
EMNLP 2022

The 2022 Conference on Empirical Methods in Natural
Language Processing

Proceedings of the Demonstrations Session

December 7-11, 2022

c©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-959429-41-8

i

Program Committee

Program Committee

Ákos Kádár
Aarne Talman
Amanda Cercas Curry
Adina Williams
Adam Pauls
Adrià De Gispert
Allan Jabri
Akash Srivastava
Aldo Gangemi
Anders Johannsen
Asli Celikyilmaz
Aurélien Max
Andrew Bennett
Barry Devereux
Beata Beigman Klebanov
Gayatri Bhat
Johannes Bjerva
Benjamin Snyder
Giuseppe Carenini
Carina Silberer
Carmen Banea
Çağrı Çöltekin
Courtney Napoles
Khalid Choukri
Chuan Wang
Christopher Pinon
Cristian Danescu-niculescu-mizil
Caroline Sporleder
Dominikus Wetzel
Joachim Daiber
David Alvarez-melis
Daoud Clarke
Diego Marcheggiani
Dimitris Alikaniotis
Dipanjan Das
Daniela Gerz
Erwin Marsi
Zhou Yu
Effi Levi
Ellen Breitholtz
Emily Öhman
Edoardo Maria Ponti
Eric Holgate
Arash Eshghi
Feiyu Xu
Adam Fisch

ii

Chris Fox
Linfeng Song
Georgiana Dinu
Daniel Gildea
Giovanni Da San Martino
Graham Neubig
Gonzalo Iglesias
Hans Kamp
Heather Burnett
Helen Yannakoudakis
Ruihong Huang
Ioannis Papaioannou
Ivelina Nikolova-koleva
Jiaming Luo
Julian Hough
Jennifer Sikos
Junyi Jessy Li
Jonathan Mallinson
Julie Weeds
John Wieting
Katja Jasinskaja
Katrin Kirchhoff
Yunsu Kim
Kiril Simov
Maximilian Köper
Laura Tolosi
I-ta Lee
Leo Leppänen
Chang Li
Lisa Anne Hendricks
Sujian Li
Loïc Barrault
Laura Perez-beltrachini
Malvina Nissim
Maciej Piasecki
Maja Popović
Christopher Manning
Margaret Mitchell
Marianna Apidianaki
Mark Granroth-wilding
Shigeki Matsubara
Stephen Mayhew
Mohit Bansal
Wolfgang Menzel
Marjorie Freedman
Michael Wojatzki
Mike Lewis
Junhua Mao
Man Lan
Myriam Munezero
Mohammad Taher Pilehvar

iii

Mona Diab
Natalie Schluter
Nicholas Asher
Nikola Mrkšić
Nitish Gupta
Noura Farra
Nasrin Mostafazadeh
Oren Melamud
Pascale Fung
Philipp Cimiano
Sameer Pradhan
Preslav Nakov
Patricia Thaine
Pierre Zweigenbaum
Rocco Tripodi
Rodrigo Nogueira
Stephen Roller
Rashmi Prasad
Rachel Rudinger
Joana Ribeiro
Shimi Salant
Alon Talmor
Salvatore Romeo
Shay B. Cohen
Eva Sharma
Shubham Agarwal
Shyam Upadhyay
Sian Gooding
Sida I. Wang
Simon Clematide
Sara Rosenthal
Anders Søgaard
Marina Sokolova
Shafiq Joty
Sanja Stajner
Stefan Thater
Suresh Manandhar
Tanja Schultz
Taylor Berg-kirkpatrick
Tim Fernando
Tiancheng Zhao
Ivan Titov
Tom Kwiatkowski
Lea Frermann
Jason Utt
Verena Rieser
Valentina Presutti
Esther Van Den Berg
Vicente Ordonez
Dingquan Wang
Weiwei Guo

iv

Wei Xu
Yang Liu
Yi Yang
Yishu Miao
Yi Tay
Yujie Qian
Behrang Qasemizadeh
Zhifei Li
Zhongyu Wei
Anima Anandkumar
Jacob Andreas
Gabor Angeli
Joachim Bingel
Su Lin Blodgett
Antoine Bosselut
Lisa Brunetti
Paweł Budzianowski
Mingwei Chang
Benson Chen
Alexis Conneau
Silvio Cordeiro
Ryan Cotterell
Jacob Devlin
Chris Dyer
Desmond Elliott
Yimai Fang
Sanja Fidler
Nicholas Fitzgerald
Lucie Flekova
Kathleen C. Fraser
Matthew Gerber
Sayan Ghosh
Yoav Goldberg
Edouard Grave
Yulan He
Felix Hill
Tobias Horsmann
Mohit Iyyer
Heng Ji
Christopher Kedzie
Svetlana Kiritchenko
Jamie Kiros
Julia Kiseleva
Jayant Krishnamurthy
Gourab Kundu
Angeliki Lazaridou
Omer Levy
Percy Liang
Victoria Lin
Fei Liu
Chikiu Lo

v

Detmar Meurers
Mark Neumann
Brendan O’connor
Raghavendra Pappagari
Nikolaos Pappas
Jeffrey Pennington
Nghia The Pham
Vinodkumar Prabhakaran
Sampo Pyysalo
Victor Quach
Ines Rehbein
Sebastian Riedel
Arndt Riester
Miguel Rios
Derek Ruths
Merel Scholman
Hinrich Schutze
Tianxiao Shen
Wei Shi
Stefanie Sirenheikel
Yiannos Stathopoulos
Veselin Stoyanov
Ben Swanson
Swabha Swayamdipta
Ian Tenney
Sam Thomson
Kristina Toutanova
Ashish Vaswani
Tony Veale
Wentau Yih
Marcos Zampieri
Simon Šuster
Alda Mari
Aleksandr Drozd
Alexis Palmer
Angel Chang
Roberto Basili
Farah Benamara
Chris Biemann
Constantin Orăsan
Casey Kennington
Chris Callison-burch
Christopher Davis
Christoph Tillmann
Christos Christodoulopoulos
Christo Kirov
Claus Zinn
Trevor Cohen
Chen-tse Tsai
Debora Nozza
Dan Goldwasser

vi

Dan Garrette
Luigi Di Caro
Diego Frassinelli
Mauro Dragoni
E. Dario Gutierrez
Eduardo Blanco
Edward Grefenstette
Ekaterina Kochmar
Elena Cabrio
Elena Karagjosova
Ella Rabinovich
Els Lefever
Esma Balkir
Valia Kordoni
Ekaterina Vylomova
Federico Fancellu
Fabio Massimo Zanzotto
Farah Benamara
Fatiha Sadat
Anna Feldman
Francesco Barbieri
Gerard De Melo
Georgeta Bordea
Roxana Girju
Gaurav Pandey
Graham Katz
Heriberto Cuayahuitl
Heike Adel
Hai Ye
Iris Hendrickx
Ioannis Konstas
Ignacio Iacobacci
Irina Temnikova
Chien-sheng Wu
John P. Mccrae
Jörg Tiedemann
Julia Rayz
Julie Hunter
Rik Koncel-kedziorski
Kevin Duh
Halil Kilicoglu
Mamoru Komachi
Kyusong Lee
Lan Du
Lasha Abzianidze
Laurette Pretorius
Phong Le
Jing Li
Liviu P. Dinu
Lluís Màrquez
Lonneke Van Der Plas

vii

Luis Espinosa Anke
Massimo Poesio
Marc Franco-salvador
Marc Verhagen
David Mareček
Mark Sammons
Mathias Creutz
Mathieu Roche
Meriem Beloucif
Michel Galley
Michael Färber
Meng Fang
Maoxi Li
Nina Dethlefs
Niket Tandon
Nikos Papasarantopoulos
Octavian Popescu
Jessica Ouyang
Alexander Panchenko
Tommaso Pasini
Paul Buitelaar
Piek Vossen
Pierpaolo Basile
Parisa Kordjamshidi
Prasanth Kolachina
Radu Tudor Ionescu
Richard Johansson
Alan Ritter
Rob Van Der Goot
Rudolf Rosa
Roser Morante
Rotem Dror
Ruochen Xu
Siva Reddy Gangireddy
Alla Rozovskaya
Spandana Gella
Samira Shaikh
Mark Steedman
Stefan Evert
Stefano Faralli
Swapna Somasundaran
Stan Szpakowicz
Timothy Baldwin
Todor Mihaylov
Tim Van De Cruys
Torsten Zesch
Udo Hahn
Vlad Niculae
Pidong Wang
Wei Wang
Lifu Huang

viii

Xinya Du
Xinyu Hua
Yixin Nie
Yogarshi Vyas
Hiyon Yoo
Yoshihide Kato
Yova Kementchedjhieva
Yannick Versley
Zheng Yuan
Sanda Harabagiu
Samuel R. Bowman
David Jurgens
Frank Rudzicz
Gustavo Henrique Paetzold
Carlo Strapparava
Alexander Rush
Julia Hockenmaier
Pradeep Dasigi
Jinho Choi
Kentaro Torisawa
Denilson Barbosa
Arianna Bisazza
Antonio Toral
Antonios Anastasopoulos
Anne Cocos
Allyson Ettinger
André F. T. Martins
Agnieszka Falenska
Ari Holtzman
Alberto Barrón-cedeño
Alessandro Lenci
Alessandro Raganato
Aline Villavicencio
Adam Lopez
Annie Louis
Andrea Madotto
Alessandro Moschitti
Anna Currey
Amy Isard
Andrew Caines
Anna Rogers
António Branco
Antske Fokkens
Adam Pease
Ari Rappoport
Ron Artstein
Beatrice Alex
Valerio Basile
Sebastian Krause
Iz Beltagy
Luciana Benotti

ix

Yevgeni Berzak
Francis Bond
Bonnie Webber
Barbara Plank
Razvan Bunescu
Jose Camacho-collados
Carlos Ramisch
Cécile Fabre
Christopher Potts
Christopher Hidey
Chloé Braud
Christian Hardmeier
Christopher Bryant
Claire Gardent
Diana Maynard
Denis Paperno
Ido Dagan
Daniel Beck
Daniel Hershcovich
Dan Lassiter
Dan Roth
Danushka Bollegala
Darja Fišer
David Schlangen
Marie-catherine De Marneffe
Derrick Higgins
Daniel Hardt
Diana Inkpen
Diana Mccarthy
Diyi Yang
Diarmuid Ó Séaghdha
Douwe Kiela
Eneko Agirre
Ehsan Shareghi
Ted Briscoe
Eleni Gregoromichelaki
Elia Bruni
Elior Sulem
Emar Maier
Ellie Pavlick
Erik Velldal
Enrico Santus
Eva Maria Vecchi
Emily Sheng
Anette Frank
Grzegorz Chrupała
Gianluca Lebani
Gabriel Stanovsky
Gabriella Lapesa
Gemma Boleda
Germán Kruszewski

x

Guy Emerson
Nicoletta Calzolari
Yvette Graham
Grégoire Winterstein
Guillaume Wisniewski
Iryna Gurevych
Haim Dubossarsky
Hannaneh Hajishirzi
Héctor Martínez Alonso
Hugo Gonçalo Oliveira
Hila Gonen
Hiram Calvo
Inés Crespo
Ingrid Falk
Ivan Vulić
Jorge Carrillo-de-albornoz
Jackie Chi Kit Cheung
Jean Maillard
Jeremy Barnes
Jey Han Lau
Joakim Nivre
Jonathan Berant
Jorge Gracia
Jasmijn Bastings
Julian Brooke
Kalina Bontcheva
Laura Kallmeyer
Katrin Erk
Kevin Gimpel
Manfred Klenner
Alexander Koller
Kuzman Ganchev
Lucia Specia
Laura Rimell
Leshem Choshen
Louise Mcnally
Lucy Vanderwende
Luheng He
Lu Wang
Wei Lu
Matthew Purver
Magnus Sahlgren
Dirk Hovy
Marco Rospocher
Marek Rei
Mariano Felice
Marine Carpuat
Mark Finlayson
Ilia Markov
Martha Palmer
Martin Riedl

xi

Matt Huenerfauth
Marco Baroni
Manaal Faruqui
Michael Strube
Miguel Ballesteros
Mikel Artetxe
Tristan Miller
Miloš Stanojević
Mirella Lapata
Muhammad Abdul-mageed
Michael White
Nathan Schneider
Roberto Navigli
Matteo Negri
Aurélie Névéol
Nikola Ljubešić
Niranjan Balasubramanian
Najoung Kim
Nanyun Peng
Ondrej Dusek
Omri Abend
Sebastian Padó
Patrik Lambert
Viviana Patti
Paul Cook
Peter Turney
Peter Clark
Petya Osenova
Manfred Pinkal
Panupong Pasupat
Rachel Bawden
Raffaella Bernardi
Ramakanth Pasunuru
Raquel Fernandez
Regina Barzilay
Reinald Kim Amplayo
Rico Sennrich
Stefan Riezler
Roi Reichart
Roman Klinger
Roser Saurí
Michael Roth
Roy Schwartz
Prodromos Malakasiotis
Josef Ruppenhofer
Ruth Kempson
Saif Mohammad
Sara Tonelli
Steven Schockaert
Sabine Schulte Im Walde
Shachar Mirkin

xii

Shashi Narayan
Shuly Wintner
Simone Paolo Ponzetto
Siva Reddy
Sujay Kumar Jauhar
Slav Petrov
Smaranda Muresan
Stephanie M. Lukin
Manfred Stede
Stefan Kaufmann
Stella Frank
Stephen Clark
Subhro Roy
Mihai Surdeanu
Vivek Srikumar
Idan Szpektor
Tommaso Caselli
Tal Linzen
Tamara Polajnar
Benjamin Van Durme
Paola Velardi
Vera Demberg
Vered Shwartz
Veronique Hoste
Vincent Ng
Wilker Aziz
Daniel Weld
Wei Gao
Xavier Carreras
Nianwen Xue
Yangfeng Ji
Yannis Korkontzelos
Yonatan Bisk
Yejin Choi
Youmna Farag
Yftah Ziser
Yizhong Wang
Jonathan Ginzburg
Yangqiu Song
Yuval Pinter
Zdeněk Žabokrtský
Zornitsa Kozareva
Nikolaos Aletras
Yoav Artzi
Isabelle Augenstein
Luisa Bentivogli
Claire Bonial
Felipe Bravomarquez
Nathanael Chambers
Kaiwei Chang
Danqi Chen

xiii

Greg Durrett
Jacob Eisenstein
Daniel Fried
Alona Fyshe
Zhe Gain
Graeme Hirst
Eduard Hovy
Dieuwke Hupkes
Dan Jurafsky
Greg Kondrak
Diane Litman
Kathy Mckeown
Vivi Nastase
Hwee Tou Ng
Devi Parikh
Veronica Perez
Emily Pitler
Hoifung Poon
Pushpendre Rastogi
Tim Rocktäschel
Michael Roth
Sebastian Ruder
Joel Tetreault
Simone Teufel
Yulia Tsvetkov
Lyle Ungar
Karin Verspoor
Andreas Vlachos
Leo Wanner
Ingmar Weber
Mark Yatskar
Amir Zeldes
Luke Zettlemoyer
Ziqing Yang
Yunlong Feng
Lu Hou
Ningyu Zhang
Jiarong Xu
Wenpeng Lu
Pushkar Mishra
Ivo Verhoeven
Lixin Su
Lea Krause
Sanyuan Chen
Kaiwen Wei
Yang Wu
Jianhua Yin
Baoxin Wang
Longxuan Ma

xiv

Table of Contents

CogKTR: A Knowledge-Enhanced Text Representation Toolkit for Natural Language Understanding
Zhuoran Jin, Tianyi Men, Hongbang Yuan, Yuyang Zhou, Pengfei Cao, Yubo Chen, Zhipeng Xue,

Kang Liu and Jun Zhao . 1

LM-Debugger: An Interactive Tool for Inspection and Intervention in Transformer-Based Language
Models

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir and Yoav
Goldberg . 12

EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing
Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting Liu, Lei Li, Jianing Wang, Ming Wang,

Jun Huang and Wei Lin . 22

An Explainable Toolbox for Evaluating Pre-trained Vision-Language Models
Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu and

Jianwei Yin . 30

TweetNLP: Cutting-Edge Natural Language Processing for Social Media
Jose Camacho-collados, Kiamehr Rezaee, Talayeh Riahi, Asahi Ushio, Daniel Loureiro, Dimo-

sthenis Antypas, Joanne Boisson, Luis Espinosa Anke, Fangyu Liu and Eugenio Martínez Cámara
38

JoeyS2T: Minimalistic Speech-to-Text Modeling with JoeyNMT
Mayumi Ohta, Julia Kreutzer and Stefan Riezler . 50

FairLib: A Unified Framework for Assessing and Improving Fairness
Xudong Han, Aili Shen, Yitong Li, Lea Frermann, Timothy Baldwin and Trevor Cohn 60

ELEVANT: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool
Hannah Bast, Matthias Hertel and Natalie Prange . 72

A Pipeline for Generating, Annotating and Employing Synthetic Data for Real World Question Answe-
ring

Matt Maufe, James Ravenscroft, Rob Procter and Maria Liakata . 80

DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
Ningyu Zhang, Xin Xu, Liankuan Tao, Haiyang Yu, Hongbin Ye, Shuofei Qiao, Xin Xie, Xiang

Chen, Zhoubo Li and Lei Li . 98

AnEMIC: A Framework for Benchmarking ICD Coding Models
Juyong Kim, Abheesht Sharma, Suhas Shanbhogue, Jeremy Weiss and Pradeep Ravikumar . .109

SPEAR : Semi-supervised Data Programming in Python
Guttu Abhishek, Harshad Ingole, Parth Laturia, Vineeth Dorna, Ayush Maheshwari, Ganesh

Ramakrishnan and Rishabh Iyer . 121

Evaluate & Evaluation on the Hub: Better Best Practices for Data and Model Measurements
Leandro Von Werra, Lewis Tunstall, Abhishek Thakur, Sasha Luccioni, Tristan Thrush, Aleksan-

dra Piktus, Felix Marty, Nazneen Rajani, Victor Mustar and Helen Ngo . 128

KeywordScape: Visual Document Exploration using Contextualized Keyword Embeddings
Henrik Voigt, Monique Meuschke, Sina Zarrieß and Kai Lawonn . 137

xv

MedConQA: Medical Conversational Question Answering System based on Knowledge Graphs
Fei Xia, Bin Li, Yixuan Weng, Shizhu He, Kang Liu, Bin Sun, Shutao Li and Jun Zhao 148

Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis, Leshem Choshen,

Martin Santillan Cooper, Dina Epelboim, Zheng Zhang and Dakuo Wang . 159

AGReE: A system for generating Automated Grammar Reading Exercises
Sophia Chan, Swapna Somasundaran, Debanjan Ghosh and Mengxuan Zhao 169

BotSIM: An End-to-End Bot Simulation Framework for Commercial Task-Oriented Dialog Systems
Guangsen Wang, Samson Tan, Shafiq Joty, Gang Wu, Jimmy Au and Steven C.h. Hoi 178

DeepGen: Diverse Search Ad Generation and Real-Time Customization
Konstantin Golobokov, Junyi Chai, Victor Ye Dong, Mandy Gu, Bingyu Chi, Jie Cao, Yulan Yan

and Yi Liu . 191

ACCoRD: A Multi-Document Approach to Generating Diverse Descriptions of Scientific Concepts
Sonia Murthy, Kyle Lo, Daniel King, Chandra Bhagavatula, Bailey Kuehl, Sophie Johnson,

Jonathan Borchardt, Daniel Weld, Tom Hope and Doug Downey . 200

Automatic Comment Generation for Chinese Student Narrative Essays
Zhexin Zhang, Jian Guan, Guowei Xu, Yixiang Tian and Minlie Huang.214

MIC: A Multi-task Interactive Curation Tool
Shi Yu, Mingfeng Yang, Jerrod Parker and Stephen Brock . 224

SUMMARY WORKBENCH: Unifying Application and Evaluation of Text Summarization Models
Shahbaz Syed, Dominik Schwabe and Martin Potthast . 232

