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Messages from Conference Chairs

We extend a warm welcome to all attendees on behalf of the Conference Chairs to the
35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023),
scheduled to take place in Taipei, Taiwan, from October 20th to 21st, 2023. Hosted by
Soochow University (SCU) and the Association for Computational Linguistics and Chinese
Language Processing (ACLCLP), ROCLING 2023 is a significant event supported by the
National Science and Technology Council (NSTC).

This conference holds special importance in a time marked by the remarkable growth
of our field, with Natural Language Processing (NLP) and Speech Processing gaining
widespread interest in both research and industry. The barriers to entry have significantly
lowered, adding to the excitement of our community.

The realization of this conference owes much to the dedication and support of the
Organizing Committee. Our heartfelt gratitude goes to the Program Chairs, Prof. Hen-Hsen
Huang and Prof. Yu Tsao, the Special Session Chair, Prof. Chia-Hui Chang, Al Tutorial
Chair, Prof. Wei-Yun Ma, and the Shared Task Chairs, Prof. Lung-Hao Lee and Prof. Yuan-
Fu Liao. Their meticulous coordination of the review process has ensured the presentation
of high-quality research papers and informative talks. We also thank Prof. Hou-Chiang
Tseng for her invaluable assistance in the publication of conference proceedings, soon to
be available in the ACL Anthology.

Our deep appreciation goes to our sponsors for their continuous and generous support.
We are also grateful to the chairs of past conferences for their patient guidance, sharing
their expertise. We extend our thanks to the keynote speakers, reviewers, tutorial instructors,
authors, and presenters whose contributions enrich this conference. Special thanks to all
authors who submitted their work for review; your efforts make this event vibrant and our
community robust.

Lastly, we want to express our gratitude to you, our esteemed participants, for your
commitment to attending the conference from October 20th to 21st, 2023. We hope you to
immerse yourself in the proceedings, connect with fellow attendees.

Warm regards and enjoy the ROCLING 2023 conference!

Jheng-Long Wu, Soochow University
Ming-Hsiang Su, Soochow University
ROCLING 2023 Conference Chairs



Messages from Program Chairs

Welcome to ROCLING 2023!

As the program chairs, it is our honor and privilege to extend a heartfelt greeting to
each and every one of you. This year has been remarkably special for all of us associated
with the conference, with each paper submission and shared task bringing its own set of
challenges and insights. We are delighted by the diversity and quality of the works that
have been presented.

We have received a plethora of outstanding submissions, out of which we've selected
29 exceptional oral papers and 9 distinguished posters, ensuring a comprehensive blend of
innovation and foundational research. We would like to express our immense gratitude to
the authors, reviewers, and the entire program committee. Their hard work, dedication, and
commitment have elevated the standards of our conference.

In addition to the core paper presentations, this year, ROCLING has taken a leap in
collaborating for two shared tasks, MultiNER-Health and Formosa Speech Recognition
Challenge 2023, showcasing the depth and breadth of our community.

As we come together, whether physically or virtually, we encourage all participants to
engage deeply, discuss fervently, and collaborate openly. ROCLING has always been a
melting pot of ideas, innovations, and inspirations, and this year is no exception. Wishing
you all an insightful and memaorable conference experience!

Warm regards,

Yu Tsao, Academia Sinica

Hen-Hsen Huang, Academia Sinica
ROCLING 2023 Program Chairs



NLP Keynote by Doctor Nancy F. Chen

SeaEval for Multilingual Foundation Models: From
Cross-Lingual Alignment to Cultural Reasoning

Speaker: Doctor Nancy F. Chen
Time: Day 1 (Friday), 20 October 2023, 09:00 - 10:00

Biography
Nancy F. Chen is an A*STAR fellow, senior principal scientist, principal investigator, and
group leader at I2R (Institute for Infocomm Research) and Principal Investigator at CFAR
(Centre for Frontier Al Research). Her group works on generative Al in speech, language, and
conversational technology. Her research has been applied to education, defense, healthcare,
and media/journalism. Dr. Chen has published 100+ papers and supervised 100+ students/staff.
She has won awards from IEEE, Microsoft, NIH, P&G, UNESCO, L’Oréal, SIGDIAL,
APSIPA, MICCAL. She is an IEEE SPS Distinguished Lecturer (2023-2024), Program Chair
of ICLR 2023, Board Member of ISCA (2021-2025), and Singapore 100 Women in Tech
(2021). Technology from her team has led to commercial spin-offs and government
deployment. Prior to A*STAR, she worked at MIT Lincoln Lab while doing a PhD at MIT

and Harvard. For more info: http://alum.mit.edu/www/nancychen.

Abstract
We present SeaEval, a benchmark for multilingual foundation models. In addition to

characterizing how these models understand and reason with natural language, we also
investigate how well they comprehend cultural practices, nuances, and values. Alongside

standard accuracy metrics, we examine the brittleness of foundation models in the dimensions


http://alum.mit.edu/www/nancychen

of semantics and multilinguality. Our investigations encompasses both open-source and
proprietary models, shedding light on their behavior in classic NLP tasks, reasoning, and
cultural contexts. Notably, (1) Most models respond inconsistently to paraphrased instructions.
(2) Exposure bias pervades, evident in both standard NLP tasks and cultural understanding.
(3) For questions rooted in factual, scientific, or common sense knowledge, consistent
responses are expected across multilingual queries that are semantically equivalent. Yet, many
models intriguingly demonstrate inconsistent performance on such queries. (4) Models trained
multilingually still lack “balanced multilingual” capabilities. Our endeavors underscore the
need for more generalizable semantic representations and enhanced multilingual
contextualization. SeaEval can serve as a launchpad for in-depth investigations for

multilingual and multicultural evaluations.



Speech Keynote by Peng-Jen Chen

Building Speech-to-Speech Translation System for
English-Hokkien

Speaker: Peng-Jen Chen
Time: Day 2 (Saturday), 21 October 2023, 09:00 - 10:00

Biography
Peng-Jen Chen is a research engineer at Meta Al. He received a B.S. degree in 2007 and an
M.S. degree in 2009 in Computer Science and Information Engineering, at National Taiwan
University. He joined Meta as a machine learning engineer in 2012 and joined FAIR as a
research engineer in 2018. His key research interests include low-resource machine translation,

speech-to-speech translation, speech-text joint pre-training.

Abstract
Speech is the primary mode of communication for people who speak languages that lack a

standard writing system. With nearly 3000 such unwritten languages in existence, developing
speech-to-speech translation technology is critical in overcoming language barriers for these
communities. In this talk, we will explore the challenges involved in building a speech-to-
speech translation system for English-Taiwanese Hokkien, a real-world language that lacks a
widely used standard writing system. We will present our approaches ranging from training
data collection and modeling choices, to the evaluation of the developed models.
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XFEVER: Exploring Fact Verification across Languages

Yi-Chen Chang'* Canasai Kruengkrai? Junichi Yamagishi®
'National Tsing Hua University, Taiwan
yichen@nlplab.cc
2National Institute of Informatics, J apan
{canasai, jyamagishi}@nii.ac.jp

Abstract

This paper introduces the Cross-lingual
Fact Extraction and VERification (XFEVER)
dataset designed for benchmarking the fact ver-
ification models across different languages. We
constructed it by translating the claim and ev-
idence texts of the Fact Extraction and VERIi-
fication (FEVER) dataset released by Thorne
et al. (2018) into six languages. The training
and development sets were translated using ma-
chine translation, whereas the test set includes
texts translated by professional translators and
machine-translated texts. Using the XFEVER
dataset, two cross-lingual fact verification sce-
narios, zero-shot learning and translate-train
learning, are defined, and baseline models for
each scenario are also proposed in this paper.
Experimental results show that the multilingual
language model can be used to build fact verifi-
cation models in different languages efficiently.
However, the performance varies by language
and is somewhat inferior to the English case.
We also found that we can effectively mitigate
model miscalibration by considering the predic-
tion similarity between the English and target
languages.!

Keywords: cross-lingual fact verification, pre-
trained language models

1 Introduction

Automated fact verification is a part of the fact-
checking task, verifying that a given claim is
valid against a database of textual sources. It
can be formulated as a classification task, tak-
ing the claim and associated evidence as input
and determining whether the given evidence sup-
ports the claim. Deep learning is used to build

* This work was conducted during the author’s internship
under National Institute of Informatics, Japan.

'"The XFEVER dataset, code, and model check-

points are available at https://github.com/
nii-yamagishilab/xfever.

classifiers for this purpose, but deep models are
data-hungry and require massive amounts of la-
beled data. The Fact Extraction and VERifica-
tion (FEVER) database (Thorne et al., 2018) is
known as a well-resourced English database that
enables us to build large networks, but building a
database of the same scale as FEVER from scratch
for each language is significantly time-consuming
and costly. Our main question in this paper is: Can
we build fact-checking models for other languages
without huge costs?

In this work, we hypothesize that facts are facts
regardless of languages. Suppose we have a per-
fect translator to translate English text into other
languages without missing or changing informa-
tion in the original texts. The relationship between
a specific claim-evidence pair in the source lan-
guage, which is the output of the fact verifica-
tion model, should be the same even if they are
translated into another target language as shown
in Figure 1. Using this hypothesis, we construct
a new Cross-lingual Fact Extraction and VERIfi-
cation (XFEVER) dataset by automatically trans-
lating the claim and evidence texts of the FEVER
dataset into five other languages: Spanish, French,
Indonesian, Japanese, and Chinese. These lan-
guages cover several language families, including
isolated languages such as Japanese. In addition
to the machine-translated texts, a set of texts writ-
ten and verified by professional translators is also
available as an additional evaluation set to analyze
whether the translation methods will affect the per-
formance.

Using the XFEVER dataset, we define two cross-
lingual fact verification scenarios: zero-shot learn-
ing and translate-train learning. In the zero-shot
learning scenario, the model is trained on the En-
glish corpus only and applied to other languages
with zero shots. In the translate-train learning sce-
nario, a multilingual fact verification model is built
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Youtube is not a website.

YouTube is an American video-sharing website
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Should be the same

Claim

REFUTED <
Evidence:

‘ Translate to Japanese

YoutubelFD T IJHA R TlEHDEEA.

YouTubeld. 7Y IAIL=ZFMY>T)L—_J(CAK4E

ZEL. PAVLHDOEEHET A hTY.

Figure 1: For the English example, it is clear that the given evidence refutes the claim. Suppose we have accurate
translations from English to another language (e.g., Japanese). The claim in Japanese must also be refuted on the
basis of the evidence in Japanese. In other words, the relationship between the claim and evidence text should be

consistent across languages.

in English and multiple languages, assuming that
the machine-translated text in the non-English lan-
guages contains errors but is still somewhat useful
for model training. We also report baseline systems
in each scenario. In the zero-shot learning scenario,
we show how beneficial the multilingual language
models are. In the translate-train scenario, given
the parallel data of texts translated from English
into other languages, we also evaluate a baseline
that uses the similarity of the predicted results or
intermediate representations of the model in the
English and other language cases as part of the
loss.

The rest of the paper is organized as follows: We
review the related work in the next section. Then,
we overview the XFEVER dataset in Section 3
and describe details of our baseline methods in
Sections 4 and 5. We provide experimental results
in Section 6. Finally, we summarize our research
and future work in Section 7.

2 Related Work

Automated fact-checking

The importance of automated fact-checking is
growing with an increase in misinformation, mal-
information, and disinformation (Nakov et al.,
2021; Guo et al., 2022). Automated fact-checking
by machine learning, which should improve the ef-
ficiency of time-consuming fact-checking, consists
of three steps (Thorne et al., 2018): (1) search-
ing the knowledge database to find out documents
related to the claim to be verified, (2) finding sen-
tences or paragraphs that serve as evidence in the
documents found, and (3) predicting a verdict la-
bel for the claim to be verified on the basis of the
retrieved evidence.

The third task, verdict prediction, is relevant to
the textual entailment task (Dagan et al., 2010)
where using the given two sentences as inputs, we
determine whether (i) they contradict each other or
whether (ii) one sentence entails the other sentence
without contradiction. The verdict prediction task
examines whether the retrieved evidence entails
the claim or whether they contradict each other.
Various architectures have been investigated, in-
cluding graph-based neural networks (Liu et al.,
2020; Zhong et al., 2020) and self-attention (Kru-
engkrai et al., 2021), and evaluations and compar-
isons have also been made using various language
models (Lee et al., 2021; Rae et al., 2021).

Fact-checking datasets

There are several existing datasets for automated
fact-checking. FEVER (Thorne et al., 2018) and
its series (Thorne et al., 2019; Aly et al., 2021) are
well-known datasets for fact extraction and verifica-
tion against textual sources. The original FEVER
dataset consists of 185,445 claims manually ver-
ified against relevant Wikipedia articles. Wiki-
FactCheck (Sathe et al., 2020) is another dataset of
124K examples extracted from English Wikipedia
articles and real-world claims (uncontrolled claims
written by annotators). Sources of evidence may
change over time, requiring fact-checking mod-
els to be sensitive to subtle differences in support-
ing evidence. VitaminC (Schuster et al., 2021) is
a benchmark for testing whether a fact-checking
model could identify such subtle factual changes.

Datasets for cross-lingual understanding tasks

Large multi-lingual language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) have been reported to be effec-
tive on cross-lingual tasks, and a number of bench-



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Language Claim /Evidence

Roman Atwood is a content creator.

English

He is best known for his vlogs, where he posts updates about his life on a daily basis.
. Roman Atwood es un creador de contenidos.

Spanish . . . .. .
Es conocido sobre todo por sus vlogs, en los que publica a diario noticias sobre su vida.
Roman Atwood est un créateur de contenu.

French )
11 est surtout connu pour ses vlogs, ou il publie quotidiennement des mises a jour sur sa vie.

. Roman Atwood adalah pembuat konten.
Indonesian

Dia terkenal karena vlog-nya , di mana dia memposting pembaruan tentang hidupnya setiap hari.
=<y -7hUyRiE avsryys)oqr—,

Japanese
Wiz o 7o TR LSASNTVWS, HEEBHD XS IZHDOANEZODVWTOELRHEZZFL TV,

. B8P E — A OHES -
Chinese

fillfix 2 R M A 27, FETIR AR AR 2 S A 5 T At A A T R 8T -

Table 1: Examples (claim and evidence) from six languages in the XFEVER dataset with the SUP class.

Split Trans Surp REF NEI
Train Machine 100,570 41,850 35,639
Dev Machine 3,964 4,323 3,333
Test Machine 4,019 4,358 3,333

Machine 200 200 200
Test-6h  iiman 200 200 200

Table 2: Number of examples per class for each target
language in the XFEVER dataset. The column “Trans”
indicates the translation method. The test-6h set consists
of two small subsets: machine- and human-translated
sets.

marks have been designed for the cross-lingual task:
XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020).

The XTREME benchmark includes nine cor-
pora and covers four natural language tasks: clas-
sification, structured prediction, question answer-
ing, and sentence retrieval. Among them, the
Cross-lingual Natural Language Inference (XNLI)
corpus (Conneau et al., 2018) is the most re-
lated to XFEVER, which is an extended version
of the Multi-Genre Natural Language Inference
(MultiNLI) corpus (Williams et al., 2018) and con-
tains 15 languages translated by professional trans-
lators. There exists a multilingual fact-checking
dataset named X-FACT, which consists of 31,189
real-world claims collected from fact-checking
websites (Gupta and Srikumar, 2021). Although
XNLI (and our XFEVER) can be regarded as artifi-
cially created datasets, they have certain advan-
tages, such as having similar data distributions
across languages (Conneau et al., 2018).

3 The XFEVER dataset

3.1 Overview

Inspired by the XNLI dataset construction (Con-
neau et al., 2018), we extended the FEVER
dataset (Thorne et al., 2018) to XFEVER by trans-
lating the English claim-evidence pairs into differ-
ent languages. We used the dataset version pre-
processed by Schuster et al. (2021), where only
claims that require evidence from single sentences
are considered. We considered a total of six lan-
guages: Spanish (es), French (fr), Indonesian (id),
Japanese (ja), Chinese (zh), and the source lan-
guage English (en).

Table 1 shows examples in the languages in-
cluded in the XFEVER dataset. We automatically
translated the original English data to the five target
languages using DeepL.? To analyze whether the
translation methods affect the prediction accuracy,
we created a small test set (test-6h) containing 600
randomly-selected claim-evidence pairs translated
and verified by professional translators.

Table 2 shows the data statistics per language.
Each claim-evidence pair has one of the class la-
bels: supported (SUP), refuted (REF), and not
enough info (NEI). We assigned the same labels as
the original ones to translated pairs.

3.2 Two scenarios
Given the XFEVER dataset, we explore two sce-
narios.

» Zero-shot learning: We can only access the

English training and development sets to train

https://www.deepl.com/pro-api
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a model and evaluate the trained model on the
test set in all languages.

* Translate-train learning: We assume that
machine-translated data are available. We then
build a model using the training and develop-
ment sets in all languages simultaneously. The
evaluation is the same as the zero-shot learning
scenario.

4 Cross-lingual fact verification

In this section, we first introduce notation and then
describe the frameworks for zero-shot and translate-
train learning scenarios. We consider cross-lingual
fact verification as a classification problem. We
want to train a model fg : X — ) parameterized
by 6, which maps an input z € X to a label y €
Y ={1,...,K}.> Our model is a neural network
consisting of a multilayer perceptron (MLP) on top
of a pre-trained language model (PLM):

fo(z) = MLP(PLM(x)).

The PLM takes x (a concatenation of claim and
evidence sentences) as input and produces a vector
representation. The MLP then maps the vector rep-
resentation to K real-valued numbers (i.e., logits).
We finally obtain the predicted probability p € R
by applying the softmax function:

p(yl) = softmax(fo (x)). ()
4.1 Zero-shot learning scenario

In the zero-shot learning scenario, we only use the
original data D = {(w;,v;)}\, for training. In
our study, we refer to the original data as the non-

translated data, which are in English. We aim to
minimize the average loss:

> Lix,y:0), 2)

(z,y)€D

JZ(O) = A

where the loss function L(z,y;0) is the cross-
entropy between the ground-truth label distribution
q € RE (i.e., one-hot encoding) and the predicted
distribution p:

L(z,y;0) = H(q,p) = — Y _ q(y|x) log p(y|z).
yey
3)
With help from the multilingual PLM (e.g.,
mBERT or XML-R), we expect that the zero-shot
model would work with other languages as well.

3In our task, K = 3, where 1 = SUP, 2 = REF, and
3 = NEL
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4.2 Translate-train learning scenario

In the translate-train learning scenario, we assume
that the machine-translated data D exists so that
we can exploit them for training. We define D =
Uier Di» where T = {es, fr, id, ja, zh} is the set
of our target languages.

4.2.1 Non-parallel training

The most straightforward strategy is to mix all the
available data. We write the average loss for non-
parallel (np) training as:

an(G) = ]\}n Z

P (¢y)eDUD

where Ny, = N x(|7|+1) is the number of all
mixed examples. The loss function L(x,y;0) is
still the cross-entropy loss. In practice, we reshuf-
fle the training examples at the beginning of each
epoch, so x comes from D or D at random.

L(z,y;0), (4

4.2.2 Parallel training

Non-parallel training does not consider that the
predicted label of the machine-translated example
Z should be the same as the original example x.
To take the consistency of predictions into account,
we explicitly create parallel examples of x and x
and use such pairs for training. We formulate the
average loss for parallel (p) training as:

RO = 3N Lwiu6), 6

PoeT (z,Z,y)

€(D,Dy)

where N, = N x|T| is the number of all parallel
examples. Since we reshuffle parallel examples
at every epoch similar to non-parallel training, &
comes from one of D; randomly. We define the
loss function L(zx, Z,y; 6) as:

L(z,2,y;0) = L(z,y;0) + L(Z,y;0) + AR(9),
(6)

where the first and second terms are the cross-
entropy losses for the original and translated ex-
amples, and the last term R () is a regularization
function with a strength coefficient \. In the follow-
ing section, we discuss various choices for R(0).

5 Consistency regularization

We use the regularization function R(f) to enforce
cross-lingual consistency. Previous work has pre-
sented specific forms of consistency regulariza-
tion (Zheng et al., 2021; Yang et al., 2022). Here,



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

we examine a wide range of regularization func-
tions where we categorize them into types: predic-
tion and representation. In addition, we discuss
how prediction consistency relates to the confi-
dence penalty.

5.1 Prediction consistency

Let p(y|Z) denote the predicted distribution given
the machine-translated example z. Intuitively, the
predicted distributions for the original and trans-
lated examples should be close to reaching the
same predictions. To achieve this, we can regular-
ize the loss in Eq. (6) with an information-theoric
divergence measure between p and p. We explore
the following divergence measures:

* Kullback-Leibler (KL) divergence: We hy-
pothesize that the prediction of the original ex-
ample tends to have better accuracy than the
machine-translated one. Thus, we push p to-
wards p with the KL divergence (Kullback and
Leibler, 1951):

R(0) = KL(p || p)- )

o Jeffreys (J) divergence: The multilingual infor-
mation in the PLM can be helpful and captured
through the translated example. Also, to pro-
mote the consistency of predictions, we push p
and p towards each other by applying the sym-
metric measure called the J divergence (Jeffreys,
1946):

R(O)=1(p )
=KL(p [ p) +KL(p [ p)- (B

* Jensen—-Shannon (JS) divergence: The KL and
J divergence measures are unbound. Another
symmetric and bounded measure is the JS diver-
gence (Lin, 1991):

R(0) =IS(p || p)

1

= (KL |

)+ KL(ZEL | ).

2
©)

p+p
2

Relationship between prediction consistency
and confidence penalty

When the model predicts a label with a probabil-
ity (i.e., confidence) of 0.95, we expect it to have a
95% chance of being correct. However, researchers
have found that neural models tend to be overconfi-
dent. In other words, the model’s confidence poorly

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

aligns with the ground-truth correctness likelihood.
Guo et al. (2017) attributed the cause of overcon-
fident predictions to cross-entropy loss overfitting,
where the model places most of the probability
mass on a single label, resulting in a peaked pre-
dicted distribution.

In this section, we discuss cross-entropy loss
overfitting from a KL divergence perspective. We
can rewrite the cross-entropy loss in Eq. (3) in a
KL divergence form as:

L(z,y;0) = H(q, p) — H(q) + H(q)
=KL(q || p) + H(q) -
—~—

constant

Thus, we minimize the loss at training time by
pushing p (the predicted distribution) towards ¢
(the ground-truth one-hot distribution). When over-
fitting occurs, p becomes peaky.

There are several calibration methods to mitigate
the above issue. One of which is the confidence
penalty (Pereyra et al., 2017) in which a penalized
term (i.e., a negative entropy) is added to the cross-
entropy loss:

L(z,y;0)cp = H(g, p) — AH(p).
The model attempts to maximize the entropy H(p)
to minimize the loss L(z, y; 0)p. Thus, p becomes
smoother (or less peaky).

Our key observation is that the regularization
functions of prediction consistency intrinsically in-
troduce the confidence penalty to the loss. Let us
consider the parallel training loss with the J diver-
gence as an example. We know that:

KL(p || p) = H(p, p) — H(p),
KL(p [| p) = H(p,p) — H(D).

From Egs. (3), (6), and (8), we obtain:

L(z,%,y;0) = H(q, p) + H(q,p) + N(p || )
= H(q,p) — AH(p)
+H(q,p) — AH(p)

+ A(H(p,p) + H(p,p)). (10)

Thus, the loss in Eq. (10) includes the negative
entropy terms of p and p, which should help reduce

model overconfidence. We verify this observation
in Section 6.2.3.



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

5.2 Representation consistency

Recall that we derive the predicted distribution
from the logits in Eq. (1). We can also impose
consistency in the intermediate representation be-
fore the logits. Here, we examine two represen-
tation levels: penultimate and feature. We refer
to the penultimate and feature representations as
the output of the last layer right before the logits
and that of the PLM, respectively. Let h and h be
the representations* of the original and translated
examples. Since both representations are vectors,
we can apply the following distance measure:

* Mean square error (MSE): We compute the
MSE (or the square of Euclidean distance) as:
R(6) = | —h|*. (11)
Thus, if h and h are similar, R(6) approaches
Z€ero.

¢ Cosine distance (COS): An alternative measure
is the cosine distance computed as:

- h-h
R(O)=1—-cos(h,h)=1———=. (12)
[

For the cosine distance, the magnitudes of h and
h have no effect because they are normalized to
the unit vectors.

6 Experiments

6.1 Training details

We implemented our models using Hugging Face’s
Transformers library (Wolf et al., 2020). In the
zero-shot setting, we compared the multilingual
PLMs against their monolingual versions to exam-
ine their benefits. For the monolingual PLMs, we
used BERT-base (110M), RoBERTa-base (125M),
and RoBERTa-large (355M). The number in the
parenthesis denotes the number of parameters.
For the multilingual PLMs, we used mBERT
(178M), XLM-R-base (470M), and XLM-R-large
(816M). The mBERT model was pre-trained on
the Wikipedia entries of 104 languages, while the
XLM-R models were pre-trained on the Common
Crawl Corpus covering 100 languages. The pre-
training datasets for mBERT and XLM-R include
all six languages in the XFEVER dataset.

For all experiments, we used the Adafactor op-
timizer (Shazeer and Stern, 2018) with a batch

*They can be either penultimate or feature representation.
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size of 32. We used a learning rate of 2e-5 for
BERT-base/RoBERTa-base/mBERT and 5e-6 for
RoBERTa-large/XLM-R-large. We trained each
model for up to ten epochs or until the accuracy
on the development set had not improved for two
epochs. For consistency regularization, we set A to
1 unless otherwise specified. We conducted all the
experiments on 32GB NVIDIA Tesla A100 GPUs.

6.2 Results

6.2.1 Effect of multilingual PLMs in zero-shot
learning

Table 3 shows the accuracy gains of multilingual
PLMs over the monolingual counterparts in the
zero-shot learning scenario. Specifically, we obtain
+28.9% (BERT—mBERT), +21.5% (RoBERTa-
base—XLM-R-base), and +23.4% (RoBERTa-
large—XLM-R-large) improvements on average.
As expected, the monolingual PLMs yield high
accuracy for the source language (English) but
cannot maintain reasonable accuracy for the tar-
get languages. The multilingual PLMs help allevi-
ate this issue. For example, changing RoBERTa-
large— XLM-R-large yields +43% and +45.6% im-
provements for Japanese and Chinese, respectively.
These results indicate that the multilingual PLMs
are extremely helpful when the training set in the
target language are unavailable.

6.2.2 Effect of translate-train learning on
performance improvement

Table 4 shows the results of various settings using
mBERT.> When we can access machine-translated
data, our non-parallel training J,, works well for
most target languages. The type of regularization
functions or representations has less effect on per-
formance in terms of accuracy. As shown in Ta-
ble 5, we also attempt to combine prediction and
representation consistencies. While these consis-
tencies improve the accuracy scores with mBERT,
their effects diminish with XLM-R-large. In the
next section, we inspect the benefit of consistency
regularization in reducing miscalibration.

6.2.3 Effect of consistency regularization in
reducing miscalibration

We can quantify miscalibration by measuring the
gap between model confidence (conf) and accuracy
(acc). A common metric is the expected calibration

5The results of XLM-R-large are in Appendix A.
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PLM en es fr id ja zh  Avg
Monolingual
BERT 877 532 532 496 369 391 533

RoBERTa-base 88.9 674 672 565 403 377 59.7
RoBERTa-large 90.1 792 722 543 390 375 621

Multilingual

mBERT 879 837 843 826 724 821 822
XLM-R-base 87.7 837 813 819 744 780 812
XLM-R-large 895 873 853 855 820 831 855

Table 3: Accuracy scores of monolingual and multilingual PLMs on the test set in zero-shot learning .J;.

Model Consistency R en es fr id ja zh  Avg
Zero-shot J, - - 879 837 843 826 724 821 822
Non-parallel J,, - - 881 86.8 865 860 854 860 86.5
Parallel J, - - 87.0 857 857 853 798 829 844
Pred KL 874 86.1 857 856 814 841 850

J 869 857 856 858 817 839 849

IS 874 860 858 859 817 842 852

Repr MSE-feat 874 857 86.0 859 822 851 854

MSE-penu  87.5 86.1 86.0 862 824 844 854
COS-feat 874 857 858 858 83.0 843 853
COS-penu  87.1 857 857 857 822 841 85.1

Table 4: Accuracy scores of mBERT on the test set. Pred = Prediction; Repr = Representation; feat = feature; penu

= penultimate.
Consistency (R) mBERT  XLM-R-large In Section 5.1, we find that our prediction consis-
_ 84.4 88.3 tency contains the negative entropy of the predicted
Pred (JS) 85.2 88.1 distribution, which should help mitigate miscali-
Repr (MSE-feat) 854 88.1 ration in th nfiden nal Perevr 1
Pred (JS) & Pepr (MSE-feat)  85.3 88.0 bration as in the confident penalty (Pereyra et al.,

2017). As shown in Table 6, the symmetric di-
Table 5: Additional results of parallel training .J,,. vergence measures, J and JS, significantly reduce
the ECE scores because they encourage the model

to output high entropy for both the original and

error (ECE, Naeini et al. 2015): translated examples. Although we observed slight
differences in accuracy among our regularization

M B/ functions in Section 6.2.2, we would prefer a model

ECE = Z ]\; B;) — conf(B;)], having lower ECE (i.e., better calibrated) in prac-

' tice. Thus, we suggest applying prediction consis-

N B tency with a symmetric divergence measure (J or

aCC(B'L) - ‘B | Z yj JS)

;= argmaxy <y p(yj |z j)7 6.2.4 Performance comparison of human- and
machine-translated data

conf(B;) = 1Bi] B | Z Pj» So far, we have used machine-translated data to

Jebi evaluate the performance on the target languages.

pj = maxy,cy p(y;|z;), We now examine whether there is a performance

disparity between machine- and human-translated
where Bz is the set of examples belonging to the ’L.th data because we expect to app]y our model to
bin. human-written texts. We experiment with the test-
R —— 6h set, where a subset of 600 examples from the
*We divide the conﬁdence range of [0, 1] into M equal— . p ]
size bins, where the i bin covers the interval of (11, i ], original test set were translated by both machines
We set M = 20. (DeepL) and professional translators.
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Model Consistency R en es fr id ja zh  Avg
Zero-shot J, - - 60 85 79 92 146 86 091
Non-parallel J,, - - 49 52 52 54 42 50 50
Parallel J, - - 87 75 74 77 76 62 15
Pred KL 34 52 56 58 84 64 58

J 1.5 24 27 26 53 41 31

JS 35 31 27 28 41 38 33

Repr MSE-feat 81 83 79 80 76 67 78

MSE-penu 76 72 72 72 65 63 70

COS-feat 87 86 85 82 77 73 82

COS-penu 89 81 80 82 80 7.8 82

Table 6: ECE scores (lower is better) of mBERT on the test set.

Scenario PLM Trans es fr id ja zh  Avg
Zero-shot J, mBERT Machine 83.5 83.8 823 743 825 813
Human 835 848 815 772 83.0 820

XLM-R-large Machine 852 833 85.0 81.3 835 837

Human 838 842 833 837 82.0 834

Translate-train J,, mBERT Machine 872 858 872 835 858 859
Human 875 86.7 862 820 848 854

XLM-R-large Machine 86.8 86.7 87.5 862 872 869

Human 86.0 87.0 855 877 847 862

Table 7: Comparison of accuracy scores on the machine- and human-translated test-6h set.

As shown in Table 7, the average differences are
only around 0.3~0.7%. We attribute these minor
discrepancies to DeepL’s accurate translations. Our
results suggest that translate-train learning is effec-
tive when we can have high-quality translated data.
Appendix B shows examples of the machine- and
human-translated texts from the test-6h set.

7 Conclusion

False claims can spread across languages. Iden-
tifying these claims is an important task since a
number of online claims might cause harm in the
real world. Existing benchmarks for fact verifica-
tion are mainly in English. To address the lack of
benchmarks for non-English languages, we intro-
duced the XFEVER dataset for the cross-lingual
fact verification task.

We presented a series of baselines in two scenar-
ios: zero-shot learning and translate-train learning.
For the latter scenario, we explored various regu-
larization functions. We found that translate-train
learning with high-quality machine-translated data
can be effective. In addition, consistency regular-
ization with symmetric divergence measures can
help reduce miscalibration.

For future work, we plan to investigate a scenario
when large machine-translated data are unavail-

able, but we can acquire a few examples for train-
ing. We also want to expand XFEVER’s human-
translated data to cover more languages, especially
low-resource ones.
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A Additional results

We conducted preliminary experiments and found
that the default A\ = 1 does work well with the J
divergence and XLM-R-large. One plausible rea-
son is that the J divergence penalizes the loss more
heavily than other divergence measures. If we fol-
low the proof of Theorem 1 in Lin (1991), we can
obtain the following bound:

1500 | 9) < 3 | ).

Thus, we heuristically reduce A to 0.25 for the J di-
vergence to alleviate the issue. Tables 8 and 9 show
the accuracy and ECE scores of XLLM-R-large on
the test set, respectively.

B Machine vs. human translations

Table 10 shows examples of the machine- and
human-translated texts from the test-6h set.
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Model Consistency R en es fr id ja zh  Avg
Zero-shot J, - - 895 873 853 8.5 820 831 855
Non-parallel J,, — - 89.7 887 884 884 881 88.0 88.6
Parallel J, - - 89.7 885 87.6 887 874 877 883
Pred KL 893 884 87.1 884 868 871 878

J 80.6 885 877 888 87.1 877 882

JS 89.7 883 874 884 871 876 88.1

Repr MSE-feat  89.7 884 875 887 87.0 875 88.1

MSE-penu  89.7 885 87.6 884 86.7 877 88.1
COS-feat 80.5 884 876 885 874 875 881
COS-penu  89.6 884 875 884 870 876 88.1

Table 8: Accuracy scores of XLM-R-large on the test set. Pred = Prediction; Repr = Representation; feat = feature;
penu = penultimate.

Model Consistency R en es fr id ja zh  Avg
Zero-shot J, - - 88 106 124 124 151 142 122
Non-parallel J,, - - 6.0 65 66 69 59 6.5 6.4
Parallel J, - - 57 53 53 54 37 46 50
Pred KL 24 40 50 43 4.9 50 43

J 36 44 45 44 42 45 43

JS 26 28 29 28 31 27 28

Repr MSE-feat 4.8 4.8 5.0 4.9 3.8 4.5 4.6

MSE-penu 55 5.6 59 6.1 53 5.6 5.7
COS-feat 53 54 55 5.7 44 53 53
COS-penu 5.8 5.7 5.8 59 4.7 53 55

Table 9: ECE scores (lower is better) of XLM-R-large on the test set.

Language Trans Claim / Evidence

Simon Pegg is an actor.

English Original He and Nick Frost wrote and starred in the sci-fi film Paul ( 2011 ).

Simon Pegg es un actor.

Machi p
acmne g y Nick Frost escribié y protagonizé la pelicula de ciencia ficcién Paul ( 2011 ).

Spanish
Simon Pegg es un actor.

H "
uman El y Nick Frost escribieron y protagonizaron la pelicula de ciencia ficcién Paul (2011).

Simon Pegg est un acteur.

French Machine Avec Nick Frost, il a écrit et joué dans le film de science-fiction Paul ( 2011 ).

Simon Pegg est un acteur.
Avec Nick Frost, il a écrit et joué dans le film de science-fiction Paul (2011).

Y1EY Ry JiE, ETH B,
=w 7 - 7BANEEEIZSFIE [HR—)V) (2011) THAL EHE2HD -,
Simon Peggld & T,
% & Nick Frost!l&SFILE [Pauld (20114E)DMIAZEE, FHE L TWVWET,
I . (e RSl A In g
Chinese  Machine 3 oo s mbeim B3 08 TR () (2011)
ey PR R—RA ‘
i JE 7055 B B (Nick Frost) ZERIZJE R (FRE) (2011)H HEALSm I H £ 15 .

Human

Japanese = Machine

Human

Table 10: Examples (claim and evidence) from six languages in the XFEVER’s test-6h set. Machine = DeepL;
Human = professional translators.
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AR AEBREZFRFER TR (2) R
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EREREARE SR L o3RRS
PEFRAMOFTREARDE  EERT
P F LML o AR RS - KM
BRI R WA HER L REEEE T o K
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1 Introduction

HETHARAZAHEN O FRZ— Ad
b E A A AR T M — B F - TR
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Bl - R AL RERE R Z 0B TR [
Ao BB RIMBEBEELENETHE
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g o

AL XS B R FE R HHE A GR
FHAEUT OEIE .

o BEAEGBCEEIRHFEREA > £
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A AA R0 3 F SR H LR T 4
R o BARAFERATE B Al M EAE o
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HF o S F 2

2 | Andrus et al. (2022) BB TR A > AN
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WENE AR5 A A S AR XA
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2 Related Work
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3 Method
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PR ARPTAR B G 5 7] o
BERHEFLLR D> KMAEHAF A Ope-
nlE EXATZEGHBRIFAFT A
4 f = (subject,relation, object) > 3t T4k 4]

13



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

@ Agent

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Ay
@ Environment R [ Dsep @Leamning
t
[ ( S: 1 f f
[ Dialogue Evalution Entity Compare T T
candidate § |- (:andidatefc

r E—

] [ [ action; ][ actiony
[ f J

A -/
‘ Story Outline Dialogue History Knowledge Graph ‘ +
o e e
@ Story Infomation

Figure 1: J&F #&1L%

T %9 sidx> AEBEAFwREZ G =
[fo, f1, -+, fu] © YA [ After a time there was an-
other feast, and the Many-furred Creature
begged the cook as at the last one to let her go
and look on.] Bl » R&jsER A AR «% £
AYBRER—ARBREFRE LA @—
HEZRAZLEATER  FTARHEZF ~ B
B~ HBE AR LA AR 2 B R Se sk o BT
#% &7 ] &7 B [many furred creature, begged,
the cook] ~ [many furred creature begged the
cook, adv, as at the last one] $ [many furred
creature begged the cook, arg2, to let her go
and look on] = FE =14 HEUF GHE
ER B 2T T ©

! It happened once when a great feast was being held in the
! palace, that she said to the cook, ‘Can | go upstairs fora
‘ little bit and look on? | will stand outside the doors.’

Sentence idx: 63 [

"After a time there was another feast , and the Many-furred
Creature begged the cook as at the last one to let her go
63: begged (adv)

and look on ."
many furred
creature
63: begged 63: begged (arg2)
to let her go and
look on
as at the last one
Figure 2: ## OpenlE #4440k B 3% #.5)

EEEL BEFEZLAHBRTHA (sub-
ject, relation, object) X4, A IMHLFTEk T %A
& F AR #($ 8 & G| VAR 3T AR I Ap 6G i
M4 o sboh s RMAEEBEETRE —ERE

B sk Bl HF R
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3.2 KREA

A AL F KMEA Deep Q Learning &AL X,
2R REFHERIEA RIE B AT AR RE
Sy BATHT RG4TE A BRFFEIRER
& AR 69 BB Ry %Eﬁﬁf&iﬂ/\éﬁ/}{% ° Sy e
WEETRLLERRGEE > 2 H AHFE
£ D = [ug,us,....,us] ° VARIEBHAERFE
%’i@g‘ A = [ao,al,...,ak] ﬁﬁéiéﬁﬁiggg
Cy = [ch,cl,...,cl] o BEUFHF LB Sen-
tence Transformers # %] s & — & [& # AR 2 >
FHRRBELTEANES TR - TLER
%38 Deep Q Learning % 1% & 4% F 6942 & &
%&W@&’@%Ek%&?*%ﬁﬁAFﬂ

?iemm o B HFRMNBREAHKE
vi“‘i_&{% LT R GG Rk o ?ﬁﬂ:““ﬁ?é\ﬂ i A
VX & QN

3.2.1 ek E A ERR
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S e

o ay: BEHR o
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"graph to text: [king, so could find out, nothing][king,
could find out, nothing][king, was, obliged] content: A
King's wife with golden hair dies and makes him promise to
only marry someone as beautiful as her with golden hair.
He searches far and wide but cannot find anyone..."

Figure 3: #%38 T5 B XUF R 4R B3] LA

"So the King was obliged to go to the palace
kitchen, so that he could find out nothing."
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BAWOEE R, > AREHENREZA -

Score, = S(P,H) + EC(U,G)) (1)
R; = Score;_1 — Score;

3.3.1 HEELIEH

B THERFLEHBEL I R &N
FEAF e R AT F R ) R LRy
TAR RN —EHFELB@EEEARA D
FRAEMF LM AGIFIR o A B ATE A B
MF LR HEEHETREA » R&RMEA
ChatGPT #A B3 F 4 Ris £ HF 09157 X
RERIEEE » A RBH T T AR AR
FAAHZOEHE > IR —BEHRFLAEY
ERLFEREA S B HEYOSE o
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o RIBT R KM ARG T — AR T
(Prompt) * 51 & ChatGPT &3 F UK 4 &
BEHRZORFEES - BT 7 REFRE > 4
A EE R VA JSON #6 Xttt » 9174 ChatGPT 8
AR % Rt Bl —18 Prompt T E A AR
[l 89 4 R o

Input

<|Plots|> = number of plots that you want to
generate

<|Story__text|> = story corpus

Prompt

Please summarize the following story by outlin-
ing <|Plots|> plot points in JSON format in
order. (example: [{“plot_id”: 1, “plot_point”:
first plot point}, {“id”: 2, “plot__point”: second
plot point}]) Do not provide additional informa-
tion or comment.

<|Story_ text|>

Table 1: ##@ ChatGPT A REFEHF T MR T
# X

A& A ChatGPT £ REIE T o % >
KAVH T A R B E B AT R R E
B EATREREYRIH T - B4 K
BRI T ZETURERFLM YRR
] s B AT TREECERF G T B85
PE o ARAE A e XM IR0 X B RIMET TR
% o

AR BB GRAFEBREOYERE
AR RPREERERES XL T RAY
NG N KA AR A X, 0 4o X2FT = B M ik
Bl EaBeg X A3 T EBS R T
AR B n BEIRE S |Plots| BREI
FTRHE o RMRBEKRA G LERFETBH
PR ARG HFRE T CHERRF TS
By A EAE R RGFE > AR » Rk—1E
Bl EE ey 88 o b > Bk % R
T IS AT LR sk AR Bl BE I E B E ARG 5
o

(—1.6x

n
score = e Plotsr) x9+1

(2)

score = 6(74X Plotsl) % 1041

(3)

REBRLIFAT LA —BEFEMA > 4o
Barr = KMEHEREL HPHFERADP
2 5| #r A48 F 89 RoBERTa(Liu et al., 2019)
A AR IR CLS 89188 KE -
BT REMEBREETEHE > FemMs
AB|— AP BT o R B —EAN740
Fo 10 Z B93> PR ELEY DT o
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Algorithm 1: Story Co-telling MARL

Data:
I =[(01,G1),(02,G2),...] Story info.;
O; = Story outline;
Gj = Story knowledge graph;
Function:
1 = State embedding model;
® = Candidate response generate func.;
© = Dialogue evaluation model;
= = Entity compare func.;
Training:
1 Initialize Agnetl and Agnet2;
2 Initialize Q Network ()1 and @9;
3 Initialize epsilon &;
4 Initialize replay memory M; and Mo;
5 Initialize environment Fq and FEo;
¢ foreach epoch do

7 foreach (0;,G;) in I do
8 Reset dialogue history D;
9 Reset environment F7 and Es by
(0, Gj);
10 t=1;
11 Score; = 0;
12 while (E; is not done) and (Eo
is not done) do
13 Cy < (D, G);
14 st {u(D), m(C)}:
15 at < argmax(Quy2(st, €));
16 dt — Ct [at];
17 Append d; to D;
18 Scorepq
©(0;, D) + E(Gy, D);
19 rep1 < Scoreg1 — Scorey;
20 Ciy1 «— ©(G);
21 st1 < {u(D), p(Crr1) };
22 Append (s,a, S¢41,7¢+1) to
Mia;
23 t=t+1;
end
24 Update Q1 by Mji;
25 Update Q2 by Mo;
end
26 Update ¢;

end

SRERBKMEE 0.0197 B A TEHEIRE
ARG ESZR s MR EEE X
{8 B 0.0299 » 2R L6 EH L3 T —
EEPHERE o bt s RIMEIFE TR R4
ERY AN B RN GE ERE

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

0.8313 » FLEA A AR RAn 36 B L 3PE AL A 40
hZ B A EAR R o
ROBRTTRBETRRGEIFZ A > #3E
JERFEREBLE R GFSE R L P s score
WAL R T THP —BIHEB FATsktg 8y
B mEBEHENTAR Y Label BIAZ A &
JRAR o FINB B H B E R A
HERBFELTARG ) EK - BRPRMGHEE
G EARAREE B EAT RS
STHEGHI - wREBIFE T FIFEALIL
FRMOBIN  HERLFEREAVL B0
GRHEEAK - TR —F AT KMHFEELT
REAE A 8 A SOk Ae FTATHE 0 B ARSI SR ] i L
FHMOEBLEHLLTEEOIHE o

4.2 HF LRI
EARABRGERT > RMER D X @ E 4T
TaRE I - AR XTBF > RMHET —
18 Bl & 89 En 4k ap > 3k & (4R B B IE 5 i
1TEE o B BT RMOINKRER » TUAE
FEABTERERTBIEY (IEnw) 2%
R EYE (2Bnv) » LA EAR D X
=& (Rule-based) * M % R ILEACE H LA R
1£ > AR ISR H38F LE A & B 4E R
Fo SRFBICE YRR =ERE
T # 3.8% ° # 67.01% A ZE 70.81% °

® 1Env 4 2Env = 2Env+Entity + Rule-based

0.8

0.7 ”ﬁ_,/,:
o
S 06
[

0.5

0.4

Epoch

Figure 5: 3 F i vA R F] 77 IR & R b

R S REABICEY 7 AR FL
WAEFE E 8T AT o A8 B ME R BE BF I IE 7 69
A XA =E » BMOHEA R E S REAGLZH
IR 0 LS B AT AR HE R . B AR o R B
WA REE o BAEMARMOBENRAHRER L
RN EE TR T HEY

S W F R AR o

4.3 WETR EEBHHFERIYE
R RAVIR TEAR A H36 8 & SR
B — 0 S S T4 R LR LS

17



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

turn | history score turn | history score

6 The Princess falls asleep in a hollow tree and is | 7.37 6 The Princess falls asleep in a hollow tree and is | 7.37
discovered by the King’s huntsmen. discovered by the King’s huntsmen.

7 The King’s huntsmen bring the Princess to the | 7.34 7 The Emperor takes Confucius’ shoes and | 6.34
palace and she is assigned to work in the kitchen staff as a joke, but the tablet’s warning
as the Many-furred Creature. comes true and he dies soon after.

8 The Many-furred Creature lives in poverty and | 7.79 8 The cock gets the garland and trades it | 4.82
works in the kitchen doing all the dirty work. for red silk from the brook.

9 The Many-furred Creature attends a feast at the | 7.95 9 The jackdaws and magpie eat the leftover | 2.74
palace and enchants the King with her beauty. pie-crust and gravy.

10 The Many-furred Creature cooks soup for the | 8.06 10 The Many-furred Creature cooks soup for the | 2.17
King and hides a gold ring in it. King and hides a gold ring in it.

14 The King and the Princess live happily ever af- | 8.02 14 The King and the Princess live happily ever af- | 6.21
ter. ter.

Final Score=8.02, Label=9.09 Final Score=6.21, Label=7.38

Table 2: WEABEEXFFRUGER - £FRBEFBHORHTEBLEORR » &F KB ABIF 2R

A E B BT e R -

+ EntityCompare @ DialogueEvalution
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143¥4& (DialogueEvalution + EntityCompare)
B BT A G A EE R T A 8 B 1E
(W B7) BTHBEELFERB P IIATH
B 7 R R ARG R RA — TN E -

4.4 ¥WFRKHATH FairytaleQA &I
A& 0 KRG KFAE LR HA 69 B FTAFR
AHE o —AET A8y 7 X AR A B2 R B K
FRBT TR EATA LR RA - Ht
AV R A M FR L ME T MR
(Christian Di Maio, 2022) #4T T E & o &AM
# FairytaleQA F B EGHFR LS RE
BERE VGRS FRERGRAA AL
WEF PR o
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RABRFO L L KAKE M4 » k2 tafife
ET 0 SEMAOEER AT EEN
Ao gbol s MEFRRMAT R LA —BIE A1
s BRARA B F IR 69 3T 4L R OR IR g B

EEAN % o

o

(AR

Train Val Test

F1 EM F1 EM F1 EM
character 24.11 | 16.53 | 27.33 | 18.69 | 20.41 | 11.65
action 11.85 2.19 | 13.64 3.00 | 13.27 2.54
setting 15.50 6.50 | 23.64 6.67 | 14.34 3.23
feeling 4.60 3.28 3.26 1.06 7.97 4.72
causal relationship 15.87 0.12 | 17.19 0.00 | 19.10 0.36
outcome resolution | 12.18 0.12 | 14.22 1.03 | 17.39 0.00
prediction 16.34 3.55 | 19.23 1.82 | 16.30 0.00
All 14.09 3.46 | 15.93 3.51 | 15.63 2.78

Table 3: #F 4 L KM T 4 FairytaleQA £ #5788
# T5 B AR

5 Conclusion and Future Work

LR » BIEF— B BEITRERLS
HeEdm s A G EEHEEREN s R
FHZ AR LKA FRSY o RMERHARE
MBI » BERILARFTZ LT — Bk E
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CRETEFTILFNETMEFLRES
FZAFEINRFBERAVLE SR B mREZY
BMAUGRE s RELEEFETETILS
LTI c KM FTEEIRSES
BB TR T LA EAE A i
BRERLEARHUGEEFEZLT I 3
Ak R AR KB R AR S
EHRBLTEFALFOEMFAL - HRK
BER DY EEEE 2 E2 LN
EEBAA ~ BRINR T EABGEAE
AOMERE TG RETRERET L
HHEERARAEEBETEPLLF
BERFEARA -

Abstract

The main challenges in Taiwanese speech
recognition are the lack of abundant and
publicly available Taiwanese speech cor-
pora, and the inconsistency in the written
system of Taiwanese. The former results
in insufficient data for speech recognition
tasks, while the latter leads to inconsis-
tent output formats and difficulties in inter-
pretation. Therefore, this study takes the
speech translation from Taiwanese speech
to Chinese text as the task, and builds a
speech translation model from Taiwanese
speech to Chinese text by combining the
pre-trained speech model with the architec-
ture of the end-to-end deep learning model.
Our method is based on a small amount
of Taiwanese speech paired with Chinese
text, and by collecting a large amount of
unpaired Taiwanese speech data, and de-
signing various algorithms to use a large
amount of unpaired corpus to improve
the system of translating Taiwanese speech

into Chinese text. The research and discus-
sion are mainly divided into four improve-
ment directions: end-to-end speech trans-
lation model, pre-trained speech model fea-
tures, iterative training method and corpus
cleaning. Experimental results show that
the above methods can effectively improve
the translation performance of Taiwanese
speech to Chinese text.

