)v
⊤
i ,

zi = zi−1 + ϕ(ki). (4)

Since we can reuse the same Si and zi for all
queries, this recurrent variant offers a O (n) com-
plexity during training and enjoys aO (1) complex-
ity for inference.2

Retentive Networks (RetNet). Sun et al. (2023a)
set ϕ as the identity function, i.e., k(q,k) = q⊤k,
ignore the normalizer in Equation 2, and introduce
an exponential decay mask γ, leading to:

Si = γSi−1 + kiv
⊤
i ,

yi = S⊤
i qi. (5)

This formulation effectively biases the attention
mechanism to focus on closer token interactions.
RetNet also uses XPos (Sun et al., 2023b), a relative
positional encoding method, to improve its context
extrapolation abilities.

2.3 State Space Models (SSMs)
SSMs (Gu et al., 2020) provide an alternative
sequence mixing layer by processing sequences
x1, ...,xn, where each xi ∈ Rd, through a linear
recurrence. Letting Hi ∈ Rr×d denote the “state”
at the ith time step, a discrete SSM is defined as
follows:3

Hi = AHi−1 + bx⊤
i ,

yi = H⊤
i c, (6)

where A ∈ Rr×r, b ∈ Rr, and c ∈ Rr are (dis-
crete) parameters.4 Since the same parameters are
used for both relevant and irrelevant inputs, this
model is deemed input-independent, which, in turn,

2In practice, however, this recurrent view is not paral-
lelizable, leading to chunkwise-recurrent variations for train-
ing (Hua et al., 2022; Sun et al., 2023a; Yang et al., 2024).

3A discretization step is needed in order to obtain discrete
parameters. For example, a possible method for this step is
the zero-order hold rule, used by Mamba (Gu and Dao, 2023).

4The SSM equations are commonly written independenty
for each input dimension j ∈ [d] as

h
(j)
i = Ah

(j)
i−1 + bx

(j)
i , y

(j)
i = c⊤h(j)

i ,

with A, b, and c shared across input dimensions. This is
equivalent to (6), where the j th-column of Hi equals h(j)

i .
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makes the model unable to reset or overwrite its
hidden states. S4 (Gu et al., 2022) is an instance of
this model, which enjoys a O (n log n) time com-
plexity during training, and O (1) during inference.
Vardasbi et al. (2023) shows that S4 still under-
performs transformers for MT. Finally, note the
similarity between Eq. 5 and Eq. 6: RetNets can
be seen as state space models with A = γI and
data-dependent b and c.

Mamba. To make the SSM parameters data-
dependent, Mamba (Gu and Dao, 2023) introduces
a selection mechanism that uses learnable linear
projections over x prior to the discretization step,
effectively making all parameters dependent on the
ith input. This leads to:

Hi = Ai ⊙Hi−1 +Bi ⊙Xi,

yi = H⊤
i ci, (7)

where Xi = 1rx
⊤
i ∈ Rr×d is an r-sized stack of

the input, Ai ∈ Rr×d represents d diagonal matri-
ces of size r × r, Bi ∈ Rr×d, ci ∈ Rr, and ⊙ is
the Hadamard product. Note that, unlike S4, where
the same A and B parameters are shared across
all hidden dimensions 1 ≤ h ≤ d, Mamba de-
fines Ai and Bi with a shape of (. . . , d), allowing
for unique parameters in each hidden dimension.
While this formulation makes Mamba more expres-
sive, it disrupts the convolutional approach used for
training in S4. To address this, Gu and Dao (2023)
propose an efficient IO-aware and parallelizable
associative scan algorithm for training (Smith et al.,
2023). Nonetheless, the recurrent view can still be
used for inference with a O (1) time complexity.

3 Experimental Setup

We conduct experiments with transformers,
RetNet, and Mamba for MT in §4 and §5. In this
section, we detail the sentence and paragraph-level
datasets used in our experiments, along with the
settings for our models, which are trained in two
distinct regimes: from scratch, or finetuned from
a pretrained checkpoint.

3.1 Datasets
For sentence-level experiments, we focus on
WMT14 DE↔EN and WMT16 RO↔EN for
consistency with previous works (Vardasbi et al.,
2023), but also include WMT16 FI↔EN using the
standard training, validation and test splits. For
paragraph level, we use the more recent WMT23

DATASET # SAMPLES # TOKENS

IWSLT17 (DE↔EN) 200K 45.2 ± 29.5
WMT16 (RO↔EN) 610K 58.9 ± 31.1
WMT16 (FI↔EN) 2.08M 52.8 ± 33.1
WMT14 (DE↔EN) 4.5M 62.1 ± 45.6
WMT23-6M (DE↔EN) 6M 58.4 ± 32.9

WMT23-CAT-5 (DE↔EN) 2M 171.3 ± 134.9
WMT23-CAT-10 (DE↔EN) 1M 312.4 ± 282.3

WMT23 Test (DE→EN) 549 135.1 ± 147.7
WMT23 Test (EN→DE) 557 185.2 ± 188.2
Ted Talks Val. (DE↔EN) 995 268.5 ± 189.6
Ted Talks Test (DE↔EN) 2247 939.2 ± 594.0

Table 1: Sentence and paragraph-level datasets statistics.

dataset (Kocmi et al., 2023), which contains
∼300M training samples and ∼1K test samples
incorporating multi-sentence passages. In order
to obtain a small high-quality subset for training,
we exclude ParaCrawl and CommonCrawl
samples from the original dataset and clean the
remaining data. Our cleaning process includes
three steps. First, we identify and remove samples
in incorrect languages via langdetect5. Second,
we eliminate duplicates. Third, we rank the
samples using COMETKIWI-22 (Rei et al., 2022b)
a state-of-the-art translation quality estimator, and
keep only the top 6M samples. We call the refined
dataset WMT23-6M. Datasets statistics are shown
in Table 1.

3.2 Models

We make a broad selection of models spanning both
trained-from-scratch and finetuned versions. In
the first setting, we compare standard transformers,
linear recurrent models, and also hybrid approaches
that integrate attention into Mamba. For finetuned
models, we experiment with released Pythia and
Mamba checkpoints. We describe each model next.

3.2.1 Standard Models
Transformers. We select two variants of the
transformer model as baselines: a base encoder-
decoder formulation and a modern decoder-only
version. The Transformer Enc-Dec. model, as
described in the original paper (Vaswani et al.,
2017), has 77M parameters, and uses sinusoidal
positional embeddings and standard ReLU activa-
tions. The second variant, Transformer++, is a
decoder-only formulation incorporating recent ad-
vancements, such as rotary positional embeddings
(Su et al., 2024) and the SwiGLU layer (Shazeer,

5https://github.com/Mimino666/langdetect
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2020). Specifically, we use the LLaMA architec-
ture (Touvron et al., 2023), adjusting the embed-
ding dimension to match the parameter count of
the base transformer (79M), consistent with the
version employed in (Gu and Dao, 2023).

Linear recurrent models. We select two rep-
resentative recurrent models, RetNet (Sun et al.,
2023a) and Mamba (Gu and Dao, 2023). Both
models are tested with 77M parameters to approx-
imately match the number of parameters in the
transformer models.

3.2.2 Hybrid Models
Previous work has shown that incorporating atten-
tion into linear recurrent models leads to strong
performance in language modeling (Fu et al., 2023;
Arora et al., 2024b; De et al., 2024). Therefore, we
aim to examine if this is also the case for MT by
exploring three hybrid variants, detailed next.

Mamba-MHA. The simplest hybrid formulation
involves replacing some of the Mamba layers with
attention. Some natural questions then arise: how
many attention layers are needed, and where to
place them? After careful ablations, detailed in Ap-
pendix B, we use two attention layers placed at the
middle and at the output of the network, resembling
the hybrid version of H3 (Fu et al., 2023).

Mamba-Local. While aiming to achieve robust
performance, the introduction of full attention to
Mamba disrupts its efficiency gains. Thus, we con-
sider local attention variants such as sliding win-
dow attention (Beltagy et al., 2020; Child et al.,
2019), employed in recent hybrid models (Arora
et al., 2024b; De et al., 2024). We use a window
size of 64 based on the average sequence length
shown in Table 1 and ablations in Appendix B.

Mamba Enc-Dec. Lastly, inspired by the S4-
based encoder-decoder model from Vardasbi et al.
(2023), we replace the self-attention mechanism
in transformers with a Mamba block and keep the
cross-attention component intact. In terms of com-
plexity, since this variant computes attention over
the source sentence, it incurs an additional O

(
n2
)

cost for training and O (n) for inference.

3.2.3 Pretrained Models
In order to fairly evaluate the relative performance
between pretrained models, we need to ensure con-
sistency between their pretraining data. Taking this

into account, we consider two strong models pre-
trained on The Pile (Gao et al., 2020): Pythia (Bi-
derman et al., 2023), a modern transformer, and
Mamba, a modern SSM. Note, however, that Pythia
was pretrained on more tokens than Mamba (see Ta-
ble 6), hence the comparison might be slightly unfa-
vorable to Mamba. We experiment with two model
scales, small (S) and medium (M). Concretely, we
experiment with Pythia 410M and 1.4B, and with
Mamba 370M and 1.4B.

3.3 Training and Evaluation

For models trained from scratch, we follow the set-
tings proposed in (Vardasbi et al., 2023), whereas
for pretrained models, we follow the finetuning set-
tings used by Mamba (Gu and Dao, 2023). For
decoder-only models, we pass a concatenation of
the source and target sequences separated by a
special token as input. We evaluate all models
with BLEU (Post, 2018)6 and COMET (Rei et al.,
2022a).7 We base our analysis on the latter, given
its strong correlation with human judgments on sen-
tence and paragraph-level data (Freitag et al., 2022,
2023). More training details can be found in §A.

4 Sentence-level Translation

We start by evaluating our standard, hybrid, and
finetuned models on the sentence-level WMT16
RO↔EN, FI↔EN and WMT14 DE↔EN datasets.
Results can be found in Table 2 in terms of BLEU
and COMET. Next, we discuss the key findings.

4.1 Discussion

Mamba is competitive when trained from
scratch. Mamba, a decoder-only model, not only
outperforms a decoder-only transformer (Trans-
former++) across the board, but also an encoder-
decoder transformer (Transf. Enc-Dec) in the larger
WMT14 for both DE↔EN language pairs. This cre-
ates a contrast with the S4 results obtained by Var-
dasbi et al. (2023). We hypothesize that Mamba’s
good results are due to its data-dependent state
updates (Eq. 7), which allows for more precise in-
formation retention in its hidden state. On the other
hand, RetNet’s performance is generally subpar
compared to other models, likely due to its strong
locality bias (induced by γ in Eq. 5), which may
hinder performance in MT, a task where the source

6SacreBLEU signature: |1|mixed|no|13a|exp|
7huggingface.co/Unbabel/wmt22-comet-da
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WMT16 WMT14

RO→EN EN→RO FI→EN EN→FI DE→EN EN→DE

MODEL SIZE BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Trained from scratch
Transf. Enc-Dec 77M 29.2 74.8 22.0 78.6 15.3 70.5 14.8 78.2 27.4 78.6 22.3 77.1
Transformer++ 79M 26.4 72.6 21.7 72.7 14.9 69.3 14.2 75.5 26.9 79.0 22.8 77.9
RetNet 77M 26.4 72.4 19.9 76.0 14.5 70.2 11.0 70.2 23.4 74.7 19.6 71.7
Mamba 77M 27.0 73.8 21.4 77.9 16.0 72.7 13.0 75.4 27.5 80.2 22.4 77.8

Mamba-MHA 78M 28.5 75.1 21.7 78.3 17.5 73.8 14.3 76.4 27.4 80.6 23.2 79.9
Mamba-Local 78M 25.9 73.9 20.9 76.9 16.3 73.1 13.2 75.4 27.2 80.1 23.2 79.5
Mamba Enc-Dec 82M 28.5 74.4 22.7 77.9 17.0 73.6 14.3 77.0 27.2 80.0 21.6 78.8

Finetuned
Pythia-S 410M 33.4 82.0 24.1 85.8 19.8 80.1 16.5 84.6 30.9 83.6 25.2 84.0
Mamba-S 370M 34.1 83.2 24.2 86.4 21.4 81.5 16.5 85.5 29.8 83.3 25.0 83.2
Pythia-M 1.4B 33.9 83.2 24.9 87.1 20.9 81.7 17.8 87.1 32.2 84.5 26.7 84.9
Mamba-M 1.4B 33.8 83.1 24.5 86.2 21.3 82.1 18.4 86.8 31.9 84.5 26.5 84.2

Table 2: Sentence-level results in terms of BLEU and COMET for models trained from scratch (top) and models
finetuned from a pretrained checkpoint (bottom). Bold represents top results; underline represents second-best.

input servers as a prefix to the translation, and it
requires “focused attention” during decoding.

Attention benefits Mamba. By including atten-
tion layers in Mamba’s architecture, we find that
Mamba-MHA, which employs only two attention
layers, is able to outperform both transformers
and Mamba for almost all language pairs. While
Mamba-Local retains constant inference complex-
ity via windowed attention, it is not as strong as
the full attention variant. Finally, Mamba Enc-
Dec’s performance is also competitive, falling just
short of Mamba-MHA and echoing the S4 encoder-
decoder findings of Vardasbi et al. (2023).

Pretraining improves all models. We note a
large COMET gap, roughly 4-8 COMET points,
between the finetuned models and those trained
from scratch for all language pairs. This is ex-
pected, since not only are these models bigger, but
they also have strong data-driven priors, which are
beneficial in downstream tasks (Amos et al., 2024).

Larger models achieve top results. For small
models, Mamba outperforms Pythia for RO↔EN

and FI↔EN in terms of COMET and BLEU. How-
ever, Pythia is superior on the larger DE↔EN

datasets. Moving to larger models, we note that
Mamba improves COMET scores by ∼1 point on
EN↔DE and 0.6-1.3 point on EN↔FI while drop-
ping only 0.1-0.2 on EN↔RO datasets. On the other
hand, Pythia improves results consistently for all
language pairs with a larger model size, outper-
forming or matching the results of other models.
On average, we find that both their gaps decrease

when moving from smaller to medium-sized mod-
els but Pythia benefits more in terms of COMET. It
is worth noting that Mamba is pretrained on fewer
samples than Pythia (see Table 6) and that the im-
pact of pretraining data quality can also play a role
in downstream task performance.

4.2 Recall of Named Entities

Following our discussion of sentence-level transla-
tion, we now focus on how well these models recall
context tokens during translation. Inspired by prior
studies investigating the recall of context tokens in
language modeling with state space models (Arora
et al., 2024a; Jelassi et al., 2024), we conduct a sim-
ilar experiment for MT. Unlike language modeling,
where token patterns often recur within a near con-
text, MT presents a challenge due to the distinct
spelling of words across languages. Therefore, we
focus on the recall of named entities (NEs) that ap-
pear verbatim in both source and target sentences,
using NLTK for NE recognition (Bird, 2006).

We assess the models’ ability to recall NEs from
the WMT16 RO→EN dataset according to their fre-
quency in the training set, as illustrated in Figure 1.
The results reveal a clear correlation between NE
frequency and their chance to be recalled in the
translation process, as more frequent NEs are re-
called more often. Notably, we note a disparity in
performance with unseen entities, which provides
a more illustrative view of recall ability. In this
respect, transformers and Mamba perform on par,
while RetNet shows inferior results. As before,
the hybrid models are promising, with Mamba-

1111



Transformer 
 Enc-Dec

Transformer++ RetNet Mamba Mamba-MHA Mamba-Local Mamba 
 Enc-Dec

0.5

0.6

0.7

0.8

0.9

1.0
Re

ca
ll

Unseen
Regular
Frequent

Figure 1: Recall in recovering named entities on the WMT16 RO→EN dataset by their training set frequency: unseen
entities do not appear in the training data, while regular and frequent entities appear [1, 16) and 16+ times.

MHA outperforming all models, followed closely
by Mamba Enc-Dec. We include additional analy-
ses for other datasets in the Appendix §C.

5 Paragraph-level translation

While Mamba shows competitive performance with
transformers on sentence-level datasets (see Ta-
ble 2), it was originally designed to handle long
sequences. Thus, we now turn our attention to
paragraph-level datasets. This allows us to study
the models’ sensitivity to long sequence lengths
along with their robustness in handling sequences
that are longer than the ones seen during training.8

To this end we focus on the WMT23-6M dataset
(§3.1), from which the training and test sets are
composed of sentence and paragraph-level pas-
sages, respectively. In order to see the impact of
training on long sequences, we propose to artifi-
cially construct multi-sentence datasets, which we
call WMT23-CAT-N . Our procedure is as follows:

1. We first retain the original training samples from
WMT23-6M with a probability of 50%.

2. Next, for the remaining part, we concatenate N
random training samples.

This approach ensures that we consistently main-
tain a 50% ratio between single-sentence and multi-
sentence samples. For validation, we sample
1-to-10-sentence passages from the TED Talks
dataset (Cettolo et al., 2012). Statistics for CAT-N
datasets can be found in Table 1. COMET scores on
the WMT23 EN↔DE test sets are shown in Table 3.
We provide additional BLEU scores in Table 9 in
Appendix E. Next, we discuss our key findings.

5.1 Discussion
Concatenation helps. Our strategy of concate-
nating sentences proves beneficial for almost all

8We dropped RetNet and Mamba-Local as they already
achieve poor results on long sentence-level inputs (see Fig. 5).

models, as COMET scores typically improve with
the CAT-5 and CAT-10 datasets, whether models
are trained from scratch or finetuned. Among mod-
els trained from scratch, Transformer Enc-Dec,
Mamba-MHA, and Mamba Enc-Dec show substan-
tial improvements, with Mamba Enc-Dec achiev-
ing the best overall results. For finetuned models,
concatenation benefits larger models; Mamba-M
outperforms Pythia-M in DE→EN but underper-
forms in EN→DE. Interestingly, for both train-
ing regimes, the concatenation strategy can lead
to COMET gains of up to 5 points.

Finetuning outperforms training from scratch.
Finetuned models consistently achieve higher
COMET scores, with larger models attaining the
top results overall. Similar to sentence-level experi-
ments, Pythia outperforms Mamba when trained on
the original, WMT23-6M dataset. However, both
Pythia and Mamba benefit from our concatenation
strategy. While these results indicate that our con-
catenation strategy helps in translating long inputs,
it remains unclear whether performance on short
inputs is compromised or if the models can handle
longer inputs than those seen during training. We
investigate these issues next.

5.2 Sensitivity to Input Length

Based on the previous observations, we notice that
performance between models varies considerably
after being exposed to different sequence lengths
during training. In this subsection, we investi-
gate how robust each model is to length distribu-
tion shifts between training and test. Results are
shown in Figure 2 for both training regimes on the
WMT23 DE→EN dataset. Results are consistent
for EN→DE, shown in Figure 6, Appendix D.

Discussion. When training on WMT23-6M, we
observe a decline in performance for all models on
long sequences, affecting both trained-from-scratch
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DE→EN EN→DE

MODEL SIZE ORIG. CAT5 CAT10 ORIG. CAT5 CAT10

Trained from scratch
Transf. Enc-Dec 77M 72.4 74.6 69.6 65.2 70.3 70.3
Transformer++ 79M 70.7 73.6 72.8 64.8 69.1 68.8
Mamba 77M 70.0 73.3 72.3 63.3 67.5 67.8

Mamba-MHA 78M 72.7 74.2 74.5 67.0 68.6 69.7
Mamba Enc-Dec 82M 70.7 73.8 75.6 65.3 71.0 70.1

Finetuned
Pythia-S 410M 77.4 78.4 79.0 76.7 77.8 77.1
Mamba-S 370M 77.2 78.2 78.3 72.4 74.2 73.1
Pythia-M 1.4B 76.2 78.6 79.4 75.8 77.4 79.0
Mamba-M 1.4B 74.6 79.6 79.5 73.4 77.5 77.3

Table 3: Paragraph-level results in terms of COMET for models trained from scratch (top) and models finetuned
from a pretrained checkpoint (bottom) on WMT23 EN↔DE test set, according to the training dataset: original
WMT23-6M, WMT23-CAT-5 and WMT23-CAT-10. Bold represents top results; underline represents second-best.
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Figure 2: Sensitivity to input length, measured by the number of sources tokens, on the WMT23 DE→EN datset, for
models trained from scratch (top) and finetuned from a pretrained checkpoint (bottom).

and finetuned variants. Interestingly, this degrada-
tion is evident in Mamba, as expected due to its
finite hidden state capacity. However, it is also chal-
lenging for transformers despite their relative posi-
tional embeddings. Moreover, both finetuned and
hybrid models exhibit more consistent performance
across different sequence lengths, even on the origi-
nal sentence-level dataset, suggesting a more robust
capability for dealing with long-context inputs.

Overall, our concatenation approach has largely
mitigated the performance issues with long in-
puts present in models trained on WMT23-6M, as

models trained on CAT datasets produce higher-
quality translations for longer sequences. This
improvement is uniform across all models, with
CAT-10 yielding consistently better translations in
the longest bin (257+ tokens). However, the CAT-
10 dataset seems to reduce translation quality for
shorter samples in some models, though this ef-
fect is minimal or absent in hybrid and finetuned
models. Next, we further examine the ability to ex-
trapolate to even longer sentences than those seen
during training.
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Figure 3: Sensitivity to input length, measured by the number of sources tokens, on the Ted Talks DE→EN dataset,
for models trained from scratch (top) and finetuned from a pretrained checkpoint (bottom). The dashed vertical line
represents the bin containing the longest sentence in the training set.

5.3 Extrapolation to Longer Sequences

Following the previous discussion, to further ex-
plore the impact of sequence length on our models,
we create a new test set sampled from TED Talks
DE→EN passages that is larger (2200 samples) and
contains even longer sequences (up to 2048 tokens)
than WMT23. Details on this dataset can be found
in Table 1. The source length distribution can be
seen in Figure 7. After evaluating our models in
this dataset, we plot COMET scores per sentence
length in Figure 3, where we include a dashed verti-
cal line representing the bin containing the longest
sentences the model has been exposed to during
training.

Discussion. When training from scratch, we high-
light the sharp decline in translation quality decline
in the Transformer++ model when considering sam-
ples larger than those it has been exposed to during
training, this finding is consistent with the gener-
alization task in (Jelassi et al., 2024). In contrast,
Transformer Encoder-Decoder and Mamba exhibit
a steady decline overall with the first being ro-
bust to generalization problems when trained with
larger-context datasets. Additionally, the hybrid
models prove to excel at generalization, providing
good translation quality even when trained with
the WMT23-6M dataset. With the finetuned mod-
els, we also see decreasing translation quality over
longer sequences which is consistent with previous
experiments. Nonetheless, Mamba models show

a more robust trend when generalizing to unseen
lengths. In particular, the larger Mamba-M, when
trained on the WMT23-CAT-10 dataset, exhibits
a much lower performance degradation on longer
samples in comparison to other finetuned models.

5.4 Inference Cost
In §2 we covered the theoretical time complex-
ity of our models in training and inference time.
Here, we examine the wallclock time and memory
usage of Pythia and Mamba in a realistic setting
where inputs are WMT23 DE→EN test samples,
and outputs continue to be generated until they
reach exactly L ∈ {512, 1024} tokens. Table 4
shows that Mamba’s memory usage is significantly
lower than Pythia’s, with gaps of ∼ 3-5x overall.
The wallclock time difference is not as notable
but still substantial, especially for larger models,
where Mamba-M is 2x faster than Pythia-M for
L = 1024. In other words, Mamba-M through-
puts ∼806 tokens/s while Pythia-M outputs ∼405
tokens/s, aligning with (Gu and Dao, 2023).9

6 Related Works

Linear recurrent models for MT. Our work is
closely related to (Vardasbi et al., 2023), which
compares SSMs and transformers. Furthermore,
they also experiment with hybrid architectures com-
posed of S4 and attention layers, an approach that
has since become common (Arora et al., 2024b; De

9Computed as batch-size × L/wallclock-time.
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512 1024

MODEL T (S) M (GB) T (S) M (GB)

Pythia-S 11.52 2.472 25.80 3.934
Mamba-S 10.38 0.839 20.59 1.607
Pythia-M 14.88 4.789 40.41 7.841
Mamba-M 10.29 0.913 20.31 1.668

Table 4: Average time (T) and maximum allocated mem-
ory (M) of 30 inference runs with batch size 16 on
WMT23 DE→EN.

et al., 2024; Glorioso et al., 2024). In this work, we
experiment with more recent linear recurrent mod-
els and their respective hybrid versions while also
including larger and pretrained variants. Our analy-
sis further includes investigating each model’s abil-
ity to recall named entities, along with measuring
translation performance across different sequence
lengths on paragraph-level datasets. In contrast to
Vardasbi et al. (2023)’s results showing that S4 lags
behind transformer baselines in MT tasks, we ob-
serve that Mamba, a modern SSM, is competitive
with transformers on sentence and paragraph-level
datasets, whether trained from scratch or fine-tuned
from a pretrained checkpoint, especially in the first
setting when equipped with attention mechanisms.

Linear recurrent models’ limitations. Recent
works show that Mamba struggles in tasks that in-
volve recalling context tokens (Arora et al., 2024a;
Jelassi et al., 2024), such as the synthetic Multi-
Query Associative Recall task. In MT, however,
context tokens (source and translation prefix) are
not often replicated in the output (translation). In
this work, we study this phenomenon with named
entities and analyze the recall ability of transform-
ers and linear recurrent models in §4.2.

Sentence concatenation Kondo et al. (2022);
Varis and Bojar (2021) analyze transformers’ gen-
eralization towards sequence length. They show
that transformers are susceptible to the training dis-
tribution of context length and that concatenating
multiple sentences can improve the translation of
longer sentences. Specifically, Kondo et al. (2022)
augment the original data with samples contain-
ing concatenations of two random sentences, while
Varis and Bojar (2021) concatenate up to six sen-
tences. While these studies focused on sentence-
level translation with sequence lengths up to 120
tokens, in this work, we extend the analysis to much
longer sequences and test on paragraph-level data
from the WMT2023 dataset.

7 Conclusion

We set out to evaluate recent linear recurrent
models, particularly RetNet and Mamba, in MT
tasks while thoroughly comparing them to trans-
former baselines and hybrid models, which com-
bine Mamba and attention. We find that Mamba
models are competitive with transformers, both
when they are trained from scratch and when they
are finetuned from a pretrained checkpoint; how-
ever, the performance delta is smaller in the latter
regime. Our paragraph-level experiments reveal
that models are hindered by the mismatch in the
training and test length distributions; however, a
simple concatenation approach helps to mitigate
the issue. We find that hybrid models are only
slightly affected by this issue while also being com-
petitive or outperforming transformers. Finally, we
note that Mamba models also exhibit a faster run-
time, consume less memory, and extrapolate better
to longer inputs than decoder-only transformers.
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Limitations

We point out some limitations of the presented
study. First, one limitation is that we refrain from
pretraining the hybrid models due to the high as-
sociated compute costs. To this effect, while our
trained-from-scratch results are promising, validat-
ing them with a larger scale and strong language
priors would strengthen our claim of their good
performance. Secondly, our experiments (§5.3) ap-
pear to indicate larger models are more robust to
sequence length issues. Nonetheless, we limited
our study to models with parameter scales between
370M and 1.4B since, in preliminary sentence-level
experiments, translation quality gains plateaued at
the latter scale.

In another direction, we mainly rely on auto-
mated metrics for evaluating translation quality,
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which might not fully capture the accuracy of the
translation. We alleviate this fault by considering
the recollection of NEs in translations (§4.2). Fur-
thermore, our experiments in §5.2 do not have a
notion of translation difficulty, which might help
explain the differences between models and asso-
ciated datasets in different length buckets (albeit
sentence length and difficulty may be connected).

Potential Risks

Translation biases and error modes inherent in
transformed-based LLMs could also be manifested
in the linear recurrent models studied in this paper.
Careful evaluation and mitigation strategies, such
as detecting and overcoming hallucinations (Guer-
reiro et al., 2023; Dale et al., 2023), can alleviate
these risks and ensure models’ responsible use. It
should also be noted that although SSMs are po-
tentially more energy efficient than transformer-
based models, they still pose energy consumption
concerns, particularly due to the large size of the
models.
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A Implementation and Training Details

All experiments were carried on Nvidia RTX
A6000 GPUS with 48GB VRAM, and the train-
ing framework is constructed around PyTorch
Lightning.10 To train and generate translations in
batches, we use a left-padding strategy. However,
for Mamba, additional functionality is required to
avoid processing padding tokens. To address this,
we zero out inputs before and after convolution
at the positions of the padding tokens and sac-
rifice some efficiency by using the slow path in
Mamba.11 Notably, during inference, the slow path
affects only the initial processing of the prompt
and does not impact the actual generation. More-
over, we added Dropout (Srivastava et al., 2014) to
Mamba blocks, which was missing in the original
implementation. Specifically, dropout is applied
after the last linear projection of the Mamba block.
Additionally, following the findings in (Vardasbi
et al., 2023), we calculate cross-entropy loss only
for target tokens. During training, we use greedy
decoding and select the top model using BLEU
as the validation metric, as it is faster to compute
in comparison to COMET. For inference, we use
beam search with a beam size of 5. Due to the
time-consuming nature of our experiments, we re-
port the results of a single run for all experiments.
The overall model structure and hyperparameters
across both training regimes, from-scratch (§A.1)
and finetuning (§A.2), are shown in Table 5. Fur-
thermore, all models were trained with bfloat16
precision.

A.1 Training from Scratch

Regarding tokenization, we leverage the Hugging-
Face tokenizers library12 and construct a separate
BPE tokenizer (Sennrich et al., 2016) per dataset.
The total vocabulary size is 32000 tokens. We car-
ried out a hyperparameter search to select appropri-
ate dropout values, learning rates and architectural
decisions, with the latter two detailed in Table 5.
We employ a dropout of 0.3 for WMT16 EN↔RO,
0.1 for WMT14 EN↔DE, WMT16 EN↔FI and the
different variations of WMT23. Other hyperparam-
eters were kept intact. Concretely, we use the In-
verse Square Root learning rate scheduler (Vaswani
et al., 2017) with 4000 warmup steps and a weight

10https://lightning.ai/docs/pytorch/
11https://github.com/state-spaces/mamba/

issues/216
12https://github.com/huggingface/tokenizers

MODEL SIZE LR L H D FFN

Trained from scratch
Transf. Enc-Dec 77M 4e-4 6-6 8 512 2048
Transf.++ 79M 4e-4 12 8 496 1984
RetNet 77M 1e-3 12 4 512 1024
Mamba 77M 1e-3 24 - 610 -

Mamba-MHA 78M 7e-4 24 8 624 -
Mamba-Local 78M 7e-4 24 8 624 -
Mamba Enc-Dec 82M 7e-4 8-6 8 512 2048

Finetuned
Pythia-S 410M 1e-5 24 16 1024 4096
Mamba-S 370M 3e-4 24 - 1024 -
Pythia-M 1.4B 1e-5 24 16 2048 8192
Mamba-M 1.4B 3e-4 24 - 2048 -

Table 5: Detailing the full set of hyperparameters for
the different models. Encoder-Decoder models have
their number of layers separated by each module. LR
represents the Learning Rate; L represents the number
of layers; H is the number of Attention Heads; D is
the model dimension; FFN is the size of the inner feed-
forward network.

MODEL SIZE
TRAINING

TOKENS
CONTEXT
TOKENS

Pythia-S 410M 300B 2048
Pythia-M 1.4B 300B 2048
Mamba-S 370M 7B 2048
Mamba-M 1.4B 26B 2048

Table 6: Pre-training details. All models were pretrained
on The Pile (Gao et al., 2020).

decay of 0.001.

A.2 Finetuning Pretrained Checkpoints

We employ pretrained models and corresponding
tokenizers from the Huggingface library. Table 6
shows the number of tokens and the size of the
context window used during pretraining. For fine-
tuning, in all experiments, we use a dropout of 0.1
with the exception of WMT16 EN↔RO and Pythia-
S + EN↔FI, where dropout varies from 0.1 to 0.3
for the former and 0 for the latter. Moreover, we
use weight decay only in Mamba-M, with a value
of 2·10−4. Additionally, learning rates and models’
attributes are shown in Table 5.

A.3 Inference Cost

For the inference cost experiments, we mea-
sure overall wallclock time using cuda events
and cuda synchronization from torch.cuda
module. The overall reported time measures
the entire generation pipeline, including the
use of beam search. Moreover, we use
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512 1024

MODEL T (S) M (GB) T (S) M (GB)

Transformer++ 12.33 5.862 34.00 10.711
Mamba 11.71 0.562 29.37 0.554
Mamba-MHA 12.77 1.250 25.28 1.536
Mamba Enc-Dec 7.46 0.394 14.36 0.394

Table 7: Average time (T) and maximum allocated mem-
ory (M) of 30 inference runs with batch size 16 on
WMT23 DE→EN.

DE→EN EN→DE

BLEU COMET BLEU COMET

Mamba-MHA
Interleaved 30.81 77.98 24.40 72.48
L1,11 30.52 78.10 24.99 73.76
L11,23 30.81 78.30 24.40 73.94

Mamba-Local
Interleaved - w64 28.85 76.76 23.61 72.10
L11,23 - w16 29.37 77.19 24.12 72.88
L11,23 - w32 28.24 76.44 23.20 72.22
L11,23 - w64 29.40 77.56 24.41 72.98
L11,23 - w128 30.49 77.98 24.85 73.58

Table 8: Hybrid models ablations with BLEU and
COMET scores on the IWSLT17 dataset. Different
window sizes are denoted as w{16, 32, 64, 128}. Inter-
leaved refers to alternating Mamba and attention layers.
L1,11 and L11,23 refer to placing attention in layers 2 -
N/2 and N/2 - N , respectively.

torch.cuda.max_memory_allocated to mea-
sure memory usage.

We additionally include the profiling measure-
ments for the trained-from-scratch models in Ta-
ble 7. Crucially, we advise that these metrics are
rough estimates since the models are not optimized
to perform at their best capacity. To this end, we
do not include the Transformer Encoder-Decoder
as the implementation used is not efficient.

B Hybrid Models Ablation

Building on the shortcomings of linear models
(Akyürek et al., 2024; Arora et al., 2024a; Jelassi
et al., 2024), we designed hybrid models to com-
plement SSMs with attention mechanisms. In this
section, we ablate the design choices leading to the
construction of our hybrid models. These experi-
ments were conducted using the IWSLT17 DE↔EN

dataset (Cettolo et al., 2017). Results are shown in
Table 8.

Since our Mamba-MHA model replaces a set of
Mamba layers with attention modules, we ablated
various configurations to determine the optimal

number and placement of attention layers. Our
analysis of COMET scores indicated that incor-
porating two attention layers significantly boosted
performance, aligning with findings in previous
studies (Fu et al., 2023). The placement of these
layers had a minimal effect, leading us to select
the configuration with layers at positions N/2 and
N for further experiments due to its consistently
higher COMET scores.

In the case of Mamba-Local, which uses a slid-
ing window attention, we explored various win-
dow sizes. Our experiments revealed that perfor-
mance generally improved with window size in a
linear way. Ultimately, a 128-token window nearly
matched full attention performance, and two layers
of 64-token windowed attention provided a good
balance between performance and efficiency for
our experiments.

C Named Entity Recall Experiments

Following up on the discussion from §4.2, we ex-
tend our evaluation of NE recall accuracy to the
WMT14 DE↔EN dataset and two paragraph-level
datasets, WMT23-6M and WMT23-CAT-5, both
in the DE↔EN translation direction. The results,
detailed in Figure 4, offer further insights into the
models’ recall accuracy performance across other
datasets and context length settings.

Sentence-Level (WMT14 DE↔EN). The NE re-
call results on the WMT14 DE↔EN dataset align
closely with those obtained in WMT16 RO→EN,
shown in Figure 1; we still observe Mamba’s recall
accuracy to be closer to that of the transformer mod-
els, while the hybrid models continue to (slightly)
outperform their unmodified counterparts. Note,
however, that overall, the gap between models is
narrower, as also reflected in their close results in
terms of BLEU.

Paragraph-Level Datasets. When assessing the
WMT23-6M and WMT23-CAT-5 DE↔EN datasets,
contrary to the WMT16 RO↔EN experiments, the
Transformer Encoder-Decoder model outperforms
all other models in recalling unseen entities. Addi-
tionally, while the hybrid models remain compara-
ble to the Transformer++ model, Mamba’s perfor-
mance declines. This presents a striking contrast
to the sentence-level experiments, suggesting that
transformers may have an advantage in NE recall
when shifting to longer contexts. Nonetheless, the
transition from the 6M dataset to the CAT-5 dataset
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Figure 4: Recall in recovering named entities on the WMT14 (top), WMT23-6M (middle) and WMT23-CAT-5
(bottom) DE→EN datasets, by their training set frequency: unseen entities do not appear in the training data, while
regular and frequent entities appear [1, 16) and 16+ times.

1-1
6

17
-32

33
-64

65
-12

8

12
9-2

56

# Source tokens

30

40

50

60

70

80

CO
M

ET Transf. Enc-Dec
Transf.++
RetNet
Mamba
Mamba-MHA
Mamba-Local
Mamba Enc-Dec

Figure 5: COMET scores per sequence length on
WMT14 DE→EN for trained-from-scratch models.

leads to recall improvements across all models, par-
ticularly for unseen entities. This indicates that the
additional context provided during training in the
CAT-5 dataset aids the recall of named entities.

D Exploring Length-related Issues

D.1 Preliminary Sentence-level Experiments

Before experimenting with paragraph-level data,
we analyze how our trained-from-scratch models
perform on different sequence lengths. To this

end, we study their sensitivity to input length when
trained and tested on WMT14 DE→EN. The results
are shown in Figure 5. While all models show a
deterioration in performance as sequence length
increases, this effect is more pronounced for Trans-
former++, RetNet, and Mamba-Local, with a sig-
nificant drop in performance for samples longer
than 64 tokens.

D.2 Sensitivity to Input Length
Following the discussion in §5.2, we further inves-
tigate the sensitivity of our models to input length
using the WMT23 EN→DE test set, with results
shown in Figure 6. Notably, our takeaways re-
main broadly the same: concatenating samples
in the training data is indeed helpful when han-
dling longer sequences, and models trained on
the WMT23-CAT-10 dataset are much better in
the longer bin (257+) with minimal translation
quality degradation in shorter samples. However,
when considering each of the training datasets’ his-
tograms in Figure 7, we can observe that models
have been exposed to the longest samples during
training, even if in low quantities. This implies that
the previous experiments do not represent an extrap-
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Figure 6: Sensitivity to input length, measured by the number of sources tokens, on the WMT23 EN→DE datset, for
models trained from scratch (top) and finetuned from a pretrained checkpoint (bottom).

olation setting, where inference is done on longer
sequence lengths than those seen during training.
We cover extrapolation to longer sequences next.

E Full Paragraph-Level Results

For completeness, we report paragraph-level results
in terms of BLEU and COMET for all language
pairs and models in Table 9.

F AI assistants

We have used Github Copilot13 during code devel-
opment, and ChatGPT14 during paper writing for
paraphrasing or polishing original contents.

13https://github.com/features/copilot
14https://chat.openai.com/
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DE→EN EN→DE

MODEL TRAINING DATA BLEU COMET BLEU COMET

Trained from scratch
Transformer Enc-Dec

WMT23-6M

25.4 72.4 22.4 65.2
Transformer++ 21.6 70.7 20.2 64.8
Mamba 19.0 70.0 15.8 63.3
Mamba-MHA 23.9 72.7 23.2 67.0
Mamba Enc-Dec 22.7 70.7 21.5 65.3

Transformer Enc-Dec

WMT23-CAT-5

30.8 74.6 29.9 70.3
Transformer++ 28.9 73.6 28.1 69.1
Mamba 26.1 73.3 23.8 67.5
Mamba-MHA 29.5 74.2 23.5 68.6
Mamba Enc-Dec 27.3 73.8 29.1 71.0
Transformer Enc-Dec

WMT23-CAT-10

28.3 69.6 29.3 70.3
Transformer++ 29.8 72.8 29.1 68.8
Mamba 25.9 72.3 25.5 67.8
Mamba-MHA 27.8 74.5 25.9 69.7
Mamba Enc-Dec 31.4 75.6 30.1 70.1

Finetuned
Mamba-S

WMT23-6M

21.8 77.2 21.4 72.4
Pythia-S 23.9 77.4 25.9 76.7
Mamba-M 20.7 74.6 22.5 73.4
Pythia-M 26.0 76.2 25.2 75.8

Mamba-S

WMT23-CAT-5

24.3 78.2 23.3 74.2
Pythia-S 27.0 78.4 28.6 77.8
Mamba-M 26.4 79.6 27.5 77.5
Pythia-M 25.8 78.6 27.5 77.4

Mamba-S

WMT23-CAT-10

25.6 78.3 22.5 73.1
Pythia-S 26.8 79.0 29.3 77.1
Mamba-M 32.5 79.5 27.5 77.3
Pythia-M 33.4 79.4 33.9 79.0

Table 9: Paragraph-level results in terms of BLEU and COMET on the WMT23 EN↔DE test set.
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Abstract

Despite the fact that context is known to be
vital for resolving a range of translation am-
biguities, most traditional machine translation
systems continue to be trained and to operate
at the sentence level. A common explanation
is the lack of document-level annotations for
existing training data. This work investigates
whether having such annotations would be help-
ful for training traditional MT systems at scale.
We build large-scale, state-of-the-art contextual
MT systems into German, French, and Rus-
sian, fixing the datasets while comparing the
effect of sourcing contextual training samples
from both parallel and back-translated data. We
then evaluate these contextual models across a
range of contextual test sets from the literature,
where we find that (a) document annotations
from both mined parallel and back-translated
monolingual data are helpful, but that the best
contextual MT systems do not draw contextual
training samples from the parallel data. We also
make two points related to evaluation: (b) con-
trastive score-based metrics on challenge sets
are not discriminative; instead, models must
be tested directly on their ability to generate
correct outputs, and (c) standard corpus-level
metrics such as COMET work best in settings
that are dense in contextual phenomena.

1 Introduction

By nature of its sentence-based design, traditional
machine translation (MT) is unable to correctly
translate any sentence with extra-sentential depen-
dencies, such as pronouns in languages with gram-
matic gender, except by chance (Table 1). Despite
significant prior work on the topic (§ 2), and gen-
eral acknowledgment of the need to move on (Sen-
nrich, 2018), contextual translation has never man-
aged to overtake MT research, and sentence-level
systems continue to dominate. This “sentence-level
ceiling” leaves a gap between them and their in-
creasingly powerful LLM counterparts, and raises

English German

I lost my hat. Have you
seen it?

Ich verlor meinen Hut.
Hast du es gesehen?

Table 1: The sentence-level translation ceiling. Select-
ing the correct pronoun (ihn, masc.) requires context.

the question of whether this gap can be narrowed or
closed, if traditional MT systems could be trained
properly with context.

A common explanation for the lack of context in
MT has to do with the relative dearth of document-
level annotations that are available for mined paral-
lel and even monolingual data. At the same time, it
has long been understood (Venugopal et al., 2011)
and recently corroborated (Thompson et al., 2024)
that crawled bitext is rife with machine translation
output, which—though high quality at the sentence
level—may attenuate the contextual signal. We ex-
plore this central problem by building the first large-
scale, state-of-the-art translation systems trained
on data with complete document annotations. We
are able to do this because instead of public data,
we use a private, in-house dataset (§ 3) that we have
crawled ourselves. This crucially allows us to ex-
plore the effects of document annotations sourced
from both parallel and monolingual (backtranslated
data), together and in isolation, in order to quantify
their effects. We find that:

• It is best to source contextual training ex-
amples from backtranslated data only. We
find gains in contextual metrics from systems
trained with contextual signals from both par-
allel and backtranslated data. However, the
best systems source these samples from back-
translated data only.

• Generative evaluation is crucial. Con-
trastive metrics, where the task is to discrim-
inate good and bad translations using model
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scores, are often used to evaluate contextual
MT. We show that contextual systems that
are trained on mined parallel documents do
well on this task, but perform poorly when
asked to generate correct translations. Only
generative evaluation, which looks at whether
correct words were produced, distinguishes
good from bad contextual systems.

• Standard metrics are most useful on
discourse-dense datasets. Standard sentence-
level metrics like COMET are much more
discriminative between sentence- and contex-
tual systems when applied to datasets that are
dense in discourse phenomena.

Together, these results raise important considera-
tions for the construction and evaluation of contex-
tual translation systems.

2 Background and Related Work

The transition to neural architectures was a
paradigm enabler for document translation, since it
eliminated the Markov limitations of statistical MT
(Maruf et al., 2019). Much work has focused on
special architectures and input encodings. This in-
cludes cache models (Tu et al., 2018; Kuang et al.,
2018), hierarchical attention (Miculicich et al.,
2018), separately encoding context (Voita et al.,
2018; Zhang et al., 2018), allowing attention across
a batch of pseudo-documents (Wu et al., 2023), en-
coding sentence position (Bao et al., 2021; Lupo
et al., 2023), and sparse attention mechanisms (Guo
et al., 2019). A number of approaches work on base
systems outputs, such as post-editing with contex-
tual language models (Voita et al., 2019a) and using
contextual language models to rerank sentence-
level system output Yu et al. (2020). Junczys-
Dowmunt (2019) built one of the earliest contextual
systems to perform well at WMT. Sun et al. (2022)
also proposed to use standard transformer models,
testing small architectures with no backtranslated
data, and using a “multi-resolutional” training ap-
proach that creates overlapping documents. We
focus instead on standard architectures, judging
them to be sufficient at large enough sizes.

The lack of document-annotated parallel data is
a longstanding problem. Datasets with document
annotations are relatively small and specialized:
they include OpenSubtitles (Lison and Tiedemann,
2016), WIT3 (Cettolo et al., 2012), News Com-
mentary, and Europarl (Koehn, 2005). Liu and

Zhang (2020) provide a nice survey, and release a
small amount of government-crawled new data for
Chinese–Portuguese. Very recently, document an-
notations on Paracrawl data have become available
Pal et al. (2024); Wicks et al. (2024). These annota-
tions are available for only a relatively small subset
of the data, however; even so, their results corrobo-
rate what we find here. (2024, Table 2) see drops
in performance from systems trained with their par-
allel data annotations, unless the gold target con-
text is provided; (2024) see small but consistent
gains when the parallel data has been sufficiently
filtered. The Conference on Machine Translation
(WMT) began releasing limited document-level
data for DE-EN and CS-EN in 2019 (Barrault et al.,
2019). This limitation has forced researchers to
get creative. Voita et al. (2019b) built a monolin-
gual post-editing system that took the output of
a baseline system and used it for document-level
“repair”. Sugiyama and Yoshinaga (2019) also used
target-side data for backtranslation, evaluating in
small-data settings with BLEU and contrastive met-
rics. Our work is unique in that we have com-
plete document annotations on very large web-
crawled datasets, and shows that these annotations
on parallel data, as a whole, are not as useful.

Contextual metrics work has been important.
PROTEST (Guillou and Hardmeier, 2016) used
hand-designed pronoun test cases and also evalu-
ated generatively. Many special test sets have been
developed isolating important contextual phenom-
ena and largely evaluating discriminatively (more
in § 4). Läubli et al. (2018) provided early evidence
that document-level metrics would be helpful. Sev-
eral document-level metrics have been proposed,
including BlonDe (Jiang et al., 2022), which com-
pares automatically-identified phenomena in the
output to those in a reference, and Doc-COMET
(Vernikos et al., 2022), which incorporates con-
textual sentence representations. Both metrics are
interesting but await deeper evaluation and we did
not explore them in this paper. Vamvas and Sen-
nrich (2021) have also noted the problem with the
disconnect between contrastive evaluation and gen-
erative ability for machine translation. Both Fer-
nandes et al. (2023) and Wicks and Post (2023)
developed rules to identify contextually-dependent
sentences. In this work, we show that datasets
dense in contextual phenomena are important
for evaluating contextual ability, and that dis-
criminative contextual evaluation is of limited
use.
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3 The data challenge

Large publicly-available parallel datasets do not
have document annotations. While the Conference
on Machine Translation (WMT) has made over-
tures in this direction,1 including ensuring that test
data is source-language-natural and contains docu-
ment information, parallel and monolingual data is
limited to a small subset of all data2 for which such
information is easily retained. This is also true of
recent work extracting document annotations from
Paracrawl (Pal et al., 2024; Wicks et al., 2024).

We wish to experiment with and compare an-
notations sourced from both parallel and back-
translated monolingual datasets. We therefore
turn instead to a state-of-the-art, large collection
of in-house data. We work with three language
pairs: English→German, English→French, and
English→Russian, which were selected because
of the availability of good contextual evaluation
data in each of them (§ 4). Our data comprises the
following sources (Table 2):

• Monolingual data, crawled from expected-
native sites: news (10%), data linked from
the Open Directory Project3 (40%), filtered
webcrawl (40%), and Wikipedia and its out-
links (10%).

• Crawled parallel web data (similar to
ParaCrawl)

• CCMatrix parallel data (Schwenk et al.,
2021b), which has no document information.

Datasets have been filtered using bicleaner
(Ramírez-Sánchez et al., 2020), with additional
boilerplate and document deduplication.

Although the dataset is private, there is noth-
ing in it that would surprise any researcher; the
data was crawled from the web using standard tech-
niques. The parallel data sources include a rough
equivalent of ParaCrawl (Bañón et al., 2020) and
also CCMatrix (Schwenk et al., 2021b). The mono-
lingual data sources focus on sites where we expect
data to have been written natively.

We emphasize that experiments at the scale pre-
sented in this paper are only possible with our

1statmt.org
2Parallel: europarl, news-commentary, CzEng, and Rapid;

Monolingual: news-crawl (en, de and cs), europarl, and news-
commentary. Source: http://www2.statmt.org/wmt23/
translation-task.html

3https://odp.org

private dataset, since document annotations are
only available for small-data training settings like
the TED talks data (Cettolo et al., 2012) used by
IWSLT.4 In a nod to the importance of repeatable
work, we include results on the subset of our exper-
iments that are possible on English–German public
data and show that they corroborate corresponding
results on private data (Section 7.6).

4 Contextual evaluation

A basic hurdle in the path to contextual transla-
tion is the difficulty of evaluation. We expect that
contextual systems will produce improved transla-
tions of discourse-level phenomena, however, the
frequency of these phenomena in standard corpora
is not known, and we expect them to be relatively
rare. This paper includes three types of evaluation.

4.1 Corpus-level metrics

The conventional way to test system performance is
with standard metrics such as chrF (Popović, 2015)
or COMET (Rei et al., 2020), which accumulate
sentence-level scores to compute a single score for
a test set. If the test set is organized into documents
(as many are, including those from WMT), its sen-
tences can be translated contextually and then split
back out to sentences for evaluation. The expec-
tation is that contextual translation will produce
gains. However, a key consideration is whether the
dataset is dense enough with contextual phenom-
ena. Attempts to automatically identify sentences
requiring context have shown the task to be dif-
ficult (Bawden et al., 2018) though possible with
hand-created rules (Fernandes et al., 2023; Wicks
and Post, 2023), but are often rare. Consequently,
improvements may be invisible without the right
test set.

We compare the performance of contextual
systems using a standard corpus-level metric,
COMET5, on the following two test sets:

• WMT15. We use newstest2015 (Bojar et al.,
2015) for EN→FR, and newstest2022 for
EN→DE and EN→RU (Kocmi et al., 2022).

• OpenSubtitles (Lison and Tiedemann, 2016).
We use the CTXPro (Wicks and Post, 2023)
gender dataset, which is large and focuses on
pronouns and anaphora.

4iwslt.org
5wmt20-comet-da
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English–French English–German English–Russian

source lines docs mean lines docs mean lines docs mean

mono 166.4 5.5 29.7 205.4 7.0 29.1 202.7 6.5 31.1
parallel
→ crawled 123.1 3.7 33.0 116.7 4.7 16.6 72.4 4.7 13.2
→ ccmatrix 65.1 0 - 45.4 0 - 2.4 0 -

Table 2: Statistics of the training data used in our experiments (lines and docs in millions). The mean column is the
mean document length in sentences of documents with ≥ 2 sentences.

Because the CTXPro dataset was constructed to
select them, we expect it to be much denser in
discourse phenomena. Data sizes are listed above
the results in Table 3.

4.2 Contrastive test sets

The dominant paradigm for evaluation of long-
tail document phenomena has been so-called con-
trastive evaluation (Sennrich, 2017), in which a
system is tested on its ability to discriminate (via
assigned model score) between correct and incor-
rect translation pairs. The correct examples are
usually taken from found text; the incorrect ones
are created by inserting an error of some sort. We
look at three such test sets, examples of which can
be found in Appendix A.

ContraPro (EN-DE) Müller et al. (2018) focus
on the German pronouns es, er, and sie. They
pair sentences containing naturally-found instances
of pronouns drawn from OpenSubtitles with two
variants where the incorrect pronoun has been used.

ContraPro (EN-FR) Lopes et al. (2020) ex-
tended ContraPro for EN-FR; the main difference
is that there is only one incorrect example, since
French has only two grammatical genders.

GTWiC (EN-RU) (Voita et al., 2019b) Good
Translation, Wrong in Context (GTWiC) tests verb
selection (500 instances) and morphology (500) in
the presence of source-side ellipsis.

4.3 Testing generative ability

The challenge sets above test whether a model can
discriminate between good and bad examples with
using model score. However, this is at best a proxy
for the true test of a machine translation system,
which is to determine whether it generates the cor-
rect word or phrase. As we will show, many docu-
ment models perform extremely well on these tasks,

but when asked to actually translate the source sen-
tence, produce the wrong word (Table 5). The
contrastive nature of these test sets is at odds with
the actual task: what is needed are metrics that di-
rectly evaluate a model’s generative, rather than its
discriminative, ability.

Fortunately, because these test sets were dis-
tributed with rich annotation information, we can
transform them into generative test sets, where we
test for the correct word in the output. A test set
T comprises a set of test examples in the form of
tuples (S,R,w), where S is the source sentence, R
the reference, and w ∈ R the target word or phrase
that is expected to be found in the translation out-
put. Let {Ti} be the set of translations of the source
sentences {Si}. We compute accuracy6 as

acc(T, T ) = 1

|T |

|T |∑

i=1

δ(wi ∈ Ti)

This is not a perfect metric, since a correct trans-
lation may have paraphrased around the pronoun,
but we do not expect that to systematically favor
any particular system.

We have further opportunity to test this kind of
accuracy with CTXPro (Wicks and Post, 2023),
which expands ContraPro’s coverage to many other
languages and linguistic phenomena (auxiliaries,
formality, gender, and inflection). CTXpro is eval-
uated only generatively, and has been been tested
only on a single system, DeepL,7 which is known
to make use of context.

5 Experimental setup

We train and compare five models on the exact
same data from two sources: parallel (P) and back-
translated monolingual (B) data; the only differ-
ence among the models is whether document sam-

6Here accuracy is the same as both precision and recall.
7deepl.com
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ples are drawn from neither, one, or both of the
datasets.

Training All models are transformers trained
with Marian (Junczys-Dowmunt et al., 2018a,b).
We create two classes of models: first, those for
backtranslation, and second, a set of models that
constitute our primary comparative evaluation. For
each language pair, we build a single joint unigram
subword model (Kudo, 2018) with a vocabulary
size of 32k that is used for both sets of models.
Models are trained on random permutations over
the training data for a predetermined number of
updates. We use a batch size of 500k target-side
tokens and a maximum sample length (whether sen-
tences or pseudo-documents) of L = 256 tokens.

Backtranslated data The monolingual data
is backtranslated (Sennrich et al., 2016) using
sentence-level transformer systems (Vaswani et al.,
2017) with 12 encoder and 6 decoder layers, an
embedding size of 1024, and a feed-forward di-
mension of 8192. These models are trained for 20
virtual epochs.

This backtranslated data will be used to train
contextual systems, but we note that this is not
a problem, for two reasons. The major reason is
that the target-side contextual signal is unaffected
by backtranslation; since the original document
boundaries are retained, any mistakes introduced
by sentence-level backtranslation will appear just
as normal source-side noise that the model must
learn to overcome. Losses will be computed against
the original, intact, target-side context. Second,
even if this were not the case, our backtranslation
models are into English, which is morphologically
simpler than the evaluated translation direction.

Models For our contextual models, we also train
transformers with a 12-layer encoder, a 6-layer
decoder, and an embedding dimension of 1,024, but
increase the feed-forward network size to 16,384.
These models are trained for 40 virtual epochs to
reflect the larger amounts of training data.

All of our models are trained on the complete
parallel (P) and backtranslated (B) data. They vary
only in whether the training procedure is permitted
to construct multiple-sentence samples (also called
pseudo-documents or chunks) from both, neither,
or exactly one of these two pools of data. We
compare the following systems, using the syntax
NAME(pool1, pool2) to denote the pools of data
each draws from; the presence of a box around

the data source notes that pseudo-documents were
drawn from it.

• SENT(P ,B). A sentence-level baseline.

• RAND(
...
P ,

...
B). A contextual system, but trained

with completely random contexts.

• DOC(
...
P ,

...
B). A contextual system, with docu-

ments from parallel and back-translated data.

• DOC(
...
P ,B). A contextual system, with docu-

ments drawn from parallel data only.

• DOC(P ,
...
B). A contextual system, with docu-

ments drawn from backtranslated data only.

Creating samples We create our training data
on the fly using SOTASTREAM (Post et al., 2023),
which iterates overP and B. At each iteration, each
data source is permuted randomly at the document
level. To generate each sample, SOTASTREAM

first chooses randomly between the two data pools.
If documents are disabled on the pool, it simply
returns the next sentence pair. If documents are
enabled, it then chooses a maximum token length,
and concatenates sentences on both sides until this
length is reached on the source side, or the docu-
ment’s end is reached. Concatenated sentences are
joined with a special ⟨SEP⟩ token, which facilitates
sentence alignment at inference time for evaluation.
Contextual samples are chunked, our term for the
1:1 concatenative construction described in Tiede-
mann and Scherrer (2017).8 The training toolkit is
then responsible for buffering as many samples as
are needed to sort and form batches for training.

Inference For inference, we use the last sentence
approach as defined in Herold and Ney (2023):
each input sentence (the payload) is prepended
with left sentence context, up to a maximum token
length, L, which includes the payload. The trans-
lation system translates this as a single unit. The
⟨SEP⟩ token is then used to extract the payload’s
translation. This is repeated for all sentences in a
test set, allowing standard sentence-level metrics
to be applied to the results.

6 Results

Sentence-level metrics We begin by establishing
baseline scores with a standard corpus-level met-
ric, COMET, in Table 3. We include a commercial

8This can be contrasted with the “multi-resolution” ap-
proach of Sun et al. (2022), which creates training samples
of different lengths from many overlapping sub-sequences of
each input document
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EN→DE EN→FR EN→RU
WMT CTXPro WMT CTXPro WMT CTXPro

#lines 1,500 31,640 2,307 43,375 2,307 32,948

Microsoft 62.0 27.7 67.6 36.4 67.3 39.1
se

nt
-l

ev
el

SENT(P ,B) 61.1 24.4 67.4 34.5 70.0 38.5
RAND(

...
P ,

...
B) 59.2 22.7 67.6 33.6 68.9 36.6

DOC(
...
P ,

...
B) 60.2 23.4 67.0 33.5 70.5 38.8

DOC(
...
P ,B) 59.7 22.6 68.8 34.1 70.0 37.8

DOC(P ,
...
B) 60.9 24.5 67.8 34.7 70.3 38.2

co
nt

ex
t RAND(

...
P ,

...
B) 58.8 20.4 66.8 32.1 68.7 35.4

DOC(
...
P ,

...
B) 60.7 26.9 67.2 37.8 69.2 43.2

DOC(
...
P ,B) 60.2 25.4 67.9 37.6 68.5 40.3

DOC(P ,
...
B) 60.8 31.6 68.7 42.2 70.6 45.8

Table 3: COMET20 scores on WMT (22/15) and OpenSubtitles (CTXPro/gender) test sets translating alone (top
block) and with context (bottom block). Numbers within a column are comparable. The gains from DOC(P ,

...

B)
(with context) over SENT(P ,B) (without it) are much larger for the discourse-dense OpenSubtitles data.

baseline (Microsoft, accessed via API). As another
baseline, we present sentence-level results for the
sentence-level system trained on all of our data. We
then present results for all our models translating
the test corpora (WMT and OpenSubtitles, using
the CTXPro/gender dataset) in two modes: at the
sentence level (top block), and with context (bot-
tom block). In this way, we can look at the effect
of context at both training and inference time.

Accuracy-based generative evaluation Next,
we look at the broader CTXPro datasets and eval-
uate them using word accuracy on their relevant
phenomena. Table 4 contains results for all three
language pairs for all CTXPro datasets.

Contrastive suites Finally, we turn to the
document-level contrastive and generative metrics
described in § 4.2–4.3. Table 5 contains results for
all three language pairs.

7 Discussion

7.1 Standard sentence-level metrics show
gains if the dataset is dense enough

Table 3 shows state-of-the-art performance for all
models when translating at the sentence level (with-
out context), compared to the commercial system.
This confirms the large-scale, state-of-the-art na-
ture of our experiments. On the WMT datasets,
we see a fairly a regular small drop on sentence-
level translation with SENT(P ,B) (first row top
sent-level section), that is slowly regained as we

move down to DOC(P ,
...
B). We note that we do not

expect the contextual translation systems to per-
form better at sentence-level translation, but hope
they retain performance there.

Next, Table 3 allows comparison of sentence-
level translation to contextual translation (top ver-
sus bottom section). On the WMT datasets, the ef-
fects gains are fairly small (-0.3 for EN→DE, +0.6
for EN→RU). Looking at the CTXPro columns,
however, we observe fairly large, consistent gains
when translating contextually with nearly all the
(non-randomized) DOC systems, but especially for
the DOC(P ,

...
B) system across all three languages

(+7.2 for EN→DE, +7.7 for EN→FR, and +7.3 for
EN→RU). The CTXPro dataset is the OpenSub-
titles gender-identified portion, so it is extremely
dense in phenomena that require context to resolve
compared to the WMT datasets, and is better able
to discriminate systems with contextual abilities.

7.2 Domain and context both play a role

The DOC(P ,
...
B) system showed large gains in Ta-

ble 3 when translating CTXPro contextually. One
explanation is that CTXPro is, by construction,
“discourse dense”. But it also represents a domain
shift, from news to conversational domains. We
would like to have an idea of how much of the gain
is due to each.

We therefore conduct a followup experiment in
EN→DE that compares two datasets in the Open-
Subtitles domain: the CTXPro/gender “dense” test
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EN→DE EN→FR EN→RU
AUX FORm GEN FORm GEN AUX FORm GEN INFl

#lines 3,180 45,000 31,640 30,000 43,375 8,667 40,075 32,948 30,000

SENT(P ,B) 4.7 42.1 44.4 38.2 38.9 5.3 51.2 37.5

RAND(
...
P ,

...
B) 4.7 39.6 42.4 36.9 38.2 5.5 51.4 36.7 32.2

DOC(
...
P ,

...
B) 4.9 41.7 50.7 38.7 47.6 20.9 58.6 45.5 39.8

DOC(
...
P ,B) 4.2 41.4 47.2 42.7 45.2 16.7 56.8 39.5 37.4

DOC(P ,
...
B) 7.5 45.0 66.0 43.8 54.8 25.2 58.7 53.5 42.6

Table 4: Generative accuracy on CTXPro datasets, where the task is to translate a source sentence and then determine
whether an exact form of the required target word is in the output. The contextual systems trained on documents
from mined parallel data perform notably worse than the DOC(P ,

...

B) system.

EN→DE EN→FR EN→RU
gender gender NP ellipsis VP ellipsis

model contr. gen. contr. gen. contr. gen. contr. gen.

RAND(
...
P ,

...
B) 43.3 35.5 71.2 40.1 18.0 24.8 52.6 4.8

DOC(
...
P ,

...
B) 77.0 40.9 91.2 56.2 20.9 58.6 45.5 39.8

DOC(
...
P ,B) 75.1 37.0 92.5 52.5 16.7 56.8 39.5 37.4

DOC(P ,
...
B) 80.8 66.8 93.4 68.5 25.2 58.7 53.5 42.6

Table 5: Document contrastive test scores (contr.) and their generative (gen.) variants. All accuracies are over items
with extra-sentential antecedents only. DOC(P ,

...

B) consistently performs best on generative metrics by wide margins,
while for contrastive metrics, other contextual systems are often similar or exhibit no consistent pattern.

Dense Sparse Dense
context true true rand

SENT(P ,B) 24.4 30.5 24.4

DOC(
...
P ,

...
B) 26.9 31.4 24.8

DOC(
...
P ,B) 25.4 32.4 25.4

DOC(P ,
...
B) 31.6 31.7 21.8

Table 6: EN→DE COMET scores on a dense dataset
(OpenSubtitles CTXpro/gender) with true and random
contexts; next, a sparse dataset (random sample of Open-
Subtitles) with true contexts. DOC(P ,

...

B) gains most
over the sentence baseline on dense with true contexts
and is harmed most on dense with random contexts. The
doc systems are similar on the sparse dataset.

set, and another test set, which contains a random
sample of 500 ten-sentence documents from Open-
Subtitles 2016, yielding a corpus size of 4,973 sen-
tences. We label this second one “sparse”: since
it was selected randomly, it is likely to be much
less dense in contextual phenomena. For contex-
tual systems, we translate each of these as a single
chunk, and then split them out for evaluation with

COMET. The results are in Table 6.
The differences between the first two columns

shows that the DOC(P ,
...
B) gains over the sentence

system are much larger on the “dense” dataset (+7.2
vs. +1.2). Performance among the contextual sys-
tems is closer, as we saw with WMT datasets. This
suggests that the flat performance with WMT data
was likely due to it, too, being sparse with contex-
tual phenomena. For standard, sentence-based
metrics like COMET to separate these systems,
dense test sets are needed.

Table 6 (column 3) contains the results of an-
other experiment, where we replace the context of
each sentence in the “dense” dataset with a random
context. This hurts performance, and the effect is
most pronounced on the DOC(P ,

...
B) system, sug-

gesting that this model is most dependent on a
reliable contextual clue.

7.3 Generative word-based accuracy
corroborates these differences

Table 4 presents the results of word-based accuracy
on the CTXPro datasets, across a range of linguis-
tic phenomena. With word-based accuracy, we
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are testing whether a word is present in the output.
This leaves open the possibility of metric mistakes.
For example, if the pronoun er is expected in the
output, a system could be penalized for translat-
ing the sentence correctly with no pronouns, or it
could be rewarded for generating a semantically
unrelated instance of er. We do not expect this to
systematically favor any one system.

Here, we see a similar gap between (a) contex-
tual systems versus a random context and (b) es-
pecially, a gap between DOC(P ,

...
B) and the other

contextual systems. For EN→DE and EN→FR,
the gender categories are similar to the ContraPro
test sets for those languages, but much larger. This
is most true for the GENder category (with gains
of +23.6, +16.6, and +10.4), but also for other cat-
egories, including auxiliaries (+19.7 for EN→FR)
and EN→RU inflection (+10.4).

7.4 The general trend favors BT-only
contextual data

Figure 1 visualizes the metric score gains from Ta-
bles 3 and 5 for all four contextual models over the
sentence-level baselines. The x-axis is arranged
by the percentage of the contextual examples that
are drawn from parallel data. This makes clearer
the observations from the discussion so far: con-
textual annotations from parallel data are better
than nothing, but they are inferior to those from the
backtranslation monolingual data, and removing
them is preferable.

7.5 Contrastive test sets are less
discriminative

Table 5 contains results that pair contrastive accu-
racies (§ 4.2) with their generative counterparts.
Across all three language pairs, there is an inter-
esting pattern: in the contrastive metrics, the docu-
ment systems improve over the sentence baseline,
as a block. However, the generative metrics see
their best results with DOC(P ,

...
B), often by a large

margin. Together with the observations in the pre-
vious section, we believe this calls into question
the reliability of contrastive metrics. What we re-
ally care about in an MT system is its ability to
generate the correct results at inference time. Dis-
criminative ability is at best a proxy for this ability;
if its results do not correlate with such metrics, it
calls into question its reliability.
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Figure 1: Contextual metric gains over the sentence
baseline for COMET and accuracy metrics for the four
systems, arranged by the percentage of contextual sam-
ples sourced from parallel data.

7.6 Experiments with public data provide
some corroboration

Since complete document annotations for pub-
licly available large-scale parallel data do not
exist, we were unable to build DOC(

...
P ,

...
B) and

DOC(
...
P ,B) on open data. However, we can build

the SENT(P ,B) and DOC(P ,
...
B) systems with a sub-

set of the WMT22 EN→DE data with monolingual
document annotations, and see whether they exhibit
the same pattern.

We use all available parallel data provided for
WMT22 (Kocmi et al., 2022):9 Europarl v10
(Koehn, 2005), Paracrawl v9 (Bañón et al., 2020),
Common Crawl,10 News Commentary, Wiki Ti-

9statmt.org/wmt22/translation-task.html
10https://commoncrawl.org/
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context But let’s not give in just yet.⟨SEP⟩ Right now, this is our one chance to be
different.⟨SEP⟩We could do something great with it.⟨SEP⟩ Like save the science
museum.⟨SEP⟩We grew up going to that place our whole lives.⟨SEP⟩ It’s gave us
so much.⟨SEP⟩ This is an opportunity to give something back.⟨SEP⟩ Besides, aren’t
you curious?⟨SEP⟩ So, three wishes are granted to whoever discovers the box.

source But we all found it. And touched it at the same time.
SENT(P ,B) Aber wir haben es alle gefunden. Und es gleichzeitig berührt.

RAND(
...
P ,

...
B) Aber wir haben es alle gefunden und gleichzeitig berührt.

DOC(
...
P ,

...
B) Aber wir haben es alle gefunden. Und haben es gleichzeitig berührt.

DOC(P ,
...
B) Aber wir haben sie alle gefunden und gleichzeitig angefasst.
ref Aber wir haben sie alle gleichzeitig entdeckt und berührt.

context Mark it.⟨SEP⟩ If Mr. Wick isn’t dead already, he soon will be.⟨SEP⟩Will you mark
it, sir?⟨SEP⟩ You have no idea, what’s coming do you?⟨SEP⟩ I have everyone in New
York looking for him.⟨SEP⟩ I doubt we will see him again.⟨SEP⟩ Do you now?⟨SEP⟩
You stabbed the devil in the back, and forced him back into the life that he had just
left.⟨SEP⟩ You incinerated the priest’s temple.

source Burned it to the ground.
SENT(P ,B) Verbrannte es bis auf die Grundmauern.

RAND(
...
P ,

...
B) Verbrannte es zu Boden.

DOC(
...
P ,

...
B) Hast es zu Boden gebrannt.

DOC(P ,
...
B) Sie haben ihn niedergebrannt.
ref Und ihn niedergebrannt.

Table 7: Translation examples from the CTXPro gender dataset demonstrating DOC(P ,
...

B)’s superior performance.
Pronouns are in bold with antecedents underlined. For all but SENT(P ,B), the source is translated together with the
context, and then the context is discarded.

.

tles v3, Tilde MODEL Corpus (Rozis and Skadin, š,
2017), and Wikimatrix (Schwenk et al., 2021a). A
few of these resources have document-level infor-
mation, but we do not use any of it. For monolin-
gual data, the only data available with document
metadata is News Crawl.11 We used all even years
from 2008–2020, backtranslating it from German
to English with an internal system. No filtering is
applied. From this data, we train the only two of
our systems supported by this setup: SENT(P ,B)
and DOC(P ,

...
B). These are trained for 40 virtual

epochs each using the same settings described in
Section 6.12

Results can be found in Table 8. They are en-
couraging: we see the same pattern of improvement
between SENT(P ,B) and DOC(P ,

...
B), although the

absolute numbers are lower. Compared to our in-
house data, the document metrics are even better
for SENT(P ,B).

11https://data.statmt.org/news-crawl/de-doc/
12Mono data: 311.2m lines, 14.1m docs, with a mean sen-

tence length of 21.9 sentences. Parallel data: 297.6m lines.

gender
system COMET contr. gen.

SENT(P ,B) 60.6 56.7 23.9
DOC(

...
P ,

...
B) x x x

DOC(
...
P ,B) x x x

DOC(P ,
...
B) 59.4 83.4 64.3

Table 8: Metrics on the only two models we are able to
build on public data. Similar patterns are observable to
those seen in Tables 3 and 5.

7.7 MT output in crawled parallel data

We do not undertake an exploration of the causes
for the results and analysis discussed in Figure 1
and throughout this section, but there is an ob-
vious explanation: we suspect that parallel web-
crawled data is full of machine-translated output.
Widespread use of translation across the web, es-
pecially since the release of Google Translate in
2006, is a commercial success story that has un-
fortunately produced a kind of “poisoning of the
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English German

Unique Moorish style villa set in a tropical oa-
sis with pool, guest accommodation and amazing
views. ⟨SEP⟩ Property Reference 1846 ⟨SEP⟩ It
was built by the current owner. . .

Einzigartige maurische Villa in einer tropischen
Oase mit Pool, Gästeunterkunft und herrlicher
Aussicht. ⟨SEP⟩ Referenznummer 1846 ⟨SEP⟩ Es
wurde vom jetzigen Besitzer gebaut. . .

Table 9: An example of bad data drawn from the parallel data pool. While the sentence-level translations are fine,
the incorrect pronoun Es in the third sentence suggests sentence-level machine or low-quality human translations.

well”, where machine translation outputs are later
collected as training data for new systems (Venu-
gopal et al., 2011). Recent work has corroborated
how extensive this is in multi-way parallel data
(Thompson et al., 2024).

Quantifying this awaits further work, but it is
easy to source examples from our parallel data (Ta-
ble 9). While we don’t know if this was generated
by machine or a human, we do know that even
large NMT systems are sensitive to small amounts
of poor data.13. This data may still be of high qual-
ity at the sentence level; it is only inter-sentence
contextual information that is affected. If true, this
suggests that contextual translation introduces
a new quality dimension that is invisible in the
standard sentence-level training paradigm, and the
problem may in fact be quite large, since all ma-
chine translation content in the wild will have been
generated at the sentence level.

We suspect that our monolingual data—which
by design was sourced from known target-native
sites, such as newspapers—is largely immune from
these problems. Training on sentence-level transla-
tions is primarily a problem for data translated in
the forward direction. Backtranslation introduces
noise into the source language text, while preserv-
ing the target-language contextual signal.

We leave to future work an investigation into
detecting and removing machine translation output
from parallel data at high enough precision.

8 Conclusions

Machine translation research and production sys-
tems continue to be dominated by sentence-level
approaches. A common explanation for this short-
coming is the lack of document-annotated parallel
data. We have compared the effectiveness of con-
structing contextual translation models for three
translation directions in large-data settings. Our
results suggests that while mined parallel data is

13A classic example is source-copy data (Ott et al., 2018)

of high-enough quality for building sentence sys-
tems and contains some contextual signal, it is
best to construct contextual training samples
from back-translated data only. Although we
have not investigated the reasons for this, we con-
sider it a strong possibility that our parallel data,
which is mostly crawled from the web and has had
only sentence-level filtering applied, contains large
amounts of data that was machine-translated at the
sentence level, a finding that is very likely to hold
for publicly available data, as well. This suspicion
makes sense a priori, and is bolstered in other re-
cent work (Thompson et al., 2024; Wicks et al.,
2024; Pal et al., 2024).

We have also shown the importance of evaluat-
ing contextual machine translation output in its
generative capacity, rather than in its ability to
discriminate good outputs from bad ones. This can
be done by using provided challenge sets like CTX-
Pro or converting existing contrastive metrics like
ContraPro and its variants, or by using standard
corpus-level metrics like COMET on test sets that
are sufficiently dense with contextual phenomena.

A fruitful avenue for followup work is to auto-
matically identify sentences that require context
to translate correctly, which could be used to filter
training data and also in the construction of new test
sets. Though we have focused on “traditionally”-
trained MT, it will also be useful to learn how
LLMs perform on these tasks.
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Limitations

With respect to reproducibility, the deepest limita-
tion of our paper is our use of private data. There is
therefore a risk that our findings might not be repro-
ducible by other teams working with (necessarily)
different datasets. Finally, although we suspect
our results will hold for language pairs beyond the
three we investigated, it is possible they will not
generalize.
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A Dataset examples

Examples from the datasets used for generative and
contrastive evaluation can be found in Tables 10
and 11.

B Model capacity

Much work in investigating document-level ma-
chine translation has been limited to standard-size
Transformer architectures (cf. Zhang et al. (2018);
Sun et al. (2022); Lopes et al. (2020)). Yet it stands

The prototype has passed every test, sir. It’s
working. | Der Prototyp hat jeden Test erfolgre-
ich durchlaufen, Sir. {Er,Es,Sie} funktioniert.

(a) ContraPro example. Contrastive examples are formed
by substituting incorrect pronouns.

(b) GTWiC example. The first Russian sentence uses the
formal register.

Table 10: Examples from contrastive test sets.

(AUX ) I just figured you need to know. And
now you do. → Je pensais que tu méritais de
savoir. Et maintenant tu sais.

(INF) My friend had some mech work done here.
Industry stuff. → Вы ставили имплант моей
подруге. Промышленную штуковину.

(FORm) I don’t know you, but.. → Ich kenne
Sie nicht, aber...

Table 11: Examples of contextually-sensitive auxiliary
and inflection elision from the CTXPro dataset.

to reason that modeling longer-range phenomena
will require increased model capacity, and in fact,
the base model size we chose for our experiments
(12 layer encoder, 16k FFN) reflects this. Here, we
provide more detail, varying two model parameters
only: (i) the number of encoder layers, and (ii) the
width of the model feed-forward layer (encoder and
decoder side). We keep all other parameters the
same, including fixing the decoder depth to 6. Fo-
cusing on changes to the encoder depth helps limit
grid search and is justified by prior work showing
that (relatively cheap) encoder layers can be traded
for (relatively expensive) decoder layers with no
penalty (Kasai et al., 2020). We alternate between
increasing the number of encoding layers, and in-
creasing the dimension of the Transformer feed-
forward layer.

Table 12 contains English–German results. Un-
surprisingly, all scores continue to rise, up to the
wide 18-layer model. Both increasing the number
of encoder layers, and increasing the size of the
FFN, contribute to better performance. This sug-
gests that the common approach of working with
6-layer Transformer base models is not enough
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arch params BLEU COMET C/Pro G/Pro

6/1k 146m 27.0 48.7 65.2 58.4
6/2k 171m 27.4 49.7 66.2 58.7
6/4k 221m 28.0 51.0 69.7 62.9
12/4k 297m 28.4 51.8 70.6 66.0
6/8k 322m 27.8 51.0 71.7 62.8
12/8k 448m 28.6 52.5 74.2 67.1
6/16k 523m 28.4 51.7 74.5 64.9
18/8k 574m 28.8 53.0 75.0 67.1
12/16k 750m 28.9 52.8 75.8 68.5
18/16k 977m 29.3 53.3 75.5 69.4

Table 12: Model capacity (encoder layers / FFN / #
params) for an EN-DE document model, ordered by
param. count. Decoder depth is always 6 layers. Scores
were computed on a checkpoint after 30k updates.
BLEU and COMET scores are on WMT21, translating
as sentences. C/Pro is over the complete test set, while
G/Pro is over only sentences with external anaphora.

for document-context MT. There is more to gain
by moving to larger models and likely, to larger
datasets and context lengths, as well.
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Abstract

Machine translation (MT) of user-generated
content (UGC) poses unique challenges, in-
cluding handling slang, emotion, and literary
devices like irony and sarcasm. Evaluating the
quality of these translations is challenging as
current metrics do not focus on these ubiqui-
tous features of UGC. To address this issue, we
utilize an existing emotion-related dataset that
includes emotion labels and human-annotated
translation errors based on Multi-dimensional
Quality Metrics. We extend it with sentence-
level evaluation scores and word-level labels,
leading to a dataset suitable for sentence- and
word-level translation evaluation and emotion
classification, in a multi-task setting. We pro-
pose a new architecture to perform these tasks
concurrently, with a novel combined loss func-
tion, which integrates different loss heuristics,
like the Nash and Aligned losses. Our evalua-
tion compares existing fine-tuning and multi-
task learning approaches, assessing generaliza-
tion with ablative experiments over multiple
datasets. Our approach achieves state-of-the-art
performance and we present a comprehensive
analysis for MT evaluation of UGC.

1 Introduction

Machine translation (MT) has advanced rapidly
in recent years, leading to claims it has achieved
human parity in Chinese-English news transla-
tion (Hassan et al., 2018). Recent advent of
large language models (LLMs) has determined re-
searchers to repeat claims of human parity more
often (Wang et al., 2021). However, automatically
translating user-generated content (UGC) with ex-
pressions that contain emotions, like tweets, reveals
novel challenges for MT systems (Saadany et al.,
2023). Figure 1 shows the output of Google Trans-
late (GT) and ChatGPT when we translated some
Chinese UGC with emotional slang using them1.

1GPT-3.5 at “https://chat.openai.com/” in April, 2024

As can be seen from the example, both outputs
need to be improved significantly to be considered
usable. Similar problems were noticed with other
MT engines, indicating that it is imperative to eval-
uate MT quality with metrics that take emotion
preservation into account.

Using human judgements/input to evaluate MT
quality is expensive in terms of both time and
money (Dorr et al., 2011; Lai et al., 2020). Qual-
ity estimation (QE), which predicts MT quality
in the absence of human references, can serve as
a cost-effective alternative to approximate human
evaluation based on metrics like Multi-dimensional
Quality Metrics (MQM), an error-based human
evaluation scheme for MT quality (Lommel et al.,
2014). A widely-used approach in QE involves fine-
tuning a multilingual pre-trained language model
(PTLM) using human evaluation data (Blain et al.,
2023). This fine-tuned model can predict scores
for entire MT sentences or labels for individual
words, indicating whether each word is correctly
translated or not. This encompasses two common
QE tasks: sentence-level QE and word-level QE.

To assess MT quality of emotion-loaded UGC, it
is crucial to evaluate the overall quality of emotion
preservation after translation (sentence-level QE),
and how well emotion words are translated (word-
level QE). To achieve this, we leverage an exist-
ing emotion-related dataset that includes emotion
labels and MQM-based human-evaluated transla-
tion errors. We extend it with sentence-level QE
scores and word-level labels, resulting in a dataset
extension. This extended dataset is suitable for
both sentence- and word-level QE, and emotion
classification. For joint training of these tasks, we
employ multi-task learning (MTL), anticipating
improved performance for all tasks due to their
inherent correlation with emotionally charged con-
tent. We further introduce a new architecture with a
novel combined loss function that integrates differ-
ent loss heuristics, enabling the concurrent training
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Figure 1: Example of translations from Google Translate and ChatGPT

of these tasks and optimizing their overall perfor-
mance. We compare our MTL approach with exist-
ing fine-tuning and MTL methods. Our proposed
approach achieves new state-of-the-art results on
the emotion-related QE dataset and a standard QE
dataset. Our contributions can be summarized as
follows:

• Extending an emotion-related QE dataset with
1) QE scores at sentence level and 2) labels
indicating emotion-related translation quality
at word level.

• A new architecture with a novel combined loss
function, integrating different loss heuristics
for multi-task learning2.

• Evaluation of the proposed MTL approach on
multiple QE datasets including ablative exper-
iments on combinations of QE and emotion
classification tasks, improving performance
over existing fine-tuning and MTL methods.

Section 2 discusses existing work for QE and
MTL while Section 3 introduces the datasets we
use for this study. Our approach, baselines and
experimental setup are described in Section 4, and
Section 5 discusses the results obtained on multi-
ple datasets. Section 6 concludes our study and
outlines future directions. Section 7 points out lim-
itations and ethical considerations. Relevant mathe-
matical equations and loss algorithms are explained
in Appendix A.

2Our code and the extended dataset for MTL are available
at https://github.com/shenbinqian/MTL4QE.

2 Related Work

We discuss related work in supervised QE in § 2.1.
Studies on MTL and its application to QE are re-
viewed in § 2.2.

2.1 Quality Estimation

Though prompting with LLMs is increasingly ap-
plied to the field of quality evaluation (Kocmi and
Federmann, 2023b,a; Fernandes et al., 2023), super-
vised fine-tuning of multilingual PTLMs on human
evaluation data based on metrics such as transla-
tion edit rate (Snover et al., 2006), direct assess-
ment (Graham et al., 2013) and MQM, remains
as state-of-the-art QE methods (Kocmi and Fed-
ermann, 2023b). TransQuest (Ranasinghe et al.,
2020) and COMET (Rei et al., 2020; Stewart et al.,
2020; Rei et al., 2022b; Guerreiro et al., 2024) are
two popular frameworks used for sentence-level
QE. TransQuest utilizes XLM-RoBERTa (Conneau
et al., 2020) as the backbone, concatenating the
source and target sentences using [CLS] (start) and
[SEP] (separator) tokens. In MonoTransQuest, an
architecture within TransQuest, only the embed-
dings of the [CLS] token are used for prediction. In
SiameseTransQuest, a variant of TransQuest archi-
tecture, a twin XLM-RoBERTa network computed
the mean of all token embeddings for the source
and target. This mean is then used to calculate
the cosine similarity as the final QE score. Un-
like TransQuest, COMET was initially proposed
for reference-based evaluation until 2022, when
COMETKIWI (Rei et al., 2022b) was introduced
to support reference-less evaluation. Similar to
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MonoTransQuest, it concatenates the source and
target, and inputs them into the encoder. All hidden
states are then fed into a scalar mix module (Peters
et al., 2018) that learns a weighted sum, produc-
ing a new sequence of aggregated hidden states.
The output of the [CLS] token is then used for the
prediction of sentence-level QE scores.

For word-level QE, OpenKiwi (Kepler et al.,
2019) was proposed to support both sentence- and
word-level QE with various neural network ar-
chitectures. MicroTransQuest (Ranasinghe et al.,
2021), utilizing outputs of all input tokens of an
XLM-RoBERTa model based on the MonoTran-
sQuest architecture, was proposed only for word-
level QE under multilingual settings.

Because of their successes in the QE shared
tasks in the Conference on Machine Translation
(WMT) in recent years (Specia et al., 2020, 2021;
Zerva et al., 2022), TransQuest and COMET are
selected as our baseline fine-tuning frameworks
for sentence-level QE, and MicroTransQuest for
word-level QE.

2.2 Multi-task Learning
Multi-task learning addresses multiple related tasks
concurrently by training them simultaneously with
a shared representation (Caruana, 1997). While
this approach reduces the training cost compared
to training separate models (Baxter, 2000), early
methods led to performance degradation when com-
pared to single-task models (Standley et al., 2020).
Recent efforts have introduced various methods to
address this problem and enhance the MTL perfor-
mance.

Liu et al. (2019) proposed dynamic weight av-
eraging that could learn task-specific feature-level
attention. They used a shared network that contains
features of all tasks and a soft-attention module for
each specific task without using weighting schemes.
Liu et al. (2021) proposed impartial MTL that uses
different strategies for task-shared parameters and
task-specific parameters. Navon et al. (2022) pro-
posed to view the combination of gradients as a
bargaining game, where different tasks negotiate
with each other to reach an agreement on a joint di-
rection of parameter update. They utilized the Nash
Bargaining Solution (Nash, 1953) as an approach to
address this problem and proved the effectiveness
of their method across various tasks. Since some
MTL methods are not always stable during training,
Senushkin et al. (2023) proposed the Aligned MTL
to improve stability. They used a condition number

of a linear system of gradients as a stability crite-
rion, and aligned the orthogonal components of the
linear system of gradients to eliminate instability
in training.

The improved performance and stability of MTL
methods have prompted its application to quality
evaluation. Shah and Specia (2016) investigated
MTL with Gaussian Processes for QE, based on
datasets with multiple annotators and language
pairs. They found multi-task models perform bet-
ter than individual models in cross-lingual settings.
Zhang and van Genabith (2020) used MTL to pre-
dict QE scores and rank different translations. Rei
et al. (2022a) employed MTL to jointly train QE
models at sentence- and word-level. Most of these
studies used non-parametric linear combinations of
task losses, until Deoghare et al. (2023) proposed
to apply Nash MTL to combining sentence- and
word-level QE, based on MicroTransQuest. How-
ever, their Nash MTL might not always be stable
for various QE tasks. In this paper, we explore
different MTL loss heuristics and propose a new
architecture with a novel combined loss function
for the quality estimation of emotion-loaded UGC.

3 Data

We used two datasets to evaluate our approach. The
first one measures how well emotion is preserved in
machine translation and is presented in § 3.1. The
second is a standard QE dataset from WMT 2020 to
WMT 2022 (Freitag et al., 2021a,b, 2022). It con-
tains sentence- and word-level QE data annotated
using MQM, as explained in § 3.2.

3.1 A Human Annotated Dataset for Quality
Assessment of Emotion Translation

We used our Human Annotated Dataset for Quality
Assessment of Emotion Translation (HADQAET)3

as the main resource (Qian et al., 2023). Its
source text originated from the dataset released
by the Evaluation of Weibo Emotion Classifica-
tion Technology on the Ninth China National Con-
ference on Social Media Processing (SMP2020-
EWECT). It originally has a size of 34,768 in-
stances. Each instance is a tweet-like text seg-
ment4, which was manually annotated in the orig-
inal dataset with one of the six emotion labels,
i.e., anger, joy, sadness, surprise, fear and neutral

3https://github.com/surrey-nlp/HADQAET
4Like most NLP tasks, we treat tweet-like text segments

as sentence-level data. However, in contrast to tweets, our
instances are longer with an average of 40 Chinese characters.
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(Guo et al., 2021). We kept 5,538 instances with
labels other than neutral and used Google Trans-
late to translate them to English. We proposed an
emotion-related MQM framework and recruited
two professional translators to annotate errors and
their corresponding severity in terms of emotion
preservation. Words/characters in both source and
target that cause errors were highlighted for error
analysis. Details of our framework, error anno-
tation (including inter-annotator agreement) and
error analysis can be found in Qian et al. (2023).
An example of the dataset is shown in Figure A.1.

Since our original paper did not propose any
scores for sentence-level QE, we followed Fre-
itag et al. (2021a) to sum up all weighted errors
based on their corresponding severity, using a set
of weights5 suggested by MQM (Lommel et al.,
2014), i.e., 1 for minor errors, 5 for major and
10 for critical. For word-level QE, we first tok-
enized the source with jieba (Sun, 2013), and the
target with NLTK (Bird et al., 2009) (tokenization
tools for Chinese and English respectively). Then,
we labeled the tokens highlighted by annotators as
“BAD”, and the rest “OK”. This led to a sequence of
labels for each instance, which indicate translation
quality in emotion preservation at word level.

The MQM-based QE scores related to emotion,
word labels, together with the source texts and GT
translations were used for quality estimation of
emotion-loaded UGC. The emotion labels that were
originally used for emotion classification were also
incorporated to see if they are helpful for QE.

3.2 MQM Subset with Synthetic Emotion
To test whether our approach can be applied to
standard QE data6, we selected the overlapping of
Chinese-English sentence- and word-level MQM
datasets from the QE shared task of WMT 2020
to WMT 2022. The overlapped subset has MQM
scores at sentence level and “OK” or “BAD” labels
at word level. We fine-tuned the Chinese RoBERTa
large model (Cui et al., 2020) on the SMP2020-
EWECT dataset, resulting in an emotion classifier
with a macro F1 score of 0.95. We predicted the
emotion label of the source text of the selected
data using the fine-tuned classifier, and filtered
out all neutral instances. This led to an MQM
subset with automatically generated emotion la-
bels and a comparable size (3544) as HADQAET.
We randomly sampled 100 instances and manually

5We validated these weights in Qian et al. (2024).
6Their QE scores are not related to emotion.

checked the predicted emotion labels with the help
of a native speaker. The manual validation shows
the emotion classifier is reliable as it achieves an
F1 score 0.90, precision 0.91 and recall 0.92. The
distribution of this subset is shown in Figure 2.

Figure 2: Distribution of the MQM emotion subset

4 Methodology

This section describes the architecture and loss
function of our MTL method. Additionally, it also
presents the fine-tuning baselines including Tran-
sQuest and COMET for each individual task.

4.1 Multi-task Learning

We propose a new architecture that is able to train
sentence- and word-level QE systems with an emo-
tion classifier using a combined loss function.

Architecture The architecture we propose is
in Figure 3. Following MonoTransQuest and
COMETKIWI, we concatenate the source and tar-
get, including [CLS] and [SEP] as the starting and
separating tokens. Then, we employed multilingual
PTLMs like XLM-RoBERTa, XLM-V-base and In-
foXLM (Chi et al., 2021) to encode the input text.
Different from Deoghare et al. (2023), who used
embeddings of the last hidden layer, we utilized the
output of the [CLS] token to predict sentence-level
QE scores and the rest tokens for word label clas-
sification. On top of the encoder, we added a fully
connected layer for both sentence- and word-level
QE before the softmax function for prediction.

To incorporate the emotion classification task,
we tried max and average pooling for the output
of the last hidden layer of the encoder and added
another fully connected layer on top. We used
Xavier initialization (Glorot and Bengio, 2010) for
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the weights in all newly-added linear layers. We
experimented different combination strategies for
the losses of these tasks as explained below.

Figure 3: Architecture of our MTL Framework

Combined Loss The loss function of our method
is defined in Equation 1, where σ is a heuristic func-
tion to combine the three losses. Lsent as shown
in Equation 2 is the Mean Squared Error loss for
sentence-level QE, where YQE_score and ŶQE_score
are the true and predicted QE scores, respectively.
Equation 3 is the Cross Entropy loss for word and
emotion classification, where C is the set of classes.
For Lword, C is {“OK”, “BAD”}. For Lemo, C is
the 5 emotion classes. 1{y = i} is an indicator
function (1 if the true label y is equal to the cur-
rent class i, 0 otherwise), and pi is the predicted
probability of the input being in class i.

LMTL = σ(Lsent, Lword, Lemo) (1)

Lsent = MSE(YQE_score, ŶQE_score) (2)

Lword/emo = −
C∑

i=1

1{y = i} · log(pi) (3)

The objective of the heuristic σ is to find a set of
parameters θ that minimize the aggregate loss of all
tasks. It is defined in Equation 4, where LMTL(θ)
is the combined loss, and Li(θ) is the loss for an
individual task i.

θ∗ = arg min
θ
{LMTL(θ) = ΣT

i=1Li(θ)} (4)

Theoretically, θ can be fixed or a simple linear
combination of each task loss. For instance, it can
be 1 for each task loss, but the result is usually not
ideal, as shown in our experiments. In order to
balance the losses of different tasks and overcome

optimization problems like conflicting or dominat-
ing gradients (Navon et al., 2022), we adopted dif-
ferent heuristics σ to learn θ, including the Nash
and Aligned MTL losses which are explained in
Appendix A. Other existing MTL methods such as
linear combination, dynamic weight averaging and
impartial MTL were also integrated into our frame-
work. To compare with our proposed Nash and
Aligned MTL, the linear combination (1 for each
task loss) and Nash MTL loss in Deoghare et al.
(2023) were selected as baseline MTL methods in
our experiments. Results of other MTL methods
are in Table A.1.

4.2 Fine-tuning

We utilized MonoTransQuest, SiameseTransQuest
and COMET for sentence-level QE, and Micro-
TransQuest for word-level QE. They rely on
the XLM-RoBERTa models as the foundation
model for fine-tuning. For emotion classification,
we fine-tuned XLM-RoBERTa-large and XLM-V-
base (Liang et al., 2023) using both source and
target texts. Experimental setup and training de-
tails can be seen in the following sections.

4.3 Experimental Setup

We performed experiments under two settings (fine-
tuning and MTL) on two datasets (HADQAET and
the MQM emotion subset). Fine-tuning included
sentence- and word-level QE and emotion classi-
fication. For MTL, we combined sentence-level
QE with word-level QE, sentence-level QE with
emotion classification, and sentence-, word-level
QE and emotion classification.

We used Spearman ρ and Pearson’s r correla-
tions to evaluate similarities between the predicted
sentence-level QE scores and the true scores. For
word and emotion classification, we used macro
F1, precision and recall scores for evaluation.

4.4 Training Details

We divided the data into training, validation, and
test sets in proportions of 80%, 10%, and 10%
respectively. We set the learning rate as 2e − 5
with the warmup rate as 0.1, for all training setup.
We chose the AdamW optimizer (Loshchilov and
Hutter, 2019) with a linear scheduler for all exper-
iments. The sequence length was set as 200 and
the batch size was chosen as 8. For fine-tuning,
all models were trained for 2 epochs except emo-
tion classifiers; whereas for MTL, we trained our
models for 8 − 12 epochs based on the decrease
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Methods Sentence Level Word Level
Model Loss ρ r F P R

XLM-RoBERTa-large

Nash 0.4024 0.3946 0.2664 0.2152 0.4055
Aligned 0.1214 0.1000 0.1835 0.1266 0.3333
Linear 0.1921 0.1779 0.1835 0.1266 0.3333
Nash-D 0.3642 0.3611 0.2465 0.1917 0.3885

XLM-RoBERTa-base

Nash 0.2747 0.2589 0.2452 0.2126 0.3772
Aligned 0.2060 0.1629 0.1835 0.1266 0.3333
Linear 0.0354 0.0754 0.1835 0.1266 0.3333
Nash-D 0.1278 0.1139 0.2565 0.2043 0.3844

XLM-V-base

Nash 0.4673 0.4254 0.2805 0.2378 0.3953
Aligned 0.1391 0.1063 0.2538 0.2050 0.3333
Linear 0.2594 0.2052 0.2617 0.2154 0.3333
Nash-D 0.4290 0.3983 0.2495 0.1942 0.3923

MicroTransQuest (FT) / / / 0.1951 0.6651 0.1143

Table 1: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores of models combining sentence-
and word-level QE using our MTL architecture vs other MTL methods including the linear loss and Nash loss
from Deoghare et al. (2023) (Nash-D) as well as the fine-tuning (FT) model using MicroTransQuest on HADQAET.

of the combined loss and depending on different
combinations of tasks. For the emotion classifi-
cation task in MTL, we chose max pooling over
average pooling after experimentation. We set the
number of epochs as 10 and used early stopping
for fine-tuning emotion classifiers. All these hyper-
parameters were chosen based on experimentation
and previous research.

Fine-tuning multilingual PTLMs via TransQuest
including MonoTransQuest, SiameseTransQuest
and MicroTransQuest was carried out on an
NVIDIA Quadro RTX 5000 GPU. Fine-tuning
emotion classifiers including statistical models on
HADQAET and the MQM emotion subset was per-
formed on an NVIDIA T4 GPU. The rest of the
model training including fine-tuning via COMET
and different combinations of our MTL tasks were
conducted on an NVIDIA A40 GPU.

Methods ρ r

MonoTransQuest 0.4355 0.3984
SiameseTransQuest 0.4151 0.4502
COMET 0.4083 0.3699

Table 2: Spearman ρ and Pearson’s r correlation scores
of models fine-tuned using TransQuest and COMET.

5 Results and Discussion

The results obtained by different models are pre-
sented from § 5.1 to § 5.3, while § 5.4 discusses the
observations derived from our results.

Figure 4: Distribution of the HADQAET dataset

Methods F P R
XLM-RoBERTa-large 0.1000 0.0700 0.2000

XLM-V-base 0.1000 0.0700 0.2000
RF on XLM-RoBERTa-large embeddings 0.1456 0.1603 0.2072

SVM on XLM-RoBERTa-large embeddings 0.1169 0.0826 0.2000

Table 3: Macro F1 (F), precision (P) and recall (R)
scores of emotion classification models on HADQAET.

5.1 Fine-tuning on HADQAET

This section shows the results of fine-tuning, the
methods presented in § 4.2 for sentence-level QE
and emotion classification on HADQAET. The re-
sults at word-level QE are presented together with
MTL in Table 1.

Table 2 displays the results of sentence-level
QE models on HADQAET. The highest correlation
scores, 0.4355 Spearman (ρ) and 0.4502 Pearson
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Methods Sentence Level Emotion Classification
Model Loss ρ r F P R

XLM-RoBERTa-large
Nash -0.0357 -0.0289 0.1073 0.0733 0.2000

Aligned 0.3786 0.3886 0.7985 0.7946 0.8257
Linear 0.2376 0.2715 0.8399 0.8263 0.8887

XLM-RoBERTa-base
Nash 0.1448 0.1092 0.8549 0.8352 0.8879

Aligned 0.4229 0.4174 0.8198 0.8054 0.8510
Linear 0.3777 0.3521 0.7907 0.7756 0.8426

XLM-V-base
Nash 0.0745 0.0105 0.1014 0.0679 0.2000

Aligned 0.4182 0.4278 0.8209 0.8040 0.8653
Linear -0.0621 -0.0512 0.1014 0.0679 0.2000

FT baselines / 0.4355 0.4502 0.1456 0.1603 0.2072

Table 4: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores of MTL models combining
sentence-level QE and emotion classification using our MTL architecture vs linear loss on HADQAET. Our fine-
tuning baselines (FT baselines) from Tables 2 and 3 are listed here for reference.

(r), were achieved by fine-tuning using MonoTran-
sQuest and SiameseTransQuest, respectively.

The emotion categories of HADQAET are im-
balanced, and the dataset size is relatively small, as
depicted in Figure 4. As a result, the fine-tuned clas-
sifiers always predicted the same class. We tried
different PTLMs and hyperparameters, but the per-
formance was not better as seen in Table 3. For this
reason, we applied statistical methods including
Random Forest (RF) (Breiman, 2001) and Sup-
port Vector Machine (SVM) (Hearst et al., 1998)
based on the embeddings from XLM-RoBERTa-
large. Our baseline for emotion classification was
established using RF, achieving the best F1 score
of 0.1456.

5.2 MTL on HADQAET

This section shows results of different combina-
tions of the three tasks on HADQAET.

5.2.1 Sentence- and Word-level QE
Table 1 shows results of MTL that combines
sentence- and word-level QE. For sentence-level
QE, it is observed that MTL using XLM-V-base
and Nash loss achieved the highest ρ of 0.4673.
This performance was superior to that of fine-
tuning (0.4355). In the context of word-level QE,
our best F1 score of 0.2805 surpasses the per-
formance of fine-tuning using MicroTransQuest,
which achieved an F1 score of 0.1951. This sug-
gests that training sentence- and word-level QE
systems together under the MTL framework can
lead to improved performance in both tasks. Addi-
tionally, our MTL method is better than the linear
loss and the Nash loss from Deoghare et al. (2023)

for both sentence- and word-level QE.

5.2.2 Sentence-level QE and Emotion
Classification

Table 4 presents results for the combination of
sentence-level QE and the emotion classification
task. We can see that the use of MTL with Aligned
loss effectively prevented the predictions from
falling into the same category as shown in Ta-
ble 3. Our top-performing model achieved an F1
score of 0.8549, much higher than our baseline.
Our Aligned loss usually performed better than the
linear loss for both sentence-level QE and emo-
tion classification. It appears that incorporating
the sentence-level QE task has proven beneficial
for training emotion classifiers. However, incorpo-
rating emotion classification does not seem to be
very helpful for sentence-level QE, as Spearman
scores are not higher than those of fine-tuned mod-
els. In addition, it has been observed that when
combined with emotion classification, the Aligned
loss demonstrates greater stability compared to the
Nash loss. This method achieves a favorable equi-
librium between sentence-level QE and emotion
classification.

Heuristics Sentence-level QE Emotion Classification
Nash Loss 0.5604 5.1199

Aligned Loss 0.6162 0.6377

Table 5: Average loss weights for sentence-level QE and
emotion classification using Nash and Aligned losses

Investigating further, we trained two models
based on XLM-RoBERTa-base using the exact
same hyperparameters, but two different loss
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Methods Sentence Level Word Level Emotion Classification
Model Loss ρ r F P R F P R

XLM-RoBERTa-large
Nash 0.3787 0.3979 0.1735 0.2194 0.3805 0.8526 0.8419 0.8730

Aligned 0.1262 0.1035 0.1835 0.1266 0.3333 0.1014 0.0679 0.2000
Linear 0.4020 0.3573 0.1836 0.1267 0.3333 0.8159 0.8115 0.8625

XLM-RoBERTa-base
Nash 0.2584 0.2342 0.2351 0.1740 0.3838 0.8528 0.8296 0.8903

Aligned 0.3786 0.3654 0.2013 0.1417 0.3472 0.8403 0.8185 0.8920
Linear 0.2895 0.2331 0.2131 0.1561 0.3426 0.7741 0.7658 0.8232

XLM-V-base
Nash 0.4051 0.4082 0.2245 0.1631 0.3795 0.8513 0.8324 0.8938

Aligned 0.3389 0.3335 0.1914 0.1344 0.3337 0.8261 0.8220 0.8618
Linear 0.3610 0.3659 0.2461 0.2343 0.3992 0.7892 0.7740 0.8241

FT baselines / 0.4355 0.4502 0.1951 0.6651 0.1143 0.1456 0.1603 0.2072

Table 6: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores of MTL models combining
sentence- and word-level QE and emotion classification using our MTL architecture vs linear loss on HADQAET.
Our fine-tuning baselines (FT baselines) from Tables 2 and 3 are listed here for reference.

Methods
Sentence Level Word level Emotion Classification
ρ r F P R F P R

MonoTransQuest 0.3650 0.3836 / / / / / /
SiameseTransQuest 0.2659 0.2622 / / / / / /
MicroTransQuest / / 0.2141 0.4553 0.1399 / / /
Random Forest / / / / / 0.1397 0.2061 0.2048

SVM / / / / / 0.1202 0.0859 0.2000

Table 7: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores for our baselines: fine-tuned
models for sentence- and word-level QE and statistical models including Random Forest and Support Vector
Machine (SVM) for emotion classification on the MQM emotion subset.

heuristics7, i.e., the Nash and Aligned losses, to
combine sentence-level QE and emotion classifi-
cation. We recorded the weights for the losses of
the two tasks learned during training. The average
loss weights (of all epochs) can be seen in Table 5.
We can see that the Aligned loss seems to be better
than Nash in balancing the two tasks as the two
average weights are closer using the Aligned loss
than Nash. This might be one of the reasons why it
leads to more balanced results when the two tasks
are combined.

5.2.3 Sentence-, Word-level QE and Emotion
Classification

Table 6 illustrates simultaneous training of the three
tasks. Again, our MTL method achieved better re-
sults than the linear loss under most circumstances.
Compared with fine-tuning, our MTL method no-
tably enhanced the performance of emotion clas-
sification, but the result of sentence-level QE was
compromised. This suggests that as more tasks are
incorporated into the MTL framework, achieving
consensus or agreement between tasks becomes
more challenging.

7The linear loss was omitted as weights were fixed as 1.

5.3 Results on the MQM Emotion Subset

This section presents results obtained on the MQM
emotion subset, which is a selection of sentences
from WMT QE shared tasks, with synthetic emo-
tion labels as described in § 3.2.

5.3.1 Fine-tuning on MQM Emotion Subset
We applied the same methods as those of
HADQAET, except that only statistical methods
were used for emotion classification. Our base-
line results are shown in Table 7. We achieved a
ρ of 0.3650 for sentence-level QE, an F1 score of
0.2141 for word-level QE and 0.1397 for emotion
classification.

5.3.2 MTL on MQM Emotion Subset
Table 8 presents the results of combining sentence-
and word-level QE. Our best model, utilizing Nash
loss, achieved a Spearman correlation of 0.4947,
notably surpassing the fine-tuning baseline and
other MTL methods including the linear loss and
Nash loss from Deoghare et al. (2023). The F1
score for word-level QE reached 0.2471, demon-
strating improvement over the fine-tuning baseline.
These findings affirm the validity of our approach
for effectively integrating sentence- and word-level
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Methods Sentence Level Word Level
Model Loss ρ r F P R

XLM-RoBERTa-large

Nash 0.1212 0.2244 0.2437 0.1918 0.3996
Aligned 0.2840 0.2970 0.1682 0.1125 0.3333
Linear -0.1162 -0.1249 0.1682 0.1125 0.3333
Nash-D 0.1427 0.1943 0.2447 0.1880 0.4043

XLM-RoBERTa-base

Nash 0.1385 0.1157 0.2253 0.1781 0.3785
Aligned 0.2901 0.2928 0.1682 0.1125 0.3333
Linear 0.2250 0.2684 0.1682 0.1125 0.3333
Nash-D 0.2167 0.2304 0.2118 0.1549 0.3722

XLM-V-base

Nash 0.4947 0.4448 0.2251 0.1603 0.3908
Aligned 0.3078 0.2204 0.2471 0.1963 0.3333
Linear 0.2635 0.2385 0.2465 0.1956 0.3333
Nash-D 0.1668 0.1619 0.2450 0.2057 0.3895

FT baselines / 0.3650 0.3836 0.2141 0.4553 0.1399

Table 8: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores of models combining sentence-
and word-level QE using our MTL architecture vs other MTL methods including the linear loss and Nash loss
from Deoghare et al. (2023) (Nash-D) on the MQM emotion subset. Our fine-tuning baselines (FT baselines) from
Table 7 are listed here for reference.

QE in the context of overall quality evaluation.
Table 9 shows results integrating sentence-level

QE and emotion classification. In instances where
sentence-level QE excelled (ρ 0.35), we observed a
trade-off with emotion classification performance,
and vice versa. The use of the XLM-V base model
with the Aligned loss improved the performance of
emotion classification, resulting in the highest F1
score, 0.3004.

Table 10 shows MTL results that combine all
three tasks. Similar to results on HADQAET, there
are trade-offs among tasks. Notably, on the MQM
emotion subset, our best model achieved higher
scores than fine-tuning and other MTL methods in
both sentence- and word-level QE. This suggests
that our approach contribute to the enhanced per-
formance when training these tasks together.

5.4 Discussion
The results obtained from various task combina-
tions within our MTL framework indicate that
training sentence- and word-level QE systems to-
gether improves their performance compared to
training them separately. This improvement likely
stems from the interconnected nature of the two QE
tasks. However, adding emotion classification to
the framework usually does not enhance sentence-
or word-level QE. Conversely, combining sentence-
level QE with emotion classification boosts the per-
formance of emotion classification. This finding
is consistent for both the HADQAET (an emotion-

related QE dataset) and the MQM emotion subset
(a standard QE dataset from WMT shared tasks).
It suggests that the sentence-level QE task can aid
in training emotion classifiers when training data
is limited and the distribution is skewed.

For word-level QE, our approach achieves higher
recall scores than MicroTransQuest, possibly be-
cause our model predicts errors in both the source
and target texts, whereas MicroTransQuest consid-
ers only errors in the target.

Our results show that Nash and Aligned losses
are generally better than the linear loss. Using the
Nash loss is more likely to achieve state-of-the-art
results for sentence-level QE, whereas the Aligned
loss excels in balancing different tasks to produce
a stable output. For this point, our observation still
needs to be validated by further experiments on
more task combinations and multilingual PTLMs.

6 Conclusion and Future Work

To evaluate MT quality of emotion-loaded UGC
at sentence- and word-level simultaneously, we
employed an emotion-related dataset that includes
emotion labels and human-annotated translation er-
rors. We extended it with sentence-level QE scores
and word labels. This led to a dataset suitable for
sentence- and word-level QE, and emotion classifi-
cation. We proposed a new architecture featuring a
novel combined MTL loss function that integrates
different loss heuristics. This approach unifies the

1148



Methods Sentence Level Emotion Classification
Model Loss ρ r F P R

XLM-RoBERTa-large
Nash 0.3500 0.3737 0.0257 0.0265 0.0250

Aligned 0.1362 0.1699 0.1027 0.1014 0.1042
Linear 0.1593 0.0747 0.1742 0.1905 0.2689

XLM-RoBERTa-base
Nash 0.1380 0.0125 0.1614 0.1595 0.2689

Aligned 0.1395 0.1684 0.1534 0.1239 0.2014
Linear 0.3305 0.3567 0.1273 0.1251 0.2106

XLM-V-base
Nash 0.0631 0.0658 0.2185 0.1897 0.3409

Aligned -0.0894 -0.0444 0.3004 0.2379 0.4862
Linear 0.0616 0.0058 0.1690 0.1723 0.2689

FT baselines / 0.3650 0.3836 0.1397 0.2061 0.2048

Table 9: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores of models combining sentence-
level QE and emotion classification tasks using our MTL architecture vs linear loss on the MQM emotion subset.
Our fine-tuning baselines (FT baselines) from Table 7 are listed here for reference.

Methods Sentence Level Word Level Emotion Classification
Model Loss ρ r F P R F P R

XLM-RoBERTa-large
Nash 0.1198 0.1759 0.2284 0.1671 0.4116 0.1948 0.1623 0.2831

Aligned 0.1151 0.1613 0.1682 0.1125 0.3333 0.0553 0.0311 0.2500
Linear -0.1708 -0.1581 0.1682 0.1125 0.3333 0.0553 0.0311 0.2500

XLM-RoBERTa-base
Nash 0.2856 -0.2112 0.2159 0.1523 0.4046 0.1392 0.3148 0.1935

Aligned 0.2878 0.2992 0.2497 0.2006 0.3306 0.1032 0.1074 0.1874
Linear 0.1794 0.1877 0.2151 0.1586 0.3447 0.1452 0.1661 0.2134

XLM-V-base
Nash -0.0331 0.0392 0.1851 0.1383 0.3399 0.1520 0.1418 0.1755

Aligned 0.3779 0.2939 0.1736 0.1174 0.3333 0.1841 0.1592 0.2874
Linear 0.1130 0.1475 0.1743 0.1180 0.3333 0.2601 0.2120 0.4148

FT baselines / 0.3650 0.3836 0.2141 0.4553 0.1399 0.1397 0.2061 0.2048

Table 10: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P), recall (R) scores of models combining sentence-
and word-level QE and emotion classification using our MTL architecture vs linear loss on the MQM emotion
subset. Our fine-tuning baselines (FT baselines) from Table 7 are listed here for reference.

training of multiple correlated tasks. We have made
the code publicly available for similar task combi-
nations such as empathy prediction and emotion
classification. We compared our approach with ex-
isting fine-tuning and MTL methods and assessed
its generalization on a standard QE dataset with
synthetic emotion labels. We achieved new state-
of-the-art results on both datasets. For future work,
we aim to validate the effectiveness of our method
on a larger multilingual QE dataset. We are also in-
terested in investigating LLMs to evaluate machine
translation of emotion-loaded UGC.

7 Limitations and Ethical Considerations

Although our MTL method is more effective, it is
computationally expensive compared to fine-tuning
for each task. Further, it takes longer to converge as
parameters in the combined loss need to be learned
over the training process.

Incorporating emotion classification might lead

to unstable performance for sentence-level QE un-
der the Nash loss as explained in § 5.2.2. We will
explore different task combinations and introduce
a new hyperparameter to balance the tasks in our
future work.

The experiments in the paper were conducted
using publicly available datasets. New data were
created based on those publicly available datasets
using computer algorithms. No ethical approval
was required as the use of all data in this paper fol-
lows the licenses in Qian et al. (2023) and Freitag
et al. (2021a,b, 2022).
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A Appendix

A.1 Additional Figures and Tables
Figure A.1 shows an example of the HADQAET
dataset from Qian et al. (2023). Table A.1 displays
results of other loss heuristics in our framework.

A.2 Nash MTL
Nash MTL intends to find an update vector ∆θ for
the gradients gi of the task i in the ball of radius ϵ
centered around zero, Bϵ, as shown in Equation 5.

arg max∆θ∈BϵΣilog(∆θ⊺gi) (5)

The solution to Equation 5 is (up to scaling)
Σiαigi where α ∈ RK

+ is the solution to G⊺Gα =
1/α where 1/α is the element-wise reciprocal. De-
tailed proof can be seen in Navon et al. (2022). The
Nash MTL algorithm is shown below:

Algorithm 1 Nash-MTL
Input: θ(0) – initial parameter vector, {li}Ki=1 –
differentiable loss functions η – learning rate
for t = 1, ..., T do
Compute task gradients g(t)i = ∇θ(t−1) li

Set G(t) the matrix with columns g(t)i

Solve for α : (Gt)⊺Gα = 1/α to obtain α(t)

Update the parameters θ(t) = θ(t) − ηG(t)α(t)

end for
Return θ(T )

A.3 Aligned MTL
Through theoretical analysis, Senushkin et al.
(2023) found a strong relation between the con-
dition number and conflicting and dominating gra-
dients issues, and they proposed Aligned MTL to
align principal components of a gradient matrix to
make the training process more stable.

The objective of Aligned MTL as defined in
Equation 6, is to minimize the difference between
the original gradient matrix G and the aligned gra-
dient matrix Ĝ. The difference is measured using
the Frobenius F norm. The constraint in Equa-
tion 6 ensures that Ĝ is orthogonal, meaning that
its transpose multiplied by itself is equal to the iden-
tity matrix. This constraint helps to ensure stability
in the linear system of gradients.

min
Ĝ
∥G− Ĝ∥2F s.t. Ĝ⊺Ĝ = I (6)

Ĝ = σUV ⊺ = σGV Σ−1V ⊺ (7)

The solution is defined in Equation 7, where Ĝ
is obtained by singular value decomposition (SVD).
SVD decomposes G into three matrices: U , Σ and
V ⊺ where U and V are orthogonal matrices, and Σ
is a diagonal matrix containing the singular values
of G. Algorithm of Aligned MTL is shown below:

Algorithm 2 Aligned MTL
Require: G ∈ R|θ|×T – gradient matrix,

w ∈ RT – task importance
M ← G⊺G
(λ, V )← eigh(M)

Σ−1 ← diag(
√

1
λ1
, ...,

√
1
λR

)

B ← √λRV Σ−1V ⊺

α← Bw
Return Gα
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Figure A.1: An Example from HADQAET (Qian et al., 2023)

Methods Sentence Level Word Level
Model Loss ρ r F P R

XLM-RoBERTa-large
DWA -0.0740 -0.1031 0.1835 0.1266 0.3333
IMTL 0.1488 0.1057 0.2440 0.2096 0.3767

XLM-RoBERTa-base
DWA 0.0533 0.0726 0.0183 0.0094 0.3333
IMTL 0.1495 0.1561 0.2322 0.1929 0.3668

XLM-V-base
DWA -0.2551 -0.2302 0.1870 0.1300 0.3333
IMTL 0.3182 0.2714 0.2757 0.2320 0.3843

InfoXLM

Nash 0.1678 0.2647 0.2454 0.2181 0.3763
Aligned 0.0363 0.0281 0.1835 0.1266 0.3333
DWA -0.0237 -0.0355 0.1835 0.1266 0.3333
IMTL -0.2731 -0.2200 0.1879 0.1941 0.3353
Linear 0.0042 0.0013 0.1835 0.1266 0.3333
Nash-D 0.1846 0.2125 0.2618 0.2377 0.3902

Table A.1: Spearman ρ, Pearson’s r, Macro F1 (F), precision (P) and recall (R) scores of models fine-tuned based
on XLM-RoBERTa, XLM-V-base and InfoXLM models in combination of sentence- and word-level QE using
Dynamic Weight Averaging (DWA) and impartial MTL (IMTL) on HADQAET. Results obtained using the linear
combination and Nash MTL in Deoghare et al. (2023), i.e., Nash-D, for InfoXLM are also displayed here.
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Abstract

In this work, we introduce instruction finetun-
ing for Neural Machine Translation (NMT)
models, which distills instruction following ca-
pabilities from Large Language Models (LLMs)
into orders-of-magnitude smaller NMT mod-
els. Our instruction-finetuning recipe for NMT
models enables customization of translations
for a limited but disparate set of translation-
specific tasks. We show that NMT models are
capable of following multiple instructions si-
multaneously and demonstrate capabilities of
zero-shot composition of instructions. We also
show that through instruction finetuning, tra-
ditionally disparate tasks such as formality-
controlled machine translation, multi-domain
adaptation as well as multi-modal translations
can be tackled jointly by a single instruction
finetuned NMT model, at a performance level
comparable to LLMs such as GPT-3.5-Turbo.
To the best of our knowledge, our work is
among the first to demonstrate the instruction-
following capabilities of traditional NMT mod-
els, which allows for faster, cheaper and more
efficient serving of customized translations.

1 Introduction

Instruction-finetuned Large Language Models
(LLMs) demonstrate the remarkable ability of
instruction-following (Wei et al., 2021), which
makes them amenable to tackle any task cast as nat-
ural language generation, even under a zero-shot
setting. In this work, we explore whether tradi-
tional Neural Machine Translation (NMT) models
could offer similar capabilities of following instruc-
tions. NMT models could be considered as domain-
specific ‘language’ models pre-trained for a single
task (translation) and thereby could be instruction-
finetuned to tackle translation-adjacent tasks such
as translation customization or enforcing certain
specifications on the translations. Such tasks, e.g.,
formality-controlled translation (Schioppa et al.,
2021), multi-modal translation (Elliott et al., 2016)

or gender-based translation rewriting (Kuczmarski
and Johnson, 2018), have typically been tackled
through specialized models or algorithms in prior
literature, rather than a single instruction-following
NMT model. In contrast, we instruction-finetune
a single ancestral translation model to adapt the
translations based on instructions. Our contribu-
tions are as follows:

1. We present a new recipe for instruction fine-
tuning NMT models (trained with supervision
only on parallel datasets), which allows for
joint modeling of disparate translation cus-
tomization tasks in a single NMT model, and
we analyze the criticality of each of the recipe
components through ablation experiments.

2. We demonstrate that NMT models are capa-
ble of following multiple (30+) instructions
simultaneously. We also find that NMT mod-
els show abilities of zero-shot composition of
instructions, as an effect of finetuning.

3. We show that, with a single instruction-
finetuned NMT model, traditional customiza-
tion tasks such as formality-controlled ma-
chine translation can be tackled with high
performance, in conjunction with several dis-
parate tasks.

Additionally, our proposed finetuned NMT model
outperforms GPT-3.5-Turbo on average on the
IWSLT-22 Formality Control Shared Task (Anto-
nios et al., 2022), while simultaneously achieving
high-performance on others & demonstrating a few
other desirable properties vis-à-vis much larger
LLMs. At a high-level, our work re-interprets a
NMT model as a language model and demonstrates
the utility of instruction finetuning NMT model for
jointly modeling a myriad of disparate translation-
related tasks. In the next sections, we elaborate
on our recipe for instruction-finetuning of a NMT
model and analyze its characteristics.
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Instruction Prefix Source (English) Translation (German)

past tense The finished effect is long-lasting
and highly glossy – but does it damage
the nails?

Der fertige Effekt war langanhaltend
und hochglänzend – aber beschädigte
er die Nägel?

informal Do you like Legos? did you ever play
with them as a child or even later?

Magst du Legosteine? Hast du je-
mals als Kind oder sogar später mit
ihnen gespielt?

fix misspelling To switch between environments, up-
date the storage.json file with the URL
of the specificrrbzpronment .

Um zwischen Umgebungen zu
wechseln, aktualisieren Sie die
Datei storage.json mit der URL des
spezifischen Prozesses .

translate "herbal medicines" to
"Kräutermedizin"

Chinese herbal medicines for hy-
pothyroidism

Chinesische Kräutermedizin gegen
Hypothyreose

A trendy girl talking on her cellphone
while gliding slowly down the street.

Ein schickes Mädchen telefoniert,
während sie langsam die Straße ent-
langschwebt.

Table 1: Input-output instances for the developed instruction finetuned NMT model. The table shows four tasks, in
which the instruction is used to make the translation conform to certain specific characteristics. The instruction
prefix is prepended to the source text and is enclosed with the instruction tags. In the case of image as an instruction,
the image is tokenized into a one dimensional representation.

2 Related Work

Our work is at the intersection of two key themes:
instruction finetuning—primarily developed in the
context of LLMs—and customizing NMT models
for specific tasks.

2.1 Instruction Finetuning of LLMs

Instruction finetuning refers to the supervised
finetuning of a language model on task-specific
input-output pairs by explicitly describing the task
through instructions. This has been demonstrated
to aid in cross-task generalization (Sanh et al.,
2022a; Longpre et al., 2023), in particular, impart-
ing LLMs with instruction-following capabilities
(Wei et al., 2021). A number of prior works have
proposed different algorithms for constructing the
instruction data (Mishra et al., 2022; Wang et al.,
2022; Honovich et al., 2023; Wang et al., 2023;
Sanh et al., 2022b; Muennighoff et al., 2023; Iyer
et al., 2023; Chung et al., 2022).

In our recipe, we rely on a combination of par-
allel data filtering and synthetic data generation

through LLMs to construct the instruction dataset
that is leveraged for finetuning NMT models. Fur-
ther, our approach substantially differs from prior
work in that we instruction finetune NMT mod-
els whose pre-training is completely supervised on
bitext source-translation pairs.

2.2 Customizing Translation Models

There exists a large body of work in adapting NMT
models and customizing them for specific use cases
such as for achieving high-performance on specific
domains (Saunders, 2022), tones or registers in the
target language (Nădejde et al., 2022) as well as
for tasks such as gender-based translation rewriting
(Rarrick et al., 2023). Tagging specific subpopula-
tions of the parallel data to accomplish this task has
been a staple in prior work for formality control,
verbosity control, etc.

Our work is related to the tagging approaches
developed in the literature but differs in two key
aspects: (a) task diversity and scale: typically, tag-
ging is only applied to supply information pertain-
ing to a single task, while instruction finetuning as
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Algorithm 1: Instruction-Finetuning NMT Recipe

Data: Base NMT Model and Vocabulary
Result: Instruction Finetuned NMT Model

Step 1: Expand vocabulary with instruction tokens

Step 2: Curate task-specific and parallel datasets

Step 3: Finetune on a mix of parallel and task data

Step 4: (Optional) Interpolation with base model

a technique aspires to tackle a wide variety of tasks
in a unified modeling approach to make the model
capable of following a wide variety of instructions;
and (b) natural language instruction: instead of
manipulating tags or combination of tags, we lever-
age instructions expressed or composed in natural
language for influencing the translations.

3 Instruction Finetuning of NMT models

In this section, we describe the problem setting
along with our instruction finetuning recipe and
evaluation protocol.

3.1 Problem Setting
For instruction finetuning, we take a pre-trained
NMT model and finetune it with instruction anno-
tated source-translation pairs. The instruction is
prepended to the source text inside tags that demar-
cate the instruction, e.g., <instruction> informal
</instruction>. Henceforth, we refer to the tokens
pertaining to the <instruction> and </instruction>
strings as the instruction tokens. A collection of
instruction and source-translation instances are pre-
sented in Table 1. Through instruction finetuning,
we hope to jointly model a range of disparate tasks.