Arabic Word-level Readability Visualization for Assisted Text Simplification
Reem Hazim, Hind Saddiki, Bashar Alhafni, Muhamed Al Khalil and Nizar Habash 242

LogiTorch: A PyTorch-based library for logical reasoning on natural language
Chadi Helwe, Chloé Clavel and Fabian Suchanek . 250

stopes - Modular Machine Translation Pipelines
Pierre Andrews, Guillaume Wenzek, Kevin Heffernan, Onur Çelebi, Anna Sun, Ammar Kamran,

Yingzhe Guo, Alexandre Mourachko, Holger Schwenk and Angela Fan. .258

GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papan-

gelis, Aman Madaan, Angelina Mcmillan-major, Anna Shvets, Ashish Upadhyay and Bernd Bohnet
266

KGI: An Integrated Framework for Knowledge Intensive Language Tasks
Md Faisal Mahbub Chowdhury, Michael Glass, Gaetano Rossiello, Alfio Gliozzo and Nandana

Mihindukulasooriya . 282

Twitter-Demographer: A Flow-based Tool to Enrich Twitter Data
Federico Bianchi, Vincenzo Cutrona and Dirk Hovy . 289

Azimuth: Systematic Error Analysis for Text Classification
Gabrielle Gauthier-melancon, Orlando Marquez Ayala, Lindsay Brin, Chris Tyler, Frederic Branchaud-

charron, Joseph Marinier, Karine Grande and Di Le. .298

SynKB: Semantic Search for Synthetic Procedures
Fan Bai, Alan Ritter, Peter Madrid, Dayne Freitag and John Niekrasz . 311

xvi

Camelira: An Arabic Multi-Dialect Morphological Disambiguator
Ossama Obeid, Go Inoue and Nizar Habash. .319

POTATO: The Portable Text Annotation Tool
Jiaxin Pei, Aparna Ananthasubramaniam, Xingyao Wang, Naitian Zhou, Apostolos Dedeloudis,

Jackson Sargent and David Jurgens . 327

KGxBoard: Explainable and Interactive Leaderboard for Evaluation of Knowledge Graph Completion
Models

Haris Widjaja, Kiril Gashteovski, Wiem Ben Rim, Pengfei Liu, Christopher Malon, Daniel Ruffi-
nelli, Carolin Lawrence and Graham Neubig . 338

FALTE: A Toolkit for Fine-grained Annotation for Long Text Evaluation
Tanya Goyal, Junyi Jessy Li and Greg Durrett . 351

SEAL: Interactive Tool for Systematic Error Analysis and Labeling
Nazneen Rajani, Weixin Liang, Lingjiao Chen, Margaret Mitchell and James Zou 359

Hands-On Interactive Neuro-Symbolic NLP with DRaiL
Maria Leonor Pacheco, Shamik Roy and Dan Goldwasser . 371

Paraphrastic Representations at Scale
John Wieting, Kevin Gimpel, Graham Neubig and Taylor Berg-kirkpatrick 379

Snoopy: An Online Interface for Exploring the Effect of Pretraining Term Frequencies on Few-Shot LM
Performance

Yasaman Razeghi, Raja Sekhar Reddy Mekala, Robert L Logan Iv, Matt Gardner and Sameer
Singh . 389

BMCook: A Task-agnostic Compression Toolkit for Big Models
Zhengyan Zhang, Baitao Gong, Yingfa Chen, Xu Han, Guoyang Zeng, Weilin Zhao, Yanxu Chen,

Zhiyuan Liu and Maosong Sun . 396

ALToolbox: A Set of Tools for Active Learning Annotation of Natural Language Texts
Akim Tsvigun, Leonid Sanochkin, Daniil Larionov, Gleb Kuzmin, Artem Vazhentsev, Ivan Lazi-

chny, Nikita Khromov, Danil Kireev, Aleksandr Rubashevskii and Olga Shahmatova 406

TextBox 2.0: A Text Generation Library with Pre-trained Language Models
Tianyi Tang, Junyi Li, Zhipeng Chen, Yiwen Hu, Zhuohao Yu, Wenxun Dai, Wayne Xin Zhao,

Jian-yun Nie and Ji-rong Wen . 435

xvii

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 1 - 11
December 7-11, 2022 c©2022 Association for Computational Linguistics

: A Knowledge-Enhanced Text Representation Toolkit
for Natural Language Understanding

Zhuoran Jin∗1,2, Tianyi Men∗1,2, Hongbang Yuan∗1,2, Yuyang Zhou2,
Pengfei Cao1,2, Yubo Chen1,2, Zhipeng Xue2, Kang Liu1,2,3, Jun Zhao1,2

1 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
2 National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China

3 Beijing Academy of Artificial Intelligence, Beijing, China
{zhuoran.jin, tianyi.men, hongbang.yuan}@nlpr.ia.ac.cn, zhouyuyang17@163.com

{pengfei.cao, yubo.chen, zhipeng.xue, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

As the first step of modern natural language pro-
cessing, text representation encodes discrete
texts as continuous embeddings. Pre-trained
language models (PLMs) have demonstrated
strong ability in text representation and signif-
icantly promoted the development of natural
language understanding (NLU). However, ex-
isting PLMs represent a text solely by its con-
text, which is not enough to support knowledge-
intensive NLU tasks. Knowledge is power, and
fusing external knowledge explicitly into PLMs
can provide knowledgeable text representa-
tions. Since previous knowledge-enhanced
methods differ in many aspects, making it
difficult for us to reproduce previous meth-
ods, implement new methods, and transfer be-
tween different methods. It is highly desirable
to have a unified paradigm to encompass all
kinds of methods in one framework. In this
paper, we propose , a knowledge-
enhanced text representation toolkit for nat-
ural language understanding. According to
our proposed Unified Knowledge-Enhanced
Paradigm (UniKEP), CogKTR consists of four
key stages, including knowledge acquisition,
knowledge representation, knowledge injection,
and knowledge application. CogKTR currently
supports easy-to-use knowledge acquisition in-
terfaces, multi-source knowledge embeddings,
diverse knowledge-enhanced models, and vari-
ous knowledge-intensive NLU tasks. Our uni-
fied, knowledgeable and modular toolkit is pub-
licly available at GitHub 1, with an online sys-
tem 2 and a short instruction video 3.

1 Introduction

In modern natural language processing (NLP), texts
need to be represented into a machine-readable
form. Many work has shown that pre-trained lan-

*These authors contribute equally to this work.
1https://github.com/CogNLP/CogKTR/
2http://cognlp.com/cogktr/
3https://youtu.be/SrvXrXdDiVY

guage models (PLMs) (Qiu et al., 2020) can pro-
vide powerful distributed representations for natu-
ral language texts, leading to great successes on var-
ious natural language understanding (NLU) (Wang
et al., 2018a) tasks.

Recently, some studies (Manning et al., 2020;
Roberts et al., 2020; Penha and Hauff, 2020) have
shown that specific knowledge is implicitly stored
in the parameters of PLMs. This implicit knowl-
edge is vague so that it is hard to dynamically up-
date this knowledge to satisfy the needs of real-
world applications (Yin et al., 2022). Existing
PLMs (Peters et al., 2018; Devlin et al., 2019) rep-
resent and understand a text solely by its context,
which is insufficient to solve knowledge-intensive
NLU tasks. These tasks are highly dependent on
background knowledge. It is necessary to leverage
external knowledge to enhance the text represen-
tations explicitly. For word sense disambiguation,
synonyms, sense definitions, and other linguistic
knowledge play an essential role in identifying
the meaning of ambiguous words. For common-
sense question answering, commonsense knowl-
edge like structured knowledge graph (KG) triples
can enhance the models’ reasoning capacity.

As illustrated above, knowledge-enhanced text
representations are essential for NLU tasks, mean-
while, many methods (Wei et al., 2021; Ding et al.,
2022; Zhu et al., 2022) have been proposed. How-
ever, previous methods differ in many aspects, espe-
cially in knowledge acquisition procedure, knowl-
edge representation form, and knowledge fusion
approach. These differences make it challenging to
reproduce previous methods, implement new meth-
ods, and transfer between different methods. So
we need a unified paradigm to implement various
knowledge-enhanced methods in the same frame-
work. Therefore, designing the framework should
consider the following key principles.

First, the process of knowledge acquisition is
laborious and complex, including knowledge tag-

1

https://github.com/CogNLP/CogKTR/
http://cognlp.com/cogktr/
https://youtu.be/SrvXrXdDiVY

ging (e.g., named entity recognition and semantic
role labeling), knowledge grounding (e.g., entity
linking) and knowledge retrieving (e.g., regular ex-
pression matching and SPARQL query). A good
framework should let users pay more attention to
the details in the models rather than tedious data
processing. Second, different knowledge embed-
dings vary in knowledge sources (e.g., Wikidata
(Vrandečić and Krötzsch, 2014) and ConceptNet
(Speer et al., 2017)) and knowledge representation
algorithms (e.g., TransE (Bordes et al., 2013) and
Wikipedia2Vec (Yamada et al., 2020a)). To make
rigorous comparisons between them, it is highly
desirable to have a toolkit that provides built-in
knowledge embeddings. Third, although a lot of
knowledge fusion approaches have been proposed,
there is still a lack of a comprehensive framework
to encompass them. Such a framework should pro-
vide knowledgeable text representations which can
be directly used in numerous downstream tasks.

To this end, we propose , a
Knowledge-enhanced Text Representation toolkit
for natural language understanding. CogKTR
is built on the Unified Knowledge-Enhanced
Paradigm (UniKEP), which can be formalized
in four stages, including knowledge acquisition,
knowledge representation, knowledge injection,
and knowledge application. First, knowledge ac-
quisition aims to identify structured information
from unstructured texts, then ground them in knowl-
edge sources. Then, knowledge representation
can transform knowledge from discrete form to
continuous form. Next, knowledge injection, as
the most critical stage, combines raw texts and ex-
ternal knowledge for knowledgeable text represen-
tation. In the end, knowledge application verifies
the effectiveness of knowledge-enhanced methods
in downstream tasks.

In detail, CogKTR has the following functions.
First, our toolkit provides user-friendly knowledge
acquisition interfaces. Users can use our toolkit to
enhance the given texts with one click. And we also
implement plenty of knowledge-enhanced methods
so researchers can quickly reproduce these models.
Moreover, CogKTR supports many built-in NLU
tasks to evaluate the effectiveness of knowledge-
enhanced methods. In our paradigm, users can
easily conduct their research via a pipeline. Be-
sides the toolkit, we also release an online CogKTR
demo to show the process of knowledge acquisition
and the effect of knowledge enhancement.

In summary, the main features and contributions
are as follows:

• Unified. CogKTR is designed and built on
our Unified Knowledge-Enhanced Paradigm,
which consists of four stages: knowledge ac-
quisition, knowledge representation, knowl-
edge injection, and knowledge application.

• Knowledgeable. CogKTR integrates multi-
ple knowledge sources, including Wikidata,
Wikipedia, ConceptNet, WordNet (Miller,
1995) and CogNet (Wang et al., 2021a), and
implements a series of knowledge-enhanced
methods, such as K-BERT (Liu et al., 2020),
SemBERT (Zhang et al., 2020a), QAGNN
(Yasunaga et al., 2021), etc.

• Modular. CogKTR modularizes our proposed
paradigm and consists of Enhancer, Model,
Core and Data modules, each of which is
highly extensible so that researchers can im-
plement new components easily.

2 Unified Knowledge-Enhanced
Paradigm

As mentioned above, it is vital to propose
a paradigm that can formalize the knowledge-
enhanced process. As shown in Figure 1, our
proposed Unified Knowledge-Enhanced Paradigm
(UniKEP) consists of four key stages: knowledge
acquisition, knowledge representation, knowl-
edge injection and knowledge application. Below
are the detailed descriptions of the four stages.

2.1 Knowledge Acquisition
Knowledge acquisition, the first step towards our
knowledge-enhanced paradigm, aims at detecting
knowledge concealed beneath the raw texts. Details
of our implementation of the acquisition process
can be found in Section 3.1. The obtained knowl-
edge can be divided into three categories according
to the different sources they belong to.

World Knowledge. It contains general facts
about some particular entities or events. For ex-
ample, given a sentence “Elmo and Bert read
books in the Sesame street library.”, “Elmo”, “Bert”
and “Sesame street” can be spotted as entities via
named entity recognition. Then, “Bert” can be
linked to the target entity “Bert (Sesame Street)” in
Wikipedia via entity linking. World knowledge is
helpful in many entity-related tasks, such as entity
typing, relation extraction and fact verification.

2

Knowledge Acquisition Knowledge Representation Knowledge Injection Knowledge Application

Elmo and Bert read books in the Sesame street library.

Input Text Discrete Representation

Commonsense Knowledge

Linguistic Knowledge

World Knowledge

Continuous Representation

Knowledge-enriched Input

Bert (Sesame Street)

Description Bert is a yellow Muppet

character on the long running PBS and HBO

children's television show Sesame Street.

Bert was originally performed by Frank Oz.

Birthday July 26

Gender Male

Species Human Muppet

Symbol

Triple

Subgraph

Text
Elmo is a furry red monster

with a falsetto voice.

<Elmo, is best friend, Bert>

Elmo

ROOT

read

thebooksElmo .

Bert

and

in Sesame street library

Bert

Sesame

Street

Ernie

Big

Bird

read

V

Elmo and Bert

ARG0

books

ARG1

In the Sesame street library

ARGM-LOC

Knowledge-aware Architecture

Knowledge-assisted Training

Elmo: Elmo is a furry red

monster with a falsetto voice.

GNN Transformer Memory

Elmo and Bert read books in

the Sesame street library.

MLM

Supersense Prediction

Entity Prediction

Relation Prediction

Autoregressive

Text Classification

Text: Elmo and Bert read books

in the Sesame street library.

Neutral

Text Matching

Text A: Elmo and Bert read

books in the Sesame street library.

Text B: Elmo studies in the

Sesame street library with Bert.

0.95

Sequence Labeling

Elmo

and

Bert

read

books

in

the

Sesame

street

library

B-Per

O

B-Per

O

O

O

O

B-Loc

I-Loc

I-Loc

Machine Reading Comprehension

Q: Who does Elmo read with?

C: Elmo and Bert read books in

the Sesame street library.

Bert

Bert is a type of fictional character

Sesame street is in the genre of animation

Elmo is part of Sesame street

library is used for reading

Elmo and Bert read books in the Sesame street library.

Figure 1: The Unified Knowledge-Enhanced Paradigm of CogKTR.

Linguistic Knowledge. It refers to the internal
syntactic structure and the meaning of words and
phrases in the texts. As shown in Figure 1, the de-
pendency tree describes the directed grammatical
relations between words and semantic role labeling
extracts the predicate-argument structure. Incorpo-
rating linguistic knowledge can bring better text
representations in downstream tasks like informa-
tion retrieval and machine reading comprehension.

Commonsense Knowledge. It tries to catch im-
plicit facts in our daily life. For example, (Bert, is
a type of, fictional character) and (library, is used
for, reading) are the commonsense triples extracted
from ConceptNet. Current models usually have
a poor commonsense awareness, thus leveraging
commonsense knowledge can help models gain
stronger capability on commonsense reasoning.

2.2 Knowledge Representation

The aforementioned knowledge can be represented
in two forms, including discrete representation and
continuous representation.

Discrete Representation. Discrete knowledge is
usually represented as texts, triples, subgraphs and
symbols. Texts are the most commonly used repre-
sentation forms, such as descriptions of nodes and
relations in KGs or definitions of words in lexicons.
Triples describe a particular connection between
two nodes in KGs. A subgraph’s topology con-

tributes a lot to the comprehension of the central
node. However, discrete knowledge cannot be di-
rectly used in deep learning systems and need to be
further represented.

Continuous Representation. It usually refers to
the dense vectors in a unified continuous repre-
sentation space. The traditional skip-gram model
can be used to compute the embeddings of words
(Yamada et al., 2020a). Entities and relations in
triples can be viewed as translational operations
and points from the perspective of conventional
knowledge embedding models (Bordes et al., 2013).
The continuous representation can be easily fused
to models as prior knowledge.

2.3 Knowledge Injection

Injecting knowledge into original models is vital to
the whole paradigm. The injection strategy varies
depending on when knowledge is fused into origi-
nal models. We divide them into three categories:
knowledge-enriched input, knowledge-aware archi-
tecture and knowledge-assistant training.

Knowledge-enriched Input. A typical case of
knowledge injection is to combine the input text
with the extracted knowledge. Entity descriptions,
concepts, brief interpretations and synonyms of
the words can all be concatenated together with
original texts to form input samples of the model.
However, too much knowledge may be noisy. Thus

3

some attention masks are constructed for the self-
attention process in the model. Besides, pretrained
knowledge embeddings can be fused to the text
representations by direct arithmetic operations.

Knowledge-aware Architecture. In some cases,
a certain architecture is designed to encode the
extracted knowledge. Graph neural network (GNN)
is often used to encode the structured knowledge
(Yu et al., 2022). Transformer-like architectures
is usually used to deal with textual descriptions
(Zhang et al., 2019). Memory network is used to
restore learned knowledge embeddings and can be
applied to any sequence output (Févry et al., 2020).

Knowledge-assisted Training. Knowledge can
also be used to design knowledge-driven training
objectives. Entity-level masking masks the enti-
ties in a sentence to guide the text representation
learning (Sun et al., 2019). Relation prediction re-
quires models to identify the relation between two
given entities in order to inject world knowledge
(Wang et al., 2021b). Supersense prediction trains
the model to classify the masked word’s sense into
45 supersense categories (Levine et al., 2020).

2.4 Knowledge Application
Various downstream NLU tasks can benefit from
the knowledge-enhanced models. This subsection
presents the definition, application and necessity of
the existence of external knowledge of each down-
stream NLU task.

Text Classification. It is a task to assign labels
to language entries like sentences or documents.
Sentiment analysis, fact verification, and fake news
detection all fall into this category. Fake news
detection needs additional knowledge to serve as
evidence for better detection (Hu et al., 2021).

Text Matching. It is a task determining whether
one sentence is related to another based on seman-
tic meanings and plays a significant role in text
entailment and entity disambiguation. For text en-
tailment, knowledge in the two statements can help
information flow between them (Jo et al., 2021).

Sequence Labeling. This task is to label each
token of the given sentence. Named entity recog-
nition (NER), part-of-speech tagging and semantic
role labeling can be viewed as a sequence label-
ing problem. For example, a preconstructed en-
tity dictionary contributes to recognizing the entity
boundary in NER tasks (Zhang and Yang, 2018).

Machine Reading Comprehension. This task is
to comprehend a given passage and then answer
questions based on it. It can be approximately
divided into four different kinds of forms: cloze-
style, multi-choice, span extraction and free-form.
In open domain QA, knowledge can be beneficial
in identifying answers which are not likely lying
inside the given context (Yamada et al., 2020b).

3 System Design and Architecture

According to the paradigm mentioned above, we
divide CogKTR architecture into four modules.
For knowledge acquisition and representation,
CogKTR modularizes them as the Enhancer mod-
ule. To implement knowledge injection and ap-
plication, we build the Model module to integrate
knowledge into models. Considering that the devel-
opment process is time-consuming, we also design
two basic modules, namely Data module and Core
module, to accelerate the data processing procedure
and improve training efficiency. An overview of
CogKTR architecture is shown in Figure 2. In the
following, we will introduce these four modules.

3.1 Enhancer

This module is designed for knowledge acquisi-
tion and representation to leverage relevant knowl-
edge to enhance raw texts. It can be divided
into four steps. Firstly, parse sentences and de-
tect candidate mentions by Tagger. Then, link
these mentions to KGs by Linker. Next, search
the relevant information in KGs and textual cor-
pus by Searcher. Finally, convert discrete knowl-
edge to dense embeddings in continuous space
by Embedder. The specific classes of Enhancer,
Tagger, Linker, Searcher and Embedder are rep-
resented in Table 1.