Mt sl AEE MR FERASY
EHE R

Keywords: End-to-end speech transla-
tion, Semi-supervised learning, Corpus clean-
ing
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BEA LA B TR L ARBAT
Fist » SHE A8 A BLesEie (B
$§/§F§?VX’§‘7}%%E{) ’ i{&j}%;}f/ﬁ;ﬂ_%
W3t > RBHIER KK (T
R) XA (THARERAE) 09384 o

=3
3
Ve

A
*

2.3.2 EZRE
KR 0 BEHAI > RITRRATT AT R
¥

1. 3EFERMAR : wF ENBZREERD
BIFET R B EB KK B EAR R
S BT TERTRRTFF
# A #& A 8 7 % > &£ RNNoise (Valin,
2018) & A# % & 3t RNN  (recurrent
neural network) A7 s R HFA4E A
A BB fE R > BRI EH B FAE - W
KAV T A& R R sk S TN ARAE A VA 5h >
BlEFLA RV EEE A S ELSRE L
EHE TR BRAS TN AHRBE
AT o
2. EETHE T EFR YR ERFTEH
PIEEET R  ERERENE
FF o BEAR R AL B B AF AR RN
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REEEFLT 2R L REHFKEDES
HOEE 0 R AEH S BRI ST MG
b RAEAEPIAEERMEES L &
BOKRE AH A — 3 9 LB BT P UK
FLFRLMFEZT o ZEREARTARA T4
AR o A RAZ LT A R4 -
H b o RAVEBINRE S PR > BAR
WA PR B FHAHAY > L3t RFHb
BlagF A s RAIBT—EMAGEFTH K&
BB 0935 o

3 EHENG

AEAHXAARAA RN ETHE &K
BRAAZEMEFRAEAY G RME G FZEA
% TAT (Taiwanese across Taiwan) A& TAI
YouTube » vA % J& M 735t 7 2 #9 3€ T Lib-
riSpeech A#F%& » AR ¥ L4 Common Voice
Chinese ##t% ©

3.1 & EA%E : TAT (Taiwanese
across Taiwan)

TAT (Taiwanese across Taiwan)(Liao et al.,
2022) AHEX—EEENFAHMHE 5
FTARFRAEEGLL R BTHEEGHELTN
SR WERA EGB LT R IEFY G EE
F oo H—RGET R 6 MR R A K EEAT
W A EES LA 108 £ E A Android
KEFFHM PHAK TR IALENS=
RAZE L AAw 8 F #75 © TAT AR S st
THA KRG AR KEBOZTETRE
& EE T PERAT A AR B HoAT A A o I BB
M A& 2019 £ 2022 F » 4834 600 12354 5
e R Bl AR M A F N F R
& & 300 B B 3 BEHE 25
& TAT-Voll 50 B ~ TAT-Vol2 50 8§ 4=
TAT-MOE 200 NBF o
REEHEZEZEAEEILA FRERAE
LSBEBETEPIXIFHEMFMLEGOKK
F st & d TAT-Voll A ERE 4 b aF 2
2,452 & 89354 0 BITALHZRA T ULA ©
3.2 &% 4% : TAI YouTube A4 %
TAI YouTube F#t % & KM A 4T A= 32
MEBEHE  AAMNEORER A RME
@ —ARERAAINREEZTIFRALY
AZeEEA ) KPR RXE EEEFTRHA P LT
Ay —RKRERXERZZO®EFZTETEH
ARBZGFEETHBEATRO TR -
EAEGMET X BAAREBTETFE K
EMEGBRHOREZTAL » ADREN TR
BAN»EBEEFRAR LT RRE HALE
FROY K RAVH RN F R BRI
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Table 1: TAI YouTube F# %3 tm

FHELR | BE (18 | THaR | Bahs
DaAi 40 + YouTube CC F#
PTS 40 il YouTube CC F#
Taiwan-mystery | 40 P YouTube CC F#
Unsupervised 2,000 & N/A

HEEGNER B TELAGRIE 2. B AEATAKRT LA dfe A ~ 9 Fho K

Ao HABRAFROYR > RMAETRAE
FAG > B RBEAGRERD GEFE AR A
(Voice activity detection, VAD)(Pang, 2017) »
HREBEAARFEES 12 D RAEGFTA
REIRA & EIE SiElE &=y Tl L e
A o

FA R £ 2R/ YouTube F & o &AM
YouTube T# T &XERFHTANE > X
% EME (DaAi) ~ 2AREMRE (PTS) UAK
AERE (Taiwan-mystery) o iz 24818 H &8
ERANFAY G R RBE ~ #RER NS BH
BHEFREFPRAAPILTRES @
ARAEREGLFRE S - b > KM RZ
METERFHF T ARG EH > BEFERYE
2,000 NBF > tm P HE Ao R ] o

3.3 XL E#t% : LibriSpeech
LibriSpeech (Panayotov et al., 2015) & —1&
FRYGRIGETHREANE > €SI AT
Fo R—EHEEETHFOEHE AT EL
F£HH 1,000 BF Y KB EFE - AT HBARE
B 16 kHz °

HEARGRR EZEE LibriVox ££ 0 &
EREAEFHOEE®HE - BTEL Lib-
riSpeech AH &> St RABHEBLH EF Y
BATT Rtmy ~ ¥ESHORE > Té W
B\ o R RAEN 10 ELEHTARABE &
AT T UAARE o etk 09 R 7 XA AT Lib-
riSpeech A& B T —1BF A 89 EAH & » H34EAT
RIETHREHEFAA o

3.4 PXEHE : Common Voice
Chinese

Common Voice(Ardila et al., 2020) & —18 &
Mozilla #L&&E A8y MR TE » FAAZ—E
THEMAE R KA S B ZHTHHE -
ZEMEIEREBERBGBTIRAER
EZ R A IR B E 5T PRkAa AR F5 &
%, o Common Voice BA & 6.4 T UTHE :

FHECLROERSRTAE
%k o (A3 ST B AL 0

AT T BRI T o

1. %33
T WET
el ary

AN

EEHE  RUEFBFTHMBRE RS0
A Bl 3 M o

3. PR AOEME: FHELERA TS
B~ MR S o F A ROAFERA A B
PR EFBETHRAGH S TSN
By ILARAE ) o

4, BIEERFE: B AL S ARE » ERE
TR EHEEFT EE -

5. BERETE: BT RARGKERT
B% > Common Voice #4t4¢ £-F & 44% A
FEAFUAR N REEFE B R
KBBFEE LB AR A& -

KA £ %4 1 Common Voice TH £ 8
P LERY AN IRF L R YRR
BAT 5 18k BB F R R093E 4488 2000 A
WEFHEKE 120 1B o
4 FTHRIBALHER
4.1 W EER
FHRACH BT E S RRERRE R RS
Mo AAEATFHAIKXLEL  BilANFS
RAE o B AR THE AR B IAL 4R
REFREREG > BTRMFARAEE - F
AERACRIZ GRS Tiaia T8 » A
BB &FNRITFSF » B KRR TRREBGHAE
A ARAZ B E A SR A ME ST 0 BPAEFHAE B OE
HELEF 0T 0 B BAE R FEEE 0 AR B A
ESE

BT A kin A > RAE BARBUEHIL R
%o B HARF—EEAPLFEAT 2
BT A F P LFT AR —EHL 0 L
ERFARBRZARAT LFMFLRE - M
AF & A R RV F RF R 0 e
& 20 VISRl & 697 k4t B — B R a2 4
3 o i3 AR T ABEAR AL F4E B ] &35 A UE Bl 40
Bl 694 R > B miR a9 BN o

AR EFA T Taod] f2 TEHAEL R
WHB AT > THRAGSUEHR - 124
HERAERACHBE  TEAHLELRR A
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Table 2: Fl &7 & #4

ERAET | EFICE
AR A
fit, =T VA
A %F
o Yz

BRI T o #HARH AR B A A — R
FELR RLRAAANYE o

4.2 FEIEAZ

At RIX A B FHE4E12Z L CER °» % CER 8
HAEAAK > R ARGEH P AR IFRSE R FHD o
1A CER B » BAMTARILE I H7E -
/TS AMABOFLEA > D AR L
GF AR 1 BEEANFLER N KL
S E I F LR B A TAXGFE

S+D+1
T (1)

BLEU (bilingual evaluation understudy *
HFEAPIFA]) (Papineni et al., 2002) € —
w3 EAR  RERR BB L ERESN
FFOFLEWMFFTIRHN n-gram KER
HE TUREAEREMFRLEMFIMY
AR o BTG ALK — 1o gRKE > B
% BLEU $ CER 89 £ £ (Lin, 2023) > ##RH
HEHEAM > wB 3> % CER £4 £ A1
Ao 5y RFE O > FLR & EE{E R CER
kB &84T -

100

75

50 &‘

BLEU X 100

CER

Figure 3: CER # BLEU W& &%
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4.3 TRER
4.3.1 THERHE FHEZE
TRELBLEARABE TS B 0 &
Fbank » # X & £ 3% 42 A0 4y th 89 4% B £ 47 9
B BTRERW R 377 > £ FH%RT Whisper
(large) B ik A2 H ol > LABA F 28
EEER MR o HERLE R T AER » whis-
per (large) 89 F %% £ # 5 60.8% > A Ktk
Bl KA LB A RAF LR o mAF whisper
(medium) A & 35 35 # 3 4T 78 9 & T 12
HEFE 404% 0 T AR BB ATEH A
B B A R b B o R b AT T AR
#% s LRV Conformer RIRAE » FHFE
£ 40.0% 5 # R KA Whisper 3 £ 89
JRATEREAIREAN TR S » BlRALER ]
0 LB B A 0 AZURFR A 0 RAVBRE
A E#R > #3F Conformer 15 & T 2R o
R A EF A A RE L £
8y TR A Conformer ° &AM T ABLE
%] » WAV2VEC 2.0 A Fbank #8930 R #1% »
B 43 TAI YouTube #&4%3% 69 2,000 /B35
#I4 Taiwanese-WAV2VEC 2.0 & » £ &3
RAEETUHTE %K E > B LR LA
FINRB RN RRGEREAINGR T T 2
BBLTHRIET  FEREFET LAY BH
B AR EATIIAR o BBAAEE G R LGE
T RERALRRI  BAEITH BEEIL
EmBHBARBEFAREXR BERXREHE
BES o R AAETRENEE > £
EHETHRT » BRTUARE S EERAY
WAV2VEC 2.0 #47 ©

4.3.2 FEHEERIR

ARG B OEZRRFERING T HA K
e VAR AR ZE B A 0 PR 3% 2 H MR A PSR
ASEZ ENGEIE &3S BT acE Tt
# o0 53 A A B AR E A 0 100
200 F= 400 B o

B AR 2 00 & R A BT TR AT R
T B 2B AL > 35 AL AT R Ak D o 34 B
HEEET R > ARBETETRERA
A 0 4 A Chinese-WAV2VEC 2.0 £ 5754
HEanRE > BEEASRE R > T #HE
AR EF G AT @A AR o BRE R R 55
A, o AT BARZE ARG T L H B BE PR
B0 VA 200 NEFEGIRIE E R A REE R 2.7% 48
HUREAE o BYSAALA & KTARIFE
WBEZEBRA YA RERAHRE - R
PRIGBAFEE 400 B FHBERILA L
g8 P A EIRE AATEEHER—T
REHH SRR B AN £
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Table 3: L7458 & Fbank B 8 T 24 A 2 48

TR EHRALAT CER | ERILE CER
Whisper (large) (Radford et al., 2022) 65.3 60.8
RNN-LSTM (Graves et al., 2013) 58.9 50.8
Whisper (medium) (Radford et al., 2022) | 56.5 49.4
Transformer (Zhang et al., 2020) 55.4 43.9
Conformer (Gulati et al., 2020) 52.0 40.0

Table 4: 7 Bl L#43#0F 49 T % Conformer A% 2L 4%

LA AFB EFHAA CER | EHILE CER
Fbank 52.0 40.0
WAV2VEC 2.0 50.0 36.8
Taiwanese-WAV2VEC 2.0 | 49.8 35.5

FHog 7 ik R R EDNERGEHR 0 AFER A A F
ey md

wa B ©

Table 5: T {k3% 54 & 69 8 A 248

Pk¥ger | EHALAT CER | EHALE CER
0 50.0 36.8

100 50.6 36.0

200 49.6 34.1

400 49.4 34.9

4.3.3 #=HF®

Table 6: RE FotH XNAIREEH T HERILK
CER

Ao AN\ EFEC [ 200 | 400
F 34.1 | 34.9
EEER 33.9 | 32.9
LM 34.0 | 34.5
SR 34.0 | 344
LM+SR 33.9 | 34.1
VAD 30.7 | 30.6
LID 31.2 | 31.7
VAD+LID 30.7 | 30.0
BITEE TR BHFREGOER > 7|7
A6 MERERTURES » B FRAEH

G EE TN IRA R EMCR  REE@
D 23 09 2R T AMS R RGE R P R — B R &
FAEE RN ERACYGKFE o AETHEA
(LM) # 3 A &35k (SR) @67 @ > KA
AR R A AT LR R B A T e R 0 B
PERBEBEARLLE T BE S HE
12 E A R4 222 et ik £ 8 » Rein & &
H Aty F Ty ik o

M AR A T 35 AR A (VAD) A REE
PEak (LID) 097 b A& > T AR B E03F 69
BOR 0 AR 200 ANBFFe 400 N EF ARG S
HoF o A BB EORE > L PEFEERE
B BOR LR S Pk AR S AE4F » A RiE s
FEAE 400 PR EETRT 0 ERKEA
WA ML 5% A A RRE o R EES
ER R B FHAERARARYE SRR
BE2h E Mk E A b IR AR 6 B AGER » IR
IR FTAERIE S ARG o s 353 PEaRB R
A EMFER BT PR AR RSB P R

XEAREGFZ T T > RAAEMUBFLA -

5 &R AR TAE
AR T GG EEERRETE M E A

1o AT EGEFEF AT UUAN) RHZEH B
Aut s FBRKERLEMARKEEFZTAH Rt
A E IR o AR F TR £ 408 5
SHREZRBA S JREKEEEFEFTMER
Bo B RAR S 289 B3 Bk 55 SRR ALA
FAIRGEF R - FEFERINRS EA
BEMFAOERES G c RETRER > &
ol Ul R s G R e
E o

AR KRR T E 0 IR THEAEF RS N
A7 % A HE 8 Bl ZX AL 0 LS A Whisper 3
AR S AR 35 5 AR AR AR >
TP AR A B AL A AR RSB AT g BT
s gk s AL T A A K A2 I BERTScore(Zhang
et al., 2019) & Sentence-transformer(Reimers
and Gurevych, 2019) ¥ & 4 2 31| & 69 4 84 B
2R B AL IR e A B B AR 8 S
HAZ ERAKRE-ZFTHERE—FN S
B RAERARZTZHETROMFLR
RARI A T AR 693214
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P EIRERAS AL

¥ %% Cheng-Hung Yeh
FRREEAIARL A
yeh110522095Qg .ncu.edu.tw

HE

A B G #eE (TOD) A % B %38 4
WE 2P BEANRBAIRTNE - 8
*4& M Wizard-of-Oz (WOZ) 7 k#4735
M E - BBARAT HIZ AR E(RE
B EHEEN  Rm o A WOZ # ik
HEERHAELARZTHIEAZ LY
EPRAMEME B Y EERAHES
HHBFEARGRE T HEEH o AFFRIRE
R EHAAEARIE ) messageSGD FA £ -
#1 A Schema-Guided Dialogue (SGD) &
HHFEYER BURRABETAS
iR FEA R AR o A IR AAE TH
#% A Fo Instruction Prompt & & NLU ~
DST ~ DPL ~ NLG @ 1{BA£ # & » 5 5]
# %] 91.36 ~ 80.08 ~ 70.54 & 78.18 #9 F1-
Score ° E @ AR 0 KA UI T TR
RREIHIEAL T REEASGH
HRABEE Tk o

MSRTE © £35S G338 A4 ~ SBHEM
Keywords: Task-orient dialogue, Corpus
construction

1 Introduction

Ei#E ERGEARBEHFRAEORBEAL
(task-oriented dialogue systems) * VA ¥ B 7 A%,
HEAEFS o Bl RAEACIEFAZT (Seneff and Po-
lifroni, 2000) KA EA & (Raux et al., 2005) °
M EE B AR R R L E R > AT
5 R R R AR R SEAL R 6 3 A LB AT AR
AEE o

EHEaHFELG LA BB EHFELR
#. (goal-oriented dialogue system) * E 23
WA R B M6 A RFEST R AAPITH L
# o &4 (Chen et al., 2017) 895t 48 > %
FARARLFEEMARZIHOHEE  £&
A MEAHERIS  RIK 0 A4 A R
ANBEEE - AAEFEaHEL LML
BRI B v B TAEF R MR > BT - A
AR7EF M (Natural Language Understand-
ing, NLU) 47 4% 4 89363& (utterance) »

7% #% & Chia-Hui Chang
Pk REXANILELEA
chia@csie.ncu.edu.tw

T iz e s E RAZE (intention) ° 36
A& B HE (Dialogue State Tracking, DST) 2l
sk NLU B o Hes B A HEF
8 E R (entity) #4544 (slot value) » ¥AF
TOD A &A% R & PTI% 2] 69 KRN BT A B
AT EH o REFAHHFERELE (Dialogue
Policy Learning, DPL) % B %353 4 & (Nat-
ural Language Generation, NLG) # &4t )& =
1Reg &R R BB 2GR R% (policy)
XA RFBZERELAE A E -

User
Actions

Inform_Intent
State

T

Ea"r:gu':;fe”'a' DST: Dialogue
U . State Tracking

DPL: Dialogue

date: SR
time: FF=#

API I31

General tion earnin Failure
Offer_Intent

AEESXTF=MAEZNG?

NLG: Natural

RE - BEHIRTEE?

Assistant
Actions

Figure 1: 7% % &) A L R4 E

7 4 % ChatGPT A InstructGPT(Ouyang
et al., 2022) 898 > KhgMiK T 2B #55&
RAIRE > Wi T HESEH T a5 8H
¥ #7% (Open-domain dialogue) #93E & o %
#@ K &6 LA FTHF RLHF (Reinforcement
Learning from Human Feedback) #4734k »
ChatGPT #& % Aoty T 4o AT ARIEAE B & 69 3y
A B FOEIR o BT ARREH e
%% HIMER APL #) KA > ChatGPT AL £
T EaEMEGIBAEX (Plugin) > ARET @
L)X EATES) o

A LA # 5] 2 (Schema-Guided) 87
NEFEEHHEE (machine-to-machine) &
HERE > RBT RAFROHERE oot
# % (Dialogue Simulator) & Hik 69 & 4
o MARTAR R EF A REE 242 Ko Hes
BHZERG BT o 4o AR 7T K g AR ZEAHE 22
LB E R AR A o
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BBy &M A T5 (Text-To-Text
Transfer Transformer) (Raffel et al., 2020) &
ERRR B 1w EEM » BELSE— T
BHE ARG o KM B TAE LB 401 3509 fF
M REIE B hORAEA B —F R o RME
FEZEAIREE AN TR TEE (Prompt
Learning) °* &4 A AR X AL 5 809 & &
RETRRFelTH EA AT WY - B
HEELEHRGEEBOLEH L MEALERTY
76.03 + AR 2 AT TR I 2] 83.36 ©
#3354 R P 49 BLEU-Score .48 25.89 % 7+
% 3243 BT Ae R MR B BEHAHIZ AR
AE S 2 S5 B AR AR 69 AR AT 0 KA E I e in-
context K3E DST 89 &#EZH# 41.65 =AZE
51.69 °

BRI GEE W ChatGPT Heik M4 & 8%
Bph3E > fady M8 A 2R F B AR B A R 8 F
##F (tokens) RFE » HERPTRELEH
BT 09 B8 R A o R iE 8 A $if e
FE R MR RSN JRERHE G
HERAGM AR T EBHERALGFH RRA
B EEH X o AFFRAE T I Aol SR F
ARG Sl > AR RS — A PR s AR
Pk BRI HEEEA ) RS BEBHGE ALY
B P RO A o

2 Related Work

% A B A 3 & T L 9 & Machine-to-Machine
A Human-to-Human =—#2 3¢ & 7 X o i =
AR EFRERBRAETOARLZDHRER
¥ o £ Human-to-Human #3334 3¢ & 7 X
¥ s Wizard-of-Oz & B 7] & & R AT 7 ik o
71 /£ Machine-to-Machine &4 % & 7 A P »
Schema-Guided Dialogue Bl#4 & 2 4% B A%
BRI EA BATEH RS o AFHH Wizard-of-
Oz #= Schema-Guided Dialogue w2754t 3, &
7 ik 0y R AT A R ST o

2.1 Wizard-of-Oz
ETZIEHTaHRFENHEAZHE @&
* F 1% A Wizard-of-0z(WOZ) 7 % (Kelley,
1984) c BHEF ZFR—ABEEEAE 5
— AW EABA G BATRH TR AIERHGH
3 K EABHENZEF - RTEE R
ATIS (Hemphill et al., 1990) » F 2~ AL 3t 0 35
W MRALH o & R B E) WOZ2.0 (Wen et al.,
2017) L T BB TAL G IEFS B4 o EAZE S
W AR FEEAEHEREREE » B4R
WHFOHE  BERBLBHETTHEHES
HEat g0 Rt - (20K % A Ae AR A3
g IR A o
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B 38 e s 09 A A % A M Multi-
WOZ(Budzianowski et al., 2018) & T #A 4L
8 77 ik R IR B A o MultiwOZ 1& A A 744
MR8 7 RN, 0 B A FoR R RS b e A RAE TS AL
oo AH B HEIR A B TAF I R E LA
ot BAR o AR A & A & 09 A B AR A A9 1E
HEATHE S MALA COREAR LA
FHERET T REALERER -

MultiWOZ &£ T ¥ ta 69 1E 75 F5 3 » AL 435
EHE AR MBI RA BT R A A HE
IR o AR o w7~ MultiWwOZ 4 B Amazon
Mechanical Turk # A TAZ30 » 2o —2 K
13 2R B 2 B A8 o B b > CrossWOZ(Zhu et al.,
2020) 24 T P L HEEAH - 1B A IR R
2RHEERARE > BB F R HEE
PIEAE AR LR o VAR 4 B
TXEGIEAE > R T HEAR R R — B -

(E& % et al., 2022) £ A Wizard-of-Oz 7
N 5B CrossWOZ 817k LT mes-
sageWOZ #BAt & > WwB2PT = » LR T f#
P E RS A HEEE R S K o AEH R
e T HRETHE S ATFE @A =
B 6948 ] B g #es o KRB FHAWMLAZ A
B —AEEERAEREER > 7 —AWEEY
WRAEAER - PRAERBEIZREER s
P& EA R BOLA KRBT EHER - K
AT E B BAZ TR o RAMTMEA INFORM ~
REQUEST ~ SOM ## SELECT 4 #8474
HEAT AR » 5] AFEAB IR HEE o S AR T AR R
Fl 4248 B 69 4% 44 o

[

Goal for Client

Assistant
Database

BRESKTF= !
BBEEEIE? ' TL ‘
ook up

v
Utterance
(—
Response
User Client Wizard Assistant
site site

Figure 2: messageWOZ & #F3% & 7 ik

2.2 Schema-Guided Dialogue

B TR HEZHGZZRA FARARY
ARTHREHBEG T & o BRIy HEAHE
RIL AR A R AEAL AR A 30 Ao B 3L 3% 69 A
& TRAFTAEFHHE o HERETUER
BRENREZ Y RBIREEETEY o Hldo >
M2M(Shah et al., 2018) #| /i & FHLAE RA= £
Y FE (self-play) & 2 H3ENKE - A4
Bfs BY B b b MR E P SURBA R 0%
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3 o Sy KA A B (schema) FARIAG
1z (slot) Fo A& 44 (slot value) » 3t M 48 44 [ 4
ARG NTRR G HE AR £ R P AR
36 o &Kk > BBF & (Crowdsourcing) #9 7
AHHAFETALIRG URBZLETHE -

A — A 7 % &4E A SGD #F# (Rastogi
et al., 2020) > BE—RHFLFZFTHEEF K
9 Schema-Guided Dialogue # X & #35354t o
SGD Z B Al ER K EHHEEH > &
S EAE AR K E R R - SGD A A
#t & API(Application Programming Interface)
BB AR Q2R - EE A
& o SGD 1% A A # % 8 HH#& (Probabilistic
Automaton) 1E & & &AL A & - G HER
# £ (Dialogue Simulator) » 4% F #3& K 4
Ao S BEA A BT o mAAKRME LS HHY
G EE AR A2 SGD TR T #H3EK
e F B 89T SR o

KM HE I Wizard-of-Oz ARAHGELES
BRI THE R API LR o R
R REFHEATEE > ROF LA 8 BAReR
2> Ak kiR E@AMRGITE  LEEY
AT BAZ AR E T o BA LM E R > KM
g Bt Je AR R 4R R 5] R 6G 7y KOKCE SR 8 AR B 69
JRF » Z T messageSGD #91E 7 F & #35
Bt AMAZ A BRBHREG A HiZe s
ko RARRREIBHEEIREZENHFAR
#, o

3 messageSGD

KM %% T (Rastogi et al., 2020) 897 % » L
# % 5] £ 43 (Schema-Guided Dialogue) A
B REA o 1205 SGD HH K RS
R E RABF AR KA AT SGD
AP G H AT BB E > e BRFS 6 #
B

3.1 BHAEE

JRF5 (service) » A& B4R M (Domain) * &4
HE AGEPTIRB G N RERIRF o 28 K8y 435
ARG ¥ LIRS BT ~ BB ~ REF
BB F o AFRE T AT HEEAR B AR
FEAEMEI 0 ROVEIRFE 9 BEA (Mail) ~
17#J& (Calendar) A=@K A (Message) °

#3E& 8 (intention) K& T4 M A4 £ 82 4
HAEATHEFAZERGBEREE - TR
JRF5 AR T REA T Bl 69 #1356 & B o fldw > 231
HIRBF » THREARE - EABHFEHE -
EATFEMRA T THEHAHE ~ EHEHF
EE o mARRKMIRG T TRTHEER
B~ EREWRERSEFER o TR A
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BB T OAH Bh 35 A S AT T AR e & R AR
HFHER S REHFOBRIBE -

3.2 WEEMH

MEEBARBAERAHE K58 API T &
MRS SR HE R 5 A B T AR
89 A A o £ (Rastogi et al., 2020) AT#R &9 7
FF o MEFRERTRT HEBHGAE (on-
tology) * WL X & T 5 F €150 2] 49 IR
# (service) ~ 4 (slot) A & B (intent) ° &
PURIEH A &4 ~ AT F A @A API
RETEMBERAE K1 T o RFEEMR
W6 5 =5 B SRS G A8 A B89 4 g > &AM A
ER & T HBIEAE 4L » 3B EIEE R
WE s RHERET ARG 9E et - H =
PRI B FZRA A &R > ERERAAHF
# M (transactional) 22 4K o FH5E & B 4o e
EH ~ FEREFIREENNITE (ERT AR
BAT) T REHB L A T F 4
e EHE o

Mail Domain

Recipient, Subject, Sender, Content,
Copy recipient

SendMail, FindMail

Calendar Domain

Name, Date, Time, Participant,
Content, Location

AddEvent, LookupEvents
Message Domain

Contact, Group, Message
SendMessage, FindMessage

Table 1: #% ¥ Arie M 2| 69 $4& A &

3.3 HHEITE
ABEANEYHEEREAF DGO HREER
#3547 % (Dialogue actions) # €A B fe it
R A EHFEBRLPITRGITE » BPHEAR
REBRBIERAEOHEZREL  RELZALN
HA AR T HATE I4E - HBTETIRE
FERIA S BER S FHR AR BT  REE
IR F o KM 4R (Rastogi et al., 2020) &
RERESHBOHFBITE ERITHIBEZ LY
EAIA (HEATE ~ R~ 648 - Aa) %
EALMEA T AEHERES K REAHE NI -
£ & F T 454 » INFORM ~ CONFIRM ~ OF-
FER * OFFER_INTENT %A
INFORM_COUNT B4 409836475 » &
REMEBEFZATEN  REFZGTHMER
Z JBi% B A4 o o REQUEST A& 3% K #6947
B FTARRRRZIGN o L ITEBARAE
{7 & Jn B o K B » HAGE RABE TG % -
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3.4 EHEEAE

BEFEOHERGLT » EB TR EHE
REEMAZTHRETENR > MALTRE
EABERFETEE RY o muHE KL LR
#) Machine-to-Machine #ZH L & F & F » 8
R AL LA R B ERE AR AR R T — 1B
REAGHEAT B o AR T 09 BA IR AT 5 3
HERA B F A BRSPS R AR kg B
Jeig L BEWRE > BTREMNEEZMIAT
Byt 3 0 ABT R A BUR BAT R 2CF 6 (Open
Data) #RE 1408 1875 &y it AT F & F 4 >
AR AR L Line OpenChat ¥ 49 4896 445
MERBIRH AR » EAETFHERA
KA 1926 Bl PTT %38 Loy L F R
BB AR -

3.5 ¥EEAEER

BRI SCD HFERBJEIER » KR ATIE
R &R B S G R P Ao h 32 AR IE A, o
b = K325 % % 8 % (probabilistic au-
tomaton) K ZAR A 3 AL S I8 HEEAT A o
JE RS HEE B AT » R B MK SR
WAL EZFE—E G ARG EAZOEZRE B
WALB AT B (assistant_actions) B GOOD-
BYE:> & A p REARHEITE — MO L -
P EATR BAF » Al P RIEGRIFE A GATEE
TR BBAEAS - 3 R AR 8 H3EAT A )T 7
(user__actions) ° $2H P R3EAAF » )AL
ARG P o AT B EATR B A - AR
—BBY AT B 5 5] o A AR H e XIL T H
ERHAE o ROVGAF B AT R B HEE KA R 3
B SRS T R gRERHRGKEZ
FERRRAAEHRFERL T BT AREL TR
B Bl R EH EATE AR LK o
B EREMN G HEETIKED
GOODBYE 47 & & X 3L &
assistant _actions F » BT TR — KR 2 HE K
HEREE o A EEHEARBEFY > EMER
EHFEEL > AR E R HBATE AR
BAGME A E— AR EHE o — B A REGHE L
SEBEET  RMREGHRERISFE > BE A
A — B AFHHE - K& RMEHKELGOH
GHHRBARFEZT U MEE—F R o

3.6 HEXE

HAHBRRE  RINT AR AR KA - K
T A RARRA B AR R BT H AT KA
RA TR ACGRARAL o A H 54T A PR AR
R#tss  HFRTATHHEAZ TR : (a) B
FeE A RHE KA RVE AR AR BT B
B LB S DBERE - (b) REH
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EAT B ARRAL R T R B B HeE AR AR 0 AR
AT > AR K o (o) HHERX
HERBAZRABBRITAS o

HERG 5B e B3P 7 o RMARE AT —
FHRERGEBITEM A RERHSHERK -
HAERE SR {80947 5 > o INFORM -~ IN-
FORM_COUNT #» OFFER » &M #§ 4R+
B AR AL AR AR B F AT AR B A9 AR 4 o ¥
AEERRE—MHALGITE » o REQUEST ~
INFORM_INTENT » &MIAEZR T ho X %A%
{5 89 A8 B 30 8; o

HAF R HER » R T —ERE A
Yo BEFTRELIFAETHRE - EMELR
ZRANBARASBRGHHIEREGE—4 >
FIRFRELETE - KMBZRABHRE
MRMEITIRE WIS 0 AFTE A HF LR
TR o

INFORM_INTENT (LookupEvent)
INFORM(date=5X)
REQUEST(time)
REQUEST(participant)
INFORM(time="FF—2h)
INFORM (participant=5&)
INFORM_COUNT(count=_)

Input in template

REEEH L —EIEEN5?
ESRREE -

- PN:E
BEZM?
EERNTF—& -
LINERE -
HITEER

Paraphrasing
REEEH L —EES KRBT ?
REESFHRBEEE WS MEMSZNS ?

EERNTF—& - RERESME -
RBHARI ZESRE

Figure 3: #3348 =& H

4 BT

A Bp e messageSGD #7 messageWOZ &/
BEHELERSG TS @G LR o RIS
THRMEEHEFOHREHEET - HEHRF
HHERR > BRFFAEFEGRRRTH
messageSGD #9-F I AHE > BRET 48 K]
ERA LI W K2R o

WBEIMER ELETHGE L 3
R_BBZHELE—AHFETHTHHREH X
AU A2 AR R H R EGFHITEKE L
(Avg. u-acts & Avg. s-acts) & %% 57 mes-
sageWOZ » R Rb7r kg A TR R
SHRA RBEUERAZ T @ BRAT £
AR R EBAETRAGER o
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Dataset messageSGD messageWOZ
Single  Multiple ALL ALL
Dialogues 383 212 595 339
Turns 3634 4436 8070 4714
Avg. Turn 9.72 21.02 13.80 13.90
Avg. Acts 7.43 16.25 10.61 8.00
Avg. u-acts | 3.49 7.65 4.99 3.06
Avg. s-acts 3.71 8.35 5.38 4.96

Table 2: messageSGD & messageWOZ gk &

Bl 45 messageSGD &9 #3547 B o » £
¥ ZAL T #4425 T INFORM ~ REQUEST
2 GOODBYE %474 % » Leh #3547 4 %
FHEHE L LEEHEF - - OFFER -~ IN-
FORM_COUNT % CONFIRM 4t# 1 F ¥
HHERGHZETALRE T EAF IN-
FORM T B8 & F -

& S RIS P P N N SV S
FFEFLE LS F ST FESF LT EL
& & 8 LIPS EdR & «
€ s & & & & E & &

& & & ¢ &
ialogue Acti

Figure 4: messageSGD #3547 &1% K 51

KM 2 M T messageSCD 8 %36 % R 51
Fo B HAT B> > BT c KRBT £
R EREET  BABOHZETFHA 9.72
= s $AABRGHFETFHA 21.02 BEE o
I R T W HETE N HHRETE
By AL WEEFETF o

M Single-domain M Mult-domain Total

100
15

50

Number of dialogues

25

nil{ i Tr—

23456 78 81011121314 151617 15 13 20 21

[=]

Number of turns in dialogue
Figure 5: messageSGD #3& %X 51

b A RAE R AR B EATEERAY
AR HEB R E A EGITERSETH Rk
B 5 o R EMBAZRA B RITHFERT
BE s WEAE S S AT S 6 s AT B
FiE o B6AZRABHEAM Y FHARAT
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BHAATIE P S 3 o B TR E >
EARA R MK I > WA R IE

ml 5% W

o

M Single M Multiple Full

5.00
4.00

3.00

Scare

2.00
1.00

0.00 -
234 5 678 9101112131415 1617 18192021

Number of turns in dialogue
Figure 6: messageSGD & & M3F4%

A LI T messageSGD ## messageWOZ
EREEHELEREFL LG ER - KMER
EREAHEERERE - HEHhR -~ FHYE
EMRAITEREF T OB LEEELEE AR
# L A% P i3 s AT SR AT 455 A SR B AR S B
EeZERE 2 RZYGHE -

5 EHE@HTAL

T S 0544 i ST AR T M B A4
1 Lo AT EARAL S 8 @) 09 438 A B8 > ARR
R RRCESE N I & Rk
TOD 47 f 39 £ 5 89 AL RS 3 AL ARAE AL
MA#BSETRENR -

5.1 #AHATRAE

F£ messageSGD R E7F » AT A 89 HE4T B A0
HHERE T AT ER S 26 T A XN EATE
% fadizh T5 B VA Transformer B 2 J& 89 T
FHILF (Text-To-Text) A » &K LA
LN R ¥ Y-S W X &R
8 T5 RAESTEY o KL A (Zhu et al.,
2022) 1 i 89 7 ik R M EAL T e9AR R K AT AT
J5 B > do R3PT T o 5 FIAL 89 B3 4T B AR X,
B AT B[R] (18] (A5 44],...) » 7 214k 89 #35
AR R B[R] (M) 4A],..) > = R — %
Y ee AT EERE > RMAF 590
A Bl 6947 By A Bl IR A 6K & o

5.2 Model Tuning

WA F A SRR AXHEM T (Zhu
et al., 2022) 87 % » 4 A mT5 (multilingual
T5) (Xue et al., 2020) 4% R 43 w8 TOD
£ omTh £R—HEZEZHRINGRA » L
HERKGARZFBZTREZRS > TUAERAIE
S LANG 101 HEZFER - BTETT
iz v B TOD 4£ 7 &9 40y A A= 8y th 69 #F RO 17 o
BT AR A R T AR Ae A A 6 R AL T
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User Actions

Inform_Intent( Inform( Inform(
"Calendar", "Calendar", "Calendar",
"intent", "date", "time",
"LookupEvent" "SX" "RE=E
) ) ) State
"Calendar": {
x "date":"2023/04/30",
NLU: Natural DST: Dialogue "time": "15:00"
BESK N FZ2EFHE? Language . :
S Understanding Siklie ety !
l API I31
NLG: Natural DPL: Dialogue
BAE - BEMLEENE? —Language  <— Policy [
Generation Learning Notify Failure()

Offer_Intent(

RE - BEMEFI

Response

"Calendar",
"intent",
"AddEvent"
)

I

Assistant Actions

Figure 7: TOD % #./&2 messageSGD 34k T &9 % iS4

user: RS RXTFZ8A EH5?
system: &EZARBETER
user: A RTF— B4 H? HH
DA-U: [INFORM][Message]([date][?A X],
ftimel [ F—2]); [THANK_YOUJ[J(1]1])
State: [Message]([date][#] X],[time][ T 4 — ],
[intent][LookupEvent])
DA-S: [INFORM__COUNT][Calendar]([count][1])
system: &A KB —BEERE

Table 3: /F 2|1t 4t3547 & Aok &

F @ty 35 > KM 5% T InstructDial(Gupta
et al., 2022) 89 7 i © InstructDial & —18 f 7%
HEORRSAEIER - 20 48 IRl oy H35
R EATINER » B3GR £ RRHEEH L
W BALF 2 AR ) 0 A kA BB g
Z WA TEH R KR (BA) > Hraga o 2
A REARIE & R T AR & AT AT R PATOIIERS > &
BEARIRAFRAZ 0 T M & Edm A8 R 3 o

KA 3T InstructDial 89K EAER » &
il PromptCLUE(?) 44 3| #w {8 TOD £
# AT A > PromptCLUE & — 18 & T5 49
AR ATEINRER » €A T F14& F L token
gEFR o BHEZYH T 1.5 BB P token »
HEHRBRAARRAMNG NLP (24 LiETT
Prompt £ XNk o € B A 4769 Rk A2
BRANFa VHRARZEH GRS » TAA T RZERE
AFFRAE TR 0 XA A RAFRIRE S 4
£ o RAVHEFEABRE 405 T 00 iy A FH 3 A%,
R A8 X AT A

B ARZESHEMBIEFHAHEITEMTAR » L
WMAAHEY ET L (Context) » BF 4358
¥ abTHFET AWML - B P EgFR

S458 0 M AM P EWOHETE (User
Dialog Act * fi#% DA-U) > €& H A P 9453
WATARAT An 48 MR EB A GLAL AR P
WEEFER -

ok HEBRE AR e gt o HEERE
i ST R A RUE H36 8 £ T SUR R R 1
(State) o HERAE LA T H M HE 8 R A
BN 6913 B o wAR AR IR A0 B H e
89 & 5 fohe FA o

B Rk A RN A5 HERE (State) ~ #
3589 LT U (Context) = AR 69 &4 R
(DB) - &MPLABA AT T—F A%
89 %155 47 & & 7| (System Dialog Act > i #%
DA-S) » £ Z %8 TOD A% F » €l T H#3%
AGEHBET MBS AN EFATE

Rtk 0 B RED A BIEF QA BB T 8
#3547 5 (DA-S) Ao #3589 LT T (Context ) *
T RS AR EE (Response) © 18—
fEA B A RIS WA 2 R0 8RBT
EJE o

6 FEARMER
A

A A% B Text-to-Text A HATIEF & &)
Het o FHFETE S HEBBRPRETESTR
74t > EAF R —shR G HERE —BLE (H
EATE ~ HIEAAR - i) o

6.1 FHELEAZ

A 74 NLU ~ DST $2 DPL A A 8§ » &A%
TR EHEITE - HEAR - gAY
BwE R~ HHEE R Fl-score 7b » KA AFTE
#7048 (Predicted tuples) $2 E#E % % (Golden
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Task | Standard Input Instruction Prompt

HEEM: R HFRELTAMNRGETE -

NLU Ut73\’nUt72\’nUt71\nUz

[HISTORY] Up—3\nUi—2\nUs—1\nUy
[QUESTION] #3547 A:
HEREEA, R I EE L TR A HERIE o

DST Uz_g\nUt_z\nUt_l\nUz

[HISTORY] Ut_g\nUt_g\nUt_l\nUt
[QUESTION] #3&K #.

HE LR RBHERE B AR B R
Rk 7RG H AT o

DPL State\nUt_g\nUt_g\nUt_l\nDBresult
[STATE] State[HISTORY] Uy—3\nUi—2\nU;_1
[DATABASE)] DBreswit [QUESTION] %847 A:

ERER: RERAFFTEAHEELRELDE -

NLG | DA = S\nU—s\nUs—2\nUs-1\nU, [ACTION] DA — S [HISTORY] Up—3\nUs_2\nUs_1

[QUESTION] system:

Table 4: Standard 3 Instruction Prompt & A E#F ik

tuples ) #4734 » St HE 2@ F1 (overall F1)
$EBE R (Accuracy) ©

M AR R BT AR R G HERER R E A TP
Wi AMEFAEEAFARNOIALSHS
Z X ARAE o HEMME A EREE (Exact
Match * EM) R FF4E 5 7] & A A 69 5048 o
Exact Match & —Ff = /U484% » #1224 &
LRSS E LRI MAGRAME » Pt E
TR R ST 528 SR Aa F] 89 sufs) o

£ NLG #E=#H F> RN B HFRE
Yo RMBEYEERE aARBRLEHEE
BB FOLAHE AL REF
& A4 A BLEU(Papineni et al., 2002) #=
BERTScore(Zhang* et al., 2020) & EAT3#4E ©
BERTScore & —#& il 7 3% 4 B R3E 35 £ R At
I IGAZ s Bl IAFEEEMF o €A
WL TFAB LA L E ARG LT LHA
(embedding) &3+ F o # A &AL A A L8R
89 BERT A& & 69 o F 18 &) F = B 6948 4
A 8 B TR R SUARA 58 A A B 9 R 5%
ABDLE R M2 8g o

6.2 TR

FEATH messageSCGD 12 A k 3 X L& HE (k-
fold cross-validation) 87 X495 5 18 &4 &
EATINER ~ BRBEA R - BEBRFEARRKEE
& 100 A LR HFEAAIKR - HER
ANEH ORI 5 wHE (TR =5)
VAT A D4k An T B o BAB/EFH D4R 10 1B
epochs * I&RFe BIZKAG PR KPR EE 10 ©
AL AR B gy A Fo 48 23 T RAE 7 ik R
Bwfl TOD M5 » BT » 4o R5FFF o
AR ERFTAR Y » £ 8 RBZEMBIEH
s HIEAT A ~ AR IR AR 09 TA B BCR AR A
BRI T K o SEBE R Fe b HE IT B AL B R 4R

SRTH LA T R #4530 IE AR g AT
By AT o
FEHFEREBHALTSF - ISR TGS
AR R AE AR I A o (R R PRI (2
SERERFeME IR E R RE o KK
DST #E A agdg A Aoy B & B R > dAFEHF
by B fEAR fEAT A SR A G BP A B R A
1A R BB S E - B AR AN B L SR AR AR BAR
P HREE AR o

Rk B R BRI DST 40 - B2 %
EAB IR Fl-score BAKAZ LBy N\ 77 % > {2
A2 A KL RRARIE T AT HER
BERETOEDRRE WARBDE LGN
HaaB OB ERAEAL S GMN > Rk &8
Fl-score An A R F 2 53542 Loy R i 132
A8 o

EARFBZAEARTS  BERTHT EL
BLEU Score L WARRIM AT H st 6.54 ° &
7 s f£ BERT-Score L#) 2 2R K » iz KA
WA SRTHGAREREIT B T 55 L
Ao {247 BERT $TAINKBER R > A2
FERAERNEBEERK o

EH T5 A BTGB P » RITER
HER TN S BHE MBSO R A BE
A& o VA fold-1 89 AA REATE AT » KM e
AT 510 A2 20 SR 69 #3882 - BEAE
FEF R 3R A EAL > o REPT T o

EHFER BT RIVBRE|E F A%
FE) I e s TH BRI AR5 6y 448 &R A
BA T o 33 % B B 35 19 MRAT 75 F AR YR AR A
B8 LT LEATAT A BB - S
BB S u o BAGFIETE HRE - THER
By Fam| o

HAHER BB HALTE » A REF AR
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NLU F1 Acc EM
STD 84.23 76.03 74.34
Instruct | 89.37 83.36 82.05
DST slot F1 Acc EM
STD 70.40 38.73 35.54
Instruct | 70.52 41.44 39.66
DPL F1 Acc EM
STD 66.85 54.55 53.13
Instruct | 69.88 56.93 55.07
NLG BLEU BERT-F1
STD 25.89 78.54
Instruct | 32.43 78.45

Table 5: TOD 1£7 4 & b

B A3 AR N LA A
G AT HZEFRAGER o oy A\ HEF
S RETAR HER FIFER F E B3 fe
WHRHBREL AR 2 HEELES
B BATRRAAHZRLEAREBSHAELR
Fo BHGKAR TS o

EBEGEEREEREH T ARARK
W HERE L AABERG S o K » KRR
EHE el h FARE & 2 B8 A R A TR
YA o RIVERAR T I T A KR L
PE - TREREY > B3R GRR R
T4 AR AR E R K o

Bt A mIEHEERBEHREELF G E
TR A B IRAT By S By B RFES o SLHSE AR
fEFEARDL » AN R B R L A S » AT S
MEH o RAMETHEERRAFODE - AT
FERMWBETTHEARESH P HEELH
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BLEU #» BERT-Score .78 J& %A% o

BRBAREZHOSTER > BMRLET mes-
sageSGD #7 messageWOZ i3 iy {8 &4 & /£ #
THhF T B E R BRE T AEA mes
sageWOZ ° messageSGD £ #1375 # € L
A ES s REBET EE G FR - FEA
R RFRERAZECNRRE LT TR A
ZAETREEG R K o

BB P RAVE R R R 03 A k47w {8
HEEFHFO L BRRTMAHFERLN S
EHRBEAMREOTE - BREAT - EAHKLSR
TG R A REZTEM (NLU) ~ #3
K se (DST) FR%£% (DPL) 54 L
89 B AR AR I T K o
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NLU F1 Acc EM
context-5 91.36 86.50 85.63
context-10 89.08 83.16 81.71
context-20 | 89.64 84.33 83.02
DST Slot F1 Acc EM
context-5 71.28 41.65 39.04
context-10 | 80.08 51.69 47.90
context-20 | 78.82 44.41 46.73
DPL F1 Acc EM
context-5 70.54 58.13 56.03
context-10 70.79 57.83 57.10
context-20 | 70.98 57.69 56.52
NLG BLEU BERT-F1
context-5 29.40 78.18
context-10 27.24 78.04
context-20 21.17 76.50

Table 6: & TOD #£# & context % BEZX £ &

7 K
At piEMEE ] TS —AEHFETEH
SR LU EUESES S0P L
WMERBT —RAZG ST XAREREF IR
B3EAL » FAEAT A AR T BB 2
AB o AT HEZ ML RMLEKT
messageSGD #7 messageWOZ » 4 3% 8 4 &
ol B A R ABA RS AR A S AL HFEY
% RREIERRFGA BT RE  Kmits
HE AR H R A RS -

TR  RIULA T5 B ARG LF4H
LFHEAREBHERG - KRMEBREB A
SR F e N BEAEFS 89 € R R AFFIAR T 0 A&
HEAGRLEINRE BB Y GHERT » L B
FEQ) AT H3E o
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£o05 £ R4 B A BT A Sl R IIRE E R
Auxiliary Loss to Attention Head for End to End Speaker Diarization

Yi-Ting Yang # &%, Jiun-Ting Li % # £, Berlin Chen Kt 4 3k
IR o L SR A MR X
Department of Computer Science and Engineering,
National Taiwan Normal University
{61147070s, 60947036s, berlin} @ntnu.edu.tw

,}F_@ different speakers, we adjust the weight

matrices of the multi-head self-attention

AT R %fT fengf et et St LR, 4 mechanism in the Transformer layers. We also

PR EEE S gﬁ*‘z 2% 7| (SA-EEND) » % select loss functions that can improve the

o o learning performance for labels with fewer
Rt @FF g p

B g #ﬁ‘%f‘« i3

T
. occurrences, resulting in better speaker
B4 L {1 ALY e " P

discrimination. Experimental evaluations were

AR R i% B Rl e 2 o o T conducted on Mini LibriSpeech. Although the
;\ 4RI I 3EF 5 05" (speech activity results exhibited some limitations, there were
patterns) mﬁic:i‘_ AN iaﬂl rEFTHRDN - still notable advancements made.
fﬁ_%%%ﬁﬁﬂﬁy S MR AT HDES

B HEH AR R o Matss - % H s~ HIMF F e L
RN IE D R EE E S AR A ST Rk SR S

#% > AP @ E 1 Transformer & ¢ i g 4

# 4] (multi-head self-attention) e € 4L »
PP A Sofici Sy 4 W R D ik
RenF g ook > E P {8 AE F RN

Keywords: speaker diarization, end-to-end neural
diarization, multi-head attention, auxiliary loss

4
% o 277 7 % Mini LibriSpeech ﬂé“-ﬁ PR ! S
B BN % ’W‘%? o e T REE O - #% H ¥hse(speaker diarization) £~ 1 &2 who speak
L o , . . .

Ltk when i+ 5 A LY izl - EE

= ;%'%]z Liew MRY AF S E o Gl R 3

Abstract - oy .

#3* ~ € & (Janin et al., 2003)(Renals et al., 2008)
This study introduces a novel auxiliary function T #&(Kenny et al,, 2010) ~ & & & %5 ek E 0 4 i
for use in the Self-Attention End-to-End RS BE -}%’ BT ang g FE o 5 e -ﬁ
Speaker Diarization (SA-EEND) model, e ik ;ﬁ SRS I A ‘ff’Fs? Hend sh 2 en ko s o
alm(;l’lgt' to i%hleve a;ccur‘ate spea}l:er ¥abe1 ko NEE M B Y PEh D R 0 AT R BT
prediction within overlapping speech regions. o S s , 53
Previous research has lacked effective methods HE mjjar (II-nseng.et al.,2000)ﬁ: " _% - T,‘
for leveraging speaker information within the # - #-3](Gaussian Mixture Model)573% fl =
model to enhance auxiliary model training and Fuoo R AANA SRR g 2R F —?;]" e
has not taken into account variations in the (Dehak et al.,2011)# ! 7 i-vector =% » % % 7 #%
iis?ribtlﬁjlon of different speelch a(%‘;ilvity flilattims. MM o {4 % (Garcia-Romero et al.,2017)%% 1 7

is study proposes a novel auxiliary function FIr FREY T lad F iR iE o

to facilitate speaker label prediction within - e T b aT & A s A £z
overlapping speech regions. By considering (Fujitaetal., 2019)3% &1 5 31255 pe ¥ o Bk

both the overall speech activity patterns and the 7z (end-to-end neural speaker diarization, EEND) > ;=
task-specific speech activity patterns for éj;%l r>— B 3% I—ﬁ g A AR P B k‘%} I E B
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PERF Y g B R R L B KR
IRERS N - 1) (self -attention, SA)-EEND 3] (Fujita
etal., 2019)d % # Transformer(Vaswani et al., 2017)
%mﬁaﬁﬁi%ﬁﬁﬁﬁﬁﬁéﬁﬁﬁﬁﬁﬁ
4t o SA-EEND #£3] £_# * & - =~ 3 R % (binary
cross entropy)if 4 k'R =
IR B fs - R erA 4 mﬁi%] NAe R FHER 2 B
AP ¥ E % ¥ R(Fujitaet al., 2019) %
A - A o 2P e SA-EEND #-1 A
BV T A :‘.;,A,\ﬁnj P ;g—% mP‘ W Wk i;:
SR SRR TS RN AR R LR
#Hf(Yuetal,2022) EREZ P ELELED 5
¥ =45 (Jeoung et al., 2023) » @ & &3 "‘ﬁ i A2
R S R R e AR
Ao
AT > APHASFFERT HE-F

¥ o ch5F 5 i B 1058 (voice activity pattern)fr
3% 5 -3¢ (overall speech pattern) > i&7 F $130id
z,]&v_ﬁ+mF% Jf éﬁ‘ﬁ?’/? urﬁgg—gmo ,% # g a
N - g A P A A ) % )
SA-EEND #34lei & 4 £ 4B > 75 223
2 > ¥ g% EERE A (focal loss)(Lin et al., 2017)
T 5 E% e '/ﬁ*/i"‘)’”ﬁ%“ F [ERaE= T
AeR R AT T R AT JI R0 L s
ByWdFLAT o

2 FHE

LibriSpeech(Panayotov et al., 2015) F #L & &~ & ¢
3 *7’1"5 WE R PATENRE YRR

3 A HAeF 4 3%k 5L o Mini LibriSpeech &_
LibriSpeech FEREG- BFEHRLE > 2 Y Mini
LibriSpeech :F4L £ & 7 54 L‘“_é%-ﬁ’ 1.5 2600 3%
% % #(Chen et al., 2020) °

Mini LibriSpeech e4f4% = j2 k- LibriSpeech 1
g LR VRE S HRFEEOREE T A
G S ERTE: v fe i3 it m’I—E] L lE'JF B4
NHBEIFE RY B 0 % F Min
LibriSpeech = % — B * ¢ 335§ #cdp § > #
B S AT RE LR T i "E‘- FERAAMAT o
g o

J£_Mini LibriSpeech T4 & & 4 iR R 7|7
IV I o a i M J‘ ]"g‘i’“ S A

i 16 B (batch)“ CH - FE e u AR TR
%m492%fr 83.9% o 1_@“*’% A 7

358%m’f§i\,m%5,__£ﬂm€-§,%a iR
TR EG3% R A LRGP AERTEE
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HicHE

16{EbatchiVIEE 751

# & 1: Mini Librispeech “&# 5 7] &7 F =
fic(batch) fe £ & T 42 B 5F % 4L - %4 7
* R IEE ‘ﬁ‘ °

oo H - F e u R TR RS 7474%0
T413% - iz FH R AT > 2 95 54%Tk A
e {;—gmé‘gﬁ»{] e pER G - ] 3RA
5.74%¢htk A @ E 5 o

3 33

31 SA-EEND: % ff

A A H Y 5 AP & foit SA-EEND(Fujita et
al., 2019)#74% D1 e % o ¥ - BE R L Tehi
MELX = (x; € ]RF|t =1,...T) x, 8- B Pt
ShF e 0 F F e EART MARGFE 5 -
(L AR %\\ ﬂz—«‘f*i‘“ﬂﬁ* £ 57| iE
Transformer % f5 % > 5 7 ¢ 459 /LR 4 41
(multi-head self-attention » MHSA)fr 2 i &% & 3
¥ (feed forward neural network) » £ i€ i f355 B+

P et Eﬁf"’d‘%timii s % o
Ve=Pe15 aYtS] ’ L’E'lk e 4T /g_,—s v });.’I_}Ffﬁ—,
CERR RS R L s S £

* %;ﬂ".ﬁ(permutatlon invariant tralmng) > &0
% SA-EEND 3] » 15 #] B9, 4r 2 ¥ iy, 2

Hf 4 S UL, T e T B

T S
Ly = TSe)l (D‘E‘DSZZ BCE(yps, 91s), (1)

He s BCE(,,)™ 4% = = % & ' (binary cross-
entropy)df 4 o yp A EPFRE Rt F B R % s B3
K AE o yp, = [ vrs] € 0.1} L4k
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Target matrix

1

Mspi,
Target B
Speakerl[ } 91 E =l
Speaker 2 l P2 —E Hj t =
[ PIT Loss J
Permutation 1 Permutation 2
i T ‘ Focal Loss ‘
_ ol Output 1
__ colloniiliiepile, . | Output 2
Decoder
| | Attention Attention
e | I S
3 Head 1 Head 2
i .._._______________.;' :
Encoder Block 1 _ Attention ‘ Atw::_mu
S :I_ S , : = matrix
‘;1‘], i el Y8 l — Head 1
B % 1: 773 9 24 45 4 (auxiliary losses) 7 SA-EEND
FHARE 2 S AR BRO R PRI 4 b sl
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G b o Lo R AT RS (PP BETA §
WA AT SR R L LR ERA A
32 EEMHEA: A
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EYIREATY ST B R o KA 0§ T A
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33 #FH ¥ BE BRI

PO HEAH FEF A HE AR DFEY
Apalr 7 - L RHEL TEXE D
%5 &% B4 4 (speaker-wise voice activity
detection > SVAD)(Jeoung et al., 2023) o 2% i3 i |
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34 FMWEIRAEA

AOORTE g R Y RS AR
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(overall speech detection, OSD)f % - 7 £ » T &
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T

_ (0 4%k t AR 5
Pr {1 drd t £H - FE AL EE AN ©)

FHE % e Mgy
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Bl o owy R T Mogp (i) B e
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TELGAF BT N A IF”’P,LJ A

MERAFAFFARBITLT FEFRFDF
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35 @ JMenif B A R TR

FH IR A Ly folf 24T % L R Lo Ak
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AR Nk A A Sl R AT
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¢oadfrb ZATSH o PN Bt F B AR
AR o iR IR A S Bceh P AR O
FrEYRFITER G REFERERAMI ¥
WHROFRFOLLSRE o LI~ it
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36 FujaMeg

W3 Y Y 0 3 - kAR B8 1 (Jeoung et al.,
2023)F 31 7 ML 01 ARAL 0 AT A H AN

Transformer x4 3|4 F%—‘ﬁ%ﬂ RO F O ki
I3 37 & Transformer /%] SRl A S TR
BAYE A o T AR & B2 L (Mean
Square Error) & 5 45 % S0 143 56 7] e ok
a“"g»_’ﬁ."iif'”“"\'lfgmlﬂi“"t’77rﬂ?' )& R
D R BB A B D AR FEES R
£ RT3 S AL -

4 R B

A AH A * 7 SA-EEND i 4| (Fujita et al.,
2019) » # ¢ & B Transformer %% BH. & * 7 v B
MHSA (multi-head self-attention) ° i‘fa?] P 23
LR R Rk B R ol ik
i 25 Efentf Lo 10 F § i £ F Bih
(Fujita et al., 2019) o & i s et 22 2 Rl4e+ Rl 7
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F PR PR 10 B e0T FRik Fl 5 2 7
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loss vs epoch
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Method SVAD 0SD DER
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SA-EEND(Focal loss) Focal Loss x 29.15%
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Abstract

Word segmentation plays a key role in
natural language processing and data
retrieval queries. The pilot study employed
Stanford CoreNLP, a word segmentation
system for Chinese, for segmentation and
tagging of Hakka texts in Taiwan Hakka
Corpus. Nevertheless, the performance was
unsatisfactory due to the intractable
correspondent  translations ~ between
Mandarin and Hakka and the lexical and
phonetic varieties among the six dialects of
Hakka. In view of these reasons, a tailor-
made Hakka segmentation model is
constructed that encompasses Hakka

lexicon with six accents and that applies
Maximum Matching Algorithm (MM) and
dynamic programming algorithm in the
system. The segmentation performance
evaluation test results show that combining
lexicon lookup and word frequency
statistics (with Maximum Matching
Algorithm and N-gram Language Model)
significantly improves both segmentation
performance and accuracy.
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Keywords: Hakka word segmentation, Maximum
Matching Algorithm (MM), N-gram Language Model,
word frequency statistics, Taiwan Hakka Corpus
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Abstract

Meeting summarization aims to distill
meaningful information from lengthy
meeting transcripts into concise texts,
allowing participants to grasp key points
quickly. However, meeting transcripts
often feature complex dialogue structures,
such as incomplete sentences and
information scattered across multiple
utterances. Additionally, the length of these
transcripts often exceeds the maximum
input limit for pretrained language models.
In this paper, we introduce a two-stage
summarization framework specifically

designed for long-input texts and complex
dialogue structures. First, we extract key
segments from the original transcript.
Second, we generate the summary based on
these extracted segments. To address the
complexity of dialogue structures, we
employ dialogue discourse parsing to
comprehend the relationships between
utterances, which we represent in a tree-
like structure. We select more structured
text as the output from the extraction phase
to enhance information density, thereby
providing a more organized input for the
summary generator. Experimental results
demonstrate that our approach significantly
improves the quality of the generated
summaries.