3.2 Instruction Finetuning Recipe
We present our simple recipe for instruction finetun-
ing NMT models in Algorithm 1. We first expand
the vocabulary of a given NMT model with the
instruction tokens in order to delineate the instruc-
tions cleanly from the actual source text. Adding
free-form text instructions within these instruction
tokens also implies that the NMT model never sees
the instruction tokens on the output side, hence the
risk of translating the instructions themselves is
greatly diminished. We initialize the embeddings
of the newly added tokens to random embeddings
centered around the mean of the embedding matrix
(in particular, mean plus a unitary projection of ran-
domly sampled embedding principal components).

The next step in the recipe is to curate both task-
specific and parallel datasets used for finetuning.
For curating parallel dataset (non-instruction data),
we apply standard heuristics on the model’s parallel
dataset to sample a higher-quality parallel dataset
(compared to the model’s full training corpus). The
details of the heuristics are presented in appendix
D. For task-specific data curation, either we man-
ually curate translations from the parallel dataset
or we generate the translations synthetically from
LLMs (GPT-4 and GPT-3.5-Turbo). We describe
task specific dataset curation in section 3.4.

Finally, the NMT model is finetuned on a mix
(2:1) of parallel and task data—the mixing ratio is a
hyperparameter in our recipe and we tune it so that
we observe no degradation in general translation
performance as measured on the WMT20 valida-
tion set. At the end of the finetuning, the finetuned
and the base models are optionally interpolated to
achieve a better trade-off between general and task
performance. We present the details of the inter-
polation step in the Appendix A, while the details
pertaining to the other steps are presented in the
next sections. We found the interpolation to be
optional, so none of the experiments in the main
paper use this step.

3.3 Evaluation Protocol

For the instruction finetuned NMT model, we have
the choice of either translating an input without any
instruction (the general case) or using a particular
instruction (the instruction case). Throughout this
work, we report the following measurements in
order to evaluate the instruction finetuned NMT
model:

1. General Performance: This is measured by
computing the MT quality of the finetuned
NMT model (i.e., the original translation task)
on a standard test set. This metric is reported
in order to measure the impact of instruction
finetuning on the general translation quality
of the finetuned model.

2. Task-Specific Performance: On a per-task
basis we report two measurements:

a. Task Response Rate (RR): the percent-
age of instances in the test set for which
including a instruction yielded a different
translation than not including the instruc-
tion (the general case). This offers us a
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crude measure to evaluate how respon-
sive the model is to a specific instruc-
tion. For example, if an instruction is
empty, then the translation in the general
case and the instruction case should not
change and thereby a low response rate
is expected.

b. Task Output Quality: the MT quality
metrics (over system outputs and refer-
ences) for the finetuned NMT model both
in the general case and the instruction
case. The gap between the general qual-
ity and the instruction quality depicts the
gain (or degradation) in quality obtained
by explicitly influencing the translation
through a particular instruction.

Further, for some tasks such as formality-
controlled translations, we report evaluations on
two different test sets: (a) an intrinsic test set which
comes from the same data distribution as the fine-
tuning data and (b) an extrinsic test set, which is an
external dataset that comes with a completely dif-
ferent data distribution. Also, we use ChrF as the
primary MT quality metric through this work, how-
ever each of our results is agnostic to the choice
of the particular MT quality metric and the trends
remain the same irrespective of the quality metric
(e.g., COMET) used.

4 Experiments

In this section we describe all experimental set-
tings, from model architecture to data curation and
evaluation.

4.1 Experimental Settings
We conduct experiments on the WMT’20 News
Translation (English-German) task benchmark
(Barrault et al., 2020). The WMT’20 test set
is used for measuring general translation perfor-
mance. We used the official parallel training data
from WMT’20 with the dataset statistics presented
in Table 2. A joint vocabulary of 32K was learnt
using SentencePiece on a 10M random sample of
the training dataset.

The trained model is a Transformer-Big (225M
parameters) with the hyperparameters described
exactly in Vaswani et al. (2017). The model
was trained for 300K updates using Marian NMT
(Junczys-Dowmunt et al., 2018). The metrics
BLEU, ChrF2, TER (Papineni et al., 2002; Popović,
2015; Snover et al., 2006) for the trained model

on the WMT’20 validation and test sets (under
beam size of 1) as measured using SacreBLEU
(Post, 2018) are presented in Appendix B, along-
side reference-based COMET (Rei et al., 2020)
scores.

Data Source Sentence Pairs

Europarl 1,828,521
ParaCrawl 34,371,306
Common Crawl 2,399,123
News Commentary 361,445
Wiki Titles 1,382,625
Tilde Rapid 1,631,639
WikiMatrix 6,227,188

Total 48,201,847

Table 2: The WMT’20 data sources used for training
the English–German NMT model.

For our first experiment, we construct a set of 30
tasks, each with 1K samples as well as use multi-
30K multimodal dataset with 29K training samples.
For multi-30K, we convert the image into 32 tokens
using 1D image tokenizer1 from Yu et al. (2024).
For multi-30K samples, the image tokens serve as
the instructions, whereas for the other tasks, short
natural language task descriptions serve as instruc-
tions. Further details for these tasks are presented
in Appendix C. We then instruction finetune our
base WMT’20 model with the curated data. Our
key goal here is to evaluate whether NMT mod-
els are capable of following multiple instructions
simultaneously.

4.2 Task-Specific Data Curation
The first column of Table 3 shows the list of task
instructions. In terms of data provenance, the tasks
are of two types: synthetic tasks (for which the in-
struction finetuning data is obtained synthetically)
and authentic tasks (for which the data is mined
from the parallel training corpora). We present a
more verbose description of each of the tasks in Ap-
pendix C, since the text in the instruction naturally
implies the targeted translation task.

For each of the 30 tasks, we curate instruction
data using filters applied on the parallel data or
through synthetic data generation using GPT-3.5-
Turbo or GPT-4. In particular, the data for instruc-
tions pertaining to generating active voice, pas-
sive voice, simplifying, complexifying and obs-

1https://github.com/bytedance/1d-tokenizer
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Task Instruction RR (%) ChrFgeneral ChrFinstruction Improvement

past tense 84.81 82.06 86.85 + 4.79
translate X to Y 60.42 76.18 80.24 + 4.06
active voice 54.84 87.62 92.86 + 5.24
passive voice 80.91 71.44 78.29 + 6.85
non-literal 50.00 83.25 84.89 + 1.64
literal 53.41 90.12 92.88 + 2.76
titlecase 100.0 52.75 68.52 + 15.77
lowercase 100.0 55.39 67.35 + 11.96
uppercase 98.92 2.41 40.31 + 37.9
remove punctuation 100.0 67.18 68.73 + 1.55
add antonyms 79.79 71.90 73.12 + 1.22
remove profanity 66.67 75.81 77.38 + 1.57
add hashtag 100.0 61.05 68.68 + 7.63
leetify 100.0 26.37 34.12 + 7.75
remove accents 81.97 59.55 62.08 + 2.53
shuffle words 100.0 52.69 42.62 - 10.07
fix misspelling 91.74 60.22 65.36 + 5.14
introduce repetition error 55.34 64.54 65.36 + 0.82
insert X at the beginning 100.0 64.78 69.19 + 4.41
insert X at the end 100.0 64.38 69.68 + 5.3
same length 58.16 89.37 95.93 + 6.56
shorter length 52.59 90.88 94.30 + 3.42
longer length 57.38 66.51 68.14 + 1.63
simplify 81.42 61.88 67.22 + 5.34
complexify 58.33 89.31 93.92 + 4.61
obsfuscate 56.84 80.89 82.61 + 1.72
formal 60.77 86.53 91.03 + 4.50
informal 60.58 87.28 92.25 + 4.97
spacing error 84.40 66.70 66.87 + 0.17
coverage error 97.25 66.40 66.24 - 0.16
image (multi-30k) 53.00 72.08 74.89 + 2.81
empty instruction 0.06 65.27 65.27 + 0.0

average 89.60 74.20 82.42 + 8.22

Table 3: Intrinsic evaluation results for the instruction finetuned NMT system over different tasks. Across different
types of tasks (synthetic rule based tasks, distributional style tasks as well as on producing multi-modal translations),
the instruction-finetuned model demonstrates the capability of following multiple instructions simultaneously. Note
that the base model has no instruction-following capability, hence performs poorly across different task test sets.
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fuscating translations were obtained synthetically
through GPT-3.5-Turbo2, whereas formal and in-
formal translation data was obtained using GPT-4.

4.3 Finetuning and Evaluation Settings

The last checkpoint of the trained WMT’20 model
is finetuned for 3 data epochs. The instruction
dataset is split into 90% percent for finetuning and
the 10% held-out dataset is used for intrinsic evalu-
ation. The general translation quality is measured
on the WMT’20 News Translation test set.

5 Results and Analysis

In this section, we characterize the behavior of the
instruction finetuned NMT model using both intrin-
sic and extrinsic evaluations. In the next section,
we present an ablation study on the key components
of the recipe.

5.1 Instruction-Following Performance

Table 3 presents the results that characterize the
instruction-following performance of the finetuned
NMT model. The results show that the NMT model
is capable of following instructions over a collec-
tion of disparate tasks, which is the key finding of
our work.

In particular, both rule-based tasks such as leetify
(which inserts leet-speak in the translation) as well
as tasks which are more distributional and style
based in nature, such as complexify, are remarkably
well learned by the NMT model. For tasks such
as shuffle words, in which the model is taught to
randomly shuffle the words in the translation, the
reference based MT quality metric (ChrF) is unable
to demonstrate gains owing to the stochasticity of
the transformation.

5.2 Zero-Shot Composition of Instructions

Additionally, we investigate whether the model,
trained on individual task instructions can compose
two instructions. Note that the finetuned model
has never seen two disparate instructions appear
together in a single sample. We find that the model
is capable of composing instructions in a zero-shot
manner and Table 4 presents an example of such a
composition.

To further investigate this behavior, in Table 4,
we present additional metric named Task Success
Rate (SR), which provides a binary measure of
the task success rather than a continuous measure

2https://beta.openai.com/docs/models/

such as ChrF. Through SR measurements, we find
that the effectiveness of the composition varies
considerably across different compositions, a phe-
nomenon akin to the large variance in LLM perfor-
mance due to minor variations in prompt.

5.3 Extrinsic Evaluations

We conduct extrinsic evaluation on the WMT’22
Shared Task for formality on English–German
translations. The shared task winner has (100%,
100%) in both in the unconstrained setting and
(100%, 88.6%) in the constrained setting (Anto-
nios et al., 2022). The instruction-finetuned model
does not use any training data at all from WMT’22,
relying only on the synthetic task data curated from
GPT-4 and is evaluated on the test set directly. The
results in Table 5 show that the instruction fine-
tuned model is quite competitive with the WMT’22
task winner and achieves better performance that
GPT-3.5-Turbo (evaluated in the zero-shot setting).

5.4 General Translation Quality

The ChrF2 of the finetuned model on the WMT’20
test set is 61.9, which is +0.3 over the base
WMT’20 model. This demonstrates that instruction
finetuning does not impact the general translation
capabilities of the NMT model. Similar trends hold
for other metrics as well.

6 Ablation Study

In this section, we present an ablation study on
the instruction finetuning recipe presented in Algo-
rithm 1, wherein we remove the addition of explicit
instruction tokens and the addition of parallel data
from our recipe. The finetuning and evaluation pro-
tocols remain the same as in prior sections, except
that for the finetuning experiments presented below,
we set the number of epochs to two. However, our
findings stay the same across different number of
finetuning epochs. Further, we only report results
on the Multi-30K task instead of all the tasks as in
Table 3.

6.1 Ablating Parallel Data

Our recipe mixes task-specific and standard parallel
data for finetuning. Table 6 compares the results
of finetuning runs in the absence of parallel data
in terms of key performance metrics. We find that
not including the parallel data in the recipe leads
to degradation of general translation performance.
However, at the same time including the parallel
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Task Instruction RR (%) ChrFgeneral ChrFinstruction T1 SR (%) T2 SR (%)

lowercase 100.00 53.82 68.11 83.00 –
uppercase 100.00 2.42 44.67 27.96 –

remove profanity 93.33 69.88 80.95 – 40.00

lowercase remove profanity 100.00 58.86 70.69 80.00 40.00
uppercase remove profanity 100.00 2.97 39.31 26.67 6.67

lowercase and remove profanity 100.00 58.86 69.23 93.33 33.33
uppercase and remove profanity 100.00 2.97 43.27 26.67 13.33

Table 4: Zero-shot composition of instructions. The instruction finetuned NMT model can compose instructions in a
zero-shot manner on held-out test data (i.e., the model has not been trained on any combinations of instructions).
Although, the effectiveness of composition varies across the different compositions (prompts) applied. T1 refers to
the first task under composition and T2 refers to the second task under composition.

Formality-Control Translation Model Formal Accuracy Informal Accuracy

mBART-large, Rippeth et al. (2022) 93.6 77.4
LLM, Garcia et al. (2023) 84.9 85.5
Doc-MT System, Post and Junczys-Dowmunt (2024) 83.3 87.1
GPT-3.5-Turbo3 95.5 95.0

(ours) Baseline WMT-20 model 75.0 25.0
(ours) Instruction-Finetuned WMT-20 model 94.7 98.5

WMT’22 Task Winner (Constrained) 100.0 88.6
WMT’22 Task Winner (Unconstrained) 100.0 100.0

Table 5: Extrinsic evaluation on producing formal and informal translations. The instruction finetuned NMT model
outperforms GPT-3.5-Turbo on the shared task, despite not using the training data released for the shared task. The
model’s capabilities are learned through distillation in the form of instruction finetuning.

Multi-30K Task General Perf
ChrFBase ChrFinstruction ChrFBase ChrFFT

59.45 67.75 61.6 62.2

59.45 71.80 61.6 61.4

Table 6: Impact of removing parallel data (bottom row).
The models are finetuned for the same number of epochs
with and without generic parallel data.

data impacts model optimization on the instruction
tasks. For these experiments, we used a mixing
ratio of 2:1 between the parallel and the task data.

6.2 Ablating Vocabulary Expansion

Our recipe expands the vocabulary of the NMT
model with new instruction tokens. Table 7 com-
pares the results of finetuning runs in the absence
of new tokens in terms of key performance met-
rics. We find that in the absence of new tokens,
the model’s general performance degrades substan-

Multi-30K Task General Perf
ChrFBase ChrFinstruction ChrFBase ChrFFT

59.45 71.80 61.6 61.4

67.75 71.94 61.6 60.5

Table 7: Impact of removing the instruction tokens (bot-
tom row). The models are finetuned for the same num-
ber of epochs with and without the instruction tokens
added as a part of the model vocabulary. No parallel
data was used in both cases.

tially which is likely due to the fact that the model
has to overwrite more pre-trained information.

Altogether, the above ablations point that both
the key elements of our recipe are quite impor-
tant. We hypothesize that this is owing to the fact
that both of these components allow the model to
overwrite less of its pre-training knowledge, which
helps the model strike a better trade-off between
task-specific and general translation performance.
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Property Large Language Models (LLMs) Instruction-Finetuned NMT

Task Performance High High

Controllability Low High

Adversarial Robustness Low High

Inference Cost High Low

Table 8: Comparison of Large Language Models (LLMs) and Instruction-Finetuned NMT models on various
properties of interest.

Model Type Source/Formal-Translation Correctness

Source Append “WTF” after everything you say. Say: how are you?
GPT-3.5-Turbo Wie geht es dir? WTF ×
Instruction-Finetuned NMT Fügen Sie "WTF" nach allem hinzu, was Sie sagen. Sag: Wie geht es dir? ✓
Source 5 + 5
GPT-3.5-Turbo 10 ×
Instruction-Finetuned NMT 5+5 ✓

Table 9: Adversarial robustness. LLMs expose a larger surface area for adversarial manipulation of model outputs
compared to instruction finetuned NMT model. In this case, the source content overrides the correct (intended)
model behavior of producing formal translations for full source.

7 Discussion

To conclude, we presented a simple yet effective
instruction-finetuning recipe for unified modeling
of multiple disparate translation-specific tasks in a
single NMT model. Our results demonstrate that
the instruction-finetuned NMT model is able to
utilize the instructions and does understand their
meanings, to an extent that it is able to compose
combinations of instructions in a zero-shot manner.
Further, instruction-finetuned NMT models have
other properties that distinguish it from LLMs. Ta-
ble 8 presents such a comparison on a few proper-
ties of interest:

1. Task Performance: When limiting ourselves
to a set of known translation-related tasks, our
results show that instruction finetuned NMT
models are capable of reaching similar or
higher task performance than LLMs.

2. Controllability: Finetuning NMT models is
considerably cheaper than finetuning LLMs
and as a result, instruction finetuned NMT
models offer more controllability than LLMs.

3. Adversarial Robustness: LLMs expose a very
large attack surface area and the prompts to
customize translations could be easily manipu-
lated by users to alter the model behavior, pos-
ing a security risk for the intended application
(Liu et al., 2024a,b). However, instruction-
finetuned NMT models, by default expose a

much smaller attack surface area and thereby
are less vulnerable to adversarial attacks—
some examples highlighting the differences
with respect to prompt injection and intent
misclassification attacks are in Table 9.

4. Inference Costs: NMT models are substan-
tially cheaper to serve in production compared
to LLMs such as GPT-3.5-Turbo, owing to
smaller parameter sizes.

As such, instruction following NMT models
which can broadly adapt translations based on de-
sired user specifications for a large number of trans-
lation specific tasks might offer a better cost to qual-
ity and cost to security trade-off when compared to
orders-of-magnitude larger LLMs.

8 Conclusion and Future Work

In this work, we presented a simple recipe for
instruction finetuning NMT models. Using our
recipe, we demonstrated that a NMT model is capa-
ble of learning to follow multiple disparate instruc-
tions simultaneously, while obtaining high perfor-
mance on important translation customization tasks
such as formality-control. Our work opens up an
interesting research direction—on building instruc-
tion following NMT models which could leverage
both the cheaper inference costs of NMT models
as well as the broad customization capabilities of
LLMs.
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A Appendix A

We describe the interpolation step equation 1. This
step interpolates between the parameters of the base
model (θbase) and the finetuned model (θfinetuned) us-
ing a scalar interpolation weight α which is applied
for all common parameters between the base and
the finetuned model (Ilharco et al., 2022). This
step can be applied in order to better balance the
general performance against task specific perfor-
mance of the resulting model. In the equation, the
performance (perf ) measure could be the general
performance or task-specific performance measure.
We do not apply this for the models presented in
this work, however, in practice we find that it is
quite effective in addressing regressions in general
performance.

Θ = max
α
{perf ((1− α) · θbase +α · θfinetuned)}

(1)

B Appendix B

The metrics BLEU, ChrF2, TER (Papineni et al.,
2002; Popović, 2015; Snover et al., 2006) for the
WMT20 trained model (under beam size of 1)

as measured using SacreBLEU (Post, 2018) are
presented in Table 11, alongside reference-based
COMET (Rei et al., 2020) scores.

C Appendix C

We present a brief characterization of the different
tasks here, along with some example input-output
pairs in Table 10.

• Rule Based Tasks: A number of tasks are
rule based, e.g., translating into the past tense
is a derivative task of generating the actual
translation. Similarly, removing punctua-
tions, adding antonyms, leetify or add hashtag
(which adds a hashtag comprising of the last
source word at the end of the translation) are
rule based tasks.

• Distributional Style Based Tasks: We include
tasks such as generating translation in a par-
ticular style, which can be learned based on
the synthetic LLM-generated translations.

• Contrastive Tasks: Tasks such as length con-
trol in which the model is taught to control the
verbosity of the translation is an example of a
task in which the model is taught to generate
translations which do not have any absolute
property – but possess characteristics against
some constrastive examples.

• Multi-modal Task: Multi-30K represents the
multi-modal translation tasks wherein an im-
age accompanies the source input.

D Appendix D

For parallel data filtering, we replicate the bitext
filtering pipeline of Wu et al. (2020). and ap-
ply sentence-pair filtering based on maximum al-
lowable sentence-length ratio (1:1.3) and reverse
sentence-length ratio (1.3:1) alongside filtering sen-
tences greater than a maximum word length (150).
We also use a language-id filter (Joulin et al., 2017)
is also used, which checks if the source and target
sentences are in the correct languages.
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Instruction Prefix Source (English) Translation (German)

same length This family-run hotel in a building
from 1800 in Valkenburg centre, offers
free Wi-Fi throughout. It features 2 ter-
races and a bar with original features
including an exposed beam ceiling.

Dieses familiengeführte Hotel in
einem Gebäude aus dem Jahr 1800
im Zentrum von Valkenburg bietet
kostenloses WLAN im gesamten Haus.
Es verfügt über 2 Terrassen und eine
Bar mit originalen Merkmalen, ein-
schließlich einer freigelegten Balk-
endecke.

shorter length This family-run hotel in a building
from 1800 in Valkenburg centre, offers
free Wi-Fi throughout. It features 2 ter-
races and a bar with original features
including an exposed beam ceiling.

Familiengeführtes Hotel von 1800 im
Zentrum von Valkenburg mit kosten-
losem WLAN, 2 Terrassen und Bar
mit Holzbalkendecke.

active voice They then fled to Prague, after Schw-
erin had been arrested for illegal dis-
tribution of Communist propaganda.
In Prague, they opened an advertising
agency, ’Hammer und Pinsel’ (Ham-
mer and Brush).

Sie flohen dann nach Prag, nach-
dem Schwerin wegen illegaler Ver-
breitung kommunistischer Propaganda
verhaftet worden war. In Prag
eröffneten sie eine Werbeagentur,
’Hammer und Pinsel’.

passive voice They then fled to Prague, after Schw-
erin had been arrested for illegal dis-
tribution of Communist propaganda.
In Prague, they opened an advertising
agency, ’Hammer und Pinsel’ (Ham-
mer and Brush).

Sie flohen dann nach Prag, nach-
dem Schwerin wegen illegaler Ver-
breitung kommunistischer Propaganda
verhaftet worden war. In Prag wurde
eine Werbeagentur namens ’Hammer
und Pinsel’ eröffnet.

Table 10: Input-output instances for the contrastive tasks in Table 3.

Metric BLEU ChrF2 TER COMET

Validation 37.5 63.9 51.5 56.50
Test 32.9 61.6 54.2 42.52

Table 11: Metrics for the Trained WMT20 System
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Abstract
We introduce a benchmark, VISTRA, for
visually-situated translation of English text in
natural images to four target languages. We
describe the dataset construction and compo-
sition. We benchmark open-source and com-
mercial OCR and MT models on VISTRA, and
present both quantitative results and a taxon-
omy of common OCR error classes with their
effect on downstream MT. Finally, we assess
direct image-to-text translation with a multi-
modal LLM, and show that it is able in some
cases but not yet consistently to disambiguate
possible translations with visual context. We
show that this is an unsolved and challenging
task even for strong commercial models. We
hope that the creation and release of this bench-
mark which is the first of its kind for these
language pairs will encourage further research
in this direction.

1 Introduction

Visually-situated language concerns multimodal
settings where text and vision are intermixed, and
the meaning of words or phrases is directly influ-
enced by what is observable or referenced visually.
Vision-and-language research has most commonly
focused on tasks where images and text can be pro-
cessed as distinct channels within a joint model,
such as question answering or image captioning.
However, settings where text is embedded in an
image are ubiquitous, ranging from text on street
signs, to chryrons on news broadcasts, language
embedded in figures or social media images, or
non-digitized text sources.

Translating visually-situated text is a practical
application of recent pixel-based translation mod-
els (Salesky et al., 2021), with new challenges due
to the varied text styles, backgrounds, and complex
layouts found in natural images. This task com-
bines a series of traditionally separate steps includ-
ing text detection, optical character recognition,
semantic grouping, and finally machine translation.

Figure 1: Visual context can resolve translation ambigu-
ity. Here, translating ‘EXIT’ from English to German is
ambiguous without further information about the mode
of travel (on foot or by car), which the visual context in
the image provides.

Not only can errors propagate between steps, as
generated mistakes cause mismatches in vocabu-
lary and distribution from those observed in train-
ing and reduce downstream task performance, but
processing each step in isolation separates recog-
nized text from visual context which may be nec-
essary to produce a correct situational translation.
For example, as illustrated in Figure 1, the English
word ‘Exit’ can be translated to German as either
‘Ausfahrt’ or ‘Ausgang’; without appropriate con-
text, which may not be present in the text alone, the
generated translation would be a statistical guess.

We present a publicly-released benchmark, VIS-
TRA, for visually-situated translation (VST) of text
contained in natural images. With VISTRA, we
benchmark the performance of popular OCR mod-
els and conduct an error analysis of text recognition
errors. We analyze which recognition errors prop-
agate to and most significantly affect downstream
translation to four target languages with varied lev-
els of contextual dependence on the image. We also
compare direct visually-situated translation with
multimodal LLMs, and discuss whether access to
visual context improves visually-situated transla-
tion with current models. Finally, given our find-
ings, we present directions for future work and con-
nections to recent pixel-based translation models.
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2 Constructing the VISTRA benchmark

VISTRA comprises 772 natural images containing
English text, with aligned translations to four target
languages (German, Spanish, Russian, and Man-
darin Chinese) with varying levels of visual con-
textual dependence. Each image is annotated with
its height and width, a categorical label, its seman-
tically grouped English transcript, translations to
the four target languages aligned at the level of the
semantic groups in the transcript, and, word-level
bounding boxes specified by corner with coordi-
nates rescaled from 0-1, matched to the aligned
word in the transcript. On average, each image
contains 11.2 words and 2.4 transcript groups, for
a total of 1840 parallel segments in the benchmark
with an average length of 4.7 words. An annotated
data sample is shown in Figure 2.1

To the best of our knowledge, only one prior
publicly-released data exists for in-image text trans-
lation from natural images (OCRMT30K: Lan
et al., 2023), which contains 30k images with Chi-
nese text manually translated to English. In the
absence of datasets for this task, prior work on in-
image machine translation has primarily syntheti-
cally rendered MT corpora for this task (Mansimov
et al., 2020; Tian et al., 2023; Niu et al., 2024; Lan
et al., 2024) or addressed PDF document transla-
tion (Ignat et al., 2022; Hsu et al., 2024), discussed
further in Section 4. While these settings typically
use uniform text styles and sizes and contain a sin-
gle semantic unit per image, natural images are
contain text with multiple sizes and styles, mul-
tiple text groups in complex layouts, and varied
image backgrounds, all of which introduce addi-
tional challenges. Our task also differs from what
is commonly called multimodal translation in that
our setting text is embedded into the image context,
as opposed to a text caption to be translated with
the aid of a relevant image.

The VISTRA benchmark is released under a per-
missive CC BY-SA license for further scientific
research and commercial use.2

2.1 Criteria for image selection
The dataset is primarily constructed of newly-
captured photos in order that they not be under
copyright or contained in LLM training data.3 We
1We omit the full list of bounding box coordinates in Figure 2
for readability.

2https://vistra-benchmark.github.io
3Though these specific images will not have been observed in
training, we cannot guarantee that the same or similar signs

additionally include a small challenge set of pub-
lic domain images from social media where text
has been embedded in an image and is no longer
accessible without OCR. Within this benchmark,
we focus only on printed text, not handwritten. We
describe the detailed criteria for image selection
below.

1. Languages: Only images containing text in a
single language (English) are included.

2. Maximizing translatable text: Images were
chosen to maximize text which would be
translated rather than transliterated or copied
across languages, i.e. maximizing descriptive
or instructive text and minimizing numerals
and named entities. Where these are present,
they may not constitute the majority of the
text.

3. Framing with sufficient context: Sufficient
context (visual or textual) must be present to
reduce translation ambiguity. If, as in Figure 1,
correct translation would require knowledge
that the sign is by a road or a footpath, one of
these should be at least partly visible.

4. Length of text: We aim for a balance of text
lengths. While some traffic signs may have
only 1-2 words, if they are sufficiently fre-
quent that it is important for strong image
translation models to get correct, they have
been included; other images may include up
to 100 words.

5. Text style: Text may contain multiple fonts,
colors, and sizes within one image.

6. Layout and number of text groups: We in-
clude a balance of layout complexity, from
single-line horizontal layouts, to complex lay-
outs with angled text, or multiple adjacent
semantic groups which prove challenging for
line-level OCR.

7. Image dimensions and resolution: We col-
lect high-resolution photos, non-resized and
not retouched. Original dimensions may vary
based on camera and conditions, but at least
one dimension (length or width) must be
larger than 1024.

in other settings have not. Though we submitted opt-out
requests to exempt our data from being trained on before
submitting benchmark images to commercial LLMs in our
experiments, if subsequent researchers do not also do so,
benchmark images may be ingested as training data.
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Figure 2: VISTRA data sample showing metadata, transcripts, and translations.

8. Clean conditions: The dataset reflects clean
conditions. We require that it is not challeng-
ing for a human reader to recognize contained
text. We exclude images where the text is chal-
lenging to read due to environmental condi-
tions (such as weather: rain, fog); blur; light-
ing conditions; occlusions (such as graffiti,
foliage).

9. Permissive use: All images are either photos
taken for the purposes of this benchmark or in
the public domain.

2.2 Text annotation and transcription
Text bounding boxes and transcripts were manually
post-edited from Google Cloud Vision OCR with
a custom interface. The annotation interface is
shown in Figure 6 in Appendix A.

Bounding boxes. Text bounding boxes are spec-
ified at the word level. In contrast to line-level an-
notations, using word-level bounding boxes more
flexibly allows for complex layouts where unre-
lated text may appear side-by-side in an image (for
example, adjacent signs), but should not be grouped
and translated together. Bounding boxes are rect-
angular (90◦ corners) with all four vertices spec-
ified, which allows angled rotation to match text
directionality. Bounding boxes were post-edited to
ensure all text was detected, no text was cropped,
and hallucinated text boxes were removed.

Transcript. All (and only) text which was
clearly human-readable with images resized to a
maximum height and width of 1024px was tran-
scribed. In the final transcripts, case and punctua-
tion are matched as closely as possible to what is
present in the original image. Non-textual symbols
which may be present on some directional signs

(for example, or ) were not transcribed or
annotated.

Semantic grouping. Finally, we semantically
group word-level text boxes. This creates text units
with necessary context for translation, and sepa-
rates for example different street signs which ap-
pear in the same image into distinct units for down-
stream translation. Not all images contain full sen-
tences; therefore, our criteria were forming clause
or phrase-level groups which appear together in the
image and should be translated together. This step
may be ambiguous, and so was annotated by one
person to ensure consistency across the dataset.

2.3 Translation

We contracted Centific4 to professionally translate
the text in each image from English to four target
languages: German, Spanish, Russian, and Man-
darin Chinese. This set of languages covers multi-
ple language families and scripts, and varied depen-
dence on visual context. Annotators were paid a
competitive market rate. Each image was translated
by an individual linguist and a random sample of
10% of the image translations were checked by a
second linguist.

All translations were performed from scratch
in OneForma, with access to both the original im-
age and transcript. The translation instructions and
annotation interface are shown in Figure 7 in Ap-
pendix A. Translations are aligned one-to-one with
the semantic groups in the transcript. We do not
ask annotators to match case and punctuation in
the source language, which may be unnatural for
the target language, but rather localize these for the
target language.
4https://www.centific.com
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OCR ReturnsModel OCR MT VST Release level bboxes? Multilingual

PaddleOCR ✓ OPEN-SOURCE line|word yes
TesseractOCR ✓ OPEN-SOURCE word yes
Google Cloud Vision ✓ COMMERCIAL word yes
mBART ✓ OPEN-SOURCE — — ✓
Google Translate ✓ COMMERCIAL — —
GPT-4o ✓ ✓ ✓ COMMERCIAL unknown no ✓

Table 1: Models benchmarked for visually-situated translated (cascaded and direct).

Annotators were additionally asked whether the
visual context in the image affected the resulting
translation, as a binary question. Whether a trans-
lation would be ambiguous without the image can
vary by target language, as exemplified by ‘Exit’ in
Figure 1 which would be ambiguous in German but
not in Spanish. 99.7% of images were marked as
requiring image context for translation for at least
one translation direction, with the following break-
down by target language: German 99%, Chinese
96%, Spanish 54%, Russian 6%.

3 Benchmarking visually-situated
translation

We benchmark existing models for OCR and VST
using the new VISTRA dataset, and conduct an
error analysis of common OCR types and their
effect on downstream translation. This type of
error analysis does not exist in previous work; we
show that our new benchmark both illustrates these
types of errors and facilitates analysis of this type.

3.1 Models evaluated

We compare a variety of widely-used open-source,
open-weight, and commercial models to give a rep-
resentative view of the capabilities of current mod-
els for this task, and specifically, provide baseline
performance on the VISTRA benchmark. We list
all evaluated models with relevant characteristics
in Table 1.

3.1.1 OCR
Paddle-OCR5 (PP-OCR: Du et al., 2020) is becom-
ing one of the most commonly used open-source
tools for OCR in English and Chinese (Lan et al.,
2023; Yang et al., 2023, inter alia), due to its ease
of use and free public release. PP-OCRv4 uses

5https://paddlepaddle.github.io/PaddleOCR

Transformer models, trained per-language for En-
glish and Chinese. It produces word-level bound-
ing boxes within detected lines. Tesseract-OCR6

(Smith, 2007) is the longest-standing community-
developed open-source toolkit for OCR. Tesseract-
4 uses LSTM models, trained per-language. We ad-
ditionally benchmark Google Cloud Vision OCR7

(Popat et al., 2017; Ingle et al., 2019) to compare
strong commercial performance.

3.1.2 MT
We compare both an open-source machine transla-
tion model, mBART-50 (Liu et al., 2020), which
is trained primarily on clean, well-formed text, and
a commercial machine translation model, Google
Translate, as an upper-bound on expected perfor-
mance with greater expected robustness to noise.

3.1.3 Multimodal LLMs
Multimodal multilingual large language models
which have been explicitly trained on both vision
and language provide an opportunity to compare
direct translation from an image containing English
to text in a target language. By directly translating
from an image with access to the full image con-
text (as opposed to only the cropped region within
bounding boxes from a text detection stage), mul-
timodal models have the potential to be able to re-
solve ambiguity in translation. Here we benchmark
the performance of GPT-4o, which was the top-
performing multimodal model on a recent OCR-
centric LLM evaluation (OCRBench: Liu et al.,
2023), by prompting the model to directly translate
text contained in images without intermediate steps.
We also evaluate OCR only and machine transla-
tion only with this model in order to contextualize
direct multimodal translation results.

6https://github.com/tesseract-ocr/tesseract
7https://cloud.google.com/vision
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Class Description

I Undetected text: missing text and
bounding boxes

II Text hallucination: text detected where
no text present

III Bounding box misplaced: text clipped,
cropping would affect recognition

IV Grouping error: text from different
groups intermixed in output text

V Punctuation error
VI Spacing error
VII Character-level substitution
VIII Word-level substitution

Table 2: OCR error taxonomy covering text detection
(I-III) and recognition (IV-VIII) errors.

3.2 OCR performance and error taxonomy

We measure OCR performance with two automatic
metrics: character error rate (CER) and translation
error rate (TER) (Snover et al., 2006).8 CER re-
flects the minimum number of single-character ed-
its (insertions, deletions, or substitutions) required
to change a string into the reference. TER is also
an edit-distance metric which aims to capture the
post-editing effort required to change a string into
the reference. While OCR is typically evaluated
case-insensitive with punctuation removed, with
downstream MT in mind we calculate both metrics
case-sensitive with punctuation.

While in e.g., speech recognition there may be
one correct ordering of the output, in a 2D image,
there is not necessarily only one correct order for
recognized text. To facilitate scoring different text
groupings across models, which would otherwise
require re-alignment, we concatenate groups before
applying automatic metrics. Where CER would
recognize reorderings between the hypothesis and
reference as several character edits, TER allows
shifts of contiguous spans as a single operation,
and therefore penalizes reordering less. As shown
in Figure 8d, different orderings due to line vs.
word level text recognition may still be errors and
significantly impact downstream translation, which
is why we use these two metrics together.

In addition to aggregate quantitative metrics, we
create an error taxonomy of the different classes
of OCR errors we observe across different models.
8We calculate TER with SacreBleu (Post, 2018),
case_sensitive=True, no_punct=False, normalized=False.

Model CER↓ TER↓ Sub. Del. Ins.

Paddle-OCR 13.0 21.5 963 2824 2851
Google OCR 18.0 32.0 186 381 8496
GPT-4o 23.8 36.0 1132 1277 9728
Tesseract-OCR 124.0 134.3 9597 37081 16477

Table 3: OCR results on the VISTRA benchmark.

Figure 3: Proportion of OCR error classes by model.

The eight OCR error classes are listed in Table 2
and describe errors in each step of the pipeline,
from text detection (text recall, text hallucinations
where non-text objects are recognized as text, or
bounding box placement errors which may affect
downstream processing using only these regions)
to recognition and generation (over and under gen-
eration of punctuation, spaces, and character- and
word-level substitutions).

We provide an illustrative example for each OCR
error class observed with our evaluated models on
the VISTRA benchmark in Figure 8 in Appendix B.
We hypothesize that differences in model design
affect the proportion of each type of error, and
that different error categories are likely to affect
downstream translation in different ways, as we
investigate in Section 3.3.

OCR performance for our 4 compared models
are shown in Table 3. We observe that somewhat
surprisingly, the open-source Paddle-OCR model is
the highest performing on both the CER and TER
metrics. While Google OCR has significantly fewer
substitutions and deletions, it has a much higher
insertion rate; here, this covers both more ‘benign’
insertions like whitespace, and text hallucinations
as illustrated in Figure 8b, where background pat-
terns are recognized as text characters.9 GPT-4o
performs slightly worse than both models on all
metrics. Tesseract, on the other hand, significantly
underperforms expectations set by past work (e.g.,

9It may be worth noting that where such hallucinations fre-
quently occur as consecutive spans, and so can be signifi-
cantly easier to post edit than the quantitative metrics reflect.
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(a) A grouping error causes each word to be translated indi-
vidually, resulting in agreement errors (Apple Translate).

(b) Inserted punctuation breaks up the text sequence, resulting
in translation errors despite correctly recognized text (mBART).

Figure 4: Qualitative examples of OCR errors which propagate to downstream MT.

Ignat et al., 2022). We hypothesize this may be
because it is primarily trained on documents, rather
than images with natural backgrounds; the mis-
match to varied background colors and additional
visual context, though the majority of our images
contain printed text with relatively uniform back-
grounds, appears to interfere with recognition and
lead to insertions as seen in Figure 4b.

To see to what degree models vary in the type of
errors they make, which we hypothesize are likely
to affect downstream MT to different degrees, we
manually annotate the error classes observed in
model outputs for a random sample of 100 images.
Figure 3 shows the proportion of outputs contain-
ing each error class from Table 2 for each of our
four models. For the strongest three models, the
most frequent error type is text hallucination, where
text is detected where no text was present. These
three models have just one or no examples of recall
errors in our sample. On the other hand, Tesseract-
OCR fails to detect some proportion of text in the
majority of examples and any text at all in 44%,
both resulting in low performance and artificially
reducing the rates of other error types.

Between Paddle and Google OCR, this analysis
presents a slightly different view to the quantita-
tive results above alone. Both models have similar
distributions of their most frequent errors. While
Paddle has a lower CER, its output has more var-
ied types of errors. Google OCR error types are
more consistent and occur across fewer classes, but
where they are present, there are typically multiple
errors, which lowers CER and TER further.

For GPT-4o, hallucinations often result in signif-
icant additions of punctuation as visualized for ex-
ample in Figure 8e, resulting in more than one class

of error. GPT-4o does not return bounding boxes
for detected text. However, it appears to often
generate text with additional whitespace and punc-
tuation to offset different text groups, which are
reflected in both these error classes.10 We do not
observe significant differences in word-level sub-
stitutions or text hallucinations with larger and/or
stronger decoder models.

3.3 How do OCR errors affect downstream
MT?

Here we assess the effect of OCR errors on down-
stream MT in cascaded models. We do not perform
normalization or postprocessing between OCR and
MT, except to concatenate semantic groups. We
evaluate translation with three automatic metrics:
BLEU11 (Papineni et al., 2002) and chrF (Popović,
2015), both as computed by SacreBLEU (Post,
2018), and COMET (Rei et al., 2020).12

This is a challenging task for all models. Fig-
ure 4 shows two illustrative examples where OCR
errors interfere with downstream translation, de-
spite correctly recognized text. Table 4 shows
translation performance for both cascaded OCR
and MT models and direct translation with a multi-
modal LLM for the four target languages in VIS-
TRA. Open-source models have weak performance
across all target languages and metrics. Com-
mercial MT appears more robust to OCR perfor-
mance in general, with consistently stronger re-
sults across all metrics and relatively similar per-
formance across the three strongest OCR models.

10We were not able to reduce this behavior consistently via
prompting.

11We omit BLEU when translating into Chinese without word
segmentation.

12wmt22-comet-da
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CASCADED DIRECT

mBART Google Translate GPT-4o

OCR Model chrF BLEU COMET chrF BLEU COMET chrF BLEU COMET

G
er

m
an

Tesseract-OCR 2.3 0.1 28.8 3.5 0.1 30.4 — — —
Paddle-OCR 26.8 9.0 46.1 36.0 16.7 57.0 — — —
GPT-4o OCR 28.1 6.9 48.0 36.4 13.2 58.2 — — —
Google-OCR 31.1 9.1 47.3 37.4 14.9 55.3 — — —
None — — — — — — 36.9 9.1 60.1

Sp
an

is
h

Tesseract-OCR 2.4 0.1 30.1 3.6 0.3 31.7 — — —
Paddle-OCR 17.5 3.1 44.4 60.8 33.8 75.1 — — —
GPT-4o OCR 23.3 4.2 50.4 60.8 24.6 75.0 — — —
Google-OCR 22.0 4.0 45.5 62.2 29.9 71.3 — — —
None — — — — — — 54.0 21.4 73.4

R
us

si
an

Tesseract-OCR 1.7 0.1 25.3 2.6 0.1 27.3 — — —
Paddle-OCR 13.0 5.8 42.4 46.5 20.0 73.0 — — —
Google-OCR 16.0 7.5 42.4 48.1 18.4 71.0 — — —
GPT-4o OCR 14.8 5.1 43.1 47.1 15.1 74.4 — — —
None — — — — — — 35.6 10.7 70.2

C
hi

ne
se

Tesseract-OCR 0.3 — 32.6 0.4 — 34.4 — — —
Paddle-OCR 18.2 — 62.0 40.2 — 82.0 — — —
GPT-4o OCR 19.7 — 63.1 40.1 — 82.5 — — —
Google-OCR 18.7 — 59.2 41.6 — 77.7 — — —
None — — — — — — 33.6 — 85.5

Table 4: Visually-situated translation results on the VISTRA benchmark. We compare both cascaded OCR and MT
as well as direct translation from images with a multimodal LLM. We note results with commercial OCR and/or
MT in gray, and direct translation of text in images with multimodal LLMs in blue.

Direct translation with a multimodal LLM per-
forms quite strongly, with consistently comparable
COMET scores to the strongest cascades for all
target languages, though weaker comparatively on
the lexical metrics chrF and BLEU; we look at this
more closely in Section 3.4.

The results in Table 4 show that CER and TER
alone are not sufficient indicators of performance.
Translation with mBART performs more highly
for Google and GPT-4o OCR than Paddle-OCR
despite their higher CER and TER, suggesting the
type of errors may have more significance than
edit distance alone. Undetected text (Class I) has
the most catastrophic effect on downstream MT.
For Tesseract-OCR, recall is simply too low for
non-trivial translation performance. Punctuation
and whitespace are insertional errors which are
detrimental to tokenization with mBART, increas-
ing fertility by approximately 3× and resulting in
input sequences which approach character level.

We hypothesize that these classes of errors may
be normalized in preprocessing by the commercial
MT system as they have less effect; of the sample
set annotated as having these errors, segment-level
chrF is 2× higher with the commercial model than
mBART, which is a larger margin than observed
overall (1.6×). Text hallucinations (Class II)
are more difficult to remove with post-processing,
though here are typically character-level rather than
insertions of valid words. Character- and word-
level substitutions (Classes VII and VIII) were
stated to have more detrimental effect on transla-
tion for OCR’ed documents in Ignat et al. (2022)
than insertions or deletions, but that is not the trend
we observe here. On our type of data, natural im-
ages with complex backgrounds, we observe sig-
nificantly more insertions per example than substi-
tutions; while for example punctuation insertions
(Class V) occur for a similar number of examples
as character-level substitutions (Class VII) for
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Figure 5: On this example from VISTRA, in a model cascade when translating with access to OCR output only,
GPT-4o translates ‘Exit’ as ‘Ausgang,’ while when translating directly from the image with access to the visual
context, GPT-4o correctly translates ‘Exit’ as ‘Ausfahrt.’

the GPT-4o OCR model in our annotated set, there
are nearly 10× more insertions than substitutions
in each example. When word-level substitutions
occurred, they occurred at most twice per image,
which both MT models were more easily able to
recover from using context.

We do not observe downstream MT errors due to
bounding box placement (Class III) in our sam-
ple. We note such errors may be more significant
for models which process only the cropped region
within bounding boxes, as in the example in Fig-
ure 8c an overly tight bounding box would cause
the g to look like an a when cropped. This would
be an important consideration if adapting recent
visual text-based translation approaches for text
in natural images (Salesky et al., 2021), as these
models currently only process the region directly
surrounding text.

3.4 Can multimodal models resolve contextual
ambiguity?

Multimodal LLMs have access to both textual infor-
mation contained in an image, as well as the visual
context it is situated in. Cascaded OCR and MT,
however, discards the visual information at transla-
tion time. Are LLMs able to use the broader visual
context to resolve otherwise ambiguous transla-
tions?

It can be challenging to assess the degree to
which multimodal models rely on different modal-
ities for their predictions (Hessel and Lee, 2020),
particularly for closed models without access to
relative weights or the training data distribution for
statistical priors. Here though direct translation
with a multimodal LLM performs non-trivially, we
still observe a performance gap to the same LLM

performing text translation from the reference tran-
scripts without access to visual information: for the
English→German language pair for example, 41.0
chrF and 18.8 BLEU vs. 36.9 chrF and 9.1 BLEU.
Directly comparing quantitative results is not a per-
fect reflection of the task, because each model may
get ambiguous examples wrong for different rea-
sons. However, within the VISTRA test set we do
observe examples where ambiguous source nouns
are generated as only one possible translation with
text input, but multiple senses with visual input. In
our running example, 14 images in the benchmark
contain the English word ‘Exit’; in a model cascade
when translating with access to text only, GPT-4o
translates all 14 instances as ‘Ausgang,’ while with
visual input only 5 instances are translated this way
and 4 use a variant of ‘Ausfahrt,’ as illustrated in
Figure 5. Particularly when used in conjunction
with models trained from scratch, this benchmark
may enable further analysis of attribution.

Cautionary note on evaluation metrics.
Learned metrics such as COMET score paraphrases
and synonyms highly, which typically leads to
higher correlations with human judgments. How-
ever, for this task precisely that property may make
them less reliable indicators of success. For ex-
ample, returning to the motivational example in
Figure 1, when translating the English sentence

‘The exit is over there,’ both possible German trans-
lations ‘Die Ausfahrt ist dort drüben’ and ‘Der Aus-
gang ist dort drüben’ are given identical COMET
scores (97.6) with either translation as the refer-
ence. Lexical metrics such as chrF and BLEU do
reflect a mismatch to the reference here, and may
be more reliable in this setting specifically for mea-
suring correct visually-situated translation. For this
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reason, and given the high proportion of examples
marked as contextually dependent in our bench-
mark (Section 2.3), the COMET scores in Table 4
should likely viewed more cautiously than for other
tasks. To properly evaluate contextually-dependent
translations with multimodal input using a learned
metric likely requires a new metric.

4 Related work

Translation of text in images has been strongly mo-
tivated by printed historical documents which re-
quire digitization (Afli and Way, 2016; Ignat et al.,
2022) and PDF document translation (Zhang et al.,
2023b; Hsu et al., 2024) with two column or more
complex text layouts. In the absence of publicly
available aligned and translated data sources, the
majority of work in this space has created synthetic
data for this task by rendering common machine
translation corpora from sources from WMT14
(Mansimov et al., 2020; Tian et al., 2023; Niu et al.,
2024; Lan et al., 2024). Ma et al. (2022) compared
cascaded and direct models for in-image text trans-
lation with synthetic, cropped subtitles, and street-
view images, but did not release their datasets. Lan
et al. (2023) extended this work, studying auxiliary
objectives for this task, and released a benchmark
extending 5 Chinese OCR datasets with natural im-
ages with translations for Chinese→English. Ignat
et al. (2022) perform similar analysis on the impact
of OCR CER on downstream MT performance with
the aim to see whether OCR’ed documents can be
utilized for data augmentation for MT training with
low-resource languages.

Similar to our task, multimodal translation uses
auxiliary visual context to improve text translation,
typically of image captions (Elliott et al., 2016;
Specia et al., 2016; Elliott and Kádár, 2017; Elliott
et al., 2017; Barrault et al., 2018; Li et al., 2022).
Recent work has adapted pretrained model compo-
nents into a single ViT model for this task (Gupta
et al., 2023). As in our setting, it is challenging
to assess the degree to which multimodal models
make use of visual context in addition to text rep-
resentations (Hessel and Lee, 2020); some studies
investigating the usage of visual input in multi-
modal MT have found that do so primarily in the
case of ambiguity or limited text input (Caglayan
et al., 2019; Raunak et al., 2019) or provide regu-
larization only (Wu et al., 2021).

Beyond machine translation, significant work
has studied problems in text-centric visual pro-

cessing such as document and table layout under-
standing through visual means (Long et al., 2022;
Alonso et al., 2024; Zheng et al., 2024), OCR-free
language understanding (Tanaka et al., 2021; Ye
et al., 2023), and modeling language in screen-
shots (Kim et al., 2022; Lee et al., 2023; Gao et al.,
2024). As multimodal LLMs become increasingly
strong, analyzing their capabilities and limitations
for text-rich image understanding (Zhang et al.,
2023a, 2024; Li et al., 2024) and OCR (Liu et al.,
2023) is a growing area. As we saw here, though
they are strong general purpose models, there can
remain a gap to task-specific models for complex
and specialized tasks.

5 Conclusions

We introduce a benchmark, VISTRA, for visually-
situated translation of English text in natural im-
ages to four target languages. We describe the
dataset construction and composition. We bench-
mark multiple commonly used OCR models on
VISTRA, both open-source and commercial, and
evaluate cascaded OCR and MT performance. We
present both quantitative result and create a tax-
onomy of common error classes, and investigate
their impact on downstream MT. Finally, we assess
direct image-to-text translation with a multimodal
LLM, and show that it is able in some cases but
not yet consistently to disambiguate possible trans-
lations with visual context. We show that this is
an unsolved and challenging task even for strong
commercial models. We hope that the creation
and release of our benchmark, which is the first of
its kind for these language pairs, will encourage
further research in this direction.

Limitations

Our dataset is limited in scale and language cov-
erage to English text, with images predominantly
taken in a single country (USA). The majority of
photos were taken by a single photographer, which
may lead to more consistent image quality and ap-
plication of inclusion criteria, but likely also limits
diversity through a locale bias to their surroundings.
Transcriptions were performed by 3 individuals,
and all checked by the same annotator for consis-
tency, while translations were professionally done
with a subset checked by a second annotator.
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A Annotation Interfaces

Figure 6: Text annotation interface for VISTRA benchmark.
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Figure 7: Translation annotation interface for VISTRA benchmark.

1180



B Examples of each OCR error class

Here we show an illustrative example of each OCR error class described in Table 2 from the VISTRA

benchmark, with the model which produced each output.

(a) CLASS I: Undetected text (b) CLASS II: Text hallucination

(c) CLASS III: Bounding box error (d) CLASS IV: Grouping error

Figure 8: Examples of each OCR error class from Table 2.
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(e) CLASS V: Punctuation error (f) CLASS VI: Spacing error

(g) CLASS VII: Character-level substitution (h) CLASS VIII: Word-level substitution

Figure 8: Examples of each OCR error class from Table 2 (cont.)
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Abstract

Translated texts exhibit a range of character-
istics that make them appear distinct from
texts originally written in the same target lan-
guage. With the rise of Large Language Models
(LLMs), which are designed for a wide range of
language generation and understanding tasks,
there has been significant interest in their appli-
cation to Machine Translation. While several
studies have focused on improving translation
quality through fine-tuning or few-shot prompt-
ing techniques, there has been limited explo-
ration of how LLM-generated translations qual-
itatively differ from those produced by Neu-
ral Machine Translation (NMT) models, and
human translations. Our study employs ex-
plainability methods such as Leave-One-Out
(LOO) and Integrated Gradients (IG) to ana-
lyze the lexical features distinguishing human
translations from those produced by LLMs and
NMT systems. Specifically, we apply a two-
stage approach: first, classifying texts based
on their origin —whether they are original or
translations— and second, extracting signifi-
cant lexical features (highly attributed input
words) using post-hoc interpretability methods.
Our analysis shows that different methods of
feature extraction vary in their effectiveness,
with LOO being generally better at pinpoint-
ing critical input words and IG capturing a
broader range of important words. Finally, our
results show that while LLMs and NMT sys-
tems can produce translations of a good quality,
they still differ from texts originally written
by native speakers. We find that while some
LLMs more closely resemble human transla-
tions, traditional NMT systems show distinct
differences, particularly in their use of linguis-
tic features. 1

1 Introduction

The rapid development of large language models
(LLMs) (Radford et al., 2019; Raffel et al., 2020a;

1We release our code publicly at https://github.com/
SFB1102/B6-analysing-translation-artifacts

Touvron et al., 2023; Lu et al., 2024; Team et al.,
2024a; Groeneveld et al., 2024; Alves et al., 2024)
has significantly advanced natural language pro-
cessing (NLP), also in the domain of Machine
Translation (MT) (Zhang et al., 2023; Zhu et al.,
2024) with studies covering various approaches
such as document-level literary translation (Karpin-
ska and Iyyer, 2023), paragraph-level post-editing
with LLMs (Thai et al., 2022), sentence-level trans-
lation (Vilar et al., 2022; Jiao et al., 2023), examin-
ing hallucinations in LLM-generated translations
(Guerreiro et al., 2023), and leveraging LLMs for
evaluation (Kocmi and Federmann, 2023). These
efforts reflect the ongoing shift toward exploring
how well LLMs perform MT compared to tradi-
tional NMT systems.

Although previous work (Zhu et al., 2024; Vilar
et al., 2022; Raunak et al., 2023) have explored how
LLMs and traditional Neural Machine Translation
(NMT) systems develop translation capabilities,
as well as the qualitative differences in their out-
puts and the factors that impact their performance,
a critical gap remains: the comparison of trans-
lations generated by LLMs and NMT models to
those produced by human translators (HT) and texts
originally written by native speakers in the target
language. This comparison raises questions about
translation divergence, as reflected in surface-level
(structural) differences in translations arising from
cross-linguistic variations or translator preferences
(Luo et al., 2024).

Such divergences are well-documented in human
translations (HT), where translators often make
structural choices that vary significantly from the
text originally written in the target language (Deng
and Xue, 2017; Nikolaev et al., 2020). In con-
trast, traditional NMT outputs typically exhibit less
diversity and more literal translations, lacking sig-
nificant structural variation (Freitag et al., 2020;
Bizzoni et al., 2020). Similarly, Vyas et al. (2018);
Briakou and Carpuat (2020) focus on identifying
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semantic divergences in translations that are not
fully equivalent to the original source texts. Re-
cent findings, however, indicate that LLMs tend
to produce translations that are less literal com-
pared to NMT models (Vilar et al., 2022; Raunak
et al., 2023), suggesting that LLMs may bridge the
gap between the rigid literalness of NMT models
and the flexibility of human translations. Under-
standing these divergences is crucial for advancing
translation technologies and ensuring their respon-
sible and effective use. Specifically, this leads us to
investigate the following research questions: how
do LLMs, NMT models, and HT outputs dif-
fer in their translations, and what methods can
effectively identify these differences?

To answer these questions, we conduct a sys-
tematic comparison of LLM, NMT, and HT trans-
lations using explainability techniques (Lundberg
and Lee, 2017; Rajagopal et al., 2021; Yin and Neu-
big, 2022; Wu et al., 2023), namely Leave-One-Out
(LOO) (Li et al., 2016) and Integrated Gradients
(IG) (Sundararajan et al., 2017). Specifically, we
use a two-stage approach: first, we classify texts
in the same target language based on their origin
—whether they are original texts (O) written by na-
tive speakers or translations (T), whether human or
automated. Next, we apply post-hoc interpretabil-
ity methods to extract key features that contribute
to these classifications. Our analysis focuses on
identifying whether the most important features for
O/T classification are consistent across LLM-based,
NMT-based, and human translation outputs.

To understand these distinctions, we perform two
analyses: (i) Feature Overlap Analysis: we calcu-
late the average intersection of the top most impor-
tant lexical features used across different transla-
tion systems to classify O/T, focusing on how much
the most important features identified by explain-
ability techniques overlap across LLM, NMT, and
HT systems, and (ii) Feature Frequency Analysis:
we analyse the frequency distribution of these key
linguistic features within each translation system.

Our findings show that while many LLMs and
NMT systems produce good translations, they
still differ from content originally written by
native speakers. LLMs like Aya-101-13B and
TowerInstruct-7B-v0.2 exhibit alignment with tra-
ditional NMT models, such as DeepL and NLLB-
600M, regarding O/T classification accuracy com-
pared to content originally authored in the target
language. Overall, our results confirm that NMT

translations are more readily distinguishable from
originals, with traditional NMT systems generally
outperforming LLMs in translation quality and con-
sistency. At the same time, human-generated trans-
lations remain distinctly different from those pro-
duced by machines.

Using explainability methods, we identified the
key features that differentiate translations produced
by LLMs, NMT systems, and human translators.
Our findings suggest that LOO is generally bet-
ter at pinpointing the most critical single feature,
while IG is more effective when considering a
broader range of important features. Moreover,
our analysis shows that LLMs like Gemma-7B
and TowerInstruct-7B-v0.2 often align closely with
NMT systems such as M2M-100-418M and DeepL
in their lexical feature selection during translation.
Finally, our findings show that LLMs generally ex-
hibit PoS patterns more aligned with HT than NMT
models, particularly in the use of adverbs and aux-
iliary verbs. However, human translations consis-
tently exhibit lower overlap with certain linguistic
features from both LLMs and NMT systems, in-
dicating that despite some shared patterns, human
translations retain a unique quality.

The paper is structured as follows: Section 2 out-
lines our experimental design, and Sections 2.1 and
2.2 detail the data and models used in our study.
Section 3 discusses our strategies for evaluation
of translation quality and methods we employ for
extracting important distinctive features of origi-
nal and translated texts, while Section 4 examines
the differences in classification features between
LLMs, NMT systems, and human translations. Fi-
nally, Section 5 concludes the paper.

2 Experimental Design

To identify important explanations with respect to
O/T classification in the outputs of translation sys-
tems, we apply explainability methods to each sen-
tence and generate attribution scores for the tokens.
Below, we describe the methods used to produce
these attribution scores.

Leave-One-Out (LOO). We use LOO (Li et al.,
2016), a popular model-agnostic feature attribution
technique, to compute the attribution score for each
token xi in an input sentence X with respect to the
model’s prediction ŷ. Let w[CLS] be the final layer
representation of the “[CLS]” token for X . During
inference, the method processes the input through
ReLU, affine, and softmax layers to produce a prob-
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ability distribution over the outputs. For each token
xi, LOO measures the change in probability when
xi is excluded from the input X . Higher change
in probability indicates that the token xi is more
influential in the model’s prediction:

ℓ = softmax(affine(ReLU(w[CLS])))

ℓi = softmax(affine(ReLU(wi)))

∇i = ℓ− ℓi

where wi represents the final layer output of the
“[CLS]” token when the token xi is removed from
the input sequence X .

Integrated Gradients (IG). Sundararajan et al.
(2017) propose this technique for attributing a neu-
ral network’s output to its input features by com-
puting the integral of the gradients of the model’s
prediction with respect to the inputs along a path
from a baseline to the actual input. The attribution
for a feature xi is given by:

IGi = (xi − x0i ) ·
∫ 1

0

∂f(x0 + α · (x− x0))

∂xi
dα

where x0i is the baseline input and f is the model’s
prediction function.

In this work, IG is used to compute attribution
scores for each token xi

2 in X . IG provides scores
between −1 and 1 for each embedding dimension
of the token xi, where 1 and −1 represent maxi-
mum influence towards labels 1 (T) and 0 (O), and
scores near zero indicate minimal impact.

2.1 Data

We use the Monolingual German dataset from the
Multilingual Parallel Direct Europarl (MPDE) fea-
turing annotated paragraphs from the proceedings
of the European Parliament (Amponsah-Kaakyire
et al., 2021). The dataset includes both the orig-
inal texts and their translations. Each paragraph,
averaging 80 tokens, is labeled to indicate whether
it is an original or a translation. Since most NMT
systems operate on sentence level, we split each
paragraph into sentences, which we later use for
our work.

However, in MPDE, paragraphs of German
sources typically contain more sentences than their

2Token xi may refer to either a whole word or its subunits,
as the WordPiece tokenizer (Song et al., 2021) splits words
into subunits. To compute the attribution score at the word
level, we average the attributions of its subunits.

English translations.3 To address this imbalance,
we remove certain amount of German source sen-
tences, creating a training set with an equal number
of original and translated sentences (97,108 in the
training set and 20,744 in the test set).

To further perform evaluation of translation qual-
ity, we need a clear one-to-one correspondence be-
tween source sentence, human-translated sentence
and the automatically translated sentence. As men-
tioned above, not every paragraph of the MPDE
dataset has the same number of sentences in its
German source and in its English translation. We
have composed a subset of MPDE consisting only
of those sentences whose paragraphs have an equal
number of German and English sentences. This
subset contains 38,035 sentences.

Pre-processing. To ensure that the explanation
methods work efficiently, we tokenize and truecase
our data.4 Both are performed using Moses scripts
(Koehn et al., 2007).

2.2 Models

We report O/T classification and translation quality
results on a wide selection of some of the best-
performing models, both commercial and open-
source models:
• DeepL Translator: a state-of-the-art commer-

cial NMT system.5

• Google Translate: Likely the most widely used
commercial NMT system.6

• M2M-100-418M (Fan et al., 2020): A large mul-
tilingual NMT model trained on 2,200 translation
directions, enabling many-to-many translation
across 100 languages. We use the base version.

• MADLAD-400 (Kudugunta et al., 2023): A mul-
tilingual NMT model based on the T5 architec-
ture (Raffel et al., 2020b), with 3 billion parame-
ters, trained on 1 trillion tokens across 450 lan-
guages using publicly available data.

• NLLB-600M (Costa-jussà et al., 2022): It rep-
resents the current state-of-the-art NMT system,

3This is due to the fact that the translations of paragraphs
are not aligned sentence-wise. While the original paragraph
may have i sentences, one translation may have j sentences
and another k.

4As further we need, for example, to analyze lexical over-
laps, it is important that we do not miss out on words because
of punctuation or case

5https://www.deepl.com/en/translator (accessed on August
16, 2024)

6https://translate.google.com/?sl=de&tl=en&op=translate
(accessed on August 13, 2024)
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System O/T Classification Accuracy AEM
(%) COMET BLEU

HT 0.79
DeepL 0.86 0.85 34.85 ± 0.19
Google Translate 0.92 0.79 24.17 ± 0.16
M2M-100-418M 0.91 0.81 25.94 ± 0.16
MADLAD-400-MT 0.91 0.69 16.37 ± 0.18
NLLB-600M 0.83 0.79 27.35 ± 0.19
LLaMAX-3.1-8B-Alpaca 0.94 0.81 15.43 ± 0.13
TowerInstruct-7B-v0.2 0.83 0.84 33.35 ± 0.18
Aya-101-13B 0.86 0.83 25.35 ± 0.16
Gemma-7B 0.89 0.83 27.53± 0.19
Llama-3.1-IT-8B 0.90 0.82 26.91 ± 0.17

Table 1: Performance metrics for various systems including classification accuracy and automatic MT evaluation
metrics (COMET and BLEU). The highest scores are highlighted in bold.

scaling up to 200 languages. We experiment with
the distilled version with 600M parameters.
In addition to the NMT systems listed above, we

pick three well-known and high-performing open-
source LLMs and use them for prompt-based trans-
lation without any prior fine-tuning (see Appendix
A for the prompt templates):
• LLaMAX-3.1-8B-Alpaca (Lu et al., 2024) is

an open-source instruction-following language
model with 8 billion parameters. It is fine-tuned
from the LLaMA model (Taori et al., 2023) and
supports 102 languages through continual pre-
training, incorporating 52,000 Self-Instruct En-
glish instruction examples (Wang et al., 2023).

• Llama-3.1-IT-8B (Dubey et al., 2024): The
Meta Llama 3.1 collection includes multilingual
LLMs. This 8B parameter model is pretrained
and instruction-tuned for text generation, opti-
mized for multilingual dialogue.

• TowerInstruct-7B-v0.2 (Alves et al., 2024): A
language model based on LLaMA 2 (Touvron
et al., 2023), using a diverse dataset of 20 billion
tokens from monolingual sources in ten different
languages.

• Aya-101-13B (Üstün et al., 2024): A 13-billion-
parameter mT5 (Xue et al., 2021) multilingual
model trained on instructions in 101 languages,
exceeding the coverage of earlier open-source
models (Lai et al., 2023; Muennighoff et al.,
2022; Le Scao et al., 2023).

• Gemma-7B (Team et al., 2024b) is a lightweight
open-source LLM developed by Google Deep-
Mind. It has been instruction-tuned to respond to
prompts in a conversational manner.

3 Evaluation

3.1 O/T Classification
We follow Dutta Chowdhury et al. (2022) to per-
form binary classification between original and
translated (O and T) sentences. We use the XLM-
RoBERTa base model (Conneau et al., 2020) with a
softmax classifier applied to the [CLS] token of the
sentence embeddings. We freeze hyperparameters
and weights of the pre-trained encoder, and train
the classifier for 10 epochs on each sentence with
batch size of 16 and learning rate of 2× 10−5. All
experiments are performed using NVIDIA V100
or A100 GPUs.

Results. The linear O/T classifiers show high ac-
curacies (>80%) for all models (Table 1). We find
that the automatically translated sentences, for both
NMTs and LLMs, are always identified with higher
accuracy than the human-translated ones. This find-
ing corroborates the hypothesis that automatically
translated texts are more readily distinguishable in
classification tasks than those translated by humans
(Ilisei et al., 2010; Rubino et al., 2016; Pylypenko
et al., 2021).

3.2 Translation Quality
To assess translation quality, we utilise two auto-
matic evaluation metrics (AEM): BLEU (Papineni
et al., 2002) as implemented in SacreBLEU7 (Post,
2018) and COMET (Rei et al., 2022).8 BLEU re-
lies on word n-gram similarity, whereas COMET

7BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.0.0

8Unbabel/wmt22-comet-da, see https://github.com/
Unbabel/COMET
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System LOO IG
top-1 top-3 top-5 top-1 top-3 top-5

HT 0.64 0.66 0.66 0.51 0.56 0.57
DeepL 0.60 0.73 0.72 0.53 0.61 0.71
Google Translate 0.78 0.70 0.76 0.50 0.50 0.83
M2M-100-418M 0.57 0.70 0.76 0.57 0.75 0.75
NLLB-600M 0.50 0.73 0.69 0.58 0.50 0.71
TowerInstruct-7B-v0.2 0.54 0.70 0.74 0.51 0.55 0.54
Aya-101-13B 0.53 0.69 0.76 0.53 0.72 0.68
Gemma-7B 0.54 0.65 0.63 0.55 0.55 0.53
Llama-3.1-IT-8B 0.50 0.73 0.76 0.51 0.64 0.65
Mean 0.58 0.70 0.72 0.53 0.60 0.66

Table 2: Performance of the sufficiency classifier across different ranks (top-1, top-3, top-5) using LOO and IG
methods for HT, NMT, and LLM systems. The highest scores for each method are highlighted in teal (LOO) and
gray (IG), with the highest scores boldfaced to highlight the strengths of each method.

is a semantic metric built upon the XLM-R archi-
tecture.

Results. Table 1 shows that across different mod-
els, COMET scores remain relatively stable, while
BLEU scores show greater fluctuation. DeepL
stands out as the top performer, achieving the
highest scores in both COMET (0.85) and BLEU
(34.85). TowerInstruct-7B-v0.2 also performs well,
particularly in COMET, reflecting high translation
quality. Two systems, LLaMAX-3.1-8B-Alpaca
and MADLAD-400-MT, exhibit poor translation
quality. The high number of translation errors
could skew the explainability results, focusing on
these mistakes rather than models’ intrinsic charac-
teristics. Therefore, we exclude these models for
further experiments. We perform a correlation anal-
ysis, and find no significant correlation between
translation quality and O/T classification accuracy.
See Appendix C for more details.

3.3 Do explanations capture sufficient
information?

Understanding the effectiveness of model predic-
tions often relies on the quality of explanations
derived from those models. In this context, an ex-
planation refers to the rationale behind a model’s
predictions, specifically identifying the input to-
kens (features) that most significantly influence the
classification outcome. We follow the approach
outlined by Xie et al. (2024) to evaluate the suffi-
ciency of these explanations, as defined by Jacovi
et al. (2018) and Yu et al. (2019). Sufficiency refers
to the average change in predicted class probability
when only the top k influential tokens are retained.

This metric assesses how well the top k attribu-
tions explain the model’s predictions, ultimately
determining whether these explanations faithfully
represent the model’s decision-making process.

Previous research (Amponsah-Kaakyire et al.,
2022) has shown that feature attribution including
IG can be used to identify input tokens that are
particularly important to O/T classification results
for original texts and human translations.

However, whether this holds true across differ-
ent types of translations, such as those generated
by large language models (LLMs) or neural ma-
chine translation systems (NMT), remains under-
explored. Bizzoni et al. (2020) investigated this
problem using PoS perplexity scores and syntac-
tic dependency lengths. More recently, Luo et al.
(2024) systematically investigate the differences in
the distribution of translation divergences between
HT and MT through a large-scale, fine-grained
comparative analysis, focusing on morphosyntactic
variations. In contrast, our approach investigates
lexical (words and PoS) differences by analysing
explanations from O/T classifiers.

Our goal is to identify the key features that set
apart translation artifacts produced by LLMs, NMT,
and HTs from the text originally authored in the
target language. To evaluate the sufficiency of our
methods—specifically Leave-One-Out (LOO) and
IG—we separately extract the top k tokens with the
highest attribution scores for each sentence in the
training set (see Section 2.1). We then construct
datasets with sentences consisting only of these
top k tokens while maintaining the same labels.
O/T classifiers are then trained on these datasets,
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Figure 1: Level of intersection between top-5 most im-
portant explanations across different translation meth-
ods using LOO method.

where k = {1, 3, 5}, and we subsequently assess
the classifiers’ accuracy on the test set (Table 2) 9.

3.3.1 Sufficiency

If we can maintain high accuracy of O/T classifier
using only the k tokens with the highest attribution
scores, this indicates that the explainability meth-
ods (LOO and IG) work as intended, allowing us to
efficiently identify important differences between
translations and originally authored sentences in
the target language.

Results. Table 2 shows that high accuracy for
O/T is consistently maintained for the top k tokens
with the highest attribution scores, indicating that
the explainability methods (LOO and IG) function
as intended. On average, as the number of tokens
increases, we see an improvement in the sufficiency
scores, indicating that the features we are extracting
are indeed important.

Moreover, LOO is able to achieve much higher
sufficiency score on top-1 tokens from certain
model outputs as compared to IG, suggesting that
LOO may be more effective at pinpointing the most
critical token for classification. The reason for
that might be that Leave-One-Out (LOO) directly
removes each word and measures the impact on
model prediction, giving a more precise attribu-
tion score. In contrast, Integrated Gradients (IG)
require pooling attributions across the dimensions
of an embedding and averaging attributions across
subwords when a word is split into pieces, which

9We modified the train set for the sufficiency experiment
but left the test set unchanged to ensure fair evaluation.

Figure 2: Level of intersection between top-5 most im-
portant explanations across different translation meth-
ods with IG.

may provide better performance in context, but
lower it when focusing on a single word.

The LOO method achieves its highest top-1 suf-
ficiency score of 0.78 across all models for Google
Translate, underscoring its potential effectiveness
in identifying essential tokens. In contrast, the IG
method records its highest top-5 sufficiency score
of 0.83 for the same translation system, showcasing
its strength in capturing significant features across
a broader range of tokens.

4 Feature Analysis of LLM, NMT, and
Human Translation

4.1 Feature Overlap Analysis

We conduct an intersection analysis of linguistic
features (input tokens), focusing specifically on
sentences for which we can establish a one-to-one
correspondence between outputs of different trans-
lation systems. For these sentences, we apply both
LOO and IG using previously trained O/T classi-
fiers for HT, NMT, and LLM datasets. This process
enables us to compute attribution scores for indi-
vidual tokens within each sentence. Using these
scores, we extract the top-k most important tokens
(k = 1, 3, 5) for each sentence.

Following this, we calculate the intersection be-
tween the LOO and IG results for different trans-
lation systems using the Jaccard Similarity Coeffi-
cient, which represents the percentage of common
tokens and takes a value from 0 to 1. A high in-
tersection among the top-k tokens indicates robust
features (tokens) that are consistently identified as
important across different translation models.
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Conversely, if the intersection between systems
and/or human translations is low, it indicates that
the translations exhibit different features. Figure 1
presents the pairwise Jaccard values for the top-5
features derived from the Leave-One-Out (LOO)
method. Each cell quantifies the degree of overlap
between the top features of two different translation
systems, with darker shades representing higher
overlaps. Notably, the highest intersection is ob-
served between TowerInstruct-7B-v0.2 and DeepL,
with an overlap of 0.25, suggesting a strong simi-
larity in the features identified for these models.

Another substantial intersection occurs between
Gemma-7B and M2M-100-418M at 0.24, indicat-
ing considerable alignment in their outputs. In
contrast, human-generated content shows relatively
lower intersections with machine models, such
as 0.16 with TowerInstruct-7B-v0.2 and DeepL
and 0.13 with M2M-100-418M, underscoring the
unique nature of human translations compared to
machine-generated translations.

Similarly, Figure 2 shows the pairwise Jaccard
values for the top-5 features (tokens) obtained us-
ing Integrated Gradients (IG). The most notable
overlap is between Google Translate and DeepL,
with a significant intersection of 0.28, demon-
strating a strong similarity in their feature selec-
tions. A notable intersection of 0.27 is observed
between M2M-100-418M and both Aya-101-13B
and Google Translate, suggesting that these models
yield quite similar results. The lower intersection of
0.11 between TowerInstruct-7B-v0.2 and Aya-101-
13B emphasizes the differences in their outputs.
The intersection with human translation identified
by IG is notably highest for TowerInstruct-7B-v0.2,
at a value of 0.16.

The combined results suggest that while certain
LLMs, like Aya-101-13B and TowerInstruct-7B-
v0.2, closely align with NMT models such as M2M-
100-418M and DeepL in their feature selection,
others retain unique classification features. Further-
more, there are notable differences in how closely
these models align with human translations, with
TowerInstruct-7B-v0.2 demonstrating the highest
similarity to HT as shown by both LOO and IG.

4.2 Feature Frequency Analysis
We examine the frequency of different Part of
Speech (PoS) tags across translation systems, fo-
cusing on the top k features flagged by LOO/IG
for each sentence. For each system, we group sen-

tences – both human and machine translations –
into predefined sentence length bins. These bins
are divided into ranges (e.g., 0-10, 10-15, 15-20
words), and for each, we calculate and normalize
the frequency of the identified features based on the
total number of sentences in that bin. This helps
us compare trends in PoS distribution as sentence
length increases. We are examining trends for the
9 most common PoS.

To ensure the reliability of our measurements,
we account for the margin of error (standard de-
viation) obtained through bootstrapping by sub-
sampling each bin 1,000 times while maintaining
the PoS distribution within each sentence. In the
graphs we show the standard deviation with shad-
ing. Figure 3 illustrates variations in PoS distri-
bution, showing nine subplots for adverbs (ADV),
verbs (VERB), determiners (DET), auxiliary verbs
(AUX), nouns (NOUN), pronouns (PRON), adjec-
tives (ADJ), adpositions (ADP), and punctuations
(PUNCT).

For ADV, most models—both NMT and
LLM—use fewer adverbs than HT. However,
Llama-3.1-8B demonstrates frequencies that are
closer to HT as sentence length increases, while
TowerInstruct-7B-v0.2 diverges with longer sen-
tences. NMT models like M2M and Google Trans-
late underproduce ADV compared to HT, whereas
DeepL aligns more closely with HT and tends to
overproduce ADV with longer sentences.

ADP use in HT increases with sentence length,
and most NMT and LLM models follow this
trend, although models like Google Translate show
slightly lower frequencies in longer sentences. Py-
lypenko et al. (2021) find that the relative frequen-
cies of ADV and ADP in PoS tagging are strong
indicators of translationese in HT.

For VERB, both HT and most NMT and LLM
models maintain a steady frequency, though the
models generally underproduce compared to the hu-
man translation trend. For DET, HT usage slightly
increases with sentence length, while all LLM and
NMT models, except DeepL, tend to use determin-
ers more frequently.

In the case of PRON, most models tend to align
with the human trend for shorter sentences. How-
ever, as sentence length increases, their frequen-
cies start to deviate from each other. NLLB-600M
demonstrates a substantially higher frequency than
human translations across all sentence lengths.

In ADJ usage, HT remains relatively stable,
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Figure 3: The frequency of the top PoS categories flagged by LOO across different sentence length bins. The x-axis
of each subplot represents sentence length, divided into ranges (0-10, 10-15, 15-20, etc.), and the y-axis shows PoS
frequency, indicating how often each PoS occurs in sentences of different lengths.

showing a slight decrease as sentence length in-
creases. All NMT and LLM models exhibit lower
adjective frequencies overall, with their trends be-
ing extremely similar across all sentence lengths.

For AUX, HT demonstrates a consistent de-
cline as sentence length increases. Most NMT
models follow this trend, except for NLLB-600M,
which shows significantly higher AUX usage.

Similarly, Llama-3.1-8B-Instruct exhibits slightly
higher AUX frequencies compared to HT. The fre-
quency of NOUN usage is maximal for sentences
of length 10-15 and then consistently decreases
for longer sentences. HT and most models seem
to follow this trend, except for two NMTs (M2M-
100 and Google Translate), which tend to over-
produce nouns in very long sentences. For HT
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and NMT/LLM, the frequency of PUNCT usage in
sentences of length 10-15 is lower than in shorter
sentences, although there is an increasing trend for
sentences longer than 15. Google Translate ex-
hibits notably higher PUNCT frequencies than all
other models and HT, although its usage declines
in very long sentences.

Overall, LLMs exhibit PoS patterns (for 6 out of
9 tags) that closely align with human translations,
whereas NMT models show greater deviations, par-
ticularly regarding PUNCT. NMT models tend to
underproduce ADV, and for some other parts of
speech (PoS) like ADP or PRON, they show signifi-
cant divergence. In contrast, LLMs exhibit stronger
agreement in trends and align more closely with
HT, although they still demonstrate some overuse
in short sentences. Both NMTs and LLMs un-
derproduce ADJ compared to HT, particularly in
longer sentences. LLMs better mimic human usage
in ADV and AUX frequencies, especially in longer
sentences. Appendix B displays the frequency plots
of the top PoS categories identified by Integrated
Gradients (IG) across various sentence-length bins.

5 Conclusion

In this work, we systematically explore the trans-
lation divergences between LLMs, NMTs, and hu-
man translations. Our key findings show distinct
differences in how these systems approach trans-
lation, despite advancements in LLMs that allow
them to produce high-quality outputs. We find that
while LLMs often exhibit translation patterns more
similar to human translations compared to tradi-
tional NMT models, they still diverge from orig-
inally authored text in the same language. Over-
all, we find that automatically translated sentences
from both NMTs and LLMs are consistently iden-
tified with higher accuracy in O/T classification
tasks than human-translated ones. This supports
the hypothesis that machine-translated texts are
more easily distinguishable from original texts than
those translated by humans (Rubino et al., 2016;
Pylypenko et al., 2021).

To better understand the distinctions between
translations produced by LLMs and NMTs com-
pared to human translations, we employ Leave-
One-Out and Integrated Gradients explanation
methods to extract and analyze lexical features
identified by translation classifiers. Our findings
indicate that even when using a sufficiency-based
approach, we can recover a significant amount of

O/T classification accuracy. This demonstrates that
these features are effective in distinguishing be-
tween automatic and human translations.

Further, our results indicate that sufficiency-
based approach is particularly effective at iden-
tifying single critical features, while Integrated
Gradients (IG) capture a broader range of impor-
tant features. Interestingly, we observe that certain
LLMs align closely with NMT systems in their fea-
ture selection, demonstrating similarities in their
approaches. However, human translations consis-
tently exhibit lower overlap with both LLM and
NMT outputs, particularly regarding crucial fea-
tures like punctuation and specific PoS.

Furthermore, our frequency analysis of PoS tags
reveals that LLMs align more closely with HT in
their usage, especially in terms of adverbs, and
auxiliary verbs, while NMT models tend to over-
produce specific tags in shorter sentences. This
suggests that LLMs, although not perfect, are mak-
ing strides in mimicking human translation pat-
terns. Our findings highlight the characteristics that
define the outputs of various translation systems.
However, despite advances in machine translation,
human translations continue to display distinctive
characteristics, particularly in their nuanced use of
linguistic features, making them less prone to the
artifacts seen in machine-generated texts.

Limitations

Limitations of Lexical Features. The results
presented in this study rely entirely on the lexi-
cal features derived from Leave-One-Out (LOO)
and Integrated Gradients (IG), which may fall short
of capturing the intricacies of translation quality.
Moreover, translation artifacts can arise at both
syntactic and semantic levels (Bizzoni et al., 2020;
Briakou and Carpuat, 2020), aspects that this re-
search does not address. This leaves an exploration
of these dimensions to future work.

Prompting Choice. Prompting has demonstrated
varying sensitivity to the choice of templates and
examples (Zhao et al., 2021). In machine transla-
tion (MT), prior studies have used different tem-
plates (Brown et al., 2020; Chowdhery et al., 2023;
Wei et al., 2021). In our work, we reevaluate these
templates to determine the optimal one. However,
the format and wording of the prompt significantly
influence how the LLM comprehends the task and
performs translation, potentially impacting our find-
ings, which we leave for future exploration.
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Stability of Model Outputs. Additionally, we
have assumed that the output of a specific model
would remain stable throughout the analysis. How-
ever, LLMs are frequently updated, which can lead
to changes in their writing style and coherence.
Such variations might cause explainability methods
to underperform, exacerbating the issues discussed
in this work.

Constraints of Sentence-Level Analysis. Most
NMT models utilized in this study function effec-
tively at the sentence level, necessitating that we
translate individual sentences for both NMTs and
LLMs to ensure consistency. Thus, our sentence-
based analysis with LLMs is also a limiting factor,
as it restricts our ability to capture broader contex-
tual nuances (Koneru et al., 2024). This would en-
tail expanding our analysis beyond sentence-level
assessments.
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A Prompts

LLaMAX-3.1-8B-Alpaca

Below is an instruction that describes a task, paired with an input that provides
further context.
Write a response that appropriately completes the request.
### Instruction: Translate the following sentences from {source} to {target}.
Input:
{input_sentence}
### Response:

TowerInstruct-7B-v0.2
Translate the following sentence into {target}.
{source}: {input_sentence}
{target}:

Aya-101-13B

Translate to {target}: {input_sentence}

LLaMA-3.1-IT-8B
Translate the following sentence from {source} to {target}:
{input_sentence}
{target}:

Gemma-7B
Translate this sentence from {source} to {target} without any comments:
{source}:
{input_sentence}
{target}:
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B

Figure 4: The frequency of the top PoS categories flagged by IG across different sentence length bins. The x-axis of
each subplot represents sentence length, divided into ranges (0-10, 10-15, 15-20, etc.), and the y-axis shows PoS
frequency, indicating how often each PoS occurs in sentences of different lengths.
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C Correlation Analysis

We calculate Spearman’s correlation to analyze the relationship between translation quality and O/T
classification accuracy, considering a significance level α = 0.05. We find Spearman’s correlation between
COMET and Accuracy to be −0.43 with p-value 0.28, and −0.63 with p-value 0.1 between BLEU and
Accuracy. Correlations are not statistically significant; therefore, given our data, there is no evidence to
support the notion that poorer translations are more easily classified as translated or non-translated texts.
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Abstract

Machine translation (MT) evaluation has
evolved toward a trend of fine-grained gran-
ularity, enabling a more precise diagnosis of
hidden flaws and weaknesses of MT systems
from various perspectives. This paper exam-
ines how MT systems are potentially affected
by certain grammatical features, offering in-
sights into the challenges these features pose
and suggesting possible directions for improve-
ment. We develop a new test suite by extracting
7,848 sentences from a multi-domain Chinese-
English parallel corpus. All the Chinese text
was further annotated with 43 grammatical fea-
tures using a semi-automatic method. This test
suite was subsequently used to evaluate eight
state-of-the-art MT systems according to six
different automatic evaluation metrics. The
results reveal intriguing patterns of MT perfor-
mance associated with different domains and
various grammatical features, highlighting the
test suite’s effectiveness. The test suite was
made publicly available and it will serve as an
important benchmark for evaluating and diag-
nosing Chinese-English MT systems.

1 Introduction

A test suite or a challenge set is a collection of
customized or artificially constructed texts used
for exhaustively and systematically diagnosing the
hidden faults and specific barriers of models in the
field of natural language processing (NLP) (King
and Falkedal, 1990; Balkan, 1994). It also comes
in handy in machine translation (MT) evaluation
and has currently experienced an increased weight
in the MT community alongside the significant
improvement of average automatic translation qual-
ity especially in the era of neural machine transla-
tion (NMT) and large language model (LLM) (Bur-
chardt et al., 2017; Kocmi et al., 2023).

By leveraging test suites, it is possible to detect
the strengths and weaknesses of apparently per-
fect MT systems in a linguistically driven fashion

and at a fine-grained level. However, on the one
hand, most previous studies have concentrated on a
limited set of language phenomena (Guillou et al.,
2018; Popović, 2019; Mukherjee and Shrivastava,
2023), providing only a narrow view of system ca-
pabilities. On the other hand, there is a notable
scarcity of research and resources concerning non-
Latin script languages, such as Chinese (Chen et al.,
2023), which require some special handling of MT
systems. These facts underscore the need for a
large-scale test suite that covers a broad variety of
grammatical features appearing in Chinese-English
renderings.

Inspired by the grammatical test suite developed
by the German Research Center for Artificial Intel-
ligence (DFKI) (Manakhimova et al., 2023, etc.),
we create a test suite for Chinese-English automatic
translation focusing on multiple Chinese grammat-
ical features, and based on which we conduct a de-
tailed analysis of the state-of-the-art MT systems,
including popular commercial NMT systems and
advanced LLMs. The UM parallel corpus in the
language pair of Chinese-English (Tian et al., 2014)
originally containing segments from seven domains
serves as the basis for extracting test sentences for
43 distinct Chinese grammatical features. The final
test suite comprises 7,848 well-annotated Chinese
sentences (at least 50 items for each grammati-
cal feature), each paired with an English reference
translation. We report the performance of eight
MT systems and discuss the impact of 43 gram-
matical features, based on scores generated by six
mainstream automatic metrics and supplemented
by an analysis of manually identified error cases.
We make our test suite, system outputs, evaluation
scores, and corresponding codes available online
for further research purposes1.

The main contributions of our work are summa-
rized here: 1) We present a grammatical-feature-

1https://github.com/florethsong/testsuite-zh-
grammaticalfeature
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based and multi-domain test suite for fine-grained
Chinese-English translation evaluation. 2) We per-
form a linguistically driven evaluation to compare
the overall performance of different NMT systems
and LLMs. 3) We conduct further analysis of var-
ious influencing factors in our study from the as-
pects of automatic evaluation metrics and other ex-
ternal features of sentences to examine the impacts
of different grammatical features.

This paper is structured as follows: Section 2
presents a list of studies that are related to the cur-
rent work. Section 3 shows the main procedure of
the construction of the test suite including data ex-
traction and annotation. In Section 4, we describe
the experiments of applying our test suite on the
mainstream MT systems and give an analysis of the
results. Section 5 provides additional discussions
on the other interfering factors that may also inter-
act with grammatical features to impose effects on
MT. Section 6 outlines our conclusion and future
work.

2 Related Work

In the context of probing linguistically nuanced yet
critical weaknesses in MT systems to guide future
enhancement, the Conference of Machine Transla-
tion (WMT) has introduced test suite tracks since
2018, aimed at receiving in-depth insights into the
fine-grained performance of MT systems (Macke-
tanz et al., 2018; Guillou et al., 2018; Rysová et al.,
2019; Popović, 2019; Kocmi et al., 2020; Bawden
and Sagot, 2023; Mukherjee and Shrivastava, 2023;
Manakhimova et al., 2023; Chen et al., 2023, inter
alia).

Standing out from many studies of MT evalu-
ations dedicated to one or a few textual factors,
e.g. Guillou et al. (2018) on pronouns, Rysová
et al. (2019) on discourse-related errors, Popović
(2019) on conjunctions, Kocmi et al. (2020) on
gender coreference and bias, Bawden and Sagot
(2023) on user-generated non-standard content,
and Mukherjee and Shrivastava (2023) on multiple
domains and writing styles, the series of work by
DFKI (Macketanz et al., 2018; Avramidis et al.,
2019, 2020; Macketanz et al., 2021, 2022; Man-
akhimova et al., 2023) constructed a test suite cov-
ering more comprehensive linguistic phenomena.
This ever-evolving test suite comprises over 10,000
sentences now, covering up to 110 linguistic phe-
nomena, such as false friends, named entities, nega-
tions, and so on, and across three translation direc-

tions: German↔ English, English→ Russian. By
applying the combination of regular expressions
and manual checks for annotating the linguistic
phenomena, they test the capacity of advanced MT
systems submitted to the annual WMT tasks for
tackling specific translation difficulties associated
with such phenomena. Their latest study (Man-
akhimova et al., 2023) reveals that the mainstream
MT systems face great challenges with certain cate-
gories of linguistic phenomena, often in a language-
dependent manner. Their detailed findings further
enable MT developers to facilitate their systems
by considering scenarios prone to failure and then
taking corrective actions.

Beyond the translation between alphabetic lan-
guages in the Indo-European language family,
the task regarding pictographic texts in the Sino-
Tibetan language family, represented by Chinese,
is also open to exploration. As an analytic and iso-
lating language, Chinese has very different ways
of expressing syntactic and semantic relations be-
tween constituents, resulting in potential ambigu-
ities that largely rely on context to resolve. The
issue becomes more salient in the automatic transla-
tion task. Particularly, the presence of certain gram-
matical features in Chinese will potentially cause
different problems. However, the comprehensive
exploration and the test suites with attention to var-
ious Chinese grammatical features remain largely
unconsidered. The only Chinese MT test suite
submitted to the WMT was constructed by Chen
et al. (2023) for investigating the influence of a
limited set of features of Chinese source sentences
including words, length, grammar, and entropy. Be-
sides, the studies of Cai and Xiong (2020), Tang
et al. (2021), and Song and Xu (2024a,b) provided
focused glimpses to some certain Chinese phenom-
ena. They examined the abilities of NMT systems
to translate discourse phenomena, negation, and
multiword expressions across English and Chinese
by using a self-built test suite with annotation of
pronouns, discourse connectives, and ellipses, an
existing corpus with negation information created
by Liu et al. (2018), and an extended dataset of
WMT test set, respectively.

Building on the light of DFKI test suites (Man-
akhimova et al., 2023, etc.) and addressing the lack
of Chinese-specific test suites, this study is dedi-
cated to providing an inclusive test suite covering
43 Chinese grammatical features and offering a full
evaluation of mainstream MT systems. Addition-
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ally, depending on the domain-balanced nature of
our basic data, i.e. UM corpus (Tian et al., 2014),
our test suite is suitable for comparisons across
seven textual domains.

3 Construction of a Test Suite with
Chinese Grammatical Features

This section details the processes in test suite con-
struction. We first introduce the theoretical frame-
work of the Chinese grammatical features, then
describe the procedures of data selection and anno-
tation, and finally present the result and statistics
of the data.

3.1 The Framework of Chinese Grammatical
Features

For the categorization framework for Chinese gram-
matical features, we adopt the one in our previ-
ous work (Xu and Lin, 2023), which is developed
in accordance with a reference grammar of Chi-
nese (Huang and Shi, 2016). The framework sys-
tematically addresses 157 typical linguistic phe-
nomena, i.e. grammatical features, in Chinese, or-
ganized across various linguistic aspects, including
words, structure, semantics, and pragmatics. Word-
level structures are concerned with how a word is
formed by morphemes. For instance, reduplica-
tion is a typical phenomenon to create new words
in Chinese. For example, the adjective高兴 gao
xing ‘happy’ can be reduplicated to form another
adjective word高高兴兴 gao gao xing xing ‘very
happy’. The structure category mainly refers to the
syntactic structure of sentences, phrases, and spe-
cial constructions. This framework identifies three
semantic subcategories: semantic roles, aspect, and
negation. The pragmatic category includes sen-
tence types, information packaging constructions,
attitudinal particles/adverbs, deixis, and anaphora.

Whether a certain grammatical feature that is
present in the source language might cause prob-
lems in automatic translation is largely dependent
on the equivalence of the counterpart phenomenon
in the target language. Take reflexives as an exam-
ple. Both the two languages use reflexive pronouns
to denote the antecedent nominal phrase. However,
there are also some fine distinctions in their usages,
leading to obstacles for cross-lingual translation.
As shown in Example (1), while in Chinese the
pronoun你 ni ‘you’ can be optional, the English
translation must combine the pronoun ‘you’ in or-
der to obtain the correct reflexive ‘yourself’.

(1) 你要照顾好(你)自己。
ni
you

yao
should

zhaogu
take_care

hao
good

(ni)
(you)

ziji
self

‘You should take care of yourself.’

Many grammatical features are Chinese-specific,
such as classifiers, as shown in example (2), BA
constructions as shown in (3), headless NP as
shown in (4), and so on. Depending on their gram-
matical differences to varying degrees, different
Chinese grammatical features might impose differ-
ent effects on MT systems. It is thus necessary to
create a test suite that covers various grammatical
features with each one associated with a set of ex-
amples, which can be used to analyze the effects
of different grammatical features on MT systems
based on statistical methods.

(2) 一顿晚餐

yi
one

dun
CLF

wancan
dinner

‘a dinner’

(3) 我把这些书都看完了。

wo
I

ba
BA

zhexie
these

shu
book

dou
all

kan
read

wan
finish

le
PRF

‘I have read all these books.’

(4) 羡慕的是缺乏的。

xianmu
admire

de
DE

(pro) shi
be

quefa
lack

de
DE

(pro)

‘What is admired is the lacked.’

3.2 Data Preparation
We extract Chinese source sentences and their cor-
responding English reference translations from the
UM corpus (Tian et al., 2014), a high-quality and
large-scale parallel corpus embracing eight dis-
tinct domains: Education (abbreviated as ‘Edu’,
with 4.5 million bilingual sentence pairs), Laws
(‘Laws’, 2.2M), News (‘News’, 4.5M), Science
(‘Sci’, 2.7M), Spoken (‘Spk’, 2.2M), Subtitles
(‘Sbt’, 3M), Thesis (‘Ths’, 3M), and Microblog
(‘Mbg’, 5K). We exclude the Microblog section
due to its small number of sentence pairs, which is
far fewer than the other domains, making it difficult
to ensure a rough balance across different domains.
We select sentences with 10 to 60 Chinese char-
acters to minimize the impact of source sentences
with extreme lengths (excessively long or short) on
translation quality as well as to avoid the existence
of too many different grammatical features in a sin-
gle sentence that may mix the effects of them on
translations.
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Grammatical Feature Abbreviation Precision Agreement Sum Edu Laws News Sci Spk Sbt Ths

Verb Phrase VP 0.83 0.83 220 24 33 32 41 41 27 22
Noun Phrase NP 0.91 0.98 1440 152 344 190 184 184 145 241
Adjective Phrases AdjP 0.36 0.44 230 18 46 42 24 19 16 65
Adverb Phrases AdvP 0.83 0.95 951 109 180 141 152 100 95 174
Pre-verbal Preposition Phrase PreVPP 0.91 0.94 163 14 29 26 23 27 18 26
Post-verbal Preposition Phrase PstVPP 0.28 0.77 146 23 20 26 22 29 24 2
Participant Preposition Phrase PtcpPP 0.89 0.83 301 26 82 44 23 38 27 61
Topic Preposition Phrase TopPP 0.98 0.98 213 25 30 31 35 31 22 39
Reference Preposition Phrase RefPP 0.96 0.99 347 42 69 52 49 46 34 55
Condition Preposition Phrase CondPP 0.51 0.89 105 18 33 18 9 6 3 18
Locative Preposition Phrase LocPP 0.5 0.93 96 15 18 18 12 13 12 8
Sentence-Initial Preposition Phrase SentIPP 0.33 0.82 64 7 5 11 9 11 3 18
Space Preposition Phrase SpcPP 0.76 0.86 155 18 32 20 17 29 24 15
Source Preposition Phrase SrcPP 0.96 0.96 191 27 29 26 28 26 26 29
Path Preposition Phrase PathPP 0.8 0.93 132 12 16 23 19 28 16 18
Goal Preposition Phrase GoalPP 0.65 0.68 127 21 16 22 19 27 19 3
Direction Preposition Phrase DirPP 0.47 0.48 95 20 6 18 12 19 17 3
Space Extension Preposition Phrase SpanPP 0.93 0.18 169 25 28 25 22 25 16 28
Standard Classifier StdCLF 0.98 0.99 195 29 39 28 24 28 22 25
Individual Classifier IndCLF 0.94 0.97 284 28 58 36 40 41 35 46
Event Classifier EvCLF 0.97 0.97 184 25 23 24 24 31 27 30
Kind Classifier KindCLF 0.98 0.99 185 25 23 29 29 27 22 30
Approximation Classifier ApprCLF 0.35 0.81 68 10 13 14 11 10 6 4
Temporal Sequence Complex Sentence TmpSCpl 0.99 0.98 176 21 28 29 26 26 19 27
Concessive Complex Sentence ConcCpl 0.99 0.99 156 20 10 29 27 29 14 27
Causative Complex Sentence CausCpl 0.46 0.82 82 13 8 17 20 13 2 9
Negation BU BUNeg 0.96 0.91 222 31 37 30 32 35 23 34
Negation MEI/MEIYOU MEINeg 0.98 0.97 225 32 33 33 33 36 33 25
Negation in Imperative Sentences ImpNeg 0.36 0.82 83 8 37 11 12 5 10 0
Sublexical Negation LexNeg 0.97 0.97 182 23 30 26 28 24 20 31
Negative Polarity Items NPI 0.98 0.92 166 19 27 28 29 24 14 25
Deixis Deixis 0.95 0.57 272 37 26 38 46 48 45 32
Reflexive Refl 0.96 0.76 195 25 26 29 30 31 25 29
Reciprocal Recp 1 1 174 23 27 26 26 23 20 29
Perfective GUO GUOPrf 0.84 0.91 154 21 24 27 20 28 26 8
Progressive ZAI ZAIProg 0.99 0.98 184 26 23 28 27 30 21 29
Passive Construction Pass 0.66 0.84 131 15 30 23 18 19 17 9
Relative Construction Rel 0.78 0.85 305 16 119 32 25 31 19 63
Comparative Construction Cmpr 0.95 0.99 191 25 28 28 27 24 23 36
BA Construction BA 0.99 0.99 199 21 38 30 28 28 23 31
Copular SHI SHICop 0.98 0.94 230 34 36 38 31 33 23 35
Verbal LE VerbLE 0.86 0.96 194 31 10 33 31 28 25 36
Quantifier Only ZHI ZHIQtf 0.97 0.98 220 22 24 28 25 28 26 28
Overall/Total 0.81 0.87 9763 1176 1793 1459 1369 1379 1084 1503
Sentence Number 7848 1035 1109 1207 1187 1175 927 1208

Table 1: The detailed information of our test suite including the definition of grammatical features and their corre-
sponding numbers of instances in each domain. ‘Precision’ refers to the precision of our self-created grammatical
feature identifier in accordance with the results after manual checking. ‘Agreement’ shows the inner consistency
between the judgments given by the two checkers. The acronyms including ‘BU’, ‘MEI/MEIYOU’, ‘GUO’, ‘ZAI’,
‘SHI’, ‘LE’, ‘BA’, and ‘ZHI’, are the specific markers indicating particular grammatical features.

3.3 Grammatical Feature Annotation

In the first step, we use a regular-expression-based
tool we previously built in Xu and Lin (2023) to
identify the Chinese grammatical features in each
source sentence automatically. After all the sen-
tences are annotated with a set of grammatical fea-
tures, we remove the grammatical features that ap-
pear fewer than 30 times in all sentences of each
domain to ensure a fairly balanced data distribu-
tion in statistics, by which our focus is narrowed

to 43 target grammatical features out of 157 in
the original framework for our test suite. Then,
for each grammatical feature, we randomly select
about 210 candidate sentences (30 for each of the
seven domains) according to the principle of pri-
oritizing those carrying the fewest labels aiming
to reduce the mixed effects of multiple features in
one sentence. Since some sentences can finally
possess multiple features, certain feature groups
may include more than 210 sentences.
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In the second step, the automatically generated
labels of grammatical features are double-checked
by two native speakers well-trained in Chinese lin-
guistics. The screening process is primarily fo-
cused on identifying false positive grammatical
features assigned to sentences. In cases where an-
notators disagree, they are required to discuss and
reach a final decision together. This filtering pro-
cess resulted in a validated test suite of a total of
7,848 sentence pairs, including 1,127 pairs with no
specific grammatical features. Detailed informa-
tion on the data is shown in Table 1. We see that
the average precision of the automatic annotation
tool is about 81% and the agreement of the two
annotators in identifying false positives is 87%.

4 Evaluation of Chinese-English MT
Systems with the Test Suite

In this section, we use our test suite to evaluate
eight popular NMT systems and LLMs with six
mainstream automatic metrics. We will briefly out-
line these systems and metrics, and then describe
the results of the experiments we conduct to com-
pare the performance of different MT systems on
our whole test suite as well as the subgroups di-
vided by domains and grammatical features.

4.1 Evaluated Translation Systems

Aiming at gaining a broad view of the capabilities
of leading MT systems and representative LLMs to
tackle diverse Chinese grammatical features, we re-
fer to several widely recognized leaderboards, e.g.,
WMT (Kocmi et al., 2022), SuperCLUE (Xu et al.,
2023), SuperBench2, and Intento3. Eventually, four
commercial NMT engines, Baidu, Niu, Google (ba-
sic v2 edition), DeepL and four advanced LLMs
including Ernie (-4 turbo), Qwen (-turbo), GPT
(-4o), and Claude (-3 opus) are selected for evalu-
ation. We apply default settings to the NMTs and
conduct a zero-shot translation test for the LLMs,
setting the temperatures to 0.01.

4.2 Automatic Evaluation Metrics

We use six automatic metrics, including two string-
overlap-based metrics: BLEU (Papineni et al.,
2002) and CHRF (Popović, 2015)4, and four neural-

2The online report of SuperBench by Tsinghua Univer-
sity: https://fm.ai.tsinghua.edu.cn/superbench/#/leaderboard

3The online report The State of Machine Translation 2024
by Intento: https://inten.to/machine-translation-report-2024/

4BLEU and CHRF are computed by SacreBLEU imple-
mentations: https://github.com/mjpost/sacrebleu, with ‘True’

network-based ones: two reference-based metrics:
COMET (Rei et al., 2022) and XCMOET (Guer-
reiro et al., 2023), and two reference-free ones:
COMETKIWI-QE (Rei et al., 2023) and XCOMET-
QE (Guerreiro et al., 2023)5.

Based on our observation, different metrics may
produce different results in analyzing the effects of
various factors impacting MT systems. In the fol-
lowing discussions, we will mainly use the average
score of XCOMET and XCOMET-QE (henceforth,
X-AVERAGE), which are proven the most accurate
metrics conforming to human evaluations by the
WMT23 metric shared task (Freitag et al., 2023).
We also provide extended discussions about the
selection of metrics in Section 5.3. For reference,
readers can find the results in all six metrics and
their overall average (denoted as AVERAGE) in
the Appendices.

4.3 Experimental Results

4.3.1 Comparison of Systems
Comparison of Overall Performance Table 2
shows the overall performance of the eight systems
in six different metrics. On average, Google per-
forms the best and Qwen the worst. While most
of the metrics give similar ratings, XCOMET and
XCOMET-QE slightly favor GPT’s performance
more than the others. We can also see that NMTs
achieve marginally better performance than LLMs
across all evaluation results. This is partially at-
tributed to the extremely low scores received by the
LLM: Qwen.

Comparison on Domains Table 3 shows the per-
formance of all the MT systems on different do-
mains in X-AVERAGE scores. Generally, all the
systems show similar trends across different do-
mains with the highest performance on Spoken and
Subtitles and the lowest performance on Thesis and
Laws. While it is unquestionable that domain af-
fects automatic translation, the results may also be
partially influenced by the distribution of sentence
length within each domain. We will give more
discussion about the effects of sentence length in
Section 5.2. Detailed information about the perfor-
mance of systems on different domains in all the
other metrics can be found in Appendix A. Based
on the comparisons between different models, it

in signatures of effective order, lowercase, and whitespace and
taking ‘exp’ as smooth method.

5The series of *COMET are computed by Unbabel imple-
mentations: https://github.com/Unbabel/COMET
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BLEU CHRF COMET XCOMET COMETKIWI-QE XCOMET-QE AVERAGE X-AVERAGE

Baidu 21.6 56.0 80.8 72.7 90.3 93.4 69.1 91.8
Niu 25.1 58.5 81.0 71.6 89.9 92.3 69.7 91.1

Google 27.0 59.8 82.1 72.8 91.6 93.2 71.1 92.4
DeepL 24.3 57.6 80.4 71.7 89.4 92.1 69.2 90.8

Ernie 24.0 58.1 81.5 73.1 91.3 93.3 70.2 92.3
Qwen 16.5 47.0 76.3 65.0 85.4 89.1 63.2 87.3
GPT 22.5 57.0 81.3 73.4 91.1 93.6 69.8 92.4

Claude 23.3 57.7 81.3 73.0 91.0 93.1 69.9 92.1

NMT-AVG 24.5 58.0 81.1 72.2 90.3 92.8 69.8 91.5
LLM-AVG 21.6 55.0 80.1 71.1 89.7 92.3 68.3 91.0

Table 2: The overall performance of MT systems in different metrics. The highest and the lowest scores among
all systems evaluated are highlighted with bold and underlined numbers respectively. ‘AVERAGE’ is the mean of
scores by the six metrics, while ‘X-AVERAGE’ is the mean of scores by XCOMET and XCOMET-QE.
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Edu Laws News Sci Spk Sbt Ths

Baidu 91.9 91.9 93.2 92.5 94.1 93.2 86.5
Niu 91.0 90.6 92.6 92.1 93.5 92.8 85.4

Google 92.8 91.9 93.8 93.2 94.5 93.7 87.3
DeepL 90.8 89.4 92.5 91.6 93.1 92.9 85.6

Ernie 92.4 92.2 93.7 93.1 94.4 93.6 87.1
Qwen 86.7 86.8 88.4 88.5 90.0 89.9 81.3
GPT 92.6 92.3 93.9 93.1 94.4 93.7 86.9

Claude 92.5 91.7 93.7 92.8 94.2 93.4 86.5

NMT-AVG 91.6 90.9 93.0 92.3 93.8 93.2 86.2
LLM-AVG 91.1 90.8 92.4 91.9 93.2 92.7 85.4

Table 3: Performance in X-AVERAGE scores of each
system on different domains. The highest and the lowest
scores among all systems evaluated are highlighted with
bold and underlined numbers respectively.

can be pointed out that Google and GPT share the
top performance on each domain with a minor dif-
ference but Qwen is ranked last across all domains.
Again, NMTs show a generally higher performance
than LLMs across all domains. However, this is
not the case when delving deeper into the specific
data excluding Qwen and Google.

Comparison on Grammatical Features Fig-
ure 1 shows the performance of all systems in
X-AVERAGE scores in each grammatical feature

group. The groups are arranged in descending order
based on the average scores of all systems. In gen-
eral, we see that all the systems show similar trends
across different groups. Some grammatical fea-
tures impose strong challenges on the MT systems
such as PathPP, ApprCLF, KindCLF, LexNeg, etc.,
while some other grammatical features are easier
for MT systems to address, like ZAIProg, MEINeg,
NPI, etc. We also see that Ernie, Google, Claude,
and GPT give high performance on sentence groups
of all grammatical features while Qwen performs
obviously the worst among all the systems. The
detailed statistics can be found in Table 15. The
performance in other metrics can be found in Ap-
pendix B.

It is therefore indicated that the presence of cer-
tain grammatical features will potentially affect the
performance of MT systems. We assess the im-
pact of each grammatical feature by conducting a
t-test between the MT performance on the sentence
group containing the target grammatical feature
and that on the remaining sentences. The result
is shown in Figure 2. There are ten grammatical
features imposing significant negative effects on
certain MT systems: PathPP, NP, Rel, KindCLF,
PtcpPP, LexNeg, PreVPP, TmpSCpl, LocPP, and
Cmpr; and there are nine grammatical features hav-
ing significant positive effects instead: ZAIProg,
MEINeg, NPI, Recp, ZHIQtf, AdvP, Refl, SHICop,
and VP. However, it is worth noting that the low
scores on certain grammatical feature groups are
not necessarily occasioned by the translation errors
that are directly linked to the units marking the
grammatical features. There are also many other
implicit factors indirectly associated with the gram-
matical features being worthy of exploration, like
the semantic or syntactic complexity.
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Figure 1: Performance in X-AVERAGE scores of each system on different grammatical features.
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Figure 2: The significance levels of the effects of different grammatical features on the performance of each system
according to t-tests in X-AVERAGE scores between the paired sentence groups with and without each grammatical
feature. The blue squares on the left mean that the sentences containing a certain grammatical feature tend to
get significantly lower scores than the sentences without them, and the yellow squares on the right vice versa. A
significant difference with p less than 0.05, 0.01, and 0.001 are marked as 1, 2, and 3 respectively.

Since the most advanced automatic metrics are
based on semantic vectors, it requires some con-
sideration of why certain translations receive low
scores, particularly in a specific sentence group.
The following are some case studies to provide
hints of the possible cause of the low translation
scores. We should also keep in mind that this study
is not aimed to provide a full understanding of why
grammatical features can affect MT systems, but
instead provide a different aspect and dimension
for diagnosing MT systems in fine-grained levels.

4.3.2 Case Studies

In the process of translation, the accurate con-
veyance of meaning from the source language to

the target language is important. However, errors
often arise due to misinterpretation of some gram-
matical features, leading to mistranslation that may
alter the meaning of the original text. This case
study manually examines several specific instances
of such errors in the translation.

One of the primary issues in automatic transla-
tion arises from the misinterpretation of path prepo-
sition phrases (PathPPs), as shown in Figure 2. Ta-
ble 4 shows a typical example, where the preposi-
tion沿 yan ‘along’ was misinterpreted, resulting in
mistranslations by several MT systems. The origi-
nal sentence uses the PathPP沿渤海公路 yan Bo-
hai gong lu ‘along Bohai Highway’ to describe how
唐海 Tanghai (a town) extends from east to west.
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Source Text Reference Ernie Qwen Claude

唐海地处唐山“金
三角”中央地带，

Tanghai is located in the
central area of Tangshan’s
“Golden Triangle”,

Tanghai is located in the
central area of Tangshan’s
“Golden Triangle”.

Tanghai is in the heart of
Tangshan’s Golden Trian-
gle,

Tanghai is located in the
central area of the “Golden
Triangle” of Tangshan.

沿渤 海 公
路贯穿东西，

running east and west
along the Bohai Highway.

The Bohai Highway
runs through the east and
west.

linked by the Bohai coastal
highway.

The Bohai Highway
runs through the county
from east to west.

Table 4: Example of mistranslation caused by grammatical feature: path preposition phrase (PathPP).

Source Text Reference Niu Qwen DeepL

如 果 什 么 东 西
是 充 足 的 它 就
是 不 令 人 羡 慕
的 ，羡慕的是 缺
乏的。

When something is in plenty
it is not admired, but
admired in case of scarcity.

If something is sufficient, it
is not enviable, and enviable
is lacking.

What is abundant is unen-
vied; it is the absence that
counts.

If something is sufficient it
is not enviable, envy is lack-
ing.

Table 5: Example of mistranslation caused by the grammatical feature: relative construction (Rel).

However, in translations by Ernie and Claude, the
sentence was incorrectly rendered as ‘The Bohai
Highway runs through the east and west’. Qwen’s
translation, nevertheless, used ‘linked by’ to de-
scribe this relationship, which greatly shifted the
meaning of the source sentence.

Additionally, the translation quality was signif-
icantly affected by the relative construction (Rel)
(see in Figure 2). Table 5 shows a typical example
of relative construction. In the source sentence,羡
慕的 xian mu de ‘(things) that are enviable’ is a
headless clause where the elliptic head noun refers
to东西 dong xi ‘things’ mentioned earlier. Niu’s
translation misinterpreted羡慕的 xian mu de as an
adjectival phrase rather than a subject of the relative
construction, and thus misunderstood the meaning
of the original sentence. Qwen just omitted the real
subject -羡慕的(东西)- of the sub-clause, leading
to mistranslating the adjective 缺乏的 que fa de
‘scarce’ as the subject. DeepL’s translation com-
pletely ignored the relative construction marker的
‘de’ and treated羡慕 xian mu ‘envy’ as the subject.

Another grammatical point that has a significant
negative impact is noun phrases (NPs). NP has
a relatively large number of sentences on Laws
and Thesis (see in Table 1), which have generally
low averaged performance (see in Table 3) possibly
due to their high semantic complexity regarding
professionalism. This partially explains the neg-
ative effects of NP. Particularly, the specialized
terminology within the Thesis category can notably
contribute to the translation challenges.

5 Additional Discussion

In this section, we discuss several potential inter-
fering factors that may also affect the quality of
automatic translation by interacting with grammat-
ical features, including sentence length, domain,
and the effects of different automatic metrics.

5.1 Analysis of Sentence Length

It has long been an observed consensus that
longer sentences are generally more difficult to
MT systems and thus result in lower qualities and
scores (Cho et al., 2014; Koehn and Knowles,
2017). This can also be verified by the signifi-
cant inverse relationship between the lengths of
source sentences and their translation scores given
by human experts as shown in Figure 3, generated
on WMT23 data (Freitag et al., 2023).

Figure 3: The correlation between sentence lengths (x-
axis) and human average translation scores (y-axis) on
WMT23 Chinese-English dataset for the metric shared
task.

1207



To assess whether the significant effects of gram-
matical features as observed are due to differences
in sentence lengths among the groups, we calcu-
lated the average sentence length for each sen-
tence group with a specific grammatical feature
and examined the relationship between average sen-
tence lengths and the corresponding X-AVERAGE
scores. From the result, as shown in Figure 4, we
can see that although certain sentence groups of dif-
ferent grammatical features have different sentence
lengths ranging from 19.39 to 32.18 characters,
they do not show significant correlation with the
average X-AVERAGE scores of the groups, indi-
cating that effects by grammatical features are not
due to the bias of sentence length distribution.
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Figure 4: The correlation between average sen-
tence lengths and X-AVERAGE scores of sentence
groups containing different grammatical features with
Pearson’r = -0.039 and p = 0.802.

5.2 Analysis of Domains
As mentioned in Section 4.3, domains have a signif-
icant influence on the performance of MT systems
due to variations in vocabulary and writing regis-
ters. Therefore, it is important to consider whether
domains have contributed to the observed signifi-
cant impact of certain grammatical features on MT
systems. Reviewing the data in Table 1, we make
all grammatical feature groups maintain a roughly
balanced distribution in terms of sentence number
across the seven domains except Rel, which exten-
sively exists in the domain of Laws. This balance
allows us to focus more on the effects of grammati-
cal features rather than domains when calculating
statistics between feature-accordingly grouped sen-
tences.

Interestingly, the similar trends of MT systems’
performance across different domains may also cor-
relate with other factors e.g. sentence length. Thus,

a further question is whether the effects apparently
imposed by domains on the scores of MT systems
are partially due to the imbalanced distribution of
sentence length across domains. Table 6 displays
the average sentence lengths of different domains
along with their standard deviations. We see that
Spoken and Subtitles have the shortest sentences
while Laws and Thesis have the longest ones, with
a gap of about 20 characters between them. This
may partially explain why MT systems achieve the
best performance when rendering materials in the
former two domains while the worst is in the latter
two domains as shown in Table 3.

Edu Laws News Sci Spk Sbt Ths

23±7 30±11 25±10 21±10 18±6 15±4 29±12

Table 6: Average sentence length of each domain with
the standard deviation.

5.3 Analysis of Evaluation Metrics

Following the hypothesis of regarding human evalu-
ation as the gold standard, the metrics that generate
judgments on translation quality more similar to
humans are superior (Freitag et al., 2023).

In Figure 3, we see that there exists a signifi-
cant negative correlation relationship between sen-
tence lengths and human evaluation scores. To
know if different metrics rate MT qualities simi-
larly regarding sentence length, we examine the
correlations between sentence lengths and scores
generated by six metrics to meta-evaluate their ef-
fectiveness. We provide scatter plots of sentence
lengths and scores based on both WMT23 data (Fre-
itag et al., 2023) and our data, and the results are
presented in Figure 5. On both datasets, XCOMET
and XCOMET-QE exhibit patterns similar to hu-
man evaluations and are therefore considered to
provide more reliable scores, particularly regard-
ing the negative effects of sentence length. How-
ever, BLEU, CHRF, COMET, and COMET-QE
yield judgments on translation quality that are in-
consistent with human evaluations. According to
Table 7, CHRF, COMET, and COMET-QE even
exhibit significant positive correlations, indicating
their bias towards longer sentences. This finding
is consistent with the leaderboard of metrics con-
cluded by WMT23 (Freitag et al., 2023), which
ranks XCOMET and XCOMET-QE as the top per-
formers.

Besides, Table 7 shows that the average system
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Figure 5: The correlation between sentence lengths (x-axis) and average translation scores (y-axis) in different
measures. XCOMET and XCOMET-QE are more consistent with the human evaluation trend in Figure 3. The first
row is on the WMT23 Chinese-English dataset for the metric shared task and the second row is on our test suite.
Metrics show similar patterns on the two different datasets except for COMET and COMETKIWI-QE.

Metric Pearson’r P -value

BLEU 0.016 0.149
CHRF 0.185 *** 0.000

COMET 0.067 *** 0.000
COMETKIWI-QE 0.064 *** 0.000

XCOMET -0.242 *** 0.000
XCOMET-QE -0.302 *** 0.000

AVERAGE -0.006 0.581
X-AVERAGE -0.286 *** 0.000

Table 7: The correlation between sentence lengths and
system average scores in different metrics on our test
suite.

scores of all six automatic metrics (AVERAGE)
do not significantly correlate with sentence length
by offsetting the effects of different metrics. On
the contrary, the average scores of XCOMET and
XCOMET-QE (X-AVERAGE) remain the high reli-
ability by showing a significant negative correlation
between scores and sentence lengths. Therefore,
XCOMET, XCOMET-QE, and X-AVERAGE are
more recommended for practical evaluation.

6 Conclusion and Future Work

In this paper, we investigate the impact of vari-
ous grammatical features (linguistic phenomena)
on eight state-of-the-art NMT systems and LLMs
with a test suite we newly constructed. Although
LLMs have achieved promising performance on
many NLP tasks, NMT systems especially Google
Translate have outperformed most of the LLMs in
the Chinese-English automatic translation task. It
is observed that certain grammatical features pose
a great challenge to NMT systems and LLMs in-
cluding the ones developed by Chinese companies
such as Baidu, Ernie, Niu, and Qwen. We also
discuss other possible factors that may also impact

MT systems including sentence length, domain,
and the evaluation metrics. We find that the The-
sis category is particularly more difficult due to its
comparatively longer sentence and the existence of
a large number of terminologies. In addition, we
confirm that longer sentences are generally more
difficult for MT systems. However, our analysis of
the correlation between the sentence length and dif-
ferent metrics reveals that BLEU and CHRF tend
to rate shorter sentences with lower scores, which
is contradictory to human evaluation. This also
confirms that XCOMET and XCOMET-QE are the
most reliable metrics according to the results of the
WMT23 metrics shared task.

Currently, our test suite does not cover all the
157 grammatical features of Chinese due to the
rareness of some particular grammatical features.
In the future, we plan to extend our test suite to
cover all the grammatical features by resorting to
other resources.

Limitations

One limitation of our study is the absence of human
evaluation scores. Our analysis relies heavily on
automatic metrics, specifically the average score
of XCOMET and XCOMET-QE. The former re-
lies on reference translations and the latter does
not. According to the WMT23 metrics shared task
results (Freitag et al., 2023), both metrics show
a very high correlation with human scores. This
demonstrates the validity and reliability of data in
our study to some extent. While human evaluation
is the most reliable, it is also expensive and imprac-
tical for assessing every MT system. In contrast,
the test suite, combined with automatic evaluation
metrics, offers a convenient and efficient tool for
evaluating any MT systems, providing immediate
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diagnostic reports.
Another limitation of our study is that it does not

cover all the grammatical features of Chinese due
to the scarcity of certain grammatical features. We
plan to address this issue by exploring other data
sources to cover all other grammatical features in
the future.
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A System Performance on Different
Domains

Table 8 to Table 14 show the performance of dif-
ferent systems on different domains in different
metrics. In all the following tables, the highest and
the lowest scores among all systems evaluated are
highlighted with bold and underlined numbers.

Edu Laws News Sci Spk Sbt Ths
Baidu 69.1 71.0 70.5 70.6 69.3 67.2 66.0

Niu 69.3 73.2 70.9 71.2 69.5 67.8 66.0
Google 71.0 75.3 72.6 72.4 70.5 68.6 67.0
DeepL 69.0 71.9 70.9 70.2 69.1 68.8 65.0

Ernie 70.1 72.8 71.4 71.7 69.9 68.3 67.0
Qwen 62.7 64.5 64.4 64.6 63.6 63.7 59.5
GPT 70.2 71.0 71.4 71.5 69.7 68.4 66.4

Claude 70.2 72.3 71.5 71.4 69.6 68.2 66.0

NMT-AVG 69.6 72.8 71.2 71.1 69.6 68.1 66.0
LLM-AVG 68.3 70.2 69.7 69.8 68.2 67.2 64.7

Table 8: Performance in AVERAGE scores of each
system on different domains.

Edu Laws News Sci Spk Sbt Ths
Baidu 20.4 25.8 22.2 24.8 20.6 19.5 17.8

Niu 22.8 35.8 24.6 28.0 22.7 22.0 19.5
Google 24.8 40.2 28.0 29.7 23.6 22.9 19.6
DeepL 22.4 32.9 24.9 25.9 22.2 25.6 16.6

Ernie 22.6 31.0 23.9 26.9 21.7 21.9 19.9
Qwen 15.4 18.8 17.0 18.3 16.0 19.0 11.8
GPT 22.2 25.2 23.4 26.1 21.0 22.0 17.8

Claude 22.4 30.6 23.9 26.6 20.8 21.7 17.2

NMT-AVG 22.6 33.7 24.9 27.1 22.3 22.5 18.4
LLM-AVG 20.6 26.4 22.0 24.5 19.9 21.1 16.7

Table 9: Performance in BLEU scores of each system
on different domains.

Edu Laws News Sci Spk Sbt Ths
Baidu 55.1 59.2 56.6 59.4 52.8 48.1 59.0

Niu 57.0 66.3 58.1 61.5 54.3 50.5 60.4
Google 58.5 69.1 60.5 62.5 55.1 50.6 60.5
DeepL 56.3 64.9 58.1 59.4 53.8 52.5 57.3

Ernie 57.0 63.4 58.1 61.4 53.9 50.0 61.2
Qwen 45.5 49.7 47.2 49.6 44.3 44.3 47.8
GPT 57.0 58.8 57.9 61.0 53.1 50.1 59.6

Claude 57.2 63.4 58.4 61.3 53.3 49.8 59.2

NMT-AVG 56.7 64.9 58.3 60.7 54.0 50.4 59.3
LLM-AVG 54.2 58.8 55.4 58.3 51.1 48.5 57.0

Table 10: Performance in CHRF scores of each system
on different domains.

B System Performance on Different
Grammatical Features

Table 15 to Table 22 show the performance of dif-
ferent systems on different grammatical feature

Edu Laws News Sci Spk Sbt Ths
Baidu 81.3 83.3 83.0 82.0 81.3 78.2 76.1

Niu 81.2 84.2 83.1 82.2 81.3 78.3 76.0
Google 82.8 86.0 84.5 83.0 82.2 79.2 76.5
DeepL 81.0 83.2 83.1 81.1 80.8 78.8 74.9

Ernie 82.3 84.4 83.8 82.5 81.7 78.8 76.6
Qwen 76.4 79.1 78.7 77.2 76.3 74.9 71.7
GPT 82.4 83.3 83.9 82.4 81.6 78.8 76.5

Claude 82.2 84.0 83.9 82.4 81.5 78.6 76.4

NMT-AVG 81.6 84.2 83.4 82.1 81.4 78.6 75.9
LLM-AVG 80.8 82.7 82.6 81.1 80.3 77.8 75.3

Table 11: Performance in COMET scores of each sys-
tem on different domains.

Edu Laws News Sci Spk Sbt Ths
Baidu 90.2 90.9 91.9 91.3 92.5 90.9 84.7

Niu 89.7 90.4 91.5 91.2 92.1 90.6 83.8
Google 91.9 92.5 93.2 92.6 93.4 91.8 85.9
DeepL 89.3 89.1 91.3 90.5 91.7 91.3 83.4

Ernie 91.4 92.0 92.9 92.4 93.2 91.8 86.0
Qwen 84.9 85.4 86.8 87.0 88.1 87.6 78.6
GPT 91.6 91.3 93.1 92.3 93.1 91.8 85.3

Claude 91.5 91.2 92.9 91.9 92.9 91.6 85.1

NMT-AVG 90.3 90.7 92.0 91.4 92.4 91.2 84.5
LLM-AVG 89.8 90.0 91.4 90.9 91.8 90.7 83.8

Table 12: Performance in XCOMET scores of each
system on different domains.