Tagger. It is a text annotator to convert unstruc-
tured texts into structured knowledge. It can be
categorized into two streams according to the exis-
tence of external KGs. If corresponding KGs exist,
we focus on identifying the locations of knowledge-
related text mentions, including words, entities,
phrases, etc. They can be linked to KGs, enriching
raw sentences with external information. Other-
wise, we parse the given sentences to obtain in-
ternal syntactic and semantic knowledge, such as
part-of-speech tags, dependency trees and seman-
tic role labels. CogKTR contains three external
knowledge taggers and three internal knowledge
taggers.

4

Enhancer

WorldEnhancer

CommonsenseEnhancer

LiguisticsEnhancer

NerTagger

ConceptNetTagger

WordNetTagger

SrlTagger/SyntaxTagger

WikipediaLinker

ConceptNetLinker

WordNetLinker

WikipediaSearcher

WikidataSearcher

ConceptNetSearcher

WordNetSearcher

WikidataEmbedder

ConceptNetEmbedder

WordNetEmbedder

Tagger Linker Searcher Embedder

Trainer Predictor Analyzer EvaluatorCore

Reader Datable Processor DatablesetData

KG-Emb/KT-Attn

K-BERT

E-BERT

ESR

HLG

QAGNN

SemBERT

SAFE

TextClassification

QuestionAnswering

TextMatching

ReadingComprehension

SequenceLabeling

Disambigution

MaskedLanguage

Modeling

Input-Enhanced Architecture-Enhanced

K-Model

T-Model

Figure 2: The system architecture of CogKTR.

Linker. It aims to link the candidate mentions
detected by the Tagger modules to external KGs.
It is an essential bridge between unstructured texts
and structured knowledge, where linking methods
include entity linking and string matching. Entity
linking is based on measuring the similarity be-
tween mentions in the texts and entities in KGs and
string matching is to find the corresponding nodes
in KGs through strict comparison or fuzzy query.
We implement three linkers in CogKTR.

Searcher. It is to retrieve detailed information
about target mentions in KGs (such as Wikipedia,
ConceptNet and WordNet), and textual corpus. In
this paper, we divide KG-related knowledge into
unstructured textual information and structured in-
formation. Unstructured textual information in-
cludes entity titles, entity descriptions and example
sentences, while structured information includes
triples, subgraphs and relation paths. As for textual
corpus, we use retrieval methods to obtain related
texts of the queries. We implement four searchers.

Embedder. It is used to embed discrete knowl-
edge into continuous space. We encode KGs as
low-dimensional and dense vectors by TransE,
Wikipedia2Vec and PLMs, which can be directly
injected into deep learning models.

3.2 Model

To implement knowledge injection and applica-
tion, we design the Model module to fuse texts and
knowledge acquired from the Enhancer module.
For extensibility, we decouple the Model module
into T-Model and K-Model. T-Model denotes task-

specific models, designed for various downstream
tasks. K-Model denotes knowledge-enhanced mod-
els, aiming to inject knowledge into PLMs to repre-
sent texts. K-Model and T-Model can be combined
to realize the application of different knowledge-
enhanced models on different downstream tasks.

T-Model. This module is used to achieve down-
stream tasks. It can be classified into seven types:
ReadingComprehension, TextClassification,
MLM, QuestionAnswering, SequenceLabeling,
TextMatching, Disambiguation class.

K-Model. This module is responsible for knowl-
edge injection and built on huggingface transform-
ers library (Poerner et al., 2020). It can be divided
into two categories: (1) Input-enhanced models
aim to enrich input texts and constrain attention
masks. In terms of input texts, we divide injec-
tion into two types, discrete injection and continu-
ous injection. Discrete injection means concatenat-
ing raw texts and additional knowledge texts like
ESR (Song et al., 2021), K-BERT (Liu et al., 2020),
and then feeding into PLMs. Continuous injection
refers to converting texts or entities into vectors,
such as KT-Emb and KG-Emb (Xu et al., 2021). For
attention masks, symbolic knowledge like depen-
dency trees with directed graphs is used to con-
strain attention masks based on SG-Net (Zhang
et al., 2020b). (2) Architecture-enhanced mod-
els use additional network architecture to encode
knowledge and incorporate knowledge represen-
tation into language models. In CogKTR, SAFE
(Jiang et al., 2022) is used to encode relation paths
by MLP, while RNN is used to capture semantic

5

role labeling knowledge like SemBERT (Zhang et al.,
2020a). For graph structure knowledge, we imple-
ment QAGNN (Yasunaga et al., 2021) and HLG (Li
et al., 2022) models with GNN to encode common-
sense knowledge and linguistic knowledge.

3.3 Data

This module is responsible for data loading and
processing procedures. It is composed of Reader
and Processor classes. To unify input, we design
Reader class to load raw datasets, which inherits
from BaseReader class. The Processor class is a
data processing component in CogKTR. It is used
to build the bridge among models, raw data and
enhanced data, which can process raw data and
enhanced data into the form required by the models.

3.4 Core

It focuses on accelerating the efficiency of model
training and evaluation. It contains Trainer,
Evaluator, Predictor and Analyzer classes.
Trainer class is designed for model training, sup-
porting multi-GPU distributed parallel training
and experimental results recording. Evaluator
class contains classification metric, regression met-
ric, reading comprehension metric and so on.
Predictor class supports various downstream in-
ference tasks with additional knowledge.

4 System Usage

In this section, we will give detailed guidelines on
how to use CogKTR toolkit and online demo.

4.1 Code Usage

We separate the source code to three main parts: en-
hancing the given texts with knowledge, construct-
ing a knowledge-aware model and training the
model. In Appendix A, Figure 3 shows an example
for the usage of our code. We formalize a pipeline
for these three steps so users can achieve our Uni-
fied Knowledge-Enhanced Paradigm easily. Be-
fore processing the input text, users should prepare
the corresponding knowledge sources, which will
be downloaded automatically. Then, the Reader,
Enhancer and Processor class should be initial-
ized to generate the knowledge-enhanced input of
the models. Moreover, the T-Model, Metric, Loss
and Optimizer class should be initialized before
added to Trainer class. Users should initialize the
K-Model class as the knowledge-enhanced encoder
of the T-Model class.

4.2 Demo Usage

Besides this toolkit, we also release an online demo
as shown in Figure 4, 5 and 6. The online demo
consists of two parts: knowledge-enhanced text
and knowledge-enhanced task. The knowledge-
enhanced text part will acquire different types of
knowledge in the given sentence, including world,
linguistic, and commonsense knowledge. And the
knowledge-enhanced task part performs different
downstream tasks, including sentiment analysis,
text entailment and commonsense reasoning.

5 Evaluation

CogKTR aims to support various NLU tasks un-
der a unified paradigm. To demonstrate the ef-
fectiveness of knowledge-enhanced methods, we
implement several baselines and evaluate them on
the corresponding tasks. The evaluation tasks in-
clude CommonsenseQA (Talmor et al., 2018) and
OpenBookQA (Mihaylov et al., 2018) for com-
monsense reasoning; LAMA (Petroni et al., 2019)
for knowledge probing; SQuAD2.0 (Rajpurkar
et al., 2018) for reading comprehension; QNLI
and SST-B (Wang et al., 2018b) for text entailment;
CoNLL2003 (Sang and De Meulder, 2003) for se-
quence labeling; SST-2 and SST-5 (Socher et al.,
2013) for sentiment analysis; SemCor (Miller et al.,
1994) and SemEval (Pradhan et al., 2007) for word
sense disambiguation. Reader and Processor
classes of these datasets have already been inte-
grated into CogKTR. The experimental results are
available at our GitHub 4.

6 Conclusion and Future Work

In this paper, we propose CogKTR, a knowledge-
enhanced text representation toolkit for natural lan-
guage understanding. CogKTR is built on our
Unified Knowledge-Enhanced Paradigm, which
is composed of four stages: knowledge acquisi-
tion, knowledge representation, knowledge injec-
tion, and knowledge application. In CogKTR, we
provide easy-to-use knowledge acquisition inter-
face, off-the-shelf knowledge embeddings, built-
in knowledge-enhanced models, and knowledge-
intensive NLU tasks. Besides the toolkit, we also
release an online demo system. In the future, more
knowledge sources, benchmark datasets, and mod-
els will be incorporated into CogKTR.

4https://github.com/CogNLP/CogKTR/

6

https://github.com/CogNLP/CogKTR/

Limitations

In this paper, we propose Unified Knowledge-
Enhanced Paradigm to formalize the knowledge-
enhanced process. However, there are still some
limitations in the existing knowledge-enhanced pro-
cess. We discuss these in detail below.

First, in the knowledge acquisition stage, we
should discover knowledge from raw texts via
name entity recognition, entity linking, semantic
role labeling and other methods. These methods are
usually provided by off-the-shelf toolkits, causing
inevitable errors. Such noise will affect the perfor-
mance on downstream tasks. In the future work, we
should further study how to eliminate the influence
of noise caused by knowledge acquisition.

Second, a vast number of knowledge embedding
methods are designed to address knowledge graph
completion (KGC), which aims to predict miss-
ing links for KGs. These methods only consider
the structured information and ignore the valuable
textual and logic knowledge in KGs. How to pro-
vide more informative knowledge embeddings for
knowledge-enhanced methods is worth studying.

Finally, we utilize a broad set of downstream
tasks to evaluate the knowledge-enhanced mod-
els. But better performance does not mean that
the model has really learned the knowledge. We
should find a better way to probe the knowledge in
models and improve the interpretability.

Acknowledgements

We thank all the anonymous reviewers. This
work is supported by the National Key Re-
search and Development Program of China (No.
2020AAA0106400), the National Natural Science
Foundation of China (No. 61922085, 61976211,
62176257). This work is also supported by the
Youth Innovation Promotion Association CAS.

References
Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-

ural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly
Media, Inc.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
OpenPrompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations. Association for Computa-
tional Linguistics.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable multi-
hop relational reasoning for knowledge-aware ques-
tion answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong,
Duyu Tang, Chuan Shi, Nan Duan, and Ming Zhou.
2021. Compare to the knowledge: Graph neural
fake news detection with external knowledge. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for
Computational Linguistics.

Jinhao Jiang, Kun Zhou, Ji-Rong Wen, and Xin Zhao.
2022. great truths are always simple : a rather
simple knowledge encoder for enhancing the com-
monsense reasoning capacity of pre-trained models.
In Findings of the Association for Computational
Linguistics: NAACL 2022. Association for Computa-
tional Linguistics.

Zhuoran Jin, Yubo Chen, Dianbo Sui, Chenhao Wang,
Zhipeng Xue, and Jun Zhao. 2021. CogIE: An in-
formation extraction toolkit for bridging texts and
CogNet. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations.
Association for Computational Linguistics.

7

https://dl.acm.org/doi/abs/10.5555/1717171
https://dl.acm.org/doi/abs/10.5555/1717171
https://dl.acm.org/doi/abs/10.5555/1717171
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.400
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.acl-long.62
https://doi.org/10.18653/v1/2021.acl-long.62
https://aclanthology.org/2022.findings-naacl.131
https://aclanthology.org/2022.findings-naacl.131
https://aclanthology.org/2022.findings-naacl.131
https://doi.org/10.18653/v1/2021.acl-demo.11
https://doi.org/10.18653/v1/2021.acl-demo.11
https://doi.org/10.18653/v1/2021.acl-demo.11

Zhuoran Jin, Tianyi Men, Hongbang Yuan, Zhitao He,
Dianbo Sui, Chenhao Wang, Zhipeng Xue, Yubo
Chen, and Jun Zhao. 2022. CogKGE: A knowledge
graph embedding toolkit and benchmark for repre-
senting multi-source and heterogeneous knowledge.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations. Association for Computational Lin-
guistics.

Yohan Jo, Haneul Yoo, JinYeong Bak, Alice Oh, Chris
Reed, and Eduard Hovy. 2021. Knowledge-enhanced
evidence retrieval for counterargument generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021. Association for Computa-
tional Linguistics.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT: Driv-
ing some sense into BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Yanzeng Li, Jiangxia Cao, Xin Cong, Zhenyu Zhang,
Bowen Yu, Hongsong Zhu, and Tingwen Liu. 2022.
Enhancing Chinese pre-trained language model via
heterogeneous linguistics graph. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
Proceedings of the AAAI Conference on Artificial In-
telligence.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM.

George A. Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G. Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Human Language Technology: Proceedings of
a Workshop held at Plainsboro, New Jersey, March
8-11, 1994.

Gustavo Penha and Claudia Hauff. 2020. What does
bert know about books, movies and music? probing
bert for conversational recommendation. In Four-
teenth ACM Conference on Recommender Systems.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers). Association for
Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze. 2020.
E-BERT: Efficient-yet-effective entity embeddings
for BERT. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020. Association for
Computational Linguistics.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. Semeval-2007 task-17: En-
glish lexical sample, srl and all words. In Proceed-
ings of the fourth international workshop on semantic
evaluations (SemEval-2007).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Yang Song, Xin Cai Ong, Hwee Tou Ng, and Qian Lin.
2021. Improved word sense disambiguation with
enhanced sense representations. In Findings of the
Association for Computational Linguistics: EMNLP
2021. Association for Computational Linguistics.

8

https://doi.org/10.18653/v1/2022.acl-demo.16
https://doi.org/10.18653/v1/2022.acl-demo.16
https://doi.org/10.18653/v1/2022.acl-demo.16
https://doi.org/10.18653/v1/2021.findings-emnlp.264
https://doi.org/10.18653/v1/2021.findings-emnlp.264
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2022.acl-long.140
https://doi.org/10.18653/v1/2022.acl-long.140
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://www.pnas.org/doi/10.1073/pnas.1907367117
https://www.pnas.org/doi/10.1073/pnas.1907367117
https://www.pnas.org/doi/10.1073/pnas.1907367117
https://www.aclweb.org/anthology/D18-1260
https://www.aclweb.org/anthology/D18-1260
https://www.aclweb.org/anthology/D18-1260
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://aclanthology.org/H94-1046
https://aclanthology.org/H94-1046
https://dl.acm.org/doi/10.1145/3383313.3412249
https://dl.acm.org/doi/10.1145/3383313.3412249
https://dl.acm.org/doi/10.1145/3383313.3412249
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://aclanthology.org/S07-1016/
https://aclanthology.org/S07-1016/
https://aclanthology.org/2020.acl-demos.14/
https://aclanthology.org/2020.acl-demos.14/
https://aclanthology.org/2020.acl-demos.14/
https://arxiv.org/abs/2003.08271
https://arxiv.org/abs/2003.08271
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2021.findings-emnlp.365
https://doi.org/10.18653/v1/2021.findings-emnlp.365

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP.
Association for Computational Linguistics.

Chenhao Wang, Yubo Chen, Zhipeng Xue, Yang Zhou,
and Jun Zhao. 2021a. Cognet: Bridging linguis-
tic knowledge, world knowledge and commonsense
knowledge. Proceedings of the AAAI Conference on
Artificial Intelligence.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021b. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021. Association for Com-
putational Linguistics.

Xiaokai Wei, Shen Wang, Dejiao Zhang, Parminder Bha-
tia, and Andrew Arnold. 2021. Knowledge enhanced
pretrained language models: A compreshensive sur-
vey. arXiv preprint arXiv:2110.08455.

Ruochen Xu, Yuwei Fang, Chenguang Zhu, and Michael
Zeng. 2021. Does knowledge help general nlu? an
empirical study. arXiv preprint arXiv:2109.00563.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki
Shindo, Hideaki Takeda, Yoshiyasu Takefuji, and
Yuji Matsumoto. 2020a. Wikipedia2Vec: An ef-
ficient toolkit for learning and visualizing the em-
beddings of words and entities from Wikipedia. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

Demonstrations. Association for Computational Lin-
guistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020b. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for
Computational Linguistics.

Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei
Chang, Furu Wei, and Jianfeng Gao. 2022. A survey
of knowledge-intensive nlp with pre-trained language
models. arXiv preprint arXiv:2202.08772.

Donghan Yu, Chenguang Zhu, Yiming Yang, and
Michael Zeng. 2022. Jaket: Joint pre-training of
knowledge graph and language understanding. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence.

Yue Zhang and Jie Yang. 2018. Chinese NER using
lattice LSTM. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Asso-
ciation for Computational Linguistics.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020a.
Semantics-aware BERT for language understanding.
In the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-2020).

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng
Duan, Hai Zhao, and Rui Wang. 2020b. SG-Net:
Syntax-guided machine reading comprehension. In
Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence.

Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen
Lin, Meng Jiang, and Wenhao Yu. 2022. Knowledge-
augmented methods for natural language processing.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: Tutorial
Abstracts. Association for Computational Linguis-
tics.

A Appendix

9

https://dl.acm.org/doi/10.5555/3298023.3298212
https://dl.acm.org/doi/10.5555/3298023.3298212
https://arxiv.org/abs/1904.09223
https://arxiv.org/abs/1904.09223
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://ojs.aaai.org/index.php/AAAI/article/view/18029
https://ojs.aaai.org/index.php/AAAI/article/view/18029
https://ojs.aaai.org/index.php/AAAI/article/view/18029
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://arxiv.org/abs/2110.08455
https://arxiv.org/abs/2110.08455
https://arxiv.org/abs/2110.08455
https://arxiv.org/abs/2109.00563
https://arxiv.org/abs/2109.00563
https://doi.org/10.18653/v1/2020.emnlp-demos.4
https://doi.org/10.18653/v1/2020.emnlp-demos.4
https://doi.org/10.18653/v1/2020.emnlp-demos.4
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://arxiv.org/abs/2202.08772
https://arxiv.org/abs/2202.08772
https://arxiv.org/abs/2202.08772
https://ojs.aaai.org/index.php/AAAI/article/view/21417
https://ojs.aaai.org/index.php/AAAI/article/view/21417
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://ojs.aaai.org/index.php/AAAI/article/view/6510
https://ojs.aaai.org/index.php/AAAI/article/view/6511
https://ojs.aaai.org/index.php/AAAI/article/view/6511
https://aclanthology.org/2022.acl-tutorials.3
https://aclanthology.org/2022.acl-tutorials.3

Components Classes Functions Tools

Tagger

NerTagger identify entity mention spans CogIE (Jin et al., 2021)
ConceptNetTagger identify concept mention spans spaCy (Honnibal et al., 2020)
WordNetTagger identify candidate texts spans NLTK (Bird et al., 2009)

SrlTagger tag sentences and get semantics labeling Stanza (Qi et al., 2020)
SyntaxTagger parse sentences and get dependency trees AllenNLP (Gardner et al., 2017)

WordSegmentationTagger chinese word segmentation jieba

Linker
WikipediaLinker link entities to Wikipedia CogIE (Jin et al., 2021)
ConceptNetLinker link concepts to ConceptNet spaCy (Honnibal et al., 2020)
WordNetLinker link candidate texts to WordNet CogIE (Jin et al., 2021)

Searcher

WikipediaSearcher query entity titles and text descriptions in Wikipedia KILT (Bird et al., 2009)
WikidataSearcher look up triples and subgraphs in Wikidata qwikidata
ConceptNetSearcher search subgraphs and relation paths in ConceptNet spaCy (Honnibal et al., 2020)
WordNetSearcher synonyms, example sentences, definitions and hypernyms NLTK (Bird et al., 2009)

Embedder
WikidataEmbedder convert Wikidata into continuous knowledge CogKGE (Jin et al., 2022)
ConceptNetEmbedder convert ConceptNet into continuous knowledge MHGRN (Feng et al., 2020)
WordNetEmbedder convert WordNet into continuous knowledge CogKGE (Jin et al., 2022)

Table 1: Specific classes of Enhancer module, contains Tagger, Linker, Searcher and Embedder components.

import cogktr
import torch
Load the dataset and construct the vocabulary
reader = cogktr.Reader(data_path)
train_data, dev_data, test_data = reader.read_all()
vocab = reader.read_vocab()

Enhance the data
enhancer = cogktr.Enhancer(knowledge_graph_path, cache_path, cache_file)
enhanced_train_dict = enhancer.enhance_train(datable=train_data, return_entity_desc=True)
enhanced_dev_dict = enhancer.enhance_dev(datable=dev_data, return_entity_desc=True)
enhanced_test_dict = enhancer.enhance_test(datable=test_data, return_entity_desc=True)

Process the data with external knowledge
processor = cogktr.Processor(max_token_len=128, vocab=vocab)
train_dataset = processor.process_train(data=train_data, enhanced_dict=enhanced_train_dict)
dev_dataset = processor.process_dev(data=dev_data, enhanced_dict=enhanced_dev_dict)
test_dataset = processor.process_test(data=test_data, enhanced_dict=enhanced_test_dict)

Construct the knowledge-aware model
k_model = cogktr.KModel(pretrained_model="bert-base-cased")
t_model = cogktr.TModel(k_model, vocab)
metrics = cogktr.Metrics(mode="multi")
loss = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(t_model.parameters())

Train the knowledge-aware model
trainer = cogktr.Trainer(t_model, train_dataset, dev_dataset, n_epochs=1000,

batch_size=128, loss=loss, optimizer=optimizer, metrics=metrics)
trainer.train()

Figure 3: A code example of model training.