Moty : oRME - AHXMHME - HEEZR
B~ AR A

Keywords: Meeting Summarization, Automatic
Document Summarization, Dialogue Discourse Parsing,
Generative Model
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s ERAHBOMA 0 X RRDBFEEM
RAEERBHFEX MO L MG LTS
B R R E

EREBERBIRBTHEAE NG SN K
B AR RRE B RREERT 5 R
wW#E (Mao et al., 2022) © B HRABIER
71 (Sparse Attention) # =T SAFEAK B 72 & J1 4%
#6948 58 & (Beltagy et al., 2020; Child et al.,
2019) HWAF B ASETFE > EHE
EFEBTEETANNE - F R T LM
4% % A% (Extract-then-Generate) * So 4 #y A\ X
AP E LR E N 0 RBAER A A
A 34748 & & Ax (Xu and Durrett, 2019; Zhang et
al., 2019; Zhang et al., 2021; Zhong et al., 2021) -°
BBTALGE  RAREARSTAKGE
FEEHEM - F =M K%L 5 MmiEZ (Divide-
and-Conquer) > Bp #1818 | P 4740 & 4 A& >
AR SERBEASHUBLRER AR L
(Gidiotis and Tsoumakas, 2020; Grail et al., 2021;
Zhang et al., 2022) - &tk » % v R A4
Mg XAE A (Hierarchical Model) @ #13& 3 89 R
B $E AR AT » LB ALE £ 4 A (Rohde et
al,, 2021; Zhu et al., 2020) * 17 IaH % 4 &
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Reg x A HE B W AR G2 KR
R T A E B A e 2 4% -

B—F @ HPNEARGZE » 5] A
BHA—HE R » E P &4 Ganesh and
Dingliwal (2020) & @B ¥ 3535 B 3 HE €
W XM B AT XM E - DDAMS (Feng
etal., 2021) # A BB Btk e @3R3538 8105
THE RBRERABRSBSHELEITER -
Goo and Chen (2018) R #| B $3£47 & A48 242
RRMT RS T B2R T 4 F P4 H
RIBBHFT AP BZ R GG - £iEE
SPEBEIMT 0 HEBR I AEHRMEIEEZZ
Rl &9 7A€ & B 14 (Chi and Rudnicky, 2022) * 84
AR T HE X E BN LE e
B EEeREE -

AR L AAREH T REWAIER | Hv
"HE AR RE T ABREZE ROEA
R > EMREKREBHEER I REE
XARETRAASHOIXANE > BLAEH
f&SUAE) TCARE Au 3 i BB HE - X T 8R4
FRMAEBLOHEXAEALERE NS
N oo AR PR E S S 0 A R R TR I SRR A
DialogLED (Zhong et al., 2022) & 4 & & &4%
_g_ o

2 AR (Related Work)
21 A#MER % E R FE#H  (Extract-then-

Generate Framework)

ZATH RBRAA A R AT U5 B/ =B8R
B o B — R RSB IRFAIR B (Extractor)
Fao & A% %5 (Generator) (Lebanoff et al., 2019; Xu
and Durrett, 2019; Zhang et al., 2019; Zhang et al.,
2021) ° R > BAEH A SRR B BRI
BAERBETAHABAMBROMAE - BT AR
TR BRREF AL RIS E R
BB M A E B B R 0 4w Chen and
Bansal (2018) #= Bae et al. (2019) 8981 % > &1
SRR 8) F R Foth BB 0y REHE o

Tl FATBRICEE T EERMEA 4T
% %) 89 ROUGE #o4f £ 4 5] 89 ROUGE 1% 43
RUEE) - £E T 0 A 4 F&AE ROUGE
THREEZFAEFEENEZN T TREK
PMEAOTHRERS - A5 ERBER G
ROUGE & F#3|4nikay Montt > M ke
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Extractor

Document

I || |
I || |
I || |
I |
I |

-

_______

B 1 BEAREE - GL @R ERIARGTFAHEM  FHIH R 10
R AEBRERE PR P ERRRSFEARSE -

REFZZHBEERREBHEE
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Generator

|
=
2,
€
o
v}

_______________

ey XA B (Chunk) ° #2
REKEEE

Sy b & A Rk o 1R P A R B DialogLED #38 & 4 & °

AR A F A AT LR
L ¥ > Maoetal. (2022) #2 d T — #5531
ey F ik ABBFEF 0 ARE /é}/ﬁ—ﬁ?”I.
B Fe] 35 B A BB RAER 69 B PR B RE e oy BL AR
TP HEMETUEATHBEHRA EY
FEM o BBITE S AT AR E 693
B o AR T LR B AR B AR B o A R
%o K B AR BIEER A A R R B o

22 FIAH¥EERBM (Incorporating

Dialogue Discourse Parsing)
EBRZBTRETY  EREHTHAANE
TA R B MEERLEEH (Joty et al,
2019) ° Gerani et al. (2014) #o Louis et al. (2010)
EXRABEFIANGZREMG > BEAT H X
B9 A Bk o

#3% Rennard et al. (2023) 895} % * Feng et al.
(2021) & 5% —EH H3E35 B 300 T AN &
3 E A% AMI (Carletta et al., 2005) F= ICSI
(Janin et al., 2003) > 34T 4 R f&#&i BOIET -
HZRAARETY  ACTMER T —BIRFEZR
217 % (Afantenos et al., 2015) > E¥#3EX &3
# STAC (Asher et al., 2016) E314k4% > I%%iﬁ
WA > I ERGRE ‘I-Ié’]

1% B (Discourse Relation Graph) ° # € a%ﬁ?

ok %K B % > ¥ #® Pointer-Generator
Network (PGN) (See et al., 2017) A#4% %5 & 4 A&,
448 % o Ganesh and Dingliwal (2020) #2 & 7
— AT REBRNEEXATRBEH
B BAAREBHGE R EHRBEMX
HE A RBMER TR AR E
#7 BART (Lewis et al., 2020) &£ A8 & °

Chen and Yang (2021) BIZ 4% A %358 A 4
% &M% SAMSum (Gliwa et al., 2019) & R 4a
HiEmE o B3 T HIEE (Action Graph) R
RIEEZ ¥ 69 =048 who — doing — what %
A K% EBEE E @B (Graph Attention
Network) (Velickovic et al., 2018) #3535 &)1
Bl AT 445 » AR © 9 A145 5 BART i 4
A RAEE -

3 F#% (Method)

3.1 4=# % & (Task Definition)

HE—BemRXHED={u,..,u} &4 1L
B335 %R (Turn) - #F > R—HKERAHZ
AEHA > FRIEMAIH TR EEER
(Chunk) > M & 389 KR /N # & 3] & R A
DialogLED #jfA9I#R » H—REFEUIAKE
10% B BHRIXAFA/HET D » P BEKEE
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Noise Type Description Example
Randoml k 50% of th .

Speaker Mask andomy mas ootthe [MASK]: Good morning! How are you today?
speakers.
Split a single turn into

- multiple turns. Tom: Good morning!
T Splitt
Hrn SptHng Keep the speaker of the [MASK]: How are you today?
first turn and mask the rest.
Merge multiple turns into
. one turn. Tom: Good morning! How are you today?

Turn Merging , .
Keep the first speaker and I’m doing well, thank you. How about you?
remove the rest.
Mask th tent of th

Text Infilling as ¢ corfent of e Tom: Good morning! How are you [MASK]?

dialogue.

Shuffle the order of the

Turn Permutation o .
turns within the dialogue.

Bob: I'm doing well, thank you. How about you?
Tom: Good morning! How are you today?

1. #HEmmMesn-e &

B iE b 2B HE AR M e s -

Tomm: I wasn’t expected to roll 7 to be honest :p ]

Dave: I thought you got to move the robber. ]

Comment
Dave: because you played a car? ]

Explanation

Correction

QA_pair

rennocl: any got any wood they can trade J

Dave: Nope

B2 #33BR3MTEE

FoFAR] o B b B A KL A E IR A KONET
B 10% YA KE o &84 FR A QY5
% BEEGHRXATH 10 B EAEYER
C={cg. o}’ BEBRG G FHAILI=
5l

EHBRMEE RS EEREBHES
B 3147 & s —18 & At (Spanning Tree) ° AR3%

BB €13 21{R, Ry, ...} B4 o HAMFEHT
Top—1={R;} ° Top—2= {R,R} XK
Top—3 = {R,R;, R} Z—HEBEHNE RN
HE -

@83 H®EF (Speaker Mask) ~
(Turn Merging) ~ X A3E % (Text Infilling) Fv3535 %R X # (Turn Permutation)

353 R 4% (Turn Splitting) ~ 3535 #HRE B

o AL FRINREF > F

#BERC = {c)..,co} RTEBEHEHR
BXABIR AL RBEA I « 24 K
R BRELAEAR—BREAT R E
zZr} 0 B EEIAN C Ao S AT A R
3 K OPQIC) =

Z = {24,275, ...,
B X F zy
H?:l P(z|C', z<¢) °

3.2 BAEM (Model Structure)

HAGEEWE 1A 0 & R ASRTIR
SEER > MRERTASEIIABRRES
Top-1 £ Top-3 M k4t » AHFE &L
Aiﬂ“’?%iﬁi BN - A RMEBREA &

BRI RAE 5 Loy £ R AR RE
= A DialogLED -

3.3 #IE B (Extractor)

HEZRIM g aBBREMAEEREN
HIEG MG RBTESHAEHBONIE
% B 2 A# A STAC BH & LATTAAIE &
B4R -

$Wnﬁ%%ﬁ% E R 3 # 4% SDDP (Chi
and Rudnicky, 2022) & B AT 49 State-of-the-art 4%
A o £ 45455 BRE B E Bi-LSTM # & W5
BHAHEORENGEER SO EE
Feﬁ %rﬁ c BB LEHERA RALRBEE

1B AW EE A -
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Max Mean Min Rouge-1 Rouge-2 Rouge-L

Baseline 10269  4338.74 572 Baseline  52.34 18.45 49.76

Top-1 3425 1686.43 350 Top-1 52.70 19.66 50.61

Top-2 4093 2514.58 407 Top-2 51.61 18.25 49.27

Top-3 4876 3088.58 492 Top-3 52.58 18.65 50.36

&2 BMANKESH & 3. R&ET B & R 69 ROUGE o #

Models Rouge-1 Rouge-2 Rouge-L
BART-large (£ = 3072) 51.77 18.83 49.67
Longformer (¢ = 8§192) 54.20 20.72 51.36
UniLM-base (£ = 5120) 51.92 18.42 49.89
DialogI.M (¢ = 5120) 54.49 20.03 51.92
DialogLED (€ = 5120) 54.80 20.37 52.26
Baseline (£ =2560) 52.34 18.45 49.76
Top-1 (£ =2560) 52.70 19.66 50.61

X4 T R A EBA LS o £ ¥ Baseline % DialogLED #) 2560 tokens h& & ° Top-1 & i i £ 11

32 489 F i£ 3| 4 Baseline 1273 o

3.4 4 m B (Generator)

DialogLED & — B &AM F v Xk FEINR3EBE
A H A 2 A Longformer-Encoder-
Decoder (LED) (Beltagy et al., 2020) > 4% A %
st ¥4 M K2R A2 B R FA9I4R LED &£ 3 -
sk 1 Aow 0 B3R T 5 AR
oo Rl AuiEHE S BN R AEE AR HE
KA -

i — 18 84 n 183 E K b #35 A
D= (x,%,..,%,) * EEHRET—BEE
— 3% % ¥ (Speaker-Utterance Pair) x; =
(spu) ° %> MEREZFE—ELSSMEHBR
HET W= (x]-,xj+1, v Xjym) O R HIEARR
WA AN RAFGTHRAEOW =
(%), 41 s Kigm) °

FETRINRFEER - A E 0 BRAKR A
it RAtemAEERREBER MBS
7> AR BN - BEREAER LIRS
A E O HE R REZRRIEE

a2 o

! https://huggingface.co/MingZhong/DialogLED-large-
5120

T#4EF T 0 LED #9445 B/ > #
HBAERRMEME  HEBHES R ERATEY
BEE SN > MmAEMA Longformer 89 #EEE
A1 o FRAS B H B 45 A5 ) XU Ao St AT AR AR 8
frEAER LG BER KA -

4 R B4 # (Experimental Analysis)

4.1 FEH%E (Dataset)

AB R AE R o) Bk % AMI (Carletta et al., 2005)
A BATR A ZER G HB @REBNE o L3E
HERET —ERFERGGENE > P
AW ESEE S A FEEE (Project
Manager, PM) ~ 4745 % & (Marketing Expert,
ME) ~ 4& B # /- @ 3% 3t 6% (User Interface
Designer, UI) Fv T ¥ 3% 31 &7 (Industrial Designer,

ID) - B 3tsm3kstfo b4 — @M o) TREE
42 FTER¥E (Settings)

P o & AR A 45 A Huggingface £ B IR 89
DialogLED-large-5120" > {2 d3 7 3. 1% £ FR 41 >
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Precision  Recall F1
Baseline  0.861 0.855 0.858
Top-1 0.866 0.858 0.862
Top-2 0.863 0.856 0.860
Top-3 0.863 0.856 0.860

* 5. R&E B4 R 49 BERTScore 7~ #

KR A AKEE 5120 tokens FAE A
2560 tokens ° fE By A BF > AR K f K 8 LA
FemARE - K2 oW TERETRREE
T3k Bk &k B 0 Baseline & B E 69 R
& > Top-1 ~ Top-2 #v Top-3 % &b KA 44
FikthiBERORE o AR BN R R R D
K E % E % 512 tokens Fv 256 tokens °

4.3 F4E354% (Evaluation Metrics)

RAVE R &3P 54T ¢

ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) (Lin, 2004) & 3F4& B &) X4
WEERG T E - ABEH (Recall) 1F A%
FERZ AN EAREARNBREARSLE
&2 R o TR MAR A o

BERTScore (Zhang et al., 2020) A #3144 X
A RAEFS (] 4o A3 B Aotk 5 803%) a9
HAT S 2 RagAamtt o € & BERT #
ETFXHAMFTE AP HERERRNE R
FodBIE A °

4.4 EEHA (Baseline Models)

BV R LT B 58 SR A A b B

BART (Lewis et al., 2020) : & B AT f£48 X A&
ART 0 RAES XRA IR I TRV R
Ao FBFHRERBARRBAIGRER >
RAERLEBEOMAER T > o XK ZFn
XAFFEE - BRIF AR -

Longformer (Beltagy et al., 2020) : $+¥ & /&
FIRIEHFAIGRBA - R T AR AHE
ERA > PRI ERFORN > R
FEAZ & Transformer A7 # Koy XK -

UniLM (Dong et al., 2019) : —#& 4 — 89 57|
AP EIRBER > AERFBERABTES
18 NLP /27 £ » 4o XA A~ XARENFEF0 L
ABEE > BAFIF KA -
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DialogLLM (Zhong et al., 2022) : 4£ UniLM L
FIN$ER AR ) R RAEE - 8B F P
HEHFEMOTAIR > RFBREFZRH Y
T X R A K mAHEARR
T AR LBRAT BAFEY R -

DialogLED (Zhong et al., 2022): # $2
DialogLM &) 4k 89 % 3% 48 B 42 %% & A 2
Longformer #£ % F » RAL T LA g 22 & #35 >
BAEAL T HEZ M B -

4.5 F & % (Experimental Results)

& 3 AHREETHRERM ROUGE »# > Hi18B#&
MBS T L EHRBEEAEZERALEHEY
XALBEIE TS ERAERER
TR AP EEERRSOBRRA
A% -

FA4pE L ERAHLE  AWMARER
BT ° PRI E F ik R IR P E NI
SR ERA S fa4p KRN R L BB
DialogLED-large-5120 °

A1 % 4% #® BERTScore R b #% #1719 84 77
EEFAEMANG ER o RS RATHBHRMG
FikHER X REAE A R A R EE
ALRTHBASFEMEHER -

5 &3 (Conclusion)

AARRET—EEAN SRR TR E
ML A B o HEHNHRH BT
Hre) T RiImAXAK ) fo THEXLEH, &
1B PR3] 2 %1 4% oF 2L 8l 7 0k o H iR #AIRIE
A RZEME O AR A REA BIE—RFBIR
WERAII A - R I AHEER B
REEXAE BRABARMEE B ENE
HEVFHPAGHOIMAIKR > LB Y
HPHTENE BRERXREKA > KM F
SRR AMBERTRE, > LA A KREE
ER - T Tid:oE ik A
ERRGAR T > KRMMERELSE L4
B INIFHRB| RAFTO B W HFTTH
FHEZRIMAOMGEN > AR BIEES
TG ERNG SEET M i KAEBT
# A (Large Language Model, LLM) & & R 5} %
AR H o TR T BB R ER B X
R R b R RAIB L e E 8 -
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Abstract

Previous work has demonstrated that multilin-
gual fine-tuning of a pretrained multilingual
speech representation model can lead to im-
proved speech recognition accuracy when there
is extremely little target language data avail-
able. In this paper we show that fine-tuning on
labeled speech data from multiple languages
sharing common phonological traits, prepro-
cessed by attaching a language identifier to
each speech sample, yields competitive results
compared to monolingual fine-tuning, even if
a moderate amount of target language data is
available. In order to further improve the per-
formance of our system, we apply self-training
using unlabeled speech data. Our results in-
dicate that fine-tuning a speech recognition
model jointly on a combination of multilin-
gual data and pseudo-labeled data yields su-
perior performance compared to using any of
the two augmentation techniques individually.
We also find that models fine-tuned on multi-
lingual data with language identifiers produce
better results even if explicit information about
language identity is not provided at inference
time.

Keywords: Speech recognition, Under-
resourced language, Ainu, Multilingual learning,
Transfer learning, Cross-lingual transfer, Language
identifiers, Self-training

1 Introduction

It is believed that speech processing technolo-
gies can be leveraged in language documentation
projects to speed up labor-intensive tasks such as
speech transcription. However, for many languages
it is difficult to develop a speech recognition system
useful in real-world applications, as the accuracy of
current machine learning-based methods in a low-
data scenario still lags behind, compared to lan-
guages with ample training data available. In order

Michal Ptaszynski
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michal@mail.kitami-it.ac.jp

to push forward the development of low-resource
speech recognition, previous studies have proposed
various data augmentation techniques — such as self-
training (Synnaeve et al., 2020; Xu et al., 2020) —
transfer learning utilizing speech representations
learned in unsupervised manner from raw speech
data (Schneider et al., 2019; Baevski et al., 2020;
Hsu et al., 2021), and cross-lingual transfer meth-
ods (Toshniwal et al., 2018; Conneau et al., 2021).
It has been shown that pretraining speech represen-
tations jointly on unlabeled speech data in multiple
languages results in models with better downstream
performance for low-resource languages than train-
ing on each language individually (Conneau et al.,
2021), especially if data from related languages
is available in relatively large amounts. Recently,
Nowakowski et al. (2023) found that the benefits
of cross-lingual transfer to an under-resourced lan-
guage from similar speech varieties also extend to
supervised fine-tuning, if there is very little (less
than 1 hour) labeled data in the target language
available.

If a speech recognition model is trained on data
in multiple languages simultaneously and only pro-
vided with the acoustic features of speech samples
as input, it must implicitly learn to distinguish be-
tween different languages appearing in the training
data in order to be able to produce a correct output,
which can be particularly challenging in low-data
scenarios. This requirement can be relaxed by intro-
ducing explicit information about the identity of the
input language (Toshniwal et al., 2018). In this pa-
per we investigate the possibility of improving the
performance of a wav2vec 2.0 model (Baevski
et al., 2020) pretrained on multiple languages, in
automatic transcription of an under-resourced lan-
guage (namely, Sakhalin Ainu) by performing mul-
tilingual supervised fine-tuning with a language
identifier attached to each speech sample. We find
that (i) the proposed method results in lower error
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rates than in the case of models fine-tuned without
this additional information, (ii) after this modifi-
cation, using additional labeled data from a single
language with similar phonological characteristics
as the target language yields models that perform as
good as or better than a model fine-tuned on mono-
lingual data only, even if a moderate amount (nearly
10 hours) of labeled target language data is avail-
able, and (iii) models fine-tuned on multilingual
data with language identifiers produce better results
than those fine-tuned without explicit information
about language identity, even if this information is
absent at inference time. Additionally, we combine
multilingual fine-tuning with self-training and find
that it results in further improvements.

The remainder of this paper is organized as fol-
lows. In Section 2, we provide a short overview of
related studies. In Section 3, we introduce our data
and describe the details of our system and the train-
ing procedure. In Section 4, we analyze the results
of our experiments. Finally, Section 5 contains
conclusions and ideas for future improvements.

2 Related Work

Previous studies on various NLP problems, in-
cluding neural machine translation (Johnson et al.,
2017; Tang et al., 2020; Eronen et al., 2023) and
speech recognition (Toshniwal et al., 2018; Con-
neau et al., 2021; Nowakowski et al., 2023), found
that the information shared among languages in
multilingual learning can facilitate the modeling
of individual languages (or language pairs, in the
case of machine translation), leading to better per-
formance on downstream tasks. This is partic-
ularly true for under-resourced languages, espe-
cially when additional training data from related
language(s) is available (Tang et al., 2020; Conneau
et al., 2021; Nowakowski et al., 2023).

The benefits of multilingual training are ob-
served both for systems learned in a supervised
manner (Johnson et al., 2017; Toshniwal et al.,
2018) and for self-supervised language represen-
tation models (Tang et al., 2020; Conneau et al.,
2021). Conneau et al. (2021) pretrained a single
wav2vec 2.0 model on unlabeled speech data
in 53 languages and tested it in speech recogni-
tion, obtaining better performance than with mono-
lingual models, particularly for low-resource lan-
guages. They also found that pretraining with addi-
tional data from a related language has a stronger
positive effect on the model’s performance on a
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low-resource language than using data from a dis-
tant language. A study by Nowakowski et al. (2023)
also used a multilingual pretrained speech repre-
sentation model and found that in a scenario where
labeled data in the target language is extremely
scarce, performing multilingual supervised fine-
tuning of such a model using additional transcribed
data from a closely related language or an unrelated
language with similar phonological characteristics,
can lead to further improvements in speech recog-
nition accuracy.

It has been also demonstrated that multilingual
neural models perform better when provided with
explicit information about language identity of the
input. For example, Toshniwal et al. (2018) built
a single end-to-end ASR model for 9 different In-
dian languages and found that feeding a language
identifier as an additional input feature resulted in
improved performance. Similar results were re-
ported by Abe et al. (2020) who trained a machine
translation model jointly on multiple dialects spo-
ken in Japan. They carried out experiments with
and without a special token specifying the dialect,
attached to the beginning of the input sequence,
and observed better performance with the former
variant. In this research, we extend the work of
Nowakowski et al. (2023) by performing multilin-
gual fine-tuning with language identifiers.

Another technique for improving the effective-
ness of low-resource speech recognition which we
investigate in this research, is self-training (Syn-
naeve et al., 2020; Xu et al., 2020, 2021; Khurana
et al., 2022; Bartelds et al., 2023). In this approach,
the available human-annotated data is first used
to train an initial model (often referred to as the
"teacher model’), which is then utilized to generate
predictions for a relatively large amount of unla-
beled data. Finally, those pseudo-labels are used
as an additional training data for the final model
(the ’student model’), which — due to having ac-
cess to more samples from the target distribution
— typically exhibits better performance than the
teacher model. Recently, it has been shown that
self-training is beneficial with models pretrained in
a self-supervised manner, as well (Xu et al., 2021;
Bartelds et al., 2023).

3 Experiment Setup
3.1 Data

In this research, we are working with actual field-
work data from a language documentation project.
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Table 1: Statistics of human-labeled speech data used in our fine-tuning experiments. We use less than 1h of labeled
speech from our target domain (i.e., the Tokoro tapes), less than 10h from our target language (Sakhalin Ainu), and
relatively large amounts of data from 3 other speech varieties. For validation and testing we use the remaining two
stories from Murasaki and Fujiyama (2010) (namely, Ful3-700326 and Ful1l-690328, respectively).

(Main) Total
Data language/dialect duration (h)
“Wenenekaype” (Ful2-690401) (Murasaki and Fujiyama, 2010)  Sakhalin Ainu 0.8
Tuytah (Murasaki and Asai, 2001) Sakhalin Ainu 8.9
Ainu Language Archive (An=ukokor Aynu ikor oma kenru (National Hokkaido Ainu  62.2
Ainu Museum), 2017-2022)
A Topical Dictionary of Conversational Ainu (National Institute for Hokkaido Ainu 2.3
Japanese Language and Linguistics, 2015)
Common Voice (Japanese) (Ardila et al., 2020) Japanese 40.6
JSUT (Sonobe et al., 2017) Japanese 10.3
LibriSpeech (Panayotov et al., 2015) English 100.6

Specifically, our goal is to develop a system for
automatic transcription of unpublished materials
from several dialects of the Ainu language formerly
spoken in Sakhalin (hereinafter referred to as the
“Tokoro tapes”, owing to the name of the town in
Hokkaido, Japan, where they were recorded), col-
lected in the 1960s and 1970s by professor Kyoko
Murasaki in cooperation with Haru Fujiyama and
several other speakers of those dialects. The total
duration of the recordings is more than 20 hours
(or more than 30 hours, if duplicate recordings
are counted) which makes them one of the largest
existing corpora of Sakhalin Ainu and an invalu-
able source of knowledge for linguistic and an-
thropological studies. A subset of the materials
has been transcribed, translated to Japanese and
published, e.g. in Murasaki and Fujiyama (2010),
which includes three different versions of a sin-
gle folktale, "Wenenekaype”, with a total duration
of 1.9h. We use the data from Murasaki and Fu-
jiyama (2010) in our experiments as labeled data
for model fine-tuning. All human-labeled data
used for fine-tuning of our models is listed in Ta-
ble 1. For monolingual fine-tuning, we use a to-
tal of 9.7h of Sakhalin Ainu data obtained from
two sources: one story from Murasaki and Fu-
jiyama (2010) (namely, Ful2-690401, running
for 0.8h) and 8.9h of data from a different collec-
tion of Sakhalin Ainu speech recordings, published
in Murasaki and Asai (2001). In experiments with
multilingual fine-tuning, we add data from three
other speech varieties: 64.5h from Hokkaido Ainu,

50.9h from Japanese and 100h of English data. We
choose those languages in order to analyze the cor-
relation between language similarity and the effec-
tiveness of our method. Hokkaido Ainu belongs
to the same phylogenetic group as our target lan-
guage. Japanese is not genetically related to Ainu
but they share some phonological features, such as
the lack of consonant clusters, and quantitative anal-
ysis of typological features reveals that both lan-
guages are indeed relatively similar (Nowakowski
et al., 2023). For comparison, we also use data
from English which is both unrelated to Ainu and
dissimilar in terms of the phonological system.
For validation and testing we use the remaining
two stories from Murasaki and Fujiyama (2010)
(namely, Ful3-700326 and Full1-690328, re-
spectively). We preprocess the fine-tuning data in
the same way as Nowakowski et al. (2023).

3.2 System Architecture

Fine-tuning with Language Identifiers: Our
speech transcription models are built by fine-tuning
a multilingual pretrained wav2vec 2.0 check-
point on labeled data. Specifically, we use a pub-
licly available model pretrained by Conneau et al.
(2021) on 53 languages and further pretrained by
Nowakowski et al. (2023) on Ainu language data’.
We follow the fine-tuning procedure described by
Baevski et al. (2020) and Conneau et al. (2021),
namely, we add a linear output layer representing

'huggingface.co/karolnowakowski/
wav2vec2-large-xlsr—-53-pretrain-ain
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Sakhalin Ainu data

Figure 1: Visualization of our approach to including
explicit information about language identity in multilin-
gual fine-tuning data.

the letter vocabulary on top of the pretrained model
and train it using Connectionist Temporal Classifi-
cation (Graves et al., 2006). The only modification
that we introduce is the addition of language iden-
tifiers. The information about language identity
can be either conveyed by a separate language em-
bedding vector concatenated to the model’s input
at each time step (Ostling and Tiedemann, 2017;
Toshniwal et al., 2018) or included directly in the
data, in the form of an artificial token specifying
the language (Tang et al., 2020; Abe et al., 2020).
We take the latter approach as it is simpler and re-
quires no changes to the model architecture. Since
we are dealing with spoken audio data rather than
written text, instead of an artificial textual token we
use a fixed length audio clip with artificially gener-
ated sound wave (e.g. a sine wave) unique to each
language, attached to the beginning of each speech
segment in the dataset. The length of each clip is
400 samples (25ms)? which is equal to the receptive
field of the feature encoder (Baevski et al., 2020).
Unless stated otherwise, the language identifiers
are used both in training and inference. Figure 1
illustrates our approach to data modification.

Self-training: Apart from multilingual fine-
tuning, we carry out experiments with self-training.
We use the model fine-tuned on Sakhalin Ainu
data®, released by Nowakowski et al. (2023), to
pseudo-label all the speech data from the Tokoro
tapes (nearly 32 hours in total, including dupli-
cates) and use the output in addition to human-
annotated data to fine-tune the model. Previous

’In preliminary experiments we tested longer language
identifiers (2000 samples), but it resulted in worse perfor-
mance.

*huggingface.co/karolnowakowski/
wav2vec2-large-xlsr-53-ain-sakh
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studies have shown that the performance gains
from self-training can be increased by applying an
iterative approach with multiple rounds of pseudo-
labeling (Xu et al., 2020; Khurana et al., 2022) and
pseudo-label filtering (Park et al., 2020; Khurana
et al., 2022). However, in this research we only
experiment with a simple approach and leave those
methods for future investigation.

3.3 Training Settings

Following Nowakowski et al. (2023), we oversam-
ple the "Wenenekaype” data so that it constitutes
roughly half of the training set. In the experiments
using relatively large amounts of data from speech
varieties other than Sakhalin Ainu, we also over-
sample the Tuytah data by a factor ranging from 6
to 11. Furthermore, in self-training experiments us-
ing additional data in Hokkaido Ainu or Japanese,
we oversample the pseudo-labeled data by a factor
of 2.

We fine-tune our models with a learning rate of
3e-5 and a total batch size of 25.6M samples, for up
to 80k updates (for monolingual models and bilin-
gual models fine-tuned on human-transcribed data
only) or 120k updates (for models fine-tuned on
data from 3 languages and bilingual models fine-
tuned with the addition of pseudo-labeled data).
We apply early stopping after 20k updates without
improvement on the validation set. Concerning
other hyperparameters, we follow the configura-
tion for the LARGE model reported by Baevski
et al. (2020). We perform all experiments using the
fairseqlibrary (Ott et al., 2019).

3.4 Inference

We decode the output of the fine-tuned models
without a text-based language model, as previous
studies did not observe positive effects on speech
recognition performance in a low-resource setting,
with limited amount of textual data available for
language model training (Nowakowski et al., 2023;
San et al., 2023). Before evaluation, we prepro-
cess the transcriptions generated by the models by
converting all alphabetic characters to lower case.

4 Results and Discussion

Results obtained by models fine-tuned with and
without language identifiers are presented in Ta-
ble 2. We see that using the language identifiers
in multilingual fine-tuning generally results in bet-
ter performance, with the exception of the bilin-
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Table 2: Comparison of models fine-tuned with and without language identifiers in speech transcription on the
test set. We report Character Error Rates and Word Error Rates. Best results are displayed in bold font. With
the exception of the model fine-tuned on Sakhalin Ainu + Japanese, using language identifiers in multilingual
fine-tuning leads to significant improvements. Fine-tuning with language identifiers and additional labeled data
from a single language with similar phonological characteristics as the target language (namely, Hokkaido Ainu or
Japanese) yields models that perform as good as or better than a model fine-tuned on monolingual Sakhalin Ainu

data.
Lang. IDs: NO YES

Fine-tuning data CER WER CER WER
Sakhalin Ainu (“Wenenekaype” + Tuytah) 9.6 293 N/A N/A
Sakhalin Ainu + Hokkaido Ainu 102 314 9.6(-0.6) 29.2(-2.2)
Sakhalin Ainu + Japanese 9.6 292 9.7(+0.1) 29.1(-0.1)
Sakhalin Ainu + English 141 442 129(-1.2) 42.1(-2.1)
Sakhalin Ainu + Hokk. Ainu + Jap. 100 31.0 9.8(-0.2) 29.7(-1.3)

Table 3: Error rates calculated separately for test samples including Japanese script characters (either in the reference
transcriptions or in the model’s predictions) and other test samples.

Lang. IDs: NO Lang. IDs: YES
Fine-tuning data CER WER #samples CER WER # samples

Test Sakh. Ainu 89 28.1 270 N/A NA NA
samples Sakh. Ainu + Hokk. Ainu 9.3 30.0 260 8.9 27.8 265
without Sakh. Ainu + Japanese 8.9 283 266 8.8 274 258
Japanese  Sakh. Ainu + English 13.1 429 281 120 40.7 281
characters Sakh. Ainu + Hokk. Ainu + Jap. 9.2 293 271 9.1 284 265
Test Sakh. Ainu 140 373 35 N/A NA NA
samples Sakh. Ainu + Hokk. Ainu 14.1 381 45 137 368 40
including  Sakh. Ainu + Japanese 13.6 349 39 144 372 47
Japanese = Sakh. Ainu + English 235 567 24 215 562 24
characters Sakh. Ainu + Hokk. Ainu + Jap. 154 42,1 34 144 370 40

gual model trained with the addition of Japanese
data, which achieves relatively good results with-
out language identifiers and no significant change
is observed after adding them. We hypothesize
that this behavior is related to the fact that the
Ainu data, including the test set used in our ex-
periments, contains many code-switched fragments
in Japanese. Namely, a model fine-tuned not only
on Ainu speech, but also on monolingual Japanese
data, might be able to learn a better representation
of the latter language and as a result, have easier
time deciding whether a certain part of an utterance
is in Ainu or in Japanese as well as transcribing
such code-switched fragments. In order to verify
if this is true, we calculate the error rates sepa-
rately for test samples including Japanese script
characters (either in the reference transcriptions
or in the model’s predictions) and samples with-

out any code-switching. Analysis of the results
(presented in Table 3) seems to partially confirm
our hypothesis: while all other models fine-tuned
on multilingual data without language identifiers
perform worse on test samples with Japanese char-
acters than a monolingual Sakhalin Ainu model,
for the model fine-tuned with Japanese data we ob-
serve an improvement. On the other hand, it also
yields the best results among multilingual models
for samples without Japanese script, which indi-
cates that its relatively good performance cannot
be fully explained only by code-switching.

Models fine-tuned on Sakhalin Ainu + Japanese
and Sakhalin Ainu + Hokkaido Ainu (in the latter
case, only when training with language identifiers)
perform competitively to the monolingual Sakhalin
Ainu model, whereas fine-tuning with English data
leads to significantly worse results. This outcome
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Table 4: Results of the experiments using pseudo-labels generated through self-training. Best results are displayed in
bold font. The best overall results are achieved by combining multilingual and pseudo-labeled data and fine-tuning

with language identifiers.

Lang. IDs: NO YES
Fine-tuning data CER WER CER WER
Sakhalin Ainu (incl. pseudo-labels) 94 200 N/A N/A
Sakh. Ainu (incl. pseudo-labels) + Hokk. Ainu 9.6 29.0 9.1 28.1
Sakh. Ainu (incl. pseudo-labels) + Japanese 9.2 282 9.2 28.4

Table 5: Comparison of the results obtained by (i) not using language identifiers at all, (ii) training with language
identifiers but testing on data without them, and (iii) using data with language identifiers both in training and
inference. In most cases applying language identifiers at training time only gives better results than not using them

at all.

Lang. NO YES YES

IDs: (train.) (train.+infer.)
Fine-tuning data CER WER CER WER CER WER
Sakhalin Ainu + Hokkaido Ainu 102 314 97 296 96 292
Sakhalin Ainu + Japanese 96 292 97 293 97 29.1
Sakhalin Ainu + English 141 442 126 40.6 129 42.1
Sakhalin Ainu + Hokk. Ainu + Jap. 10.0 31.0 99 297 98 29.7
Sakh. Ainu (incl. pseudo-labels) + Hokk. Ainu 96 290 92 280 9.1 28.1
Sakh. Ainu (incl. pseudo-labels) + Japanese 92 282 92 282 92 284

confirms the correlation between language similar-
ity and the effectiveness of cross-lingual transfer,
also observed in previous studies. Fine-tuning with
data from two additional languages (specifically,
Hokkaido Ainu and Japanese) at the same time
does not achieve the best results, indicating that the
potential benefits from additional cross-lingual sig-
nal are outweighed by the reduction in the number
of model parameters per language.

Results of the self-training experiment are shown
in Table 4. Similarly to previous studies, we ob-
serve improved performance after training with
pseudo-labeled data. Concerning the model fine-
tuned on Sakhalin Ainu data only, self-training
provides a 2% relative improvement of CER com-
pared to the supervised-only counterpart. Com-
bining self-training and multilingual data results
in further improvements. The best overall results
are achieved by fine-tuning on human-annotated
Sakhalin Ainu and Hokkaido Ainu data as well
as pseudo-labeled Sakhalin Ainu data and using
language identifiers. This yields a 5% relative im-
provement of CER compared to the baseline model
fine-tuned on monolingual Sakhalin Ainu data.

While in this research we are mainly focusing
on a single language and only leveraging data in

other speech varieties to improve the speech recog-
nition performance on that language, there are also
many studies aiming to develop systems that can
be applied to multiple languages (Toshniwal et al.,
2018; Radford et al., 2022; Pratap et al., 2023).
One potential limitation of the proposed method
using language identifiers is that the information
about language identity may not be always avail-
able beforehand in real-world use in a multilingual
setting. However, in our experiments we find that
the lack of this information at inference time does
not necessarily invalidate our approach. In Table 5
we compare the results obtained by (i) not using
language identifiers at all, (ii) training with lan-
guage identifiers but testing on data without them,
and (iii) using data with language identifiers both
in training and inference. We observe that in most
cases, applying a model fine-tuned on data includ-
ing language identifiers still yields significantly
better results, even if they are not available at infer-
ence time. The model producing the lowest error
rates on our test set yields nearly identical results
in inference with and without language identifiers,
and in the case of the model fine-tuned with the ad-
dition of English data, predictions made for the data
without language identifiers are more accurate than
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with them. These results indicate that the additional
knowledge about the relationships and differences
between the languages used in fine-tuning, learned
by the agency of the language identifiers, can be to
a large extent reused in inference regardless of their
presence in the new data. This would mean that our
approach could be used to improve multilingual
speech recognition without sacrificing versatility,
but additional experiments on a larger number of
languages are needed to verify our observations.

5 Conclusions and Future Work

We have demonstrated how low-resource speech
recognition accuracy can be improved by lever-
aging labeled data from additional languages as
well as unlabeled target language data. Firstly, we
improved the effectiveness of multilingual super-
vised fine-tuning of a pretrained speech representa-
tion model by augmenting the data with language
identifiers. Our results showed that fine-tuning on
data preprocessed this way and including additional
samples from a single language with similar phono-
logical characteristics as the target language, pro-
duces models performing on par with or better than
a model fine-tuned using monolingual data only,
even if a moderate amount of labeled target lan-
guage data is available. Furthermore, we found that
supplying the model with the information about
language identity at training time is helpful even
if it is not provided later during inference, mean-
ing that our approach could be potentially useful
also in multilingual settings where such informa-
tion is not available beforehand. Finally, we used
unlabeled speech data to perform self-training and
found that fine-tuning a speech recognition model
jointly on a combination of multilingual data and
pseudo-labeled target language data yields supe-
rior performance compared to using any of the two
augmentation techniques individually.

In the future we will explore alternative meth-
ods for supplying the information about language
identity, namely, additional language embedding
vectors attached to the input of the encoder and/or
the decoder at each time step. We also plan to
enhance our self-training procedure by applying
iterative pseudo-labeling and pseudo-label filtering
techniques.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Number JP22K17952.

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

References

Kaori Abe, Yuichiroh Matsubayashi, Naoaki Okazaki,
and Kentaro Inui. 2020. Multi-dialect neural ma-
chine translation for 48 low-resource japanese di-
alects. Journal of Natural Language Processing,
27(4):781-800.

An=ukokor Aynu ikor oma kenru (National Ainu Mu-
seum). 2017-2022. Ainu-go Akaibu [Ainu Language
Archive].

R. Ardila, M. Branson, K. Davis, M. Henretty,
M. Kohler, J. Meyer, R. Morais, L. Saunders, F. M.
Tyers, and G. Weber. 2020. Common Voice: A
Massively-Multilingual Speech Corpus. In Proceed-
ings of the 12th Conference on Language Resources
and Evaluation (LREC 2020), pages 4211-4215.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representa-
tions. ArXiv, abs/2006.11477.

Martijn Bartelds, Nay San, Bradley McDonnell, Dan
Jurafsky, and Martijn Wieling. 2023. Making more of
little data: Improving low-resource automatic speech
recognition using data augmentation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 715729, Toronto, Canada. Association for
Computational Linguistics.

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Unsu-
pervised Cross-lingual Representation Learning for
Speech Recognition. In Interspeech.

Juuso Eronen, Michal Ptaszynski, Karol Nowakowski,
Zheng Lin Chia, and Fumito Masui. 2023. Improv-
ing polish to english neural machine translation with
transfer learning: Effects of data volume and lan-
guage similarity. In Workshop on Multilingual, Multi-
modal and Multitask Language Generation, Tampere,
Finland.

Alex Graves, Santiago Ferndndez, Faustino Gomez, and
Jirgen Schmidhuber. 2006. Connectionist Tempo-
ral Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In Proceed-
ings of the 23rd International Conference on Machine
Learning, ICML 06, page 369-376, New York, NY,
USA. Association for Computing Machinery.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. HuBERT: Self-Supervised
Speech Representation Learning by Masked Predic-
tion of Hidden Units. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:3451—
3460.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s

69



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339-351.

Sameer Khurana, Antoine Laurent, and James Glass.
2022. Magic dust for cross-lingual adaptation of
monolingual wav2vec-2.0. In ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6647-6651.

Kyoko Murasaki and Take Asai. 2001. Karafuto Ainu
no mukashi-banashi: Tuytah [Sakhalin Ainu folk-
tales: Tuytah]. Softukan, Tokyo.

Kydko Murasaki and Haru Fujiyama. 2010. Sakhalin
Ainu Folktales (ucaskuma): Wenenekaype, volume 2
of ILCAA Norheast Asian Studies. Research Insti-
tute for Languages and Cultures of Asia and Africa,
Tokyo University of Foreign Studies, Tokyo.

National Institute for Japanese Language and Linguis-
tics. 2015. A Topical Dictionary of Conversational
Ainu.

Karol Nowakowski, Michal Ptaszynski, Kyoko
Murasaki, and Jagna Nieuwazny. 2023. Adapting
multilingual speech representation model for a new,
underresourced language through multilingual fine-
tuning and continued pretraining. Information Pro-
cessing & Management, 60(2):103148.

Robert Ostling and Jorg Tiedemann. 2017. Continuous
multilinguality with language vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 644—649, Valencia,
Spain. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In 2015
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5206-5210.

Daniel S. Park, Yu Zhang, Ye Jia, Wei Han, Chung-
Cheng Chiu, Bo Li, Yonghui Wu, and Quoc V. Le.
2020. Improved Noisy Student Training for Au-
tomatic Speech Recognition. In Proc. Interspeech
2020, pages 2817-2821.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning
Hsu, Alexis Conneau, and Michael Auli. 2023. Scal-
ing speech technology to 1,000+ languages.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Nay San, Martijn Bartelds, Blaine Billings, Ella
de Falco, Hendi Feriza, Johan Safri, Wawan Sahrozi,
Ben Foley, Bradley McDonnell, and Dan Jurafsky.
2023. Leveraging supplementary text data to kick-
start automatic speech recognition system develop-
ment with limited transcriptions. In Proceedings of
the Sixth Workshop on the Use of Computational
Methods in the Study of Endangered Languages,
pages 1-6, Remote. Association for Computational
Linguistics.

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsupervised Pre-
training for Speech Recognition. In INTERSPEECH.

Ryosuke Sonobe, Shinnosuke Takamichi, and Hiroshi
Saruwatari. 2017. JSUT corpus: free large-scale
Japanese speech corpus for end-to-end speech syn-
thesis. ArXiv, abs/1711.00354.

Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Ta-
tiana Likhomanenko, Edouard Grave, Vineel Pratap,
Anuroop Sriram, Vitaliy Liptchinsky, and Ronan Col-
lobert. 2020. End-to-end asr: from supervised to
semi-supervised learning with modern architectures.

Y. Tang, C. Tran, Xian Li, Peng-Jen Chen, Naman
Goyal, Vishrav Chaudhary, Jiatao Gu, and Angela
Fan. 2020. Multilingual Translation with Extensi-
ble Multilingual Pretraining and Finetuning. ArXiv,
abs/2008.00401.

Shubham Toshniwal, Tara N. Sainath, Ron J. Weiss,
Bo Li, Pedro Moreno, Eugene Weinstein, and Kan-
ishka Rao. 2018. Multilingual speech recognition
with a single end-to-end model. In 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4904-4908.

Qiantong Xu, Alexei Baevski, Tatiana Likhomanenko,
Paden Tomasello, Alexis Conneau, Ronan Collobert,
Gabriel Synnaeve, and Michael Auli. 2021. Self-
training and pre-training are complementary for
speech recognition. In ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3030-3034.

Qiantong Xu, Tatiana Likhomanenko, Jacob Kahn,
Awni Hannun, Gabriel Synnaeve, and Ronan Col-
lobert. 2020. Iterative Pseudo-Labeling for Speech
Recognition. In Proc. Interspeech 2020, pages 1006—
1010.

70



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

AaWLoss: An Artifact-aware Weighted Loss Function for
Speech Enhancement

AT HEBIEY BB AR REK

En-Lun Yu, Kuan-Hsun Ho, Berlin Chen
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{enlunyu, jasonho610, berlin}@ntnu.edu.tw

wE

% F ¥ % (Speech Enhancement, SE) %
BRERERAZBTNRERE > BT
$1 8 B35 PR AL (Automatic Speech
Recognition, ASR) #8 & & > ¢ & 3§ #
ASR ARERFE TR - R &
Wil SE THE AL H ASR HR A 8
%% > i E B ASR IR FI 4R o R
By R R B » WBF]ARTE) SE B RRK
NAaLoss * #EA BAITHA » 8850 A 2R
FEMEABHOZIR Kd o F%a ik
ARG EBZEGERMBZ Rt £ K
AP BMBBREA>NAST KL
TREERAEG S FREARY
AR Bk RMRE T HERZLY
#1148 K R AaWLoss ° L&A E Fo B 1L »
AaWLoss %1 fi# 2 T NAaloss 4 48 B 3%
BT T A kA0 ) o BAR 8 % o) e 69 &
25 o ghoh 0 AaWLoss 2 37 H] 303454 T 69
B At E BT B0 KRTF EEAL G AN
B FFET AWM T AAG ASR #R Y

HA o
Abstract

The Speech Enhancement (SE) system not
only enhances the perceptual quality of
speech but also make the ASR perfor-
mance robust in noisy enviornments when
integrating with ASR systems. However,
single-channel SE may generate detrimen-
tal artifacts to ASR recognition, leading
to recognition errors. Recent research in-
dicates that by introducing the novel SE
loss function NAaloss and fine-tuning the
model, the generation of artifacts can be
effectively reduced. Nonetheless, this ap-
proach still needs to be revised in its un-
derlying assumptions. Therefore, we exten-
sively analyze this method in this study
and conduct numerous experiments and
case studies to identify the inconsisten-
cies. To address this, we propose an im-
proved loss function, AaWLoss. AaWLoss
successfully resolves the potential loss of

noise-condition artifact suppression inher-
ent in NAaLoss under the same settings
through modifications and optimizations.
Furthermore, AaWLoss achieves peak per-
formance in suppressing artifacts under
clean conditions, even adding information
beneficial for ASR recognition to the en-
hanced clean speech.