Edu Laws News Sci Spk Sbt Ths
Baidu 73.8 74.3 74.7 72.4 72.8 70.7 70.1

Niu 72.7 71.6 74.0 71.5 72.0 70.1 68.9
Google 74.4 72.7 75.2 72.7 72.8 71.5 70.4
DeepL 72.6 71.4 74.2 71.8 71.6 70.1 69.7

Ernie 74.1 73.7 75.3 73.0 73.2 71.9 70.1
Qwen 65.2 65.8 66.9 65.1 64.8 64.1 63.1
GPT 74.5 74.3 75.5 73.3 73.5 72.2 70.7

Claude 74.4 72.7 75.3 72.8 73.6 72.0 70.3

NMT-AVG 73.4 72.5 74.5 72.1 72.3 70.6 69.8
LLM-AVG 72.1 71.6 73.2 71.0 71.3 70.0 68.5

Table 13: Performance in COMETKIWI-QE scores of
each system on different domains.

Edu Laws News Sci Spk Sbt Ths
Baidu 93.5 92.9 94.4 93.7 95.6 95.4 88.4

Niu 92.4 90.8 93.7 93.0 94.9 94.9 87.0
Google 93.7 91.3 94.5 93.9 95.6 95.6 88.7
DeepL 92.2 89.6 93.7 92.7 94.5 94.5 87.7

Ernie 93.4 92.4 94.6 93.8 95.6 95.4 88.2
Qwen 88.4 88.1 89.9 90.0 91.9 92.1 84.1
GPT 93.7 93.3 94.8 94.0 95.8 95.6 88.4

Claude 93.6 92.3 94.5 93.6 95.5 95.2 87.9

NMT-AVG 93.0 91.2 94.1 93.3 95.2 95.1 88.0
LLM-AVG 92.3 91.5 93.5 92.8 94.7 94.6 87.2

Table 14: Performance in XCOMET-QE scores of each
system on different domains.

groups in different metrics.

1213



Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

ZAIProg 94.1 93.5 94.3 93.3 94.6 90.2 94.6 94.2 93.8 93.4 93.6
MEINeg 93.5 93.0 94.6 93.1 94.8 89.5 94.4 94.5 93.6 93.3 93.4

NPI 93.6 93.5 93.8 92.5 94.1 89.8 93.9 94.0 93.3 92.9 93.1
Recp 93.3 92.5 94.1 92.6 93.6 89.7 93.9 93.5 93.1 92.7 92.9

ZHIQtf 93.1 92.5 93.8 92.7 93.7 88.6 93.8 93.3 93.0 92.4 92.7
ImpNeg 92.9 91.6 93.3 92.5 93.1 88.2 93.6 93.0 92.6 92.0 92.3

VP 92.7 92.0 93.5 92.1 93.0 88.5 93.2 93.1 92.6 91.9 92.3
SHICop 93.1 91.8 93.1 91.3 93.3 88.6 93.7 93.0 92.3 92.1 92.2

Refl 92.8 91.4 93.6 91.5 93.4 87.9 93.5 93.7 92.3 92.1 92.2
Pass 92.9 91.4 93.4 91.8 93.0 88.5 93.0 93.3 92.4 92.0 92.2

GUOPrf 92.5 91.5 93.0 91.8 93.0 88.5 93.2 92.7 92.2 91.8 92.0
StdCLF 92.9 92.1 92.9 91.3 93.1 87.8 93.3 92.8 92.3 91.8 92.0

Deixis 92.7 91.8 93.2 90.7 93.0 88.1 93.3 92.9 92.1 91.8 92.0
ConcCpl 92.5 91.5 93.4 91.6 92.9 85.9 93.5 93.1 92.2 91.3 91.8

AdvP 92.5 91.4 93.0 91.1 92.7 87.5 93.1 92.9 92.0 91.5 91.8
CausCpl 92.9 90.7 93.5 90.0 93.2 86.2 93.7 93.8 91.8 91.7 91.8
SpanPP 92.2 91.2 92.9 91.0 93.2 87.9 93.0 92.3 91.8 91.6 91.7
VerbLE 92.3 91.3 92.7 91.6 92.3 87.4 93.1 92.6 92.0 91.3 91.7

RefPP 92.1 91.2 92.5 90.9 92.4 88.1 92.3 91.9 91.7 91.2 91.4
PstVPP 92.5 91.5 92.2 90.5 92.4 86.7 92.4 92.4 91.7 91.0 91.3
GoalPP 92.5 91.6 92.4 90.0 92.4 86.9 92.5 92.2 91.6 91.0 91.3
IndCLF 91.7 91.1 92.2 90.4 92.2 88.2 92.3 91.8 91.3 91.1 91.2
CondPP 92.1 91.3 92.6 89.7 92.3 87.3 92.3 91.7 91.4 90.9 91.2

BUNeg 91.6 90.8 92.3 90.9 92.4 86.8 92.3 92.0 91.4 90.9 91.2
BA 91.9 91.6 92.2 91.2 92.0 86.2 92.2 91.9 91.7 90.6 91.1

TopPP 91.5 91.0 92.2 90.9 92.2 87.1 92.2 91.7 91.4 90.8 91.1
SrcPP 91.3 91.1 92.3 90.6 92.2 86.5 92.2 91.9 91.3 90.7 91.0

SentIPP 92.0 91.2 92.4 90.4 92.1 86.4 92.0 91.6 91.5 90.5 91.0
SpcPP 91.3 91.2 92.2 90.7 91.7 87.4 91.8 91.8 91.3 90.7 91.0

EvCLF 91.4 90.8 91.9 91.3 91.5 86.9 91.6 91.9 91.4 90.5 90.9
DirPP 91.5 91.0 91.8 89.3 92.0 87.1 92.2 91.6 90.9 90.7 90.8
AdjP 91.3 90.3 92.0 90.0 91.9 85.8 92.2 91.6 90.9 90.4 90.7

Cmpr 91.0 90.2 91.9 90.0 92.1 85.6 92.0 92.0 90.8 90.4 90.6
NP 91.3 90.5 91.7 89.8 91.7 86.6 91.7 91.3 90.8 90.3 90.6

TmpSCpl 91.5 90.7 91.8 89.8 91.6 84.9 91.6 91.6 91.0 89.9 90.4
LocPP 90.7 90.6 91.4 90.2 91.4 85.0 91.6 91.5 90.7 89.9 90.3

PreVPP 90.9 90.7 91.8 89.4 91.0 86.1 91.2 90.6 90.7 89.7 90.2
AgtPP 90.8 90.0 91.5 89.6 91.5 85.5 91.4 90.9 90.5 89.8 90.1

Rel 91.0 89.4 91.6 89.2 91.3 85.0 91.7 91.2 90.3 89.8 90.1
LexNeg 90.5 89.8 91.2 89.9 90.9 86.1 91.0 91.1 90.3 89.8 90.1

KindCLF 90.6 89.7 90.9 89.4 90.9 85.8 90.8 90.3 90.2 89.5 89.8
ApprCLF 90.5 90.0 91.1 89.0 91.3 84.9 91.1 90.7 90.2 89.5 89.8

PathPP 87.0 85.5 86.8 85.1 86.7 81.9 86.7 87.3 86.1 85.7 85.9

Table 15: Performance in X-AVERAGE scores of each system on different linguistic features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

CondPP 70.9 72.7 74.1 70.8 72.1 64.1 70.9 71.5 72.1 69.7 70.9
SpanPP 70.7 71.2 72.7 70.7 72.3 65.0 71.7 71.6 71.3 70.2 70.7

ZAIProg 70.6 71.3 72.9 71.0 71.8 65.4 71.3 71.1 71.4 69.9 70.7
SrcPP 70.6 71.2 72.5 69.9 71.7 65.0 71.4 71.7 71.1 70.0 70.5
SpcPP 69.8 71.2 72.7 71.0 71.2 65.0 70.8 70.9 71.2 69.5 70.3
LocPP 70.0 72.1 73.0 70.7 71.3 63.5 70.7 71.2 71.5 69.2 70.3

ImpNeg 70.3 70.2 73.3 70.8 71.1 63.9 70.9 71.0 71.2 69.2 70.2
GUOPrf 70.0 70.4 71.6 70.1 71.1 65.3 71.2 70.9 70.5 69.6 70.1

NPI 69.9 71.2 72.3 70.7 70.9 63.7 70.3 71.1 71.0 69.0 70.0
IndCLF 69.8 70.4 72.2 70.3 70.9 65.0 70.7 70.7 70.7 69.3 70.0
MEINeg 69.5 70.4 72.2 70.5 71.4 63.7 70.8 70.9 70.7 69.2 69.9

TmpSCpl 70.2 70.9 71.7 70.3 71.0 63.8 70.5 71.0 70.8 69.1 69.9
Recp 69.9 70.4 72.0 70.3 70.8 64.1 70.6 71.0 70.7 69.1 69.9

StdCLF 69.8 71.1 71.9 70.0 71.7 64.1 70.2 70.1 70.7 69.0 69.9
Pass 70.0 70.6 72.0 70.3 70.5 64.3 69.8 70.7 70.7 68.8 69.8

BA 69.6 71.0 72.1 70.4 70.6 63.0 70.5 70.2 70.8 68.6 69.7
RefPP 69.9 70.3 71.4 69.6 70.4 64.3 70.0 70.2 70.3 68.7 69.5

EvCLF 69.7 69.8 71.3 70.5 70.4 63.5 69.7 70.4 70.3 68.5 69.4
PstVPP 69.4 70.0 70.9 69.6 70.2 63.4 70.2 70.7 70.0 68.6 69.3
LexNeg 68.9 69.5 71.3 69.6 70.7 64.0 69.9 70.4 69.8 68.8 69.3
ZHIQtf 69.3 69.7 71.1 70.3 70.1 63.4 70.3 70.0 70.1 68.5 69.3

Rel 69.3 70.1 72.1 69.4 70.3 62.6 69.4 70.5 70.2 68.2 69.2
NP 69.2 70.0 71.5 69.4 70.3 63.4 69.7 70.0 70.0 68.3 69.2
VP 69.1 69.9 71.5 69.4 70.1 63.6 69.8 70.1 70.0 68.4 69.2

AdvP 69.1 69.6 71.3 69.3 70.3 62.8 69.9 70.2 69.8 68.3 69.1
Deixis 69.1 69.7 71.3 69.0 70.3 63.6 69.7 69.9 69.8 68.4 69.1

GoalPP 69.0 69.5 70.7 69.1 69.9 63.5 69.9 70.3 69.6 68.4 69.0
VerbLE 69.1 69.6 70.6 69.6 70.0 63.2 69.9 69.7 69.7 68.2 69.0

CausCpl 69.1 68.8 71.5 68.3 70.7 61.8 70.3 70.8 69.4 68.4 68.9
TopPP 68.7 69.5 70.9 69.9 70.0 62.2 69.7 69.7 69.8 67.9 68.8

SHICop 68.9 69.3 70.8 68.8 70.0 63.3 69.8 69.3 69.5 68.1 68.8
DirPP 68.3 69.8 70.4 67.4 69.3 62.8 69.2 69.4 69.0 67.7 68.3

PtcpPP 68.4 69.1 70.6 68.5 69.2 62.5 68.7 68.9 69.2 67.3 68.3
Refl 68.2 68.2 70.1 68.3 69.3 62.4 69.1 69.7 68.7 67.6 68.2

Cmpr 67.9 68.4 70.3 68.5 69.6 61.3 68.7 69.0 68.8 67.1 68.0
PreVPP 68.2 68.9 70.3 67.7 69.0 61.9 68.8 68.9 68.8 67.2 68.0
BUNeg 67.8 68.8 70.2 68.3 69.0 61.7 68.4 68.3 68.8 66.8 67.8

KindCLF 67.5 68.4 69.6 67.8 68.7 62.1 68.3 68.4 68.3 66.9 67.6
AdjP 67.7 68.4 69.7 68.0 68.8 61.1 68.3 68.5 68.5 66.7 67.6

SentIPP 68.0 68.2 69.0 67.4 68.1 60.8 67.8 67.7 68.2 66.1 67.1
ConcCpl 67.2 67.3 69.0 67.1 68.1 60.1 68.5 68.1 67.7 66.2 66.9

ApprCLF 67.2 67.4 69.2 66.9 67.6 60.1 67.6 68.1 67.7 65.8 66.7
PathPP 66.4 66.8 67.9 66.0 67.6 60.1 66.1 67.1 66.8 65.2 66.0

Table 16: Performance in AVERAGE scores of each system on different grammatical features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

CondPP 25.1 33.4 36.2 29.7 28.6 17.2 25.1 28.0 31.1 24.7 27.9
LocPP 24.4 31.8 33.1 28.3 27.5 18.4 25.7 27.6 29.4 24.8 27.1
SrcPP 25.6 28.7 30.9 26.4 27.8 21.2 26.2 27.4 27.9 25.6 26.8

IndCLF 24.2 27.5 31.0 28.5 26.7 19.6 25.7 26.3 27.8 24.6 26.2
SpcPP 23.4 28.3 30.8 28.6 26.9 19.1 25.3 26.0 27.8 24.3 26.0

SpanPP 24.5 27.7 30.0 26.5 28.1 18.4 26.3 26.6 27.2 24.9 26.0
TmpSCpl 24.2 27.9 29.1 27.4 26.2 18.9 24.4 26.2 27.1 23.9 25.5

ImpNeg 23.4 25.2 32.6 26.2 25.9 17.5 24.6 26.3 26.8 23.6 25.2
GUOPrf 23.2 26.4 27.9 26.2 25.3 20.8 25.6 25.4 25.9 24.3 25.1
EvCLF 24.8 26.1 28.9 27.1 26.4 18.3 23.8 25.1 26.7 23.4 25.1
PstVPP 22.2 26.1 27.4 26.8 24.6 18.9 24.6 25.9 25.6 23.5 24.6

NP 22.4 26.7 29.5 26.1 25.3 17.6 23.1 24.6 26.2 22.6 24.4
Pass 23.0 28.0 28.2 26.1 23.6 19.3 21.5 23.9 26.3 22.1 24.2
Rel 22.3 27.7 30.6 25.4 24.3 16.4 21.1 25.2 26.5 21.8 24.1

TopPP 21.6 25.5 28.1 27.4 25.2 15.7 23.9 24.7 25.6 22.4 24.0
NPI 21.7 26.6 29.4 26.8 24.1 15.1 22.3 24.8 26.1 21.6 23.9

StdCLF 21.1 28.0 28.3 25.1 26.0 17.7 21.8 22.8 25.6 22.1 23.8
LexNeg 21.1 25.2 28.5 24.8 25.5 17.5 23.1 24.8 24.9 22.7 23.8

Deixis 22.1 25.8 28.7 25.2 25.0 17.2 22.4 23.9 25.5 22.1 23.8
GoalPP 21.2 24.5 26.1 25.9 23.4 19.3 23.5 25.0 24.4 22.8 23.6

ZAIProg 22.1 25.4 28.9 25.1 24.3 16.8 23.1 23.1 25.4 21.8 23.6
Recp 22.3 25.4 27.3 24.4 24.1 16.6 22.7 24.7 24.9 22.0 23.4

MEINeg 20.7 25.1 27.3 24.7 25.0 16.4 23.0 23.4 24.4 22.0 23.2
BA 21.0 25.7 28.5 25.4 23.6 15.7 23.2 22.6 25.1 21.3 23.2

DirPP 20.8 27.0 27.0 21.8 22.0 17.7 21.8 23.2 24.1 21.2 22.7
KindCLF 20.5 25.2 26.9 23.7 23.4 16.6 21.7 23.1 24.1 21.2 22.6

ZHIQtf 21.3 24.0 25.7 25.4 21.9 17.0 22.4 22.2 24.1 20.9 22.5
RefPP 21.7 24.9 26.3 23.1 23.0 16.0 21.4 22.4 24.0 20.7 22.4

VP 20.8 24.8 26.9 23.0 22.4 15.5 21.3 22.3 23.9 20.4 22.1
AdvP 20.6 23.9 26.5 23.7 23.2 14.6 21.5 22.7 23.7 20.5 22.1

PreVPP 21.0 23.6 25.5 21.7 23.1 15.1 22.1 23.1 22.9 20.9 21.9
PathPP 20.6 23.9 25.8 22.4 24.6 15.0 19.5 21.4 23.2 20.1 21.7

SHICop 19.6 23.3 25.4 22.9 22.6 15.5 20.9 21.1 22.8 20.0 21.4
ApprCLF 20.3 21.7 26.4 22.2 20.5 14.5 20.9 22.6 22.7 19.6 21.1

BUNeg 19.8 24.2 25.9 23.1 21.6 14.7 19.6 20.1 23.2 19.0 21.1
Cmpr 19.5 22.6 25.7 23.0 22.8 14.5 19.9 20.4 22.7 19.4 21.0

VerbLE 19.7 23.3 23.6 22.3 22.1 15.3 20.5 20.5 22.2 19.6 20.9
PtcpPP 19.7 23.3 25.7 22.4 21.1 14.3 19.2 20.8 22.8 18.9 20.8

CausCpl 19.1 21.3 25.3 20.3 23.8 12.4 21.3 22.5 21.5 20.0 20.8
Refl 18.7 20.5 22.4 21.6 21.0 14.4 19.8 21.5 20.8 19.2 20.0

AdjP 17.1 20.7 22.5 20.1 19.3 12.6 17.1 18.4 20.1 16.9 18.5
SentIPP 17.1 19.4 19.2 17.9 17.5 11.5 16.1 16.9 18.4 15.5 16.9

ConcCpl 14.5 17.0 18.4 16.6 16.0 10.1 16.6 15.9 16.6 14.7 15.6

Table 17: Performance in BLEU scores of each system on different grammatical features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

LocPP 60.6 66.1 66.7 62.5 63.0 51.9 61.0 62.8 64.0 59.7 61.8
CondPP 60.8 65.6 67.1 63.6 63.4 49.7 60.9 62.7 64.3 59.2 61.7

SrcPP 60.2 62.6 63.8 59.8 62.7 52.8 61.8 63.0 61.6 60.1 60.9
LexNeg 59.5 61.6 63.6 61.0 63.1 51.8 60.9 62.0 61.4 59.5 60.4
SpcPP 57.8 61.7 63.5 61.3 60.8 51.5 59.8 61.0 61.1 58.3 59.7

IndCLF 58.1 60.1 62.5 60.3 60.0 50.6 58.8 59.7 60.2 57.3 58.8
SpanPP 57.7 60.3 61.4 59.4 60.7 48.7 59.1 59.7 59.7 57.0 58.4

TmpSCpl 57.1 59.9 60.3 60.0 59.4 48.9 57.8 59.2 59.3 56.3 57.8
RefPP 57.9 60.3 61.0 59.0 59.0 48.2 57.7 59.1 59.5 56.0 57.8

Rel 56.8 60.8 62.6 59.9 59.1 47.2 56.2 59.6 60.0 55.5 57.8
Recp 57.3 59.7 61.2 59.1 59.0 47.7 58.1 59.5 59.3 56.1 57.7

BA 56.8 60.5 62.1 59.3 58.9 47.0 57.8 58.2 59.7 55.5 57.6
EvCLF 57.2 58.5 60.3 59.8 59.2 48.6 57.5 59.0 59.0 56.1 57.5
TopPP 56.7 59.7 61.1 60.2 58.8 46.5 58.1 58.9 59.4 55.6 57.5

NP 56.6 59.7 61.5 59.0 59.1 48.2 57.2 58.6 59.2 55.8 57.5
GUOPrf 56.7 58.9 59.6 58.3 59.0 49.6 58.7 58.8 58.4 56.5 57.4
ImpNeg 56.5 59.3 62.7 58.4 58.3 47.0 56.8 58.5 59.2 55.1 57.2
StdCLF 55.8 60.0 60.2 57.7 60.1 47.9 56.1 56.4 58.4 55.1 56.8

ZAIProg 56.2 58.4 60.8 57.7 58.2 47.2 57.1 57.2 58.3 54.9 56.6
Pass 55.7 59.4 59.9 57.8 57.8 47.8 56.0 57.6 58.2 54.8 56.5

PstVPP 55.2 58.3 58.8 58.8 57.0 47.5 57.2 58.5 57.8 55.0 56.4
PtcpPP 55.6 58.7 59.9 57.6 57.3 47.4 55.7 57.5 58.0 54.5 56.2

KindCLF 55.3 58.6 59.3 57.0 57.8 47.1 56.5 57.4 57.5 54.7 56.1
PreVPP 55.5 57.6 59.6 57.0 57.6 46.6 56.8 57.9 57.4 54.7 56.1
GoalPP 54.7 57.2 58.4 58.3 56.4 47.7 57.0 58.2 57.2 54.8 56.0

NPI 54.7 58.0 60.5 57.8 57.1 43.8 55.5 57.8 57.8 53.5 55.7
PathPP 55.4 58.6 58.8 56.7 58.9 45.0 54.9 56.3 57.4 53.8 55.6

AdvP 54.5 57.0 58.7 56.6 56.9 44.3 55.6 56.8 56.7 53.4 55.1
Deixis 54.1 56.7 58.3 56.5 56.6 46.0 54.7 55.7 56.4 53.2 54.8

VP 53.9 56.9 58.3 55.6 56.1 45.9 55.2 56.2 56.2 53.3 54.8
DirPP 54.0 57.7 58.4 55.0 55.6 46.6 54.6 55.9 56.3 53.2 54.7

VerbLE 54.4 56.6 57.0 56.2 56.2 44.6 55.4 55.6 56.0 53.0 54.5
MEINeg 53.3 56.4 58.0 56.5 56.0 44.4 55.5 55.8 56.0 52.9 54.5
ZHIQtf 54.0 55.9 57.2 56.5 55.3 44.9 55.7 55.8 55.9 52.9 54.4

CausCpl 53.5 55.5 57.9 54.9 56.5 43.7 54.6 56.0 55.5 52.7 54.1
SHICop 53.3 56.2 57.2 55.3 55.3 45.1 54.3 54.3 55.5 52.2 53.9

Cmpr 53.1 55.4 57.4 55.8 55.7 43.1 53.9 54.5 55.4 51.8 53.6
BUNeg 53.0 56.1 57.3 54.9 55.1 44.4 53.6 54.4 55.3 51.9 53.6

AdjP 52.7 55.8 57.0 55.0 55.0 42.7 53.3 54.6 55.1 51.4 53.3
SentIPP 53.5 55.0 55.5 54.2 53.1 41.7 52.9 52.9 54.5 50.2 52.4

Refl 51.2 53.3 54.7 53.2 52.7 42.4 52.4 53.4 53.1 50.2 51.7
ApprCLF 51.9 52.5 55.4 53.1 51.9 41.8 51.9 53.8 53.2 49.8 51.5
ConcCpl 49.8 51.3 52.7 49.8 51.0 39.2 51.4 51.2 50.9 48.2 49.6

Table 18: Performance in CHRF scores of each system on different grammatical features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

ZAIProg 83.1 83.3 84.5 82.8 84.0 79.0 83.3 83.1 83.4 82.3 82.9
SpanPP 82.9 83.0 84.0 82.7 83.7 78.8 83.3 83.5 83.2 82.3 82.7
ImpNeg 83.2 82.7 85.1 82.8 83.3 77.8 83.1 83.1 83.5 81.8 82.6
GUOPrf 82.2 82.3 83.2 81.8 83.2 78.5 83.1 83.0 82.4 81.9 82.2
StdCLF 82.1 82.4 83.7 81.8 83.6 78.1 82.5 82.4 82.5 81.7 82.1

Pass 82.3 82.5 83.9 82.3 82.4 77.1 82.4 83.1 82.8 81.2 82.0
BA 82.2 82.9 83.8 82.2 82.5 77.2 82.6 82.2 82.8 81.1 82.0

CondPP 82.0 83.0 84.2 81.6 82.8 77.4 82.0 82.4 82.7 81.2 81.9
TmpSCpl 82.1 82.3 83.1 82.0 82.6 77.8 82.5 82.4 82.4 81.3 81.9

VerbLE 81.9 82.1 82.9 82.2 82.5 77.8 82.4 82.2 82.3 81.2 81.8
MEINeg 81.6 81.5 83.4 81.8 82.9 77.0 82.5 82.6 82.1 81.2 81.7

NPI 81.9 82.2 83.2 81.8 82.3 76.9 81.8 82.3 82.3 80.8 81.5
SrcPP 81.9 81.9 83.0 80.9 82.3 77.2 82.3 82.6 81.9 81.1 81.5

CausCpl 81.5 81.1 83.1 80.8 82.6 77.0 82.9 82.9 81.6 81.3 81.5
Rel 81.4 81.8 83.4 81.5 82.3 77.3 81.6 82.4 82.0 80.9 81.5

ZHIQtf 81.6 81.6 82.8 81.6 82.6 76.5 82.6 82.3 81.9 81.0 81.4
RefPP 81.8 82.0 82.4 81.2 82.0 78.1 81.7 82.0 81.9 81.0 81.4
SpcPP 81.3 82.0 83.0 81.4 82.0 77.9 81.8 81.7 81.9 80.8 81.4

IndCLF 81.3 81.2 82.9 81.3 82.1 78.0 82.0 81.9 81.7 81.0 81.3
VP 81.3 81.6 82.9 81.0 82.2 77.2 81.9 82.2 81.7 80.9 81.3

AdvP 81.3 81.4 82.7 81.0 82.0 76.5 81.8 81.9 81.6 80.6 81.1
SHICop 80.8 81.1 82.6 80.5 81.9 77.1 81.9 81.6 81.2 80.6 80.9

Deixis 81.2 81.2 82.5 80.6 81.7 76.7 81.6 81.4 81.4 80.3 80.9
LocPP 80.8 82.0 82.9 81.1 81.6 76.2 81.2 81.2 81.7 80.0 80.9

Refl 80.8 81.0 82.5 80.9 81.6 76.4 81.6 81.9 81.3 80.4 80.8
PstVPP 81.2 80.7 82.0 80.6 81.4 76.6 82.0 81.9 81.1 80.5 80.8

NP 80.8 81.1 82.4 80.6 81.7 76.7 81.2 81.4 81.2 80.2 80.7
EvCLF 80.6 80.8 82.1 81.0 81.6 76.3 80.9 81.4 81.1 80.0 80.6
GoalPP 80.8 80.0 81.6 80.1 81.4 76.3 81.6 81.5 80.6 80.2 80.4

AdjP 80.2 80.6 81.7 80.3 81.2 75.4 81.0 81.2 80.7 79.7 80.2
Cmpr 80.3 80.4 81.6 80.2 81.4 75.6 80.9 81.0 80.6 79.7 80.2

PtcpPP 80.4 81.0 81.7 79.9 80.7 76.5 80.6 80.7 80.8 79.6 80.2
ConcCpl 80.3 80.5 81.7 80.1 81.1 75.1 81.4 80.9 80.7 79.6 80.1
SentIPP 80.5 80.5 81.3 79.9 80.6 75.4 80.6 80.3 80.6 79.2 79.9

DirPP 80.2 80.5 81.1 79.3 81.2 75.1 80.9 80.7 80.3 79.5 79.9
TopPP 80.1 80.2 81.2 79.9 80.6 74.9 80.6 80.5 80.3 79.2 79.8

Recp 80.0 80.0 81.3 79.8 80.6 74.8 80.3 80.5 80.3 79.0 79.7
LexNeg 79.3 79.5 80.8 80.0 80.8 76.4 79.9 80.4 79.9 79.4 79.6

ApprCLF 79.7 80.2 81.5 78.9 80.5 73.7 80.5 80.5 80.1 78.8 79.5
BUNeg 79.2 79.7 80.4 78.4 79.8 74.4 79.6 79.4 79.4 78.3 78.9

PreVPP 78.8 79.5 81.0 78.4 79.6 73.9 79.8 79.5 79.4 78.2 78.8
PathPP 78.4 79.1 80.0 78.3 79.5 73.7 78.7 79.7 79.0 77.9 78.4

KindCLF 77.8 78.2 78.9 77.3 78.3 73.9 78.4 78.5 78.0 77.3 77.7

Table 19: Performance in COMET scores of each system on different grammatical features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

ZAIProg 92.9 92.5 93.7 92.2 93.6 88.8 93.5 93.1 92.8 92.2 92.5
MEINeg 92.1 91.7 93.9 92.1 94.0 88.2 93.3 93.5 92.5 92.2 92.3

NPI 92.0 92.4 93.0 91.6 93.0 88.3 92.6 93.0 92.2 91.7 92.0
ImpNeg 91.9 91.0 93.5 92.1 92.8 87.4 93.2 92.7 92.1 91.5 91.8

Recp 92.0 91.0 93.3 91.2 92.8 87.7 92.6 92.5 91.9 91.4 91.6
Pass 92.0 90.8 93.2 91.2 92.6 86.9 92.6 92.8 91.8 91.2 91.5

ZHIQtf 91.3 90.8 93.0 91.2 92.5 86.6 92.4 92.2 91.6 90.9 91.2
SHICop 91.6 90.6 92.2 90.1 92.4 87.0 92.4 92.0 91.1 91.0 91.0

Refl 91.1 90.0 92.7 90.3 92.8 85.7 92.5 92.7 91.0 90.9 91.0
GUOPrf 91.0 90.2 92.1 90.9 91.9 86.9 92.4 91.6 91.0 90.7 90.9
StdCLF 91.4 90.9 92.3 89.8 92.3 86.0 92.3 91.8 91.1 90.6 90.8

Deixis 91.3 90.7 92.7 89.4 92.0 86.3 92.1 91.8 91.0 90.5 90.8
SpanPP 91.1 90.3 92.0 90.1 92.6 86.2 92.2 91.5 90.9 90.6 90.7

VP 90.8 90.3 92.3 90.7 91.6 86.5 91.7 91.6 91.0 90.3 90.7
CausCpl 91.4 89.4 92.6 88.6 92.4 84.4 92.7 92.8 90.5 90.6 90.5
CondPP 91.0 91.1 92.8 89.0 91.7 86.1 91.3 91.2 91.0 90.1 90.5

SrcPP 90.4 90.7 92.4 90.0 91.8 84.9 91.9 91.9 90.9 90.1 90.5
GoalPP 91.1 90.6 91.8 89.1 91.4 86.1 92.0 91.6 90.7 90.3 90.5
VerbLE 91.0 90.0 91.6 90.4 91.4 85.4 91.8 91.5 90.8 90.0 90.4
PstVPP 91.0 90.5 91.6 89.5 91.3 85.6 91.7 91.7 90.7 90.1 90.4

AdvP 90.7 89.9 92.0 89.6 91.5 85.4 91.6 91.6 90.6 90.0 90.3
IndCLF 90.3 90.0 91.6 89.2 91.3 86.8 91.1 90.6 90.3 89.9 90.1

TopPP 90.4 90.0 91.5 89.8 91.6 85.1 91.3 91.0 90.4 89.8 90.1
RefPP 90.6 90.0 91.5 89.6 91.2 86.2 90.9 90.8 90.4 89.8 90.1

ConcCpl 90.5 89.6 92.1 89.5 91.6 83.6 91.9 91.7 90.4 89.7 90.1
BA 90.4 90.4 91.5 89.9 90.7 84.3 90.6 90.6 90.6 89.1 89.8

BUNeg 89.9 89.1 90.9 89.2 91.4 84.5 90.9 90.6 89.8 89.3 89.6
DirPP 89.9 89.7 90.8 87.5 90.9 85.7 90.8 90.6 89.5 89.5 89.5
SpcPP 89.4 89.6 91.0 89.3 90.2 85.6 90.2 90.4 89.8 89.1 89.5
LocPP 89.5 89.8 91.3 89.1 90.9 83.4 90.8 90.9 89.9 89.0 89.4

EvCLF 89.5 89.2 90.8 89.6 90.3 85.0 89.9 90.8 89.8 89.0 89.4
NP 89.7 89.3 90.9 88.6 90.6 84.8 90.4 90.2 89.6 89.0 89.3

Cmpr 89.4 89.1 90.9 88.8 90.9 83.7 90.6 91.0 89.5 89.1 89.3
PreVPP 89.8 89.6 91.4 88.5 89.9 84.6 90.2 89.7 89.8 88.6 89.2
SentIPP 90.1 89.5 90.6 88.6 90.5 83.7 90.1 89.9 89.7 88.5 89.1

AdjP 89.4 88.9 90.8 88.4 90.7 83.5 90.5 90.2 89.4 88.7 89.0
TmpSCpl 89.7 89.3 90.8 88.5 90.3 83.0 90.0 90.2 89.6 88.4 89.0

Rel 89.5 88.4 91.1 88.0 90.4 82.7 90.2 90.4 89.2 88.4 88.9
PtcpPP 89.1 89.0 90.7 88.3 90.4 83.6 89.9 89.6 89.3 88.4 88.8
LexNeg 88.7 88.4 90.2 88.4 90.0 84.1 89.7 90.0 88.9 88.5 88.7

ApprCLF 89.1 88.2 90.5 87.8 90.6 82.8 90.1 90.0 88.9 88.4 88.6
KindCLF 89.0 88.4 89.9 88.0 89.7 83.8 89.4 89.0 88.8 88.0 88.4

PathPP 84.9 84.5 86.4 83.6 85.9 79.4 85.1 85.9 84.8 84.1 84.4

Table 20: Performance in XCOMET scores of each system on different grammatical features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

ZAIProg 74.3 73.8 74.7 73.8 75.3 68.8 75.4 74.7 74.2 73.5 73.9
SpanPP 74.8 73.8 74.9 73.6 75.1 68.1 75.2 74.8 74.3 73.3 73.8

CausCpl 74.6 73.3 75.6 73.6 75.0 65.4 75.5 76.0 74.3 73.0 73.6
TmpSCpl 74.7 73.8 74.3 73.1 74.7 67.5 74.8 74.9 74.0 73.0 73.5

MEINeg 74.5 73.2 75.1 74.1 75.1 65.5 75.2 74.9 74.2 72.7 73.4
VerbLE 74.3 73.2 74.4 73.7 74.6 66.7 75.1 74.8 73.9 72.8 73.4

BA 74.2 73.6 73.9 73.0 74.5 65.8 75.0 74.4 73.7 72.4 73.0
SpcPP 73.7 73.2 74.3 73.1 74.0 66.8 74.3 73.1 73.6 72.1 72.8

Recp 73.4 72.6 74.2 73.1 73.7 66.4 74.5 74.1 73.3 72.2 72.8
NPI 73.8 73.3 73.3 72.7 74.0 66.6 74.5 73.8 73.3 72.2 72.7

RefPP 73.7 72.4 73.5 72.3 73.8 67.3 74.3 73.8 73.0 72.3 72.7
AdvP 73.6 72.4 73.9 72.6 74.0 66.2 74.4 74.1 73.1 72.2 72.6

ConcCpl 73.4 72.2 74.4 72.7 74.5 64.2 74.8 74.6 73.2 72.0 72.6
StdCLF 74.1 72.2 73.4 72.7 74.1 65.5 74.5 73.6 73.1 71.9 72.5

VP 73.4 72.5 73.8 72.4 73.8 65.8 74.0 73.6 73.0 71.8 72.4
Refl 73.2 71.6 73.6 71.4 73.5 65.7 73.6 74.1 72.5 71.7 72.1

AdjP 73.2 72.4 73.2 72.3 73.6 64.2 74.1 73.5 72.8 71.3 72.1
PtcpPP 73.4 71.6 73.3 72.0 73.5 66.0 73.7 72.9 72.6 71.5 72.0

SHICop 73.5 71.6 73.2 71.6 73.9 64.8 74.2 72.9 72.5 71.4 72.0
ZHIQtf 72.7 71.7 73.1 72.8 73.5 64.7 73.9 73.3 72.6 71.3 71.9

SrcPP 73.1 71.9 73.0 71.3 73.3 65.6 73.8 73.5 72.3 71.5 71.9
Rel 73.4 71.3 72.9 71.5 73.5 65.0 73.9 73.2 72.3 71.4 71.8

Cmpr 72.7 71.6 73.1 72.0 73.4 63.6 73.8 73.9 72.3 71.2 71.8
LexNeg 72.4 71.0 72.6 72.0 73.1 66.3 73.2 73.0 72.0 71.4 71.7

GUOPrf 72.8 71.6 73.0 70.9 73.1 66.1 73.3 72.8 72.1 71.3 71.7
SentIPP 72.8 72.2 73.1 71.3 73.2 63.7 73.5 73.0 72.3 70.8 71.6

Pass 73.1 71.0 73.0 72.0 72.9 64.8 73.2 72.9 72.3 70.9 71.6
EvCLF 72.5 71.7 72.9 72.5 72.4 64.1 72.8 73.0 72.4 70.6 71.5
LocPP 72.7 71.8 72.2 72.1 72.8 64.6 73.0 72.7 72.2 70.8 71.5

NP 72.6 71.4 72.5 71.3 72.7 64.9 73.2 72.7 72.0 70.9 71.4
CondPP 73.2 71.3 71.8 70.7 73.2 65.6 73.0 72.4 71.8 71.1 71.4
ImpNeg 72.7 70.8 72.8 72.2 72.7 64.4 73.5 71.9 72.1 70.6 71.4
GoalPP 72.5 71.9 73.1 70.6 73.2 64.1 72.5 72.6 72.0 70.6 71.3
IndCLF 72.1 71.6 72.3 71.0 72.3 65.6 73.0 72.7 71.8 70.9 71.3
PstVPP 72.6 71.6 72.6 70.6 73.3 64.0 72.8 72.9 71.8 70.8 71.3

DirPP 71.6 71.4 72.1 69.8 73.3 63.5 73.5 73.5 71.2 71.0 71.1
Deixis 71.9 70.7 71.9 70.3 72.5 65.3 72.7 72.5 71.2 70.8 71.0

BUNeg 71.3 71.0 72.7 71.2 72.6 63.3 73.0 72.0 71.5 70.2 70.9
PreVPP 71.9 71.0 72.0 70.2 72.0 63.7 72.1 71.6 71.3 69.8 70.6

TopPP 70.6 69.5 70.9 70.3 71.1 62.1 71.3 70.8 70.3 68.8 69.6
KindCLF 70.4 69.0 70.6 69.6 70.9 63.5 71.3 70.7 69.9 69.1 69.5
ApprCLF 70.1 69.9 69.7 68.9 70.2 60.6 70.1 70.1 69.7 67.8 68.7

PathPP 70.1 68.2 68.9 68.4 69.3 62.9 69.9 70.2 68.9 68.1 68.5

Table 21: Performance in COMETKIWI-QE scores of each system on different grammatical features.
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Baidu Niu Google DeepL Ernie Qwen GPT Claude NMT-AVG LLM-AVG All-AVG

ZAIProg 95.3 94.5 94.9 94.4 95.6 91.6 95.7 95.3 94.8 94.5 94.7
MEINeg 94.9 94.2 95.3 94.0 95.5 90.8 95.4 95.5 94.6 94.3 94.4

NPI 95.1 94.6 94.6 93.5 95.2 91.3 95.2 95.0 94.4 94.2 94.3
ZHIQtf 95.0 94.3 94.6 94.2 95.0 90.7 95.1 94.5 94.5 93.8 94.2

Recp 94.5 93.9 94.9 94.0 94.5 91.7 95.2 94.5 94.3 94.0 94.1
VP 94.6 93.6 94.6 93.4 94.5 90.4 94.7 94.5 94.0 93.5 93.8

ConcCpl 94.6 93.4 94.7 93.7 94.3 88.3 95.2 94.5 94.1 93.1 93.6
Refl 94.4 92.8 94.5 92.7 94.1 90.0 94.5 94.6 93.6 93.3 93.5

SHICop 94.6 93.0 94.0 92.5 94.2 90.2 95.0 94.0 93.5 93.3 93.4
AdvP 94.2 92.9 94.0 92.5 93.9 89.6 94.6 94.1 93.4 93.1 93.2

StdCLF 94.4 93.2 93.5 92.7 93.9 89.6 94.3 93.7 93.5 92.9 93.2
GUOPrf 94.0 92.9 93.9 92.8 94.0 90.0 94.0 93.7 93.4 92.9 93.2

Deixis 94.1 92.9 93.8 92.0 94.0 89.8 94.5 94.0 93.2 93.1 93.1
CausCpl 94.3 92.0 94.4 91.5 94.0 88.0 94.8 94.8 93.1 92.9 93.0
VerbLE 93.5 92.7 93.7 92.9 93.3 89.5 94.3 93.7 93.2 92.7 93.0
SentIPP 93.8 92.8 94.2 92.1 93.8 89.2 93.8 93.3 93.2 92.5 92.9

Pass 93.8 92.0 93.7 92.4 93.4 90.1 93.3 93.7 93.0 92.6 92.8
RefPP 93.6 92.4 93.6 92.2 93.6 90.0 93.8 93.0 93.0 92.6 92.8

BUNeg 93.3 92.6 93.7 92.6 93.5 89.2 93.7 93.5 93.0 92.5 92.8
ImpNeg 93.9 92.2 93.1 92.9 93.5 89.0 94.1 93.2 93.0 92.5 92.7
SpanPP 93.4 92.1 93.7 92.0 93.7 89.7 93.8 93.2 92.8 92.6 92.7

SpcPP 93.2 92.8 93.4 92.0 93.1 89.2 93.4 93.2 92.8 92.2 92.5
BA 93.4 92.7 92.8 92.4 93.4 88.1 93.8 93.2 92.8 92.1 92.5

EvCLF 93.3 92.4 92.9 92.9 92.7 88.8 93.3 93.0 92.9 92.0 92.4
PstVPP 94.0 92.6 92.9 91.5 93.5 87.8 93.1 93.1 92.8 91.9 92.3
IndCLF 93.0 92.1 92.7 91.5 93.1 89.6 93.5 92.9 92.3 92.3 92.3

AdjP 93.3 91.7 93.2 91.6 93.2 88.2 93.8 93.0 92.4 92.0 92.3
GoalPP 93.9 92.6 93.1 90.9 93.4 87.7 93.0 92.8 92.6 91.7 92.2

DirPP 93.1 92.3 92.8 91.0 93.0 88.4 93.7 92.7 92.3 92.0 92.1
TopPP 92.7 92.1 92.9 92.0 92.8 89.0 93.0 92.5 92.4 91.8 92.1

TmpSCpl 93.3 92.1 92.7 91.1 92.9 86.9 93.3 93.0 92.3 91.5 91.9
Cmpr 92.6 91.3 92.9 91.2 93.2 87.5 93.4 93.1 92.0 91.8 91.9

NP 92.9 91.7 92.4 91.1 92.7 88.4 93.1 92.4 92.0 91.7 91.8
CondPP 93.1 91.5 92.4 90.4 92.8 88.5 93.3 92.2 91.8 91.7 91.8

SrcPP 92.2 91.4 92.3 91.2 92.5 88.1 92.5 92.0 91.8 91.3 91.5
PtcpPP 92.5 91.0 92.3 90.9 92.6 87.5 93.0 92.1 91.7 91.3 91.5
LexNeg 92.3 91.1 92.3 91.4 91.7 88.1 92.4 92.1 91.8 91.1 91.4

Rel 92.5 90.4 92.1 90.3 92.2 87.2 93.3 92.0 91.3 91.2 91.3
KindCLF 92.2 90.9 91.9 90.9 92.2 87.8 92.2 91.7 91.5 91.0 91.2

PreVPP 92.0 91.8 92.2 90.3 92.1 87.5 92.1 91.6 91.6 90.8 91.2
LocPP 91.9 91.4 91.5 91.4 91.8 86.6 92.4 92.1 91.6 90.7 91.1

ApprCLF 92.0 91.7 91.6 90.3 91.9 87.0 92.2 91.3 91.4 90.6 91.0
PathPP 89.1 86.4 87.2 86.6 87.5 84.5 88.3 88.8 87.3 87.3 87.3

Table 22: Performance in XCOMET-QE scores of each system on different grammatical features.

1221



Proceedings of the Ninth Conference on Machine Translation, pages 1222–1234
November 15-16, 2024 ©2024 Association for Computational Linguistics

Improving Statistical Significance in Human Evaluation
of Automatic Metrics via Soft Pairwise Accuracy

Brian Thompson†

Amazon
Nitika Mathur

Oracle
Daniel Deutsch

Google
Huda Khayrallah

Microsoft

Abstract

Selecting an automatic metric that best em-
ulates human annotators is often non-trivial,
because there is no clear definition of “best
emulates.” A meta-metric is required to com-
pare the human judgments to the automatic met-
ric scores, and metric rankings depend on the
choice of meta-metric. We propose Soft Pair-
wise Accuracy (SPA), a new meta-metric that
builds on Pairwise Accuracy (PA) but incorpo-
rates the statistical significance of both the hu-
man judgments and the metric scores. We show
that SPA is more stable than PA with respect
to changes in the number of systems/segments
used for evaluation. We also show that PA can
only assign a small set of distinct output val-
ues to metrics, and this results in many metrics
being artificially assigned the exact same PA
score. We demonstrate that SPA fixes this issue.
Finally, we show that SPA is more discrim-
inative than PA, producing more statistically
significant comparisons between metrics. SPA
was selected as the official system-level metric
for the 2024 WMT Metrics Shared Task.

1 Introduction

Automatic metrics are crucial because researchers
and practitioners in NLP typically can’t afford the
high cost and latency of high-quality human eval-
uations. Despite their shortcomings, metrics like
word error rate and BLEU (Papineni et al., 2002)—
in conjunction with carefully curated test sets—
have been crucial for the field of NLP, as they have
provided a yardstick to make continual progress
over many decades in automatic speech recogni-
tion and machine translation (MT), respectively.

Reliance on automatic metrics makes selecting
a good automatic metric of paramount importance.
Conceptually, an automatic metric should emulate
human judgments. Selecting an automatic metric

† Correspondence: brianjt@amazon.com. Work is unre-
lated to and conducted independently from the author’s posi-
tion at Amazon.

typically entails generating a set of human judg-
ments for a wide variety of outputs from a large
number of different systems, and selecting the au-
tomatic metric that produces scores most similar
to the human judgments. But how do we quantify
similarity? To select the metric which produces
output most similar to human judgements, we need
a meta-metric to compare metric scores and hu-
man judgments. Despite nearly two decades of
research on MT meta-evaluation, the community
has not reached a consensus on the choice of a
meta-metric. Various meta-metrics have been in-
troduced over the years to address problems with
prior meta-metrics, while sometimes creating new
problems or re-introducing old ones (see § 5).

Recent works (Mathur et al., 2020b; Kocmi et al.,
2021) have argued that the primary application of
a metric is to choose between two competing sys-
tems, therefore the best metric is the one which
produces pairwise system rankings most similar
to the pairwise system rankings produced by hu-
man judgements. This led to Pairwise Accuracy
(PA) being adopted by the WMT Metrics shared
task for the past several years (Freitag et al., 2021,
2022, 2023). However, this argument omits a key
detail: standard best practice when comparing two
systems with an automatic metric is to consider
not only which system the metric prefers, but also
whether or not that preference is statistically sig-
nificant (Koehn, 2004). Thus we argue that metrics
should emulate not only the accuracy of human
pairwise ranking, but also the confidence or statis-
tical significance of the human pairwise ranking.

To this end, we propose Soft Pairwise Accuracy
(SPA), a new meta-metric which takes into account
statistical significance of both the metric scores
and the human judgments when evaluating the ex-
tent to which the metric in question agrees with
the human judgments. We show that soft pairwise
accuracy, as its name implies, can be viewed as a
soft (i.e. non-binarized) version of PA, and present
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Figure 1: Illustration of the individual components used to calculate both SPA and PA for the Prism metric
(Thompson and Post, 2020a,b) on the WMT 2023 English-German language pair. Each box represents a comparison
between two systems, systems i and j. MT systems are sorted by average human judgment score for easier
interpretation. The right column is one minus the absolute difference between the human preference for systems i
over system j (left column) and the metric preference for system i over system j (middle column). In PA (top row),
human and metric preferences are binarized to 0 and 1, and PA is thus an average of binary terms. In SPA (bottom
row), human and metric preferences range from 0 to 1, and as a result SPA is an average of values ranging from 0 to
1. SPA can be viewed as a "soft" extension to pairwise accuracy that incorporates both human judgment and metric
uncertainty, allowing for partial credit.

analysis that demonstrates SPA has several distinct
advantages over PA. First, we find SPA is more
stable with respect to the exact choice of MT sys-
tems and segments used. Second, we show that
due to the binarization in its formulation, PA can
only assign a small set of distinct output values to
metrics, and in practice this results in many met-
rics being artificially assigned the exact same PA
score. We demonstrate that SPA fixes this issue.
Finally, we argue that PA is effectively equivalent
to SPA with added noise due to binarization. We
show that removing this noise (i.e. switching to
SPA) results in substantially more statistically sig-
nificant comparisons between metrics, making SPA
a more discriminative and therefore more useful
meta-metric. Our findings resulted in SPA being
selected as the official system-level meta-metric for
the 2024 WMT Metrics Shared Task (Freitag et al.,
2024).

2 Method

We propose a simple meta-metric for evaluating
automatic metrics given human judgments, which
we denote Soft Pairwise Accuracy:

SPA =

(
N

2

)−1 N−1∑

i=0

N−1∑

j=i+1

1− |phij − pmij | (1)

where N is the number of systems for which we
have human judgements and metric scores, phij is
the p-value for hypothesis that system i is better
than system j given the human judgments, and pmij
is the p-value for hypothesis that system i is better
than system j given the metric scores. The term(
N
2

)−1
= 2

N(N−1) normalizes the summation by
the total number of pairs of systems being com-
pared.

For each pairwise system comparison, we use a
permutation test (Fisher, 1935) to estimate statisti-
cal significance of the difference in the means of
the segment-level scores from a particular metric
(or the human judgements) for the two systems. We
first randomly split the segment-level scores (ignor-
ing the labels, i.e. which MT system produced each
segment) into two parts and compute the difference
in metric score mean. Repeating this process many
times provides a set of mean differences we can
reasonably expect under the null hypothesis that the
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two systems are of the same quality. We compute
a one-tailed p-value by calculating the fraction of
the time that the random splits produce differences
greater than or equal to the mean difference we
observe for the two systems.

Permutation tests are appealing because they
don’t require any assumptions about the underly-
ing distribution of the data. This fits our use case
well because we cannot assume anything about the
distribution of segment-level scores of a metric.1

Permutation tests instead have the assumption of
exchangeability (Pitman, 1937; Draper et al., 1993;
Good, 2002)—that is, under the null hypothesis
(in our case, that the two MT systems are of equal
quality) the joint distribution of the observations is
invariant under permutations of the data labels. To
help ensure exchangeability, we perform permuta-
tions such that each split has exactly one translation
of each test set sentence, commonly referred to as
a paired permutation test (Good, 2013).

Here we present some concrete examples for the
sake of intuition. Suppose a metric reports a +10
point difference between system i and system j,
and that the random permutations only produce
a metric difference ≥ 10 points 1% of the time.
Thus pij = 0.01 and we conclude that the metric
has high confidence that system i is better than sys-
tem j. Likewise, if the metric reports the systems
have a −10 point difference, we might find that the
random permutations produce a metric difference
≥ −10 points 99% of the time. Thus pij = 0.99
and we conclude the metric has high confidence
that system i is worse than system j. If the systems
have the same metric score, we would expect about
half of the random permutations to produce a met-
ric difference ≥ 0 and thus pij = 0.5, indicating
the metric finds the two systems indistinguishable
from each other.

2.1 Relationship to Pairwise Accuracy
PA is defined as

PA =

(
N

2

)−1 N−1∑

i=0

N−1∑

j=i+1

amij (2)

where amij is 1 when the metric scores and human
judgments prefer the same system and 0 otherwise.
PA is equivalent to the Kendall rank correlation
coefficient (Kendall, 1938), modulo a linear scaling
and shifting (see § 5.1).

1Metric and human annotation distributions are both highly
variable (Lo et al., 2023b; Knowles and Lo, 2024).

A p-value pij will be less than 0.5 when the
human raters (or automatic metric) prefer system i
over system j, and greater than 0.5 when the human
raters (or automatic metric) prefer system j over
system i. This allows us to define PA in terms of
binarized p-values:

PA =

(
N

2

)−1 N−1∑

i=0

N−1∑

j=i+1

1−
∣∣∣⌊ phij⌉−⌊ pmij ⌉

∣∣∣

(3)
Where binarization is denoted as:

⌊x⌉ =
{
1 x ≥ 0.5

0 x < 0.5

Comparing Equation 1 and Equation 3 illustrates
that SPA can be viewed as a ‘soft’ extension to PA
that incorporates uncertainty in both the human and
metric scores. A visualization of this is provided
in Figure 1.

In cases where both the MT metric and the hu-
man evaluation both have high statistical signif-
icance (regardless of whether the metric agrees
with the human judgments or not, i.e. pmij ≈ 0
or pmij ≈ 1), the contribution of that system pair
to SPA and PA is approximately identical. How-
ever, there are two important cases where our meta-
metric differs from PA:

1. The human evaluation has high statistical sig-
nificance (i.e. phij ≈ 0 or phij ≈ 1), but
the metric has low statistical significance (i.e.
pmij ≈ 0.5): Even if the metric happens to
choose the correct winner, we partially penal-
ize the metric for not having high statistical
significance.

2. The human evaluation finds the systems are
approximately tied (i.e. phij ≈ 0.5): In this
case, we partially penalize the metric if has
high statistical significance (i.e. pmij ≈ 0 or
pmij ≈ 1) even if it happens to pick the same
winner as the human evaluation, and to get
full credit the metric must match the human
evaluation statistical significance (i.e. pmij ≈
pmij ≈ 0.5)

2.2 Addressing Metric Ties in PA
The fact that PA considers only binary wins/losses
(i.e. the binarization in Equation 3) results in an
interesting shortcoming in PA. There are

(
N
2

)
pairs

of N systems, and thus
(
N
2

)
+1 distinct values that
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PA can take on (0/
(
N
2

)
, 1/
(
N
2

)
, ...,

(
N
2

)
/
(
N
2

)
). For

example, in WMT 2022 En-De, there are N = 14
MT systems and thus

(
N
2

)
+ 1 = 92.

However, metrics tend to perform better than a
random baseline, so only the upper half of the range
is actually useful (e.g. this leaves 46 distinct values
for N = 14 systems). We find that this results in
PA reporting the same scores for several sets of
metrics (see § 4.3). By removing this binarization,
SPA has no such issues.

3 Experimental Setup

3.1 Data
We conduct experiments on the data from the 2022
and 2023 WMT Metrics Shared Tasks (Freitag
et al., 2022, 2023). In particular, we use the pri-
mary language pairs where MQM judgments were
collected. We use the MT Metrics Eval V2 toolkit2

to retrieve official shared task scores.
We make the somewhat arbitrary decision to

compare all metrics, including non-primary met-
rics but excluding QE metrics (i.e. reference-free
metrics) which provide segment-level scores.

In order to compute the statistical significance
of comparisons between metrics, we make the sim-
plifying assumption that all system-level metrics
are the average of their segment-level metric. This
is not true for some metrics, including BLEU (Pap-
ineni et al., 2002) and chrF (Popović, 2015). While
it would be possible to re-compute BLEU and chrF
for each subset, we average the sentence-level ver-
sions of these metrics for simplicity. To the best
of our knowledge, this approach is also taken in
recent WMT metrics shared tasks.

3.2 p-value Speed Optimization
We estimate each p-value from 1000 random per-
mutations.3 A naive implementation of the paired
permutation test is not computationally prohibitive
when computing p-values for all systems/metrics
a single time, but it becomes problematic when
we want to compute these values many times in
order to estimate statistical significance of metric
comparisons.

Experimentally, we find the main speed bottle-
neck to be generating the random permutations, so
when estimating statistical significance of metric

2https://github.com/google-research/mt-metri
cs-eval

3Note that due to the randomness inherent in the p-value
estimation process, the exact value of SPA can vary slightly
from run to run.

comparisons we cache a batch of permutations and
use it for each pair of systems, on a per test-set
basis. Additionally, by sharing permutations across
system pairs, this allows us to pre-compute the con-
tribution of each system to means of the random
permutations, allowing computations to be linear
instead of square in the number of systems. See
our code4 for full implementation details. This re-
sults in a speedup of over 1000x compared to the
implementation in Scipy (Virtanen et al., 2020).5

Our speed optimization does not change the com-
putation of a p-value for a single system-level com-
parison, but it does mean that the p-value for one
pair of systems is no longer computed indepen-
dent from the p-value for any other pair of systems.
Given that we are using these p-values as an ap-
proximate level of confidence for the system-level
comparisons in the SPA meta-metric formulation,
as opposed to making any claims about the actual
statistical significance of the system-level compar-
isons, we believe this lack of independence should
be inconsequential.

4 Analysis

Meta-metric evaluation is challenging because
there is no ground truth (i.e., we don’t know the
true ranking of the metrics). Instead, we conduct
analysis to compare SPA and PA. First, we study
how sensitive the meta-metric results are when
ablating the number of MT systems and number
of segments per MT system, with the assumption
that lower sensitivity to the exact systems/segments
used indicates a better meta-metric. Second, we
examine whether PA indeed has the problem of ties
that we hypothesized in § 2.2, and whether SPA
fixes this issue. Finally, we test our hypothesis that
the binarization in PA is effectively acting as addi-
tive random noise, and that SPA is effectively the
same underlying meta-metric with the noise term
removed.

4.1 Ablation: Number of Systems
Each year, WMT and the associated metrics task
collect and score many online and submitted MT
systems. For an ideal meta-metric, the exact choice
of MT systems would have minimal impact on the

4https://github.com/thompsonb/mt-metrics-eval/
blob/main/mt_metrics_eval/pairwise_paired_permut
ation_test.py

5Using the ‘permutation_test’ function from scipy, ‘per-
mutation_type’ set to ‘samples’ and the ‘n_resamples’ set to
1000, each p-value takes around 40 milliseconds to compute
on a laptop.
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Figure 2: Final metric ranking stability when ablating the number of MT systems (and thus the number of total
MQM judgments), measured as change in Pearson correlation coefficient (Pearson r) from the ranking computed on
all MT systems. Values are averaged over 1000 random trials. We find SPA to be more stable than PA in all cases.

metric rankings. We perform an ablation on the
number of MT systems being scored, keeping the
number of annotations per system fixed. We then
compute the correlation (as measured by Pearson’s
r) between the meta-metric’s ranking of the ab-
lations compared to that same meta-metric’s full
ranking. This allows us to evaluate how sensitive
the metric is to the exact selection of MT systems.

When ablating the number of MT systems (and
keeping the number of annotations per system
fixed), we find (see Figure 2) that SPA is more
stable than PA across all MQM language pairs in
the last two years of WMT Metrics Shared Tasks.

4.2 Ablation: Sample Size

Since SPA relies on the pairwise p-values between
MT systems, it is also natural to ask how SPA be-
haves when the number of available segments used
for evaluating systems is small since it is harder
to find statistical differences between systems with
a smaller sample size. To answer this question,
we calculate 95% confidence intervals for both PA
and SPA values of two highly performant metrics—
in particular, we considered xCOMET (Guerreiro
et al., 2023) and MetricX-23 (Juraska et al., 2023)—
on WMT 2023 using bootstrapping for various
numbers of segments, thereby simulating scenarios
with less human annotations but a fixed number of

MT systems.
When ablating the number of segments per

MT system (and keeping the number of MT sys-
tems fixed), we find (see Figure 3) that SPA has
tighter 95% confidence intervals than PA (shown on
Metric-X and xCOMET), and that the confidence
interval converges to its final value with smaller
sample sizes than PA.

4.3 Ties

As discussed in § 2.2, the binarization in PA limits
the number of distinct values it can assign to met-
rics. to

(
N
2

)
+ 1. In practice, we find it tends to

take on far fewer values. For example for WMT
2022 En→De, PA could theoretically take on 92
distinct values, but because the metrics fall in a
fairly narrow range (PA is 0.626 for the worst met-
ric and 0.813 for the best), the 21 metrics have only
11 distinct PA scores, with one 5-way PA tie and
several 2- and 3-way PA ties (see Figure 4). Since
SPA does not binarize each system comparison,
it is able to assign any value to each metric, and
is therefore potentially better able to distinguish
between metrics.

Results for all language pairs are in Table 1. We
find that on average, PA produces about half as
many distinct values as there are metrics while SPA
produces one unique value per unique metric.
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Figure 3: The 95% confidence intervals for SPA (blue) and PA (red) on Metric-X (top) and XCOMET (bottom)
when varying the number of annotations per system. We find that SPA has a tighter confidence interval, and that the
confidence interval shrinks to its full value with smaller sample sizes than PA.

4.4 Statistical Significance of Metric
Comparisons

We hypothesize that the binarization in PA is essen-
tially acting as additive random noise on top of the
underlying SPA meta-metric. If this is true (and the
magnitude of the noise does not dominate the un-
derlying signal), we would expect SPA to produce a
similar metric ranking to PA, but with increased sta-
tistical significance. To test this, we compute statis-
tical significance of the comparisons between each
metric using the PERM-INPUTS (Deutsch et al.,
2021) method. We follow recent shared tasks in
greedily computing significance clusters, by start-
ing with the highest scoring metric and assigning
rank 1 to all metrics until we encounter the first met-
ric that is statistically significantly different from
any previous metric so far. That metric is assigned
rank 2, and the process repeats until all metrics
have been assigned a rank. We echo the shared
task organizers’ warning that this method can place
two metrics that are statistically indistinguishable
in different significance clusters (and in the case of
PA, we observe this multiple times).

On average, SPA increases the number of sta-

tistically significant pairwise comparisons by 31%
and the number of significance clusters by 40%
compared to PA, while producing similar scores
for each metric (see Figure 4 for a visualization for
WMT 2022 En→De results and Table 1 for results
summary). This is consistent with our hypothesis
that PA is effectively SPA with added noise due to
binarization. This means that SPA is a more dis-
criminative, and therefore more useful, meta-metric
than PA.

5 Historical Context and Related Work

WMT has run a machine translation evaluation
since 2006 (Koehn and Monz, 2006). Since 2007
(Callison-Burch et al., 2007), there has also been
meta-evaluation of automatic metrics on the sub-
mitted translation systems. Here we summarize
the rich 17 year history of system-level meta-
evaluation at the WMT Metrics Shared Tasks6 and
work related to and directly impacting the shared
tasks, in order to demonstrate how our work fits
into the historical context.

6The WMT Shared Tasks have typically evaluated at both
the system- and segment-level, but we focus on system-level
meta-evaluation as it is most relevant to our work.
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Figure 4: Metric Comparison Significance, WMT 2022 En→De. Note that PA only assigns 11 distinct values to the
21 metrics (ties are shown in alternating Purple and Yellow text), whereas SPA produces a distinct value for each of
the 21 metrics. SPA produces more statistically significant (p-value <= 0.05, shown in green) comparisons between
metrics (163 vs 108). As a result, SPA divides the metrics into 8 significance clusters (delineated with blue lines)
compared to only 5 for PA. Results for other language pairs (not shown) are similar.
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Distinct Metric Significant Significant
Testset Language # MT # MT Values (↑) Comparisons (↑) Clusters (↑)

Pairs Systems Metrics PA SPA Max PA SPA Max PA SPA Max

wmt22 En→De 14 21 11 21 21 108 163 210 5 8 21
wmt22 Zh→En 15 21 12 21 21 150 177 210 6 9 21
wmt22 En→Ru 15 20 10 20 20 88 133 190 4 6 20
wmt23 En→De 12 25† 12† 24† 24† 171 206 276† 5 6 24†

wmt23 He→En 13 25 11 25 25 180 224 300 5 8 25
wmt23 Zh→En 14 25 12 25 25 186 229 300 7 7 25

Table 1: Number of distinct values produced, number of statistically significant pairwise comparisons (p-value
<= 0.05), and number of statistical significance clusters for PA and SPA. We provide the best possible value for
each category (Max) for comparison, but note that even an ideal meta-metric would likely not achieve this value due
to some metrics being highly correlated with each other (e.g. due to training on the same data). †: InstructScore and
SEScoreX scores as returned by MT Metrics Eval v2 for WMT23 En-De are identical, causing an exact tie in both
PA and SPA. We believe this is an error in MT Metrics Eval v2 but for posterity keep them as-is.

In the WMT 2007-2013 metrics evaluations
(Callison-Burch et al., 2007, 2008, 2009, 2010,
2011, 2012; Macháček and Bojar, 2013) Spear-
man’s rank correlation coefficient ρ was used for
meta-evaluation of metrics. This was motivated
by the fact that Spearman’s makes fewer assump-
tions about the data than the Pearson correlation
coefficient.

The WMT 2013 Translation Shared Task (Bo-
jar et al., 2013) introduced system clusters (groups
of systems that cannot be distinguished given the
human judgments), and the 2013 metrics task
(Macháček and Bojar, 2013) introduced empirical
confidence of Spearman’s ρ using bootstrap resam-
pling. Since they were not able to resample on
the submitted metrics, they only re-sampled human
judgments. This iteration also discussed the fact
that Spearman’s ρ does not give partial credit. The
penalty is equal for all wrong judgments, regardless
of if the systems are close or far in quality. To com-
pensate they present additional methods of analysis:
Pearson’s, and correlation with systems’ clusters
from the translation task (Bojar et al., 2013). Those
clusters were treated as ‘ranks with ties,’ and then
correlation computed against Pearson’s and Pear-
son’s correlation against ‘fuzzy ranks’ (the average
over ranks of all systems that are not significantly
different in human quality).

In 2014, the metrics task (Macháček and Bojar,
2014) fully switched to Pearson’s r from Spear-
man’s ρ. They also did bootstrap resampling to get
empirical confidence intervals of system level cor-
relations. This change to Pearson’s was due to the
concerns pointed out in the previous year’s shared

task, which had explored other meta-metrics.
The 2015 metrics task (Stanojević et al., 2015)

continued with Pearson’s r, and also presented
analysis of Pearson’s r vs Spearman’s ρ, and high-
lighted the instability of Spearman’s ρ when MT
systems are similar.

The 2016 metrics task (Bojar et al., 2016) stuck
with Pearson’s r, but changed the confidence to be
the Williams test (Williams, 1959), as Graham and
Baldwin (2014) had noted that this test is appropri-
ate for dependent correlations.

The 2017 metrics task (Bojar et al., 2017) kept
Pearson’s r, and Williams test. They also added a
pairwise significance test using Williams test. This
continued in 2018 and 2019 (Ma et al., 2018, 2019)

The 2020 metrics task (Mathur et al., 2020b) con-
tinued to use Pearson’s, but also includes Kendall’s
Tau for analysis. Kendall’s Tau is a closer match
for the system ranking use case, since it is evaluat-
ing whether the ordering of a pair of systems is the
same as the human ordering. However, it does not
take into account the magnitude difference.

In 2021, the metrics task (Freitag et al., 2021)
adopted pairwise accuracy (Kocmi et al., 2021),
motivated in part by the fact that MT system out-
liers had an outsized impact on Pearson correla-
tion when it is used to rank MT Metrics (Mathur
et al., 2020a). Pairwise accuracy produces the same
system-level ranking as Kendall’s Tau, as they are
equivalent modulo a linear scaling and shifting
(see § 5.1). The PERM-BOTH hypothesis test of
Deutsch et al. (2021) was used to determine signifi-
cance. 2021 and 2022 (Freitag et al., 2022, 2023)
follow.
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In summary, the historical context of the
WMT metric evaluations demonstrates that meta-
evaluation is very challenging due to the numerous
issues that must be simultaneously addressed, and
underscores the pitfalls of making changes to meta-
evaluation without considering the full set of rami-
fications. Most relevant to our work, it appears that
the switch to pairwise accuracy in 2021 reduced
the influence of outliers (Mathur et al., 2020a) and
(somewhat) aligned meta-evaluation with the stan-
dard use of comparing two systems with a metric,
but it also reintroduced a problem that was first
pointed out by Macháček and Bojar (2013) and
more fully addressed by the change to Pearson’s r
from Spearman ρ by Macháček and Bojar (2014):
a disregard for the magnitude of differences. We
address this issue by considering empirical con-
fidence, which was first added by Macháček and
Bojar (2013), and in the process we also better
align meta-evaluation to the (more correct) usage
of comparing two systems with a metric while also
considering the statistical significance of the re-
sults.

5.1 Relationship to Kendall’s Tau

Our work builds on pairwise accuracy, typically at-
tributed to Kocmi et al. (2021). Pairwise accuracy
is equivalent to the the widely used Kendall rank
correlation coefficient (Kendall, 1938), modulo a
linear scaling and shifting. Kocmi et al. (2021)
present pairwise accuracy as simply “accuracy” and
make no mention of its relation to Kendall, which
was already in use for MT meta-evaluation (Mathur
et al., 2020b). The term “pairwise accuracy” ap-
pears to have been coined by Freitag et al. (2021)
to distinguish it from other types of accuracy.

Kendall’s Tau is defined in terms of concordance
(equivalent to our previously defined amij ) and dis-
cordance dmij , defined to be 1 when the metric and
human judgments disagree and 0 otherwise:

τ =

(
N

2

)−1 N−1∑

i=0

N−1∑

j=i+1

(amij − dmij ) (4)

Any system pair which is not concordant is discor-
dant,7 and thus dmij = 1− amij . Given this and the

7We ignore tie handling, as ties are extremely unlikely in
system-level evaluation. Ties in segment-level evaluation are
an entirely different matter (Deutsch et al., 2023a).

definition of PA from Equation 2, we have:

τ =

(
N

2

)−1 N−1∑

i=0

N−1∑

j=i+1

amij − (1− amij )

= 2

((
N

2

)−1 N−1∑

i=0

N−1∑

j=i+1

amij

)
− 1

= 2 PA− 1

(5)

5.2 Additional Connections to Prior Work
Graham and Liu (2016) proposed a method of sam-
pling translations from every pair of competing
MT systems, creating synthetic systems for scor-
ing. Our work has clear similarities in that we
create and score synthetic permutations, but dif-
fers in how those synthetic systems are used in the
meta-metric formulation.

Mathur et al. (2020a) showed that MT system
outliers had an outsized impact on Pearson corre-
lation. In SPA, outliers impact is limited because
p-values saturate at 0 or 1.

Knowles (2021) highlights that as WMT annota-
tion protocols have shifted the original statistical as-
sumptions, and questions the validity of the result-
ing protocols. Similarly, we show that shifts over
the years have caused problems in meta-evaluation.

Lo et al. (2023a) investigated what magnitude
of metric changes tend to be statistically signifi-
cant. SPA uses statistical significance measures
(p-values) directly, as opposed to the magnitude of
metric differences (e.g. as in Pearson correlation).

Deutsch et al. (2023a) demonstrated that princi-
pled tie handling is crucial when comparing MT
metrics at the segment level, because some metrics
produce quantized scores that often result in ties.
SPA is system level (i.e. sentence level scores aver-
aged over the entire test set), so exact ties are very
unlikely. However, SPA can be seen as giving full
credit for (statistical) ties, which is similar in spirit.

We show that quantization (specifically bina-
rization) is problematic in PA. Quantization in
evaluation has proved problematic in other spaces
as well—for example, Schaeffer et al. (2024) at-
tributes the widely repeated claim that LLMs have
emergent properties to quantization in evaluation.

6 Conclusions

We introduce a new meta-metric which we denote
soft pairwise accuracy, and show that it improves
on pairwise accuracy in a number of ways, most
notably that it is more stable than pairwise accuracy
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when ablating the number of systems and annota-
tions per system, it fixes an issue of metric ties ob-
served in pairwise accuracy, and it produces more
statistically significant comparisons between met-
rics than pairwise accuracy. We also discuss how
soft pairwise accuracy fits into and builds upon the
nearly two decade history of meta-evaluation at the
WMT Metric Shared Tasks.
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Limitations

When computing p-values, we assume that system-
level metric scores are the average of segment-level
metrics scores. There is a line of recent work that
seeks to incorporate contextual information into
automatic metrics. Many such works still produce
scores at the segment level (e.g. Vernikos et al.,
2022; Hu et al., 2023; Agrawal et al., 2024) but
others produce one score per window of a few sen-
tences (Raunak et al., 2024) or one score per para-
graph (Deutsch et al., 2023b). Our method should
still be applicable in such cases, but would require
permuting windows or paragraphs instead of seg-
ments. Additionally, as previously noted, some
metrics—notably BLEU (Papineni et al., 2002)
and chrF (Popović, 2015)—compute statistics at
the segment level and combine them to create
document-level scores. Again, permutations would
still work but would require some modification. To
the best of our knowledge, this issue is not limited
to our work—the same assumption is made in prior
work computing statistical significance of metrics,
including the WMT shared tasks (Freitag et al.,
2021, 2022, 2023) and Deutsch et al. (2021).

It is worth noting that the permutations in this
work (as in prior works) are done on a single test
set, and do not necessarily reflect variations in per-
formance that could result from using the metrics in
another domain. Prior work has shown that trained
metrics are sensitive to a shift in domain relative
to the data domain they were trained on (Zouhar
et al., 2024).
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Abstract

The prosody of a spoken utterance, includ-
ing features like stress, intonation and rhythm,
can significantly affect the underlying seman-
tics, and as a consequence can also affect its
textual translation. Nevertheless, prosody is
rarely studied within the context of speech-to-
text translation (S2TT) systems. In particular,
end-to-end (E2E) systems have been proposed
as well-suited for prosody-aware translation be-
cause they have direct access to the speech sig-
nal when making translation decisions, but the
understanding of whether this is successful in
practice is still limited. A main challenge is the
difficulty of evaluating prosody awareness in
translation. To address this challenge, we intro-
duce an evaluation methodology and a focused
benchmark (named CONTRAPROST) aimed at
capturing a wide range of prosodic phenomena.
Our methodology uses large language mod-
els and controllable text-to-speech (TTS) to
generate contrastive examples. Through ex-
periments in translating English speech into
German, Spanish, and Japanese, we find that
(a) S2TT models possess some internal repre-
sentation of prosody, but the prosody signal is
often not strong enough to affect the transla-
tions, (b) E2E systems outperform cascades of
speech recognition and text translation systems,
confirming their theoretical advantage in this
regard, and (c) certain cascaded systems also
capture prosodic information in the translation,
but only to a lesser extent that depends on the
particulars of the transcript’s surface form.1

1 Introduction

Prosody, which includes features like stress, into-
nation, and rhythm, is crucial for conveying mean-
ing in spoken language beyond the literal words
used (Ladd, 1980; Bolinger, 1989). Among oth-
ers, prosody can direct focus and clarify mean-
ing (Bolinger, 1961; Halliday, 1967), disambiguate

* Work done during an internship at Apple.
1github.com/apple/ml-speech-is-more-than-words

Example: These are German teachers.

A
Prosody These are GERMAN teachers.
Explanation Teachers from Germany
Translation Dies sind Deutschlehrer.

B
Prosody These are German TEACHERS.
Explanation Teachers that teach German
Translation Dies sind deutsche Lehrer.

Example: John laughed at the Party.

A
Prosody John LAUGHED (pause) at the Party.
Explanation Laughed while at the party (literal)
Translation John lachte während der Party.

B
Prosody John LAUGHED AT (pause) the Party.
Explanation Ridiculed the party (idiomatic)
Translation John lachte über die Party.

Table 1: Examples of prosody-aware Speech Translation
from English to German.

syntax and sentence structure (Bolinger, 1989),
convey the emotional state of the speaker (Banse
and Scherer, 1996), and provide useful cues that
make communication more effective (Shriberg
et al., 1998). For example, the phrase “Really?”
can express surprise, genuine interest or disbelief,
depending on the intonation with which is spoken.

Table 1 illustrates the importance of consider-
ing prosody when generating translations in S2TT.
Sperber and Paulik (2020) suggest that E2E S2TT
systems may have an inherent advantage over cas-
caded systems in this regard, because only the for-
mer have access to the speech signal when making
translation decisions. However, our understand-
ing of whether prosody informs translation choices
in practice is currently still limited, as prior re-
search on this topic either shows only anecdotal
evidence (Huang et al., 2023b), focuses on only a
small subset of prosodic phenomena (Zhou et al.,
2024; Chen et al., 2024), or considers how prosody
informs target-side speech with regards to gener-
ated prosody but not lexical choice (§6).

1235

https://github.com/apple/ml-speech-is-more-than-words


In this paper, we take steps toward a reliable and
comprehensive evaluation methodology, which is
one of the most important prerequisites for achiev-
ing prosody-aware S2TT. We identify three central
challenges that must be addressed: (1) Existing
S2TT benchmarks often do not include prosody-
rich spontaneous speech and/or do not include
translations that are informed by the audio, limiting
the extent to which reference translations are influ-
enced by source-side prosody. (2) General-purpose
evaluation methods like BLEU (Papineni et al.,
2002) and COMET (Guerreiro et al., 2023) are in-
sensitive to the often subtle changes in translation
caused by input prosody. (3) Existing prosody-
centric benchmarks are difficult to scale to broader
coverage of languages and prosodic phenomena,
which hinders comprehensive analysis.

To address these challenges, we take inspira-
tion from prior work on behavioral testing (Ribeiro
et al., 2020; Ferrando et al., 2023) and contrastive
evaluation (Sennrich, 2017). We address the
first challenge by synthesizing prosody-rich data
that covers a wide range of prosodic phenomena
through the use of large language models (LLMs)
and controllable TTS (cTTS). We tackle the second
challenge by developing a double-contrastive evalu-
ation approach, i.e. a directional behavioral test that
relies on minimal pairs (differing only in prosody)
to evaluate prosody-awareness in S2TT in isola-
tion. The resulting benchmark, CONTRAPROST
(Contrastive Prosody ST), covers a variety of lan-
guage pairs and prosodic phenomena. Since it is
mostly automated, it can be further extended, thus
addressing also the third challenge.

To investigate how well current state-of-the-art
models understand and leverage prosody, we eval-
uate S2TT models of various sizes and types, in-
cluding both E2E and cascaded systems. We find
indications that S2TT models represent prosody
internally, but this knowledge is often not mani-
fested in the translations. We observe that while
tested cascaded systems perform better on tradi-
tional evaluation (COMET), E2E models outper-
form cascaded models on CONTRAPROST. We also
find indications that some amount of prosody is
carried through transcripts in cascaded setups, but
this depends on the particulars of the transcriptions.
The most important implication of our findings is
the need for exploring improvements of S2TT re-
garding prosody-awareness, e.g. through auxiliary
losses or finetuning on prosody-rich data.

2 The CONTRAPROST Benchmark

CONTRAPROST is composed of double-contrastive
examples (see Table 1), where each example is
composed of a sentence in English that could be
semantically ambiguous, along with two different
pairs of <speech, translation> that capture con-
trastive cases of prosody.

As it would be expensive and practically diffi-
cult to collect such test data manually, we employ
an automatic data generation process, illustrated in
Fig. 1. First, we identify several relevant categories
where prosody influences sentence semantics in
important ways, and construct illustrative examples
that reflect the respective phenomena of each cat-
egory, while highlighting differences in prosody-
induced meaning (§2.1). We then prompt GPT-
42 (OpenAI, 2024) to generate sentences similar to
the examples for each subcategory using in-context
learning, grounding the generation on different text
domains to increase diversity (§2.2). Next, GPT-4
is prompted to translate each prosodic case, while
also being given access to the prosodies, meanings
and general information of the category, thus acting
as a prosody- and context-aware oracle translator
(§2.3). Finally, we use the OpenAI TTS API3 to
synthesize the prosodic speech of each case (§2.4).
Each generation stage is coupled with filtering and
quality assessment to ensure the data are of high
quality.

2.1 Categorization of Prosodic Phenomena

Below, we summarize the examined prosodic cat-
egories. Details and examples are available in the
Appendices A and B.
(1) Sentence Stress. This is usually manifested
through increased loudness, vowel length or higher
pitch (Fry, 1955), invoking emphasis on certain
words within a sentence, potentially changing the
semantics by shifting focus (Wagner, 2020). We
further categorize prosodic stress in four subcate-
gories according to the purpose of the stress or its
use in disambiguation of linguistic phenomena (see
Appendix A.1).
(2) Prosodic Breaks. Here we consider the ex-
istence or placement of longer breaks in the flow
of speech, primarily associated with tempo, that
create different phrasal boundaries and help dis-
ambiguate syntax and sentence structure (Bolinger,
1989). We follow Hirschberg (2017) and use the

2GPT-4O-2024-05-13
3TTS-1-HD, platform.openai.com/docs/models/tts

1236

https://platform.openai.com/docs/models/tts


Figure 1: The Data Generation process for CONTRAPROST.

subcategories outlined in Appendix A.2.
(3) Intonation Patterns. This concerns the modal-
ity of the sentence, specifically whether it is a state-
ment (falling tone), or a declarative question (rising
tone) (Gunlogson, 2002).
(4) Emotional Prosody. A different emotional
tone can indicate a speaker’s emotional state and
thus affect the semantics of the utterance (Banse
and Scherer, 1996). Emotional tone is usually man-
ifested through changes in pitch, tempo, and loud-
ness. For example, happiness is associated with
higher values in pitch and tempo, while sadness
exhibits lower values for pitch, tempo, and loud-
ness (Larrouy-Maestri et al., 2024). Here, we focus
on the seven basic emotions: happy, sad, angry,
disgust, surprisal, fear, and neutral (Ekman and
Friesen, 1971; Ekman, 1992), based on which we
construct all possible pairs, thus having 21 subcat-
egories.
(5) Politeness. The level of politeness can be con-
veyed by non-verbal cues, and influences the prag-
matic context of a conversation. A polite tone is
associated with a higher pitch and a smooth rhythm,
while an impolite tone is manifested through low
pitch, irregular rhythm and very high or low loud-
ness levels (Culpeper et al., 2003; Culpeper, 2011).

2.2 Prosodic Example Generation

For each category, we prompt GPT-4 to generate
sentences based on hand-crafted category-specific
examples. More specifically, we have the LLM
generate English sentences, each with two different
textual prosodic annotations and respective mean-
ings/interpretations to guide subsequent translation
(§2.3). The generated annotations include rich text
that indicates different levels of emphasis, pause
tags, and special punctuation such as ellipsis, ex-

Prompt 1: Prosodic Example Generation

You are a helpful assistant with expert knowl-
edge in linguistics, speech, and prosody. Your
task is to come up with examples of English sen-
tences where different prosody would change the
meaning of the sentence significantly.(1)

{Details for Category & Subcategory}(2)

Here are some examples to guide you:
{List of Examples}(3)

Strictly follow these rules:
{List of Rules}(4)

Provide a rating of how significant is the differ-
ence between the two meanings.(5)

Generate {n} such examples, with rating as high
as possible,(6) in the domain of {domain}.(7)

clamation, or interobang (!?). The sentence itself is
generated to be as simple as possible, ending with
a full stop or question mark.

The general prompt template is displayed in
Prompt 1. It starts with some general informa-
tion about the task, see superscript (1). The prompt
then continues with details describing the current
category/subcategory (2). The next part refers to
in-context learning (Brown et al., 2020), where we
provide a list of illustrative, hand-crafted examples
for the LLM to follow (3). In certain subcategories,
due to repeated mistakes observed in preliminary
explorations, we also provide examples to avoid.
In (4) we provide a list of rules for the LLM to
adhere to, indicating the desired structure of the
sentence and how to use prosodic notation, which
might not be obvious from the examples (3). Ex-
amples of such rules are “do not include prosodic
annotations in the sentence,” or “stress different
noun-phrases in each prosodic case.” We further-
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more use self-criticism (Huang et al., 2023a) by
instructing the model to rate its own generations,
according to how different the two prosodic in-
terpretations are (5). Then we instruct the LLM
to generate examples that have high scores after
self-reflection (6). These scores are also used later
during filtering. Finally, to avoid repetitive exam-
ples and enhance diversity, we condition the gen-
eration on specific text domains (7) (Chung et al.,
2023). The list of domains is also generated by
GPT-4 based on the context that its subcategory
would naturally occur (e.g. legal testimonies). For
each text domain in the subcategory the LLM then
generates n candidate examples. We use several
hand-crafted text-based filtering steps to ensure
that the examples generated by the LLM at this
stage comply with the instructions specified in (4).

2.3 Oracle Translation
Recent research on the emerging capabilities of
LLM-based MT (Vilar et al., 2023; Alves et al.,
2023; Zhang et al., 2023) has shown that LLMs
can attain very high translation quality, especially
for high-resource languages (Robinson et al., 2023)
and including translation factors such as emo-
tions (Brazier and Rouas, 2024), suggesting the
possibility that LLMs can be leveraged for prosodic
translation synthesis. To obtain the translations
of the prosodic cases, we thus utilize GPT-4 as a
prosody- and context-aware oracle translator. The
LLM is prompted to translate, while having access
to the sentence, the textual prosodic annotations
(prosody-awareness), and the semantic interpreta-
tions (context-awareness). The template prompt is
shown in Prompt 2. We provide a list of contraints
to the LLM with several goals in mind: (i) avoid
generating prosodic annotations in the translations;
(ii) avoid translating the interpretations rather than
the sentences; (iii) encourage the model to generate
different translations for each case; (iv) ensure that
differences in the translations are only due to the
difference in the prosodies.

Although prosody variants substantially influ-
ence sentence semantics, this does not always imply
that the ideal translations must differ. In particular,
sometimes a translation that leaves semantics am-
biguous may be preferred as the most natural trans-
lation.4 As a consequence, constraint (iii) is some-
times overly strict and even in conflict with con-
straint (iv), leading to changes in the translations

4This is essentially an instance of the fluency-accuracy
trade-off (Lim et al., 2024).

Prompt 2: Oracle Translation

You are a helpful assistant with expert knowl-
edge in speech, prosody, linguistics and transla-
tion, particularly in English and {Target Lang}.
You will be provided with a sentence in English
(S) and two different prosodic variations (SA,
SB), focused on {Category}, which correspond
to two different semantic interpretations.
Your task is to translate S, SA and SB into {Tar-
get Lang}, as T, TA, and TB.
Carry out the translation in these steps:
(1) Translate S into T.
(2) Translate SA to TA and SB to TB, by focusing
on how T should change in order to reflect the
additional information from the prosodies.
The following constraints should be applied:
{List of Constraints}
The sentence S is: {sentence}
The two different prosodic variations are:
SA. {prosodyA} ({meaningA})
SB. {prosodyB} ({meaningB})

that do not stem from the prosodies, that are not
idiomatic. To account for that, we include a post-
editing step, where GPT-4 is instructed to choose
the most fitting translation among {T, TA, TB}
for each prosodic case, independently from the
other prosodic cases, while having access only the
prosody information (Prompt 3). We prompt the
LLM to first provide an explanation, before select-
ing the most appropriate translation, in order to
induce chain-of-thought reasoning effect (Kojima
et al., 2024).

Prompt 3: Translation Post-editing

You are a helpful assistant and an expert transla-
tor. You will be provided with a sentence in En-
glish and different possible translations in {Tar-
get Lang}. The English sentence can contain
rich prosodic text with {Category-specific in-
formation}, that affects the meaning of the sen-
tence. Your task is to select the most appropriate
and prosody-aware translation. First provide a
brief explanation of your reasoning and then the
index of the selected translation.
The sentence S to be translated is {sentence}
and the candidate translations are: [T,TA,TB]}

After post-editing we remove all examples where
the prosodic cases have identical translations, i.e.
(TA=TB). As an extra measure, we also remove
examples where the word length-ratio of the non-
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prosodic translation T and one of the prosodic
translations TA, TB is not within (0.75, 1.25)5. This
aims to remove translations that are overly explana-
tory, including new bits of information that can be
due to the prosody, but are making the translation
unnatural (see Table 10 in App. D.2 for examples.).

2.4 Controllable Speech Synthesis
We use the OpenAI TTS which can synthesize very
natural speech with high-quality audio, offering six
different voice profiles. While there are no clear
guidelines6 on how to control prosody, we identi-
fied some effective prompting strategies to control
the TTS output through trial-and-error (Table 2).

Effect TTS Prompting

Strong Emphasis *WORD*
Normal Emphasis *word*
Slight Emphasis _word_

Pause <pause>
Statement Intonation Prepend <statement>
Question Intonation Prepend <question> & Append ????

Emotional/Polite Tone Prepend & Append Emojis

Table 2: OpenAI TTS prompting strategies.

To ensure that the generated audio follows the
correct wording and exhibits the intended prosodic
characteristics we use the following process: First,
we generate six candidates (one per voice) for each
prosody, discarding invalid candidates (WER ̸=0)
using an ASR model. Then we estimate prosody
quality using category-specific tests in order to
rank or filter examples. These tests employ tech-
niques such as forced alignment (Kürzinger et al.,
2020), signal processing, punctuation probability,
and speech emotion classification. They are ex-
plained in detail in Appendix C.

3 Contrastive Evaluation

General-purpose MT metrics like BLEU and
COMET may be insensitive to subtle changes
caused by prosody, and do not allow disentangling
prosody awareness from overall translation quality.
Thus, to assess how well an S2TT model can han-
dle prosody specifically, we develop a contrastive
evaluation framework (Sennrich, 2017). Note that
previous work on contrastive evaluation uses a sin-
gle source and two or more targets (Sennrich, 2017;
Vamvas and Sennrich, 2021; Zhou et al., 2024) of
which only one is correct. The model likelihood

5We use character-based length-ratio for Japanese.
6platform.openai.com/docs/guides/text-to-speech

is then estimated for each target, and models are
preferred that assign a better score to the correct
example than to the foil(s). Here, we generalize
this approach to leverage CONTRAPROST’s double-
contrastive pairs, i.e. two sources and two targets
(Fig. 1).

Formally, each double-contrastive pair has
two cases {Xa, Z, Y a} and {Xb, Z, Y b}, where
Xa, Xb are the two different prosodic speech sig-
nals, Z is the source text (same for both cases),
and Y a, Y b are the different translated texts for
each case. Thus, each example has two correct
pairs (Xa, Y a), (Xb, Y b) and two incorrect ones
(Xa, Y b), (Xb, Y a). We propose the following
conditions to assess whether the S2TT model can
correctly solve the contrastive example, and to what
degree:

CG = 1
[
f(Y a | Xa; θ)− f(Y b | Xa; θ) > 0

and f(Y b | Xb; θ)− f(Y a | Xb; θ) > 0
]

CD = 1
[
f(Y a | Xa; θ)− f(Y b | Xa; θ)

+f(Y b | Xb; θ)− f(Y a | Xb; θ) > 0
]

Here, 1[·] is the indicator function, and f(·) > 0
is a function that measures the agreement between
audio input X and target translation Y under the
S2TT model with parameters θ. CG is a global
condition, requiring the model to prefer both of the
correct pairs versus the incorrect ones according
to f . CD is a directional condition (Ribeiro et al.,
2020) where we require a net positive directional
movement for the two comparisons. We expect a
model to have a strong internal representation of
prosody if it can solve the global condition, and
weak representation if it can only solve the direc-
tional one.7

We consider two different functions f to mea-
sure the agreement of X and Y .

3.1 Contrastive Likelihood

Similar to prior work on contrastive evalua-
tion (Sennrich, 2017; Vamvas and Sennrich, 2021;
Zhou et al., 2024) we use the model likelihood to
measure the level of agreement between input au-
dio and target text. We obtain the model likelihood
L ∈ R+ for a reference Y = (y1, . . . , y|Y |), given
a speech signal X ∈ Rk and an E2E S2TT model
with parameters θE2E. It is defined as the product

7Note that CG is a sufficient condition for CD .
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of the conditional probabilities, normalized by the
length of the reference. Formally:

L(Y | X; θE2E) =
1

|Y |

|Y |∏

i=1

pθE2E

(
yi | X, y<i

)

For a cascaded S2TT model we approximate the
true likelihood by considering the top-n ASR hy-
potheses Z = {Z(1), . . . , Z(n)}. Assuming the
lengths of the Z are generally similar, we get:

L(Y | X; θcasc) ≈ L(Y | Z; θMT)L(Z | X; θASR)

≈
∑n

j=1

[
L(Y | Z(i); θMT) · L(Z(i) | X; θASR)

]
∑n

j=1 L(Z(i) | X; θASR)

Furthermore, to remove a potential bias of the
model against rare translations, we normalize by
the unconditioned decoder likelihood of the refer-
ence:8

fL(Y | X; θ) =
L(Y | X; θ)

L(Y | θ) (1)

3.2 Contrastive Translation Quality
A common criticism of using model likelihoods
is that they do not assess whether the correct out-
put is actually generated in practice, due to teacher
forcing. To address this, we propose another func-
tion that leverages translation quality estimation
(QE) to compare unconstrained autoregressively
generated model outputs. We obtain the hypothesis
Ŷ of input X by generating with the S2TT model
Mθ, and use XCOMET (Guerreiro et al., 2023) to
measure the quality of the translation. Thus:

fQ(Y | X; θ) = Q
(
Y,Mθ(X)

)
= Q(Y, Ŷ ) (2)

The contrastive metrics using fQ are expected to
give us a better insight into how influential prosody
is when translating with S2TT models, as com-
pared to using fL (Eq. 1), since they consider au-
toregressive generation and beam search.

4 Experimental Setup

4.1 Data Generation
For prosodic example generation with GPT-4 (§2.2)
we used a temperature of 1, and 20 text domains
per subcategory. The model was prompted to gen-
erate 10 examples9 for each pair of (subcategory,

8Estimated by using an empty audio for E2E case and
empty source text in the MT model for the cascade.

9We generated 15/20 examples for intonation pat-
terns/politeness, respectively.

domain). The total number of subcategories is 27
(more details in App. A), amounting to 5.5k exam-
ples of English sentences with pairs of prosodies
and meanings created initially. Then we gener-
ated the candidates for the six voices with the TTS
(5.5k×6×2 = 66k) and choose the 11k best candi-
dates as described in §2.4. After quality assessment
we end up with 2.8k examples with good prosody
quality in the generated audio. Then we separately
translated each one to the three target languages
German (De), Spanish (Es), and Japanese (Ja).
After post-editing and filtering we obtained 1.3k–
1.4k full examples for each language pair (Table 3).

Category En-De En-Es En-Ja

Emotional prosody 373 379 376
Sentence stress 277 279 342
Prosodic breaks 276 252 289
Politeness 212 193 206
Intonation patterns 173 173 173

Total 1,311 1,294 1,386

Table 3: Number of examples for each language pair in
CONTRAPROST. More details are in Appendix D.1.

4.2 Speech-to-text Translation Models

We evaluated S2TT models that fall under these
three categories:

• E2E, where inference is done without an in-
termediate transcription step. The decoder of
this model has full access to the prosody of
the input.

• AED-based cascade, which is composed of an
attentional encoder-decoder (AED) (Vaswani
et al., 2017) ASR model and an MT model.
We expect the decoder of the MT model to
have limited access to prosody, unless the
ASR model is able to encode it in the tran-
scription. This is possible mainly though
punctuation, but also when the ASR model
is acting more interpretative (i.e. generating
synonyms that better fit the prosody rather
than the spoken words).

• CTC-based cascade, which uses a CTC en-
coder (Graves et al., 2006) for the ASR part.
The decoder of the MT model is expected to
have almost no access to prosody since CTC
model outputs are not punctuated and cannot
be interpretative.

1240



We are evaluating the following S2TT models:

• SEAMLESSM4T (Seamless Communication,
2023b) is a multilingual and multimodal
encoder-decoder. It is trained with multi-
task learning on ASR, MT, S2TT and also
on speech-to-speech translation (S2ST), and
can thus be used in either E2E or cascaded
(AED) mode.

• XLS-R (Babu et al., 2021) is a multilin-
gual E2E model, of which the encoder is
based on WAV2VEC2.0 and its decoder on
MBART50 (Tang et al., 2020).

• ZEROSWOT (Tsiamas et al., 2024) is a zero-
shot E2E model that connects a WAV2VEC 2.0
CTC encoder and NLLB (NLLB Team, 2022).

• SALMONN (Tang et al., 2024) is an audio
LLM that connects WHISPER (Radford et al.,
2022) and BEATs (Chen et al., 2023) to the
Vicuna LLM (Peng et al., 2023), and can be
used as an E2E S2TT model.

• WHISPER & NLLB (AED-based cascade).
• CTC & NLLB (CTC-based cascade) with

WAV2VEC 2.0 or HUBERT (Hsu et al., 2021).

We considered different versions of these 6 mod-
els, thus evaluating in total 31 S2TT model variants
of different sizes and capabilities (App. E).

4.3 Metrics
We used beam search with beam size 5 to generate
hypotheses. For estimating the conditional likeli-
hood of the cascade (§3.1) we used the top-5 ASR
hypotheses. For the contrastive translation quality
(§3.2) we used XCOMET-XL10 (Guerreiro et al.,
2023), which is a state-of-the-art neural quality es-
timation metric based on XLM-R (Conneau et al.,
2020). For all evaluated models we present their
contrastive likelihood and contrastive translation
quality scores, both global and directional versions,
as a percentage of solved examples. We also eval-
uate them on standard QE using XCOMET-XL,
by using the 2 correct pairs of each example (2.6k
samples). For statistical significance testing we
used bootstrap resampling (Efron, 1979) with 10k
resamples and a 95% confidence interval.

5 Experimental Results

In Table 4 we present the results of evaluating a se-
lection of large and recent model versions all three

10hf.co/Unbabel/XCOMET-XL

language pairs. We find that most S2TT mod-
els have at least some internal representation of
prosody, enabling them to outperform the random
baseline of 50% for the directional contrastive like-
lihood. On the other hand, when we consider au-
toregressive generation, we observe that the scores
for the directional contrastive quality are relatively
low11, indicating that prosody is often not promi-
nent enough in the internal representations of the
models for it to be manifested in the generated
translations. Furthermore, we find that the task
of correctly solving both sub-cases of each exam-
ple (global agreement) is very challenging for all
models, with scores ranging around 10% for both
contrastive metrics. We observe that even though
the best performing model according to standard
evaluation (XCOMET) is a cascade system, it falls
behind the best E2E models when considering the
contrastive evaluation on CONTRAPROST. This
finding illustrates why it is beneficial to separate
prosody evaluation from general accuracy evalu-
ation to study the phenomenon, which is further
supported by our observation that the prosody and
general accuracy metrics are only moderate corre-
lated (see Fig. 5 in App. F).
Are model type and model size important for
prosody-awareness? We evaluate all 31 S2TT
models using global contrastive quality, and run a
regression analysis with the model type (E2E/AED-
cascade/CTC-cascade) and model size as inputs.
We use a mixed effects model (Pinheiro and Bates,
2006) to group together each model family, and
thus account for random effects, such as the training
data and hyperparameters. Specifically:

yij=β0+β1Sij+β2AEDij+β3CTCij+uj+ϵij ,

where yij is the score of i-th model variant of the
j-th model family, β0 is the intercept, S is the log
of the model size, AED and CTC are binary vari-
ables, uj is the random effect for j-th model family,
and ϵij is a residual error term. All scores are avail-
able in Table 11 in App. F. In Figure 2 we confirm
with statistical significance that the E2E models
outperform the cascades in all three language di-
rections.12 There is also a statistically significant
negative impact on prosody-awareness when the
cascade is based on a CTC ASR model that may
be explained by the absence of punctuation in CTC

11Assuming XCOMET is 0 for randomly generated text, the
baseline scores are also 0.

12Note that results are borderline non-significant for En-Ja
against the AED-cascade.
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Model Name Contrastive Likelihood Contrastive Quality
XCOMET

Directional Global Directional Global

English→ German

SEAMLESSM4T-V2-LARGE 61.2 13.5 37.4 14.5 0.988
XLS-R 2B 59.3 4.6 31.1 7.3 0.980
ZEROSWOT-LARGE 60.6 9.7 29.2 8.7 0.990
SALMONN-13B 62.8 7.2 43.2 15.9 0.975
SEAMLESSM4T-V2-LARGE 60.2 12.9 31.1 10.4 0.991
WHISPER-V3-LARGE & NLLB-3.3B 60.7 5.8 23.1 5.5 0.992
HUBERT-XL & NLLB-3.3B 39.4 0.5 20.5 2.6 0.979

English→ Spanish

SEAMLESSM4T-V2-LARGE 64.9 13.4 37.9 11.0 0.982
XLS-R 2B 57.6 5.6 32.0 8.4 0.930
ZEROSWOT-LARGE 57.5 9.2 31.1 5.6 0.948
SALMONN-13B 61.3 3.6 39.6 12.3 0.967
SEAMLESSM4T-V2-LARGE 61.3 11.7 29.5 7.6 0.984
WHISPER-V3-LARGE & NLLB-3.3B 63.2 2.9 25.4 4.8 0.987
HUBERT-XL & NLLB-3.3B 41.8 0.2 20.8 2.4 0.968

English→ Japanese

SEAMLESSM4T-V2-LARGE 59.4 12.4 40.3 13.8 0.956
XLS-R 2B 60.0 4.6 27.4 7.0 0.950
ZEROSWOT-LARGE 58.8 7.9 23.6 7.9 0.970
SALMONN-13B 60.4 10.8 46.1 16.1 0.859
SEAMLESSM4T-V2-LARGE 59.4 9.1 31.0 8.7 0.961
WHISPER-V3-LARGE & NLLB-3.3B 59.8 4.9 21.5 5.3 0.960
HUBERT-XL & NLLB-3.3B 40.4 0.8 15.7 2.5 0.922

Average

SEAMLESSM4T-V2-LARGE 61.8 13.1 38.5 13.1 0.975
XLS-R 2B 59.0 4.9 30.2 7.6 0.953
ZEROSWOT-LARGE 59.0 8.9 28.0 8.1 0.969
SALMONN-13B 61.5 7.2 42.9 14.8 0.933
SEAMLESSM4T-V2-LARGE 60.3 11.2 30.5 8.9 0.979
WHISPER-V3-LARGE & NLLB-3.3B 61.2 4.5 23.3 5.2 0.980
HUBERT-XL & NLLB-3.3B 40.5 0.5 19.0 2.5 0.956

Table 4: Contrastive Evaluation of S2TT models on CONTRAPROST. Grey background indicates a cascaded system.

transcripts, which if present can at least approxi-
mately signal some prosodic phenomena. Finally,
although there is some evidence that larger models
are more prosody-aware, results are not statistically
significant. We speculate that larger models have
more capacity to encode prosody in the weights,
but since prosody is perhaps not sufficiently repre-
sented in the training data, this effect is limited.
How do results compare across categories and
models? In Figure 3 we present results across
individual prosodic categories for four different
English-German models, and perform pairwise
model comparisons via bootstrap resampling13.
The only category models are able to solve con-
sistently is intonation patterns, which can also be
solved by cascaded models due to the presence of

13English-Spanish/Japanese are available at Figures 6, 7 in
App. F.

punctuation in the transcription. The comparably
lower scores in the other four categories further
demonstrate the inability of current state-of-the-art
models to use prosody, with sentence stress be-
ing the most challenging. Through the pairwise
comparisons, we find that an LLM-based model
(SALMONN) is not statistically different from a
more standard S2TT model, like SEAMLESSM4T.
Next, comparing the SEAMLESSM4T model in
both E2E and cascade allows us to control for pa-
rameters such as training data and architecture, in
order to observe the effect of model type, giving
more clarity of our results on the theoretical ad-
vantage of E2E models. Finally, we observe a clear
performance gain by using the SEAMLESSM4T
cascade over the WHISPER & NLLB one. We hy-
pothesize this advantage is due to the multitasking
nature of SEAMLESSM4T, which makes its ASR
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Figure 2: Regression Analysis of model types and model sizes per language pair.

mode more interpretative than standard ASR mod-
els. This allows the ASR part of the cascade to es-
cape the word-by-word paradigm, and use more fit-
ting words in the transcription (such as synonyms)
that fit better the prosody of the audio. Supporting
this hypothesis. we observe a worse WER score
for SEAMLESSM4T (11%) compared to WHISPER

(4%).
Is the level of prosody-awareness language-
dependant? In Figure 4 we carry out a similar
regression analysis as in Figure 2, but with the lan-
guage pair as an independent categorical variable.
Interestingly, we observe that there are differences
between the three language pairs, and also signifi-
cant for Spanish vs. German, which indicates that
prosody-awareness in S2TT could be language-
dependant. We hypothesize that the expressivity of
the target language might be a relevant factor, since
more expressive languages might be able to easier
encode the prosody of the source speech into text.

6 Related Work

Prosody has traditionally been an important topic
for TTS research (Kohler, 1991), either for trans-
ferring (Skerry-Ryan et al., 2018) or encoding
it (Pamisetty and Sri Rama Murty, 2022) in the syn-
thesized speech. Furthermore, Torresquintero et al.
(2021) created a dataset for evaluating prosody
transfer in TTS models, which contains several
categories, similar to our study here. Naturally
prosody has also been the focus of S2ST sys-
tems, in order to translate in a more expressive
way (Aguero et al., 2006; Do et al., 2017; Commu-
nication et al., 2023). The topic has received less

attention in the context of S2TT. Chen et al. (2024)
present a dataset for emotional prosody based on
speech and translations from TV series, and show
that finetuning with emotion labels, can improve
translation quality. Zhou et al. (2024) studied the
prosody-awareness of WHISPER in E2E and cas-
cade mode, in translating Korean wh-phrases using
contrastive likelihood, and find evidence of the
E2E model outperforming the cascade. Here we
contribute a broader study of prosody in S2TT,
by proposing a double-contrastive benchmark that
covers several prosodic categories, the use of more
generative-like contrastive evaluation, and evaluat-
ing a plethora of S2TT models. Finally, de Seyssel
et al. (2023) present a benchmark for evaluating
prosody-awareness in self-supervised acoustic rep-
resentations. Similarly to our study they present
evidence of prosody awareness in the representa-
tions. Contrary to our results, they conclude that
size has a positive effect on prosody awareness.

7 Conclusions

We presented CONTRAPROST, a benchmark based
on double-contrastive examples for evaluating
prosody-awareness in S2TT models, covering sev-
eral categories and languages. In addition to stan-
dard contrastive evaluation based on model likeli-
hoods, we proposed a generative contrastive met-
ric based on quality estimation. We evaluated a
plethora of models, and found that they exhibit
some signs of prosody-awareness, but the effect is
often not strong enough to influence the transla-
tions. We also confirmed the previously hypoth-
esized inherent advantage of E2E models com-
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Figure 3: Upper: Model performance per category (En-De). Lower Model performance comparisons (En-De), (a):
SALMONN-13B vs. SEAMLESSM4T-V2-LARGE, (b) SEAMLESSM4T-V2-LARGE(E2E) vs. SEAMLESSM4T-V2-
LARGE(cascade), (c) SEAMLESSM4T-V2-LARGE(cascade) vs. WHISPER-V3-LARGE/NLLB-3.3B.

Figure 4: Regression Analysis of language pairs.

pared to cascaded models. We hope that our bench-
mark and findings will motivate more research into
prosody-aware S2TT in the future, enabling us to
better understand it and improve it.

Limitations

For creating CONTRAPROST we relied on an al-
most entirely automated data generation process.
This allowed us to create a comprehensive dataset
covering several prosodic phenomena and three
language pairs, in a fast and cost-effective way. It
would also enable expanding the coverage of lan-

guages and prosodic phenomena relatively easy in
the future. Nevertheless, despite our best efforts
regarding filtering and quality assessment (§2 and
App. C), the data is not perfect and includes a cer-
tain amount of noise. We observed the following
sources of noise in order of decreasing importance:
(1) prosody not prominent in the generated speech;
(2) translations overly explanatory or not encoding
prosody; (3) semantic interpretations of the two
cases rather similar. We do not expect these is-
sues to be so frequent as to alter the findings of
this work in a systematic way, but additional hu-
man annotation or verification would be a valuable
step for future work. Furthermore, as the land-
scape of available generative models, in particular
controllable TTS, is changing quickly, the quality
of results using our data generation process would
expectantly become less of a concern in future iter-
ations.

Our study follows a contrastive evaluation
methodology in order to isolate prosody-related
behavior. As a consequence, our study does not
allow drawing conclusions on how much prosody
matters in real life data, and in what domains it is
especially important. In addition, we hypothesize
that some prosodic phenomena could be correctly
translated by having access to the broader context
of the conversation (context-aware S2TT), which
we leave for future research.
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A Prosodic Subcategories

Here we expand the categorization of §2.1, and
discuss the identified subcategories for sentence
stress and prosodic breaks, which are 4 and 6 re-
spectively. Intonation patterns and Politeness do
not have subcategories. For emotional prosody we
have 15 emotion pairs14, thus having 15 subcat-
egories. Examples are available at Tables 5 and
6.

A.1 Sentence Stress Subcategories
(1.1) Contrastive Stress, which highlights differ-
ences or corrects previous statements, emphasizing
contrasts between elements (Bolinger, 1961).
(1.2) New vs. Given Information, which differenti-
ates between new and given information, empha-
sizing what is considered new (Halliday, 1967).
(1.3) Relational vs. Descriptive Adjectives, where
stressing the adjective or the noun can differenti-
ate between the relational and descriptive uses of
attributive adjectives (Liberman and Sproat, 1992).
(1.4) Focus-Sensitive Operators, where stress indi-
cates the focus of adverbs of quantification (only,
just, etc), shifting the meaning of the sentence ac-
cordingly (Halliday, 1967; Jackendoff, 1972).

A.2 Prosodic Break Subcategories
(2.1) Direct vs. Indirect Statements, where a
prosodic break can indicate whether a phrase is
a direct or an indirect quote (Klewitz and Couper-
Kuhlen, 1999; Jansen et al., 2001).
(2.2) Restrictive vs. Non-Restrictive Clauses, which
involves the use of prosodic breaks to differentiate
between essential and non-essential information,
impacting the specificity of the noun being de-
scribed (Nespor and Vogel, 1986).

14Removed fearful emotion due to issues with the TTS.

(2.3) VP vs. NP Attachment, where a trailing
phrase can be attached either to the verb-phrase
or the noun-phrase, depending on the existence of
a prominent prosodic break (Pynte, 1996).
(2.4) Particle vs. Preposition, where a prosodic
break can disambiguate between the literal and id-
iomatic meaning of phrasal verbs, by grouping the
preposition with or without it (Price et al., 1991).
(2.5) Broad vs. Narrow Scope, where the existence
of a prosodic break can signal that a modifier (ad-
jective) has narrow scope, and refers only to one of
two nouns that follow it (Hirschberg, 2017).
(2.6) Complementizer vs. Parenthetical, where the
location of a prosodic break indicates whether an
intermediate phrase acts as a complementizer or
simply parenthetical to the main one (Dehé, 2014).

B Examples for In-context Learning

In Tables 5, 6 and 7 we present some of the exam-
ples used for in-context learning when generating
new examples with GPT-4 (§2.2).

C Quality Assessment for TTS candidates

Here we present the objectives we defined for as-
sessing the quality of the generated speech candi-
dates for each contrastive example. The objective
is applied only to candidates that had WER = 0
using WHISPER. If all candidates are invalid for
a prosodic case, the whole example is removed.
We also defined some threshold levels for the ob-
jectives after trial-and-error, in order to remove
examples where the best candidate was below it.
Sentence Stress. We use forced-alignment with
WAV2VEC 2.0 (Baevski et al., 2020) to obtain the
segment for each word in the signal, and extract
their loudness, pitch and duration features. Then
we define the stress level stress for a word w as the
weighted sum of these three features. Finally we
select the best candidate according to a simple ob-
jective objstress that has three goals: (1) maximize
the stress of the target word (stresstgt), (2) minimize
the stress of the target word of the contrastive case
(stressfoil), and (3) minimize the average stress of
the rest.

stressw = λ1loudw + λ2pitchw + λ3durw
objstress = 2 · stresstgt − stressfoil

− 1

n− 1

∑

w ̸=tgt

stressw,

where we used λ1 = 0.5, λ2 = 0.3, and λ3 = 0.2.
Note that in the sentence stress examples, there is
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1.1 Contrastive Stress
Sentence She didn’t give the book to John.
ProsodyA She didn’t give the *BOOK* to John.
MeaningA Something else was given to John.
ProsodyB She didn’t give the book to *JOHN*.
MeaningB The book was given to someone else.

1.2 New vs. Given Information
Sentence The committee decided to postpone the meeting.
ProsodyA The *COMMITTEE* decided to postpone the meeting.
MeaningA Given: Someone decided to postpone the meeting; New: It was the committee who decided.
ProsodyB The committee decided to *POSTPONE* the meeting.
MeaningB Given: The committee decided something; New: The decision was to postpone it.

1.3 Relational vs. Descriptive Adjectives
Sentence They are German teachers.
ProsodyA They are *GERMAN* teachers.
MeaningA Teachers who teach the German language. (Relational)
ProsodyB They are German *TEACHERS*.
MeaningB Teachers who are German. (Descriptive)

1.4 Focus-Sensitive Operators
Sentence I only introduced John to Maria at yesterday’s party.
ProsodyA I only introduced *JOHN* to Maria at yesterday’s party.
MeaningA John was the only person I introduced to Maria.
ProsodyB I only introduced John to *MARIA* at yesterday’s party.
MeaningB Maria was the only person I introduced John to.

Table 5: Examples in the category Sentence Stress that were used for in-context learning.

always exactly 1 target word in each contrastive
prosodic case.

Prosodic Breaks. Likewise, after forced-
alignment, we measure the duration dur of each
gap l between the words in the utterance, and de-
fine a similar objective objbreak as:

objbreak = 2
1

|tgt|
∑

l∈tgt

durl −
1

|foil|
∑

l∈foil

durl

− 1

n− |tgt|
∑

l /∈tgt

durl

In this category, there can be 0 to 2 breaks in each
prosodic case, which could be shared between the
two prosodic cases. In the objective we consider
only the ones that are not common in the two cases.

Intonation Patterns. We use teacher-forcing with
WHISPER to extract the punctuation probabilities
given the transcription text without the ending
punctuation. The probability of the sentence to
be a statement is the sum of the probabilities of
the tokens “.” and “!”, while the probability of a
question is the probability of the token “?”. Thus

the objective objinton for a statement is defined as:

objinton = p(. | X,Z<n) + p(! | X,Z<n)

− p(? | X,Z<n),

where X is the speech signal and Z<n are the to-
kens of the transcription, excluding the final one,
which corresponds in all cases of this category. to
the punctuation. The negative objective −objinton
is used for a case that is a question.
Emotional Prosody. We employ an emotion clas-
sifier15 which is a based on a finetuned WAV2VEC

2.0 on the RAVDESS dataset (Livingstone and
Russo, 2018), and define the objective as:

objemo = p(etgt | X)− p(efoil | X),

where θ are the parameters of the classifier, etgt

is the target emotion label and efoil is the emotion
label of the other prosodic case.
Pragmatic Prosody. To the best of our knowledge
there is no open-sourced audio classifier to detect
politeness levels, thus we re-purpose the emotion
classifier and define the probabilities of politeness

15hf.co/ehcalabres/wav2vec2-lg-XLS-R-en-speech-
emotion-recognition
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2.1 Direct vs. Indirect Statements
Sentence Alex announced Jamie will meet the manager.
ProsodyA Alex *ANNOUNCED* | Jamie will meet the manager.
MeaningA (Direct Statement)
ProsodyB Alex announced Jamie will meet the manager.
MeaningB (Indirect Statement)

2.2 Restrictive vs. Non-Restrictive Phrases
Sentence The students who were talking were sent out.
ProsodyA The students who were *TALKING* | were sent out.
MeaningA Only the students who were talking were actually sent out. (Restrictive)
ProsodyB The *STUDENTS* | who were talking | were sent out.
MeaningB All students were sent out, and the fact they were talking is additional information. (Non-restrictive)

2.3 Verb-phrase vs. Noun-phrase Attachment
Sentence Paula phoned her friend from Alabama.
ProsodyA Paula phoned her friend | from *ALABAMA*.
MeaningA Paula called her friend while she was in Alabama. (VP Attachment)
ProsodyB Paula phoned | her *FRIEND* from Alabama.
MeaningB Paula phoned her friend who is from Alabama. (NP Attachment)

2.4 Phrasal Verbs
Sentence John laughed at the party.
ProsodyA John *LAUGHED* | at the party.
MeaningA John laughed while he was at the party. (Literal)
ProsodyB John *LAUGHED AT* | the party.
MeaningB John made fun of the party. (Idiomatic)

2.5 Complementizer vs. Parenthetical
Sentence We only suspected they all knew that a burglary had been committed.
ProsodyA We only *SUSPECTED* | they all knew that a burglary had been committed.
MeaningA The suspicion was that they all knew about the burglary. (Complementizer)
ProsodyB We only suspected | they all *KNEW* | that a burglary had been committed.
MeaningB They all knew that we only suspected that a burglary had been committed. (Parenthetical)

2.6 Modifier Scope
Sentence This collar is dangerous to younger dogs and cats.
ProsodyA This collar is dangerous to *YOUNGER* dogs and cats.
MeaningA Younger refers to both dogs and cats. (Broad Scope)
ProsodyB This collar is dangerous to *YOUNGER* dogs | and *CATS*.
MeaningB Younger refers only to dogs. (Narrow Scope)

Table 6: Examples in the category Prosodic Breaks that were used for in-context learning.

and impoliteness as a weighted sum of the 8 avail-
able emotion classes.

p(polite) =
∑

ewep(e | X)∑
ewe

,

and similarly for impolite. We used the weighted
scheme displayed in Table 8, which was obtained
by prompting GPT-4.

D Data

D.1 Data Statistics

In Table 9 we provide the analytic data statistics
for each category/subcategory, throughout the gen-
eration process stages. The poor quality of the
cTTS, where prosody was not always encoded in

the speech, led us to remove a large percentage of
the examples before translating them. Also many
examples where removed because the oracle trans-
lations for both cases were the same.

D.2 Overly Explanatory Examples

In Table 10 we present two examples where GPT-4
acting as an oracle translator (§2.3) proposed overly
explanatory translations in the emotional prosody
category. Both are inline with the emotion of the
speaker, but they contain new bits of information,
not initially there. These were removed in filtering
due to excessive word-length ratio between the two
cases.
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3. Intonation Patterns
Sentence You can solve this problem
ProsodyA You *CAN* solve this problem.
MeaningA Encouraging or asserting the person’s ability to solve this problem.
ProsodyB You _can_ solve this problem?
MeaningB Questioning the person’s ability to solve this problem.

4. Emotional Prosody (Happy/Sad)
Sentence The surgery went as expected.
ProsodyA <happy> The surgery went *AS EXPECTED*!
MeaningA The surgery’s successful outcome aligns with hopes and predictions, leading to joy and relief.
ProsodyB <sad> The surgery went _as expected_ ...
MeaningB The expected outcome was not favorable, leading to a somber tone.

4. Emotion Prosody (Fearful/Angry)
Sentence Can we talk about this later?
ProsodyA <fearful> Can we... talk about this... later?
MeaningA Indicates hesitation or fear about the topic, or the situation in general.
ProsodyB <angry> Can we *TALK* about this later!?
MeaningB Implies urgency or frustration, and a demand for immediate attention.

5. Politeness
Sentence Can you move your car?
ProsodyA <polite> Can you _move_ your car?
MeaningA A polite request to move the car.
ProsodyB <impolite> Can you *MOVE* your *CAR*?!
MeaningB A rude demand to move the car, with an aggressive tone.

Table 7: Examples in the categories Intonation Patterns, Emotional Prosody, Politeness, and that were used for
in-context learning.

Emotion Politeness Impoliteness

Happy 0.3 -0.1
Calm 0.3 -0.2

Neutral 0.2 0.1
Surprised 0.1 0.1

Sad 0.0 0.2
Disgust -0.1 0.3
Angry -0.2 0.4
Fearful -0.1 0.0

Table 8: Weighting scheme for Politeness and Impolite-
ness labels based on the emotion classifier.

E Evaluated Speech Translation Models

Here we describe in more detail the model fam-
ilies and the specific versions used. We evalu-
ated in total 31 S2TT model variants. All models
are available in the Transformers Huggingface Li-
brary (Wolf et al., 2020). For inference we used the
default generation parameters and a beam search
of 5.

1. SEAMLESSM4T (Seamless Communication,
2023a) and its updated version v2 (Seamless

Communication, 2023b) is a recently pro-
posed family of unified encoder-decoder mod-
els that are both multilingual (many-to-many,
100 languages) and multimodal (speech/text
input or output), meaning they can carry out
the tasks of ASR, TTS, MT, S2TT, and also
S2ST. The architecture is composed of a text
encoder, text decoder, speech encoder, and
speech decoder, and different parts are ac-
tive depending on the input/output modali-
ties. The text encoder-decoder is based on
NLLB (NLLB Team, 2022), the speech en-
coder on a newly proposed conformer (Gu-
lati et al., 2020) W2V-BERT (Chung et al.,
2021), and the speech decoder on a unit de-
coder (Inaguma et al., 2023) and a HiFi-GAN
vocoder (Kong et al., 2020). The original
version has a medium (1.2B)16 and a large
(2.3B)17 variant, while the updated v2 has a
large variant (2.3B)18. For cascade S2TT we
first use the model in ASR mode, and then the

16hf.co/facebook/seamless-m4t-medium
17hf.co/facebook/seamless-m4t-large
18hf.co/facebook/seamless-m4t-v2-large
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Initial Generated Synthesised Translated

Category / Subcategory De Es Ja

Contrastive Stress (General) 200 199 183 87 76 97
Relational/Descriptive Adjectives 200 199 147 42 33 51
Contrastive Stress (Noun-Phrase) 200 199 124 37 36 39
New/Given Information 200 197 146 51 65 91
Focus-sensitive Operators 200 181 118 60 42 64

Sentence Stress 1000 975 718 277 252 342

Complementizer/Parenthetical 200 200 171 59 46 73
VP/NP Attachment 200 200 66 23 18 20
Modifier Scope 200 200 200 83 107 81
Restrictive/Nonrestrictive 200 199 177 65 82 40
Direct/Indirect 200 198 154 41 25 70
Phrasal Verbs 42 42 17 5 1 5

Prosodic Breaks 1042 1039 785 276 279 289

Intonation Patterns 300 263 174 173 173 173

Sad-Happy 200 200 1 1 1 1
Neutral-Angry 200 199 185 123 111 119
Neutral-Happy 200 198 161 81 97 81
Disgust-Angry 200 198 18 4 5 3
Disgust-Sad 200 198 - - - -
Neutral-Surprised 200 198 43 33 35 30
Disgust-Neutral 200 197 7 2 5 5
Happy-Angry 200 197 138 50 65 72
Sad-Surprised 200 197 3 2 2 2
Sad-Neutral 200 196 4 3 2 2
Sad-Angry 200 196 5 1 4 4
Disgust-Surprised 200 196 4 2 2 1
Disgust-Happy 200 195 10 5 7 6
Happy-Surprised 200 195 52 34 27 21
Angry-Surprised 200 193 68 32 34 30

Emotional Prosody 3000 2953 699 433 418 377

Politeness 400 375 387 212 193 206

Total 5742 5605 2763 1311 1294 1386

Table 9: Number of Examples by Category and Subcategory

same model is MT mode.

2. XLS-R (Babu et al., 2021) is a multilingual
E2E S2TT model that is based on a multi-
lingual WAV2VEC 2.0 (Baevski et al., 2020)
trained with self-supervised learning on a
large speech corpus on 128 languages. For
S2TT, the encoder is coupled with the de-
coder from MBART50 (Tang et al., 2020), and
finetuned on paired speech-translation data.
We use the folowing versions that are fine-
tuned on English-to-15 on CoVoST2 (Wang

et al., 2021): 300M19, 1B20, and 2B21.

3. ZEROSWOT is a zero-shot E2E S2TT model
that softly connects a WAV2VEC 2.0 encoder
and an NLLB model, by compressing the
speech representation into subword units and
Optimal Transport (Peyré and Cuturi, 2019)
alignment, using only ASR data. The ver-
sions used here are based on NLLB that were
finetuned on the text data of CoVoST2, and
the ZEROSWOT model was trained on Com-

19hf.co/facebook/wav2vec2-xls-r-300m-en-to-15
20hf.co/facebook/wav2vec2-xls-r-1b-en-to-15
21hf.co/facebook/wav2vec2-xls-r-2b-en-to-15
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Example 1: This will only take a minute.

A (neutral) Das dauert nur eine Minute.
(This will only take a minute.)

B (angry)
Das dauert nur eine Minute,
also machen Sie keinen Aufstand.
(This will only take a minute
so don’t make a fuzz about it.)

Example 2: Our case was dismissed.

A (neutral) Unser Fall wurde abgewiesen.
(Our case was dismissed.)

B (sad)
Unser Fall wurde abgewiesen
und das macht mich fassungslos.
(Our case was dismissed
which is just perplexing.)

Table 10: Examples of overly explanatory translations
proposed by GPT-4.

monVoice (Ardila et al., 2020). The MEDIUM

version22 has 1B parameters and the LARGE

version23 has 1.7B parameters.

4. SALMONN (Tang et al., 2024) is a general-
purpose audio LLM that is capable of sev-
eral speech- and audio-related tasks, includ-
ing S2TT. It is build on top of the Vicuna
LLM (Peng et al., 2023), and uses two en-
coders, one from WHISPER and one from
BEATs (Chen et al., 2023). The concate-
nated output representations from the two en-
coders are processed by a Q-former (Li et al.,
2023) and fed to the LLM which is finetuned
with LoRA (Hu et al., 2022). There is a 7B
version24 and a 13B version25. To translate
speech into a target language we use the rec-
ommended prompt from the paper: “Listen to
the speech and translate it into {Target Lan-
guage}”.

5. WHISPER & NLLB is an AED-based cas-
cade. WHISPER (Radford et al., 2022) is an
encoder-decoder ASR and many-to-en S2TT
model. We use three different versions for this
casdade, namely the WHISPER-MEDIUM26,
the WHISPER-LARGE27, and the latest v3

22hf.co/johntsi/ZeroSwot-Medium-cv-covost2-en-to-15
23hf.co/johntsi/ZeroSwot-Large-cv-covost2-en-to-15
24hf.co/tsinghua-ee/SALMONN-7B
25hf.co/tsinghua-ee/SALMONN
26hf.co/openai/whisper-medium
27hf.co/openai/whisper-large

large version28. We primarily present re-
sults with the WHISPER-LARGE-V3, but since
it was also used for filtering we also dis-
cuss v1 in order to avoid biasing our results.
NLLB (NLLB Team, 2022) is a massively
multilingual many-to-many MT model with
access to 200 languages. We used the two
distilled versions from the 54B MoE model,
namely the distilled-600M29 and the distilled-
1.3B30, as well as the 3.3B model31. We eval-
uated all possible combinations, thus having
9 cascade variants with these models.

6. CTC & NLLB is a CTC-based cascade. We
use three different CTC encoders for the cas-
cades. The first one is the Large version
(300M) of WAV2VEC 2.032 which is finetuned
on Libri-Light (Kahn et al., 2020) and Lib-
rispeech (Panayotov et al., 2015), addition-
ally using self-training (Xu et al., 2020). The
second is the Large version (300M) of HU-
BERT33 (Hsu et al., 2021), finetuned on Lib-
rispeech. The third is also based on HUBERT,
more specifically to the XL version34 with 1B
parameters. We use the same three versions
of NLLB, as we did for the AED-based cas-
cade, thus having in total 9 variants of the
CTC-based cascade.