10

https://github.com/fxsjy/jieba
https://github.com/kensho-technologies/qwikidata

Figure 4: A demo example of world knowledge acquisition.

Figure 5: A demo example of linguistic knowledge acquisition.

Figure 6: A demo example of commonsense reasoning task.

11

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 12 - 21
December 7-11, 2022 c©2022 Association for Computational Linguistics

LM-Debugger: An Interactive Tool for
Inspection and Intervention in Transformer-Based Language Models

Mor Geva1 Avi Caciularu2,∗ Guy Dar3 Paul Roit2 Shoval Sadde1

Micah Shlain1 Bar Tamir4 Yoav Goldberg1,2

1Allen Institute for AI 2Bar-Ilan University
3Tel Aviv University 4The Hebrew University of Jerusalem

morp@allenai.org

Abstract

The opaque nature and unexplained behavior
of transformer-based language models (LMs)
have spurred a wide interest in interpreting
their predictions. However, current interpre-
tation methods mostly focus on probing mod-
els from outside, executing behavioral tests,
and analyzing salience input features, while
the internal prediction construction process is
largely not understood. In this work, we in-
troduce LM-Debugger, an interactive debug-
ger tool for transformer-based LMs, which
provides a fine-grained interpretation of the
model’s internal prediction process, as well as
a powerful framework for intervening in LM
behavior. For its backbone, LM-Debugger re-
lies on a recent method that interprets the inner
token representations and their updates by the
feed-forward layers in the vocabulary space.
We demonstrate the utility of LM-Debugger for
single-prediction debugging, by inspecting the
internal disambiguation process done by GPT2.
Moreover, we show how easily LM-Debugger
allows to shift model behavior in a direction
of the user’s choice, by identifying a few vec-
tors in the network and inducing effective in-
terventions to the prediction process. We re-
lease LM-Debugger as an open-source tool and
a demo over GPT2 models.

1 Introduction

Transformer-based language models (LMs) are the
backbone of modern NLP models (Bommasani
et al., 2021), but their internal prediction construc-
tion process is opaque. This is problematic to end-
users that do not understand why the model makes
specific predictions, as well as for developers who
wish to debug or fix model behaviour.

Recent work (Elhage et al., 2021; Geva et al.,
2022) suggested that the construction process of
LM predictions can be viewed as a sequence of
updates to the token representation. Specifically,

∗Work done during an internship at AI2.

She is working as a

DJ

kindergarten,
school, kids,
elementary,

teacher,
classroom

lawyer
nurse
dentist
nanny

DJ
singer
lawyer
rapper

FFN

FFN

FFN

album, DJ,
rapper, funk,
music, song,
vocals, punk,
disco, rock, …

inspection
intervention
projections

Figure 1: Illustration of the main capabilities of
LM-Debugger. Our tool interprets dominant changes
in the output distribution induced by the feed-forward
layers across the network (self-attention layers are not
shown), and enables configuring interventions for shift-
ing the prediction in directions of the user’s choice.

Geva et al. (2022) showed that updates by the feed-
forward network (FFN) layers, one of the building
blocks of transformers (Vaswani et al., 2017), can
be decomposed into weighted collections of sub-
updates, each induced by a FFN parameter vector,
that can be interpreted in the vocabulary space.

In this work, we make a step towards LM trans-
parency by employing this interpretation approach
to create LM-Debugger, a powerful tool for inspec-
tion and intervention in transformer LM predic-
tions. LM-Debugger provides three main capabil-
ities for single-prediction debugging and model
analysis (illustrated in Figure 1). First, for a given
input (e.g. “My wife is working as a”), it interprets
the model’s prediction at each layer in the network,
and the major changes applied to it by FFN layers.
This is done by projecting the token representa-

12

tion before and after the FFN update as well as the
major FFN sub-updates at any layer to the output
vocabulary. Second, it allows intervening in the
prediction by changing the weights of specific sub-
updates, e.g. increasing (decreasing) a sub-update
that promotes music-related (teaching-related) con-
cepts, which results in a modified output. Last, for
a given LM, LM-Debugger interprets all the FFN
parameter vectors across the network and creates a
search index over the tokens they promote. This al-
lows an input-independent analysis of the concepts
encoded by the model’s FFN layers, and enables
configuring general and effective interventions.

We demonstrate the utility of LM-Debugger for
two general use-cases. In the context of predic-
tion debugging, we use the fine-grained tracing of
LM-Debugger to inspect the internal disambigua-
tion process performed by the model. Furthermore,
we demonstrate how our tool can be used to con-
figure a few powerful interventions that effectively
control different aspects in text generation.

We release LM-Debugger as an open-source tool
at https://github.com/mega002/lm-debugger
and host a demo of GPT2 (Brown et al., 2020)
at https://lm-debugger.apps.allenai.org.1

This to increase the transparency of transformer
LMs and facilitate research in analyzing and con-
trolling NLP models.

2 Underlying Interpretation Method

LM-Debugger establishes a framework for inter-
preting a token’s representation and updates ap-
plied to it at each layer in the network. This frame-
work builds upon recent findings by Geva et al.
(2022), who viewed the token representation as a
changing distribution over the output vocabulary,
and the output from each FFN layer as a collec-
tion of weighted sub-updates to that distribution,
which are often interpretable to humans. We next
elaborate on the findings we rely on at this work.

Consider a transformer LM with L layers and an
embedding matrix E ∈ Rd×|V| of hidden dimen-
sion d, over a vocabulary V . Let w = w1, ..., wt
s.t. ∀i = 1, ..., t : wi ∈ V be an input sequence
of tokens, then at each layer ℓ = 1, ..., L, the hid-
den representation xℓi of the i-th token is being
processed and updated by a FFN layer through a
residual connection (He et al., 2016):2

x̃ℓi = xℓi + FFNℓ(xℓi),

1See a video at https://youtu.be/5D_GiJv7O-M
2Layer normalization is omitted (Geva et al., 2022).

where xℓi is the output from the preceding multi-
head self-attention layer, and x̃ℓi is the updated to-
ken representation (Vaswani et al., 2017). Geva
et al. (2022) proposed an interpretation method for
these updates in terms of the vocabulary, which
we employ as the backbone of LM-Debugger and
describe in detail next.

Token Representation as a Distribution Over
the Output Vocabulary. The token representa-
tion before (xℓi) and after (x̃ℓi) the FFN update at
any layer ℓ is interpreted by projecting it to the vo-
cabulary space and converting it to a distribution:

pℓi = softmax(Exℓi) ; p̃ℓi = softmax(Ex̃ℓi)

The final model output is defined by y = p̃Li .

The FFN Output as a Weighted Collection of
Sub-Updates. Each FFN layer is defined with
two parameter matrices Kℓ, V ℓ ∈ Rdm×d, where
dm is the intermediate hidden dimension, and a
non-linearity function f (bias terms are omitted):

FFNℓ(xℓ) = f
(
Kℓxℓ

)
V ℓ (1)

Geva et al. (2022) interpreted the FFN output by (a)
decomposing it into sub-updates, each induced by
a single FFN parameter vector, and (b) projecting
each sub-update to the vocabulary space. Formally,
Eq. 1 can be decomposed as:

FFNℓ(xℓ) =
dm∑

i=1

f(xℓ · kℓi)vℓi =
dm∑

i=1

mℓ
iv
ℓ
i .

where kℓi is the i-th row of Kℓ, vℓi is the i-th col-
umn of V ℓ, and mℓ

i := f(xℓ · kℓi) is the activation
coefficient of vℓi for the given input. Each term in
this sum is interpreted as a sub-update to the output
distribution, by inspecting the top-scoring tokens
in its projection to the vocabulary, i.e. Evℓi .

In the rest of the paper, we follow Geva et al.
(2022) and refer to columns of V ℓ as “value vec-
tors” and to their weighted input-dependent form
as “sub-updates”. Importantly, value vectors are
static parameter vectors that are independent on the
input sequence, while sub-updates are dynamic as
they are weighted by input-dependent coefficients.
For a model with L layers and a hidden dimension
dm, there are L ∗ dm static value vectors, which
induce L ∗ dm corresponding sub-updates when
running an input through the model.

13

https://github.com/mega002/lm-debugger
https://lm-debugger.apps.allenai.org
https://youtu.be/5D_GiJv7O-M

Figure 2: The prediction view of LM-Debugger, showing the prediction trace for a given input (main panel), allowing
to configure interventions (lower panel) and interpret sub-updates to the output distribution (right panel).

3 LM-Debugger

LM-Debugger leverages both static and dynamic
analysis of transformer FFN layers and the updates
they induce to the output distribution for debugging
and intervention in LM predictions. These capa-
bilities are provided in two main views, which we
describe next.

3.1 Prediction View
This view, shown in Figure 2, is designed for
per-example debugging. It allows running inputs
through the model to generate text in an auto-
regressive manner, while tracing the dominant sub-
updates in every layer and applying interventions.

Prediction Trace (Figure 2, main panel). The
user enters an input for the model, for which a de-
tailed trace of the prediction across the network is
provided. For each layer, it shows the top-tokens in
the output distribution, before and after the FFN up-
date, and the 10 most dominant FFN sub-updates.
For every sub-update miv

ℓ
i we show an identifier

L[ℓ]D[i] of its corresponding value vector and the
coefficient for the given input (e.g. L17D4005 and
9.79).3 The top distribution tokens and sub-updates
are sorted by the token probability/sub-update co-
efficient from left (highest) to right (lowest). A
small arrow next to each sub-update allows setting
an intervention on its corresponding value vector.

3The layer and dimension in the identifier use zero-index.

Interventions (Figure 2, lower panel). Beyond
tracing the output distribution, LM-Debugger also
allows intervening in the prediction process by set-
ting the coefficients of any vector values in the
network, thus, inducing sub-updates of the user’s
choice. To set an intervention for a specific value
vector, the user should enter its identifier to the
panel and choose whether to “turn it on or off”,
that is, setting its coefficient to the value of the
coefficient of the most dominant sub-update in that
layer, or to zero, respectively. When running an
input example, all interventions in the panel will
be effective, for the entire generation process.

Value Vector Information (Figure 2, right
panel). A natural question that arises is how to
choose meaningful interventions. LM-Debugger
provides two complementary approaches for this.
A bottom-up approach is to observe the dominant
sub-updates for specific examples, and apply inter-
ventions on them. A sub-update can be interpreted
by inspecting the top-tokens in the projection of
its corresponding value vector to the vocabulary
(Geva et al., 2022). For convenience, we let the
user assign names to value vectors. Another way to
find meaningful interventions is by a top-down ap-
proach of searching for value vectors that express
concepts of the user’s interest. We provide this
capability in the exploration view of LM-Debugger,
which is described next.

14

3.2 Exploration View
This view allows static exploration of value vec-
tors, primarily for analyzing which concepts are
encoded in the FFN layers, how concepts are spread
over different layers, and identifying groups of re-
lated value vectors.

Keyword Search (Figure 3). Value vectors are
interpreted by the top tokens they promote. By
considering these sets of tokens as textual docu-
ments, LM-Debugger allows searching for concepts
encoded in value vectors across the layers. This is
enabled by a search index that LM-Debugger holds
in the background, which stores the projections
of all value vectors to the vocabulary, and allows
executing simple queries against them using the
BM25 (Robertson et al., 1995) algorithm.

Cluster Visualization (Figure 4). Assuming the
user is interested in locating a specific concept in
the network and that she has found a relevant value
vector, either from debugging an example in the
prediction view or by the keyword search. A nat-
ural next step is to find similar value vectors that
promote related tokens. To this end, LM-Debugger
provides a clustering of all value vectors in the
network, which allows mapping any value vector
to a cluster of similar vectors in the hidden space
(Geva et al., 2022). The interface displays a ran-
dom sample of vectors from the cluster, as well as
an aggregation of their top tokens as a word cloud,
showing the concepts promoted by the cluster.

4 Debugging LM Predictions by Tracing
FFN Updates

In this section, we demonstrate the utility of
LM-Debugger for interpreting model behaviour
upon a given example. As an instructive example,
we will consider the case of sense disambiguation.

When generating text, LMs often need to per-
form sense disambiguation and decide on one plau-
sible continuation. For example, the word “for”
in the input “The book is for” has two plausible
senses of purpose (e.g. “reading”) and person
(e.g. “him”) (Karidi et al., 2021). We will now in-
spect the prediction by GPT2 (Brown et al., 2020)
and track the internal sense disambiguation pro-
cess for this example. To this end, we enter the
input in the prediction view and click Trace, which
provides a full trace of the prediction across layers.

Table 1 displays a part of this trace from selected
layers, showing a gradual transition from purpose

Layer: 4 Sense: purpose
Before: example, the, instance, purposes
After: example, the, instance, all

Layer: 10 Sense: purpose
Before: the, sale, example, a
After: the, sale, a, example

Layer: 15 Sense: purpose/person
Before: sale, the, anyone, use
After: sale, anyone, the, ages

Layer: 20 Sense: person
Before: beginners, anyone, adults, sale
After: anyone, beginners, adults, readers

Table 1: Partial prediction trace of GPT2 for the input
“This book is for”, showing the internal disambiguation
process from purpose to person sense across layers.

to person sense. Until layer 11 (out of 24), the top-
tokens in the output distribution are mostly related
to sale/example purposes. Starting from layer 12,
the prediction slowly shifts to revolve about the
audience of the book, e.g. anyone and ages, until
layer 18 where sale is eliminated from the top
position. In the last layers, tokens become more
specific, e.g. beginners and adults.

To examine the major updates through which
the prediction has formed, we can click on spe-
cific sub-updates in the trace to inspect the top-
scoring tokens in their projections. We observe
that in early layers, tokens are often related to
purpose sense (e.g. instance in L2D1855 and
buyers in L12D659), in intermediate layers tokens
are a mix of both senses (readers in L16D3026
and preschool in L17D2454, and sale/free in
L16D1662), and mostly person sense in the last lay-
ers (users in L18D685, people in L20D3643, and
those in L21D2007).

5 Configuring Effective Interventions for
Controlled Text Generation

Beyond interpretability, LM-Debugger enables to
intervene in LM predictions. We show this by find-
ing value vectors that promote specific concepts
and applying simple and effective interventions.

Controlling Occupation Prediction. Consider
the input “My wife is working as a”. When run-
ning it through GPT2, the final prediction from
the last layer has the top tokens nurse, teacher,
waitress. We would like to intervene in the pre-
diction in order to change its focus to occupations
related to software engineering, which in general
are less associated with women (De-Arteaga et al.,
2019). To this end, we will use the exploration

15

Figure 3: Keyword search in the exploration view of LM-Debugger, which matches user queries against the tokens
promoted by value vectors of the model.

Figure 4: Cluster visualization in the exploration view of LM-Debugger, which maps a given value vector to its
cluster of similar value vectors in the network.

view of LM-Debugger to search for value vectors
promoting software-related concepts.

Searching the keywords “software”, “devel-
oper”, and “engineer” brings up two value vectors
with coherent concepts: L10D3141 and L17D115
(Figure 3). Now, we will add these value vectors
to the intervention panel in the prediction view,
and run the example again. Our intervention, that
only involved two (0.002%) vectors in the network,
dramatically changed the prediction to software,
programmer, consultant, developer, effec-
tively shifting it in the direction we wanted. This
demonstrates the power of LM-Debugger to change
model behaviour and fix undesirable predictions.

Controlling the Sentiment of Generated Text.
The previous example focused on next-token pre-
diction. We now take this one step further and
configure powerful and general interventions that

influence various texts generated by the model. For
our experimental setting, we will attempt to control
the sentiment in generated reviews by GPT2, for
inputs taken from the Yelp dataset (Asghar, 2016).

We choose our interventions independently of
the inputs, with two easy steps. First, we use the
keyword search (Figure 3) to identify “seed” value
vectors that promote positive and negative adjec-
tives/adverbs, using the queries “terrible, mediocre,
boring” and “spacious, superb, delicious”. Then,
we take one value vector for each polarity and, us-
ing the cluster visualization (Figure 4), expand it
to a diverse set of vectors from its corresponding
cluster, that promote similar concepts. Overall, we
select 5-6 value vectors for each polarity (details in
Appendix A.1), to which we apply interventions.

Table 2 presents the texts generated by GPT2
(each limited to 10 tokens) for multiple inputs, with
and without applying interventions. Clearly, across

16

Input Interven. Continuation

“Service in this place is”
- a bit of a mess. I’m not sure
↑ Positive a good place to make the right efforts to make
↑ Negative a waste of a bunch of crap that is too

“I have been to this
restaurant twice and”

- both times I was disappointed. The first time I
↑ Positive have been served excellent food and good service. The
↑ Negative have been disappointed. The food is over processed and

“We went on a weeknight.
Place was”

- packed. We had to wait for the bus
↑ Positive good, good food, good staff, good people
↑ Negative too far for us to get lost. We were

“Went for breakfast on
6/16/14. We”

- had a great time. We had a great time
↑ Positive have a good team of people who are able to
↑ Negative were too heavy for the wrong type of food that

Table 2: Continuations (limited to 10 tokens) generated by GPT2 for different inputs from the Yelp dataset, with
and without interventions for “turning on” sub-updates for positive and negative sentiment.

all the examples, our intervention in the prediction
successfully leads to the desired effect, turning the
sentiment of the generated text to be positive or
negative, according to the configured sub-updates.

6 Implementation Details

The prediction view is implemented as a React web
application with a backend Flask server that runs an
API for executing models from the Transformers
library by HuggingFace (Wolf et al., 2020). The
exploration view is a Streamlit web application,
which (a) sends user search queries to an Elas-
ticsearch index with the top tokens of all vector
value projections, and (b) visualize clusters of value
vectors created with the scikit-learn package (Pe-
dregosa et al., 2011). Our current implementation
supports any GPT2 model from HuggingFace, and
other auto-regressive models can be plugged-in
with only a few local modifications (e.g. translat-
ing the relevant layer names). More details and in-
structions for how to deploy and run LM-Debugger
are provided at https://github.com/mega002/
lm-debugger.

7 Related Work

Interpreting single-predictions and the general be-
havior of LMs is a growing research area that at-
tracted immense attention in recent years (Belinkov
et al., 2020; Choudhary et al., 2022). LM-Debugger
is a the first tool to interpret and intervene in the pre-
diction construction process of transformer-based
LMs based on FFN updates.

Existing interpretation and analysis frameworks
mostly rely on methods for behavioral analysis
(Ribeiro et al., 2020) by probing models with ad-
versarial (Wallace et al., 2019b) or counterfactual

examples (Tenney et al., 2020), input saliency meth-
ods that assign importance scores to input features
(Wallace et al., 2019b; Tenney et al., 2020), and
analysis of the attention layers (Hoover et al., 2020;
Vig and Belinkov, 2019).

More related to LM-Debugger, other tools ana-
lyze patterns in neuron activations (Rethmeier et al.,
2020; Dalvi et al., 2019; Alammar, 2021). Unlike
these methods, we focus on interpreting the model
parameters and on intervening in their contribution
to the model’s prediction.