MedF . BRdEFH% - B A HES
PR~ BRI

Keywords: single-channel speech en-
hancement, noise-robust speech Recognition,
processing artifacts

1 &%

WER - MERAMNREBHMGEY  EF
3 7% (Speech Enhancement, SE) 7 & €&
BAFTHEZFOER sy kA@2y 2
R FE T IR B S M AN R B
KIS T EREBBREOERR - KM &
W SE 7 ik AL By AR AR 69 5858 A
Fo o B — ARl AR E 20 JERARAR A HEF
##3% (Automatic Speech Recognition, ASR)
A EL BHELSRAKTA MY SE
FEABURE  REFEZTHNHILREKX
b9 3% 42 = (Robustness) © ¥ & — 3 3L 740 R
% & (Beamforming) (Heymann et al., 2016;
Erdogan et al., 2016; Boeddeker et al., 2018)
F LA APMGET BT FCELEZ T BR
7 MY (Barker et al., 2015, 2018) > A >
WA iE ey B F BAR A A B ] o ] st AT
P — A £ B AR T A ST ASR
iR ey SE 7 kA AR & — ARG A
R E) E R AR o

B O O W 8 A
BHRBRIREITHBLTAROVERFTAF
By R EALGETREL S RGBS (ar-
tifacts) A= % & 89 B (Menne et al., 2019;
Chen et al., 2018; Fujimoto and Kawai, 2019;
Iwamoto et al., 2022) o i& & F] 8 /£ & 4} 89
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ASR A 69 4 B B BT A6 BL— M 483k o
BB R BERBTRETHERBELTY
BE ) AR RAFE R AT - ERiE R ASR &
A BAL T BAFAFEBRT F AL KAYE
ASR A %Lt HRE AL o

W AME R 09 B A BURASPTAL R 69 SE A2 A
VAR AGRIR 45 M » Ak 2R3 —E—%K
R ARAMAEBY EAAEREY - A —EHR
AR ER AT RIRA T EXRF
REN M7 % (Iwamoto et al., 2022; Vincent
et al., 2006) ° %7 & il @AM AR 2 EF
MR B E LT EM T 0 AT ARITEG R
BMBEIET I RS o R o B 7 kAT R
B B3 B T A8 S KARAE » B A48 O L #
PR R AR FETZMLALLIAE
L8y o MR AE AR A 2 FEEER A (Babble
Noise ) 5 B4 355 45 4% 69 52 A T 45 05 7T 8 T A%,
ZoB—7@ SE AAEENRATRAR
7 SE £ ASR 34k BAZZ M 69 £ % - BB W
4£-3918 (Chen et al., 2018; Menne et al., 2019;
Hu et al., 2023) ¥ & A ¥ 3 H A7 (Fujimoto
and Kawai, 2019; Tan and Wang, 2020) &7&
F A AR ki B R RE » 4238 JEPT A IE LT AR AR H
ASR A& AT R o Bt » #3454 SE
%k ASR A% T » TG BRI % E IR
RGBT RS o BTN o

WF o SE 8994 B AR R BT £ &M
BB ETHAAZLFEETIM AE (Braun
and Tashev, 2020; Xu et al., 2014) &% itk
89 B A% R BRI R AR 2 R R A AR T A
BLFETNRERZ  FCERASE K E
B B o AT EENZL BRI FAEIZE
HETTUARRE @IS > 48 B A % (Hu et al.,
2023) LT AEFE 0 BRFIEARE ASR #9MEAE
ORI FRBGAMM M - REF - £
$ W ASR #) SE A& F > w4 — A% &
BB BARXRE > Uk SE IR B AR E
MiFE ASR EFH 8 EF R £ — AR
HA o RML M6 —AH R (Ho et al., 2023)
RET—MHEEABYBMLY SE AR REK
B NAaLoss ° At REER T BT 124
NAaLoss K34k SE A% » £ &8 ASR #%
ARAFE B e o K> ZAFREREAS
T E TR 69 =48 B AR BT 0 B ATRE
BB ARG —SBTRAF R > $HR
B B A B IR LR RE R BF 32 B BT A LA
8 B AR o

A RIRAIEFT B 42 J# NAaLoss ° &
WIH R R RIS T RE BARRE
HEAYETESE s UATHRIKERYR
Hoe L BRyMEGESBE L RMHEDRT R
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4 NAaLoss # F 7 £ B3k L9 B £ M A2 o &
PIBERR T AL P g 853R 3% » A T HRAER
HH R AL AR T —EREEL
B BAZ R > #B AaWLoss ° /£ R &8 TR
¥ o ZMFEE AaWLoss 48 # 7> NAaLoss £
BAAERERLFBZIIEHETORY -3
9 » AaWLoss PT % 28934 R R E > A0
# NAaLoss £ e ff 542 A 38 6918 A 1 3%, o

2 NAaLoss ffif~

NAaLoss £ 4t#F SE $2 ASR $ B 69 LT 5
BHRETOALR 1) B FHEIK ASR #
#1355 3% £ (Word Error Rate, WER) &, ;
2) 183 & ik RO A R R T ARG 35AZ b
3) &% Aw SE R AL > AEME¥ SE %
g AP m AT EAL 5 4) 167 A HREE SE W
A FEAERIL KA > BFE BN KR EE EAPT
TR o

RBFFEGT R TR o=y +2 PTER
AF gy cRT BAZRLFET 2 cRT BT
#agRg o ROV F() A SE B > 0 A1
# o NAaLoss & AT ZfBR*% :

1. fly) =0.+x: SE BEEM AR HLFE
y B ol 62 iR E R 0, R
BE oy

2. f(x) = O+ 2+ EEBHFRT > SE
A A B R B o BF o 3 R AR AR
8% O, ~ RIRRF 7~ URELFFESE ¢ °

3. f(z) =z MRFMAL SE MUK E
RBBRIREF ©

ARIE A L B BT A R e
187 o AR F AR 6 A X9 5 6, =
fly) =y 8 0m = fz) = f(2) —y

NAalLoss YA SE &% F 69 B AZ X8 » HHAF

PR TR AR IBE T EEEE B
f[/fﬁ}'— Eestim = dlSt(f(ﬂ?),y) ; ’flj Fé—‘fé}%} él] 2| 7}%2
BB Laears = >, dist(0;,0),7 € ¢,m #H %
TR R SR AR A R AT Ao 4R o BARIE
B3% 3. iRt st rik o 5 B —1ER
1R B Lignor = dist(f(2),0) o 4858 23
NAaLoss %= F 7| X -F AT -

LNaa = (1 - o= B)Ees‘cim + aLlgeatt + B»Cignor
Lo g ARBEEEOBEY A
NAaLoss R4 8ZTFEH a==0.1°

3 # NAaLoss # AaWLoss

3.1 NAaLoss ¥4 & TR

B T 2 M NAaloss # BBz A M
NAaLoss 8 =B LFEATH B TER ©
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3.1.1 THBHILE

H AR E B £ NAaloss PT4E A 89 L 4 $dg
% VoiceBank-DEMAND (Valentini-Botinhao
et al., 2016) L i 47> HIF & 6948 B & R
f A1F @B o A EIE o KAIEL
T NAaLoss A74 H # MANNER-small (Park
et al., 2022) > YE & SE AR - IRy
NS BT NAaLoss B E B ER » VUKATE
INERAE A S B 7y AT o Fl AR > R AL
17 wAE ASR 2SR HLFHEF ¢y R
BE o BATHER o CCT-AM Z— B4R 327F
FEH AT HEZEA (Acoustic Model,
AM) » @ MCT-AM Bl &4 A % 2= & F4&
B R AR EATIIAR A AM o 33 Bk E AR H A
CCT-AM » MCT-AM % BA s& M -

3.1.2 TEARHK
AR B0 E R AR (Baselines) & 1.
Fim o R P8 H—F| R M35 i
BEHEBEWA ASR A& T H=F A AT
% A MANNER 1k & 3% 89 ASR A% %
Z 5|4 % @ 7| 8] 5 5| k& £ MANNER #] 3%
8y A # E4F Al NAaLoss E4T# A - CCT-AM
Fo MCOT-AM #4z P iE £ T B2 RR
(Word Error Rate, WER) * 7T Al 74 3F4 ASR
899tk A7 3 PESQ (Perceptual Evaluation of
Speech Quality ) 4% B A K 3845 #2375 & 69 34
HH o

EMAEZATREBEFRES > £4 20 R
IRERE » BACREH T BREARE -
BT EABETHRETR » AR EA
REHE NAaLoss /R A48 A 89 350 RAEE 20
Ko FFRFETRATAYE - BARHAE
AHRMEBRBOEHMAESAEEOER
6] B 475 2K RE 48 s A6 AL AL M A 69 S AL o

3.1.3 &RoH
R 2. 08T B4 R AT AR R K &8
BRER o £S5 BO TR » HAZ T
HegEE B 10 328 NAaLoss STEK P18 A 69
It AR K KA AT o

KM HERA > EA TR SE BRRE
Lestim 1 AH B3R IARAEFRITT 69 ASR H
it o R o L deatt Fa Eignor E?Z% /VFI%JLE': % &
BEEATH B R BRI R LR o R &
HIR Lostim PIHRAT » A £5 % & WER ©
BEAAAELEEZZBTHF RA Lestim At 59
SHRAE TR FE T I MR E TR
b B3t Logim FHARMF G BMEMERA R
HRAZEGT B AE L RT R T o

B —7r @ Ldeatt E;ﬁ\i Lestim é%ﬁlﬁ’ﬁ)ﬂ’l‘” ’
W F B L AR TR T L$E
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1 FRAEHER o) £ & o SLFEHEY (B) @
Tk ARG (%)

FTAEERF 0, 0 FIBF R A0 B4R MR
KT —E ORI o
3.2 A#EF*
3.2.1 NAaLoss ##4&MAE
Eignor :‘?:Z%ﬁ’flﬁﬂ’jf ’ /f’il#j r‘fﬂ“;’f“‘%”i‘?’ ’ ’fi}ﬂ 'ﬁ‘ﬁ
e MCT-AM EATHR » Lo B n
WER # & ¥t Emb i BEETHE
K o HMFBFA AT Lignor MBFALA L&
TR B 6387 o

B e 2 FEH PRI o Lignor BBER
A% SE BAMAARE > LREFATEHX
F iR TR R BEMAE o K > EEH
BT » FemL A4 (Mapping-based) 2,
# ¥ (Masking-based)SE # & » £ A AR B
7k RN RERG 0 WA A
HIBE R XRBFETAIE - B E%RE - B
1 k5 MANE SE BRI » EA R G MR
& PRI FAMATE T B RIE o AR PTAE
A 8 MANNER & X B A A eg4a ] &
Ao B R A 4 T LT A R SR B AT
THRAZEGT AN B Lignor FTERE > £
ARG REN  TRTRALY I RF EAZ -
KA FERAAER L BT » BB R L TINR
SE # A » &R &% £ R ASR 89 H ALY
Flof» g LEMARETHRATELB L AR S
gl f(z) e

suoh s B —1B T VA R Y L e ARG
0,, B1EF 7 X o NAaLoss 8918 3AF == B 4% 0
186% 0, AEBEMBRET 7 T8 RER
3o RIMAE » BF AR B H E 5 HihR&
Z#H ASR THPRGEF » BRI FEBHHH
ASR 89 A F| Z R ©
EHBRERABREY > RMBREE Lostin
4 ﬁi’fﬁlﬁ"%ﬂé%ﬁ/‘\ L deatt Fa Eignor v 13 B R
T (Ho et al., 2023) & & 694 151542 1 )
Ldeats Fa Eignor JE 3R P By %/;%Eﬁ*g?:%: °
oo BT BMBERGM Loeas £ EHERA E
EYE  BPBERT Lignor * B Laears #IHE
FoRREE 110500 BATEE » &R
R IPT o
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The weights in NAaLoss

Method Input CCT-AM MCT-AM
Lestim | Lgeatt | Lignor

Y 5.04 4.86
h h T 23.76 8.32
" 5.28 1.01
MANNER } x 7.37 6.62
NAaL Y 5.17 4.88
350 epochs T 6.83 6.41
NAal 0.8 0.1 0.1 m 5.31 2.99
20 epochs T 7.07 6.62

A 1. BRARY o BiA 7 k%15 K MANNER & SE BA Rk > EMALFEL g HRHEZET 2 KB

23069 WER &=L 28MF =35 MANNER & &%

o

Components used Input | CCT-AM | MCT-AM | PESQ
Eestim Edeatf »Cignor

” 5.26 517 1.06
v v v e 7.25 6.54 3.06
P ” 5.41 1.4 1.26
b 7.04 6.57 3.12
g Y 5.01 5.26 1.29
e 9.76 6.86 2.56
p v 5.78 5.68 3.67
b 9.76 8.32 2.64
” 5.23 5.04 113
v v e 7.26 6.57 3.09
Y 5.41 5.01 1.09
v v b 7.23 6.59 3.10
Y 5.33 5.12 1.13
v v e 7.62 6.87 3.01

A2 HERTER - BALA (v) B RRBAFIMETRE 1 REE 1228 WER A7 L84 MANNER

IR o

Lgeatt weight  Input CCT-AM MCT-AM PESQ

) y 5.23 5.04 113
x 7.26 6.57 3.09

0 y 5.14 4.96 4.34
x 7.31 6.55 3.00

500 y 4.93 4.77 4.60
x 34.33 8.98 2.06

A 3. Loout NRRAERANER o HAH LR
‘Cestim #‘%ﬁ%"éi% 10 }Eﬁ}? iﬁ%gaégj WER ﬁﬁ?;ﬂ:—
#H# MANNER ; 4 6 7842 7 8 WER & 7 &b

AR R o

W E Laeanr HEE 8938 o > B 2 3095 1545
—FF%{L&{%T?Q/; ﬁ{’ ﬁi%iﬂg 7% s AR rﬁﬁu%%%,ﬁ%,f:‘—_—,:éﬁ
1%%}&@%45‘2170}%{? ° jL;l"_;E’E;“,;» Edeatf ﬁ\?
Lestim Z MR E EFEIGHAEF - A RIGIEHEE
FIRIE ARG R TR o Hk > AMBEE T
ZRGE 1A RRGHEIUAT G AL 0c
A 0, 0 R LG A AS 6, A
AL - BHROBRETT 0, Ao HHR
F 2o THIRABM IR - BB A
YR RFT AR ICE BRI RKT
SHBRBRABRAORRHE o

3.2.2 HBYBmHiE XK AaWLoss
HMRE - BT AHERBREREAEINR
P AR GBI RE > MR B AR RS
P MR Lignoy * L BAE Om 8946 F o X F A
R G RE Z ALEN AAR—FF K
PIUEFE T RANBZR > BRE T —EHER LY
18k H % AaWLoss :

Laaw = Lestim + @ Lwdeatt

E¥ 0= fly) —y.0m=flx) -y o XTI
B A 028 53 o

Tl 4 32 B 44 2R B9 LSRR 9 A OO0 M R AR R
2 e U BB £ R R A AR T A A 4,
HHEE o FiF, BAERERGRT KM
BN O R o BTRBRARLFS
SE HEA 12k BT 8 B35 % » &A1
Laeatt > 3 Oc 2 0,, W T — AT RE B ek 7
EVRI &5 o

Ldeat = (1 - 7)00 + ’)/Hm
I1f (=) =yl

s — ° —R
Loy = 1/ (@) =yl +[] 7 (y)—yll to o ‘*M 5
kB BOF G RAZF AT SE RA 69l - SHAE 0,
Ao 0, £ HABH P E ] 0 REBHREFE 0,
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« Input CCT-AM MCT-AM PESQ
! y 5.36 4.98 410
x 7.18 6.60 3.09
10 Y 5.09 4.99 4.21
x 7.28 6.52 3.08
Y 5.04 4.81 414
500 x 7.05 6.73 2.94

& 4. 1#8 AWaloss 8 % o R4 12306 WER
A LA MANNER ; #4276 WER &£ 748
A NAaLoss #J3K & ©

Fo 0, EARKJIP R E - BHRGFAEES
PR AR A T 0915 B B 2 BAZ0 R
B o ALAE IR IR T 695 % A R o

4 ¥

41 FTBHZE

B T 3 AaWLoss #930% » RIMVEE 218 R
8 B R ¥ £ VoiceBank-DEMAND _E i 47
T—A7 %R ZREENINRELIET 28
{23544k B eg3k 11572 B384 » £ HAE AT
DEMAND ## & ¥4 10 AR EARE »
YA 0~5~10 # 15 dB #1435 & (Signal-to-
Noise Ratio, SNR) #A7/R4 Bl LB @45
T RALEH G B A3t 824 BE ) 0 E H 43
£ 2575125 %2 17.5 dB 8915 LT R4
Wk o ghdh s KAV IR E PRI 200 1B
EOVEAREBEE S TAZTEHNOHREEYAE
16 kHz °

4.2 THER

B T #b AaWLoss 892588 » &RMIEA T A%
3. PATREH o fh» EBHINREMNETT 20
RFERGHA - BRER R 4. FTT o &M
TABREE] > AaWLoss #E B ww FAIAL A2 T
NAaLoss P B 44328 3% v & 56 2 B s 1
AE T 489 B8 o

MG o 180938 o > A IR T 8948
¥ ABEARKRE FEAE CCT-AM Lif 3|
THAERALFEFTAGHMRE £E2A
MCT-AM k3% B3, h AR AR 90 1535 & 69 Pk At
1 o A 20 REXEIEHT » AaWLoss 37
R A E R 0 R - wREdE CCT-AM £
T B A s M6 AT T A A NAalLoss & #31
1 R4548 K B MG R EWE - T &9
AaWLoss f& 50 £ R :F R A 48 K R =R A 7%
f e b8 4E 3N FlBE B AR A SR T 89 &
167 - EIG PR 7 MR SN 4E 3 o

B T BIRAT M AaWLoss #AL A 8 B 550
R AMEBETXLEHTTREN > #T R
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BREFE—F N - B 2. F o &M
77T AaWLoss ## NAaLoss f& 48 F] £ %] £
E W I EAER 0. R B AR E o
B 2 ¥ KMTABKE > F#EA
AaWLoss #ATMFAZ 69 SE A » X-F 1 G
B FLFMEAET 95 o sk B 2b.
HMAET AE B 0 AaWLoss FT & & 69 #5514
HAH NAaLoss M3 E a5 5404
AR o BB R K] AaWLoss /£ RV F
18 % 77 &0 09 D £ A8 38 NAalLoss » i3 #H#44R
ARG ERERNBELAEEER -

3. FTHELBESNETFTAEA
AaWLoss #AK 893G 35T faaws(z) A%
BAEHE 0, c B TIESZTTEES
Jf) B9 A B S E o RAF (Chen) 89#F R > I
& (Voiceless fricatives) /f/ i % & 4R (For-
mants) # @~ KFA# > HE 3000 £ 4000Hz
Z M &K &% A (High Frequency Turbu-
lence) e R » £ a=14 a=10 GHFRALT »
EPTABRBN B F B T EMH I R
REGGEOBE T )MADERT » 2K
RIBANE A E /b)) 893 KM (Stop Gap) °
AE S ASR #Falsa3R o AR 0 & o = 500
B RMITRAEREARG T RAGESTE
Moo BAERETRAL BA Lwdeatf /£ B4R
KRBT ITAE QO E BN AEF Lostim T
RV LB LB TEFT T ZTEZERGH
Ko Rf 0 F Loqears WHEN G0 EA
FRER G 12 B 469 F AR AR 0 B A BN
¥ %EF I CCT-AM 47 385 > WY 2 3
B0 Tk » RS ER IR o

7 S — BT 2 & IR L PESQ 7 WER
Z RGBT o BHA R RN Y CCT-AM
R AEMTUARRI LA REHRERY
SE # A £ PESQ &7 @4rsa H# £ o i3t
—FBRETHSAENHER 24 PESQ &
ASR 899 AT M B AR B G MBI o

5 &&

A FIE S AT NAaLoss B9# RMLA » b
—F AT AT R BRI L TR
HWBIBEEER KM T NAaLoss ¥4 4£
— RN BHR ERET —EEESEE
HEBEBRERAFROHAVE LRI HAE
AaWLoss ° BM Y FBHREREFR BT A Y
# NAaLoss * AaWLoss £ 1€ & AR KK
R# L GFRT o shALH £ 2R IF S
Hr AL EFR T ENR  FIFELA
R BB B RE ) o BB EBIHHT 0 &AM
WHEE T AaWLoss ik T1H4 SE Ak & &K
THH B ASR MR G MM > BEFEE
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Abstractive Document Summarization
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&

IHHE—A-EER ﬂﬁﬁ—ﬁ'ﬂ)’rm’%
aﬁ s FAMKES T — %Ii‘—d‘??ﬁﬁim §

FRE DB % o M4EF (Keyword) 4 T
FTAMEEAREETHELAE > €A
FREELENIHE - TBRBOMA -
e BEF SRR EAAMEFTH
XHHEREA Kiy s BREEABT & —
1B BB A AR » VAR — 1B B 42 54K
B Rl agd 2 Ad AR o BHMEFAE
R AL G H A ?ﬁ%iﬁi&%@%@}i@éﬁ
RIAE s A SRS okt FRIEAL - HEA
o KRBT RE AR E—EXAFBL
T H N B IR - FRAFMEF
HERAI B RERESmE— Bk &
B RAET LB B HAZ =l U R A B4
FopTRBEERHMETEALTNRE
AWML THRERBET 2 ARFL
AR AR F AR o BT T AR BRI
F0y Ak 0 3B B 7 M 4R T R BLAY AR FE A2 o
oL T AFARAT 8 PR o

Abstract

Document summarization has always been
a classic and important research topic, aim-
ing to condense a given article into a few
concise paragraphs. Keywords, which usu-
ally convey the theme, focus, and core con-
cept of the content, play an essential role
in the document. Therefore, many studies
in the past have proposed keyword-based
document summarization models. How-
ever, these models usually consist of a key-
word extractor and a keyword-based sum-
marizer. Such a design not only increases
the complexity of the process but also may
encounter an error propagation problem
and will also lead to redundant resource
consumption. In view of this, this re-
search dedicates to proposing a word rank-
ing based training strategy for abstractive
document summarization, which mainly
focuses on combining keyword extraction
and document summarization. On top of
the training strategy, the resulting model

can automatically select keywords in the
document and generate an abstractive sum-
mary based on these keywords. The ex-
perimental results show that using the pro-
posed training strategy can indeed effec-
tively improve the quality of the abstrac-
tive summarization and achieve good re-
sults in the keyword extraction task.

Gk S R R E SR SR
1 N4

S8 &8 B o B Aw B X (Extractive) $2
55 (Abstractive) M KR o B X 48 & &
PR TEF » PREAME o) T R AR R
ﬁ%iﬁ%@m%ﬂﬁ%@mu% & 30
EGHFR > M OB E T RE LIRS TR
BiE - aAAIAERN G TEH A THIE
SHT S EHRFNE > AB LT
AW EAR > X AMBIEEAE - £F
R REEH (Deep Learning) EO R R
#%’/J' FEARFBZTREARLGEE RS AR
#% 3 £ A& (Natural Language Generation) &
BT —ERA o B B3k LR EHE ~ BA
SE R E) 6T > LA A ELE R R
A% o Ak G XIWEE > BRI RA R
HPIERA o ANV EEIEGRBRET >
WMEXBEEHFATRRTE—EFFER
5] (Sequence-to- Sequence) g B > ARk
EX—RIXFE BAFEREZRIFAEAL
—BXFRFI ’VF%X—?WJ#@—@
EREZEGIERT » FH 257 MY
B0 B B ik XAV & 8% (Recurrent
Neural Network, RNN) FfrEH‘* (Nallapati et al.,
2016) 5 # % > Ei%L e & A (Long Short-
term Memory, LSTM) $Z ] 1\4}35 REALHY
(Gated Recurrent Unit, GRU) % &K & &8 X
M mgk g REAHSHRE (Li et al, 2018;
Shi et al., 2021) : R & » &# /' A (Trans-
former) RIE K& T &Kk X EYFH 4
AR AR R A EE ﬁ%%(%m
attention) K% & F 4 (Token) 5 # X F )
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M A% > b fE &4 A KRBT R IZAB 91EFH P &
&AL 3K (Vaswani et al., 2017; Raffel et al.,
2020; Reid et al., 2021; Fan et al., 2021) ¢ #&
sboo @ BB R A B KRBT IREART 5]
EFP| MR T REM

AR T (Prompt-based) #9448 242 7 & 91
FR—AERGT R G 0 SR RS AR
AR R A A T3] R T
(Liu and Chen, 2021; Luo et al., 2022; Narayan
et al., 2021; Ravaut et al., 2023) ° £ #A#EH >
AT — BRI E A L E R 0 TR B A M
RFXALBGTEERT —HIAHZ
A MR EEA RAS T YT REE
BOTRINAE R MEEL > AHHS
B RN BAET I AR R K3 — B A& M 42
FRETBEGTFHFER  —ALTESHEFTRE
B TR FR ARG E o AT AA RA L
T EATHM o AF T BT SEARE 5 BB EAR
WL FEGES » EATHZGER - FBHROR
BT 0 BRI EA R BB 7 X AR E b —
AAE s b A T — M EFRAET G THIR
o UR—AESHETFRAET G FHRLFY
A A RAER o R o desbAf A0 RAL -
A2 fg B A 453 1% & (Error Propagation)
By B RE > R B F R R AT o W A
B o sboh s MR GIE T EmAA o B E
#m ARG EREZ (He et al., 2022; Dou et al.,
2021) ¢

AHEAL s AR E—ERAFRL Y
FAMEM F N EREAIRE - R HAEE
WordRank * T EZHA=ZKER - F— > BT #
RGP EREREA Z B KM B E R
F2 A D &Rk AR AT B S8 3 69 A B S B0 4 AR
BAE— s WA LELET R LER  HEHE
A RAET A B 302~ BB 42 F > wak iRk
BEABE - FH= > BEHANIHZE X EEA
IR ET AR AR E X RN G B R
HEABEEY > BABMEE TN o K&
KM EEF R AARERGEANEN B
XA R RS E RAR A F X B AR
Pegasus (Zhang et al., 2020) ¥ BART (Lewis
et al., 2020) WAL R F XM L% - TR
HRET AR AT RR B GINRIEEK > B2 K
AR A A SRS F X8 B 091555 A3k o

2 AR R

2.1 ®7%% (Prompt Learning)

WK RTPLEHECHEA KRBT RELGER
P Z ko B AT A KRR KA
TAINREZHEAE R A EE T HEH (Lin
et al, 2023) A B & X A REZ A R
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B Bl & (Radford et al., 2019; Brown et al.,
2020; Schick and Schiitze, 2021; Li and Liang,
2021) o #atdh G X EEH R > RE‘WE
AR I g 38 R R R 5] o AR AR T LA AR BAF
SRREMEHER ERTET AHELE
8 &R ° CtrlSum (He et al., 2022) &4 7 —
RTHEAGHZER - AR 8 HR I B 425
Fo AR R T RBEREAR BT 5 ERRE 7
W 8 42 H] 0 ALAF IR A B 38 B R T AR g 4R
7t GSum (Dou et al., 2021) A& A § R EARH
BRM  E—F RN L FHAHEI > e AT
— B3] EE MGG R > ARIFEAET R 69 E 5] R
W O(MsET ~ M) F) AR BN A RAE

4 48R
ARE -

2.2 #1L£E (Contrastive Learning)

H2E (Hadsell et al., 2006) & &M ZiE
Rait@mpgii - FA—RaEF2EN
7 X o £F 2 SimCLR (Chen et al., 2020) #
HEHRAABGY AR FAT A
18k (Contrastive Loss) 314k 69 1 & 48 3848 3
8 BEESEY (Self-supervised) R+ EHFH
(Semi-supervised) 7 % » A& AT £ 47 89 4E 7
AL o MRt > AR RALEANBE B REBZS
BIEARR P o SimCSE (Gao et al., 2021) 42 i
T—EERAHLETHESE  LHHFEIR
EBE AR & N (Sentence Embedding) 1
1TNBRE 7 ik > e LAFEZAMME (Semantic
Textual Similarity, STS)(Yang et al., 2018) £
P iEs AL EEEZY (Unsupervised) 4=
FEHZGORY - AARIALRTTEWS
K ZAEH > SimCLS (Liu and Liu, 2021) #&
BT AR YRR R RO R 5 69 A R
EHERTY > HB AR A HH R
AL R > B AR E R R A R UA o
£ #—F 89 » BRIO (Liu et al., 2022) 2142
T AR A SR AR TS PR R AR R 69 3 LI AR
% (Cross Entropy Loss) $ Fadt SUA & H 89 %
VeAR RAREE A o R B A RIS 1)
A6y > migMEINER Ty XA AR 2 dh . X &
B L AT IR F AT 69 A o

3 A Fh F XN RE

3.1 G R R R

G X BT —BEYGFFEFT
Bl Lk RS —REABENLE D =
#HEY = {wl,...,w|y|} o VAT gé%‘%
B AR R AM%BAGE (Encoder)
A A5 & (Decoder) # #897 X o £ 9 #
o BMEAKLETHEHE—MEFTH (To-
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ken) ## @ TR Tk ¥ E G EA
o TR — AR R AL T A 9] 0 A ik
HQ,o = {0}, . hp )} o #3 » RAVAE HY, 0
NBEW Lo REMSUARNOBAHE » H—
M E LR B EEN KB (Self Atten-
tion) ~ 7% £ ##% (Residual Network) ~ & £,
{t (Layer Normalization) ¥A B ] 8% #8% (Feed-
forward Network) FT &85, :

aLt=LN(HL + sAHLY)

enc enc enc

H...=LNH,}+ FFN(H]))

Eenc enc enc

(1)

L SAREBEZIHRF LN &5
B EFRASFFN BlAR#ERAE & | ¢
{1,2, ..., Leney B9 EFR KRG R - 515 —
#A9T BEEN R AZENMEH (Atten-
tion) 898 % (Lin et al., 2017) > MM A&
W@ B89 AT AR B £ (Query) ~ 427
(Key) $24&78 (Value) :

Q! = Wé—lﬂlfl

enc

KU = Wi e )
- - -
viet=witHL !

b (WL wist Wity B Ak e % ey A%
WA QUL KL VI SR AR W
el o 3 > AR AR SLsE A E—
85 5 $2PT A F- 45 69 40 B AR K

l—1Kl—1T

SAH'™Y) = softmazx( Wit (3)

dmodel

EF Vdode B —18 4 # 1% % (Scaling Fac-
tor) * dyoder BI AW E O HEE o AR 0 AR B
A B SR 6 A AR R o w8 B R A A — 18
F #8696 € &% (Bahdanau et al., 2015;
Luong et al., 2015) °

P AR B P AT AR A — B
et @ 1% > th F X R AR > A5 b 7RG
BRTR o BEGEEFlixd Ly, B RGETH
BHTMR BT AEE AN - REEAR R
SEEHAC A BAT B ST o MRARE TR B R
&2 X iz & A (Cross Attention) ° £
BEEN s RAGH B4 F XNBBEEZUME
Foyr N —BF—EFRFGHE  TAg
ZEAR g BFA wy, B R E AR
Y<y = {wl,wg,...,wy_l} ° ﬁ]#ﬂiﬂ@ ’ &{Fﬂﬂ%——ﬁ:
—AFHRBRAREE LA TR LEAE G S
oo R HY, = {hY,..hY_\} » B R

dec
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RPBITER @

Y= LN(H + SAHLY)

dec
Ayl = LN(HH+ CA(HE< HE L) (4)
Hj.. = LN(H}.! + FFN(H.)))

EF CABRXLEZABRAH - L LEZN K
FEAEENIERHMGEE XL 2HR (£
FX 29 3) EREER LEFENHHANEA
Al EAEREA G EH > mAR Hlene
EAESEARAEE (Vaswani et al., 2017) © 218
Rt AR A R RN > 2T A
C 48 BB FHAFIFR (B HY) 0 hesy
FlBf 5% L6 R (Bp Hlenc) o 4% > &
142 0 B S A A B dh R XA AR S K
IAREFE AR K B

1Yl

Lyre =—) _log Pwylwey, D) (5)
y=1

3.2 AAFEBEL 694 F XA A I RE
ERAGH B EXBREEVRET » A
BN BB LEEN RPN E RS LRSS
AMEEROAG -  ERHET AEEHK
LE SELICES S LIS ALFE S
MERE—BFHOHRREBEAE AT S
ERBEREN o BEENERFIR K WA
RO FHFINEFEAE > BB LEE
Ty A o A S B AR CAR AR A 6 F A 7 7]
—HER AEETRAEAEAROBEAR
FE—Pib o EXLEENBRHGELTY > F
PR AE 2 M 69 B AR 0 VA A AR 6 7 X AT
(%X 3) ARFHAOETEATEAE—EH
B AR B R AR ERE ARy
FOMIERE - WRhREZH  FHEOTRATENR
BARR (BP A4 a9 fa8 K ) » AT AR AR
AREMIERGBFH - Bk ZRELFETH
BFNFRTEREREK  BREEL RBZ
B hAREAEA A dbE TR LT > R
AR H BAF G E XBRER -

HEAL s KRR E —ERAAFHL Y
M ERXBEREAINRE > MEHEERE TR
BB EXE TG MET > b AiE
M FHEART  ARSHE EH - REEH
B FERWE - BHiE—B ) » KM 8L
JRFAHE D = {(D1, 1), ... (Dip), Yip)} F
W — BB EEE Y RATFMAEE (Part-of-
speech Tagging) : 4% » &M K=MK 5 &
#3 (CC) ~ #F (CD) ~ 4 & dr#a (MD) ~
7 (DT)~ A7 (IN) ~ H = AHEHI
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C? = {school, Alice}

f
D? = {bike, Alice} C = {Alice, school, Alice}
f f
Keyword Candidate

Transformer-based . o .
( Encoder ’ ‘ Generation J? {Alice, hospitalized, going, school}

T T POS Tagging &
| Noise Removing

D = {Mary and Alice go to school by bike. On the way, '
Alice had an accident and was taken to the hospital.} Y = {Alice was hospitalized while going to school.}

Figure 1: AAFHEL 0940 L A L HE B INRZF AR TEE o AL F D = {Mary and Alice go to school by bike.
On the way, Alice had an accident and was taken to the hospital.} #24& % Y = {Alice was hospitalized while going
toschool.} B o AHBEER Y BATHAMARZRBAREK » T 7T {Alice, hospitalized, going, school } w18 5
B Alice ¥ school A £ XL =¥ HH, » FTAZE LF TR R FRAF A C = {Alice, school, Alice} * Bf N =3
X EERMEREERKY 2 BAFH > AN K RE 20 T2 C? = {school, Alice} # D? = {bike,

Alice} » AT At FAAM 8 £ % O\ D? = {school} * @ D?\ C? = {bike} °

£ XHF (VBZ) > vA B & P 645 2 4+
to(TO) ~ wh M3 &% (WRB) ~ wh H#Z
K47 (WP) ~ wh S8 £ &3] (WDT) ~ wh
B 28 BT A & (WP$) » 3 B %45 A5 (Stop
Word) —# ks &K > #THFFeR
AAEHEGLE D FHA > KAMABKLEA
BEFHREFEENRLT C = {0, .., 0w}
BT EZAE > FEEMETER N LAF A
$#AXLEDWKRE D 2B C ATHRER
FTHOFRK - M BRLB 1A T o

XE D ABBRBEYREL &
—EFHFALHEYQELRTE E
{ewrs s €wppy 2 B b & AT T A B B — 18 F 5
AL QB ARTERE OTHEAE— @
RERMRTFOMERE RUEDELRTE
By RE > R AEMZERSE T FERIT K X
BFEH oK = (Wi, iy wEXEF
WE@ERTERERKRON K BFHF
DK = {wP™ . wR"} o DX RFEAALA
EXLEZARFNTHERARZYA K 18
FH o m OK P ARMBE T LEENEA
BIER Z AT K BT o #7353 » &M
wECK DK EE2%F  LRAAEBEH
B AR XA &0 SE 0 4T R EMAT
BT AEEMAETEZ— B o Bk JLREFHY
BRIABRTRE :

Lwr =maz(0,5 — S +margin)  (6)
Q ’ewi|
S= Z ]DK \ CK| (7)
wiEDK\CK
5« — ’ewi‘ (8)

w5 VDA

|D|
N dmodel

L DE\NCKE REE&DECE 2% >
IDEN\CK| AT E2FNGALFBE > |ey,| 2T
FHEOE e, WRE - MEF—REGZ - |DE\
CK| 2 |CK\ DK| % Z48F 89 5 margin X
R—AEZAE > LRI ERAZEGK
D LFEFHREMETHR N~ ERGH T
HK ARFHOEOERTEEE dpoge ° K
#o RAVE SR 2 X Z A5 B 4%
SR AFBEL BB R R EBER S BT H
By IR B

margin = | DX\ CF| «

L=LyrLe +Lwr (10)

FERRBR T —REBEYLEEL B
HMEGTARALENF—BAFHER—BOE LT
o BRMTRERA LA TENORE K
AXEPTROMAET - FHBHS > B2
B REXLEALAAMBTFRTOHER
o FHb > ARREE > RMFRAHL SR
ITHIMARE » BAN B $3H B TR MET E
AREREROOERTE BREMERELL
PREF o TV MR EIR T AR AG B 4E T o AR 0 A
18 & > TERAFIYEL 093 F A 4E 2
RN RETRAA EXEAEN B0 E B
FAEAARE L LAt R o

B EA
4 HW
4.1 FEHRZ

4.1.1 FHE
EARFRF > KM CNN / Daily Mail
News Summarization Dataset (CNNDM!)

"https://cs.nyu.edu/~kcho/DMQA /
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CNNDM XSUM
R-1 R-2 R-L R-1 R-2 R-L
Naive Transformer 40.88 17.88 37.80 28.38 9.20 22.60
Naive Transformer + WordRank 41.09 18.16 38.02 29.47 10.03 23.54
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11 47.21 24.56 39.25
PEGASUS our 44.20 21.35 41.03 47.21 24.36 39.01
PEGASUS + WordRank 44.28 21.48 41.14 47.34 24.49 39.18
BART (Lewis et al., 2020) 44.16 21.28 40.90 45.14 22.27 37.25
BART our 44.29 21.26 41.05 45.08 22.07 36.83
BART + WordRank 44.55 21.55 41.38 45.25 22.24 37.07

Table 1: PEGASUS #2 BART £ CNNDM

(Hermann et al., 2015) 2 Extreme Summariza-
tion Dataset (XSUM?) (Narayan et al., 2018)
KB RAPTI B 0 RA M4 F R T4 E X
#ER IR E - CNNDM £ o A 4 T AL
B4 (Cable News Network, CNN) #Fe# B %
# (Daily Mail) &9 B U A7 4088, » &AM 4
BAFGEGHBE > HHHLERBF RS > @
7% (Highlight) PI#CE R L £ 694 % X4
£ 2% (Nallapati et al., 2016) © XSUM & ¥A
& Bl & ¥ 3] (British Broadcasting Corpora-
tion, BBC) #9#f B L3 BT o 89 B4+ & » A8
#7 CNNDM * XSUM 893 & A2 48 F 24
—¢ PHAIFHRNFEFALZZRK X
B S EWMG BB EHE -

At 4% ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation) (Lin, 2004)
1k B B & UHF 38 23 R 893345 7 % © ROUGE
A—HEFRAFARBZREARGFTL S
FoMHNAAHETADBEAL ARG R
BATRGHFEF R GAMEF B H o
ROUGE 4 # A dst B A R H R L EH
M ERGBAAAEL (HleFH -~ B 7
) REAAMGIMEZE o HARBAE
— B0 B PR BRI AE S E R LT
GBI G o b H AR R RFE 8 EAL L EEATI
B o F AR — M - &4 ROUGE
KRATELAEZREG TR BHRT I RE
i Rx R > Bk R B P
AARZOGARNMK - HHIARESHHERER
FEFEHHEILT > ROUGE 4 A 2 Btk
IR B BB SRR o £ AT R 0 RMIK
AT ROUGE-1 (Unigram, R-1) ~ ROUGE-2
(Bigram, R-2) »A% ROUGE-L (Longest Com-
mon Subsequence, R-L) & =42 % A 694542 -
ROUGE-1 A#A#E A 34 G EHERE »
ROUGE-2 Rl B iz A E G R &
ROUGE-L Bl # &4 B Rkt 4 F T/77] o 3

*https://github.com/EdinburghNLP /XSum

#XSUM BHENHEZABETHER -

WA SH R AEAR - RATAES B A @I
B B4 & A G KGR A~ B AR
S E AR F @A AR

4.1.2 BHRM

W A AT YL 694 . XA R AR D8R FH T L
MEXEAGH BB EEAES » FAkK
& 4FF A A X &M PEGASUS(Zhang
et al., 2020) 3 BART(Lewis et al., 2020) °
WAL TR 6 TR kAl F X 2R A Lt
VAR R, 4 A6 AL 4 $ 89 Transformer(Vaswani
et al., 2017) » Transformer &9 /& & ~ #1 A &
BVAR L RF T B BART B A — 8 &M
W e AR AR BN RFE > ZF T
B A HIG R 0 R AREBE RN
AR o IR E PEGASUS? 2 BART*4
& /& 8 7 Transformers Library(Wolf et al.,
2020) © f£ 3R EF > &1L B & Adam (Kingma
and Ba, 2015) > @3 H Lyre B0 G %A
label smoothing (Szegedy et al., 2016) # 3 Aif
RBACBAR D A B AT > $ACREBCGLT B
0.1 > 5% R3XE A 2x1073 min(step 25, step-
warmup 1) » L P 89 H FH warmup R E
B 500 » step R AT EK o £ EAFEPEL 8
M F X EREAIRETF o K& B AR M 42
FAE K RXEEMA & LFEFHE B R E
EWET W K = NS&EEH 32) Bk
Kg-x—B%%& > rA—EEZTHE - TR
R EYERET (GPU) & 1 5%k NVIDIA
GeForce RTX 3090 5 #£ CNNDM ## 4% Lk »
&R 1 K&K (Epoch) #F 12 B> A
XSUM FH42 1 R&ENXRGE 7 DB K
# CNNDM 347 2 %K » XSUM 214 5
18 » R FRINERAR 89 5 BOEAT I > @ Trans-
former £ CNNDM ¥ # 4T 14 &K » XSUM

3https://google/pegasus-xsum and
https://sshleifer/pegasus-cnn-ft-v2
“https://facebook/bart-large-cnn and

https://facebook/bart-large-xsum
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Bl & 23 18 o

4.2 Twm&ER

4.2.1 #HEXIHHE

BB —WERAR » £/ E kb PEGASUS
2 BART B A 7440 § X3 oy Rt &% - 40
MERw Z1PT o BT &RMETAY PEGA-
SUS $2 BART #4& #4569 R R 9> R4
WA AR T ZRAKRLP 0 RATTRE
R, o RF R EF IR IR AE R AR
Bl BRTEMOEARAGELATRELLSEY o
AR ABRBEEAZ > KM AT A5
RIBEZAAFBEL 094 5 XEEEA IR
% (WordRank) » A8 M &R R kw4 KL o
RBETRER > BHEEINRE > THL PE-
GASUS = BART ##& » e % X4 &
fE7%5 ERAT iR o BIAAR AT 0 AFF
FI L I X2 IR E > TEET R
PR EAR > RELMARZAINGHET
RT > RO BEEREF > LETTE
BN ER 77 ik » FEE AR08 R R 69 4 % X4 24
RlAntd b > BIAFF TR

4.2.2 MR
B RME— PR REA LT LM 32
THRLFERNRSEFOEGS c ERATRT - &
1A CNNDM A 8 813X & BB > A1 U AT
HIEOHBEE > FAFAMAZZREE > BF
—BXFEZ TR —aZENMT (FatbkF
ZMER 3.2) o #HF o RITE L EMAH BAE
MRS » UEFAIE—EFHGEaEERT
ko HMmmEATRNORE  AENERLE
PR AT | Rk BT R RMFHE
MERERKRGIM I -5 10 BFHF A%
Yt & B A% E 4T (BP Precision@3 ~
@5 2 @10) » RFFAEIE B AL 50 B 42 5 TR A
By AR AR ERE R ROFT = - B2
BB ERERTAER » £A A XAFHESL
B Fh % XA 2R A IR L% » PEGASUS 2
BART # A %4 £ M4 2 FAR 0 TBHRAEH K
T2 AR o — B R REFH AR R
REZINEEETTUMAEMEFRARZA -
BB AL LA T B B B 42 2 AT 4 JE 69 75 &) 2 AR
FHmk T » HAkihF X@BEHU TR Lz
EAMB ERMIEARETRGMEEFE &
420 R e B AR AT T |

Ik o KA AR A R K BERT #9
Bl 42 5 TR A A2 A 48 L (Gehrmann et al.,
2018; He et al., 2022) > 48 M & R Fl ik 2R
%2 ° BERTpse ¥ BERT grge 2 F1 XA AE M
12 32 24 B oW SEAZ KAFAINRBZHE
Ao AT Z F o KM eAE AR E L
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top3 top5 topl10
BERT}qse 72.76% 66.49% 56.43%
BERT 4rge 73.30% 67.70% 57.86%
Naive Transformer 26.48% 25.91% 22.27%
BART 9.84%  9.76% 9.77%
PEGASUS 11.67% 11.60% 11.37%
Naive Transformer + WordRank 62.37% 56.77% 45.82%
BART + WordRank 73.80% 67.09% 56.48%
PEGASUS + WordRank 75.22% 68.60% 57.55%
Table 2: MéFHEAITRHRER -
top3 topb topl10
epochb 33.81% 32.54% 29.96%
epoch8  32.15% 31.18% 28.85%
epochll 28.83% 28.27% 26.58%
epochl4 26.48% 25.91% 22.27%

Table 3: Naive Transformer ¥ X&) 4257 FAR 42 R 1k
8 o

AT B 4 AR 609 T AL R (Finetune) @ 3
BRAZEEFE—AMANFREIT=ASH
FIBT RGBT c A ERERTUARER » &
Ak AR AT BEL 0940 . X B 6k % )
BT (B PEGASUS+WordRank 32
BART+WordRank) » £ ] 4& 5 78 5] 69 At 4 $2
Bt M FHARANEA MM LT £5 PE-
GASUS+WordRank #1% 7 s ik A2 4 T 4 &
FLFALAREE BERT g © BATRER
AT TR AAAB AR EIANFA L
B4 % X8 BB INOE » HET T AR B M
ARG B RBE A — LHAEHR
fA1E £ B AR HEATARAT 89 AR o

4.2.3 Naive Transformer K 42578 8|4
RO

£ & 2% T A& & 2 Naive Transformer # top
K FA#[ & & b BART , PEGASUS v 78 31 4k
BAEEZ > RARE A E AR IR
BT B R — AR R B KB ILBE—
B s ke &3 RAVAITH F Rl K F Naive
Transformer # top K &% » T ulF HEA £
HRALEAG S ER T EF o RIRE G5
B M ARAK 0 T 38 AR A 8 R A F LS (Goyal
et al., 2022) FT3L69 » MRS > A £ I
RATIIZ E 6 oA i T o 12 D)4k
B 38 e 0 S BE MR AR TSR e ] B 093]
F o e YIFA KA —LF AGF E o TR
FERBEF R ARAGETRAERMAEK  #EM
% X Naive Transformer 8 top k HR T4
WA Z > RMLBELE L RFMORE » §F
# A A MRy > R R G RFEIRAER
R -
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CASED UNCASED
R1 R2 RL R1 R2 RL
Naive Transformer 40.88 17.88 37.47 40.12 16.94 36.54
Naive Transformer + WordRank 41.09 18.16 38.02 40.48 17.45 37.00
PEGASUS 44.20 21.35 41.03 43.81 21.06 40.41
PEGASUS + WordRank 44.28 21.48 41.14 43.94 21.18 40.54
BART 44.29 21.26 41.05 44.34 21.33 40.70
BART + WordRank 44.55 21.55 41.38 44.50 21.49 41.33

Table 4: X8

4.2.4 RIEEROZE
AEAIXZTR FHERENETATH LY

Wiﬁ’ﬁ%$ﬁZﬁ\mﬁ%% i g &
BAARBRELFTTHhERZEZZNAE -

At ZiBATRT  KMAFERS R LA
FRADGHAME A BAEFGREIYE -
Fl#% A CNNDM EH#EEB) » L= HATAH
FEE R G 0 KB AR AT AR A
ﬁ A E B A RAPT T o BRER A RMG
BT 93T B X T FELRER NG
&am@wmn’aﬁﬁﬁ%?ml%mﬁ%

T R R RELE (REFERE TH,
menﬁ%%ﬂwsy%%*%&%%“
RTEHFER - B —ROZ s ERAARE
SCF g FR 0 A2 A% R R AR B 6 48 B A A
AR E > A5 E T AR R B o

4.2.5 FHOEREZE

A RBE AR RMMEEKLD KRG
M E P IE— B LE WL BART 2

BMH+Wmmwkﬁﬂ%M’mﬁi%W&
— B F A AR R R BEL W B EA IR
EEWE o FROERTEREGE AAH
HRWBE2T T R T REHMET A
BART+WordRank % & » S -FAR 684 k&
BEiktg@E LR Tk £ BART A2 > #A
FHREFHE > GERATEORE £ZEMNTR
B s 2T HRF S REMEFORE L
Mg o At BATRKRET AAFHE
LR IRk > TAE TR M4

B ERTERES R ERYERLORS
FEF5 X ©
5 4

$ﬂiﬁm I Sk FAGEE N

SR NGRE o FAM M AEFTER B4 F X U
a‘ﬁﬂ'%‘mﬁé\ﬁr‘ s M EMASEFI] R T » AR
FF X LHBEARE EAFE - 2o > B EISR
EARE X EAEN R o9 g X482 4
o mABMREIZIVEEN o — AP TR
T AFRRAR B k0 g XA e

HAHE 27 89

HEZ FTEF L CNNDM A4 -

FRRBGEFEF > BRERABGFHORE - £X
Ko RV H G E—RBRENIRE > B
K EMAR FEZERALE RES REAH
BIEFHZ T » BB ALHHE ~ Tl &

1Ak RENFS o
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Abstract

A cancer registry is a critical database for cancer
research, which require diverse domain
knowledge and manual extraction of vital
information from patient records for surveillance.
In order to building a real-time and high-quality
cancer registry database, a named entity
recognition (NER) model based on bidirectional
long short-term memory (BiLSTM)-conditional
random fields (CRFs) to automatically extract
14 cancer registry items from unstructured
pathology reports was developed for five
hospitals. Because not all hospitals have
sufficient training data, so that we apply transfer
learning to develop our models for different
hospitals. However, catastrophic forgetting leads
to poor performance of the transferred model on
the source hospital. To address this issue, we
study the effectiveness of applying the elastic
weight consolidation (EWC) method for the
extraction of cancer registry items from the
unstructured pathology reports of colorectal
cancer to mitigate the occurrence of catastrophic
forgetting. In our results, we observe that
effective parameter settings can reduce the
impact of catastrophic forgetting.

Keywords: Electronic Medical Records, Natural
Language Processing, Transfer Learning, Elastic Weight
Consolidation

1 Introduction

Electronic medical records (EMR) contain large
amounts of data collected during routine medical
care delivery and have the potential to generate

practice-based evidence, such as early diagnosis of
cancer patients and improved quality of care.
Cancer is one of the main causes of mortality
worldwide, and it is the leading cause of death in
Taiwan, and the overall incidence rate has
gradually increased (Kuo et al., 2020). In recent
years, domestic cancer research has continued to
increase, promoting cooperation and resource
integration among cancer centers to accelerate
breakthroughs in cancer research bottlenecks. The
Taiwan Cancer Registry (TCR), which provide a
comprehensive measurement of cancer incidence,
morbidity, survival, and mortality for persons with
cancer in Taiwan. Unfortunately, the process of
reporting cancer cases requires manual review of
numerous reports, such as radiology reports and
pathology reports, which is obviously labor-
intensive and time-consuming. One solution to this
problem currently being explored is the application
of Natural Language Processing (NLP) techniques
to automatically read and extract information from
cancer reports.

In the field of machine learning, the quantity
of the dataset has a significant impact on the
performance and generalization ability of
algorithms. Transfer learning has been proven to be
an effective learning method to solve the problem
of dataset scarcity (Hutchinson et al., 2017). It uses
the knowledge gained from training a model on
one task to improve the performance of another
related task, which can speed up convergence,
reduce data requirements and improve
performance when obtaining labeled data for the
new task is challenging or time-consuming. Dai et
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Source HA HB HC HD HE

# of Reports 541 1,735 965 1,732 748
Training Set 300 300 300 300 300
Test Set 100 100 100 100 100

Table 1: Datasets collected from five medical institutions.

al. (2021) demonstrated the utility of employing
transfer learning for cross-corpus training in cancer
registries. However, their study was limited to
cases where the source hospital had same cancer
registry items as the target hospital. In practical
scenarios, cancer registration standards followed
by different hospitals at different times may lead to
different items and content of the target cancer. For
example, different American Joint Committee on
Cancer (AJCC) versions have different numbers of
items, staging criteria, tumor descriptors and
prognostic factors.

Despite transfer learning alleviates the issue
of learning from small datasets in cancer registries
across  healthcar  institutions, catastrophic
forgetting may occur during the process of learning
a new set of cancer registry items leading to a
degradation of the model's performance on the
original item set. The issue of catastrophic
forgetting is paramount importance as it directly
impacts the effectiveness of transfer learning and
the overall performance of models. When
catastrophic  forgetting occurs, the learned
knowledge from earlier tasks may be overwritten
or weakened by the learning of subsequent tasks,
leading to suboptimal performance on all tasks.
McCloskey and Cohen (1989) demonstrated that
interference leading to forgetting occurs whenever
new knowledge could alter the weights of old
knowledge. Ratcliff (1990) conducted experiments
using backpropagation-based training on multi-
layer models, revealing that memory and context
models with pre-learned knowledge are unable to
address  catastrophic  forgetting.  Recently,
Ramasesh, Dyer, and Raghu (2020) conducted
experiments on the publicly available CIFAR-10
image dataset, showing that catastrophic forgetting
often occurs in deep neural network layers closer
to the output. Arumae, Sun, and Bhatia (2020) used
the RoBERTa model pre-trained on PubMed
articles by combining with the elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017)
method to achieve better results in the i2b2 named
entity recognition (NER) task than that of the
original RoBERTa model alone. Arumae found

that using the EWC method helped mitigate
catastrophic forgetting with only a 0.33% decrease
in performance across the seven general-domain
tasks in the GLUE benchmark. This approach
demonstrated  competitive  performance in
biomedical tasks as well.

In this study, we focus on mitigating the

adverse repercussions of catastrophic forgetting in
transfer learning. To this end, we conduct
experiments to study the following two interrelated
research questions, each of which will be discussed
and elaborated in subsequent sections, as follows:
RQIl1: The effect of different transfer learning
strategies.
RQ2: Extent of catastrophic forgetting in transfer
learning: To illustrate the extent of catastrophic
forgetting in transfer learning scenarios when the
developed model learned on one additional
hospital’s data.

2 Method

2.1 Datasets

In this study, we used pathology reports of
colorectal cancer from five medical institutes
including Hospital-A (HA), Hospital-B (HB),
Hospital-C (HC), Hospital-D (HD) and Hospital-E
(HE) as our dataset. In order to simulate the
situation of limited data, we randomly selected 300
and 100 pathology reports from each medical
institution in the pre-processing stage as the
training set and test set respectively. Table 1 shows
the number of datasets compiled for the five
medical institutions.

2.2 Corpus Construction

Due to the variations in cancer-related items of
interest across different hospitals, which is owing
to the adoption of different AJCC versions or other
clinical research concerns, the annotation process
was discussed separately. To enhance the precision
of annotations, each hospital established an
annotation team consisting of at least three
members and utilized Fleiss’ Kappa (Fleiss, Nee,
& Landis, 1979) to assess annotation consistency.

90



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Type Description HA | HB | HC | HD | HE

H The structure of primary tumor cells under a microscope. 0|l 0 0] O O

G Grading/differentiation of solid tumors at the primary site after o o o o o
surgery.

NE Total number of regional lymph nodes examined by pathologists. 0] O O 0] 0]

PN Total number of regional lymph nodes examined by pathologists o O o o O
that tested positive.

TS Size of tumor. 0) 0) 0) 0] 0)

SC Symbols of AJCC Pathological Staging Prefixes/Roots. 0 O O O 0

T Size or extent of the primary tumor. 0] 0] 0] 0] 0]

N Presence of regional lymph node metastasis and extentof | O o o o o
metastasis.

M Presence of distant metastasis of the tumor. 0 X O O 0

LI Presence of lymphatic or vascular invasion in the primary site o X X X o
report.

PI Presence of neural invasion documented in the pathology report o X X X o
for the primary site in the medical record.

ASC AJCC Cancer Staging Edition. 0 X X X 0

KRAS Normal value for KRAS testing . 0] X O O 0]

CEA carcinoembryonic antigen. 0 X X X 0

Table 2: The fourteen defined cancer registry items. If the hospital does not contain the cancer registry item,
it will be noted as X.

Based on Taiwan's cancer registration reports, we
focused on specific factors related to pathological
examinations and colorectal cancer site-specific
factors (SSFs), resulting in a total of 14 items.
Table 2 presents the 14 colorectal cancer items,
including histology types (H), grades (G) ~ stage
classification (SO), pathological TNM
classifications (TNM), the number of examined
nodes (NE) and positive nodes (PN), tumor size
(TS), lymphovascular invasion (LI), perineural
invasion (PI), AJCC stage classification (ASC),
carcinoembryonic antigen (CEA), and Kirsten rat
sarcoma viral oncogen homolog (KRAS).

The annotation process of the dataset was
carried out independently by the annotation teams
in the five medical institutes. They followed a
consistent annotation guideline when the cancer
registry items were shared among them. Initially,
the annotators annotated a set of 100 randomly
sampled pathology reports according to the
annotation guidelines to estimate the Kappa value,
which is interpreted as follows: value < 0 as no
agreement, 0.61-0.80 as substantial, and 0.81-1.00
as almost perfect agreement. If the kappa value did
not exceed 0.85, further discussions and criteria
modifications were carried out iteratively. Once the
consistency criterion was met, the remaining
reports were evenly distributed among the
annotators for individual annotation.

2.3 Network Architecture for Cancer

Registry Information Extraction

To process pathology reports, we first de-identify
the unstructured reports and then apply the
sentence segmentation. Subsequently, the task is
formulated as a sequence labeling task by using the
IOB2 encoding. We utilize a neural network
architecture that combines bidirectional long short-
term memory (BiLSTM) with conditional random
fields (CRFs) as depicted in Figure 1.