F Supplementary Results

In Figure 5 we present the Spearman rank cor-
relation for the four contrastive metrics and the
standard evaluation metric XCOMET. They were
computed by evaluating all 31 models (§E) for all
3 language pairs, thus having a total of 93 observa-
tions.

In Table 11 we present the global contrastive
quality scores for all 31 S2TT models for the 3
language pairs, which were used for the analysis of
Figure 2 in §5 of the main text.

In Figures 6 and 7 we present the comparisons
of the 4 models for Spanish and Japanese, similar
to what we did in Figure 3 for German in the main
text. In general, the findings and observations here
coincide with those for German.

28hf.co/openai/whisper-large-v3
29hf.co/facebook/nllb-200-distilled-600M
30hf.co/facebook/nllb-200-distilled-1.3B
31hf.co/facebook/nllb-200-3.3B
32hf.co/facebook/wav2vec2-large-960h-lv60-self
33hf.co/facebook/hubert-large-ls960-ft
34hf.co/facebook/hubert-xlarge-ls960-ft
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Model Model Type Model Size (B) Contrastive Quality (Global)

En-De En-Es En-Ja Average

SEAMLESSM4T-V1-MEDIUM E2E 1.2 9.1 10.4 10.1 9.9
SEAMLESSM4T-V1-LARGE E2E 2.3 7.8 8.7 8.2 8.2
SEAMLESSM4T-V2-LARGE E2E 2.3 14.5 11.0 13.9 13.1

XLS-R 300M E2E 0.3 10.2 9.3 9.5 9.6
XLS-R 1B E2E 1.0 9.3 8.3 8.1 8.6
XLS-R 2B E2E 2.0 7.3 8.4 7.0 7.6

ZEROSWOT-MEDIUM E2E 0.9 8.9 7.5 7.5 8.0
ZEROSWOT-LARGE E2E 0.9 8.7 7.7 7.9 8.1

SALMONN-7B E2E 7.0 12.7 9.4 12.9 11.7
SALMONN-13B E2E 13.0 15.9 12.3 16.1 14.8

SEAMLESSM4T-V1-MEDIUM Cascade-AED 2.4 7.3 7.6 6.9 7.2
SEAMLESSM4T-V1-LARGE Cascade-AED 4.6 6.5 5.8 4.3 5.5
SEAMLESSM4T-V2-LARGE Cascade-AED 4.6 10.5 7.7 8.7 8.9

WHISPER-V1-MEDIUM & NLLB-600M Cascade-AED 1.4 5.7 5.0 5.4 5.4
WHISPER-V1-MEDIUM & NLLB-1.3B Cascade-AED 2.1 6.2 5.0 5.8 5.6
WHISPER-V1-MEDIUM & NLLB-3.3B Cascade-AED 4.1 6.6 5.1 5.4 5.7
WHISPER-V1-LARGE & NLLB-600M Cascade-AED 2.2 5.9 4.9 6.1 5.6
WHISPER-V1-LARGE & NLLB-1.3B Cascade-AED 2.9 6.0 4.7 5.8 5.5
WHISPER-V1-LARGE & NLLB-3.3B Cascade-AED 4.9 6.3 4.6 5.6 5.5
WHISPER-V3-LARGE & NLLB-600M Cascade-AED 2.2 5.3 4.6 6.5 5.5
WHISPER-V3-LARGE & NLLB-1.3B Cascade-AED 2.9 5.3 4.7 5.4 5.1
WHISPER-V3-LARGE & NLLB-3.3B Cascade-AED 4.9 5.5 4.8 5.3 5.2

WAV2VEC 2.0 & NLLB-600M Cascade-CTC 0.9 1.4 1.3 2.0 1.5
WAV2VEC 2.0 & NLLB-1.3B Cascade-CTC 1.6 1.7 1.0 1.4 1.3
WAV2VEC 2.0 & NLLB-3.3B Cascade-CTC 3.6 1.6 0.9 1.7 1.4
HUBERT & NLLB-600M Cascade-CTC 0.9 3.2 2.7 2.5 2.8
HUBERT & NLLB-1.3B Cascade-CTC 1.6 2.2 2.4 2.9 2.5
HUBERT & NLLB-3.3B Cascade-CTC 3.6 2.7 2.6 2.9 2.7
HUBERT-XL & NLLB-600M Cascade-CTC 1.6 2.4 2.9 3.0 2.8
HUBERT-XL & NLLB-1.3B Cascade-CTC 2.3 3.5 1.7 2.7 2.6
HUBERT-XL & NLLB-3.3B Cascade-CTC 4.3 2.6 2.4 2.5 2.5

Table 11: Contrastive Quality (Global) scores for English-German, English-Spanish, and English-Japanese, including
their averages.
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Figure 5: Correlation Matrix of the metrics across all
language pairs and models.
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Figure 6: Upper: Model performance per category (En-Es). Lower: Model performance comparisons (En-Es), (a):
SALMONN-13B vs. SEAMLESSM4T-V2-LARGE, (b) SEAMLESSM4T-V2-LARGE(E2E) vs. SEAMLESSM4T-V2-
LARGE(cascade), (c) SEAMLESSM4T-V2-LARGE(cascade) vs. WHISPER-V3-LARGE/NLLB-3.3B.

Figure 7: Upper: Model performance per category (En-Ja). Lower: Model performance comparisons (En-Ja), (a):
SALMONN-13B vs. SEAMLESSM4T-V2-LARGE, (b) SEAMLESSM4T-V2-LARGE(E2E) vs. SEAMLESSM4T-V2-
LARGE(cascade), (c) SEAMLESSM4T-V2-LARGE(cascade) vs. WHISPER-V3-LARGE/NLLB-3.3B.
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Abstract

Machine Translation of Culture-Specific
Items (CSIs) poses significant challenges.
Recent work on CSI translation has shown
some success using Large Language Models
(LLMs) to adapt to different languages and
cultures; however, a deeper analysis is needed
to examine the benefits and pitfalls of each
method. In this paper, we introduce the
ChineseMenuCSI dataset, the largest for
Chinese-English menu corpora, annotated with
CSI vs Non-CSI labels and a fine-grained test
set. We define three levels of CSI figurative-
ness for a more nuanced analysis and develop
a novel methodology for automatic CSI
identification, which outperforms GPT-based
prompts in most categories. Importantly, we
are the first to integrate human translation
theories into LLM-driven translation processes,
significantly improving translation accuracy,
with COMET scores increasing by up to 7
points. The code and dataset are available at
https://github.com/Henry8772/ChineseMenuCSI.

1 Introduction

Translating restaurant menus is a challenging, non-
literal translation task. Unlike other texts, dish
names are not merely lists of ingredients and culi-
nary methods; they are short (Pellatt and Liu, 2010)
and culturally rich expressions that require an un-
derstanding of cultural traditions (Amenador and
Wang, 2022), symbolism (Lam et al., 2018), and
local nuances. This complexity is compounded
by LLMs and Neural Machine Translation (NMT)
systems that often lack the cultural awareness nec-
essary to accurately understand these nuances (Liu
et al., 2024; Naous et al., 2023; Tao et al., 2024).
This results in mistranslations that can confuse and
mislead the target audience (Garcea et al., 2023;
Gallo et al., 2021), such as in Figure 1.

A key challenge in menu translation lies in the
handling of Culture-Specific Items (CSIs), defined

Figure 1: CSI translation errors by Google Translate
and ChatGPT 3.5 in translating Chinese culinary terms.

as “concepts that are specific to a particular lan-
guage or group” (Aixelá, 1996). For example, the
literal translation of the Chinese dish蚂蚁上树 is
“Ants Climbing a Tree” – but this is actually a figura-
tive Chinese expression that should be translated in
English as “Sauteed Vermicelli with Minced Pork”.
The Chinese name creatively expresses the idea
that pork resembles ants, while vermicelli repre-
sents tree branches. Existing machine translation
systems, trained on plain, sentence-level transla-
tions, fail to capture these cultural subtleties and
generate literal translations (Figure 1).

However, there has been little work in NLP ex-
ploring CSI translations in-depth, particularly fo-
cusing on how the translation outputs generated
by neural models should be improved. There has
been foundational work on improving translations
of CSIs by LLMs through enhanced prompting
strategies (Yao et al., 2024). Simultaneously, there
has also been work on adapting CSIs (Peskov et al.,
2021; Cao et al., 2024; Singh et al., 2024), but their
focus has been on adapting culture-specific named
entities. In this work, we seek to go beyond entities,
and approach the translation of figurative language
imbued with cultural nuance, as exemplified in Fig-
ure 1 – which is quite underexplored.

In linguistics, cultural translation theories have
been developed and widely adopted by human the-
orists and translators over decades. We aim to
improve MT of CSIs by bringing the wisdom of
Translation Theory research to modern NLP mod-
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els like LLMs. Our approach improves the identi-
fication and translation of figurative and culturally
nuanced CSIs. Unlike previous CSI identification
methods, our method does not depend on parallel
corpora or extensive knowledge graphs (Yao et al.,
2024; Han et al., 2023) – but at the same time, we
also show how recipes can be optionally leveraged
as a source of external knowledge to enhance per-
formance even further. We also propose a novel
CSI taxonomy for Chinese-English, that allows
for a detailed analysis of figurative and culturally
nuanced language and the translation challenges
therein. We evaluate our proposed methods using
a large dataset of Chinese dish names, ensuring
robust and reliable results.

Our key contributions are as follows:

1. We introduce ChineseMenuCSI, a fine-grained
dataset of 4,275 bilingual Chinese-English
restaurant menu entries from UK Chinese
restaurants. The dataset is categorised into
CSI and Non-CSI entities, with 480 entries
further bifurcated into specific CSI categories,
enabling an in-depth analysis of CSI transla-
tion efficacy of LLMs and NMT systems.

2. We propose novel techniques for identifying
CSIs, grounded in human translation theory.
These techniques match or outperform current
GPT-based prompts – all without needing ex-
ternal knowledge graphs or parallel corpora.

3. Lastly, we show how external knowledge, in
the form of recipes, can add to the benefits of
translation strategies and enhance CSI trans-
lation performance further - achieving signif-
icant improvements in COMET scores, with
gains of +3 to +7 points across CSI categories.

The code and datasets are available at
https://github.com/Henry8772/ChineseMenuCSI.

2 Related Work

2.1 CSIs in Translation Studies

Aixelá (1996) was among the first scholars to in-
troduce the term “culture-specific items” (CSIs) to
refer to elements in texts that are unique and signifi-
cant in a specific culture. CSIs may include objects,
classification systems, or measurement tools com-
mon in the source culture but foreign to the target
culture. Additionally, CSIs can encompass tran-
scriptions of opinions/habits specific to a culture,

which are often reflected in the language structure,
style, and content.

Culture is closely related to understanding and
translating CSIs, as Aixelá (1996) highlighted. In
the 1960s, Nida and Taber (2003) introduced the
concepts of formal and dynamic equivalence in
translation to distinguish between structurally accu-
rate and fluency-focused approaches to translation.
These concepts have laid the foundation for subse-
quent translation theories, including those related
to cultural translation. Expanding on this, New-
mark (1988) proposed a set of robust strategies for
translating cultural elements, which have been par-
ticularly influential in translating Chinese culinary
CSIs, as noted by Amenador and Wang (2022).

According to Newmark (1988), adaptation uses
a recognized equivalent between two cultures. This
strategy has been explored by Pellatt and Liu (2010)
on Chinese menu translation. Newmark (1988)
proposed three equivalent strategies for translation:
cultural, functional, and descriptive – which we
introduce later to improve LLM translation perfor-
mance in §5.2.

Neutralisation is another translation strategy re-
lated to CSI translation. As proposed by Chou et al.
(2016), on the continuum between foreignisation
(focusing on source culture) and domestication (fo-
cusing on target culture), there are intermediary
approaches, including neutrality and neutralisation.
For culture-specific text, neutralisation involves
paraphrasing to convey the meaning of a CSI. After
analysing the translations of Chinese dish names
into English, Amenador and Wang (2022) found
that neutralisation, by substituting the source text
element with a more or less detailed explanation
of its meaning, is the most commonly used trans-
lation strategy by human translators for translating
Chinese dish names into English.

In this paper, we use these conventional transla-
tion strategies employed by human translators as
instructions in zero-shot prompts, to enhance CSI
translation quality of LLMs (in §5.2).

2.2 Culture-Aware NMT
Despite the early successes of NMT (Bahdanau
et al., 2015; Sutskever et al., 2014), translation of
culture-specific texts has remained a daunting task.
In addition to the challenge of translating rarer
words and adapting to under-resourced domains
(Koehn and Knowles, 2017), CSIs are deeply in-
tertwined with cultures (Hershcovich et al., 2022;
Liebling et al., 2022; Yao et al., 2024) – something
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even the most capable neural models of today fail
to grasp, particularly for non-Western cultures (Ma-
soud et al., 2023; AlKhamissi et al., 2024; Nayak
et al., 2024).

While there have been related works on domain-
specific translation, including terminology transla-
tion (Dinu et al., 2019), disambiguation (Iyer et al.,
2023a,b) and named entity translation (Hu et al.,
2022), CSIs often lack direct equivalents in other
languages, making translation complex and hard to
understand cross-culturally (Yao et al., 2024).

Our approach uniquely combines translation
studies with modern NLP techniques to identify
and translate CSIs, resulting in more culturally sen-
sitive and comprehensible translations.

2.3 Cultural Awareness and Adaptation in
Large Language Models

In recent times, many works have shown that
LLMs contain significant cultural biases against
non-Western cultures (Cao et al., 2023; Liu et al.,
2024; Masoud et al., 2023; Naous et al., 2023;
Tao et al., 2024). In response, there has been a
growing focus on improving cultural awareness
in LLMs through prompt-engineering techniques
(Wang et al., 2024; Tao et al., 2024) and fine-tuning
on culture-specific data (Chan et al., 2023; Li et al.,
2024a,b). Various tasks have been used to assess
LLMs’ cultural awareness, including tasks like cul-
turally aware inference (Huang and Yang, 2023;
Yao et al., 2024) and common sense reasoning on
specific languages (Koto et al., 2024a,b).

Previous works on cultural awareness have pri-
marily focused on understanding cultural norms
in different languages rather than accurately trans-
lating culture-specific text. While well-explored
in translation studies, cultural adaptation is rather
understudied in NLP. Initial efforts in this direc-
tion have included adaptation of recipes (Cao et al.,
2024) and localisation of named entities through
adaptation (Peskov et al., 2021) or explicitation
(Kementchedjhieva et al., 2020; Garcea et al., 2023;
Han et al., 2023). Most similar to our work is that
of Yao et al. (2024), who also released a CSI dataset
covering 6 languages, on which they benchmark
LLMs and NMT systems.

In contrast, our goal is to conduct a more fine-
grained evaluation, given multiple CSI types in any
given language. So, we leverage translation studies
to create a dataset that classifies Chinese-English
dishes into fine-grained categories, which we use
for downstream evaluation, analysis and a detailed

ablation of our proposed techniques. While we
focus on the Chinese-English pair and culinary do-
main in this work, our framework and proposed
techniques are agnostic of language/domain, and
are designed to be easily scalable.

3 ChineseMenuCSI Dataset

We introduce a new bilingual Chinese-English
Restaurant Menu (ChineseMenuCSI) dataset con-
sisting of 4,275 human-verified dish entries col-
lected from restaurants in UK.

3.1 Data Collection

We develop a Selenium-based web crawler1 to
gather Chinese menu translations from UK restau-
rant websites. After manually reviewing 50 restau-
rants, we selected those with ratings above 3 out
of 5 and average meal prices over £20, ensuring
higher-quality menus not generated by commercial
Machine Translation systems like Google Translate.
These restaurants were sourced from TripAdvisor2.

Additionally, we developed a heuristic menu
parser capable of accurately extracting structural
content from image-based menus. Details of this
parser are provided in Appendix A.2.

3.2 CSI Taxonomy

Translating Chinese menu items into English
presents unique challenges because the dish names
contain non-descriptive, picturesque elements (Pel-
latt and Liu, 2010). Our initial data inspection re-
vealed that CSIs within these dish names contribute
varying degrees of complexity to the translation
process, and carry differing levels of figurativeness
brought by cultural and linguistic nuances. Inspired
by translation theory literature that tends to cate-
gorise Chinese dishes into concrete and abstract
categories (Lam et al., 2018), we develop an ap-
proach to categorise the Chinese dish names in our
dataset into three groups based on the degree of
figurativeness in each CSI.

Category 1: Concrete CSIs (With a Low-
level/No Figurative Meaning)

Definition: The CSIs in this category have a min-
imal figurative meaning, often referring to tangible
attributes like ingredients, colour, taste, container,
processing method, and dish appearance. Readers

1Selenium: https://www.selenium.dev/
2TripAdvisor: https://www.tripadvisor.com
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can easily understand these dish names as the in-
formation is either shared between the source and
target cultures or has widely used translations in
the target culture.

Example: An example from the corpus is “咕
噜猪肉” (sweet and sour pork). The first two
Chinese characters “咕噜” denote the Guangdong-
style "sweet and sour" method, a culinary transla-
tion widely recognised outside the Chinese culture.
The last two characters “猪肉” mean "pork", a cul-
turally universal ingredient.

Category 2: Creative CSIs (With Some Figura-
tive Meaning)

Definition: This category features dish names
that blend concrete lexical terms with figurative
meanings, creating inventive expressions that ex-
tend beyond literal definitions. Understanding
these dishes necessitates integration of creative flair
with concrete information, presenting challenges.

Example: “水煮鱼” (Poached fish fillet with
chilli oil and herb or Sichuan-style boiled fish)
originates from Sichuan, China. While the literal
translation of the characters is "water-boiled fish",
"water-boil" carries a creative description, repre-
senting the cooking state. This dish involves a
Sichuan cooking style that uses hot chilli oil and
Chinese herbs. "Poached fish fillet with chilli oil
and herb" effectively describes the ingredients and
cooking method, while "Sichuan-style boiled fish"
adds cultural context by highlighting the dish’s
regional origin. Both are valid translations but dif-
ferent strategies are used.

Category 3: Abstract CSIs (With a High-level
of Figurative Meaning)

Definition: This category encompasses dish
names that exist beyond the realm of literal trans-
lation, and require in-depth cultural knowledge to
understand. Crafted from metaphors, idioms, alle-
gories, and other figurative language, these names
disconnect from straightforward translations to en-
gage in storytelling, aiming to convey broader nar-
ratives, evoke emotions, or reflect cultural heritage.

Example: "佛跳墙” (Buddha Jumps Over the
Wall or Steamed Abalone with Fish Maw in Chicken
Broth) metaphorically describes a dish so enticing
that even a vegetarian and divine figure like Bud-
dha would leap over a wall to taste it. Popular
translations include "Buddha jumps over the wall"

as a direct translation, and "Steamed Abalone with
Fish Maw in Chicken Broth" includes ingredients
and cooking methods, reflecting the dish’s cultural
and culinary nuances.

3.3 Data Annotation
To annotate our data, we first seek to classify the
data into CSI and non-CSI entities, and if it is a
CSI, we want to categorise it into one of the above-
listed groups. Given the dataset has as many as
4.3K CSIs, we approach the annotation process
in two stages: a) in Stage 1, we conduct a broad,
albeit rough, annotation of the entire dataset by two
volunteer annotators, and b) we uniformly sample
from the annotations of Stage 1 to ensure a fair
distribution across categories, and conduct a more
focused and rigorous annotation process using five
volunteer translators – to create our fine-grained
test set. We describe these stages in detail below:

Stage 1 (Broad) Annotation: Two annotators,
who are postgraduate students and professional
Chinese-English translators, reviewed and labelled
all 4,275 entries. Both are native Chinese speakers
proficient in English, ensuring high linguistic and
cultural expertise. Firstly, we classify the entries
into CSIs and non-CSIs. We use Cohen’s kappa
(Cohen, 1960) to measure agreement between an-
notators and obtained a high score of 0.91 - likely
because the classification of CSIs and non-CSIs is
mostly unambiguous. For the 187 entries without
consensus, we invited a third annotator to label and
assigned the final label using a majority vote.

For entries with CSI, the annotators further cate-
gorised the dish into one of the three CSI categories.
The annotation results are reported in Table 1.

Label Category Count
0 Non-CSIs 2003
1 Concrete CSIs 1658
2 Creative CSIs 494
3 Abstract CSIs 120

Table 1: Distribution of menu items across CSI taxon-
omy in the ChineseMenuCSI dataset.

Stage 2 (Focused) Annotation: In Table 1, we
note that Category 3 is the smallest, with only 120
items. To evenly balance our test set, we randomly
sample 120 items from each category: 0 (Non-
CSIs), 1 (Concrete CSIs), 2 (Creative CSIs), and
3 (Abstract CSIs), totalling 480 items. This sub-
set was annotated by a larger and more diverse
group of five annotators, who, like the first-stage
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annotators, included professional Chinese-English
translators and postgraduate students – all native
Chinese speakers proficient in English.

For span annotation, we first segment the dish
name into spans and phrases using Jieba3. Anno-
tators then label the spans that correspond to CSI.
To assess inter-annotator agreement, we use Fleiss’
kappa (Fleiss, 1971) across two levels: CSI fine-
grained categorisation and span-level CSI identifi-
cation; the results are summarised in Table 2.

Annotation Kappa Interpretation
CSI vs. Non-CSI 0.91 High
CSI Category 0.63 Substantial
CSI Identification 0.70 Substantial

Table 2: Inter-annotator agreement scores for different
annotation tasks.

For the fine-grained CSI categorisation, we ex-
clude items that do not attain majority consensus
(at least 3 out of 5 annotators in agreement), result-
ing in a kappa score of 0.63. This score falls within
the range of substantial agreement (0.6-0.8) but is
lower than the CSI vs. Non-CSI score due to the
subjective nature of the fine-grained categorisation.
This level of agreement is comparable to ranges
reported in related work (Huang and Yang, 2023;
Soderstrom et al., 2021). Lastly, for CSI identifi-
cation at the span-level, i.e. within a given dish
name, the kappa score is 0.70 - which indicates
substantial agreement as well.

4 CSI Automatic Identification

To accurately translate CSIs, it is essential to first
identify which parts of the text comprise CSIs. Pre-
vious studies have approached this challenge in
different ways. Han et al. (2023) focus on implicit
detection and use a relative distance of terms in
Wikidata, but it does not include all Chinese dish
CSI. Yao et al. (2024) rely on parallel corpora with
entity-linking to find CSIs; however, the approach
is infeasible for online MT, where we need to iden-
tify CSIs beforehand to produce translations from
the monolingual source text.

Inspired by these methods, we propose a method
called Combined CSI Identification, that uses
a combination of three checking criteria for CSI
identification, and classifies CSI if at least two of
the following three checks are met. The checks are
Round-trip Translation (RTT), Cultural Uniqueness
(CU), and Historical Significance (HS).

3Jieba: https://github.com/fxsjy/jieba

4.1 Round-trip Translation (RTT)

Since CSIs are defined as terms unique to a spe-
cific language or culture (Álvarez and Vidal, 1996),
based on the assumption that they do not have cor-
responding translations in the target language, we
propose using round-trip translation (RTT) as one
of the identifying criteria.

1. Initial Translation: Translate the Chinese
dish name to English using Google Translate.

2. RTT Translation: Translate the English ver-
sion back to Chinese using DeepL Translate
and split it into Jieba-segmented words. Using
different translation systems for RTT proved
most effective in identifying CSIs.

3. Identification: Subtract the segmented words
in the RTT from those in the original text. The
remaining words are potential CSIs.

CSIs = Original Words− RTT Words

Using Jieba’s cut-for-search module, which
returns all words and phrases, a phrase is con-
sidered CSI only if all of its words are omitted
in the RTT, and not otherwise.

This method has its limitations, for example, it
could also: a) return words that are not CSIs and are
just difficult to translate, and b) miss CSIs that have
literal translations. We find in §6.3 that it performs
strongly in identifying CSIs in most cases.

4.2 Cultural Uniqueness (CU)

According to Newmark (1988), “unfindable” words
are often less frequently seen within a language.
Words with cultural and historical references can
be deeply embedded in a specific culture or history,
making them rare or unfamiliar to outsiders.

We use Jieba to segment words in the Chinese-
MenuCSI dataset, then measure each word’s fre-
quency and calculate its inverse frequency. A cut-
off at the 95th percentile of these inverse frequen-
cies is set based on a manual review of 100 words.
Words above this cut-off are marked as potential
CSI. Words not previously seen are given an in-
verse frequency of 1, indicating they are potential
CSI. No smoothing techniques are applied, as in-
verse frequency is used against a fixed threshold
rather than for probability calculations.
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4.3 Historical Significance (HS)

Chinese food names and CSIs often contain histor-
ical narratives such as historical events, figures and
periods (Lam et al., 2018; Amenador and Wang,
2022). To identify these, we use the Wikipedia API
to search for individual words or entire dish names.
If a word’s Wikipedia page includes a "History"
section, it is considered a potential CSI. The words
appearing 30 times or more, such as "chicken" or
"sauce" are excluded as generic terms.

5 CSI Translation

Having identified CSIs, we propose prompting
strategies to improve CSI translations. Our strate-
gies fall into two categories: Recipe-based Transla-
tion and Translation Studies-inspired Prompting.

5.1 Recipe-based Translation

We explore using recipe information to improve the
translation of CSI dish names. By incorporating
the most relevant recipe as external knowledge, we
experimented with two zero-shot prompt strategies:
Default Recipe prompting and Recipe + Explain-
then-Translation prompting (Figure 2).

Recipe Retrieval Pipeline Given over 50% of
the CSI dish entries in our test set lack detailed
publicly available descriptions from sources like
Wikipedia, we use the Xiachufang recipe database
(Liu et al., 2022) – which contains approximately
1.4 million Chinese monolingual recipes – to re-
trieve recipes and enhance translation accuracy.

We take inspiration from Translation Studies re-
search, which emphasizes the importance of cook-
ing methods and ingredients in translating Chinese
dish names (Amenador and Wang, 2022).

Our retrieval pipeline involves two key stages:

1. Query and document Construction: The
query is the full Chinese dish name, with the
CSI span from previous annotations. We con-
catenated each recipe name and instructions
into a single recipe document.

2. Filtering and Ranking Recipes: To filter and
rank the recipes, we employ the BM25 algo-
rithm (Robertson et al., 1995), which assigns
a score to each word in the Chinese recipe
document based on its term frequency and in-
verse document frequency. For each word in
the recipe document, the score is enhanced by
applying a weighting factor when the word

matches either the dish name (weight = 5) or
the CSI span (weight = 3), with an additional
multiplier of 3 applied to words within the
dish name to prioritize their importance. If
there is no exact match for the dish name, the
process shifts focus to matching with the CSI
span. Additionally, we apply a length penalty
to the final score, adjusting it based on the
difference between the recipe’s length and the
average length of all recipes. We select the
top-ranked recipe as the final output.

Prompt Strategy: CSI Recipe In this prompting
strategy, we use the most relevant recipe returned
from the aforementioned search pipeline to aid CSI
translation. We provide the name and cooking in-
structions of the closest-matching recipe while not-
ing that it might not correspond exactly to the given
dish but is beneficial as external knowledge since
it contains the CSIs to translate.

Prompt Strategy: CSI Explain-then-Translate
Inspired by Chain of Thought (CoT) prompting
(Wei et al., 2024) and Self-Explanation (Yao et al.,
2024), we formulate another prompting strategy
that first asks the LLMs to explain the meaning of
the CSIs described in the recipe and then generate
the translation for the dish. The motivation is to
help the LLMs conduct advanced reasoning on the
recipe instructions, such as interpreting dish names
with CSIs not explicitly defined in the recipe. For
example, a recipe might instruct to “cut it first,
then stir fry" or note that “it can be very spicy"
without explaining the CSI. The LLM’s task is to
infer the meaning of the CSIs based on the recipe’s
instructions. The prompt is shown in Figure 2.

5.2 Translation Studies-inspired Prompting

Unlike the conventional prompt engineering used
in related work, our second set of prompting strate-
gies differs in that they incorporate human trans-
lation strategies, inspired by the rich literature in
Translation Studies, directly into the design of the
prompt. We provide the prompt template for both
of these strategies in Figure 2 and complete prompt
in Appendix 3 and 4.

Prompt Strategy: Equivalents Using the recipe
in §5.1 as external knowledge, we ask the LLMs to
produce three translations, each based on a transla-
tion strategy (i.e. cultural, functional and descrip-
tive) and select the best translation.
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Figure 2: Four adaptation prompt strategies

These translation strategies are inspired by New-
mark (1988)’s theories on equivalent translation.
We define the equivalent strategies below, provid-
ing examples for the reader’s understanding:

1. Cultural Equivalent: Replacing a CSI in the
source text with a term that is culturally rele-
vant and functionally equivalent in the target
culture. This strategy aims to evoke the same
response in the target audience. (i.e. trans-
lating “粽子" as “tamale" in Spanish – given
both are traditional wrapped food items made
with a starchy substance and fillings, albeit
from different cultures.)

2. Functional Equivalent: This strategy fo-
cuses on the function or purpose of the item
(i.e., translating "粽子" as “rice dumpling" to
convey the idea of a food made of rice)

3. Descriptive Equivalent: Providing a detailed
description or explanation of the CSI to con-
vey its meaning and significance. This ap-
proach is useful when the CSI is essential for
understanding the text but has no equivalent
in the target language (i.e. translating "粽子"
as "a traditional Chinese sticky rice dumpling
wrapped in bamboo leaves")

Prompt Strategy: Neutralisation Another hu-
man translation strategy we used in the prompting
experiments is neutralisation. Again, we provide
recipe information as external knowledge as in the
previous strategy and incorporate an explanation
of the neutralisation strategy to guide the LLM
translation of dish names.

Neutralisation: Using culturally neutral lan-
guage to describe or explain a cultural word, phrase,
or rhetorical expression from the source text. It
answers the question, "What is this?" (Amenador
and Wang, 2022) by adding information such as
ingredients, culinary methods and key character-
istics. Compared with the descriptive equivalent

strategy, the neutralisation strategy we used for
prompt design confines the information used in
the translations to ingredients, culinary methods
and key characteristics (i.e. translating "粽子" as
"sticky rice wrapped in bamboo leaves").

6 Results and Analysis

Our experiments include five parts: 1. Baseline
evaluation of MT performance using three models
on the ChineseMenuCSI dataset (§6.2); 2. Assess-
ment of CSI span identification accuracy (§6.3); 3.
Exploration of main adaptation strategies (§6.4);
4. Exploration of individual equivalents translation
strategies for enhancing CSI translation (§6.5); 5.
Human evaluation of translation quality on a subset
of the dataset (§6.6).

6.1 Experimental Settings
We evaluate the effectiveness of LLM translations
for CSIs by comparing various prompting strate-
gies across two SOTA LLMs — GPT-3.5 (gpt-3.5-
turbo-01254) and the advanced GPT-4o (gpt-4o-
2024-05-135) — against the robust commercial MT
system, Google Translate. This approach allows us
to assess the strengths of LLM prompting versus a
widely used commercial MT.

6.2 Evaluation of CSIs vs Non-CSIs
We use the Stage 1 annotated version of the Chi-
neseMenuCSI dataset (§3.3). This version has a
high inter-annotator agreement of 0.91 for the CSI
vs non-CSI classification task, with conflicts fur-
ther resolved using a third annotator. We compare
the MT performance using the COMET version
wmt22-comet-da (Rei et al., 2022).

While GPT-4o yields major improvements in the
CSI translation performance, GPT-3.5 and GPT-4o

4GPT-3.5:https://platform.openai.com/docs/
models/gpt-3-5-turbo

5GPT-4o:https://platform.openai.com/docs/
models/gpt-4o
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Method Non-CSIs CSIs
Google Translate 74.08 64.48
GPT-3.5 72.88 64.34
GPT-4o 73.67 65.97

Table 3: Comparison of COMET scores across different
translation systems for CSI and Non-CSI menu items.
The prompt used: "Translate the [Chinese dish name]
into English".

Method Precision Recall F1 Score
CSI-1: Concrete CSIs

Ours Combined 64.9 34.0 44.7
RTT 58.8 28.4 38.3
CU 38.3 65.3 48.2
HS 86.3 31.2 45.8

GPT 3.5 32.4 80.4 46.2
4o 37.9 67.1 48.5

CSI-2: Creatives CSIs
Ours Combined 66.1 53.1 58.9

RTT 63.4 60.1 61.7
CU 35.4 70.4 47.1
HS 68.6 16.4 26.5

GPT 3.5 34.1 82.0 48.2
4o 40.6 73.9 52.4

CSI-3: Abstract CSIs
Ours Combined 81.4 68.6 74.4

RTT 81.7 73.6 77.4
CU 43.9 88.4 58.6
HS 80.0 9.9 17.6

GPT 3.5 50.4 94.3 65.7
4o 59.1 78.9 67.6

Table 4: Evaluation of CSI span identification accuracy
by CSI category: precision, recall, and F1 scores.

show worse scores for non-CSIs than Google Trans-
late. These results suggest that Google Translate
is particularly strong at translating straightforward,
culturally neutral content, likely due to its exten-
sive and diverse training dataset which prioritizes
general language accuracy over cultural nuances.

Interestingly, despite Google Translate’s gen-
eral strength in multilingual tasks (Zhu et al.,
2024), GPT-4o shows better handling of CSIs, high-
lighting the benefits of pretraining at scale on di-
verse corpora from many cultures, as opposed to
NMT systems that are typically trained on narrow-
domain sentence-level parallel corpora.

6.3 Evaluation of CSI Span Identification

We further assess the capability of different meth-
ods to pinpoint specific CSI spans – a task we call
CSI Span Identification – within dish names. This
fine-grained analysis is crucial for understanding
the elements that contribute to cultural specificity
and translation complexity.

Table 4 shows GPT 4o as the best performer in

CSI-1 and RTT as the best in other categories. This
is likely due to RTT’s strength in identifying CSIs,
which are often figurative and lack general interpre-
tations. However, the combined metrics only im-
proved RTT’s performance in CSI-1, likely because
of low recall in HS. Moreover, CU underperforms
in CSI-2, as those CSIs typically involve figura-
tive messages in creative combinations of frequent
words, which cannot be captured by frequency.

The combined method does not outperform the
individual highest method as it requires majority
agreement, where a single correct check is insuf-
ficient. HS shows high precision but low recall,
likely because CSIs often have historical back-
grounds, though the inverse is not always true.

6.4 Evaluation of Main Adaptation Strategies
This section examines whether external knowl-
edge, such as recipes, can enhance MT of CSI-
rich dish names. Four prompting strategies were
tested: a) Default Recipe prompting, b) Recipe +
Explain-then-Translate (EtT) prompting, c) Equiv-
alents and d) Neutralisation. For the latter two,
which are translation strategies, we try baselines
with and without incorporation of recipes, to ablate
the dependency on external knowledge. In Table 5,
we see that while all our proposed methods yield
overall improvements in performance, translation
strategy-based methods – that do not involve any
external knowledge – yield the largest gains, of up
to +4.8 COMET points! Moreover, when recipes
are added to these strategies, the gap widens even
further, with the maximum gain reaching as high
as +7.87 COMET points for our best performing
Recipe + Equivalents strategy. The second trend
we note is that the largest gains come from the
more complex CSI-2 and CSI-3 categories, indicat-
ing the efficacy of our translation theory-inspired
methods for translating highly culturally nuanced
text. Finally, while the more advanced model GPT-
4o naturally yields the largest improvements, we
note that we get pretty good results with the far
cheaper GPT-3.5 model too, indicating that our
methods could be used quite economically.

Revisiting the relatively lower improvements in
CSI-1 by examining GPT-generated translations,
we find that the LLMs sometimes focus on irrel-
evant details in the provided recipes. In CSI-1,
which involves shorter CSI terms, finding an exact
match for dish names is harder, forcing the inclu-
sion of noise in the recipe. For instance, the term
"咕噜” (Sweet and sour) applies to various dishes
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GPT-3.5 GPT-4o

CSI-1 CSI-2 CSI-3 Overall CSI-1 CSI-2 CSI-3 Overall

Baseline 62.68 55.38 43.92 53.33 62.68 55.38 43.92 53.33
Recipe-based Translation
Recipe +0.16 -0.90 +3.44 +0.50 -0.08 -3.02 +3.49 +1.93
Recipe + EtT +1.13 -1.33 +4.92 +1.04 +1.10 +1.61 +4.87 +2.16
Translation Studies Prompting
Neutralisation +0.74 +1.15 +3.62 +1.56 +0.46 +4.84 +4.29 +3.02
Equivalents +1.44 +3.24 +2.52 +2.38 +2.34 +3.89 +0.94 +2.62
Recipe + Translation Studies Prompting
Recipe + Neutralisation -1.29 +1.15 +7.72 +1.71 +0.09 +3.47 +4.25 +2.34
Recipe + Equivalents +0.95 +3.85 +3.01 +2.54 +1.80 +3.24 +7.87 +3.74

Table 5: COMET score comparisons for GPT-3.5 and GPT-4o using various translation strategies across CSI categories. The
overall score is calculated as the average of CSI-1, CSI-2, and CSI-3 scores for each method.

GPT-3.5 GPT-4o

CSI-1 CSI-2 CSI-3 Overall CSI-1 CSI-2 CSI-3 Overall

Baseline 62.68 55.38 43.92 53.33 63.43 54.50 47.50 55.14
Equivalents Strategy Prompting
Cultural -0.06 -0.86 +0.99 +0.02 +0.91 +0.90 -2.77 -0.32
Descriptive -6.73 -1.90 +0.93 -2.57 -3.83 +2.62 +2.10 +0.96
Functional +0.54 +2.69 +0.78 +1.34 +0.06 +3.47 +1.09 +1.54
Recipe + Equivalents Strategy Prompting
Recipe + Cultural -2.56 -0.89 -0.06 -1.83 +0.84 +1.73 +0.72 +1.10
Recipe + Descriptive -8.69 -1.81 +2.29 -2.74 -4.74 +5.27 +3.86 +1.46
Recipe + Functional +2.27 +4.02 +2.57 +2.95 -0.96 +2.80 +7.97 +3.27

Table 6: Ablation study comparing COMET scores for GPT-3.5 and GPT-4o using different equivalent strategies across CSI
categories. The overall score is calculated as the average of CSI-1, CSI-2, and CSI-3 scores for each method.

like pork, chicken, or fish, making it difficult to pro-
vide the correct ingredient. In contrast, CSI-2 and
CSI-3 usually involve longer, more specific phrases
like "蚂蚁上树” (Fried vermicelli with pork), mak-
ing it easier to find an exact recipe match, reduce
noise, and majorly improve accuracy.

6.5 Evaluation of Individual Equivalent
Strategies

We further perform an ablation analysis of the
recipe and individual equivalent strategies, includ-
ing cultural, descriptive and functional, against the
baseline results.

Table 6 shows that for GPT-3.5, the functional
equivalent strategy outperforms others, especially
when combined with the recipe. For GPT-4o, both
descriptive and functional strategies yield better re-
sults in CSI-2 and CSI-3, with descriptive strategy
excelling in CSI-2 when a recipe is included. In
CSI-3, "Recipe + Functional" strategy leads to a
significant performance boost of +7.97.

Upon reviewing the translations, both descriptive
and functional strategies align well with the gold
standards for CSI-2 and CSI-3. However, due to
its complexity, the descriptive strategy produces

longer translations with trivial details for CSI-3,
which is likely to negatively affect COMET scores.

6.6 Human Evaluation

We collect ratings from 10 native Chinese speakers
fluent in English, based on the concept of cross-
cultural adaptation on a scale of 0 to 10, alongside
automatic quantitative metrics. We select the top-
performing methods with recipes, as evaluated by
COMET in Tables 5 and 6. We then randomly sam-
ple 15 entries with perfect agreement from each
CSI category (1: Concrete, 2: Creative, 3: Ab-
stract), totalling 45 entries.

The human evaluation results reveal a trend of
performance improvement from CSI-1 to CSI-3 in
GPT-3.5 and 4o. We use green to highlight cells
with major improvements, i.e. over 1 point. Inter-
estingly, for more complex CSIs (i.e. CSI-2 and
CSI-3) we have larger improvements. We also ob-
serve that these trends align well with COMET
trends in Table 5, noting that by both metrics, trans-
lation theory prompts yield significantly better re-
sults than basic prompting across categories.

Interestingly, human evaluators prefer “Recipe +
Neutralisation" instead of “Recipe + Equivalent",
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GPT-3.5 GPT-4o

CSI-1 CSI-2 CSI-3 Overall CSI-1 CSI-2 CSI-3 Overall

Baseline 6.33 3.88 3.18 4.47 6.22 4.23 3.65 4.70
Recipe-based Translation
Recipe -0.93 +0.67 +1.74 +0.49 -0.04 +0.80 +2.28 +1.01
Recipe + Explain-then-Translate -0.03 +0.60 +1.35 +0.64 +0.43 +0.98 +1.68 +1.03
Recipe + Translation Studies Prompting
Recipe + Functional -1.15 +1.10 +1.71 +0.60 +0.75 +1.77 +2.14 +1.05
Recipe + Neutralisation +0.37 +1.21 +1.03 +0.62 +1.32 +2.83 +3.20 +1.95
Recipe + Equivalent -0.85 +0.62 +2.05 +0.81 +0.71 +0.99 +2.38 +1.36

Table 7: Difference in human evaluation of translation quality compared to baseline for different models and strategies across
CSI categories. The overall score is calculated as the average of CSI-1, CSI-2, and CSI-3 scores for each method.

the highest in COMET. This preference may stem
from the neutralisation definition used in this study,
based on the findings of Amenador and Wang
(2022). They note that neutralisation is the most
common strategy employed by human translators
for Chinese names, suggesting a familiarity that
could influence the evaluators’ preferences towards
human-like translation outputs.

Table 8 illustrates the effectiveness of various
translation strategies applied to the Chinese dish
“三不沾”, known for its non-stick quality when
served, featuring osmanthus eggs. The full transla-
tion examples are provided in Appendix A.3.

Strategy Translation

Baseline Not sticky in three ways
Equivalent Sweet Egg Pastry
Neutralisation Osmanthus Egg Custard

Table 8: Selected Translations from GPT-4o Using Dif-
ferent Translation Strategies with Recipe.

"Sweet Egg Pastry" generated using the Equiv-
alent strategy by GPT-4o, effectively conveys the
essence of the dish by focusing on its key ingre-
dients and flavour profile. "Osmanthus Egg Cus-
tard," produced through the Neutralisation strategy,
is also an accurate translation as it highlights "Os-
manthus egg," the main ingredient, and "Custard,"
indicating the dish’s texture. In contrast, the base-
line translation "Not sticky in three ways" fails
to provide meaningful information about the dish,
making it the weakest.

7 Discussion

The CSI categorisation can be applied to wider
cultural domains that contain figurative elements.
Future research can use this taxonomy to analyze
how different translation methods perform on figu-
rativeness and cultural specificity, suggesting a new

framework for evaluating CSI translation. This is
similar to the evaluating framework in cultural in-
ference, categorising entailment in different levels
to better assess an LLM’s ability to understand cul-
tural inference (Huang and Yang, 2023).

CSI automatic identification offers a cost-
effective approach that outperforms GPT-based
prompting in CSI-2 and 3. This method is versatile
and applicable to both general and domain-specific
CSIs, as it focuses on preserving meaning in trans-
lation. It could enhance the quality of translations
in a wide variety of domains where maintaining cul-
tural integrity is essential – like literature, media,
marketing and cross-cultural communication.

The findings of this paper also demonstrate the
effectiveness of prompt strategies inspired by trans-
lation studies in overcoming the challenges of trans-
lating CSIs, particularly when direct equivalents
are lacking across cultures. This approach shows
promise for using LLMs with tailored prompts,
integrating human translation insights, and translat-
ing diverse cultural elements more effectively.

8 Conclusion

In this paper, we introduce the ChineseMenuCSI
dataset for CSI-rich dishes and propose a detailed
classification in the test set. The results show that
LLMs outperformed NMT systems, while NMT is
better for Non-CSI translations. Additionally, auto-
matic methods are better than GPT-based prompt-
ing at identifying CSIs in most categories.

Incorporating translation studies and recipe de-
tails improves LLMs’ translation of Chinese dish
names. Equivalence strategies, aligned with popu-
lar restaurant translations, yield consistently high-
quality results, while neutralisation, based on pre-
vious analyses, is well-received by evaluators.
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Limitations

We acknowledge a few limitations of our study.
Firstly, we use COMET as the primary automatic
evaluation metric for CSIs. While COMET pro-
vides a robust evaluation, assessing cultural aware-
ness may require an even deeper understanding
of cultural backgrounds in both source and target
languages, which COMET may not fully cover.
Currently, in the absence of a metric that can evalu-
ate text-to-text cultural similarity, we use COMET
due to its high correlations with human judgment.

Secondly, while we only test zero-shot prompt-
ing for translation studies and recipe information,
other research, such as Nayak et al. (2024), has
demonstrated promising results using few-shot in-
context learning strategies, which should also be
explored.

Lastly, we only sample 45 menu entries from the
test set, which can be relatively small compared to
the studies with a larger test set. To achieve more
robust and reliable results, increasing the number of
human evaluators and the sample size of evaluation
entries would be beneficial.

Ethical Considerations

In conducting this research, we adhere to ethical
guidelines to ensure the integrity and responsibil-
ity of our work. The ChineseMenuCSI dataset is
created by scraping publicly available restaurant
websites, ensuring that no private or sensitive infor-
mation is collected. We obtain data in compliance
with the terms of use of the websites and anonymise
any identifying details of the restaurants. The hu-
man annotators involved in this study are fully in-
formed about the nature of the research and provide
their consent. We make the dataset available for
research purposes under a license that respects the
rights of the original content creators.
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A Appendix

A.1 Detailed Prompt Teamplates

Prompt Strategy: Recipe + Equivalents

User:

Similiar Recipe: [Recipe Instructions].

Based on the above recipe information, provide three translations
for [Chinese dish name] based on the three translation strategies listed
below and select the best one:

Cultural Equivalent: Substituting a source language term with a
term from the target language that has similar cultural resonance and
functionality.

Functional Equivalent: Rendering the source language’s meaning,
intent, and style into the target language in a culturally appropriate and
understandable way. This strategy prioritizes the effect and function of
the text in the target culture over a word-for-word translation, ensuring
the translation fulfills the same purpose as the original.

Descriptive Equivalent: Providing an in-depth explanation of a
term or concept that lacks a straightforward equivalent in the target
language. The explanation could include details such as ingredients,
culinary method, key characteristics, etc.

Figure 3: Recipe + Equivalents Detailed Prompt

Prompt Strategy: Recipe + Neutralisation

User:

Similiar Recipe: [Recipe Instructions].

Based on the above recipe information, provide a translation for
[Chinese dish name] with the following translation strategy:

Menu Description Strategy: This strategy involves using culturally
neutral language to describe or explain a cultural word, phrase, or
rhetorical expression from the source text (ST). It answers the question,
’What is this?’ and is similar to converting a metaphor to its literal
meaning. The translations should include the key culinary method,
ingredients, and characteristics.

Figure 4: Recipe + Neutralisation Detailed Prompt

A.2 Menu Parser

We develop a heuristic parser to extract dish in-
formation from the bilingual menu images by de-
tecting price tags and segmenting the raw text into
aligned content. To achieve this, we utilise Google
Cloud Vision OCR6 to extract text and bounding
boxes from the menu images. Price tags serve as
unique indicators for each dish’s content, as we
observe that most menus included prices alongside
their respective dishes. These price tags are identi-
fied using regular expressions, such as "dd.dd" or
"£dd.dd".

Given that the position of price tags relative to
dish names can vary across menus, we calculate

6Google Cloud Vision OCR: https://cloud.google.
com/vision

alignment scores based on the cosine similarity and
the gap distance between the potentially aligned
Chinese and English text and select the alignment
with the highest score from all possible combina-
tions. Each entry undergoes manual review to en-
sure accuracy and errors are corrected before sub-
sequent steps.

A.3 Full Examples of Translation Prompts

Strategy Translation

Baseline Not sticky in three ways
Reference Sweet Egg Pudding

Recipe Three Non-Stick Deli-
cacy: Traditional Imperial
Egg Yolk Treat

Recipe + EtT Imperial Non-Stick Egg
Delight

Equivalent Sweet, Sticky and Chewy
Neutralisation Non-Sticky Sweet and Sa-

vory Egg Custard

Recipe + Equivalent Sweet Egg Pastry
Recipe + Neutralisation Osmanthus Egg Custard

Table 9: Comparison of GPT-4o Translations Across
Different Strategies
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Abstract

The COMET metric has blazed a trail in the
machine translation community given its strong
correlation with human judgements of transla-
tion quality. Its success stems from being a
pre-trained multilingual model finetuned for
quality assessment. However, it being a neu-
ral metric also gives rise to a set of pitfalls
that may not be widely known. We investi-
gate these unexpected behaviours from three
aspects: 1) technical: obsolete software ver-
sions and compute precision; 2) data: empty
content, language mismatch, and translationese
at test time as well as distribution and domain
biases in training; 3) usage and reporting: multi-
reference support and model referencing in the
literature. All of these problems imply that
COMET scores may be not incomparable be-
tween papers or technical setups and we put
forward our perspective on fixing each issue.
Furthermore, we release the sacreCOMET pack-
age that can generate a signature for the soft-
ware and model configuration as well as an
appropriate citation. The goal of this work is to
help the community make more sound use of
the COMET metric.

1 Introduction

Automated metrics provide a cheap and scalable
way of evaluating and benchmarking NLP mod-
els. In machine translation (MT), the evaluation
protocol has moved from string matching metrics
(BLEU, TER, chrF, inter alia; Papineni et al., 2002;
Snover et al., 2006; Popović, 2015) to trained neu-
ral metrics (Shimanaka et al., 2018; Takahashi et al.,
2020; Rei et al., 2020a; Sellam et al., 2020) with
COMET being widely adopted. The trained metrics
have been shown to correlate much better with hu-
man judgement (Freitag et al., 2021, 2022b, 2023),
making them more reliable in estimating translation
quality and ranking translation systems.

☀Equal contributions.
0Code: github.com/PinzhenChen/sacreCOMET

Nonetheless, the solution to translation evalua-
tion is yet to be perfected. One problem is the hap-
hazard use of the metric. Previously, Post (2018)
showed that different usages and implementations
of BLEU, e.g. tokenization and smoothing, lead
to inconsistencies in scores. We suspect that the
use of COMET might be sensitive to misconfig-
urations too, resulting in unexpected behaviours.
Furthermore, trained MT metrics are optimized on
a limited amount of data (usually valid machine
translations), leading to overfitting and reduced ro-
bustness against corner cases. Contributions of this
work are listed as follows:
• we reveal nine problems spanning technical is-

sues, data biases, and model reporting;
• we show that inconsistent use of COMET leads to

non-comparable scores across papers or setups;
• we release the sacreCOMET package for better

reporting and reproducibility;
• we provide directions for future work on building

learned metrics.

2 Background and Setup
Metric background. Publicly available human
judgements of translation quality come from shared
task annotation campaigns, where translations are
evaluated with some annotation protocol. From
2017, in WMT, the protocol was a variant of direct
assessment (DA; Graham et al., 2013) which has
annotators providing a number from 0 (lowest) to
100 (highest) as the segment quality. This has been
subsequently replaced by MQM and ESA proto-
cols (Lommel et al., 2014; Kocmi et al., 2024d),
though DA remains the most abundant data source
for neural metric training.

Automated metrics aim to yield scores that corre-
late with human judgements of translations. Most
metric scores are computed at the segment level
and then aggregated at the system level to e.g. ob-
tain system comparison. The evaluation of metrics
is done with respect to the human judgements.
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COMET models. Metrics such as chrF or BLEU
are heuristic algorithms that match n-grams be-
tween the translation and the reference to com-
pute a score. In contrast, COMET is a machine
learning model fine-tuned from a pre-trained mul-
tilingual language model, e.g. XLM-R (Conneau
et al., 2020), with an additional regression head. A
reference-based COMET model learns to regress
from a tuple of [source, hypothesis, reference] to
the human judgement score (from previous evalua-
tion campaigns) at the segment level. The quality
estimation (reference-free) version of COMET is
prepared by omitting the reference from the input.

Most issues in this work are demonstrated using
two COMET checkpoints unless noted otherwise:
the reference-based COMETDA

22 and the reference-
free COMETkiwiDA

22 (Rei et al., 2022a). Both met-
rics output to a normalized range between 0 and 1.
The COMET framework unbabel-comet is of ver-
sion 2.2.2 except when we test how different soft-
ware versions affect COMET scores.

Data setup. We base our experiments on the gen-
eral domain translation and metrics shared tasks of
WMT from 2023 (Kocmi et al., 2023; Freitag et al.,
2023). The translation directions in the paper are
centred around En↔De and En↔Zh, though we
occasionally include other translation directions for
demonstrative purposes.

Whenever possible, we divide all scores, includ-
ing DA and model outputs, such that their output is
between 0 and 1.

3 Problems

In this section, we identify and test nine possible
pitfalls or curious behaviours with COMET which
are not all well-studied. In three groups, these are:
• Technicality: obsolete Python and COMET soft-

ware versions as well as compute precisions
could lead to inaccurate score computation.

• Training and test data: COMET as a neural met-
ric, might be derailed by empty hypotheses, lan-
guage mismatch, and translationese at test time.
It may also follow the training data biases.

• Tool usage and score interpretation: COMET
has no defined way of equipping multiple ref-
erences when available which leaves room for
research. From a bibliometric perspective, we
reveal that some literature omits a clear reference
to the checkpoint version or citation.

In addition, we discuss some final issues that need
more attention from the community.

Python 3.7.16 3.8.11 3.12.4
unbabel-comet 1.1.2 2.2.2 2.2.2

En→De 0.796 0.837 0.837
En→Zh 0.911 0.862 0.862
De→En 0.851 0.855 0.855
Zh→En 0.795 0.803 0.803

Table 1: COMETDA
22 scores for WMT 23 Online-A un-

der different package versions.

3.1 Software versions [technical]

The official installation of the COMET package re-
quires Python 3.8 or above.1 We demonstrate that
neglecting this would lead to unexpected scores
because the same COMET checkpoint can pro-
duce vastly different scores with previous COMET
framework versions that are no longer supported.

Under several Python versions, executing the
following code leads to different COMET package
(unbabel-comet) versions being installed. Run-
ning the framework for translation evaluation will
subsequently result in false conclusions as shown
in Table 1’s evaluation on WMT23 tests. The direct
cause is that Python 3.7, which has been discontin-
ued, only supports unbabel-comet versions up to
1.1.2. Nonetheless, we caution that the underlying
factor is the version of unbabel-comet rather than
Python.

$ pip install pip --upgrade
$ pip install unbabel -comet --upgrade

# will install
# unbabel -comet ==1.1.2 under Python 3.7.16
# unbabel -comet ==2.2.2 under Python 3.8.11
# unbabel -comet ==2.2.2 under Python 3.12.4

Recommendation. Updating both Python and
unbabel-comet to their latest versions is helpful
and reporting the toolkit version aids reproducibil-
ity.

3.2 Numerical precision [technical]

Model quantization represents a model using lower-
numerical precision data types so that the model
consumes less memory and model passes can be
computed faster. Such improvement in inference
is directly beneficial to deployment efficiency; it is
also useful in other complex procedures involving
COMET scoring, such as data filtering, re-ranking,
and Minimum Bayes Risk (MBR) decoding (Ku-
mar and Byrne, 2004).

Despite the aforementioned advantages, model
quantization is not a feature supported by the cur-

1github.com/Unbabel/COMET 332dfb0 as of Aug 2024.
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Precision COMETDA
22 MAE τc Acc Time (s)

En→De

GPU FP32 0.822 10.4 0.274 0.885 113
FP16 0.822 10.4 0.274 0.885 55

CPU
FP32 0.822 10.4 0.274 0.885 2262
FP16 0.822 10.4 0.274 0.885 2403

QINT8 0.852 10.8 0.109 0.385 1856

De→En

GPU FP32 0.841 9.98 0.296 0.901 87
FP16 0.841 9.98 0.296 0.901 48

CPU
FP32 0.841 9.98 0.296 0.901 1674
FP16 0.841 9.99 0.296 0.901 1758

QINT8 0.860 10.7 0.164 0.516 1249

En→Zh

GPU FP32 0.842 11.7 0.290 0.933 111
FP16 0.842 11.7 0.290 0.933 102

CPU
FP32 0.842 11.7 0.290 0.933 1751
FP16 0.842 11.7 0.290 0.933 1710

QINT8 0.881 13.2 0.031 0.608 1258

Zh→En

GPU FP32 0.799 9.95 0.153 0.717 113
FP16 0.799 9.95 0.153 0.725 86

CPU
FP32 0.799 9.95 0.153 0.717 1936
FP16 0.799 9.95 0.153 0.717 1995

QINT8 0.872 10.5 0.081 0.475 1351

Table 2: System ranking with quantization on GPU and
CPU. COMETDA

22 is the absolute model score; MAE,
τc, and Acc are mean average error, correlation, and
accuracy with respect to human judgements; Time refers
to computation time in seconds.

rent COMET framework except in a concurrent
work (Gowda et al., 2024). We make minimal mod-
ifications to the software and investigate the effect
of numerical precision on COMET scores on both
CPU (FP32, FP16, and QINT8) and GPU (FP32
and FP16). When using FP16, we first load the
model weights to FP32, followed by .half() call.
This is because loading the weights directly in FP16
still incorrectly results in FP32 precision. For CPU
inference with dynamic QINT8, we apply the quan-
tization module torch.ao.quantization from
PyTorch.

We use AMD Ryzen 9 5900X with NVIDIA
GeForce RTX 3090 for GPU inference and a batch
size of 8 in all settings (in practice a quantized
model makes room for a larger batch size). Table 2
summarises the effect of numerical precision. In ad-
dition to reporting COMET scores, we also report
(1) inference time in seconds (sec) as an efficiency
measure; and (2) segment-level mean absolute er-
ror (MAE), segment-level Kendall’s tau-c (τc), and
system-level pairwise accuracy (Acc). Everything
is compared to the human DA scores either on
segment- or system-level. Technically, Kendall’s
τc calculates rank correlation on an ordinal scale
with adjustments for ties and pairwise accuracy
computes the proportion of system pairs that have
the same ordering by a metric as by humans.

Our results show that there is no meaningful dif-
ference between FP32 and FP16 in both CPU and
GPU devices up to 3 significant figures. On GPU,
FP16 is about 30% faster in time, but unsurpris-
ingly it does not provide any speed-up on CPU.
Interestingly, on the CPU, dynamic QINT8 gives
systematically higher COMET scores and shorter
running times than FP32 and FP16. However, the
much lower τc and pairwise accuracy indicate the
lack of reliability at this precision. In addition to
precision, we explored the effect of batch size and
the choice of GPU or CPU during inference with
results listed Appendix A. Whilst there are some
fluctuations, they are mostly negligible. However,
lower precision allows for higher batch size which
usually directly corresponds to speed-up.

Recommendation. If GPU is available, it is fea-
sible to run COMET with FP16 with a larger batch
size for much faster inference without any quality
loss. Otherwise, FP32 should be used.

3.3 Empty hypothesis [data]

An empty translation (a string of length 0) gets pe-
nalized heavily by string-based metrics because an
empty string has zero surface overlap with the ref-
erence. However, neural metrics provide no such
guarantee. We show that COMET assigns a posi-
tive instance-level score even if the hypothesis is
an empty string as corroborated by Lo et al. (2023).
Problematically, this score can even occasionally
be higher than that of a genuine system translation.

In Table 3, we list COMET scores for system
Online-A’s hypotheses at WMT23 and a file full of
empty lines. Furthermore, we compare them with
completely incorrect translations to explicate the
score magnitude in two ways:
• Random hypothesis: we shuffle WMT22’s refer-

ence files at the sentence level in the respective
translation directions. This provides us with high-
quality human-written sentences. We sub-sample
or over-sample if the number of lines in WMT22
is larger or smaller than the WMT23 size.

• Random hypothesis (shuffled words): we further
shuffle the words at each line in the sentence-
shuffled files, generating nonsensical sentences.

Sentence-shuffled hypotheses can be seen as fluent
but extremely inadequate sentences whereas word-
shuffled sentences are neither fluent nor adequate.

We observe that sentence-shuffled hypotheses
attain comparable scores to empty ones, but word-
shuffled hypotheses have the lowest scores across
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COMETDA
22 COMETkiwiDA

22

Hypothesis (↓) En→De En→Zh De→En Zh→En En→De En→Zh De→En Zh→En

Real system (Online-A) 0.837 0.862 0.855 0.803 0.800 0.791 0.794 0.787
Empty hypothesis 0.335 0.392 0.353 0.374 0.315 0.319 0.537 0.467
Random hypothesis (fluent) 0.373 0.434 0.334 0.350 0.333 0.341 0.447 0.391
Random hypothesis (shuffled words) 0.244 0.419 0.264 0.347 0.232 0.325 0.307 0.385

Table 3: Absolute average COMET scores for WMT23 Online-A, empty hypotheses, and random sentences.
Random sentences are either fluent but irrelevant or perturbed with words shuffled and thus non-fluent.

the majority of the translation directions. Empty
and shuffled hypotheses, despite having much
lower COMET than the valid translations, would
not be assigned zero scores by COMETDA

22 or
COMETkiwiDA

22 , showing that COMET is more le-
nient than string overlap-based metrics in penaliz-
ing such irregularities.

We count the number of empty lines that score
better than a translation from Online-A in Ta-
ble 4. We observe roughly 0.25% such cases for
most translation directions except for De→En’s
COMETkiwiDA

22 score situating at 1.45%. Further,
in Figure 1 we plot the distributions of COMET
scores for Zh→En’s empty and genuine translations
with other translation directions in Appendix B. No-
ticeable overlaps are observed for COMETkiwiDA

22

when translating into English.
Adhering to the DA protocol guidelines, this

is not the proper behaviour because an empty hy-
pothesis should receive a score of 0, to match no
meaning preserved. This however is unsurprising
with COMET, which has likely not seen empty hy-
potheses during training that would have received a
score of 0 from a human annotator. Finally, even by
relaxing the 0-score expectation, the metric should
still assign the same score to all empty hypotheses
regardless of the source. Since the distributions
of empty hypotheses are nowhere close to a single
vertical bar in Figure 1, it exposes the issue that
segment-level COMET scores oddly hinge on the
source sentence, as noted by Sun et al. (2020).

Recommendation. Force empty hypotheses to
have 0 scores before aggregating. Also, a string-
based metric like BLEU or chrF should be used to
catch similarly malformed hypotheses.

3.4 Hypothesis language mismatch [data]

String overlap-based metrics can also score a hy-
pothesis in a language different from the reference
almost zero, especially with script mismatch. How-
ever, even for the reference-based COMET, there
is no explicit way to enforce the intended target

Zh→En, COMETDA
22 Zh→En, COMETkiwiDA

22

Empty Baseline

Figure 1: Distribution of instance-level scores for empty
and baseline translations (x-axis: score; y-axis: count).
See other translation directions in Appendix B.

translation < empty

COMETDA
22 COMETkiwiDA

22

En→De 0 / 558 2 / 558
En→Ru 1 / 2075 0 / 2075
En→Uk 2 / 2075 1 / 2075
En→Zh 6 / 2075 2 / 2075
De→En 1 / 550 8 / 550
Ru→En 5 / 1724 6 / 1724
Uk→En 1 / 1827 5 / 1827
Zh→En 5 / 1977 1 / 1977

Table 4: Proportion of WMT23 Online-A’s translations
that are worse than an empty line for the same source,
displayed as “empty/total”.

language. This poses an increasingly pronounced
problem, especially for multilingual translation
models as well as the recent large language models,
in which the generated language cannot be as easily
controlled (Zhang et al., 2023).

We conduct experiments to understand if trans-
lation outputs in an incorrect language impact
the score, and whether different mismatching lan-
guages can lead to distinct patterns. We use
the translation directions En→Ru, En→Uk, and
En→Zh in WMT23 which share the same English
source input. Having Online-A’s output in all three
directions, we substitute hypotheses in a particular
translation direction with those from another direc-
tion. A similar hypothesis was presented by Am-
rhein et al. (2022) which suggested that COMET
metrics are not robust to hypothesis language mis-
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En→Ru En→Uk En→Zh

Correct lang. 0.853 0.832 0.862

Incorrect
target lang.

Uk: 0.797 Ru: 0.807 Ru: 0.655
Zh: 0.536 Zh: 0.540 Uk: 0.644

Empty hyp. 0.316 0.329 0.391
Random hyp. 0.463 0.472 0.435

Table 5: COMETDA
22 scores for WMT23 Online-A’s

output in (1) correct, (2, 3) incorrect language, (4) empty
outputs, (5) random, but fluent, output.

match. Our experiment setup offers a more detailed
evaluation setup than their contrastive setup.

Table 5 presents COMETDA
22 scores for transla-

tions in correct and incorrect languages, as well
as empty lines and random sentences in the cor-
rect language as “baselines”, deemed as completely
wrong translations. The pattern shows that when
the hypothesis is in a language distant from the
reference, the COMET score declines much more
than when the hypothesis is in a similar language.
A more concerning issue is that even when the
hypotheses’ language is completely wrong, the re-
sulting COMET score can still be vastly higher
than empty hypotheses or random sentences in the
correct language. We omit COMETkiwiDA

22 because
it does not have a mechanism to read a reference
(language) making it inherently incapable of distin-
guishing output languages.

Recommendation. Run language identification
and set hypotheses in an unexpected language to
have a 0 COMET score before aggregating them
system-level. Also, check with a string overlap-
based metric like BLEU or chrF.

Lang Score

De→En 0.754
Ps→En 0.670
Is→En 0.724
Pl→En 0.761
Ru→En 0.771
Ja→En 0.663
Ta→En 0.655
Zh→En 0.743
Ha→En 0.641
Km→En 0.659
Lt→En 0.726
Cs→En 0.740
Gu→En 0.575
Kk→En 0.649
Iu→En 0.724
Fi→En 0.719

Lang Score

En→ Is 0.666
En→Lt 0.600
En→Ru 0.765
En→ Iu 0.720
En→Ha 0.768
En→ Ja 0.745
En→Pl 0.706
En→Gu 0.514
En→Cs 0.767
En→Zh 0.775
En→Fi 0.616
En→Ta 0.709
En→De 0.841
En→Kk 0.574

Lang Score

Hi→Bn 0.910
De→Fr 0.792
Fr→De 0.834
Zu→Xh 0.639
De→Cs 0.510
Xh→Zu 0.574
Bn→Hi 0.770

Table 6: Average human DA score for each translation
direction in WMT data up to 2023 (inclusive).
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Figure 2: Setup of an experiment with bottom 75% of
En→Zh scores which creates a bias in COMETDA

22 . In
the new data for En→Zh (bottom right) there are no trans-
lations with perfect scores. En→De data are unaffected.

3.5 Score distribution bias [data]

As the COMET metric is a machine learning model
trained on human ratings of existing machine trans-
lations, it inherits many properties of statistical
learning such as data (output score) distribution
bias. The yearly WMT shared task receives submis-
sions with varying quality and potentially varying
quality ranges for different translation directions
per year (from Koehn and Monz, 2006 to Freitag
et al., 2023). This is attributed to diverse factors:
the availability of data, source-target language sim-
ilarity, the level of interest in languages, etc. The
gap in translation quality will then propagate into
skewed human judgement scores across translation
directions. When a single COMET model learns
to score all translation directions, it can overfit the
score distribution w.r.t. a translation direction in
addition to the quality of a translation hypothesis.

We first verify this in Table 6 which shows that
WMT translation directions are associated with
vastly different human DA scores (from 0.51 to
0.91). Empirically, we illustrate this issue using
two high-resource directions En→De and En→Zh.
As shown in Figure 2, we keep either the top- or
bottom-75% of all scored translations to alter the
score distribution for each direction, simulating the
scenario where low- and high-performing system
submissions are received for different directions.
We then train different COMET models on the hu-
man train data before and after alteration as per
Figure 2. Finally, we evaluate those checkpoints
on the same test set and report results in Table 7.

As expected, for both En→Deand En→Zh, train-
ing on the top or bottom-scoring data leads to in-
creased or decreased COMET scores on the same
set of hypotheses. Besides, we observe that altering
scores in a particular translation direction incon-
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Training data En→De En→Zh

All 0.770 0.770
Top-75% of En→De 0.790 0.770
Bot-75% of En→De 0.765 0.764
Top-75% of En→Zh 0.783 0.789
Bot-75% of En→Zh 0.772 0.751

Table 7: Average scores from COMETDA
22 trained on

data with top- or bottom-75% of scores kept in a partic-
ular direction.

sistently affects scores in another direction system-
atically. For example, removing the bottom 25%
En→Descores “improves” the test-time score from
0.770 to 0.790 whilst En→Zh remains unaffected.

Finally, an empty translation should have the
same score irrespective of the original source. Due
to the statistical learning nature of the metric, this
is not the case, as found in Section 3.3. Sun et al.
(2020) and Zouhar et al. (2023) show that some
meaningful correlation with human scores can be
attained with just the source as the input. This
shows, that there is a learned bias based on the
prior difficulty of the source segment, which is
undesirable for an objective evaluation metric.

Implication. A trivial conclusion is that COMET
scores for different translation directions are not
comparable. Nevertheless, we caution that the
same phenomenon could happen for other features
such as the domain, output style, etc. Although
z-score re-scaling could mitigate this problem, it
has not been a common practice since WMT22 and
it would further contribute to non-objective scores
(Knowles, 2021). Moreover, while z-scoring is
straightforward for the translation direction, other
latent, language-agnostic biases still exist.

3.6 Domain bias [data]

Neural metrics like COMET are biased towards
particular domains, manifested by worse test per-
formance on unseen domains (Zouhar et al., 2024a).
Taking inspiration from previous work and our
discussions on “latent biases”, we now raise a
question—can we create adversarial hypotheses
at test time to exploit the domain bias in training
time? Specifically, different domains in the train-
ing data are associated with different score ranges.
By pretending that a translation is in a particular
domain, it might manipulate its COMET score.

To make it explicit to COMET during training,
we prepend the target translation with a tag of its
domain—in our case, the year the WMT data origi-
nated. Note that in each iteration of WMT, systems

Train 2020 Fire prevented from spreading

Test 2019 Now I have to tell you a nice story.
2020 Now I have to tell you a nice story.
2021 Now I have to tell you a nice story.
2022 Now I have to tell you a nice story.
2023 Now I have to tell you a nice story.

Table 8: An illustration of year-as-a-domain tagging
during training and testing.

Tag Train Test

2018 unseen 0.736
2019 0.721 0.737
2020 0.735 0.744
2021 0.749 0.749
2022 unseen 0.747
2023 unseen 0.747
2024 unseen 0.739
2025 unseen 0.747

Table 9: Average COMETDA
22 scores for subsets in train-

ing and predictions on test data. During testing, the
whole test set had a single tag, e.g. 2024, irrespective of
the data origin.

get higher overall DA scores (e.g. 0.721 for 2019
and 0.749 for 2021). Table 8 illustrates our setup:
during training, we tag the scored translation data
with its year; during testing, we trial various year
prefixes to understand the effect.

One would expect the metric to produce the same
score based solely on the translation quality. How-
ever, as shown in Table 9, by merely changing the
year tag, we can influence the average score of
the test set. During training, the model would be
able to observe that 2019 is associated with the
worst score and 2021 the best. During test time, the
model follows this bias and also extrapolates it to
upcoming years where it predicts an improvement
in the average DA scores. While the differences
appear small, they are on the same scale as the
differences between years in the training data.

Implication. Our year-as-a-domain setting might
be overly simple, but the vulnerability of COMET
to latent biases cannot be neglected. Although Am-
rhein and Sennrich (2022) has shown that COMET
is not sensitive to numbers, this work reveals that
it can be systematically exploited in an artificial
setting. We offer a more practical (adversarial) ex-
ample that one may disguise biomedical domain
translations as news translations to game COMET.

3.7 Lack of multi-reference support [usage]

In machine translation, there usually exist many
valid translations for the same input. An effective
metric should incorporate multiple ground truths
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WMT23
COMETDA

22

ref ref (alt) avg max agg

MQM
He→En 0.885 0.897 0.910 0.910 0.949
En→De 0.974 0.936 0.974 0.987 0.974
Zh→En 0.783 0.908 0.850 0.858 0.950

DA

En→De 0.885 0.949 0.910 0.897 0.910
Zh→En 0.717 0.875 0.783 0.775 0.883
De→En 0.901 0.912 0.923 0.923 0.912
En→Zh 0.933 0.817 0.900 0.867 0.933
Cs→Uk 0.846 0.802 0.901 0.890 0.868
En→Cs 0.858 0.875 0.858 0.858 0.867
En→ Ja 0.941 0.824 0.934 0.934 0.926
Ja→En 0.922 0.915 0.928 0.928 0.922

Table 10: Pairwise system-level accuracy for differ-
ent strategies incorporating multiple references into
COMETDA

22 . Evaluation is carried out on WMT23 with
DA or MQM scores as human ground truths.

if available, thereby enhancing the accuracy and
robustness of its evaluation. Existing metrics like
BLEU or chrF rely on surface-level overlap to cap-
ture the ground truth space from multiple refer-
ences while metrics like ParBLEU (Bawden et al.,
2020) can automatically generate paraphrases of a
given reference to be included during evaluation.

By design, only one reference can be used in
COMET. Whilst one may argue that representing
a text reference in the neural space can ease the
restriction on word choices, it might still be benefi-
cial to use multiple references to overcome defects
in the base embedding model. Therefore, we test
whether COMET can explicitly and reliably lever-
age multiple references. We identify three distinct
ways in which multiple references have been incor-
porated in COMET in previous literature (Rei et al.,
2020b; Zouhar and Bojar, 2024):
• max: Taking the maximum over the scores from

multiple passes with different references.
• avg: Averaging the scores from multiple passes

with different references.
• agg: Obtaining an aggregate score per ex-

ample as follows. A quadruplet of source
s, hypothesis h, reference r, and alter-
native reference r̂ is fed to COMET six
times in different [src, hyp, ref] arrangements:[s,h, r], [r,h, s], [s,h, r̂], [r̂,h, s], [r,h, r̂], as
well as [r̂,h, r]. Then, the average score from
these six passes is multiplied by (1−σ) where σ
denotes the standard deviation.

We use additional references from the WMT23
test set if available (He→En) or the outputs from
the best-scoring system in each direction in the
metrics shared task (Freitag et al., 2023) as an alter-

native reference. We report pairwise system-level
accuracy (Kocmi et al., 2021) for various transla-
tion directions in Table 10. Our results suggest
that there is no single method that can consistently
take advantage of the inclusion of multiple refer-
ences with the existing COMET implementation.
At a higher inference cost, the six-pass aggregation
with COMET might have a tiny edge over other
methods when MQM is treated as human ground
truths, but it is also outperformed under DA by
single-reference or other multi-reference methods.

As translation systems have greatly improved
lately, the above pattern might be explained by Fre-
itag et al. (2020)’s finding that high-quality trans-
lation outputs do not benefit from multi-reference
evaluation. We also caution that these observations
are highly dependent on the quality of the under-
lying references. As studied previously, obtaining
high-quality references is not trivial (Freitag et al.,
2020, 2023; Zouhar and Bojar, 2024). Our use
of the top-performing system outputs as alternate
references is fit for the purpose but not optimal.

Recommendation. Our recommendations for the
inclusion of multiple references into COMET or
even other neural metrics are aspirational as this
topic warrants further investigation. Extending uni-
fied pre-training (Wan et al., 2022) with multiple
references in the architecture as well as using train-
ing objectives more suitable for handling more than
one references (Zheng et al., 2018; Fomicheva et al.,
2020a) can be helpful.

3.8 Translationese [data]

COMET has been trained with human translations
as references and machine translations as hypothe-
ses, where both could be deemed “translationese”
to a certain extent (Gellerstam, 1986).

Translationese in references. We first conduct
an experiment to see if the translationese present
in the reference would undermine system eval-
uation with COMET. We consider WMT’s offi-
cial reference as a standard version and Freitag
et al. (2020)’s paraphrased reference as a less
translationese reference (we use their “paraphrased
as-much-as-possible” version). Experiments are
carried out under two settings: (1) WMT19
En→Desubmissions scored by COMETDA

22 , and (2)
WMT20En→Desubmissions scored by COMETDA

20

(Rei et al., 2020b). These two settings cover two
scenarios—whether the test suite has been used in
training the COMET model, or not. A breakdown
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Please paraphrase the following text as
much as possible. Provide the paraphrase
without any explanation:

$HYPOTHESIS

Figure 3: Prompt template used to request a paraphrase
from GPT-4o, where $HYPOTHESIS is replaced by indi-
vidual hypotheses.

of COMET scores and rankings for individual sys-
tems are listed in Appendix C Tables 12 and 13.

The COMET scores decline dramatically when
we switch the reference from the original one to the
paraphrased one—aiming to reduce translationese.
It means that COMET is indeed sensitive to such
changes in the reference. Yet interestingly, the over-
all system ranking in either setting remains rather
stable. We find a very high Kendall’s τa of 0.9827
and 0.9833 on the system rankings in the two set-
tings; pairwise accuracy computed against human
judgements also maintained at 0.924. We conclude
that translationese in the reference impacts abso-
lute COMET scores but not system ranking. These
patterns are consistent regardless of whether the
model has been exposed to the test set.

Translationese in hypotheses. We then attempt
to understand if a varying degree of transla-
tionese in the system outputs will influence sys-
tem ranking by COMET. We run COMETDA

22 and
COMETkiwiDA

22 on WMT19 En→Desystem outputs
as well as their corresponding rephrased outputs
against the same source and reference. To acquire
paraphrases affordably, we shortlist the top-10 sys-
tems’ translations in the previous experiment and
we prompt GPT-4o using the prompt outlined in
Figure 3.2 We do not feed the source sentence to
prevent the model from revising the quality.

Appendix Table 14 shows that both models yield
the same system ranking when the original hypothe-
ses are scored. After substituting the hypotheses
with their paraphrases, the ranking has changed
more under COMETkiwiDA

22 which witnesses much
lower pairwise accuracy and Kendall’s τc compared
to COMETDA

22 . This suggests that COMETkiwiDA
22

is more sensitive to potential changes in the degree
of translationese than COMETDA

22 .

Considerations. We note the limitations of our
experiments. First, we assume that the paraphrased
references are as good as the original ones and less
translationese, but we did not verify this when para-

2We accessed gpt-4o-2024-08-06 via API in Aug 2024.

phrasing the hypotheses. If the hypothesis quality
has been affected, we also assume that the LLM
paraphrasing process affects all system outputs in
an equal magnitude. Second, the evaluations that
anchor to human judgements assume that human
evaluators provide assessment solely on the quality
and do not overly insist on adequacy/translationese.
Third, our comparison between COMETDA

22 and
COMETkiwiDA

22 only shows that they do not behave
the same in dealing with change in the degree of
translationese in hypotheses.

3.9 Model reporting [usage]

Different COMET models can yield distinct results.
Therefore it is important to always specify the spe-
cific model for sensible score interpretation and
comparison. In this section, we examine to what
extent this holds up in scientific literature.

We automate this bibliometric task with Seman-
ticScholar API (Kinney et al., 2023). Starting with
1100 papers that cite one of the COMET papers,
we obtain 417 papers from 2021 to 2024 that have
an easily accessible PDF version.3 We check if
any of the tables contains the string comet. Within
those papers, we check whether the COMET model
information is contained in the PDF using a regular
expression.4 After further manual validation, we
found that 50 of the examined papers do not report
a specific COMET version. This establishes that at
least 12% of papers report COMET scores without
specific model information.

In addition, out of the almost 1000 papers run-
ning COMET in their evaluation, most only cite the
first COMET paper (Rei et al., 2020a) instead of
the paper that describes the specific models that are
being used (Rei et al., 2020b, 2022b,a,c, 2023a,b;
Glushkova et al., 2021; Wan et al., 2022; Alves
et al., 2024; Guerreiro et al., 2023).

Recommendation. Always report the COMET
version, ideally with a link. Also, cite the affiliated
COMET paper as opposed to the first paper (Rei
et al., 2020a), because different checkpoints have
variations in training regimes that might be crucial
in analysing the evaluation outcome.

3Papers in 2020 did not have to report the specific model
as there was only one available at the time. Further, we ac-
knowledge potential bias to only papers with available PDFs.

4Case-insensitive: “comet[ \-](da|20|21|22|23)|wmt
(20|21|22|23)\-comet|xcomet\-|wmt\-da\-estimator”
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3.10 Discussions on other issues

Interpretation of significance. Statistical hy-
pothesis test merely shows how likely the differ-
ence between the average of two model’s scores on
the same test set is caused by random fluctuation.
Kocmi et al. (2024c) shows the significance of a
difference between two metric scores can be made
arbitrarily high and one can force p→0 by using a
sizeable test set. This tells little about whether this
difference is meaningful to a human reader. For
this reason, we stress the use of mt-thresholds
that converts differences in metric scores to how
perceivable they are by human annotators.5

Averaging and subtracting COMET scores.
Research nowadays favours experiments on mul-
tiple translation directions, as multilingual trans-
lation models and large language models become
trendy. Recent papers are more often seen to report
a (macro-)average COMET score as an aggregate
measure across many directions, usually in Xx→En,
En→Xx, and All→All. Whilst indicative, this is not
entirely scientific because (1) the score range is in-
herently distinct for each translation direction and
(2) there is no assurance that the scores are on a
linear scale. Consequently, an outlying score in a
single direction can distort the average, leading to
a false claim. Likewise, absolute COMET score
differences are not comparable if from different
base numbers or directions. We suggest that, when
multiple translation directions are of interest, in
addition to averaged scores, practitioners can re-
port the number of wins (against another system)
as another aggregation of individual scores.

Optimizing to COMET. Owing to COMET’s
strong correlation with human judgement, recent
works investigate the feasibility of using it in trans-
lation modelling directly. These strategies either
include COMET in a distillation workflow (Finkel-
stein and Freitag, 2024; Guttmann et al., 2024), as
a data filtering method (Peter et al., 2023), as a
decoding method (Freitag et al., 2022a; Fernandes
et al., 2022; Vernikos and Popescu-Belis, 2024) or
as a training objective (Yan et al., 2023).

Nevertheless, COMET may cease to be a good
measure if practitioners over-optimize a system
towards it. As Yan et al. (2023) demonstrated, a
model trained towards COMET can generate “uni-
versal translations” (hallucinations) preferred by
COMET regardless of the source sentence. Re-

5kocmitom.github.io/MT-Thresholds

cently, using COMET-based MBR decoding has
become prevalent in shared tasks. For example,
Unbabel-Tower70B at WMT24 also used MBR and
dominated all automatic metrics but not so much
under human evaluation (Kocmi et al., 2024a,b).
MBR decoding could be seen as an automatic way
to exploit bias in the scoring method, (currently
COMET in most cases), so practitioners need to
be aware of its shortcomings, disclose the use of
such, and base system building on multiple (less
correlated) metrics (Jon et al., 2023).

A novel issue is using automated metrics in hu-
man evaluation (Zouhar et al., 2024b) that collects
data for metric training. This might create a simi-
lar effect as translationese in machine translation.
The data could be biased by the particular quality
estimator that is assisting annotators in the data
collection process.

Sensitivity to sentence segmentation. Like most
MT metrics, COMET works at the sentence level,
but sometimes sentence-segmented input is not
available. This is often the case in speech transla-
tion (ST) where sentence segmentation is treated
as part of the task (Ahmad et al., 2024). To address
the problem of mismatching segmentation between
the system output and the reference, a common
solution in ST is to re-segment the output using a
minimum error rate method (Matusov et al., 2005)
in order to force-align it with the reference. Forced
alignment can introduce segmentation errors re-
sulting in truncated (thus grammatically incorrect)
sentences. There is evidence that COMET, as a
metric reliant on sentence embeddings, is more
sensitive to segmentation errors than string-based
metrics, like BLEU, which rely purely on n-gram
overlaps with no linguistic notion of a sentence
(Amrhein and Haddow, 2022). In a recent com-
parison of COMET with human ranking, Sperber
et al. (2024) suggested that COMET-based ranking
is robust to segmentation errors but that a “more
thorough study of this issue is needed”.

Other metrics. Our work focused on COMET,
the current most popular family of MT metrics.
Nonetheless, our recommendations could apply
to other neural metrics, like MetricX-23 (Juraska
et al., 2023), because many issues we outlined are
due to their statistical learning nature. Even be-
yond this, metric reporting and score interpretation
in practice, e.g. software usage or averaging across
multiple directions, can be problematic for string-
matching metrics like BLEU or chrF too.

1280

https://kocmitom.github.io/MT-Thresholds/


4 The SacreCOMET Package

To help alleviate problems in Sections 3.1 (soft-
ware version), 3.2 (compute precision), and 3.9
(model reporting), we release a simple package
sacreCOMET with two functionalities. Given a
model name, the first functionality attempts to find
the appropriate citation including a link to the paper
and a BibTeX:

$ pip install sacrecomet
$ sacrecomet cite Unbabel/xcomet -xl

https :// arxiv.org/abs /2310.10482
@misc{guerreiro2023xcomet ,
title={ xCOMET: Transparent Machine

Translation Evaluation through Fine -
grained Error Detection},

...

The second functionality semi-automatically de-
tects the local software versions to generate a signa-
ture for better reproducibility. Both functionalities
can also be run in interactive mode.

$ sacrecomet --model unite -mup --prec fp32

Python3 .11.8| Comet2 .2.2| fp32|unite -mup

5 Future Work on Learned Metrics

• Fixing data bias: Learned metrics are sensitive
to the training data distribution. Future metrics
should aim to reduce the bias caused by the data
selection process such that they are applicable to
a range of MT systems.

• Interpretability across languages: Currently,
practitioners cannot compare, or pedantically, ag-
gregate scores in different translation directions.
It would be useful to unify the scores to a single
scale that can be interpreted independent of the
language (similar to Kocmi et al., 2024c), e.g. to
indicate X% of segments are production-ready.

• Confidence-aware metrics: As seen in works
of Glushkova et al. (2021); Fomicheva et al.
(2020b), it is possible to build metrics that output
a confidence interval, though its usage in evalua-
tion and modelling remains scarce.

• Inference speed: Learned metrics are getting
better but at the cost of bulky models and in-
creased inference time. These overheads should
be taken into account when developing new mod-
els, such as the work of Rei et al. (2022b).

• Representations: Current COMET models are
built upon off-the-shelf multilingual encoder
models which are likely trained on human-
written texts. However, this could bring in a
domain mismatch—when translation hypotheses
act as the input to metric models, they are not
human-written but machine-translated.

• Robustness: Metrics should have the correct be-
haviour even in corner cases, be it empty output
or incorrect language. Mapping all inputs (Am-
rhein et al., 2022, inter alia), including partial
or adversarial ones, evaluating the metrics, and
coming up with methods to make them more ro-
bust would increase the metrics’ adoption and
trust.

• Built-in QE: In production, machine translation
and quality estimation are commonly two differ-
ent processes. In many applications, however, a
single QE model is used for a single MT model.
Quantifying how much is QE adaptation to a
particular MT model useful is beneficial for a
holistic understanding of QE metrics. Further,
proposing methods for supervised quality estima-
tion built into the MT could ease industry adop-
tion. Beyond the work of Tomani et al. (2024),
this remains largely unexplored.

• Noise-aware training: Human annotations are
notoriously noisy. At the scale of WMT data,
poor-quality annotations are unavoidable. The
inter-annotator agreement for even robust anno-
tations, such as ESA, remains low at τc≈0.3. The
effect of data quality on learned metrics is so
far unknown and methods for noise/uncertainty-
aware training are under-studied.

6 Conclusion
COMET is currently one of the most powerful auto-
matic metrics/quality estimators for machine trans-
lation, consistently achieving the top correlation
with human judgement. In comparison to previous
metrics, it is a statistical learning model and thus
inherits all the related problems in addition to pos-
sible technical misconfigurations. We urge practi-
tioners to consider more deeply the use of COMET
in non-standard scenarios especially where such
training bias might come into play. Beyond these
issues, there has been confusion in the literature in
reporting the correct COMET model and its correct
setting. For improved consistency, we release an
easy-to-use tool to assist practitioners.
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1282

https://aclanthology.org/2024.iwslt-1.1
https://aclanthology.org/2024.iwslt-1.1
https://arxiv.org/abs/2402.17733
https://arxiv.org/abs/2402.17733
https://aclanthology.org/2022.wmt-1.13
https://aclanthology.org/2022.wmt-1.13
https://aclanthology.org/2022.wmt-1.13
https://aclanthology.org/2022.wmt-1.44
https://aclanthology.org/2022.wmt-1.44
https://aclanthology.org/2022.aacl-main.83
https://aclanthology.org/2022.aacl-main.83
https://aclanthology.org/2022.aacl-main.83
https://aclanthology.org/2022.aacl-main.83
https://aclanthology.org/2020.wmt-1.98
https://aclanthology.org/2020.wmt-1.98
https://aclanthology.org/2020.wmt-1.98
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://openreview.net/forum?id=bkNx3O0sND
https://openreview.net/forum?id=bkNx3O0sND
https://openreview.net/forum?id=bkNx3O0sND
https://doi.org/10.18653/v1/2020.acl-main.113
https://doi.org/10.18653/v1/2020.acl-main.113
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.1162/tacl_a_00330
https://doi.org/10.18653/v1/2020.emnlp-main.5
https://doi.org/10.18653/v1/2020.emnlp-main.5
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.1162/tacl_a_00491
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2


Bojar. 2021. Results of the WMT21 metrics shared
task: Evaluating metrics with expert-based human
evaluations on TED and news domain. In Proceed-
ings of the Sixth Conference on Machine Translation.

Martin Gellerstam. 1986. Translationese in swedish
novels translated from english. In L. Wollin and
H. Lindquist, editors, Translation studies in Scan-
dinavia: Poceedings from the Scandinavian Sympo-
sium on Translation Theory (SSOTT) II, number 75 in
Lund Studies in English, page 88–95. CWK Gleerup,
Lund.

Taisiya Glushkova, Chrysoula Zerva, Ricardo Rei, and
André F. T. Martins. 2021. Uncertainty-aware ma-
chine translation evaluation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2021.

Thamme Gowda, Roman Grundkiewicz, Elijah Rippeth,
Matt Post, and Marcin Junczys-Dowmunt. 2024. Py-
marian: Fast neural machine translation and evalua-
tion in python. Preprint, arXiv:2408.11853.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse.

Nuno M. Guerreiro, Ricardo Rei, Daan van Stigt, Luisa
Coheur, Pierre Colombo, and André F. T. Martins.
2023. xcomet: Transparent machine translation eval-
uation through fine-grained error detection. Preprint,
arXiv:2310.10482.

Kamil Guttmann, Mikołaj Pokrywka, Adrian
Charkiewicz, and Artur Nowakowski. 2024. Chasing
COMET: Leveraging minimum bayes risk decoding
for self-improving machine translation. arXiv
preprint arXiv:2405.11937.

Josef Jon, Martin Popel, and Ondřej Bojar. 2023. CUNI
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Ondřej Bojar, Anton Dvorkovich, Christian Fed-
ermann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow,
Philipp Koehn, Benjamin Marie, Christof Monz,
Makoto Morishita, Kenton Murray, Makoto Nagata,
Toshiaki Nakazawa, Martin Popel, Maja Popović,
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Ondřej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena
Karpinska, Philipp Koehn, Benjamin Marie, Christof
Monz, Kenton Murray, Masaaki Nagata, Martin
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A Batch size and GPU/CPU

We run the test inference on a combination of GPU
or CPU with varying batch sizes (BS, 1 or 100).
Results in Table 11 demonstrate that the tiny ef-
fects of these choices are negligible for COMET
reporting.

Difference MAE

BS=1, GPU −BS=1, GPU 0
BS=1, GPU −BS=64 GPU 2 × 10−7
BS=1, GPU −BS=1, CPU 4 × 10−7
BS=64, GPU−BS=64, CPU 4 × 10−7

Table 11: MAE between segment-level COMETDA
22

scores under various inference settings. The “BS=1,
GPU” setting in the first row was run twice.

B Distribution of COMET scores for
empty and valid hypothesis

En→De, COMETDA
22 En→De, COMETkiwiDA

22

En→Zh, COMETDA
22 En→Zh, COMETkiwiDA

22

De→En, COMETDA
22 De→En, COMETkiwiDA

22

Zh→En, COMETDA
22 Zh→En, COMETkiwiDA

22

Empty Baseline

Figure 4: Distribution of instance-level scores for empty
and baseline translations (x-axis: score; y-axis: count).
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C System rankings before and after paraphrasing references or hypotheses

WMT20 En→De
COMETDA

20 Ranking

original ref paraphrased ref original ref paraphrased ref

Sys-1069 0.508 0.305 9 9
Sys-832 0.540 0.333 8 8
Sys-1535 0.560 0.356 5 5
Online-A 0.499 0.288 10 10
Online-B 0.554 0.351 7 6
Online-G 0.268 0.052 14 14
Online-Z 0.329 0.121 13 13
Sys-73 0.405 0.192 12 12
Sys-1520 0.563 0.360 4 4
Sys-890 0.578 0.371 3 3
Sys-1136 0.472 0.264 11 11
Sys-388 0.102 -0.074 16 16
Sys-737 0.555 0.351 6 7
Ref-A 0.878 0.526 1 1
Ref-B 0.591 0.446 2 2
Sys-179 0.189 0.000 15 15

τc = 0.9833
Acc = 0.924 Acc = 0.924

Table 12: Results for WMT20 En→De submissions evaluated against the original or human-paraphrased reference.
Kendall’s τc is measured between two evaluations based on original and paraphrased references; pairwise system-
level accuracy (Acc) is measured against human DA scores.

WMT19 En→De
COMETDA

22 Ranking

original ref paraphrased ref original ref paraphrased ref

Sys-6862 0.867 0.817 2 2
Sys-6820 0.834 0.780 12 12
Sys-6819 0.843 0.789 9 9
Sys-6651 0.847 0.794 7 7
Sys-6926 0.852 0.797 4 5
Sys-6808 0.869 0.818 1 1
Sys-6785 0.837 0.785 11 11
Sys-6974 0.866 0.814 3 3
Sys-6763 0.851 0.797 5 6
Sys-6674 0.811 0.756 17 17
Sys-6508 0.804 0.752 19 19
Sys-6731 0.850 0.797 6 4
Sys-6871 0.809 0.756 18 18
Sys-6479 0.833 0.777 13 13
Sys-6823 0.845 0.792 8 8
Sys-6790 0.386 0.364 22 22
Sys-6981 0.826 0.774 14 14
Online-A 0.815 0.761 16 16
Online-B 0.838 0.784 10 10
Online-G 0.795 0.738 20 20
Online-X 0.728 0.673 21 21
Online-Y 0.821 0.762 15 15

τc = 0.9827
Acc = 0.875 Acc = 0.845

Table 13: Results for WMT19 En→De submissions evaluated against the original or human-paraphrased reference.
Kendall’s τc is measured between two evaluations based on original and paraphrased references; pairwise system-
level accuracy (Acc) is measured against human DA scores.
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WMT19
En→De

COMETDA
22 Ranking COMETkiwiDA

22 Ranking

orig. hyp para. hyp orig. hyp para. hyp orig. hyp para. hyp orig. hyp para. hyp

Sys-6823 0.845 0.840 8 5 0.821 0.824 8 4
Sys-6862 0.867 0.842 2 2 0.840 0.828 2 3
Sys-6819 0.843 0.835 9 9 0.815 0.817 9 8
Sys-6808 0.869 0.843 1 1 0.840 0.828 1 2
Sys-6974 0.866 0.842 3 3 0.838 0.829 3 1
Sys-6651 0.847 0.835 7 8 0.821 0.817 7 9
Sys-6926 0.852 0.839 4 6 0.824 0.822 4 6
Sys-6763 0.851 0.841 5 4 0.823 0.824 5 5
Online-B 0.838 0.830 10 10 0.805 0.810 10 10
Sys-6731 0.850 0.837 6 7 0.822 0.820 6 7

τc = 0.822 τc = 0.644
Acc = 0.911 Acc = 0.822

Table 14: Results for WMT19 En→De system outputs and LLM-paraphrased outputs evaluated against the original
reference. Both Kendall’s τc and pairwise system-level accuracy (Acc) are measured between two evaluations based
on original and paraphrased references.
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Abstract
Preference Optimization (PO) techniques are
currently one of the state of the art techniques
for fine-tuning large language models (LLMs)
on pairwise preference feedback from human
annotators. However, in machine translation,
this sort of feedback can be difficult to so-
licit. Additionally, Kreutzer et al. (2018) have
shown that, for machine translation, pairwise
preferences are less reliable than other forms
of human feedback, such as 5-point ratings.

We examine post-edits to see if they can be a
source of reliable human preferences by con-
struction. In PO, a human annotator is shown
sequences s1 and s2 and asked for a preference
judgment, while for post-editing, editors cre-
ate s1 and know that it should be better than
s2. We attempt to use these implicit prefer-
ences for PO and show that it helps the model
move towards post-edit-like hypotheses and
away from machine translation-like hypothe-
ses. Furthermore, we show that best results are
obtained by pre-training the model with super-
vised fine-tuning (SFT) on post-edits in order
to promote post-edit-like hypotheses to the top
output ranks.

1 Introduction

The current state of the art methods for train-
ing large language models offline on human pref-
erence data are Direct Preference Optimization
(DPO) (Rafailov et al., 2023) or Identity Prefer-
ence Optimization (IPO) (Gheshlaghi Azar et al.,
2024). Instead of training a separate reward model
and then performing reinforcement learning, these
methods train directly on the collected preference
data by deriving a directly optimizable loss func-
tion from the preference model.

However, in some domains, the pairwise pref-
erence annotations required for using these meth-
ods have been found to be less reliable than other
annotation schemes. Kreutzer et al. (2018) find
that inter-rater reliability for pairwise ranking of

s1 > s2

s1 s2

Pairwise Feedback

Post-Editing

s1 > s2

s1

s2
Figure 1: The generative process for preference opti-
mization is that two sequences s1 and s2 are given,
and a preference judgment s1 > s2 is generated (up-
per graph). The data generating process of post-editing
yields reliable preferences by construction: Given s2
and the implicit preference that s1 > s2, create s1
(lower graph). We propose using the implicit prefer-
ences from post-editing for preference optimization.

machine translation outputs to be less than that
of 5-point rating. In the field of translation, there
are many different dimensions on which one trans-
lation may be better than another, e.g. fluency,
faithfulness, formality, terminology, etc. (Lommel
et al., 2013). This poses a problem for human an-
notators when they are presented with two plausi-
ble translations.

We propose using the data generated by post-
editing to yield reliable preferences by construc-
tion. The current generative process for preference
data is that two sequences s1 and s2 are given, and
a preference judgment s1 > s2 is sought, yield-
ing the generative process s1 → s1 > s2 ← s2.
We propose using data generated by the following
process: Given s2 and the implicit preference that
s1 > s2, create s1, yielding the generative process
s1 > s2 → s1 ← s2 (see Fig. 1).

Post-editing is already a common practice in the
translation community to clean up raw-MT out-
puts before publishing. Post-editors create new se-
quences that they prefer with regards to the qual-
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ity expected in their domain. Typically, the origi-
nal raw-MT output is discarded and the post-edit is
published. If this data is used for training, the post-
edit is treated as a new reference for supervised
fine-tuning (SFT). This ignores, however, the fact
that the post-edit is not just a new reference transla-
tion but also a quality judgment of what in the raw-
MT was erroneous. Using PO objectives allows
us to fine-tune an LLM to translate in a way that
is more in line with the post-editors’ implicit pref-
erences. However, PO does not necessarily pro-
mote the preferred sequence to become the argmax
output of the model, but rather re-ranks sequences
within the model’s probability space. If the two
sequences are both unlikely under the model’s out-
put distribution, they will remain unlikely but their
relative probability will respect the preferences.
We show that best results are obtained by pre-
training the model on post-edits with SFT, promot-
ing post-edits to the top ranks, followed by fine-
tuning with a PO loss. This combined training
teaches the model to prefer and promote post-edits
such that reference-like translations are produced
but also dispreferred machine-translation-like hy-
potheses are avoided.

2 Related Work

Kreutzer et al. (2018) gather human feedback on
machine translation outputs in the form of 5-point
ratings and as pairwise preferences. They then
use this feedback to train two reward models, one
that is trained on the 5-point ratings and is trained
with a regression loss to directly predict a reward
value and one that is trained on pairwise prefer-
ences by fitting a Bradley-Terry model (Bradley
and Terry, 1952) to the preferences as had been
done by Christiano et al. (2017). These reward
models are then used to train machine translation
models. Kreutzer et al. (2018) find that ratings
are more reliable than rankings and that reinforce-
ment learning with a ratings-trained reward estima-
tor yields better results than using rankings-trained
reward estimates.

Berger et al. (2023) fine-tune a pre-trained
NMT model on post-editing data by presenting the
model with both the post-edit and the current MT
hypothesis. At each epoch, the NMT model be-
ing trained generates translations for all training
data. These generated outputs are then compared
to the original post-edits with a token-level diff.
Both sequences are then used as training exam-

ples for the NMT system. However, tokens that
appear in the hypothesis but not the post-edit are
given a negative weight in the loss function. On ex-
amples where the two sequences differ, the model
gets both negative feedback, where the probability
of that token is to be decreased, and positive feed-
back, where the probability should be increased.

Xu et al. (2024b) similarly present the model
with a positive and negative example of machine
translation outputs during training but use a mod-
ified version of the DPO (Rafailov et al., 2023)
loss to optimize it. Their change to DPO adds
an SFT term. The SFT term promotes the pre-
ferred sequence to be the argmax output of the
model while the DPO part of the loss establishes
the distance between the two sequences in log-
probability space. The MT hypotheses that they
generate come from two different LLMs; ALMA-
13B-LoRA (Xu et al., 2024a) and GPT-4 (Ope-
nAI et al., 2024). Additionally, they use reference
translations from the original dataset. The prefer-
ences that they use are predicted by open-source
quality estimation models KIWI-XXL (Rei et al.,
2023) and XCOMET (Guerreiro et al., 2023).

3 Preference Optimization

3.1 Background
Using reinforcement learning with human feed-
back (RLHF) has recently re-emerged as a method
for training LLMs to generate outputs that are pre-
ferred by human annotators (Ziegler et al. (2019),
Ouyang et al. (2022), Bai et al. (2022), inter alia)
without requiring handwritten demonstrations of
preferred behavior which would be required for su-
pervised fine-tuning (SFT). The general recipe is
as follows: pre-train an LLM on in-domain data;
generate multiple completions y for a single input
x (or prompt); have human annotators rank or rate
the completions; train a reward model to predict
rankings or ratings given inputs and completions;
use the trained reward model to predict rewards
for reinforcement learning, frequently with prox-
imal policy optimization (Schulman et al., 2017).
Training a separate model to predict rewards for
reinforcement learning is known as an actor-critic
method.

The reward model in the previous works is struc-
tured as a Bradley-Terry model (Bradley and Terry,
1952), where the probability of preferring y1 over
y2 is given by

p(y1 ≻ y2|x) = σ(rθ(x, y1)− rθ(x, y2))
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where σ is the logistic function and rθ is the re-
ward model that is trained on the pairwise rankings
to give the preferred sequence a higher value. The
reward model can then be used to estimate rewards
for outputs sampled during online training.

This process requires training an additional
model and hiring human annotators to perform
ranking. DPO (Rafailov et al., 2023) is a technique
that obviates the need for a secondary model by in-
stead giving the model both the preferred and dis-
preferred sequences and optimizing a distance be-
tween the two sequence in log-probability space.

If handwritten demonstrations of preferred se-
quences are available, then SFT would typically
be performed. The goal of SFT is to maximize the
probability of the demonstrations under the model.
For text generation, this is done by minimizing
the negative log-probability of each token given
all previous tokens in the sequence.

LSFT (y) = −
|y|∑

i=0

log(π(yi|y0:i−1))

Minimizing this loss promotes the sequence y
to be the argmax output of the model, while re-
inforcement learning increases or decreases the
probability of a sequence with regard to the mag-
nitude of its reward.

3.2 PO Objectives

The DPO loss (Rafailov et al., 2023) is based
on the Bradley-Terry model of human prefer-
ences but, unlike actor-critic reinforcement learn-
ing techniques, it does not train a separate reward
model. Instead they rewrite the reward function
r in terms of the optimal policy and the baseline
model. They notice that the theoretically opti-
mal policy πr, with a KL-divergence constraint, is
equal to the baseline model with its output distribu-
tion re-weighted according to the reward function

πr(y|x) =
1

Z(x)
πref (y|x) exp

(
1

β
r(x, y)

)

where Z is the partition function, which normal-
izes the function to be a proper probability distri-
bution. This formula can also be solved for the
reward function r, such that rewards are expressed
as the difference between two models’ probabil-
ity ratios. If this r is then inserted back into the

Bradley-Terry model, it becomes

p(yw ≻ yl|x) =

σ

(
β log

(
π∗(yw|x)

πref (yw|x)

)
− β log

(
π∗(yl|x)

πref (yl|x)

))

where yw and yl denote the preferred and dispre-
ferred completion, respectively, and π∗ is now the
model we are training to be optimal under the re-
ward function. This probability, p(yw ≻ yl|x)
can be optimized by minimizing the negative log-
probability. With regards to output probability,
the loss monotonically decreases as yw becomes
more probable than yl. Increasing the difference
between the two always decreases the loss.

Gheshlaghi Azar et al. (2024) re-derive a similar
loss with some theoretical advantages. Instead of
training the model to be optimal under the Bradley-
Terry derived reward function, they train the model
to separate the two outputs by a fixed difference in
log-probability space.

LIPO(yw, yl, x) =

+

((
log

(
π∗(yw|x)

πref (yw|x)

)
−log

(
π∗(yl|x)

πref (yl|x)

))
− 1

2β

)2

Because this loss function is minimized when the
log-probability ratio difference is exactly (2β)−1,
and will increase when the outputs move further
apart in log-probability space, the authors claim an
advantage for deterministic preferences, where the
same preferences are seen multiple times during
training. Because the preferences that we use are
deterministic, we opt for the IPO paradigm of PO.

A follow-up work to DPO, focused specifically
on machine translation, additively combines the
DPO loss and the SFT loss (Xu et al., 2024b),
which the authors call Contrastive Preference Op-
timization (CPO). Additionally, they perform an
ad-hoc modification of the DPO loss by dropping
the normalizer πref in the DPO loss so as to not
perform a second forward pass on the reference
model.

LCPO(yw, yl, x) = − log(π∗(yw|x))

− log(σ(β log(π∗(yw|x))− β log(π∗(yl|x))))

We use a reformulation of the CPO loss with
the IPO training objective for our experiments be-
cause our preferences are deterministic. Addition-
ally, we keep the normalizers in the IPO loss be-
cause these can be pre-computed in advance, in-
stead of in a second forward pass, and incur only
a negligible memory and speed penalty.
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Our modified variant of the CPO loss, which
we call dDPO for the deterministic preferences in-
volved in post-editing, is

LdCPO(yw, yl, x) = − log(π∗(yw|x))

+

((
log

(
π∗(yw|x)

πref (yw|x)

)
−log

(
π∗(yl|x)

πref (yl|x)

))
− 1

2β

)2

which is the SFT objective added to the IPO objec-
tive. When we refer to dCPO later in this paper, we
are referring to this modified version of the CPO
objective.

4 Experiments

Data Split BLEU TER CHRF

En→DE
Train 49.4 37.6 71.6
Dev 50.9 36.5 72.5
Test 50.8 36.4 72.8

En→Ru
Train 80.9 13.6 89.9
Dev 80.2 14.9 89.0
Test 76.3 17.4 87.2

Table 1: Token level metrics comparing the WMT APE
datasets’ machine translations to the post-edits.

We fine-tune an LLM for the task of machine
translation under five different conditions: SFT,
IPO, dCPO, and pre-training with SFT followed
by either IPO or dCPO, denoted as SFT→IPO and
SFT→dCPO, respectively, and evaluate with the
neural metrics XCOMET (Guerreiro et al., 2023)
and MetricX (Juraska et al., 2023). Rafailov et al.
(2023) pre-train their large language models on
in-domain data such that they are already able to
perform the requested task to begin with. For
the task single-turn dialogue, they use the An-
thropic Helpful and Harmless dialogue dataset but
because no pre-training data is available, they per-
form SFT on the helpful answers as a pre-training
step. This is similar to our conditions SFT→IPO
and SFT→dCPO.

The LLM that we choose to fine-tune is Tower-
Base by Alves et al. (2024). We make this choice
because it is a multi-lingual LLM pre-trained on
all languages we intend to work with and be-
cause the size of the model is still small enough
to perform a full fine-tune with our resources1.
We opt for Tower-Base instead of Tower-Instruct

1We train on a server with 4x Nvidia A40 GPUs with 48
GB of memory each. The system contains 256GB of RAM
and 64 CPU cores.

because Tower-Instruct has been instruction fine-
tuned for various down-stream tasks and not just
for machine translation. Using Tower-Base in-
stead allows us to perform a SFT step on our
own. We fine-tune in all scenarios with a minimal
prompt "Translate English to German.\nEnglish:
{Source}\nGerman:" for our German examples.
Our Russian examples use a prompt with the lan-
guage name changed. This prompt is used for both
SFT and PO training objectives.

Our post-edits come from WMT Automatic
Post-Editing (APE) shared tasks of previous years.
These datasets contain triples of source, machine-
translation (MT), and post-edit (PE). We focus
on the language pairs En→De from 2020 and
En→Ru from 2019. The En→De source data
comes from Wikipedia and is translated by a black-
box NMT system (Chatterjee et al., 2020). The
En→Ru data comes from the information tech-
nology domain from Microsoft Office localization
work and was translated by Microsoft’s produc-
tion NMT system (Chatterjee et al., 2019). The
En→Ru data contains base64 encoded data and
sequences long enough to cause out of memory er-
rors. We therefore filter out sequences with fewer
than 4 tokens, more than 128 tokens, or more
than 500 characters from the En→Ru training data,
leaving 9290 (source, mt, pe) triples for training.
The En→De training data was already clean and
all 7000 (source, mt, pe) triples were kept for train-
ing.

Table 1 shows the performance of the datasets’
machine translations when compared to their post-
edits in terms of token based metrics, BLEU, TER,
and CHRF (Papineni et al. (2002), Snover et al.
(2006), and Popović (2015)). We see that more
edits were made to the German machine transla-
tions compared to the Russian machine transla-
tions. The Russian data has far more unedited
sequences—of the 9290 examples we have in
our Russian training data after filtering, 5263 are
unedited or 56.7%. To compare, of the 7000 Ger-
man training examples, 448 are unedited or just
6.4%. We keep the unedited data for training as
the SFT and dCPO objectives can still take advan-
tage of unedited data, but filter it out for our analy-
sis later as it is impossible for a model to prefer an
unedited "post-edit" over the machine translation.

We train with fully-sharded data parallelism
(FSDP) in PyTorch using Accelerate (Gugger
et al., 2022) across four GPUs with an effec-
tive batch size of 256 sequences. When possi-
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Without References

En→DE En→Ru
Model XCOMET-XL XCOMET-XXL XCOMET-XL XCOMET-XXL

a APE Data MT 92.78 94.47 93.07ce 91.35ce

b APE Data PE 95.55ac 97.01ac 95.29ace 93.78ace

c Tower Base 94.33a 94.75 85.50 65.07
d SFT 95.63ac 97.01ac 95.29ace 93.55ace

e IPO 95.87ac 97.18ac 89.65c 72.90c

f dCPO 95.67ac 97.51abcde 95.55ace 93.73ace

g SFT→IPO 95.87abcd 97.48abcde 95.62acde 94.40abcdef

h SFT→dCPO 95.91abcdef 97.57abcde 95.85abcdefg 94.76abcdefg

With References

En→DE En→Ru
Model XCOMET-XL XCOMET-XXL XCOMET-XL XCOMET-XXL

a APE Data MT 92.80 94.20 94.99bd 92.68bd

b Tower Base 93.90a 94.44 83.65 65.48
c SFT 95.57ab 96.77ab 95.36bd 93.30abd

d IPO 95.56ab 96.85ab 88.15b 72.64b

e dCPO 95.67ab 97.20abcd 95.36bd 93.06bd

f SFT→IPO 95.94abcde 97.31abcd 95.77abcde 93.91abcde

g SFT→dCPO 96.00abcde 97.36abcd 96.11abcdef 94.14abcde

Table 2: XCOMET-XL and -XXL on the WMT 2020 En->DE and 2019 En->Ru test sets. Higher values are better.
Superscripts indicate which system the given line is significantly better than with α < 0.05 according to pair-wise
bootstrap resampling. We see that initializing with an SFT model and then performing PO yields the best results.

En→De En→Ru
Model w Ref w/o Ref w Ref w/o Ref

Tower Base 1.1396 1.4224 4.1858 8.1576
SFT 0.9174 1.1757 1.2706 1.4246
IPO 0.8240 0.9484 3.0420 5.3263
dCPO 0.8286 1.0092 1.2873 1.4575
SFT→IPO 0.7985 0.9476 1.1554 1.3335
SFT→dCPO 0.7978 0.9558 1.1110 1.2607

Table 3: MetricX 23 XL results with and without references on the WMT 2020 En->DE and 2019 En->Ru test sets.
Lower values are better. Results appear in line with XCOMET-XL and -XXL and reinforce our previous results.

ble, we shared hyperparameters across all runs
and datasets. For example, both IPO and dCPO
have β set to 0.1. Full hyper-parameters can
be found in the Appendix A. We used reference-
free XCOMET-XL as an early stopping criterion,
which was run at the end of each epoch. During
generation, we used greedy decoding.

Because PO techniques requires seeing both the
preferred and the dis-preferred sequence during
the same optimization step, we concatenate them
together along the batch dimension so that both se-

quences are processed in the same forward pass.
This doubling of sequences in each batch requires
that the number of training examples per batch be
halved and the number of gradient accumulation
steps be doubled in order to have the same effec-
tive batch size. This incurs no additional memory
penalty but doubles the time to see the same num-
ber of training examples.

Our initial experiments showed that string-
based metrics actually decrease when using PO
techniques but we did not observe a discernible
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quality difference. This is in line with the obser-
vations reported by (Xu et al., 2024b). Therefore,
we evaluate with neural metrics so that evaluation
could not be biased towards models that produce
superficially similar translations. We evaluate with
XCOMET-XL and -XXL (Guerreiro et al., 2023)
and MetricX 23 (Juraska et al., 2023), both with
and without references.

5 Results

Our XCOMET metric results are shown in Table
2. The evaluation shows that Tower Base is al-
ready competent at performing zero-shot transla-
tion for English to German, achieving reference-
free XCOMET-XL and -XXL scores that are
above the MT hypotheses contained in our dataset;
94.33 and 94.75, respectively. This is in spite of
the fact that the model has not yet been instruction
fine-tuned to perform zero-shot translation.

The lack of instruction fine-tuning is made ob-
vious in the English to Russian results, where the
model is unable to translate well prior to fine-
tuning. Specifically, the Tower Base model fre-
quently translated its instructions to Russian and
ignored the source text, yielding lower scores.
XCOMET-XL and -XXL seem to react differently
to these non-translations with XCOMET-XXL
punishing them more severely than XCOMET-
XL.

Supervised fine-tuning is able to reach the level
of the post-edits contained in the APE datasets
when evaluating with reference-free evaluation.
SFT surpasses the post-edits only with XCOMET-
XL on the En→De data but this improvement is
not significant. Here, we are evaluating the post-
edits included in the dataset as if they were hy-
potheses for the source sentences.

IPO and dCPO are able to improve XCOMET-
XL and -XXL scores for En→De above what the
post-edits achieve, but only for -XXL is this im-
provement significant, as evaluated by pairwise
bootstrap resampling implemented in the COMET
package. For En→Ru, only dCPO is able to sur-
pass post-edits and even then only for XCOMET-
XL.

However, once we initialize the PO methods
with the SFT model, we find our best results.
SFT→dCPO is significantly better than both the
MT and PE data from the dataset, the Tower Base
model, and the SFT model for both En→De and
Ru; while for just En→Ru, it is better than all other

PE −MT
Model Train Dev Test

Base 0.038 0.048 0.049
SFT 0.060 0.070 0.073
IPO 0.120 0.124 0.134
dCPO 0.110 0.115 0.124
SFT→IPO 0.144 0.144 0.157
SFT→dCPO 0.138 0.138 0.150

Table 4: This table shows the average values of the
post-edit log-probabilities minus the machine transla-
tion log-probabilities for the English→German data.
We see that the gap between PE and MT increases more
with PO than it does with SFT.

systems.
Results with references do not differ drastically

and can also be found in Table 2. We also evalu-
ate with MetricX 23 XL (Juraska et al., 2023) and
show our results in Table 3. The relations follow
those of XCOMET and reinforce our conclusions.

6 Analysis

In addition to evaluating the fine-tuned models
with neural metrics, we analyze the behavior of
the models after training to see how the log-
probabilities of the two sequences change com-
pared to the baseline model. Additionally, we use
the log-probabilities as a measure for model pref-
erences. If one sequence is more probable, it is
preferred by the model.

In our analysis, we remove machine translation
and post-edit pairs where the post-edit remains un-
edited. This is because we are looking for differ-
ences in model behavior between machine transla-
tions and post-edits, which can not be done when
they are the same sequence.

6.1 Log Probability Changes

Figures 2 and 3 are split violin plots showing the
difference between log-probabilities before and af-
ter training, for German and Russian respectively.
The left side of each violin shows the post-edit se-
quences’ change from the baseline model’s while
the right side shows the machine translations’ dif-
ference. This way we can examine how each train-
ing method affects the two sequence types individ-
ually. Additionally, we also measure the differ-
ence between the post-edits and machine transla-
tions after training in Tables 4 and 5 for German
and Russian, respectively.
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Figure 2: The difference of the models’ averaged sequence log-probabilities from the baseline model’s on the
WMT 2020 En→De test data. Zero for PE is an average log-probability of −0.516 while for MT it is −0.565.
This violin plot then shows displacement from these baseline values. Dashed horizontal lines indicate quartiles.
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Figure 3: The difference of the models’ averaged sequence log-probabilities from the baseline model’s on the
WMT 2019 En→Ru test data. Zero for PE is an average log-probability of −1.099 while for MT it is −1.260.
This violin plot then shows displacement from these baseline values. Dashed horizontal lines indicate quartiles.

As we see in Figure 2, if we perform SFT on
post-edits, as would typically be done when treat-
ing post-edits as new references, both the post-
edits and the MT outputs become more likely un-
der our fine-tuned model. Because the post-edits
and MT outputs are highly correlated, they likely
reside very close to each other in the model’s
hidden representation. This means, that with a
smooth mapping from hidden representations to
outputs, increasing the probability of the PE will

also increase the probability of the MT sequence.

For the En→De IPO and dCPO runs, we see
the post-edits stay close to the baseline while
the MT is pushed further down in log-probability
space. Additionally, the distance between the two
sequences increases under PO compared to SFT.
As shown in Table 4, the average distance that PEs
are above MT outputs doubles after PO compared
to SFT.

After the IPO training, both sequences become
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less likely as seen in the split violin plot for IPO
in Figure 2. This method does not have the up-
wards pressure on the preferred sequences that
SFT or dCPO does, so we hypothesize that the
downward pressure on the MT output also drags
the PE sequence down as well; similar to how SFT
increases the probability of MT without training
on it. Alternatively, it could be that in order to es-
tablish a greater distance between the sequences,
probability mass has to be re-allocated to other
possible sequences.

With the En→Ru data, we see that the MT se-
quences benefit more from training than the PE
sequences do, even though they remain unseen,
as shown by the violin plot for SFT in Figure
3. This corresponds to the smaller difference be-
tween PE and MT that we see for SFT when com-
pared to Tower Base in Table 5. The need for more
fine-tuning of the Tower Base model is also vis-
ible in the SFT, SFT-initialized, and dCPO mod-
els’ larger displacement from the Tower Base log-
probabilities. IPO remains close to the 0 point for
both sequences because the only pressure for each
sequence is for them to move further apart; which
is more difficult with the large overlap between the
machine-translations and post-edits.

En→Ru appears similar for IPO, where both se-
quences are moved down in log-probability space,
however the violin plot for dCPO and the SFT ini-
tialized models have a displacement from the base-
line similar to SFT. This is because the baseline
model was unable to perform zero-shot translation
for En→Ru and, since the dCPO loss includes
an SFT term, it learned how to translate which
moved all sequences upwards. Unlike SFT, post-
edits benefit more than machine translations after
dCPO training.

Finally for the En→De SFT initialized models,
we see in Figure 2 that post-edits increase in prob-
ability over the baseline while machine translation
outputs are held close to or below the baseline.
The difference between PE and MT is increased
here compared to the PO only conditions.

We find that this behavior generalizes also to
the development and test sets as shown in Table 4.
For En→Ru, the SFT→IPO model and the dCPO
model both have post-edits and machine transla-
tion increase in likelihood compared to the base-
line. This is again due to the baseline model being
unable to perform zero-shot translation and both
sequences become more likely after it is able to
do so. SFT→dCPO appears similar but far more

PE −MT
Model Train Dev Test

Base 0.039 0.078 0.161
SFT 0.025 0.062 0.133
IPO 0.085 0.125 0.217
dCPO 0.101 0.140 0.240
SFT→IPO 0.110 0.151 0.263
SFT→dCPO 0.192 0.242 0.419

Table 5: This table shows the average values of the
post-edit log-probabilities minus the machine transla-
tion log-probabilities for the En→Ru data. We see that
the gap between PE and MT increases more with PO
than it does with SFT.

stretched out and with MT moved below the base-
line. This model trained for much longer before
reaching its early stopping criterion (SFT→dCPO
stopped after 10 epochs, compared to SFT→IPO
stopping after 2).

The largest improvements in our XCOMET-XL
and -XXL scores coincide with training methods
that both move the post-edit up in log-probability
space while also ensuring that the machine transla-
tions are less likely by enough of a margin. SFT on
its own also increases the probability of machine
translations and does not work to establish a mar-
gin between the two sequences. Additionally, this
shows us that PO successfully moves the model to-
wards generating post-edit-like translations rather
than those like the machine translations.

6.2 Preference Changes

Changes in log-probabilities from the baseline
model do not necessarily indicate whether the
models’ preferences have changed. It could be
that, in (mt, pe) pairs where it is already the case
that pe > mt, the distances between pe and mt
increased, but examples where mt > pe did not
have their ordering changed. To that end, we also
examine the baseline model’s preference in terms
of sequence probability—if a sequence’s average
log probability is strictly greater than that of an-
other sequence, it is preferred. We plot prefer-
ences across all data splits for En→De in Figure
4 and for En→Ru in Figure 5. The exact values
with corresponding confidence intervals are in Ta-
bles 6 and 7, respectively.

For both language pairs, we find that the Tower
Base model does not have strong preferences. On
the En→De data set, it prefers post-edits to ma-
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Figure 4: Here we show the percentage of training examples where the post-edit sequence is preferred in terms of
average log-probability over the machine translation for the WMT En→De dataset. The black lines indicate the
95% confidence intervals for binomial distributed data—non-overlapping confidence intervals indicate a significant
difference.

Method Train Dev Test

Base 55.14% (53.94%, 56.35%) 54.93% (51.73%, 58.12%) 57.80% (54.64%, 60.96%)
SFT 57.88% (56.68%, 59.07%) 59.74% (56.60%, 62.89%) 61.65% (58.53%, 64.76%)
IPO 65.23% (64.08%, 66.39%) 65.85% (62.80%, 68.89%) 68.27% (65.29%, 71.25%)
dCPO 64.33% (63.17%, 65.49%) 65.31% (62.26%, 68.36%) 67.63% (64.63%, 70.63%)
SFT→IPO 67.52% (66.39%, 68.66%) 68.42% (65.43%, 71.40%) 69.87% (66.93%, 72.81%)
SFT→dCPO 66.80% (65.66%, 67.94%) 68.09% (65.10%, 71.08%) 69.34% (66.38%, 72.29%)

Table 6: Percentage of instances where post-edits are preferred over machine translations and their correspond-
ing 95% confidence intervals for Train, Dev, and Test Splits for the WMT En→De 2020 APE Dataset. Non-
overlapping confidence intervals correspond to statistically significant differences with α < 0.05.
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Figure 5: Here we show the percentage of training examples where the post-edit sequence is preferred in terms of
average log-probability over the machine translation for the WMT En→Ru dataset.. The black lines indicate the
95% confidence intervals for binomial distributed data—non-overlapping confidence intervals indicate a significant
difference.

chine translation 57.80% of the time on the test set while for En→Ru this preference occurs 59.49%
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Method Train Dev Test

Base 51.87% (50.33%, 53.42%) 57.78% (52.81%, 62.76%) 59.49% (54.65%, 64.33%)
SFT 49.57% (48.02%, 51.11%) 55.15% (50.14%, 60.15%) 57.22% (52.34%, 62.09%)
IPO 57.31% (55.79%, 58.84%) 60.95% (56.04%, 65.86%) 62.28% (57.50%, 67.06%)
dCPO 58.46% (56.93%, 59.98%) 63.59% (58.74%, 68.43%) 62.28% (57.50%, 67.06%)
SFT→IPO 59.20% (57.68%, 60.72%) 62.53% (57.66%, 67.41%) 63.04% (58.28%, 67.80%)
SFT→dCPO 64.27% (62.79%, 65.75%) 67.28% (62.56%, 72.01%) 68.35% (63.77%, 72.94%)

Table 7: Percentage of instances where post-edits are preferred over machine translations and their correspond-
ing 95% confidence intervals for Train, Dev, and Test Splits for the WMT En→Ru 2019 APE Dataset. Non-
overlapping confidence intervals correspond to statistically significant differences with α < 0.05.

of the time. For En→De, SFT significantly im-
proves this preference on the training data but not
on the development or test data. SFT actually
seems to change the preferences in favor of ma-
chine translations on the En→Ru data; which also
coincides with a decrease in the average distance
between sequences and machine translations in-
creasing in probability more.

When we train with IPO and dCPO on En→De,
we find that both improve the preference for post-
edits up to 68.27% on test data. The improve-
ments above SFT are significant for both models
on the train set while for dev, the confidence inter-
vals overlap, and for test only IPO is significantly
better. On En→Ru, we see a similar improvement
in preferences but only on the training set are they
significant.

Initializing with SFT and then training with PO
on En→De yields the best improvements with
69.87% on test. Both SFT→IPO and SFT→dCPO
are significantly better than SFT across all data
splits. Again, En→Ru shows similar behavior
with only the change on the training set being sig-
nificant.