The functionality of LM-Debugger is mostly re-
lated to tools that trace hidden representations
across layers. Similarly to LM-Debugger, Alammar
(2021); Nostalgebraist (2020) interpret the token
representation in terms of the output vocabulary.
We take this one step further and interpret the FFN
updates to the representation, allowing to observe
not only the evolution of the representation but also
the factors that induce changes in it.

Our intervention in FFN sub-updates relates to
recent methods for locating and editing knowledge
in the FFN layers of LMs (Meng et al., 2022;
Dai et al., 2022). Different from these methods,
LM-Debugger aims to provide a comprehensive
and fine-grained interpretation of the prediction
construction process across the layers.

8 Conclusion

We introduce LM-Debugger, a debugger tool for
transformer-based LMs, and the first tool to analyze
the FFN updates to the token representations across
layers. LM-Debugger provides a fine-grained inter-
pretation of single-predictions, as well as a power-
ful framework for intervention in LM predictions.

17

https://github.com/mega002/lm-debugger
https://github.com/mega002/lm-debugger

Ethical Statement

Our work aims to increase the transparency of
transformer-based LMs. It is well known that such
models often produce offensive, harmful language
(Bender et al., 2021; McGuffie and Newhouse,
2020; Gehman et al., 2020; Wallace et al., 2019a),
which might originate in toxic concepts encoded in
their parameters (Geva et al., 2022). LM-Debugger,
which traces and interprets LM predictions, could
expose such toxic concepts and therefore should be
used with caution.
LM-Debugger also provides a framework for

modifying LM behavior in particular directions.
While our intention is to provide developers tools
for fixing model errors, mitigating biases, and build-
ing trustworthy models, this capability also has the
potential for abuse. In this context, it should be
made clear that LM-Debugger does not modify the
information encoded in LMs, but only changes
the intensity in which this information is exposed
in the model’s predictions. At the same time,
LM-Debugger lets the user observe the intensity of
updates to the prediction, which could be used to
identify suspicious interventions. Nonetheless, be-
cause of these concerns, we stress that LMs should
not be integrated into critical systems without cau-
tion and monitoring.

Acknowledgements

We thank the REVIZ team at the Allen Institute for
AI, particularly Sam Skjonsberg and Sam Stuesser.
This project has received funding from the Com-
puter Science Scholarship granted by the Séphora
Berrebi Foundation, the PBC fellowship for out-
standing PhD candidates in Data Science, and the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme, grant agreement No. 802774
(iEXTRACT).

References
J Alammar. 2021. Ecco: An open source library for the

explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 249–257,
Online. Association for Computational Linguistics.

Nabiha Asghar. 2016. Yelp dataset challenge: Review
rating prediction. arXiv preprint arXiv:1605.05362.

Yonatan Belinkov, Sebastian Gehrmann, and Ellie
Pavlick. 2020. Interpretability and analysis in neural
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 1–5, Online. Association for
Computational Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the ACM Confer-
ence on Fairness, Accountability, and Transparency
(FAccT).

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S.
Chen, Kathleen Creel, Jared Davis, Dora Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E.
Gillespie, Karan Goel, Noah D. Goodman, Shelby
Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong,
Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain,
Dan Jurafsky, Pratyusha Kalluri, Siddharth Karam-
cheti, Geoff Keeling, Fereshte Khani, O. Khattab,
Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Ro-
hith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xi-
ang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir P. Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Benjamin Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Robert Re-
ich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani,
Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy
Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr,
Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Ya-
sunaga, Jiaxuan You, Matei A. Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang,
Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021.
On the opportunities and risks of foundation models.
ArXiv, abs/2108.07258.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In

18

https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://doi.org/10.18653/v1/2020.acl-tutorials.1

Proceedings of Neural Information Processing Sys-
tems (NeurIPS).

Shivani Choudhary, Niladri Chatterjee, and Subir Ku-
mar Saha. 2022. Interpretation of black box nlp mod-
els: A survey. arXiv preprint arXiv:2203.17081.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502, Dublin, Ireland. Association for Computational
Linguistics.

Fahim Dalvi, Avery Nortonsmith, Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, and
James Glass. 2019. NeuroX: A toolkit for analyzing
individual neurons in neural networks. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):9851–9852.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, FAT* ’19,
page 120–128, New York, NY, USA. Association for
Computing Machinery.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of the conference on computer
vision and pattern recognition (CVPR).

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer

Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187–196, Online. As-
sociation for Computational Linguistics.

Taelin Karidi, Yichu Zhou, Nathan Schneider, Omri
Abend, and Vivek Srikumar. 2021. Putting words
in BERT’s mouth: Navigating contextualized vector
spaces with pseudowords. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10300–10313, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Kris McGuffie and Alex Newhouse. 2020. The radical-
ization risks of gpt-3 and advanced neural language
models. arXiv preprint arXiv:2009.06807.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual knowl-
edge in gpt. arXiv preprint arXiv:2202.05262.

Nostalgebraist. 2020. interpreting GPT: the logit lens.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Nils Rethmeier, Vageesh Kumar Saxena, and Isabelle
Augenstein. 2020. Tx-ray: Quantifying and explain-
ing model-knowledge transfer in (un-)supervised nlp.
In Proceedings of the 36th Conference on Uncer-
tainty in Artificial Intelligence (UAI), volume 124 of
Proceedings of Machine Learning Research, pages
440–449. PMLR.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, and Mike Gatford.
1995. et almbox. 1995. okapi at trec-3. Nist Special
Publication Sp, 109:109.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

19

https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://doi.org/10.1609/aaai.v33i01.33019851
https://doi.org/10.1609/aaai.v33i01.33019851
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.mlr.press/v124/rethmeier20a.html
https://proceedings.mlr.press/v124/rethmeier20a.html
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15

you need. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5998–6008.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019a. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019b.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

A Appendix

A.1 Details on Interventions to Control
Generated Text Sentiment

Table 3 lists all the value vectors selected for our
interventions described in §5, and examples for
top-scoring tokens in their projections. These
vectors were found with the exploration view of
LM-Debugger (§3.2), using both keyword search
and clustering visualisation. All the interventions
were configured to “turn on” these vectors, namely,
setting their coefficients to be maximal for the cor-
responding layer. This is following the observation
by Geva et al. (2022) that FFN updates operate in
a token promotion mechanism (rather than elimina-
tion).

20

https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Sentiment Value Vector Example Top-scoring Tokens

Positive

L13D1763 properly, appropriately, adequate, truthful, humane,
fulfil, inclusive, timely, patiently, sustainable

L13D2011 clean, Proper, secure, flawless, safest, graceful, smooth,
calmly

L14D944 peacefully, graceful, respectful, careful, generous,
patiently, calm, tolerant, fair

L15D74 Excellence, superb, trustworthy, marvelous, terrific,
awesome, Amazing

L20D988 successful, optimal, perfect, satisfactory, welcome,
helpful, fulfilling, healthy

Negative

L11D4 outdated, inadequate, stale, lousy, dull, mediocre, boring,
wasteful

L14D2653 trivial, dismiss, rigid, unsupported, only, prejud, obfusc,
pretend, dispar, slander

L16D974 inappropriately, poorly, disrespect, unreliable,
unhealthy, insecure, improperly, arrogance

L17D3790 inappropriate, improper, wrong, bad, harmful,
unreasonable, defective, disturbance, errors

L18D91 confused, bizarre, unfairly, horrible, reckless, neglect,
misplaced, strange, nasty, mistakenly

L18D3981 wrong, incorrect, insufficient, misleading, premature,
improperly, unrealistic, outdated, unfair

Table 3: Value vectors used for controlling sentiment in generated text, that promote positive and negative
adjectives/adverbs. For each vector, we show example top-scoring tokens from its projection to the vocabulary, as
presented in the exploration view of LM-Debugger.

21

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 22 - 29
December 7-11, 2022 c©2022 Association for Computational Linguistics

EasyNLP: A Comprehensive and Easy-to-use Toolkit for
Natural Language Processing

Chengyu Wang1, Minghui Qiu1∗, Taolin Zhang1,2, Tingting Liu1,2, Lei Li1,2,
Jianing Wang1,2, Ming Wang1, Jun Huang1, Wei Lin1

1 Platform of AI (PAI), Alibaba Group 2 East China Normal University
{chengyu.wcy,minghui.qmh,huangjun.hj}@alibaba-inc.com

Abstract
Pre-Trained Models (PTMs) have reshaped the
development of Natural Language Processing
(NLP) and achieved significant improvement in
various benchmarks. Yet, it is not easy for in-
dustrial practitioners to obtain high-performing
PTM-based models without a large amount of
labeled training data and deploy them online
with fast inference speed. To bridge this gap,
EasyNLP is designed to make it easy to build
NLP applications, which supports a compre-
hensive suite of NLP algorithms. It further fea-
tures knowledge-enhanced pre-training, knowl-
edge distillation and few-shot learning func-
tionalities, and provides a unified framework of
model training, inference and deployment for
real-world applications. EasyNLP has powered
over ten business units within Alibaba Group
and is seamlessly integrated to the Platform
of AI (PAI) products on Alibaba Cloud. The
source code of EasyNLP is released at GitHub
(https://github.com/alibaba/EasyNLP).

1 Introduction

Pre-Trained Models (PTMs) such as BERT, GPT-
3 and PaLM have achieved remarkable results in
NLP. With the scale expansion of PTMs, the per-
formance of NLP tasks has been continuously im-
proved; thus, there is a growing trend of ultra-large-
scale pre-training, pushing the scale of PTMs from
millions, billions, to even trillions (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022).

However, the application of large PTMs in indus-
trial scenarios is still a non-trivial problem, with
reasons as follows. i) Large PTMs are not always
smarter and can make commonsense mistakes due
to the lack of world knowledge (Petroni et al.,
2019). Hence, it is highly necessary to make PTMs
explicitly understand world facts by knowledge-
enhanced pre-training, especially for supporting
domain-specific applications. ii) Although large-
scale PTMs have achieved good results with few

∗ Corresponding Author.

training samples, the problem of insufficient data
and the huge size of models such as GPT-3 still
restrict the usage of these models. Thus, few-shot
fine-tuning BERT-style PTMs is more practical for
online applications (Gao et al., 2021). iii) Last but
not least, although large-scale PTMs have become
an important part of the NLP learning pipeline, the
slow training and inference speed seriously affects
online applications that require higher QPS (Query
Per Second) with limited computational resources.

To address these issues, we develop EasyNLP,
an NLP toolkit that is designed to make the ap-
plications of large PTMs to industrial scenarios
more efficiently and effectively. EasyNLP pro-
vides knowledge-enhanced pre-training function-
alities to improve the knowledge understanding
abilities of PTMs. Specifically, it integrates our
DKPLM framework (Zhang et al., 2022) that en-
ables the decomposition of knowledge-enhanced
pre-training and task-specific learning. Hence,
the resulting models can be tuned and deployed
in the same way as BERT (Devlin et al., 2019).
EasyNLP is equipped with a variety of popular
prompt-based few-shot learning algorithms such as
PET (Schick and Schütze, 2021) and P-Tuning (Liu
et al., 2021b). Particularly, we propose a new few-
shot learning paradigm named Contrastive Prompt
Tuning (CP-Tuning) (Xu et al., 2022) that eases
the manual labor of verbalizer construction based
on contrastive learning. Finally, EasyNLP sup-
ports several knowledge distillation algorithms that
compress large PTMs into small and efficient ones.
Among them, the MetaKD algorithm (Pan et al.,
2021) can significantly improve the effectiveness
of the learned models with cross-domain datasets,
which is particular common in industry.

Overall, our EasyNLP toolkit can provide users
with large-scale and robust learning functionali-
ties, and is seamlessly connected to the Platform
of AI (PAI)1 products. To demonstrate the useful

1https://www.alibabacloud.com/product/

22

https://github.com/alibaba/EasyNLP
https://www.alibabacloud.com/product/machine-learning

of EasyNLP, we also present the results of stan-
dard benchmarks and some real-world industrial
scenarios to show how EasyNLP brings substantial
improvements to these applications.

In a nutshell, the main features of the EasyNLP
toolkit include the following aspects:

• Easy-to-use and highly customizable. In ad-
dition to providing easy-to-use commands to
call cutting-edge NLP models, EasyNLP ab-
stracts customized modules such as AppZoo
and ModelZoo to make it easy to build NLP
applications. It also features DataHub that
provides users with a simple interface to load
and process various types of NLP datasets.

• Compatible with open-source community.
EasyNLP has rich APIs to support the train-
ing of models from other open-source libraries
such as Huggingface/Transformers2 with the
PAI’s distributed learning framework. It is
also compatible with the PTMs in EasyTrans-
fer ModelZoo 3 (Qiu et al., 2021).

• Product-ready support. EasyNLP is seam-
lessly integrated to PAI products on Alibaba
Cloud to provide full model training and serv-
ing experience, including PAI-DSW for model
development, PAI-DLC for cloud-native train-
ing, PAI-EAS for online serving, and PAI-
Designer for zero-code model training.

• Pre-training knowledge-enhanced PTMs.
EasyNLP also is equipped with knowledge-
enhanced PTMs of various domains. Its
pre-training APIs enable users to obtain cus-
tomized PTMs using their own knowledge
bases with just a few lines of codes.

• Deploying large-scale PTMs. EasyNLP pro-
vides few-shot learning capabilities based on
prompts, allowing users to fine-tune large-
scale PTMs with only a few training samples
to achieve good results. Meanwhile, it pro-
vides knowledge distillation functionalities to
help quickly distill large models to small and
efficient models for online deployment.

2 Related Work

In this section, we summarize the related work on
PTMs, prompt learning and knowledge distillation.

machine-learning
2https://github.com/huggingface/transformers
3https://github.com/alibaba/EasyTransfer

Pre-trained Language Models. PTMs have
achieved significant improvements on various tasks
by self-supervised pre-training (Qiu et al., 2020).
To name a few, BERT (Devlin et al., 2019) learns
bidirectional contextual representations by trans-
former encoders. Other transformer encoder-based
PTMs include Transformer-XL (Dai et al., 2019),
XLNet (Yang et al., 2019) and many others. The
encoder-decoder and auto-regressive decoder archi-
tectures are used in T5 (Raffel et al., 2020) and
GPT-3 (Brown et al., 2020). Knowledge-enhanced
PTMs (Zhang et al., 2019; Liu et al., 2020; Sun
et al., 2020) improve language understanding abil-
ities of PTMs via injecting relational triples ex-
tracted from knowledge bases.
Prompt Learning for PTMs. Prompt learning
models the probability of texts directly as the model
prediction results based on language models (Liu
et al., 2021a). In the literature, PET (Schick and
Schütze, 2021) models NLP tasks as cloze prob-
lems and maps the results of the masked language
tokens to class labels. Gao et al. (2021) generates
discrete prompts from T5 (Raffel et al., 2020) to
support prompt discovery. P-Tuning (Liu et al.,
2021b) learns continuous prompt embeddings with
differentiable parameters. Our CP-Tuning (Xu
et al., 2022) optimizes the output results based on
contrastive learning, without defining mappings
from outputs to class labels.
Knowledge Distillation. Knowledge distillation
aims at learning a smaller model from an ensem-
ble or a larger model (Hinton et al., 2015). For
large-scale PTMs, DistillBERT (Sanh et al., 2019)
and PKD (Sun et al., 2019) applies the distilla-
tion loss in the pre-training and fine-tuning stages,
separately. TinyBERT (Jiao et al., 2020a) further
distills BERT in both stages, considering various
types of signals. Due to space limitation, we do not
further elaborate other approaches. Our MetaKD
method (Pan et al., 2021) further improves the ac-
curacy of the student models by exploiting cross-
domain transferable knowledge, which is fully sup-
ported by EasyNLP.

3 The EasyNLP Toolkit

In this section, we introduce various aspects of our
EasyNLP toolkit in detail.

3.1 Overview

We begin with an overview of EasyNLP in Figure 1.
EasyNLP is built upon PyTorch and supports rich

23

https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://github.com/huggingface/transformers
https://github.com/alibaba/EasyTransfer

PyTorch

ModelZooBasic
Modules

BERT ALBERT DKPLM

Backend

DataHub

Datasets Pre-training Corpora

IO Modules

Table
Reader

ODPS
Reader

CSV
Reader

WebDataset

Text
Classification

Text
Matching

Sequence
Labeling

Language
Modeling

Feature
Vectorization

Other Apps

AppZoo Knowledge Distillation

Vanilla KD MetaKD

Few-shot Learning

PET P-Tuning CP-
Tuning

Solutions Text Tagging Spam Detection Text Retrieval User-defined Solutions

Environments Local Environment Cloud Environment (PAI Products)

GPT Text-
CNN

Other
Models

… …

Figure 1: An overview of the EasyNLP toolkit.

data readers to process data from multiple sources.
Users can load any PTMs from ModelZoo and
datasets from DataHub, build their applications
from AppZoo, or explore its advanced function-
alities such as knowledge-enhanced pre-training,
knowledge distillation and few-shot learning. The
codes can run either in local environments or PAI’s
products on the cloud. Users can also explore vari-
ous solutions on our platform to support real-world
applications. In addition, all EasyNLP’s APIs are
also released to make it easy for users to customize
any kinds of NLP applications.

3.2 DataHub, ModelZoo and AppZoo
DataHub. DataHub provides users with an in-
terface to load and process various kinds of data.
It is compatible with Huggingface datasets4 as a
built-in library that supports unified interface calls
and contains datasets of a variety of tasks. Some
examples are listed in Table 1. Users can load
the required data by specifying the dataset name
through the load_dataset interface, and then
use the GeneralDataset interface to automat-
ically process the data into model input. An ex-
ample of loading and pre-processing the TNEWS
dataset, together with its subsequent steps, is shown
in Code 1. For user-defined datasets, it is also
straightforward to inherit the GeneralDataset
class to customize the data format.
ModelZoo. PTMs such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and T5 (Raffel
et al., 2020) greatly improve the performance of
NLP tasks. To facilitate user deployment of mod-
els, ModelZoo provides general pre-trained models

4https://github.com/huggingface/datasets

Task Type Example of Datasets

Sequence Classification TNEWS5, SogouCA6

Text Generation THUCNews7, SogouCS8

Few-shot / Zero-shot Learning BUSTM9, CHID10

Knowledge-based NLU OntoNotes11, SanWen12

Table 1: A partial list of datasets in EasyNLP DataHub.

from easynlp.dataset import load_dataset,
GeneralDataset

load dataset
dataset = load_dataset(’clue’, ’tnews’)["train"]
parse data into classification model input
encoded = GeneralDataset(dataset, ’chinese-bert-base’)
load model
model = SequenceClassification(’chinese-bert-base’)
trainer = Trainer(model, encoded)
start to train
trainer.train()

Code 1: Load the TNEWS training set and build a text
classification application using EasyNLP.

as well as our own models for users to use, such as
DKPLM (Zhang et al., 2022) of various domains.
A few widely-used non-PTM models are also sup-
ported, such as Text-CNN (Kim, 2014).
AppZoo. To help users build NLP applications
more easily with our framework, we further pro-
vide a comprehensive NLP application tool named
AppZoo. It supports running applications with a
few command-line arguments and provides a vari-

5https://github.com/CLUEbenchmark/CLUE
6http://www.sogou.com/labs/resource/ca.php
7http://thuctc.thunlp.org/
8https://www.sogou.com/labs/resource/cs.php
9https://github.com/xiaobu-coai/BUSTM

10https://github.com/chujiezheng/ChID-Dataset
11https://catalog.ldc.upenn.edu/LDC2013T19
12https://github.com/lancopku/

Chinese-Literature-NER-RE-Dataset

24

https://github.com/huggingface/datasets
https://github.com/CLUEbenchmark/CLUE
http://www.sogou.com/labs/resource/ca.php
http://thuctc.thunlp.org/
https://www.sogou.com/labs/resource/cs.php
https://github.com/xiaobu-coai/BUSTM
https://github.com/chujiezheng/ChID-Dataset
https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/lancopku/Chinese-Literature-NER-RE-Dataset
https://github.com/lancopku/Chinese-Literature-NER-RE-Dataset

easynlp \
--mode=train \
--worker_gpu=1 \
--tables=train.tsv,dev.tsv \
--input_schema=sent:str:1,label:str:1 \
--first_sequence=sent \
--label_name=label \
--label_enumerate_values=0,1 \
--checkpoint_dir=./classification_model \
--epoch_num=1 \
--sequence_length=128 \
--app_name=text_classify \
--user_defined_parameters=
’pretrain_model_name_or_path=bert-small-uncased’

Code 2: AppZoo for training a BERT-based text classifier
using EasyNLP.

ety of mainstream or innovative NLP applications
for users. AppZoo provides rich modules for users
to build different application pipelines, including
language modeling, feature vectorization, sequence
classification, text matching, sequence labeling and
many others. An example of training a text classi-
fier using AppZoo is shown in Code 2.