Output (o] B-HISTOLOGY B-GRADE I-GRADE

‘ CRF Layer

— VT YYT

-——{ BiLSTM H BJ.ST\{ BxlSTVI

Embedding: <_[

GloVe + RoBERTa

Intestine

adenccarcinoma  grade i
BIO tags:
B:b

Sentence: Intestine large rectum polypectomy adenocarcinoma grade IT

inside
O outside

Figure 1: BiLSTM-CRF Network Architecture.
2.4  Fine-tuning with EWC

EWC employs a penalty mechanism in updating
model parameters based on their importance. The
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Fisher information matrix (F;;) is utilized to
identify significant parameters. During EWC fine-
tuning, the Fisher information matrix serves as a
criterion to slow down the decrease of loss, scaling
the cost of the original parameters 6; to the
updating parameters 8;. The following equation is
the lose function defined for the model with the
parameter set 6.

A
LO) = Ler () + ) ZFu(0: =61 (1)

l
Here, A is a controllable hyperparameter. Ly (6) is
the loss of target domain.

2.5 Transfer Learning among Different
Hospitals

Previous studies have observed that transfering the
parameters of all layers of the BiLSTM-CRF
model for the recognition of cancer registry items
achieve the best scores even with a small amount
of data. However, those works only focuses on the
transfer learning of the same recognition task. In
this study, the number of cancer registry items can
be different as shown in Table 2, which can be
summarized as the following three types:

1. The numbers and types of items are the

same.

2. Transfer from more items to fewer
items: In this case, the set of the types
of the source domain items is the
superset of the target hospital’s items.

3. Transfer from fewer items to more
items: In this case, the number of the
types of the target domain items is the
superset of the source hospital’s items.

Due to the fact that the number of the target
hospital’s items surpassed that in the source
domain, it is necessary to modify the last linear
layer shown in Figure 1 to align with the target
domain. In our implementation for the first and
second cases, the parameters of all layers of the
developed models were directly transferred to the
new models. For the third case, we migrated the
trained parameters from the source hospital to the
target hospital for the matched registry items. For
new items not present in the source hospital,
random initialization was applied to set the initial
weights for the corresponding node in the last
linear layer.

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

2.6 Experiment Configurations

We conduct experiments to study the
effectiveness of applying EWC in the
aforementioned scenarios to mitigate catastrophic
forgetting. For comparison purpose, we
developed models followed the conventional
transfer learning methods. Furthermore, the
following two methods were developed, which
are served as the upper and lower bounds
respectively:

e Merged corpus: Models trained on the
merged training sets of the source and
target hospitals. The configuration is
served as an upper bound.

e Direct Prediction: Making predictions
directly by using the source model. The
configuration serves as a lower bound.

The neural networks were implemented using
PyTorch and trained with a Nvidia GeForce RTX
2080 Ti GPU with 11GB of memory.

In the following experiments, the number of
epochs was set to 150 with a batch size of 256 and
the learning rate was set to 1x 107! . We used
cross entropy as the loss function and employed
stochastic gradient descent as the optimizer. The A
of EWC was set to 400, same as Kirkpatrick et al.
(2017).

3 Results

3.1 Statistics of the Experimental Datasets
and the Evaluation Results

We collected a total of 5,721 pathology reports
from five hospitals. In this study, the corpora from
each hospital (shown in Table 3) were further
randomly sampled to extract 300 reports as the
training set, ensuring no overlap with the 100
reports in the test set. The training set was then
divided proportionally into subsets of 15, 60, 120,
180, and 240 reports each. This process aimed to
simulate scenarios of learning with limited data.
The Kappa values for each hospital are detailed in
Table 4. As HE did not undergo Kappa consistency
testing, the table does not include its Kappa score.

For the collected data, we notice that each
hospital has its unique way of releasing the
pathology reports, leading to variations in the
amount of information included. For instance, the
reports for each patient are created separately at
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Type HA HB HC HD HE
H 539 948 911 537 2,097
G 436 908 852 695 919
NE 584 450 1,046 710 1,148
PN 516 450 770 714 920
TS 1,119 350 1,671 1,272 727
SC 534 320 629 275 1,273
T 364 319 352 275 785
N 366 198 337 275 682
M 364 1 41 84 214
LI 303 N/A N/A N/A 294
PI 298 N/A N/A N/A 252
ASC 316 N/A N/A N/A 298
KRAS 8 N/A 1 312 256
Numbers of reports 300 300 300 300 300
Numbers of sentences 18,544 14,054 29,877 39,794 31,913
Numbers of annotations 2,039 1,928 3,236 2,759 5,507

Table 3: Corpus statistics for the compiled corpora of train sets.

Hospital Kappa Value
HA 0.802 (substantial)
HB 0.914 (almost perfect)
HC 0.955 (almost perfect)
HD 0.819 (substantial)
HE N/A

Table 4: Kappa values of the compiled dataset.

HA, but HD consolidates diagnostic reports for the
same patient and clinical pathology number into a
single report. Table 3 shows the performance of the
developed models evaluated on their test sets
respectively. The models were then served as the
pre-trained models for transferring the learned
parameters to the model for other target hospitals
in the following experiments.

While this practice can save time in case finding,

it may introduce uniqueness to the labeling process.

Taking HD's corpus as an example, a single report
could contain multiple diagnostic reports with the
same writing style. However, the annotators only
label the grade based on the last diagnostic report
in that combined report.

The varying annotation styles across different
hospitals pose a challenge for transferring learning
from one hospital to another in this study.

3.2 RQ1: The Effect of Different Transfer
Learning Strategies

To investigate RQ1, this experiment is divided into
three configurations based on whether to inherit the
parameters of the last layer:

e Non-inherit:  Not inheriting  the
parameters of the last layer, and
initializing all parameters of that layer
randomly  (while  still  inheriting
parameters of other layers).

o Inherited: Based on the “Non-inherit”,
the configuration further inherits the
parameters of the last layer matched with
the output nodes of the source model.

e EWC: Based on the “Inherited”, this
configuration further apply the EWC
method during the training phase.

The datasets compiled for all of the five
hospitals were used in this experiment, and transfer
learning was conducted between each pair of
hospitals. The results are presented according to
the task types described in Section 2.5 which can
be divided as follows:

e Type 1: The number and types of items
are the same. The model was first pre-
trained on the full source dataset and then
transferred to the target training dataset.
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The evaluation results on the target test
set was presented in Figure 2.

e Type 2: The model was transferred from
the source dataset with more item types to
the target dataset with less item types.
The test set results for the target hospital
is presented in Figure 3.

e Type 3: The model was trained with less
item types but transferred to the target
hospital with more item types. The
evaluation results on the target test set is
illustrated in Figure 4.
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Figure 2: Type 1 results for the HC test set; the model
was transferred from HD (10) to HC (10).
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Figure 3: Type 2 results for the HB test set; the
model was transferred from HA (13) to HB (9).
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Figure 4: Type 3 results for the HC test set; the model
was transferred from HB (9) to HC (10).
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We only select three results with different types as
a result of the gr eat mass of data. In general, the
outcomes are mostly consistent. Take Figure 2 as
an example. We fine-tuned the models pre-trained
with the HD training set on the varied sizes of the
HC training set (ranged from 15 reports to 300
reports as depicted in the x-axis). It’s worth noting
that the performance of the configurations of all
inherited approaches among all of the three types
achieved above 0.9 scores when the target hospital
only provides 15 reports. The configurations
trained with more than 15 reports achieved an F-
score of 0.9 or higher, except for the lower-bound
configuration. Consistent with the observations of
other related configuration results, the inclusion of
EWC during the training phase results in a model
with a better F-score than that of the model trained
with the conventional transfer learning. On the
other hand, we can observe that the performance of
the non-inherited configurations is significantly
lower when the training set size is limited. Some of
them even underperform the lower bound model.
We will discuss it later in the Error Analysis section.

3.3 RQ2: Extent of Catastrophic Forgetting
in Transfer Learning

In this section we study the extent of catastrophic
forgetting following the same type definitions used
in the RQ1. The results are depicted in Figures 5-7
in which we report the performance of the
transferred models evaluated on the original source
test sets. Take Figure 5 as an example. We fine-
tuned the models pre-trained with the HD training
set on the sampled HC training set ranging from 15
reports to 300 reports. We then plot the fine-tuned
models’ performance on the HD test set.
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0.8000
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0.6000
v
£ 0.5000
2
+ 0.4000
= 0.3000
0.2000
0.1000
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Figure 5: The HD test set performance of the HD (10)
model fine-tune on the corresponding HC (10) training
set with varied sizes.
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Figure 6: The HA test set performance of the HA (13)
model fine-tuned on the HB (9) training sets with
varied sizes.
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Figure 7: The HB test set performance of the HB (9)
model fine-tuned on the corresponding HC (10)
training sets with varied sizes.

upper bound

As Figure 5-7 presented, when the target domain
has less than 120 reports, the configuration of non-
inherited has more serious extent of catastrophic
forgetting than the inherited one. Furthermore, we
observe that when the item types between the target
and source domain are consistent, the extent of
catastrophic  forgetting for the inherited
configuration is minor. As shown in Figure 5, when
the size of the target domain’s dataset increases, the
performance of the source domain approaches the
upper bound and even surpasses the models trained
solely on the dataset of source domain.

With regard to the performance of EWC method,
it was evident that EWC can mitigate forgetting
more effectively. However, in some case EWC
method perform worse than the inherited
configuration when the amount of data is limited.
One potential explanation for this phenomenon is
that EWC's regularization of initially important
parameters might lead to a slower learning rate.

It was noticed that some non-inherited
configurations perform worse than the lower
bound when the amount of target domain training
set less than 60 reports. These cases occur when
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transferring from the source domain with fewer
item types to a target domain with more item types.
With respect to these errors, we will discuss them
in following section.

4  Error Analysis

As mentioned in the previous chapter, this section
focuses on the error analysis of the prominent
discrepancies. First, as the result of RQ1 presented,
we find that some of the non-inherited
configurations underperformed the lower bound in
case when they were fine-tuned on a limited
training set like 15 reports. The error analysis
demonstrates that fine-tuning the transferred model
on such a limited dataset can enhances its recall on
the target dataset, but its precision diminishes
significantly, resulting in a reduced overall F-score.
In contrast, the model without transfer learning
struggles to recognize registry items such as G, NE,
PN, TS, SC, and TNM. Nonetheless, it maintains
the ability to recognize H (histology) across most
cases, owing to this study only focus on the
colorectal cancer type, thereby yielding a slightly
higher F-score. Additionally, we notice that some
histology terms like "Mucinous adenocarcinoma"
appeared in one hospital’s reports, does not appear
in the other hospitals’ reports. The counts for
lymph node examination (NE) and positive nodes
(NP) are typically denoted as integers in most
hospitals. However, our investigation has revealed
that, in the case of HC, some counts are directly
expressed in English. For example, the sentence
"Twelve dissected lymph nodes have no evidence
of tumor metastasis" labels "Twelve" as "NE." As
discussed above, directly predicting for unfamiliar

Lower- Non-

bound inherit
H 0.2985 0.0761
G 0.0000 0.0000
NE 0.9748 0.9812
PN 0.9969 0.9969
TS 0.0303 0.0435
SC 0.9872 0.9829
T 0.9741 0.9697
N 0.9343 0.9343
Overall 0.6182 0.5573

Table 5: At 60 instances, when transferring from HB
(9 categories) to HC (10 categories), and predicting
the detailed NER performance of HB (bold scores
are those below the micro-average).
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knowledge can disregard the variations in labeling
styles across target domains, resulting in higher
accuracy compared to the transfer effect with
randomly initialized parameters. This is also due to
the combined impact of transfer and the random
initialization of the linear layer.

Next, RQ2 discuss the extent of catastrophic
forgetting, and the comparison table of HB fine-
tuning result presented in Table 5. Additionally,
during the examination of the original training data,
it was noticed that a few annotation errors which
may causing the confusion during the training
phase and prediction confusion. For instance,
"Grade 1 (moderately differentiated)" was entirely
labeled as Histology, when in reality, this
annotation should be "Grade". The above
observation highlight the potential for annotation
errors can contribute to inaccurate predictions and
confusion in the training and prediction phases. We
discovered that in the non-inherited setting, there
are instances where “NOS” is wrongly predicted as
Path N, resulting in the frequent occurrence of
“NOS” and the subsequent decrease in accuracy.

In conclusion, based on the observations from
the results of RQ1 and RQ2, it's evident that the
inherited approach indeed outperforms the non-
inherited approach, and the EWC method exactly
perform well when the target domain have more
than 120 reports.

5 Conclusions

In this study, we aimed to mitigate catastrophic
forgetting under transferring learning. The total of
five different hospitals provided the unstructured
reports of colorectal cancer. We utilized manually
annotated pathology reports to create datasets
which including 14 items of cancer registry. Our
research method explored the importance of
inherited parameters and the EWC method under
various transfer learning scenarios with different
labeling quantities and transfer orders. In RQ1, we
arrive at the conclusion that regardless of the
amount of target domain item, inheriting the
parameters in the last linear layer with little
training data leads to better performance. Besides,
we also demonstrating that EWC doesn't
negatively affect the training of the original model
and that it effectively mitigates forgetting. The
transfer order between unequal label types doesn't
significantly impact the effectiveness of the
approach. In RQ2, we demonstrated that EWC
method can mitigate the extent of forgetting
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whether the quantities of transferring labels were
consistent or not. The configuration of inheriting
parameters cause the lower catastrophic forgetting
when the target hospital had limited data.

The error analysis explained that the mislabeling
led to the worse performance and the stylish of
labeling cause the knowledge transferring problem.
In the future work, we prefer to the integration of
the labeling golden standard, and try more deep
learning algorithm and regularization method on
transferring to avoid forgetting.
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&4 BERT $£ Wav2vec 2.0 84t F =S5 2 &4 X 8 & oHal
Enhancing Automated English Speaking Assessment for L2
Speakers with BERT and Wav2vec2.0 Fusion
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wE

RBENNEEFSAROEES (En-
glish as a Second Language, ESL) * Fl &
LR TIEHYDETEE QR A EFR
SABEASH OEFRRER - Ko
RFEOERAFAGBRETRELEFEA
o bAmEEF o Rk I E—F8H
RIE OB R TALEE B AT S B
B s TRAEARAE B — BAG IR AEAZ A o KA
P &AL R B EA & ICNALE » #4%
— & &4 BERT 4= Wav2vec 2.0 & &
BITAHRBOARI & HRER
BT BALFRFELTHEN ZRAES
AN I 44490809 BERT 2% A= 245 89
Wav2vec 2.0 A& o

Abstract

Due to the increasing popularity of En-
glish as a second language, there has been
a growing interest in developing Compute-
assisted Language Learning (CALL) appli-
cations that focus on automated assess-
ing of spoken language proficiency. In
the past, evaluating English speaking pro-
ficiency has been a time-consuming and
labor-intensive process. Therefore, devel-
oping an efficient method for automated
grading can establish consistent evalua-
tion standards in a more timely and cost-
effective manner. In this study, we explore
the fusion of BERT and Wave2vec2.0 mod-
eling strategies to assess holistic English
speaking proficiency scores, withe an exten-
sive set of experiments conducted on the
publicly available ICNALE dataset. The
experimental results indicate the superior-
ity of our approach in relation to the exist-
ing baselines.

MstF : aoEFRA - ABRISH 5
A H

Keywords: Automatic assessment of spo-
ken language proficiency, Compute-assisted
language learning, Multi-modal system

1 &%

M 2RLOY T SRR RBRRY
ZTAAEAAEE > B LI AN XOZEZ
ToAAREHXFTHFTRRBRA > LEY
H33EF 2 F M T E (Computer-Assisted
Language Learning, CALL) #8 I #F %89 3% & >
FIMEMBZEE TR TZAMBEF I
# (Computer-Assisted Pronunciation Train-
ing, CAPT) s & #TF] o £ B AR A I
DHRKE T A GARYBEEEI LA
BT3R89 LAR = (prompt) EATEAR » &
# B $3%F 7% (Automatic Speech Recogni-
tion, ASR) AL A#A 4 # £ /77| (Phoneme
Sequence) * HE ALK FFBHEHRART £
(canonical phone) AT ¥t » AR BIER B F
EAERGEEE o LFR > AT EEHND
RAAFINELTAAE Y O FHFRAE > A
ARG REFR > FREF - |E AW
B ORFAMTMERZREEEE  BHERE
R FEF ~ UEARARFHY o
EBEHAER OO AE— @66 0T
Bk % FE A d AT HERBIEGHR
o A LB AR 6 45 8O AR R A9 A2 A0 i
MEARBR PAETREERF>HELD
B o STRER @ e R M - B A AEE R
s ¥ 9% A% (Chen et al., 2018) » & % B E&
# A8 75 7% (Cheng et al., 2020) » ¥A B B 4 %,
FBORRABA T A48 o BRIEF =938
ZARAM A OHFR T > BEOBEA G LA
F ASR HAT# XA R EFBRALT L
FESRANTE  FEH - BEAREEHBFAL
%o B RUFEATRAHEE > ARR T4
B B9 AF B o SRR 8939 7 D) 4 G AR A B B
RIFBTRERR > LA RBEF T ~FE -~ NE
Fo B HEAR M BG4I o LB BB AR
Wig > R DI RIEA 0 AFAR|F 4 o
FATREB G ER oFH R T > BEART
FRBAGMATH  BOHETHI @GR
Wodet BF AR LFFER RAm o0 B
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1238 S F A By A B R e ey AR 5 [
5 R By IR AN LT AAR 32 69 AL E o sbo) o
%M ASR #5889 KR 4k & £ AR > ASR
AH EARFE 4 FE (Word Error Rate)
A &R T ERRIALZNDEAET - EF
ASR T AFRAL R A 6308 - 247 A kAR
BEAREZD G AR Bldo : EH -~ H A -
HRF » Mmiz L EAE CALL £ FRARIE o

B T Mk kAT AR B &g B A KB R
1% i J # BERT(Baevski et al., 2018) #=
Wav2vec2.0(Baevski et al., 2020) # B & & &
X2 % (Self-supervised Learning, SSL) & &
HEREATER c RENARIEE > AREFR
NG Y RAA KR IEEZ T T HEH o #l
4o ASR ~ Bl4EF AR ~ 352 WA FAERK - £
BRI EF o S FEMAINRREA G LT T
& 7 % (contextual representation) s i €&
FREFAINRBHRGKTFZES KT
(4o 1 L1, L2) P> REEAWE ~ BF -
e ik > L EFZBEH o (Tsai et al., 2022) £F
MadphETEEART  AREFEHOL
ik B AT € R T AR R A S SR AR B e A
FF B (Peng et al., 2021) » AR B B8 F3F
£ (Kim et al., 2022) ° 39} » BERT #7314k
AL AL FF»XLFTHRME (Deutsch
et al., 2020)(Martinc et al., 2021) F# % F k&
b FAAGHOR R EMRLEGFETH
Bord o BlieiE R~ FRAFLFELT LG —K
e

#£ (Stefano Banno, 2022) ¥ > F 4 & A
BERT #= Wav2vec2.0 w18 78 31 R 42 A 3 47
FRFE IR TR 0 HFRE I Wav2vec2.0
f 2 BZEA & ICNALE ko9 R i 5] 77.8%
By R R o LA RS RME—F i
SLIEAP LTy ik o B T A ARBAT S TR LK 0 A
B SR AR AL AR B 69 B FEAT & ICNALE L&
TER AEBEECLSAMTR FHGER
Fa o BABMARAES £ FER (Common
FEuropean Framework of Reference for Lan-
guage, CEFR) 1 &3P 4642 & » A EHHF % o
#ME—F R B T A4S BERT = Wav2vec2.0
B ABORFRRE ) EEXFHRIBITHE
o A HMRFEO AR R o

B

2 FRIKMA (Pre-trained Model)

2.1 Wav2vec2.0 &

Wav2vec2.0 & Facebook AL 74 2020 AT K48 #)
B & EEFAINREA o (Baevski et al., 2020) ©
AP ae =B  HHHHE (feature en-
coder)f: X v Z» ETFXL##E (contextual
block transformer block) * g : Z +— C A &
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LRI (quantization block)Z — Q ° B A% &
B FHEBRRARAEROGEREATK o o
B 1A+ o

» Cc ive Loss

e

Contextual Block |

. qz
v ¥

,-->EE’”"“".“”? | |
q‘,r‘
—> Quantization

L]

Feautre Extractor

+

)
vl

1. Wav2vec2.0 #HE

HHRpmELh SR —BEABAR R
WA X 2@ 3F ERL (Batch Normaliza-
tion) #7 GELU & J#AZHEAE - HE %
BREBMBEREAT 7 = f(o) o #¥HE > B
KB ZTXT08 By dF i & & » MAENE] con-
textual transformer 4 » VA2 E T L8938
FARTC=g(Z)° R HEkT Z 0
1R 5] & R B4 #5E (codebook) FT 4L AL HY &
CAE - A HERAE LA 320 £ T 4R
B #AEMZ FO@ERAT 2, € 20 &
wAR (1) % & R—ERDE RP30 5
logit » %@ HAMBBETH/MBERD » &
WM ARBEBHIBFREHELRT
2 €7 MELeE q; °

_exp(lg,v+n/T)
Eleexp(lg, v+ 1y/T)

HE o] K& logit v KEAR v BRBEAE
Bog RWBERLM > n = —log(—log(u)) £

Py (1)
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Fou A U0,1) MRk @ or A&
| A AR 89 S8 o

BRIk T F AL REF 7 NEATHE
IR o by FE AR EFEZTREAAM > FBNK
(2) AR FELEFMEBHFBRETEOE I
BRARREH —4 K+1 f8TF4&78 (distractors) °
FHAERENEY G EFREGELS ¢ Ao
K ﬂﬂ €Q TR rﬁiﬁb%%iﬁﬁ%tﬁ*aﬂ

TH BRI PR MAE o

exp(sim(cy, qi)/T
Ygeqexp(sim(ct, qi)/T ®

Wav2vec2.0 & B &?ﬁ%"i‘fz‘ B KA 960
B89 LibriSpeech E#+ % EHEATFAIILR © VF
B A > Wav2vec2.0 TA IR A 12 35
R T @RI FEA 0 /£ (Fan et al., 2021) “F ’
B4 Wav2vec B A #4552 H » A A
Wav2vec2.0 1E & & B4 A5 E » URIBHFo
BT M EREREY Wav2vee £75
F 3R Fo 3B 5 PR AR B AL A 69 A UK o R B >
# (Pepino et al., 2021) P » 1E4 3% H T8 341
8 Wav2vec2.0 7&% AR RE T BRI E
HommEkrT ?ﬁ FEREY Wav2vec2.0 A 4,
ﬁ%?’]ﬁ»’dﬁ«ﬁ g H7E

2.2 BERT ##

BERT ° 4 % % Bidirectional Encoder Repre-
sentations from Transformers® & @& Google
#2018 FATM A AR ETHEA S AR
AW % B Transformer FTERE » R L2 %
38 B2 & (Multi-head self-attention) #= 2%
#i% 3 (Residual connection) #94& &3 F /& o
BERT R34 @42 4% i £35 3 A (Masked
Language Model * MLM ) 2 F — &] F#] (Next
Sentence Prediction, NSP) 4T & & o #% 4
A £ BooksCorpus (SOOM ¥37) (Zhu et al.,
2015) Fo & L4 AR B A L (2,500M #3) :\ﬁ
THIR > B ERZ AT AfAR > R
RZOFBEZHEA A LT LAZE o &dy Bl ik
69914k % » BERT T2 94k AL AT A2 H 5] 4
3 f"] Rk M 488 R (fine-tuning) % 1
TAIRARA » £ L 4b 8 RET RIEIEF L35
5 1FREEEFE > Bldo : RS~ G LT
@A~ #A% A R (Niki Parmar, 2018) ~ % % &1
¥ ~ B& (Dehghani et al., 2019) ~ 755 ZA#F o
A AR S AR A > BERT A w A 45 2 -
# F7EF A (Masked Language Model *
MLM) : BERT 4% M 2355 U R EATTAI
B EFAIKREBR T > €K I A T A
oy — B R 0 B AR HFERAT IR [MASK]
Bk BARAEARA A8 5 TA R AR R 6 B3 o

Lcont = _ZOQ

a'fo\_:"

—_ N
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Sentence

It is [MASK1] to [MASK?2] that

Label

[MASK1] = important; [ M ASK2] = say

& 1. EBET AR KA

Sentence

[CLS]The weather is nice today. [SEP]
Let’s go to the park. [SEP]

Label

IsNext

Sentence

[CLS] The weather is nice today. [SEP]
I love to read books. [SEP]

Label

NotNext

& 2. F— &7 427 78 A Sats)

%R A& 1°14F BERT # A2 ¥ 572 H

B ETUHG > 2 AA BIFHFREMAET -
TR BB EREL AT

5’] 1?‘5?5']'1: 855 o EATTARIN » Iy EH
GARGBHRRITBFGLA > B G
i*]‘kﬂﬂizhx\ﬁ'iﬁuﬂ'] EHBaT 1 ATA
4 F 2 8938k 6y o %L AR A 1(IsNext) 0
Rz BlARGe A O(NotNext) 5%k 2 |
SRER T 8 E AR i%&%ﬁ %
AR FEFJEJ}&;XQFEZ*E Féﬂ Bge]F o =~ Wﬁz\«fi
A SR egd £ ARG LR L EGE
£ 3%’*'] » BERT 4% 11 % % &) Transformer % #%5
%o RAFNER—EHE LA RA GRS >
Al FFR AL E B B A LA E R 3
AR WRF TG ME o @~ BEF R K
(WordPiece Embedding) (Yonghui Wu, 2016)
%% : BERT 4% M 83 K B 4+ 4l 5 B39
AT MR EAF g BF AT o e 1 R
FA AR LEF o play, playing, player * 12
’*']@L}%]%J\*H: S A AT XAn L H R 091K 8
(sufﬁx) o 4] 4= > “play” ‘%Z&J})‘F 9 PRI X
“play” ARKEE “ing” H “er’ o b iEAEAF
BERT # Z@iﬁi&ﬁiﬂ*%%ﬂ%?—iﬁéﬂ’
i AES) AT T AR R LT o
skIh > BERT 8985 AA% 32t = 1896 5~ 748 e
MR B 2 TR —~ AR KE AN (To
ken Embedding) > B &9 & # £ 18 5 7F 5 % 5%,
EABEEERT o =~ 42 & A (Posi-
tion Embedding) » & & &8 F /6942 B R o
=~ 2 BE#& A (Type Embedding) » # X A4

%ﬂ
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BE s ARERTRRERA o 8L FRE
b & A AZE ) B e BERT #4230 4
AN AL BHAR Ay BN 2535 @
F V1, V2 #= V3 &A= Amie R Iy
A% BERT #& ¢ o

Prompt ‘ [cLs] ‘ My ‘ dog ‘ likes play | ##ing ‘ ‘ [SEP] |
Token
. e Eu
Embedding = "¢ 4 Euie Ene | Bucatner - E.
+ + + * * + +
Type
Embedding Ea Ea Ea B4 E4 Ea o
* + + * + + +
Position
poster o [ [ [=] [=] [=] [=] [=]
. - - 3
2. BERT i\ &2 =~ ~ & B

3.1 BERT #4 8
3EZMBFASBZORARER - £i#4T
BERT ## 2 &# K&+ (E3F 8 a) » &M
{£ Ml HuggingFace Transformer Library(Wolf
et al., 2020)' AT IR LG FA DN RAE AL » ¢ —id &
894232 (Token) HEATH A o &AL A 692 H3E
HECOLHALTHEHKOGER  ARTHRZ
KAWDEGLFATEEIA > B LR
BERT #)4a# & % o £ ABET » A &K
89 [CLS] 89 @K & » ML 3] % B Bdn
% (Multi-perceptron layer) iEA79-#8 o 23
RBAEF > KM EFEZ (Freeze) BERT B A »
1A ook AT S B o

3.2 Wav2vec2.0 #4-8

£ Wav2vec2.0 ¥ (EI3F 8 b) » FFAE
%8 % R A& HE% (Convolution Neural
Network, CNN) AT 4 45 » 344 R 695 £
AR EEATIEE > 3y A Z] Transformer F AR
A TFHINRBEAGERF > £ A Gum-
bel Softmax 3t A #Hd %k o K E B> & A
HuggingFace Transformer Library(Wolf et al.,
2020)2 BT $2 B 69 T8 I AL B R A0 46 ALAR A 84 e
B R A A AT R IR o A8 B B AL
A% > Wav2vec2.0 A RB B G R Tk B
TRELE KA GFTA » MRA T30t s
FoRBRAKRNE 3 HEHEGE (FPBLR KR -
RAERISH B WA 2 B0 F (Bkk
D TRBREE) > REBEBER SR S 575
ARG F R o Fo BERT ¥ B4 F > 31l4k
WAF > KL G E T AE Wav2vee B 5% o
1% H 72 R BFLF AL F A o

"huggingface.co/bert-base-uncased
2huggingface.co/facebook/Wav2vec2-base
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3.3 &4 BERT $# Wav2vec2.0 ¥4 &

AEBRMSRT 2 1E R P48 L FFE5 098
REATFEZ I » B —FIRAELSRAEEA
877 ik o AFHE R BB JE L F e sE & A &
EOESFRAI A A > 2 RE3T ) co Bt
£/ &4 BERT % & = Wav2vec2.0 ¥4
FEANMEEREBREASG T XES
BB SRR BELEITYI - FB LMK
b BEFERTFH T ET ARG E
FbE > B AN E B RA] AT R
KR 2 ET R o

4 TRAZ

4.1 ¥HE

RRERIAE G EFE  BRBENRKZZ
AA 7R (ICNALE)(shikawa, 2023) # /2B
EHE  EHEERAGFIEREAABRMNGES
%2R (CEFR) » &4 T# A2 3| B2 &
ZRE MRSy FEAL THREEERE
PEABPERBE AR BHE - LA
W~ FEARE ~ Fhmdk s RRAFEE o AL
CEFR & iEH5 %k T EAN S RAE R
4810939 & B BR &R, o Bl BF o AL &I R A
ARG ~ %5~ R F BT 6 %55 A B
AP R o BEFREFETIERAS LT
FERE s WAL R BT 2K L TR REBRS F
oG &R, AFFEZAHEE CEFR 4 -

EH R OH Sy ERNERS  FHafeHE
ERRGERY » AR 2E G839 > 354
WA 4332 B A 0 AR E) A 89 A A8 BF R A
736 A3 69 AZH o MEAR  FIAAE
B 38 B 4T T80 T ML R HAAE R AL
BRABATEFE o B TG 7 A LER - A
BEF—BMN s AR EG WS E5E T ARG
1% 8 F A8 77 X (Stefano Banno, 2022) °
HBEEF > Ik EL 4 3808 B=E > @ B
BHEFRXED A 217 BEE o FH &3
2B BAAFEF] » 57 B A2~ Bl-1 -~ B1-2 ~ B2
B AFEHF B (NS) o FHwmtgiZ 8o A 5 1L

& 3o
‘ Train ‘ Dev ‘ Test ‘ Total
A2 299 16 17 332
Bl 1 792 44 44 880
B1 2 1681 94 93 1868
B2 586 33 33 652
Native(NS) | 540 30 30 600

Total | 3898 | 217 | 217 | 4332

% 3. ICNALE #EH £ 2%
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o il

Gmn%[m}

i
(e} )

b)

—»|I||||||||*>{ WAV2VEC2.0 H

GRADER }—)[ Score }

4
A
c) . —>||||||||||*>{ WAV2VEC2.0 H

GRADER

}—)[ Score

o

SPEECH
RECOGNISER

|

Multi-Layer
Perceptron

ERSER

GRADER }—)[ Score

3. AHrRAL b AR
Wav2vec2 #4545

Learning
Epochs Rate Dropout
BERT 600 5e-5 -
Wav2vec2 8 le-5 0.2
BERT+
Wav2vec2 8 le-5 0.1

A4 ZEFHEHOBLHERE

4.2 EHHERR

fo ORI 6 > FAER P o RAVE R o R
Weight F1 1 & 3# 54548 o 8 £ (Accuracy)
TOAT AR BT E LRy K
A, - Weighted F1 #& £ & @ 3P 642 A P48 »
PPAL HAT 2R PR 8 > kS A A
EHBEHGER - FFHEZ X LT ¢

A TP+TN (3)
ceuracy =
4 Total Number of Samples

TP

precision = TP+ FP (4)
TP
ll=——— 5
T T TP+ FN (5)
Fl =2 x precz.sz.on X recall (6)
precision + recall
N
; L F1s
Weighted F1 = % (7)
i=1 Wi

: a) BERT-based #¥ % &, b) Wav2vec2-based #¥ % &, c) #&4& BERT #=

£+ TP~TN~FP~FN % 3| K & w4 T
A& 69 78 B 15 BT : True Positive(TP) # iE#£ TR
B B EAE 3 True Negative(TN) /4§54 R TR 2] 5
453 ; False Positive(FP) #443# TR R] & JE#E ;
False Negative(FN) N5 F A TE B B 44 2R o

4.3 TBEZT

KA RE SHEFN L £ EHEAE Y
MAFTHAYN LR » HRIIEH R B
ATRRGEREZL » F4% A% 4° £ BERT
FRORMT - B LIFE BERT 9 & Tk
EAF LM =ZEALA 768 BRI =
BB A 128 EAV&R T AR » B AR
WmEE - EXF o WmEBEas s ANETEE
A softmax VE B & RE - J4BFEF » K
R F AL A X LA (Cross-Entropy) 3M&k & 3R
£ #4E A AdamW 1B EALSE - sboh o B
RARAFF 256 0 B H FHLH be-b > KT
7 & RA B 256 0 BEINRBAZLELT 600
KRR o

Wav2vec2.0 3F 9 5 £ 15 Wav2vec2 # &
TR AR R B 768 1B AL T AR 8
AR MK 5 BTG EE
EA4E A softmax 1E & ERE o IskBEF >
2R Z LHEAEBRHE > 244 AdmaW
B EILE » Bk b 4E 0 Bt
RRIVFE 4 HMERBITHE 2 %%
(dropout) %5 0.2° 2F £ 5 le-5» L AT
MR REGHEAX o

12 &4 BERT 2 Wav2vec2.0 #4958 F » &
F i d BERT #F9 & A & Wav2vec2 #F
SRMEMER PRBHEGRMEELSE
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133 — B FHEN > mITALEREMKIA
Fldg =18 768 MR A ARIFERF 5 BT
LRI G o DRI B R B AE A X U AE B AR
Kk &E o vk AdamW BEAILE » B3R THR
K4 BEREMTE 4 FRF 01 2%
£ e AT 8 KB o

BERT
o] 4 9 4 0 0
50
-
-4 17 21 2 0
= 40
=
5
5
": ~
- -2 24 59 7 1 30
2
S o
<]
5]
20
o- 0 5 14 13 1
10
8- 0 0 5 2 23
| | ! | | -0
2 Bl 1 Bl 2 B2 NS
Model Prediction
= 23\ 52
4. BERT # % &
Wav2vec2.0
80
§- 5 7 5 0 0
70
-
- a 27 13 0 o 60
@
= 50
2
=
- M- o o 84 9 0
g - 40
2
5]
-30
o- 0 1 8 23 1
-20
-10
w- 0 0 0 0 30
| | ! | | -0
2 Bl 1 Bl 2 B2 NS
Model Prediction
= 2% N\ 52
5. Wav2vec2.0 34~ &
BERT + Wav2vec2.0
80
g- 1 5 1 0 0
70
-
-2 36 6 0 0 60
@
5 50
=
v - o 3 85 4 1
S e - 40
2
5]
-30
o- 0 1 1 31 0
-20
-10
w- 0 0 0 0 30
| | ! | | -0
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Model Prediction

6. &4 BERT #» Wav2vec2 34~ %&
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4.4 THRERRITH

ABE K AR A AT LI (Stefano Banno,
2022) e AEBRALT L BT HIAL P
Wav2vec2.0 ) FA INERAE A Z 9F » A 7 ik KL
AAAF] o ARIFEERSHER » RIVR B ELS T
FRFF RN 7 HEB T 88.9% 8 FAESE
BB B A R AN 7 ik o

KM A ICNALE 89 AR E LR XK=
REWR > BL =35 % 9% % BERT
F 95 0 Wav2vec2 #7F 49 & WA R & 4 BERT
Fo Wav2vec2 #F 4% o A5 T~ £ &
Wav2vec2 3F 5 & /£ 5 & ~ Weight F1 ~ Mi-
cro F1 ## Macro F1 & 7 @33 EA £
BERT ##& o & » &4 BERT #» Wav2vec2
A BEPTAFEIRAZ T FRBESAL
ok % » BrERFE P 88.94% » R AL A 6 K
SHFFERELAORMTRLFAZETREE
AT F AR A AR SRR LR o s E B
Macro F1 #= Micro F1 &g tuds » E T XAA &k
4 BERT #= Wav2vec2 83+ 5 T &% &
B EBM > £RF AN MAED T RAF
7 o

B3 -B4FB5 2RATZEF2ELE
{8 CEFR & T8 RAEE o RIBEEXCHT 25
8% R » Tk BERT #F4 £ iE £ Wav2vec?
FoE P KA A2 Bl-1-Bl1-2 2 B2
MR EFEE (NS) 8998 2 A&k - KME
RAREGEFFATHF AL G FHFFZRETZ
REZ MG LERABEGRFZKRKTFEL - At > &
A mes|iE 2 2 EAZHLETS
# o %9 » BERT # Wav2vec A F » 5%
BORTAET R SLIN R TA P R R BN E £
EAM > AHITIFHEZERVGESRRET -
flde s A2 $L B1-2 Z K 8994k L4 £ A28
1000 # (4% 3)» 8 Al AR EEhiE
AR P AR IRV R R 5 o

At R B BESLFAE LT O - 58
RO RE MBI £ B 6 RAFERT
A AP RN H AR > S Tak B BB o &
B A2~ Bl-1 -~ B1-2 Z M4 & — A28
Eg s A2 R 4H Al &R 02 XE » AR
SHARLRNBAEALEREEY > F5 LA
6o BABBRELFHRELTHAE - FRNGE
A — R RIFHR -

5 BWRARERE

AEF R T @4 BERT 42 Wav2vec2 ++ 4%
R FRELSLFETHR ARBE
B BRIP4 A o S B B A B 2 B9 3R AF L o
# ICANLE A &8 T RERET » KM
&4 BERT #» Wav2vec B9 R 457

M
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Accuracy(%) Weighted F1 ~ Micro F1  Macro F1
BERT 53.45 0.53 0.51 0.54
Wav2vec?2 77.88 0.77 0.72 0.78
BERT + Wav2vec2 88.94 0.88 0.87 0.89
& 5. =B B 5 AR

Precision A2 Bl-1 B1-2 B2 NS

BERT 040 0.31 0.57 0.54 0.92

Wav2vec2 0.56 0.77 0.76 0.72 0.97

BERT + Wav2vec2 0.85 0.80 0.91 0.87 0.97

& 6. ZfAFFS 5 6 f£ SARAR BRI E F L

WA TERR o AT OLEI BT R
— R I o AHFRAE L H A RE O AR
B BB 0 RAANFBE R B e 0 R
DRI > ERUV MR E -
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F &

R LEE et &5 02 - o 5
A‘f#;] Ao 57 BB R R s B iR

A O R AR £ R he B A
R EHE  FHa ¥ g2

LB EARY EFIT F 2 Bl
FACHE g AR HEL ]
Pooga BEEFY Sk T 0 B
i iﬁ%émﬁii—ﬁéﬁm
FRAL o S EHIT R AR PEER
ﬁriﬂ R KA SV i ”1‘ Iﬁl rfrjfﬂmf
B~ | (Feature Selection) #3% 5 ¥ — B
FURA T E PR ER S TR S
Ve Ra > FAPAERTE 2 —fr/}
® (Classifier) 2. B2 3 (£% fil
‘ir”’pi“ﬂ“/xp BB AREE o T
B AT RR Y - BEACERR Y
7% © Chi-squared test - ANOVA 2 Mutual
Information v 25 &4~ 5 % > & * *“E‘v?]
v AL 1412 & 2 VO A S
“ﬁ°ﬁ%“%%iﬁ$ﬁ'&ﬁm
W2 PR E A oA E o A
g me * ANOVA i FHGE g
ik KEPE T Hs F17 LGBM i
LANERE . N R 13 Bk
G 112 & B e e jeil
| B 5 48% ~ iz Bar F 76% o

Abstract

Reading is one of the most important ways
of acquiring knowledge. Researchers have
pointed out that to promote the
effectiveness of reading, it is very
important to provide materials of the right
level of difficulty. If the reading materials
are too easy, readers usually cannot acquire
new knowledge in the process of reading;
on the other hand, if the materials are too
difficult, it will cause excessive cognitive
burden to the readers, affecting their

learning effectiveness. Therefore, giving
readers appropriate reading is an important
issue. To address this issue, many scholars
have begun to develop readability models
and found that feature selection enhances
the accuracy of readability models.
However, the interaction between various
feature algorithms and classifiers has yet to
be much explored in past studies. Therefore,
in this study, three feature selection
algorithms, Chi-squared test, ANOVA,
Mutual Information, and 25 classifiers,
were applied to compare the accuracy of
readability models for grades 1-12 in the
textbooks of the Chinese language. The
experimental results show the feature
selection algorithm and the paired
classifiers with the highest accuracy. This
study found that using ANOVA as the
feature selection algorithm and LGBM as
the classifier can have 48% accuracy, 73%
adjacent accuracy, and 85% reduction in
the number of features.
MéEsx 1 ¢ 22 AF

NS

Hl o HHER RS

Keywords: Chinese Readability, Feature Selection,
Machine Learning, Classifier

1 W@

AT A PRBEERRELT AR
Rk F 25Uk o (MCMW&Hme
2016) - v?l’?f FERIFEPRFHEA NG
e dF e 2z (Kuo et al, 2018) ° T4 A F™%
b G EMERNEEARM N DA F o
cl BREGE 4 a4 34 (Progress in
International Reading Literacy Study, PISA) {v
B F # 2 &% % & (Programme for
International Student Assessment, PIRLS) ']‘5'3
KERFAP LR 41 o 4 PISA M7e
Frew (2023) #EFEE TR TRR
B A B4~ ig{fr';fa% SR BB A RN R R
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P A REE L 2L

LR R AR ERLA
,;é % 4% = (Liao, 2011)
BB
E“ EEATA S F 2 R

Fg'ﬁﬁi SEEN ‘T'é\ 3}7%

(C mbrla 2010) A v’tﬁ"ﬁ*? AR b AR
AR E A S PR R
B R P G dF e sk (Kuo et al, 2018)
FEOHSES  F SRR i
§ v AR o A Pwpp S da“' @ 1 (Text
Readablhty) (Dale & Chall, 1948; De Clercq &
Hoste, 2016; DuBay, 2007; Feng et al., 2010;
Frangois & Fairon, 2012; Mc Laughlin, 1969; Si &
Callan, 2001 )
AT AT R RORR -

AT HALR 4 T ] R R
(Dale & Chall, 1949) ° % &5 & e @ fE s >
2 AP T A Aok A iﬂ‘ *% 4z ( DuBay,

7
=~

b4
I

<

2007) o L IER Y AhEER o 3F 5 R Ruh
BEBLFL 2 AT e i_iél?&]’

v o4n

Frangois 4= Fairon (2012) F 3 Mz & 5 % =

hFen A 1 E T F M o8 (Al readability
formula) o 2 CEFR & » > Ao 5T &
B Boo vh ik ROE P-4 Mc{ri@ * Spearman k

EPF VR R PE R o AR
< 4> Dell' Orletta % < (2014) %5 4 # #

WFRT o R s £ A BFAY o 0
* GRAFTING % £ %% % 2 (Ranking
Algorithm) » HFIRLAFFLG o F T HF 47 - K
3 rengd o e 2 #Fc (Syntactic) {2 A

ik fie 71 4% . (Morphosyntactic Features) ° 7
# = ¥ - Imperial {= Ong (2020) # *

Spearman correlation fr Information Gain - % 4%
HE B~jw 5 2 (Feature Selection) - -] 8%

He oo #E T 8 Y A £ 4 (Language Model
Features) @ % oag ev $F e (Traditional

% # (Word Count) ~ # 3 #k
(Sentence Count) % » 17 % 3 i #f ch4F fic
(Lexical Features) » 4 @ # 3% (Type-Token
Ratios) ~ g4 % & (Lexical Density) ¥ % & -
#Epe i Eﬁ: (Logistic Regression) fri % B
£ 1 (Support Vector Machine » SVM ) # i 4
F% (Classifier) o 2 $%#FMR > &+ BiE

RRFRA SRR RS IHE -

Features ) » 4r :

BRI G e A B ¢ ZFIL Y H b
- MR RO > B ALE e R T
o g % 38%% 20 A O o B%%%P
WA BB 5 44% - Rm o F 8 = ik
Aot e o R D B 72% o

d PHEPFY VA SEFAGERRE SN
# % 3 g% /w5 (De Clercq & Hoste, 2016;
Feng et al., 2010; Frangois & Fairon, 2012 )

BT EH %GR (Feng et al., 2010; Imperial
& Ong, 2020) -~ F e HEF > A8 8
%o ode! %z F 3z —‘k (Frangois & Fairon,
2012) &3 A& A —"F" (Dell Orletta et al., 2014;

Feng et al., 2009 )
S-S -

b TR Y
ﬂ@ﬁbjéﬁé%ﬁﬁ
(Syntactic Asymmetry) % % # + ¢ £ B
(Wang & Zou, 2018) > F|* » Wt &7 &
PR R R 2 TR S
A3 ER P REH o o Lin 8
(2015) 3 & 19 E 5@ S KL foR2
Y B AT B e S
F 4 jF (Stepwise Regression) £ & 3% £
W TR G ] 2
TR 0 ARG FE N T
P A RIS RRBEE S bldo
FE % ﬁz-g & ,f;'lﬂi m’j;{%\ °
FOEDTE 0 AT ORAOY = B HCE PO
5N zé : Chi-squared test ~ ANOVA 4r Mutual
Information » #Fe 25/~ X > TRE <~ 4 1-
12 & 2oen® FEH03] 0 T8 R e 45 HGE P
WA BB A o AR N G A

Z

~

hp

{ﬂb ° i g P
@A e
1-12

T:¥'$%ﬁ#%ﬁm%ﬁﬁ¢~wwp
T RZ@REIRFEHRTH b &kodr
PRy BRI SRR ARETE
2
2 MFEZ

FAT R R A S E g SR
EOFF TR G EARA < gk o B
B3 F I RAWKAETmF DR~
(Chen & Lin, 2014; Imperial & Ong, 2020) -
MAGEEDZ o FIERIED A R €

AR LR E AR o AR € R OTIE g

Hed o FERI %R ~Lr/§, 5§ W) (Pereira, 2009 )
A %’ﬁ%‘;ﬁ’ﬂlﬁ:k\ BER AL E S A 4P
F oo 8 5] k3 > Karabulut % ¢ (2012) &
PR AEAERF Y R 3 RSN
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Naive Bayes ~ MLP {r J48 #73" Ui
WL RFER 0 2% MLP s AR
F%&§%ﬁﬁé’&$?uﬁﬂﬁﬂlﬂ%
S ood PV o F - licdpic o~ 3
B R B gg 33 koA %
(Ibrahim, 2020) - Liu % % (2015) # * i%
#H i Eff'}’i?*@"ﬁﬁg@‘ A s B
BT IR ki o TR I TR

PASTRE L R AR ARG LA
iﬁﬁ“ ’vaff" Z\‘Fzélpkﬂ#r'fg{%”/gr
Rt o

MY 2T a2 o F - B L ehit
E AR FHCEP R R o BHGERR R 2
F % EH Y (Machine Learning) * ¥ i& * e
SRR T Y RS Ry
(Aghdam etal., 2009; Eesaetal.,2015) - i %

= {4 en i g7 & (De Clercq & Hoste, 2016;
Feng et al., 2010; Frangois & Fairon, 2012) - F
FF o R R 0 WA enpE I (Zebari, 2020)
YRR R PR AP AR RS
BAEREFEE @ 3 v R E DI RDTE 1R
oo F SR ETRERRE > R
#22% % & (Sima & Dougherty, 2006) - Feng

#4(2010) r2iiEe fF{e LIBSVM i A
BB R BHAER S el L
T 5% F 4w E 2 (Greedy

Algorithm) » i 4 & = @ % & a0 3 ji
AddOneBest ~ & ** Weka tfF 4E Boig 5 £ 35
21 4 Hc-WekaFS » 12 2 975 4 fic-Allfeatures o
WAL F 122 B 4 Hcih AddOneBest # rr 3 £
B0 ED T4% e gx Sk  H o Fo@r 273 B aF
Hren Allfeatures » § 72.2% 8 FE 5 0 B fs AL
g % 28 i 4 e WekaFS » 5 70.1% 2 7 ¢
BE 2R 16 % WekaFS g ficif B B i3 B E & B
o {28 oriE F gk fclicE Y AddOneBest ¢
94 % » +* Allfeatures > 245 & -

FRA? 27 FEFAT P o {0 FGE s
ePIR vt b o Chen {r Lin (2014) # * #jk
FBF B 2 {odd ek B (Feature Extraction) -
Mutual
Information

Information ~ Chi-square test

Gain -~ Principal Components
Analysis - Latent Semantic Analysis » # 3 1-6
£ BF> 7f’L ~ AR ﬁ?fi ~ B ’Lﬁi‘f‘—’"’ ébraffr 7FL
7RIS A GRER & O
square test 5 $HCE B B 2 ﬂfr SVM #a s

HEREG BFarck o d g7 5w 7 ]la#,irg;;
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B S SPE . D M S o 3 ggg 3
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A T e I :rz%-#rgmﬁpx,ﬁﬂ e

o g E A - A23is o T4 Aok i B
TR B 16&&%«;141&&%¢$’
4 M€ BB R TR o

~ # 7 @& * Python> #F * 2 &

sklearn.feature selection ( Pedregosa et al., 2011 )
e 4 % (Scikit-Learn, 2023) ;% & ;# : Chi-
squared test ~ ANOVA {r Mutual Information
OB B E B oW B R o o 3o
lazypredict.Supervised =7 LazyClassifier & s 4
R AT A2 FEERERFEZY > B>
A BETEENCE IS O R

3 REKF

MG S S IR DR R A
(RO R > 2009) ~ B oFdismat (B4
2009) fra - NamAk (& - FEF $ > 2009)
8 EFER [-12 # 5B A A&y (K72
hRE g 2023) B2 AEMAE £ 6335 ¢
o0 80% (507 £ ) 5 B TR 5 20%
(126 ) 5 BB FH - & ms fHEH
BE& 1o

FHRFTHTF 33K F » BFHEA LR
FFRICRRRETH > 2 F ¥i58E CRIE
( Chinese Readability Index Explorer > <= # ¥
F Atk p B0 245k 5b) (Sung et al., 2016)
PEMHEIEE T B R 86 B
LR BHEFTE 2T E - BENE
B TR R OEAEEERE c Bk
oo drd 24757 0 5 1-12 # & Chi-squared test ~
ANOVA ~ Mutual Information #a % 3 #cis B~JF
ERR AT 10 Lo o BT ik RIS
Fooo B de r 0GP 00 LB A 3R
BYRTF A o F AL R S
B G RBER T S AT P
MEERRAIE A RO R T S 0] e
ey o Bim 3 0§ @ % Chi-squared test 2 3
BFHGEPFE 2 % - '@‘ﬁ‘:‘q'lg ®FE -
BE THREF M FHREEE) REPR
PRl s e e % - BHERIE R4 % - B
BoEE > TR 5 - BEAkTHES
WRFHLE 8, o THRE* W% E &K
s PTRE A e A o PR >
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4.1 Chi-squared test ExtraTreesClassifier

4o 2~ 3~ 4404 3 #77F > % Chi-squared o
test ¢ o HCA R F AR R DA R G
RandomForest ~ LGBM {r ExtraTrees o £ ¢ s
Brr ¥ & B 4 #F B ¥ RandomForest » 7 % "
dv 85 B HePE > BEr S 52% 0 ARIT R
79%  #Rm > sk 3F B 5 ExtraTrees » £ % 7> "
B 15 BP0 JeilE IR S 4T% 0 A8 e s
G 69%  BINRRES TR S% o ik Arl B 4. FHGE P~ % B 2 Chi-squared test 35 e » 4 B
% e o F R0 70 @ o &t ¥ LGBM ExtraTrees % 4 3 ez, H07] 1 Fi % 485 ]
ﬂerandomForest (EUEAA v R - A i U
@ R4 3039 A F ST S

5861646770737679 8285

51% » ARITEFES TT% ~ T6% o Al R e e SEE | ks ks

L1 A BEY 55546 1 o Fri -
F]pt > A Chi-squared test i & 35 HCE P

# i @ > #& * LGBM - RandomForest e 1 | RandomForest | 52% | 79% 85

ExtraTrees w5 A %5 % » % 4r 30~ 39 v 15
B pepF > Bag s o wlaiE B 51% > 51% e

, 2 LGBM 51% 7% 30
47% > #RTEFES T7% ~ T6% e 69% o £ 1Y %
o p R IR ek o
2 RandomForest 51% 76% 39
RandomForestClassifier
o= 3 ExtraTrees 50% 76% 26
0.5
0.4
i 03 3 RandomForest | 50% 76% 29
o 0.2
°“ 3 ExtraTrees 50% 75% 53
% 1 4 71013161922252831343740434649525558616467707376798285
RAod i E
7 ExtraTrees 47% 69% 15
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Abstract

This study aims to assist the hearing-
impaired in improving their vocal ability
and communication quality and proposes
to convert the acoustic model of speech
into visual form to assist the hearing-
impaired in self-vocalization training.
Establish a platform for oral vocalization
practice to assist the hearing-impaired to
learn independently. The core goal of this
platform is to enable hearing-impaired
people to hear more clearly and speak
more clearly.

In this study, the sound signals of
speech elements such as vowel, consonant,
and tone were converted into spectral
distribution and dynamic changes that
could correspond to the principle of sound

pronunciation through the advanced model.

Learners can see the trajectory of the
vowel vocalization process, whether it

meets the changes in the oral cavity and
tongue position, whether the consonant's
vocal action and exhalation mode change
correctly with time, and the mastery of
tone is the most difficult, this study uses 3
state processes to describe 4 tones.
Through the visualization of auditory
information and multimodal feedback of
sight and touch, the hearing impaired can
improve their pronunciation through self-
practice.

MaEF L RR - BEREA AR
5

Keywords: hard of hearing, acoustic
model, visual form, multimodal
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Abstract

In this research, we investigated GPT-4 as a
question-answering model for the Holy Quran.
As a first step, we built the Quran ques-
tion—answer pair (QUQA) dataset, comprising
2,189 questions, and made it freely available
via our repository. This dataset was then used
to benchmark the performance of the current
Generative Pre-trained Transformer 4 (GPT-4)
model from the OpenAl research laboratory.
The results show that GPT-4 did not do well
with this dataset, with a 0.23 partial Average
Precision (pAP) score, 0.26 F1@1 score, and
0.19 Exact Match (EM) score. Therefore, fur-
ther improvement is needed for Classical Ara-
bic responses generated by GPT model.