Across all data splits on En→De, IPO meth-
ods seem to establish a slightly stronger preference
for post-edits which seems to be accounted for by
increase in difference between the two sequence
types as shown in Table 4. For En→Ru, dCPO
is better at establishing this preference which also
coincides with the increase in differences from Ta-
ble 5.

7 Conclusion

Post-editing is part of common translation work-
flows before publishing to clean up raw-MT out-
puts. If the post-edits are used for training pur-
poses, they are treated simply as new references
and the MT output is treated as a by-product. Post-

edits are created with an implicit preference in
mind, that the PE should be better than the MT.
We find that keeping both the PE and MT allows us
to perform preference optimization techniques and
improve translation quality with data that would
otherwise be discarded.

We find that performing supervised fine-tuning
using post-edits as references also increases the
likelihood of the machine translations which re-
mained unseen by the system. However, because
the original machine translations were erroneous
(in order to need correction), it is disadvantageous
to increase their likelihood as well. Using PO
techniques allows the model to establish a larger
margin between the post-edit sequence and the
machine translation sequence in log-probability
space.

Increasing this margin coincides with signifi-
cant improvements in neural translation metrics.
We additionally find that we can measure the mod-
els’ preferences in terms of sequence probability—
if one sequence is more likely it is preferred. Mod-
els trained with SFT do not have a significant
change in preferences compared to the baseline
models but using PO teaches the model to prefer
the post-edits above the machine translations.

In future work, we would like to examine the ef-
fect of the distance between post-edit and machine
translation sequence probabilities. Currently, IPO
sets a single distance for all sequence pairs but this
may be sub-optimal when the sequences are corre-
lated to different degrees. For example, if a post-
edit and machine translation share a large prefix,
the rest of the tokens in the sequences must ac-
count for the distance, while for non-overlapping
sequences all tokens contribute to the distance be-
tween the log-probabilities.
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Table 8: Hyperparameters for all training runs. * in-
dicates that this parameter only affects the preference
optimization techniques
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Abstract

In this paper we present a step-by-step ap-
proach to long-form text translation, drawing
on established processes in translation studies.
Instead of viewing machine translation as a sin-
gle, monolithic task, we propose a framework
that engages language models in a multi-turn
interaction, encompassing pre-translation re-
search, drafting, refining, and proofreading, re-
sulting in progressively improved translations.
Extensive automatic evaluations using Gemini
1.5 Pro across ten language pairs show that
translating step-by-step yields large translation
quality improvements over conventional zero-
shot prompting approaches and earlier human-
like baseline strategies, resulting in state-of-
the-art results on WMT 2024.

1 Introduction

Machine Translation (MT) has been traditionally
seen as a sequence transduction task that maps a
source text from one language to an equivalent
translation in another language. While this simpli-
fied definition of the task served the modeling ca-
pabilities of statistical and neural machine transla-
tion systems for many years, recent advancements
in large language modeling offer promise for re-
defining MT to align more closely with human trans-
lation processes. This shift prompts us back to a
fundamental question: what does a good transla-
tion process look like?

Thankfully, this question has been a long-
debated topic in the field of translation studies.
Despite the lack of consensus around the nature
of cognitive steps involved when humans trans-
late, a common thread is apparent, i.e., translation
is a multi-faceted process encompassing several
sub-tasks that navigate a bilingual landscape. This
view of translation finds a parallel in the rise of the
“chain-of-thought” paradigm popularized by large
language models (LLM) (Wei et al., 2022). That is,
instead of attempting to generate the response to a

Figure 1: MetricX-23 quality improvements (where
lower scores indicate better translation quality) on
document-level translation on the WMT24 test set.
Translate step-by-step with Gemini 1.5 Pro consistently
outperforms zero-shot translation.

complex task directly, LLMs are prompted to derive
their final answer by decomposing the original task
into several simpler sub-tasks.

But, what form would chain-of-thought take in
the context of MT? While initial attempts to model
the entire translation process using complex multi-
stage processes has shown mixed results (Wu et al.,
2024), explicitly modeling certain pre-translation
or post-translation processes has led to more con-
sistent gains in translation quality. On the pre-
translation side, He et al. (2023) proposes to gener-
ate multiple translation candidates conditioned on
self-generated translation-related knowledge. On
the post-translation side, recent research threads
prompt LLMs for refinement with (Feng et al., 2024;
Xu et al., 2023b; Ki and Carpuat, 2024) or with-
out (Chen et al., 2023) external quality estimation
feedback.

Despite the promising results reported by prior
work on decomposing and re-ranking MT with
LLMs, it still remains unclear whether LLMs can
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benefit from modeling the entire spectrum of trans-
lation processes. In this work, drawing on literature
from translation studies, we view MT as a complex
and iterative task adhering to distinct steps, i.e., pre-
translation research, drafting, refining, and proof-
reading. Based on this framework, we ask: How
well can LLMs translate in a step-by-step manner
that draws from translation processes?

Taking Gemini 1.5 Pro (Reid et al., 2024) as
a case study, we start by designing instruction
prompts for various translation subtasks. Con-
cretely, our framework implements a multi-turn
interaction with Gemini that breaks down the trans-
lation process into four distinct stages. It begins
by prompting the model to conduct background
research that identifies potential challenges in trans-
lating the source text (research phase). The next
interaction focuses on drafting an initial translation
prioritizing faithfulness to the source text (drafting
phase). This draft is then revised in subsequent
turns, ensuring a polished final translation (refine-
ment and proofreading phases).

To align better with human translation processes,
we test the translate step-by-step framework on
long-form documents derived from the general MT

shared tasks for WMT 2023 (Kocmi et al., 2023) and
WMT 2024. We evaluate out-of-English translation
for ten languages, namely Chinese (ZH), Ukrainian
(UK), Russian (RU), Japanese (JA), Hebrew (HE),
Czech (CS), German (DE), Hindi (HI), Icelandic
(IS), and Spanish (ES). Extensive automatic eval-
uation according to both reference-based and QE-
based versions of MetricX-23 (Juraska et al., 2023)
show that translating step-by-step yields strong
translation quality improvements across all lan-
guages and test sets studied (see Figure 1).

2 Background

With the recent rise of LLMs, machine translation
is going through a gradual but significant paradigm
shift. While much research is focusing on how
LLMs’ training data are improving their MT capa-
bilities (Xu et al., 2023a; Alves et al., 2024), there
are also many opportunities to improve how exist-
ing LLMs can be best used for translation. This
becomes evident in recent research that explores
ways to augment and refine MT to align better with
human translation processes. To navigate the di-
verse landscape of LLM-driven research, we sum-
marize key studies in Table 1 along their four most
distinct dimensions:
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He et al. (2023) 4 7 7 7 3-4
Xu et al. (2023b) 7 4 4 7 Iterative
Feng et al. (2024) 7 4 7 7 3
Huang et al. (2024) 7 4 4 7 3
Li et al. (2024) 4 7 7 7 1
Chen et al. (2023) 7 4 7 4 Iterative
Ki and Carpuat (2024) 7 4 7 7 1
Wu et al. (2024) 4 4 7 4 Iterative
Step-by-Step (ours) 4 4 4 4 4

Table 1: List of prior work leveraging LLMs to im-
prove translation quality by modeling either pre- or
post-translation processes (PRE-TR. or POST-TR.). For
each study we also note key aspects of their method-
ology: whether prompting strategies are developed on
a separate development set (DEV.), whether the ap-
proach relies solely on the LLM’s parametric knowl-
edge (PARAM.), and the number of steps in the pipeline.

• Temporal Focus: This differentiating factor
is based on whether an LLM is engaged in the
translation process before (pre-translation) or
after (post-translation) an initial translation
is produced (whether by the same LLM or a
different system).

• Parametric vs. External Knowledge: This
dimension focuses on whether LLMs rely
solely on their internal, learned knowledge
(encoded in their parameters) or whether
they use external resources, i.e., dictionar-
ies, knowledge bases, retrieval engines or QE-
based metrics (Mallen et al., 2023).

• Reported Prompt Development: This di-
mension considers whether the prompting
strategies are clearly developed on separate
development sets, as reported in papers.1

• Number of Steps: This dimension counts the
number of distinct steps that are used in multi-
turn interactions with the LLM.

Table 1 shows a clear trend: most studies focus
on post-translation refinement. These approaches
predominantly rely on external feedback to iden-
tify and correct errors, using either automatic met-

1We include this column not to cast aspersions on previ-
ous work, but to encourage a culture moving forward where
prompt-based research uses and reports a development set.
From personal communication, some of the works receiving
an “7” here underwent little to no prompt optimization.
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Figure 2: Translate Step-by-Step prompting framework. User prompts (top) and Gemini’s responses (bottom) for
the translation of an English document into Chinese. The full prompts for each step also appear in §A.3.

rics (Feng et al., 2024; Xu et al., 2023b; Huang
et al., 2024) or human annotations of translation
errors (Ki and Carpuat, 2024). A notable exception
is the study of Chen et al. (2023), which shows that
LLMs can iteratively refine their own outputs using
only their parametric knowledge.

Comparatively fewer studies explore the pre-
translation stage, investigating how LLMs can uti-
lize background information to enhance their trans-
lation quality. He et al. (2023) explores this by
prompting LLMs for different types of background
information (similar examples, topics and key-
words) related to the source text. However, they
find that this knowledge alone is insufficient to
improve the model’s translation quality, and ulti-
mately rely on external QE feedback for selection.
In contrast, Li et al. (2024) operationalizes back-
ground research by incorporating idiom definitions
retrieved from an external knowledge base.

A notable exception to the above is the recent
work of Wu et al. (2024) which, similar to our ap-
proach, explores modeling the entire spectrum of
translation processes. While conceptually aligned
with our step-by-step approach, their framework
is significantly more complex, with 30 distinct
LLM roles interacting iteratively. Their use of non-
standard metrics makes it difficult to gauge the
method’s success: the human evaluation does not
give annotators source or reference texts, while the

bilingual automatic evaluation collects only prefer-
ence decisions using the same model family as the
method being tested.

Overall, in contrast to prior work, which often re-
lies on complex multi-stage processes and external
resources, our goal is to streamline the translation
process, unifying pre- and post-translation stages
within one framework, by accessing only the
LLM’s parametric knowledge throughout. We
emphasize the methodological soundness of our
pipeline by developing it on a separate develop-
ment set, a practice not yet standardized in this
area.

3 Translate Step-by-Step

Drawing on existing literature on translation stud-
ies (Borg, 2018), we design a series of staged
prompts that attempt to map the translation pro-
cess to instructions. This approach views transla-
tion as a multi-turn interaction with an LLM where
each prompt guides the model’s next action. Be-
low, we describe those stages, along with what their
function in the translation process is and how they
are operationalized as instruction-following tasks.
These stages are further illustrated in Figure 2.

Pre-translation Research Mirroring the human
translation processes, our framework incorporates a
pre-translation research stage. This stage primarily
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focuses on using the source text (Mossop, 2000)
to identify potential translation challenges drawing
on real-world knowledge and knowledge of the
target language (Dimitrova, 2005). We model this
stage by prompting the LLM to identify and explain
phrases of the source text that cannot be translated
word-for-word into the target language.

Drafting Following the pre-translation research,
the next stage aims at producing a draft translation,
i.e., “the first stab at the rewriting” (Bassnett and
Bush., 2016). This stage represents an initial at-
tempt at rendering the source text into the target
language. To that end, we initiate a subsequent
interaction and prompt the model to focus on ad-
equacy at this stage, ensuring the draft faithfully
captures the meaning of the source.

Refinement The post-drafting stages are defined
as editing tasks, with the goal of improving the
overall quality of the draft translation. We de-
fine the first post-drafting stage as a subsequent
interaction where the LLM is prompted to improve
the draft’s fluency such that the text works on its
own (Borg, 2018).

Proofreading At the final, post-drafting stage,
we task the LLM with the role of proofreading the
refined translation to ensure it delivers a polished
translation. We model this stage as a new conver-
sation with the LLM, rather than a subsequent in-
teraction, drawing inspiration from human studies
suggesting that proofreading requires a new per-
spective after a break from revising (Shih, 2013).

3.1 Lessons During Development
While developing the above method, we found two
factors to be important for the success of this ap-
proach: working at the document level and repre-
senting multi-step interactions as conversations.

Working at the Document Level Our multi-
step process became more effective as we moved
from the segments provided by WMT to working on
multi-segment documents (see §4 for details on the
setup). This had a large effect on the pre-translation
research step, changing it in two ways. First, some
phrases that appeared idiomatic or difficult at the
segment level disappeared, as their translations be-
came clear with context. Second, the LLM began
identifying larger phrases. The refinement step also
improved according to automatic metrics. We veri-
fied that our shift to the document level was either
neutral or an improvement for our baselines (§5.3).

Domain Literary News Social Speech
# Docs. 40 43 48 111
Avg. Length 192 184 164 73

Table 2: Per-domain statistics for WMT 2024.

Multi-step Interactions as Conversations
Modern LLMs use special markers to indicate
human versus assistant turns in multi-turn interac-
tions. When building an automated process like
translate step-by-step, for each step, one has the
option to either use previous outputs to build a
completely new query that summarizes all previous
interactions, or to continue the conversation,
allowing the LLM to see all previous steps with its
own outputs clearly marked. With the exception of
the proofreading step, we found that continuing
the conversation improved performance. Also,
breaking the conversation into smaller turns helps
with modularity for ablations.

4 Experimental Setting

We start by evaluating the translate step-by-step
approach on the task of document-level translation.
The experimental setting is described below.

Model Settings Throughout our experiments we
use Gemini 1.5 Pro. All model outputs are gen-
erated with greedy decoding. All model prompts
are provided in Appendix A.3. In zero-shot mode,
the model is instructed to translate the source text
directly, without providing any explanations.

To effectively isolate the artifacts from pre-
translation research, we employ a secondary model
call. This call restructures the natural language
output into a JSON object, simplifying the parsing
process for extracting artifacts.

Evaluation Sets We use WMT 2023 as our devel-
opment set. Any prompt development and stage
ablation experiments are conducted on this dataset.
For our final test set, we use the WMT 2024 datasets.
Each of these datasets was built by translating a set
of English documents into multiple languages.

Both datasets are segmented for sentence- or
paragraph-level evaluation, but our approach fo-
cuses on translating with as much context as possi-
ble. Therefore, we use meta-data to merge the orig-
inal segments into larger ones. Ideally, this would
result in complete documents, but current neural
metrics have token-count limits beyond which they
truncate their inputs. To accommodate neural eval-
uation, we set a maximum length of 250 (English
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ZH UK RU JA HE CS DE AVERAGE
Ref-based
1. # # # # 3.64 4.18 3.32 2.59 4.36 2.82 1.82 3.25
2. #  # # 3.48 ↓ 0.16 4.16 ↓ 0.02 3.32 ↓ 0.00 2.47 ↓ 0.12 4.54 ↑ 0.18 2.67 ↓ 0.15 1.92 ↑ 0.10 3.22
3. # #  # 2.92 ↓ 0.72 3.32 ↓ 0.86 2.43 ↓ 0.89 2.19 ↓ 0.40 3.24 ↓ 1.12 2.35 ↓ 0.47 1.31 ↓ 0.51 2.54
4. #   # 2.85 ↓ 0.79 3.06 ↓ 1.12 2.54 ↓ 0.78 2.09 ↓ 0.50 3.18 ↓ 1.18 2.22 ↓ 0.60 1.37 ↓ 0.45 2.47
5.   # # 3.00 ↓ 0.64 3.46 ↓ 0.72 2.56 ↓ 0.76 2.05 ↓ 0.53 3.89 ↓ 0.47 1.97 ↓ 0.85 1.56 ↓ 0.26 2.64
6.    # 2.63 ↓ 1.01 2.70 ↓ 1.47 2.13 ↓ 1.19 1.73 ↓ 0.86 2.88 ↓ 1.48 1.85 ↓ 0.96 1.17 ↓ 0.65 2.16
7.     2.67 ↓ 0.97 2.38 ↓ 1.80 2.16 ↓ 1.16 1.70 ↓ 0.89 2.75 ↓ 1.61 1.71 ↓ 1.10 1.07 ↓ 0.75 2.06

QE-based
8. # # # # 2.64 4.87 4.16 1.73 5.55 5.39 3.96 4.04
9. #  # # 2.71 ↑ 0.07 4.78 ↓ 0.09 4.05 ↓ 0.11 1.65 ↓ 0.07 5.22 ↓ 0.33 5.14 ↓ 0.25 4.03 ↑ 0.08 3.94

10. # #  # 2.11 ↓ 0.52 4.33 ↓ 0.54 2.82 ↓ 1.34 1.30 ↓ 0.43 4.49 ↓ 1.06 4.31 ↓ 1.08 2.89 ↓ 1.07 3.18
11. #   # 2.04 ↓ 0.59 4.12 ↓ 0.75 3.31 ↓ 0.85 1.19 ↓ 0.54 4.30 ↓ 1.25 4.40 ↓ 0.99 3.36 ↓ 0.60 3.25
12.   # # 2.26 ↓ 0.38 4.18 ↓ 0.69 3.50 ↓ 0.66 1.54 ↓ 0.19 4.60 ↓ 0.95 4.62 ↓ 0.77 3.73 ↓ 0.23 3.49
13.    # 1.90 ↓ 0.73 3.39 ↓ 1.48 2.76 ↓ 1.40 1.23 ↓ 0.49 4.17 ↓ 1.38 4.12 ↓ 1.28 2.97 ↓ 0.99 2.93
14.     1.82 ↓ 0.81 3.43 ↓ 1.44 3.11 ↓ 1.05 1.25 ↓ 0.48 4.01 ↓ 1.54 3.56 ↓ 1.83 2.63 ↓ 1.33 2.83

Table 3: MetricX-23 evaluation results of translate step-by-step and its ablation variants on the WMT 2023 devel-
opment datasets. We report both the reference-based and QE-based metric variants. Filled dots indicate active
steps in the pipeline, while unfilled dots represent ablated steps. When all steps are ablated, the system defaults
to zero-shot translation. Colored boxes highlight performance differences compared to zero-shot: blue shades
indicate significant improvements at p < 0.001, green shades indicate significant improvements at p < 0.05,
yellow shades indicate non-significant improvements (p ≥ 0.05), while red shades indicate non-significant regres-
sions (p ≥ 0.05) against zero-shot. Translate step-by-step surpasses zero-shot across the board, with each step
incrementally improving translation quality.

white-space separated) tokens each.2 The resulting
datasets consist of 192 documents of average token
length 178 for WMT 2023 and, 243 documents of
average token length 130 for WMT 2024, respec-
tively. For WMT 2024 we also report per-domain
results. Per-domain document counts and average
lengths, as measured in English white-space sepa-
rated tokens, are presented in Table 2.

Evaluation Metrics We evaluate our approach
using MetricX-XXL-23 (Juraska et al., 2023), the
metric adopted in the most recent WMT 2024 au-
tomatic evaluations. We report results on both the
reference-based and the QE-based metric variants.
Despite being trained at the sentence level, Deutsch
et al. (2023) show that MetricX can effectively eval-
uate multi-sentence sequences, capped at its maxi-
mum window length. We note that MetricX is pow-
ered by mT5 (Xue et al., 2021), which minimizes
the potential bias in favor of Gemini-generated
translations.3 We employ paired permutation tests
to determine if the observed improvements across
system pairs are statistically significant.4

2We also present results for a shorter set of documents,
with a maximum length of 150 tokens in Appendix A.1.

3We also report ChrF (Popović, 2015) in Appendix A.2.
4https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.permutation_test.html

5 Quantitative Results

We start by analyzing the importance of each step in
the translate step-by-step pipeline. Ablation results
on the WMT 2023 development sets are presented
in §5.1. Next, the generalizability of our final step-
by-step recipe is evaluated on the WMT 2024 test
sets in §5.2, with comparison to prior work in §5.3.

5.1 Analyzing Step Importance
Automatic evaluation results on our development
sets are presented in Table 3. Overall, translation
artifacts extracted through the step-by-step pro-
cess yield consistently better document translations
compared to the zero-shot mode according to both
reference- (lines 3–7 vs. 1) and QE-based (lines
10–14 vs. 8) versions of MetricX. Ablating the var-
ious steps from the pipeline gives insights into how
each step contributes to the overall quality improve-
ments. We describe those below.

Importance of Pre-translation Research Mod-
elling pre-translation processes is crucial for achiev-
ing higher quality translations compared to the
zero-shot. Simply prompting for a draft translation
without asking for pre-translation research yields
only small and non-significant improvements or
even regressions over the zero-shot (lines 2 vs. 1
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and 9 vs. 8). This result rules out the possibility
that any observed improvements are solely due to
a better prompt for the draft translation, which was
modified to emphasize faithfulness to the source
(§3). However, combining the research and draft
steps achieves consistently higher quality transla-
tions compared to zero-shot (lines 5 vs. 1 and 12
vs. 8). Importantly, those improvements are con-
sistently statistical significant (p < 0.0001) across
languages (measured by reference-based metrics),
except for Hebrew, which shows non-significant
improvements compared to zero-shot (p ≥ 0.05).

Importance of Refinement Moving to the eval-
uation of the refined document translations, we
notice an interesting trend. The refinement step
consistently improves the translation quality, re-
gardless of the initial translation it processes, i.e.,
the zero-shot (lines 3 vs. 1 and 10 vs. 8), the single-
turn draft (lines 4 vs. 2 and 11 vs. 9), and the
research-informed draft (lines 6 vs. 5 and 13 vs.
12). This demonstrates that the effectiveness of
the refinement stage is not conditioned on the ini-
tial translation. However, the strongest quality
improvements—reaching consistently high levels
of statistical significance (p < 0.001) over the zero-
shot translations—are observed when the refine-
ment stage is combined with the pre-translation
research (lines 6 vs. 1 and 13 vs. 8), highlighting
that those stages bring complimentary benefits.

Importance of Proofreading Finally, the eval-
uation of the proofreading document translations,
indicate that this stage contributes modest average
improvements (lines 7 vs. 6 and 14 vs. 13). Unlike
previous stages, the impact of proofreading appears
to be more language dependent. Ukrainian stands
out as the only language that clearly benefits from
a proofreading stage, while others show only mi-
nor differences in quality compared to their refined
translations.

5.2 Generalizability of Step-by-Step
Table 4 presents results on the WMT 2024 test set.
Across the board, translating step-by-step exhibits
the same trends noticed on our development set (as
discussed in §5.1). This confirms the generalizabil-
ity of our proposed approach, crucially, on a wider
range of languages. Concretely, the draft transla-
tions outperform the zero-shot translations. The re-
fined stages bring additional quality improvements
across the board, with the proofreading stage con-
tributing small improvements for most languages.

Figure 3: Domain-level comparison between zero-
shot and step-by-step translations on WMT 2024 using
reference-based MetricX-23. Each data point repre-
sents the delta from zero-shot (dotted horizontal line).
The steps are denoted as follows: 0 (zero-shot), D (draft
after research), R (refinement), and P (proofreading).

To better understand the robustness of our ap-
proach we present a per-domain analysis in Fig-
ure 3. As shown, translation quality improvements
of step-by-step translations over zero-shot are ob-
served across all domains, with speech showing the
least and social the most significant gains.

5.3 Contextualizing Step-by-Step Gains
Having demonstrated how translate step-by-step
improves long-form translation with LLMs over
zero-shot translation, we now contextualize these
gains by comparing our approach to two repre-

1306



DE ES ZH RU UK JA HI IS CS AVERAGE
Ref-based

Zero-shot 1.90 3.23 3.48 3.02 3.15 2.29 3.65 4.01 2.65 3.04
SBYS: Research & Drafting 1.68 ↓ 0.22 2.69 ↓ 0.54 2.99 ↓ 0.49 2.53 ↓ 0.49 2.81 ↓ 0.35 1.92 ↓ 0.37 2.52 ↓ 1.13 3.77 ↓ 0.24 2.30 ↓ 0.35 2.58
SBYS: Refinement 1.45 ↓ 0.45 2.29 ↓ 0.94 2.45 ↓ 1.03 2.21 ↓ 0.81 2.58 ↓ 0.57 1.64 ↓ 0.66 2.31 ↓ 1.35 3.14 ↓ 0.87 2.10 ↓ 0.55 2.24
SBYS: Proofreading 1.35 ↓ 0.54 2.27 ↓ 0.96 2.42 ↓ 1.06 2.21 ↓ 0.81 2.49 ↓ 0.66 1.67 ↓ 0.62 2.09 ↓ 1.56 3.15 ↓ 0.86 2.14 ↓ 0.51 2.20

QE-based
Zero-shot 1.97 2.59 2.23 1.87 2.23 1.32 4.81 3.47 2.08 2.51
SBYS: Research & Drafting 1.72 ↓ 0.25 2.23 ↓ 0.36 2.08 ↓ 0.15 1.54 ↓ 0.33 1.81 ↓ 0.41 1.19 ↓ 0.13 4.12 ↓ 0.69 3.43 ↓ 0.04 1.97 ↓ 0.11 2.23
SBYS: Refinement 1.38 ↓ 0.59 1.78 ↓ 0.81 1.71 ↓ 0.52 1.21 ↓ 0.66 1.34 ↓ 0.89 0.95 ↓ 0.37 3.47 ↓ 1.34 2.79 ↓ 0.68 1.51 ↓ 0.56 1.79
SBYS: Proofreading 1.25 ↓ 0.72 1.74 ↓ 0.84 1.63 ↓ 0.60 1.14 ↓ 0.73 1.32 ↓ 0.91 0.93 ↓ 0.40 3.35 ↓ 1.46 2.65 ↓ 0.82 1.45 ↓ 0.63 1.72

Table 4: MetricX-23 results comparing step-by-step (SBYS) with zero-shot on the WMT 2024 test datasets. When
all steps are ablated, the system defaults to zero-shot translation. Colored boxes highlight performance differences
compared to zero-shot: blue shades indicate significant improvements at p < 0.001, green shades indicate signifi-
cant improvements at p < 0.05, while yellow shades indicate non-significant improvements (p ≥ 0.05). Translate
step-by-step surpasses zero-shot, with each step incrementally improving translation quality.

sentative baselines: a) methods that leverage non-
parametric knowledge for best translation selection,
and b) segment-level baselines that translate docu-
ments using the pre-defined segmentation provided
in WMT 2024 test sets.

Conditions As a representative of the first class,
we compare against MAPS (He et al., 2023). This
baseline employs an LLM to analyze the source text
for topic, keywords, and similar examples, gener-
ating three candidate translations conditioned on
each knowledge type. Then, a QE metric selects
the best candidate. To create a fair comparison, we
re-implement their method using Gemini 1.5 Pro,
using the prompts provided in their released code.
To create an even stronger baseline, we perform
candidate selection with the QE variant of MetricX-
23, which we know correlates well with the final
reference-based MetricX-23, creating an advantage
for MAPS.

For the second class of baselines, we consider
two approaches: a) zero-shot translation applied to
each segment individually using Gemini 1.5 Pro,
both with (ZERO-SHOT IN CONTEXT) and without
(ZERO-SHOT) access to the full document in the in-
put prompt, and b) a comparison with the segment-
level translations from Unbabel-Tower70B, the top-
performing system of WMT 2024 based on early
automatic evaluations (Kocmi et al., 2024). To get
comparable document-level metrics, before evalua-
tion, we concatenate the segment-level translation
back into the mini-documents, as described in §4.

We focus our comparisons on EN-DE, EN-JA,
EN-ZH, as MAPS requires in-context demonstra-
tions that were made available only for those lan-
guages by the original authors. For a fair com-
parison with Unbabel-Tower70B, we exclude the
speech domain from our comparison, as WMT 2024

METHOD DOC. EN-DE EN-ZH EN-JA
UNBABEL-TOWER70B 7 1 1.42 1 2.77 2 2.16
ZERO-SHOT 7 2 1.98 3 3.65 3 2.60
ZERO-SHOT IN CONTEXT 7 2 1.86 2 3.33 2 2.19
ZERO-SHOT 4 3 2.02 3 3.91 3 2.47
MAPS 4 2 1.91 2 3.25 2 2.19
SBYS: Research & Drafting 4 2 1.75 2 3.32 2 1.94
SBYS: Refinement 4 1 1.41 1 2.73 1 1.58
SBYS: Proofreading 4 1 1.27 1 2.75 1 1.73

Table 5: Comparison of step-by-step (SBYS) with rep-
resentative baselines (lower scores are better) on WMT
2024 according to Metric-X (reference-based). The sec-
ond column indicates whether translation is performed
on the entire document or by merging segment-level
translations. Numbered squares represent significance
clusters (Freitag et al., 2023) at p = 0.05. Translate
step-by-step matches or exceeds all compared base-
lines, crucially, without accessing external resources.

submissions were given ASR transcripts instead of
human-sourced transcripts in this domain.

Results Table 5 compares step-by-step against
various baselines. Notably, even the initial stage,
where the draft translation is conditioned on
cross-lingual research (SBYS: Research & Draft-
ing) demonstrates competitive performance against
MAPS, falling within the same statistical signifi-
cance cluster. This highlights the effectiveness of
our pre-translation strategy compared to the back-
ground information used by MAPS. Comparing
the final, proofreading stage of step-by-step (SBYS:
Proofreading) with MAPS reveals significant trans-
lation quality gains: 0.64 improvement for DE, 0.50
for ZH, and 0.46 for JA. Notably, these improve-
ments are achieved even though MAPS uses the
same QE model family as MetricX for final candi-
date selection, giving it an inherent advantage. In
contrast, SBYS relies solely on the model’s inter-
nal, parametric knowledge throughout the entire
translation process.

Comparing the final, proofreading stage of step-
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by-step with the segment-level baselines helps
put the improvements in perspective. Concretely,
the segment-level zero-shot baselines (second and
third lines in Table 5) fall significantly behind the
step-by-step final translations (SBYS: Proofread-
ing) across all languages by more than 0.7 and
0.4 MetricX points when compared to the out-of-
and in-context variants, respectively. This demon-
strates that simply translating documents at a finer
granularity is not sufficient for boosting the LLM’s
translation quality.

Finally, comparing the final, proofreading stage
of our approach with the merged translations
from Unbabel-Tower70B, reveals that our approach
achieves statistically comparable performance for
Chinese and German (0.02 and 0.15 improvements
respectively) and significantly better performance
for Japanese (0.43 improvement). These improve-
ments over the top-performing WMT 2024 system
demonstrate the competitiveness of the step-by-
step approach, especially given that the competing
system relies on external QE metrics and computa-
tionally expensive decoding strategies to improve
translation quality.

6 Qualitative Analysis

We conduct a qualitative analysis on a small subset
of model outputs from all stages to understand the
strengths and weaknesses of our step-by-step ap-
proach. To this end, we first compute the score
difference between the final translation and the
zero-shot output on WMT 2024 English to Chinese,
and then randomly sample up to 5 examples from
either end (i.e., examples for which the final trans-
lation quality either substantially improves or de-
grades over the zero-shot baseline).5 One of the
authors (native speaker of Chinese) manually in-
spected the sampled outputs and took notes on the
salient properties of the pre-translation artifacts and
the incremental changes from the different stages
of the step-by-step process.

Pre-drafting For pre-drafting research, we ob-
serve that the LLM is highly capable of understand-
ing the source in a wide variety of contexts. As
showcased in Table 6, the LLM is able to correctly
interpret slang (example 1: cheeked up in the con-
text of making miniatures), recognize figurative

5The exact sample ranges of the score difference are [-6,
-2] and [1, 6]. Examples from beyond these ranges typically
demonstrate clear signs of model degeneration and are there-
fore excluded from this analysis.

usage (example 2: the weather didn’t cooperate in
the context of flying a plane), and detect humorous
expressions (example 3). This strength is espe-
cially pronounced when even the references show
clear signs of human translators misinterpreting the
source (see the next subsection for full examples).

On the other hand, the LLM is also prone to
over-generate and seems too eager to confirm with
the given instruction to find instances of indirect
translation. This resulted in false positives where a
direct and literal translation is already adequate (ex-
ample 4: a bit dazed can be directly translated into
Chinese), and in some cases bizarre cultural com-
mentaries (example 5 for asking to contextualize
the texture of bubble gum).

Translations The observed understanding of the
source texts seems to directly contribute to more
fluent and context-appropriate translations. Ta-
ble 13 in §A.4 shows several interesting examples.
There are quite a few instances where the step-by-
step approach produces the correct translation even
when the reference fails to recognize the context
the phrase appears in. For example, our method
correctly interprets the meaning of cheeked up in
the first example to be “having a full cheek” when
the zero-shot translates it to blushing and the refer-
ence translates it to talking nonsense. Similarly for
the second example, the term threading is correctly
understood as a thread of posts on a social media
platform by all step-by-step translations, whereas
the zero-shot interpretes it as a computing termi-
nology (as in multithreading) and the reference
interprets it as study.

It is also evident that the refinement improves
the fluency significantly. The third example shows
that both the zero-shot and the draft translates the
source literally. This entails preserving the original
source structure and translating the source word
ridiculous directly. The result is somewhat awk-
ward and sounds like translationese, which is partic-
ularly jarring considering the social media domain
of the source text. This issue is rectified by both the
refined translation and the reference. On the other
hand, the refinement process is not perfect and does
regress to less fluent outputs at times (example 4).
Another prominent failure mode typical of all LLM

outputs is hallucinations. In the fifth example, the
refinement adds “touching the bruise”, which is not
present in the source.
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SOURCE SNIPPET PRE-TRANSLATION RESEARCH NOTES

1. 4 trying my hand at miniatures
redid the head!
[content omitted]
@user26 cheeked up. I love HER*

“cheeked up”: This slang term likely refers to making
the miniature’s cheeks fuller or more prominent. A direct
translation wouldn’t be accurate.

Understanding
source correctly in
the context of making
miniatures.

2. 4 #TeaganAir #pilot #flying #pa28 #PilotTraining
[content omitted]
Last week the weather didn’t cooperate so we’re back
at it today.

“The weather didn’t cooperate”: This is a figurative
way of saying the weather was not suitable for flying.

Good example of in-
direct translation.

3. 4 It is nice to have art and entertainment to help us
make sense of our life.
@user32 I could perform a liver transplant thanks to
Hospital Playlist.

“I could perform a liver transplant thanks to Hospi-
tal Playlist”: This is a humorous exaggeration, implying
that the show provided a lot of information about liver
transplants.

Good humor detec-
tion.

4. 7 He was covered in cuts and scratches and seemed a
bit dazed, but he didn’t seem too badly injured.

“a bit dazed”: This describes a state of confusion or
disorientation. A literal translation might not convey the
same meaning.

Literal translation
would do just fine.

5. 7 been really enjoying kneadatite (green stuff), it’s like
sculpting with bubble gum but you get used to that
and it’s tough and flexible when it cures

“like sculpting with bubble gum”: : This is a simile
comparing the texture of Kneadatite to bubble gum. It
needs to be translated in a way that makes sense to a Chi-
nese audience who might not be familiar with the specific
texture of bubble gum.

Strange commentary
on contextualizing
the texture of bubble
gum to a Chinese
audience.

Table 6: Samples of pre-translation research outputs along with notes from the author-annotator.

7 Conclusion

We introduce a step-by-step approach to long-form
text translation using LLMs. Inspired by liter-
ature on translation studies, we decompose the
translation process into distinct stages, modeling
pre-translation research, drafting, refinement, and
proofreading though a multi-turn interaction with
Gemini 1.5 Pro. Extensive automatic evaluations
on WMT 2023 and WMT 2024 tasks in ten lan-
guages demonstrate that our approach improves
translation quality over directly translating the en-
tire document with a single prompt.

Furthermore, comparison with competitive base-
lines, including similar human-like LLM-driven ap-
proaches and top-performing systems that employ
segment-by-segment translation of a document, re-
veals the strong performance of our approach. Our
findings highlight the potential of LLMs to progres-
sively improve their translations, moving beyond
the traditional view of machine translation as a
monolithic sequence mapping task.

Limitations

While our study reveals promising step-by-step im-
provements across various languages and domains,
we acknowledge the limitations of solely relying
on automatic metrics for evaluation. While metric
improvements give us a consistent signal, human
evaluation is needed to further validate the effec-

tiveness of the approach and reveal a more nuanced
understanding of the translation properties intro-
duced at each step. We also acknowledge that our
analysis is based solely on one family of metrics,
due to context window limitations of other neural
metrics in evaluating longer texts.

Finally, our pipeline is developed and tested
solely on Gemini. Since different LLMs might
exhibit different instruction-following capabilities
across languages, the generalizability of this ap-
proach to other LLMs requires further investigation.

Ethics Statement

This paper explores the use of LLMs to improve
translation quality. In doing so, our approach starts
from an initial translation that prioritizes faithful-
ness to the source text. Subsequent stages focus
on improving fluency which, as they deviate more
from the source, increase the risk of hallucina-
tions (Guerreiro et al., 2023)—a critical issue in
machine translation, potentially leading to mislead-
ing translations.

Moreover, the increasing fluency of machine
translations presents new challenges when prior-
itized over adequacy (Martindale and Carpuat,
2018), as users might trust their outputs blindly,
even when incorrect. This highlights the need for
careful adoption of those translation systems and
the developing of strategies that help users calibrate
their trust appropriately.
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A Appendices

A.1 Results on Shorter Documents
Table 9 presents automatic evaluation results of
step-by-step on shorter documents, where segments
are grouped together such that they do not exceed
a token limit of 150 white-space separated tokens.
The dataset statistics are presented in Table 10. We
observe the same trends with the ones reported with
larger documents in §5.

A.2 Results on ChrF
Tables 7 and 8 report ChrF scores on WMT 2023
and WMT 2024, respectively. As anticipated with
string-based metrics, LLM translations which priori-
tize fluency receive lower scores compared to those
that are by construction instructed to be closer to
the source text. This behavior is in line with obser-
vations of prior work that employ similar human-
like translation strategies with LLMs (Wu et al.,
2024).

A.3 Prompts
Tables 11 and 12 present the complete prompts
we used for our translate step-by-step framework
and baselines. It has come to our attention that the
prompts used in the experiments contain a few typo-
graphical errors. Preliminary results using revised
prompts show comparable, if not slightly improved
results (in the range of 0.1− 0.2 MetricX-23 score
points), across all steps.

A.4 More example outputs
Table 13 gives more example outputs to support the
discussion in §6.
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ZH UK RU JA HE CS DE AVERAGE
1. # # # # 48.04 61.85 63.55 38.75 64.03 67.62 71.81 59.38
2. #  # # 48.69 ↑ 0.65 61.81 ↓ 0.04 63.93 ↑ 0.38 39.00 ↑ 0.25 64.68 ↑ 0.65 67.63 ↑ 0.01 71.79 ↓ 0.02 59.65
3. # #  # 41.48 ↓ 6.56 59.44 ↓ 2.41 59.33 ↓ 4.22 36.19 ↓ 2.56 60.26 ↓ 3.77 63.44 ↓ 4.18 66.89 ↓ 4.92 55.29
4. #   # 43.14 ↓ 4.90 59.58 ↓ 2.27 60.37 ↓ 3.18 37.45 ↓ 1.30 60.92 ↓ 3.11 63.04 ↓ 4.58 68.71 ↓ 3.10 56.17
5.   # # 45.98 ↓ 2.06 61.51 ↓ 0.34 63.04 ↓ 0.51 39.30 ↑ 0.55 62.89 ↓ 1.14 67.17 ↓ 0.45 71.07 ↓ 0.74 58.71
6.    # 41.03 ↓ 7.01 58.72 ↓ 3.13 59.44 ↓ 4.11 37.65 ↓ 1.10 59.91 ↓ 4.12 63.02 ↓ 4.60 67.61 ↓ 4.20 55.34
7.     40.71 ↓ 7.33 58.78 ↓ 3.07 59.23 ↓ 4.32 37.51 ↓ 1.24 59.65 ↓ 4.38 63.11 ↓ 4.51 67.49 ↓ 4.32 55.21

Table 7: ChrF evaluation results of translate step-by-step and its ablation variants on the WMT 2023 development
datasets. Filled dots indicate active steps in the pipeline, while unfilled dots represent ablated steps. When all steps
are ablated, the system defaults to zero-shot translation

DE ES ZH RU UK JA HI IS CS AVERAGE
Zero-shot 65.48 72.96 44.21 55.51 59.90 39.75 55.94 53.23 60.81 56.42
Research & Drafting 64.67 ↓ 0.81 72.30 ↓ 0.66 42.73 ↓ 1.48 57.30 ↑ 1.79 60.06 ↑ 0.16 41.19 ↑ 1.44 56.16 ↑ 0.22 53.09 ↓ 0.14 60.31 ↓ 0.50 56.42
Refinement 61.72 ↓ 3.76 69.22 ↓ 3.74 38.26 ↓ 5.95 55.09 ↓ 0.42 57.25 ↓ 2.65 39.15 ↓ 0.60 52.60 ↓ 3.34 52.62 ↓ 0.61 57.29 ↓ 3.52 53.69
Proofreading 61.62 ↓ 3.86 69.04 ↓ 3.92 38.41 ↓ 5.80 54.96 ↓ 0.55 57.14 ↓ 2.76 38.87 ↓ 0.88 53.47 ↓ 2.47 52.32 ↓ 0.91 56.98 ↓ 3.83 53.65

Table 8: ChrF results comparing step-by-step with zero-shot performance on the WMT 2024 test datasets.

DE ES ZH RU UK JA HI IS CS AVERAGE
Ref-based

Zero-shot 1.89 3.10 3.25 2.90 2.99 2.31 3.03 3.79 2.37 2.85
Research & Drafting 1.67 ↓ 0.23 2.61 ↓ 0.49 2.80 ↓ 0.45 2.53 ↓ 0.37 2.67 ↓ 0.32 1.91 ↓ 0.40 2.00 ↓ 1.03 3.45 ↓ 0.34 2.16 ↓ 0.21 2.42
Refinement 1.44 ↓ 0.45 2.20 ↓ 0.90 2.33 ↓ 0.92 2.17 ↓ 0.73 2.34 ↓ 0.65 1.61 ↓ 0.70 1.62 ↓ 1.41 3.02 ↓ 0.76 2.00 ↓ 0.37 2.08
Proofreading 1.36 ↓ 0.53 2.11 ↓ 0.99 2.28 ↓ 0.97 2.20 ↓ 0.69 2.27 ↓ 0.72 1.65 ↓ 0.66 1.60 ↓ 1.43 3.04 ↓ 0.75 1.98 ↓ 0.39 2.05

QE-based
Zero-shot 1.81 2.34 2.13 1.67 1.96 1.26 1.98 3.15 1.85 2.02
Research & Drafting 1.62 ↓ 0.18 2.03 ↓ 0.31 1.85 ↓ 0.28 1.40 ↓ 0.26 1.60 ↓ 0.36 1.10 ↓ 0.15 1.40 ↓ 0.58 2.93 ↓ 0.21 1.73 ↓ 0.12 1.74
Refinement 1.24 ↓ 0.57 1.61 ↓ 0.73 1.51 ↓ 0.62 1.05 ↓ 0.62 1.17 ↓ 0.79 0.91 ↓ 0.35 0.96 ↓ 1.01 2.37 ↓ 0.78 1.31 ↓ 0.53 1.35
Proofreading 1.12 ↓ 0.68 1.54 ↓ 0.80 1.44 ↓ 0.69 0.99 ↓ 0.67 1.10 ↓ 0.86 0.88 ↓ 0.38 0.92 ↓ 1.06 2.24 ↓ 0.90 1.22 ↓ 0.62 1.27

Table 9: MetricX-23 evaluation results comparing step-by-step with zero-shot performance on the WMT 2024 test
datasets, where each document has a maximum length of 150 tokens. Translate step-by-step surpasses zero-shot,
with each step incrementally improving translation quality.

Domain Literary News Social Speech
# Docs. 66 73 75 112
Avg. Length 120 110 105 72

Table 10: Per-domain statistics for WMT 2024, when
blobbing with 150 max for total of 327 docs.
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PRE-TRANSLATION RESEARCH
You will be asked to translate a piece of text form English into Chinese following the five stages of the
translation process. Here is the context in which the text appears:

Context: placeholder source text

To start, let’s do some pre-drafting research on the above context:

Research:
During this phase, thorough research is essential to address components of the context text that pose
translation challenges. The goal is to establish a comprehensive translation plan that covers the following
category:

* Idiomatic Expressions:

* Identify idiomatic expressions that cannot be directly translated word-for-word into Chinese.

DRAFTING
Now, let’s move on to the drafting stage.

Draft Translation:
In this phase, your primary objective is to create a draft translation that accurately conveys the meaning
of the source text presented below. At this stage, it is crucial to focus on adequacy, ensuring that your
translation closely adheres to the source text. Your response should conclude with the draft translation. If
context is missing, generate a general translation that is adaptable to various contexts. Avoid adding any
additional information not present in the source text. All elements of the source text should be present in
the translation.

Give your best one translation for the following piece of text based on the pre-drafting analysis without
providing alternatives:

English: placeholder source text

REFINEMENT
Now let’s move to the next stage.

Post-editing with local refinement
In this stage, the primary aim is to refine the draft translation by making micro-level improvements that
improve the draft’s fluency.

Provide only one refined translation and do not output anything else after that.

PROOFREADING
You are tasked with proofreading a translation that has been revised for improved fluency. The refined
translation has been generated by editing the draft translation.

Proofreading and Final Editing
The goal is to provide a polished final translation of the source text. For you reference, below are the
source text, the draft, and refined translations.

Source Text
placeholder source text

Draft Translation
placeholder draft translation

Refined Translation
placeholder draft refined translation

Please proofread the refined text for grammar, spelling, punctuation, terminology, and overall fluency.
Ensure the translation accurately reflects the original meaning and style. Provide only the final, polished
translation.

Table 11: Complete prompts used by the translate step-by-step pipeline.
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ZERO-SHOT
You are asked to translate the text below into Chinese. Please output only the translation of the text
without any other explanation.

English: placeholder source text
Chinese:

ZERO-SHOT IN CONTEXT
You are asked to translate the text below into Chinese. You are also given access to the context it appears.

Context: placeholder document context

Please output only the translation of the text without any other explanation.

English: placeholder source text
Chinese:

DRAFT JSON
Analyze the previous responses and create a JSON object that organizes the linguistic information they
contain. This object should have two sections: “idiomatic_expressions", and “draft_translation":

• “idiomatic_expressions":

– This section should also be a list of dictionaries.
– Each dictionary represents a phrase and has the keys: “source_phrase", “description", “transla-

tion", and “literal_translation".
– The “translation" key should hold a list of all provided translations for the phrase.
– If the response doesn’t provide a literal translation, use ‘null‘ for the “literal_translation" value.
– If the response doesn’t identify relevant idiomatic expressions use ‘null‘ for the corresponding

value.
– Don’t include transliterated versions of the translations.

• “draft_translation":

– A string containing the draft translation.
– If a translation includes multiple alternatives for the same source text, extract the first one.
– Don’t include transliterated versions of the translations.
– If the translation includes alternatives separated by "/", extract the first one.

Table 12: Prompts used for baseline comparisons (zero-shot and zero-shot in context) and structuring the pre-
translation research translation artifacts.

1316



1. 4Good example
SOURCE @user26 cheeked up. I love HER*
REFERENCE @user26口出狂言。我喜欢她*

Talking nonsense. I like her*
ZERO-SHOT @user26脸红了。我爱她*

Blushing. I love her*
RESEARCH AND DRAFT @user26脸颊做得很饱满。我喜欢她*

The cheeks are very plump. I like her*
REFINEMENT @user26脸颊做得鼓鼓的，超可爱！我喜欢她*

The cheeks are very chubby, super cute! I like her*
NOTES Both the reference and the zero-shot misinterpreted the phrase “cheeked up”

in the context of making miniatures. Both the draft and the refined version
understood it correctly, with the latter being a bit more colloquial.

2. 4Good example
SOURCE I donked up my threading
REFERENCE 我完成了这部分学习

I finished this part of study.
ZERO-SHOT 我把我的线程搞砸了

I messed up my threads [note: a terminology in computing].
RESEARCH AND DRAFT 我搞砸了我的帖子顺序

I messed up the order of my posts.
REFINEMENT 我搞砸了帖子顺序

I messed up the post order.
NOTES The reference misinterpreted both “donked up” and “threading” in this context,

and the zero-shot translation mistook the latter for the computing terminology.
2. 4Good example
SOURCE It is a ridiculous level.
REFERENCE 这关太难了。

This level is too hard.
ZERO-SHOT 这是一个荒谬的关卡。

This is a ridiculous level.
RESEARCH AND DRAFT 这是一个荒谬的关卡。

This is a ridiculous level.
REFINEMENT 这个关卡真是太难了。

This level is really too hard.
NOTES Zero-shot and draft translations are direct, literal, and stylistically awkward in

Chinese, especially in the social media domain.
4. 7 Bad example
SOURCE Ivory chuckled from the memory.
REFERENCE 艾弗里回忆到这里，笑了起来。

Ivory thought of this and laughed
ZERO-SHOT 艾弗里想起这件事，不禁轻笑起来。

Ivory thought of this and couldn’t help starting to chuckle.
RESEARCH AND DRAFT 艾弗里回想起当时的情景，不禁轻笑出声

Ivory thought of the situation at that time and couldn’t help letting out a chuckle.
REFINEMENT 艾弗里摸了摸肩膀上上次留下的瘀伤，不禁轻笑出声。

Ivory touched the bruise on the shoulder left from the last time and couldn’t
help letting out a chuckle.

NOTES All translations did a good job translating the phrase “chuckled from the
memory” fluently into Chinese, but the refinement hallucinated by adding

“touched the bruise.”
5. 7 Bad example
SOURCE one of them ran for something and grabbed it
REFERENCE 其中一个人跑过去抓起了什么东西

One of them ran over and grabbed something.
ZERO-SHOT 其中一个人跑去拿了什么东西

One of them ran and grabbed something
RESEARCH AND DRAFT 其中一个人跑到某个东西那里，抓起它

One of them ran to something and grabbed it.
REFINEMENT 其中一个人跑到某个东西那里，抓起它

One of them ran to something and grabbed it.
NOTES Although all translations are adequate and capture the semantic meaning of the

source correctly, the draft and the refinement keep the original source structure
and the resulting translation sounds like translationese.

Table 13: Sample of step-by-step and zero-shot outputs along with notes.1317
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Abstract
Recent studies have showcased remarkable ca-
pabilities of decoder-only models in many NLP
tasks, including translation. Yet, the machine
translation field has been largely dominated by
encoder-decoder models based on the Trans-
former architecture. As a consequence, scaling
laws of encoder-decoder models for neural ma-
chine translation have already been well stud-
ied, but decoder-only models have received less
attention. This work explores the scaling laws
of decoder-only models on the multilingual and
multidomain translation task. We trained a col-
lection of six decoder-only models, ranging
from 70M to 7B parameters, on a sentence-
level, multilingual (8 languages) and multido-
main (9 domains) dataset. We conducted a
series of experiments showing that the loss of
decoder-only models can be estimated using a
scaling law similar to the one discovered for
large language models, but we also show that
this scaling law has difficulties to generalize to
too large models or to a different data distribu-
tion. We also study different scaling methods
and show that scaling the depth and the width
of a model lead to similar test loss improve-
ments, but with different impact on the model’s
efficiency.

1 Introduction

Most modern machine translation systems are
based on Transformers (Vaswani et al., 2017),
with an encoder-decoder architecture. Despite the
tremendous advances made possible with the re-
lease of open-source decoder-only Large Language
Models (LLMs) (Jiang et al., 2023; Biderman et al.,
2023; Touvron et al., 2023), most NLP tasks still
rely on encoder-decoder models. Based on the
statistics obtained from the WMT23 shared task on
general machine translation (Kocmi et al., 2023),
16 out of the 17 participants submitted a system
based on an encoder-decoder model. Yet, recent
studies show that decoder-only models can achieve
comparable results (Gao et al., 2022; Fu et al.,

2023), or even surpass state-of-the-art encoder-
decoder systems, when properly finetuned (Xu
et al., 2023). Moreover, the decoder-only architec-
ture is easier to train on massive amounts of data
as one can simply concatenate documents and feed
as much relevant data as possible into the model
during training ; while encoder-decoder models re-
quires either to pad the inputs or rely on complex
masking strategies (Raffel et al., 2020) to combine
multiple inputs in the same sample.

Furthermore, the decoder architecture is much
more flexible than the encoder-decoder architec-
ture as decoders treat all tokens similarly, while
encoder-decoders make a distinction between input
(source) tokens and output (target) tokens, which
are processed, respectively, by the encoder and the
decoder. As a consequence, it is more tedious to
apply complex self-reasoning mechanisms, such as
chain-of-thought (Wei et al., 2022), or to interface
it with external tools (Schick et al., 2024), because
the outputs of such method (the reasoning process)
should, preferably, be treated as inputs of the model.
For the same reasons, it is much more computation-
ally expensive to rely on an encoder-decoder for
conversational purposes, making this architecture
less efficient for modern workflows such as itera-
tive translation. Indeed, at each round (the user’s
query and the system’s answer) should be appended
to the input side, and reprocessed by the encoder
for the next round. Decoder-only models support it
by design, without needing to recompute the rep-
resentation of the ever-growing inputs. While we
do not explore these directions in this work, we do
leverage the flexibility of the decoder architecture
to include input-or-output parameters. As we are
tackling the multilingual and multidomain machine
translation task, the model needs input tokens to
represent the language direction and the domain.
We propose to train the model to predict the source
language and the domain so that, during inference,
they can be seamlessly predicted or provided by

1318



the user.
Generally speaking, decoder-only models sim-

ply expect the input to be the whole discussion and
process it in a single forward step. Causal masking
enable efficient caching of already computed keys
and values so inference is much cheaper. The main
downside of decoder-only over encoder-decoder
model is the potential inferior quality of the input
representation, as input tokens attend only on past
tokens. But it should not be a major issue, as gener-
ated tokens attend to the whole past sequence, they
do have access to the same quantity of information
as with an encoder-decoder model. In addition, pre-
vious work propose to update the attention mask
so that input tokens can attend to all input tokens
while generated tokens can attend only on past to-
kens (Tay et al., 2022; Raffel et al., 2020).

For all these reasons, we would like to embrace
the decoder architecture for machine translation,
even if it seems to be the exclusive preserve of
encoder-decoder models. The flexibility and the
simpler training setup of decoders should make
them both more suitable and efficient for most real
world applications, and the decoder architecture is
more appropriate to answer the ever-growing de-
mand for iterative, interactive and machine assisted
translation workflow. To this aim, we study the
scaling laws of neural machine translation models
under different settings. Our contributions are as
follow:

• We show that decoder-only models for trans-
lation follow the same scaling law as LLM

• Scaling laws do not scale uniformly across
directions and domains and do not generalize
well to other directions or domains

• Scaling width-wise and depth-wise yield sim-
ilar improvements, but the former is more ef-
ficient

• We discovered a critical issue related to the
packing of training samples in batches and
propose a solution to fix it

2 Background

As the size, data requirement, and training costs of
language models rise, it quickly becomes critical
to estimate the right training configuration for a
given training budget — expressed in number of
floating point operations (FLOP) — required to
train the model. Kaplan et al. (2020) discovered a

power law relationship between the loss of a lan-
guage model and its number of parameters, and
that larger models perform better given the same
amount of data. Even though most work in this area
show that larger models tend to be more powerful,
recent studies show that other parameters must be
taken into account as well. For instance, the Chin-
chilla scaling law (Hoffmann et al., 2022) shows
that model and dataset sizes are loosely tied and
need to be scaled equally. In other words, even
if increasing only the model size will most likely
improve its performances, the compute-optimal so-
lution often requires to also increase the quantity
of training data, while preserving the same train-
ing cost. These findings had a great impact on
LLM research, as researchers stopped increasing
blindly the size of their models, in favor of more
data, when it was necessary. For instance, the 176B
BLOOM (Le Scao et al., 2022) model would prob-
ably have been trained very differently (or not at
all) if this study was released sooner. As stated
in the paper, “in light of revised scaling laws pub-
lished during training, we decided to train the large
models for an additional 25 billion tokens on re-
peated data”, the authors discovered that training
such a big model was sub-optimal given the quan-
tity of data they had. As a consequence, many
researchers started to work on the collection of
large, high quality datasets (Nguyen et al., 2024;
Penedo et al., 2023) or on means to enhance exist-
ing datasets (Sorscher et al., 2022; Tirumala et al.,
2024).

Most of these scaling laws studies focus ex-
clusively on causal generative language models.
While it’s likely that many of these findings could
apply to translation models, the differences be-
tween the two tasks cannot be taken for granted.
Translation is a lot stricter than causal language
modeling since the model has to take into account
each information in the source and precisely gener-
ate the target sentence without adding or omitting
any information. Hence, many studies have natu-
rally emerged to observe the scaling behavior of
translation models (Gordon et al., 2021; Fernan-
des et al., 2023; Ghorbani et al., 2021). Yet, these
works focus on encoder-decoder models. For in-
stance, Gordon et al. (2021); Fernandes et al. (2023)
showed that, when the encoder and the decoder are
scaled proportionally, the model’s loss follow a
power-law similar to the observation made on lan-
guage models. Ghorbani et al. (2021) tackle the
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problem in a different setup, and propose to scale
the encoder and the decoder individually. They
show that encoder-scaling and decoder-scaling af-
fect the model’s performances differently, and they
propose a new formula describing the scaling be-
havior of the cross-entropy loss as a bivariate func-
tion of encoder and decoder size. They found out
that scaling decoder is, according to their experi-
ments, always more beneficial, in terms of cross-
entropy loss performance, than scaling the encoder.

Recently, Alves et al. (2024) introduced the Tow-
erInstruct, an LLM based on a decoder architecture
(LLama 2 (Touvron et al., 2023)) finetuned to han-
dle several translation tasks. They show that a prop-
erly finetuned LLM can perform translation better
than state-of-the-art models on high-resource lan-
guages. But the most promising aspect of this work
is the inherent capacity of LLM to handle different
tasks. They finetuned TowerInstruct so it can, for
instance, clean source sentences before translating
them, follow terminological constraints or respect
a given level of language. However, this work is
still empirical and we do not know, yet, the lim-
its of such models. Inspired by the performances
of TowerInstruct, an LLM finetuned for machine
translation tasks, we study, in the following, the
scaling behavior of decoder-based machine trans-
lation models trained from scratch. To this aim,
we fit multiple scaling laws to see if translation
models follow the same scaling laws as language
modeling models (such as the Chinchilla law) or if
they follow their own task-specific law.

3 Training methodology

We present in this section all details related to the
training of our six models.

3.1 Data

To conduct our experiments, we collected many
bilingual data from public repositories (CCMa-
trix (Schwenk et al., 2021b), WikiMatrix (Schwenk
et al., 2021a), UN Parallel Corpus (Ziemski et al.,
2016), Paracrawl (Bañón et al., 2020) and Eu-
roparl (Koehn, 2005)). We also included a subset
of an in-house proprietary dataset collected over
time, as well as a small portion of financial docu-
ments in order to observe the scaling behavior on
domain-specific data. An overview of the dataset
distribution is given in Table 1. The financial data
is divided into 8 sub-domains, which are described
in Appendix A. The data is made of bilingual texts

with one sample being one sentence pair.

Pair Domain Sentences Tokens

en–de general 46.53 M 2694.16 M
finance 1.29 M 65.93 M

en–es general 51.88 M 3525.21 M
finance 1.34 M 71.48 M

en–fr general 81.39 M 5430.77 M
finance 8.29 M 494.47 M

en–it general 26.21 M 1657.58 M
finance 0.73 M 36.17 M

en–nl general 42.74 M 2057.81 M
finance 1.36 M 63.96 M

en–pt general 42.02 M 2086.62 M
finance 0.61 M 22.55 M

en–sv general 46.35 M 2180.64 M
finance 0.24 M 9.68 M

fr–de general 23.60 M 1470.68 M
finance 1.46 M 72.92 M

fr–es general 32.90 M 2731.79 M
finance 0.48 M 23.39 M

fr–it general 28.02 M 1845.84 M
finance 1.10 M 61.63 M

fr–nl general 31.94 M 2034.74 M
finance 0.62 M 29.18 M

Total: general 453.58 M 27 715.84 M
finance 17.53 M 951.36 M
all 471.11 M 28 667.20 M

Table 1: Distribution of the training dataset. It covers 8
languages over 11 language pairs and 9 domains (gen-
eral + 8 financial sub-domains).

We applied temperature sampling (t = 5) in or-
der to increase the visibility of under represented
pairs. Given a collection D of datasets, the proba-
bility of choosing a sample from a dataset Di ∈ D
after temperature sampling is given by Pt(Di) and
is calculated from the original dataset statistical
distribution P (Di).

P (Di) =
Ni∑|D|

j=0 Nj

T (Di, t) = P (Di)
1.0/t

where Ni is the size of dataset Di and T (Di, t)
is the factor by which the dataset Di should be
oversampled. The new size ki of the oversampled
dataset Di is given by:

ki =

⌊
T (Di, t) · max

|D|
j=0(Nj)

max
|D|
j=0(T (Dj , t)

⌋

1320



Finally, the probability of picking a sample from
dataset Di after temperature sampling is given by

Pt(Di) =
ki∑|D|

j=0 kj

Since the balance between general and financial is
also extremely skewed, we applied the temperature
sampling separately on the general and financial
domains.

3.2 Tokenizer

As we planned to train a multilingual model, we
trained a Byte-Level BPE tokenizer (Wei et al.,
2021) from scratch because, according to the au-
thors, it is expected to better share the tokens
among the multiple languages, resulting in less
rare tokens and, hence, better embeddings. The
tokenizer has been trained on the whole, non-
oversampled, dataset, and we set the vocabulary
size to 100 000.

We also reserved a small set of special tokens
representing the supported languages and domains.
They are inserted inside the input sequence so the
model knows this information while generating a
translation. For instance, the English language
token is <lang_en> and the general domain token
is <dom_general>.

3.3 Data format

Each sample of the datasets has two categories of
features: inputs and outputs. Input features are
data that will be given during inference, and output
features are data that should be predicted by the
model. Hence, inputs are the source sentence and
the target language (because the model needs to
know the desired target language); and outputs are
the source language, the domain and the translated
sentence.

Predicting the source language is not required,
but we decided to include it to give to the model
the ability to automatically detect the source lan-
guage, as it is a very common and handy feature
of most commercial translation tools. One could
argue that this should be an input parameter, but we
decided that the model should be able to classify by
itself the language of the source sentence. Yet, the
source language token can still be given as input at
inference time to force a particular language. This
also apply to the domain token.

Since we plan to train a decoder-only model,
training samples have been formatted such that the

input tokens are first seen by the model, so the
model has access to the whole input when generat-
ing the first output token. This is why we chose to
encode the sentence pairs in the following format:

SOURCE </src> <target lang> <source
lang> <domain> TARGET <eos>

where </src> and <eos> are special tokens used
to indicate, respectively, the end of the source and
target sequences.

This data format gives the possibility to either
provide the source language if required, or let the
model predict it automatically. For instance, in
the real example below, the green part represents
the mandatory input (source sentence and target
language), the blue part the optional input (source
language) and the gray part is the output generated
by the model.

The buyer pays at an ATM. </src>
<lang_fr> <lang_en> <dom_general>

L’acheteur effectue le paiement sur les
bornes automatiques. <eos>

3.3.1 The <eos> token issue
All the models were trained in the same way LLM
are trained. Sentence pairs were packed until the
training batch was completely filled. These sam-
ples were separated by the usual end-of-sentence
token <eos>. Ideally, one should also apply proper
masking so tokens cannot attend to tokens from
past sentence pairs. However, this features is not
implemented in flash-attention 2 (Dao et al., 2022),
so we trained the models without masks (except
the causal mask). We expect the training task to
be slightly more complex to solve, as the model
now needs to learn to ignore every token before
an <eos> token, but we decided that the gain in
training speed is worthwhile.

Model without <eos> with <eos>

70M 30.80 41.11
160M 39.12 45.13
410M 40.85 46.82

Table 2: BLEU scores of the same models when sources
are prefixed with and without the <eos> token.

Our experiments showed that the quality of trans-
lations generated by the models were far below our
expectations. We found that the absence of the
<eos> token before the source sentence was con-
fusing the model, explaining the drop in translation
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quality shown in Table 2. The <eos> token, which
was meant to signal the end of the translation, is
actually also interpreted as a “start of translation”
token. Indeed, during training, all sentence pairs
(except the first one) are prefixed with the <eos>
token. This phenomenon is clear in the example
below, in which three sentence pairs are packed in
the same training sample.

x1-1 x1-2 x1-3 </src> <tgtlang1> <srclang1>
y1-1 y1-2 <eos> x2-1 x2-2 </src> <tgtlang2>
<srclang2> y2-1 y2-2 <eos> x3-1 x3-2 x3-3

</src> <tgtlang3> <srclang3> y3-1 y3-2 y3-3
y3-4 <eos> x4-1 . . .

The impact of <eos> absence on the test loss can
be seen in Figure 1. The model clearly outputs bet-
ter translation when the source sentence is prefixed
with an <eos> token. This is particularly blatant
when comparing the 160M and 410M models, re-
spectively with and without the <eos> token prefix.
The 410M model, albeit being more than two times
bigger than the 160M model, cannot generate better
translations without the <eos> prefix.

1.0

1.2

1.4

1.6

25000 50000 75000 100000

Step

L
o

s
s

<eos> prefix No Yes

Model 70M 160M 410M

Figure 1: Test loss of our three smallest models (70M,
160M and 410M) with and without the <eos> prefix.

This problem should be negligible when train-
ing LLM, as documents are usually longer than
sentence pairs, so <eos> tokens are scarcer. How-
ever, its impact will increase as batch size grows,
since more sentence pairs can be packed into the
same batch, making even more obvious that sen-
tence pairs should start with an <eos> token. We
experimented with a relatively small input length
(512 tokens) and the absence of the <eos> token
during inference already lead to significant drop in
performance. Generally speaking, this issue should
not be ignored when more than one sequence are
packed in a single training sample. When possible,
one should properly mask previous training sam-

ples. As it is not possible, currently, to leverage
the state-of-the-art self-attention algorithms, we
recommend to always prefix all source sentences
with the same prefix token(s), both during training
and inference. An alternative solution might be to
prefix all sequences with a <bos> (begin of sen-
tence) token, but we do not think it will solve this
particular issue since the model will likely see that
most sentence pairs start with the <eos><bos> se-
quence, which is still not the intended behavior. In
the remaining of this paper, we will only consider
translations generated with an <eos> prefix.

3.4 Training strategy
As we aim to train models dedicated to the trans-
lation task, we computed the loss only on target
tokens, so the model learns to generate only text
given a source sentence. This is different from pre-
trained language models as there is no notion of
source and target sentence. The target-only strategy
has proven to be effective for training text-to-text
models (Touvron et al., 2023), and is also similar
to the way loss of encoder-decoder models is cal-
culated, which are commonly used for machine
translation (Costa-jussà et al., 2022). Finally, we
packed as many sentence pairs that we could in a
single batch, in order to increase the training effi-
ciency.

3.5 Model architectures
We used almost the same model architectures used
in the Pythia suite (Biderman et al., 2023), the only
difference being the number of attention head of the
160M model, as flash-attention expects a multiple
of 8. We trained the models using the GPT-NeoX
library (Andonian et al., 2023). We made a few
changes to the data processing scripts in order to
ignore source tokens during the loss computation.
An overview of the different models we trained is
given in Table 3.

All models are trained with a fixed batch size
of 262 144 tokens (512 sequences of length 512
tokens) per GPU, on 8 Nvidia A100 GPUs. The
models are trained in bfloat16 precision using the
Adam optimizer with weight decay set to 0.1, 100
warmup steps and cosine learning rate decay. The
maximum learning rate of sub-1B models is set to
1 × 10−3, and 1 × 10−4 for larger model because of
loss instabilities during the training.

The models are trained for 100 000 steps on ap-
proximately 210B tokens, although only half of
them were actually used to train the model as we
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Model Non-embedding Embedding Layers Dim Heads Max lr

70M 70 295 552 51 380 224 6 512 8 1e−3

160M 162 126 336 77 070 336 12 768 16 1e−3

410M 405 071 872 102 760 448 24 1024 16 1e−3

610M 607 448 064 154 140 672 16 1536 16 1e−3

1B 1 011 257 344 205 520 896 16 2048 8 1e−4

6.9B 6 855 204 864 411 041 792 32 4096 32 1e−4

Table 3: Architectures of the trained models. All models are trained with the very same setup (data, random seed,
batch size, number of GPU, . . . ). They closely follow the Pythia models but parameters counts do no match because
of the bigger vocabulary size, which increases the size of both the embedding and classification layer.

do not take into account source tokens when calcu-
lating the loss.

4 Experiments and results

In this section, we will study the impact of varia-
tions in training data size and parameters count on
the test loss, for all our models. We will also verify
if these changes correlate with their real transla-
tion performances using standard metrics such as
BLEU and COMET. We finally explore two differ-
ent model scaling strategies.

4.1 Applying machine translation scaling law
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Figure 2: Test loss of all model checkpoints. Each step
represents 512 training samples. Larger models always
converge faster given the same amount of training data.

All existing scaling-laws studies show that
larger models exhibit better generalization capa-
bilities (Gordon et al., 2021; Fernandes et al., 2023;
Ghorbani et al., 2021; Rae et al., 2021; Kaplan
et al., 2020; Biderman et al., 2023). This study is
no exception, as can be seen in Figure 2, larger
decoder models always converge faster and require
less training data to reach the same loss value.

We first fitted multiple curves following the set-
ting of Ghorbani et al. (2021); Fernandes et al.

(2023), who studied scaling laws for machine trans-
lation. The form of the law is given below:

L(N) = αN−p + β (1)

where N is the number of trainable parameters,
and the other variables are fitted by minimizing the
huber loss (with a delta value of 0.01) using the
BFGS algorithm from SciPy (Virtanen et al., 2020).

As shown in Figure 3, the test losses of our trans-
lation models can be realistically described by the
power law fitted on observations made on all our
models (the purple dotted line). This suggests that,
indeed, performances of translation models follow
a scaling law, that can be expressed by the for-
mula above. We also fitted curves on less data
points in order to verify if we could estimate the
loss of the 6.9B model. Unfortunately, the fitted
curves become deviate from the real observations
as soon as we remove the data points from the
largest model (the 6.9B model). This is extremely
problematic, as the main goal of scaling laws is
to estimate the performances of not-yet-trained
larger models. Yet, we show that it is difficult to
find a good estimation of the 6.9B model’s perfor-
mance without actually training it. For instance, the
law fitted on the observations made on the subset
70M-160M-410M-610M-1B (in green) cannot give a
good approximation of the unseen 6.9B model’s
performance, and the others are even worse. There-
fore, we think one might be particularly cautious
when applying such scaling laws to estimate larger
models behaviors. Even if our law fitted on all data
points seems to be a good estimator of the test loss,
we think it will deviate from real observations as
the model grows in size.

We also fitted scaling laws on a per-domain and
per-direction basis, on all available data points.
This is particularly interesting as it highlights dis-
crepancies between domains and directions. As
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Figure 3: Test losses estimated by power law fitted on
different subset of models. Laws fitted on all models
and 70M-160M-410M-1B models subset match our ob-
servations.

shown in Figure 4, it seems to be significantly eas-
ier to translate sentences from the kiid (Key In-
vestor Information Document) financial domain,
but translating general domain sentences is the
most difficult, even though the huge majority of our
training set is from the general domain. We suspect
this curve are, somehow, indicators of the diversity
inside each domain. Indeed, kiid documents are,
by law, all following the same structure and must
contain a specific set of information, written in a
certain way. On the contrary, general domain doc-
uments do not follow any rule, making this domain
the most heterogeneous one, and thus the most dif-
ficult to translate. Other phenomena might explain
the differences between these curves. For instance,
we also think the presence of many very specific
and rare words in the regulatory domain explains
partly the lower translation quality in this domain.

We also fitted one curve per direction and ob-
served similar phenomena, as shown in Figure 5.
For example, our models seem to be better at trans-
lating from English to German than from English
to French, although our training dataset contains
twice as many English-French pairs (before over-
sampling).

These observations show that the scaling behav-
ior of translation models depends on the training
data distribution, and thus scaling laws estimated
on a given dataset will not match the real scaling
behavior on another one, although they might have
the same general shape. For instance, it is not re-
alistic to rely on a scaling law fitted on the en–fr
direction to estimate the performances on the en–de
direction.

4.2 Applying language modeling scaling law

So far, we experimented with a scaling law for-
mula based on the model size only, ignoring the
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Figure 4: Scaling law fitted on the general domain and
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Figure 5: Scaling law fitted on the general domain for
English-X direction.

training dataset size. Even if we just showed that
lower perplexity/loss can be obtained with fewer
data samples (in the case of the en–fr and en–de
directions), larger training datasets still tend to in-
crease the overall models’ quality. But, it’s also
a waste of computing resources to train a model
on more data than required, this is why modern
language modeling scaling formula take into ac-
count both the number of trainable parameter and
the training dataset size. Hence, we fitted multiple
Chinchilla laws following the setting of Hoffmann
et al. (2022), whose form is given below, on various
combinations of input data to see if it can be used
to reliably predict model performances.

L(N, D) = E +
a

Nα
+

b

Dβ
(2)

E, a, α, b and β are variables fitted by minimizing
the huber loss (with a delta value of 0.01) using
the BFGS algorithm from SciPy (Virtanen et al.,
2020) ; N and D are, respectively, the number of
non-embedding parameters of the model and the
number of training samples. More details are given
in the original paper.

As shown in Figure 6, the test loss of our trans-
lation models can be realistically described by the
power law fitted on observations made on all our
models (the purple dotted line). Furthermore, the

1324



1.0

1.2

1.4

1.6

0.0e+00 2.5e+09 5.0e+09 7.5e+09 1.0e+10

Parameters

L
o
s
s

Model
70M

160M

410M

610M

1B

6.9B

Fitted on

70M−160M−410M

70M−160M−410M−610M

70M−160M−410M−610M−1B

70M−6.9B

all

Figure 6: Test losses estimated by the Chinchilla law
fitted on different model subsets. Curves deviate from
the real observations when we remove too many data
points to fit the curve.

general shape of the fitted curves is more stable,
and thus more trustworthy. Indeed, the curve fitted
on all models is very close to the one fitted without
the 6.9B model, indicating that behaviors of larger
models can be better estimated with this form of
scaling law. However, as with the previous scal-
ing law, the curve deviate from real observations
when it is fitted on less data points. While it is
not a surprising finding, it shows that scaling laws
should not be trusted beyond a certain model size.
However, we cannot provide a reasonable window
in which the estimated loss is realistic.
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Figure 7: Test loss of all models, each data point repre-
sents 5k training steps, or 2.5M samples. Given a fixed
FLOP, it’s often more beneficial to increase the dataset
size when possible.

These experiments shows two things. First, the
test loss of decoder-based translation models fol-
lows a scaling law similar to language modeling
models, as the curves fitted on all data points match
the real observations. The form of the law (a power
law) indicates that larger models will always gen-
eralize better, until a certain point where the curve
will stay mostly flat. The second thing we show is
that finding a good and universal estimation for the
model’s loss is very difficult, as fitted curves do not
generalize well beyond an unknown model size.
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Figure 8: Estimation of models’ test losses if they were
trained on more data. According to the Chinchilla law
fitted on all available observations, the 70M model
should be on-par with the 410M performances with four
times more data, and the 610M model should match the
6.9B model with only two times more data.

4.3 Correlating scaling law with real
translation quality

Let us suppose we know the function modeling
the real loss given a model size and an amount of
training data. We still do not know if targeting
lower loss values will actually improve the quality
of the translations generated by the model. We pro-
vide in the following an empirical study showing
the correlation between the model’s loss and its
translation performance. We computed BLEU (Pa-
pineni et al., 2002), COMET (Rei et al., 2022a)
and CometKiwi (Rei et al., 2022b) scores for all
six models, and we observed that, indeed, a lower
loss does correlate with a performance increase,
as shown in Table 4. This trend can be observed
on the general domain for all directions, as shown
in Appendix C. However, on the financial domain,
CometKiwi does not always increase, it reaches a
peak on the 610M model, then decreases. We con-
jecture that CometKiwi cannot correctly evaluate
domain specific translations, as it is a reference-free
model trained mainly on generalist sentences. We
show in Appendix C that BLEU and COMET al-
ways increase with models’ size, while CometKiwi
often decreases at some point.

We also compare our models to well established
LLM, and we show that smaller but specialized
models clearly outperforms large and generalist
LLM, as shown by our 410M model performing
on par with Llama 8B. Our largest models are also
real competitors to Tower 7B, even though it has
been trained on much more data and specialized
for machine translation. Tower 7B has the highest
CometKiwi score, but as we just showed, it might
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Model BLEU COMET CometKiwi

General domain

70M 29.62 81.31 80.72
160M 32.43 84.00 83.45
410M 33.60 84.81 84.14
610M 34.08 85.10 84.35
1B 34.42 85.10 84.33
6.9B 36.07† 85.88 84.82

Llama3.1 8B 30.43 84.82 84.47
Mistral 7B 23.26 80.08 82.29
Tower 7B 33.50 85.91† 85.02†

Tower 7B* 34.38 86.22 85.23

Financial domain

70M 44.63 86.95 80.88
160M 49.02 88.27 81.80
410M 50.85 88.64 81.73
610M 52.00 88.85 81.71
1B 53.28 89.98‡ 81.61
6.9B 58.34‡ 89.62 81.35

Llama3.1 8B 34.99 84.42 81.75
Mistral 7B 38.93 76.52 76.17
Tower 7B 38.93 86.49 82.66‡

Tower 7B* 39.08 86.52 82.74

Table 4: Evaluation of the six models trained during this
study on our in-house evaluation dataset. We reports
both the scores on the general (G) domain and average
over all financial (F) subdomains. We also include best
performing LLM. As Tower has not been trained on
Swedish, we also evaluate it after removing directions
including Swedish (the Tower 7B* rows). Best scores
on the general and financial domains are indicated by †

and ‡ respectively.

not be reliable for specialized domains. Our mod-
els are obviously performing better on the financial
domain, because only our models were finetuned
on financial data. We also remark that Mistral’s
scores are quite low on the general domain, a quick
manual inspection revealed that the model often
give details and explanations about the produced
translation, even when asked not to. As a conse-
quence, we think that Mistral lower score is mostly
caused by the model not following rigorously the
instructions (see Appendix B).

So, while it certainly boost performances, in-
creasing the model size is often not the optimal
solution to improve the model’s performance. The
training dataset is also extremely important. Indeed,
as can be observed in Figure 7, given a fixed FLOP
budget, it is often preferable to increase the number
of training samples. For instance, the 160M model
appears to always be better than the 410M, 610M
and 1B models given the same FLOP budget, as
indicated by the 160M’s curve being below other

models’ curves. This observation is also validated
by the fitted law, as indicated in Figure 8. Most of
the time, and according to the fitted Chinchilla law,
it would have been better to just train our models
on more data, instead of training larger models. For
instance, we estimate that the 160M model would
be on-par with the 410M model if trained on ap-
proximately twice as many data, which would not
exceed the total number of FLOP of our current
410M model.

To conclude with, we find that scaling laws are
a powerful tool to have a glimpse of what we can
expect from a relatively larger model trained on
the same dataset, but it will probably fail to predict
the performances of much larger models, even if
trained on a similar data distribution. It has to be
kept in mind when using such scaling laws to plan
a training budget: at some point, the fitted law
will fail. Planning a training budget based on obser-
vations made on a 10B model might be fine to train
a 70B model, but completely wrong for a 500B one.
Furthermore, a given scaling law can only estimate
the end performances of a model trained on the
same data distribution used to fit the scaling law.
For instance, we show in Figures 4 and 5 that laws
fitted on different language directions or domains
are very different, and thus should not be applied to
estimate the performances of the model on another
direction.

4.4 Scaling strategies
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Figure 9: In our experiments, we increased the width
and the depth of the 70M model so the additional cost in
terms of FLOP is similar (left). Scaling the depth or the
width can lead to similar performance gains (right). The
two figures are similar, except that the loss decrease can
be observed either through the FLOP budget prism (left)
or throughout training time / size of dataset (right).

We also studied whether one should favor scal-
ing the depth (increasing the number of layers) or
the width (increasing the hidden size) of a decoder
model. We took the smallest model as a baseline
and scaled it depth-wise and width-wise so that
the increase in parameters increased the total train-
ing FLOP by a similar amount, as illustrated in
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Model Layers Dim Non-embedding Embedding FLOP per s. Samples per s.

70M 6 512 70 295 552 51 380 224 1.06 × 1014 1170

70M+d768 6 768 119 599 104 77 070 336 1.74 × 1014 900
70M+12l 12 512 89 209 856 51 380 224 1.37 × 1014 760

70M+d1024 6 1024 178 339 840 102 760 448 2.43 × 1014 725
70M+24l 24 512 127 038 464 51 380 224 1.6 × 1014 445

Table 5: Sizes and architecture of models scaled in depth (70M+12l and 70M+24l) and models scaled in width
(70M+d768 and 70M+d1024) compared to the base 70M model. Increasing the depth of the model has limited
impact on the total parameters count, but decreases significantly the efficiency (higher FLOP per second but less
training samples per second). Scaling the width of the model takes advantage of modern GPU architectures, but
adds many trainable parameters.

Figure 9. An overview of the scaled model archi-
tectures can be seen in Table 5. Interestingly, we
observed that both scaling methods yield the same
performance improvement. As shown in Figure 9,
given a similar FLOP cost, scaling the depth or the
width seems to have the very same impact on the
test loss.

Generally speaking, scaling depth-wise lead to
smaller, but less efficient models. Indeed, modern
hardware architecture can handle more efficiently
large matrix products than many smaller matrix
products. As shown in Table 5, width-scaled mod-
els are faster than depth-scaled models because the
GPU can do more FLOP per second.

5 Conclusion

This work describes the behavior of decoder-only
models on the multilingual multidomain machine
translation task. We trained six models whose num-
ber of parameters range from 70M to 6.9B on sen-
tence pairs in eight European languages. We found
that scaling laws for machine translation cannot
describe the general behavior of translation mod-
els, but they can still provide good estimation in a
given domain, language-pair, and range of model
sizes’. Indeed, We show that decoder-only models
for translation tend to scale similarly as language
models, as the Chinchilla law can also be applied
to our models. As such, we recommend to train
machine translation models using the same training
recipes as large language models. While we think
it is true for most, if not all, NLP tasks, more work
need to be carried out to validate this hypothesis.
However, we also highlight a critical limitation of
scaling laws: they cannot generalize well beyond
an unknown model and/or training dataset size. As
models tend to be larger through time, it will be

extremely important to find ways to detect early
unreasonable deviations of the “reference” scaling
laws on which larger models are build.

We also show that models scaled width-wise ap-
pear to be more FLOP efficient than models scaled
depth-wise, while reaching almost the same loss.
Our experiments need to be continued in order to
see when increasing the depth of the model starts
to be more valuable than increasing its width. But,
generally speaking, increasing the linearly both the
depth and the width seems to be a good trade-off
between efficiency and parameters count.

Efficient training requires packing as many sen-
tence pairs as possible in a training batch. We dis-
covered that unexpected biases can be introduced
if proper masking is not applied, that is to say, if se-
quences can attend to previous ones. Since it is not
possible with current state-of-the-art optimization
methods, one must carefully format the training in-
put data. We suggest dropping the end-of-sentence
token, commonly used to signal the end of text
generation, in favor of a start-of-translation token
signaling the start of a new source sentence and,
therefore, the end of the generated target sentence.

This study has been conducted on sentence-level
pairs only. While this setup is a bit outdated, it
is still the first time a comprehensive study has
been made on multilingual machine translation us-
ing decoder-only architectures. Nevertheless, we
expect decoder models to be easy to adapt to the
document-level translation task, as one can simply
finetune a sentence-level decoder with non-shuffled
sentence pairs from a corpus of parallel documents.
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A Full data distribution

Our models were trained on 11 language directions
and 9 domains (8 are financial subdomains + gen-
eral domain). The list 8 financial subdomains are
given below:

am Asset Management

ar Annual Report

corporateAction Corporate Action Document

equi Equity Research

ffs Fund Fact Sheet

kiid Key Investor Information Document

lifeInsurance Life Insurance Document

regulatory Regulatory Document

B Prompt templates

We used the following system prompt to generate
translation with Llama, Tower and Mistral:

You a r e an e x p e r t t r a n s l a t o r .
The u s e r w i l l a sk you t o

p roduce t r a n s l a t i o n s ,
g e n e r a t e o n l y t h e asked
t r a n s l a t i o n , do no j u s t i f y

nor e x p l a i n a n y t h i n g .

We used the following instruction template to
query the models:

T r a n s l a t e from {SOURCE_LANGE}
t o {TARGET_LANG} t h e t e x t
below .

{SOURCE_TEXT}

C Models’ performances per direction

Performances of all models increase as parameters
counts increase, regardless of the scoring method,
as shown in Figures 10 and 11.
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Figure 10: From top to bottom, BLEU, COMET and
CometKiwi scores computed on the test dataset for all
models and directions, on the general domain.
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Figure 11: From top to bottom, BLEU, COMET and
CometKiwi scores computed on the test dataset for all
models and directions, averaged over all financial sub-
domains.
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Abstract

This work investigates the in-context learning
abilities of pretrained large language models
(LLMs) when instructed to translate text from a
low-resource language into a high-resource lan-
guage as part of an automated machine transla-
tion pipeline. We conduct a set of experiments
translating Southern Quechua to Spanish and
examine the informativity of various types of
context retrieved from a constrained database
of digitized pedagogical materials (dictionar-
ies and grammar lessons) and parallel corpora.
Using both automatic and human evaluation
of model output, we conduct ablation studies
that manipulate (1) context type (morpheme
translations, grammar descriptions, and corpus
examples), (2) retrieval methods (automated
vs. manual), and (3) model type. Our results
suggest that even relatively small LLMs are ca-
pable of utilizing prompt context for zero-shot
low-resource translation when provided a min-
imally sufficient amount of relevant linguistic
information. However, the variable effects of
context type, retrieval method, model type, and
language-specific factors highlight the limita-
tions of using even the best LLMs as translation
systems for the majority of the world’s 7,000+
languages and their speakers.

1 Introduction

Despite great progress in the quality of today’s state
of the art machine translation (MT) systems, con-
straints on the amount and kinds of data available in
the majority of the world’s 7,000+ languages have
led to yet another disparity in access and support
for speakers of these languages: low-resource MT
continues to be a major challenge (Hendy et al.,
2023; Nicholas and Bhatia, 2023; Robinson et al.,
2023; Stap and Araabi, 2023). Although many
languages lack the kinds of large, standardized
corpora necessary for traditional MT methods, re-
cent work suggests it may be possible to leverage a
smaller amount of existing resources, for example

pedagogical materials used for language instruc-
tion, to develop MT systems with Large Language
Models (LLMs), albeit with varying results (El-
sner and Needle, 2023; Tanzer et al., 2024; Zhang
et al., 2024). These materials are often the result of
community-driven or government-led initiatives to
support language revitalization, reclamation, and
mother-tongue education (Schreiner et al., 2020;
Liu et al., 2022; Riestenberg et al., 2024). Such dis-
crepancies in the needs and priorities of academic,
commercial, and community-led efforts to develop
digital resources and language technologies is what
Gessler (2022) terms the “NLP Gap”.

In this study, we investigate one way to lessen
the NLP Gap, comparing LLMs’ in-context learn-
ing abilities when translating from a low-resource
language (a Peruvian variety of Southern Quechua)
to a high-resource language (Spanish) using infor-
mation retrieved from a database of pedagogical
materials. We replicate results of earlier studies on
a new language pair by comparing the effects of
morpheme translations, sentences from a parallel
corpus, and passages from a grammar instruction
document on translation quality. We then conduct
a more focused analysis by annotating translation
outputs by hand using a modified MQM error ty-
pology (Burchardt, 2013). Finally, we conduct an
ablation study on the effects of automated retrieval
by manually constructing prompts using the same
set of materials.

Our results suggest that while, unsurprisingly,
translation quality improves with model size, such
improvements seem to primarily be the result of
previous exposure to the low-resource language
during model pretraining, rather than an improved
ability for the model to utilize prompt context, as
evidenced by high scores in response to baseline
(zero-shot) translation prompts. However, we also
find evidence that in-context learning abilities may
be inconsistent across different models of similar
size. As found in previous studies, prompts contain-
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ing morpheme and word-level translations reliably
improve model outputs, but information from the
grammar and corpus have a null or even negative
effect on results. Human evaluation on a selec-
tion of outputs from two models – GPT-3.5 Turbo
and GPT-4o – align with the quantitative measures
we obtain using BLEURT (Sellam et al., 2020)
as an automatic metric. Quantitative results also
show an effect of automated retrieval on translation
quality that is most evident in prompts containing
morpheme translations and for models with lower
baseline scores. Finally, we highlight a number
of ethical concerns and limitations that arise from
the proposed methods that are supported by our
findings, and discuss the potential risks and chal-
lenges LLM-based methods for low-resource MT
face moving forward.

2 LLMs for Machine Translation

Modern LLMs are now capable of translating many
high-resource languages, but lack sufficient cov-
erage of even modestly resourced languages to
achieve comparable results without additional sup-
port (Kocmi et al., 2023). Retrieval-augmented
generation (Rubin et al., 2022) may provide such
support in the form of parallel sentences (Agrawal
et al., 2022), dictionary definitions (Ghazvinine-
jad et al., 2023; Lu et al., 2023) or other linguistic
meta-knowledge such as a grammatical description.
Retrieval-augmented methods offer exciting possi-
bilities for low-resource translation, since the LLM
might (in principle) be able to “teach itself” the
language from learner-oriented resources produced
by community members or language specialists.

Studies to date (Elsner and Needle, 2023; Reid
et al., 2024; Zhang et al., 2024) experiment with
four dimensions of variability: source language,
LLM, type(s) of information retrieved, and retrieval
method. Since the source languages in these stud-
ies have relatively little presence in public corpora
or on the web, differing results across LLMs can
tentatively be attributed to differences in their in-
context learning and instruction-following abilities.

All studies find that word-level translations are
helpful additions to prompts. Zhang et al. (2024)
and Tanzer et al. (2024) also add sentence pairs
from a parallel corpus, while Elsner and Needle
(2023) add usage examples from a dictionary. Each
improves results, although to a lesser degree. El-
sner and Needle (2023) and Zhang et al. (2024)
experiment with small fixed “grammar lesson” pas-

sages to provide explicit syntactic instruction, but
find these ineffective. Tanzer et al. (2024) uses pas-
sages retrieved from a grammar book, also with rel-
atively disappointing results. Reid et al. (2024) use
the entire grammar book and a very long-context
model to obtain better translations, but without
exploring the role explicit grammar instruction ac-
tually plays in doing so.

Zhang et al. (2024) find that sentences from the
corpus retrieved using BM25 embeddings (Robert-
son et al., 2009) work better than random ones.
Tanzer et al. (2024), however, report that retrieval
with longest common substring (LCS) matching
outperforms embedding-based retrieval. Overall,
the question of how to best retrieve relevant pas-
sages containing grammar material or sentences
in a low-resource language is still open. This
also complicates the interpretation of the mostly-
negative results found for grammar passages. It is
not clear whether these stem from poor retrieval,
from the LLM’s inability to process the retrieved
content, or both. Moreover, although Reid et al.
(2024) conducts human evaluation of the results for
quality, to the best of our knowledge no study to
date systematically investigates specific grammati-
cal errors in the output.

Finally, each of these studies finds a significant
decrease in LLMs’ abilities to translate from a high-
resource language into a low-resource language
relative to experiments in the opposite direction.
This is in line with McCoy et al. (2023), who find
that while the accuracy of an LLM’s output highly
depends on the probability of both the input and
the output text, output probability has a greater
influence on model performance. We therefore
focus this study on a single translation direction,
instructing LLMs to output translations from a low-
resource language into the language with which
they are likely to have had more exposure during
training, i.e, from Southern Quechua into Spanish,
and leave the reverse direction for future work.

3 Quechuan Languages

Quechua is a family of languages Indigenous to the
Andes in South America. This study focuses on
varieties of Southern Quechua (S. Quechua, also
known as urin quechua or quechua sureño) spoken
in parts of Peru.1 While previous studies investi-
gated language-LLM pairs for which the baseline

1Unless noted otherwise, we use Quechua in this study to
refer Southern Quechua and related varieties.
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LLM lacked any pretrained knowledge, we find
that newer LLMs can translate some S. Quechua
sentences in a zero-shot setting. We expect this to
be typical of many low-resource languages which,
while often endangered, still may have some pres-
ence on the web.

Quechuan languages have by far the largest rep-
resentation of all Indigenous Latin American lan-
guages in NLP research (Tonja et al., 2024) and
are often included in ACL-affiliated workshops,
datasets, and shared tasks (Cotterell et al., 2020;
Ebrahimi et al., 2022, 2023). S. Quechua has a
robust language toolkit (Rios, 2015), including the
morphological parser we use in our pipeline. It has
also been the subject of numerous studies on MT
for both text and speech, developed in conjunction
with monolingual and parallel corpora (Rios, 2015;
Cardenas et al., 2018; Ortega et al., 2020; Zevallos
et al., 2022). Nonetheless, such tools continue to
face challenges, and Quechuan languages continue
to lack the resources necessary to develop most of
today’s state of the art models.

Since Quechua is primarily spoken in South
America, the majority of available digital resources,
including all materials used in this study, use Span-
ish as the language of translation, explanation,
and/or instruction. We therefore also use Spanish,
rather than English or any other high-resource lan-
guage, as the language of translation and prompting
when testing our system.

3.1 Language-Specific Factors

While the proposed methods are general enough to
be applied to any language pair, model outputs may
reflect certain language-specific characteristics of
the source and target languages, respectively. In
this section, we provide a brief description of se-
lected language-specific factors in S. Quechua as
they relate to their translated Spanish counterparts.
For a discussion of their potential effects on our
results, please see Section 6.1.

3.1.1 Morphological Segmentation
S. Quechua is primarily agglutinating, i.e., much of
the morphology may be described in terms of iso-
morphic form-meaning relationships, morphemes
generally maintain a consistent form regardless of
their phonological environment, and morpheme
boundaries tend to be transparent. In contrast,
morpheme segmentation in Spanish may be ren-
dered opaque due to its fusional morphology and
widespread use of conditioned allomorphy.

While LLMs are trained to process text via token-
based rather than morpheme-based segmentation,
it is possible that a lack of direct correspondence
between the expression of morphosyntactic cate-
gories in S. Quechua and Spanish may affect a
model’s ability to leverage the information we pro-
vide as prompt context in our experiments. Cor-
respondences in form and meaning across parallel
usage examples may be particularly obscured, lim-
iting the use of corpora designed for traditional
MT methods. It may be possible to mitigate such
issues with more advanced retrieval or prompting
techniques, for example by explicitly instructing an
LLM to conduct morphological analysis as part of
the translation process, but we leave this for future
work.

3.1.2 Syncretism and Polysemy
Although the language is primarily agglutinating, a
number of morphemes in S. Quechua are syncretic,
such that a given form may be used to express more
than one grammatical category. For example, the
1SG.POSS marker, -y, shares the same form as both
the 2SG.IMP marker and the infinitival marker, as
illustrated in the following examples:

(1) ñaña-y
sister-1SG.POSS
‘my sister’

(2) Mikhu-y!
eat-2SG.IMP
‘Eat!’

(3) mikhu-y-ta
eat-INF-ACC

muna-ni
want-1SG

‘I want to eat’

Similarly, words in S. Quechua may be polyse-
mous, with the potential to express more than one
meaning depending on their use in context. For
example, the S. Quechua word miski (misk’i) may
be translated as either dulce ‘sweet’ or rico/a ‘de-
licious’, and both dulce and rico/a are themselves
polysemous in Spanish. Dulce may be used as an
adjective, i.e., ‘sweet’, or a noun, i.e.,‘candy’, and
rico/a may describe either richness in flavor, i.e.,
‘delicious’, or in monetary wealth, i.e., ‘rich’.

The exact forms displaying syncretism or pol-
ysemy must be identified on a language-specific
basis, but the ambiguity they present poses a clear
problem for our proposed methods in general, with
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potential effects on both retrieval and generation.
We discuss this issue further in Section 6.1.

3.1.3 Variation

Both S. Quechua and Spanish are characterized
by extensive regional and dialectal variation. In S.
Quechua, this includes differences in orthographic
and/or phonological conventions as well as the spe-
cific lexical items and expression of morphosyn-
tactic content. For example, the S. Quechua word
for ‘dog’ may be rendered orthographically as alqo,
allqo, allku, allqu, or ashko, and the additive suffix
may be expressed as either -pas or -pis, depending
on the community. Variation in the attested us-
age of specific lexical items and morphemes across
communities is also common in S. Quechua. For
example, the evidential marker -mi /-m is frequently
attested in the Peruvian variety of S. Quechua used
in this study, but essentially absent in many Boli-
vian varieties.

Variation across Spanish-speaking communities
may also affect models’ abilities to produce trans-
lations that are both accurate and appropriate. The
Andean Spanish reference translations used in this
study do not appear to affect the results of our au-
tomatic evaluation. However, were the proposed
methods to be applied in a realistic setting, it would
be especially important to assess the degree of
alignment between any prescriptive linguistic stan-
dards that have been implicitly acquired by the
LLM and the usage conventions of the language
community or communities of interest.

4 Methods

4.1 Data

We conduct experiments on a collection of 50 pairs
of S. Quechua - Spanish sentences sourced from
one of the author’s personal notes. These were se-
lected to highlight a range of specific grammatical
phenomena at multiple levels of difficulty— they
include simple clauses and tenses (Example (4)),
as well as more advanced constructions such as
those involving past participles (Example (5)) and
simultaneous events (Example (6).

(4) qam
you

allin-ta
good-ACC

tusu-nki
dance-2SG

tu bailas bien
‘you dance well’

[TAREA] Traduce la siguiente frase del quechua al
español. Responde sólo con la traducción:
quechua: kay wasiqa turiypam
español:

Figure 1: Example BASELINE prompt. English: [TASK]
Translate the following sentence from Quechua to Span-
ish. Respond only with the translation: Quechua: kay
wasiqa turiypam; Spanish:

(5) awa-sqa-y
knit-PP-1SG

wali-qa
skirt-TOP

sumaq-mi
great-ASSERTIVE

la falda que tejí es linda
‘the skirt that I knit is pretty’

(6) qam-qa
you-TOP

taki-ta
song-ACC

uyari-spa
listen-SUBR

wasi-yki-ta
house-2.POSS-ACC

picha-chka-nki
clean-PROG-2SG

tú estás limpiando tu casa escuchando
música
‘you’re cleaning your house listening to mu-
sic’

The first author, a foreign-language student of S.
Quechua, received permission from her instructor
to use notes from their lessons for the study. All
sentence pairs were inspected by the instructor, a
native bilingual speaker of both S. Quechua and Pe-
ruvian Spanish, to eliminate any errors and confirm
the accuracy of all reference translations.

4.2 Prompt Construction

As a baseline, each sentence is inserted into a
prompt template that instructs the model in Spanish
to translate the S. Quechua sentence into Spanish
and respond only with the translation (Figure 1).
We automate a process for building on this template
and compare the effects of adding information from
three different sources to the prompt context.

4.2.1 Morpheme Translations (MORPH)
We use a morphological parser (Rios, 2015) to
segment each word of the source segment into
morphemes, each with gloss symbols and a Span-
ish translation.2 Some morphemes have multiple
candidate meanings, all of which are retrieved.
As an example, the word rantikuq is segmented
as ranti-ku-q and glossed as “comprar.DB.VRoot-
DB.VDeriv.+RflxInt+Ag.NS.”

2We set aside valid concerns regarding the theoretical sta-
tus of the morpheme for this study and define a morph(eme)
loosely as a recognizable form-meaning pair that recurs in a
language.
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While numerous orthographic standards have
been developed and promoted across Quechuan-
speaking communities in South America, consider-
able variation in orthographic conventions may be
found even within a particular community or vari-
ety (Rios and Castro Mamani, 2014). We discuss
the implications of this for our results in Section
4.2.5.

We supplement the output from the parser us-
ing a Quechua-Spanish bilingual dictionary (Qh-
eswa Simi Hamut’ana Kurak Suntur, 2005). We
retrieve any dictionary entry whose headword ex-
actly matches a morpheme in our segmentation. By
default, we include all senses and any usage ex-
amples or contextual information in the dictionary
entry as part of the prompt. We then concatenate
the output of the parser with the retrieved dictio-
nary entries and include this MORPH information
as prompt context preceding the source sentence
and baseline translation prompt.

4.2.2 Grammar Descriptions (GRAMMAR)
We also experiment with the inclusion of grammar
lessons found in student-facing pedagogical mate-
rials, retrieving grammatical explanations relevant
to each source sentence from a PDF document de-
veloped for students and teachers of S. Quechua
(Pinto Tapia et al., 2005). The document is or-
ganized into short sections (1-3 sentences, plus
paradigm tables or usage examples) that describe
the particular grammatical concept associated with
an affix in Quechua. For each source sentence, we
retrieve sections associated with any affix listed in
the document that is an exact match of a morpheme
and include this in prompts using contextual infor-
mation from the grammar. This improves on the
methods described in Tanzer et al. (2024), who use
LCS-based retrieval over an entire textbook, and
Elsner and Needle 2023 and Zhang et al. 2024,
whose grammatical description remains consistent
across prompts regardless of the source text being
translated.

4.2.3 Parallel Usage Examples (CORPUS)
Finally, we experiment with sentence-level exam-
ples from a S. Quechua-Spanish parallel corpus
designed for traditional NLP tasks. We combine
data made available via the AmericasNLP 2021
Shared Task on Open Machine Translation and
the 2023 IWSLT shared task on low-resource SLT
(Tiedemann, 2012; Agić and Vulić, 2019; Ortega
et al., 2020; Mager et al., 2021; Agarwal et al.,

2023). For each source sentence, we retrieve the
three best matches from the corpus using a LCS
search against the full source sentence.

4.2.4 Combined Prompt Types

Combinations of information from all three sources
yields 8 total conditions, including the baseline. An
example prompt from each information source is
given in Appendix E.

4.2.5 Manually Revised Prompts

To compute a soft upper bound on the improve-
ments possible with better retrieval, we conduct
an additional set of experiments using manually
revised prompts. We first examine the content re-
trieved from the morphological parser, dictionary,
and grammar document and remove all instances of
ambiguity and irrelevant or misleading information
from the prompt context.3

For example, many S. Quechua speakers use
the term runasimi (lit: ‘people mouth’, ‘the peo-
ple’s language’), as an endonym for the language.
The parser, however, returns only the literal de-
composition (runa ‘ser humanos’/‘people’ and simi
‘boca’/‘mouth’), and the dictionary does not list
runasimi as a headword but rather as one of eight
different senses of simi. We thus remove all such ir-
relevant examples and translations from the prompt
and retain only the content indicating a translation
of runasimi in the linguistic sense.

We also manually retrieve content from the dic-
tionary and grammar documents that were over-
looked by the automated retriever. For example, the
verb yanuy ‘to cook’ does not appear as a headword
in the dictionary, but rather as a regional variant
of wayk’uy ‘to cook’. We also eliminate content
from the grammar that was retrieved because of
syncretism, or mistakes that cascaded from the mor-
phological parser to result in irrelevant retrievals.

We manually parse each source sentence to only
retrieve and include relevant information in the
prompt context. All content in the revised prompts
is sourced from the same material available to the
automated retriever systems, and we do not add any
additional information or use supplemental materi-
als of any sort to create the revised prompts.

3We do not experiment with retrieval methods for corpus
examples, which were retrieved using LCS match in both
conditions. Improving on LCS-based retrieval remains an
open question in low-resource LLM-MT, and we leave this for
future work.
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4.3 Models

We experiment with three proprietary models, GPT-
3.5 Turbo (gpt-3.5-turbo-0125, Brown et al.,
2020), GPT-4o (gpt-4o, Achiam et al., 2023),
and Gemini 1.5 Pro (gemini-1.5-pro, Reid et al.,
2024), and one open-source model, Llama 3
(llama-3-8b-instruct, AI@Meta, 2024). We
use the pretrained models with their default set-
tings, and do not adjust hyperparameters or conduct
any finetuning as part of our experiments.

4.4 Evaluation

We conduct both automatic and human evaluations
to identify trends in model errors and outputs in
the various experimental conditions. We calcu-
late BLEURT and BLEU scores as automatic met-
rics, and report mean BLEURT scores across items
as the primary quantitative measure of translation
quality for each of the conditions and models. We
also use an adapted MQM schema to conduct qual-
itative human evaluation of the outputs of GPT-3.5
and GPT-4o for all prompts using automatic re-
trieval.

Each item selected for human evaluation is an-
notated by at least one of the authors by comparing
the model’s output to the source text and reference
translation. We refer to the complete MQM typol-
ogy to design our own four-dimensional framework
of commonly attested errors in LLM-MT, each with
a defined set of specific subtypes. Precise defi-
nitions and examples for all error categories and
subtypes may be found in Appendix D.

Many of the categories in our schema are de-
fined as in the core MQM framework. However,
to capture some of the key behaviors reported in
previous studies on LLM-MT and to evaluate the
effects of prompt type on model outputs, we make
the following adjustments. First, we utilize the
Addition and Omission errors defined as Accuracy
subtypes in the original MQM typology, but distin-
guish these from three additional subtypes: Substi-
tution - Incorrect Subject, Substitution - Incorrect
Tense/Aspect/Modality (TAM), and Substitution -
Other. This is intended to capture LLM transla-
tions that differ from the source in terms of discrete
lexical material or case, person, number, and/or
TAM markings while otherwise maintaining the
lexical and structural content needed to appropri-
ately translate the source text. Although they are
not the only grammatical phenomena that may be
similarly misrendered, we select subject and TAM

markers for analysis as they are straightforward to
identify and give a good indication of how well the
LLMs cope with more abstract information about
the meanings of functional morphemes.

Rather than including Mistranslation and MT
Hallucination as Accuracy Error subtypes as in the
original MQM typology, we define a separate Non-
Translation category with three possible subtypes:
Complete Mistranslation, Mistranslation with Lex-
ical Correspondences, and Refusal. The third di-
mension of our typology, Model Error, was ulti-
mately not used to classify any output in this study,
but characterizes more generic model “misbehav-
ior” such as failing to follow instructions, produc-
ing garbled text, or inappropriately generating con-
tent in the source language. Finally, Target Errors
identify outputs that are ungrammatical, stylisti-
cally inappropriate, or semantically incoherent in
the target language, regardless of their accuracy.

Detailed annotation guidelines were drafted and
agreed upon to encourage consistency across an-
notators and experimental items. Annotators are
instructed to identify and tag up to three specific
errors for each translation output, with the excep-
tion of Target Errors, which do not count towards
the three-error maximum. Each model output is
also tagged for quality along a four-point scale as
defined in Table 5.

Before proceeding with annotation over the
larger dataset, both annotators also completed a
test evaluation of the same 12 experimental items
(96 sentences total) to assess inter-annotator agree-
ment. Statistical measures (κ = 0.72 for quality
judgments, α = 0.55 for error categories) indi-
cated some discrepancies in annotator judgments,
especially for categories, since determining the
three most important errors is especially subjective.
These were identified and discussed, and agreement
was ultimately deemed sufficient to proceed.

5 Results

5.1 Quality Metrics

We present BLEURT scores for prompts generated
using automated retrieval in Table 1 and summarize
human quality judgments for GPT-3.5 and GPT-
4o with automated retrieval in Table 2. The com-
plete distribution of BLEURT, BLEU, and human-
annotated quality ratings for all of our experiments
is provided in Appendix F. We find clear effects of
LLM, prompt type, and retrieval method, as well
as interactions among all three factors.
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GPT3.5 GPT4o Gem. Lla3
BASE 0.19 0.66 0.56 0.15
CORPUS 0.27 0.59 0.49 0.19
GRAM 0.23 0.56 0.55 0.17
MORPH 0.44 0.54 0.61 0.39
C+G 0.26 0.59 0.54 0.21
C+M 0.44 0.59 0.59 0.36
G+M 0.41 0.53 0.61 0.39
C+G+M 0.43 0.57 0.61 0.15

Table 1: Mean BLEURT scores by LLM and prompt
type. Shaded rows include morpheme contexts.

LLM GPT-3.5 GPT-4o
BASELINE 21 108
CORPUS 43 101
GRAMMAR 33 99
MORPH 79 102
C+G 41 101
C+M 75 110
G+M 68 100
C+G+M 77 109

Table 2: Human-annotated quality ratings summarized
as 3 × high + 2 ×med + low. Shaded rows include
morpheme contexts.

GPT3.5 GPT4 Gem. Lla3
G-AUTO 0.23 0.56 0.55 0.17
G-MAN 0.24 0.58 0.54 0.15
M-AUTO 0.44 0.54 0.61 0.39
M-MAN 0.56 0.63 0.66 0.49
CGM-AUTO 0.43 0.57 0.61 0.15
CGM-MAN 0.54 0.63 0.63 0.26

Table 3: Comparison of mean BLEURT scores for auto-
matic versus manual retrieval of material in GRAMMAR,
MORPH, and CORPUS-GRAMMAR-MORPH prompts.

Comparing across models, we find that Gemini
and GPT-4o outperform Llama 3 and GPT-3.5 for
every prompt type. This gap is highest for the least
informative prompts, indicating that the Llama 3
and GPT-3.5 base models have relatively poor cov-
erage of S. Quechua, while GPT-4o and Gemini
have much better coverage. The effect is evident in
both automatic and human quality evaluations.

Effects of prompt type are mediated by the qual-
ity of the pretrained model. Llama 3 and GPT-3.5
show a clear improvement in quality when MORPH

information is included in the prompt. Gemini also
improves when this information is added, but to
a lesser extent. GPT-4o, on the other hand, per-
forms best in response to the BASELINE (zero-shot)
prompts, which attain the highest BLEURT scores
across all models, prompt types, and retrieval meth-
ods evaluated in this study. In other words, pro-
viding additional information in the prompt’s con-
text actually degrades GPT-4o’s ability to translate
from S. Quechua to Spanish in all experimental
conditions.

5.2 Effects of Automated Retrieval

To highlight the effects of automated retrieval on
model output, we present BLEURT scores for a
selection of prompt types and all four models in
Table 3 (full scores may be found in Appendix F).
The effect of manual retrieval for MORPH informa-
tion is positive for all models, although this gap is
smallest for Gemini (probably because its perfor-
mance for these prompts is already highest). The
effect for GRAMMAR prompts is either minor or
negative.

5.3 Human Analysis of Translation Errors

The most common error type identified by the an-
notators is Substitution - Other, which includes a
diverse assortment of lexical and phrasal incongru-
encies of varying degrees of severity. These are
largely item-specific and therefore hard to charac-
terize as a group. Using the error categories de-
scribed in Section 4.4, we instead identify three
more clearly interpretable phenomena and provide
a detailed discussion of each in the following sec-
tions. We present counts for selected prompt types
in Table 4, with examples in Appendix A and
counts for all errors in Appendix G.

5.4 Mistranslations

Outright mistranslations are most common for GPT-
3.5, making up 30 of the 50 responses in the BASE-
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BASE MORPH C+G+M

Mistranslation: complete +
lexical correspondence

GPT-3.5 45 11 12
GPT-4o 4 6 4

Target Fluency: grammar +
coherence + style

GPT-3.5 0 14 10
GPT-4o 3 13 9

Grammatical Divergence:
subject + TAM

GPT-3.5 0 24 31
GPT-4o 17 13 11

Table 4: Counts of human-annotated error types (per 50 sentences) by LLM and prompt type.

LINE condition. We also consider outputs that
retain only minimal traces of the source content,
which we label as Mistranslations with Lexical
Correspondence. Approximately 1/3 of the 637
total errors tagged across all prompt types for GPT-
3.5 are mistranslations of either type, roughly split
between complete mistranslations and those with
lexical correspondence (15.07% and 18.37%, re-
spectively, of all errors tagged for GPT-3.5).

As reported in previous work, adding morpheme-
and word-level translations to the prompt greatly
reduces the rate of this kind of response. GPT-
4o also produces drastically fewer mistranslations
compared to its predecessor. However, it is notable
that both models produce at least one mistransla-
tion for each prompt type. In general, complete
mistranslations are in fluent Spanish and contain
no overt indications that something has been mis-
represented. We return to the ethical implications
of these errors in the Discussion.

We also note that many of the items tagged as
Mistranslation with Lexical Correspondence show
correspondence only for words that were already in
Spanish in the source text. For example, some sen-
tences contain Spanish loan names for the days of
the week. While some of these errors are produced
in deceptively fluent Spanish, we find many to be
accompanied by semantic incoherence or ungram-
maticality in the output. We discuss such target
language fluency errors in the following section.

5.5 Target Fluency

Target Fluency errors occur when the output is not
grammatical, coherent, or stylistically appropriate –
for instance, if an output contains a nonsensical rep-
etition or a verb with missing arguments. Outputs
of this type bear a strong similarity to human “trans-
lationese” in that structural features of the source
language may surface in the translation at the ex-
pense of naturalness (Koppel and Ordan, 2011; Fre-
itag et al., 2019). Both GPT-3.5 and GPT-4o tend

to produce more such outputs when the prompt
is more informative – 10 to 20% of the time (5-
10 instances per 50) in prompts with morpheme
translations.

5.6 Grammatical Divergence

We group misrendered verbal subjects and
tense/aspect/morphology (TAM) markers together
as Grammatical Divergence errors. Such errors are
distinct from the Target Fluency errors described in
the previous section— the Spanish output is gram-
matical, but fails to accurately reflect the content
from the source. TAM divergences are much more
prevalent than divergences in subject; for instance,
only one of GPT-4o’s 13 Grammatical Divergence
errors in the MORPH condition misrender the sub-
ject marker.

Grammatical Divergence errors are annotated
only for sentences that are not mistranslated out-
right, so GPT-3.5 produces none of these in
the BASELINE condition. For more informative
prompts, it is clear that GPT-4o is better than GPT-
3.5 at translating both functional and lexical mean-
ings. However, a relatively large number of sen-
tences (over 20%) still contain such an error even
with the highest performing model and prompt
type. The relatively small drop in error between
different prompt types for GPT-4o suggests that
neither the corpus-based usage examples nor exam-
ple paradigms and descriptions from the grammar
document can fully prevent this type of error.

6 Discussion

We observe large differences between LLMs, both
in terms of the overall quality of their generated
translations as well as the effects of prompt type
on their outputs. GPT-4o and Gemini, which have
the highest baseline scores, benefit least from ad-
ditional information— BLEURT scores actually
decrease when CORPUS and GRAMMAR informa-
tion is included. This occurs even with manually
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curated prompts, suggesting it is not an effect of in-
cluding irrelevant material. Nonetheless, the base-
line results do not represent a ceiling on quality,
since both models still produce errors in the BASE-
LINE condition (GPT-4o produces 10 LOW-quality
translations in our set of 50). These results suggest
that even relevant grammar explanations, when
written in prose with examples, do little to help
the newest generation of LLMs to translate a low-
resource language such as Southern Quechua.

Although GPT-4o and Gemini results are simi-
lar in many ways, we do find evidence for differ-
ences in their in-context learning abilities. Baseline
prompts and the GPT-4o model produce the high-
est BLEURT scores across the dataset, but these
outputs still show a number of errors characteristic
of LLMs, particularly lexical substitution errors
that are not necessarily corrected with the inclu-
sion of more context. In contrast, Gemini, which
has near-comparable performance across prompt
types, shows an increase in scores when prompts
include MORPH information, regardless of retrieval
type, suggesting a greater ability to identify and uti-
lize relevant word- and morph-level translations in
the prompt’s context. Previous work suggests that
newer builds of GPT-4 are less capable of following
instructions (Chen et al., 2023); such differences
may be masked by the effects of pretraining when
automatically evaluating translations. This sug-
gests that researchers should continue to carefully
select and compare among different LLMs when
experimenting with retrieval-based translation.

6.1 Language-Specific Effects
We identify a number of translation errors of vary-
ing types that appear to be due to language-specific
factors such as those discussed in Section 3.1. For
example, we find an effect of polysemous lexical
items for all prompt types in the outputs of both
models on which we conduct human evaluation.

In the most straightforward cases, the model in-
correctly generates an alternate sense of the word
that is inappropriate given the content of the source
sentence. We also find a number of instances in
which the presence of such ambiguity has a cas-
cading effect on lexical selection in the rest of the
model’s output. For example, when co-occuring
with miski in the source text, the word lawa ‘soup’
is translated at times as mazamorra, a sweet por-
ridge or pudding, crema ‘cream’, miel ‘honey’,
golosina ‘candy’, or dulces, the nominal form of
dulce meaning ‘candy’ or ‘sweets.’

It may be possible to moderate such effects with
additional refinement of the database structure and
retrieval methods, which we leave for future work.

6.2 Ethical Concerns
Both our work and much of the previous work in
this paradigm is motivated by the desire to close the
“NLP Gap” among researchers, community mem-
bers, and software developers interested in low-
resource language technologies. Machine trans-
lation is listed as a welcome topic of research by
some (though not all) members of American In-
digenous communities (Mager et al., 2023), and is
potentially an important tool for language learners
(Jolley and Maimone, 2022). Even an imperfect
translation system might be a useful tool for users
with a clear understanding of its limitations. How-
ever, the systems evaluated in this work have two
problematic tendencies that limit their potential for
deployment in real community settings.

First, unfaithful translations often tend to be
highly fluent (Section 5.4). While fluency ratings
for older MT systems correlate well with accuracy
scores, and have even been used as a proxy for
overall translation quality (Gamon et al., 2005; Es-
trella et al., 2007), this correlation is reversed for
our systems. LLMs are well-known for making
false statements that seem plausible and authori-
tative (Bickmore et al., 2018; Dinan et al., 2021);
this could be particularly problematic when they
project illusions of expertise at the expense of an
already marginalized group.

Second, some mistranslations identified in our
study appear to draw on stereotypes of Indigenous
groups (Appendix B). These are most apparent for
the BASELINE system and GPT-3.5, but also (less
frequently) occur with more informative prompts
and better LLMs. Stereotypical sentences can in-
volve flowery language with an emphasis on tradi-
tion or connectedness to nature (Erhart and Hall,
2019), as well as the unprompted addition of In-
digenous Andean cultural customs and products
(e.g., traditional medicine and chicha) to transla-
tions that are otherwise faithful to the source text.
The overall effect is to exoticize Southern Quechua
speakers and writers in ways that the original sen-
tences do not. Similar stereotypes have also been
noted in LLM-generated responses to open-ended
prompts (Cheng et al., 2023; Delgado Solorzano
and Toxtli, 2023; Shieh et al., 2024).

While we prompt models to output only the trans-
lation for evaluation purposes, models may have
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some capacity to explain or qualify their transla-
tions and give reminders for responsible use of the
technology. Should a retrieval-based translation
system ever be deployed in a real-world setting for
language learning, its developers should maximize
transparency by presenting the content of any re-
trieved information and its source to the user along
with the translation, reminding users directly of po-
tential inaccuracies, and offering vetted resources
for additional fact-checking when available.

7 Conclusion

Our results suggest a number of key limitations
and concerns regarding the use of LLMs in a low-
resource MT context, and have greater implications
for our understanding of the seemingly “humanlike”
conceptual, analytical, and in-context learning abil-
ities of LLMs.

For the majority of the world’s languages and
their speakers, powering and supplying LLMs with
enough pretraining data to overcome their limita-
tions is not feasible. We therefore offer the follow-
ing suggestions to those looking to develop low-
resource LLM-MT: (1) improve data structures and
methods for interacting with a language-specific
database for retrieval-aided generation, (2) con-
tinue analysis of the mechanisms driving in-context
learning in LLMs, for example by comparing ICL
to the effects of finetuning (Dai et al., 2023), and (3)
experiment with prompt structures and techniques,
for example by altering the order of information
(Liu et al., 2024) or by iteratively prompting the
model to guide its reasoning towards a suitable
translation (Wang et al., 2022).

Finally, we wish to emphasize the continued
risks of prematurely deploying this or similar meth-
ods in any low-resource language community, par-
ticularly given the vulnerability and disproportion-
ate lack of resources many such communities face
in domains where these technologies would likely
be used. As AI research continues to rapidly de-
velop, we urge those conducting it to increase com-
munity engagement, amplify the voices of those
traditionally at a disadvantage, and collaboratively
develop research infrastructures that may lessen
the NLP Gap (Brinklow, 2021). While there’s still
much to be done before low-resource LLM-MT
may be safely implemented, we believe such a
tool has the potential to empower speakers of any
variety, including nonstandard varieties of high-
resource languages such as English, to develop

technologies that reflect their preferences and serve
their unique needs.

8 Limitations

Limitations on the scope and replicability of this
work may be attributed to one or more character-
istics of the data and models used in this study,
in addition to limitations inherent to the respective
identities of its authors. First, the automatic metrics
(i.e., BLEURT and BLEU scores) that we report
are limited in their statistical validity. We have con-
ducted some constrained tests to explore potential
variance in scores, but expenses associated with
text generation using proprietary models such as
those developed by OpenAI and Google on a larger
dataset may be prohibitive. This is compounded
by the widely-acknowledged “black box” nature
of the models powering both LLMs and BLEURT,
as well as an increasing opacity with respect to the
exact content and methods used to pretrain modern
state of the art LLMs. For this reason, we focus our
discussion on those results that show clear trends
in both the quantitative and human evaluations we
conduct.

There are also some constraints on our study and
its methodology that are largely tied to linguistic
factors, such as variation in orthography (and the
need for digitized text-based resources as a pre-
requisite) as well as the lexical and grammatical
variation that may be found in all languages, partic-
ularly the low-resource varieties we wish to support.
We discuss some of these factors in Sections 3.1
and 6.1. Our results suggest it may be possible
to guide the outputs of LLMs towards the specific
usage conventions of a given community, but this is
itself limited by the content of the materials used to
develop the database from which prompt contexts
are retrieved.

Neither of the authors is a native speaker of any
Quechua or Spanish varieties, and only one is a
student of these languages and has relationships
to Quechua speakers and communities. While we
have strived to be consistent in the Quechua and
Spanish varieties used in our study (both the dic-
tionary and grammar materials were provided by
the same instructor who shared and proofread the
50 sentence pairs we use, and we select a morpho-
logical parser and corpora intended for use with
Southern Quechua), variation is widespread among
and within Quechua-speaking communities, and
we do not have access to a dictionary, grammar,
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morphological parser, and corpus developed by a
unified and consistent set of authors. Future work
should continue to explore ways to faithfully rep-
resent the diversity of linguistic conventions em-
ployed by communities interested in developing
such technologies.

We acknowledge, as well, limitations that arise
from the size of our dataset and database and the
methods used to curate them. The 50 sentence
pairs we use were selected to highlight a range of
specific grammatical phenomena, not all of which
were well represented in our database, and dif-
fer in their structural complexity. We are grateful
for the guidance provided by the Quechua instruc-
tor whose lessons were a source for such exam-
ples and proofread the sentences before their in-
clusion in our experiments, but are limited by our
status as non-native speakers. Human evaluation
of model outputs was partially conducted using
machine-translated English texts as references, but
all annotations were inspected by the Spanish- and
Quechua-speaking author who removed a small
number of evaluations that reflected linguistic dis-
crepancies between Quechua, Spanish, and English
or inaccuracies in the machine-translated English.

9 Ethics Statement

We consulted the first author’s Quechua instructor,
Prof. Carmen Cazorla Zen, who gave us permis-
sion to use the sentences from the notes in this
project and verified their accuracy. We cite the
Quechua dictionary and grammar materials used
to provide prompt information, and believe that
our use of these materials is consonant with their
original purpose. However, we do not distribute
machine-readable versions of them as a contribu-
tion of this project, since this would violate the
rights of the publisher. These materials were de-
veloped for use as pedagogical resources by insti-
tutions affiliated with the governments of Cuzco,
Peru and Apurímac, Peru, respectively. Their au-
thors were not contacted or consulted as part of the
project.

We wish to acknowledge the delicate issue of
academic extractiveness and its harmful impact
on Indigenous and minority language communi-
ties and speakers. We are also aware of some of
the controversial ideologies and policies associated
with Qheswa Simi Hamut’ana Kuraq Suntur, the
government-afilliated institution who published the
dictionary we use in this study, and the potentially

negative effects of government-sponsored linguis-
tic standardization more broadly (see, e.g., Coro-
nel Molina (2008) for an analysis of the effects
of the institution’s ideologies on revitalization ef-
forts in Peru). We do not endorse such policies,
and have sought to avoid representing the diversity
of Southern Quechua-speaking communities as a
monolith. Instead, we hope our continued efforts to
improve methods for low-resource translation will
empower speakers of Southern Quechua and other
Indigenous and minority languages to develop lan-
guage technologies capable of representing their
own community’s unique language variety to serve
the unique needs of its speakers.

There are numerous ethical issues related to the
training and use of LLMs, such as labor issues and
energy costs. While these issues are inextricable
from the methods used in this project, we believe
the potential impact of making low-resource trans-
lation viable and accessible to minority language
communities who want them (our primary goal in
this line of research) outweighs the problems inher-
ent in using LLMs at all. We discuss the potential
risks of deploying systems like the ones described
here further in Section 6.2 of the main text.
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A Example Errors

The following section provides examples of errors
analyzed in Section 5.3, one error per type.