3.3 In-house Developed Algorithms

In this section, we introduce in-house developed
algorithms in EasyNLP. All these algorithms have
been tested in real-world applications.

3.3.1 Knowledge-enhanced Pre-training
Knowledge-enhanced pre-training improves the
performance of PTMs by injecting the relational
facts from knowledge bases. Yet, a lot of existing
works require additional knowledge encoders dur-
ing pre-training, fine-tuning and inference (Zhang
et al., 2019; Liu et al., 2020; Sun et al., 2020).

The proposed DKPLM paradigm (Zhang et al.,
2022) decomposes the knowledge injection pro-
cess. For DKPLM, knowledge injection is only
applied during pre-training, without introducing
extra parameters as knowledge encoders, allevi-
ating the significant computational burdens for
users. Meanwhile, during fine-tuning and inference
stages, our model can be utilized in the same way as
that of BERT (Devlin et al., 2019) and other plain
PTMs, which facilitates the model fine-tuning and
deployment in EasyNLP and other environments.
Specifically, the DKPLM framework introduces
three novel techniques for knowledge-enhanced
pre-training. It recognizes long-tail entities from
text corpora for knowledge injection only, avoiding
learning too much redundant and irrelevant infor-
mation from knowledge bases (Zhang et al., 2021).
Next, the representations of entities are replaced
by “pseudo token representations” derived from

knowledge bases, without introducing any extra
parameters to DKPLM. Finally, a relational knowl-
edge decoding task is introduced to force the model
to understand what knowledge is injected.

In EasyNLP, we provide the entire pre-training
pipeline of DKPLM for users. In addition, a collec-
tion of pre-trained DKPLMs for specific domains
have been registered in ModelZoo for supporting
domain-specific applications.

3.3.2 Few-shot Learning for PTMs
For low-resource scenarios, prompt-based learning
leverages prompts as task guidance for effective
few-shot fine-tuning. In EasyNLP, to facilitate easy
few-shot learning, we integrate PET (Schick and
Schütze, 2021) and P-Tuning (Liu et al., 2021b)
into AppZoo that allow users call the algorithms in
the similar way compared to standard fine-tuning.

It should be further noted that either PET or P-
Tuning require the explicit handcraft of verbalizers,
which is a tedious process and may lead to unsta-
ble results. Our CP-Tuning approach (Xu et al.,
2022) enables few-shot fine-tuning PTMs without
the manual engineering of task-specific prompts
and verbalizers. A pair-wise cost-sensitive con-
trastive learning is introduced to achieve verbalizer-
free class mapping by learning to distinguish differ-
ent classes. Users can also explore CP-Tuning in
AppZoo for any tasks that classical prompt-based
methods support.

3.3.3 Knowledge Distillation for PTMs
The large model size and the long inference time
hinder the deployment of large-scale PTMs to
resource-constrained applications. In EasyNLP,
we provide a complete learning pipeline for knowl-
edge distillation, including data augmentation for
training sets, logits extraction from teacher models
and distilled training of student models.

In addition, we notice that a majority of existing
approaches focus on a single domain only. The
proposed MetaKD algorithm (Pan et al., 2021)
explicitly leverages the cross-domain transferable
knowledge to improve the accuracy of student mod-
els. It first obtain a meta-teacher model to capture
transferable knowledge at both instance-level and
feature-level from multiple domains. Next, a meta-
distillation algorithm is employed to learn single-
domain student models with selective signals from
the meta-teacher. In EasyNLP, the MetaKD pro-
cess is implemented as a general feature for any
types of BERT-style PTMs.

25

PTM AFQMC CMNLI CSL IFLYTEK OCNLI TNEWS WSC Average

BERT-base 72.17 75.74 80.93 60.22 78.31 57.52 75.33 71.46
BERT-large 72.89 77.62 81.14 60.70 78.95 57.77 78.18 72.46
RoBERTa-base 73.10 80.75 80.07 60.98 80.75 57.93 86.84 74.35
RoBERTa-large 74.81 80.52 82.60 61.37 82.49 58.54 87.50 75.40
MacBERT-base 74.23 80.65 81.70 61.14 80.65 57.65 80.26 73.75
MacBERT-large 74.37 81.19 83.70 62.05 81.65 58.45 86.84 75.46

Table 2: CLUE performance of BERT, RoBERTa and MacBERT fine-tuned with EasyNLP (%).

PTM MNLI QNLI QQP RTE SST-2 MRPC CoLA STSB Average

BERT-base 84.8 91.4 91.1 68.3 92.5 88.1 55.3 89.6 82.6
BERT-large 86.6 92.4 91.2 70.8 93.4 88.2 61.1 90.1 84.2
RoBERTa-base 87.3 92.5 92.1 77.3 94.9 90.2 63.9 91.1 86.2
RoBERTa-large 90.1 94.5 92.3 87.1 96.4 91.0 67.8 92.3 88.9

Table 3: GLUE performance of BERT and RoBERTa fine-tuned with EasyNLP (%).

4 System Evaluations and Applications

In this section, we empirically examine the effec-
tiveness and efficiency of the EasyNLP toolkit on
both public datasets and industrial applications.

4.1 CLUE and GLUE Benchmarks

In order to validate the effectiveness of EasyNLP
on model fine-tuning, we fine-tune PTMs on the
CLUE and GLUE benchmarks (Wang et al., 2019;
Xu et al., 2020). For all tasks, we use a limited
hyper-parameter search space, with batch sizes in
{8, 16, 32, 48}, sequence length in {128, 256} and
learning rates in {1e−5, 2e−5, 3e−5, 4e−5, 5e−
5}. The underlying PTMs include BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). We
also evaluate MacBERT (Cui et al., 2020) for the
Chinese benchmark CLUE. We report the results
over the development sets of each task in the two
benchmarks, shown in Tables 2 and 3, respectively.
The obtained comparable performance has shown
the reliability of EasyNLP, which achieves similar
performance compared to other open-source frame-
works and their original implementations.

4.2 Evaluation of Knowledge-enhanced
Pre-training

We report the performance of DKPLM over zero-
shot knowledge probing tasks, including LAMA
(Petroni et al., 2019) and LAMA-UHN (Pörner
et al., 2019), with the results summarized in Ta-
ble 4. Compared to strong baselines (i.e., Co-
LAKE (Sun et al., 2020) K-Adapter (Wang et al.,
2021a) and KEPLER (Wang et al., 2021b)), we
see that DKPLM achieves state-of-the-art results
over three datasets (+1.57% on average). The re-

sult of DKPLM is only 0.1% lower than K-Adapter,
without using any T-REx training data and larger
backbones. We can see that our pre-training pro-
cess based on DKPLM can effectively store and
understand factual relations from knowledge bases.

Industrial Applications. Based on the proposed
DKPLM framework (Zhang et al., 2022), we have
pre-trained a series of domain-specific PTMs to
provide model service inside Alibaba Group, such
as medical and finance domains, and observed con-
sistent improvement in downstream NLP tasks. For
example, the medical-domain DKPLM improves
the accuracy of a medical named entity recognition
task by over 3%, compared to the standard BERT
model (Devlin et al., 2019). The pre-trained model
(named pai-dkplm-medical-base-zh) has
also been released in our EasyNLP ModelZoo.

4.3 Evaluations of Few-shot Learning

We compare CP-Tuning (Xu et al., 2022) against
several prompt-based fine-tuning approaches in-
cluding PET (Schick and Schütze, 2021), LM-
BFF (Gao et al., 2021) (in three settings where
“Auto T”, “Auto L” and “Auto T+L” refer to the
prompt-tuned PTM with automatically generated
templates, label words and both, respectively) and
P-Tuning (Liu et al., 2021b). The experiments are
conducted over several text classification datasets
in a 16-shot learning setting. The underlying PTM
is RoBERTa (Liu et al., 2019). Readers can refer
to Xu et al. (2022) for more details. From the re-
sults in Table 5, we can see that the performance
gains of CP-Tuning over all the tasks are consistent,
compared to state-of-the-art methods.

Industrial Applications. For business customer

26

Dataset ELMo BERT RoBERTa CoLAKE K-Adapter∗ KEPLER DKPLM

Google-RE 2.2% 11.4% 5.3% 9.5% 7.0% 7.3% 10.8%
UHN-Google-RE 2.3% 5.7% 2.2% 4.9% 3.7% 4.1% 5.4%

T-REx 0.2% 32.5% 24.7% 28.8% 29.1% 24.6% 32.0%
UHN-T-REx 0.2% 23.3% 17.0% 20.4% 23.0% 17.1% 22.9%

Table 4: The performance on LAMA knowledge probing datasets. Note that K-Adapter is trained based on a
large-scale model and uses a subset of T-REx as its training data.

Method SST-2 MR CR MRPC QQP QNLI RTE SUBJ Avg.

Standard Fine-tuning 78.62 76.17 72.48 64.40 63.01 62.32 52.28 86.82 69.51
PET 92.06 87.13 87.13 66.23 70.34 64.38 65.56 91.28 78.01
LM-BFF (Auto T) 90.60 87.57 90.76 66.72 65.25 68.87 65.99 91.61 78.42
LM-BFF (Auto L) 90.55 85.51 91.11 67.75 70.92 66.22 66.35 90.48 78.61
LM-BFF (Auto T+L) 91.42 86.84 90.40 66.81 61.61 61.89 66.79 90.72 77.06
P-tuning 91.42 87.41 90.90 71.23 66.77 63.42 67.15 89.10 78.43

CP-Tuning 93.35 89.43 91.57 72.60 73.56 69.22 67.22 92.27 81.24

Table 5: Comparison between CP-Tuning and baselines over the testing sets in terms of accuracy (%).

Method Amazon MNLI

BERT-s 87.9 81.9
BERT-mix 89.5 84.4
BERT-mtl 89.8 84.2

BERT-s → TinyBERT 86.7 79.3
BERT-mix → TinyBERT 87.3 79.6
BERT-mtl → TinyBERT 87.7 79.7

MetaKD 89.4 80.4

Table 6: Evaluation of MetaKD over Amazon reviews
and MNLI in terms of averaged accuracy (%).

service, it is necessary to extract the fine-grained at-
tributes and entities from texts, which may involve
a large number of classess with few training data
available. By applying our algorithm in EasyNLP,
the accuracy scores of entity and attribute extrac-
tion are improved by 2% and 5%. In addition, our
few-shot toolkit produces the best performance on
the FewCLUE benchmark (Xu et al., 2021).

4.4 Evaluations of Knowledge Distillation

We further report the performance of MetaKD (Pan
et al., 2021) on Amazon reviews (Blitzer et al.,
2007) and MNLI (Williams et al., 2018), where the
two datasets contain four and five domain instances,
respectively. In the experiments, we train the meta-
teacher over multi-domain training sets, and distill
the meta-teacher to each of all the domains. The
teacher model is BERT-base (with 110M parame-
ters), while the student model is BERT-tiny (with
14.5M parameters). Table 6 shows the performance
of baselines and MetaKD, in terms of averaged ac-

curacy across domains. BERT-s refers to a single
BERT teacher trained on each domain. BERT-mix
is one BERT teacher trained on the mixture of all
domain data. BERT-mtl is one teacher trained by
multi-task learning over all domains. For distilla-
tion, “→ TinyBERT” means using the KD method
described in Jiao et al. (2020b) to distill the cor-
responding teacher model. The results show that
MetaKD significantly reduces the model size while
preserving a similar performance. For more details,
we refer the readers to Pan et al. (2021).

Industrial Applications. Distilled PTMs have
been widely used inside Alibaba Group due to the
high QPS requirements of online e-commerce ap-
plications. For example, in the AliMe chatbot (Qiu
et al., 2017), we distill the BERT-based query in-
tent detection model from the base version to the
tiny version, resulting in 7.2x inference speedup
while the accuracy is only decreased by 1%.

5 Conclusion

In this paper, we introduced EasyNLP, a toolkit that
is designed to make it easy to develop and deploy
deep NLP applications based on PTMs. It supports
a comprehensive suite of NLP algorithms and fea-
tures knowledge-enhanced pre-training, knowledge
distillation and few-shot learning functionalities for
large-scale PTMs. Currently, EasyNLP has pow-
ered a number of business units inside Alibaba
Cloud and provided NLP service on the cloud. The
toolkit has been open-sourced to promote research
and development for NLP applications.

27

Broader Impact

EasyNLP is a comprehensive toolkit for building
various NLP applications to support industrial sce-
narios. It has been seamlessly integrated into the
PAI products, and has been released to the open-
source community. EasyNLP is also highly bene-
ficial for academia, as it integrates state-of-the-art
methods and models to make it easy for researchers
to benchmark and develop their own algorithms.

Acknowledgments

The authors would like to thank Haojie Pan, Peng
Li, Boyu Hou, Xiaoqing Chen, Xiaodan Wang, Xi-
angru Zhu and many other members of the Alibaba
PAI team for their contribution and suggestions on
building the EasyNLP toolkit. This work is also
partially supported by Alibaba Group through Al-
ibaba Innovative Research Program and Alibaba
Research Intern Program.

References
John Blitzer, Mark Dredze, and Fernando Pereira. 2007.

Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
ACL.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,

Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for chinese natural language processing. In
EMNLP (Findings), pages 657–668.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In ACL, pages 2978–
2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL/IJCNLP, pages 3816–3830.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020a.
Tinybert: Distilling BERT for natural language under-
standing. In EMNLP (Findings), pages 4163–4174.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020b.
Tinybert: Distilling BERT for natural language under-
standing. In EMNLP (Findings), pages 4163–4174.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746–
1751.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT: en-
abling language representation with knowledge graph.
In AAAI, pages 2901–2908.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

28

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang
Zhang, Yaliang Li, and Jun Huang. 2021. Meta-kd: A
meta knowledge distillation framework for language
model compression across domains. In ACL/IJCNLP,
pages 3026–3036.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models
as knowledge bases? In EMNLP-IJCNLP, pages
2463–2473.

Nina Pörner, Ulli Waltinger, and Hinrich Schütze. 2019.
BERT is not a knowledge base (yet): Factual knowl-
edge vs. name-based reasoning in unsupervised QA.
CoRR, abs/1911.03681.

Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan
Chen, Weipeng Zhao, Haiqing Chen, Jun Huang, and
Wei Chu. 2017. Alime chat: A sequence to sequence
and rerank based chatbot engine. In ACL, pages 498–
503.

Minghui Qiu, Peng Li, Chengyu Wang, Haojie Pan,
Ang Wang, Cen Chen, Xianyan Jia, Yaliang Li, Jun
Huang, Deng Cai, and Wei Lin. 2021. Easytransfer:
A simple and scalable deep transfer learning platform
for NLP applications. In CIKM, pages 4075–4084.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
CoRR, abs/2003.08271.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In EACL, pages 255–269.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP-IJCNLP, pages 4322–4331.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
Colake: Contextualized language and knowledge em-
bedding. In COLING, pages 3660–3670.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021a. K-adapter: Infusing

knowledge into pre-trained models with adapters. In
ACL, pages 1405–1418.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2021b. KEPLER: A
unified model for knowledge embedding and pre-
trained language representation. Trans. Assoc. Com-
put. Linguistics, 9:176–194.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT, pages 1112–1122.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qianqian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A chinese language understanding evaluation
benchmark. In COLING, pages 4762–4772.

Ziyun Xu, Chengyu Wang, Peng Li, Yang Li, Ming
Wang, Boyu Hou, Minghui Qiu, Chengguang Tang,
and Jun Huang. 2021. When few-shot learning meets
large-scale knowledge-enhanced pre-training: Al-
ibaba at fewclue. In NLPCC, pages 422–433.

Ziyun Xu, Chengyu Wang, Minghui Qiu, Fuli Luo,
Runxin Xu, Songfang Huang, and Jun Huang. 2022.
Making pre-trained language models end-to-end few-
shot learners with contrastive prompt tuning. CoRR,
abs/2204.00166.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS, pages 5754–5764.

Ningyu Zhang, Shumin Deng, Xu Cheng, Xi Chen,
Yichi Zhang, Wei Zhang, and Huajun Chen. 2021.
Drop redundant, shrink irrelevant: Selective knowl-
edge injection for language pretraining. In IJCAI,
pages 4007–4014.

Taolin Zhang, Chengyu Wang, Nan Hu, Minghui Qiu,
Chengguang Tang, Xiaofeng He, and Jun Huang.
2022. DKPLM: decomposable knowledge-enhanced
pre-trained language model for natural language un-
derstanding. In AAAI.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced
language representation with informative entities. In
ACL, pages 1441–1451.

29

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 30 - 37
December 7-11, 2022 c©2022 Association for Computational Linguistics

An Explainable Toolbox for Evaluating Pre-trained
Vision-Language Models

Tiancheng Zhao1,2, Tianqi Zhang3, Mingwei Zhu3, Haozhan Shen3,
Kyusong Lee1,2, Xiaopeng Lu1,2, Jianwei Yin3

Om Research Lab, Binjiang Institute of Zhejiang University1

Linker Technology Research Co. Ltd2

College of Computer Science and Technology, Zhejiang University3

{tianchez, kyusongl}@zju-bj.com, lu_xiaopeng@hzlh.com
{zhang_tq, zhumw, cnfighting, zjuyjw}@zju.edu.cn

Abstract

We introduce VL-CheckList, a toolbox
for evaluating Vision-Language Pretrain-
ing (VLP) models, along with a benchmark
dataset for fine-grained VLP model anal-
ysis. Most existing VLP models evaluate
their performance by comparing the fine-
tuned downstream task performance. How-
ever, only average downstream task accu-
racy provides little information about the
pros and cons of each VLP method. In this
paper, we demonstrate how minor input
changes in language and vision will affect
the prediction outputs. We also provide a
guideline for the research community to uti-
lizes and contributes to this toolbox. Lastly,
a case study based on VL-CheckList is con-
ducted to analyze one of the representa-
tive VLP models. Data and code are avail-
able at https://github.com/om-ai-lab/
VL-CheckList

1 Introduction

The ability to quickly iterate various methods
and obtain insightful feedback is crucial for
successful research. For production machine
learning (ML) system, comprehensive testing
before deployment is crucial for reliable user
experience. Therefore, explainable ML evalu-
ation has emerged to complement benchmark
evaluation (Bolya et al., 2020; Ribeiro et al.,
2020; Du et al., 2022), which strives to provide
an interpretable evaluation of a ML systems
and analyze the system from a number of dis-
entangled aspects (Bolya et al., 2020).

The advantages of explainable evaluation
vs. typical benchmark evaluation include: (1)
downstream task performance only provides
a black box score and it is difficult to obtain
insights for improving a system. (2) typical
dataset is not designed to test models’ robust-
ness against extreme corner cases, which are

however crucial for many real-world tasks, e.g.
autonomous driving.