Keywords: GPT-4, large language model, and
Quran question—answer pair (QUQA) dataset

1 Introduction

Vaswani et al. (2017) introduced the transformer
architecture that significantly advanced the field of
natural language processing (NLP). Bidirectional
encoder representations from transformers (BERT)
is one of the pre-trained transformer language mod-
els that has outperformed the state of the art in
many NLP downstream tasks, such as text classifi-
cation, question answering and machine translation
(Devlin et al., 2018).

A challenging task in NLP is answering ques-
tions in Arabic, especially from Classical Arabic
texts, such as the Quran and Hadith Sharif. The
challenge lies in the nature and features of the
text. For example, the meaning and spelling of
the terminology in the Quran differ from other
Arabic variants (colloquial Arabic, Modern Stan-
dard Arabic and Classical Arabic) (Altammami and
Atwell, 2022). This challenge has motivated sev-
eral researchers to use the BERT transformer for
a Holy Quran question-answering system, and it

e.s.atwell
@leeds.ac.uk

m.a.alsalka
@Qleeds.ac.uk

has shown promising results (Ahmed et al., 2022;
Alsaleh et al., 2022; ElIKomy and Sarhan, 2022;
Malhas and Elsayed, 2022)

Recently, OpenAl has developed and provided
access to several versions of the large language
model (LLM)-driven ChatGPT—"“GPT" refers to
its underlying generative pre-trained transformer
model (Brown et al., 2020; Ouyang et al., 2022).
Several studies have focused on testing GPT on
downstream tasks (Jiao et al., 2023; Wang et al.,
2023; Qin et al., 2023). However, to the best of
our knowledge, there has not yet been a published
examination of how well GPT works in answering
Islamic questions.

Our research sought to answer the question, “Is
GPT a good Islamic expert?” To answer this ques-
tion, we first created a corpus for Islamic questions
and answered them using the Noble Quran due to
the lack of an available dataset of this type. We then
tested the performance of GPT with these questions
to learn about its behaviour, strengths and disad-
vantages. The results of this study will benefit
a large segment of Muslims worldwide, motivate
additional research to improve upon any defects
found and help researchers choose an appropriate
language model in the future.

2 Related Work

2.1 Islamic Question-and-Answer Systems

Many studies have built systems for finding an-
swers to Islamic questions from the Holy Quran
and Hadith Sharif. These studies typically used
three different approaches.

2.1.1 Question-and-Answer Systems Based on
Retrieval Techniques

Some research has focused on the retrieval tech-
niques used to find answers from Quranic text. Ab-
delnasser et al. (2014) developed the Al-Bayan sys-
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tem. This system receives the question as input
and then retrieves a Quran verse that includes the
answer based on ontology by computing the cosine
semantic similarity between the question and the
concept vectors. Their study found that the sys-
tem had an accuracy of 85%. Abdi et al. (2020)
proposed a model that answers questions from the
Hadith by calculating the semantic similarity be-
tween the question and Hadith sentences utilising
an Arabic dictionary. Maraoui et al. (2021) intro-
duced a Hadith question-and-answer system based
on two basic stages. First, more information is
added to the question. Second, the Hadith text is
represented using a Text Encoding Initiative (TEI)
standard. The accuracy of the system was 92%.
This approach can generally answer only factual
questions.

2.1.2 Question-and-Answer Systems Based on
Knowledge Bases

Hamoud and Atwell (2016) recommend building
a simple search system over a close-domain knowl-
edge base to answer all kinds of questions about the
Quran. First, they built a corpus of 1,500 questions
and their answers. The dataset included different
types of questions. A simple matching process
was applied to a user’s query and the questions
in the dataset to find the most relevant question
and display its answer. This system demonstrated
79% precision and 76% recall. The drawback of a
knowledge base approach is that a model’s perfor-
mance is entirely affected by the corpus’s quality,
including the variety and quantity of the informa-
tion it contains.

2.1.3 Question-and-Answer Systems Using
Pre-Trained Language Models

Many studies have used pre-trained language mod-
els for Quran Machine Reading Comprehension
(MRC) task. The model inputs are typically a Mod-
ern Standard Arabic question and a Quranic pas-
sage in Classical Arabic (CA), while the output is
a ranked list of five answers. Each answer is part
of the passage. They have relied on the Qur’anic
Reading Comprehension Dataset (QRCD) for the
training and testing phases.

ElKomy and Sarhan (2022) developed a sys-
tem by training five different Arabic models:
Arabic BERT (ARBERT), AraBERTv02-Base,
AraBERTv02-Large, masked Arabic BERT (MAR-
BERT) and QCRI [Qatar Computing Research In-
stitute] Arabic and Dialectical BERT (QARiB)-
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Base. They used a voting system among these
models to select the final answer. To improve the
results, they applied post-processing steps. Their
experiments showed the following results: 0.27
Exact Match (EM), 0.50 F1@1 and 0.57 partial
Reciprocal Rank (pRR).

Ahmed et al. (2022) proposed augmenting the
QRCD dataset manually with 657 questions and
answers to train their Arabic Efficiently Learn-
ing an Encoder that Classifies Token Replace-
ments Accurately (AraELECTRA) and the Arabic-
Typologically Diverse Question Answering (ArTy-
DiQA) language model. This model was able to
extract the answers to the questions well, achieving
the following results: 0.24 EM, 0.51 F1@1 and
0.55 pRR.

Mostafa and Mohamed (2022) recommend us-
ing the AraELECTRA model after fine-tuning it on
the Arabic-Stanford Question Answering Database
(SQuAD), ArTyDiQA and Arabic Reading Com-
prehension Dataset (ARCD). Finally, they used dif-
ferent loss functions to address the data imbalance
issue. The study found that the model achieved
0.55 pRR.

Malhas and Elsayed (2022) conducted an experi-
ment by fine-tuning AraBERT and Classical Arabic
BERT (CL-AraBERT), using the MSA datasets and
the training portion of the QRCD and then assess-
ing the models using the test questions from the
QRCD. AraBERT is a model that is pre-trained on
an MSA corpus, while CL-AraBERT is AraBERT
with further pre-training on a Classical Arabic
dataset. They found that the CL-AraBERT model
outperformed AraBERT with 0.51 partial average
precision (pAP)@10.

Other studies have used other techniques and lan-
guage models to build Quran question-and-answer
systems but have achieved worse results (Keleg
and Magdy, 2022; Premasiri et al., 2022).

The studies in this approach applied the pre-
trained language model for MRC task only while
the questions-answer system consisting of two
modules: Passage Retrieval (PR) and MRC. The
first module will retrieve the Quran passages that
likely contain the correct answer to the questions.
The task of the second module is to extract the
answer from the retrieved passages. In addition,
the dataset size was very small, as the number of
questions without duplication was 169.
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2.2 GPT Research

Recently, many studies have investigated the perfor-
mance of the GPT application in answering various
types of questions. Katz et al. (2023) conducted
an experiment to study the performance of GPT
in passing the Uniform Bar Examination (UBE).
Success on this exam is a condition for law practice
in most states within the US. It consists of several
components, including multiple-choice and essay
items. GPT-4 (i.e. the fourth version of ChatGPT’s
underlying model) achieved good results with 297
points. Kung et al. (2023) suggested measuring the
performance of GPT-3.5 in the United States Medi-
cal Licensing Exam (USMLE). The results showed
that it was close to passing the test. Wood et al.
(2023) recommend investigating the efficiency of
GPT-3.5 using more than 28,000 questions from ac-
counting tests. They found that the average results
of the model were better than students when they
considered partially correct answers. Kasai et al.
(2023) proposed studying the performance of vari-
ous versions of GPT using Japanese national med-
ical licensing examinations for the last six years.
The results showed that GPT-4 had the best perfor-
mance and passed all exams. As far as we know, no
study has assessed the GPT with Islamic questions.

3 Model

Based on the architecture of the pre-trained lan-
guage models, they can be categorized into three
categories: encoder-decoder (Raffel et al., 2020),
decoder-only and encoder-only (Devlin et al.,
2018). The GPT is considered a decoder-only
model (Radford et al., 2018). The development
of GPT has already passed through several genera-
tions: GPT-1 (Radford et al., 2018), GPT-2 (Rad-
ford et al., 2019), GPT-3 (Brown et al., 2020), GPT-
3.5 (Ye et al., 2023) and GPT-4 (OpenAl, 2023).
Various techniques have been used in these differ-
ent versions, which have been reflected positively
in the performance and development of the lan-
guage model.

The version used for this study was GPT-4, the
latest version of the GPT at the time of our research.
This model is used directly and does not require
any fine-tuning process. We used the Python API
to retrieve answers from the model. Google Colab
was used to run the experiment.
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4 Datasets

In this section, we outline the datasets used in the
study. This research focused on finding answers
to questions from Islamic religious texts. In Islam,
the Holy Quran is the primary source from which
Muslims derive information to guide their lives.

4.1 Quran Question—-Answer Dataset

The Holy Quran is God’s word and Islam’s basic
book. Based on specific topics, the book is divided
into 114 surahs. Each surah is a series of verses.
The total number of verses in the Quran is 6,236
(Atwell et al., 2010).

As is well known in the field, there is a signif-
icant shortage of question—answer collections in
low-resource languages, such as Arabic. There are
only two available Quran question—answer datasets:
the Annotated Corpus of Arabic Al-Quran Ques-
tions and Answers (AQQAC) and AyaTEC. The
AQQAC consists of 1,224 question—answer pairs
collected from the Islam — Quran & Tafseer web-
site (Algahtani, 2019).! A limitation of this dataset
is that many answers are only from the words of
scholars without any evidence from the Holy Quran.
After excluding these types of answers, we identi-
fied only 611 question—answer pairs. A different
approach was used to build AyaTEC. Its creators
collected questions from the Internet, then several
freelancers extracted the answers from the Quranic
text and, finally, the questions and answers were re-
viewed by religious scholars (Malhas and Elsayed,
2020). AyaTEC consists of 169 questions, and each
question may have more than one answer, so the
number of records was 1,247. The nature of the
combined AyaTEC and AQQAC questions was not
considered challenging because they were direct
and were a relatively small set. Therefore, we built
the Quran question—answer pairs (QUQA) dataset.

4.2 QUQA Building Process

The QUQA creation methodology followed four
steps: (1) corpus design, (2) source choice, (3)
question and answer gathering and (4) data clean-
ing. First, the designs of AQQAC and AyaTEC
were used as a basis when we planned the QUQA
collection. It is available in a format using comma-
separated values (CSVs) with UTF-8 encoding.
Second, QUQA used the two available datasets
(AQQAC and AyaTEC) and relevant published

"http://islamqgt.com/
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books. We chose books that fulfilled two require-
ments. Their answers had to include evidence from
the Quran. Most books in this area include an-
swers that involve only the expert’s words with-
out evidence. In addition, the owner of the book
rights had to allow for our further publication of
the data because we wanted to make the dataset
available. The five books that met the requirements
were 900 Questions and Answers in Managing the
Verses of the Book (ALmuselli, 2020), 100 Quranic
Questions and Answers (Alakeel, 2018), The Doc-
trine of Every Muslim in a Question and Answer
(Zeno, 2004, 2007), Inference on Children’s Trea-
sure (Al-Wadi, 2016), and Prayer (1770) Question
and Answer (Al Alami, 2022). Third, to collect
the data, we wrote a programme that converts the
sources from their original formats to the specific
format used in our dataset. The AQQAC was avail-
able in one XLXS file, while AyaTEC consisted
of three linked XML files. Some of the selected
books were already available as files in a digital
text format. Therefore, it was relatively easy to
extract the questions and answers from them for
our research. In contrast, the other books required
an additional step to convert the scanned physical
document into a digital text format. The fourth and
final step involved cleaning the data by fixing in-
correct information introduced during the process
and removing duplicate data, noise and undesired
items. In addition, the questions in this corpus were
classified into three categories: fact, confirmation
and descriptive. A fact was a simple answer to a
question such as where, when, etc. A descriptive
question requires a more complex and detailed an-
swer. The confirmation category included yes/no
questions. The data cleaning data process consisted
of manual and automated tasks (the latter included
using regular expressions to eliminate non-Arabic
characters and removing extra spaces). This step
enhanced the quality of the dataset.

The QUQA includes 2,189 questions, classified
as 1778 single-answer and 411 multiple-answer
questions. The answers in this dataset cover 47%
of the Quran. The types of questions in the dataset
are diverse and cover different topics, such as mat-
ters related to the afterlife, the foundations of faith,
dealings between people and stories of the prophet.
Examples of the QUQA dataset questions and their
answers are shown in Table 1. This dataset is pub-
licly available in our repository.”

http://github.com/scsaln
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Question 868

ID
Lo oAby Bolall L% ¢ 0
NI S EPTCH U | I RVRAT
Sl lia fe &ds )

Mary is devoted to worship and is
asked to do more acts of worship.
Mention the verse that indicates
this meaning?

gl ) e e
)l o s
Mary, be devoutly obedient to

your Lord and prostrate and bow
with those who bow [in prayer].

Question

Answer

Table 1: Examples of the QUQA questions and their
answers.

5 Evaluation

In response to the questions we supplied, the output
generated by GPT-4 contains natural-sounding text
and many series of Quranic verses, as shown in
Table 2. In the output, the series may consist of one
or more verses. Therefore, we evaluated the tex-
tual answer and the Quranic verses independently.
The evaluation of the Quranic verses was both au-
tomatic and manual. First, we manually extracted
the Quranic verses from the text because they were
in different formats and put them in a standardised
form. We wrote a programme to check whether the
text of a Quranic verse was fake and then validated
it as an answer to the question using the “golden”
labelled dataset. We noticed that some of the verses
mentioned in the GPT answer correctly addressed
the question but were not mentioned in the golden
dataset. Therefore, we checked all the answers and
added unanticipated “found” correct answers to the
dataset, as appropriate. For example, all the verses
cited in the answer given in Table 2 are correct,
but only the first verse was originally mentioned in
the correct answer in the dataset. We evaluated the
answers manually because the GPT answers may
have a similar meaning to the golden answers but
use different words. For example, in Question 2117
(“How long is full breastfeeding?”’) The answer is
“ Uds> "7, but GPT answered with *“ (i ”; these

two words are synonymous in meaning two years.
We considered different retrieved series of
Quranic verses in the answer as a ranked list and
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Question ID 522

) \D‘j@.w” das e

Question
How many heavens are there?
e o stll (Kool o Ll o S LAl g 555 Slyed) sas
G 5’ d‘l’ d“d‘ j.b‘ ((ya «"Vb OJ.LJ‘ 8,9 () JIA ulﬂ das u’a ?)‘
ot K sk S ge R a ) sl o ef 238
3 u"ﬂ‘j &l Sl J Cuu‘ iCes YN el 50 (y f\l.c
s 56 €] s SidE ¥ oS5 ot A2 V) o A o3 G
Answer I

D yes
The number of heavens mentioned in the Holy Quran is seven. This number can
be found in several verses, such as (1) Surah Al-Bagarah (verse 29), “He it is
Who created for you all that is on Earth. Then He Istawa (rose over) towards the
heaven and made them seven heavens and He is the All-Knower of everything”;
(2) Surah Al-Isra (verse 44), “The seven heavens and the Earth and whatever is
in them exalt Him. And there is not a thing except that it exalts [ Allah ] by His
praise, but you do not understand their [way of] exalting. Indeed, He is ever
Forbearing and Forgiving.”

Table 2: Example of GPT answers.

used F1@1, EM, F1 and pAP as evaluation met-
rics. F1@1 and EM are usually implemented on
only the top predicted answer, which was the first
series in our case. EM was a binary value. It was
assigned a value of 1 when the first verse series
was matched exactly with one of the gold verses
or 0 if not. To compute F1, we measured the over-
lap between each series of verses and the golden
answer and then took the average. If F1 was only
computed for the first series, it was referred to as
F1@1. The pAP measure was used to consider the
rank of the correct answers in the retrieved list. If
the system could retrieve the correct answers at the
top of the list, then the score became higher. The
above measures were computed for each question
and then the average was taken. Malhas and El-
sayed (2020, 2022) used these four measures to
assess their Quran question—answer system. We
dealt with the text as a bag of words and used EM
and F1 to assess it. If the first sentence contained
the exact answer, then the EM was assigned a value
of 1. Otherwise, it was assigned a value of 0. The
GPT-4 answers to all the questions are publicly
available.

*https://github.com/scsaln/GPT4

6 Results

In this section, we present the performance of GPT-
4 with the QUQA dataset. We conducted three
experiments. In each, we entered a particular type
of question. The QUQA contains three kinds of
question. The QUQA contains three kinds of ques-
tions: confirmation (103 questions), descriptive
(1,621 questions) and fact (465 questions). The
results summary of the Quranic series portion of
the GPT-4 answers is shown in Table 3, while the
produced-text portion results are shown in Table 4.

In general, GPT-4 did not achieve impressive
results. We note that the first sentence and the
first series of Quranic verses in its answers to the
fact-type questions outperformed the other types
with a 0.3 F1@1 score, 0.27 pAP and 0.25 EM
score for the Quran verse portion and a 0.34 EM
score for the regular text. For the entire regular
text in the answer, GPT-4 achieved higher results in
questions of the confirmation type, with a 0.29 F1
score. Additionally, GPT-4 obtained a high score
with a 0.36 F1 score in the entire Quranic verses
series portion of answering descriptive questions.
The ranking of the Quranic verses series in the
answers to All questions received a 0.23 pAP score,
0.32 F1,0.19 EM, and 0.26 F1@1. While the text
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Question Type F1@1 EM F1  pAP
All 0.26 0.19 032 0.23
Confirmation 0.22 0.13 0.29 0.18
Descriptive 0.26 0.19 036 0.24
Fact 0.3 0.25 032 0.27

Table 3: The evaluation results of the Quranic series
portion of the GPT-4 answers.

Question Type EM F1

All 0.29 0.26
Confirmation 0.29 0.29
Descriptive 0.25 0.26
Fact 034 0.24

Table 4: The evaluation results of the produced-text
portion of the GPT-4 answers.

portion received 0.26 F1 and 0.29 EM.

7 Analysis and Discussion

This section analyses and discusses the results ob-
tained from the answers generated by GPT-4 in
response to the QUQA questions.

Some incorrect answers appeared in the output,
as illustrated in Table 5 and Table 6 (only the part
of the answer containing the error is displayed due
to space limitations). GPT-4 was unable to answer
many questions, as shown in Example 1 an Al lan-
guage model. Example 2 shows the generation of
incomprehensible words. In Example 3, there is a
contradiction, as it mentions a specific answer and
then negates it in the same text. Example 4 shows
an answer in which the text of the verse was correct,
but the verse number and the name of the sura were
incorrect. There were many answers in which the
verse information was correct, but its text was in-
correct. If GPT-4 found a matching word between
the question and a verse, it retrieved the verse even
when its meaning did not answer the question, as
in Example 5. In Example 6, It failed to answer
the question when the word of the correct answer
verses and the word of the question were synonyms.
It also faced difficulties if a word in the question
and a verse were similar, but they were different
in meaning due to context, as shown in Example
7. This led to incorrect processing of the question.
For example, the word ” _s ™ in Arabic has the

meaning of both “people” and “branches”. The
question in Example 7 means “branches of faith”
based on the context of the sentence, but it has been
processed by GPT-4 as equivalent to the “faithful
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people”. In Example 8, the answer was composed
of a series of verses. This seems to indicate that
the model found it difficult to answer. In addition
to the above examples, there were many answers
in which Quranic verses were not mentioned, such
as Question number 1. The other GPT-4 answers
contain many related topics but do not answer the
question directly, such as Question number 487.
The answers to Question number 1 and Question
number 487 are too long to present here but are
available in our repository).

Ultimately, we wanted to research what some re-
ligious scholars believe is an unethical practice—in
other words, using artificial intelligence to exam-
ine the Quran and found some specific issues with
accuracy (Pournaras, 2023). Therefore, one must
be careful when using language models and should
not adopt any answer in this area without the con-
sultation of an Islamic expert.

8 Conclusion

This paper presented the evaluation process of GPT
in a Quranic question—answer task. We created a
question—answer dataset called QUQA to bench-
mark this model. All questions in this dataset were
sorted into three main categories: fact, confirma-
tion and descriptive. The experiment revealed a
generally weak GPT-4 performance. The perfor-
mance of GPT-4 on the fact questions was better
than the other types of questions with a 0.27 pAP
score, 0.30 F1@1 score and 0.25 EM score. Our
findings highlight the model limitations with regard
to the Classical Arabic language and draw atten-
tion to the need for more research in this area. In
the future, we will extend the corpus to include
more challenging questions and use this dataset
to build question—answering systems using other
pre-trained models.
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Example No. 1
Question ID 328
Question Why did God Almighty choose Moses, peace be upon him, over other people

Part of the Answer

during his time?

To view all the verses of the Holy Qur’an that relate to how God Almighty chose
Moses, peace be upon him, over people at the time of his time, it is preferable
to search for approved Qur’anic interpretations and explanations. Being an Al
language model, I do not have the ability to accurately extract all the Quranic
verses and can only provide general and epistemological answers based on the
limited knowledge I have been trained on until 2021.

Example No. 2
Question ID 485
Question What is the interpretation of Joseph, peace be upon him, of the king’s dream?

Part of the Answer

The answer of Yusuf (peace be upon him) to the interpretation of the king’s
dream according to the verses (43-49) in Surat Yusuf: Yusuf said ayn altftan
sbaon ygrgsomagfnsAsdanh. ). ..

Example No. 3
Question ID 326

. Gold utensils are forbidden for use by a Muslim in this life, so is it the same in
Question

Part of the Answer

the hereafter?

There is no explicit Qur’anic text that talks about vessels of gold in the
hereafter. However, it can be concluded that the pleasures and adornments that
are forbidden in this life may be permissible in the hereafter because they are a
reward for the believers for their good deeds. And in the Holy Qur’an there is
a description of heaven and its bliss. In Surat Al-Zukhruf (43:71), this verse
indicates that the golden utensils will be used to serve the inhabitants of
Paradise, and they will be at the height of luxury....

Example No. 4
Question ID 382

. Why did Moses, peace be upon him, take the head of his brother Harun, peace
Question

Part of the Answer

be upon him, dragging him to Moses?

”...And when Moses returned to his people, angry and grieved, he said, "How
wretched is that by which you have replaced me after [my departure]. Were you
impatient over the matter of your Lord?” And he threw down the tablets and
seized his brother by [the hair of] his head, pulling him toward him. [Aaron]
said, ’O son of my mother, indeed the people oppressed me and were about to
kill me, so let not the enemies rejoice over me and do not place me among the
wrongdoing people.” [Taha:94]..

Table 5: Examples of wrong GPT answers, part 1.
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Example No. 5
Question ID 385

. Why did the desert-Arabs not go out with the Messenger of God, may God’s
Question

Part of the Answer

Golden Answer

prayers and peace be upon him, to Mecca?

... But some of the desert Arabs believe in Allah and the Last Day, and look
on their payments as pious gifts bringing them nearer to Allah and obtaining
the prayers of the Messenger. Aye, indeed they bring them nearer (to Him):
soon will Allah admit them to His Mercy: for Allah is Oft-forgiving, Most
Merciful...[ at-Tawbah:99]. ..

Then who could prevent Allah at all if He intended for you harm or intended
for you benefit? Rather, ever is Allah, with what you do, Acquainted [11]. But
you thought that the Messenger and the believers would never return to their
families, ever, and that was made pleasing in your hearts. And you assumed an
assumption of evil and became a people ruined.”[12].[Sura Al-Fat’h].

Example No. 6
Question ID 534
Question What is the sign of the torment coming to the people of Noah, peace be upon

Part of the Answer

Golden Answer

him?

... And it was said, ”O Earth, swallow your water, and O sky, withhold [your
rain].” And the water subsided, and the matter was accomplished, and the ship
came to rest on the [mountain of] Judiyy. And it was said, ”Away with the
wrongdoing people.”[Hud:44]. ..

[So it was], until when Our command came and the oven overflowed, We said,
”Load upon the ship of each [creature] two mates and your family, except those
about whom the word has preceded, and [include] whoever has believed.” But
none had believed with him, except a few.

Example No. 7
Question ID 1892
Question Describe some branches of faith?

Part of the Answer

Golden Answer

In the Holy Qur’an, many peoples of faithare referred to, including: 1. The
Children of Israel

... Branches of faith are Belief in God, His angels, His books, His messengers,

and the Last Day...
Example No. 8
Question ID 2901
. . 9
Question Describe the percentage of people entering heaven from the forerunners rank?

Part of the Answer

Golden Answer

There is no specific number for the percentage of people entering Paradise
from the rank of the ”’forerunners "’in the Holy Quran....

And the forerunners, the forerunners [10]. These are the nearest [11]. In the
Gardens of Bliss [12]. A group from the ancients [13]. And a few from the
latecomers [14].[Surah Al-Wagqia]

Table 6: Examples of wrong GPT answers, part 2.
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HE

a & # & % A
Pronunciation Assessment, APA)% £ &
BB ZE AL HEZT 74 F
R o KA MIE F AT B R
APA T & LR % 185 5 ok B o
FERB - EFRBAEG R BB
TRBES-AFNE - -EFTELER
B o R B ATEY APA Fik{E A3 ia
# (Mean Squard Error, MSE)#2 % & % >
{e fe B8 b 09 AR BAR B M S
BERPHEEA > S e ERAR Y2
ABHE S1 Fn - F- M > MSE & 1846 #5484
& ALBE R RAR D R BAR
RF4e AR - Bk AR T » &
4% TERETBREEFHERANE
R R RCE I i e ¥ -0
BmN— BT sk 88> %N T 4
P47 6 @ SFAEFS P 0 SR & Ao B
ERXAT B EE - W KRMAE
speechocean762 & # & 346 &AM F
ko BEEMELFEE KBTS A
BAR T ehAZ 8 mAMeEmE R
BT ERBEARTHEOEHEL &
PIE By 4 ROABRIEIF LS ©

(Automatic

Abstract

Automatic  Pronunciation  Assessment
(APA) aims to quantify non-native (L2)
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learners' pronunciation proficiency in a
specific language. With technological
advancements, APA now evaluates various
aspects of pronunciation, from phoneme
level to sentence level, including accuracy,
fluency, stress, and more. However, current
APA methods rely on the Mean Squared
Error (MSE) loss function, which struggles
with imbalanced labels across different
levels of granularity. This imbalance affects
model generalizability and fairness, as
MSE tends to underestimate rare labels.
Despite these issues, existing research has
not adequately addressed data imbalance.
To address this gap, we draw inspiration
from class-balanced loss functions in visual
classification. Our approach involves
resampling and introducing a trainable
variable to narrow the gap between training
and testing sets in imbalanced regression
tasks, aiming to alleviate label imbalance
effects in APA. Evaluating our method on
the Speechocean762 dataset, known for
significant word-level label imbalance, we
observe remarkable enhancements in
performance. Our proposed approach
shows promise in tackling challenges
stemming from imbalanced data in
automatic pronunciation assessment.

MsrF @ B &HEEFA - BHRF
> ESFAR RSB
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E B ¥ OB 4 F 3 & (computer-assisted
pronunciation training , CAPT) % &t A% 2R A% % #k
o AR EAER B 0 Bl iR R ER e T
Y52 (Banno et al, 2022) > % 53R 4% LR
(Mehri, 2021) » £ 8 H e F R B o1ey33 54k
fie 0 AR E A (A 2015) » F RS #5803 F 24k
(Computer-assisted pronunciation training, CAPT )
WEREG T AMREGME - FBF) A F
SHB LB B E T T A A RIRZ 8 R
% (Shi, 2020; Li, 2017; Korzekwa, 2022) °
B 8EETRAPAR— T RO T L
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PR e RIE R A IR ) L2 £
BT AR E— S EFRAEF LG OR
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KR baskr A BB E 6y (R E 5~ AAE - 3
o B 5k M E) AT 3P 45 25 ¥ (Sancinetti, 2022;
Tepperman, 2005) © A A § R4 A E — 4L A
(Arias, 2010; Gong, 2022) 3t 4T 8 R £ & fmstr £
BB LR R @ ey E AR LS 0 UKy
BlIRA SRR EATIRE R o P A
Transformer #9% & 3782 GOPT (Goodness
of pronunciation feature-based transformer )

(Gong, 2022) > A % & A » & & 5

(segmental-level ) #5# > L A B T B RE
Goodness of pronunciation (GOP) * & 4% & 3F4&
1E% LR ERGAERK

BEBRSERER - 248 MR R D

St RHE LR P e @@ AT IR BB
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B @ e 2 P fFE R Ry £5E, 0 EmAGET /£
B FHF H P R A 48 B 6937 » 4 A (Basuki,

2018) © Hsb &AM E BERABE G H AR R FE
L BIFE R FHG R - AHERIFLERG Y
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B % GOPT w9 %! Z A% Fl Mean Square
Error (MSE)E A48 X & ¥ > 2 A B F &R F
MSE & 1846 # H 094R 4 o Lot K+ > K41
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%] - #7 48 % & ¥ Batch-based Monte-Carlo
(BMO)E & #8948 K & > BMC & A7 ik
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RO BRTREAFFTHHELEAA
sy Ao th - ENHSHEBNY R > H
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I SR B AR AR AT AT R BT AR B A BB -

sb(Ren, 2022)# A Monte Carlo Method
(MCM) &) 7 % R A9 4R 05 6942 4% > ™ BMC
T T RAT B ACER I 69 AT IR TR T A 5L
RS Bme R % bt B A F 34 B A BIE
89 R 5] AL SR LA T e BIAR o M A
WAL R AR P (Ren, 2022) > AR 2 A
— M E AR AR MARMAERE
AR E ek B AR B RS Bk
B R P RS H =R EHRF
B9 38 R R B T & TR B R B fa sk B R OR Bl @
) 4% 4 o
BAVERRZANEEFRFTOAME
#H4 Speechocean762 (Zhang, 2021) > Y& 2 & 4F
B RIREM - ALEMNE ERMMER T 1M
LA S E Bl 6y AR R R B o ARIF R AT EY
BRERTI LR waEdES) ot
mAE (o B FRR) EE S BEA S ER
T AR (B —) 0 M AR K
BEENHED TR AT EEIFIRD
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Aoy mmARn Lo @528y 4
89 & B o AT IAFRAM AN GOPT 84 2 A B 9| 4k
G948 R R I o BAEHH = AR B take L 5 )
JER 7T 2|4k 53169 BMC 8% &3 - BT R4
BRT 0 AEPA BN T @ e R bk B b AF
BAZOHE > KMk D TERE @& R ek
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2 HAWMAR B SRR BRR K 0 T #1897 %.((Chawla, 2002 ;

Cui, 2019 ; Wang 2017)fl EN A#HEZ & EH

so00  Utterance Accuracy so00 Utterance Completeness so00  Utterance Fluency Utterance Prosodic

5000 so00  Utterance Total
4500 4500 4500 4500 4500
4000 4000 4000 4000 4000
3500 3500 3500 3500 3500
3000 3000 3000 3000 3000
2500 2500 2500 2500 2500
2000 2000 2000 2000 2000
1500 1500

1500 1500

1000 1000 1000 1000 1000
0 I 0 l | I 20 I I
o - mmmm E o - O - 1 D,,,-.ll o ——_umnl B

§08 112141618 2 002040508 1 12141618 2 0 02040508 002040508 1 12141618 2
Score Score Score Score
Word Total

30000 Word Accuracy 30000 Word Stress

25000 25000

20000 20000

15000 15000

10000 10000

5000 5000

0o ---01_a__=u ° - o =l _m_ua
002040608 1 12141618 2 002040608 1 12141518 2 002080608 1 12141618 2
Score Score Score

CEMa e RGELE S AZORMERSN BRI AEFTREN BTN

Word[Good]
Accuracy / Stress / Total Score

Word[News]
Accuracy / Stress / Total Score

Utterance Scores

A
[ 1

Accuracy  Fluency ~ Completeness  Prosodic Total
Score Score Score Score Score
t t t t t
[Umncc]{Ume]{vmm:}[vmce}{ummc]
Accuracy Fluency Complete Prosodic Total
Head Head Head Head Head
T T T T T
[ Transformer Encoder
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Classification Tokens [ | GOP Projection Layer
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[ Acoustic Model }
Phone
.|||||.|. Projection
(Audio) Layer
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BB RO ARRAREXARS RS WMAERBE=ZHBBRAIBGTER
$eY4EF + (Padurariu, 2019; He, 2009) © 3187 AR FH A MG F ik - 42 5 & (1) GAI

HHEHNAR O BEHOFART AN A
A& F # B 4 (Chawla, 2002)F= & #7 /v #(Cui,
2019 ; Wang, 2017)69 7% » EMIAR@BEFHR
RMRRA G EMRE BT EITE S O A
RBIKBY R A EATRIE o FH Aol B R F
RO ASBRERGBARME &z%ﬁ?
B AR ERSBNBRME > AER P

BEAMOBR - RABZHHBEH R THS

( GMM-based Analytical Integration ) & —#& &
N EHHRAEY (GMM) oWt s ik -

B TAEME 3t B BT AT 0 PR 91 ey AR
BErmh—EAZMREEE - A GMM & £
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Numerical Integration ) =& —#& & & F] 2] 589
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GOPT & A% Transformer %2 #% 3 X7 GOP
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Fa 3B &) B 8945 4 0-10 2 Fd] - M4 GOPT &Y
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42 b F B F #4719 %1 14£ A Mean Square Error
(MSE)#= Batch-based Monte-Carlo (BMC)#) 77
HFAE BB KR R
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Ketm
f£ GOPT #A M+ » £/M1EHA DNN-HMM

179 55 B A% A = 4% 4eski B2 31 5 BMC 48 %k ki 3 4.2
PR REEERR - FEBHAE BRG] -

R— ARFBERERET LA B ER DB ETRER - »HERTERBYBLER
BRAiv= 8% (%  ExqfhEBHRR) ) PCCu¥#k -

Phoneme Score Word Score (PCC) Utterance Score (PCC)

Loss Function Setting

Loss PCC |[Accuracy Stress  Total | Accuracy Completeness Fluency Prosodic Total
[1] MSEphworarutt (Baseline) 0.09 0.61 0.53 0.29 0.55 0.71 0.16 0.75 0.76 0.74
[2] BMCphnwordrutt 0.12 0.52 0.49 0.25 0.49 0.71 0.32 0.75 0.75 0.74
[3] BMCphntBMCuordtBMC utt 0.09 0.60 0.53 0.30 0.55 0.72 0.40 0.75 0.75 0.74
[4] MSEpmtBMCyordtBMC ut 0.09 0.61 0.54 0.31 0.56 0.72 0.37 0.75 0.76 0.75

4 TR

41 EHE%E

# 19 1 A Speechocean762 & #} &
Speechocean762 & — B3t 455 RM 2 &
NHERE  LERELE S 5000 ¢ K3E
Ee) 0 M 250 EERRFBATATR OEH
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15967 18 ¥ F #Fu 47369 B & % -
Speechocean762 &4 % #& & w B % wai 71 B 64
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B A RIRIR 84 4l GOP 454 - B A&
# A K7 Factorized time-delay neural network
(TDNN-F) » 3t 4% F Librispeech 960 /|~ B & #35
f£ Kaldi EATII4R - B TR RMER GIE X
B BHY A M o BT GOPT 8y P A 3l 4R A2 5
BB PR F B LR TRER
8T SEME > HRAMEA R FEl 49 random seed E4R
TARBLO TR HETRas 100 12
epochs ° 2 H £ & le3° RIFEIN R E Ly
Person Correlation Coefficient (PCC)IEAE > B &
ERFAANELRBI TR RE— @
epoch AT#Fe9 & X -

5 Fm&XR
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FRRRNDAXRMG AR % - - R D
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RE R BAAERE — 1848 K HERIN &R S
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SARYE AR B bk B8 B By B E3HER
] &9 BMC 8 % o 30 & 38 2 7T 1 4k 4 (X & 4w
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AR A RER R REMZHER

138



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

BREFZRBRIEORBOHER  RkE£R
BOERBREHEERR G FRRAI KRR
Mo BHAEMRHBERREBRRwIELY - Bk
KA LEL T ER BB R B BFHER
MSE 3 EHB A B HME T ok — )% T
[4]) > KA B AR TR KA L E— T
A BMC 3548 % ¥ » RIELA K — X Z[4]8
HRBTETEREBIER MSE® mMEF R R
REG R BAER BMC TAHH » THARFH
R BB T IEF T & -

6 &

AR Y > B EFERE - BEE T
RAeyfa-TFarda R k3> A IE R RHERA R
HE S bmk B F SRR F AR P
PIAR o M b4R K R B A B — B A ¢ AT
TRR] = FF dmshr L R B @ @) 89 0 80 A o3
H=ofwk M BMC 8% &% 0 TRERK
B S tmki ey A TR T R R BT
UEFRELBE R BMC 48 % S # LA FE
BARFHER B RGEE -

7 £F K

S. Banno et al., “L2 proficiency assessment using self-
supervised speech representations,” arXiv preprint
arXiv:2211.08849, 2022.

Mehri Kamrood, A., Davoudi, M., Ghaniabadi, S., &
Amirian, S. M. R. (2021). Diagnosing L2 learners’
development through online computerized dynamic

assessment. Computer Assisted Language
Learning, 34(7), 868-897.

Ai, R. (2015). Automatic pronunciation error detection
and feedback generation for call applications.
In Learning and Collaboration Technologies:
Second International Conference, LCT 2015, Held
as Part of HCI International 2015, Los Angeles, CA,
USA, August 2-7, 2015, Proceedings 1 (pp. 175-
186). Springer International Publishing.

Li, W., Siniscalchi, S. M., Chen, N. F., & Lee, C. H.
(2016, March). Improving non-native
mispronunciation  detection and  enriching
diagnostic feedback with DNN-based speech
attribute modeling. In2016 IEEE international
conference on acoustics, speech and signal
processing (ICASSP) (pp. 6135-6139). IEEE.

Tepperman, J., & Narayanan, S. (2005, March).
Automatic syllable stress detection using prosodic
features for pronunciation evaluation of language
learners.  In Proceedings.(ICASSP'05).  IEEE

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

International Conference on Acoustics, Speech, and
Signal Processing, 2005. (Vol. 1, pp. -937). IEEE.

Sancinetti, M., Vidal, J., Bonomi, C., & Ferrer, L.
(2022, May). A transfer learning approach for
pronunciation scoring. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 6812-6816).
IEEE.

Arias, J. P, Yoma, N. B., & Vivanco, H. (2010).
Automatic intonation assessment for computer
aided language learning. Speech
communication, 52(3), 254-267.

Gong, Y., Chen, Z., Chu, 1. H., Chang, P., & Glass, J.
(2022, May). Transformer-based multi-aspect
multi-granularity non-native English  speaker
pronunciation assessment. In [CASSP 2022-2022
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 7262-
7266). IEEE.

Chao, F. A., Lo, T. H., Wu, T. I, Sung, Y. T., & Chen,
B. (2022, November). 3m: An effective multi-view,
multi-granularity, and multi-aspect modeling
approach to english pronunciation assessment.
In2022 Asia-Pacific Signal and Information
Processing Association Annual Summit and
Conference (APSIPA ASC) (pp. 575-582). IEEE.

Ren, J., Zhang, M., Yu, C., & Liu, Z. (2022). Balanced
mse for imbalanced visual  regression.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp.
7926-7935).

Eskenazi, M. (2009). An overview of spoken language
technology for education. Speech
communication, 51(10), 832-844.

Cucchiarini, C., Strik, H., & Boves, L. (2000).
Quantitative assessment of second language
learners’ fluency by means of automatic speech
recognition technology. The Journal of the
Acoustical Society of America, 107(2), 989-999.

Li, K., Wu, X.,, & Meng, H. (2017). Intonation
classification for L2 English speech using multi-
distribution deep neural networks. Computer
Speech & Language, 43, 18-33.

Zhang, J., Zhang, Z., Wang, Y., Yan, Z., Song, Q.,
Huang, Y., ... & Wang, Y. (2021). speechocean762:
An open-source non-native english speech corpus
for pronunciation assessment. arXiv preprint
arXiv:2104.01378.

Japkowicz, N., & Stephen, S. (2002). The class
imbalance problem: A systematic study. Intelligent
data analysis, 6(5), 429-449.

139



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)
Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Padurariu, C., & Breaban, M. E. (2019). Dealing with
data imbalance in text classification. Procedia
Computer Science, 159, 736-745.

He, H., & Garcia, E. A. (2009). Learning from
imbalanced data. IEEE Transactions on knowledge
and data engineering, 21(9), 1263-1284.

Chawla, N. V., Bowyer, K. W.,, Hall, L. O, &
Kegelmeyer, W. P. (2002). SMOTE: synthetic
minority over-sampling technique. Journal of
artificial intelligence research, 16, 321-357.

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A
multiple resampling method for learning from
imbalanced data sets. Computational
intelligence, 20(1), 18-36.

Do, H., Kim, Y., & Lee, G. G. (2023). Score-balanced
Loss for Multi-aspect Pronunciation
Assessment. arXiv preprint arXiv:2305.16664.

Shi, J., Huo, N., & Jin, Q. (2020). Context-aware
goodness of pronunciation for computer-assisted
pronunciation training. arXiv preprint
arXiv:2008.08647.

Korzekwa, D., Lorenzo-Trueba, J., Drugman, T., &
Kostek, B. (2022). Computer-assisted
pronunciation training—Speech synthesis is almost
all you need. Speech Communication, 142, 22-33.

Basuki, Y. (2018). The use of drilling method in
teaching phonetic transcription and word stress of
pronunciation class. Karya Ilmiah Dosen, 1(1).

Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S.
(2019). Class-balanced loss based on effective
number of samples. In Proceedings of the
IEEE/CVF conference on computer vision and
pattern recognition (pp. 9268-9277).

Wang, Y. X., Ramanan, D., & Hebert, M. (2017).
Learning to model the tail. Advances in neural
information processing systems, 30.

140



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Category Mapping for Zero-shot Text Classification

Qiu-Xia Zhang*

Department of Computer Science and Information Engineering
National Taiwan University
r109221640ntu.edu.tw
Te-Yu Chi*

Department of Computer Science and Information Engineering
National Taiwan University
d09922009@ntu.edu.tw
Te-Lun Yang*

Department of Computer Science and Information Engineering
National Taiwan University
d129440070@ntu.edu.tw
Yu-Meng Tang*

Department of Computer Science and Information Engineering
Tongji University
tonmoregulus@gmail.com
Ta-Lin Chen*

Department of Electrical and Computer Engineering
University of Texas at Austin
talin@utexas.edu
Jyh-Shing Roger Jang
Department of Computer Science and Information Engineering
National Taiwan University
jang@mirlab.org

Abstract

The existing method of using large pre-trained
models with prompts for zero-shot text classifi-
cation possesses powerful representation abil-
ity and scalability. However, its commercial
availability is relatively limited. The approach
of employing class labels and existing datasets
to fine-tune smaller models for zero-shot classi-
fication is comparatively straightforward, yet
it might lead to weaker model generalization
ability. This paper introduces three meth-
ods to enhance the accuracy and generaliza-
tion capability of pre-trained models in zero-
shot text classification tasks: 1) utilizing pre-
trained language models and structuring in-
puts into a standardized multiple-choice for-
mat; 2) creating a text classification training
dataset using Wikipedia text data and refin-

*These authors contributed equally to this work.

ing the pre-trained model through fine-tuning;
and 3) suggesting a zero-shot category map-
ping technique based on GloVe text similar-
ity, wherein Wikipedia categories replace tex-
tual categories. Remarkably, without employ-
ing labeled samples for fine-tuning, the pro-
posed method achieves results comparable to
the best models fine-tuned with labeled sam-
ples.

Natural Language Processing, Pre-trained
Language Models, Zero-shot Text Classifica-
tion, Classification, GloVe

1 Introduction

Text classification is a pivotal task within the
realm of natural language processing, with ex-
tensive applications in areas such as spam fil-
tering, information retrieval, personalized rec-
ommendations, sentiment analysis, and pub-
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lic opinion monitoring. Presently, pre-trained
models, after fine-tuning on labeled data, have
achieved substantial accuracy improvements
on these labeled datasets. However, there
are inherent limitations when relying solely on
supervised methods in practical applications.
One primary concern is the necessity to con-
struct a new dataset for each novel new task,
involving significant data collection and man-
ual annotation efforts. This process conse-
quently escalates both time and labor costs.
Particularly containing multiple tasks of text
classification, incomplete data collection may
lead to issues associated with data sparsity.

The zero-shot classification model stands
out due to its cross-domain universality, no
need for manual labeling for new tasks, thus
considerably saving time and lobar costs. Two
primary approaches are currently prevalent
for zero-shot classification. One employs the
prompt (Brown et al., 2020) method, lever-
aging the contextual attention mechanism
of large pre-trained language models, using
prompts to guide the model to generate the
desired responses. However, the leverage of
these large models often depends on commer-
cial APIs like GPT and ChatGPT, restricting
independent commercial usage.

An alternative strategy capitalizes on ex-
isting open-domain datasets or uses the unla-
beled data or labels from the target dataset to
create training data, fine-tuning smaller pre-
trained language models. Nevertheless, due to
the lesser parameters learned by these smaller
models, there exists a challenge of weaker gen-
eralization capabilities.

This study primarily aims to address
the weaker generation capacity of small pre-
trained language models, enhancing their per-
ceptions for classification tasks and further
facilitating the knowledge transfer from pre-
trained language models to target datasets.
The contribution of this paper is the propo-
sition of a category mapping method based
on GloVe text similarity, integrated with the
UniMC (Yang et al., 2022) model fine-tuned
on wiki data. This approach has yielded re-
sults on par with the state-of-the-art methods
in zero-shot text classification tasks.
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2 Related Work

GloVe (Global Vectors for Word Representa-
tion) aims to preserve both syntactic and se-
mantic word relationships while enhancing the
effectiveness of word vector clustering. GloVe
synergistically incorporates the advantages of
both Latent Semantic Analysis (LSA) (Du-
mais et al., 2004) and Word2Vec (Mikolov
et al., 2013). It employs training on co-
occurrence matrices to proficiently capture
semantics through global statistical insights.
Within this research, the calculation of text
similarity hinges on the GloVe model.

Prompt models like GPT-3 (Brown et al.,
2020) utilize predefined prompts to guide
downstream tasks by constraining the model’s
output. These prompts, expressed naturally,
enable the model to complete tasks effectively.
Both InstructGPT (Ouyang et al., 2022) and
ChatGPT use instruction-tuning techniques,
leveraging prompts to influence text gener-
ation and fill in gaps. However, designing
prompts requires specialized knowledge due to
the lack of universal templates. Generative up-
stream models might introduce irrelevant con-
tent. Additionally, large-scale language mod-
els’ speed relies on efficient API calls, limiting
their practical use in commercial applications.

TE-Wiki (Ding et al., 2022) (Textual
Entailment formulation with Wikipedia fine-
tuning) utilizes open-source Wikipedia text to
construct training data. It employs Wikipedia
text as premises and Wikipedia categories as
hypotheses, formatted according to ”[Text| En-
tails [Label i)” for i [n], to perform binary
classification on whether a certain text entails
a particular category.

Zero-Shot Text Classification with Self-
Training (Gera et al., 2022) employs a method-
ology based on Natural Language Inference
(NLI). Unlike TE-Wiki, the article utilizes
training data consisting of unlabelled data to
be predicted for iterative training.

UniMC (Yang et al., 2022) employs a self-
attentive encoder structure that transforms
label-based natural language understanding
(NLU) tasks into a unified multiple-choice for-
mat. Labels are treated as options, and a to-
ken [O-MASK] is introduced before each op-
tion to predict the probability of selecting
that option. The model is trained using 14

142



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

NLU task datasets and fine-tuned on the pre-
trained ALBERT model. During fine-tuning,
the model computes softmax over the ’yes’
logits for each [O-MASK] output, determin-
ing the probability of each option. The op-
tion with the highest probability is used for
prediction. The cross-entropy loss is calcu-
lated between the predicted answer and the
standard answer. UniMC takes both the con-
tent and class labels of the text into consider-
ation, yielding more accurate text representa-
tions. This enables better expression of the
relationship between text and categories, as
well as the relationships between different cat-
egories. Furthermore, the input is structured
as a multiple-choice format, and the concept
of prompts is incorporated during text process-
ing, enhancing the model’s awareness of clas-
sification tasks and improving its accuracy in
handling such tasks.

3 Datasets Introduction

The experiment involves four types of text
classification datasets, as shown in Figure
5. Among them, Yahoo Answers Topic, AG
News, and DBPedia are topic classification
datasets, while imdb is an emotion classifica-
tion dataset. The labels in all these datasets
are evenly distributed. As zero-shot datasets,
we use the test sets from the above datasets to
measure the performance of the model. The
evaluation metric is based on the accuracy on
these test sets.

4 Methodology

The experimental methodology primarily
involves three stages: preprocessing of the
training data, model fine-tuning, and post-
processing.During the preprocessing of train-
ing data, this experiment utilizes open domain
text data from Wikipedia webpage, and struc-
ture it into the input format required by the
UniMC model. This is then used to fine-tune
the UniMC model. Lastly, during the infer-
ence stage, we employ a category mapping
method based on the GloVe model to replace
the target label with the wiki label used dur-
ing the fine-tuning process, which in turn en-
hances the predictive accuracy of the model.
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Algorithm 1: Training Data Collection

input : Top-level category set 5 Wikipedia subcatezory graph G, Wikipedia
articles X, max search depth r = 2;
output: M

1 Initizlize d(r, c)
2 for cin 5 do
3 T — DFS{e.G.7);

for ¢ in T'node: do

ooforanvaiclere Xande e S-M = [};

YT

L for zin (.articles do

| diz.c) = min{d(z,c), 1 + depthit)}
7 forzin X do
H if ming g (7, ) = oo then
] I? = argmin__. d{r )
1w for cin /" do
1 if c. len() 1 then
1 Add (z.c.1) to M:
13 forim|l.n 1 do
1 Sample  from
def_PedPuldle2 . e'n—2};
5 L Add (x. e 0) 1o M

Figure 1: Algorithm for wiki-collect

The following will provide an introduction to
these three steps.

4.1 Acquisition of Open-Domain
Training Data

Firstly, let” s discuss the preprocessing of the
training data. In this experiment, the method
of TE-Wiki is referenced and modified to con-
struct a category tree for Wikipedia. This
category tree is then used to build the train-
ing data. From the 700 top-level categories
on Wikipedia, we removed 26 categories that
began with “List of.” We then used the re-
maining 674 categories as the root nodes of
the categories tree. Using depth-first search
with a set depth of 2, we identified all sub-
categories of these root nodes. These sub-
categories were used as nodes to create the
categories tree. Once the categories tree was
constructed, we located all articles directly un-
der the root nodes, meaning articles belonging
to only one category.

We chose these articles as training texts.
Unlike TE-Wiki, which only constructs two
sample differences, for every piece of data in
our study, we constructed classification sam-
ples with n categories. We selected the cate-
gory to which these articles belonged as the
positive label and then randomly chose n-1 la-
bels from the remaining 673 labels as negative
labels. The algorithm is described in 1.
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Finally, we organized the labels into tuples
containing text and other elements. During
the fine-tuning phase, these tuples were struc-
tured into the input format required by various
models.

4.2 Model Input Formatting

For generative models using prompts, such as
GPT-3.5, the training data is formatted as:

“lclass,],” for class; € class_list [prompt] [text] (1)

For the TE-Wiki model, each instance is
formatted as:

“[CLS][text][SEP][class ;] [SEP]"for class; € class_list
(2)
For models using the Self-training method,
each instance is formatted as:

“[CLS][text] [SEP][prompt + class ;] [SEP]” for class ; € class_list
(3)

For models utilizing a unified multiple-
choice format, each instance is structured as:

[CLS] “ ([0 — MASKj] [class;] for i € n) " [SEP][prompt] [SEP] [Text] [SEP]
(4)
For models that require the use of prompt
words, apart from Self-training where we re-
tained the prompt used in the original paper
“This example is” , other models in this study
use the unified prompt: “Which category does
the following text belong to?” .

4.3 Category Mapping

Before performing model inference, we select
the Wikipedia category most similar to each
target category to build a synonym list. Dur-
ing the model interference process, we use
words from the synonym list to replace the tar-
get category for predictions. Specifically, this
process includes the following steps:

0. Preprocessing for Category Mapping: As-
sume the category string to be inputted is s
containing words wi, wa,...,wy,.

1. Using the GloVe model, compute the
word vectors for both the target category and
Wikipedia category.
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Word Vector Space

@ Target Label
@ Wiki Label

Figure 2: Schematic diagram of classifying
Wikipedia categories in word vector space
based on target categories

2. Based on the cosine similarity between
the word vectors of the Wikipedia category
and the target category, the Wikipedia cate-
gories are mapped to the synonym list of the
target category. For each Wikipedia category,
we calculate its cosine similarity with the word
vector of every target category, resulting in a
similarity matrix between the Wikipedia cate-
gories and the target categories. S € RW*Z
S=

s(wi,z1) s (wi,z2) s (w1, zn,)
s(we,21) s (wa,z2) s (wa, zp,)
s(wi,z1) s (wg, 22) s (wj, zj)

Where §; ; represents the cosine similarity be-
tween the Wikipedia category ¢ and the target
category j. For each Wikipedia category, we
select the most similar target category k, and
add this Wikipedia category to the synonym
list My, of its most similar target category. The
mapping function can be represented as:

f(i) =k = argmax S, ; (5)
J

In the word vector space, the Wikipedia cat-
egories are classified according to the target
categories as shown in Figure 2. In this ex-
ample figure, wi, wa,...,ws are the Wikipedia
categories to be classified. For wq, we,ws3, the
target category most similar to them is cq, so
they are added to the synonym list of ¢;.

As shown in Figure 3, after mapping each
Wikipedia category to the list of synonym can-
didates for the target category, the candidates
in each target category s synonym list are
sorted based on their similarity to the target
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Figure 3: Schematic diagram of mapping
Wikipedia categories to target category can-
didates

Expected Result
“This furry animal loves to catch mice” Which category P
does this animal belong to? A.-mammals B.birds

it itput
»mammals
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, Using a Sy
“This furry animal loves to cgich mice” Which Category  juo, output find key
’ D Tt ’
Dic

utput
I belong to? A.mammals Buiviparous O mammals

s D.dogs E.pigs Fbirds

Figure 4: Diagram for the Use of Synonyms

category. Then, according to the practical re-
quirements, the top k candidate words are se-
lected, which are the top k Wikipedia cate-
gories most similar to the target category, to
be the options in the final synonym list.