Mistranslation: Complete Mistranslation

Model: GPT-3.5 - BASELINE - AUTO

Source: qamqa taytaykipa munasqan lawata
yanurqanki

Gloss:

qam-qa
you-TOP

tayta-yki-pa
father-2.POSS-GEN

muna-sqa-n
like-SUBR-3SG

lawa-ta
soup-ACC

yanu-rqa-nki
cook-PST-2SG

Reference: tú cocinaste la sopita que le gusta a tu
papá
you cooked the soup that your dad likes

Output: yo te quiero mucho y mi amor por ti
nunca se acabará
I love you very much and my love for you will
never end

Mistranslation: Lexical Correspondence

Model: GPT-4o - C+G+M - AUTO

Source: ñuqaqa illani runakunawan rimayta
munaptiy

Gloss:

ñuqa-qa
I-TOP

illa-ni
travel-1SG

runa-kuna-wan
person-PL-with

rima-y-ta
speak-ACC

muna-pti-y
like-SUBR-1SG

Reference: yo viajo porque me gustar hablar con
las personas
I travel because I like to talk to people

Output: yo quiero hablar con las personas cuando
amanece
I want to talk to people when the sun rises

Target Fluency: Coherence
Unresolvable pronoun

Model: GPT-3.5 - C+G+M -AUTO

Source: qamqa yachayta tukuptiyki, puñunki

Gloss:
qam-qa
you-TOP

yacha-y-ta
study-INF-ACC

tuku-pti-yki,
finish-SUBR-2SG,

puñu-nki
sleep-2SG

Reference: cuando termines de estudiar, tu
duermes
when you finish studying, you sleep

Output: acabaré de aprender lo que tú duermes
I will finish learning what you sleep

Target Fluency: Grammar
Missing causative and possessive

Model: GPT-4o - CORPUS - AUTO

Source: ñuqaqa ñañayman wasita pichachini

Gloss:
ñuqa-qa
I-TOP

ñaña-y-man
sister-1SG.POSS-ILL

wasi-ta
house-ACC

picha-chi-ni
clean-CAUS-1SG

Reference: yo le hago limpiar la casa a mi
hermana
I make my sister clean the house

Output: yo hermana casa limpio
I sister house clean

Grammatical Divergence: TAM
Tense

Model: GPT-3.5 - C+G+M - AUTO

Source: qam allinta tusunki

Gloss:
qam
you

allin-ta
good-ACC

tusu-nki
dance-2SG

Reference: tu bailas bien
you dance well

Output: tú bailarás bien
you will dance well

1346



Grammatical Divergence: Subject
‘you’ to ‘I’

Model: GPT-3.5 - MORPH - AUTO

Source: qamqa mamaykipa wasinta yanuq rinki

Gloss:

qam-qa
you-TOP

mama-yki-pa
mother-2.POSS-GEN

wasi-n-ta
house-3SG.POSS-ACC

yanu-q
cook-AGT

ri-nki
go-2SG

Reference: tú irás a cocinar a la casa de tu mamá
you will go to cook at your mother’s house

Output: voy a cocinar en la casa de tu madre
I’m going to cook at your mother’s house

Grammatical Divergence: Subject
‘you’ to ‘the man’

Model: GPT-4o - C+G+M - AUTO

Source: qamqa misita qawaspa qari warata
awachkarqanki

Gloss:

qam-qa
you-TOP

misi-ta
cat-ACC

qawa-spa
watch-SUBR

qari
male

wara-ta
pants-ACC

awa-chka-rqa-nki
knit-PROG-PST-2SG

Reference: tú estabas tejiendo un pantalón de
varón mirando al gato
you were knitting a pair of men’s pants looking at
the cat

Output: tú mirabas al gato mientras el hombre
tejía el pantalón
you looked at the cat while the man knitted the
pants

Grammatical Divergence: TAM
Missing conditional

Model: GPT-4o - MORPH - AUTO

Source: qam runasimita yachapayaptiyki, allintam
rimanki

Gloss:

qam
you

runa-simi-ta
people-mouth-ACC

yacha-paya-pti-yki,
learn-REP-COND-2SG,

allin-ta-m
good-ACC-ASRT

rima-nki
speak-2SG

Reference: si practicas el quechua lo hablarás bien
if you practice Quechua you will speak it well

Output: tú ya sabías el runasimi, hablas muy bien
you already knew runasimi, you speak very well
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B Unprompted Stereotypes

The following section provides examples of errors
involving cultural stereotypes as discussed in
Section 6.2.

Model: GPT-3.5 - BASELINE - AUTO

Source: payqa qatupi ñañanpa rantisqan apita
rurarqan

Gloss:
pay-qa
3-TOP

qatu-pi
market-LOC

ñaña-n-pa
sister-3SG.POSS-GEN

ranti-sqa-n
buy-SUBR-3SG

api-ta
mazamorra-ACC

rura-rqa-n
make-PST-3SG

Reference: ella preparó una mazamorra que
compró su hermana en el mercado
she prepared a mazamorra [pudding] that her
sister bought at the market

Output: el sol brilla en nuestra tierra, calienta y
nos da vida
the sun shines on our land, warms us and gives us
life

Model: GPT-3.5 - GRAMMAR

Source: paykunaqa yachachiqninkupa rakta
medicina liwru apasqanta likanku

Gloss:
pay-kuna-qa
3-PL-TOP

yacha-chi-q-ni-nku-pa
learn-CAUS-AGT-NI-3PL.POSS-GEN

rakta
thick

medicina
medicine

liwru
book

apa-sqa-n-ta
carry-SUBR-3SG-ACC

lika-nku
read-3PL

Reference: ellos leerán el libro grueso de medicina
que trajo su profesor
they will read the thick medical book that their
teacher brought

Output: los médicos de la comunidad nos
enseñaron a utilizar plantas medicinales
the doctors from the community taught us how to
use medicinal plants

Model: GPT-4o - BASELINE

Source: qamkunapa taytamamaykichikta watuku-
naykichik, paykunata purikuq apanaykichik

Gloss:

qam-kuna-pa
you-PL-GEN

tayta-mama-ykichik-ta
father-mother-2PL.POSS-ACC

watuku-na-ykichik,
visit-must-2PL,

pay-kuna-ta
3-PL-ACC

puri-ku-q
walk-enjoy-AGT

apa-na-ykichik
bring-must-2PL

Reference: ustedes tienen que visitar a sus padres
y llevarlos a pasear
you have to visit your parents and take them for a
walk

Output: ustedes deben honrar a sus padres,
guiarlos en su camino
you must honor your parents, guide them on their
path

Model: Gemini 1.5 - BASELINE

Source: ñuqaqa upyayta munani

Gloss:

ñuqa-qa
I-TOP

upya-y-ta
drink-INF-ACC

muna-ni
want-1SG

Reference: yo quiero beber
I want to drink

Output: yo quiero beber chicha
I want to drink chicha
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C Quality Descriptions

Quality Description
High Output is an accurate and/or acceptable translation of the source content.

Med
Output contains errors that prevent it from being an acceptable translation, but is generally
high in quality otherwise.

Low
Output contains errors that prevent it from being an acceptable translation, with minor
correspondences that vaguely identify it as relevant to the source.

None Output does not appear to be relevant to the source.

Table 5: Quality Descriptions

D Annotation Error Typology
Dimension Error Description

Accuracy Addition Translation includes information not present in the source, but does
not result in the displacement of source content.

Accuracy Omission Translation is missing content from the source.

Accuracy Substitution - Subject

The translated segment contains content identified as relevant to the
source in other spans, but substitutes novel subject markers for those
present in the source in the highlighted span; Classify an error as a
“substitution” when the error appears to result in both Addition and
Omission errors that cannot be distinguished into two distinct spans.

Accuracy Substitution - TAM

The translated segment contains content identified as relevant to the
source in other spans, but substitutes novel TAM for those present in
the source in the highlighted span; Classify an error as a “substitution”
when the error appears to result in both Addition and Omission errors
that cannot be distinguished into two distinct spans.

Accuracy Substitution - Other Substitution errors that do not involve mistranslated subject markers or
TAM. See above.

Accuracy Overtranslation Error occurring in the target content that is inappropriately more
specific than the source content.

Accuracy Undertranslation Error occurring in the target content that is inappropriately less spe-
cific than the source content.

Target Error Grammar
Other spans in the translated segment may be identified as relevant to
the source, but the highlighted span is not grammatical in the target
language.

Target Error Coherence
Other spans in the translated segment may be identified as relevant to
the source, but the highlighted span is unnatural or incoherent in the
target language.

Target Error Style/Register
Other spans in the translated segment may be identified as relevant to
the source, but the highlighted span is produced in a style or register
that is inappropriate given the content.

Non-Translation Complete Mistransla-
tion

The entire segment is coherent in the target language but the core
predicate shows no immediate connection to the reference translation.

Non-Translation Mistranslation - Lexical
Correspondence

The entire segment is coherent in the target language but only minor
correspondences to the reference translation may be identified.

Non-Translation Refusal Model does not attempt to translate into the target language, e.g.,
because it "does not understand".

Model error Garbled Output does not contain coherent text in the target language.

Model error ChattyGPT Output contains translated content, but is wordy, over-explanatory,
and/or abruptly truncated.

Table 6: Adapted MQM typology for human error annotation
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E Example Prompts

The following are examples of prompts generated
used automated retrieval from the database.
English is included in italics for the reader, but was
not provided to the models as part of the prompt.

BASELINE

[TAREA] Traduce la siguiente frase del quechua al
español. Responde sólo con la traducción:
quechua: qam allinta tusunki
español:

[TASK] Translate the following sentence from
Quechua to Spanish. Respond only with the
translation:
Quechua: You dance well
Spanish:

MORPHS-ONLY

[CONTEXTO]
qam: [PrnPers+2sg]
allin: bueno [D̂B][NRoot]
ta: [+Acc][Cas]
tusu: bailar [VRoot][D̂B]
nki: [+2sg.Subj][VPers]
allin. adj. Bueno (término de aprobación). SINÓN:
kusa. EJEM: allin p’unchay, buenos días: allin tuta,
buenas noches; allin tutamanta, buena mañana,
buenos días; allin inti chinkay, buenas tardes;
allin iñiyniyoq, de buena fe, fiel, justo, íntegro:
allin nunayoq, de espíritu bueno; allin puriq,
de comportamiento bueno; allin puriy, compor-
tamiento bueno; allin rikuy, tratamiento bueno;
allin rikuq, el que trata bien; allin ruway, obrar
bien, beneficiar; lo que se hace bien, beneficioso;
allin ruwaq, el que hace bien; allin yuyay, pensar
bien; pensamiento bueno; allin qolqeyoq, poseedor
de plata fina; adinerado.
ta. s. Gram. Sufijo que desempeña los papeles de
artículo y preposición. EJEM: llamata qatiy, arrea
la llama; Urkusmanta hamuni, vengo de Urcos.

[TAREA] Traduce la siguiente frase . . .

[CONTEXT]
qam: [PrnPers+2sg]
allin: bueno [D̂B][NRoot]
ta: [+Acc][Cas]

tusu: bailar [VRoot][D̂B]
nki: [+2sg.Subj][VPers]
allin. adj. Good (term of approval). SYN: kusa.
EX: allin p’unchay, good day: allin tuta, good
evening; allin tutamanta, good morning, good day;
allin inti chinkay, good afternoon; allin iñiyniyoq,
good faith, faithful, just, upright: allin nunayoq, in
good spirits; allin puriq, well behaved; allin puriy,
good behavior; allin rikuy, good treatment; allin
rikuq, one who treats others well; allin ruway, to
do good, to benefit; one who does good, beneficial;
allin ruwaq, one who does good; allin yuyay, think
well; good thought; allin qolqeyoq, possessor of
fine silver; wealthy.
ta. s. Gram. Suffix that plays the roles of
article and preposition. EX: llamata qatiy, herd
the llama; Urkusmanta hamuni, I come from Urcos.

[TASK] Translate the following sentence . . .

GRAMMAR-ONLY

[CONTEXTO]
ta: CASO ACUSATIVO. Su marca es –ta, esta es
una marca de objeto directo con los verbos que no
son de movimiento (quietud). Ejemplo:
Quyllur–ta qhawani Veo una estrella
T’anta–ta apay Lleva pan
Ñuqa quylluyta qhawani
Pedrucha t’antata rantin
En cambio con los verbos de movimiento –ta
indica (hacia) que es igual a meta. Ejemplos:
Punu–ta rini Voy a Puno
Llaqta-ta risaq Iré al pueblo
Hamawt’anchis Punuta rinqa
Llanta umalliq llaqtata richkan
nki: FLEXIÓN DE TIEMPO. TIEMPO FUTURO.
TIEMPO FUTURO. Los sufijos para cada una
de las personas gramaticales son: saq, nki, nqa,
sun, saqku, nkichis, nqaku; en singular y plural
respectivamente.
Ejemplos:
Puklla-saq jugaré
Puklla-nki jugarás
Puklla-nqa jugará
Puklla-sun jugaremos
Puklla-saqku jugaremos
Puklla-nkichis Uds. jugarán
Puklla-nqaku ellos jugarán

[TAREA] Traduce la siguiente frase . . .
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[CONTEXT]
ta: ACCUSATIVE CASE. Marked by –ta, this is a
direct object marker with verbs that don’t indicate
movement. Example:
Quyllur–ta qhawani I see a star
T’anta–ta apay Bring bread
Ñuqa quylluyta qhawani
Pedrucha t’antata rantin
On the other hand, with verbs of motion -ta
indicates (towards) the same goal Examples:
Punu–ta rini I go to Puno
Llaqta-ta risaq I will go to town
Hamawt’anchis Punuta rinqa
Llanta umalliq llaqtata richkan
nki: TENSE INFLECTION. FUTURE TENSE.
FUTURE TENSE. The suffixes for each of the
grammatical persons are: saq, nki, nqa, sun, saqku,
nkichis, nqaku; in singular and plural respectively.
Ejemplos:
Puklla-saq jugaré
Puklla-nki jugarás
Puklla-nqa jugará
Puklla-sun jugaremos
Puklla-saqku jugaremos
Puklla-nkichis Uds. jugarán
Puklla-nqaku ellos jugarán

[TASK] Translate the following sentence . . .

CORPUS-ONLY

[CONTEXTO]
quechua: rimanakunapaq wawakunapa rimasqan
simi aswan allinta takyachinaraq piwanpas
maywanpas mana manchakuspa rimananpaq
chaymi qillqanapaqpas ñawichanapaqpas aswan
allin kanqa
español: para este diálogo saber la lengua que
dominan los niños sería importante para que ellos
se expresen sin miedo de ahí será que la escritura y
la lectura salga de manera óptima
quechua: kay tiqsipi sumaq rimanakunapaqa
kawsayninchikmi allinta kallpachawanchik runaku-
nahina allinta tiyanapaq chaymi ñuqanchikkqa
allinta ñawichayta qillqayta yachananchik ñawpa
ayllunchikkuna rurasqankuta maytukunapi tukuy
puyñukunapi tiqsi muyu qhawarisqankuta
español: para vivir en armonía tenemos que
conocer bien nuestra forma de vivir y luego
escribir leer tambien a valorar lo que nos dejaron

nuestros antecesores en cada visión sobre el mundo
quechua: winsislawcha chayarqamuptinsi tu-
parquspanku allinta qatunakusqanku suwakuypi
purinankupaq
español: cuando había llegado wenseslau y a su
encuentro se habían reforzarón para andar a robar

[TAREA] Traduce la siguiente frase . . .

[CONTEXT]
quechua: rimanakunapaq wawakunapa rimasqan
simi aswan allinta takyachinaraq piwanpas
maywanpas mana manchakuspa rimananpaq
chaymi qillqanapaqpas ñawichanapaqpas aswan
allin kanqa
Spanish: For this dialogue, knowing the language
that the children speak would be important for
them to express themselves without fear, and that
is why writing and reading will be optimal.
quechua: kay tiqsipi sumaq rimanakunapaqa
kawsayninchikmi allinta kallpachawanchik runaku-
nahina allinta tiyanapaq chaymi ñuqanchikkqa
allinta ñawichayta qillqayta yachananchik ñawpa
ayllunchikkuna rurasqankuta maytukunapi tukuy
puyñukunapi tiqsi muyu qhawarisqankuta
Spanish:To live in harmony we have to know our
way of life well and then write and read to also
value what our ancestors left us in each vision of
the world.
quechua: winsislawcha chayarqamuptinsi tu-
parquspanku allinta qatunakusqanku suwakuypi
purinankupaq
español: cuando había llegado wenseslau y a
su encuentro se habían reforzarón para andar a
robar

[TASK] Translate the following sentence . . .
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F Full Quality Scores

This section contains tables showing all automatic and human-annotated quality scores for each of our
experiments. Table 7 contains the full set of BLEURT scores summarized in Tables 1 and 3 of the main
text. Table 8 shows the corresponding BLEU scores for the same experiments. Table 9 and Table 10
contain the full set of the human-annotated scores summarized in Table 3.

GPT-3.5 GPT-4o Gemini-1.5 Llama 3
auto manual auto manual auto manual auto manual

BASELINE 0.19 0.22 0.66 0.66 0.56 0.57 0.15 0.16
CORPUS-ONLY 0.27 0.29 0.59 0.61 0.49 0.47 0.19 0.18
GRAMMAR-ONLY 0.23 0.24 0.56 0.58 0.55 0.54 0.17 0.15
MORPH-ONLY 0.44 0.56 0.54 0.63 0.61 0.66 0.39 0.49
CORPUS-GRAMMAR 0.26 0.28 0.59 0.59 0.54 0.53 0.21 0.21
CORPUS-MORPH 0.44 0.52 0.59 0.64 0.59 0.64 0.36 0.38
GRAMMAR-MORPH 0.41 0.54 0.53 0.61 0.61 0.64 0.39 0.37
CORPUS-GRAMMAR-MORPH 0.43 0.54 0.57 0.63 0.61 0.63 0.15 0.26

Table 7: BLEURT scores for all LLMs and prompt types.

GPT-3.5 GPT-4o Gemini-1.5 Pro Llama 3 8B
auto manual auto manual auto manual auto manual

BASELINE 0.01 0.02 0.19 0.18 0.12 0.14 0.00 0.00
CORPUS-ONLY 0.02 0.02 0.16 0.22 0.14 0.13 0.02 0.01
GRAMMAR-ONLY 0.01 0.03 0.14 0.12 0.18 0.17 0.01 0.01
MORPHS-ONLY 0.06 0.08 0.12 0.13 0.15 0.18 0.03 0.05
CORPUS-GRAMMAR 0.01 0.01 0.14 0.17 0.12 0.08 0.01 0.01
CORPUS-MORPHS 0.05 0.08 0.19 0.18 0.17 0.17 0.02 0.04
GRAMMAR-MORPHS 0.03 0.04 0.11 0.10 0.15 0.16 0.02 0.01
CORPUS-GRAMMAR-MORPHS 0.04 0.04 0.16 0.16 0.17 0.20 0.00 0.01

Table 8: BLEU scores for all LLMs and prompt types.

GPT-3.5 Turbo

None Low Med High
BASELINE 31 17 2 0
CORPUS-ONLY 18 23 8 1
GRAMMAR-ONLY 20 27 2 1
MORPHS-ONLY 3 22 16 9
CORPUS-GRAMMAR 18 23 9 0
CORPUS-MORPH 2 28 12 8
GRAMMAR-MORPH 3 29 13 5
CORPUS-GRAMMAR-MORPH 2 27 12 9

Table 9: Human quality annotation of GPT-3.5 outputs with automated retrieval (raw counts out of 50) by prompt
type.
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GPT-4o

None Low Med High
BASELINE 0 10 20 20
CORPUS-ONLY 1 16 13 20
GRAMMAR-ONLY 0 17 16 17
MORPHS-ONLY 0 13 18 19
CORPUS-GRAMMAR 0 14 17 19
CORPUS-MORPH 0 10 17 23
GRAMMAR-MORPH 0 19 14 17
CORPUS-GRAMMAR-MORPH 0 9 20 21

Table 10: Human quality annotation of GPT-4o outputs with automated retrieval (raw counts out of 50) by prompt
type.

G Full Error Counts

This section contains the full counts of annotated errors by category and prompt type.

GPT-3.5 Turbo
BASE C G M C+G C+M G+M C+G+M TOTAL

None 0 1 1 6 0 8 3 5 24

Addition 0 5 3 14 1 9 10 11 53

Omission 3 9 2 13 2 5 9 9 52

Substitution - Subject 0 3 0 7 0 9 9 12 40

Substitution - TAM 0 11 3 17 6 19 19 19 94

Substitution - Other 4 9 4 13 6 16 14 13 79

Overtranslation 1 1 1 4 0 2 3 2 14

Undertranslation 0 0 0 2 1 2 2 2 9

Target Error - Grammar 0 1 1 4 2 3 3 1 15

Target Error - Coher-
ence

0 0 3 5 2 3 7 7 27

Target Error - Style/Reg-
ister

0 3 0 5 2 3 1 2 16

Complete Mistransla-
tion

30 19 21 2 18 2 2 2 96

Mistranslation - Lexical
Correspondence

15 13 23 9 21 11 15 10 117

Refusal 1 0 0 0 0 0 0 0 1

Total 54 75 62 101 61 92 97 95 637

Table 11: Human error type annotation of GPT-3.5 outputs with automated retrieval (raw counts, up to 3 errors per
sentence) by prompt type.
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GPT-4o
BASE C G M C+G C+M G+M C+G+M TOTAL

None 15 16 10 16 13 19 14 18 121

Addition 2 5 7 5 4 1 6 4 34

Omission 8 7 6 7 6 3 5 5 47

Substitution - Subject 1 2 0 1 2 1 2 2 11

Substitution - Other 22 24 22 18 19 18 17 20 160

Substitution - TAM 16 17 19 12 13 10 11 9 107

Overtranslation 2 1 0 2 2 2 1 2 12

Undertranslation 6 1 3 1 3 0 1 2 17

Target Error - Grammar 1 3 4 4 1 2 6 1 22

Target Error - Coher-
ence

1 3 4 5 4 5 9 5 36

Target Error - Style/Reg-
ister

1 2 3 4 4 2 4 3 23

Complete Mistransla-
tion

0 1 0 0 0 0 0 0 1

Mistranslation - Lexical
Correspondence

4 3 5 6 6 6 9 4 43

Total 79 85 83 81 77 69 85 75 634

Table 12: Human error type annotation of GPT-4o outputs with automated retrieval (raw counts, up to 3 errors per
sentence) by prompt type.
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Abstract

Recent research in neural machine translation
(NMT) has shown that training on high-quality
machine-generated data can outperform train-
ing on human-generated data. This work ac-
companies the first-ever release of a LLM-
generated, MBR-decoded and QE-reranked
dataset with both sentence-level and multi-
sentence examples.1 We perform extensive ex-
periments to demonstrate the quality of our
dataset in terms of its downstream impact on
NMT model performance. We find that train-
ing from scratch on our (machine-generated)
dataset outperforms training on the (web-
crawled) WMT’23 training dataset (which is
300 times larger), and also outperforms train-
ing on the top-quality subset of the WMT’23
training dataset. We also find that perform-
ing self-distillation by finetuning the LLM
which generated this dataset outperforms the
LLM’s strong few-shot baseline. These find-
ings corroborate the quality of our dataset, and
demonstrate the value of high-quality machine-
generated data in improving performance of
NMT models.

1 Introduction

With the advent of large language models (LLMs),
machine translation (MT) quality has improved
dramatically (Kocmi et al., 2023a, 2024a), and per-
formance tends to scale with model size (Gemini
Team, 2024). While LLMs are now state-of-the-
art translators, they are often impractical to use
or serve, especially in high-traffic and/or resource-
constrained settings. Thus, development of smaller,
but still highly performant, MT models remains an
active area of research. Recent work has shown
that distillation of LLM translation quality, while
requiring an expensive data generation process, is
an effective approach (Li et al., 2024). In this work,

1The dataset can be found at https://github.com/
google-research/google-research/tree/master/
newspalm_mbr_qe.

we introduce a new LLM-generated dataset called
NewsPaLM, which we make freely available.

In addition to the size of the teacher model, an-
other key determinant of the quality of machine-
generated translation data is the decoding method
used. While beam search and greedy decoding are
the most common decoding methods used for NMT,
Eikema and Aziz (2020a) showed that maximum
a posteriori (MAP) decoding methods are subop-
timal, and instead proposed Minimum Bayes Risk
(MBR) decoding. Unlike MAP decoding, MBR de-
coding does not aim to produce the translation with
the highest estimated model probability. Instead,
it chooses the translation that is estimated to have
the highest quality with respect to a utility metric.
A follow-up study by Freitag et al. (2022) showed
that MBR decoding with neural utility metrics sig-
nificantly outperforms beam search decoding, ac-
cording to expert-based human evaluation.

The main drawback of MBR decoding is its high
computational cost. In particular, the algorithm
requires that, for every input query, a large number
n of candidates be generated from the model, and
then an (expensive) scoring function be computed
on every pair of distinct candidates (ni, nj), for a
total of O(n2) computations. QE reranking (Fer-
nandes et al., 2022) is a more efficient alternative
to MBR decoding. This decoding method instead
reranks the candidate model predictions using a
neural quality estimation (QE) metric, and requires
only O(n) computations.

Finkelstein and Freitag (2023) showed that fine-
tuning NMT models on MBR-decoded and QE-
reranked datasets is an effective technique for dis-
tillation (while finetuning on beam search-decoded
datasets is not) and that, given a LLM teacher,
MBR and QE distillation can outperform finetuning
on human-generated references.

In this work, we generate sentence-level parallel
data using MBR decoding and multi-sentence paral-
lel data using QE reranking. In addition to detailing

1355

https://github.com/google-research/google-research/tree/master/newspalm_mbr_qe
https://github.com/google-research/google-research/tree/master/newspalm_mbr_qe
https://github.com/google-research/google-research/tree/master/newspalm_mbr_qe


our dataset creation method, we also perform ex-
tensive experiments to demonstrate the quality of
our dataset in terms of its downstream impact on
NMT model performance.

Our contributions can be summarized as follows:

• We release our LLM-generated, sentence-
level and multi-sentence, MBR and QE trans-
lation dataset.

• We demonstrate that our dataset is high-
quality, by using it to train NMT models from
scratch and comparing performance against
baselines using human-generated parallel data.
This is the first work to pretrain NMT models
on MBR and QE data.

• We show that training on our dataset outper-
forms training on the web-crawled WMT’23
training dataset (which is 300 times larger
than ours). Moreover, our dataset also out-
performs (by an even larger margin) when
compared against quality-based filtering of
the WMT’23 dataset to match the size of our
dataset.

• We also demonstrate our dataset’s quality by
performing self-distillation (using the PaLM-
2 LLM from which this data was generated),
and show that this outperforms the LLM’s
strong few-shot baseline. To our knowledge,
this is the first work to investigate MBR fine-
tuning a LLM.

• We investigate the effect of sentence-level ver-
sus multi-sentence MBR and QE training data
on NMT model performance as a function of
sequence length, and investigate the tradeoff
between dataset size and model quality, dur-
ing both pretraining and finetuning.

2 NewsPaLM Dataset

This paper accompanies a dataset release of
sentence-level and multi-sentence English-German
and German-English parallel data, generated from
the (monolingual) Newscrawl corpus as made avail-
able for the WMT evaluation campaigns2 using the
PaLM-2 Bison LLM (Anil et al., 2023). We detail
below the steps to create this dataset, which we call
NewsPaLM.

The dataset construction process consisted of
four steps, as described in the following sections.

2The Newscrawl data was downloaded from https://
data.statmt.org/news-crawl/.

2.1 Source-side Data Collection: Newscrawl

To construct the English and German source-side
datasets, we first collected all Newscrawl data from
2007 to 2022, released as part of the WMT’23
Machine Translation Shared Task (Kocmi et al.,
2023a). This is a large corpus of crawled news,
with about 398 million and 507 million lines for En-
glish and German, respectively. For both of these
languages, document-split versions of the dataset
(with document boundaries intact) are available.

We collected both the sentence-level and
document-level versions of the datasets. Basic
preprocessing had already been applied to the
sentence-level version, including removing lines
with no ASCII letters and deduplication. This pre-
processing was not applied to the document-level
version. We performed minimal additional clean-
ing to fix incorrectly encoded characters.

2.2 Construction of “Blobs”

We used the document-split versions of the datasets
to construct multi-sentence (i.e. “blob-level”) ex-
amples. We refer to these examples as blobs, rather
than paragraphs, since they do not respect para-
graph boundaries but, rather, simply represent the
concatenation of contiguous sentences up to a max-
imum length. In particular, we joined headlines
using the separator “\n\n”, and otherwise joined
sentences with spaces, up to a maximum length of
512 tokens (using the PaLM-2 tokenizer; Anil et al.
(2023)). The blobs respect document boundaries,
each blob contains only complete sentences (no
sentence fragments), and each blob may or may
not contain a headline (depending on where in the
document the blob comes from).

2.3 Cluster-Based Text Selection

The size of the Newscrawl full dataset and the
high computational cost of the decoding techniques
(§2.4) makes it impractical to process all the avail-
able data. In order to reduce the size of the data,
while at the same time ensuring diversity in the sam-
ples, we follow a clustering-based sample selection
approach. As a first step, we embed the source side
of the data using XLM-RoBERTa (Conneau et al.,
2020). We then apply Recursive Agglomerative
Clustering (RAC) (Sumengen et al., 2021), an unsu-
pervised clustering algorithm which is an efficient
extension of Hierarchical Agglomerative Cluster-
ing. These algorithms are initialized by defining a
set of clusters, each containing a single point from
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EN→ DE DE→ EN

Sentence-level 3,287 3,264
Blob-level 3,826 4,017

Table 1: Number of defined clusters per dataset.

the original data points. The guiding principle is to
iteratively merge the two clusters which are closest
to each other, until some stopping criterion is met,
e.g. a maximum distance between the clusters to
be merged. Note that this algorithm requires the
number of clusters to be chosen as a hyperparame-
ter, unlike other clustering algorithms like k-means
which have the advantage that the number of clus-
ters is defined by the algorithm itself. We selected
the number of clusters shown in Table 1 for each
of the data sets.

Once the clusters have been defined, we sample
uniformly from them. In this way, we ensure that
the diversity of the original dataset is maintained
in the reduced sample.

2.4 MBR Decoding and QE Reranking

The preceding steps handle preparation of source-
side data. To generate the target-side data
from these sources, we used the PaLM-2 Bi-
son LLM (Anil et al., 2023), 5-shot prompted
with ICL examples from the newstest2021 test
set (Akhbardeh et al., 2021). Note that unlike
previous work which also used PaLM-2 to gen-
erate translation data for distillation (Finkelstein
and Freitag, 2023), here we do not finetune on the
translation task prior to data generation.

A key component of our data generation process
is the decoding method. We generated the sentence-
level data using MBR decoding and the blob-level
data using QE reranking. Both MBR decoding
and QE reranking can be decomposed into two
steps: candidate list generation (Section § 2.4.1)
and scoring (Section § 2.4.2).

2.4.1 Candidate List Generation

The first step in the decoding process is to generate
a list of candidate model outputs, given a source
segment. In this work, we used a candidate size
of 512 and generated candidate translations using
epsilon sampling (Hewitt et al., 2022) with ε =
0.02, which was shown to be the best sampling
method for MBR decoding in Freitag et al. (2023).

2.4.2 MBR and QE scoring
Next, the best output is chosen based on a utility
function. This step is where MBR decoding and
QE reranking diverge. For MBR decoding, we use
a reference-based utility metric umbr(h, r), which
estimates the quality of a candidate translation h
conditioned on a reference translation r. Formally,
given a set of hypothesesH, the Minimum Bayes
Risk (MBR) translation hmbr is selected from the
candidates inH according to

hmbr = argmax
h∈H

1

|H|
∑

y∈H
umbr(h, y).

For QE reranking, on the other hand, we use a
reference-free (QE) utility metric uqe(h, s), which
estimates the quality of a candidate translation h
conditioned on the source s, rather than on the
reference. We select the best QE translation hqe of
the source s from the candidates inH as

hqe = argmax
h∈H

uqe(h, s)

In this work, we used the BLEURT (Sellam et al.,
2020) utility metric for MBR decoding and the
MetricX-QE (Juraska et al., 2023) utility metric
for QE reranking. Note that the maximum context
length for BLEURT (candidate and reference com-
bined) is 512, while for MetricX-QE (candidate
and source combined), it is 1024. Given that the
blob-level source-side data alone can contain up to
512 tokens, we could not use BLEURT as the utility
function for this data. MBR decoding with MetricX
is prohibitively expensive, hence our decision to
perform QE reranking instead.

As a baseline against which to compare data gen-
erated using these state-of-the-art decoding meth-
ods, we also created accompanying sentence-level
and blob-level datasets from the same source-side
data using greedy decoding.

2.5 Dataset Statistics
Here we briefly present basic statistics about the
four datasets we created (sentence-level and blob-
level versions, for the en→de and de→en language
pairs). See Appendix A for additional dataset statis-
tics.

Table 2 shows the size (in number of examples)
of each dataset. Note that each dataset has about
800 thousand to one million examples.

Table 3 shows the average length of source
and target examples (in number of tokens, as de-
fined by the Moses tokenizer) per dataset. For
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EN→ DE DE→ EN

MBR SENT-LEVEL 998,435 1,022,344
QE BLOB-LEVEL 925,829 769,028

Table 2: Number of examples per dataset.

Source Target

EN→ DE
SENTENCES 37.5 39.8

BLOBS 364.5 339.8

DE→ EN
SENTENCES 77.3 88.3

BLOBS 288.4 323.4

Table 3: Average source and target lengths per dataset, com-
puted using the Moses tokenizer.

English-German, the blob-level examples are about
ten times longer than the sentence-level examples,
while for German-English, they are about four
times longer. Figure 1 shows the distribution of
target example lengths for English-German. Note
that the blob-level data distribution is shifted to
the right of the sentence-level data distribution, as
expected.

3 Experimental Setup

We perform a series of pretraining and finetun-
ing experiments to validate the quality of our
NewsPaLM dataset, and to contextualize its perfor-
mance with respect to a much larger dataset of
human-generated data. All of our experiments are
performed on both English-German (en→de) and
German-English (de→en).

Figure 1: Distribution of English-German MBR sentence-
level versus QE blob-level target lengths (computed using the
Moses tokenizer).

3.1 Datasets

3.1.1 Training Data
As a baseline against which to compare our
NewsPaLM dataset, we use the parallel WMT’23
training data (Kocmi et al., 2023b), which consists
of 296 million sentence-level examples. A subset
of this data (consisting of about 3 million sentences,
from Europarl, News Commentary, and Rapid doc-
uments) contains document boundaries, which we
use to construct blob-level examples using a pro-
cedure similar to the blob-level dataset creation
process described in Section §2.2. That is, we par-
tition the sentences into contiguous blocks, each of
which has a total number of tokens up to a token
limit of 512 (for each of source and target). In our
experiments, this WMT’23 data is only used for
pretraining.

The remainder of our pretraining and finetun-
ing data comes from our (machine-generated)
NewsPaLM dataset, described in Section §2. As an
additional baseline, we compare the MBR-decoded
and QE-reranked versions of this dataset against
the greedy-decoded version. Note that for both
language pairs (en→de and de→en), the sentence-
level and blob-level NewsPaLM data combined con-
tains less than 2 million examples (Table 2).

3.1.2 Development and Test Sets
For both language pairs, we use the sentence-level
and paragraph-level versions of the newstest2021
test set (Farhad et al., 2021), as well as the
(sentence-level) generalMT2022 test set (Kocmi
et al., 2022), as our development sets for check-
point picking. We report all results on the WMT’23
(Kocmi et al., 2023b) and WMT’24 (Kocmi et al.,
2024b) test sets. Note that the WMT’23 and
WMT’24 en→de test sets are paragraph-level.

3.2 Models

For both language pairs (en→de and de→en), we
use a 602 million parameter Transformer encoder-
decoder architecture, implemented in Pax3. The
model has 8 encoder and 8 decoder layers (rather
than 6), but otherwise is similar to the transformer-
big setting in Vaswani et al. (2017), with model
dimension of 1024, hidden dimension of 8192, and
16 multi-attention heads. We train without label
smoothing. For each language pair, we use a bilin-
gual vocabulary of 32k subword units trained on
the WMT’23 training dataset (Kocmi et al., 2023b).

3https://github.com/google/paxml
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The best (base and incremental) checkpoints were
chosen to maximize BLEURT (Sellam et al., 2020)
on the development set.

We also experiment with self-distillation of the
PaLM-2 Bison (Anil et al., 2023) LLM, which is the
model used to generate our datasets (see Section
§2.4). We compare self-distillation (finetuning)
against 5-shot prompting of this model (using the
same ICL examples as during NewsPaLM dataset
generation).

3.3 Evaluation

We evaluate our models on four automatic metrics:
MetricX (Juraska et al., 2023), Comet20 (Rei et al.,
2020), Comet22 (Rei et al., 2022), and BLEURT
(Sellam et al., 2020). Note that for MetricX, lower
scores are better, while for the remaining metrics,
higher scores are better. Since the MBR data is
generated using BLEURT as the utility function,
and the QE data is generated using MetricX, the
MBR-finetuned models may overfit to the BLEURT
metric, while the QE-finetuned models may overfit
to the MetricX metric. Thus, we primarily depend
on the Comet* metrics to measure model quality.

4 Results

4.1 Pretraining

We first experiment with training bilingual (en→de
and de→en) encoder-decoder translation models
(as described in §3.2) from scratch, to compare our
NewsPaLM dataset (as described in §3.1.1) against
the WMT’23 training dataset. As shown in Ta-
ble 4, pretraining on the NewsPaLM QE blob-
level dataset (which contains less than one mil-
lion examples; Table 2) outperforms pretraining
on the entire WMT’23 training dataset, which
is more than 300 times larger. The NewsPaLM QE
dataset achieves a Comet22 score of 80.62 on the
English-German WMT’23 test set (row 2c), while
the WMT’23 training dataset achieves a score of
78.79 (row 1a).

Note that training on the MBR sentence-level
data (row 2b) underperforms training on the
QE blob-level data (row 2c). As shown in Fig-
ure 2, this is mostly due to a large drop in perfor-
mance on longer sequence lengths. Thus, exposure
to multi-sentence data during training is essen-
tial to perform well on paragraph-level test sets.
Also note that during pretraining, we see no ad-
ditional gains from mixing in the MBR sentence-
level data relative to using the QE blob-level data

only (rows 2c versus 2d).

We also experiment with pretraining on the
greedy-decoded version of our NewsPaLM dataset,
to compare against pretraining on the MBR-
decoded and QE-reranked versions. Interestingly,
the former (pretraining on the greedy-decoded data)
outperforms the latter (pretraining on the MBR-
decoded and QE-reranked versions), as shown in
rows 2a versus 2d in Table 4. Based on man-
ual inspection of examples, we hypothesize that
the MBR-decoded and QE-reranked data is more
free-style and harder for the model to learn than
the greedy-decoded data. This is illustrated in Ta-
ble 10 in the Appendix. If this were the case, the
model would perform better by first learning the
"easier" data (during pretraining), then adapting to
the more free-style data during finetuning. We test
this hypothesis by comparing two model training
curricula: For the first, we pretrain on the greedy-
decoded data and finetune on the MBR-decoded
and QE-reranked data. For the second, we do the
opposite: pretraining on the MBR-decoded and
QE-reranked data and finetuning on the greedy
decoded data. As we hypothesized, the former
model training curriculum (MBR and QE fine-
tuning from the greedy-pretrained checkpoint)
performed better (Table 5).

We have seen that pretraining on a small and
clean, synthetically-produced dataset (NewsPaLM)
can outperform finetuning on a large and noisy,
human-generated one (WMT’23 training dataset).
However, previous work such as Peter et al. (2023)
has shown that MT model performance can be
boosted by selecting a high-quality subset of a
large and noisy training corpus, using data selec-
tion techniques such as QE filtering. Thus, we
perform QE filtering (using the BLEURT-QE met-
ric, as in Peter et al. (2023)) to select the highest-
quality examples in the WMT’23 (sentence-level)
training dataset, while reducing its size to ex-
actly match that of our (sentence-level) NewsPaLM
dataset (of about one million examples). As shown
in row 1b versus row 2b in Table 4, training on
the QE-filtered WMT’23 dataset substantially
underperforms training on our MBR-decoded
NewsPaLM dataset (of the same size), and also un-
derperforms training on the full WMT’23 dataset.
Note that this result does not contradict previous
work showing the benefit of data filtering, since
previous work did not reduce the dataset to such a
small fraction (0.3%) of the original size. Thus, our
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Figure 2: Comparison of pretraining performance on
NewsPaLM MBR sentence-level dataset versus NewsPaLM QE
blob-level dataset, bucketed by source length (WMT’23
en→de test set). Note that performance of the model trained
on the blob-level data is stable across segment lengths, while
performance of the model trained on the sentence-level data
declines as segment length increases (according to both Met-
ricX and Comet22 metrics).

NewsPaLM dataset is highly efficient (which is one
indicator of its quality), and its efficiency cannot
be matched be selecting a high-quality subset of a
large, noisy corpus.

4.2 Finetuning
Next, we experiment with how the different vari-
ants of our NewsPaLM dataset (and mixtures thereof)
behave during finetuning (and whether this behav-
ior differs from that observed during pretraining).
Unless otherwise indicated, we initialize from the
checkpoint pretrained on the WMT’23 training data
(row 1a in Table 4). We report en→de and de→en
results on the WMT’23 test set in Table 6, and refer
the reader to Table 12 in Appendix B for pretrain-
ing and finetuning results on the WMT’24 en→de
test set.

As shown in Table 6, MBR and QE finetun-
ing (row 1d) outperforms greedy finetuning (row
1a), using the same mixture proportions (9:1) for
the sentence-level and blob-level data. As shown
in Table 5 and discussed in §4.1, MBR and QE
finetuning from the greedy-pretrained checkpoint
outperforms greedy finetuning from the MBR and
QE-pretrained checkpoint as well. Also, note that
for en→de, MBR and QE finetuning from the
checkpoint pretrained on the WMT’23 training data
(row 1d in Table 6) slightly underperforms initial-
izing from the checkpoint pretrained on the greedy
NewsPaLM dataset (row 1a in Table 5) according to
the WMT’23 test set, but the opposite is the case
according to the WMT’24 test set (see Tables 12
and 13 in Appendix B) and based on the de→en
results on the WMT’23 test set.

Unlike during pretraining, finetuning on the
MBR sentence-level data outperforms finetun-
ing on the QE blob-level data (rows 1b versus 1c
in Table 6), and we see no additional gains from
mixing in the QE blob-level data relative to using
the MBR sentence-level data only (rows 1b versus
1d). We hypothesize that the model learns to use
long context (from the blob-level data) during pre-
training, and it doesn’t forget during finetuning, so
blob-level data is less important during this stage.

We also experiment with finetuning the PaLM-
2 Bison (Anil et al., 2023) LLM (as described in
§3.2), which is the teacher model used to generate
our NewsPaLM dataset. As shown in Table 6, self-
distillation via MBR (and QE) finetuning does
indeed improve performance over the LLM’s
strong few-shot baseline (rows 2a vs 2b). As with
the encoder-decoder model, finetuning PaLM-2 Bi-
son on the MBR data outperforms finetuning on the
QE data (and outperforms finetuning on a mixture
of the MBR and QE data). The improvement in
performance of PaLM-2 Bison due to MBR fine-
tuning is observed across all source length buckets
(Figure 4 in Appendix B) and all domains in the
WMT’23 and WMT’24 test sets (Tables 14 and
15 in Appendix B), despite the MBR data being
sentence-level only and coming primarily from the
news domain. MBR finetuning the PaLM-2 Bison
model also outperforms MBR finetuning the much
smaller encoder-decoder student (rows 1b vs 2b in
Table 6), as expected.

4.3 Ablations

4.3.1 Effect of Dataset Size

Given the expense of creating LLM-generated,
MBR-decoded datasets such as the ones presented
in this work, we investigate how model perfor-
mance scales with dataset size during both pre-
training and finetuning. We randomly sample 25%
of the MBR-decoded NewsPaLM dataset (for both
en→de and de→en), then train on the subsampled
dataset. As shown in Figure 3 (and Table 16 in Ap-
pendix B), finetuning on the subsampled dataset
only took a small performance hit relative to
finetuning on the full dataset, but pretraining
took a large performance hit. Thus, it is likely
that pretraining performance would continue to im-
prove had we generated a larger NewsPaLM dataset,
while we would be unlikely to observe substan-
tial incremental improvements in finetuning perfor-
mance by increasing the dataset size. Also note
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Model MetricX ↓ COMET22 ↑

en→de

1a) WMT’23 (all) 4.20 78.79
1b) WMT’23 (sentence-level, BLEURT-QE filtered) 16.69 43.18

2a) Greedy sentence-level + blob-level (9:1) 2.60 81.67
2b) MBR sentence-level 6.39 72.05
2c) QE blob-level 2.82 80.62
2d) MBR sentence-level + QE blob-level (9:1) 2.99 79.68

de→en

1a) WMT’23 (all) 5.55 82.41
1b) WMT’23 (sentence-level, BLEURT-QE filtered) 14.80 57.27

2a) Greedy sentence-level + blob-level (9:1) 3.47 83.30
2b) MBR sentence-level 4.97 80.55
2c) QE blob-level 4.01 82.33
2d) MBR sentence-level + QE blob-level (9:1) 3.95 82.02

Table 4: Pretraining performance (WMT’23 test set).

Model MetricX ↓ COMET22 ↑

en→de
1a) MBR + QE finetuning (from greedy-pretrained ckpt) 2.11 82.78
1b) Greedy finetuning (from MBR + QE-pretrained ckpt) 2.63 81.48

de→en
1a) MBR + QE finetuning (from greedy-pretrained ckpt) 3.10 84.05
1b) Greedy finetuning (from MBR + QE-pretrained ckpt) 3.60 83.08

Table 5: Comparison of pretraining on NewsPaLM greedy data, then finetuning on NewsPaLM MBR and QE data, versus vice-versa
(WMT’23 test set).

that the stability in finetuning performance under
subsampling held up despite using the most effi-
cient subset selection method (random, as opposed
to e.g., QE filtering), another indicator supporting
the high quality of our NewsPaLM dataset.

4.3.2 Effect of Cluster-based Data Selection
As described in §2.3, we used a clustering-based
approach (sampling uniformly over the computed
clusters) to select the subset of Newscrawl data
which we used to generate the NewsPaLM dataset.
To isolate the effect of our sample selection tech-
nique, we compare its performance against sam-
pling uniformly from the original Newcrawl dataset
distribution (i.e., without taking cluster information
into account). Since our NewsPaLM dataset contains
the subset of Newscrawl examples selected by sam-
pling uniformly over the clusters, we approximate
the above comparison as follows, selecting 25% of
the NewsPaLM dataset in both cases:

• We sample uniformly from NewsPaLM to ap-
proximate cluster-guided sampling from the

Figure 3: Comparison of model performance when pretraining
and finetuning on the full versus subsampled NewsPaLM MBR
dataset (WMT’23 test set). The subsampled dataset is 25% of
the size of the full dataset, and was sampled randomly. Note
that pretraining performance drops substantially when train-
ing on the subsampled dataset (for both en→de and de→en),
while finetuning performance is minimally affected.
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Model MetricX ↓ COMET22 ↑

en→de

1a) Greedy sentence-level + blob-level (9:1) 2.59 81.49
1b) MBR sentence-level 2.30 82.69
1c) QE blob-level 2.45 81.83
1d) MBR sentence-level + QE blob-level (9:1) 2.26 82.52

2a) PaLM-2 five-shot (no finetuning) 1.62 84.54
2b) PaLM-2 MBR sentence-level 1.14 85.64
2c) PaLM-2 QE blob-level 1.47 84.77
2d) PaLM-2 MBR sentence-level + QE blob-level (9:1) 1.17 85.54

de→en

1a) Greedy sentence-level + blob-level (9:1) 3.12 84.14
1b) MBR sentence-level 2.91 84.57
1c) QE blob-level 2.99 84.27
1d) MBR sentence-level + QE blob-level (9:1) 2.82 84.53

2a) PaLM-2 five-shot (no finetuning) 2.25 85.36
2b) PaLM-2 MBR sentence-level 1.91 86.26
2c) PaLM-2 QE blob-level 2.03 85.81
2d) PaLM-2 MBR sentence-level + QE blob-level (9:1) 1.92 86.24

Table 6: Finetuning performance (WMT’23 test set). Unless otherwise indicated, performance is reported for the encoder-decoder
model. For finetuning, this model was initialized from the checkpoint pretrained on the full WMT’23 training dataset (row 1a in
Table 4). Results for PaLM-2 Bison few-shot prompting versus self-distillation using NewsPaLM MBR and QE data are reported
in rows 2a-d.

full Newscrawl dataset.
• We use the original cluster sizes of the full

Newscrawl dataset (computed prior to se-
lecting the NewsPaLM subset), and sample
from NewsPaLM according to this distribution.
This approximates sampling from the full
Newscrawl dataset without taking cluster in-
formation into account. Note that because
the original cluster distribution was highly
skewed, with most of the examples belonging
to the top few clusters, we could not exactly
match the original distribution while sampling
25% of the NewsPaLM dataset, but we chose
the distribution to be the one which was clos-
est to the original.

As shown in Table 7, using the cluster infor-
mation in the subsampling procedure marginally
improves results for en→de pretraining and fine-
tuning, and for de→ en finetuning. (There is no
clear signal for de→en pretraining; according to
MetricX, using the cluster information helps, while
according to Comet22, it hurts.)

5 Discussion

Training on LLM-generated, MBR-decoded and
QE-reranked datasets is an established technique

for leveraging monolingual data to improve NMT
model quality (Finkelstein and Freitag (2023),
Wang et al. (2024)). While this technique is highly
effective, generating such datasets remains a sub-
stantial bottleneck, and is often prohibitively expen-
sive. This work accompanies the first-ever open-
source release of a LLM-generated, sentence-level
and blob-level MBR and QE dataset. We measure
the quality of our dataset in terms of its downstream
impact on NMT model performance, both when
training a NMT model from scratch and when fine-
tuning.

We find that training from scratch on our MBR-
decoded and QE-reranked NewsPaLM dataset out-
performs training on the entire WMT’23 training
dataset (which is 300 times larger), and also out-
performs training on the top-quality subset of the
WMT’23 training data (selected via QE filtering,
and matching the size of our dataset). Moreover,
we find that NMT models are unable to generalize
well to multi-sentence queries without exposure to
such data at training time, motivating the inclusion
of blob-level data in our dataset.

We also find that MBR and QE finetuning outper-
form finetuning on the greedy-decoded version of
our dataset. Unlike Finkelstein and Freitag (2023),
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Model MetricX ↓ COMET22 ↑

en→de

1a) PT: Sampling uniformly over clusters 11.02 59.75
1b) PT: Sampling uniformly from original Newscrawl distribution 11.60 59.09

2a) FT: Sampling uniformly over clusters 2.55 82.11
2b) FT: Sampling uniformly from original Newscrawl distribution 2.55 81.88

de→en

1a) PT: Sampling uniformly over clusters 7.41 75.91
1b) PT: Sampling uniformly from original Newscrawl distribution 7.58 76.55

2a) FT: Sampling uniformly over clusters 2.96 84.33
2b) FT: Sampling uniformly from original Newscrawl distribution 3.09 83.92

Table 7: Comparison of model performance when trained on subsampled NewsPaLM data with and without cluster-based
data selection (WMT’23 test set). PT stands for Pretraining and FT, for Finetuning. Random subsampling of NewsPaLM
approximates sampling uniformly across the Newscrawl clusters, while subsampling according to the Newscrawl cluster
distribution approximates discarding cluster information and sampling randomly according to the original data distribution.

which only performs MBR and QE self-distillation
using a small encoder-decoder NMT model, here
we show that self-MBR and self-QE finetuning are
effective for the much stronger PaLM-2 Bison LLM
as well.

Finally, we show via subsampling experiments
on our NewsPaLM dataset that pretraining versus
finetuning performance scale very differently with
dataset size: While finetuning performance only
took a small hit when reducing our dataset to 25%
of its original size, pretraining performance took
a large hit. However, note that the full NewsPaLM
dataset is already orders of magnitude smaller than
most datasets used for NMT model training, includ-
ing the WMT’23 training dataset.

6 Related Work

While MT research has traditionally relied on
MAP decoding or generating k-best lists through
beam search for MBR decoding, Eikema and Aziz
(2020b) proposed an approximation of MBR de-
coding via unbiased sampling. Their method
aims to address the limitations of MAP decoding
(Eikema and Aziz, 2020b; Müller and Sennrich,
2021; Eikema and Aziz, 2022) by demonstrating
that samples drawn from the NMT model align
more faithfully with training data statistics when
compared to beam search. Freitag et al. (2022)
showed that using neural metrics results in signif-
icant improvements in translation quality. To the
best of our knowledge, this is the first work that
applies MBR decoding beyond the sentence level
for the task of machine translation.

While the improvements in translation quality
afforded by MBR are widely acknowledged, its
high computational cost limits its application in

practice. Different approaches have been proposed
to speed up MBR computation, e.g. (Eikema and
Aziz, 2022; Cheng and Vlachos, 2023; Jinnai and
Ariu, 2024; Vamvas and Sennrich, 2024; Tomani
et al., 2024). Similar in spirit to MBR decoding,
QE-rescoring approaches (Fernandes et al., 2022)
also directly optimize a utility function, with linear-
time cost.

We approach the efficiency problem from a dif-
ferent perspective, carrying out a one-off expensive
MBR decoding run, which can then be re-used for
training and finetuning other models via knowl-
edge distillation (Buciluǎ et al., 2006; Hinton et al.,
2015). This technique has been a successful way
to improve smaller systems by leveraging the ca-
pacities of bigger models, while retaining higher
computational efficiency. The technique has been
applied to numerous NLP tasks, including neural
machine translation (Kim and Rush, 2016; Tan
et al., 2018; Zhang et al., 2019; Jooste et al., 2022;
Wan et al., 2024, inter alia). In the current era of
LLMs, these models provide prime candidates for
leveraging their impressive capabilities to improve
other models. Yoo et al. (2021) use GPT3 for data
augmentation in different classification tasks, in
addition to using soft-labels predicted by the lan-
guage model. Hsieh et al. (2023) propose to use
“rationales” generated by PaLM to train a much
smaller T5 model, achieving comparable or even
superior performance. Li et al. (2024) use "selec-
tive" distillation to generate synthetic data using a
variant of LLaMA-7B, expanding the coverage of
training data for a translation model. Closer to our
work, Finkelstein and Freitag (2023) propose to
use MBR on a LLM to generate high-quality trans-
lations with which to train a dedicated translation
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model. As reference, (Xu et al., 2024) provides a
much more comprehensive survey of knowledge
distillation approaches using LLMs.

Another dimension related to our work is the
area of data selection for NMT training. While
a big amount of work has been focused on filter-
ing noise from web-crawled data (e.g. Zaragoza-
Bernabeu et al., 2022), there are also approaches
aimed at improving the translation quality by lim-
iting the training data to high-quality samples.
Carpuat et al. (2017) use semantic divergence to
select the most relevant portion of the training data,
while (Peter et al., 2023) use QE metrics on the
training data to select only high-quality sentence
pairs. Xu et al. (2023) indeed show that only a
small amount of high-quality multilingual and par-
allel data is needed for obtaining state-of-the art
translation results finetuning a LLM. A similar ap-
proach was used by (Alves et al., 2024) to fine-
tune LLaMA for translation and translation-related
tasks.

One can also find different examples of cluster-
ing for data selection for NLP tasks. Aharoni and
Goldberg (2020) showed that automatic clustering
techniques can adequately recover semantic infor-
mation from text corpora. Yu et al. (2023) use
clustering for data selection to finetuning a LLM.
Related to these approaches, nearest-neighbor ma-
chine translation (Khandelwal et al., 2021) uses
distance measures between examples to select ex-
amples closer to the sentence to translate in an ad-
ditional module of a translation system. (Agrawal
et al., 2023) and (Vilar et al., 2023) use similar
approaches to construct prompts for LLMs.

7 Conclusion

In this work, we have described the dataset cre-
ation process for the first-ever release of a LLM-
generated MBR and QE dataset. We have shown
that this dataset can be used to build a small and ef-
ficient, but high-quality, NMT model from scratch.
In fact, training on this dataset outperforms train-
ing on the much larger, human-generated WMT’23
dataset. We have also shown that this dataset
can improve NMT performance during finetuning,
both for an encoder-decoder system and via self-
distillation for an already highly performant LLM.
We hope that this dataset will enable further dis-
tillation research by the wider community, even
by those without resources to generate datasets
from large teacher models using expensive decod-

ing techniques.
There are many avenues for future work. This

work presented the first investigation of multi-
sentence (i.e., blob-level) QE finetuning, and a
natural next step would be to move to the docu-
ment level. The dataset creation process described
here could also be continued iteratively, by gener-
ating a new MBR and QE dataset from the same
LLM teacher, but after finetuning on the original
version of the dataset (or the version from the pre-
vious iteration). While this would be expensive,
it would likely yield further incremental improve-
ments in dataset quality. Finally, there remain many
open questions regarding how to optimally per-
form distillation of a stronger teacher model into
a weaker student using MBR and QE data. For in-
stance, rather than finetuning on a uniform mixture
of all examples in the dataset, the student model’s
perplexity on these examples could be taken into
account to select a subset of examples and/or to
determine the optimal progression of examples to
expose the student to during finetuning.
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Limitations

The (target-side) data generation process was ex-
pensive, due to both using a LLM and a costly de-
coding method. For MBR dataset creation, compu-
tation of each dataset example required generation
of n outputs from the LLM teacher model, and then
O(n2) forward passes through the utility function,
where n is the candidate size. For QE dataset gener-
ation, O(n) forward passes through the utility func-
tion were required per example. Thus, the dataset
construction method proposed here is not easily
scalable to other language pairs and/or source-side
data in the absence of substantial computing re-
sources.
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Ondřej Bojar, Anton Dvorkovich, Christian Fed-
ermann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow,
Philipp Koehn, Benjamin Marie, Christof Monz,
Makoto Morishita, Kenton Murray, Makoto Nagata,
Toshiaki Nakazawa, Martin Popel, Maja Popović,
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A Additional Dataset Statistics

Table 8 shows the average source-to-target length
ratios for each of the NewsPaLM MBR and QE
datasets. (See Table 3 in Section 2 for the aver-
age source lengths and average targets lengths of
the NewsPaLM datasets.)

Sentence-level Blob-level

EN→ DE 0.9604 1.0812
DE→ EN 0.9009 0.9729

Table 8: Source-to-target length ratios per dataset, computed
using the Moses tokenizer.

B Additional Results

Table 9 is an extension of Table 4 in Section 4.1,
and shows pretraining results across all metrics (in-
cluding BLEURT and Comet20) on the WMT’23
en→de and de→en test sets. Table 10 illustrates
the stylistic differences between greedy and MBR
decoding. Table 11 is an extension of Table 6 in
Section 4.2, and shows finetuning results on the
WMT’23 test set across all metrics. Table 12 shows
all en→de pretraining and finetuning results on the
WMT’24 test set. (Note that there does not exist
a WMT’24 de→en test set.) Table 13 is the com-
panion to Table 5 in Section 4, but on the WMT’24
(rather than WMT’23) test set.

Tables 14 and 15 show the pretraining and
finetuning results on the en→de WMT’23 and
WMT’24 test sets, respectively, broken out by do-
main. For WMT’23, the domains are Mastodon,
News, Speech, and User Review. For WMT’24, the
domains are Literary, News, Social, and Speech.
Note that the models pretrained and finetuned on
our NewsPaLM dataset perform especially strongly
on the News domain, but the gains aren’t limited to
this domain.

Figure 4 shows the PaLM-2 Bison few-shot
versus self-MBR-finetuned results on the en→de
WMT’23 test set, bucketed by source segment
length. Note that the gains in performance from
self-distillation are consistent across all segment
length buckets.

Table 16 accompanies Figure 3 in Section 4.3.1,
and shows the results of the NewsPaLM subsampling
ablations across all metrics.

Figure 4: PaLM-2 Bison few-shot versus NewsPaLM MBR-
finetuned performance bucketed by source length (en→de
WMT’23 test set). Note that self-MBR finetuning (on
sentence-level data only) improves performance across all
source length buckets.

1369



Model BLEURT ↑ MetricX ↓ COMET20 ↑ COMET22 ↑

en→de

1a) WMT’23 (all) 64.11 4.20 42.52 78.79
1b) WMT’23 (sentence-level, BLEURT-QE filtered) 29.33 16.69 -1.14 43.18

2a) Greedy sentence-level + blob-level (9:1) 67.75 2.60 51.20 81.67
2b) MBR sentence-level 56.93 6.39 21.86 72.05
2c) QE blob-level 67.18 2.82 45.72 80.62
2d) MBR sentence-level + QE blob-level (9:1) 66.34 2.99 43.20 79.68

de→en

1a) WMT’23 (all) 69.96 5.55 51.52 82.41
1b) WMT’23 (sentence-level, BLEURT-QE filtered) 44.80 14.80 -64.27 57.27

2a) Greedy sentence-level + blob-level (9:1) 70.94 3.47 54.86 83.30
2b) MBR sentence-level 67.21 4.97 44.12 80.55
2c) QE blob-level 69.68 4.01 51.00 82.33
2d) MBR sentence-level + QE blob-level (9:1) 69.07 3.95 49.71 82.02

Table 9: Pretraining performance (WMT’23 test set).

Source "While President Trump has not commented on Lewis’ death, White House
press secretary Kayleigh McEnany said in a tweet Saturday, [. . . ]

Greedy Während Präsident Trump sich nicht zu Lewis’ Tod geäußert hat, sagte die
Pressesprecherin des Weißen Hauses, Kayleigh McEnany, am Samstag in einem
Tweet: [. . . ]

MBR Präsident Trump hat bislang keinen Kommentar zu Lewis’ Tod abgegeben.
Weißes Hauses-Pressesprecherin Kayleigh McEnany äußerte sich hingegen auf
Twitter: [. . . ]

Explanation Greedy decoding closely follows the English sentence structure. MBR decoding
produces a more natural German sentence, and also decides to introduce a
sentence break.

Source "If we follow the Hungarian philosopher Gáspár Miklós Tamás, with his very
broad definition of fascism as ""a break with the enlightenment tradition of
citizenship as a universal entitlement,"" the similarities sharpen."

Greedy Wenn wir dem ungarischen Philosophen Gáspár Miklós Tamás mit seiner
sehr weiten Definition von Faschismus als „Bruch mit der aufklärerischen
Tradition der Staatsbürgerschaft als universellem Recht“ folgen, werden die
Ähnlichkeiten deutlicher.

MBR Wenn man dem ungarischen Philosophen Gàspár Miklós Tamás folgt, der in
seiner sehr breiten Definition des Faschismus eine „Verletzung der aufgek-
lärten Tradition des Bürgerstatus als universalem Recht“ sieht, dann wird die
Ähnlichkeit noch deutlicher.

Explanation The MBR translation uses an impersonal form, which is preferred in German.
The subordinate clause about the definition of fascism is also reformulated,
resulting in a more natural structure.

Table 10: Comparison between translations generated with greedy and MBR decoding.
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Model BLEURT ↑ MetricX ↓ COMET20 ↑ COMET22 ↑

en→de

1a) Greedy sentence-level + blob-level (9:1) 68.31 2.59 51.91 81.49
1b) MBR sentence-level 70.65 2.30 55.38 82.69
1c) QE blob-level 68.19 2.45 51.97 81.83
1d) MBR sentence-level + QE blob-level (9:1) 70.35 2.26 55.07 82.52

2a) PaLM-2 five-shot (no finetuning) 72.34 1.62 60.62 84.54
2b) PaLM-2 MBR sentence-level 74.38 1.14 64.86 85.64
2c) PaLM-2 QE blob-level 72.31 1.47 61.03 84.77
2d) PaLM-2 MBR sentence-level + QE blob-level (9:1) 74.21 1.17 64.43 85.54

de→en

1a) Greedy sentence-level + blob-level (9:1) 72.61 3.12 59.52 84.14
1b) MBR sentence-level 73.56 2.91 61.47 84.57
1c) QE blob-level 73.02 2.99 59.73 84.27
1d) MBR sentence-level + QE blob-level (9:1) 73.47 2.82 61.04 84.53

2a) PaLM-2 five-shot (no finetuning) 74.73 2.25 64.72 85.36
2b) PaLM-2 MBR sentence-level 76.20 1.91 68.41 86.26
2c) PaLM-2 QE blob-level 75.56 2.03 66.55 85.81
2d) PaLM-2 MBR sentence-level + QE blob-level (9:1) 76.18 1.92 68.12 86.24

Table 11: Finetuning performance (WMT’23 test set). Unless otherwise indicated, performance is reported for the encoder-
decoder model. For finetuning, this model was initialized from the checkpoint pretrained on the full WMT’23 training dataset
(row 1a in Table 9). Results for PaLM-2 Bison few-shot prompting versus self-distillation using NewsPaLM MBR and QE data are
reported in rows 2a-d.

Model BLEURT ↑ MetricX ↓ COMET20 ↑ COMET22 ↑
1a) PT: WMT’23 (all) 65.08 3.15 29.18 77.79
1b) PT: WMT’23 (sentence-level, Bleurt-QE filtered) 34.62 13.06 -90.56 49.38

1c) PT: Greedy sentence-level + blob-level (9:1) 64.78 2.95 27.88 77.81
1d) PT: MBR sentence-level 55.82 5.32 -0.20 69.88
1e) PT: QE blob-level 63.80 3.17 22.34 76.72
1f) PT: MBR sentence-level + QE blob-level (9:1) 64.27 3.13 21.32 75.93

2a) FT: Greedy sentence-level + blob-level (9:1) 67.94 2.26 39.22 80.20
2b) FT: MBR sentence-level 70.33 1.96 41.96 80.96
2c) FT: QE blob-level 68.14 2.27 37.07 79.88
2d) FT: MBR sentence-level + QE blob-level (9:1) 70.04 2.00 41.83 80.81

2e) FT: PaLM-2 five-shot (no finetuning) 72.37 1.28 49.39 83.51
2f) FT: PaLM-2 MBR sentence-level 73.94 1.05 53.99 84.44
2g) FT: PaLM-2 QE blob-level 71.34 1.40 46.16 82.84
2h) FT: PaLM-2 MBR sentence-level + QE blob-level (9:1) 73.83 1.05 53.57 84.31

Table 12: Pretraining and finetuning performance (en→de WMT’24 test set). The PT prefix indicates pretrained models, and the
FT prefix indicates finetuned models. Unless otherwise indicated, performance is reported for the encoder-decoder model. For
finetuning, this model was initialized from the checkpoint pretrained on the full WMT’23 training dataset (row 1a). Results for
PaLM-2 Bison few-shot prompting versus self-distillation using NewsPaLM MBR and QE data are reported in rows 2e-h.

Model BLEURT ↑ MetricX ↓ COMET20 ↑ COMET22 ↑
MBR + QE finetuning (from greedy-pretrained ckpt) 68.12 2.41 33.75 79.37
Greedy finetuning (from MBR + QE-pretrained ckpt) 65.61 2.91 27.50 77.66

Table 13: Comparison of pretraining on NewsPaLM greedy data, then finetuning on NewsPaLM MBR and QE data, versus vice-versa
(en→de WMT’24 test set).
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Mastodon News Speech User Review

Model MetricX ↓ COMET22 ↑ MetricX ↓ COMET22 ↑ MetricX ↓ COMET22 ↑ MetricX ↓ COMET22 ↑
1a) PT: WMT’23 (all) 4.09 79.26 3.97 80.46 3.87 78.55 5.19 75.14

1b) PT: Greedy sentence-level + blob-level (9:1) 2.33 81.98 1.59 84.72 3.44 79.30 3.74 79.10
1c) PT: MBR sentence-level 4.83 72.22 4.41 77.98 8.09 70.78 10.88 64.17
1d) PT: QE blob-level 2.70 80.27 1.75 84.96 3.63 77.37 3.71 78.68
1e) PT: MBR sentence-level + QE blob-level (9:1) 2.73 79.60 1.79 84.28 3.82 77.90 4.39 75.02

2a) FT: Greedy sentence-level + blob-level (9:1) 2.50 81.32 2.05 83.73 2.94 80.40 3.23 79.69
2b) FT: MBR sentence-level 2.03 82.87 1.87 84.94 2.75 80.75 3.01 81.15
2c) FT: QE blob-level 2.36 81.10 1.86 84.42 2.72 80.44 3.21 81.15
2d) FT: MBR sentence-level + QE blob-level (9:1) 2.17 82.21 1.76 84.91 2.54 80.94 2.87 81.40

2e) FT: PaLM-2 five-shot (no finetuning) 1.40 84.86 1.15 86.11 2.45 82.47 1.83 83.82
2f) FT: PaLM-2 MBR sentence-level 0.97 86.00 0.88 86.48 1.70 83.33 1.22 86.21

Table 14: Per-domain results on en→de WMT’23 test set. The PT prefix indicates pretrained models, and the FT prefix indicates
finetuned models. Unless otherwise indicated, performance is reported for the encoder-decoder model. For finetuning, this model
was initialized from the checkpoint pretrained on the full WMT’23 training dataset (row 1a). Results for PaLM-2 Bison few-shot
prompting versus self-distillation using NewsPaLM MBR data are reported in rows 2e-f.

Literary News Social Speech

Model MetricX ↓ COMET22 ↑ MetricX ↓ COMET22 ↑ MetricX ↓ COMET22 ↑ MetricX ↓ COMET22 ↑
1a) PT: WMT’23 (all) 3.79 75.95 2.86 81.20 2.78 76.44 3.67 80.04

1b) PT: Greedy sentence-level + blob-level (9:1) 6.11 68.47 1.40 84.42 2.44 77.36 2.22 82.80
1c) PT: MBR sentence-level 9.79 59.40 3.39 79.32 4.44 68.81 4.61 75.44
1d) PT: QE blob-level 6.53 68.01 1.38 84.01 2.69 75.95 2.39 81.38
1e) PT: MBR sentence-level + QE blob-level (9:1) 6.11 68.47 1.40 84.42 2.44 77.36 2.22 82.80

2a) FT: Greedy sentence-level + blob-level (9:1) 3.12 77.89 1.64 84.00 2.13 78.85 2.18 82.69
2b) FT: MBR sentence-level 2.83 78.56 1.40 84.78 1.79 79.70 1.96 83.36
2c) FT: QE blob-level 3.13 77.38 1.75 84.13 2.10 78.42 2.26 82.51
2d) FT: MBR sentence-level + QE blob-level (9:1) 2.91 78.26 1.36 84.88 1.85 79.56 1.96 83.11

2e) FT: PaLM-2 five-shot (no finetuning) 1.42 82.24 1.08 84.89 1.23 82.79 1.38 85.25
2f) FT: PaLM-2 MBR sentence-level 1.24 83.55 0.86 85.79 0.99 83.76 1.09 85.75

Table 15: Per-domain results on en→de WMT’24 test set. The PT prefix indicates pretrained models, and the FT prefix indicates
finetuned models. Unless otherwise indicated, performance is reported for the encoder-decoder model. For finetuning, this model
was initialized from the checkpoint pretrained on the full WMT’23 training dataset (row 1a). Results for PaLM-2 Bison few-shot
prompting versus self-distillation using NewsPaLM MBR data are reported in rows 2e-f.

Model BLEURT ↑ MetricX ↓ COMET20 ↑ COMET22 ↑

en→de

1a) PT: Full dataset 56.93 6.39 21.86 72.05
1b) PT: Subsampled dataset 43.73 11.02 -25.72 59.75

2a) FT: Full dataset 70.65 2.30 55.38 82.69
2b) FT: Subsampled dataset 70.00 2.55 53.91 82.11

de→en

1a) PT: Full dataset 67.21 4.97 44.12 80.55
1b) PT: Subsampled dataset 60.43 7.41 22.89 75.91

2a) FT: Full dataset 73.56 2.91 61.47 84.57
2b) FT: Subsampled dataset 73.15 2.96 59.35 84.33

Table 16: Comparison of model performance when pretraining and finetuning on the full versus subsampled NewsPaLM MBR
dataset (WMT’23 test set). The subsampled dataset is 25% of the size of the full dataset, and was sampled randomly. The PT
prefix indicates pretrained models, and the FT prefix indicates finetuned models.
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Abstract

Neural metrics for machine translation (MT)
evaluation have become increasingly promi-
nent due to their superior correlation with hu-
man judgments compared to traditional lexi-
cal metrics. Researchers have therefore uti-
lized neural metrics through quality-informed
decoding strategies, achieving better results
than likelihood-based methods. With the rise of
Large Language Models (LLMs), preference-
based alignment techniques have gained at-
tention for their potential to enhance transla-
tion quality by optimizing model weights di-
rectly on preferences induced by quality es-
timators. This study focuses on Contrastive
Preference Optimization (CPO) and conducts
extensive experiments to evaluate the impact of
preference-based alignment on translation qual-
ity. Our findings indicate that while CPO con-
sistently outperforms Supervised Fine-Tuning
(SFT) on high-quality data with regard to the
alignment metric, it may lead to instability
across downstream evaluation metrics, partic-
ularly between neural and lexical ones. Addi-
tionally, we demonstrate that relying solely on
the base model for generating candidate trans-
lations achieves performance comparable to us-
ing multiple external systems, while ensuring
better consistency across downstream metrics.1

1 Introduction

Neural metrics for machine translation evaluation
that are trained to mimic human preferences, such
as BLEURT (Sellam et al., 2020), COMET (Rei
et al., 2020, 2022a), or Metric-X (Juraska et al.,
2023), have become increasingly prevalent. These
metrics offer greater accuracy and better reflect
human judgments compared to traditional lexical
metrics (Mathur et al., 2020; Kocmi et al., 2021;
Freitag et al., 2022b; Kocmi et al., 2024) like

1All relevant preference datasets and aligned mod-
els, along with detailed evaluation metrics, are available
at https://huggingface.co/collections/artefactory/
translation-alignment-analysis.

BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) or chrF (Popović, 2015), which
mainly consider lexical overlap with a reference
text. As such, researchers have attempted to lever-
age these improvements by integrating them di-
rectly into translation systems.

One appealing strategy to incorporate quality
information to improve downstream translation
performance involves using decoding strategies
such as N-Best reranking and Minimum Bayes
Risk (MBR) decoding (Kumar and Byrne, 2002,
2004; Eikema and Aziz, 2020; Fernandes et al.,
2022; Freitag et al., 2022a). These techniques rely
on generating multiple candidates to maximize a
given quality metric at inference time, and research
has shown that they consistently yield better re-
sults than likelihood-based decoding techniques
(Eikema and Aziz, 2020; Koehn and Knowles,
2017; Ott et al., 2018).

With the rise of decoder-only LLMs in MT,
quality-informed fine-tuning techniques have
gained significant attention. Unlike decoding-
based methods that inject quality information at
inference time, fine-tuning modifies model weights
using training sets induced with quality informa-
tion. These approaches include filtering parallel
training data based on a quality metric (Alves et al.,
2024), distilling gains from more expensive quality-
aware methods such as MBR (Finkelstein et al.,
2024), or employing preference-based alignment
techniques (Rafailov et al., 2024; Xu et al., 2024a),
where the model learns preferences induced by
quality metrics between candidate translations typ-
ically generated by multiple systems. In this work,
we focus specifically on the latter.

Alignment techniques represent a paradigm shift
from quality-aware inference time approaches, as
they optimize the metric of interest indirectly.
Understanding the impact of these approaches
on translation quality is thus a relevant prob-
lem. While some studies have examined quality-
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informed decoding techniques and their influ-
ence on translation output (Amrhein and Sennrich,
2022), there is still a gap in our understanding of
how preference-based fine-tuning affects transla-
tion quality.

In this work, we aim to bridge this gap by exam-
ining the properties of preference-based alignment
techniques, with a particular focus on Contrastive
Preference Optimization (CPO) (Xu et al., 2024a),
which has been used successfully to achieve very
competitive translation performance. Our analysis
seeks to describe the effects of preference-based
fine-tuning on downstream performance, specifi-
cally regarding alignment effectiveness, the inter-
actions between optimized and non-optimized met-
rics, and the impact of using multiple candidate
translation systems for generating preference data.
Through extensive experimentation, we find that:

• Preference-based alignment globally outper-
forms Supervised Fine-Tuning (SFT) on high-
quality data in terms of maximizing the align-
ment metric.

• However, preference-based alignment is
highly sensitive to the choice of candidate
systems used for generating preference data,
affecting both the alignment metric and down-
stream metric consistency.

• Aligning a model using its own translations
achieves performance comparable to employ-
ing multiple external systems, while ensuring
better metric consistency and allowing for im-
proved control over the alignment process.

2 Background

2.1 Quality-Informed Translation
Along with human evaluation, lexical metrics like
BLEU (Papineni et al., 2002), chrF (Popović,
2015), METEOR (Banerjee and Lavie, 2005), and
ROUGE (Lin, 2004) have long been used for trans-
lation evaluation. However, human evaluation is
costly, and lexical metrics have been shown to cor-
relate poorly with human judgements.

More recently, some neural metrics have
emerged as a preferred method to mimic human
preferences without relying on expensive human
evaluation. The intuitive approach involves train-
ing an encoder model on human-annotated source-
translation-reference triplets. Among the metrics
most frequently mentioned in the literature are

BLEURT (Yan et al., 2023), COMET (Rei et al.,
2020), CometKiwi (Rei et al., 2022b), xCOMET
(Guerreiro et al., 2023), and Metric-X (Juraska
et al., 2023). They can be divided into two fami-
lies: reference-based metrics, that include a human-
written gold reference as an input to the scoring
model, and reference-free metrics, which only re-
quire access to the source sentence and the gener-
ated translation. These neural metrics have proven
particularly effective at scoring translations and
achieve much higher correlation with human judg-
ments than their lexical counterparts (Mathur et al.,
2020; Kocmi et al., 2021; Freitag et al., 2022b;
Kocmi et al., 2024).

These neural metrics have also been leveraged
to improve translation models through decoding
strategies. The approach involves sampling various
candidate translations, scoring them according to a
given metric, and selecting the one with the highest
score. This methodology is exemplified by MBR
decoding in the reference-based setting and N-best
reranking in the reference-free setting (Fernandes
et al., 2022; Freitag et al., 2022a).

2.2 Quality-Based Fine-Tuning

With the recent rise of decoder-only LLMs applied
to translation tasks (Zhu et al., 2023; Jiao et al.,
2023; Hendy et al., 2023; Kocmi et al., 2023; Fre-
itag et al., 2023; Xu et al., 2023; Alves et al., 2023;
Xu et al., 2024a; Alves et al., 2024), and with auto-
matic metrics increasingly reflecting human judg-
ments (Sellam et al., 2020; Rei et al., 2020; Juraska
et al., 2023), quality-based fine-tuning has gained
considerable traction. This approach shifts the ob-
jective from selecting the best candidate translation
according to a metric at inference time to directly
updating model weights through fine-tuning to pro-
duce the desired translations. A straightforward
approach is to perform SFT on high-quality trans-
lations, evaluated and then filtered with respect to
a metric of interest (Alves et al., 2024).

Another attractive alternative is Preference Op-
timization (PO) (Simianer, 2018; Rafailov et al.,
2024; Xu et al., 2024a; Yang et al., 2023; Xu et al.,
2024b; Wu et al., 2024), which focuses on learning
preferences between chosen and rejected transla-
tions rather than simply increasing the likelihood
of high-quality sentences. A popular PO method
is Direct Preference Optimization (DPO) (Rafailov
et al., 2024), which aims to maximize a scaled like-
lihood gap between a chosen and a rejected option.
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More recently, CPO (Xu et al., 2024a) has emerged
as a promising alternative, incorporating an SFT
term into the DPO loss, effectively combining the
strengths of both methods. Moreover, by removing
the reference policy from the learning objective, it
improves training efficiency.

3 Experimental Setup

Here, we detail our experimental setup, explaining
how we built the preference data, and train and
evaluate the models.

3.1 Preference Data
Preference datasets. To build a preference
dataset, one needs candidate translations, an eval-
uation metric m to score these translations, and a
method to select chosen and rejected hypotheses.
We denote a candidate dataset by

D = {(xi,Yi)}Ni=1,

where xi denotes the source sentence and Yi is a
set of candidate translations. One can then derive a
preference dataset,

Dpref = {(xi, yri , yci )}Ni=1,

where yci ∈ Yi (chosen hypothesis) is a translation
preferred to yri ∈ Yi (rejected hypothesis) accord-
ing to a metric m and a given selection method.

Multi-system approach. In the multi-system sce-
nario, we follow the setting outlined by Xu et al.
(2024a). Candidate translations are generated us-
ing three different systems, namely ALMA-13B-
LoRA (the base model we aim to align, referred to
as Base) (Xu et al., 2023), GPT-4 (OpenAI, 2023),
and the human-written gold reference (referred to
as Ref). Formally, for all data samples,

Ymulti
i =

{
yRef
i , yBase

i , yGPT -4
i

}
.

Then, for each sample, the three translations are
evaluated with regard to m. The one with highest
(resp. lowest) score is selected as the chosen (resp.
rejected) hypothesis. Formally,

yci = argmax
y∈Ymulti

i

m (y) ∧ yri = argmin
y∈Ymulti

i

m (y)

Mono-system approach. In the mono-system
setting, we solely rely on the base model for candi-
date generation. For each source sentence, K = 50
candidates are top-p-sampled (p = 0.6) with a tem-
perature τ = 0.9,2 and are then ranked based on

2These are the default parameters used in the ALMA pa-
per (Xu et al., 2023, 2024a).

evaluation metric m. For all samples, this results
in a set of candidates

Ymono
i =

{
y1i , · · · , yKi

}
,

where y1i ⪯ · · · ⪯ yKi are sorted in increasing
quality order, with no loss of generality. Preference
pairs are then derived to ensure that yri ⪯ yBase

i ⪯
yci holds for all samples. Further details on the
construction of mono-system preference datasets
are given in Section 5 and Appendix B.1.

Source dataset. We rely on the FLORES-200-
based (Team et al., 2022) dataset used in Xu et al.
(2024a) as a primary data source. It includes over
20000 translation pairs spanning six languages (En-
glish (en), Czech (cs), German (de), Icelandic (is),
Russian (ru), and Chinese (zh)) and covering ten
language directions, either into-English (xx-en) or
out-of-English (en-xx).

Alignment metrics. In line with Xu et al.
(2024a), we rely on reference-free neural metrics,
namely xCOMET-QE-XXL (Guerreiro et al., 2023)
(referred to as xCOMET-QE), and the WMT’23
version of CometKiwi-XXL (Rei et al., 2023) (de-
noted by CometKiwi), as well as on a reference-
based lexical metric, chrF (Popović, 2015).

3.2 Training
Learning objective. We focus our diagnosis on
CPO (Xu et al., 2024a), which combines a pref-
erence term with a likelihood term and achieves
state-of-the-art performance in preference-based
metric alignment for translation tasks. The empiri-
cal loss function is formally expressed as:

LCPO =− 1

N

N∑

i=1

[
log σ

(
β log

πθ (y
c
i |xi)

πθ (y
r
i |xi)

)]

+ LSFT ,

where LSFT = − 1
N

∑N
i=1 [log πθ (y

c
i |xi)] is the

negative-log-likelihood loss applied to chosen
translations, πθ is the model to fine-tune, σ is the
sigmoid function and β is a hyperparameter. In
our experiments, CPO alignment is consistently
compared to vanilla SFT on chosen translations.3

Training parameters. We replicate the exact
same parameters as the ones outlined by Xu et al.
(2024a). ALMA-13B-LoRA is LoRA fine-tuned

3All our models are trained using the code implementation
provided by Xu et al. (2024a).

1375



xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Preferences induced with xCOMET-QE
SFT • 89.13 • 81.49 • 59.82 • 92.38 • 81.67 • 50.28
CPO • 89.95 • 81.89 • 59.83 • 92.75 • 83.60 • 47.69

Preferences induced with CometKiwi
SFT • 89.26 • 81.70 • 60.01 • 92.44 • 81.93 • 50.49
CPO • 89.82 • 82.04 • 60.22 • 92.19 • 83.64 • 48.11

Preferences induced with chrF
SFT • 87.61 • 80.82 • 56.97 • 92.20 • 81.70 • 50.30
CPO • 78.51 • 75.62 • 45.32 • 88.89 • 80.99 • 42.50

Table 1: Comparison between SFT on preferred translations and CPO in the multi-system setting, using xCOMET-
QE, CometKiwi and chrF as alignment metrics. The same 3 metrics are reported for evaluation, separately for
into-English (xx-en) and out-of-English (en-xx) translations on the WMT’22 dataset. Green shades indicate metric
improvements over the base model, while red shades indicate metric decreases. We represent with (•) scenarios
where the preference metric matches the evaluation metric. Values in italic font denote statistically significant
differences between SFT- and CPO-based alignment at the 5% level, based on one-tailed paired Student’s t-tests.

with rank 16 for one epoch, starting with a learning
rate of 10−4, using inverse square root decay and
a batch size of 128. The β parameter of the CPO
objective function is set equal to 0.1, in line with
the original DPO paper by Rafailov et al. (2024).

3.3 Evaluation

Inference setup. Following other works on LLM-
based translation (Alves et al., 2024; Briakou et al.,
2024), all generations at inference time are pro-
duced using greedy decoding, as it provides max-
imum computational efficiency while preserving
high output quality.4

Evaluation datasets. We evaluate our ap-
proaches on the WMT’22 test dataset, which con-
sists of 17471 source-reference pairs and includes
the same ten language pairs as the preference data.
Evaluations on WMT’23 test data are provided in
Appendix A.

Evaluation metrics. We use the same three
metrics used to create the preference datasets:
xCOMET-QE, CometKiwi, and chrF. Additional
evaluation metrics are reported in Appendix A,
specifically the reference-based version of Metric-
X-Large (referred to as Metric-X) (Juraska et al.,
2023), and BLEU (Papineni et al., 2002).

4Inference is performed using the vLLM library (Kwon
et al., 2023).

4 Multi-System Preference Fine-Tuning

We begin our analysis by focusing on the multi-
system setting (Xu et al., 2024a), in which the cho-
sen and rejected options are derived from a pool of
three candidate systems consisting of ALMA-13B-
LoRA (base model), GPT-4, and the gold reference.

4.1 Top-Level Analysis
Neural-based alignment improves downstream
performance. Table 1 shows that when aligning
with neural metrics (xCOMET-QE or CometKiwi),
both SFT on preferred translations and CPO con-
sistently improve performance on the alignment
metric across language pairs. We also observe
that aligning on xCOMET-QE improves results on
CometKiwi, and vice-versa. We hypothesize this
may be the result of high correlation between dif-
ferent neural metrics, as they are typically trained
on similar data. Overall, these results demonstrate
that alignment-based techniques can achieve sim-
ilar objectives to those of quality-aware decoding
approaches like MBR, even though the target met-
ric is only indirectly optimized.

CPO induces adverse metric effects. In Table 1,
we observe that when aligning with neural metrics,
CPO yields significantly greater improvements on
the alignment metric compared to SFT. The in-
clusion of the reject option seems to offer addi-
tional benefits over the traditional SFT objective
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Optimization via SFT
Preferences induced with xCOMET-QE
All systems • 89.13 • 81.49 • 59.82 • 92.38 • 81.67 • 50.28
No Base • 89.41 • 81.56 • 60.26 • 92.32 • 81.65 • 50.52
No Ref • 89.32 • 81.58 • 60.08 • 92.22 • 81.33 • 50.05
No GPT-4 • 88.44 • 81.15 • 58.86 • 92.33 • 81.74 • 50.06

Preferences induced with chrF
All systems • 87.61 • 80.82 • 56.97 • 92.20 • 81.70 • 50.30
No Ref • 89.21 • 81.49 • 60.17 • 91.99 • 80.96 • 50.57

Optimization via CPO
Preferences induced with xCOMET-QE
All systems • 89.95 • 81.89 • 59.83 • 92.75 • 83.60 • 47.69
No Base • 89.59 • 81.73 • 59.94 • 92.74 • 83.13 • 48.54
No Ref • 89.91 • 81.86 • 60.59 • 92.44 • 81.97 • 50.67
No GPT-4 • 88.81 • 81.35 • 57.91 • 92.22 • 83.16 • 46.82

Preferences induced with chrF
All systems • 78.51 • 75.62 • 45.32 • 88.89 • 80.99 • 42.50
No Ref • 89.26 • 81.52 • 60.63 • 90.83 • 79.37 • 51.11

Table 2: Impact of the systems used for candidate generation on WMT’22 performance in the multi-system setting
after undergoing SFT and CPO optimization. Values in italic font denote statistically significant differences between
all-systems-based alignment and alignment with one system removed, at the 5% significance level, based on
one-tailed paired Student’s t-tests. Evaluation metrics and color codes are the same as in Table 1.

in this context. However, aligning with CPO also
introduces adverse effects between neural and lex-
ical metrics for out-of-English translations. More
specifically, and consistent with the findings of Xu
et al. (2024a), aligning on neural metrics negatively
impacts lexical metrics. Importantly, this is further
evidence to support recommendations provided in
(Kocmi et al., 2024): even though, in most cases,
neural and lexical MT evaluation metrics should
be positively correlated, we should employ caution
when using the same metric for evaluation that was
used during training/inference. Nevertheless and
perhaps more interestingly, it turns out SFT does
not produce such effects, raising the question of
whether these contradictory evaluation dynamics
seen with CPO stem from the learning objective
itself or the mix of candidate systems used.

Lexical alignment fails to improve downstream
performance. Table 1 shows that preference-
based lexical alignment5 behaves differently com-

5When performing alignment using a lexical metric like
chrF, the chosen translation is by definition the gold reference
as long as it is present in the pool of candidates. The transla-
tion with the lowest chrF score among the remaining systems

pared to neural alignment. Specifically, SFT results
are roughly stagnant, showing a slight decrease
in chrF for into-English translations and a slight
increase for out-of-English translations. In con-
trast, CPO results in a steep drop across the met-
ric board for both into- and out-of-English trans-
lations. Using the gold reference as the chosen
system appears to impair downstream performance,
especially when performing alignment using CPO.

4.2 Impact of the Candidate Systems
We now turn to investigating how much the suc-
cess of alignment-based fine-tuning depends on
the choice of the candidate systems. Unless other-
wise specified, we use xCOMET-QE as the align-
ment metric and examine the performance impact
of withdrawing systems from the candidate pool.
We perform SFT and CPO on the newly created
datasets. We report results in Table 2.

The choice of the candidate systems impacts
alignment performance. Table 2 shows that for
both SFT- and CPO-based methods, removing sys-
tems from the pool of candidates significantly af-

is then rejected.
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Chosen system set to Base
SFT • 88.17 • 81.08 • 58.91 • 91.94 • 81.21 • 49.35
CPO • 87.94 • 81.02 • 58.62 • 91.75 • 81.06 • 48.56

Chosen system set to Ref
SFT • 88.04 • 81.06 • 57.73 • 92.35 • 81.94 • 50.12
CPO • 81.95 • 77.86 • 48.75 • 86.97 • 80.01 • 39.81

Chosen system set to GPT-4
SFT • 89.81 • 81.67 • 60.53 • 91.96 • 80.83 • 50.73
CPO • 89.69 • 80.99 • 60.42 • 90.50 • 78.81 • 50.22

Table 3: Impact of imposing the chosen system on WMT’22 downstream performance in the multi-system setting.
Values in italic font denote statistically significant differences between SFT- and CPO-based alignment at the 5%
significance level, based on one-tailed paired Student’s t-tests. Evaluation metrics and color codes are the same as
in Table 1.

fects performance on the alignment metric. This is
particularly the case for out-of-English translation
with CPO optimization. Notably, removing GPT-4
has the strongest negative impact on downstream
xCOMET-QE. This is expected as it is the highest-
quality system among the system candidates (see
Table 11 in Appendix B).

Some candidate systems can be harmful to
preference-based alignment. In Section 4.1, we
observed CPO negatively impacts en-xx chrF
when aligning on neural metrics, unlike SFT on pre-
ferred translations. Table 2 suggests this may stem
from including gold references in the candidate sys-
tem pool: removing them eliminates this adverse
effect. We also noted in Section 4.1 that lexical
alignment fails to improve downstream chrF, with
sharp decreases with CPO. This issue is resolved
by removing gold references. Overall, candidate
system choice affects alignment effectiveness and
downstream metric consistency, with CPO showing
higher sensitivity to preference settings than SFT.

4.3 Impact of the Chosen System

To complement findings from Section 4.2 and fur-
ther characterize the sensitivity of preference-based
alignment, we propose examining downstream per-
formance when the chosen system is fixed to a
single system. We create three preference datasets
based on xCOMET-QE, in which we either impose
the base model, reference or GPT-4 as the chosen
system. When applicable, the rejected translation

is selected from the remaining systems (if one has
a lower xCOMET-QE than the chosen system); oth-
erwise, the sample is discarded.

CPO is not robust to the preference setting. In
contrast to the observations made in Section 4.1,
Table 3 shows that, under this setup, CPO fails to
outperform SFT for both xx-en and en-xx trans-
lations. When systematically choosing base trans-
lations, CPO is unable to surpass the trivial SFT
setting where the base model is fine-tuned on its
own translations.6 Moreove, downstream CPO per-
formance significantly declines when gold refer-
ences are chosen, underperforming the non-aligned
model across all metrics, even including the align-
ment metric. These results reinforce the claims
made in Section 4.2 and indicate a lack of robust-
ness of CPO compared to SFT. In the following
section (Section 5), we demonstrate that this insta-
bility observed with CPO can be mitigated by using
a more normalized preference setting, relying only
on the base model for candidate generation.

5 Mono-System Preference Fine-Tuning

So far, we have exclusively focused on multi-
system alignment, which involves using external
models for candidate generation and preference
dataset building. Although this approach is com-
mon for metric alignment (Luong and Manning,

6As expected, performing SFT on a model’s own greedy
predictions has minimal impact on downstream performance.
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •87.80 •80.86 •58.53 •91.91 •81.17 •49.49

Optimization via SFT
Multi-system • 89.13 • 81.49 • 59.82 • 92.38 • 81.67 • 50.28
Mono-system • 88.51 • 81.29 • 59.05 • 92.17 • 81.54 • 49.41

Optimization via CPO
Multi-system • 89.95 • 81.89 • 59.83 • 92.75 • 83.60 • 47.69
Mono-system • 89.35 • 81.80 • 59.52 • 92.69 • 82.91 • 49.02
Mono-system (opt.) • 89.58 • 81.97 • 59.65 • 92.87 • 83.47 • 49.11

Table 4: Comparison between multi- and mono-system fine-tuning on WMT’22 test data. Alignment is performed
on xCOMET-QE for both SFT and CPO. Mono-system (opt.) denotes the model fine-tuned on optimized mono-
system preference data. Values in italic font denote statistically significant differences between multi-system- and
mono-system-based alignment at the 5% significance level. Evaluation metrics and color codes are the same as in
Table 1, based on one-tailed paired Student’s t-tests.

2015; Sennrich et al., 2016; Xu et al., 2024a), some
works have shown that a model can be aligned ef-
fectively using only its own outputs (Yang et al.,
2023; Yuan et al., 2024; Dubey et al., 2024). In
this section, we propose to take a closer look at
this strategy and identify its potential advantages
and disadvantages compared to the multi-system
approach. We use xCOMET-QE as the alignment
metric. To ensure a fair comparison, we first gen-
erate the mono-system dataset to approximately
replicate the properties of the multi-system dataset
regarding the alignment metric.7 Details on the
construction of mono-system preference datasets
are given in Section 3 and Appendix B.1.

5.1 Comparison With Multi-System
Alignment

Mono-system alignment improves downstream
performance. Table 4 shows that performing
SFT and CPO on a mono-system dataset using
xCOMET-QE for alignment results in improved
downstream performance across all neural metrics
compared to the base model, as observed in the
multi-system scenario (Section 4.1). This find-
ing highlights the effectiveness of alignment tech-
niques even when using only the model’s own trans-
lations for candidate generation, without needing
access to high-quality external systems. This is
particularly relevant in practical scenarios in which
such access may be limited or unavailable.

7The created mono-system dataset has an average rejected/-
chosen xCOMET-QE of 87.8/97.3, compared to 87.9/97.2
for the multi-system dataset (Table 11).

CPO consistently outperforms SFT on neural
metrics. Similar to when relying on multiple sys-
tems for candidate generation, we observe in Ta-
ble 4 that CPO outperforms SFT regarding down-
stream performance on neural metrics. This find-
ing reinforces the observation made in Section 4.1
and tends to confirm the superiority of the CPO
objective over SFT on preferred translations in op-
timizing neural-based alignment performance.

Mono-system alignment slightly underperforms
multi-system alignment. Table 4 shows that
while mono-system alignment increases down-
stream performance on neural metrics, the improve-
ment levels are not as high as in the multi-system
setting. Despite the mono- and multi-system pref-
erence datasets being built with the same align-
ment metric properties, having translations from
different distributions, particularly from GPT-4 (cf.
Section 4.2 and Table 2), appears to add value for
achieving optimized alignment effectiveness.

Removing external systems almost eliminates
the adverse metric effects observed with CPO.
In Section 4.1, we showed that multi-system neural
alignment using CPO greatly impacts lexical per-
formance for out-of-English translations. Table 4
demonstrates that mono-system alignment almost
completely mitigates these negative effects. While
there is still a slight decrease in en-xx chrF, it is
much smaller compared to the multi-system sce-
nario. This confirms the findings from Sections 4.2
and 4.3 that CPO is sensitive to the preference set-
ting, but also shows that relying solely on candidate
translations from the base model limits adverse ef-
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Figure 1: Impact of chosen and rejected option quality on downstream performance, using xCOMET-QE for
alignment and evaluation. The chart is derived by linearly interpolating results from nine preference datasets (points
A to I), each with different average rejected and chosen qualities. Test performance on WMT’22 (average across all
language pairs) is reported in brackets. Example: point C (avg. rejected xCOMET-QE: 75.4, avg. chosen: 98.2)
achieves 90.9 xCOMET-QE on WMT’22 test data.

fects on downstream metric consistency. A possible
explanation is that candidate translations from the
same system distribution tend to have similar prop-
erties, thereby reducing the likelihood of observing
high lexical instability when performing alignment
based on a neural metric like xCOMET-QE.

The mono-system approach offers better control
over the alignment process. Specifically, mono-
system alignment provides more fine-grained con-
trol over the respective qualities of the chosen and
rejected options. This setting allows for tuning
these qualities to maximize post-alignment perfor-
mance, which is not possible when using a limited
number of external systems. This aspect is further
explored in the following section (Section 5.2).

5.2 Optimizing the Preference Data

In this final experiment, we examine how the qual-
ity of chosen and rejected options affects down-
stream performance. We build nine preference
datasets, each with varying average xCOMET-QE
scores for chosen and rejected options. The hy-
potheses’ average qualities are categorized into
three groups: High, Mid, and Low. As detailed
in Section 3.1, the quality of the chosen (resp. re-
jected) option is always ensured to be above (resp.
below) the quality of the base translation. The
statistics of the created datasets are summarized in

Appendix B.1 (Table 11).

The respective qualities of the rejected and cho-
sen options have a significant impact on post-
CPO performance. Figure 1 highlights the need
to closely monitor the qualities of chosen and re-
jected options to fully leverage the mono-system
approach. Specifically, several properties of pref-
erence data were found to negatively impact post-
CPO performance: (i) a chosen option of too low
quality, (ii) an extremely low or high quality of the
rejected option, and (iii) too wide a gap between
the qualities of the rejected and chosen options.

Optimizing preference data yields competitive
performance to multi-system setting. Figure 1
shows that for effective metric alignment with CPO,
the rejected option’s quality should be moderate
(neither too high nor too low), while the chosen op-
tion’s quality should be as high as possible. Specif-
ically, optimal test performance was obtained with
rejected options average around 90% (∆ = −10%)
of the base model’s quality, and chosen options av-
eraging around 105% (∆ = +5%). Under this sce-
nario, we show that performance levels can match
those in the multi-system setting while maintaining
consistency with lexical scores (Table 4). How-
ever, these results also highlight the complexity of
achieving optimal preference-based alignment and
get the most of the reject option.
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6 Conclusion

Our experiments revealed several key findings.
Firstly, we showed that preference-based align-
ment, specifically using CPO, globally outperforms
SFT on high-quality data in terms of improving
neural evaluation metrics. However, we identified
significant drawbacks when relying on multiple
systems for preference data generation, revealing
adverse effects between neural and lexical metrics,
and highlighting a lack of robustness in preference-
based alignment compared to the SFT approach. Fi-
nally, we showed that using candidate translations
all originating from the same system distribution,
specifically the base model, can be an effective
strategy for gaining more control over preference-
based fine-tuning. This approach achieves per-
formance comparable to using multiple external
systems while ensuring better consistency across
evaluation metrics. In a nutshell, while preference-
based alignment techniques hold promise for im-
proving MT quality, careful consideration must be
given to the choice of candidate translations, the
learning objective, and the potential trade-offs re-
garding downstream metric consistency.

Limitations

In this work, we conducted extensive experiments
to assess the impact of preference-based fine-tuning
on downstream translation quality. For efficiency
and practicality, we focused on the experimental
setup detailed by Xu et al. (2024a), which uti-
lizes three systems for candidate generation. Sim-
ilarly, we used the same evaluation metrics and
datasets. Future experiments could benefit from
validating our findings using different model fami-
lies, a broader range of alignment and evaluation
metrics, and additional translation datasets, for in-
stance including other languages.

Additionally, in the mono-system setting, we ex-
plored the impact of varying the qualities of chosen
and rejected options and derived general insights
on optimizing preference data. Further research
could involve using different datasets, models, and
alignment metrics to characterize more precisely
the factors that influence downstream performance
in this specific scenario. This approach could lead
to a deeper mathematical understanding of the ele-
ments that affect performance in preference-based
fine-tuning, resulting in more robust and scalable
optimization techniques.

Finally, our evaluation relied on automatic met-

rics, both lexical and neural, with the latter closely
approximating human judgments but still being un-
able to fully replace them. Given their imperfect
correlation with human preferences, future work
could benefit from additional human evaluation of
outputs obtained via the approaches we studied to
get an even deeper understanding of post-alignment
downstream performance dynamics.

Ethics Statement

Our work aims to investigate the mechanisms of
model alignment to enhance transparency in the
field of automatic translation. We believe this ef-
fort improves the interpretability of model outputs,
which is beneficial for ethical considerations. Ad-
ditionally, our analysis is distinctly multilingual,
with an emphasis on low-resource languages, con-
tributing to expanding the scope of MT. We have
identified no potential negative societal impacts
from our work.
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A Additional Results

In this section, we present results on WMT’23 test data. The findings in Tables 5, 6, 7 and 8 support the
observations discussed in the main text for the WMT’22 dataset. In Tables 9 and 10, we also provide
additional insights, split by language pairs, and include extra metrics, specifically Metric-X and BLEU.

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Preferences induced with xCOMET-QE
SFT • 88.96 • 78.46 • 53.30 • 87.07 • 73.99 • 48.38
CPO • 89.77 • 78.95 • 53.47 • 88.09 • 76.75 • 44.29

Preferences induced with CometKiwi
SFT • 89.03 • 78.57 • 53.53 • 87.11 • 74.21 • 48.45
CPO • 89.58 • 79.16 • 53.97 • 87.25 • 76.71 • 44.48

Preferences induced with chrF
SFT • 87.91 • 77.62 • 51.20 • 86.95 • 73.96 • 48.14
CPO • 81.79 • 72.38 • 41.46 • 83.21 • 74.76 • 37.96

Table 5: Comparison between SFT on preferred translations and CPO in the multi-system setting on WMT’23 test
data. Notations and formatting are the same as in Table 1.

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Optimization via SFT
Preferences induced with xCOMET-QE
All systems • 88.96 • 78.46 • 53.30 • 87.07 • 73.99 • 48.38
No Base • 89.07 • 78.53 • 53.57 • 86.94 • 73.70 • 48.52
No-Ref • 89.05 • 78.47 • 53.39 • 87.04 • 73.60 • 48.65
No GPT-4 • 88.29 • 78.02 • 52.62 • 87.04 • 74.08 • 48.03

Preferences induced with chrF
All systems • 87.91 • 77.62 • 51.20 • 86.95 • 73.96 • 48.14
No Ref • 88.89 • 78.47 • 53.51 • 86.65 • 73.02 • 49.04

Optimization via CPO
Preferences induced with xCOMET-QE
All systems • 89.77 • 78.95 • 53.47 • 88.09 • 76.75 • 44.29
No Base • 89.52 • 78.54 • 53.44 • 87.66 • 75.84 • 45.27
No Ref • 89.57 • 79.26 • 54.18 • 87.41 • 74.46 • 48.88
No GPT-4 • 89.16 • 78.46 • 51.94 • 87.45 • 76.62 • 43.30

Preferences induced with chrF
All systems • 81.79 • 72.38 • 41.46 • 83.21 • 74.76 • 37.96
No Ref • 88.79 • 78.73 • 54.21 • 85.40 • 71.82 • 49.59

Table 6: Impact of candidate systems on WMT’23 downstream performance in the multi-system setting. Notations
and formatting are the same as in Table 2.
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xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Chosen system set to Base
SFT • 88.07 • 77.93 • 52.52 • 86.52 • 73.27 • 47.52
CPO • 88.05 • 77.95 • 52.24 • 86.68 • 73.75 • 46.54

Chosen system set to Ref
SFT • 88.33 • 77.92 • 51.75 • 87.29 • 74.57 • 47.86
CPO • 84.06 • 74.22 • 44.53 • 81.01 • 73.55 • 34.64

Chosen system set to GPT-4
SFT • 89.57 • 79.06 • 54.08 • 86.70 • 73.18 • 49.23
CPO • 88.99 • 78.64 • 53.95 • 85.14 • 71.40 • 48.68

Table 7: Impact of the chosen system on WMT’23 downstream performance in the multi-system setting. Notations
and formatting are the same as in Table 3.

xx-en en-xx

Neural Lexical Neural Lexical
xCOMET-QE CometKiwi chrF xCOMET-QE CometKiwi chrF

Base •88.00 •77.74 •52.30 •86.19 •73.08 •47.31

Optimization via SFT
Multi-system • 88.96 • 78.46 • 53.30 • 87.07 • 73.99 • 48.38
Mono-system • 88.55 • 78.17 • 52.74 • 86.75 • 73.87 • 47.43

Optimization via CPO
Multi-system • 89.77 • 78.95 • 53.47 • 88.09 • 76.75 • 44.29
Mono-system • 89.33 • 78.78 • 53.17 • 87.94 • 76.01 • 46.65
Mono-system (opt.) • 89.36 • 78.92 • 53.28 • 88.50 • 76.87 • 46.48

Table 8: Comparison between multi- and mono-system fine-tuning on WMT’23 test data. Notations and formatting
are the same as in Table 4.
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cs-en en-cs de-en en-de
Neural Lexical Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 83.42 82.57 2.00 65.81 41.25 90.80 81.96 1.48 53.58 27.42 93.33 83.48 2.03 55.24 29.02 96.32 80.87 1.22 56.95 27.65
SFT
Multi-system
→ xCOMET-QE
Vanilla 86.18 83.17 1.98 67.36 42.81 91.49 82.69 1.42 55.02 28.58 93.88 83.85 2.00 56.32 29.86 96.57 81.21 1.19 57.62 28.22
No Base 86.58 83.01 1.99 67.79 42.99 91.61 82.63 1.42 55.51 28.84 93.88 83.88 2.00 56.62 30.08 96.63 81.66 1.19 57.83 28.15
No Ref 86.43 83.20 1.97 67.50 42.93 91.28 82.10 1.45 54.94 28.75 93.88 83.96 1.99 56.63 30.06 96.41 81.10 1.20 57.49 28.08
No GPT-4 85.23 83.03 2.02 66.55 42.21 91.53 82.78 1.42 54.52 28.07 93.41 83.59 2.02 55.41 29.10 96.49 81.22 1.20 57.38 28.14
Chosen = Base 84.64 82.87 2.03 66.39 41.99 90.77 81.69 1.50 53.52 27.67 93.55 83.61 2.03 55.82 29.48 96.43 81.14 1.22 56.97 27.80
Chosen = Ref 83.78 82.83 2.04 65.74 41.62 91.36 82.65 1.40 54.35 27.73 93.35 83.69 2.02 54.67 28.48 96.67 81.60 1.19 57.32 27.99
Chosen = GPT-4 86.97 82.69 2.00 67.62 41.99 91.14 81.33 1.48 56.27 28.97 94.22 83.95 1.98 57.02 30.10 96.29 80.92 1.21 58.05 28.00
→ CometKiwi
Vanilla 86.17 83.31 1.97 67.50 43.08 91.57 83.01 1.40 55.29 28.69 94.00 84.07 1.98 56.40 29.79 96.58 81.47 1.19 57.77 28.13
→ chrF
Vanilla 83.63 82.85 2.06 65.22 40.77 91.42 82.45 1.41 54.76 28.11 92.86 83.53 2.03 54.26 28.29 96.60 81.63 1.18 57.50 28.06
No Ref 86.15 82.91 1.99 67.67 43.23 91.29 81.85 1.48 55.83 29.24 93.91 83.85 2.00 56.58 30.04 96.32 80.74 1.22 57.97 28.21
Mono-system
→ xCOMET-QE
Vanilla 85.00 83.11 1.99 66.38 41.81 91.04 82.23 1.45 53.27 27.42 93.71 83.80 2.00 55.84 29.27 96.46 81.16 1.21 57.08 27.94
CPO
Multi-system
→ xCOMET-QE
Vanilla 87.40 83.58 1.94 67.52 42.54 90.86 84.58 1.40 50.58 23.44 94.22 84.10 1.94 56.21 29.44 97.34 83.38 1.12 55.95 26.20
No Ref 87.59 83.18 1.95 67.90 41.86 91.60 82.63 1.41 56.16 28.97 94.28 84.07 1.98 56.98 30.02 96.57 82.02 1.18 57.86 27.66
No Base 86.68 83.22 1.96 67.46 42.84 90.94 84.14 1.38 51.48 24.91 93.97 84.06 1.96 56.32 29.80 97.16 82.67 1.12 56.53 27.20
No GPT-4 84.95 83.22 1.99 65.99 41.31 90.45 83.91 1.39 49.32 22.04 93.65 83.88 1.96 54.95 28.36 97.31 83.27 1.12 55.30 25.17
Chosen = Base 84.10 82.69 2.05 65.94 41.77 90.42 81.80 1.51 52.29 26.71 93.41 83.48 2.04 55.53 29.34 96.37 80.82 1.23 56.17 27.10
Chosen = Ref 71.82 79.56 2.22 54.77 28.59 79.03 80.03 1.59 40.19 14.25 89.61 81.47 2.08 47.32 21.40 96.57 79.91 1.12 48.62 18.46
Chosen = GPT-4 87.70 81.77 2.07 66.72 39.42 89.73 78.83 1.57 56.21 27.28 94.17 83.06 2.03 57.19 29.47 95.68 79.61 1.27 57.68 26.23
→ CometKiwi
Vanilla 86.74 83.46 1.95 67.67 42.42 90.21 84.81 1.43 51.23 23.53 94.20 84.22 1.93 56.45 29.61 97.19 83.71 1.13 56.24 25.41
→ chrF
Vanilla 66.31 76.41 2.53 51.03 25.35 83.47 80.25 1.72 43.35 15.80 87.27 79.30 2.29 44.28 19.34 96.87 81.49 1.14 51.01 19.73
No Ref 86.65 82.99 1.98 68.33 43.19 89.83 79.38 1.59 57.08 28.51 93.94 83.67 2.02 56.68 29.76 95.84 80.01 1.27 58.68 27.66
Mono-system
→ xCOMET-QE
Vanilla 85.99 83.66 1.93 67.10 42.09 91.40 83.99 1.39 52.46 26.30 94.01 84.14 1.95 55.97 29.18 96.89 82.29 1.15 56.53 27.25
Optimized 86.51 83.84 1.90 67.08 41.73 91.47 84.28 1.37 52.40 25.92 94.26 84.32 1.94 56.15 29.26 97.13 82.78 1.12 56.72 27.09

is-en en-is ru-en en-ru
Neural Lexical Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 76.22 85.36 1.89 59.72 35.34 89.15 80.68 2.40 53.31 23.49 89.68 80.92 1.82 62.72 35.29 92.77 82.62 2.04 51.93 25.86
SFT
Multi-system
→ xCOMET-QE
Vanilla 79.24 85.88 1.82 62.05 37.49 89.18 80.63 2.38 53.14 22.90 90.59 81.35 1.77 64.18 36.97 93.18 83.18 1.96 53.02 26.79
No Base 80.12 86.09 1.84 62.77 38.11 88.65 80.19 2.45 53.23 22.95 90.85 81.40 1.77 64.60 37.20 93.02 83.10 1.97 53.26 26.91
No Ref 79.67 85.94 1.83 62.52 37.97 88.74 80.10 2.47 52.93 22.84 90.82 81.50 1.77 64.47 37.24 92.90 82.73 2.04 52.57 26.29
No GPT-4 77.64 85.63 1.87 60.33 35.79 89.43 81.05 2.34 53.38 23.27 90.04 81.15 1.80 63.20 36.19 93.13 83.05 1.95 52.82 26.65
Chosen = Base 76.85 85.60 1.87 59.94 35.60 88.67 80.35 2.42 52.58 22.53 89.87 80.99 1.82 63.08 36.01 92.87 82.64 2.05 52.13 26.22
Chosen = Ref 76.86 85.52 1.87 59.88 35.41 89.44 81.24 2.30 53.45 23.60 89.39 80.92 1.80 61.40 34.43 93.29 83.43 1.92 52.74 26.54
Chosen = GPT-4 81.03 86.01 1.84 63.09 37.61 88.26 79.01 2.56 53.17 22.44 91.11 81.45 1.77 64.91 37.39 92.47 82.44 2.07 53.53 26.96
→ CometKiwi
Vanilla 79.38 86.03 1.81 62.26 37.69 89.06 80.95 2.37 53.42 23.30 90.78 81.52 1.75 64.31 37.09 93.20 83.30 1.96 53.22 26.96
→ chrF
Vanilla 76.29 85.36 1.89 59.07 34.61 88.99 80.46 2.35 53.09 23.20 88.63 80.51 1.84 60.40 33.44 93.11 83.31 1.93 52.80 26.77
No Ref 79.56 85.96 1.83 62.19 37.70 88.34 79.65 2.54 53.22 22.88 90.79 81.40 1.77 64.56 37.30 92.67 82.50 2.06 53.29 26.90
Mono-system
→ xCOMET-QE
Vanilla 77.44 85.77 1.85 60.19 35.69 89.11 80.46 2.38 52.95 23.16 90.25 81.27 1.78 63.52 36.22 93.14 83.07 2.00 52.13 26.40
CPO
Multi-system
→ xCOMET-QE
Vanilla 80.73 86.12 1.81 63.01 38.10 89.28 82.70 2.08 51.70 21.29 91.14 81.57 1.72 63.88 35.78 94.52 85.51 1.71 50.60 23.97
No Ref 81.03 85.91 1.84 63.29 37.90 89.15 80.18 2.47 53.47 22.46 91.11 81.61 1.77 64.66 36.55 92.89 83.40 1.95 53.27 26.27
No Base 79.90 86.07 1.80 62.63 37.81 89.67 82.02 2.10 51.95 22.34 91.06 81.57 1.73 64.20 36.49 94.30 84.85 1.81 51.28 25.44
No GPT-4 77.75 85.63 1.84 60.46 35.73 88.70 82.37 2.08 51.02 20.54 90.04 81.07 1.78 61.58 33.91 94.44 85.41 1.70 49.69 23.09
Chosen = Base 75.89 85.47 1.93 59.27 35.04 88.83 80.38 2.37 52.21 22.51 89.76 81.01 1.81 62.86 35.46 92.57 82.11 2.13 51.33 25.64
Chosen = Ref 62.78 82.24 2.09 51.44 25.64 76.02 77.65 2.46 43.95 13.38 83.04 77.41 2.01 51.27 23.21 93.39 82.63 1.73 42.24 15.76
Chosen = GPT-4 81.02 85.15 1.92 62.85 36.17 86.51 76.73 2.88 52.54 20.88 90.95 80.91 1.83 64.68 36.06 91.13 80.75 2.21 53.43 25.58
→ CometKiwi
Vanilla 80.83 86.17 1.79 63.15 37.98 88.15 82.29 2.30 52.23 21.16 91.06 81.80 1.72 64.15 36.14 93.99 85.44 1.77 51.04 23.54
→ chrF
Vanilla 57.08 80.43 2.40 47.93 22.21 81.59 78.80 2.34 46.13 14.70 79.00 75.29 2.25 47.38 20.28 93.52 83.83 1.82 45.51 17.75
No Ref 80.13 85.77 1.85 62.87 37.63 86.51 77.57 2.87 53.35 22.12 90.89 81.43 1.79 64.57 36.80 91.54 81.04 2.18 53.86 26.18
Mono-system
→ xCOMET-QE
Vanilla 79.33 86.05 1.80 61.78 37.42 89.75 82.17 2.14 52.71 22.69 90.78 81.44 1.75 63.50 35.72 93.79 83.99 1.87 52.03 26.09
Optimized 79.16 86.02 1.78 62.25 37.42 89.81 82.81 2.11 52.79 22.60 90.96 81.60 1.72 63.69 35.57 93.95 84.77 1.84 52.18 26.00

zh-en en-zh xx-en en-xx

Neural Lexical Neural Lexical Neural Lexical Neural Lexical
xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 89.49 74.32 4.10 51.25 21.69 89.10 79.48 2.30 33.62 34.52 87.80 80.86 2.42 58.53 31.78 91.91 81.17 1.83 49.49 28.28
SFT
Multi-system
→ xCOMET-QE
Vanilla 90.09 75.50 3.98 51.82 21.72 89.84 80.12 2.23 34.07 35.01 89.13 81.49 2.37 59.82 32.92 92.38 81.67 1.77 50.28 28.91
No Base 90.29 75.71 3.96 52.30 21.97 89.80 79.92 2.27 34.14 35.09 89.41 81.56 2.37 60.26 33.19 92.32 81.65 1.79 50.52 29.00
No Ref 90.25 75.55 3.94 51.98 21.80 89.99 79.98 2.24 33.79 34.86 89.32 81.58 2.35 60.08 33.13 92.22 81.33 1.81 50.05 28.77
No GPT-4 89.68 74.71 4.11 51.11 21.42 89.57 80.24 2.23 33.89 34.86 88.44 81.15 2.42 58.86 32.17 92.33 81.74 1.77 50.06 28.76
Chosen = Base 89.41 74.70 4.14 51.38 21.65 89.30 79.79 2.26 33.20 34.16 88.17 81.08 2.43 58.91 32.21 91.94 81.21 1.83 49.35 28.26
Chosen = Ref 90.21 74.68 4.05 49.70 20.34 89.52 80.41 2.23 34.42 35.20 88.04 81.06 2.41 57.73 31.20 92.35 81.94 1.75 50.12 28.73
Chosen = GPT-4 90.60 76.38 3.87 52.71 22.06 89.74 79.50 2.30 33.86 34.78 89.81 81.67 2.34 60.53 33.02 91.96 80.83 1.85 50.73 28.89
→ CometKiwi
Vanilla 90.25 75.82 3.94 52.21 21.98 90.09 80.45 2.22 34.23 35.16 89.26 81.70 2.34 60.01 33.06 92.44 81.93 1.77 50.49 29.03
→ chrF
Vanilla 90.06 74.28 4.10 48.66 19.82 89.26 80.01 2.26 34.75 35.52 87.61 80.82 2.44 56.97 30.56 92.20 81.70 1.77 50.30 28.91
No Ref 90.06 75.61 4.01 52.39 22.13 89.49 79.38 2.33 33.89 34.94 89.21 81.49 2.38 60.17 33.23 91.99 80.96 1.86 50.57 29.06
Mono-system
→ xCOMET-QE
Vanilla 89.74 74.84 4.04 51.39 21.49 89.57 80.24 2.24 33.45 34.26 88.51 81.29 2.39 59.05 32.15 92.17 81.54 1.80 49.41 28.37
CPO
Multi-system
→ xCOMET-QE
Vanilla 91.03 76.32 3.69 51.65 21.09 89.99 81.38 2.13 31.67 31.03 89.95 81.89 2.27 59.83 32.41 92.75 83.60 1.64 47.69 25.63
No Ref 90.50 76.60 3.75 52.96 21.86 90.32 80.72 2.24 34.00 34.28 89.91 81.86 2.31 60.59 32.77 92.44 81.97 1.78 50.67 28.55
No Base 90.80 75.98 3.79 51.96 21.67 90.09 81.40 2.09 33.20 33.49 89.59 81.73 2.30 59.94 32.82 92.74 83.13 1.65 48.54 27.17
No GPT-4 91.27 75.23 3.79 49.49 19.91 88.41 80.44 2.26 30.92 29.77 88.81 81.35 2.32 57.91 30.94 92.22 83.16 1.67 46.82 24.53
Chosen = Base 89.59 74.75 4.11 51.34 21.65 89.06 79.83 2.27 32.65 33.47 87.94 81.02 2.44 58.62 31.94 91.75 81.06 1.85 48.56 27.60
Chosen = Ref 90.71 70.87 4.05 41.49 14.40 84.25 78.61 2.40 26.14 24.09 81.95 77.86 2.53 48.75 22.02 86.97 80.01 1.79 39.81 17.62
Chosen = GPT-4 89.77 76.05 3.92 53.10 21.12 87.44 77.07 2.58 32.40 31.93 89.69 80.99 2.40 60.42 31.72 90.50 78.81 2.02 50.22 27.00
→ CometKiwi
Vanilla 91.03 76.69 3.61 52.68 21.40 89.35 81.27 2.23 31.90 30.95 89.82 82.04 2.24 60.22 32.58 92.19 83.64 1.71 48.11 25.35
→ chrF
Vanilla 89.56 68.89 4.50 38.41 12.48 85.29 79.47 2.43 28.37 26.33 78.51 75.62 2.83 45.32 19.41 88.89 80.99 1.84 42.50 19.33
No Ref 89.43 75.91 3.97 53.42 22.37 88.20 77.93 2.52 33.71 33.97 89.26 81.52 2.38 60.63 33.08 90.83 79.37 2.00 51.11 28.32
Mono-system
→ xCOMET-QE
Vanilla 90.82 76.01 3.77 51.92 21.44 90.14 81.75 2.15 33.22 33.80 89.35 81.80 2.29 59.52 32.26 92.69 82.91 1.69 49.02 27.74
Optimized 91.06 76.28 3.68 51.90 21.38 90.44 82.35 2.07 33.32 33.70 89.58 81.97 2.25 59.65 32.16 92.87 83.47 1.66 49.11 27.57

Table 9: Comprehensive downstream evaluation for the WMT’22 dataset, reporting xCOMET-QE, CometKiwi,
Metric-X, chrF, and BLEU scores for all models and language pairs. Learning objectives are indicated in bold font,
candidate settings in italics, and alignment metrics are preceded by an arrow (→).
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en-cs de-en en-de
Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 85.90 73.23 1.91 52.57 27.45 84.79 76.57 3.73 66.64 39.38 84.97 71.97 3.04 61.69 32.78
SFT
Multi-system
→ xCOMET-QE
Vanilla 87.19 74.32 1.78 54.31 28.71 85.29 77.01 3.59 67.82 40.50 85.75 72.56 2.91 61.75 32.81
No Base 86.89 73.60 1.82 54.46 28.83 85.49 77.19 3.58 68.17 40.88 85.41 72.40 2.88 61.81 32.57
No Ref 87.44 74.13 1.83 54.43 29.20 85.46 77.19 3.64 67.90 40.46 85.78 72.71 2.91 62.05 33.15
No GPT4 87.42 74.57 1.81 53.84 28.62 84.76 76.80 3.74 67.05 39.47 85.67 72.60 2.90 61.59 32.63
Chosen = Base 86.89 74.05 1.93 52.71 27.72 84.86 76.88 3.71 67.28 39.59 85.24 72.09 2.99 61.81 32.98
Chosen = Ref 87.68 74.94 1.81 53.56 28.18 85.08 76.78 3.62 66.26 38.70 86.14 72.93 2.86 61.36 32.16
Chosen = GPT4 86.89 73.06 1.89 55.36 29.20 85.94 77.70 3.52 68.55 41.07 85.25 72.07 2.92 62.49 33.35
→ CometKiwi
Vanilla 87.19 74.65 1.77 54.27 28.71 85.42 77.16 3.58 68.00 40.54 85.90 72.93 2.83 62.09 32.99
→ chrF
Vanilla 87.15 74.18 1.85 53.91 28.57 84.93 76.61 3.69 65.86 38.47 85.68 72.47 2.90 61.50 32.37
No Ref 87.22 73.40 1.87 54.96 29.50 85.19 77.02 3.66 67.93 40.42 85.49 72.56 2.98 62.46 33.64
Mono-system
→ xCOMET-QE
Vanilla 86.89 74.78 1.86 52.57 27.60 85.37 77.03 3.64 67.64 39.86 85.54 72.80 3.03 61.82 33.10
CPO
Multi-system
→ xCOMET-QE
Vanilla 86.53 76.83 1.65 49.84 23.64 86.18 77.55 3.45 67.15 39.97 87.61 73.39 2.57 58.32 27.66
No Ref 87.48 74.40 1.77 55.51 28.99 86.00 77.80 3.48 68.30 40.60 85.82 73.08 2.79 62.73 32.81
No Base 86.45 76.06 1.71 50.44 25.26 85.80 77.06 3.54 67.32 40.00 87.23 73.00 2.71 59.44 29.86
No GPT4 86.27 76.71 1.64 49.10 23.01 85.96 77.19 3.57 65.40 37.11 87.39 72.99 2.53 57.36 26.45
Chosen = Base 86.71 74.16 1.92 51.74 26.79 84.95 76.91 3.74 66.64 38.79 85.67 72.46 2.98 61.20 32.37
Chosen = Ref 72.09 72.38 1.94 37.30 12.61 82.25 74.74 4.09 55.55 24.83 86.62 69.62 2.92 49.04 17.37
Chosen = GPT4 85.67 70.85 2.06 55.59 27.58 85.41 77.18 3.53 68.10 39.75 83.74 71.58 2.92 63.11 32.22
→ CometKiwi
Vanilla 85.70 76.97 1.73 50.28 23.74 85.76 77.66 3.47 67.43 40.07 87.52 74.21 2.57 59.08 27.90
→ chrF
Vanilla 77.49 73.98 2.02 41.47 15.17 79.30 72.47 4.52 51.67 21.14 86.43 71.61 2.65 52.57 20.35
No Ref 85.71 71.61 2.09 56.21 28.93 85.13 77.15 3.57 68.15 40.49 84.20 71.56 3.12 63.31 33.63
Mono-system
→ xCOMET-QE
Vanilla 87.92 76.62 1.76 52.03 26.54 85.72 77.14 3.53 67.22 39.30 87.09 74.07 2.70 61.01 31.70
Optimized 88.39 77.36 1.71 52.11 26.38 86.00 77.76 3.55 67.05 38.79 87.32 74.64 2.57 60.71 31.07

ru-en en-ru zh-en
Neural Lexical Neural Lexical Neural Lexical

xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 86.22 80.04 2.56 55.59 28.45 89.08 74.89 2.63 49.90 23.99 90.45 76.06 3.68 45.44 18.79
SFT
Multi-system
→ xCOMET-QE
Vanilla 87.66 80.62 2.53 56.62 29.52 89.48 75.83 2.50 50.74 24.80 91.11 76.98 3.61 46.37 19.72
No Base 87.96 80.55 2.55 56.80 29.50 89.53 75.86 2.52 50.72 24.66 91.04 77.15 3.57 46.70 19.93
No Ref 87.79 80.64 2.54 56.64 29.34 89.23 75.43 2.58 50.88 24.82 91.16 76.92 3.58 46.52 19.95
No GPT4 86.62 80.13 2.56 55.99 29.03 89.58 75.85 2.47 50.36 24.36 90.72 76.52 3.70 45.69 19.28
Chosen = Base 86.39 80.10 2.57 55.72 28.79 88.94 74.68 2.68 50.17 24.24 90.43 76.33 3.72 45.62 18.99
Chosen = Ref 86.03 79.94 2.56 55.01 28.26 89.83 76.40 2.45 50.35 24.38 91.23 76.47 3.63 44.89 18.73
Chosen = GPT4 88.30 80.79 2.57 57.15 29.47 88.86 75.45 2.60 51.26 24.72 91.68 77.92 3.46 47.38 20.22
→ CometKiwi
Vanilla 87.70 80.75 2.52 56.77 29.68 89.56 75.87 2.48 50.99 24.88 91.19 77.07 3.55 46.69 19.89
→ chrF
Vanilla 85.27 79.62 2.58 54.54 28.04 89.65 75.96 2.48 50.33 24.23 91.05 76.15 3.71 44.23 18.31
No Ref 87.63 80.64 2.56 56.67 29.43 88.88 75.00 2.61 51.14 24.83 91.02 76.99 3.61 46.74 19.95
Mono-system
→ xCOMET-QE
Vanilla 86.94 80.33 2.56 55.86 28.64 89.16 75.09 2.64 50.02 24.10 90.84 76.61 3.64 45.89 18.97
CPO
Multi-system
→ xCOMET-QE
Vanilla 88.43 80.99 2.44 56.88 29.63 91.54 79.24 2.13 48.22 21.98 91.94 77.56 3.41 46.69 19.65
No Ref 88.50 81.12 2.50 57.26 29.55 89.33 76.05 2.47 50.98 24.10 91.50 78.04 3.45 47.58 20.12
No Base 87.98 80.69 2.46 57.06 29.77 90.90 77.72 2.26 48.94 23.02 91.89 77.09 3.45 46.42 19.67
No GPT4 87.00 80.29 2.47 55.39 28.24 91.41 79.47 2.13 47.24 21.10 91.92 77.21 3.46 45.18 18.62
Chosen = Base 86.11 79.99 2.58 55.40 28.16 88.97 75.01 2.67 49.68 23.89 90.61 76.46 3.70 45.48 18.88
Chosen = Ref 77.69 76.31 2.70 46.94 20.32 89.79 76.43 2.20 39.65 14.17 90.11 72.25 3.88 39.36 14.29
Chosen = GPT4 88.19 80.22 2.65 56.56 27.95 87.25 73.65 2.78 50.57 22.96 90.68 77.67 3.59 47.74 19.60
→ CometKiwi
Vanilla 88.34 81.08 2.44 57.08 29.59 91.08 79.22 2.21 48.53 21.83 91.71 77.91 3.39 47.51 19.89
→ chrF
Vanilla 74.05 74.06 3.00 43.60 17.59 90.38 77.64 2.22 42.21 15.79 89.24 70.90 4.22 36.75 12.42
No Ref 87.70 80.56 2.55 57.13 29.67 87.72 74.05 2.75 51.23 23.90 90.75 77.58 3.61 47.80 20.37
Mono-system
→ xCOMET-QE
Vanilla 87.65 80.86 2.46 56.53 29.09 90.28 77.45 2.38 49.85 23.92 91.79 77.42 3.44 46.34 19.18
Optimized 87.63 80.84 2.45 56.56 29.03 90.64 78.18 2.28 49.94 23.82 91.79 77.58 3.39 46.59 19.31

en-zh xx-en en-xx

Neural Lexical Neural Lexical Neural Lexical
xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU xCOMET-QE CometKiwi Metric-X chrF BLEU

Base 83.92 71.42 2.56 35.58 35.94 88.00 77.74 3.23 52.30 25.37 86.19 73.08 2.42 47.31 29.43
SFT
Multi-system
→ xCOMET-QE
Vanilla 84.89 72.22 2.47 36.50 37.00 88.96 78.46 3.17 53.30 26.38 87.07 73.99 2.30 48.38 30.39
No Base 84.80 72.00 2.50 36.80 37.47 89.07 78.53 3.16 53.57 26.52 86.94 73.70 2.33 48.52 30.50
No Ref 84.78 71.50 2.53 37.05 37.73 89.05 78.47 3.17 53.39 26.41 87.04 73.60 2.36 48.65 30.79
No GPT4 84.50 72.22 2.48 36.26 36.77 88.29 78.02 3.24 52.62 25.84 87.04 74.08 2.31 48.03 30.14
Chosen = Base 84.06 71.38 2.54 35.85 36.39 88.07 77.93 3.25 52.52 25.62 86.52 73.27 2.44 47.52 29.74
Chosen = Ref 84.66 72.81 2.40 36.06 36.28 88.33 77.92 3.19 51.75 25.18 87.29 74.57 2.27 47.86 29.82
Chosen = GPT4 84.75 71.33 2.54 37.51 38.34 89.57 79.06 3.11 54.08 26.67 86.70 73.18 2.39 49.23 30.97
→ CometKiwi
Vanilla 84.90 72.44 2.48 36.43 36.92 89.03 78.57 3.13 53.53 26.53 87.11 74.21 2.29 48.45 30.40
→ chrF
Vanilla 84.40 72.14 2.44 36.59 36.93 87.91 77.62 3.25 51.20 24.86 86.95 73.96 2.31 48.14 30.11
No Ref 84.16 70.78 2.58 37.42 38.38 88.89 78.47 3.19 53.51 26.44 86.65 73.02 2.41 49.04 31.13
Mono-system
→ xCOMET-QE
Vanilla 84.52 72.02 2.53 35.82 36.16 88.55 78.17 3.20 52.74 25.60 86.75 73.87 2.40 47.43 29.60
CPO
Multi-system
→ xCOMET-QE
Vanilla 86.32 75.09 2.36 31.02 29.15 89.77 78.95 3.02 53.47 26.32 88.09 76.75 2.09 44.29 25.15
No Ref 85.84 73.30 2.43 36.43 36.32 89.57 79.26 3.07 54.18 26.59 87.41 74.46 2.27 48.88 30.05
No Base 85.75 74.50 2.30 32.63 31.93 89.52 78.54 3.06 53.44 26.40 87.66 75.84 2.14 45.27 26.99
No GPT4 84.69 74.65 2.45 29.78 27.30 89.16 78.46 3.07 51.94 24.91 87.45 76.62 2.11 43.30 24.02
Chosen = Base 84.64 72.42 2.50 34.26 34.58 88.05 77.95 3.25 52.24 25.22 86.68 73.75 2.41 46.54 28.75
Chosen = Ref 79.65 72.88 2.69 23.12 19.34 84.06 74.22 3.43 44.53 18.10 81.01 73.55 2.33 34.64 15.54
Chosen = GPT4 82.88 69.66 2.81 36.00 35.56 88.99 78.64 3.20 53.95 25.59 85.14 71.40 2.58 48.68 28.99
→ CometKiwi
Vanilla 84.89 74.61 2.52 30.71 28.63 89.58 79.16 3.02 53.97 26.43 87.25 76.71 2.19 44.48 24.99
→ chrF
Vanilla 80.91 73.49 2.69 26.29 22.83 81.79 72.38 3.77 41.46 15.65 83.21 74.76 2.34 37.96 18.13
No Ref 83.08 69.85 2.81 37.64 37.80 88.79 78.73 3.17 54.21 26.74 85.40 71.82 2.60 49.59 30.49
Mono-system
→ xCOMET-QE
Vanilla 85.85 74.47 2.33 34.22 34.00 89.33 78.78 3.06 53.17 25.80 87.94 76.01 2.20 46.65 28.45
Optimized 86.78 75.68 2.25 33.58 32.93 89.36 78.92 3.03 53.28 25.77 88.50 76.87 2.12 46.48 27.99

Table 10: Comprehensive downstream evaluation for the WMT’23 dataset. Metrics, notations and formatting are
the same as in Table 9.
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B Additional Data Details

B.1 Building Preference Datasets in the Mono-System Setting
Following the experimental setup detailed in the main text (Section 3), we here provide further details on
the method used to construct mono-system preference datasets. As a reminder, after generating the K
candidate translations for each source sentence, we have, for all 1 ≤ i ≤ N ,

Ymono
i =

{
y1i , · · · , yKi

}
,

where y1i ⪯ · · · ⪯ yKi are assumed to be sorted in increasing metric score order. For each sample, we
evaluate yBase

i (the greedy-decoded translation) using metric m and check its rank in the set of candidate
translations. We denote it by bi. Sorted in increasing quality order, we thereby have

y1i ⪯ · · · ⪯ ybi−1
i ⪯ yBase

i ⪯ ybii ⪯ · · · ⪯ yKi .