Given the importance of explainable ML
evaluation, this paper concerns about Vision-
Language Pretraining (VLP) models. VLP
models have rapidly improved (Li et al., 2020;
Radford et al., 2021; Li et al., 2021; Zhao
et al., 2022), thanks to the emergence of mul-
timodal transformers (Vaswani et al., 2017)
and the availability of large paired image-text
dataset (Sharma et al., 2018; Changpinyo et al.,
2021). Many proposed VLP models have aided
in achieving the state-of-the-art performance
of a variety of downstream multimodal tasks,
ranging from visual QA (Lu et al., 2019), mul-
timodal retrieval (Lu et al., 2021) to visual
grounding (Kamath et al., 2021) and many
others. On the other hand, the current defacto
method to evaluate a VLP model is based on
the fine-tuned downstream tasks performance,
which is insufficient due to the limitations of
benchmark evaluation.

To address this challenge, this paper intro-
duces VL-CheckList, an explainable framework
that comprehensively evaluates VLP models,
facilitates deeper understanding, and inspires
new ideas for improvement. The core princi-
ple of VL-CheckList are: (1) evaluate a VLP
model’s fundamental capabilities instead of its
performance on applications (2) disentangle
capabilities into relatively independent vari-
ables that are easier to analyze. Specifically,
we choose Image-Text-Matching (ITM) as the
main target of evaluation since it is perhaps
the most universal pretraining objective that
appear in all VLP methods (Li et al., 2019a,
2020; Radford et al., 2021; Li et al., 2021).
We then propose a taxonomy that divides the
capabilities of VLP systems into three cate-
gories: object, attribute and relation. Each
aspect is then further divided into more fine-

30

https://github.com/om-ai-lab/VL-CheckList
https://github.com/om-ai-lab/VL-CheckList

grained variables, e.g. attribute is composed of
color, material, and size, etc. Then, a linguistic-
aware negative sample sampling strategy is pro-
posed to create ”hard negative” that challenges
a VLP model’s discriminative power against
small changes in the input space. Lastly, VL-
CheckList is implemented as a toolbox that
allows the research community to plug into
their evaluation pipeline.

2 Related Work

Benchmark evaluation is a common method to
compare different ML models in previous re-
search (Rajpurkar et al., 2016; Bowman et al.,
2015; Wang et al., 2018). However, researchers
have reported several limitations of the existing
VLP benchmark. 1) the objects of interest have
a biased distribution of size and location, i.e.,
tend to be large objects that appeared in the
center region. 2) benchmark evaluation returns
only a plain score instead of fine-grained details
on the taxonomy. Therefore, it is difficult to
understand the strengths and weaknesses of a
model without a comprehensive analysis. Re-
cent studies show even the state-of-the-art sys-
tems that achieved better scores than humans,
may still be insufficient in real-world applica-
tions (Ribeiro et al., 2020). Thus, researchers
have attempted to evaluate ML models with
more fine-grained details and avoid bias on the
test set.

One of the successful tools for the qualitative
analysis of natural language processing (NLP)
is CheckList (Ribeiro et al., 2020) which evalu-
ates general linguistic capabilities and revealed
weaknesses in several state-of-the-art NLP mod-
els and commercial applications. In computer
vision, the Vision CheckList was proposed to
help system designers to understand model ca-
pabilities (Du et al., 2022). They offered a
set of transformation operations to generate
diverse test samples of different test types, such
as rotation, replacing image patches, blur, and
shuffle. However, target objects in the trans-
formed images are unchanged, still center and
large.

The idea of the CheckList has also been ap-
plied other fields, e.g. evaluating Reinforce-
ment Learning (RL) agents (Lam et al., 2022),
Dynabench (Kiela et al., 2021) was proposed to
generate dynamic benchmark datasets. It over-

comes the problem that the existing benchmark
fails to cover fundamental linguistic challenges.
TIDE (Bolya et al., 2020) is a tool to analyze
the errors of object detection. It defines crit-
ical error types and shows a comprehensive
analysis.

3 VL-CheckList

An intuitive approach to evaluate multi-modal
systems is to check if a model correctly predicts
alignment between different modalities. We
choose image-text matching (ITM) to check the
alignment between vision and language for the
following reasons. Specifically, ITM is defined
as the function that outputs the probability of
an image i is matched to a sentence t.

The ITM task is used as an effective and
universal pretraining objective in almost all
VLP models (Li et al., 2020). The ITM task
is also model agnostic and applies to all multi-
modal fusion architectures. Thus, we exploit
the ITM to fairly compare the VLP models
without finetuning them on downstream tasks.

The basic principle of the VL-CheckList is
to probe the model’s robustness on the nega-
tive examples. A robust VLP model should be
able to return a higher ITM score for the posi-
tive image-text pair than the negative example
on the ITM head. We perturb the one-side
modality to manipulate them and compare the
score with original samples. LV-CheckList of-
fers both language-side and vision-side varia-
tions.

3.1 Language Variation
To provide a fine-grained analysis of the ro-
bustness of the text-side, we build evaluation
taxonomies that are selected based on common
mistakes or frequent usage. Based on the com-
mon issues in VLP models, the proposed frame-
work places the three input properties (object,
attribute, and relation) as the top layer of the
evaluation taxonomy.

Object: A strong VLP model is supposed
to recognize whether or not the objects men-
tioned in a text exist in the image. There-
fore, if we replace objects in the correct text
with some other random noun phrases, a VLP
model should give it a lower ITM score than
the original sentence. Furthermore, a strong
VLP model should be able to recognize the ex-

31

istence of objects, regardless of its location and
sizes. Thus, we further evaluate the robustness
Object ITM by testing location variance (e.g.,
center, middle, and margin) and size variance
(e.g., small, large, medium), specifically:

loc(x, y)=





center if y
x ≤ 1

3
mid if 1

3 < y
x ≤ 2

3
margin otherwise

where, x is the half-length of the diagonal
of the full image x =

√
w2+h2

2 . and y is the dis-
tance between its central point and the central
point of the full image.

To get the size of an object, we use the object
area information (i.e., the bounding box of
height multiplies the width).

size(x)=





small if area ≤ S
medium if S < area ≤ M

large otherwise
where, area = w∗h, S denotes small size and

M is the medium size. We set S = 1024, M =
9216 in this paper.

Attribute: Determining specific attributes
for any object is very challenging. The at-
tribute generally contains color, material, size,
state, and action.

• Size: replace the size expression like small,
big, and medium with another (e.g., There
is a big apple vs. there is a small apple)

• Material: replace a material word in the
sentence (e.g., a metal box vs. a wood
box)

• State: replace the state expression, such
as cleanliness and newness (e.g., a man
with dry hair vs. a man with wet hair).

• Action: replace the action-related word
in the text (e.g., a standing person vs. a
sitting person).

• Color: replace the color word in the text
(e.g., A red apple is on the table vs. A
green apple is on the table)

Relation: Relation cares about the inter-
action between two objects. It covers replacing
the predicate in a triple (e.g., subject, predi-
cate, object), where the subject and object are
both objects in the image. A strong VLP ITM
head should assign a higher score to text match-
ing the pair-wise object interaction. Further,
we divide prediction into spatial and action. If

a predicate is one of the spatial prepositions
(e.g., in, on, at, etc), it is sub-categorized as
’spatial’; otherwise, it is labeled ’action.’

• Spatial: If a model can predict spatial
relation between two objects (e.g, <cat,
on, table> vs. <cat, under, table>).

• Action: If a model can predict other rela-
tion than a spatial preposition, usually ac-
tion verbs like run, jump, kick, eat, break,
cry, or smile (e.g., <cat, catch, fish> vs.
<cat, eat, fish>)

3.2 Vision Variation
A strong VLP model should be able to return
consistent scores when an image is transformed
with augmentation techniques such as rotation,
shift, flip, random brightness, etc. However,
previous augmentations are applied on the en-
tire image-level. We provide the object-level
data augmentation by combining cropped ob-
jects and image background. The generated
images are utilized to investigate the robustness
of the model outputs in various locations and
sizes of the target object. Strong VLP mod-
els should be able to return consistent scores
regardless of the location and size of target ob-
jects unless the language description is related
to location and size (e.g., an apple is the left
side of the tree, an apple is small). We allow to
input cropped objects and background images
and randomly place the target objects from
margin to center with various sizes to probe
the robustness. The goal of the LV-CheckList
on the vision-variations is to show how sim-
ple input changes such as object location and
size will affect the prediction outputs in the
VL-CheckList Demo.

4 Detailed User Guideline

This section describes a guideline for re-
searchers to use and contribute to the VL-
CheckList project.

First, users can install from GitHub1 or
from pip install vl-checklist. We further
provide a HuggingFace demo for people to try
out different VLP models2. Then the following
is a step-by-step guideline to use VL-CheckList.

1github.com/om-ai-lab/VL-CheckList
2huggingface.co/spaces/omlab/VL_checklist_demo

32

Figure 1: Language Variation: negative samples are based on object, attribute and relation. Vision
Variation: a user inputs target objects and backgrounds and evaluates the various synthesized images

1) Define Corpus: a user defines a cor-
pus in the yaml config file. We provide four
initial pre-processed corpora using the semi-
structured dataset such as VG (Krishna et al.,
2017), SWiG (Pratt et al., 2020), VAW (Pham
et al., 2021) and HAKE (Li et al., 2019b). We
build a benchmark dataset for each capability
test in the proposed framework. We provide
the pre-processed datasets in the corpus folder
of our Github page. An example of the corpus
config yaml file is as follows:

ANNO_PATH: " A t t r / a c t i o n . j s o n "
IMG_ROOT: " vg / "
TYPE: " T U P L E _ J S O N "

ANNO_PATH is the specific Json file path
that includes positive and negative captions
and the specific image path.

The data type is TUPLE_JSON. We
converted the corpus into list of image path
and captions(positive and negative), in the
format of a list of [[{image_path:str,
"POS":pos_captions:list, "NEG":
neg_captions:list}] . . .]

2) Define evaluation configuration:
Users can specify the evaluation settings in
another yaml to define evaluation in detail as
the following example:

MAX_NUM: 2 0 0 0
MODEL_NAME: " C L I P "
BATCH_SIZE: 4
TASK: " itc "
DATA:

TYPES: [" O b j e c t / L o c a t i o n / mid "]

TEST_DATA: [" v g _ o b j "]
OUTPUT:

DIR: " o u t p u t / c l i p "

The "MAX_NUM" is the maximum number
of data points and the "MODEL_NAME"
needs to be specified. Appropriate
"BATCH_SIZE" should be input based
on the GPU resources. The "TASK" can
be either "ITC" or "ITM". The "ITC" score
compares models’ scores on both positive and
negative captions. It counts as a true positive
when the score on the original is higher than
the negatively transformed one. The "ITM"
is predicting each image and a caption. It
is called the true positive when a softmax
score on a positive example on the image is
higher than the threshold of 0.5. The Data tag
consists of TYPES and TEST_DATA. The
TYPES is the storage paths of the "ymal_files".
In the top-level directory, we can divide it
into three categories: Object, Relation, and
Attribute. For Swig, Vg, etc., there are
multiple data subsets, so the data subset
type should be filled in the TEST_DATA.
We can specify the evaluation data, output
directory, and format as the example above.
After defining a config file, users can simply
start the evaluation as follows:.
from engine import Model
from vl_checklist import Evaluate
if __name__ == '__main__ ':

model = Model('model.ckpt')
eval = Evaluate("sample.yaml",

model=model)
eval.start()

33

3) Define Model: Users can import
VL-CheckList to their projects (e.g., import
vl_checklist) and need to implement one
model class that includes the essential func-
tions, "predict". The predict function should
return probabilities on each pair of images and
texts. We included several representative mod-
els for quick comparisons, such as ViLT (Kim
et al., 2021), ALBEF (Li et al., 2021), OS-
CAR (Li et al., 2020), etc as example projects.

5 Experimental Settings
In this section, we profile one of the most rep-
resentative VLP models, CLIP (Radford et al.,
2021) by testing its ability to understand an
object, attribute, and relationship between a
text prompt and a given image for language
variations.

Metric: We return the model output scores
between the text description and the generated
negative samples. If the model score on the
original text description is higher than the score
on the generated negative samples, we regard
it as positive output. We obtain the accuracy
with the following equation.

acc =
∑i<n

i=0 f(xp
i , xn

i)
N

(1)

where, f(xp
i , xn

i) = 1 if p(xp
i |Ii) > p(xn

i |Ii),
otherwise 0. xp

i denotes a positive sample of
ith data. xn

i means a positive sample of ith

data. The N is the total number of pairs of
positive and negative samples. Ii is ith image
data.

Data: The proposed VL-CheckList focuses
on a directional expectation test, in which the
label is expected to change in a certain way.
For example, when there is a black bear in the
photo and the text description is "A black bear
is holding a stick". We can transform several
variations (e.g., <a black bear → a red bear>,
<a stick → an apple>, <holding → throw-
ing>, etc). The negative sampling strategy
is the essential step for unbiased evaluations.
To generate hard negative examples, we use
the structured text description datasets such
as Visual Genome (VG) (Krishna et al., 2017),
SWiG (Pratt et al., 2020), and Human Activity
Knowledge Engine (HAKE) (Li et al., 2019b).
The VG provides attributes, relationships, and
region graphs which can make a hard negative

sample by replacing one attribute in the rela-
tion in the image. The SWiG dataset provides
structured semantic summaries of images with
roles such as agent and tool. We generate hard
negative samples by replacing one of the roles
in the text description to mismatch with the
image. HAKE dataset provides the relation-
ship between instance activity and body part
states (e.g., "head" inspect rear view, "right
hand" hold wheel, "hip" sit on chair seat).

For the VG dataset, we first assign each at-
tribute, object, and relation to the closet type
by cosine similarity from sentence transform-
ers. For objects and relationships, we randomly
sample a corresponding instance with a co-
sine similarity threshold of 0.5. For attribute,
we randomly sample a corresponding instance
from the same attribute class with a cosine
similarity threshold of 0.5. We further conduct
manual correction on the generated to data to
fix inappropriate data.

For vision variations, we only conduct quali-
tative analysis by visualizing the output scores
via the GUI demo. (Figure 2).

6 Results and Analysis

In general, the ability of CLIP to understand
object changes is promising when the object is
center and large (see the prefix-O at Figure 3).
We hypothesize that the CLIP model pays more
attention to the central region and focus on
salient objects, similar to the perspective of
human observation. On the other hand, CLIP’s
ability on recognizing attribute and relation-
related variants is surprisingly low, especially
for Relation-spatial variations (Figure 3).

Then, We investigate whether performance
can be improved by cropping the regions of
interest (ROI) first and then encoding the
cropped ROIs via CLIP. We extract text
descriptions on each bounding box on the
VG dataset to form a new image-text pair
(Imagelocal,text), and construct new datasets
for VG: Localsubj , Localobj . Results on
Localsubj and Localobj show that Region CLIP
outperforms the original CLIP (whole image en-
coding) by 3.9% and 5.7% respectively (Table
1). This confirms our hypothesis that the origi-
nal CLIP was trained to match the entire image
to a text description, without capturing the
fine-grained alignment between image regions

34

Figure 2: A comparison of CLIP’s performances of the image with a big object in the center and image
with the same small object in the corner

Figure 3: A radar chart for text variance on the
CLIP model. (The prefix O, A, and R is Object,
Attribute, and Relation respectively)

and text spans. Thus the understanding of mi-
nor objects in the image for CLIP is still chal-
lenging and explore more fine-grained region-
to-text multimodal alignment is a promising
direction (Zhong et al., 2022).

For vision variations, we synthesize images
by changing an object’s size and location. In
Figure 2, the image on the left is a big apple
in the center, while the image on the right is a
small apple in the corner. The text prompt we
input is "an apple on the grass" and "a dog on
the grass". The accuracy of the left image with
a big and center apple is nearly 1.00, while the
right image with a small and corner apple only
obtains 0.127 of accuracy. The location and

size of the object in the image can significantly
affect the judgment of the model.

Thus Experimental results indicate that the
current benchmark evaluation reveals a gap of
performance for real applications. CLIP mostly
focus on objects that appeared in the center of
the image and the size of the objects should be
large. This limits its performance if the target
objects are minor in the marginal regions for
real-world applications.

Model \ VGdata_type Subj Obj
CLIP_Global 80.7 86
CLIP_Local 84.6 91.7

Table 1: Subj and Obj are two attribute subsets
extracted from VG dataset. A new dataset is con-
structed using the bounding box tag of VG to merge
and extract the region image pointed by subj and
obj fields. The text remains the same as previous
content (Imagelocal,text). It only does the expan-
sion experiment for CLIP.

7 Conclusion
This paper introduces VL-CheckList to analyze
VLP models from language and vision varia-
tions. For language variance, we evaluated
from three aspects: object, attribute and rela-
tion. For vision variance, we generated synthe-
sized images using cropped target objects and
background. We found limitations of the CLIP
model: 1) limited understanding for small ob-
jects in the corner 2) incompetence for recogniz-
ing relations and attributes. In the future, we
plan to include more fine-grained taxonomies

35

and synthesizing strategies into VL-CheckList
and also improve existing VLP methods under
the guidance of VL-CheckList report.

8 Acknowledgement

This study is supported by National Natural
Science Foundation of China under Grant (No.
61825205).

References
Daniel Bolya, Sean Foley, James Hays, and Judy

Hoffman. 2020. Tide: A general toolbox for
identifying object detection errors. In European
Conference on Computer Vision, pages 558–573.
Springer.

Samuel Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large an-
notated corpus for learning natural language in-
ference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 632–642.

Soravit Changpinyo, Piyush Sharma, Nan Ding,
and Radu Soricut. 2021. Conceptual 12m: Push-
ing web-scale image-text pre-training to recog-
nize long-tail visual concepts. In Proceedings of
the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3558–3568.

Xin Du, Benedicte Legastelois, Bhargavi Ganesh,
Ajitha Rajan, Hana Chockler, Vaishak Belle, Stu-
art Anderson, and Subramanian Ramamoorthy.
2022. Vision checklist: Towards testable error
analysis of image models to help system design-
ers interrogate model capabilities. arXiv preprint
arXiv:2201.11674.

Aishwarya Kamath, Mannat Singh, Yann LeCun,
Gabriel Synnaeve, Ishan Misra, and Nicolas Car-
ion. 2021. Mdetr-modulated detection for end-to-
end multi-modal understanding. In Proceedings
of the IEEE/CVF International Conference on
Computer Vision, pages 1780–1790.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh,
Pratik Ringshia, et al. 2021. Dynabench: Re-
thinking benchmarking in nlp. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics: Human Language Technologies, pages
4110–4124.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021.
Vilt: Vision-and-language transformer without
convolution or region supervision. In Interna-
tional Conference on Machine Learning, pages
5583–5594. PMLR.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin
Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al. 2017. Visual genome: Connecting
language and vision using crowdsourced dense
image annotations. International journal of com-
puter vision, 123(1):32–73.

Kin-Ho Lam, Delyar Tabatabai, Jed Irvine, Donald
Bertucci, Anita Ruangrotsakun, Minsuk Kahng,
Alan Fern, Jeongyeon Kim, Yubin Choi, Juho
Kim, et al. 2022. Beyond value: Checklist for
testing inferences in planning-based rl. ACM
Transactions on Interactive Intelligent Systems,
12(1).

Junnan Li, Ramprasaath Selvaraju, Akhilesh Got-
mare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. 2021. Align before fuse: Vi-
sion and language representation learning with
momentum distillation. Advances in Neural In-
formation Processing Systems, 34.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019a. Visualbert:
A simple and performant baseline for vision and
language. ArXiv, abs/1908.03557.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. 2020. Oscar:
Object-semantics aligned pre-training for vision-
language tasks. In European Conference on Com-
puter Vision, pages 121–137. Springer.

Yong-Lu Li, Liang Xu, Xijie Huang, Xinpeng Liu,
Ze Ma, Mingyang Chen, Shiyi Wang, Haoshu
Fang, and Cewu Lu. 2019b. Hake: Human activ-
ity knowledge engine. ArXiv, abs/1904.06539.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Ste-
fan Lee. 2019. Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-
and-language tasks. Advances in neural infor-
mation processing systems, 32.

Xiaopeng Lu, Tiancheng Zhao, and Kyusong Lee.
2021. Visualsparta: An embarrassingly simple
approach to large-scale text-to-image search with
weighted bag-of-words. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 5020–5029.