3. During the model inference process, syn-
onyms are used to replace the target categories
for prediction. After the final list of synonyms
is obtained, during inference predictions, these
Wikipedia categories are used to replace the
target categories as input, allowing the fine-
tuned model to classify these categories. As
shown in Figure 4, suppose the text to be pre-
dicted is “This furry animal loves to catch
mice”, the class_ list is [ “mammals”, “birds”],
and the ground_ truth is
ing the inference process, the synonyms list,
which includes [ “homeothermic vertebrates” ,
“live-birth animals™ , “cats”, “dogs”, “pigs”,
“rabbits”], is used to replace “mammals”as op-
tions, and is input into the model for inference
based on these synonyms. To avoid poor-
quality synonyms and eliminate the interfer-

b2l
“mammals” . Dur-
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ence on the model s judgement caused by non-
similar words in the synonym list, this study
also added a filtering mechanism to the syn-
onyms during the experiment. The implemen-
tation method consists of two aspects: 1. Set-
ting a threshold 2. Confirmation of the target
category word. Firstly, to exclude Wikipedia
categories with low similarity to the target cat-
egory, a similarity threshold of 0.8 is set. If the
cosine similarity between the Wikipedia cate-
gory and the target category in the synonym
candidates is less than 0.8, that candidate is
deleted. Secondly, to ensure finding synonyms
with high similarity in Wikipedia categories, a
mechanism for confirming the target category
word is introduced. This confirmation mecha-
nism determines whether the lowercase of the
target category word is a substring of the low-
ercase of a synonym. If so, there s no need to
add it; if not, the word should be included.

4. In post-processing, the model’ s output
is mapped to the target category based on the
category mapping dictionary. After the model
completes the inference, the synonyms dictio-
nary is used. The model s output is used as
the value to search for its corresponding key,
and the key is then output as the final result.
As shown in Figure 4, after using the synonyms
list, the model determines that the animal is a
“cat” based on the sentence context. Then, the
value “cat” can be matched with its key “mam-
mals~ in the synonyms dictionary. Therefore,
“mammals” is output as the final answer.

5 Experiments

For the aforementioned methods, this study
set up four sets of experiments:

1. Experiment Group 1 was set up to ex-
plore the performance of various zero-shot clas-
sification models and to confirm the feasibility
of the UniMC model.

2. Experiment Group 2 aimed to compare
the results before and after fine-tuning the
UniMC with training data constructed from
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Wikipedia webpage text. This was to deter-
mine the viability of the method. In addition
to the result comparison experiment, another
test was set up to evaluate the effect of the
number of training data categories (n) on the
fine-tuning result and to select the optimal cat-
egory count (n).

3. Experiment Group 3 investigated the ef-
fect of category mapping. Experiment 3.1 was
designed to explore the effects of different syn-
onym quantities (k). Experiment 3.2 aimed to
study the effects of the screening mechanism.

4. Experiment Group 4 conducted an abla-
tion study to understand the relationship be-
tween the Wikipedia fine-tuning and category
mapping methods, as well as their impact on
the model’s performance.

Using the best model determined through
the above methods, in Experiment 5.1 and
Experiment 5.2, this study compared its per-
formance with the pre-tuned original UniMC
model and the current best-performing Self-
training model.

5.1 Experimental Setup

In this study, experiments were conducted
using the PyTorch development container
(Model: cm.xsuper) provided by the National
Supercomputing Center’s Taiwan Computing
Cloud (TWCC). The experimental environ-
ment settings are shown in Table 7.

5.2 Zero-shot Text Classification
Model Performance Compari-
son

This experiment set up multiple models with
different architectures to laterally assess the
performance of UniMC and other models in
zero-shot classification. The experiment was
divided into four control groups: the UniMC
model, the GPT-3.5 model with prompts, TE-
Wiki, and the Self-training model. The param-
eters for each model are detailed in Table 7.
Among the aforementioned models, except
for GPT-3.5, which was inferred by invoking
its API on an item-by-item basis, the other
models used a batch size of 16 during infer-
ence.. It’s worth noting that for answers gen-
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erated by GPT-3.5, if the output does not con-
tain a category, the cosine similarity between
the generated content and the target category
is calculated in the GloVe word vector space.
The most similar category is then selected as
the output.

The final results of the experiment are pre-
sented in Figure 8. The shown values repre-
sent accuracy percentages. As the DBpedia
dataset is large, this study did not use GPT-
3.5 to infer on it. Bold parts in the figure de-
note the highest scores on a particular dataset,
while pink parts indicate where the UniMC
model achieved the best scores. The figure
clearly shows that the Self-training model has
the best average performance, achieving the
highest scores on both the AG News and DB-
pedia datasets. Although the UniMC model
performed poorly on the DBpedia dataset,
it outperformed other models on the Yahoo
Answer and IMDB datasets. This suggests
that the key to improving the UniMC model’s
efficiency lies in increasing its accuracy on
datasets like DBpedia.

5.3 Comparison of Model Perfor-
mance Before and After Fine-
tuning using Wikipedia Data

To investigate the effectiveness of fine-tuning
the UniMC model using training data con-
structed from Wikipedia web page text, Fx-
periment 2.1 was set up to compare the results
before and after this fine-tuning. During the
training process, the experimental parameters
were set as follows: batch size of 4, a learning
rate of 2e — 5, early stopping with a patience
value of 5, saving a checkpoint every 500 steps,
and the optimizer being AdamW. For training
data processing, 9,749 entries from the train-
ing data were chosen as the validation set,
accounting for 0.01%; the remaining 965,174
entries served as the training set, making up
0.99%. The number of categories n was set to
5.

The results, as shown in the bar chart 9, re-
veal that the accuracy of the fine-tuned model
slightly declined on the IMDB dataset. How-
ever, there was a marked improvement on the
other three datasets. Specifically, the accu-
racy on the DBpedia dataset jumped from
12.93% to 68.02%, which was the most no-
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ticeable enhancement. After fine-tuning the
UniMC with Wikipedia data, the average ac-
curacy improved by 14.07%, validating the ef-
ficacy of this approach.

5.4 Exploration of Optimal Number
of Training Data Categories

To ascertain the ideal number of categories
in the training data and whether this num-
ber impacts the model’s performance, control
groups were set up for this experiment. These
were UniMC-5 classes, UniMC-10 classes,
UniMC-20 classes, UniMC-30 classes, UniMC-
40 classes, and UniMC-50 classes. These repre-
sent training data with a total category count
n of 5, 10, 20, 30, 40, and 50, respectively. All
these training datasets utilized single-category
text data, meaning only one positive sample,
with negative samples labeled with 4, 9, 19,
29, 39, and 49 labels, respectively.

The results, as shown in the bar chart
10, did not indicate a clear correlation be-
tween category count and model performance.
However, based on these findings, the optimal
model chosen for further experimentation was
the one fine-tuned with 40 categories. Subse-
quent experiments will be based on this model.

5.5 Synonym List Effect Exploration

To investigate the impact of using synonyms
and the number of synonyms on model pre-
diction results, this experiment selected the
top k synonyms, with k being 1, 3, 5, 7, and
9, respectively. During the inference process
of the model, the target category is replaced
with these synonyms to observe the effects of
various synonym list lengths. The GloVe.6B
model was used to generate the target cate-
gory and Wikipedia category. This model is
pretrained on six million tokens and includes
corpora from Gigawordb and Wikipedia2014.
It has an output vector dimension of 300.

The results are shown in the bar chart
11. The chart clearly shows that, except for
the AG News dataset, the model prediction
results significantly decreased after using the
synonym list. Further analysis is needed to
determine the cause.

From the Yahoo Answers dataset, four cat-
egories were randomly selected. Their syn-

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

onym lists and similarities between the syn-
onyms and target category when taking the
top 9 synonyms were extracted, as exempli-
fied in 6. Analysis revealed that among the
top 9 synonyms for each target, there could
be Wikipedia categories with very low similar-
ity to the target category, some even below
0.6. Considering that simply using the top k
synonyms might interfere with model predic-
tions, a synonym screening mechanism was in-
troduced, leading to Experiment 3.2.

5.6 Screening Mechanism Effect Ex-
periment

The experiment purpose is to introduce a
screening mechanism to eliminate the nega-
tive impact of dissimilar synonyms on model
performance and to explore the effectiveness
of this mechanism. We utilized the synonym
screening mechanism mentioned in method
4.3, setting a threshold of 0.8, and confirmed
the target category. The number of synonyms
taken was 5, 7, and 9, respectively. Results be-
fore and after using the screening mechanism
were compared, as displayed in 12.

After incorporating the screening mecha-
nism, the average synonym length for each cat-
egory is shown in table 1. The synonym list’s
average length is reduced to 1-3 Wikipedia
categories corresponding to each target word,
which is less than taking the top k. The
average performance after implementing the
screening mechanism improved by 15.12%. Ex-
cept for k =5 and k = 7 on AG News, where
the performance slightly decreased, the results
with the screening mechanism surpassed those
without it. Given that the best result was ob-
tained with & = 5 using the screening mech-
anism, we designated this model as our final
model, naming it UniMC-Wiki.

5.7 Wikipedia Fine-tuning and Cat-
egory Mapping Ablation Study

This experiment employed ablation studies to
analyze the impact of Wikipedia fine-tuning
and category mapping on model performance,
as well as the interaction between these two
methods. In this experiment, the following
four control groups were set up: “UniMC-
ori”, "UniMC-ori, label mapping”, "UniMC-40
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classes”, and "UniMC-40 classes, label map-
ping”.

”UniMC-ori” represents the model without
Wikipedia data fine-tuning, with inference on
target categories.

"UniMC-ori, label mapping” represents the
model without Wikipedia data fine-tuning,
with inference on Wikipedia categories within
the alternate word list after category mapping.

"UniMC-40 classes” represents the model
fine-tuned with Wikipedia data, with inference
on target categories.

"UniMC-40 classes, label mapping” denotes
the model fine-tuned with Wikipedia data,
with inference on Wikipedia categories within
the alternate word list after category mapping.

The model that was fine-tuned with
Wikipedia data was adjusted with Wikipedia
categories where the value of n was 40. In the
category mapping method, the top k = 5 most
similar words were selected and incorporated
into a filtering word mechanism.

The results of the experiment are presented
in a bar chart in Figure 13. Comparing the
first experimental group with the third and
fourth groups, it can be seen that even with-
out using category mapping, fine-tuning with
Wikipedia data can improve the prediction ac-
curacy of the model. This improvement in
model performance is independent and does
not rely on other factors. Comparing the
first experimental group with the second and
fourth groups respectively, it is evident that
category mapping can only have a positive ef-
fect on the model if it has been fine-tuned
using Wikipedia data; otherwise, it can lead
to a decrease in model performance. Compar-
ing the average accuracy of all experimental
groups, it can be found that performing both
fine-tuning and category mapping achieves the
best results.
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5.8 Performance Comparison Exper-
iment Before and After using the
Research Method

Compared the final model, UniMC-Wiki, with
the pre-fine-tuned model, UniMC-ori. The bar
chart of the results is shown in Figure 14. It
can be observed that after employing the re-
search method, performance on all datasets ex-
cept for the IMDB dataset has significantly in-
creased. Specifically, on the DBpedia dataset,
the accuracy using the research method in-
creased by 80.76% compared to not using it.
In terms of overall performance, compared to
the original model, the UniMC-Wiki’s average
accuracy improved by 22.14%.

To investigate why the research method
performed relatively poorly on sentiment clas-
sification tasks, we extracted the alternate
word list from the final model on the IMDB
dataset. We found that the labels in this
alternate word list were "positive” and "neg-
ative”, which are consistent with the origi-
nal target categories. This indicates that in
the Wikipedia categories, there aren’t words
with high similarity to the sentiment cate-
gory labels 7positive” and “negative”. As
Wikipedia is topic-oriented, it has certain lim-
itations when it comes to sentiment-related
tasks. Therefore, the method was not effective
on the IMDB dataset.

5.9 Performance Comparison Exper-
iment between UniMC-Wiki and
the Best Model

In this experiment, a performance comparison
was conducted between UniMC-Wiki and the
current best model, Self-training. The exper-
iment was set up with a batch size of 16 for
model inference. The results of the experiment
are shown in Figure 15.

The final experimental results showed that
the UniMC-Wiki model performed better than
the Self-training model on the Yahoo Answers
and AG News datasets. Conversely, the Self-
training model performed better on the other
two datasets. The average accuracy of the
UniMC-Wiki model was slightly higher than
Self-training by 0.61%, achieving results com-
parable to the best model.
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6 Conclusion and Future

Works

This paper employs three methods to address
the problems of data scarcity and domain
dependence in zero-shot classification tasks:
training the model with the UniMC structure,
fine-tuning the UniMC structured model using
Wikipedia to build classification task training
data, and utilizing category mapping. Five
sets of experiments were designed to validate
the feasibility of these methods. The final ex-
periments demonstrated that using the meth-
ods proposed in this paper achieved a 22.14%
improvement compared to before. Moreover,
the methods in this paper achieved results
comparable to the current best self-training
model on average. We found that it signifi-
cantly enhanced the performance of topic clas-
sification tasks. However, its effect on senti-
ment classification tasks was not evident.

Based on the above conclusions, we believe
that future work should focus on further ex-
ploring how to find more suitable knowledge
sources for sentiment classification, investigat-
ing how to introduce their knowledge into the
model more effectively. Additionally, there’s
room to further improve the UniMC model
structure and design a mechanism that can au-
tomatically select prompts during the training
process, thereby enhancing the model’s perfor-
mance and accuracy.
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7 Appendix

Item | Parameters

CPU | Intel(R) Xeon(R) Gold 6154 (8 cores)
GPU | Nvidia Tesla V100 * 2

RAM | 128 GB

0S Ubuntu 20.04 LTS
type=tabletableExperimental Environment

AG Yahoo | DBpedig IMDB
News An-
swer
Top 5 | 2 2.2 1.071
Top 7 | 2.5 2.6 1.071
Top 9 | 2.5 2.7 1.071 1

Table 1: Average synonym list length per cat-
egory after adding filtering mechanism
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Dataset i Number of Number of Data
Dataset Attribute ) . )
Name Categories Test Data Distribution
Yahoo! Questian and Answer Topic Evenly
L 10 60,000 L
Answers Classification Distributed
. L Evenly
AG News News Topic Classification 4 7,600 .
Distributed
. Wikipedia Topic Evenl
DBPedia pedia Top 14 70,000 reny
Classification Distributed
Movie Review Sentiment Evenly
IMDB o 2 25,000 L
Classification Distributed
Figure 5: Overview of datasets used for evaluation
Target i i Entertainment & Politics &
Sports Business & Finance .
Category Music Government
“Sports™ 0.9999, . "Government”:
Finance": 0.8673, . N
"Water sports™: ) "Entainment": 0.8444, "Politics":
) "Business™ 0.8342, . .
0.7659, "Air . R 0.8611, "Music": 0.8334, "Political
Industry™: 0.6205,
sports": 0.7651, ) 0.8603, people": 0.7365,
) "Pharmaceutical .
"Whitewater "Performing arts": "Government
Industry": 0.5687, L
, sports™: 0.7436, . 0.5869, "New agencies": 0.7239,
Substitute Personal , ,
) "Basketball": media art": 0.5823, "Public
Word List development™: ) . .
0.5788, ) "Visual arts": administration™
(k=9) and . o 0.5671, "Electronics . ] e
o Association , 0.5794, "Musical 0.7052, "Politicians™
Similarity companies": 0.5526,

football": 0.5695,
"Baseball™;
0.5571, "Olympic
Games": 0.5134,
"American
football™: 0.5097

"Operations
research™ 0.5524,
"Management™:
0.5399, "Money":
0.5395

groups": 0.5644,
"Dance": 0.5585,
"Video games":
0.5509, "Film™:
0.4879

0.6373, "Criticism of
religion™: 0.6218,
"People by legal
status™: 0.6036,
"Social worlk™:
0.5902

Figure 6: Example of Similarity between Target Categories and Substitute Words

Method
Prompt
TE-Wiki

Self-
training

UniMC

Backbone

GPT-3.5

BERT-base

DeBERTa-large

ALBERT-
xxlarge

Fine-tune dataset

Wikipedia, 3.387M examples

Unlabeled data from target dataset

14 datasets for different tasks, 309.27k

examples

Figure 7: Model Parameters
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45.12 4
Yahoo Answers 62.04

62.98
65.32 0.62
AG News 81.40
75.83
DBPedia 94.52
12.93
] 82.56
IMDB - 92.52
92.63
64.33 29 82
Avg i 82.62
61.09
Avg IMDB DBPedia AG News Yahoo Answers
M Prompt tuning 64.33 82.56 0.00 65.32 45.12
W TE-Wiki 72.82 62.02 93.10 79.62 56.54
B Self-training 82.62 92.52 94.52 81.40 62.04
UniMC 61.09 92.63 12.93 75.83 62.98

Figure 8: Bar chart comparison of zero-shot text classification model performance

0.00 20.00 40.00 60.00 80.00 100.00
Yahoo Answers _6624?(?5
povevs I,
DBpedia | —— .02
wos. N’
Av ﬂ 75.16

B UniMC-ori m UniMC-5 classes

Figure 9: Bar chart comparison of zero-shot text classification model performance
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Yahoo Answers
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AG News
78.45

DBpedia
93.79

92.63
IMDB

Avg
81.64

B UniMC-ori B UniMC-5 classes B UniMC-10 classes = UniMC-20 classes
1 UniMC-30 classes B UniMC-40 classes B UniMC-50 classes

Figure 10: Bar chart comparison of zero-shot text classification model performance
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e 65,12
e
e 93.75
T
e §9.20
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e 51,64

® UniMC-40 classes B yniMC-40 classes, UniMC-40 classes,

AG News

Avg

top 1l top 3
¥ UniMC-40 classes, B UniMC-40 classes, B UniMC-40 classes,
top 5 top 7 top 9

Figure 11: Bar chart of the synonym list effect exploration experiment

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

e _______________________________ ]
Yahoo 65.70

65.43
S S | o s ], 30

AG News 85.12

DBpedia 93.69
IR —————— 93.69
I EEE—— 89.20

IMDB 89.20
I EEEEE—— 89.20
I — 33,23

Avg 83.21
R  T—© ) O3
M UniMC-40 classes, M UniMC-40 classes, UniMC-40 classes, ¥ UniMC-40 classes, B UniMC-40 classes, B UniMC-40 classes,
top 5 top 5, filtering top 7 top 7, filtering top 9 top 9, filtering

Figure 12: Bar chart of the filtering mechanism effect experiment results
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AG News 78.45
84.34
12.93
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IMDB
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B UniMC-ori B UniMC-ori, label mapping
B UniMC-40 classes UniMC-40 classes, label mapping

Figure 13: Bar chart of the Wikipedia fine-tuning and category mapping ablation experiment
results
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H UniMC-ori  ® UniMC-Wiki

Yahoo Answers

Figure 14: Bar chart of model performance comparison before and after using the research
method
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65.70

1.40
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oEocdia Y 23
imoe T 0%
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m Self-training  ® UniMC-Wiki

Figure 15: Bar chart of the performance comparison between UniMC-WiKi and the best model
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ESC MA-SD Net: Effective Speaker Separation through Convolutional
Multi-View Attention and SudoNet

BBEE LA AEE HF SudoNet AT 5 28y A8k

Che-Wei Liao

Aye Nyein Aung

Jeih-weih Hung
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National Chi Nan University
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&

R %% LA N A B (speech separation)
B EMA - R RWATH RS S EARE
129 A o - B o R AT A F A 3% B3
(end-to-end)#y % 2 & & o BE A A
SuDORM-RF f# & A & » $ & 46 7T
MANNER # 7 ¢ 64 2% £ 5B BB
H(Residual Conformer Block) 2t & % #4,
B x & S & HMulti-view Attention
block) R E 2| ZH e TBF o8 A ESC
MA-SD Net o AR & 2% £ B ik 5
EHRANFHEL &R R NG R FR AR
WERESTRZLE mMEBLRAALE
J AR AR B R &E & & 2R
FAB dodb— R RATE T 244 2]
#8238 A SuDORM-RF # %! # o & 24 84
3E 5 B ESC MA-SD Net © £ #:11
HE B P o o B4 B B R (Validation
dataset) LA & B35 48 [8 (Spectrogram) 4 & 5=
B2 H R RIFEIET 2R -

Abstract

This study focuses on speaker separation,
investigating how to successfully separate
mixed multiple speech signals. We build
upon the efficient end-to-end speech
separation model SuDoRM-RF and
integrate the Residual Conformer Block
from the MANNER model along with the
Multi-view Attention block to create the
efficient speech separation model ESC
MA-SD Net. The Residual Conformer
Block in this model eliminates irrelevant
information while preserving crucial
speech details. The Multi-view Attention
module is employed to capture diverse
aspects of speech features. By doing so, we
achieve a more efficient speech separation

National Chi Nan University ~ National Chi Nan University
Nantou County, Taiwan
$109323018@maill.ncnu.edu.tw  s111356509@ncnu.edu.tw

Nantou County, Taiwan
jwhung@ncnu.edu.tw

model, ESC MA-SD Net, compared to the
original SuDoRM-RF model. In our
experiments, we  demonstrate the
effectiveness of the proposed method using
validation data and spectrograms to
showcase the improved speech separation
performance.

MbEs - SBE ik RAREL  mBREA
Keywords: Speech separation, Residual connect
method, End to end module

1 #3% (Introduction)

BEREOBIMEEA RO ES FET AR
o ZAMRGNBETREBRME AL SR
18 7R ] T AE 64 A 3R PR 486 T Ak, 0 33 SR AL 3R AT
BB R N R o A2 I AR IR AR A 4 B DI AR
ERARENREN  ZRAEGSHLELRE -
EHRHEREEAN G REFE R B - ML
FEANREZEXHEAEME - BER T %32
¥ (end-to-end)(Amodei, D., Anubhai, R.,
Battenberg, E., et al. 2016) &) 2 a2 244 X, » H
HENEIE T TUAHBER RSN ZTRRE
REENE Y > AR AEICEREA T
HER M HE P S EMREDEIRBREF
[6] B %7 3 4% pb BT A AR AR B AN B g AR
B 4Z # % (ground-truth output) - KA XFF4Z H 2
ESC MA-SD Net 3% & 4 #4522 69 2 4R Bp 3% A
SRR R o BF 0 BEE E AT R
% B 4Z(training target) » 4 A% % 8k X (mapping)
LA R 3 B X (masking)(Wang et al., 2014) AT% &
HRBREANRASBTAME X s e oY
BRok B MR R B AT R BB E LT
BB 3 T FHBEF4AE B (cochleagram)
# & 18] 48 3% (Mel-Frequency Cepstrum, MFCC)
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Abstract

In recent years, language generation
models have made significant progress and
garnered extensive attention, aiming to
generate diverse sentences across domains.
However, effectively conveying deep
semantics within constrained word limits
and expressive formats remains a
challenging endeavor. Therefore, we utilize
GPT-2, GPT-3.5, and Bloom to generate
slogan. Incorporating product descriptions,
we have experimented, using metrics like
ROUGE, BLEU, and semantic relevance
for model evaluation. Overall, compared to
product descriptions, GPT-3 demonstrates
the best similarity in terms of vocabulary
and meaning. In terms of human evaluation
results, Bloom better captures the
uniqueness of the slogan, while GPT-3 is
more closely related to the description, and
its sentences are the most fluent.

Keywords: Chinese Slogan Generation, Pre-trained
Models, Crowdfunding, Semantic Similarity

1 Introduction

A Slogan, as a part of advertising copy, serves the
purpose of attracting more sales or visits and
conveying the unique features of a product or
service within concise sentence. Some studies have
confirmed that slogans on products can enhance
consumer recognition of specific goods or
businesses, reducing uncertainty in their shopping
decisions. With consumers exposed to thousands
of advertisements daily, designing a concise and
impactful slogan becomes paramount.

Designing a deeply ingrained slogan is not an
easy task, and it can also be quite costly. Research
by Dimofte and Yalch (2007) indicates that the
estimated cost of developing an effective slogan
could reach up to one million dollars, yet there is
no guarantee of success.
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Jheng-Long Wu
Department of Data Science,
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In previous works on slogan generation, most
studies primarily employed the sequence-to-
sequence (seq2seq) transformer model. However,
we observed that when encountering longer input
sequences, the seq2seq model fails to capture the
entire context adequately, leading to less fluent or
inaccurate sentence generation. Therefore, to gain
a comprehensive understanding of the product
description for the purpose of effective slogan
generation, three distinct generative models were
employed: GPT-2, GPT-3.5 and Bloom. To ensure
consistency with product descriptions, we

experimented  with  incorporating  product
descriptions into the training process and
conducted comparative analyses, including

ROUGE, BLEU and semantic relevance.
The key contributions of our research are
outlined as follows:

e Assessing the feasibility of Chinese
commercial slogan generation.

e Comparing the performance among GPT-
2, GPT-3.5 and Bloom models in Chinese
commercial slogan generation.

e Offering commercial

strategies.

slogan design

2 Related Work

In the domain of Natural Language Processing
(NLP), Natural Language Generation (NLG) has
played a pivotal role in transforming non-linguistic
data into human-like text (Reiter et al., 1997). This
section offers a succinct overview of this evolution
and outlines the rationale for model selection,
setting the stage for the subsequent exploration of
slogan generation.

Traditional neural networks laid the groundwork
for early text generation, emphasizing neuron
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behavior, connections, and learning (Auli et al.,
2013). Convolutional neural networks (CNNs)
emerged to capture intricate features through
layered structures (Gu et al., 2018). Later, recurrent
neural networks (RNNs) excelled in handling
sequential data for generating context-rich outputs
(Sutskever et al., 2011).

The introduction of generative adversarial
networks (GANs) marked a significant
breakthrough in text generation by leveraging
adversarial training (Crewswell et al, 2018). This
approach significantly contributed to diverse and
authentic textual outputs. Transformer architecture
further revolutionized the field by capturing
overarching dependencies within sequences
(Keskar et al., 2019).

While extensive research has enhanced text
generation across languages, the realm of slogan
generation, especially in Chinese, remains
understudied. In comparison to languages like
English (Tomasic et al., 2014) and Japanese
(Iwama et al., 2018), Chinese slogans have
received limited attention. This study addresses
this gap by exploring Chinese slogan generation
using three models: Bloom, GPT-2, and GPT-3. We
aim to not only understand their respective
capabilities in generating impactful Chinese
slogans but also to compare their effectiveness.
Our choice of these models stems from the desire
to comprehend the capabilities of the newly
introduced traditional Chinese pre-trained model,
Bloom-zh, and to benchmark against well-known
pre-trained models like GPT-2 and GPT-3.

3 Methodology

First, data collection content is defined and
executed. Following data acquisition, model
training is carried out, and different input data are
categorized based on experimental purposes.
Continuous fine-tuning of the model occurs during
the training process. Finally, the model training
outcomes are evaluated using evaluation metrics to
assess the effectiveness of the model. The research
process is depicted in Figure 1:

! https://www.flyingv.cc/

2 https://wabay.tw/
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‘We gather slogans from online crowdfunding platforms.

Data Collection

product names, product descriptions, and slogans.

‘We select three models for slogan generation based on
their capabilities and relevance in the Chinese language
context : Bloom, GPT-2, and GPT-3.

Model Training

Model Fine-Tuning
OpenAT's GPT-3 APL.

In terms of word similarity, we utilize ROUGE and
BLEU, calculate semantic similarity using Word
embeddings, and also employ human evaluations.

Model Evaluation

Figure 1: The Research Process.

3.1 Data Collection

We crawl commercial slogans from online
crowdfunding platforms such as flyingV', WaBay’
and zeczec > . The reasons for using online
crowdfunding platforms as a data collection
method are as follows:

e Diverse Range of Slogans: Our dataset
spans across technology, education, gaming,
music, and more.

e Fresh and Up-to-date Content: New
crowdfunding projects on the platform
continue to emerge, suggesting the dataset is
likely up to date, reflecting current trends
and market preferences.

We organized the scraped data according to the
column format in Table 1. Column 1 represents the
field name, and Column 2 provides an explanation
for that field. Due to variations across platforms,
some fields may have missing data. Additionally,
we define product descriptions as concise
descriptions that combine product functions
and features etc. Among the three platforms, only
zeczec provides defined product descriptions.

Apart from data directly sourced from
crowdfunding platforms, certain slogans may exist
within images rather than textual data. Hence, we
have developed a GUI interface to assist us in
manually extracting slogans and product names.

3 https://www.zeczec.com/
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Name Description

name Product Name
proposer Proposer Name
projLink Project Link

imgLink Product Image Link
projType Project Type

raised Amount Raised

aim Planned Funding Goal
numPeople Total Number of Backers
completed Goal Achievement
crawltime Crawling Time
dataFrom Data Source
prodType Product Type

projPerc Project Success Rate
starttime Campaign Start Time
endtime Campaign End Time
descr Product Description

Table 1: Column Form

Our model's training and evaluation primarily rely
on product names, product descriptions, and
slogans.

3.2 Model Selection

To fulfill our research objectives, we meticulously
opted for three distinctive models to facilitate the
task of slogan generation: Bloom, GPT-2, and
GPT-3. The rationale behind these choices was
underpinned by their inherent capabilities and
relevance within the Chinese language milieu. In
particular, the recently introduced traditional
Chinese pre-trained model, Bloom-zh, was
harnessed to explore its prowess in crafting
impactful Chinese slogans. Moreover, GPT-2 and
GPT-3 were embraced as benchmark models due
to their well-established proficiency in text
generation endeavors.

3.3 BLOOM Fine-tuning

Configuration and Setup: We initiated the fine-
tuning process by loading the Bloom-zh model
from the “ckip-joint/bloom-1bl-zh” pre-trained
checkpoint. The model was instantiated using the
“AutoModelForCausalLM” class, and its tokenizer
was loaded using the “AutoTokenizer” class from
the Hugging Face Transformers library. Model
parameters were optimized, and specific
parameters were cast to ‘torch.float32’.

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

PEFT Model Enhancement: To enhance the
model's performance, we introduced Lora, a
Parameter Efficient Fine-Tuning (PEFT) method.
The “LoraConfig” was tailored with parameters
like “r”” and “lora_alpha” targeting specific model
modules such as “query key value.” The PEFT-
enhanced model was obtained using the
“get peft model” function from the “peft” module.

Data Preparation: We utilized a dataset
comprising product names, descriptions, and
slogans. A prompt generation function was
designed to combine these elements, which were
then tokenized using the pre-loaded tokenizer.

Model Training: The transformed dataset was
used for fine-tuning the model using the
“transformers.Trainer” class. Training arguments
were configured with batch sizes, learning rates,
and other hyperparameters. The model underwent
training using the “trainer.train()” method.

Inference and Slogan Generation: For slogan
generation, an inference function was devised that
generated prompts based on product names. The
model was utilized to generate corresponding
slogans, and the output was decoded using the
tokenizer.

3.4 GPT-2 Fine-tuning

Configuration and Setup: We configured the
GPT-2 model for slogan generation using the
Hugging Face Transformers library. The “uer/gpt2-
chinese-cluecorpussmall”  pre-trained  model,
tailored for Chinese language tasks, was employed.

Tokenization and Special Tokens: Tokenization
was facilitated using the BertTokenizer, which
introduced special tokens like ‘<name>’,
‘<description>’, and ‘<slogan>’. These tokens
segregated different input segments, representing
the product name, description, and slogan.

Embedding Adjustment: Model embeddings
were resized to accommodate the new special
tokens, ensuring efficient processing of the
modified input data.

Dataset Preparation: Our dataset preparation
involved constructing tokenized examples and
managing annotations for product names,
descriptions, and slogans.
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Model Training: Fine-tuning spanned three
epochs using the AdamW optimizer. The model
was optimized to generate slogans in line with
provided product name and description inputs.
Evaluation and Slogan Generation: Post-
training, the evaluation stage involved a sampling
function designed for slogan generation. This
function utilized techniques such as top-k and
nucleus (top-p) filtering to govern the slogan
generation  process, resulting in slogans
encapsulating provided inputs.

3.5 GPT-3 API Utilization

Configuration and Setup: We leveraged the
“gpt-3.5-turbo” pre-trained model from OpenAl’s
GPT-3 API to explore Chinese slogan generation.

Dataset Preparation: Our dataset preparation
involved concatenating product names and
descriptions to construct prompts for the GPT-3
model, enabling slogan generation.

Slogan Generation using GPT-3: For slogan
generation, we used the GPT-3 model by providing
concatenated product names and descriptions as
prompts. We used the default model parameters for
generating slogans.

3.6 Evaluation Metrics

ROUGE-N: ROUGE is a set of metrics commonly
used for evaluating the quality of machine-
generated summaries. ROUGE 2 and ROUGE L
have been demonstrated to be suitable for
evaluating single document summaries, while
ROUGE-1 and ROUGE-L are applicable for very
short summaries or headline-like summaries (Lin,
2004). We used the average score of ROUGE-N
which focuses on the matching of n-grams, where
n represents the length of words. As the data is in
Chinese, prior to computation, it’s necessary to
perform segmentation on the data. We utilize the
Jieba package (version 0.42.1) and computed the
ROUGE score using the publicly available Python
script of rouge (version 1.0.1).

BLEU: BLEU (Bilingual Evaluation Understudy)
is a metric used to assess the quality of machine-

4 https://huggingface.co/sentence-transformers/paraphrase-
xIm-r-multilingual-v1
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generated translations. It evaluates the similarity of
n-grams  between the  machine-generated
translation and one or more reference translations.
Following a similar concept, we employ BLEU to
evaluate the lexical similarity between the
generated slogans and the original slogans and
product descriptions.

Semantic Relevance: Traditional methods use
linguistic features like word overlap, n-grams, and
syntax for similarity scoring. However, these
methods may not capture sentence semantics well.
Word embeddings represent words in continuous
vectors, enabling sentence comparison using these
word vectors. We employed three different
transformers: paraphrase-xIm-r-multilingual-v1 *
and distiluse-base-multilingual-cased-v2 > are
designed to support multilingual usage, while
text2vec-base-chinese® is specifically suitable for
Chinese characters and words.

3.7 Human Evaluation Methodology

In our study, a single evaluator directly rated the
slogans generated by our Slogan generation model
using three key criteria: distinctiveness (Distinc.),
adequacy (Adeq.), and fluency (Flu.), with a rating
scale ranging from 1 (lowest) to 5 (highest).

Distinctiveness: Measures the uniqueness and
specialization of each generated slogan.

Adequacy: Evaluates how well each slogan
captures the essence of the context or target.

Fluency: Assesses the naturalness and readability
of each slogan.

4 Experimental Settings

4.1 Dataset

We have obtained a total of 11,284 records, with
3,491 from FlyingV, 749 from WaBay, and 7,044
from zeczec (including records with product
descriptions).

Among them, 7,674 projects have reached their
funding goal, 3,346 projects did not meet their
funding goal, and 264 projects are categorized as

3 https://huggingface.co/sentence-transformers/distiluse-
base-multilingual-cased-v2

6 https://huggingface.co/shibing624/text2vec-base-chinese
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long-term sales projects. Based on a grouping of
150% intervals up to 1000%, the majority of data
is concentrated within the 100%-250% range,
totaling 3,911 records, which approximately
accounts for 35.5% of the total dataset.
Additionally, the average length of product
descriptions is around 65 words.

4.2 Pre-trained Models

This study utilizes three pre-trained Chinese
models: GPT-2, GPT-3.5 and Bloom. Among them,
both Bloom and GPT-2 undergo fine-tuning before
generating, whereas GPT-3.5 generates directly
through prompts.

GPT-2: We employed the gpt2-chinese-
cluecorpussmall model from uer’. Adjustments
to default parameters were made as follows:

e “max_length=20": This configuration led
to slightly shorter average lengths while
yielding improved performance.

o ‘“repetition_penalty=1.2”: Discouraging
excessive repetition in generated slogans.

o “temperature=1": Speculating that overly
high temperatures might deviate from the
intended outputs due to insufficient model
training.

GPT-3: For GPT-3, we utilized the OpenAl API
for direct slogan generation without parameter
adjustment.

e prompt="Generate suitable ad slogans based
on the given product names and descriptions.

Product names and descriptions:
[product name], [product description]
Slogan:’ ®

Bloom: We conducted experiments on the Bloom-
1b1-zh model provided by ckip-joint’. Parameter
adjustments beyond defaults were as follows:

e “max_length=35":
average slogan length.

Aligning with the

7 https://huggingface.co/uer/gpt2-chinese-cluecorpussmall

8 prompt = "ARAE &M &b 4 AR IS KBS R
3 o T db & A LA i {name, description} & 4392
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e “repetition_penalty=1.3": Discouraging
excessive repetition in generated slogans.

o “temperature=1.3": Encouraging more
creative and diverse output in slogan
generation.

e prompt=" Product names and descriptions:
[product name], [product description]
Slogan:”.'?

In addition to incorporating the original slogans of

the products into the training, we also attempted to

include the product descriptions, aiming to observe
their effectiveness and impact.

5 Results and Case Study

5.1 Word Similarity

Table 2 and Table 3 illustrate the results of
automated evaluation, both presenting the average

GPT2 GPT3 BLOOM

Without product descriptions

ROUGE1 0.0589 0.1302 0.1422
ROUGEL 0.0543 0.1145 0.1243
BLEU 0.0067 0.1817 0.0182
With product descriptions

ROUGE1 0.0415 0.1700 0.0885
ROUGEL 0.0385 0.1448 0.0796
BLEU 0.0058 0.2369 0.0125

Table 2: Automatic evaluation results. Compare
with the original slogan.

GPT2 GPT3 BLOOM

Without product descriptions

ROUGE2 0.0013 0.0083 0.0136
ROUGEL 0.0358 0.0780 0.0907
BLEU 0.0000 0.0002 0.0002
With product descriptions

ROUGE2 0.0006 0.0223 0.0080
ROUGEL 0.0250 0.1063 0.0689
BLEU 0.0000 0.0020 0.0002

Table 3: Automatic evaluation results. Compare
with the product description.

% https://huggingface.co/ckip-joint/bloom-1b1-zh

19 prompt = * 7§ % #&Fn 4 1 {name} : { description} & %
EC R
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scores across the entire dataset. Note that slogans
involve creativity, resulting in comparatively lower
ROUGE score compared to other tasks.

The two tables below are both divided into two
sections based on whether product descriptions
were included during the training process. The
scores correspond to the models listed above and
the evaluation metrics on the left. Taking Table 2
as an example, when GPT-2 was trained without
including product descriptions, the generated
slogans were evaluated using the ROUGE-1 metric,
resulting in a score of 0.0589.

ROUGE: The results indicates that regardless
of whether there was an addition of product
descriptions during training, the performance gap
between GPT-2 and other models was significant.

As shown in the table, we can notice that when
the model is not trained with product descriptions,
the bloom model shows higher correlation with
original slogans, while incorporating product
descriptions into training. Results in GPT-3
exhibiting higher relevance. One reason for this
may be that when incorporating product des-
criptions into training, the BLOOM model may
experience a decrease in relevance when
generating new slogans due to potential overfitting
to the original data. On the other hand, GPT-3 has
the advantage of being trained on a wider variety
of text types, resulting in better generalization. As
a result, even in the presence of product
descriptions, GPT-3 can generate slogans with
higher relevance.

BLEU: Unlike the ROUGE scores, GPT-3’s
BLEU scores consistently surpass those of the
other two models, whether product descriptions are
included in the training process. The differences in
score results may be attributed to the fact that
ROUGE emphasizes recall, while BLEU places
more emphasis on precision.

5.2 Semantic Relevance

Table 4 and Table 5 illustrate the results of
evaluating word semantic relevance and calculate
the average scores across the entire dataset.

The contents of these two tables are separated by
three different transformers, with the scores
corresponding to the models listed above and the
relationships to be compared on the left side: “Des”
represents product descriptions, “OG” represents
original slogans, and “New” represents slogans
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GPT2 GPT3 BLOOM
paraphrase-xlm-r-multilingual-v1
Des & OG 04675 04675 04675
Des & New 0.2837 0.4752 0.4034
New & OG 0.2964 0.4606 0.4165

distiluse-base-multilingual-cased-v2

Des & OG  0.2799 0.2799 0.2799
Des & New 0.0832 0.2908 0.2374
New & OG 0.1617 0.2926 0.2618
text2vec-base-chinese

Des & OG  0.6486 0.6486 0.6486
Des & New 0.5537 0.6675 0.6162
New & OG  0.4926 0.5958 0.5715

Table 4: Sentence similarity evaluation results.
Training without product descriptions.

GPT2 GPT3 BLOOM
paraphrase-xlm-r-multilingual-v1
Des & OG  0.4675 0.4675 0.4675
Des & New 0.3214 0.6752 0.4354
New & OG  0.3533 0.4961 0.4039

distiluse-base-multilingual-cased-v2

Des & OG  0.2799 0.2799 0.2799
Des & New 0.1018 0.5553 0.2756
New & OG 0.1727 0.3201 0.2470
text2vec-base-chinese

Des & OG  0.6486 0.6486 0.6486
Des & New 0.5770 0.8086 0.6400
New & OG  0.4960 0.6385 0.5657

Table 5: Sentence similarity evaluation results.
Training with product descriptions.

newly generated by different models. Taking
Table 4 as an example, we observe a score of
0.2837, which corresponds to the semantic
relationship score between the product description
(Des) and the slogan newly generated (New) by the
GPT-2 model without incorporating product
descriptions training. This score is obtained within
the transformer of “paraphrase-xlm-r-multilingual-
vl1”.

In the evaluation of word semantics, GPT-3
shows a high degree of relevance among product
descriptions, original labels, and newly generated
labels, regardless of whether product descriptions
are included in the training. After incorporating
product descriptions into training, there is a
noticeable improvement in word semantic
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relevance, and the newly generated labels are more
closely aligned with the descriptions of the
products compared to the original labels.

On the contrary, BLOOM and GPT-2 do not
show a significant improvement in word semantic
relevance after incorporating product descriptions
into training. The original labels, in comparison to
the newly generated labels, even remain closer to
the descriptions of the products.

5.3 Human Evaluation Result

‘Distinc.‘ Adeq. | Flu.

GPT-2 2.44 1.96 2.12
GPT-3 3.85 4.22 4.82
BLOOM 4.06 3.94 4.73

Table 6: Human Evaluation Results. Bold indi-
cates the best average score.

Table 6 represents the results of manual
calculations. We generated 150 slogans by
randomly selecting descriptions in the test data.
Each worker assessed the generated slogans based
on distinctiveness (Distinc.), adequacy (Adeq.),
and fluency (Flu.), assigning scores from 1 to 5.
The final scores were then averaged.

5.4 Case Study

Table 7 presents the description, original slogan,
and generated slogan of example product -Vertical
smoky bamboo pen (Vertical }247 & 3L 4). Both
the product description and the original slogan
emphasize the concepts of “on the tabletop” and
“microcosm.” We can also derive the product
attribute through the keyword “writing.”

In the slogans generated by GPT-2, we can
clearly observe inconsistencies in sentence
structure and vocabulary usage in Chinese.
Additionally, the meanings of the generated
slogans differ from the product description and
instead emphasize reading. On the other hand,
GPT-3’s generated slogans follow the concept of
“writing,” stemming from the product description.
After incorporating training with descriptions,
these slogans are closer in expression to the
original slogans and product descriptions. The
focal points highlighted by the BLOOM model are
slightly different from the original slogans and
product descriptions, with the generated slogans
focusing on aspects of life.
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Description

Enjoy the beauty of writing, taste a delightful
microcosm on the tabletop.

(E2E AN - kg LOBURE)
Original Slogan

A microcosm that everyone can have on their
tabletop.
(AR L FAHA GMEF)

Generated Slogan

Bringing you a reading and
collecting experience that gazes
up at the era from the workshop.

GRARSE TR W R B3R e
B AP ALEFAX)

Highlighting your creativity, the
vertical smoky bamboo pen,
unique writing experience.

(B AR ey A& - MEATHE
% BT EER)

Make your life more
wonderful, inspire you to
write more heartfelt
moments! Record in the
simplest way.
GRIR&YEE R E4 0 RIRE
HESRE ! AREENT X
k)

The whole person can also
become an artistic reading
understanding the beauty of
disassembling.

(BB A AT 2045 & & gy X
e RIS )]

Savor the beauty of writing,
bringing a microcosm of
tranquility to your tabletop.
(R EBHELF TR
Ly BR )

Make life better, write your
story in the simplest way
possible.

GREEZB R A4 RERMEY
FRE BREGHTF)

GPT-2

GPT-3

BLOOM

GPT-2*

GPT-3*

BLOOM*

Table 7: Example outputs - Vertical smoky
bamboo pen (Vertical }E44 B 32 ). * indicates
model trained with product description.
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6 Discussion

GPT-3.5: GPT-3.5 demonstrated the best overall
performance in generating slogans. Its slogans
were consistently high in quality and contextually
relevant, even without fine-tuning. This stability in
performance could be attributed to its large model
size and diverse training data, which enable it to
understand and generate slogans effectively across
various contexts.

Bloom: While Bloom's overall performance didn't
match that of GPT-3.5, it excelled in generating
distinct and creative slogans. This might be due to
the specific training data used for Bloom, which
included a substantial amount of creative and
distinctive slogans. The model's ability to generate
creative content could stem from this specialized
training.

GPT-2: GPT-2, while a capable model, generated
slogans of lower quality compared to both GPT-3.5
and Bloom. Its limitations in generating slogans
may be attributed to its smaller model size and less
diverse training data compared to GPT-3.5.

In summary, GPT-3.5's superior performance in
generating slogans is due to its model size, diverse
training data, and inherent capabilities. Bloom's
strength lies in generating distinctive and creative
slogans, possibly because of its specialized training
data. GPT-2, while competent, falls behind due to
its smaller model size and less diverse training data
in comparison to GPT-3.5.

7 Limitation

Firstly, due to limitations, GPT-3.5 is used here
without fine-tuning. After fine-tuning, the results
may be more creative. Furthermore, because it is
difficult to define what makes a good or bad slogan
and considering the uniqueness of slogans, there
are only subjective criteria.

8 Conclusion

The purpose of this study is to generate slogans
based on the descriptions of target items. After
obtaining the dataset from crowdfunding
platforms, we applied the original slogans and
product descriptions to three slogan generation
models: GPT-2, GPT-3, and Bloom. We aimed to
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evaluate the newly generated slogans from these
models.

In terms of word relevance, through ROUGE
and BLEU scores, we observed that while
BLOOM’s wording closely matches the original
slogans, its precision is lower than that of GPT-3.
Despite GPT-3 not using words that are very
similar to the original slogans or product
descriptions, its word choices are more accurate.
With the inclusion of product descriptions in
training, significant improvements can be seen,
especially in GPT-3’s performance.

In terms of word semantics, GPT-3 clearly
demonstrates a better grasp of relevant meanings,
which is evident in the example outputs as well. In
comparison, Bloom slightly deviates from the
original product's meaning or description, but not
to the extent of GPT-2’s incoherent sentences and
incorrect word choices.

9 Future Work

Currently, most research on slogans is based on
text data such as product descriptions and attributes
to generate slogans. However, product images may
potentially assist in generating more accurate and
creative slogans. Therefore, we hope to incorporate
non-textual data like product images into the model
in the future. Additionally, we also aim to increase
the diversity of the dataset by exploring sources
such as shopping platforms.
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Abstract

Automatic generation of questions about the
given context is useful for the adaptation of
question-answering systems or to support edu-
cation. We trained and evaluated a model that
generates a question in the Slovak language.
We have designed an automatic metric where
an additional question-answering model is used
to evaluate the generated questions. We cal-
culated how many questions have confidence
greater than the given threshold. For generat-
ing questions, we used contexts from the Slo-
vak question-answering dataset. The fine-tuned
Slovak TS model did generate 38% of the ques-
tions that the evaluation model could answer
with confidence greater than 50%. We coop-
erated with partners from Taiwan during these
experiments in the frame of a bilateral project
and we plan to transfer the knowledge to the
Chinese language later.

Keywords: evaluation, natural language genera-
tion, neural networks, question answering, question
generation

1 Introduction

The idea of natural language processing (NLP) is
to teach the computer to understand and respond
to the user in natural language and thus prepare
the user for comfortable communication. Natural
language generation (NLG) refers to the process
of automatically generating human-understandable
text in one or more natural languages. The ability
of a machine to generate text in natural language
that is indistinguishable from that generated by
humans is considered a prerequisite for artificial
intelligence (AI).

The onset of deep learning had a great impact on
this area. Indeed, not only has it advanced the state-
of-the-art in existing NLG tasks but has sparked
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interest in solving newer tasks. NLG today in-
cludes a much wider range of tasks (Zhang et al.,
2022) such as machine translation, text summa-
rization, structured data-to-text generation, dialog
generation, question answering, automatic ques-
tion generation, video captioning, image descrip-
tion, grammar correction, or automatic source code
generation.

The rapid progress of NLG in recent years can
be attributed to 3 factors:

1. by developing data sets and benchmarks that
allow training models (the more data the bet-
ter);

2. advances in machine and deep learning algo-
rithms have helped stabilize and accelerate
large-model training;

3. availability of powerful and relatively cheaper
computing infrastructure in the cloud space.

The question of how to evaluate progress be-
comes very important with such rapid development.
Of course, the generated text can be evaluated
based on grammatical correctness, however, ac-
cording to which criteria to evaluate which of the
generated texts is better if both are grammatically
correct.

More specifically, how can it be convincingly
argued that the new NLG system is better than ex-
isting state-of-the-art systems? We can let people
evaluate and compare multiple outputs. The eval-
uation scores given by humans can be absolute or
relative to existing systems. The scores provided
by people provide information about which of the
systems was better. However, it requires experi-
enced annotators and specific instructions on what
to pay the most attention to, which makes it time-
consuming and costly. At the same time, these
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assessments can be very subjective. Human eval-
uations can act as a serious obstacle that prevents
rapid progress in this field.

This paper focuses on the problem of question
generation (Lopez et al., 2021). The neural network
is given a paragraph of text and is asked to generate
a set of questions related to the paragraph. The
generated question should be grammatically cor-
rect, comprehensible, and answerable in the given
paragraph. This is a complementary task to the
well-known question answering.

Our approach aims to overcome two limitations.
Current question-generating methods depend on
the quality of the datasets and models for the given
language. To overcome this limitation, we use
our own dataset of questions and answers in the
Slovak language and existing general mono and
multilingual models with the support of the Slovak
language. The second issue is the process of the
evaluation of the generated question. The existing
language-independent metrics cannot distinguish
between “good” and ’bad” questions for the given
text. Our method of evaluation uses a mono-lingual
neural model, fine-tuned for question-answering.

There are two uses for question generation - ed-
ucation support and question-answering systems.
Our research should support the creation of such a
system for a lower-resourced Slovak language.

The generated questions are useful in educa-
tion. With the generated question, the teacher can
quickly assess how the student understood the para-
graph. (Kurdi et al., 2020) provide a systematic
review for educational question generation.

The second use is data augmentation for
question-answering or information retrieval. The
automatically generated questions for a random
paragraph can enlarge the training set, or generate
domain-specific questions. (Zhang et al., 2021)
proposes a review of question-generation meth-
ods from the perspective of data augmentation.
There are many possible commercial applications
for question-answering systems, such as personal
assistants, automated customer services, or medical
decision support support systems.

2 Neural Networks for Language
Generation

Most of the neural networks for NLG are based on
a transformer (Vaswani et al., 2017). Transformer
is a neural network architecture that is very widely
used in the field of NLP. The main advantage it of-
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fers over recurrent neural networks is that instead of
sequential processing, parallel processing is used,
and a transformer can better capture word depen-
dencies despite their distance. Parallel processing
makes it possible to receive the entire input sample
at once, thanks to which the power of graphic cards
can be better used and thereby speed up training.
The architecture of the transformer consists of two
main components: encoder and decoder.

2.1 Bidirectional Autoregressive Transformer

Bidirectional AutoRegressive Transformer (BART)
is a language model from Facebook developers Al
(now under the name META) (Lewis et al., 2020)
based on both blocks architecture transformer, i.e.
both encoder and decoder. The main strategy dur-
ing training was a reverse reconstruction of the text
into which noise was introduced in various forms.
Except for generative tasks on which it is focused,
it also manages tasks such as text classification.
The main idea of the developers was to expand the
original BERT (Devlin et al., 2019) model by the
ability to generate text and thereby add a decoder.
Besides that modified the activation functions of
the transformer architecture from ReLU to GeLLU
and adjusted the size of the encoder/decoder block
according to the size of the model (e.g. the smallest
version has 6 layers).

Training consisted of denoising of input text, a
combination of several techniques was used for
this task: span masking, permutation of sentences,
and document rotation. The developers tested the
performance of each text noise technique separately
and the results show that the most effective of these
techniques is paragraph masking.

2.2 Generative Pre-trained Transformer

The Generative Pre-trained Transformer (GPT)
family of models uses only a part of the decoder
block from the original architecture of the trans-
former (Brown et al., 2020). The first pre-trained
model was GPT-1 and was published in 2018. GPT-
1 model was then pre-trained using a language mod-
eling task that can be fine-tuned for a specific task
where such a large amount is not available.

The pre-training step used BookCorpus, which
contains more than 700 unpublished books, where
the model could learn also longer contexts in the
text. Regarding the architecture, GPT-1 uses 12
layered decoders, GeLU activation function, and
117 million parameters.
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The second generation of the model GPT-2 was
more focused on increasing the number of data and
numbers parameters. The new corpus was created
from the data from the Reddit site and contained
40GB of data, which was a considerable difference
from the corpus used for the first generation.

Another concept was “zero-shot task transfer”,
which describes the model’s ability to perform a
task without some sample data from the task. The
GPT-2 model had these abilities when longer fine-
tuning was not needed, but rather showed the model
a few examples of the given task, and the model
could perform the given task. GPT-2 was published
in 2019 and at that time he reached “state-of-the-
art” levels on several tasks in ”zero-shot” settings.

The third generation of models, GPT-3, contin-
ued the trend of larger models and adding corpora
to training, in addition, the basis of the architecture
was the same as at GPT-2. Regarding the size of
the parameters, the largest of the third-generation
GPT models was 175 billion of parameters (again,
a significant increase). GPT-3 is capable of cre-
ating text that seems very human and that is why
the developers decided not to publish him, but in-
stead offer interested parties a paid API through
which they will be able to use the given model. Fur-
ther progress continues in the form of GPT-3.5, on
which the well-known chatGPT was based, and the
fourth generation of GPT (GPT-4).