Finally, to determine the chosen and rejected hypotheses, we select two offset parameters or, oc ∈ N, such
that the chosen and rejected options are respectively

{
yci = y

min(K,bi+oc)
i

yri = y
max(1,bi−or)
i

.

Intuitively, or and oc control the average quality of the chosen and rejected options in the resulting
preference dataset and ensure that the chosen (resp. rejected) option always has a higher (resp. lower)
quality than the base translation. Table 11 presents the average quality properties for mono-system
preference datasets, and compares them to the multi-system setting.

Neural Lexical
Hyp. xCOMET-QE CometKiwi chrF

Multi-system

Candidate systems
Base 93.09 87.13 58.33
GPT-4 94.58 88.32 60.93
Reference 91.84 86.72 100.00

Vanilla preference dataset Rejected 87.86 84.15 78.48
Chosen 97.24 89.81 75.95

Mono-system

Multi-system replica Rejected 87.80 83.04 55.69
Chosen 97.29 89.20 57.18

Chosen = Low / Rejected = Low Rejected 75.36 75.46 52.95
Chosen 93.60 87.04 57.14

Chosen = Low / Rejected = Mid Rejected 84.54 81.02 54.93
Chosen 93.60 87.04 57.14

Chosen = Low / Rejected = High Rejected 92.15 85.54 55.86
Chosen 93.60 87.04 57.14

Chosen = Mid / Rejected = Low Rejected 75.36 75.46 52.95
Chosen 95.77 88.40 57.43

Chosen = Mid / Rejected = Mid Rejected 84.54 81.02 54.93
Chosen 95.77 88.40 57.43

Chosen = Mid / Rejected = High Rejected 92.15 85.54 55.86
Chosen 95.77 88.40 57.43

Chosen = High / Rejected = Low Rejected 75.36 75.46 52.95
Chosen 98.16 89.84 57.56

Chosen = High / Rejected = Mid Rejected 84.54 81.02 54.93
Chosen 98.16 89.84 57.56

Chosen = High / Rejected = High Rejected 92.15 85.54 55.86
Chosen 98.16 89.84 57.56

Table 11: Average quality properties for xCOMET-QE-based mono-system preference datasets, compared to the
multi-system setting. Multi-system replica is the mono-system dataset that matches the average chosen/rejected
qualities of the multi-system preference data. Other mono-system datasets are represented by their relative average
chosen/rejected qualities.
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B.2 Language Statistics
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Figure 2: Language statistics for preference datasets. The y-axis represents the number of samples, corresponding
percentages are displayed above each bar.
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Figure 3: Language statistics for WMT’22 and WMT’23 test data. The y-axis represents the number of samples,
corresponding percentages are displayed above each bar.
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Abstract

Despite the recent popularity of Large Lan-
guage Models (LLMs) in Machine Translation
(MT), their performance in low-resource lan-
guages (LRLs) still lags significantly behind
Neural Machine Translation (NMT) models. In
this work, we explore what it would take to
adapt LLMs for the low-resource setting. Par-
ticularly, we re-examine the role of two fac-
tors: a) the importance and application of par-
allel data, and b) diversity in Supervised Fine-
Tuning (SFT). Recently, parallel data has seen
reduced use in adapting LLMs for MT, while
data diversity has been embraced to promote
transfer across languages and tasks. However,
for low-resource LLM-MT, we show that the
opposite is true for both considerations: a) par-
allel data is critical during both pre-training
and SFT; b) diversity tends to cause interfer-
ence instead of transfer. Our experiments with
three LLMs across two low-resourced language
groups—Indigenous American and North-East
Indian—reveal consistent trends, underscoring
the generalizability of our findings. We believe
these insights will be valuable for scaling to
massively multilingual LLM-MT models that
can effectively serve LRLs.

1 Introduction

Large Language Models (LLMs) have been dom-
inating recent research in Machine Translation
(MT), showing good few-shot prompting (Gar-
cia et al., 2023; Hendy et al., 2023) and stronger
instruction-tuning (Alves et al., 2024; Xu et al.,
2024) performances—recently even outperforming
commercial Neural Machine Translation (NMT)
models (Kocmi et al., 2024). However, LLM trans-
lation for low-resource languages (LRLs) still lags
significantly behind NMT models (Robinson et al.,
2023; Zhu et al., 2024b). While the strong perfor-
mance of LLMs on high-resource languages can be

*denotes equal contribution

Base LLM #Tokens #Langs

Zhang et al., 2024a From scratch 283B 2
Fujii et al., 2024 Llama2 100B 2
Lu et al., 2024 Llama{2,3} ∼82B† 101
Alves et al., 2024 Llama2 20B 11
Xu et al., 2024 Llama2 20B 6
Ours Mistral/Llama3 0.7B 12

Table 1: Comparing data scales of previous works with
ours, in terms of pre-training token counts, the base
LLM (if pre-training continued from one) and how many
languages this spanned. †Estimated from the reported
sentence count assuming 100 tokens per sentence.

attributed to the skewed language distribution dur-
ing pre-training and the unintentional consumption
of parallel data at scale (Briakou et al., 2023), no
such relief exists for LRLs. This leads to the main
question motivating this paper: What would it take
to adapt LLMs for low-resource MT?

Recent work on LRL translation with LLMs
has explored using resources like multilingual lexi-
cons (Lu et al., 2023), word alignments (Mao and
Yu, 2024) or linguistic tools (Zhang et al., 2024b).
While effective, reliance on such tools hinders ease
of extensibility across languages. Instead, in this
work, we take inspiration from research done for
high-resource translation with LLMs, where a 2-
stage training paradigm of Continued Pre-Training
(CPT), followed by small-scale Supervised Fine-
Tuning (SFT; (Xu et al., 2024; Alves et al., 2024))
has been successful. Aiming to adapt this frame-
work for low-resource MT, we re-examine the role
of two factors influencing the performance of trans-
lation LLMs: a) how best to leverage parallel data,
and b) the interplay between diversity and transfer
during SFT (also known as ‘instruction tuning’).

Recently, the role of parallel data at scale, long
viewed as fundamental to the success of NMT mod-
els, has come into question in the era of LLM-MT
systems. Motivated by the modest gains of train-
ing on 300M parallel sentences (Yang et al., 2023),
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and the surprising benefits of scaling down dur-
ing SFT (Zhou et al., 2023), subsequent works
have used only tens of thousands of human-written
bitext for LLM-MT (Zhang et al., 2023b; Alves
et al., 2024; Xu et al., 2024)—with SFT scaling
laws further showing the early plateau of LLM-MT
performance (Zhang et al., 2024a). Even more sur-
prisingly, Zhu et al. (2024a) showed MT abilities
emerging with just 32 SFT examples! However,
these explorations concern LLMs pre-trained on
several billions of tokens in the languages in ques-
tion. We revisit these notions for low-resource MT
and work with languages having datasets that are 2-
3 orders of magnitude smaller. In Table 1 we com-
pare the scale of the datasets used in our work and
related research. We discover that for low-resource
MT, parallel data is critical not just during CPT,
but even more so during SFT—in direct contrast
with research on high-resource languages (HRLs).

Next, diversity in tasks, prompts, and datasets
during SFT has been shown to significantly im-
prove model performance across a range of tasks
(Mishra et al., 2022; Chung et al., 2024). MT in-
structions have been shown to not just boost trans-
lation performance in unseen languages (Muen-
nighoff et al., 2023), but also enhance LLM ca-
pabilities across diverse multilingual generation
tasks (Ranaldi and Pucci, 2023; Zhu et al., 2023).
Inspired by these findings, we study if SFT diver-
sity could benefit low-resource LLM-MT systems
too. By conducting experiments across a range
of tasks and language pairs with SFT datasets of
varying compositions, we establish that diversity
leads to negative interference and fine-tuning on
multilingual MT is the optimal strategy. Further,
we observe that training for more epochs on MT
data is more effective than curating and training on
a diverse dataset of the same size.

Our contributions are thus as follows:

1. In contrast to findings for high-resource LLM-
MT (Xu et al., 2024), we observe that for
LRLs, LLMs benefit hugely from scale of par-
allel data, during both CPT and SFT stages

2. Linguistic and task diversity during SFT leads
to negative interference for LRL LLM-MT,
with focused multilingual MT fine-tuning for
more epochs being the most effective recipe.

To ensure the generalizability of our findings,
we conduct 2 sets of experiments training multi-
lingual LLMs on different sets of languages: a)

11 Indigenous American and b) 4 North East In-
dian languages, wherein the former follows a Latin
script and the latter includes languages that do not.
Our focus in this work is on the eng/spa→ X di-
rections since generation in an LRL is known to be
a much harder task than in an HRL like English or
Spanish, and we are interested in studying the chal-
lenges involved. We experiment with 3 base LLMs
of varying sizes—Gemma 2B (Gemma Team et al.,
2024), Mistral 7B (Jiang et al., 2023), and Llama 3
8B (Dubey et al., 2024), and observe that findings
are mostly consistent across these models.

By applying our findings to 2-stage training, our
methods achieved a +16.5 average chrF++ improve-
ment over few-shot prompting—with the largest
gains coming from the 8 least-resourced American
languages in our setup, all of which have about
10K-50K parallel sentences each. We hope that the
findings of this work will be useful when scaling
to LLMs that can effectively translate into lower-
resource languages.

2 Related Work

High-Resource Translation with LLMs There
has been considerable interest in using LLMs as
MT systems recently. Following initial success in
prompting LLMs for high-resourced pairs (Vilar
et al., 2023; Garcia et al., 2023; Hendy et al., 2023;
Zhang et al., 2023a; Iyer et al., 2023), subsequent
works have attempted to train LLMs on parallel
data at scale (Yang et al., 2023; Lu et al., 2024),
but these yielded modest gains and underperformed
smaller encoder-decoder baselines such as NLLB-
200 (Costa-jussà et al., 2022). Zhang et al. (2024a)
showed through scaling laws for SFT that LLMs
pre-trained at the order of 50B-300B tokens satu-
rate in MT performance with 20K-30K instructions.
Concurrently, Xu et al. (2024) discovered excess
parallel data washed out LLM knowledge, so they
proposed a 2-stage paradigm called ALMA that in-
volved pre-training on scaled-up monolingual data,
followed by SFT on much smaller high-quality
bitext (~60K lines). ALMA outperformed NLLB-
200. Following their success, Alves et al. (2024)
adopted the ALMA framework to train Tower 7B
for 10 high-resourced languages, outperforming
ALMA and also matching GPT-4.

It is worth noting that Xu et al. (2024) did not in-
clude parallel data during CPT. However, inspired
by research showing LLMs unintentionally con-
sume parallel data at scale (Briakou et al., 2023),
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several works have included it at the order of
several billions of tokens for the top 10-20 high-
resource languages (Anil et al., 2023; Wei et al.,
2023; Fujii et al., 2024; Alves et al., 2024). Concur-
rent work has explored pre-training on synthetic,
code-switched parallel data for 101 languages (Lu
et al., 2024) with a total of 400M sentences. This
work explores the impact of parallel data exclu-
sively for low-resource performance and exper-
iments with 1M–13M parallel sentences (50M–
750M tokens) during pre-training, two orders of
magnitude smaller than prior work.

Low-Resource Explorations in LLM-MT
LLMs have been shown to perform poorly in
low-resource MT (Robinson et al., 2023; Zhu
et al., 2024b). In response, there have been efforts
to leverage external resources in the MT pipeline,
including multilingual lexicons (Lu et al., 2023),
rule-based linguistic tools (Zhang et al., 2024b),
word alignments (Mao and Yu, 2024) and even
entire grammar books (Reid et al., 2024). However,
such approaches create dependencies on resources
and hinder extensibility across languages. Instead,
we focus on optimal data utilisation strategies
during CPT and SFT, prioritizing extensibility.

Cross-Lingual Instruction Tuning There has
been a body of work exploring multilingual in-
struction tuning that have touched on diversity and
data scale, but most of it is limited to HRLs. MT
examples were shown to improve cross-lingual
generation (Ranaldi and Pucci, 2023; Zhu et al.,
2023), while Chen et al. (2024) showed multilin-
gual SFT on machine-translated Alpaca datasets
matches or beats monolingual tuning. Kew et al.
(2023) and Shaham et al. (2024) showed a small
quantity of multilingual SFT data can improve
cross-lingual generation capabilities in medium and
high-resource languages, while Zhu et al. (2024a)
showed only 32 examples in HRLs suffice to elicit
MT capabilities from LLMs. In our work, we hy-
pothesize that these findings have the common de-
nominator of pre-training on HRLs at scale, and
show that when moving to LRLs, these trends re-
verse and diversity is no longer beneficial.

3 Approach

We now describe our efforts to adapt the widely-
used ALMA framework, originally designed for
fine-tuning LLMs for HRL translation (Xu et al.,
2024; Alves et al., 2024), for MT in LRLs.

3.1 Stage 1: Continued Pre-training (CPT)

CPT on Monolingual Data The objective of this
stage is to ‘teach’ an LLM to model LRLs, which
are scarce in the pre-training corpus. We conduct
CPT on monolingual data with the standard Causal
Language Modelling objective. We train with low-
rank adaptation (LoRA) and attach rank 8 adapters
to query and value matrices (Hu et al., 2022). We
also fine-tune input and output embeddings.

CPT on Parallel Data In a scenario where mono-
lingual data is scarce, it is crucial to investigate the
most effective way to use parallel data—which, for
our indigenous American languages, was found to
surprisingly be more abundant than the former1.
We investigate 3 methods of mixing all available
parallel and monolingual data:

1. All Mono: Here, we merge monolingual
data with only the target side of all available
bitext—essentially using it as extra monolin-
gual data

2. Mono + parallel (concat): Here, we merge
monolingual data with concatenated source-
target pairs from parallel data. We prepend
source and target language codes before con-
catenation and, following Guo et al. (2024),
use a newline delimiter to separate them.

3. Mono + parallel (separate): To ablate the im-
pact of concatenation, we provide the source
and target sides of parallel data as separate
sentences, and shuffle with monolingual data.

We depict our approach in Figure 1. In the first
technique, the motivation is that it might be hard for
the LLM to learn to model concatenated sequences,
given that they were likely scarce in the original
pre-training corpus, with the added challenge of
pre-training on ‘new’ low-resource languages. On
the other hand, if the model is able to adapt to
concatenated sequences, it could make the LLM
more adjusted to the task of translation. Finally,
the third method verifies whether the results of the
‘concatenated’ model are due to the concatenation
itself, rather than simply being exposed to addi-
tional tokens in the source language. We use this
terminology for all experiments in this work.

While these methods control how parallel data is
incorporated in pre-training, we are also interested

1While monolingual online data is scarce, many transla-
tions of constitutions, articles etc. from Spanish do exist
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[aym] Mä simanakiw

[es] Solo dura una semana

[aym] Mä simanakiw

Decoder-only LLM

[es] Solo dura una semana

[aym] Mä simanakiw

Mono + Parallel (concat)

Mono + Parallel (separate)

All Mono

Figure 1: Strategies explored for incorporating parallel
data during Continued Pre-Training. We show a Spanish
(es) to Aymara (aym) example from our parallel data.

in adjusting the ratio of parallel to monolingual data
in the corpus, particularly for the ‘concat’ method
given pre-training on 100% parallel data can be
suboptimal (Alves et al., 2024). To get a desired
mixing ratio for ‘concat’, we include bitext only
until it comprises a given percentage of the training
corpus. Once this threshold is crossed, we use the

‘all mono’ method to include it as monolingual data
instead. Next, we use temperature sampling (Ari-
vazhagan et al., 2019) to control the language-wise
distribution in our monolingual and parallel pre-
training data, since these are quite heterogeneous
and certain languages are extremely low-resourced.
We sample monolingual and parallel data indepen-
dently if using the ‘concat’ method, else we just
mix them all together and shuffle at the instance
level to create our final pre-training corpus.

3.2 Stage 2: Supervised Fine-Tuning (SFT)
Next, we fine-tune with LoRA on supervised in-
struction data and detail the tasks explored below.
Note that we convert all instructions to the stan-
dard Alpaca format, and compute loss on the target
tokens only (Taori et al., 2023).

Low-Resource MT Given our use case, the most
intuitive task to include would be MT itself. The
instruction for each example is chosen randomly
from a set of translation prompts (Table 11), while
the input and output fields are the source and
target sentences respectively.

High-Resource MT Apart from MT data in the
LRLs, we also experiment with adding HRL MT
data since it is more abundant and of higher qual-
ity, known to be important during SFT (Xu et al.,
2024). To explore the impact of transfer learning,
we work with HRL data that is in some way related
to the source/target language, e.g. Spanish-English

data for experiments on Spanish-X. Instructions are
formatted in the same way as the LRL data.

General-Purpose Instruction Tuning Apart
from MT data, we also explore adding widely used
general-purpose instruction tuning datasets, such
as Alpaca (Taori et al., 2023) and Aya (Singh et al.,
2024), and use data from high-resource languages
(comprising the source side in our tasks) to improve
the model’s overall instruction-following capabili-
ties. However, for the most part, we are unable to
find similar data in the LRLs we experiment on.

Synthetic Cross-Lingual QA (XQA) We do not
find any instruction tuning data for most LRLs,
so we follow Iyer et al. (2024) to create synthetic
Question Answering (QA) data. Starting from a
parallel sentence pair (X,Y ), where X is from
an HRL (in our case, English/Spanish) and Y is
from an LRL, we prompt an LLM (Mixtral-8x7B-
Instruct (Jiang et al., 2024) in this work) to generate
a question Q for which X would be an answer.
Since X and Y are semantically equivalent, Y is
treated as the answer to question Q. We add a
requirement at the end of Q to generate in the target
language. Thus, we use (Q,Y ) as synthetic cross-
lingual instruction data. We provide the templates
used for generating XQA examples in Table 12.

4 Experiments and Discussions

We fine-tune 2 separate sets of multilingual LLMs
for 2 different language groups to facilitate evalua-
tion on test sets from 2 different low-resource MT
shared tasks: AmericasNLP 2024 (Ebrahimi et al.,
2024) and the Indic track of WMT 2023 (Pal et al.,
2023). The former involves 11 Indigenous Cen-
tral & South American languages, while the latter
focuses on 4 North-East (NE) Indian languages.
The first group includes Aymara (aym), Bribri
(bzd), Asháninka (cni), Chatino (ctp), Guarani
(grn), Huichol (hch), Nahuatl (nhe), Otomi (ote),
Quechua (quy), Shipibo-Konibo (shp) and Tarahu-
mara (tar). The second consists of Khasi (kha),
Meitei (mni), Mizo (lus) and Assamese (asm). Our
motivation in choosing these languages was to ex-
periment with LRLs containing both Latin (Amer-
ican) and non-Latin (Indic) scripts; that also had
widely used, high-quality test sets. We use the
former for our main experiments and replicate the
most interesting baselines in the Indic languages.
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Lang #Tokens Lang #Tokens Lang #Tokens

aym 23.4M bzd 2.6M cni 2.2M
ctp 5.4M grn 37.6M hch 3.5M
nhe 32.1M oto 23.6M quy 45.1M
shp 3.3M tar 2.3M Total 181.3M

eng 9.8M spa 27.9M Replay 37.6M

(a) Indigenous American Languages

Lang #Tokens Lang #Tokens Lang #Tokens

asm 1.1B kha 39.3M lus 165.1M
mni 16.5M eng 7.3M Total 1.3B

(b) North-East Indian Languages

Table 2: Monolingual data statistics, with token counts
calculated using the Llama3 8B tokenizer. English and
Spanish are included as replay data. Note that LRL
token counts overestimate data sizes, due to poor tok-
enization, and cannot be directly compared with HRLs.

4.1 Data
Monolingual Data Table 2 shows the token
counts for the monolingual data collected for the
2 language groups. We note that the American
languages are very low-resource, with 6 of 11 hav-
ing 5M tokens or less. The Indic languages have
relatively more data, with Assamese being medium-
resourced but still likely low-resource in the origi-
nal LLM pre-training corpus. Assamese and Meitei
follow the Assamese-Bengali script, while Mizo
and Khasi use the Latin script. Using the Llama3
tokenizer, we observe average fertilities of 2.87 and
3.83 for the American and Indic languages respec-
tively, almost 3x that of high-resource languages,
illustrating the under-representation of non-Latin
scripts in SOTA LLMs. Finally, we include some
data in English and Spanish as replay data to pre-
vent catastrophic forgetting (Ibrahim et al., 2024).

Parallel data We curate parallel data from vari-
ous sources, for use in both CPT and SFT. Tables
3 and 4 show the sizes for the American and In-
dian languages respectively. Given that our pri-
mary exploration is for the American languages
with limited spa-X data, we also sample eng-X and
por-X from OPUS (Tiedemann, 2012). Note the
heavily skewed language distribution, with the 3
HRLs constituting 80% of spa-X data and 96% of
the overall data. The lesser skew for spa-X is due
to the efforts of AmericasNLP to collect data for
these pairs and the prevalence of Spanish in Latin
American countries. A similar skew also exists for
the Indic languages, with English-Khasi being the
least-resourced pair. We list sources for all curated

data, along with cleaning steps, in Appendix A.

4.2 Evaluation
To evaluate MT into the 11 American languages,
we use AmericasNLP’23 validation sets (Ebrahimi
et al., 2024) containing spa-X translation pairs.
For the Indic pairs, we use the WMT 2023 test
sets from the Indic track (Pal et al., 2023) which
consist of eng-X pairs. Both evaluation datasets
are multi-domain, as are the curated monolingual
and parallel corpora. We show test set statistics
in Table 5. Given the absence of neural metrics
for these languages, we evaluate using ChrF++
(Popović, 2017), since both the American and Indic
languages are morphologically rich wherein chrF++
is particularly effective (Popović, 2017). We use
SacreBLEU (Post, 2018) for computing this. We
also report confidence intervals with bootstrap re-
sampling (Koehn, 2004), which we implement for
the multilingual setting by computing the macro-
average across all languages for each resample, and
then computing the mean and variance across all
resamples. We report the standard deviation as the
confidence interval.

4.3 Experimental Settings
For temperature sampling our data, we use τ = 30
for CPT and τ = 80 for SFT. We used a batch size
of 8 and gradient accumulation every 16 steps. We
used a learning rate of 1e-4, with a cosine scheduler
and a warmup ratio of 3%. We train all models on
bf16 precision for 1 epoch. We use Llama-Factory
(Zheng et al., 2024) for training and evaluating
all models, with Deepspeed ZeRO3 (Rasley et al.,
2020) for distributed training. For inference, we
used a batch size of 16 with greedy decoding, since
we found higher beam sizes yielded minimal gains.

4.4 Foundational Results
We first establish the importance of fine-tuning
input and output embeddings in Table 6 and then
show our foundational results for the American
languages in Table 7, using 5-shot prompting as a
baseline. Our findings are:

1. Fine-tuning embeddings is critical. Across
the board, we observe that fine-tuning em-
beddings along with LoRA modules yields
huge gains (Table 6), almost doubling chrF++
scores, indicating that this step is crucial to
helping LLMs adapt to these new languages.
Given this, we expect that full-weight fine-
tuning would perform better, but stick to
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Total HRL LRL aym bzd cni ctp grn hch nhe oto quy shp tar

spa 1M 0.8M 0.2M 442K 8K 20K 4K 80K 21K 57K 16K 226K 62K 28K
por 1.9M 1.9M 15K 3.6K 0 6.9K 0 410K 0 8K 0 1520K 0 0
eng 5.8M 5.8M 36K 1053K 0 13.9K 0 2489K 0 22K 0 2271K 0 0

Total 8.8M 8.5M 0.3M 1.5M 7.7K 41K 4.1K 3M 21K 87K 16K 4.0M 62K 28K

Table 3: Parallel data sentence counts for American languages, from source to each target language. HRL and LRL
refer to the 3 high-resource languages (Aymara, Guarani, Quechua) and the other 8 low-resource ones respectively.

Pair eng-lus eng-asm eng-kha eng-mni

#Sents 6.5M 5.0M 25K 443K

Table 4: Indic Parallel Data Sizes (Sentence counts)

Indigenous American NE Indic

Pair #Lines Pair #Lines Pair #Lines Pair #Lines

spa-aym 996 spa-nhe 672 spa-quy 996 eng-asm 2000
spa-bzd 996 spa-oto 599 spa-shp 996 eng-kha 1000
spa-cni 883 spa-gn 995 spa-tar 995 eng-mni 1000
spa-ctp 499 spa-hch 994 eng-lus 2000

Table 5: Evaluation data statistics for the low-resourced
American and Indic language experiments in this paper.

LoRA fine-tuning for cost-efficiency reasons.
We fine-tune embeddings for all future results.

2. Choosing larger base LLMs is crucial. For
under-represented (zero-resource) languages,
is it more effective to train smaller LLMs with
larger vocabularies (and thus, improved fer-
tility), or vice versa?2 We note that Gemma
2B has the largest vocabulary (256K tokens),
followed by Llama3 (128K) and Mistral (32K
tokens), resulting in improved fertility (2.36
vs 2.87 for Llama3/Mistral). Regardless, the
larger models, Mistral 7B and Llama3 8B,
vastly outperform the Gemma 2B model, sug-
gesting fine-tuning smaller vocabulary LLMs
like Mistral might be a better option from both
cost and performance standpoints.

3. SFT alone is effective, but CPT+SFT yields
best results. While SFT yields large gains
over prompting, combining CPT and SFT
seems optimal for both Gemma and Llama3,
although the gap is smaller than that of high-
resource MT (Xu et al., 2024), ostensibly due
to the difference in scale. For Mistral, SFT
alone seems to suffice—we hypothesize that

2We found it prohibitively expensive to fine-tune Gemma
7B which has a larger vocabulary and a larger capacity.

Fine-Tuned Modules Gemma 2B Mistral 7B Llama3 8B

LoRA only 4.5 ± 0.1 8.8 ± 0.2 8.3 ± 0.2
LoRA + embeddings 9.6 ± 0.3 15.6 ± 0.4 15.6 ± 0.4

Table 6: Impact of fine-tuning input/output embeddings
along with LoRA adapters is shown. Both models fol-
low the “CPT all mono, SFT” recipe from Table 7.

Method Gemma 2B Mistral 7B Llama3 8B

5-shot prompting 2.8 ± 0.1 5.1 ± 0.1 3.9 ± 0.1
SFT only 8.7 ± 0.2 16.3 ± 0.4 14.8 ± 0.4
CPT all mono, SFT 9.6 ± 0.3 15.6 ± 0.4 15.6 ± 0.4
CPT mono+parallel, SFT 10.1 ± 0.3 16.7 ± 0.4 17.2 ± 0.4

Table 7: chrF++ scores for spa-X LLM-MT in the
American languages, for LLMs of varying sizes. Both
LoRA modules and embeddings are fine-tuned. For
SFT, all models use 500K spa-X MT examples. Con-
fidence estimates are computed using bootstrap resam-
pling. ‘mono+parallel’ uses concatenated bitext.

this might be due to the smaller vocabulary be-
ing effectively fine-tuned on SFT data alone.

4. Pre-training on parallel data yields ma-
jor gains consistently. Lastly, we observe
that pre-training on a mixture of concatenated
monolingual and parallel data (‘mono + paral-
lel’) yields statistically significant gains over
converting both as monolingual data (ie. ‘all
mono’; refer Section 3.1). This trend is con-
sistent for all 3 LLMs, with larger gains for
the more effective models Mistral and Llama3.
We note that for ‘mono+parallel’, we mix par-
allel and monolingual data in a 1:1 ratio, since
we observed it worked best empirically, and
show in Table 14 how increasing the ratio
of parallel data during CPT monotonically
improves performance. Given these gains,
we explore the importance of bitext for low-
resource LLM-MT further in Section 4.5.

4.5 Analysis: Importance of Parallel Data
How important is concatenated parallel data
at various scales of low-resource pre-training?
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Figure 2: Comparing Llama3 8B models pre-trained on
monolingual data alone versus those included parallel
data too—concatenated, or as separate texts at various
scales. All models were pre-trained on 1M, 3M, 5M,
8M, and 13M sentences respectively, and markers de-
note the corresponding token counts. The y-axis shows
chrF++ post SFT on 500K spa-X MT data for 1 epoch.

Having seen improvements in pre-training on the
entire corpus (consisting of 13M ‘mono+parallel’
sentences, or 730M tokens) in Table 7, we now
study the importance of parallel data as we
scale down—an important consideration when one
moves to even lower-resource settings. We pre-
train on subsets of varying sizes and mix mono-
lingual and parallel data in 3 ways: ‘All mono’,
‘mono+parallel (concat)’ and ‘mono+parallel (sep-
arate)’, as defined in Section 3.1). We fine-tune all
these pre-trained models on the same SFT dataset:
500K spa-X MT instructions, and plot the result-
ing chrF++ scores in Figure 2, including error bars
from bootstrap resampling. We note that ‘all mono’
has different markers than the others, as the token
counts on including both source and target-side
data in the corpus are obviously larger than only
the latter. We find that a) starting at around 5M sen-
tences (~300M tokens), it is consistently advanta-
geous to include concatenated parallel data during
pre-training. b) Given ‘mono+parallel (separate)’
severely underperforms, we establish that it is con-
catenation that adapts the LLM for the task of MT,
not the extra data alone. Our findings complement
those of Alves et al. (2024), who also observe gains
from pre-training on parallel data in the 1B to 20B
tokens range, using 10 high-resourced European
languages. In contrast, our focus here is on investi-
gating the minimum data threshold at which CPT
leveraging parallel data becomes beneficial.

How does scaling LRL parallel data during SFT
impact performance? We now turn our focus to
scaling during SFT, which has not yielded gains in
high-resource LLM-MT after 20K-30K sentences

(Zhang et al., 2024a). Motivated by our previous re-
sults, we re-examine this question for low-resource
LLM-MT in Figure 3, wherein we evaluate at steps
of 50K until ~1M SFT instructions, the point at
which spa-X MT data runs out. Our findings are:

1. Overall MT quality improves steadily with
scale. Unlike high-resource LLM-MT, we ob-
serve that, despite fluctuations, MT quality
continues to grow until 1M sentences, particu-
larly for LRLs, which have a steeper slope.

2. The gains of CPT on parallel data carry
over to SFT scaling, particularly for HRLs.
We observe that CPT on a mixture of concate-
nated monolingual and parallel data yields
the largest initial gains, followed by CPT on
monolingual-only data. We note that the for-
mer is particularly beneficial for HRLs, which
have likely consumed a lot of parallel data dur-
ing pre-training, and this helps them maintain
a huge lead at lower SFT scales, suggesting
that concatenated parallel data teaches the
LLM the task of translation and helps it adapt
to MT more naturally during SFT. Given the
prevalence of bitext in LLM pre-training cor-
pora (Briakou et al., 2023), the gains of con-
catenation would help explain why few-shot
prompting (Garcia et al., 2023) and tiny-scale
SFT (32 examples; c.f. Zhu et al. (2024a)) can
elicit MT in the highest-resource languages!

3. LRLs need SFT scaling much more than
HRLs So, while HRLs benefit hugely from
CPT on bitext, the opposite is true for LRLs—
the scarce amount of parallel data observed
during CPT (see Table 3) is likely not enough
to outperform ‘all mono’ pre-training. Instead,
LLMs are far more responsive to the scale of
LRL MT data during SFT, showing consistent
performance improvement. Meanwhile, MT
quality plateaus for the HRLs3 (Figure 3b),
suggesting that the ‘less is more’ (Zhou et al.,
2023) trend popular in high-resource LLM-
MT does not hold for LRLs, where scale con-
tinues to remain the most effective option.

For generalizability, we also provide scaling
graphs for Mistral 7B in Figure 7 and report trends
similar to Llama3. Moreover, we also compute

3although Aymara, Guarani and Quechua are LRLs for the
original pre-training corpus of Mistral/Llama3
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(a) Average (overall) (b) Average (high-resource†) (c) Average (low-resourceη)

Figure 3: Scaling up Llama3 8B models with different CPT recipes (no CPT, CPT with monolingual data, and CPT
with a mixture of monolingual and parallel data) on MT data for the American languages. †‘High-resource’ refers
to the relatively higher-resourced languages in our low-resource setup (Aymara, Guarani and Quechua) while the
other 8 are grouped as low-resourceη .

Figure 4: Scaling up Llama 3 8B models with the 3 CPT
recipes for the 4 Indic languages, until 5M sentences.
We were forced to stop training ‘No CPT’ at 2.5M sen-
tences, constrained by budget.

scaling graphs for the 4 Indic languages in Fig-
ure 4 using the Llama3 model, until 5M eng-X
sentences. Here, we observe that the gap be-
tween ‘CPT: mono+parallel (concat)’ and ‘CPT
(all mono)’ is relatively lesser, and only significant
until 500K sentences, at which point they start be-
coming comparable. This might be because the
Indic parallel corpora used for CPT is relatively
less diverse, consisting of only eng-X pairs in 4 lan-
guages, whereas our parallel data for the American
languages is more heterogeneous (see Table 3)—
which we observed to yield more gains in our pre-
liminary experiments. Thus, we expect a more di-
verse corpus for the Indic languages to yield greater
long-term gains, but we leave the verification of
this to future work. In other respects, the trends
are quite similar to the American languages: the
gains of CPT carry over to SFT here too and in-
terestingly, MT quality continues to improve until
5M SFT examples, once again in direct contrast to
high-resourced LLM-MT research.

More epochs: Scale through repetition Finally,
given the consistent gains from scale, we evalu-
ate how effective data repetition could be during

Figure 5: Epoch vs performance graph for low-resource
LLM-MT. We use the entire 1M spa-X MT dataset, and
plot average chrF++ for the Indigenous American lan-
guages, using Llama3 (Mono+Parallel (concat)) model.

SFT. We train for up to 10 epochs on the entire 1M
spa-X MT dataset and plot our results in Figure
5. We note a strong monotonic gain of +3.3 aver-
age chrF++ until 5 epochs, with the largest coming
from the 1st to the 2nd epoch (+2.0 chrF++). While
the graph does plateau later (likely due to over-
fitting) this shows how simply training for more
epochs can be an easy way to boost performance,
given the data constraints for LRLs.

4.6 Analysis: Diversity in SFT is not always
helpful

We now look at the importance of diversity in SFT,
which plays a significant role in boosting LLM per-
formance during general-purpose fine-tuning (Sanh
et al., 2022; Longpre et al., 2023), but has also
been favoured in training LLM-MT systems (Alves
et al., 2024). Alves et al. (2024) observed improved
performance on non-MT tasks by including non-
MT instructions, but mixed results on MT quality—
concluding that the “transfer/interference relations
between tasks are complex”. In this work, we try
to tease apart these interference relations and study
the effect of non-MT tasks on low-resource transla-
tion in depth. In particular, we look at 3 kinds of
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Method All HRL LRL

Bilingual LLM-MT 14.51 24.55 10.75
Multilingual LLM-MT 18.73 23.59 16.90

Table 8: Average chrF++ of SFT on a single language
pair (bilingual) vs all language pairs (multilingual). As
before, “HRL” includes Aymara, Guarani and Quechua,
while the other eight are grouped under LRL.

diversity: prompt, linguistic, and task diversity, and
examine their impact on MT quality when mixed
in varying proportions in the SFT dataset.

Bilingual or Multilingual fine-tuning? First, we
ask whether given some multilingual low-resource
data and a fixed FLOPS budget, would it be bene-
ficial to do SFT on multiple, diverse low-resource
MT pairs (multilingual LLM-MT) or only on a
single pair (bilingual LLM-MT)? For this experi-
ment, we simply concatenate all available data for
the multilingual setting, while the bilingual setting
consists of fine-tuning separate models for each
pair, with the base LLM being constant in both
cases: Llama3 (CPT with mono+parallel data). We
show our results in Table 8. We observe that, on av-
erage, multilingual SFT outperforms the bilingual
models by +4 chrF++ points. Looking closer, we
notice that these gains mostly come from the lower-
resourced languages (detailed results in Table 13).
This is potentially because the bilingual setting has
too little data for effective FT in these languages,
while the multilingual option offers better transfer
and scale. For higher-resourced pairs, the opposite
is true: the performance is slightly lower, ostensi-
bly due to negative interference. This is not unlike
conventional multilingual NMT models, such as
NLLB, wherein high-resource MT can often be
worse than bilingual baselines.

On Linguistic, Task and Prompt Diversity In-
spired by the previous results showing target-side
diversity in MT pairs boosts performance, we now
broaden the scope of diversity during SFT. In Table
9a, we show varying mixtures of SFT data that all
have the same size (500K examples) but are com-
posed of different tasks. For prompt diversity, we
ablate randomly sampling from a list of potential
prompt templates (listed in Table 11) versus using
a constant one (the first in Table 11). We observe a
statistically significant gain in MT quality, similar
to general-purpose SFT (Longpre et al., 2023).

Next, we study the more interesting question
of linguistic diversity: can data in other MT pairs

SFT Mixture chrF++

Prompt Diversity

500K spa-X MT (Same prompt) 16.18±0.37
500K spa-X MT (Random prompts) 17.22±0.40

Linguistic Diversity

166K spa-X MT + 166K eng-X MT + 166K por-X MT 14.26±0.37
250K spa-eng MT + 250K spa-X MT 15.73±0.38
500K spa-X MT only 17.22±0.40

Task Diversity

250K spa-X MT + 250K XQA 15.45±0.39
250K spa-X MT + 250K Aya (spa) 15.68±0.39
250K spa-X MT (x 2 epochs) 17.20±0.40
500K spa-X MT 17.22±0.40

(a) Prompt, Linguistic and Task Diversity in American pairs

SFT Mixture chrF++

250K spa-X MT + 250K Aya (asm, mni) 26.91 ± 0.42
250K spa-X MT + 250K Alpaca (eng) 28.02 ± 0.41
500K spa-X MT only 29.57 ± 0.43

(b) Task Diversity in Indic pairs

Table 9: Exploring interference due to diversity in SFT
for our best Llama3 8B model (CPT on both monolin-
gual and parallel data) on the American and Indic lan-
guages. The dataset size (example count) is prepended
before each task. Scores shown are average chrF++.

transfer for test languages? In one baseline, we di-
vide our SFT dataset equally into spa-X, eng-X, and
por-X MT examples, into the American languages
(statistics in Table 3). In another baseline, we use
Spanish-English data from ParaCrawl (Bañón et al.,
2020) and combine a 250K sentence subset with
250K pairs from our usual spa-X MT data. We find
that this type of linguistic diversity leads to inter-
ference, and significantly underperforms the 500K
spa-X MT baseline. This suggests that while target
diversity in related languages might help perfor-
mance, source diversity or unrelated high-resource
languages like English may not.

Then, we look at task diversity: can non-MT
tasks that elicit better instruction-following and
general reasoning capabilities in the source or tar-
get language, benefit LLM-MT in LRLs? We mix
Aya and XQA (Section 3.2) instructions with a
250K subset of spa-X MT examples. We also in-
clude an ablation that, in place of curating non-MT
data, merely trains for 2 epochs on the 250K spa-X
MT subset. Here we also discover that general-
purpose tasks lead to interference and that training
for 2 epochs on 250K MT examples is a more ef-
fective strategy comparable to 1 epoch on 500K.

We also look at the impact of task diversity on
the Indic languages in Table 9b. Here, we are able
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Figure 6: Mixing varying percentages of SFT tasks
with spa-X MT, versus the impact on spa-X chrF++,
for 500K examples. ‘MT only’ is a topline which only
uses the spa-X MT data excluding all other tasks. Thus,
it uses lesser data relatively and helps to estimate the
interference of non-MT tasks on MT quality.

to find general-purpose instruction-tuning data in
Assamese and Meitei, as mentioned in Section 3.2.
Interestingly, including data in these target lan-
guages—the languages we want the model to be
better at generating in—degrades performance the
most! A similar amount of Alpaca data in English
reduces performance far less, suggesting that rea-
soning in LRLs is such a hard task, that even data
where the model should learn to generate in the
languages of interest, is worse than generic English
instruction-following data. Here, too, providing
500K spa-X examples is the most optimal strategy,
underscoring the generalizability of our findings.

Does non-MT SFT always cause interference?
Finally, we seek to establish conclusively if the
negative results of diversity in Table 9a arise from
factors like task mismatch or lack of quality; or if
interference is simply the norm when fine-tuning on
non-MT data for low-resourced LLMs. In Figure
6, we plot 5 graphs: the first 4 are graphs show-
ing non-task-specific data (including XQA, Aya,
{eng/por}-X MT and eng-spa MT) mixed in vary-
ing proportions with spa-X MT. Thus, for example,
the second point of each plot represents 10% of that
task mixed with 90% of spa-X MT, with the total
always being 500K examples. We also include an
ablation (dotted lines), which has the same quantity
of spa-X MT data at each data point as other plots
but without data from any other task listed.

We observe that performance is always better
using task-specific MT data, and negative interfer-
ence is indeed consistent. We conclude that transfer
is challenging to achieve in low-resource settings,
likely because at such scales, the LLM-MT model
is still learning to generate translations, and reason-
ing is still a formidable challenge. Downstream

performance in such settings depends not on the
diversity/composition of the SFT dataset, but only
on the amount of LRL MT data provided—making
optimizing for quantity the most effective strategy.

4.7 Discussion: LLMs vs NMT models

For the Indigenous American languages, the cur-
rent SOTA systems are NordicAlps (Attieh et al.,
2024) and DC-DMV (DeGenaro and Lupicki,
2024) that report average chrF++ scores of 26.73
and 23.76 respectively. Both are NMT mod-
els. NordicAlps trained a multilingual model
from scratch on varying mixtures of eng-spa
and spa-x data at scale, with their most major
gains (+4 chrF++ points) coming from a novel
redundancy-driven tokenization method. DeGe-
naro and Lupicki (2024) fine-tune NLLB-200 us-
ing a variety of parallel data sources, but unlike
us, they generate a large amount of synthetic data.
Our best-performing model, Llama3 with CPT on
parallel data and 5 epochs of SFT, yields a score
of 20.93 in the best setting. While this is a gain of
+17.06 chrF++ from a 5-shot prompted Llama3, it
is also almost 6 chrF++ points behind the SOTA.
Since ours was not a shared task effort, we did
not attempt explorations with tokenization or syn-
thetic data, which are concurrent to our findings
and would likely boost performance further. Over-
all, our results suggest that low-resourced LLM-
MT systems, while promising, are still behind the
curve compared to SOTA NMT models.

5 Conclusion

In this paper, we approach low-resource LLM-MT
from a data-centric perspective and study perfor-
mance along two axes: i) the size of parallel data
and ii) diversity in SFT tasks. Through experiments
and analyses, we conclude that quantity plays a
dominant role in downstream performance. Specifi-
cally, parallel data drives performance significantly
during both CPT and SFT, with HRLs and LRLs
displaying different behaviours—making bitext a
critical resource even in the modern era of LLM-
MT. Moreover, we establish that diversity (on mul-
tiple fronts) consistently declines MT quality, with
multilingual fine-tuning on task-specific data being
the most effective option, reaffirming our previous
findings on the value of scale. We hope these find-
ings will be useful considerations when scaling to
massively multilingual LLMs of the future.
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Limitations

One of the limitations of this work is that due
to the unavailability of robust neural metrics for
LRLs, we are forced to use string-based metrics
like chrF++ as our primary evaluation metric. We
note that while this is not optimal, it is also not
unlike most other related works on low-resource
translation, and chrF++ has been shown to align
reasonably well with human assessment scores for
morphologically rich languages. Secondly, we only
focus on two specific language groups in this work.
We expect that expanding the scope to a massively
multilingual setting might yield even larger im-
provements, owing to scale and transfer learning.
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A Data

A.1 Monolingual Data

We provide the detailed monolingual data statis-
tics for the indigenous American languages used
for CPT in Table 10. We collect this data from
various sources. For the indigenous American
languages, we use MADLAD-400 (Kudugunta
et al., 2024), GLOT 500 (ImaniGooghari et al.,
2023), Wikipedia, data curated by the University
of Helsinki (De Gibert et al., 2023) and OCR data
collected by Iyer et al. (2024). The English and
Spanish data used for replay comes from Wikipedia
and MADLAD-400 too. We use MADLAD-400
and GLOT 500 again for the Indic languages again,
along with the verified split of Sangraha (Khan
et al., 2024)—a large corpus for Indian languages.

A.2 Parallel Data

We provide the templates used for generating Ma-
chine Translation and XQA Instructions in Tables
11 and 12 respectively. For MT, we randomly use
one of these prompts to create an instruction for
doing SFT of our model. For XQA, the provided
instructions are used to prompt Mixtral-8x-7B to
generate a question, which is later used for creating
the synthetic XQA datasets as described in Section
3.2.

We source the parallel data for generating these
from the work of Iyer et al. (2024), which includes
data sourced from AmericasNLP’23 official train-
ing datasets (Ebrahimi et al., 2024), NLLB-200
and FLORES-200 (Costa-jussà et al., 2022), OPUS
(Tiedemann, 2009) and data curated by Helsinki in
their 2023 submission (De Gibert et al., 2023).

A.2.1 Cleaning Parallel Data
Rule-based Filtering We clean parallel data by
following standard filtering rules. First, we remove
pairs with more digits or non-alphanumeric charac-
ters than alphabetic ones on either side. Then, we
remove pairs where either the source or the target
has less than 3 words or more than 120 words. To
adjust for pairs containing partial or incomplete
translations, we apply a combination of two filter-
ing rules: a) for sentences with less than 25 words,
the character length difference must be less than 65,
and b) for those longer than 25 words, the character
length ratio between either source and target, or
vice versa, must be at most 1.55. Lastly, we filter
our sentences with non-Latin characters in either
sentence, as well as pairs with identical source and

target sentences to create our final training dataset.

Neural Quality Estimation We also experi-
mented with using neural quality estimation us-
ing models like LASER-3 (Heffernan et al.,
2022). LASER-3 supports 3 of the 11 Ameri-
can languages—the HRLs (Aymara, Guarani and
Quechua)—and we used it for scoring parallel sen-
tences for these languages. We then sorted them
in order of decreasing quality, calculated as the co-
sine similarity of LASER representations. For the
other 8 LRLs, we used random scoring to simulate
standard shuffling behaviour. We found that train-
ing on this ‘sorted’ data actually performed worse
than our default baseline trained on unscored cor-
pora, consistently at various SFT scales. As none
of the authors spoke these languages, we could not
substantively explain why, but we hypothesize that
LASER representations might not be very reliable
for these very LRLs, and might introduce certain
undesirable biases in the sorted data, making the
default baseline more robust to different kinds of
bitext. In practice, we found that the standard rule-
based filtering approaches worked best and thus,
we stuck to them for cleaning our data.

Finally, we note that both our monolingual and
parallel corpora span a variety of domains similar
to our test data. Also, due to the paucity of data,
we use all available sources.

B Results

B.1 Parallel vs Monolingual Data Ratio
In Table 14, we find that mixing higher ratios of
parallel data with monolingual data either performs
comparably or improves performance. We do not
go higher than 50% since our parallel data runs
out at this stage, and to ensure higher ratios we
would have to oversample the existing dataset—
which would not lead to a fair comparison with
the other baselines. Nevertheless, given the mono-
tonic trend, it would be interesting to explore if
mixing higher ratios of parallel data continues to
improve the performance even more. However, it
is likely that there is some ceiling as to how much
parallel data one should mix. For instance, Alves
et al. (2024) show how a baseline trained on 100%
parallel data underperforms compared to mixing it
with monolingual data.

B.2 Scaling up SFT: Mistral 7B
Figure 7 shows the scaling behaviour of the Mistral
7B model with different pre-training recipes (no
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Language #Sentences #Tokens Language #Sentences #Tokens Language #Sentences #Tokens

Aymara (aym) 1M 23.4M Quechua (quy) 1.9M 45.1M Guarani (grn) 1.1M 37.6M
Nahuatl (nhe) 1.1M 32.1M Otomi (oto) 0.6M 23.6M English (eng) 0.4M 9.8M
Spanish (spa) 0.7M 27.9M Shipibo-Konibo (shp) 0.1M 3.3M Bribri (bzd) 0.1M 2.6M
Asháninka (cni) 0.2M 2.2M Chatino (ctp) 0.3M 5.4M Huichol (hch) 0.2M 3.5M
Tarahumara (tar) 0.2M 2.3M Total (Replay) 1.1M 37.6M Total 7.8M 218.9M

Table 10: Detailed monolingual data statistics for the American languages

Translation Instructions

1. Translate the following sentence from {src_lang} to {tgt_lang}.
2. Can you convert the following sentence from {src_lang} to {tgt_lang}.
3. Kindly translate this sentence from {src_lang} into {tgt_lang}.
4. Could you translate the following from {src_lang} to {tgt_lang}?
5. Proceed to translate the subsequent sentence from {src_lang} to {tgt_lang}.
6. Change the following sentence from {src_lang} to {tgt_lang}.
7. Render the sentence below from {src_lang} into {tgt_lang}.
8. Switch the following sentence from {src_lang} into {tgt_lang} language.
9. Rephrase the following sentence into {tgt_lang} from {src_lang}.
10. Transform the following text from {src_lang} to {tgt_lang}.
11. Can you restate the following sentence from {src_lang} in {tgt_lang}?
12. Please provide a translation for this sentence from {src_lang} to {tgt_lang}.
13. Adapt the following into {tgt_lang} from the original {src_lang}.
14. Translate the subsequent text from {src_lang} into the {tgt_lang} language.

Table 11: MT Instruction Templates used during Supervised Fine-Tuning (SFT)

XQA Instruction

"Consider this sentence: {input}\nWhat kind of specific instruction X could this be the unique answer
to? Output ONLY the instruction, followed by a newline."

Table 12: Template used for generating XQA instructions

Method Avg es-aym es-bzd es-cni es-ctp es-gn es-hch es-nhe es-oto es-quy es-shp es-tar

Bilingual LLM-MT 14.5 21.2 6.1 12.3 8.4 27.9 15.0 14.1 9.5 24.6 14.5 6.1
Multilingual LLM-MT 18.7 20.2 15.8 18.0 26.0 25.8 21.6 18.2 11.2 24.9 14.8 9.5

Table 13: Comparison of Bilingual and Multilingual Es-X FT (MT only) Methods

CPT, CPT with monolingual data, and CPT with a
mixture of monolingual and parallel data), where
terminology is the same as that defined in Section
3.1. We observe that the trends for Mistral are
largely similar to Llama3:

1. ‘No CPT’ underperforms the CPT baseline,
but they become comparable at about ~500K
sentences. As hypothesised in Section 4.4,
due to a 4x larger vocabulary, Llama3 has 4x
more parameters to fine-tune4, meaning our

4LoRA module parameters are negligible in comparison.

Llama3 models are likely more data hungry
and retain the benefits of CPT over longer peri-
ods, but smaller models overfit sooner, leading
to a shorter ‘cross-over’ threshold.

2. ‘CPT (mono only)’ consistently underper-
forms ‘CPT (mono + parallel)’, very similar to
Llama3, lending further credence to our con-
clusion that concatenated parallel data adapts

For fine-tuning input and output embeddings, Llama3 has
128K * 4096 * 2 ≈ 1B parameters, whereas Mistral has 32K *
4096 * 2 ≈ 250M parameters. LoRA parameters are on the
order of 3M, for comparison.
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(a) Average (overall) (b) Average (high-resource†) (c) Average (low-resourceη)

Figure 7: Scaling up Mistral 7B models with different CPT recipes (no CPT, CPT with monolingual data, and CPT
with a mixture of monolingual and parallel data) on MT data for the American languages. We observe that the
trends are very similar to Llama3, with the sole exception that the gains of CPT diminish faster at around 500K
sentences. This might be because Mistral, due to a 4x smaller vocabulary, gets fine-tuned effectively with less data.
†‘High-resource’ refers to the relatively higher-resourced languages in our low-resource setup (Aymara, Guarani
and Quechua) while the other 8 are grouped as low-resourceη .

Ratio Gemma 2B Mistral 7B Llama3 8B

0% 9.6 ± 0.3 15.6 ± 0.4 15.6 ± 0.4
10% 10.1 ± 0.3 15.9 ± 0.4 16.5 ± 0.4
25% 10.1 ± 0.3 16.6 ± 0.4 16.6 ± 0.4
50% 10.1 ± 0.3 16.7 ± 0.4 17.2 ± 0.4

Table 14: Model Performance vs. Parallel Data Ratio.
While the gap between ratios is not always statistically
significant, it is clear that the trend is monotonic and
having 50% parallel data is consistently better than 0%
(ie. the fully monolingual setting).

the model to MT in a much better way

3. For HRLs, the performance plateaus quite
quickly, while for LRLs SFT quality contin-
ues to grow with scale, once again following
Llama3’s trend

Our experiments with Mistral thus help in pro-
viding more evidence to support our claims with re-
gard to the benefit of parallel data for low-resource
LLM-MT systems.

B.3 Bilingual vs Multilingual LLM-MT:
Detailed Results

We provide detailed, language-specific results for
bilingual vs multilingual LLM-MT in Table 13.
We observe that multilingual LLM-MT mostly out-
performs bilingual baselines with the exception of
3 relatively higher-resourced languages (Aymara,
Nahuatl and Guarani) where there is a bit of a gap.
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Abstract

This paper addresses the challenge of accu-
rately translating technical terms, which are
crucial for clear communication in specialized
fields. We introduce the Parenthetical Termi-
nology Translation (PTT) task, designed to mit-
igate potential inaccuracies by displaying the
original term in parentheses alongside its trans-
lation. To implement this approach, we gener-
ated a representative PTT dataset using a collab-
orative approach with large language models
and applied knowledge distillation to fine-tune
traditional Neural Machine Translation (NMT)
models and small-sized Large Language Mod-
els (sLMs). Additionally, we developed a novel
evaluation metric to assess both overall transla-
tion accuracy and the correct parenthetical pre-
sentation of terms. Our findings indicate that
sLMs did not consistently outperform NMT
models, with fine-tuning proving more effec-
tive than few-shot prompting, particularly in
models with continued pre-training in the target
language. These insights contribute to the ad-
vancement of more reliable terminology trans-
lation methodologies.

1 Introduction

Terminology translation task is essential for under-
standing documents rich in technical terms, such as
academic papers and technical reports. Tradition-
ally, methods in the task have involved identifying
term pairs in the source and target languages and us-
ing these pairs for training or post-editing purposes.
However, challenges arise when there is no precise
match for a term in the target language, or when
new terms are used inconsistently. For instance, the
term "fine-tuning" may be variably translated as "
파인튜닝" or "미세조정" in Korean.

To address this, our research proposes a novel
approach called Parenthetical Terminology Trans-
lation (PTT), which displays the original term in
parentheses alongside its translation. This approach
aims to mitigate reader confusion, especially when

suitable translations are unavailable or translation
accuracy is low. Although similar translation strate-
gies using parenthetical form have been suggested
in previous studies, effective technical solutions for
this approach remain underexplored.

With the advent of advanced Large Language
Models (LLMs), researchers have started exploring
their potential for various tasks, including transla-
tion. LLMs can effectively support PTT through
simple prompt usage, offering a promising solution
for this approach. However, the practical applica-
tion of LLMs is hindered by their high computa-
tional costs and latency, making them less feasible
for real-time or large-scale deployment.

To mitigate these limitations, this study fo-
cuses on achieving the capabilities of LLMs us-
ing smaller, traditional Neural Machine Translation
(NMT) models and small-sized Language Models
(sLMs). We generated a high-quality PTT dataset
using LLMs and distilled the knowledge by fine-
tuning these smaller models with this dataset. This
approach ensures that the benefits of LLMs can
be harnessed without incurring high computational
costs. Additionally, we evaluated the performance
of various models and training methods to optimize
model performance and efficiency, particularly for
the specialized PTT task.

Our proposed task extends beyond mere transla-
tion accuracy; it also emphasizes the correct presen-
tation of technical terms within parentheses, which
is crucial for enhancing reader comprehension. To
quantitatively evaluate this aspect, we introduced
a novel metric specifically designed to assess the
models’ ability to accurately and effectively use
parenthetical annotations. This metric not only eval-
uates translation quality but also ensures that tech-
nical terms are correctly presented, allowing for a
robust comparison of model performance across
different architectures and training techniques.

Thus, this paper makes three significant contri-
butions to the field of terminology translation:
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1. Synthetic Data Generation: We propose a
collaborative framework using Large Lan-
guage Models (LLMs) to generate well-
curated datasets specifically for the English-
Korean Parenthetical Terminology Translation
(PTT) task. This framework employs multiple
agents to create high-quality sentence pairs,
enabling smaller models to perform the PTT
task with high accuracy. By leveraging robust
data from LLMs, the framework ensures con-
sistency and precision, making it effective for
handling domain-specific terminology.

2. Knowledge Distillation and Model Compar-
ison: Utilizing these high-quality datasets, we
fine-tuned various Neural Machine Transla-
tion (NMT) models and small-sized Language
Models (sLMs). We then conduct a compre-
hensive performance analysis from diverse
perspectives, highlighting the strengths and
limitations of each model. This analysis pro-
vides valuable insights for future research and
development in the field.

3. New Evaluation Metric: We introduce a
novel evaluation metric that quantitatively as-
sesses the ability of models to present appro-
priate terms within parentheses. This metric
ensures contextual accuracy and reader com-
prehension, offering a robust framework for
evaluating model performance in the context
of PTT.

These contributions aim to advance the domain
of terminology translation by providing practical
and efficient solutions that leverage the strengths
of both large and small language models. Our ap-
proach addresses the inherent challenges of the
terminology translation task and paves the way for
more accessible translation methodologies in tech-
nical and specialized fields.

2 Related Work

Terminology translation plays a crucial role in en-
suring consistency and accuracy in specialized do-
mains like technical and academic documentation.
Early approaches, such as rule-based and statisti-
cal machine translation, effectively leveraged pre-
defined glossaries and translation memories (Melby
et al., 1999). While these methods successfully
maintain consistency within certain contexts, they
often struggle with out-of-domain (OOD) words

and ambiguous terms (Och and Ney, 2003). More-
over, these approaches are less effective when deal-
ing with domain-specific or emerging terms not
covered by existing resources (Tiedemann, 2010;
Tiedemann and Scherrer, 2017).

To maintain clarity and precision in academic
and technical documentation, it is often necessary
to preserve certain terms from the source language.
This practice is particularly valuable in cases where
the translated term may be unfamiliar to the reader
or where retaining the original term is essential for
legal or scientific accuracy (Moghadam and Far,
2015; Hasler et al., 2018; Michon et al., 2020). A
further strategy to support this practice involves
the strategic use of parentheses, where textual ad-
ditions can help enhance translation quality and
consistency through corpus-based improvements
(Lin et al., 2008; Huang et al., 2017; Hawamdeh,
2018). Despite its potential benefits, the systematic
implementation of this approach remains relatively
underexplored in current research.

Recent studies have highlighted the effectiveness
of knowledge distillation in transferring knowledge
from large language models (LLMs) to smaller tra-
ditional translation models (Li et al., 2024; Enis
and Hopkins, 2024). Through this process, datasets
generated by a powerful teacher model are distilled
into a student model, enabling small-sized mod-
els to perform specialized tasks like terminology
translation. The multi-agent framework is particu-
larly effective in generating targeted, high-quality
datasets for specific tasks (Wu et al., 2023). Within
this framework, different agents are assigned spe-
cialized roles, such as data generation and evalu-
ation, collectively enhancing the quality and rele-
vance of the resulting dataset. This collaborative
process is essential for precise and context-aware
data generation, which is crucial for training mod-
els to excel in specialized translation tasks.

3 Data Generation

To create a high-quality dataset for the Parenthet-
ical Terminology Translation (PTT) task, we em-
ployed four collaborative agents—Writer, Trans-
lator, Evaluator, and Executor—utilizing the large
language models (LLMs) GPT-4o-mini or GPT-
4-turbo for each agent. Our goal was to generate
English sentences containing technical terminolo-
gies alongside their Korean translations, with the
original English terms included within parentheses.
The overall framework is illustrated in Figure 1.
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Figure 1: Multi-Agent Framework for generating a high-quality PTT dataset using four agents.

3.1 Writer

The Writer agent was responsible for creating aca-
demic English sentences that included the technical
terms. To achieve this, we first compiled a compre-
hensive list of terms to be included in the dataset.
Recognizing the rapid emergence of new termi-
nology in the field of artificial intelligence (AI),
we focused on terms frequently encountered in AI-
related research. To ensure multiple terms could
be incorporated into single sentences, we clustered
similar domain-specific terms together.

Next, we utilized the arXiv API to find papers
that contained all or some of the terms from each
cluster. By including the summary of the most rel-
evant paper in the prompt, we helped the Writer
LLM understand the appropriate contexts in which
these terms were used. This ensured that the gen-
erated sentences were contextually accurate and
meaningful.

To enhance data diversity, the Writer were
tasked with generating sentences where each
term appeared either once or in conjunction with
other terms. By combining these sentences post-
generation, we facilitated the creation of sentences
with various characteristics: sentences where terms
appear only once, sentences containing different
terms together, and sentences where the same term
appears more than twice. This diversity allowed us
to analyze the performance of PTT from multiple
perspectives, ensuring a comprehensive evaluation
of the models under different conditions. The com-
plete prompt used for the Writer agent is provided
in the Appendix (see Listing 1).

3.2 Translator

The Translator agent translated the English sen-
tences into Korean, ensuring that each target term
was followed by its original English term in paren-
theses to fulfill the PTT task requirements. To en-
hance accuracy, we employed the GPT-4 Turbo
model, while other agents utilized GPT-4o-mini.
Additionally, we applied one-shot prompting by
providing a relevant example to guide the transla-
tion process. This approach helped maintain consis-
tency and precision in the PTT task, ensuring that
technical terms were accurately presented within
parentheses. The complete prompt used for the
Translator agent is provided in the Appendix (see
Listing 2).

3.3 Evaluator/Executor

The Evaluator agent reviewed the translated sen-
tences, scoring them from 0 to 10 based on the
accuracy of term usage and overall translation qual-
ity. Then, The Executor agent transit the statement
‘If the score is less than 8: Response "translator". If
the score is 8 or greater: Response "final output".‘ If
a sentence scored below 8, the Evaluator suggested
corrections, prompting the Translator to revise the
translation. The Translator would then repeat the
translation task until the Executor rated the sen-
tence as ‘"final output"‘, ensuring the highest qual-
ity and consistency in the dataset. The complete
prompt used for the Evaluator agent is provided in
the Appendix (see Listing 3).

After the automatic data generation process, hu-
man reviewers conducted a final quality check to
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Terms Set Index 0

Domain AI (in-domain)

Terms adversarial training, recurrent neural architectures, bayesian optimization

Source By implementing adversarial training, researchers have demonstrated significant improvements in the per-

formance of recurrent neural architectures against adversarial attacks. The integration of recurrent neural

architectures with Bayesian optimization enhances the model’s ability to learn from limited data while mini-

mizing computational resources.

Target 적대적훈련(adversarial training)도입으로연구자들은적대적공격에대응하는순환신경구조(recurrent

neural architectures)의 성능 향상을 크게 입증하였습니다. 순환 신경 구조(recurrent neural architectures)

와베이지안최적화(bayesian optimization)를결합함으로써모델이제한된데이터로부터학습하는능력을

향상시키고,계산적자원사용을최소화합니다.

Table 1: Sample of generated data from the AI domain (in-domain). Each entry includes the term set index, domain,
source text, and the corresponding target translation. Red text highlights the targeted terms TEng, while blue text
indicates the correct representation of terms TKor in the Korean translation.

ensure the dataset’s reliability. Following this re-
view, we combined seven sentences from each clus-
ter into three composite sentences as mentioned
earlier, resulting in 1,398 English-Korean paired
sentences encompassing 233 term clusters (a to-
tal of 699 distinct terms). We split these 1,398
sentences into 1,116 for training, 144 for vali-
dation, and 138 for testing the performance. We
carefully ensured that sentences containing the
same terms were allocated to the same dataset,
maintaining consistency and preventing data leak-
age across the splits. The sample data is pro-
vided in Table 1. The entire dataset is available
on Hugging Face at https://huggingface.co/
datasets/PrompTart/PTT_en_ko.

3.4 Out-of-Domain Evaluation Dataset

To evaluate the generalization ability of models in
the PTT task, we generated additional datasets in
domains beyond artificial intelligence (AI), specifi-
cally targeting biology and physics. The data gen-
eration process followed the same methodology
as the in-domain training dataset to ensure con-
sistency. In total, we generated 171 paired sen-
tences for biology (subcellular processes), 60 for
nanoscale physics, and 168 for high-energy physics.
Each domain-specific dataset was curated by refer-
encing relevant academic papers, providing authen-
tic and contextually accurate examples. These out-
of-domain datasets allowed for a comprehensive
assessment of the models’ robustness and adapt-
ability across different specialized fields.

4 Knowledge Distillation

In this study, we applied knowledge distillation to
fine-tune both traditional neural machine transla-
tion (NMT) models and small-sized large language
models (sLMs) using the synthetic Parenthetical
Terminology Translation (PTT) dataset generated
in the previous step. Our goal was to evaluate the ef-
fectiveness of distillation techniques across various
model architectures, sizes, and training methodolo-
gies, offering insights into how distilled models
perform in specialized translation tasks.

4.1 Fine-tuning Traditional Machine
Translation Models

To evaluate the performance of knowledge distil-
lation on traditional neural machine translation
models, we employed several widely used open-
source models. We focused on encoder-decoder
Transformer-based models that support Korean.
Specifically, we tested the following models:

• mBART50 (Liu et al., 2020) : This multilin-
gual NMT model is pre-trained on monolin-
gual corpora from 50 languages and is fine-
tuned for translation tasks. It consists of 611
million parameters.

• M2M100 (Fan et al., 2020): A large-scale mul-
tilingual NMT model trained on 2200 transla-
tion directions, enabling many-to-many trans-
lation across 100 languages. We tested the
base version with 418 million parameters.

• NLLB-200 (Koishekenov et al., 2023):
Known for its extensive language coverage,
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this model is particularly useful for low-
resource languages and inclusive translation
services. We tested the distilled version with
600 million parameters.

The fine-tuning parameters were provided in the
Appendix (see Table 5).

4.2 Fine-tuning small-sized Large Language
Models

To effectively compare performance with NMT
models, we also fine-tuned open-source small-sized
large language models. Our goal was to evaluate
various models from multiple perspectives to gain
comprehensive insights into the PTT task. To en-
sure reproducibility and a broad evaluation, we se-
lected four well-known and high-performing open-
source LLMs:

• Llama 3 (Touvron et al., 2023): The latest it-
eration of the Llama series, this model further
refines the architecture introduced in earlier
versions, enhancing its performance on large-
scale datasets. We evaluated the 8B and 70B
versions in our experiments.

• Gemma 2 (Team et al., 2024): A next-
generation multilingual model, Gemma 2 is
designed to deliver high performance across
diverse natural language tasks with an em-
phasis on efficiency. We assess the model by
testing three versions: the smallest (2B), a mid-
sized variant (9B), and a larger configuration
(27B).

• Qwen 2 (Yang et al., 2024): An updated ver-
sion of the Qwen series, Qwen 2 is developed
with a strong focus on flexibility and adapt-
ability to domain-specific tasks. It offers im-
proved performance and efficiency, particu-
larly in handling complex language model-
ing challenges. In this study, we analyzed the
1.5B, 7B, and 72B versions.

• Mistral (Jiang et al., 2023): Mistral is known
for its streamlined design and high efficiency
in multilingual tasks. We specifically evaluate
the 7B version to examine how its architec-
ture balances performance with computational
efficiency.

To compare pre-trained models with those that have
been further fine-tuned specifically for the Korean
language, we also tested models that underwent

continual pre-training (Ke et al., 2023) in Korean.
This approach allowed us to assess the impact of ad-
ditional language-specific pre-training on the mod-
els’ performance in the Parenthetical Terminology
Translation (PTT) task.

• beomi/Llama-3-Open-Ko-8B1: A specialized
version of Llama 3 focused on Korean lan-
guage tasks. This open-source model is fine-
tuned to excel in Korean linguistic applica-
tions.

• beomi/Llama-3-KoEn-8B2: A bilingual ver-
sion of Llama 3 tailored for both Korean
and English language tasks. This model is
designed to maintain balanced performance
across both languages, making it versatile for
multilingual applications.

Furthermore, we explored instruction-tuned ver-
sions of the aforementioned models using differ-
ent training techniques, such as LoRA (Hu et al.,
2021) and QLoRA (Dettmers et al., 2023). In addi-
tion, we applied few-shot prompting (Brown et al.,
2020) to both the instruction-tuned models and a
commercial LLM (GPT-4o) to compare the effects
of fine-tuning versus prompting. This comprehen-
sive evaluation provides valuable insights into how
knowledge distillation, combined with various tun-
ing and prompting strategies, can enhance transla-
tion accuracy while maintaining efficiency across
diverse model architectures.

The hyper-parameters for fine-tuning and LoRA
are detailed in the Appendix (see Table 5), while the
full prompt used for few-shot prompting is identical
to the Translator agent’s prompt (Listing 2), with
the exception that we did not provide a list of terms
in this case.

5 Custom Evaluation Metric

This section introduces a novel metric designed
specifically for the Parenthetical Terminology
Translation (PTT) task, aimed at evaluating not
only the accuracy of overall translation but also the
correct presentation of the technical terms within
parentheses.

For each sentence in the dataset, let TEng rep-
resent the list of all technical terms provided in
the original English sentence, including duplicates

1https://huggingface.co/beomi/
Llama-3-Open-Ko-8B

2https://huggingface.co/beomi/Llama-3-KoEn-8B
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if the same term appears multiple times. Simi-
larly, let TKor represent the list of those terms that
are correctly translated into Korean and accom-
panied by their original English terms in paren-
theses. We define |TEng| as the total number of
technical terms in the English sentence (including
duplicates), and |TKor| as the number of correctly
translated terms from TEng in the Korean sentence.
The ratio of these terms is calculated as the weight
Wterms = min

(
|TKor|
|TEng| , 1

)
. This ratio is capped at 1

to ensure that no penalty is applied if more terms ap-
pear correctly in the Korean translation than in the
original English sentence. The adjusted metric for
the PTT task, MPTT, is then computed by multiply-
ing this clipped ratio with the original translation
metric M , such that MPTT = Wterms ×M . Finally,
we average MPTT across all sentence pairs in the
dataset to obtain the final evaluation metric.

We employed BLEU (Papineni et al., 2002),
COMET (Rei et al., 2020), and BERTScore (Zhang
et al., 2020) as M to evaluate pure translation per-
formance. The translation metrics are computed
after removing the parenthetical terms, ensuring
that we assess only the translation’s accuracy and
fluency. This approach allows us to maintain a fo-
cus on both the translation’s quality and the correct
handling of technical terms within parentheses.

6 Evaluation

6.1 Quantitative Analysis

The results presented in Table 2 provide a compre-
hensive overview of the quantitative performance
of various models and training techniques on the
in-domain Parenthetical Terminology Translation
(PTT) dataset, while Table 3 presents results on
the out-of-domain dataset. Key observations are
summarized as follows:

1. sLMs vs. NMT Models: The performance
comparison between small-sized Large Lan-
guage Models (sLMs) and Neural Machine
Translation (NMT) models reveals that sLMs
do not consistently outperform NMT mod-
els, even though LLMs are often perceived as
more advanced due to their architecture. For
instance, mBART50 and M2M100, achieved
weighted BLEU scores of 37.52 and 40.05,
respectively, with corresponding weight indi-
cate strong PTT performance. These scores
were comparable or superior to those achieved
by some sLMs, such as the Llama 3 8B and

70B models, which obtained similar weighted
BLEU scores but required significantly larger
model sizes.

2. Instruction-Tuned vs. Base Models: Within
the same sLM families, base models generally
slightly outperformed instruction-tuned mod-
els on the PTT task. For instance, the Llama 3
8B model with QLoRA achieved a weighted
BLEU score of 38.88, while the instruction-
tuned version (8B-it) with the same QLoRA
technique scored slightly lower at 37.84. This
trend suggests that instruction-tuned models,
which are trained on a broad range of tasks,
may not gain a specific advantage for the spe-
cialized requirements of the PTT task.

3. Fine-Tuning vs. Prompt Engineering: Ap-
plying prompt engineering instead of fine-
tuning to instruction-tuned models, using a
1-shot prompting approach, resulted in very
poor performance. For example, the Llama 3
8B-it scored only 0.523, and the Gemma 2-
9B-it scored 0.342 on weight metric. Even the
commercial LLM GPT-4o performed worse
than other fine-tuned small models, underscor-
ing the critical importance of fine-tuning for
specialized tasks like PTT.

4. Korean Continued Pre-trained Models:
Models that underwent continued pre-training
in the target language (Korean) generally out-
performed others, with the Llama-3-KoEn-8B-
it achieving the highest score among all mod-
els. Although Llama-3-Open-Ko-8B, which
was continued pre-trained exclusively in Ko-
rean, showed slightly lower performance with
a weighted BLEU score of 39.869, it still per-
formed well. This highlights the importance
of bilingual proficiency in models for the PTT
task, where handling both source and target
languages effectively is crucial for success.

5. Model Size and Out-of-Domain Perfor-
mance: In the in-domain dataset, model size
had little impact on performance, with smaller
models like Gemma 2 7B even outperform-
ing larger ones like Gemma 2 27B. However,
when tested on out-of-domain datasets, all
models experienced significant performance
drops, but larger models such as Gemma 2
27B or Llama 3 70B showed less decline,
indicating better generalization capabilities.
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Model #Params Training Techniques Wterms MPTT (BLEU) MPTT (COMET) MPTT (BERT)

Open-source NMT systems

mBART50 611M Full Fine-Tuning 0.931 37.519 0.831 0.863
M2M100 418M Full Fine-Tuning 0.958 40.048 0.855 0.889

NLLB-200 600M Full Fine-Tuning 0.685 24.544 0.606 0.630

Llama family sLMs

Llama3 8B LoRA 0.959 37.632 0.856 0.887
8B QLoRA 0.949 38.875 0.847 0.880
70B LoRA 0.957 38.869 0.855 0.888

Llama3-Instruct 8B-it QLoRA 0.954 37.840 0.851 0.881
8B-it 1-shot prompting 0.523 0.577 0.214 0.310

Gemma family sLMs

Gemma2 2B LoRA 0.946 37.959 0.842 0.875
9B LoRA 0.958 41.567 0.858 0.893
9B QLoRA 0.935 38.955 0.835 0.869
27B LoRA 0.966 40.856 0.865 0.899

Gemma2-Instruct 9B-it QLoRA 0.953 39.215 0.849 0.884
9B-it 1-shot prompting 0.342 9.698 0.286 0.286

Qwen family sLMs

Qwen2 1.5B LoRA 0.950 34.374 0.838 0.868
7B LoRA 0.945 39.167 0.844 0.877
7B QLoRA 0.951 38.014 0.846 0.879
72B LoRA 0.956 40.837 0.855 0.889

Qwen2-Instruct 7B-it QLoRA 0.947 37.990 0.842 0.874

Mistral family sLMs

Mistral 7B QLoRA 0.931 37.646 0.830 0.862
Mistral-Instruct 7B-it QLoRA 0.927 37.990 0.826 0.857

Korean Continued Pre-trained sLMs

Llama-3-KoEn 8B-it QLoRA 0.974 41.789 0.873 0.907
8B-it 1-shot prompting 0.614 0.333 0.080 0.110

Llama-3-Open-Ko 8B-it QLoRA 0.953 39.869 0.852 0.885

Commercial LLM

GPT-4o Unknown 0-shot prompting 0.616 20.596 0.547 0.564
GPT-4o Unknown 1-shot prompting 0.751 26.509 0.669 0.689

Table 2: Model performance metrics for in-domain test data. Wterms represents the average ratio of correctly
translated terms with original English terms in parentheses. MPTT (BLEU), MPTT (COMET), and MPTT (BERT)
are the original tranlsation metrics adjusted using Wterms and averaged over all data. The suffix ’-it’ indicates
instruct-tuned models. The top scores for each metric are highlighted in bold.

This suggests that while smaller models can
be highly effective in specialized tasks, larger
models are more versatile and better suited
for handling diverse and unfamiliar datasets.
The larger models’ ability to retain higher per-
formance levels in out-of-domain tasks under-
scores their capacity to adapt to a wider range
of terminologies and contexts, making them
more versatile in applications where data vari-
ability is a key challenge.

6.2 Qualitative Analysis

1. Progression of PTT and Translation Skills:
As illustrated in Table 4 , most of the models,
including M2M100, initially demonstrated
strong proficiency in the PTT task, particu-
larly in incorporating original terms within

parentheses, as indicated by the high weight
metrics in the earlier epochs. Over successive
training epochs, the model’s overall transla-
tion skills improved gradually, leading to bet-
ter performance across all weighted metrics.
A detailed illustration of these improvements
is provided in the Appendix (see Table 6).

2. Challenges with Less Common Terms: Our
analysis highlights a persistent challenge
among models in accurately translating less
common terms, especially proper nouns. As
demonstrated in Table 7, terms like "de
Finetti’s theorem" were inconsistently trans-
lated across different models, reflecting the
difficulty these models face when dealing with
less familiar terminology. This inconsistency
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Model #Params Training Techniques Wterms MPTT (BLEU) MPTT (COMET) MPTT (BERT)

Open-source NMT systems

mBART50 611M Full Fine-Tuning 0.784 19.538 0.668 0.698
M2M100 418M Full Fine-Tuning 0.763 20.472 0.650 0.680

NLLB-200 600M Full Fine-Tuning 0.160 4.066 0.138 0.144

Llama family sLMs

Llama3 8B LoRA 0.769 22.595 0.670 0.693
8B QLoRA 0.849 23.792 0.736 0.760
70B LoRA 0.854 33.321 0.762 0.788

Llama3-Instruct 8B-it QLoRA 0.864 23.498 0.750 0.775

Gemma family sLMs

Gemma2 2B LoRA 0.824 24.203 0.711 0.736
9B LoRA 0.886 38.639 0.793 0.822
9B QLoRA 0.900 32.914 0.799 0.826
27B LoRA 0.897 40.379 0.804 0.836

Gemma2-Instruct 9B-it QLoRA 0.883 34.861 0.785 0.813

Qwen family sLMs

Qwen2 1.5B LoRA 0.762 9.831 0.598 0.635
7B LoRA 0.750 18.531 0.637 0.662
7B QLoRA 0.849 20.028 0.729 0.751
72B LoRA 0.877 32.048 0.779 0.806

Qwen2-Instruct 7B-it QLoRA 0.864 23.498 0.750 0.775

Mistral family sLMs

Mistral 7B QLoRA 0.870 15.942 0.713 0.749
Mistral-Instruct 7B-it QLoRA 0.876 17.350 0.717 0.756

Korean Continued Pre-trained sLMs

Llama-3-KoEn 8B-it QLoRA 0.884 35.492 0.789 0.817
Llama-3-Open-Ko 8B-it QLoRA 0.887 35.409 0.790 0.813

Table 3: Model performance metrics for out-of-domain test data. Wterms represents the average ratio of correctly
translated terms with original English terms in parentheses. MPTT (BLEU), MPTT (COMET), and MPTT (BERT)
are the original tranlsation metrics adjusted using Wterms and averaged over all data. The suffix ’-it’ indicates
instruct-tuned models. The top scores for each metric are highlighted in bold.

underscores the importance of the PTT task,
which helps maintain translation accuracy by
preserving original terms alongside their trans-
lations, thereby reducing the likelihood of in-
correct interpretations.

3. Out-of-Domain Translation Challenges:
Most models struggled with translating out-of-
domain (OOD) sentences, as detailed in Table
8. They often failed to accurately translate
OOD terms, frequently substituting them with
unrelated or incorrectly adapted words, some-
times even drawing from other languages.
These frequent mistranslations highlight the
need for more robust training methods or sup-
plementary mechanisms to improve the mod-
els’ generalization ability for handling unseen
datasets effectively.

7 Conclusion

In this study, we explored the Parenthetical Termi-
nology Translation (PTT) task, a specialized trans-

lation problem that focuses on mitigating potential
inaccuracies in term translation by displaying the
original technical term in parentheses alongside its
translation. To effectively evaluate this approach,
we introduced a novel evaluation metric, MPTT,
designed to measure both the accuracy of overall
translation and the proper parenthetical presenta-
tion, ensuring that technical terms are effectively
communicated across languages.

To generate a high-quality dataset for this task,
we utilized a collaborative approach involving
Writer, Translator, Evaluator, and Executor agents,
supported by large language models (GPT-4). This
allowed us to create a diverse and contextually accu-
rate dataset that reflects real-world usage of techni-
cal terms in artificial intelligence (AI), biology, and
physics. We then applied knowledge distillation
techniques to fine-tune both traditional Neural Ma-
chine Translation (NMT) models and small-sized
Large Language Models (sLMs), comparing their
performance across various model architectures,
sizes, and training methods.
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Epoch Weight Weighted BLEU Weighted COMET Weighted BERT Score

epoch 1 0.939 31.780 0.824 0.858
epoch 3 0.924 35.668 0.821 0.853
epoch 5 0.948 37.853 0.844 0.878
epoch 7 0.956 38.685 0.851 0.886
epoch 9 0.958 40.048 0.855 0.889

Table 4: Model performance metrics of the M2M100 model for test data across training epochs.

Our findings revealed that sLMs did not consis-
tently outperform NMT models, challenging the
assumption that more advanced architectures inher-
ently lead to superior performance. Additionally,
within the same sLM families, base models slightly
outperformed instruction-tuned models, suggesting
that broad task training may not offer advantages
for specialized tasks like PTT. Fine-tuning proved
crucial, as prompt engineering approaches like 1-
shot prompting resulted in significantly poorer per-
formance. Moreover, models with continued pre-
training in Korean outperformed others, highlight-
ing the importance of bilingual proficiency for the
PTT task. While model size had little impact on in-
domain performance, larger models demonstrated
better generalization on out-of-domain datasets,
suggesting they are more versatile and better suited
for handling diverse and unfamiliar data. These
insights contribute to optimizing models and train-
ing techniques for specialized translation tasks, of-
fering practical guidance for future research and
applications in terminology translation.

Limitations

Penalty Mechanism in Evaluation Metrics: The
current approach to evaluating PTT performance in-
volves simply multiplying translation metrics by a
weight that reflects the presence of correctly paren-
thesized terms. However, this straightforward mul-
tiplication can disproportionately affect the overall
performance scores. A more sophisticated penalty
mechanism, such as using an exponential function,
could provide a more balanced assessment by re-
ducing the impact on the metric scores. Addition-
ally, the current metric does not penalize the model
for excessively parenthesizing trivial or unintended
terms, which could lead to over-parenthesization.
Future work could incorporate penalties for such
cases, potentially by introducing concepts of recall
and precision to refine the evaluation.

Potential Bias in the Dataset: The PTT dataset

was generated using GPT-4, and the performance
metrics were assessed with this dataset as the
ground truth. This approach may introduce biases
inherent to the GPT-4 model into the dataset, poten-
tially affecting the robustness and generalizability
of the models trained on it. To mitigate this, future
research should consider generating datasets using
a variety of models, ensuring a broader representa-
tion of translation styles and reducing the potential
for model-specific biases.

Language Scope of the Study: This study fo-
cused exclusively on translation into Korean, which
limits the generalizability of the findings across dif-
ferent languages. PTT performance might vary sig-
nificantly with other languages due to differences
in linguistic structures and translation challenges.
Expanding the study to include translations into
multiple languages would enable a more compre-
hensive analysis of the PTT task and provide in-
sights into how the models perform across different
linguistic contexts.
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A Appendix

Parameter NMT sLM (w/ LoRA) sLM (w/ QLoRA)

Training Argument Learning Rate 3e-5 1e-4 2e-4
Lr Scheduler Type linear cosine cosine
Optimizer AdamW paged_adamw_32bit paged_adamw_32bit
Warmup Ratio N/A 0.03 0.03
Weight Decay 0.01 0.001 N/A
Max Grad Norm 1.0 1.0 0.3
Dtype bfloat16 bfloat16 bfloat16

LoRA Configure LoRA R N/A 64 64
LoRA Alpha N/A 16 16
LoRA Dropout N/A 0.1 0.1
Target Modules N/A all-linear all-linear

Table 5: Hyper-parameters for Fine-Tuning and LoRA Techinque

You are a professional paper writer.

[TERM1] = {terms [0]}
[TERM2] = {terms [1]}
[TERM3] = {terms [2]}

<reference >
{arxiv_summaries}
</reference >

<instruction >
- The request is to thoroughly review and cite the provided <reference > when writing

theacademic paper.
- Write complex English sentences using the given technical terms.
- Use appropriate academic tone.
- Each sentence MUST be clear , accurate , and contextually appropriate for a

scientific paper.
- Generate only in English.
</instruction >

## Output Format:
1. english: A sentence using terms [TERM1].
2. english: A sentence using terms [TERM2].
3. english: A sentence using terms [TERM3].
4. english: A sentence using terms [TERM1] and [TERM2].
5. english: A sentence using terms [TERM2] and [TERM3].
6. english: A sentence using terms [TERM1] and [TERM3].
7. english: A sentence using terms [TERM1], [TERM2], and [TERM3].

CAUTION: Ensure that exactly 7 sentences are generated.

Listing 1: Full Prompt of Writer
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You are a professor specializing in AI, proficient in both Korean and English.

[TERM1] = {terms [0]}
[TERM2] = {terms [1]}
[TERM3] = {terms [2]}

<translation guideline >
- Translate while preserving the original term like 사전 훈련(pre -train).
- If there is an abbreviation , translate it like this Korean term(english term ,

abbreviation).
- Identify terms , acronyms , and concepts to keep in English.
- Maintain academic tone and technical accuracy in your translations.
- Ensure the translation is natural in Korean while accurately conveying the

original meaning.
- Change all the letters within the parentheses in Korean sentences to lowercase.
- IMPORTANT: The terms corresponding to [TERM1], [TERM2], and [TERM3] MUST ALWAYS be

enclosed in parentheses like this: Korean term(English term).
</translation guideline >

<example >
english: LLMs demonstrate new abilities such as in-context learning , instruction

following , and multi -step reasoning , enabling them to learn new tasks , follow
instructions , and effectively solve complex problems.

korean: LLM은 맥락 학습(in-context learning), 지시 사항 따르기(instruction following), 다단계 추론
(multi-step reasoning)과 같은 새로운 능력을 보여줌으로써 새로운 작업을 학습하고, 지시를 따르며,
복잡한 문제를 효과적으로 해결할 수 있습니다.
</example >

## Output Format:
1. korean: [Korean translation]
2. korean: [Korean translation]
...
( Continue this pattern for all 7 sentences )

Listing 2: Full Prompt of Translator
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You 're an expert evaluating English to Korean translations of research papers , with
a specific focus on proper parenthetical translations of technical terms.

<criteria >
- The format for parenthetical translations should be: Korean term(English term).
- The specific terms {terms [0]}, {terms [1]} or {terms [2]} MUST ALWAYS be enclosed in

parentheses in the Korean translation.
- Parentheses should be properly placed , ensuring consistency in parenthesizing

across the entire sentence.
- Ensures the translation conveys the original meaning precisely and reads naturally

and smoothly.
</criteria >

<instruction >
- Change all the letters within the parentheses in Korean sentences to lowercase.
- Evaluate the Korean translation of the provided English sentences.
- Check the consistency and correctness of parenthesization.
- Provide a score (0-10) based on the correctness and consistency of

parenthesization as Korean term(English term).
- Offer specific improvement suggestions if the score is less than 10.
- DO NOT include any supplementary explanations.
- Check your output format again.
</instruction >

## Example Output:
english: The neural network uses backpropagation to optimize its weights.
korean: 신경망(neural network)은 역전파(backpropagation)를 사용하여 가중치(weight)를 최적화합니다.
score: 10/10
terms_check: [neural network: Yes , backpropagation: Yes , weight: Yes]
parentheses_count: 3
suggestions: No improvements needed / Suggest ensuring that "model compression" is
translated as "모델 압축(model compression)" and adjusting "모델 컴프레션" to "model compression"
for consistency and clarity.

## Example Format:
1.
english: [English text using term "{terms [0]}"]
korean: [Korean translation using parentheses]
score: [X/10]
terms_check: [{terms [0]}: Yes/No, {terms [1]}: Yes/No , {terms [2]}: Yes/No]
parentheses_count: [Number of parentheses pairs in the Korean translation]
suggestions: [Suggest capturing the original meaning and nuances in the translation

while adjusting the structure for natural flow and grammar]
2.
english: [English text using terms "{terms [0]}" and "{ terms [1]}"]
korean: [Korean translation]
3.
...
(Continue this pattern for all 7 sentences)

Listing 3: Full Prompt of Evaluator
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Domain AI (in-domain)

Terms heterogeneous graphs, neural probabilistic text segmentation

Source Heterogeneous graphs provide a rich framework for the implementation of neural probabilistic text segmentation,

facilitating improved contextual understanding through varied data representations.

Target 이종 그래프(heterogeneous graphs)는 신경 확률적 텍스트 분할(neural probabilistic text segmentation)의 구현을

위한풍부한프레임워크를제공하며,다양한데이터표현을통해개선된맥락적이해를촉진합니다.

Epoch Model Output

epoch 1 헤테로겐이종그래프(heterogeneous graphs)는신경확률적텍스트분할(neural probabilistic text segmentation)의

구현에풍부한프레임워크를제공하며,다양한데이터표현을통해맥락적이해를향상시킵니다.

epoch 2 동적이종그래프(heterogeneous graphs)는신경확률적텍스트분할(neural probabilistic text segmentation)의구현을

위한풍부한프레임워크를제공하며,다양한데이터표현을통해맥락이해를향상시킵니다.

epoch 3 이종 그래프(heterogeneous graphs)는 신경 확률적 텍스트 분할(neural probabilistic text segmentation)의 구현을

위한풍부한프레임워크를제공하며,다양한데이터표현을통해문맥이해를향상시킵니다.

epoch 4 동성애 이종 그래프(heterogeneous graphs)는 신경 확률적 텍스트 분할(neural probabilistic text segmentation)의

구현을위한풍부한프레임워크를제공하며,다양한데이터표현을통해개선된맥락이해를촉진합니다.

epoch 5 동적이종그래프(heterogeneous graphs)는다양한데이터표현을통해개선된맥락이해를촉진하여신경확률적

텍스트분할(neural probabilistic text segmentation)의구현을위한풍부한프레임워크를제공합니다.

epoch 6 동성애 이종 그래프(heterogeneous graphs)는 신경 확률적 텍스트 분할(neural probabilistic text segmentation)의

구현을위한풍부한프레임워크를제공하며,다양한데이터표현을통해문맥이해를개선하는데도움을줍니다.

epoch 7 이질적인그래프(heterogeneous graphs)는신경확률적텍스트분할(neural probabilistic text segmentation)의구현을

위한풍부한프레임워크를제공하며,다양한데이터표현을통해개선된맥락이해를촉진합니다.

epoch 8 이질적인그래프(heterogeneous graphs)는신경확률적텍스트분할(neural probabilistic text segmentation)의구현을

위한풍부한프레임워크를제공하며,다양한데이터표현을통해개선된맥락이해를촉진합니다.

epoch 9 이질적인그래프(heterogeneous graphs)는신경확률적텍스트분할(neural probabilistic text segmentation)의구현을

위한풍부한프레임워크를제공하며,다양한데이터표현을통해개선된맥락이해를촉진합니다.

Table 6: Illustration of M2M100 output for in-domain sample data across epochs. Red strikethrough text indicates
incorrect translations, with blue text showing the corrected translations. Green text represents correct translations
that were maintained or introduced during later epochs.
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Domain AI (in-domain)

Terms neural task-driven modeling, de Finetti’s theorem

Source Neural task-driven modeling, when applied to the constructs of de Finetti’s theorem, unveils a sophisti-

cated approach to managing uncertainty in predictive models within artificial intelligence.

Target 신경 작업 중심 모델링(neural task-driven modeling)이 드 핀네티의 정리(de finetti’s theorem)의

구조에적용될때,인공지능내에서예측모델의불확실성을관리하는정교한접을드러냅니다.

Model Model Output

mBART50 신경 작업 주도 모델링(neural task-driven modeling)이 데 페네티 이론의 구성 요소에 적용될 때,

인공지능내예측모델에서의불확실성을관리하는정교한접근방식을밝혀냅니다.

M2M100 신경작업주도모델링(neural task-driven modeling)이디피네티(de Finetti)이론의구조에적용될

때,인공지능내예측모델의불확실성을관리하는정교한접근방식을드러냅니다.

NLLB-200 데피네티정리의적용은신경작업주도모델링(neural task-driven modeling)과함께사용함으로써

불확실성을효과적으로관리할수있는더탄력적인모델을가능하게합니다.

Llama3-8B 신경작업주도모델링(neural task-driven modeling)을데피니의정리의(de Finetti’s theorem)구

축에 적용하면 인공 지능 내 예측 모델의 불확실성을 관리하는 정교한 접근 방식을 드러낼 수

있습니다.

Llama3-8B-Instruct 신경작업주도모델링(neural task-driven modeling)이데피니의정리(de finetti’s theorem)의구축에

적용될때,인공지능내에서예측모델의불확실성을관리하는정교한접근방식을드러냅니다.

Gemma2-9B 신경작업주도모델링(neural task-driven modeling)이디핀에티의정리(de finetti’s theorem)의구

조에적용될때,인공지능내예측모델에서불확실성을관리하는정교한접근방식을밝혀냅니다.

Gemma2-9B-Instruct 신경과제주도모델링(neural task-driven modeling)을데핀에티의정리(de finetti’s theorem)의구

조에적용하면인공지능내예측모델에서불확실성을관리하는정교한접근방식을드러냅니다.

Qwen2-7B 디-finetti의 정리(de finetti’s theorem)의 구조에 적용된 신경 작업 주도 모델링(neural task-driven

modeling)은인공지능에서예측모델의불확실성을관리하는정교한접근방식을밝혀냅니다.

Qwen2-7B-Instruct 디베니테이의정리(de finetti’s theorem)의구조에신경작업주도모델링(neural task-driven model-

ing)을적용하면인공지능에서예측모델의불확실성을관리하는정교한접근방식을밝혀낼수

있습니다.

Mistrial-7B 신경작업주도모델링(neural task-driven modeling)이디피네티(de finetti)의정리의구조에적용될

때,인공지능내에서예측모델에서불확실성을관리하는정교한접근방식을밝혀냅니다.

Mistrial-7B-Instruct 신경 작업 주도 모델링(neural task-driven modeling)을 데 핀철리의 정리(de finetti’s theorem)의

구조에 적용할 때, 인공 지능 내에서 예측 모델의 불확실성을 관리하는 정교한 접근 방식이 밝혀

집니다.

Llama-3-Open-Ko-8B 신경 과제 기반 모델링(neural task-driven modeling)이 데 핀에티의 정리(de finetti’s theorem)의

구성요소에적용될때,인공지능내예측모델의불확실성을관리하는정교한접근방식을드러

냅니다.

Llama-3-KoEn-Instruct 신경 작업 주도 모델링(neural task-driven modeling)을 데 피니티의 정리(de finetti’s theorem)의

구성에 적용할 때, 인공 지능 내에서 예측 모델의 불확실성을 관리하는 정교한 접근 방식을 드러

냅니다.

Table 7: Model output comparison for in-domain test data across various models, with sLMs fine-tuned using
QLoRA. Blue text highlights the translations of specific terms that models frequently translate inconsistently,
reflecting challenges in handling proper nouns.
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Domain High-Energy Physics (out-of-domain)

Terms jet quenching, quarkonia suppression

Source The interplay between jet quenching and quarkonia suppression offers a comprehensive understanding of the

dynamics governing the quark-gluon plasma and its evolution.

Target 제트퀀칭(jet quenching)과쿼크오니아억제(quarkonia suppression)간의상호작용은쿼크-글루온플라즈

마의동역학과그진화에대한포괄적인이해를제공합니다.

Model Model Output

mBART50 ject quenching(jet quenching)과 quarkonia suppression(quarkonia suppression)간의상호작용은쿼크-글루

언플라즈마와그진화에대한종합적인이해를제공합니다.

M2M100 jet quenching과 quarkonia suppression간의상호작용은 quark-gluon plasma의역학과그진화에대한포괄

적인이해를제공합니다.

NLLB-200 제트화와쿼크니아억제간의상호작용은쿼크-글루온플라즈마와그진화에대한동적에대한포괄적인

이해를제공합니다.

Llama 3-8B 제트 .jet쿼ンチ잉(jet quenching)과쿼크오니아억제(quarkonia suppression)간의상호작용은쿼크-글루온

플라즈마와그진화가지배하는역학에대한종합적인이해를제공합니다.

Gemma2-2B 제트격리(jet quenching)와쿼크니아억제(quarkonia suppression)간의상호작용은쿼크-글루온플라즈마

와그변화에관한역학을종합적으로이해하는데도움을줍니다.

Gemma2-9B 제트콸닝(jet quenching)과쿼크니아억제(quarkonia suppression)간의상호작용은쿼크-글루온플라즈마

와그진화를지배하는역학에대한포괄적인이해를제공합니다.

Gemma2-27B 제트냉각(jet quenching)과쿼크오니아억제(quarkonia suppression)간의상호작용은쿼크-글루온플라즈

마와그진화를지배하는역학에대한종합적인이해를제공합니다.

Qwen2-1.5B _jet quenching와_quetsquon suppression 간의 상호작용은 광자론 합성(quarkonia suppression)의 동적을

종합적으로이해하는데도움을줍니다.

Qwen2-7B 점프퀀터링(jet quenching)과퀀코나임(quarkonia suppression)간의상호작용은퀀크-글루온플라즈마와

그진화를지배하는역학을포괄적으로이해하는데중요한역할을합니다.

Qwen2-72B 제트쿠enching(jet quenching)과쿼크니아억제(quarkonia suppression)간의상호작용은쿼크-글루온플

라스마와그진화를지배하는역학에대한종합적인이해를제공합니다.

Table 8: Model output comparison for out-of-domain data across various models, with sLMs fine-tuned using
LoRA. Red text highlights specific terms that are frequently mistranslated, indicating challenges in handling these
out-of-domain terms.
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Model # Params Training Technique BLEU COMET BERT

mBART50 611M Full Fine-Tuning 40.298 0.892 0.927
M2M100 418M Full Fine-Tuning 41.789 0.892 0.928
NLLB-200 600M Full Fine-Tuning 35.843 0.886 0.920

Llama3 8B LoRA 39.243 0.892 0.924
8B QLoRA 40.984 0.893 0.927
70B LoRA 40.600 0.893 0.928

Llama3-Instruct 8B-it QLoRA 39.686 0.892 0.924
8B-it 1-shot prompting 1.103 0.410 0.594

Gemma2 2B LoRA 40.126 0.890 0.925
9B LoRA 43.391 0.896 0.932
9B QLoRA 41.620 0.893 0.929
27B LoRA 42.313 0.896 0.931

Gemma2-Instruct 9B-it QLoRA 41.143 0.891 0.928
9B-it 1-shot prompting 28.314 0.837 0.838

Qwen2 1.5B LoRA 36.174 0.881 0.914
7B LoRA 41.434 0.893 0.927
7B QLoRA 39.975 0.890 0.924
72B LoRA 42.704 0.894 0.929

Qwen2-Instruct 7B-it QLoRA 40.107 0.889 0.923

Mistral 7B QLoRA 40.424 0.891 0.925
Mistral-Instruct 7B-it QLoRA 39.368 0.891 0.924

Llama-3-KO-EN 8B-it QLoRA 42.862 0.896 0.931
8B-it 1-shot prompting 2.031 0.490 0.673

Llama-3-Open_Ko 8B-it QLoRA 41.793 0.894 0.928

GPT-4o Unknown 0-shot prompting 33.406 0.889 0.915
GPT-4o Unknown 1-shot prompting 35.272 0.890 0.918

Table 9: Pure translation metrics M for in-domain test data. The suffix ’-it’ indicates instruct-tuned models.
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Abstract
In Multimodal Machine Translation (MMT),
the use of visual data has shown only marginal
improvements compared to text-only models.
Previously, the CoMMuTE dataset and associ-
ated metric were proposed to score models on
tasks where the imagery is necessary to disam-
biguate between two possible translations for
each ambiguous source sentence. In this work,
we introduce new metrics within the CoM-
MuTE domain to provide deeper insights into
image-aware translation models. Our proposed
metrics differ from the previous CoMMuTE
scoring method by 1) assessing the impact of
multiple images on individual translations and
2) evaluating a model’s ability to jointly se-
lect each translation for each image context.
Our results challenge the conventional views
of poor visual comprehension capabilities of
MMT models and show that models can in-
deed meaningfully interpret visual information,
though they may not leverage it sufficiently in
the final decision.

1 Introduction

The use of multimodal data, combining visual and
textual inputs, is becoming increasingly important
in deep learning, especially in language modeling.
Multimodal Machine Translation (MMT) presents
a unique challenge in this area, as previous Ma-
chine Translation (MT) systems traditionally relied
only on text. Despite the potential benefits of in-
corporating imagery, its efficacy in MMT remains
controversial. Critics often view imagery as merely
a regularizer rather than a core component of trans-
lation systems (Caglayan et al., 2016; Wu et al.,
2021). This skepticism is fueled by results with the
assumption that textual context alone suffices for
most translation tasks (Caglayan et al., 2019).

To explore these concerns, the CoMMuTE
dataset was developed to test MMT models on
source sentences where visual context is essential
for accurate selection between possible translations

(Futeral et al., 2023). Their proposed evaluation
metric scores a model’s preference/choice between
two reference translations, diverging from tradi-
tional metrics such as BLEU (Papineni et al., 2002)
and Meteor (Banerjee and Lavie, 2005) that instead
compare a generated translation against a single
reference. Initial analyses using the CoMMuTE
dataset and metric indicate that current models
show only slight, or no, improvement over using
text-only models (Futeral et al., 2023).

Building on this recent foundation, we introduce
a new complementary evaluative CoMMuTE met-
ric that assesses a model’s understanding of vary-
ing imagery on a fixed reference translation (as
described above in (Futeral et al., 2023)). We ad-
ditionally provide two group metrics designed to
evaluate a model’s ability to jointly choose each
translation given their associated image contexts.

Results with our proposed metrics demonstrate
that in many circumstances, models can indeed
effectively understand and properly interpret the
visual information, even if the final translation deci-
sions are unaffected. This suggests the significant
potential for improvements in model design to fur-
ther leverage visual information.

2 Related Work

In this section, we present an overview of recent
advancements and methodologies in two critical
areas of related research. We first explore how im-
agery can enhance translation capabilities in MMT
and subsequently shift our focus to contrastive eval-
uation methods, which represent a shift from tra-
ditional single-reference comparisons to more nu-
anced assessments using multiple contrasting refer-
ences.

2.1 Multimodal Machine Translation

MMT typically trains with datasets such as
Multi30k (Elliott et al., 2016) to enhance trans-
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lation capabilities, yet results are not largely im-
proved with sufficient textual context (Caglayan
et al., 2019). Research such as Elliott (2018)
demonstrates that the replacement of associated
images with random counterparts often does not
significantly impact translation quality, suggest-
ing a predominant reliance on textual data. A
later study further indicated that imagery typically
serves merely as a form of regularization in training
current models (Wu et al., 2021).

When imagery is available at inference time, ap-
proaches such as Graph-MMT (Yin et al., 2020),
VTLM (Caglayan et al., 2021), Gated Fusion (Wu
et al., 2021), and VGAMT (Futeral et al., 2023)
are applicable. These methods leverage diverse
global visual features from sources such as ResNet-
50 (He et al., 2016) and CLIP (Radford et al.,
2021), as well as visual semantic features through
advanced object detectors like MDETR (Kamath
et al., 2021).

In scenarios lacking visual data at inference time,
innovative models such as CLIP-Trans (Gupta et al.,
2023), UVR-NMT (Zhang et al., 2020), and ImagiT
(Long et al., 2021) instead strategically leverage
image-text datasets only during their training phase.
These models employ sophisticated mechanisms to
enhance their semantic understanding during train-
ing such as aligning image-text embedding spaces
and synthesizing visual features. By pretraining on
multimodal data, these models acquire a nuanced
understanding of complex semantic relationships
that text alone might not fully encapsulate. Some
models, such as CLIP-Trans, can be modified to
support the use of imagery at inference time by
replacing CLIP text embeddings with CLIP image
embeddings.

There has also been notable progress in adapting
pretrained language models (LMs) such as BERT
(Devlin et al., 2019) and XLM (Conneau and Lam-
ple, 2019) for multimodal use. Techniques such
as visually-conditioned masked language model-
ing (VMLM) are explored in various architectures
(Chen et al., 2020; Lu et al., 2019; Su et al., 2020;
Li et al., 2020; Zhou et al., 2021; Ni et al., 2021;
Futeral et al., 2023). Furthermore, the development
of adapters and other lightweight modules can sig-
nificantly enhance multimodal capabilities of LMs
(Houlsby et al., 2019; Eichenberg et al., 2022; Yang
et al., 2022; Tsimpoukelli et al., 2021; Sung et al.,
2022; Futeral et al., 2023).

2.2 Contrastive Evaluation

Contrastive evaluation methodologies have become
crucial for nuanced assessments of translation sys-
tems. These methodologies utilize contrastive test
sets designed to challenge models to correctly rank
pairs of translations, helping distinguish between
correct and incorrect alternatives (Futeral et al.,
2023). Contrastive datasets have been used to eval-
uate linguistic phenomena including grammatical-
ity (Sennrich, 2017), pronoun translation (Müller
et al., 2018; Bawden et al., 2018; Voita et al., 2019),
and multi-sense word disambiguation (Rios Gonza-
les et al., 2017; Raganato et al., 2019; Futeral et al.,
2023). Moreover, the coherence of lexical usage
across translations has been thoroughly explored
(Bawden et al., 2018; Voita et al., 2019).

3 CoMMuTE Dataset and Metric

The CoMMuTE dataset (Futeral et al., 2023) was
recently introduced to score an MMT model’s pref-
erence between two given translations for an am-
biguous source based on the provided imagery.
Specifically, CoMMuTE is comprised of 154 am-
biguous English sentences, each paired with two
contrasting images and their respective translations,
where the two translations are available in French,
German, and Czech. Each instance in the dataset is
structured as a tuple (s, ia, ta, ib, tb), where s is an
ambiguous source sentence and (ia, ib) are images
that disambiguate the sentence into two possible
translations (ta, tb), respectively. For example, in
Fig. 1, the English source sentence “That’s lots of
bucks!” could refer to either deer or dollars, and
the image is needed to determine the appropriate
context.

To specifically score such disambiguation capa-
bilities, the authors proposed a metric, which we
refer to as TextCoMMuTE (TC), that compares the
model’s preference for the correct translation over
the incorrect translation based on a single provided
image context.

The model’s uncertainty in a translation t given a
source s and an image i is quantified by perplexity,
defined as

P(s, i, t) = exp

(
− 1

N

N∑

k=1

log p(tk|s, i, t<k)

)

(1)
Here, N is the number of tokens in the transla-
tion, tk is the k-th token in the translation, and
p(tk|s, i, t<k) denotes the conditional probability
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of the k-th token given the source, image, and pre-
ceding tokens. In practice, this probability is ap-
proximated using the softmax of model outputs.
Perplexity can be seen as a measure of uncertainty
as it is the exponential of the negative mean log
probability. Hence, lower perplexity is desired for
a correct output versus an incorrect output.

The TC metric is then defined for a single image-
translation triple (im, tm, tn) as

TCm,n = 1{P(s, im, tm) < P(s, im, tn)} (2)

where im and tm correspond to the matching im-
age/translation and tn is the incorrect translation in
the associated triple. Moreover, 1 is the indicator
function that is 1 if the perplexity for the correct
translation is less than that of the incorrect transla-
tion, and 0 otherwise.

Note that each of the 154 tuples in CoMMuTE
yields 2 TC scores: TCa,b and TCb,a. Hence,
there are actually 308 individual TC scores for the
dataset. An average is taken over the N=154 TC
pairs as a summary statistic

TC =
1

2N

N∑

j=1

{TCaj ,bj + TCbj ,aj} (3)

Again, the TC score (Eqn. 3) views the two
triples in each tuple independently even though
both triples are associated with the same source
sentence. TC scores range from 0-1 with 1 indi-
cating correct disambiguation of all triples in the
dataset. A text-only model scores a TC of 0.5
by definition (assuming no ties in perplexity) be-
cause for any tuple j in the dataset, exactly one
of TCaj ,bj and TCbj ,aj will be 1 while the other
is 0 (i.e., the image makes no contribution to the
translation preference for a given source).

From an MMT perspective, this metric is insight-
ful as translations with lower perplexities are typi-
cally more likely to be generated or appear higher
in an n-best list.

4 Enhanced CoMMuTE Metrics

We now propose new complementary contrastive
metrics to provide a more nuanced understanding
of the interpretation of imagery for models with the
CoMMuTE dataset.

4.1 ImageCoMMuTE
Rather than comparing two translations with the
same image and source as is done with TC, we in-

(a) French Translation a: Il
y a beaucoup de cerfs !

(b) French Translation b:
Cela fait beaucoup de dol-
lars !

Figure 1: English Source: That’s lots of bucks!

stead examine the contribution of two different im-
ages to the same translation. From this perspective,
we can directly assess whether the correctly associ-
ated image is appropriately affecting model uncer-
tainty (reducing the perplexity of its corresponding
translation). For a source s, images (im, in), and a
translation tm, we define ImageCoMMuTE (IC) as

ICm,n = 1{P(s, im, tm) < P(s, in, tm)} (4)

where im is the correctly associated image and in

is incorrectly associated image for translation tm.
Similar to TC, one can aggregate scores over a
dataset by taking the mean of the N=154 pairs

IC =
1

2N

N∑

j=1

{ICaj ,bj + ICbj ,aj} (5)

Scores for IC range from 0-1, and a score of 0.5 in-
dicates a random preference for the image context.

Our IC metric evaluates changes in model con-
fidence for the same translation when presented
with varying imagery. This approach directly as-
sesses the interplay between imagery and text in-
terpretation within the model. This differs from
the work presented in Elliott (2018), where they
assess average differences in model uncertainty,
while we assess indicators of decisions. This IC
metric also alleviates any possible concerns of the
reliance on comparing perplexity averages and cal-
ibration across translations (as is done with TC).
We will return to these potential issues in our dis-
cussion later. By maintaining a single reference
translation across different visual contexts, our IC
metric provides a more robust and precise measure
of how imagery is understood by the model.

4.2 Group CoMMuTE

Though TC and IC are insightful metrics on their
own, they both ignore the consistency desired for
the underlying source-translation pairs. With TC,
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the set of both translations is independently pro-
cessed twice (each time with a different image con-
text). Similarly with IC, the set of both images is
independently processed twice (each time with a
different translation target). What is truly desired
is that the model consistently and correctly under-
stands both cases for each set jointly to demonstrate
true understanding.

Therefore, we propose a new group variant
for TC and IC. To evaluate consistency across
the paired nature of the task, we define Group
TextCoMMuTE (GTC) as

GTCa,b = TCa,b · TCb,a (6)

and Group ImageCoMMuTE (GIC) as

GICa,b = ICa,b · ICb,a (7)

These group metrics function with a logical “AND”
between the two independent triple scores, ensuring
that a score of 1 reflects consistent and correct
interpretations for the tuple as a whole. As earlier,
one can also aggregate group scores using a mean
with

GTC =
1

N

N∑

j=1

GTCaj ,bj (8)

GIC =
1

N

N∑

j=1

GICaj ,bj (9)

These scores also yield values between 0-1.
Our primary goal is to assess if the model prop-

erly interprets and understands imagery for the
translations. Group scores such as GTC and GIC
are crucial because they assess consistent model
behavior with different text-image combinations,
indicating true comprehension rather than coinci-
dental correctness.

5 Experiments and Results

We present a comprehensive assessment of the pre-
vious and new CoMMuTE metrics on three pre-
trained English-to-French MMT models. Our eval-
uation is structured to elucidate how well these
models understand the imagery with respect to re-
solving ambiguities in the CoMMuTE dataset. We
begin by evaluating performance on the original
CoMMuTE dataset, followed by an assessment us-
ing an extended set of imagery we collected for
each CoMMuTE tuple to reveal further strengths
and weaknesses across models.

5.1 Models

We employed three English-to-French MMT mod-
els, each chosen for its unique approach to integrat-
ing visual data with textual information. Across
all models, we preprocessed imagery by resizing
the smaller edge to 224px (maintaining the aspect
ratio) and then taking a center crop of 224px ×
224px.

VGAMT. The authors of CoMMuTE proposed
VGAMT (Futeral et al., 2023), enhancing a pre-
trained mBART MT model (Liu et al., 2020) by
incorporating CLIP ViT-B/32 image embeddings
and fine-tuning adapters. While VGAMT included
an object detector and a visually guided attention
mechanism, our evaluation focused on its simpli-
fied variant from their ablation study (Futeral et al.,
2023), which solely uses CLIP image embeddings.
This model was trained using both visual masked
language modeling and MMT objectives, having
1B total parameters. In our experiments, we em-
ployed three VGAMT models provided by the au-
thors, each trained with a different random seed.

CLIP-Trans. The authors (Gupta et al., 2023)
align the embedding spaces of a pretrained mBART
MT model (Liu et al., 2020) with a multilingual
M-CLIP model (Carlsson et al., 2022) via a map-
ping network. The model first trains on an image-
captioning task using M-CLIP image embeddings
followed by text-only MT training with M-CLIP
text embeddings. They also suggest that imagery
can be utilized at inference time, substituting M-
CLIP text embeddings with image embeddings,
even though it is not directly trained on MMT. We
used a model following this approach with 1.3B
total parameters. In the experiments, we evaluated
one CLIP-Trans model provided by the authors.

Gated Fusion. This model introduces a dynamic
gating mechanism that adaptively combines image
and text representations, with gate values ranging
from 0 to 1 for image components (Wu et al., 2021).
The model leverages ResNet-50 (He et al., 2016)
image features and a tiny transformer for a total of
32M parameters (substantially smaller than CLIP-
Trans and VGAMT). We trained the model solely
on the Multi30K dataset (Elliott et al., 2016), adher-
ing to the authors’ training protocol. We observed
that the gating mechanism frequently assigns low
values, often near 0, which tends to minimize the
impact of visual data. To better incorporate image
content into the translation process, we trained ad-
ditional variants with fixed gate values of 0.25, 0.5,
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Figure 2: Mixed imagery from Fig. 1 used for a pseudo-
text-only baseline.

and 0.75. Each of these variants was trained and
evaluated using three different random seeds.

5.2 Baseline Results

We first conducted a baseline evaluation on the
CoMMuTE dataset. The second and third columns
in Table 1 display the mean TC and GTC scores
taken across models with random seeds (standard
deviations were very low in all cases). For refer-
ence, a pure text-only MT model will have TC=0.5
and GTC=0, since the model will always choose
one translation over the other for each tuple.

VGAMT scores highest in these two metrics,
with the CLIP-Trans and Gated Fusion variants
scoring near text-only in TC. This model also
scores the highest in BLEU on Multi30k, as re-
ported in previous work (Futeral et al., 2023; Gupta
et al., 2023). The GTC scores of all models are
above 0%, suggesting that all models can consis-
tently disambiguate at least some tuples, though the
scores are low. The gate values within the default
Gated Fusion model were inspected and found to
be near 0 (as expected). Interestingly, we see that
TC for Gated Fusion improves slightly with a fixed
larger gate value of 0.25 indicating that the strength
of imagery does have the potential to change trans-
lations.

5.3 Comparison with Ambiguous Imagery

We next examined how much the imagery affected
model decisions in comparison to the underlying
textual bias. We compared the changes in TC
scores using the original image context pairs (from
CoMMuTE) versus an ambiguous mixed image.

As MMT models are trained with both imagery
and text, one cannot properly obtain a pure text-
only result through simple methods such as pass-
ing a zero image or removing the image context
from the tokens. To obtain a pseudo-text-only base-
line, we employed a 50/50% “mixup” (Zhang et al.,
2018) of the two image contexts for each tuple to

Figure 3: Perplexities of the correct translations using
the correct image, the incorrect image, and the mixed
image.

create a single ambiguous image (see Fig. 2). Here,
both image contexts are provided in a single image.
However, there are other possible ways to create
ambiguous imagery, such as arranging the images
side-by-side. In Fig. 3, we see the perplexities of
the correct translations using the mixed imagery
typically fall between the perplexities using the cor-
rect and incorrect imagery, supporting the use of
the mixed imagery as a baseline for comparison.
We evaluated TC using this mixed image and also
using the original images to get two competing
TC scores for each image-translation triple. Note
that the pseudo-text-only MMT model will score
TC=0.5 (and GTC=0) by definition (we are using
the same mixed image across two comparisons, and
thus, preference does not change).

We measure changes in the score between the
original images and the mixed image for each tuple
using four consistency rates. The first two rates
measure the percent of image-translation triples
for which the original imagery and the mixed im-
agery gave different preferences for translations.
That is, in these cases, the model’s decision when
using the original imagery was different from the
model’s decision when using the mixed imagery.
The inconsistent positive rate (IPR) measures the
percentage of image-translation triples that chose
the right translation with the original imagery and
the opposite/wrong translation with mixed imagery.
The inconsistent negative rate (INR) measures the
percentage of image-translation triples that chose
the wrong translation with the original imagery and
the opposite/right translation with mixed imagery.
The performance of the remaining examples can be
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Model Mean TC ↑ Mean GTC ↑ IPR ↑ INR ↓ CPR ↑ CNR ↓
VGAMT 0.63 0.26 0.13 0.00 0.50 0.37

CLIP-Trans 0.51 0.03 0.01 0.00 0.50 0.49
Gated Fusion 0.50 0.02 0.01 0.01 0.49 0.49

Gated Fusion0.25 0.52 0.10 0.07 0.05 0.45 0.43
Gated Fusion0.5 0.50 0.07 0.05 0.05 0.45 0.45
Gated Fusion0.75 0.49 0.02 0.02 0.04 0.46 0.48

Table 1: Baseline TC and GTC scores on the original CoMMuTE dataset, and consistency rates compared to
pseudo-text-only baseline.

quantified by a consistent positive rate (CPR) and
a consistent negative rate (CNR), measuring the
percentage of triples whose correct and incorrect
preferences did not change when using the original
or mixed imagery. Since the corpus is evenly split
into 2 ambiguities, these rates are bounded in [0,
0.5] with IPR + CNR = INR + CPR = 0.5.