2.3 Text-to-Text Transfer Transformer

The Text-to-Text Transfer Transformer (T5) model
comes from Google developers, who worked with
the idea of transferring knowledge of models (En-
glish transfer learning) (Raffel et al., 2020).

It uses pre-training on large unlabeled textual
data but the idea was extended to include tasks for
which the models are fine-tuned together and are
related; therefore it should not be necessary to have
a different model for each task. This thought trans-
lated into practice by transforming each problem
into a text-to-text task, which means that in addi-
tion to the fact that the input is text, its output is
also in the text form that the model generated.

The model can be used for several tasks such as
text classification, text summarization, or machine
translation. This is possible thanks to the addition
of a prefix, which defines what task the model has
to perform. T5 is a model in which they use the
entire architecture of the transformer (both encoder
and decoder) unlike the models like BERT or GPT.
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In addition to these versions, a multilingual ver-
sion of the model called mT5 was also created (Xue
et al., 2021). The same authors created training
corpus mC4. This corpus is similar to C4 corpus
(Colossal Clean Crawled Corpus) in (Raffel et al.,
2020), but contains text in 101 languages (includ-
ing Slovak). mTS5 was not trained using other cor-
pora for specific tasks (SQuAD (Rajpurkar et al.,
2018), SNLI (Bowman et al., 2015), etc.), that is,
to use the model for one task as it is not necessary
to add a prefix for fine-tuning. Adding so many
languages made an impact also on the number of
parameters of the model and, like the T35, it came
in different sizes.

2.4 Slovak T5

The Slovak version of the T5 model (Cepka, 2022)
is also available, which was created by further train-
ing of mTS (Xue et al., 2021) on the Slovak version
of the mC4 dataset. The author extracted Slovak
parts from the original mC4 (Xue et al., 2021) and
the OSCAR (Abadji et al., 2022) datasets. It is
further fine-tuned on multiple machine-translated
particular tasks.

For the model evaluation, three related tasks
were used:

e SST2-sk — the text sentiment analysis
task (Socher et al., 2013).

* STSB-sk — comparison of the similarity of
two inputs (Cer et al., 2017).

* BoolQ-sk — answering the yes/no questions
from the texts (Clark et al., 2019).

3 Evaluation of Natural Language
Generation

The goal of this paper is to create and evaluate a sys-
tem for question generation, which is a part of the
NLG. In this section, we will focus on the metrics
used for artificially generated text. As mentioned
above, the evaluation of the generative model using
an automatic metric is not at all a trivial task, since
natural language offers a lot of variability so it is
difficult to design the expected output.

An overview of NLG metrics is presented in
paper (Sai et al., 2022), but we will focus only on
the most popular ones. These can be divided into
two categories (Nema and Khapra, 2018):

* metrics based on word overlap — they usu-
ally compare words or a sequence of words
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between the target (required) and generated
(artificial) by text;

* metrics based on the use of pre-trained models
- they use pre-trained models to create a vector
representation of texts and then the similarity
of the texts is calculated.

3.1 Bilingual Evaluation Understudy

The Bilingual Evaluation Understudy (BLEU)
score is a metric originally designed for machine
translation but can be applied to multiple NLG
tasks (Papineni et al., 2002). For the use you need
to have:

* candidate sentence — generated artificial sen-
tence or sequence of words;

* reference sentences — one or more reference
sentences that represent the expected output
of the generative model.

This metric evaluates the generated text based
on similarity with reference text. There are several
studies that show that BLEU and similar metrics
do not correlate well with human evaluation and
yet there has been no decline in their popularity.

3.2 Recall-Oriented Understudy for Gisting
Evaluation

The Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE) is a metric that was designed for
text summarization evaluation (Lin, 2004). Similar
to BLEU, it uses overlapping n-grams or a longer
sequence of words between reference and candi-
date texts. The most famous versions of this metric
are ROUGE-N, ROUGE-L, ROUGE-S, and so on.

ROUGE-N represents a recall-oriented metric
that works very well similar to BLEU. Also, n-
grams are used, N in the name describes the length
of the n-gram (ROUGE-1 for unigrams, ROUGE-2
for bigrams, etc.). The numerator represents the
maximum number of n-grams generated or candi-
date summarizations identical to the n-grams of the
reference summarization. The denominator forms
the sum of all n-grams of reference summarization.

Instead of n grams, ROUGE-L uses the longest
common sub-sequences. Unlike ROUGE-N, the
main advantage is that it is not necessary to define
the length of the n-gram in advance. The result is
a modification of the F-score, where precision and
recall are taken into account.

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

ROUGES-S uses skip-bigrams that represent pairs
of entry words text. Unlike bigrams, skip-bigrams
do not have to represent adjacent words.

3.3 Metric for Evaluation of Translation with
Explicit Ordering

The Metric for the Evaluation of Translation with
Explicit Ordering (METEOR) was also created for
the task of machine translation (Banerjee and Lavie,
2005). The motivation behind its development was
to improve BLEU and the correlation between auto-
matic and human scoring. Similarly to ROUGE-L,
the METEOR calculates the return in addition to
precision. The unigrams are used to find a match
between the reference and candidate text and the
mapping that forms the grouping (alignment).
Every word in the candidate text is assigned to
the most one word in the reference text. In the map-
ping, several strategies can be used; the simplest is
a direct match, where only the identical words are
mapped, in the same form and time. Other options
use stemming, with the help of which it would be
possible to map words with the same vocabulary
basis or to use the semantic similarity of words
when it would be possible to map synonyms.

3.4 BERTscore

BERTSscore can be classified into the category of
metrics using pre-trained language models (Zhang
etal., 2020). As can be deduced from the name, this
is the model used precisely by BERT (Devlin et al.,
2019), which is not included among the generative
models; rather, it can be included in the understand-
ing of natural language, since its task is to create a
vector for each word of the sentence. So it is at the
beginning for each word of both the candidate and
reference sentences, a vector representation is cal-
culated. When these vectors are created, pairs are
created between the reference and candidate vector
sentences based on semantic similarity, which is
calculated using the cosine vector distances.

3.5 Answerability

”Answerability” is a lesser-known metric compared
to previous metrics (Nema and Khapra, 2018). This
is because the previous metrics could be applied
to multiple tasks, however, it is designed for the
question generation task. The authors recommend
the usage of this metric in combination with an-
other metric, e.g., BLEU. The ambition is to see
if everything is present in the question in the nec-
essary context to answer it. Let us imagine the
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reference question r: ”"What is the address of the
university?” and two candidate questions g1: “Uni-
versity address?” and ¢2 "What is the address?”.
When using the previous metrics would result in
question g2 getting a better score, but the person
does not find enough context in the question to be
able to answer it. On the other hand, question g2
is not the best, but we dare say that most people
would know.

4 The Slovak Question Answering
Dataset

After choosing a question generation task, it was
necessary to obtain data to be able to teach a model
to perform a task. In the previous section, we cov-
ered available datasets that could be used for this
task, but there are few datasets in the Slovak lan-
guage. For this reason, we decided to use a dataset
that represents the Slovak version of the SQuAD
dataset (Rajpurkar et al., 2016, 2018).

At the end of March 2023, an article about the
Slovak version of the original English SQuAD
dataset was published in our IEEE Access pa-
per (Hladek et al., 2023). This dataset provides
24,630 paragraphs from 9,317 documents for
which 91,165 questions are created. The point
was to create a corpus as similar as possible to the
SQuAD v2.0 dataset including unanswerable ques-
tions. The SK-QuAD dataset consists of Slovak
Wikipedia articles that were divided into smaller
articles and cleaned of tables and other non-textual
parts. Answer types and their share in the dataset
can be seen in Tab. 1.

For editing, we created a separate Jupyter note-
book, where the input Slovak dataset we first
loaded. Subsequently, we extracted contexts and
questions from the dataset, so that the prefix ”gener-
ate questions:” was added before each context, and
all questions for the given context were stored one
behind the other. We also removed questions that
were not answerable based on the given context.
We saved the resulting modified SK-QuAD dataset
separately in JSON format.

S Model Fine-Tuning

The main aim was to train a model that would be
able based on the input context (longer text) to gen-
erate questions. These questions must have been
specific to the context. Jupyter notebooks were
used together to develop the practical part with
libraries such as HuggingFace, PyTorch, Pandas,
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etc. which we installed in the virtual Conda envi-
ronment. The practical part was performed on the
server with four NVIDIA GeForce GTX 1080 Ti
graphics cards, each with 12GB of memory.

The next step after modifying the corpus was to
choose a suitable type of model and find the most
suitable pre-trained version. In our case, there were
not many options available, after examining avail-
able Slovak pre-trained generative models, freely
available in the HuggingFace library, we had two
options to choose from:

¢ the Slovak T5 model,
¢ the Slovak GPT-J model.

We decided to use the Slovak T5 model pre-
cisely because of the advantage of using the prefix,
which ensures that the model does not confuse the
question generation task with other tasks. Before
we started fine-tuning the model, a modified SK-
QuAD was needed to prepare for model processing
(data preprocessing). First, we loaded the model
together with the tokenizer from the HuggingFace
library. Subsequently, we modified the downloaded
tokenizer by adding a separation token, which will
be used to separate questions. We tokenized the
input data. We also added a separation token at the
end of the sequences (at the end of the context and
the last question).

After data processing, we defined the hyperpa-
rameters:

* batch size for training — 4 samples;
* batch size for evaluation — 4 samples;

* gradient accumulation step — we set it to 16
steps (serves for defining how many gradient
update steps to take before the backward or
forward promotion is performed);

* learning rate - we set it to 1e-5 (how much the
model weights can change at most during one

step);

* number of epochs — we used 7 epochs (one
epoch means one passage through the entire

corpus);

¢ evaluation interval — we set it so that the model
was evaluated every 100 iterations.
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Table 1: Statistics on the SK-QuAD dataset

SK-QuAD SQuAD v2.0
Number of Train Dev Total Train
Documents 8,377 940 9,317 442
Paragraphs 22,062 2,568 24.630 19,035
Questions 81,582 9,583 91,165 130,319
Answers 65,839 7,822 73,661 86,821
Unanswerable 15,877 1,784 17,661 43,498
train/loss

= second_end2end-questions-generation

25 —\

500

train/global_step

1k 1.5k

Figure 1: Loss during fine-tuning of the Slovak TS model

6 Model Evaluation

After fine-tuning the model, it was possible to test
its functionality. We used the “generate()” method
from the HuggingFace library together with the
parameters:

* max. output length — 128 tokens;

¢ number of beams — 20, you can decide during
generation runs in a directed graph, where the
nodes are possible tokens and they are rated
by probability. This parameter says that the
model maintains knowledge of the 20 most
likely paths within the graph;

* length penalty — 0.3, set to increase the score
of longer questions;

* repetition of n-grams — set to 3, i.e. in the
generated text no trigram can appear more
than once;

* early stopping — set so that the generation
stops only when the list is of candidate se-
quences is equal to the number of beams;

* number of generated sequences — tells how
many sequences we want to generate, set to
generate 5 questions for each context.

To evaluate our model for question generation,
we selected a metric similar to the BERT score.
First, we fine-tuned a SlovakBERT model (Piku-
liak et al., 2022) for the task of answering questions.
The fine-tuning process is described in our IEEE
Access paper (Hl4dek et al., 2023). The input of
the model is a question in natural language and a
paragraph of the corresponding text. The network
is trained to select a text span that answers the ques-
tion. The output of the network is also a number
that expresses the confidence of the neural network
with the found span with the answer. Confidence
can be used to determine if the answer is valid.

The confidence score is calculated as a sum of
probabilities of the model answer. The fine-tuned
SlovakBERT model is discriminative - it selects the
start and end of the span with the answer. The last
layer of the model returns softmax probabilities for
both the start and end of the answer span. We get a
confidence score by adding these two probabilities
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Table 2: The ratio of generated questions with confidence above the threshold

threshold 0.5 0.6 0.7 0.8 0.9
model sk-t5 38.01% 28.46% 19.29% 11.43% 5.2%
model mT5 43.54% 25.56% 15.14%  4.73% 4.73%

together.

We used this confidence score to measure the
quality of the generated question. We assume that
the question is good if it can be answered by the
neural network and is bad if it cannot.

The evaluation procedure was as follows:

1. generate 5 questions for each context using
the generative model;

2. use each question together with the context as
input for the discriminative evaluation model;

3. from the output of the evaluation model, save
each answer score and the answer itself the
answer;

4. calculate the ratio of questions with scores
above the threshold for all questions. We used
the threshold values: 0.5, 0.6, 0.7, 0.8, and
0.9.

The results of the experiments are displayed on
Tab. 2. The table shows the ratio of generated ques-
tions with confidence above the threshold for the
two models. The first line marked “sk-t5” con-
tains the results of the fine-tuned Slovak question-
generating model, the second line is the multilin-
gual question-generating model. We can see that
the fine-tuned model generates questions with more
confidence than the basic multilingual model.

7 Conclusion

This evaluation offers the benefit of utilizing a
well-explored task of question-answering in which
models can rival human performance. However, it
comes with several drawbacks. The model does
not consider grammatical correctness, which can
lead to inappropriate answers that exceed the pre-
determined threshold. Moreover, the model can
generate correct answers that are too difficult for
the evaluation model to process.
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Abstract

Zhangzhou Southern Min is theoretically assumed to
have 7320 possible syllables but more than 70% of
them are not attested in the empirical data, implying
that substantial constraints have been governing the
segmental sequencing and segmental-suprasegmental
alignment. This study explores phonotactic constraints
on syllable onsets. It addresses two important issues as
to in what way syllable onsets are constrained, and
what mechanisms have governed the alignment of
Zhangzhou onsets with other syllables components and
tones to generate syllables that are attestable. The
exploration substantially stretches and advances our
knowledge of phonological constraints in this Sinitic
dialect, while contributing important linguistic data to
the typology of phonotactics as an important language
phenomenon in world’s natural languages.

Keywords: phonotactics, onsets, tones,
mechanisms, Zhangzhou

finals,

1 Introduction

Sounds do not randomly combine with each other
to form a functional syllable and/or a word in
utterances. Instead, there are constraints posing
restrictions on what sounds can be sequenced and
how they can be sequenced to form a larger
linguistic unit (e.g., Celata & Calderone, 2015; Zec,
1995; Kirby & Yu, 2007; Algeo, 1975; Pearce,
2007). For example, the segmental string *1bick is
practically prohibited, because the onset cluster *1b
violates the sonority sequencing principle that
prefers a rising sonority from syllable edge to
nucleus (Giegerich, 1992; Zec, 1995). However, in
this case, the liquid sound [1] is more sonorous than
the voiced obstruent [b]. Such restrictions on the
speech sounds when they are aligned with others
are generally known as phonotactics in the
literature (e.g., Celata & Calderone, 2015; Algeo,
1975; Kirby & Yu, 2007; Zhang 2006; Pearce
2007). Phonotactics not only can determine
syllable structure and inventory of any given

language, but also can categorize the sequences of
phonemes into linguistically permissible and
impermissible. For example, consonant clusters are
permissible at both onset and coda positions in
English but are disallowable in Maori and Chinese.
In Cantonese, there theoretically should have 5130
possible syllables (with tones), but only 36% can
be attested in empirical data (Kirby & Yu, 2007).

In Zhangzhou Southern Min, a Sinitic dialect
spoken in southern Fujian province of southeast
China, an inventory of 15 onsets, 61 finals and 8
tones can be identified phonemically (Huang, 2019;
2021). Given such, there should have 7320
(=15*61*8) theoretically possible syllables that
would be generated in the empirical data. However,
based on the calculation result on Huang (2019)’s
rhyme tables, only 2105 syllables are attested in the
synchronic speech, implying about 5215 syllables,
occupying as many as 71%, are blocked to occur
and disable to constitute the permissible syllable
inventory. This can be best demonstrated by
sequencing constraints on those syllable onsets in
this Sinitic dialect. Each onset is logically expected
to produce 488 (=61*8) possible syllables;
however, 127 syllables are obtained under the
unaspirated labial stop /p/, while only 33 syllables
under the voiced alveolar fricative /z/, by far fewer
than the assumption of 488 syllables for each onset.
The strong divergency between the theoretical
assumption and the practically attested number
implies substantial numbers of constraints having
blocked the sequencing of Zhangzhou onsets with
other syllable components in real-world utterances.

Driven by the intriguing phenomenon of
phonotactics in human languages, this study
specially concerns phonotactic constraints on
Southern Min onsets. It aims to address why so
many theoretically possible syllables are missing
from the inventory of attestable syllables, and what
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mechanisms have been governing the sequencing
of onsets with other syllable components and tones
in Zhangzhou Southern Min. It incorporates four
main sections comprising (a) introduction of
Zhangzhou speech, syllable and tone; (b)
discussion of the creativity of individual onsets in
the production of attested syllable, (c) examination
on co-occurrence constraints between onsets and
tones, and (d) examination on co-occurrence
constraints between onsets and finals. The
exploration will substantially stretch and advance
our knowledge of phonotactics in Southern Min,
while contributing vital linguistics data to the
typology of phonotactics as an important
phenomenon in world’s natural languages.

The material used in this study come from two
sources. One is from the field data that the author
collected in the urban districts of Longwen and
Xiangcheng of Zhangzhou city in 2015. Another
source is from the rhyme tables that Huang (2019)
constructed to exhaustively tabulate sequencings
of individual onsets across individual finals and
tones. Upon these rhyme tables, this study is able
to calculate the number of attested syllables as a
function of syllable onsets, whereby exploring
what have induced phonotactics in this dialect.

2 ZHANGZHOU AND SPEECH
2.1  Zhangzhou

Zhangzhou is a southern city of Fujian province
in mainland China with a registered population of
about 5.05 million in 2020 census. The colloquial
language spoken by native people is Southern Min,
known as Hokkien for its colloquial pronunciation
for its homeland of Fujian province. The
Zhangzhou speech is mutually intelligible with
Southern Min varieties of Quanzhou, Xiamen and
Taiwan; partially intelligible with Teochew and
Leizhou Southern Min but is entirely unintelligible
with other Chinese dialects (e.g., Mandarin, Hakka,
Cantonese, Wu, and Gan).

Certain regional variation can be observed
among its eleven administrative areas (Ma, 1994;
Yang, 2008; Huang, 2018), particularly in its sound
system. This study thus restricts the locality to the
urban area of Longwen and Xiangcheng districts,
which is conventionally considered to be
historically-socially-culturally-linguistically-
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geographically representative of Zhangzhou (Ma
1994; Z7.G 1999; Huang 2022).

2.2 Syllables

As a typical Southern Chinese dialect, the
majority of morphemes in Zhangzhou is
monosyllabic, such as #7135 ‘sky’, ts"y22 ‘bed’, and
d>33 ‘road’. However disyllabic and multisyllabic
morphemes are also observable in the local
vocabulary, such as, dgj32.tsi35 ‘litchi’, pi33.pe22
‘loquat’, and b235.din33.tsi22 ‘potato’. A template
of C(G)V(X) can be generalized to characterise the
internal structure of Zhangzhou syllables, in which
onset (C) and nucleus (V) are obligatory while
glide (G) and coda (X) are optional. The segmental
system incorporates 15 onsets (/p, p", b, t, t", d; k,
kh, d, ts, tsh, s, z, h, ?/), 2 prevocalic glides (/j, w/),
13 nucleus (/i, e, €, &, 2, 0, 1,1, £, 8, 3, m, 1y/), and 8
(/j, w, m, n, 1, p, t, k/) codas. As seen, oral vowels,
nasalised vowels and syllabic nasals can function
as nuclei, while postvocalic glides, nasal
consonants, and obstruent consonants can serve as
codas. Six onset phonemes (/6, d, d, z, h, ?/) are
different from previous transcriptions (/b, 1, g, dz,
h, @/) (e.g., Dong, 1959; Lin, 1992; Ma, 1994;
FJG, 1998; ZZG, 1999; Gao, 1999). The symbols
posited in this study are strictly based on their
auditory impression, acoustic manifestation and
the consulting results with native speakers, aiming
to respect their phonetic reality. Table 1 illustrates
the onset inventory, with tonal pitch transcribed
using Chao (1930)’s notation system.

Within the Sinitic convention, individual
syllables are divided into two main parts of Initial
(shengmu 7 B}) and Final (yonmu #15}) (e.g.,
Duanmu 1999; Zhang 2006; Tiiskova 2011). The
concept of final is created to refer to those syllable
segments except onset, which typically includes a
compulsory nucleus, along with an optional
prevocalic glide and/or syllable coda. This Initial-
Final model draws on the tradition of medieval
Chinese philology (Ttiskova 2011) that can be
traced back to ancient rhyming dictionaries, such
as Qieyun (A.D. 601). In Zhangzhou, 61 Finals can
be constructed covering four major types of V, GV,
VX, and GVX, as illustrated in Table 2. The two
tables serve as the foundation to explore how the
sequencing of Zhangzhou onsets and finals is
constrained and what has triggered such
phonotactics.
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Table 1: Examples of Zhangzhou Onsets.

C | Examples C Examples

/p/ | pi33 ‘compare’ | pin22 ‘friend’ /dl | di51 ‘language’ din22 ‘welcome’

/pt/ | phiS1°scab’ phin22‘comment’ | /ts/ | tsi5S1 ‘cook’ tsin22 ‘feeling; emotion’
/6/ | 6i51 ‘rice’ 6in22 ‘bright’ /tsh/ | tshi51 ‘mouse’ tshin22 ‘banyan tree’

/| ti51 ‘resist’ tin22 ‘pavilion’ /sl | siS1 ‘die’ sin22 ‘complete’

/t/ | thi51 “store’ thin22 ‘suspend’ | /z/ | zi51 ‘fermented bean curd’ | zin 22 ‘people’

/dl | di51 ‘you’ din22 ‘zero’ /Mh/ | hi51 ‘happy’ hin22 ‘shape’

/k/ | ki51 ‘point out’ | kin22 ‘lift up’ /?/ | 2151 ‘chair’ ?in22 ‘glory; honor’

/kh/ | kPiS1 ‘tooth’ khin22 ‘jade’

Table 2: Examples of Zhangzhou Finals.

Final Example Final Example
Vv /e/ ke41‘teach’ VX /en/ ken41‘descend’
/e/ ke41‘calculate; plan’ /in/ kin41 ‘respect’
i/ ki41‘remember’ /ony/ kon41 ‘tribute’
h/ ku41‘sentence’ few/ kew41‘enough’
/o/ ko41°‘look after’ few/ dew33 root of lotus’
/el ke41*frame; shelf’ /ej/ kej41‘boundary’
e/ ke41‘tell; sue’ /8j/ k#j41°‘how about’
e/ ke41‘yeast’ /ep/ kep41‘pigeon’
il ki41‘see; meet’ /ip/ kip41 ‘anxious; urgent’
13/ k341 emit; pop up’ /op/ kop41-‘catch with a cover’
/ &/ k €41°quantifier for et/ ket41‘tie; knot’
aircraft; machine’
/m/ ?m41‘oh; all right’ /it/ kit41‘orange’
y/ kn41 - steel’ /ut/ kut41‘bone’
GV /je/ kjed1‘post’ fek/ kek41‘horn; angle’
/ju/ kjud1‘save; rescue’ /ik/ kik41‘leather; transform’
/jo/ hjod1‘yes’ GVX /ok/ kok41‘country; nation’
lje/ kje41°call; order’ /jew/ kjew41 ‘seize; hand over’
i@/ kjg41 ‘mirror; glass’ ljew/ djew41 ‘stingy’
133/ tsjd41‘dipping sauce’ /wej/ kwej41 ‘strange; to blame’
fju/ dji51 turn; tweak’ /wej/ ?wej51‘sprain; wrench’
/we/ kwe41‘hang’ /jem/ kjem41‘sword’
/we/ kwe41 ‘pass through’ /jen/ kjen41‘build; found’
/wi/ kwi41‘expensive’ /jen/ khen41-capable; competent’
/we/ ktwe41 look; see’ /joy/ kjopg41‘arch’
/wi/ kwi41‘volume’ /wen/ kwen41‘be used to’
VX fem/ kem41 ‘supervise’ /jep/ kjep41-‘take by force’
/im/ kim41 ‘prohibit’ /jet/ kjet41‘bear fruit; connect’
/om/ kom41 ‘sloshy; muddy’ /jek/ kjek41‘screechy’
en/ ken41‘separate’ /jok/ kjok41 ‘chrysanthemum’
/in/ kin41 ‘strength’ /wet/ kwet41 ‘determine’
/un/ kun41“stick’
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2.3 Zhangzhou Tones

The urban area of Zhangzhou city has received a
considerable number of impressionistically-
auditory-based transcriptions (e.g., Dong, 1959;
Lin, 1992; Ma 1994; FJG, 1998; ZZG, 1999; Gao,
1999; Yang, 2008) and some acoustic descriptions
(Huang et al., 2016; Huang, 2018; 2020; 2022) on
its monosyllabic citation tones. However, prior
studies before Huang (2018)’s initiative are
dominantly impressionistic and identify a seven-
way tonal contrast with their pitch values not only
differing among themselves, but from the phonetic
reality. The eight-tonal system is posited based on
two acoustically-statistically-justified assertions:
(a) tones sharing a similar pitch contour can differ
considerably in other parameters, such as duration,
syllable type and phonation, and (b) tone having an
identical realisation in citation can differ in other
linguistic contexts (Huang2018; 2020).

This study adopts the proposal of eight-tone
system, which is introduced in Table 3, along with
their pitch and duration values, and corresponding
names in terms of the Middle Chinese tonal
category to make them diachronically traceable
and synchronically comparable with other Sinitic
dialects. The detailed discussion of the eight tones
and their multidimensional properties can be
referred to in Huang’s (2018; 2020) work.

Table 3: Examples of Zhangzhou citation tones.

Tone Pitc | Duration Example 1

1| Yinping | [35] | extra-long | /ten35/ ‘east’

2| Yangpin | [22] | extra-long | /ten22/ ‘copper’
3| Shang [51] | medium /ten51/ ‘to wait’
41| Yinqu [41] | medium /ten4d1/ ‘frozen’
5| Yangqu | [33] | extra-long | /ten33/ ‘heavy’
6| Yinru [41] | short /tep41/ ‘answer’
7| Yangru [22 | long /tsep221/ ‘ten’
8| Yangru [22] | extra-long | /tsi22/ ‘tongue’

3 Creativity of Onsets

Logically, each onset in Zhangzhou Southern Min
is theoretically able to combine with 61 finals and
8 tones to generate 488 (=61x8) possible syllables.
However, the number of syllables that individual
onsets can generate in real-world utterances is far
less than the theoretical assumption. Table 4 shows
the number of practically attestable syllables are
obtained as a function of individual onsets. As seen,
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individual onsets present considerable variation in
their creativity to generate syllables, with the
number of attestable syllables ranging from 33 to
189, far less than the maximum number of 488 that
each onset is logically able to generate.

Table 4. The number of permissible syllables
obtained under different onsets.

Onset Syllables
Labial stop p 127
ph 99
b 124
Alveolar stop t 180
th 120
d 174
affricate ts 189
tsh | 142
fricative S 174
z 33
Velar stop k 175
kh 129
d 79
Pharyngeal fricative h 172
Glottal stop ? 188

As seen, only three onsets (/t/, /ts/ and /?/) can
generate 180 syllables and above, whereas three
onsets (/p'/, /J/ and /z/) are shown to produce
syllables less than 100. The onset /z/ turns out to be
the least productive, because only 33 syllables are
able to begin with this onset, 455 less than what is
theoretically assumed to be. The unaspirated onsets
are preferred over their aspirated. For example, the
unaspirated labial stop /p/ can generate 127
syllables while its aspirated counterpart /p"/ can
only produce 99 syllables. Similarly, the
unaspirated alveolar stop /t/ can generate 180
syllables, contrary to its aspirated counterpart /t"/
that can create 120 syllables. This reflects the
phonotactic constraint of aspiration as a marked
feature on the production of attested syllables.

Additionally, the alveolar occlusives are shown
to be the most creative than onsets of other place of
articulation. Specifically, the three alveolar stops
(/t, t, d7) can generate 474 syllables in total, greater
than their velar (/k, kb, d7), labial (/p, p", 6/), and
glottal counterparts that separately generate 350,
383 and 188 syllables.

182



The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023)

4 Co-occurrence Restriction between
Onsets and Tones

Significant constraints can be seen governing the
co-occurrence between tones and onsets, which are
induced by synchronic and diachronic factors.
Table 5 presents the number of attested syllables
that individual onsets can generate across
individual tones, in which I, II, III, and IV
correspond to the Middle Chinese (MC) tones of
Ping, Shang, Qu, and Ru, while a and b represent
the Yin and Yang registers, respectively.

Table 5. The number of attested syllables with
respect to the onset-tone combination

TI (T2 [T3 |™ |15 |T6 (T7 |718
(35] | [22] [ [S1] | [41] | [33] | [41) | [221] | [22]
la [ [0 |Ha [Hb |IVa [IVh | IV

p 22 18 22 22 23 T g 4
pt | 20 16 14 23 11 7 3 k]
b 14 30 25 10 26 3 8 b
t 34 30 23 33 31 10 11 ]
t | 26 20 17 24 16 g 3 i
d |23 32 33 23 32 ] 13 10
k 36 23 31 33 24 13 8 7
kb | 32 17 22 26 9 11 6 [
qd |3 24 12 T 17 1 10 5

ts | 36 27 31 34 28 12 1

tsh | 35 15 25 30 14 11 b 7
H 37 24 29 34 22 13 i 7
z 2 g ] 1 & 1 6 2
h 33 28 25 29 28 12 9 b
? 39 30 33 31 28 12 7 b

(1) Onsets occur least often in tones 6, 7 and 8.
This reduction is understandable that results from
the constraint of syllable coda type. The three tones
are referred to as stopped/checked tones because
their associated syllables are historically assumed
to end in obstruent codas, where syllables in other
tones end in sonorants. What needs a specific
attention is that tone 8 is a newly posited tone. Its
associated syllables are documented ending in a
glottal stop; however, the glottal stop is discovered
being deleted, leading related syllables to become
open (Huang 2018). The special requitement on
syllable coda type can substantially affect the
combination of onsets and tones in the formation
of attested syllables.

(2) For those onsets that are contrastive in
aspiration, the aspirated onsets (/ph, t", kP, tsh/)
mostly have fewer attested syllables than their
unaspirated voiceless counterparts (/p, t, k, ts/)
across tones. This reflects aspiration as a marked
feature that can constrain the productivity of onsets
in the formation of attestable syllables.
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(3) For those onsets that are contrastive in
voicing, the voiced ones (/b, d, d, z/) have fewer
attested syllables than their voiceless counterparts
of aspirated (/p", t", k%) and/or unaspirated (/p, t,
k, s/) in the Yin-registered tones but more in the
Yang-registered tones. The changing number of
attested syllables along with tonal registers can be
seen as a consequence of diachronic constraint.
Because syllables under Yang-registered tones
are historically assumed to contain voiced onsets,
while those under Yin-registered tones are
aligned with voiceless onsets. This diachronic
requirement on the voicing status of onsets can
constrain the occurrence of voiceless onsets in
Yang-registered tones, while limiting the voiced
onsets to occur in the Yin tonal environments.

(4) The voiced alveolar fricative /z/ is the least
productive across most tones, reflecting its most
marked status. It cannot occur in any syllable
whose nucleus features a nasality, so that syllables
like *zV, *zN, *zGV, *2VG, *2GVG are all
prohibited. The constraint on the nucleus type can
affect its combination with tones, resulting in the
fewest syllables that can be attested under this
onset.However, this onset is allowed to occur in
syllables ending in a nasal coda, such as zVN
(/zim51/ ‘tolerate’), and zGVN (/zjen51/ ‘infect’).

5 Co-occurrence Restriction between
Onsets and Finals

Significant constraints can also occur on the co-
occurrence between onsets and finals. Table 6
shows the number of attested syllables with respect
to the sequencing of onset-final type, while Table 7
shows the number with respect to the alignment
between individual onsets and individual finals.

(1) Voiced onsets cannot occur before syllabic
nasals. Specifically, syllables like *6N, *dN, *dN,
and *zN are not allowed to exist. Instead, only
voiceless onsets can precede a syllabic nasal to
form syllables, such as pN, p"N, tN, t'N, kN, k"N,
and sN are all permissible. The main reason for this
restriction can be ascribed to the synchronic factor
of Obligatory Contour Principle (OCP) between
voiced onset and nasality feature of nucleus. If a
voiced onset occurs before a syllabic nasal, the
OCP blocks their combination to form a CV
syllable type. In contrast, the voiceless onsets do
not violate such a principle, so that they can freely
precede syllabic nasals, as generalized.
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Table 6: The number of attested syllables with respect to onset-final type combinations
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Table 7. The number of attested syllables with respect to onset-final combinations

Final Type

en
2

im

in
in

om

un
o
je

GV

ju

je
Jo

wi
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we

ew

VG

€

jew

GVG

wej

we

0

wej

jem

jen

jen

wen
ep

VP

vt
ek

ip
it

ik
ut

p
ok
Jep

GVP

jet

jek

jok

wet
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(2) The voiced obstruent onsets are able to occur
before nasalised nuclei. As such, syllables like 6V,
dV, and ¢V are attestable in the data. This seems
violating the OCP on the co-occurrence of nasality
feature and voiced onset. The main reason for this
generalization is that the voice obstruent onsets are
seen undergoing a regressive assimilation to
subsequent nasality feature and become nasal
onsets ([m, n, y]) at the surface (Huang & Hyslop
2022). It is thus proper to consider that syllables
like 6V, dV, and g\7 are permissible at the
underlying level.

(3) The voiced fricative /z/ cannot occur before
final type that has a nasalised vowel or a syllabic
nasal. As such, syllables like *zV, *2N, *zGV,
*2VG, *zGV G are all prohibited to occur. This also
reflects the operation of the OCP between voiced
onset and vocalic nasality, prohibiting the voiced
fricative to occur before a nucleus that features
nasality. In contrast, it is allowed to appear before
final types such as V, VN, GV, GVG, GVN, VP,
and GVP whose nucleus is [-nasal].

(4) Voiceless occlusives and affricates cannot
occur before the GVG final type. Specifically,
syllables like *pGVG, *p"GVG, *tGVG, *tGVG,
*kGVG, *k"GVG, *tsGVG, and *ts"GVG are all
prohibited and cannot be attested. In contrast, their
voiced counterparts can occur before this final
structure, such as BGVG, dGVG, and QGVG are
observable in the data. What worths a further
mention is that these voiced obstruent onsets are
essentially realized as their nasal counterparts at
the surface level; and only a few tokens are found
with the GVG structure in the data (Huang, 2019).
(5) The labial obstruent onsets /p, p", 6/ cannot
occur in syllables containing a segment of [+labial]
feature. Syllables like *Pm, *Pem; *Pim; *Pom;
*Pjem; *Pep; *Pip; *Pop; *Pjep *Pji, *Pjo; *Pj3;
*Pjon; and *Pjok are not attested, because of the
shared labial feature between the onset and other
syllable constituent of nucleus and/or coda. This
labial restriction is also often reported in other
Chinese dialects, such as in Wu (Zhang, 2006) and
Cantonese (Kirby & Yu, 2007). However, few
exceptions can also be seen as syllables Pju and Pje
are well-formed, such as /pje35/ ‘bid’; /6je33/
‘temple’, and /p"ju35/ ‘fleet away’.

(6) The co-occurrence of labial nucleus and
labial coda are not banned by this labial constraint.
This is because the final types om and op are both
well-formed and syllables like tom, thom, dom, som,
?om, ddp, tsop, tshop, sop, and hop are all well
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tested, such as /som35/ ‘ginseng’; /?20m35/ ‘cover
with hands’; /hop41/ ‘catch with a cover or net’.

(7) The low back rounded vowel /o/ is prohibited
to occur before a coronal coda. As such, finals on
and ot are both ill-formed and syllables like *son
and *kot are not accepted. In contrast, this vowel
can precede a labial or velar coda to form syllables
like /sop221/ ‘swob’ and /kok41/ ‘country’.

(8) The high back rounded oral vowel /u/
appears to be in a complementary distribution with
its low counterpart /o/ in the VX final type. It can
only occur somewhere the /o/ is prohibited and is
banned to appear where the vowel /o/ is allowable.
As such, finals like *um *up, *up, and *uk are
disfavored, while finals like un and ut are accepted.
For example, /kun35/ ‘military’ and /kut41/ ‘bone’
are practically used by the native speakers.

(9) The final /j3/ is more productive than its oral
counterpart /jo/ to form syllables that can be
attested empirically. Only one syllable/morpheme
(/hjod41/ ‘affirmative’) contains the final jo. In
contrast, its nasalized counterpart final /j3/

is able to combine 9 out 15 different onsets to
form 31 attested syllables, such as tj3, dj3, kj3, k3,
tsjd, ts"j3, sj3, hj3, and ?j3. For example, /tj341/ ‘go
up; rise’; /kjd35/ ‘ginger’; /sj335/ ‘box, case’.

6 Discussion

As discussed, more than 71% of theoretically
permissible syllables cannot be attested in the
synchronic speech of Zhangzhou Southern Min,
implying the segmental sequencing and segmental-
suprasegmental alignment have been severely
constrained in this dialect. This study conducted a
comprehensive exploration into what phonotactic
constraints have blocked the creativity of
Zhangzhou onsets and restrict their combinability
with other syllable components and tone, and how
the phonotactics can be quantified. Explanations
from both synchronic and diachronic perspectives
have been given to interpret the mechanisms
underlying such phonotactic constraints. This
study substantially broadens our knowledge of
phonotactics as a linguistic phenomenon in Sinitic
languages with rich tonal contrasts. It also
contributes well-attested data to generalise cross-
linguistic tendency of phonotactics in world’s
natural languages, while shedding an important
light on modeling and quantifying speakers’
mental grammar of phonotactic restrictions using
experimental methods.
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Abstract

In this study, we assess ChatGPT, OpenAI’s
latest conversational chatbot and large lan-
guage model (LLM), on its performance in
elementary-grade arithmetic and logic prob-
lems. Despite its impressive coherence in nat-
ural language processing and ability to follow
instructions, our findings indicate that Chat-
GPT still has room for improvement in math-
ematical tasks. To evaluate its performance,
we used six math and logic datasets, including
SingleEq, AddSub, SVAMP, MultiArith, Sim-
ple Arithmetic and counting, and Arithmetic
(word variation), and found that ChatGPT per-
formed better than previous models such as
InstructGPT and Minerva. However, our arith-
metic dataset, which includes two- to seven-
digit equations, revealed that ChatGPT’s accu-
racy in solving addition problems decreased
from 100% to 64%, with simple arithmetic er-
rors such as not carrying over in addition being
a common issue. Additionally, the model strug-
gled with basic multi-step word problems. To
address this, we propose a novel benchmark for
evaluating LLMs’ mathematical abilities. Fur-
ther research is needed for LLMs to reach the
level of mathematical reasoning comparable
to their natural language processing abilities.
Overall, our study highlights the need for con-
tinued improvement in LLMs’ mathematical
abilities to make them more effective in real-
world applications.

Keywords: Large language models, reasoning
capabilities

1 Introduction

Pretrained language models (PLMs) have revolu-
tionized natural language processing, achieving im-
pressive performance on various tasks, from senti-
ment analysis to question answering and text gener-
ation. With the development of large language mod-
els (LLMs), the capabilities of PLMs have grown
even further, with models such as GPT-3 boasting

over 100 billion parameters [Brown et al., 2020].
ChatGPT, a conversational chatbot and LLM de-
veloped by OpenAl, has become one of the most
popular language models, with over 100 million
users in under three months. However, while these
models excel in language processing, they may lack
the ability to reason mathematically and logically,
as observed in previous models such as BART [Pa-
tel et al., 2021, Wang et al., 2021, Roy and Roth,
2016].

In this paper, we present a study of the mathe-
matical and logical capabilities of ChatGPT, focus-
ing on simple arithmetic, elementary-grade level
math word problems, and logic problems. While
previous research has analyzed ChatGPT’s perfor-
mance on advanced math problems with proofs
from college-level pure math courses [Frieder et al.,
2023], our research is unique as it presents a de-
tailed analysis of ChatGPT’s performance on sim-
ple mathematical and logical reasoning tasks. Our
study evaluates ChatGPT’s mathematical reasoning
abilities, which have not been analyzed in previous
research.

Moreover, while Borji [2023] briefly touches
on various topics such as mathematical reasoning,
hallucination, and bias, our analysis focuses solely
on the model’s ability to reason mathematically
and logically. Our research aims to specifically
contribute to the evaluation of LLMs’ mathematical
and logical capabilities.

Our study makes several contributions to the
evaluation of ChatGPT’s mathematical and logical
capabilities:

1. We conducted a comprehensive assessment of
ChatGPT’s ability to reason mathematically
and logically on simple tasks, comparing its
performance with other LLMs of comparable
parameter sizes.

2. We designed a word variation experiment to
investigate ChatGPT’s computational ability,
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showing that the model’s performance may
depend on specific patterns in the pre-training
corpus and that it has limitations in generaliz-
ing more common computational rules.

3. We evaluated ChatGPT’s performance using
both the commonly used Accuracy metric and
the Average Percent Error (APE) metric, re-
vealing that ChatGPT has the capability of
estimation, even if it is not always accurate in
some computational tasks.

4. We conducted an error analysis of ChatGPT’s
performance on some mathematical tasks,
identifying ’adding one extra digit” as a com-
mon type of error that deserves further inves-
tigation.

2 Methods
2.1 Datasets

We evaluated ChatGPT’s performance on existing
datasets from previous studies, which include:

1. SingleEq [Koncel-Kedziorski et al., 2015]
2. AddSub [Hosseini et al., 2014]

3. SVAMP [Patel et al., 2021]

4. MultiArith [Roy and Roth, 2016]

These datasets consist of simple single-step arith-
metic problems written in word problem format or
requiring multiple arithmetic steps to solve. Addi-
tionally, we extended the arithmetic and counting
experiments from Wang et al. [2021] to include
addition, subtraction, and multiplication problems
with two to seven digits and evaluated multiple
ranges for counting. We also created a Word Varia-
tion dataset by modifying the arithmetic problems
and replacing the original Arabic numbers with En-
glish words, as detailed in section 4.2. Our datasets
for arithmetic are created using a random number
generator and word variations are generated using
the num2words library from Python. They will be
released to the public in the future.

2.2 Metrics

We used two metrics to evaluate ChatGPT’s perfor-
mance on these datasets: Accuracy and Average
Percent Error (APE). The percent error for each
sample is calculated using the following formula:

|[Response — Actual answer|
Percent error =

Actual answer
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2.3 Experimental Setup

We conducted our experiments on the January 30th
version of ChatGPT, using PyChatGPT [terry3041,
2023] to automate its use. For each sample, we
prompted ChatGPT with the instruction, "Respond
with only the answer to the following question: ...
and discarded any responses that were noisy or
contained more than just the answer.

An example prompt, question, and response
from ChatGPT are shown in Figure 1.

Due to the usage limits of ChatGPT, we were
only able to use 100 test cases for each dataset
during evaluation. However, on some tasks where
ChatGPT performed poorly, we conducted at least
three experiments and took the median of the re-
sults.

s

Respond with only the answer of the following subtraction expression:

9196-9068

128

Figure 1: Example prompt and response

3 Results and discussion

3.1 Word Problem Performance Comparison

Table 2 summarizes the performance of Chat-
GPT on various word problem datasets, including
AddSub, SingleEq, SVAMP, and MultiArith, as
well as the performance of InstructGPT [Ouyang
etal., 2022] and PaLLM [Chowdhery et al., 2022] on
the same datasets. The results of InstructGPT are
taken from Kojima et al. [2022], while the results
of PaLM are taken from Zhou et al. [2022].

ChatGPT performs relatively well on single-step
word problems from the AddSub and SingleEq
datasets. However, the SVAMP and MultiArith
datasets have increased problem complexity, requir-
ing more arithmetic operations than the first two
datasets, and ChatGPT’s performance decreases
significantly on these tasks. Specifically, ChatGPT
only achieves an accuracy of 64% on the SVAMP
dataset.

We find that the problems in SVAMP require a
higher level of comprehension compared to the
other datasets, which are more straightforward.
For example, the question ”The grasshopper, the
frog, and the mouse had a jumping contest. The
grasshopper jumped 9 inches. The mouse jumped
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Dataset Prompt Answer
SingleEq The sum of three consecutive odd numbers is 69. What is the smallest of | 21

the three numbers?
AddSub Joan found 70 seashells on the beach. She gave Sam some of her seashells. | 43

She has 27 seashells. How many seashells did she give to Sam?
SVAMP Tiffany was collecting cans for recycling. On Monday she had 7 bags of | 5

cans. The next day she found 12 more bags worth of cans. How many

more bags did she find on the next day than she had on Monday?
MultiArith | Kaleb was collecting cans for recycling. On Saturday he filled 5 bags up | 40

and on Sunday he filled 5 more bags. If each bag had 4 cans in it, how

many cans did he pick up total?
Arithmetic | 7342+3492 10834
Counting How many ”i”’s are there in the following string: "iiiiiiiiiii’? 11
Arithmetic | seven thousand, three hundred and forty-two plus three thousand, four | 10834
(word varia- | hundred and ninety-two
tion)

Table 1: Examples from each dataset
Model Name o Singl’:;:“mg%\)@ MultiAsith of multiplication d'e'creases signiﬁc?ntly and at a
InStuciGPT 7477 787 637 793 faster rate than addition and subtraction. The accu-
Minerva (PaLM) 91.9 - 94.7 racy scores for addition and subtraction remained
ChatGPT 94.0 89.0 64.0 84.0

relatively similar. This trend is expected as mul-
tiplication is more complex than addition or sub-
traction, which could explain the larger decrease in
accuracy.

Table 2: Accuracy of ChatGPT and previous models on
word problem datasets

3 inches lesser than the frog who jumped 33 inches
farther than the grasshopper. How far did the mouse
jump?” requires keeping track of the position of all
three animals given their relative positions. Chat-
GPT answered this incorrectly with 715" while the
correct answer was "39”.

It is worth noting that ChatGPT’s performance
outperforms InstructGPT on most tasks, even with-
out the chain-of-thought prompting used to elicit
multi-step reasoning. These results suggest that
the new techniques used in ChatGPT are helpful
in improving the model’s mathematical reasoning
abilities.

100~

75 . colour
= Addition
= Multiplication

= Subtraction

Accuracy
I
3

= Word Addition
= Word Multiplication

25- = Word Subtraction

6 7

2 3 4 5
Number of Digits

Figure 2: Accuracy of ChatGPT on arithmetic with
varying number of digits

3.2 Arithmetic and Counting
3.2.2 Counting

Table 3 shows the accuracy of ChatGPT on count-

In this section, we present the evaluation results of
ChatGPT’s performance on arithmetic and count-

ing. We first discuss the performance of ChatGPT
on arithmetic operations and then move on to its
performance on counting tasks.

3.2.1 Arithmetic

We observe that ChatGPT’s accuracy in arithmetic
operations declines as the numbers used in the op-
erations increase in size. In particular, the accuracy

ing tasks for different ranges of the number of let-
ters in the input. We observe that the performance
of ChatGPT was unexpectedly poor for a relatively
simple task. As the length of the input increased,
ChatGPT relied on estimation rather than produc-
ing an exact answer. For inputs with 50-69 letters,
ChatGPT provided the answer 50" in 66 out of
100 tests.
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Number of letters  Accuracy(%)
10-29 22
30-49 9
50-69 3

Table 3: Accuracy on different ranges of counting tasks

In summary, our results indicate that ChatGPT’s
accuracy in arithmetic operations declines as the
numbers used in the operations increase in size,
and its accuracy in multiplication is significantly
lower than in addition and subtraction. Addition-
ally, ChatGPT’s performance on counting tasks
was unexpectedly poor, and it relied on estimation
rather than producing an exact answer for longer
inputs.

3.3 Word Variation

To further test the ability of ChatGPT to synthesize
and apply arithmetic rules, we asked the arithmetic
questions in the form of English words rather than
Arabic numerals. We are motivated by the fact that
word variations of these equations are much less
likely to appear on the internet, yet contain identical
meanings. This category of testing enforces that
ChatGPT will not be able to copy information from
training, but rather synthesize and apply the rules
of arithmetic.

Our results, shown in Figure 2, indicate that the
accuracy of ChatGPT in every arithmetic category
drops significantly when we use the word variation.
This indicates that ChatGPT is reliant on recogniz-
ing specific patterns in the input data and repro-
ducing those patterns when answering questions.
ChatGPT is not good at synthesizing the rules of
arithmetic and applying them in a more general
sense. These findings are consistent with previous
studies that have shown that large language mod-
els such as GPT-3 are not truly ”general” in their
ability to reason and perform tasks, but rather rely
on memorization and pattern recognition [Brown
et al., 2020].

4 Error Analysis

In this section, we examine the errors made by
ChatGPT and explore potential reasons for these
errors. We present specific examples to illustrate
the trends we have observed.
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4.1 Average Percent Error Analysis

In this section, we provide an overview and analysis
of the Average Percent Error (APE) metric used to
evaluate the performance of ChatGPT on arithmetic
and counting tasks. We explain why a single metric
of accuracy may not accurately capture the results
of ChatGPT and show APE scores for different
tasks in Tables 5, 6, and 4.

Accuracy is a useful metric for determining how
precise the answers of a model are, but it only
provides a binary classification of correct or incor-
rect answers. APE, on the other hand, measures
how close ChatGPT’s answers are to the correct
answers, even if they are wrong.

For the arithmetic task, we observe that although
the accuracy of multiplication for four digits or
higher is 0, the APE scores are around 20%. This
indicates that ChatGPT is not completely incapable
of performing operations on these large numbers
but is rather imprecise. Additionally, a significant
portion of the percent error is due to an extra digit.
We will discuss this error type in detail in the next
section.

The APE scores for the word problems and
counting tasks are all less than 20, and some are
even below 10. For instance, although ChatGPT’s
accuracy is below 10 in the counting task for the
30-69 letter range, it’s APE score is not very bad.
This suggests that ChatGPT has the potential to
estimate well, even in challenging tasks where its
accuracy is low.

Dataset APE (%)
AddSub 1.1
SingleEq 7.8
SVAMP 18.7
MultiArith 10.2

Table 4: APE on word problems

Operations Number of Digits

2 3 4 5 6 7
Addition 0% 0% 0% 36.7% 249% 13.1%
Subtraction 0% 0% 01% 126% 3.7% 22.8%
Multiplication 0% 18.3% 20.1%  0.1% 3.4% 10.5%

Table 5: APE of ChatGPT on arithmetic

4.2 Adding One Extra Digit

One common error pattern in the incorrect test
cases for large addition, subtraction, and multipli-
cation problems is ChatGPT’s tendency to add one
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Number of letters APE (%)
10-29 6.9
30-49 9.4
50-69 18.7

Table 6: APE on counting

extra digit. This error is especially prevalent when
the problem requires “carrying the one” or working
with large numbers. Table 7 shows that these er-
rors make up 18.8% of the total errors for addition
and subtraction. However, this is not prevalent in
multiplication as the errors are more than a single
extra digit.

To illustrate this error, we present two exam-
ples of addition errors where ChatGPT mistakenly
added one extra digit in the middle of the num-
ber. When prompted with "Respond with only
the answer to the following addition expression:
78093+34269,” ChatGPT responded with 1123162
while the correct answer was 112362. Similarly,
when asked the answer to the expression ”56501-
38571,” it answered with 179330 while the correct
answer was 17930.

This deviation from the conventional method of
arithmetic calculations suggests that ChatGPT may
struggle with longer calculations and maintaining
context over the course of the calculation. Further
investigation is necessary to understand the under-
lying causes of this error.

Moreover, these errors may result in inconsisten-
cies when using APE as a metric to evaluate the
accuracy of ChatGPT’s answers. For instance, an
extra digit in the one’s place and an extra digit in
the thousands place may seem similar but can yield
drastically different APE results.

In summary, adding extra digits is a recurring
error that ChatGPT makes when solving large ad-
dition, subtraction, and multiplication problems.
This error could be due to the model’s struggle to
continually keep track of long calculations. Careful
consideration is necessary when evaluating Chat-
GPT’s accuracy using metrics such as APE. Future
research may explore methods to mitigate this error
and improve the model’s performance on deeper
reasoning tasks.

5 Conclusion

In recent years, natural language processing (NLP)
has seen significant advancements, and ChatGPT
has emerged as one of the leading models in

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing

Operation One extra digit error (%)
Addition 18.8
Subtraction 18.8
Multiplication 0

Table 7: Proportion of errors due to an extra digit

this field due to its unique architecture and addi-
tional reinforcement learning with human feedback
(RLHF). While the model has shown promising
results in various NLP tasks, including text genera-
tion and summarization, our paper aims to address
an important gap in ChatGPT’s abilities: mathemat-
ical reasoning. Our study evaluates ChatGPT’s per-
formance on elementary-level math problems and
highlights the need for further research to develop
models that can reason effectively about mathe-
matical concepts and solve problems that require
arithmetic operations. While our findings suggest
that ChatGPT’s arithmetic and ability to solve word
math problems lag behind its coherency and natu-
ral language understanding, we acknowledge that
the model’s performance is still better than that of
previous models in this domain. We also recog-
nize the significant impact of pre-training corpus
patterns and specific error types on the model’s
performance, which requires further exploration.

Furthermore, we emphasize the value of using
alternative metrics, such as the Average Percent
Error (APE), to assess ChatGPT’s performance in
mathematical reasoning tasks. Our analysis shows
that ChatGPT’s accuracy may not always be opti-
mal, but it has the ability to estimate the correct
answer. This insight contributes to advancing the
development of language models for computational
tasks and highlights the need for more comprehen-
sive datasets and evaluation metrics to assess model
inference and computational abilities more accu-
rately. In conclusion, while ChatGPT has shown
potential in NLP, our analysis indicates that there
is still much room for improvement in its mathe-
matical reasoning capabilities. Our study provides
important insights into ChatGPT’s mathematical
and logical reasoning abilities, paving the way for
future research to improve the model’s performance
in this domain.
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Abstract

This study utilized data from the Academia
Sinica Balanced Corpus of Modern
Chinese (ASBC), TOCFL Learner Corpus,
and Mandarin textbooks as sources to
search for simple copula sentences ‘X shi
Y.” We found four patterns: [Abstract X -
Concrete Y (A-C)], [Concrete X - Concrete
Y (C-O)], [Concrete X - Abstract Y (C-A)],
and [Abstract X - Abstract Y (A-A)]. The
results showed that native speakers,
Mandarin learners and Mandarin textbooks
all tended to use the shi metaphor structure
of C-C. Though A-C and C-A structures are
used less relatively, both of them express
more metaphorical meaning