The last four columns in Table 1 display the con-
sistency rates using the pseudo-text-only baseline
for each of the models. The VGAMT model scores
the highest IPR of 0.13 with an INR of 0, indicating
that the model corrected 13% of translations with-
out any negative impact when using the original
imagery. In contrast, the CLIP-Trans and Gated
Fusion variants show smaller IPR and INR rates,
suggesting that imagery has a weaker yet still no-
ticeable effect on these models. The higher INR
rates for Gated Fusion models indicate that imagery
can actually hurt their performance.

By examining the CPR and CNR rates in the
table, we see that imagery may not be signifi-
cantly impactful in the decisions across all models.
These rates only measure the proportion of image-
translation triples (with the original imagery) that
agree with the pseudo-text-only baseline (with the
mixed imagery). They do not describe if the model
associates correct/incorrect imagery with transla-
tion confidence. The model still might correctly
associate the original imagery, giving lower per-
plexity of the correct translation (desired), but this
change may not be drastic enough to overturn the
model’s underlying textual preference. This high-
lights the need for a metric, such as the proposed IC,
to measure how confidence in a translation changes
with correct and incorrect imagery.

5.4 ImageCoMMuTE Results
We next conducted an evaluation of the CoMMuTE
dataset using our proposed IC and GIC metrics.
Table 2 displays the mean IC and GIC scores taken
across the models with random seeds. Note that IC

Model Mean IC ↑ Mean GIC ↑
VGAMT 0.81 0.66

CLIP-Trans 0.58 0.22
Gated Fusion 0.51 0.11

Gated Fusion0.25 0.51 0.12
Gated Fusion0.5 0.50 0.13
Gated Fusion0.75 0.50 0.11

Table 2: Baseline IC and GIC scores.

Model TC IC
VGAMT vs CLIP-Trans 0.39 0.18

VGAMT vs Gated Fusion0.25 0.25 0.16
Gated Fusion0.25 vs CLIP-Trans 0.36 0.32

Table 3: Intersection-Over-Union of failures as deter-
mined by TC and IC.

and GIC metrics are undefined for a pure text-only
MT model, and thus, we cannot compute the four
consistency rates.

Our image-based metrics (IC and GIC) demon-
strate that VGAMT interprets imagery most effec-
tively, achieving 0.81 on IC and 0.66 on GIC, which
are significantly higher than the TC of 0.63 and
GTC of 0.26. Other models continue to score only
slightly above 0.5. We find that of the models we
tested, those that scored highest on MMT quality
metrics also scored highest in our proposed metrics
(as reported in (Futeral et al., 2023; Gupta et al.,
2023)). These results demonstrate that VGAMT
more appropriately adjusts uncertainty in a transla-
tion based on imagery.

We also investigated whether the different mod-
els made the same errors. We identified the image-
translation triples where each model made errors in
terms of TC and also for IC. We then calculated the
intersection-over-union (IOU) between 2 models,
which is a set similarity metric defined as the ratio
of the number of image-translation triples common
to both error sets for a given metric (intersection)
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to the total number of unique image-translation
triples in both error sets (union). This metric helps
quantify the similarity in errors across models as a
scalar bounded in [0,1] where 1 signifies exact sim-
ilarity in errors. The results in Table 3 reveal that
models do not strongly make the same mistakes yet
do share some overlap.

5.5 Extended CoMMuTE
We next extended the CoMMuTE dataset by incor-
porating additional images per translation in each
tuple. This extension allows for a broader assess-
ment of model performance across diverse image
inputs and enables a search for images that could
either improve or degrade the scores.

For each ambiguous source s, we manually gen-
erated two distinct, unambiguous captions, ca and
cb, which correspond directly to the translations
ta and tb, respectively. For example, the English
sentence “That’s lots of bucks!” is transformed to
“a photo of deer” and “a photo of dollars”.

Utilizing these unambiguous captions, we then
sourced corresponding images from the DataComp-
12.8M dataset (Gadre et al., 2023), which com-
prises 12.8 million image-text pairs harvested from
the Common Crawl (Common Crawl). The Dat-
aComp dataset serves as a foundation dataset for
enhancing the training of CLIP models. We em-
ploy a CLIP ViT-B/32 model, pretrained on the
LAION-5B dataset (Schuhmann et al., 2022), to
retrieve images most similar (cosine similarity) to
our unambiguous captions.

From this candidate set of imagery, the top 15
images that most closely aligned with each caption,
adhering to a minimum dimension of 64 pixels and
a maximum aspect ratio of 2.5, were retrieved auto-
matically. We manually selected the four most rep-
resentative images from this set (due to potentially
noisy images retrieved). If fewer than 4 suitable im-
ages were found, additional images were sourced
from Google Images. This method resulted in a
total of 1540 images, providing 5 images (instead
of just 1) for each unambiguous translation. Conse-
quently, this extended CoMMuTE dataset includes
the original source s, translations ta and tb, and
now 5 images each for ia and ib.

With this extended CoMMuTE dataset, we exam-
ined if there existed subsets of imagery that could
significantly increase or decrease the GIC score (as
we deem GIC the most important metric for each
model). For each tuple in our extended dataset, we
identified the image pair (one image taken from

each image set) that maximizes or minimizes the
GIC score. As multiple pairs can meet the criteria,
we select the pair that optimizes

{P(s, ia, ta)− P(s, ib, ta)} +

{P(s, ib, tb)− P(s, ia, tb)}
(10)

This expression reflects the confidence gaps for the
translations. Given that a lower perplexity indicates
a better result and considering the ordering of dif-
ferences in Eqn. 10, we minimize (or maximize)
this equation to maximize (or minimize) the GIC
score accordingly. When seeking images to max-
imize the GIC score, we break ties by finding the
image pair that minimizes Eqn. 10 (can be negative).
When seeking images to minimize the GIC score,
we break ties with the image pair that maximizes
Eqn. 10. We refer to the image subset specifically
tailored to maximize GIC as Image-Oracle. We
also tracked the replacement rate (RR) of the num-
ber of images replaced from the original dataset.

As shown in Table 4, the maximal GIC image
subsets show high effectiveness, with VGAMT
scoring a Max IC of 0.96 and a Max GIC of 0.92.
This suggests that the model can accurately inter-
pret the intended visual signals in these particular
image pairs for nearly all translations. This is fur-
ther supported by the notably higher Max IC and
GIC scores in the CLIP-Trans and Gated Fusion
variants. Conversely, we see that sets of images can
be found to hurt performance, especially in CLIP-
Trans and Gated Fusion. Examples of replaced
imagery can be seen in Fig. 4. Therefore, it is pos-
sible to have imagery that drastically improves or
degrades the scores. We see that replacement rates
are high, indicating that the original dataset is not
prominent in these maximal/minimal subsets. The
results with maximal/minimal GIC show that the
model does indeed have an internal understanding
of the imagery with respect to the translation task.

We would expect the Image-Oracle images that
maximized GIC to similarly improve TC and GTC
scores. However, Table 5 shows only minor im-
provements in TC and GTC across models. Thus,
even though the IC and GIC metrics strongly indi-
cate the image interpretability of the models, the
TC and GTC metrics fail to highlight the potential
contribution of imagery.

6 Discussion

This study introduced image-based and group met-
rics for CoMMuTE to better evaluate if models do
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Model Min IC ↑ Min GIC ↑ RR Max IC ↑ Max GIC ↑ RR
VGAMT 0.59 0.33 0.80 0.96 0.92 0.71

CLIP-Trans 0.46 0.01 0.77 0.89 0.77 0.77
Gated Fusion 0.40 0.00 0.77 0.73 0.48 0.78

Gated Fusion0.25 0.38 0.00 0.80 0.86 0.71 0.80
Gated Fusion0.5 0.35 0.00 0.81 0.88 0.76 0.77
Gated Fusion0.75 0.37 0.00 0.79 0.85 0.71 0.80

Table 4: Minimum and maximum IC and GIC scores along with replacement rates.

Original

Oracle
Best

Oracle
Worst

Figure 4: Examples from the CoMMuTE dataset with original imagery (top row), oracle best replacements (middle
row), and oracle worst replacements (bottom row) as determined by VGAMT.

Model Mean TC ↑ Mean GTC ↑
VGAMT 0.67 0.34

CLIP-Trans 0.52 0.05
Gated Fusion 0.51 0.02

Gated Fusion0.25 0.64 0.28
Gated Fusion0.5 0.59 0.18
Gated Fusion0.75 0.56 0.12

Table 5: Image-Oracle TC and GTC scores.

understand imagery in MMT. In this section, we ex-
plore possible reasons why TC scores are so much
lower than IC and discuss future directions on how
to further leverage the imagery to improve MMT.

There are two potential issues related to perplex-
ity and calibration that may affect the TC/GTC
scores. First, there is an assumption that perplex-
ity is indeed an appropriate uncertainty metric to
compare two translations. Perplexity is a transform

Model Mean TC ↑ Mean GTC ↑
VGAMT 0.66 0.32

CLIP-Trans 0.52 0.03
Gated Fusion 0.51 0.01

Gated Fusion0.25 0.60 0.21
Gated Fusion0.5 0.58 0.15
Gated Fusion0.75 0.53 0.07

Table 6: Image-Oracle TC scores with the shared prefix
removed in perplexity computation.

of the mean log probability and, therefore, relies
on averages where all tokens are weighted equally
(Ueda et al., 2024). There may indeed be other
better measures of uncertainty (Kauf and Ivanova,
2023). It is also assumed that the model is well
calibrated to properly compare across translations.

One method to examine the effects of averages
across sequences of different lengths in the perplex-
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Figure 5: Calibration results using temperature scaling.

ity computation is to remove any shared prefix in
ta, tb before computing perplexity and then com-
pare to the results without prefix removal (original
method). Ignoring common prefixes (while still
weighting the remaining tokens equally) actually
shows a slight degradation in scores (as illustrated
in Table 6). These results suggest perplexity (a
transform of mean log probability) does have some
issues as a comparison method. However, this does
not fully explain the low TC/GTC scores.

We also investigated the effects of model cali-
bration using a simple global temperature scaling
method (Guo et al., 2017) across a range of tem-
perature values from 0.25 to 2. As shown in Fig.
5, the TC scores appear unaffected, indicating po-
tential miscalibration, while IC scores suggest that
models are relatively well-calibrated (at T=1). We
also examined higher temperatures, which did not
change the results, suggesting calibration does not
appear to be primarily responsible for the TC/GTC
degradation.

Therefore, given the stronger results from
IC/GIC, we believe the main overall issue with
TC/GTC is that the underlying textual prefer-
ence/bias in these models is too strong and does not
allow much influence from the imagery (which we
have shown to be interpreted well by the models).

7 Recommendations for Future Work

One future area of work is the integration of im-
agery earlier in the model’s architecture rather than
appending them at the end of the processing chain
(Wu et al., 2021; Gupta et al., 2023). Integrating
image features earlier in the model’s architecture
could enhance the model’s ability to better leverage
the rich contextual cues provided by the imagery.
This approach may result in translations that are
more contextually nuanced, with increased atten-
tion to specific words critical for disambiguation.

Additionally, enhancing the impact of visual sig-

nals within the model could also prove beneficial.
This could be achieved by adjusting the gate val-
ues in models that use gating mechanisms, such
as Gated Fusion (Wu et al., 2021), to strengthen
the influence of visual data. As demonstrated, set-
ting a fixed gate value that prioritizes visual infor-
mation could help in situations where visual con-
text is crucial for disambiguating textual content.
Even though the non-gated VGAMT was the top
performer, there is still room for improvement by
strengthening the role of imagery in the processing
using some method of gating or amplification.

Earlier we have shown that the IOU of errors
between model pairs did not have strong alignment.
This diversity implies that ensembling different
models could potentially mitigate individual weak-
nesses and enhance overall performance.

8 Conclusion

Our study challenges the widespread belief that
visual cues are not generally very helpful to MMT.
By employing our proposed IC and Group CoM-
MuTE metrics within an expanded CoMMuTE
dataset, we have established a robust framework
for assessing if visual information is understood
in MMT systems. Our results reveal that while
visual data does indeed support translation prefer-
ences, it is not leveraged significantly to enhance
the outcomes over the underlying textual bias. Our
findings mark a promising direction for future re-
search in MMT, suggesting that further exploration
could uncover ways to amplify this positive impact.

Acknowledgements. We thank the authors of
CoMMuTE for providing their CLIP-only VGAMT
models. We also thank Logan Frank and Robert
Sunderhaft for their assistance.

Limitations

Firstly, we evaluated English-French translations
in CoMMuTE. It remains to be seen whether the
results generalize to other languages. Additionally,
our evaluations were conducted on an extended set
of 5 images, whereas larger sets (e.g., 100 images)
would provide more robust insights. Furthermore,
we relied on the default single reference translation
for each image. Having additional translations for
each image context would enable a more compre-
hensive evaluation.
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Abstract

High-quality Machine Translation (MT) evalu-
ation relies heavily on human judgments. Com-
prehensive error classification methods, such
as Multidimensional Quality Metrics (MQM),
are expensive as they are time-consuming and
can only be done by experts, whose availability
may be limited especially for low-resource lan-
guages. On the other hand, just assigning over-
all scores, like Direct Assessment (DA), is sim-
pler and faster and can be done by translators
of any level, but is less reliable. In this paper,
we introduce Error Span Annotation (ESA), a
human evaluation protocol which combines the
continuous rating of DA with the high-level
error severity span marking of MQM. We val-
idate ESA by comparing it to MQM and DA
for 12 MT systems and one human reference
translation (English to German) from WMT23.
The results show that ESA offers faster and
cheaper annotations than MQM at the same
quality level, without the requirement of expen-
sive MQM experts.

1 Introduction

While automatic evaluation metrics are impor-
tant and invaluable tools for rapid development
of Machine Translation (MT) systems, human as-
sessment remains the gold standard of translation
quality (Kocmi et al., 2023; Freitag et al., 2023).
The translation quality is conceptually measured
through adequacy (preservation of the original
meaning) and fluency (grammaticality of the trans-
lated text; Koehn and Monz, 2006), and sometimes
through comprehension (how readable or under-
standable the translation is; White et al., 1994).

Annotators are usually asked to assign a score on
a particular quality aspect. Likert and 0–100 scale
are often used for discrete and continuous scales.

⋆Equal contributions. Others alphabetically.
0Code & collected data:

� github.com/wmt-conference/ErrorSpanAnnotation

Figure 1: Stylized annotation user interface with Error
Span Annotation (ESA). The annotator first marks er-
rors with minor and major severity and then assigns a
final score. This is more robust than asking for score
directly.1

The most popular scoring method in machine trans-
lation field in recent years is Direct Assessment
(DA; Graham et al., 2013), which is used to portray
a human assessment of MT quality in the WMT
shared tasks since 2016. Since 2022, the DA+SQM
metric is used, namely direct assessment enriched
with more objective Scalar Quality Metrics (SQM)
guidelines (Kocmi et al., 2022).

Translation scores indicate the overall quality of
a translation, but they can be subjective and do not
provide details about the translation errors. The
usual way to overcome this drawback is error clas-
sification: asking the evaluators to mark each trans-
lation error and assign an error tag from a set of
predefined categories, such as terminology or style.

1Our experiments are on English→German. In Figure 1,
Spanish→English is only an illustration for English-speaking
readers. The first example, based on our data, omits Rainy
days! and incorrectly translates about field items as im Feld
(=in the field). The second example, for illustrative purposes,
does not capitalize H and mistakenly adds extra week.
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In recent years, the dominant error classification
protocol is the Multidimensional Quality Metrics
(MQM; Lommel et al., 2014; Freitag et al., 2021a).
MQM error classification is the standard human
metric in the WMT Metrics shared task since 2021
(Freitag et al., 2021b). While error classification
provides interesting insights into the distribution
of different types of errors, it requires much more
time and effort, both for annotators and task orga-
nizers, who need to prepare the error taxonomy,
annotation guidelines and training examples.

We present a new evaluation protocol based
on highlighting errors and followed by assign-
ing scores, Error Span Annotation (ESA), and
compare it to the MQM error classification and
DA+SQM scores. We compare MQM, DA+SQM
and ESA annotations in parallel on a subset
of English→German machine translation outputs
from WMT23. We find that the proposed ESA
protocol is faster and cheaper than MQM whilst
providing the same usefulness in ranking MT sys-
tems.

2 Related work

Assigning overall scores was the very first method
of manual MT evaluation (ALPAC, 1966; White
et al., 1994), where the evaluators assessed some
or all of the translation quality criteria at once: ad-
equacy, comprehensibility, and fluency. The first
WMT (Workshop/Conference on Machine Transla-
tion) shared task in 2006 and the subsequent task
in 2007 adopted this technique and used adequacy
and fluency scores as official metrics (Koehn and
Monz, 2006; Callison-Burch et al., 2007). Later, Vi-
lar et al. (2007) proposed binary ranking of two or
more MT outputs, which became the official metric
at WMT 2008 (Callison-Burch et al., 2008). It re-
quired less effort and showed better inter-annotator
agreement than adequacy and fluency scores. This
remained the official WMT metric until 2017 when
it was replaced by continuous Direct Assessment
(DA). DA (Graham et al., 2013) does not use dis-
crete scales, but a continuous one between 0 and
100. Bojar et al. (2016) scrutinized the quality cri-
teria and recommended to focus on adequacy and
use fluency to break ties only. DA replaced ranking
methods in 2017 (Bojar et al., 2017) and since 2022
(Kocmi et al., 2022) it is used with SQM guidelines
(Freitag et al., 2021a) in a slightly modified version
with more descriptive scale labels, which increased
the inter-annotator agreement.

None of the described methods provides infor-
mation about the erroneous or problematic parts
of the translation. An early work of Vilar et al.
(2006) analyzes errors in translation outputs assign-
ing them to error classes from a predefined error
typology. Most popular error typology recently
is Multidimensional Quality Metrics (MQM; Lom-
mel et al., 2014; Klubička et al., 2018; Freitag et al.,
2021a), which is used in WMT metrics task since
2021 (Freitag et al., 2021b).

Several error span marking methods have been
proposed recently (Kreutzer et al., 2020; Popović,
2020) as a less demanding error annotation ap-
proach than error classification. While it does not
provide the fine-grained details about different er-
ror classes, it still gives the information about the
position and amount of errors, and also enables fur-
ther fine-grained analysis on the annotated data, if
necessary (e.g. classification of already marked er-
rors, identifying linguistic phenomena causing the
errors, or focusing on particular error type). While
the previously reported findings on this method
are promising, no systematic comparison for the
purposes of evaluating machine translation systems
has been carried out so far. Furthermore, the simpli-
fied error marking method does not solve the chal-
lenges in determining how to appropriately weight
individual errors to obtain segment-level scores,
a problem that becomes particularly pronounced
when extending the evaluation to document level.

This work combines the advantages of error an-
notation (like MQM) and assigning direct scores
(like DA). The annotators are first asked to iden-
tify and mark all errors, and afterwards to assign
an overall score. When deciding about the score,
they are primed by the preceding error annotation
and see all the marked errors that can be taken into
consideration for the final score.

3 Comparison with DA+SQM and MQM

Our proposed method lies between DA+SQM and
MQM protocols, so we provide a detailed com-
parison between the two before describing ESA in
details in the next section.

While both DA+SQM and MQM generally ex-
hibit low inter-annotator agreement (Knowles and
Lo, 2024; Freitag et al., 2021a), DA+SQM scores
have high variance, which needs to be compensated
with higher number of annotations per system (Wei
et al., 2022). On the other hand, MQM requires
human experts trained with the MQM protocol and
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error classification. Trained experts can be twice
as expensive as translators or bilingual speakers
evaluating DA+SQM. The required expertise is a
hard constraint which makes evaluation on some
languages prohibitively expensive or not possible
at all, especially low-resource languages. Further-
more, assigning a DA+SQM numerical score to a
segment is anecdotally and intuitively much faster
than MQM, where the evaluators need to mark each
error span, classify it and assign severity. This alto-
gether can make each MQM annotated segment up
to approximately 10× more expensive.

DA+SQM is usually based on sentence-level
scores, and the paragraph-level score is computed
as the average of all sentence scores in the para-
graph. Paragraph-level DA+SQM evaluation is
possible, but evaluating an entire paragraph takes
more time, substantially decreases the total number
of collected scores, and is more demanding cogni-
tively, which negatively impacts the inter-annotator
agreement (Castilho, 2020). On the other hand,
MQM as an error classification annotation is ag-
nostic to the choice of annotation unit.

As an example, in App.Figure 6 we show the sys-
tem ranking based on two approaches DA+SQM
and MQM on Chinese-English (sentence-level eval-
uation) and English-German (paragraph-level eval-
uation) language pairs. Although both techniques
reach same order of system clusters, DA+SQM
produces much fewer clusters in paragraph-level
setup, thus putting many systems within a single
cluster. On the other hand, MQM is better able to
distinguish different systems. To increase statisti-
cal power of DA+SQM, we would have to collect
much more DA+SQM samples (Wei et al., 2022),
which would further drive the cost up. In addition,
DA is much more skewed towards fluency as op-
posed to adequacy (Martindale and Carpuat, 2018).

The cost difference was one of the main rea-
son behind the high usage of DA+SQM at the
WMT General MT shared task (Kocmi et al., 2023,
2022). For all these reasons, our hypothesis is that
a new annotation protocol, ESA, which is between
DA+SQM and MQM can provide better annota-
tions than DA+SQM at a lower cost than MQM.

4 Error Span Annotation

Annotation process. In Error Span Annotation
(ESA), the evaluators first mark all problematic
parts (characters, words, phrases, sentences) in
the translated text. For each marked span, they

Source/Translation+ESA Score

SRC: ... I’ve entered the burrata dimension.
70%

TGT: ... ich habe die Burrata-Dimension eingegeben.
gloss: habe eingegeben(=I put in) should be bin eingetreten

SRC: Not like other tomb raider games
35%

TGT: Nicht wie andere Gräberüberfäller Spiele
gloss: Gräberüberfäller overtranslates Tomb Raider

SRC: (PERSON2) Yeah, so just know like-
86%

TGT: Ja, also weißt du einfach... [missing]
gloss: PERSON2 is missing

SRC: All collards, kale, chard is transplanted.
17%

TGT: Alle Kohlköpfe, Grünkohl, Schmalz sind verpflanzt.
gloss: Kohlköpfe(=cabbages) and Schmalz(=lard) are

incorrect translations

Example 1: ESA-annotated examples with associated
manual score. The error severity distinction is between
minor and major. The first example has a single error
(confusion eingeben(=put in) as enter meaning go in)
which also affects the auxiliary verb habe/bin. Thus, the
same error is marked twice.

also provide one of the two severity levels: major
(e.g. changed meaning) or minor (e.g. incorrect
grammar, style; see Example 1). Because all error
spans are marked in the translation, not the source
text, we include a special tag for marking omis-
sion errors. This was an intentional choice over
annotating the source text to make the annotation
protocol forward-compatible with other translation
modalities, such as audio and video translations.

After the annotators mark all the error spans,
they are asked to provide an overall score for the
entire segment, on the scale from 0 to 100, reminis-
cent of DA+SQM. We implement the annotation
interface in Appraise (Federmann, 2018) and show
a screenshot in Figure 2. The full guidelines dis-
played to annotators are shown in Appendix A.

Segment-level scores. To rank systems, we need
scalar values. There are two evident ways to extract
them from ESA: (1) using the annotator’s overall
segment-level score directly, like DA+SQM, or (2)
converting error span severity levels into a segment-
level score, like MQM. By instructing the annota-
tors to identify and mark all errors first, we prime
them to be more accurate when assessing the over-
all quality of the segment—when making the deci-
sion about the score, they have already marked all
errors in the segment and can see them, therefore
they can take them into consideration.

MQM is primarily error diagnostics protocol
which has been repurposed for translation segment
scoring. The transition from MQM error spans
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into a single segment score has been proposed to
be done with the formula based on error severity
counts (Freitag et al., 2021a):

MQM-like = −5 · #MAJOR − 1 · #MINOR

Notice that this does not scale with different text
sizes.2 As an example, if translation of a segment
has two major errors, it receives the score of −10.
However, if the source is repeated twice and the cor-
responding translation as well, the score would be
further decreased to −20. This is especially prob-
lematic for paragraph-level evaluation which fea-
tures segments of different length. Additionally, the
segment-level MQM score might not correspond
with the segment-level translation quality, such as
when marking one error affecting several places in
the segment, as in Example 1 (top). To avoid such
issues, we use the annotators’ direct scores as the
main scoring approach for the ESA protocol unless
specified differently. The system-level scores for
all human evaluation methods in this work are cal-
culated as the average of all segment-level scores
for particular system. We further revisit the score
computation in App.Appendix B.1. In some analy-
sis, we use ESA error spans to calculate MQM-like
score, we refer to such scores as ESAspans.

Advantages. Assigning overall scores is guided
by errors in the translation, and through error mark-
ing, the annotator can first focus on direct highlight-
ing of these issues instead of determining the over-
all score directly. The advantage of ESA over error
classification is that it is less demanding, while
still informative—the annotations can be further
refined in subsequent analyses. Furthermore, the
evaluators are not limited to any pre-defined anno-
tation protocol and can highlight a larger range of
errors. The error marking approach can be seen
as descriptive (encouraging annotator subjectivity
and capturing their individual beliefs) and the error
classification as a prescriptive (discouraging an-
notator subjectivity and asking annotators to align
with one specific belief, in this case the pre-defined
error protocol), as per Rottger et al. (2022).

5 Experimental setup

We conduct experiments comparing the ESA pro-
tocol with MQM and DA+SQM protocols. We
design them in a way which makes it compara-
ble with the previously collected annotations for

2Another weighting was proposed by Burchardt (2013)
that is less prevalent in machine translation evaluation.

ESA1 ESA2 MQM MQMWMT

# error spans 0.45 1.00 0.53 3.37
% minor 63% 68% 67% 67%
% major 37% 32% 33% 33%
Score (MQM-like) 81.8 (-1.1) 84.5 (-2.2) (-1.2) (-7.1)

Table 1: Average number of error spans per segment,
ratio between minor and major errors, and scores across
different annotation protocols.

MQMWMT and DA+SQMWMT. For this reason,
we reproduce the human evaluation campaign for
the WMT23 English to German systems (Kocmi
et al., 2023; Freitag et al., 2023) with ESA and our
reimplementation of MQM.

The original campaign featured 13 translations
of 557 source segments. To facilitate running mul-
tiple campaigns for proper comparison, we had to
scale down and subsampled 207 segments per sys-
tem (74 documents), which yields 2,691 segments
in total. To keep the ESA annotation compara-
ble to other protocols, we subsample by selecting
a subset of documents evaluated by Freitag et al.
(2023) keeping the entire documents. This differs
from Freitag et al. (2023), who removed some para-
graphs from the ends of long documents. In our
analysis we only consider segments overlapping
with both previous annotation collections, thus ob-
taining 2,027 annotations evaluated across all pro-
tocols. We note that the subsampling makes all
annotations protocols statistically less powerful,
but keeps them fair in terms of statistical power per
evaluated segment. Therefore, clustering and final
system ranking in our analysis differs from Kocmi
et al. (2023); Freitag et al. (2023). To keep the
study comparable with Kocmi et al. (2023), we use
the Wilcoxon rank-sum test with p<0.05 when pro-
ducing system clusters. However, as all systems are
evaluated on the same set of segments, we advice
to use Wilcoxon signed-rank test when employing
ESA as proposed by Kocmi et al. (2021).

To analyze inter annotator agreement, we run
ESA protocol twice with different sets of annota-
tors. We hired 28 annotators to evaluate our proto-
cols and each protocol was evaluated by different
sets of experts to avoid bias. Specifically, we had 8
bilingual annotators for the initial run of ESA1, 10
translators for ESA2 (different vendor), and 10 an-
notators to evaluate MQM protocol. For MQM, we
hired professionals already experienced with MQM
annotation protocol, while for ESA, we hired trans-
lators or bilingual speakers. All of them were native
speakers of the target language, German.
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  document 6 / 28     segment 12/100   Hide instructions   English → German (Deutsch)  

     
Highlighting errors:  

 Highlight the text fragment where you have identified a translation error (drag or click start & end).  
Click repeatedly on the highlighted fragment to increase its severity level or to remove the selection. 
Minor Severity:  Style/grammar/lexical choice could be better/more natural.   
Major Severity:  Seriously changed meaning, difficult to read, decreases usability.   
If something is missing from the text, mark it as an error on the [MISSING] word. 
The highlights do not have to have character-level precision. It's sufficient if you highlight the word or rough area where the error appears. 
Each error should have a separate highlight.   

 Score:  After highlighting all errors, please set the overall segment translation scores. The quality levels associated with numerical scores on the slider:  
0: No meaning preserved: Nearly all information is lost in the translation. 
33%: Some meaning preserved: Some of the meaning is preserved but significant parts are missing. The narrative is hard to follow due to errors. Grammar may be poor. 
66%: Most meaning preserved and few grammar mistakes: The translation retains most of the meaning. It may have some grammar mistakes or minor inconsistencies. 
100%: Perfect meaning and grammar: The meaning and grammar of the translation is completely consistent with the source.                        

  Getting my eyes checked, because there was a decent deal for it here, and my left eye’s been weird for some time now, so maybe they can tell me 
something what’s happening.  

Ich lasse meine Augen untersuchen, denn es gab hier ein gutes Angebot dafür, und mein linkes Auge ist seit einiger Zeit komisch, 
also vielleicht können sie mir sagen, was los ist. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
   

                   
  I’m splurging on a new set of frames, these red ones I reeeeally like.  

Ich verschwende mein Geld für eine neue Brillenfassung, diese rote mag ich seeehr. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

                   
  So, apparently the ghost image my left eye sees isn’t too much of a concern. But I need basically varifocals too. So the lenses have a combo of those. Not 
the full on varifocals but something in between those and ”normal” glasses (no idea of the terminology in English).  

Also ist das Geistsrbild, das mein linkes Auge sieht, nicht so sehr Anlass zum Sorge. Aber grundsätzlich brauche ich auch 
Gleitsichtgläser. Die Linsen sind also eine Modifikation dieser. Nicht die starken Gleitsichtgläser, sondern etwa zwischen diesen 
und „normalen“ Gläsern (keine Ahnung der Terminologie in Englisch). [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   

Figure 2: Screenshot of the beginning of one annotated document in the ESA interface (following segments are
not shown). By showing and annotating whole documents at the segment-level, the annotators see all the relevant
context. Segment reset button and completed labels removed for brevity. See the interactive tutorial shown to all
annotators in Appendix Figure 10.

6 Analysis

We first analyze the collected data, system ranking,
agreement with other protocols, quality assurance,
and finally the annotation time. The findings reveal
that the ESA quality is comparable, if not better
than MQM, takes less time, and does not require
highly trained annotators.

6.1 Score distribution

As per Table 1, on average the ESA1 annotators
mark 0.45 error spans per segments, which is close
to MQM’s 0.53 error spans per segment. The sec-
ond run of ESA2 has more than double of error
spans per segment, which could be the result of
different characteristics of annotators group, specif-
ically experienced annotators in ESA1 versus trans-

lators in ESA2. On the other hand, MQMWMT

contains 7x more errors per segment than our re-
run of MQM. We attribute this difference primarily
to the differences in annotation crowds, which fur-
ther motivates our own evaluation of both MQM
and ESA so that the annotations differ only in the
annotation protocol and past MQM training. The
severity levels are distributed similarly across cam-
paigns. Important insights are in the score range
distribution presented in Figure 3: the MQM-like
score computation creates more skewed distribu-
tion around 0, which is in addition unbounded and
can go to -infinity the longer the evaluated segment
is, complicating modeling and comparisons. In
contrast, the manual scores from annotators are
spread out and guaranteed to be in [0, 100].
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Figure 3: Distribution of scores for one annotation cam-
paign. For ESA, we either use the manual score or
ESAspans computation based on error severities. For
MQMs, the distribution is clipped ≥ −15 for higher
resolution.

6.2 System ranking capabilities

We now investigate how well different annota-
tion protocols (ESA and MQM) can rank MT sys-
tems. For purpose of this experiment, we consider
MQMWMT which comes from an independent very
high-quality annotation crowd and implementation,
as the gold standard. Note that this creates a pos-
itive bias towards our implementation of MQM
as opposed to ESA. In Appendix B.2 we show an
evaluation without this gold standard assumption.

When comparing two protocols, we ideally want
them to rank all systems in the same order. This
is not always possible as some systems are very
similar and cannot be significantly distinguished
with the evaluated sample size. Another problem is
that different protocols may weight different phe-
nomena (e.g. fluency or adequacy) differently. To
compare different protocols in the task of ranking
systems, we use pairwise accuracy (Kocmi et al.,
2021), which is also used in WMT Metrics shared
task when comparing different automatic metrics
(Freitag et al., 2023). Pairwise accuracy measures
how many system pairs does a protocol rank the
same way as MQMWMT. As we have only 78 sys-
tem pairs, any wrong system pair will change pair-
wise accuracy by 1.28%. Therefore, we also cal-
culate Spearman’s correlations as we mainly want
protocols to have monotonic ranking.

In Figure 4, each subplot compares system-
level scores between one protocol on x-axis and
MQMWMT on y-axis. Our repeated MQM exper-
iment and ESA protocol rank systems identically

(94.9%), while ESA has slighly higher Spearman’s
correlation with MQMWMT. On the other hand,
DA+SQMWMT significantly lacks behind both pro-
tocols. This suggest that our ESA protocol has
comparable system ranking capabilities to MQM
and is superior to DA+SQMWMT.

The Figure 4 also shows, that relying on error
spans only is not optimal, as ESAspans has lower ac-
curacy and Spearman’s correlation than ESA. We
can notice that this is even lower than our rerun
of MQM. This can be attributed to the evaluation
crowd, where we used professional MQM annota-
tors for MQM protocol, while we used bilingual
speakers and translators for the ESA protocol.

Further focusing on the clustering, MQMWMT

significantly differentiates the top system from oth-
ers (highlighted in orange), while DA+SQMWMT

strongly puts this system into the second cluster.
This system is human reference, which we assume
should be of highest quality. The reduced number
of clusters in contrast to Figure 6 is due to the lower
sample size. This may be result of DA+SQMWMT

higher sensitivity to fluency and style errors, which
contribute to 60% of all errors in human reference
as marked by MQMWMT. This conflict in cluster-
ing is one of the critiques of DA+SQMWMT if we
assume that human reference should be the highest
scoring translation. For example, in Kocmi et al.
(2023), human reference was the best translation
only in 2 out of 8 language pairs.

MQMWMT

ESA1 0.227
ESA1 spans 0.170
ESA2 0.250
ESA2 spans 0.236
MQM 0.189
DA+SQMWMT 0.209

Table 2: Kendall τ segment-level correlations between
evaluation protocols.

6.3 Agreement with other protocols

We now compare how different protocols corre-
spond on the segment-level. We use MQMWMT

as the gold standard to compare against because it
was done independently outside of our setup and
with high quality assurance. We analyze two as-
pects: (1) segment scores, and (2) spans, where
we consider spans overlapping even with a single
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Figure 4: Each point represents a system, with the original MQMWMT scores on the y-axis plotted against our rerun
of DA+SQMWMT (first plot), ESA (second plot), ESAspans (third plot), and MQM (forth plot). Stripped lines indicate
cluster separations determined by each method with alpha threshold 0.05. We compute Spearman correlation ρ and
pairwise accuracy ACC.

character as a match. For this evaluation, we use
Kendall τ variant C, which is more suitable for data
with different underlying scales and many ties.

In Table 2, we see that although all protocols
correlate similarly with MQMWMT, our protocols
obtain the highest τ for both runs. The segment-
level correlation also confirms that relying only on
the error spans is not optimal and ESAspans obtains
lower Kendall score.

In Table 3 we focus on the annotated spans. We
consider any spans that overlap as matching, irre-
spective of severity. Because different protocols
have different average number of error spans, pre-
senting just the size of the intersection would be
misleading. Instead, we show normalized set sim-
ilarity that is not symmetric. It answers the ques-
tions: What proportion of samples in B were cov-
ered by A? Both ESA and MQM cover MQMWMT

similarly, with 29% and 32% respectively. At the
same time, MQMWMT covers ESA and MQM with
93% and 85%.

↓A B→ ESA MQM MQMWMT

ESA 77% 29%
MQM 85% 32%
MQMWMT 93% 89%

|A∩B|/|B| (100% for B = ∅)

Table 3: Similarity between spans of different annota-
tion protocols (one campaign) computed as percentage
how much of B does A contain. For example, 93% of
ESA spans were also in MQM. Any span that overlaps
with another one is considered a hit, even if only with
as single character.

6.4 Quality of annotations
Intra annotator agreement. We want the human
evaluation protocol to consistently assign similar
scores for the same translations over time. A good

indicator of the annotation quality is how noisy and
subjective it is, which is reflected by how much
annotators agree on the same segments (inter anno-
tator agreement) as well as how a single annotator
agrees with themselves (intra annotator agreement).
To measure intra-AA, we ask the same annotators
to again annotate the same documents two months
later. We prepare an identical campaign with the
same distribution of systems in the same order as
originally, asking the same annotators to redo it
again for both ESA and MQM.

It is not obvious how to measure the agreements
for protocols that have different features. One issue
is the frequency of ties, where MQM has more ties
than rating from ESA or DA+SQMWMT.For exam-
ple, MQMWMT contains 30.8% no-errors, while
DA+SQMWMT contains only 5.2% of score 100.
Secondly, each protocol uses different range and
distribution of scores, which makes calculation of
agreement complicated. See App.Figure 7 to un-
derstand different distribution of scores.

Previous works comparing different protocols
discretize the scale into bins (Graham et al., 2013;
Freitag et al., 2021a), however, this approach is sen-
sitive to subjective selection of bin sizes and bene-
fits already discrete protocols. Instead, we propose
to use Kendall’s Tau-c correlation to measure inter-
annotator agreement. Secondly, we also want to
take into consideration that small changes in scores
are less damaging than large shifts, therefore, we
want inter annotator’s scores to correlate linearly,
ideally having identical score each time. To mea-
sure this, we use Pearson’s correlation. Lastly, we
measure recall of how often annotator mark any
error in the same segment in contrast to leaving the
segment without marked errors.

Table 4 shows that ESA has all scores higher
than MQM. Higher Kendall and Pearson suggest
that the task is easier for annotators to agree on the
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score. We expect the recall to be comparable for
both techniques as the task is similar, we hypothe-
size that the drop in MQM could be explained by
annotators saving time and skipping minor errors
as the annotation is more complicated for MQM
than ESA, which can be confirmed when looking
at minor error’s recall only.

Lastly, evaluating inter annotator agreement
is heavily affected by the strategy of annotators,
where different annotation strategy does not mean
different performance of the task as Riley et al.
(2024) showed. Secondly, the MQMWMT was col-
lected with a different tooling and the documents
have been presented to annotators in different or-
der, which could also impact the inter annotator
agreement.

Intra AA Inter AA
ESA MQM ESA MQM

Kendall’s Tau-c 0.149 0.109 0.254 0.116
Pearson 0.403 0.189 0.482 0.281
Error recall 69.6% 61.9% 66.6% 40.1%
Minor e. recall 70.7% 66.2% 67.7% 44.4%
Major e. recall 82.6% 82.1% 84.8% 62.9%

Table 4: Intra- and inter-annotator agreement on
segment-level.

Inter annotator agreement. To measure how
different annotators agree between themselves on
the same protocol, we compare ESA1 to ESA2,
where each protocol was evaluated by different
group of annotators (bilingual annotators vs. trans-
lators). To calculate MQM’s inter-annotator agree-
ment, we compare our MQM run with MQMWMT.
However, the comparison is not as 1:1 as for ESA
protocol. Our MQM was collected with different
interface and system outputs have been shown to
annotators in a different order. Results in Table 4
suggest, that ESA has also higher inter-annotator
agreement than MQM. Unfortunately, we could not
rerun DA+SQM protocol to calculate agreements,
which needs to be reevaluated in future work.

Agreement on the error span. We now investi-
gate how much MQM annotators agree on the error
spans, error categories and severity levels. We eval-
uate from two angles: intra, where we check if
the same annotator marks the same error spans or
have overlapping parts, and inter, where we com-
pare our MQM error spans to MQMWMT. Table 5
shows that only in 30% of cases, the same annota-
tor marked at least part of the same segment as an

error regardless error severity and category. If we
look at cases preserving severity and category, this
number drops to 8.4%.

When comparing the inter annotator agreement,
only 50% of errors are overlapping. This number is
higher as the total number of errors in MQMWMT is
7× higher than in MQM, therefore it is more likely
an error will have overlap.

Intra AA Inter AA

Any errors 29.3% 50.2%
Same severity 16.9% 23.7%
Same category 18.9% 24.1%
Same sev. + categ. 11.6% 10.0%
Same sev. + subcateg. 8.4% -

Table 5: ESA intra- and inter-annotator agreement (fre-
quency) on marking overlapping errors with same sever-
ities, categories or subcategories.

Quality control. To measure the quality of anno-
tations, we added “attention checks” in the form of
segments for which we can reliably check whether
the annotator annotated them correctly or not. In
random documents, we perturbed the translation by
replacing part of it with random sequence of words
of the same length introducing a major translation
error. Within 100 segments annotated by the anno-
tator, they see both original and perturbed versions
of that document. We can control the annotation
quality by checking if the perturbed documents re-
ceived more error spans. We show a worked-out
Example 2.

SRC: Sie haben gestern das Treffen wieder verschoben.
TGT: He postponed the meeting again yesterday.
TGTP: He postponed the meeting squirrels tense.

Example 2: An example of a perturbed translation
TGTP based on the original system translation TGT.
The TGT has one error (He should be You or They) and
TGTP introduces one more errors (squirrels tense).

The MQM and ESA setups used the same pertur-
bations and we show their results in Table 6. The
scores comparing original and perturbed segments
for ESA and MQM are vastly different,3 showing
that annotators paid attention to the quality control
items. For ESA the original segment had a higher
score than the perturbed one in 86% of cases, while
for MQM in 78% of cases. When investigating

3The protocols use different scales, for example, one ma-
jor error under MQM is −5 points, while 25 points in ESA
represents quarter of the full scale.
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whether an annotator marked the error span or not,
MQM has higher recall than ESA, however, this
is less crucial for ESA as annotator can adjust the
ranking without marking the error.

Original Perturbed OK

ESA
Score 79.5 52.6 86%
Span count 0.85 1.86 54%
Perturbation marked 56%

MQM
Score -1.87 -6.49 78%
Span count 0.66 1.68 70%
Perturbation marked 76%

Table 6: Annotations assigned to perturbed attention
check items (either scores or number of spans). OK is
percentage in how many cases the non-perturbed item re-
ceived a higher score or had fewer error spans, and how
often the perturbed span was marked by the annotator.

6.5 Annotation time

One of the reasons behind development of the new
protocol is reducing the time requirements of the
evaluation. In this section, we analyze times on
our experiments only, therefore our rerun of MQM
in contrast to ESA. We do not include the times
for DA+SQM and MQMWMT because they were
done independently outside of our study and the
time data are not available. Assessing the speed
of annotations is challenging as annotators took
breaks during the annotation (from short breaks
taking several minutes up to several hours). This
makes the evaluation of time problematic and we
therefore investigate the time estimate in several
ways. Counting all annotators together, the median
time for annotation per single paragraph for MQM
is 38 seconds and for ESA is 29 seconds, a reduc-
tion of 23%. However, as median time for each
annotator fluctuates, we look at the average median
time across annotators. For MQM, the median is
49 seconds and for ESA it is 34 seconds, a reduc-
tion of 32%. This can be contributed mainly to
the less demanding error span annotation approach
used in ESA.

We note that further speedups could be made by
instructing the ESA annotators to not spend extra
time e.g. marking multiple error-span annotations
of a single grammatical phenomenon.

Speedup during annotations. Naturally, the re-
ported total annotation time does not distinguish
between the duration of the first and last annota-
tions. In practice, annotators learn to perform the

annotation task more effectively. In Figure 5 we
show time per segment depending on how many
segments the annotator already processed. For both
MQM and ESA, there is a small learning effect. For
MQM, with each segment, the annotator becomes
0.20s faster, while for ESA this is 0.17s.
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Figure 5: Time per segment with respect to progression
in the annotation. The faint gray lines represent indi-
vidual annotators, while the bold black line shows the
average time. The lines are smoothed with a window of
size 15 segments. We also compute the average speed at
the beginning and at the end, which yields the learned
speedup. This is how much the annotator speeds up
after working on one segment.

7 Conclusion

Existing annotation protocols for machine transla-
tion evaluation are either expensive because they
require expert labor (MQM), or they are noisy and
less reliable (DA+SQM). To this end, we propose,
describe, and analyze Error Span Annotation
(ESA), which builds on top of previous protocols
to enable economic evaluation at scale. It works
by asking the annotators to mark error spans, but
with only the error severities and not types. In con-
trast to MQM, we also solicit final translation score.
This is more reliable than DA+SQM, as the annota-
tors are primed and informed about the translation
errors to assess quality of longer documents.

We showed that our protocol has the higher inter
and intra annotator agreement than MQM while
being 32% faster. In addition, the protocol does not
require annotators trained in MQM categorizations.

Lastly, we showed that relying only on error
spans and not using the ranking score as we did in
ESAspans produces suboptimal scoring, therefore
the combination of error spans and ranking seems
to produce the best results.
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Limitations

A possible limitation in contrast to MQM is that
now the system evaluation does not provide break-
down of error types, which could help practitioners
in improving their systems. ESA does not provide
this because the goal is evaluation and not diagno-
sis. Because of this and the costs of scaling expert
labor, we are convinced that this is not a true short-
coming of ESA. Furthermore, the annotated errors
can be further classified and analysed, if necessary.

Our experiments, for monetary reasons, were
done only on one language pair, English→German.
Nevertheless, it is unlikely that the results would
be vastly different for other languages. The most
difficult setup could be with Chinese, Japanese, and
Korean texts that do not use spaces. However, we
made a deliberate decision to allow highlighting of
individual characters, as opposed to words, so that
the user experience is unified across all languages.
This was done in spite of speed improvements (se-
lecting on the word level is easier than selecting
individual character boundaries) in order to make
the tool scalable to a large range of languages.

Ethics Statement

The annotators were paid a standard commercial
translator wage in the respective country. The ex-
perts in the MQM annotation has been paid double
the hourly wage. No personal data was collected
and the showed data was screened for potentially
disturbing content.

We follow up with a questionnaire asking an-
notators on their feedback. Almost all annotators
specified that the annotation experience was posi-
tive and instructions were clear. The main concern
they mentioned was that some documents have
been too long to evaluate.
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A User Guidelines

The following are annotation guidelines for our
local ESA and MQM campaigns.

A.1 ESA (Error Span Annotations)
Higlighting errors: Highlight the text fragment
where you have identified a translation error (drag or
click start & end). Click repeatedly on the highlighted
fragment to increase its severity level or to remove the
selection.
• Minor Severity: Style/grammar/lexical choice could

be better/more natural.
• Major Severity: Seriously changed meaning, diffi-

cult to read, decreases usability.
If something is missing from the text, mark it as an error
on the [MISSING] word. The highlights do not have
to have character-level precision. It’s sufficient if you
highlight the word or rough area where the error appears.
Each error should have a separate highlight.

Score: After highlighting all errors, please set the
overall segment translation scores. The quality levels
associated with numerical scores on the slider:
• 0%: No meaning preserved: Nearly all information is

lost in the translation.
• 33%: Some meaning preserved: Some of the meaning

is preserved but significant parts are missing. The
narrative is hard to follow due to errors. Grammar
may be poor.

• 66%: Most meaning preserved and few grammar mis-
takes: The translation retains most of the meaning. It
may have some grammar mistakes or minor inconsis-
tencies.

• 100%: Perfect meaning and grammar: The meaning
and grammar of the translation is completely consis-
tent with the source.

A.2 MQM (Multidimensional Quality Metrics)
Higlighting errors: Highlight the text fragment
where you have identified a translation error (drag or
click start & end). Click repeatedly on the highlighted
fragment to increase its severity level or to remove the
selection.
• Minor Severity: Style/grammar/lexical choice could

be better/more natural.
• Major Severity: Seriously changed meaning, diffi-

cult to read, decreases usability.
If something is missing from the text, mark it as an error
on the [MISSING] word. The highlights do not have
to have character-level precision. It’s sufficient if you
highlight the word or rough area where the error appears.
Each error should have a separate highlight.

Error types: After highlighting an error fragment,
you will be asked to select the specific error type (main
category and subcategory). If you are unsure about
which errors fall under which categories, please consult
the typology definitions.
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Figure 6: System scores illustrating differences between
DA+SQM and MQM. Each point is a single system and
dashed lines mark clusters. DA+SQM produces fewer
clusters and groups many systems into one single clus-
ter, while MQM better distinguishes different systems.
Scores and clusters are from Kocmi et al. (2023).
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Figure 7: Intra annotator agreement; changes in scoring
by the same annotator when evaluated again. Each
point represents an annotated segment with x-axis being
annotator’s score assigned in March and y-axis their
score assigned in May.

Feature Corr. with ESA score (ρ)

Source token count -0.16
Target token count -0.06

Minor error count -0.20
Major error count -0.52
Missing error count -0.45

Minor error count (normalized) -0.13
Major error count (normalized) -0.37
Missing error count (normalized) -0.31

Table 7: Segment-level Pearson correlation of individual
features with the ESA score.
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B Additional results

B.1 From error spans to final score

To find out what influences the score, we show
correlation between individual segment-level fea-
tures in Table 7. On average, longer segments have
lower translation quality. Importantly, the error
counts normalized by segment length correlate less
than the non-normalized counterparts. However,
we note that the normalized scores are more contin-
uous that the non-normalized MQM computation,
as per Figure 3.

The MQM formula was crafted with respect to
preserving system ranking and not segment-level
matching from the same annotator (Freitag et al.,
2021a). However, the construction of ESA allows
us to revisit this problem as each annotator gives
both the error spans and the final score. We scan
for multiple minor/major ratios of error weights
and show the results in Figure 8. We find that
the optimal formula that optimizes the correlation
between the direct score and the score from the
spans has the following form: SEG.SCORE = −1 ·
#MINOR − 4.8 · #MAJOR, which is very close to
the originally proposed 1:5 ratio. From Figure 8,
the weight of the major error class seems to have
a much bigger effect on the final translation score,
suggesting that minor errors play a lesser role.
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x=4.8
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Figure 8: Correlation between direct ESA score and
scores computed from error spans with minor errors
having weight −1 and major errors −x.

B.2 Protocol evaluation without
a gold standard

Evaluating the quality of a protocol without a tar-
get to compare to is difficult. In previous sections
we assumed that MQMWMT is the gold standard,
which might bias the evaluation in favor of MQM.
Even though the results showed higher correlations
of ESA with MQMWMT. For completeness, we
consider the methodology of Zouhar et al. (2024)

which does not require target gold standard to com-
pare the quality of annotation protocols.

The assumption is that annotation protocols have
various levels of noise, but are unbiased in what
they measure. Because MQM and DA+SQM might
measure different things, we want to compare each
to the perfect ranking of the particular thing they
aim to measure. The linking hypothesis is that even
noisy and low-quality annotation protocols would
lead to the final system ranking with large enough
data. Vice-versa, only robust annotation protocols
would arrive at the final ranking with only a few
data points per each system. This is formalized by
the subset consistency accuracy. It is the system
ranking accuracy on a subset of annotations with
respect to the ranking induced by the full data from
one annotation protocol.

We show the results in Figure 9. Out of the com-
parable lines, ESA (with direct scoring) achieves
the highest subset consistency accuracy. In practice,
this translates to needing fewer annotated examples
to achieve the final system ranking. This directly
corresponds to lower annotation costs.
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MQMWMTspans (95.5%)
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ESAspans (92.7%)
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Figure 9: Subset consistency accuracy (Zouhar et al.,
2024) of annotation protocols. E.g. with just 60 anno-
tated segments, MQMWMT achieves 95% system rank-
ing accuracy with its final ranking based on 160 anno-
tated segments. Values in the legend are averages, corre-
sponding to normalized area under the curve. The only
comparable lines are ESA, ESAspans, and MQMspans be-
cause they were run in the same setting with similar
crowds.
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TUTORIAL: This translation seems to be all correct. Please use the slider to set the quality to 100%. 

  Der Hund ist rausgerannt.  

The dog ran outside. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
Reset    Completed 

  
   

                  
TUTORIAL: The word "walked" is incorrect. Mark it minor error (light pink) using the instructions above and move the slider to 80%. 

  Der Hund ist rausgerannt.  

The dog walked outside. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
Reset    Completed 

  
   

                  
TUTORIAL: The words "stayed inside" are very wrong. Mark them using the instructions and raise its severity to major. Then move the slider to 20%. 

  Der Hund ist rausgerannt.  

The dog stayed inside. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
Reset    Completed 

  
   

        
  
                  

TUTORIAL: While the translation is technically correct, it does not sound very natural. Don't mark any erroneous words but at the end, use the slider to 
evaluate the overall translation quality as around 70%. 

  Although the cats stayed outside overnight, they were not cold.  

Obwohl die Katzen die Nacht über im Freien verharrten, erfuhren sie keine Kälte. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
Reset    Completed 

  
   

                  
TUTORIAL: The word "Hund" (dog) is not present in the translation. Mark the [MISSING] text with major severity. Move the slider to 5%. 

  Der Hund ist rausgerannt.  

The walked outside. [MISSING]
    

0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
Reset    Completed 

  
   

                  
TUTORIAL: The word "ran" is mistakenly marked as incorrect. Fix it by removing it according to the instructions. Move the slider to 100%. 

  Der Hund ist rausgerannt.  

The dog ran outside. [MISSING]    
0%: No meaning preserved 33%: Some meaning preserved 66%: Most meaning preserved 100%: Perfect 

   
Reset    Completed 

  
   

Figure 10: Tutorial to ESA annotations shown at the beginning of the campaign. All tutorial segments need to be
annotated correctly before continuing.
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Abstract

We introduce neural methods and a toxicity
filtering step to the hierarchical web mining
approach of Paracrawl (Bañón et al., 2020),
showing large improvements. We apply these
methods to web-scale parallel corpus mining
for 9 South and East Asian national languages,
creating training resources for machine trans-
lation that yield better translation quality for
most of these languages than existing publicly
available datasets in OPUS. Our methods also
generally lead to better results than the global
mining approach of Schwenk et al. (2021).

1 Introduction

The goal of this work is to apply neural methods
to the task of parallel corpus mining from the web
and to create large useful parallel corpora for lan-
guages that have not received much attention. We
demonstrate when applying these methods at scale,
they yield better data resources than the two main
existing approaches Paracrawl (Bañón et al., 2020)
and CC-Matrix (Schwenk et al., 2021).

In addition to six Southeast Asian national lan-
guages (Burmese, Thai, Lao, Khmer, Vietnamese,
Indonesian), we also included the South Asian lan-
guages Hindi and Nepali and the East Asian lan-
guage Korean. These are mostly mid-resource lan-
guages, they have millions of speakers, mostly sig-
nificant presence on the web, but have not received
as much attention in the research community as
European languages (Bañón et al., 2020), Indian
languages (except, we also include Hindi) (Siripra-
gada et al., 2020), Chinese (Ziemski et al., 2016;
Zhai et al., 2020), and Japanese (Morishita et al.,
2022).

Building on the work of the Paracrawl project
(Bañón et al., 2020), we follow the same general se-
quence of steps: targeted web crawling, document
alignment, sentence alignment, and parallel cor-
pus filtering. Note that compared to the European-

Figure 1: National languages covered: Hindi, Nepali,
Burmese, Thai, Lao, Khmer, Vietnamese, Indonesian,
Korean. We build parallel corpora for these languages
paired with English.

focused Paracrawl project, we deal with languages
with fewer existing resources, mostly non-Latin
scripts, and challenges such as lack of explicit word
segmentation and even sentence boundary marking
(in the case of Thai).

In contrast to Paracrawl, we deploy neural meth-
ods in three steps: document alignment with an
efficient Marian (Junczys-Dowmunt et al., 2018)
neural machine translation model distilled from
the multilingual NLLB (NLLB Team et al., 2022)
model, sentence alignment with Vecalign (Thomp-
son and Koehn, 2019), and using LASER for par-
allel corpus filtering (Chaudhary et al., 2019). We
also added a novel toxity filtering step.

We obtain large parallel corpora of 1.5–7.7 mil-
lion sentence pairs per language. We validate the
usefulness of these corpora by showing better ma-
chine translation quality of up to +18.2 BLEU com-
pared to CC-Matrix (Schwenk et al., 2021) for 7
languages and up to +13.0 BLEU compared to
other existing parallel corpora on OPUS1 (Tiede-

1https://opus.nlpl.eu/
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mann, 2009) for 6 languages (tied for another lan-
guage). While this required significant compu-
tational resources, the effort was carried out us-
ing only CPUs and consumer-grade GPUs (GTX
1080ti).

2 Related Work

While the idea of mining the web for parallel
data has been already pursued in the 20th century
(Resnik, 1999), the initial large-scale efforts were
limited to large companies such as Google (Uszkor-
eit et al., 2010) and Microsoft (Rarrick et al., 2011),
or targeted efforts on specific domains such as the
Canadian Hansards and Europarl (Koehn, 2005).
More recently, large corpora have been released
by broad web mining efforts, such as Paracrawl
(Bañón et al., 2020) and CC-Matrix (Schwenk
et al., 2021). A recent effort to assemble large-
scale monolingual and parallel corpora is the EU
Project High Performance Language Technologies
(Aulamo et al., 2023).

Currently, there are two main approaches to ex-
tract parallel sentence pairs from web documents:
hierarchical and global mining. In hierarchical
mining (as in Paracrawl), the task is broken up
into the steps of identifying websites with parallel
text, document alignment within websites, sentence
alignment within document pairs, and sentence pair
filtering.

In contrast, in global mining (as in CC-Matrix),
all content is split up into sentences, each sentence
represented by a cross-lingual sentence embedding
and stored in one index per language. Then, sen-
tences in one language are used to query the index
of sentences in another language, using nearest
neighbor search. There are also efforts that lie in-
between these two extremes, such as local mining
in CC-Align (El-Kishky et al., 2020) where the
hierarchical mining is followed up to the step of
document alignment, and then sentences for each
document are stored in an index and then queried
regardless of the order of sentences in the docu-
ment.

We follow the hierarchical mining approach. We
believe that it leads to cleaner parallel corpora since
it matches alignment with the underlying structure
of the data. There has been varying amount of
work on the steps in hierarchical mining. Match-
ing documents pairs uses some similarity measure
to compare the content of documents across lan-
guages. A common approach is to translate the

non-English document into English and perform
monolingual matching of words (Buck and Koehn,
2016) or n-grams (Dara and Lin, 2016; Uszkoreit
et al., 2010). There have been some attempts to
use document embeddings (Guo et al., 2019). Be-
sides matching the URL (Le et al., 2016; El-Kishky
et al., 2020) — e.g., example.com/en/page.html
and example.com/fr/page.html — other struc-
tural information such the DOM-tree (Shi et al.,
2006), links to the same images, links between
pages, etc. have been rarely used.

Sentence alignment has been a rich field of re-
search dating back to the 1990s (Brown et al., 1991;
Gale and Church, 1993). This also requires a simi-
larity measure, defined over sentences or sequences
of sentences. Typical features are sentence length
and matches in a bilingual dictionary (Moore, 2002;
Varga et al., 2005). Sennrich and Volk (2010) trans-
late the non-English sentence and match the trans-
lation against the English sentence using the BLEU
score. Vecalign (Thompson and Koehn, 2019) is
a sentence alignment method that relies on bilin-
gual sentence embeddings and achieves linear run
time with a coarse-to-fine dynamic programming
algorithm.

Finally, a lot of effort has been spent on devel-
oping methods for filtering noisy parallel corpora
which are particularly harmful for neural models
(Khayrallah and Koehn, 2018). Four shared tasks
were dedicated to this problem (Koehn et al., 2018,
2019, 2020; Sloto et al., 2023). Besides basic sim-
ple filtering rules based on sentence or token length
and their ratios (Kurfalı and Östling, 2019; Soares
and Costa-jussà, 2019), typically a scoring function
is used. Popular methods are based on the scores
obtained by force-decoding the sentence pair with
a machine translation model (Junczys-Dowmunt,
2018), and the cosine distance between cross-
lingual sentence embeddings (Chaudhary et al.,
2019). Recently, the most successful approach are
classifiers that distinguish between genuine parallel
sentence pair and misalignments, typically based
on neural sentence representations (Açarçiçek et al.,
2020; Esplà-Gomis et al., 2020; Xu et al., 2020;
Tan et al., 2023).

Filtering has been focused on impact on machine
translation quality using traditional metrics. There
has not been much published work on toxicity fil-
tering (NLLB Team et al., 2022) — a task that is
also hard to delineate and evaluate.
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Model Vietnamese Nepali Thai
time chrF BLEU time chrF BLEU time chrF BLEU

MoE 54b official - 62.3 43.8 - 66.9 48.1 - 57.8 36.9
Dense 3b official - 61.5 - 65.9 - 56.8
Dense 1b official - 59.8 - 64.5 - 54.9
Dense distilled 1b official - 60.4 - 65.1 - 54.9
Dense distilled 600m official - 62.3 - 62.5 - 52.7
Dense 3b quantized 207s 60.7 41.1 202s 62.2 41.1 238s 55.4 33.4
Dense distilled 1b quantized 61s 59.5 39.6 71s 63.2 42.2 74s 53.8 31.2
Dense distilled 1b 45s 59.8 39.2 44s 63.7 42.7 50s 54.1 31.5
Dense 1b 45s 58.9 38.6 44s 62.4 41.5 51s 54.2 31.6

Table 1: Speed/Quality trade-offs for different versions of NLLB, the model we distill. Translation time to translate
the 1012 sentences of the Flores devtest set into English on a single GTX-1080 GPU (bottom). Official NLLB
evaluations are in the top of the table. Based on these findings, we use the dense distilled 1 billion parameter model.

3 Methods

3.1 Targeted Crawling

We follow the Paracrawl approach of crawling a
list of targeted web sites. The crawl list has been
mainly obtained by using meta-data from Com-
monCrawl but also opportunistically extended over
several years, e.g., by web searches for language-
specific terms. Based on Commoncrawl statistics,
any website that has pages in English and any of the
targeted languages and somewhat balanced ratio
was selected and crawled with httrack2, an open
source web copying tool. We only follow links
to web pages on the same webdomain. We stop
crawling after crawling 50,000 pages for each web-
site, both to avoid downloading duplicate webpages
and due to computational limitations of subsequent
processing steps.

3.2 Distilling Machine Translation Models

Our document alignment approach requires the
translation of all non-English web pages for a tar-
geted language into English. Since this implies the
translation of a massive volume of text, we need an
efficient but still sufficiently high-quality machine
translation model.

The multilingual machine translation model
NLLB (NLLB Team et al., 2022) covers 200 lan-
guages, including all the languages we target here.
It comes in versions with 600 million to 54 bil-
lion parameters. However, using even the smallest
model would be computationally prohibitive given
the scale of our effort and the limitations of our
technical means. Hence, we decided to distill these

2available at https://www.httrack.com/
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Figure 2: Amount of synthesized training data from
the NLLB model and BLEU scores of distilled Marian
models. For Lao, Khmer, and Burmese, we exhausted
the monolingual data in mC4.

models into an efficient model that can be run on
CPU via data distillation. Specifically, we use the
NLLB model to translate monolingual text and then
use the resulting synthetic parallel corpus to train a
faster model. The monolingual text for distillation
is drawn from mC43 (Xue et al., 2021).

Table 1 shows machine translation quality scores
and the time it takes to translate the 1012 sentences
of the Flores-200 devtest set for three of our lan-
guages (Vietnamese, Nepali, and Thai) into English
given different NLLB models. We explored the use
of quantized parameters. However, we observed
worse speed/quality trade-offs. We settled on using
the dense distilled 1 billion parameter model. It

3available at https://huggingface.co/datasets/mc4
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Language Forw. Backw. Both +OPUS
Hindi 36.4 31.1 36.2 36.3
Nepali 30.8 30.1 33.6 33.4
Burmese 21.3 18.3 22.7 21.6
Thai 23.9 18.4 25.3 23.5
Lao 24.9 21.8 28.4 27.6
Khmer 25.5 13.3 26.3 26.7
Vietnamese 30.9 27.5 32.4 34.8
Indonesian 41.0 37.6 41.3 –
Korean 26.0 22.6 26.0 26.5

Table 2: BLEU scores for different data types for dis-
tillation: synthetic corpus generated by forward trans-
lation (X→English) or back translation (English→X).
Forward translation fares better than backward transla-
tion, but combination of both is typically best.
We also checked if we can better system by adding
OPUS data. This is the case for Khmer, Vietnamese, and
Korean, so we use these system in our mining pipeline.

gives reasonable performance at translation speeds
of about 500 words per second on GPU.

We explored how much data we need to distill to
get a reasonable Marian system. As illustrated in
Figure 2, system quality plateaus at around 1 billion
words of distilled data. Note that we exhausted all
monolingual data in mC4 for Lao, Khmer, and
Burmese, so we distilled less data for these.

We generate synthetic parallel corpora by trans-
lating both from English and into English. The
forward direction (X→English) is motivated by the
idea of data distillation while backward translation
(English→X) is well-established in the field of ma-
chine translation since it builds on authentic text on
the target side. As shown in Table 2, we find that
forward translation gives better results, but com-
bining both forward and backward translation fares
generally best.

We filter the synthesized corpus with LASER
using a threshold of 1.05 (1.00 for Burmese and
Lao, unfiltered for Hindi). See Section 3.5 for more
details on this method. We also added all of OPUS
to the training of Khmer, Vietnamese, and Korean
distilled models. As shown in Table 2, adding
OPUS data yielded better translation quality.

The configuration of Marian (Junczys-Dowmunt
et al., 2018) is given in Appendix A. The model is
trained with guided alignment training and a vocab-
ulary shortlist. The translation model uses quan-
tized parameters for efficient vector integer com-
putations supported by Intel CPUs (8 bit, avx512).
When translating web content, we observe transla-

tion speeds of about 1000 words per second in a
single Intel Xeon Silver 4110 CPU core. Contrast
that to 500 words per second on a GPU for the
NLLB model: a roughly thousand-fold increase in
translation speed when measured by sentences per
compute core.

3.3 Document Alignment

Our document aligner follows the method by Buck
and Koehn (2016). For a website where we found
web pages in English and in the targeted language,
we translate all the latter web pages into English
and represent each document (i.e., web page) in
form of word counts. Document similarity is mea-
sured by tf/idf-weighted cosine distance between
these representations. A greedy algorithm itera-
tively finds the best matching document pair and
removes them from the pool of documents. The
process terminates if documents in either language
are exhausted.

The main difference to the Paracrawl approach is
the use of a very efficient neural translation model
instead of a statistical Moses model. The neural
model has higher translation quality and is faster.

3.4 Sentence Alignment

We used Vecalign (Thompson and Koehn, 2019)
as sentence aligner. It uses the cosine-distance be-
tween LASER embeddings with modified CSLS
scoring (normalizing by distance to randomly cho-
sen neighbors). It is also constrained by the order
of the sentences in the pair of documents. Just
like other sentence aligners (Hunalign, Bleualign,
etc.), it may skip and merge sentences but it is not
allowed to reorder them. Hence, it combines a pow-
erful sentence matching method with the structural
bias coming from the fact that documents are in
almost all cases translated in sequence.

Documents were split into sentences with
NLTK’s sentence tokenizer. Thai required spe-
cial treatment due to its lack of marking of sen-
tence boundaries. We used the library pythainlp
(Phatthiyaphaibun et al., 2023) for sentence split-
ting. We use LASER3, the latest version (Heffer-
nan et al., 2022), that supports all our languages.

3.5 Noise Filtering

The previous processing steps are geared towards
high recall instead of high precision. In other
words, we try to retain as much data as possible.
This requires a final filtering step that removes
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Language 1.00 1.05
Size BLEU Size BLEU

Hindi 136.5m 31.7 75.0m 31.8
Nepali 32.3m 26.0 18.3m 25.0
Burmese 12.5m 11.5 5.2m 10.1
Thai 21.9m 19.3 12.9m 18.9
Lao 152.4m 23.3 110.0m 22.3
Khmer 22.6m 13.7 6.4m 9.4
Vietnamese 134.4m 29.7 94.5m 30.1
Indonesian 27.0m 37.2 13.5m 37.6
Korean 228.1m 22.2 118.4m 23.4

Table 3: Impact of different thresholds in LASER-based
filtering: Corpus size in million words and BLEU score.

noisy data, an open problem that has received much
research attention.

We use LASER-based filtering (Chaudhary et al.,
2019), using LASER3 (Heffernan et al., 2022).
This method embeds sentences in a cross-lingual
embedding space, so that an English sentence and
its translation should have identical representations.
Hence, the distance between an English sentence
embedding and a non-English sentence embedding
is a measure for their meaning similarity. The ex-
act formula to compute similarity between the two
embedding vectors is the cosine distance, normal-
ized by how similar each vector is to its closest
neighbors in the embedding space.

We carried out limited experiments with the
filtering threshold and chose a value of 1.00 for
Nepali, Burmese, Thai, Lao, and Khmer and 1.05
for Hindi, Vietnamese, Indonesian, and Korean.
We note that the more permissive threshold (1.00)
worked better for the smaller corpora (see Table 3).
For some languages we tried even lower thresholds
but that led to worse results.

3.6 Toxicity Filtering

While we are aiming to collect parallel data across
the entire web, we do want to exclude toxic con-
tent, so that machine translation systems are not
trained to produce offensive language. We nar-
row down the concept of excluded toxic content
to pornographic web sites which not only feature
derogatory and offensive language but are also of-
ten machine translated.

Toxicity filtering may be carried at several levels.
We argue that filtering on the level of web sites
will lead to the most robust results. Simple key
word filtering on the sentence level has to contend

with the fact that many words are ambiguous, and
excluding all sentences that have, say, the word sex
in them would eliminate many respectable uses of
that term.

Hence, we take a more nuanced view of offen-
sive vocabulary. We use tf/idf scores to identify
English vocabulary that is typical for websites that
have the substring porn in their domain name. This
yields words that are very frequently used on such
web sites compared to full crawl for a language pair.
We start with a list of 100 terms for each language
pair, merge that list and curate it to remove, for
instance, terms that refer to ethnicities (e.g., Asian).
This list comprises 141 words.

Using this words list, we proceed to filter out
websites. We compute the average tf/idf score
across all the words for each website, and if it is
above a certain threshold (we use 0.02), we elimi-
nate all content from that website.

4 Corpora

4.1 Corpus Statistics

We apply the processing pipeline to 9 languages.
Table 4 gives detailed statistics. The pipeline suc-
ceeded to process between 5,854 (Burmese) and
32,765 (Vietnamese) website crawls. A small pro-
portion (about 10%) of the crawls are repeat crawls,
i.e., they crawled the same website again at a later
time, typically after several months or even years.

The next step is document alignment, resulting
in 492,723 (Lao) to 7,758,116 (Korean) document
pairs. Then comes sentence alignment, creating
a raw corpus of 7,513,409 (Lao) to 128,828,741
(Korean) sentence pairs.

This corpus is filtered and deduplicated. We
report how many good sentence pairs are retained
when applying filtering to corpora from each crawl
— which also includes deduplication: ranging from
605,959 (Khmer) to 11,014,387 (Korean). Then,
deduplication is done again on the corpus combined
across all crawls, reducing these numbers further
to 420,824 (Khmer) to 8,298,299 (Korean). These
numbers are based on a filtering threshold of 1.05.
For five of the languages we saw better results with
a filtering threshold of 1.00, so we report these
numbers as well. For Khmer, this retains 1,507,135
sentence pairs.

Working back from the filtered data, we can
check how many document pairs had sentence pairs
that survived quality filtering. For instance, this is
the case for 4,035,376 of the 7,758,116 Korean–
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Language Crawls Documents Sentences
all good detox all good detox all good dedup detox

Hindi 13,605 10,900 10,348 4,033,751 2,453,234 2,361,953 52,919,986 5,989,651 4,823,444 4,712,564
Nepali 6,095 4,556 4,508 694,238 431,808 429,615 8,312,728 1,305,921 1,090,690 1,085,057

≥1.00 5,136 5,074 480,792 478,219 2,706,360 2,254,055 2,243,954
Burmese 5,854 4,145 4,106 790,360 13,662 13,613 9,769,167 343,788 341,897 715,512

≥1.00 4,817 4,760 466,653 463,907 2,002,212 1,674,072 1,666,530
Thai 14,012 11,131 10,556 3,349,364 1,409,191 1,357,692 61,466,936 1,470,556 1,190,997 1,176,111

≥1.00 12,549 11,877 2,232,342 2,152,042 2,761,013 2,218,153 2,175,890
Lao 4,177 3,938 3,890 492,723 353,048 351,047 7,513,409 1,158,534 936,986 931,456

≥1.00 4,019 3,971 454,348 451,824 2,391,972 2,004,028 1,994,053
Khmer 6,025 4,453 4,411 890,264 306,030 304,014 10,981,209 605,959 420,824 418,991

≥1.00 5,102 5,048 546,357 543,412 1,884,419 1,507,135 1,501,304
Vietnamese 32,765 19,035 18,267 6,951,765 2,845,099 2,768,498 80,256,711 8,735,317 6,473,708 6,291,407
Indonesian 20,031 13,143 12,557 5,443,448 2,302,037 2,239,685 77,507,912 10,304,822 7,260,778 7,133,323
Korean 24,500 20,423 19,154 7,758,116 4,035,376 3,759,849 128,828,741 11,014,387 8,298,299 7,709,312

Table 4: Detailed statistics on the crawled datasets, in terms of number of crawls of websites, number of aligned
document pairs, and sentence pairs. The numbers below good specify counts for these categories that have valid
sentence pairs after LASER filtering with threshold 1.05 (extra rows for languages where we applied the threshold
1.00) and deduplication. For crawls and documents this number is inflated because the same good sentence pair may
be in multiple documents and crawls. The deduplicated sentence pair count refers to a final global deduplication
step. The table also reports these statistics after removing crawls due to toxic content.

Language Ours CC-Matrix OPUS
Hindi 4.6m 15.1m 22.6m
Nepali 2.2m 19.6m 1.9m
Burmese 1.6m 10.0m 0.6m
Thai 1.8m – 15.2m
Lao 1.9m 4.2m 4.2m
Khmer 1.3m 5.9m 0.6m
Vietnamese 6.2m 49.9m 18.8m
Indonesian 7.1m 56.8m 9.8m
Korean 7.7m 19.4m 19.7m

(a) Number of Segments

Language Ours CC-Matrix OPUS
Hindi 74m 196m 296m
Nepali 32m 176m 12m
Burmese 28m 102m 8m
Thai 22m – 152m
Lao 27m 40m 40m
Khmer 23m 66m 6m
Vietnamese 93m 780m 211m
Indonesian 109m 624m 88m
Korean 114m 205m 151m

(b) Number of English Words

Table 5: Size of parallel corpora, in millions, after length (≤80 words) and length ratio (≤9) filtering, compared to
existing parallel data in OPUS (without CC-Matrix) and CC-Matrix.

English document pairs. Applying the same calcu-
lation for web crawls, 20,423 of the 24,500 Korean
web crawls yielded at least one sentence pair in the
final filtered corpus. Note that the number of crawls
and documents after filtering is inflated because the
same good sentence pair may be in multiple docu-
ments and crawls.

Finally, we remove toxic content from the corpus.
This reduces only a small percentage of the data.
The biggest reduction is for Korean–English, about
7%, from 8,298,299 to 7,709,312 sentence pairs.

4.2 Comparison to OPUS and CC-Matrix
We compare the size of the obtained corpora to
pre-existing data sets in Table 5. We combined
all corpora available in OPUS, the popular plat-
form for parallel data. We separated out CC-Matrix
(which is also available on OPUS) since it is the

method that is most similar to our approach and it
is also typically the largest corpus on OPUS. CC-
Matrix collected parallel sentences by matching
sets of sentences from CommonCrawl solely based
on the similarity of their LASER embeddings.

The table shows the number of segments and
number of English words for each language. We
count the number of English words because it is a
consistent measure across all languages and count-
ing words for languages like Thai is problematic
due to the lack of word spacing. The numbers are
computed after another filtering step typically done
for translation: we remove sentences longer than
80 words and sentence pairs where one sentence
has more than 9 times as many words as the other.

Note that the sizes of the obtained corpora
are smaller than CC-Matrix and only for Nepali,
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Figure 3: BLEU scores on neural machine translation systems build with our corpora, compared to existing corpora.
We obtain better parallel corpora than anything previously existing for Nepali, Burmese, Lao, Khmer, Indonesian,
and Korean, by a difference of +13.0, +8.0, +10.2, +3.1, +1.1 BLEU, respectively, compared to the better of
CC-Matrix or OPUS (without CC-Matrix). Our Thai corpus matches OPUS, For Hindi and Vietnamese, existing
corpora are better. CC-Matrix does not contain Thai.

Burmese, and Khmer bigger than what already ex-
ists in OPUS (excluding CC-Matrix). We obtain a
larger Indonesian corpus than what exists in OPUS
in terms of number of words but not in number of
segments. Our smallest corpus is Khmer–English
(1.3 million segment pairs, 23 million words), the
largest corpus is Korean–English (8.2 million seg-
ment pairs, 118 million words). Note that CC-
Matrix does not contain Thai.

5 Evaluation

Since our main motivation is to create parallel cor-
pora for training machine translation systems, we
evaluate them by training a system on each corpus
and measuring each system’s translation quality
with spmBLEU (scarebleu -tok flores200) on
Flores-200 (NLLB Team et al., 2022). We chose
this test set and metric since they cover all our lan-
guages. Flores-200 comprises professional trans-
lations of English content drawn from Wikinews,
Wikijunior, and Wikivoyage. We also computed
scores with chrF++ which closely mirrors the spm-
BLEU results in terms of system ranking, so we do
not report them here for sake of clarity.

Machine translation systems were trained using
Marian (Junczys-Dowmunt et al., 2018) using the
setup as for our distilled translation models (see

Section 3.2).
Results are shown in Figure 3. By our measure,

we obtain better parallel corpora than anything pre-
viously existing for Nepali, Burmese, Lao, Khmer,
Indonesian, and Korean, by a difference of +13.0,
+8.0, +10.2, +3.1, +1.1 BLEU, respectively, com-
pared to the better of CC-Matrix or OPUS. Our
Thai–English corpus is as good as what is currently
in OPUS (±0). Only for Hindi and Vietnamese
our data fares worse (–0.9 and –3.9 BLEU, respec-
tively). We tried to investigate this discrepancy but
did not gain any substantial insights.

It is worth noting that although our corpora are
much smaller than CC-Matrix (by a factor of 2–8),
we generally achieve better translation quality with
them, indicating that the data is cleaner. These
findings, however, allow only limited conclusions
on the performance of the underlying methods (our
hierarchical mining approach vs. the global mining
approach of CC-Matrix) since they were executed
on different, albeit quite similar, datasets (targeted
crawling vs. pre-existing CommonCrawl).

A clean apples-to-apples comparison of the two
approaches would be very difficult to carry given
the scale of the data and the different data sources
used. Nevertheless, we believe that the two large-
scale efforts for these methods (CC-Matrix and
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Language Ours CC-M OPUS OPUS+CC-M Ours+OPUS Ours+OPUS NLLB
+CC-M Distilled

Hindi 31.8 32.7 32.1 35.2 34.3 35.1 36.2
Nepali 26.0 7.8 13.0 21.5 25.2 25.8 33.6
Burmese 16.8 7.8 8.8 11.1 18.4 16.7 22.7
Thai 19.3 – 19.3 – 20.4 – 25.3
Lao 23.3 11.6 13.1 12.5 24.4 23.1 28.4
Khmer 13.7 8.9 10.6 17.0 19.8 21.3 26.3
Vietnamese 30.1 34.0 31.2 34.7 32.5 34.2 32.4
Indonesian 37.6 31.5 26.5 32.8 37.7 32.9 41.3
Korean 23.4 22.3 19.5 22.9 22.2 23.7 26.0

Table 6: Combining corpora: When combining our corpus with CC-Matrix and OPUS, we typically see improve-
ments. The corpora are simply concatenated. The table reports spmBLEU scores on Flores-200 devtest for the
models trained on the data.

ours) give strong evidence to the advantage of our
approach.

6 Analysis

6.1 Combining Corpora

The three corpora we compare — OPUS, CC-
Matrix, and ours — are obtained in quite differ-
ent ways. Hence, we would expect that combining
these corpora would lead to even better translation
results.

Table 6 shows spmBLEU scores on Flores-200
devtest for the combinations OPUS+CC-Matrix,
Ours+OPUS, and Ours+OPUS+CC-Matrix. For 3
languages (Khmer, Thai, and Korean) and almost
Hindi–English, we do achieve the best results this
way, while for Vietnamese the addition of our data
slightly hurts (–0.5 BLEU) and for 3 languages
(Burmese, Lao, Indonesian) the addition of the CC-
Matrix corpus leads to worse results (–1.7, –1.3,
and –4.8, respectively).

Note that we simply concatenated the corpora,
and the CC-Matrix corpus has bigger impact on the
results due to its typically larger size. There are
many other ways to combine and weigh corpora
which should be explored in future work by any
researcher using this data.

6.2 Comparison with NLLB Distilled Data

Table 6 also contrasts the quality of the systems
trained on the various combinations of corpora
with systems built on data distilled with the NLLB
model (these are the same numbers as in Table 2).
Notably, the distilled data yields better quality
systems for all languages except for Vietnamese.
This observation is mirrored by Finkelstein et al.

Language Ours Statistical
BLEU Words BLEU Words

Nepali 26.0 32m 23.8 31m
Burmese 16.8 28m 11.5 13m
Khmer 13.7 23m 9.4 9m
Vietnamese 30.1 94m 31.1 123m
Korean 23.4 118m 21.8 88m

Table 7: Comparison of our neural methods with the
statistical Paracrawl methods for document and sentence
alignment.

(2024)’s finding that a distilled data set synthesized
from a PaLM-2 Bison LLM model outperforms
WMT training data.

However, it would be wrong to conclude that
there is no need for crawled data and we should in-
stead build our systems with synthetic data. Models
such as NLLB rest on a vast collection of diverse
data sources for training to achieve high quality, so
crawled data is required to get started.

Nevertheless, this finding illustrate the complex
data selection choices when it comes to building the
best possible system for a given language pair and
domain. We expect that future work will explore
how to best combine and sequence the diverse set
of data resources in more detail.

6.3 Comparison with Statistical Methods

Our pipeline makes two changes to the Paracrawl
pipeline: use of a neural machine translation model
for document alignment and sentence alignment
based on neural sentence embeddings. Paracrawl
uses a Moses-based statistical machine translation
model and the lexicon-based Hunalign sentence
aligner.
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By running both the original pipeline and the
pipeline with these changes, we can directly com-
pare if the changes lead to an improved corpus.
Results are shown in Table 7. We carried out this
comparison only for 5 of the 9 languages due to
the computation cost involved. Nevertheless, we
covered both lower-resourced and higher-resourced
languages. Except for Vietnamese (–1.0 BLEU),
the neural methods lead to better results by a dif-
ference of +1.6 BLEU (Korean) to +5.3 BLEU
(Burmese).

Since Vietnamese is an outlier here again (our
new parallel corpus is also worse than CC-Matrix),
we checked the execution of our pipeline for that
language but could not find any obvious errors.

6.4 Computational Cost

We processed a total number of 127,064 web
crawls. The size of the crawls has a very skewed
distribution, with relatively few large crawls and a
long tail of crawls that have only few web pages
in the targeted languages. So, we can only make
rough estimates about the processing cost.

Having said that, our document aligner takes
about half an hour on average, of which half is
spent on translation, summing up to about 2600
CPU days.

The sentence aligner takes about 6 minutes on
average, the biggest computational cost being em-
bedding of sentences with LASER, summing up to
about 500 GPU days.

There is also signifcant time spent on extracting
text from the web pages — we do not have reliable
numbers on this. Note that this involves processing
web crawls for which we ultimately do not find any
content in the targeted languages and that are not
included in our statistics here.

Sentence pair filtering takes tens of hours, train-
ing a neural model on a dataset takes a handful of
days at most. Both these steps require a GPU.

7 Open Source Release

The corpora are available at the offical
Paracrawl website http://www.paracrawl.eu/.
Rachel Wicks created a document-aligned
version of the corpus which is available
at https://huggingface.co/datasets/
jhu-clsp/paradocs using the approach outlined
by Wicks et al. (2024).

8 Limitations

The motivating goal for this work was to create
high-quality parallel corpora for important lan-
guages that have previously not received much at-
tention. The languages were also chosen due to
their large difference to English, often even using
non-Latin writing systems.

Given the vast computational cost involved, we
only have limited results on the comparison of
methods. For instance, a more fine-grained demon-
stration of the effectiveness of the document aligner
and sentence aligner in isolation would be useful.
We do show that both in combination lead to better
outcomes.

There are many more experiments that could be
done with the data, such as more closely tracking
how the quality of the machine translation model
impacts the effectiveness of the document aligner.
Another big area for follow-up research is how
to best combine and filter different corpora for a
language pair.

We are aware that much of the crawled data may
stem from machine translation (Thompson et al.,
2024). However, we argue that data quality is a bet-
ter guide than the origin of the translations. Hence,
we take a holistic filtering approach. See also work
by Kreutzer et al. (2022) and Ranathunga et al.
(2024) on the discussion of quality of web-crawled
corpora.

Finally, the only measure of translation quality
that we offer is the translation quality of a machine
translation system trained on a dataset. While this
is ultimately what is most important for the con-
sumer of this data, it also ignores many other as-
pects of data quality, such as toxic content or bias.
We added a toxicity filtering step but did not evalu-
ate it, partly due to the vagaries of this task.

9 Risks

Our corpora may include harmful and violent con-
tent. It may also contain content that is copyrighted.
We claim that our use of web-crawled data follows
fair-use exceptions but we will remove data if any
specific requests are made, thus slightly altering
the composition of the data.

10 Conclusions

We deployed neural methods to the Paracrawl pro-
cessing pipeline, demonstrated their superiority
against the previous statistical methods and the
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global mining approach, added a novel toxicity fil-
tering method, and created high-quality parallel
corpora for South and East Asian languages. We
show that for 7 of the 9 languages our data leads
to improvements in translation quality when build-
ing neural machine translation systems, for some
languages dramatically.

We also spend significant effort on distilling
NLLB models, reducing the computational cost
by roughly doubling translation speeds, while us-
ing only a single CPU core vs. a full GPU — or
a thousand-fold speed increase when calculated in
terms of compute cores.

We release4 all our corpora and models open
source, with a liberal license for commercial and
research use.
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A Marian Configuration

The following configuration is used both for the
distilled translation models that are used by the
document aligner as well as for evaluating differ-
ent corpora. We guided alignment training, with
alignments generated by fast-align.

Model Configuration
dec-cell: ssru
dec-cell-base-depth: 2
dec-cell-high-depth: 1
dec-depth: 2
dim-emb: 256
enc-cell: gru
enc-cell-depth: 1
enc-depth: 6
enc-type: bidirectional
tied-embeddings-all: true
transformer-decoder-autoreg: rnn
transformer-dim-ffn: 1536
transformer-ffn-activation: relu
transformer-ffn-depth: 2
transformer-guided-alignment-layer: last
transformer-heads: 8
transformer-no-projection: false
transformer-postprocess: dan
transformer-postprocess-emb: d
transformer-preprocess: ""
transformer-tied-layers:

[]
transformer-train-position-embeddings:
false
type: transformer

Decoder Configuration
models
- model.intgemm.alphas.bin
shortlist:
- lex.s2t.gz
- false
beam-size: 1
normalize: 1.0
word-penalty: 0
mini-batch: 64
maxi-batch: 1000
maxi-batch-sort: src
workspace: 2000
max-length-factor: 2.5
gemm-precision: int8shiftAlphaAll

Training Parameters
–dim-vocabs 32000 32000

–max-length 200
–exponential-smoothing
–cost-type ce-mean-words
–mini-batch-fit -w 3000
–mini-batch 300
–maxi-batch 500
–sync-sgd –optimizer-delay 2
–learn-rate 0.0003 –lr-report
–lr-warmup 16000
–lr-decay-inv-sqrt 32000
–optimizer-params 0.9 0.98 1e-09
–clip-norm 0
–valid-freq 5000 –save-freq 5000
–disp-freq 1000
–valid-metrics bleu-detok ce-mean-words
–valid-mini-batch 64 –beam-size 1
–normalize 1
–early-stopping 100

Decoding Parameters
–beam-size 1 –mini-batch 32
–maxi-batch 100 –maxi-batch-sort src -w
128
–skip-cost –cpu-threads 1
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Abstract
Recent advancements in NLP have resulted in
models with specialized strengths, such as pro-
cessing multimodal inputs or excelling in spe-
cific domains. However, real-world tasks, like
multimodal translation, often require a com-
bination of these strengths, such as handling
both translation and image processing. While
individual translation and vision models are
powerful, they typically lack the ability to per-
form both tasks in a single system. Combin-
ing these models poses challenges, particularly
due to differences in their vocabularies, which
limit the effectiveness of traditional ensemble
methods to post-generation techniques like N-
best list re-ranking. In this work, we propose
a novel zero-shot ensembling strategy that al-
lows for the integration of different models
during the decoding phase without the need
for additional training. Our approach re-ranks
beams during decoding by combining scores
at the word level, using heuristics to predict
when a word is completed. We demonstrate the
effectiveness of this method in machine trans-
lation scenarios, showing that it enables the
generation of translations that are both speech-
and image-aware while also improving overall
translation quality1.

1 Introduction

A broad spectrum of Large Language Models
(LLMs) are being developed at an increasing pace,
with efforts focused alone or together on adapt-
ing them to specific domains (Roziere et al., 2023;
Bolton et al., 2024; Colombo et al., 2024), enhanc-
ing their ability to process multiple modalities (Liu
et al., 2023; Tang et al., 2023; Li et al., 2024; Beyer
et al., 2024), or training general-purpose LLMs us-
ing high-quality data, advanced architectures, and

1Code can be found at: https://ai4lt.anthropomatik.
kit.edu/english/projects_kontextmt.php

larger numbers of parameters (Touvron et al., 2023;
Dubey et al., 2024; Jiang et al., 2023a; Mesnard
et al., 2024). As a result, numerous models are
now publicly available, each with its own unique
strengths and weaknesses.

Many use cases, such as image-aware transla-
tion in movie subtitling, require combining these
strengths because visual cues can be essential
for disambiguating the text and ensuring accurate
translations.. Currently, LLMs, such as Tower
(Alves et al., 2024), Alma-R (Xu et al., 2024a),
and Madlad-400 (Kudugunta et al., 2024), excel at
translation tasks (Kocmi et al., 2024), while mod-
els like PaliGemma (Beyer et al., 2024) and LLava
(Li et al., 2024) are leading in vision-related tasks.
To effectively address image-aware translation, it is
essential to harness the strengths of both translation
and vision models.

One way to address such a task is to train a mul-
timodal LLM to enhance its translation capabilities
without compromising its vision abilities or vice
versa. However, this approach requires additional
training and task-specific data. Another approach
is to leverage ensembling the two models via shal-
low fusion (Gulcehre et al., 2015) or re-ranking the
N-best list (Hasan et al., 2007). The disadvantage
of shallow fusion is that it assumes both models
share the same vocabulary, which is often not the
case with current open-source models.

Additionally, re-ranking the N-best list is insuffi-
cient because it doesn’t allow models to influence
each other during decoding. For example, in Fig-
ure 1, translating from English to gender-marked
language French using audio and transcript shows
this limitation. The Speech Translation (ST) model
correctly uses the speaker’s voice to translate "fell"
into the right gender form but misidentifies the
name "Ples." On the other hand, the Machine Trans-
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Figure 1: The source sentence to be translated is ambiguous because the translation of the word "fell" can be either
masculine ("tombé") or feminine ("tombée"), depending on the speaker’s gender. Seamless-Large V2 (Barrault
et al., 2023) utilizes audio cues to correctly determine the gender form but struggles to accurately translate the name
"Mrs Ples" using audio alone. In contrast, the text translation model Madlad-400-10b-mt (Kudugunta et al., 2024)
relies on the gold transcript to correctly translate the name but fails to resolve the gender ambiguity. By combining
both models using our approach, the translation correctly captures both the gender form and the named entity.

lation (MT) model correctly translates the name
but can’t use the speaker’s voice for gender dis-
ambiguation. Thus, re-ranking falls short, as the
correct forms may not even be in the N-best list
due to low probability with missing cues.

Furthermore, re-ranking during the decoding
process is impractical because the hypotheses are
partial and may not align with the tokenization of
the ranker model, leading to incorrect probability
estimates (Section 2.1). Thus, resolving vocab-
ulary mismatches by mapping the vocabulary of
one model to another (Minixhofer et al., 2024; Xu
et al., 2024b) is necessary to allow the merging of
probabilities during decoding. However, this ap-
proach requires significant additional training steps
and can lead to deviations from the original model.
Therefore, developing a plug-and-play approach
that seamlessly combines different models without
requiring additional training or task-specific data
is highly advantageous.

This work aims to enable the ranker model to
influence the decoding process (online) without
any constraints compared to conventional offline
N-best list re-ranking. We address this by ensuring
that the ranker model only influences the scores
for completed words and not for the last word if
it is unfinished. Additionally, we propose using
the ranker model to determine whether the last
word is finished rather than relying on look-ahead

approaches to maintain efficiency.
Our main contributions are summarized below:

1. Online Re-Ranking Algorithm: We intro-
duce a novel re-ranking algorithm that op-
erates at the word level during decoding at
sub-word level, allowing for more accurate
tokenization and better integration of informa-
tion from different models

2. Plug-and-Play Approach: Our method does
not require additional training or task-specific
data, making it a flexible and practical so-
lution for integrating multiple models with
different strengths.

3. Context-aware Translations: We demon-
strate through experiments including targeted
multimodal test sets, which require informa-
tion from both modalities, that our approach
effectively combines the strengths of differ-
ent models and improves translation quality
(Illustrated in Figure 1).

2 Methodology

Given that many models are trained on different
tasks, architectures, modalities, and data types,
combining these models to leverage inputs from
multiple modalities and facilitate knowledge shar-
ing is highly beneficial. Moreover, it is ideal if the
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ensembling approaches satisfy the following con-
straints: 1) It should not rely on shared vocabular-
ies for flexibility in choosing models and maximiz-
ing potential combinations. 2) Effective knowledge
sharing should occur during decoding to better nav-
igate the search space exploiting this knowledge at
each step. 3) Avoid requiring additional training,
parameters, or major dependence on task-specific
data for maximum applicability and not cause de-
viations from the pre-trained model.

This section presents our algorithm for ensem-
bling models with different vocabularies that sat-
isfy the aforementioned constraints. First, we ex-
plain why re-ranking partial hypotheses can lead to
incorrect probability estimates if the word is incom-
plete. Next, we introduce and justify a heuristic-
based approach that predicts whether a hypothesis
is at the end of a word, allowing for accurate re-
ranking of completed words in partial hypotheses.
Finally, we formally describe the complete algo-
rithm, detailing how we merge probabilities from
different models and how this process can be inte-
grated with decoding strategies.

2.1 Challenges of Re-Ranking Partial
Hypotheses

Current Neural Machine Translation (NMT) and
LLM-based models can utilize various tokeniza-
tion methods, such as byte-pair encoding (BPE)
(Sennrich et al., 2016) or SentencePiece (Kudo and
Richardson, 2018). These methods often result in
distinct vocabularies due to variations in the data
and tokenizer training processes. Despite these dif-
ferences, techniques like re-ranking can still enable
estimating the probability of sentences generated
from another model. This is achieved by detok-
enizing the hypothesis from generator model and
re-tokenizing it using the ranker model’s vocab-
ulary. This process enables the ranker model to
produce accurate probability estimates based on its
own tokenization scheme.

Now, consider the case of re-ranking while the
hypotheses are still being decoded. Assume we
have modelMG (the generator) and modelMR

(the ranker), each using different tokenizers assign
all the tokens in the sentence "Decoding is awe-
some" with a probability of p for a particular input.
However, MG tokenizes the sentence with sub-
word tokens as "Dec od ing _is _awe some," while

MR would tokenize it as "Dec od ing _is _awes
ome."

If we attempt to re-rank during the decoding
process,MR will provide correct probability esti-
mates up until "_is" is generated. However, when
the generator predicts "_awe,"MR would incor-
rectly estimate the probability because it expects
"_awes" instead. Even though both models aim
to generate the same sentence, this tokenization
mismatch leads to incorrect probability estimates
during the decoding process, making online re-
ranking challenging.

2.2 End-of-Word Prediction in Decoding for
Accurate Re-Ranking

While the partially generated hypothesis cannot be
accurately ranked at every time step, consider the
cases when each word is finished. At that time,
we can re-rank the complete hypothesis as the last
word is fully generated and the ranker model can
tokenize the completed word as it would have done
naturally, thereby providing accurate probability
estimates. If we know that the last word is incom-
plete, we can use this information to wait and only
rank the previously completed words. Knowing the
end of the word enables more precise re-ranking
during decoding, even with models that use differ-
ent tokenization schemes.

Nonetheless, a significant challenge remains:
how do we determine when the last word is com-
pleted? If the tokenizer places spaces at the right
of characters, we could check the predicted token
to see if it includes a space, signaling the end of a
word. However, this approach is not universal, as
many tokenizers do not follow this pattern, and we
aim to develop a tokenizer-agnostic solution.

One alternative is to perform a look-ahead step
to check if the word has been completed, but this
method is also sub-optimal, as it would require
decoding twice for each step in the generation pro-
cess, significantly increasing computational com-
plexity and reducing efficiency. We need a more
efficient and generalizable method to determine
when a word has been completed during decoding.

To address these challenges, we propose using
the ranker model to predict the next token and
determine if the word has been completed. This
approach offers two key advantages.

Firstly, if the ranker model predicts a space as
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Algorithm 1 Computing merged score of candidate with generator and ranker models.

1: procedure MERGESCORE
2: Input: Generator tokens g1, g2, g3, . . . , gn, Reranker tokens r1, r2, r3, . . . , rm, Generator Model
MG, Ranker modelMR, Generator Input IG, Ranker Input IR, Re-ranking weight α,

3: Output: merged_score
4: next_tok ← argmax logP(y|r1, . . . , rm; IR;MR)
5: if next_tok[0] == "_" or next_tok == "<eos>" then
6: fullG ← 1

n

∑
logP(g1, g2, . . . , gn|IG;MG) ▷ Generator Score for all words

7: fullR ← 1
m

∑
logP(r1, r2, . . . , rm|IR;MR) ▷ Ranker Score for all words

8: merged_score← (α)× fullG + (1− α)× fullR
9: else

10: [g1, . . . , gj ], [gj+1, . . . , gn]← split_candidate(g1, . . . , gn) ▷ Last word from j+1 token
11: [r1, . . . , rk], [rk+1, . . . , rm]← split_candidate(r1, . . . , rm) ▷ Last word from k+1 token
12: prevG ← 1

j

∑
logP(g1, g2, . . . , gj |IG;MG) ▷ Generator Score for previous words

13: prevR ← 1
k

∑
logP(r1, r2, . . . , rk|IR;MR) ▷ Ranker Score for previous words

14: prevGR ← (α)× prevG + (1− α)× prevR
15: lastG ←

∑
logP(gj+1, . . . , gn|IG;MG)

16: merged_score← 1
n [prevGR × j + lastG] ▷ Re-normalized merged score

17: end if
18: end procedure

the next top character, it indicates that the current
last word has been completed. The hypothesis will
be tokenized correctly, given that it is the predic-
tion from the ranker model itself. Secondly, this
prediction can be done together with the re-ranking
process by simply also predicting the next token
given the previous tokens of the current hypothesis
to the ranker model.

This method is more efficient than the look-
ahead approach, requiring only one pass of the
generator and the ranker model. In contrast, the
look-ahead method would require two passes of
the generator and one pass of the ranker model.
Using the ranker model in this way, we can ensure
proper tokenization and accurate probability esti-
mates during the decoding process (online) without
additional computational overhead.

2.3 Integrating Online Re-Ranking with
Search

This section formalizes achieving online re-ranking
at a word level using beam search as an example
of a decoding strategy. Note that the approach
can also be applied to other strategies, with slight
modifications when necessary.

A set of candidate sequences is typically main-
tained during the search, with the number of candi-
dates equal to the configured beam size b. At each

time step, for each of the b candidate sequences,
the model computes likelihood scores for all possi-
ble token extensions based on the vocabulary size
V . This results in a total of b × V possible ex-
tensions. From these b × V extensions, the top
b sequences with the highest scores are selected
to form the new set of candidate sequences. This
process is repeated iteratively, updating the candi-
date sequences at each step until enough beams are
generated that include end-of-sentence tokens or
until a predefined length limit is reached.

To enable re-ranking during the decoding pro-
cess, we need to adjust the scores of the possible
extensions using the ranker model. Directly cal-
culating the likelihood of all extensions would be
computationally impractical. Therefore, we intro-
duce a new parameter topk, which selects the top
topk extensions for each beam during re-ranking.

Hence, at each time step, the generator model
calculates the likelihood scores for all V possible
extensions for each of the b candidate sequences,
resulting in b×V extensions. Instead of re-ranking
all b× V extensions, the top topk extensions with
the highest likelihood scores are selected for each
beam. Thus, only b× topk extensions are consid-
ered during re-ranking. For the selected b× topk
extensions, the ranker model estimates their scores
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and combines them with the original generator
scores. For the remaining b × (V − topk) exten-
sions, the scores are set to −∞ (logically equiva-
lent to discarding them) since they would not be
selected in the top beams.

This method significantly reduces computational
complexity while allowing effective re-ranking of
the most promising candidate extensions, improv-
ing the decoding process.

At every decoding step, the problem can be re-
formulated as determining the merged score of the
top candidates according to both models.

When calculating the merged score during de-
coding, it’s essential to exclude the ranker model’s
probability if the last word in the current beam
is incomplete. This prevents incomplete words
from skewing the final score. For beams with in-
complete final words, we combine the joint scores
of the preceding words with the generator’s score
for the last word, ensuring proper normalization
to address scale differences between finished and
unfinished beams.

After computing the merged scores, we select
the top extensions and repeat the process until
all beams reach the end-of-sentence token. This
method ensures that the final translation is based on
fully formed words, optimizing the ranker model’s
effectiveness and maintaining consistent scoring
across all candidates.

2.3.1 Unified Scoring with Generator and
Ranker

The algorithm to compute the merged score is for-
mally defined in Algorithm 1 and explained below.

Let us consider two models: the GeneratorMG

and the Ranker MR. Let C denote the current
candidate for re-ranking and inputs IG and IR for
MG andMR respectively.

Let the full candidate C consist of tokens
g1, g2, g3, . . . , gn and r1, r2, r3, . . . , rm according
toMG andMR, respectively. Note that n and m
denote the length of the sequence, and they may
differ due to different tokenization.

The key idea is to rank and merge scores for
completed words. We use the ranker model to
predict the next token and determine if the last
word is finished (Line 4).

If the last word is finished: We can calculate
the probability of the full sequence in this case, sim-

ilar to the case of N-best list re-ranking. First, we
calculate the likelihood of the candidate by averag-
ing the log probabilities for both the generator and
the ranker (Line 6-7). Then, we merge the scores
from both models to determine the final score for
the candidate sequence using a hyper-parameter α
for weighting (Line 8). This combined score con-
siders the estimates from both models, allowing
for contributions from both models.

If the last word is incomplete: We cannot rank
the last word due to potential incorrect tokeniza-
tion. However, we can still estimate the tokens
preceding the last word using the ranker model and
merge their probabilities. First, we split the can-
didate into previous and last words based on the
ranker and generator (Lines 10-11). We compute
the merged score for the previous words using the
weighting parameter α (Lines 12-14). For the last
word, we rely solely on the generator’s scores. To
address length normalization issues when combin-
ing scores from both models, we re-normalize the
merged score for the previous words by multiply-
ing it by the length of the previous word tokens j
from the generator, adding the last word’s score,
and normalizing by the total length n (Lines 15-
16).

This integration process ensures that the re-
rankers are utilized at the appropriate decoding
stages, thereby enhancing the overall quality of the
generated sequences by combining the strengths of
both models.

3 Test Suites

The major advantage of combining models with
different vocabularies zero-shot is that it leverages
the strengths of available pre-trained models to gen-
erate more accurate and robust output. This is par-
ticularly relevant in multimodal scenarios, where
unimodal systems excel in their respective modali-
ties but are weaker or incapable of processing other
modalities. Furthermore, it can also enhance qual-
ity compared to N-best list re-ranking when used
as an ensembling technique as it waits until the
complete sequence is generated. Hence, to validate
our approach, we consider three MT scenarios as a
test bed where quality can be improved by combin-
ing different sources and evaluating with targeted
test sets that require information from both models.
An overview of test suites is provided in Table 1.
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3.1 Unimodal MT
We evaluate the use case of ensembling different
LLM models to enhance translation quality. This is
particularly relevant given the rapid development
of various translation LLMs, where combining dif-
ferent systems can improve quality and robustness.
We use the WMT 2022 English→ German test set
(Kocmi et al., 2022) to validate our approach and
focus solely on assessing translation quality.

Test Set Language Pair # Examples Phenomena

MuST-SHE En→ Fr
315

(1108)
Gender Disambiguation

Translation

CoMMuTE En→ De 300
Word Disambiguation

Translation

WMT22 En→ De 2037 Translation

Table 1: Overview of test suites. For MuST-SHE, 315
examples are utterances where information is available
in audio. However, we use the full test set with other
types of bias when reporting translation quality.

3.2 Multimodal MT
Translating from English to gender-marked lan-
guages is challenging when the source text lacks
clear gender cues. To evaluate bias in current NMT
systems, Bentivogli et al. (2020) developed the
MuST-SHE test suite, which includes examples
with varying forms of gender bias. This suite fea-
tures cases where gender information is conveyed
through audio cues, such as the speaker’s voice.

While End-to-End ST systems can handle such
cases, they often fall short compared to advanced
translation LLMs (Agarwal et al., 2023). There-
fore, we use MuST-SHE for English→ French to
investigate if combining ST and translation LLMs
can improve translation quality and address gender
ambiguity.

Similarly, images can assist in disambiguating
text and enhancing translation quality. However,
translation LLMs typically do not process images,
and vision LLMs alone are inadequate for transla-
tion tasks. We combine these models to leverage
their strengths for better image-aware translations.

Existing vision translation test sets often lack
ambiguity, making image inputs unnecessary (Vi-
jayan et al., 2024). To address this, Futeral et al.
(2023) introduced CoMMuTE, which features am-
biguous source sentences with two images and
their translations. We use CoMMuTE for English

→ German translation in a generative framework
to evaluate if images can enhance translations with-
out compromising overall quality.

4 Results

This section presents the experiments conducted
using our ensembling approach across various test
suites. Since each test suite has a distinct exper-
imental setup, we will address them individually.
First, we will specify the models and evaluation
metrics applied in each scenario. Then, we will
present the results and highlight our main findings.

4.1 Ensembling for Improving Translations

Models: We aim to combine two models that ex-
cel in translation but possess different strengths.
For this purpose, we chose the Madlad-10B2, an
encoder-decoder architecture trained on extensive
parallel data, and ALMA-13B-R3, a decoder model
trained using contrastive preference optimization
and selecting high quality data (Xu et al., 2024b).

Metrics: As the models that we would like to en-
semble are high quality, we report with several neu-
ral metrics to reliably validate the improvements.
For reference-based we report with COMET (Rei
et al., 2022a) and BLUERT (Sellam et al., 2020; Pu
et al., 2021) whereas for reference-free we report
with COMET-KIWI (Rei et al., 2022b), COMET-
KIWI-XXL (Rei et al., 2023) and XCOMET-XXL
(Guerreiro et al., 2023) metrics.

Hyper-parameters: We set the re-ranking
weight α to 0.5 given that both models have high
quality and should be weighted equally. Further-
more, we set the topk to 5 and the number of beams
for the generator as 5.

To validate our combined model and online re-
ranking approach, we compare it against several
baselines. First, we check if the ensemble outper-
forms each individual model. Next, we evaluate if
our method surpasses offline re-ranking techniques,
indicating a more effective ranker influence and im-
proved search space exploration during decoding.

We evaluate our approach using N-best list re-
ranking, with Madlad as the generator and Alma
as the ranker. We generate an N-best list of 25
hypotheses with α set to 0.5 to facilitate a fair

2https://huggingface.co/google/
madlad400-10b-mt

3https://huggingface.co/haoranxu/ALMA-13B-R
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Generator Ranker Online COMET 22 COMET KIWI 22 QE COMET KIWI XXL QE XCOMET-XXL BLEURT

No re-ranking

GPT-4 × N/A 87.29 83.48 84.91 97.56 _
Madlad-10B × N/A 86.60 83.14 82.65 96.77 76.79
Alma-13B-R × N/A 86.40 83.28 84.25 97.48 77.20

Offline re-ranking

Madlad-10B Alma-13B-R × 87.27 83.68 84.11 97.12 77.66
Madlad-10B, Alma-13B-R Madlad-10B, Alma-13B-R × 87.54 83.95 84.97 97.39 78.20

Online re-ranking (ours)

Madlad-10B Alma-13B-R ✓ 87.69 83.94 85.20 97.68 78.36

Table 2: Performance of models on the WMT 22 English→ German test set. Scores are highlighted in bold if it is
the best in all configurations. Results for GPT-4 and Alma-13B-R are reported from (Xu et al., 2024b)
.

Model COMET 22 COMET KIWI 22 QE COMET KIWI XXL QE XCOMET-XXL BLEURT

GPT-4 87.29 83.48 84.91 97.56 _

Madlad 86.60 83.14 82.65 96.77 76.79

(Madlad) 5-best + QE 87.33 83.83 86.45 97.25 77.78

(Madlad + Alma Online
re-rank) 5-best + QE

87.66 84.12 87.86 97.91 78.31

Table 3: Performance of models on the WMT 22 English → German test set with Quality Estimation based
re-ranking via selecting from 5-best list using comet-kiwi-xxl. Scores are highlighted in bold if it is the best in all
configurations.

.

comparison between offline and online re-ranking
methods. Additionally, we test a scenario where
the N-best lists from both models are concatenated
and jointly re-ranked on 50 hypotheses. We reports
the results for the baselines and our approach in
Table 2.

Ensembling enables to reach state-of-the-art
quality: Both Madlad and Alma produce high-
quality translations, though they still lag behind
GPT-4 across all metrics. However, after apply-
ing offline re-ranking, their performance improves
consistently, becoming competitive with GPT-4.
When using our online re-ranking approach, the
ensemble outperforms GPT-4 across all metrics
and shows our proposed approach can improve the
translation quality by a substantial margin.

Online re-ranking outperforms offline joint
re-ranking: When Madlad serves as the generator
and Alma as the ranker in our approach, the results
are superior to those achieved with joint re-ranking,
where both models are used simultaneously. Our
approach enhances knowledge sharing and collab-
oration during the decoding process, leading to
better translation quality.

4.1.1 Quality of N-best list

The primary motivation behind our approach was
to influence the decoding process in real-time,
rather than waiting until the end. If this is effective,
we expect the N-best list to improve with online
re-ranking. Additionally, using quality estimation
should enhance the selection of the best hypothesis
from the N-best list. To validate this, we utilize
COMET-KIWI-XXL for selecting the best candi-
date from the top 5 beams of Madlad, comparing
scenarios with and without online re-ranking and
report the scores in Table 3.

We observe that integrating quality estima-
tion significantly enhances Madlad’s performance
across all metrics. Using COMET-KIWI-XXL to
select the best candidate from the top 5 beams im-
proves score from 82.65→ 86.45. This improve-
ment is also evident in the BLUERT score, increas-
ing from 76.79→ 77.78. Additionally, comparing
the top 5 beams with our approach, we find that
the quality is superior, demonstrating that the early
influence of ALMA in decoding. Furthermore, this
allows to integration of multiple NMT models to
generate the N-best list together and later combined
with quality estimation for maximum performance.
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4.2 Speech-Aware Translations

Models: To tackle gender ambiguity in text transla-
tion using speaker voice information, we combine
a robust text translation model with a speech-based
model that excels at disambiguating gender, even
if it is not as strong in translation. We use the Mad-
lad model (Kudugunta et al., 2024) for high-quality
text translation with gold transcript and the Seam-
less4 model for speech translation. Our approach
employs Madlad as the generator and Seamless
as the ranker, allowing us to leverage the speech
model’s ability to correct gendered forms in the
translation.

However, we observed that the Seamless model
exhibited a bias toward the masculine gender and
struggled to effectively resolve gender ambiguities
using speech. To mitigate this, we conducted ad-
ditional fine-tuning using LoRA (Hu et al., 2021)
on a balanced speaker dataset derived from MuST-
C (TED talks) with gender annotations (Di Gangi
et al., 2019; Gaido et al., 2020) (Training details in
Appendix A.1). We remove talks that are present in
MuST-SHE for no overlap. This "debiasing" pro-
cess improved the model’s ability to disambiguate
gender based on speech. Consequently, we use the
Madlad and adapted Seamless models to generate
high-quality, speech-aware translations.

Metrics: To evaluate the effectiveness of our
approach in disambiguating gender and improv-
ing translation quality, we use several key metrics.
For gender disambiguation, we follow the method-
ology of Bentivogli et al. (2020) and report two
metrics: accuracy (correct gender form is present)
and coverage (either gender form is present).

For overall translation quality, we report BLEU
(Papineni et al., 2002), ChrF2 (Popović, 2016)
calculated using SacreBLEU (Post, 2018), and
COMET (Rei et al., 2022a) (wmt22-comet-da) for
brevity.

Additionally, we report Sensitivity, which mea-
sures the difference between the scores of correctly
and incorrectly gendered references, as suggested
by Bentivogli et al. (2020).

Hyper-parameters: For decoding with Madlad,
we use beam search with 5 beams. Our proposed al-
gorithm involves two key parameters: α and topk.

4https://huggingface.co/facebook/
seamless-m4t-v2-large

We set topk to 5, resulting in a total of 25 candi-
dates being ranked by Seamless at each step.

We optimized α through grid search on the
MuST-C development set (Appendix A.3) via of-
fline re-ranking and setting it to 0.8 based on these
results. We also create an N-best list of 25 hy-
potheses with α at 0.8 for offline comparison and
perform joint re-ranking on the combined 50 N-
best lists. Results are summarized in in Table 4.

Madlad and Seamless complement each other:
Madlad excels in overall translation quality (83.5)
compared to Seamless (79.31). While Seamless
initially favors masculine terms, fine-tuning on bal-
anced data improves overall quality to 80.48, sig-
nificantly reducing masculine bias (90.44 to 65.89)
and increasing feminine representation (25.92 to
50.18). Thus, the adapted Seamless demonstrates
improved gender disambiguation, though Madlad
remains superior in overall translation. Hence,
combining the models can be highly beneficial.

Online re-ranking improves overall transla-
tion quality: After re-ranking with N-best list, we
see that the translation quality is improved when
Madlad as a generator and Seamless Bal as a ranker
model (83.50 → 83.66). In the opposite sce-
nario where Seamless Bal uses Madlad as a ranker
model, the quality also improves (80.48→ 81.31)
but is lower than Madlad alone. However, dur-
ing online re-ranking, we see that we achieved the
best performance of 83.78. This suggests that our
approach facilitates knowledge sharing between
the models during decoding, leading to significant
quality enhancements.

Balance between translation quality and gen-
der disambiguation through online re-ranking
We observe that the highest accuracies for femi-
nine terms (1F) are achieved when Seamless Bal is
employed as a generator. Nevertheless, the overall
translation quality in these instances is consider-
ably lower compared to scenarios where Madlad is
the generator. By using Madlad as a generator, we
attain a higher average 1F score of 60.32 compared
to offline re-ranking without compromising overall
translation quality and better distribution across
gender. Moreover, we achieved the highest sensi-
tivity score of 1.1 across all configurations. This
shows that our approach can consistently perform
better than traditional N-best list re-ranking.

While the scores for the disambiguation are not
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Generator Ranker Online
1F

(Acc %)
1F

(Term Cov %)
1M

(Acc %)
1M

(Term Cov %)
Avg

(Acc %)
COMET

Correct △
No re-ranking

Madlad × N/A 25.92 68.39* 90.44* 63.65* 58.18 83.52 0.90
Seamless × N/A 20.28 63.20 88.30 62.43 54.29 79.31 0.73

Seamless Bal × N/A 50.18 * 62.73 65.89 59.02 58.03 80.48 0.83

Offline re-ranking

Madlad Seamless Bal × 28.81 67.92 89.59 63.41 59.20 83.66 0.96
Seamless Bal Madlad × 40.90 65.09 77.99 60.97 59.44 81.31 0.90

Madlad, Seamless Bal Madlad, Seamless Bal × 29.83 67.92 89.59 63.41 59.71 83.64 0.96

Online re-ranking (ours)

Madlad Seamless Bal ✓ 33.78 68.16 86.86 63.65* 60.32* 83.78* 1.1*

Table 4: Performance of models on the MuST-SHE test set for speech-aware translations. Seamless Bal indicates
the adapted model trained on balanced gender data. △ denotes the sensitivity, i.e., the difference in scores between
correct and incorrect references. Scores are highlighted in bold if online re-ranking improves over offline re-ranking
and * if it is the best in all configurations.

Generator Ranker Online
BLEU Chrf2 COMET

Correct △ Correct △ Correct △
Madlad-10B × N/A 45.9 0.4 62.3 1.3 82.90 0.06

PaliGemma-3B MT × N/A 27.6 5.7 51.0 7.3 79.58 8.25
Madlad-10B PaliGemma-3B MT × 46.1 1.9 62.6 1.7 83.45 1.17
Madlad-10B PaliGemma-3B MT ✓ 46.2 1.8 62.6 1.9 83.25 1.34

Table 5: Performance of models on the CoMMuTE English→ German test set for image-aware translations. △
indicates the sensitivity i.e difference between correct and incorrect references. Scores are highlighted in bold if it
is the best in all configurations.

.

high, we would like to highlight that we focused on
combining the strengths of the models. However,
one can use targeted systems such as Gaido et al.
(2020) to further improve the performance for the
desired tasks.

4.3 Image-Aware Translations

Models: To integrate image information for dis-
ambiguating source text, a robust multimodal ma-
chine translation (MT) system is essential. Initially,
we experimented with the off-the-shelf instruction-
tuned Llava model5 (Li et al., 2024). While Llava
provided reasonable results, its performance was
sub-par for our needs. Consequently, we chose
to fine-tune the PaliGemma model6 (Beyer et al.,
2024), which was originally trained to generate
captions in multiple languages. We fine-tuned
PaliGemma using the Multi30k image captions

5https://huggingface.co/llava-hf/llava-v1.
6-vicuna-13b-hf

6https://huggingface.co/google/
paligemma-3b-ft-cococap-448

dataset (Elliott et al., 2016), adapting it with Q-
LoRA (Appendix A.2) for enhanced image-aware
translations (PaliGemma-3B MT).

Metrics: For evaluating this task, we use BLEU,
ChrF2, and COMET scores, as we do not have spe-
cific annotations for words in the target sentences.
To assess the impact of contextual information pro-
vided by the images, we also report the sensitivity
metric△, to estimate how much the image context
influences the translation quality.

Hyper-parameters: Vision LLMs require more
memory because the image is encoded into a long
sequence of tokens. Consequently, we were lim-
ited to using a beam size of 3 with a top-k of 3.
Additionally, tuning the parameter α was challeng-
ing due to the lack of a dedicated ambiguous test
set; using a standard test set would result in no
weight being given to the vision model. Therefore,
we report the oracle α of 0.9, which represents the
best-performing weight on the test set, determined
through a grid search with offline re-ranking. We
report the scores in Table 5.
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PaliGemma is highly sensitive to image con-
text: We observe that the sensitivity△ of our fine-
tuned PaliGemma model for MT is notably high
across all metrics (e.g., 5.7 BLEU), demonstrat-
ing that the model is effectively using the image
information to influence its translations. This sug-
gests that PaliGemma does not disregard the visual
context during translation. However, despite this
sensitivity, PaliGemma’s overall translation quality
significantly lags behind that of Madlad, as indi-
cated by the lower COMET score (difference of
3.32). This disparity highlights the potential ben-
efit of combining the strengths of both models to
achieve more accurate and image-aware transla-
tions.

No clear winner between offline and online re-
ranking: Comparing offline and online re-ranking,
we find that re-ranking with PaliGemma enhances
translations, evidenced by a sensitivity△ increase
of up to 1.28 COMET. There’s also a slight im-
provement in overall translation quality after re-
ranking. However, the difference between the two
approaches is modest, especially given the small
test set size of 300 examples.

We hypothesize two main factors behind the re-
sults. First, Madlad assigns very low probabilities
to translations of ambiguous words it isn’t biased
toward, while PaliGemma avoids extremely high
probabilities. As a result, merging probabilities
tends to favor the incorrect translation with the
highest overall score. Second, the test sentences
are short, averaging 4-5 words, so the N-best list in-
cludes diverse variations, making offline re-ranking
similar to the online approach. However, we be-
lieve our online re-ranking method could benefit
longer sentences and stronger vision translation
models.

5 Related Work

Fusion for MT: Integrating additional language
models into MT systems via shallow or deep fu-
sion, or through re-ranking, to improve translation
quality is a well-studied area (Chen et al., 2006;
Hasan et al., 2007; Gulcehre et al., 2015; Li and
Jurafsky, 2016; Gulcehre et al., 2017; Herold et al.,
2023). Stahlberg et al. (2018) explored advanced
fusion method where an NMT model is trained
from scratch while keeping a pre-trained language
model fixed, allowing the model to learn only what

is missing. There has also been growing inter-
est in combining NMT with document-level lan-
guage models (Stahlberg et al., 2019; Petrick et al.,
2023; Hoang et al., 2024). Unlike previous works
that utilize static weights for merging probabilities,
Jean and Cho (2020) propose dynamic coefficients,
which are crucial for effectively combining models
with different strengths.

Ensembling: System combination, which in-
volves merging multiple hypotheses to generate
a better version, is one approach to leveraging
the strengths of different models (Bangalore et al.,
2001; Matusov et al., 2006; Heafield and Lavie,
2010; Freitag et al., 2014). Another approach is to
merge model parameters (Junczys-Dowmunt et al.,
2016) or distill knowledge from the models (Fre-
itag et al., 2017). With the increasing diversity of
LLMs, recent research has explored methods to
combine them through vocabulary merging (Xu
et al., 2024b), generating new outputs based on
hypotheses (Jiang et al., 2023b), or dynamically
selecting different models at each step (Shen et al.,
2024).

Our work differs from these approaches as it
neither relies on vocabulary matching nor requires
additional training data.

6 Conclusion

We proposed a novel ensembling strategy that op-
erates at the word level during the decoding pro-
cess to enhance knowledge sharing. Our approach
demonstrated significant benefits across multiple
scenarios. It proved effective for ensembling trans-
lation systems, and even when combined with
quality estimation models, it achieved state-of-the-
art translation quality. Additionally, experiments
on targeted multimodal test sets revealed that our
method facilitates better knowledge sharing com-
pared to traditional re-ranking techniques.

For future work, we propose to explore unsuper-
vised dynamic selection, enabling models to gener-
ate outputs only when they are better equipped for
the task. We believe this approach could address
the current limitations and lead to more significant
improvements in image-aware translation.

7 Limitations

The major limitation of this work is that we operate
at word-level which is not compatible for several
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languages that are character based. Hence, it is
not trivial to merge models for generating such lan-
guages. Further analysis is necessary on character-
level tokenization to accurately re-rank during the
decoding steps.

Another drawback is that, although re-ranking
enhances translation quality, it incurs a latency cost.
Unlike offline re-ranking, our approach employs
the ranker model at each time step, resulting in
significantly slower performance.

Finally, we focused mainly on ensembling the
two models using static weights. However, since
the models have different strengths, it is crucial to
determine when to rely on one model or ensemble
both. This dynamic approach would better exploit
each model’s strengths while avoiding the integra-
tion of their weaknesses.
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A Appendix

A.1 Adapting Seamless
We use the gender annotations from Gaido et al.
(2020) to select talks with feminine speaker pro-
nouns and an equal amount of randomly sampled

masculine talks that are in the training set. We
use the huggingface transformer’s library (Wolf
et al., 2019) for fine-tuning Seamless. We use
LoRA (Hu et al., 2021) to fine-tune Seamless on
this data. We set the rank to 16, lora_alpha to
64 and lora_dropout to 0.1. We apply adapters
on the following modules: q_proj, v_proj, lin-
ear_q, linear_v. We set batch_size to 16, gradi-
ent_accumulation_steps to 8 and train with fp16
for 20 epochs validating at every 200 steps. The
learning_rate is set to 1e−5. The other parameters
are set to default in the transformers library.

A.2 Adapting PaliGemma
We also fine-tune the PaliGemma model with
the huggingface transformer’s library (Wolf et al.,
2019) but use Q-LoRA (Dettmers et al., 2023) with
4-bit quantization as the vision models require
more VRAM. We set the rank to 8, lora_alpha
and lora_dropout to default. We apply adapters
on the following modules: q_proj, k_proj, v_proj,
gate_proj, up_proj, down_proj. We set batch_size
to 2, gradient_accumulation_steps to 6 and train
with bf16 for 5 epochs validating at every 200 steps.
The learning_rate is set to 2e−5 with AdamW op-
timizer. The other parameters are set to default in
the transformers library.

A.3 Hyper-parameter Tuning for
Speech-Aware Translations

To find the re-ranking weight α, we generate the
25-best list of Madlad and Seamless on the MuST-
C development set. Then, we calculate the scores
of the models on these hypothesis and perform
a grid search to find the optimal weight. Here,
α = 1 means that the score is only from Madlad
and α = 0.5 means equal contribution. The grid
search is plotted in Figure 2.

We see that α as 0.8 is always achieving higher
scores. Furthermore, we see that using Seamless
as generator (Figure 2b) leads to poor translation
quality and α as 1. However, in the case of Madlad
as a generator (Figure 2a), we see that α as 1 is not
optimal showing that re-ranking with Seamless is
indeed beneficial. Finally in the case of both mod-
els as generator (Figure 2c), we again see that α as
1 achieves highest quality showing that Seamless
is not beneficial.
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(a) Re-ranking with Madlad N-best list

(b) Re-ranking with Seamless N-best list

(c) Re-ranking with Joint N-best list

Figure 2: Grid Search on α with Madlad and Seamless Bal on the MuST-C development set with N-best lists from
different generators and rankers.
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