Khoi Pham, Kushal Kafle, Zhe Lin, Zhi Ding,
Scott D. Cohen, Quan Tran, and Abhinav Shri-
vastava. 2021. Learning to predict visual at-
tributes in the wild. 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recogni-
tion (CVPR), pages 13013–13023.

Sarah Pratt, Mark Yatskar, Luca Weihs, Ali
Farhadi, and Aniruddha Kembhavi. 2020.
Grounded situation recognition. In European

36

Conference on Computer Vision, pages 314–332.
Springer.

Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. 2021. Learning transferable
visual models from natural language supervision.
In International Conference on Machine Learn-
ing, pages 8748–8763. PMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopy-
rev, and Percy Liang. 2016. Squad: 100,000+
questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2383–2392.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos
Guestrin, and Sameer Singh. 2020. Beyond ac-
curacy: Behavioral testing of nlp models with
checklist. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 4902–4912.

Piyush Sharma, Nan Ding, Sebastian Goodman,
and Radu Soricut. 2018. Conceptual captions:
A cleaned, hypernymed, image alt-text dataset
for automatic image captioning. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2556–2565.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural in-
formation processing systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Tiancheng Zhao, Peng Liu, Xiaopeng Lu, and Kyu-
song Lee. 2022. Omdet: Language-aware ob-
ject detection with large-scale vision-language
multi-dataset pre-training. arXiv preprint
arXiv:2209.05946.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang,
Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al.
2022. Regionclip: Region-based language-image
pretraining. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pages 16793–16803.

37

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38 - 49
December 7-11, 2022 c©2022 Association for Computational Linguistics

TweetNLP: Cutting-Edge Natural Language Processing for Social Media

Jose Camacho-Collados1 Kiamehr Rezaee1 Talayeh Riahi1 Asahi Ushio1

Daniel Loureiro1 Dimosthenis Antypas1 Joanne Boisson1,6 Luis Espinosa-Anke1,6
Fangyu Liu2 Eugenio Martínez-Cámara3 Gonzalo Medina3

Thomas Buhrmann4 Leonardo Neves5 Francesco Barbieri5
1Cardiff NLP, Cardiff University, UK 2LTL, University of Cambridge, UK

3DaSCI, University of Granada, Spain 4Graphext, Spain 5Snap Inc., USA 6AMPLYFI, UK
cardiffnlp.contact@gmail.com

Abstract

In this paper we present TweetNLP, an inte-
grated platform for Natural Language Process-
ing (NLP) in social media. TweetNLP sup-
ports a diverse set of NLP tasks, including
generic focus areas such as sentiment analysis
and named entity recognition, as well as social
media-specific tasks such as emoji prediction
and offensive language identification. Task-
specific systems are powered by reasonably-
sized Transformer-based language models spe-
cialized on social media text (in particular, Twit-
ter) which can be run without the need for ded-
icated hardware or cloud services. The main
contributions of TweetNLP are: (1) an inte-
grated Python library for a modern toolkit sup-
porting social media analysis using our various
task-specific models adapted to the social do-
main; (2) an interactive online demo for code-
less experimentation using our models; and (3)
a tutorial covering a wide variety of typical
social media applications.

1 Introduction

Today’s society cannot be understood without the
role of social media. Online users connect more
and more via platforms that enable content sharing,
either generic or around specific topics, and do this
by means of text-only messages, or augmenting
them with multimedia content such as pictures, au-
dio or video. As such, these platforms have been
used to understand user, group and organization-
wide behaviours (Yang et al., 2021; Hu et al., 2021).
In particular, Twitter, which is the main platform
studied in this paper, has long been an important
resource for understanding society at large (Weller
et al., 2013). Twitter is interesting for NLP be-
cause it embodies many features that are natural in
spontaneous and ever-evolving fast-paced commu-
nication. However, the majority of NLP research
focuses on optimizing model development against
training data and evaluation benchmarks which are,
at worst, reasonably clean (e.g., news articles, blog

posts or Wikipedia). Consequently, when deployed
in the wild, features such as noisiness, multilin-
guality, immediacy, slang, technical jargon, lack of
context, platform-specific restrictions on message
length, emoji and other modalities, etc. become
core communicative variables that need to be fac-
tored in. Indeed, even traditional NLP tasks such as
normalization (Han and Baldwin, 2011; Baldwin
et al., 2015), POS tagging (Derczynski et al., 2013),
sentiment analysis (Poria et al., 2020) or named en-
tity recognition (Ritter et al., 2011; Baldwin et al.,
2013) have been shown to produce suboptimal re-
sults in the context of social media.

Given the above, we put forward TweetNLP
(tweetnlp.org), which offers a full-fledged
NLP platform specialized in Twitter. The back-
bone of TweetNLP consists of Transformer-based
language models that have been trained on Twitter
(Barbieri et al., 2020, 2022; Loureiro et al., 2022).
Then, these specialized language models have been
further fine-tuned for specific NLP tasks on Twitter
data. These models have already proved highly
popular, with thousands of downloads from the
Hugging Face model hub every month (Wolf et al.,
2020).1 TweetNLP integrates all these resources
into a single platform. With a simple Python API,
TweetNLP offers an easy-to-use way to leverage
cutting-edge NLP models in a variety of social me-
dia tasks. Despite the trend of ever-larger language
models (Shoeybi et al., 2019; Brown et al., 2020),
TweetNLP is more focused on the general user and
applicability, and therefore integrates base models
which are easily run in standard computers or on
free cloud services. Finally, all models can be ac-
cessed from an interactive online demo, offering
anyone the possibility to test models and perform

1Most notably, the sentiment analysis model has been the
most downloaded model in the Hugging Face model hub in
January 2022, with over 15M downloads. Similarly, the Tweet-
Eval benchmark, in which most task-specific Twitter models
are fine-tuned, has been the second most downloaded dataset
in April 2022, with over 150K downloads.

38

tweetnlp.org

real-time analysis on Twitter.

2 Related Work

General-purpose NLP libraries have been avail-
able for many years. Starting from the Java-based
CoreNLP (Manning et al., 2014) to the more re-
cent Python-based library Stanza (Qi et al., 2020).
More recently, libraries such as spaCy2 have been
ubiquitous in NLP, both in research and industry.
Finally, in the language models and Transformers
era, the Hugging Face Transformer hub has be-
come indispensable for state-of-the-art NLP (Wolf
et al., 2020), which is also leveraged for our li-
brary TweetNLP. However, none of these libraries
is specialized in social media or Twitter.

As for libraries developed specifically for social
media, these are more limited and mostly asso-
ciated with low-level tasks such as tokenization,
part-of-speech (Owoputi et al., 2013) tagging or
dependency parsing (Kong et al., 2014), and ini-
tially available for Java. The most recent Twitter-
specific Python library is TweebankNLP (Jiang
et al., 2022) based on Stanza. This library provides
state-of-the-art models on tokenization and lemma-
tization, besides competitive models on NER, part-
of-speech tagging and dependency parsing. In con-
trast, TweetNLP focuses on specialized Twitter-
specific language models for downstream tasks
such as sentiment analysis and offensive language
identification.

3 Models and Functionalities

TweetNLP is versatile in that it covers a wide
range of tasks and applications. The backbone of
TweetNLP are transformer-based language models,
which are covered in Section 3.1. The concrete
NLP tasks integrated in TweetNLP are presented
in Section 3.2. Finally, in Section 3.3 we present
embeddings used to represent words and tweets.
All TweetNLP model checkpoints are available in
the appendix.

3.1 Language models
Language models are at the core of TweetNLP. In-
stead of relying on general-purpose models (De-
vlin et al., 2019) or training a language model
from scratch (Nguyen et al., 2020), we start from
RoBERTa (Liu et al., 2019) and XLM-R (Conneau
et al., 2020) checkpoints and continue pre-training
on Twitter-specific corpora. This was shown to be

2https://spacy.io

generally more reliable for the amount of text anal-
ysed in Barbieri et al. (2020). Given our aim for
democratizing the usage of specialized language
models for social media, another important feature
of TweetNLP is the relatively small size of the lan-
guage models. To this end, all language models
rely on the equivalent of a RoBERTa-base or XLM-
R-base architecture. These models are efficient on
standard hardware and free-tiers of cloud comput-
ing services, with reasonable speed even without
GPU support.

TweetEval (Barbieri et al., 2020). This model
was initially released as part of the TweetEval
project. It is based on a RoBERTa-base architec-
ture using the original model as an initial check
point (Liu et al., 2019). Later, this language model
was further pre-trained on a corpus of 60M tweets
from May 2018 to August 2019.

TimeLMs (Loureiro et al., 2022). This model is
initially trained on the same Twitter corpus used by
Barbieri et al. (2020). The main difference lies on
a few preprocessing improvements applied to the
underlying corpus, including measures to reduce
potential spam and near duplicates, and more recent
corpora used for continual pretraining. The overall
quantity of tweets is therefore larger, as the model
is regularly updated (every 3 months) with a fixed
number of additional tweets. The most recently
released TimeLMs model to date is pre-trained on
132M tweets until the end of June 2022.

XLM-T (Barbieri et al., 2022). This model was
trained on 198M tweets on over thirty languages
from May 2018 to March 2020, following a simi-
lar strategy to Barbieri et al. (2020). In this case,
the initial checkpoint was XLM-R-base (Conneau
et al., 2020).

3.2 Supported tasks

In the following we describe the tasks supported
by TweetNLP. For the tweet classification tasks
included in TweetEval, and for topic classification,
we simply fine-tune the models described above on
the corresponding datasets, as described in Barbieri
et al. (2020). For model fine-tuning on named
entity recognition, we rely on the T-NER library
(Ushio and Camacho-Collados, 2021), which is
also integrated into TweetNLP.

Sentiment Analysis. The sentiment analysis task
integrated in TweetNLP consists of predicting the

39

https://spacy.io

sentiment of a tweet with one of the three follow-
ing labels: positive, neutral or negative. The base
dataset for English is the unified TweetEval ver-
sion of the Semeval-2017 dataset from the task
on Sentiment Analysis in Twitter (Rosenthal et al.,
2017). Moreover, for the languages other than En-
glish we include the datasets integrated in UMSAB
(Barbieri et al., 2022), namely Arabic (Rosenthal
et al., 2017), French (Benamara et al., 2017), Ger-
man (Cieliebak et al., 2017), Hindi (Patra et al.,
2015), Italian (Barbieri et al., 2016), Portuguese
(Brum and Volpe Nunes, 2018), and Spanish (Díaz-
Galiano et al., 2018).

Emotion Recognition. Given a tweet, this task
consists of associating it with its most appropriate
emotion. As a reference dataset we use the Se-
mEval 2018 task on Affect in Tweets (Mohammad
et al., 2018), simplified to only the four emotions
used in TweetEval: anger, joy, sadness and opti-
mism.

Emoji Prediction. The goal of emoji prediction
is to predict the final emoji on a given tweet. The
dataset used to fine-tune our models is the Tweet-
Eval adaptation from the SemEval 2018 task on
Emoji Prediction (Barbieri et al., 2018), including
20 emoji as labels.

Irony Detection. This is a binary classification
task that aims at detecting whether a tweet is ironic
or not. It is based on the Irony Detection dataset
from the SemEval 2018 task (Van Hee et al., 2018).

Hate Speech Detection. The hate speech dataset
consists of detecting whether a tweet is hateful
towards women or immigrants. It is based on the
Detection of Hate Speech task at SemEval 2019
(Basile et al., 2019).

Offensive Language Identification. The task
consist of identifying any form of offensive lan-
guage in a tweet. The dataset is based on the
SemEval 2019 task on Identifying and Categoriz-
ing Offensive Language in Social Media (Zampieri
et al., 2019).

Stance Detection. Given a target topic and
a tweet, stance detection consists of assessing
whether the author of the tweet has a positive, neu-
tral or negative position towards the target. The
dataset considered was initially released for the Se-
mEval 2016 task on Detecting Stance in Tweets
(Mohammad et al., 2016).

Topic Classification. The aim of this task is,
given a tweet, assign topics related to its content.
The task is formulated as a supervised multi-label
classification problem where each tweet is assigned
one or more topics from a total of 19 available top-
ics. The topics were carefully curated based on
Twitter trends with the aim to be broad and general,
consisting of classes such as: arts and culture, mu-
sic, or sports. The underlying tweet topic classifi-
cation dataset contains over 10K manually-labeled
tweets (Antypas et al., 2022).

Named Entity Recognition. The goal of named
entity recognition (NER) is to find entities and iden-
tify their entity types in a given sentence. The un-
derlying Twitter NER dataset is composed of over
10K tweets which were annotated (internally) with
seven entity types.3

3.3 Embeddings

In addition to the language models and their sup-
ported tasks, we also release high-quality vec-
tor representation models for words and tweets,
i.e., embeddings (Pilehvar and Camacho-Collados,
2020). These relatively low-dimensional vector rep-
resentations can be exploited for a different range
of applications and analyses such as word/tweet
similarity or tweet retrieval, to name a few.

Word embeddings. TweetNLP word embed-
dings are based on fastText (Bojanowski et al.,
2017) and trained on the same corpora used to
train the language models described in Section 3.1.
In particular, we trained two sets of embeddings:
(1) a monolingual English model trained with the
TimeLMs Twitter corpus until the end of 2021; and
(2) a multilingual model trained with the Twitter
corpus used for XLM-T. Both models were trained
using the official fastText package with 300 dimen-
sions, minimum n-gram size 2, maximum n-gram
size 12, and remaining parameters set to defaults.

Tweet embeddings. For tweet embeddings, we
pulled tweet-reply pairs from the Twitter API and
trained contrastive embeddings with an InfoNCE
loss (Oord et al., 2018). For tweets with multiple
replies, we randomly sampled one reply. In train-
ing, one mini-batch is composed of a list of tweet-
reply pairs. The tweet-reply pairs are regarded as

3More details about the datasets for topic classification
and named entity recognition will be provided at a later stage.
Datasets were annotated internally in Snap and we are working
on releasing them to the public according to regulations.

40

positive samples; the enumeration of all other pos-
sible combination of tweet-reply, tweet-tweet, and
tweet-reply pairs are regarded as negative samples.
The contrastive InfoNCE loss then pulls positive
pair representations close while pushes negative
representations away from each other. Training
was performed on 1.1M tweet-reply pairs, and we
collected a separate tweet-reply set of 10k pairs for
selecting the model checkpoint.

4 TweetNLP Python library

The TweetNLP Python library has been integrated
into pypi4 and therefore is easily accessible and
can be installed from pip ("pip install tweetnlp").
All the details on how to use TweetNLP are in
the associated Github repository, which is re-
leased fully open-source: https://github.
com/cardiffnlp/tweetnlp.

Once installed, loading and using a fine-tuned
model on any specific task can be done as follows.

from tweetnlp import load
tweet = "I love Paris!!"
Sentiment Analysis
model = load(’sentiment’)
model.sentiment(tweet)
Tweet Embeddings
model = load(’sentence_embedding’)
model.embedding(tweet)
Masked Language Model
model = load(’language_model’)
tweet = "I love <mask>!!"
model.mask_prediction(tweet)

With the load statement, the associated fine-tuned
language models are loaded in the background.
Users can then get the predictions for any given sen-
tence or tweet with a simple pre-defined function
(e.g., .sentiment or .predict). Custom loading of ex-
isting fine-tuned language models not included in
TweetNLP is also possible. The same functionali-
ties apply to all the other tasks described in Section
3.2.

5 Tutorials

In addition to the Python library presented in
the previous section, TweetNLP offers access
to the underlying Python code structured in in-
structive Google Colab notebooks with starter
code and examples (https://tweetnlp.
org/get-started/). These notebooks are
aimed at users with varying degrees of experience
in NLP and social media processing. In the fol-

4https://pypi.org/project/tweetnlp/

lowing we list the currently existing tutorials and a
brief description:

Introduction to TweetNLP. In this initial intro-
duction, users learn how to use the TweetNLP
Python library to make use of specialized mod-
els in social media for a wide variety of tasks from
sentiment analysis to named entity recognition.

Getting data from Twitter. This notebook helps
users understand the Twitter API5 and how to in-
teract with it. More importantly, there are concrete
examples on how to retrieve data (i.e. tweets) from
Twitter, usually given a hashtag or a keyword.

Custom fine-tuning. In this notebook users can
learn to fine-tune any given language model on a
specific task (e.g. sentiment analysis). For this, we
will take advantage of the TweetEval task data and
unified format (Barbieri et al., 2020). Additionally,
users can learn how to easily evaluate language
models on TweetEval.

Word embeddings. With this notebook users can
learn how to train their own word embeddings on
custom data using Gensim6 (Řehůřek and Sojka,
2010). The notebook also includes examples on
how to get similarity scores from Twitter-specific
word embeddings, or how to obtain the nearest
neighbour words from a given input word.

Language models over time. This notebook
leverages the TimeLMs library (Loureiro et al.,
2022). Users can learn how to make use of lan-
guage models that have been trained in short peri-
ods of time since 2019 until recently.

Tweet embeddings. This notebook contains ex-
amples on how to transform a tweet into a vector
(embedding) and how these enable important appli-
cations such as tweet similarity and retrieval.

6 Demo

In addition to the Python-based library and tuto-
rials, we developed a comprehensive web-based
demo integrating all our models, available at
https://tweetnlp.org/demo/. The goal
of the demo is for any user to be able to test our
models and get predictions. In particular, the model
includes the following five functionalities:

5https://developer.twitter.com/en/
docs/twitter-api

6https://radimrehurek.com/gensim/

41

https://github.com/cardiffnlp/tweetnlp
https://github.com/cardiffnlp/tweetnlp
https://tweetnlp.org/get-started/
https://tweetnlp.org/get-started/
https://pypi.org/project/tweetnlp/
https://tweetnlp.org/demo/
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://radimrehurek.com/gensim/

Sentence/tweet classification (Figure 1). Users
can input a sentence or a tweet (including a tweet
URL) and the output is a plot display of the confi-
dence of the model with respect to its predictions.
This demo includes all tweet classification tasks
supported in English (see Section 3.2), as well as
a multilingual sentiment analysis model based on
XLM-T.

Figure 1: TweetNLP tweet classification demo.

Hashtag analysis (Figure 2). This demo directly
interacts with the Twitter API. Users can type a
hashtag (or any keyword), initial and end dates,
task and language. The system will then retrieve
tweets for the given time interval and compute an
aggregated analysis of the results. Languages sup-
ported for this demo are available in the appendix.

Figure 2: TweetNLP hashtag analysis demo. The output
is a bar plot that shows the sentiment of the retrieved
tweets over time for the input hashtag #NLProc.

Word prediction (Figure 3). Masked language
models utilized in TweetNLP are trained to predict
unknown (or masked) words within a sentence. For
this demo, users can input a sentence with a masked
word and the system will show the most likely
words as given by the masked language model, in
order of confidence.

Figure 3: TweetNLP word prediction demo.

Tweet similarity (Figure 4). Given two short
pieces of text (e.g., two sentences or two tweets),
this demo displays their cosine similarity score
on a 0-100 scale as provided by our default tweet
embedding model.

Figure 4: TweetNLP tweet similarity demo.

Named Entity Recognition (Figure 5). Given
a tweet or a sentence, this NER demo locates its
named entities and infers their types.

7 Evaluation

In this section, we provide experimental results of
the default models integrated into TweetNLP.

7.1 Experimental setting
Datasets. For the evaluation we utilized all the
train/validation/test splits described in Section 3.2.
In particular, we relied on the TweetEval-released
datasets for all tweet classification tasks except for
topic classification.

42

Figure 5: TweetNLP Named Entity Recognition demo.

Default TweetNLP language models. While in
TweetNLP all Twitter-specific language models are
included, we use as a default (1) TimeLMs trained
until December 2021 for English and (2) XLM-T
for the languages other than English and multilin-
gual tasks. These models are then fine-tuned to the
corresponding tasks as described in Section 3.2.

Comparison systems. We report the perfor-
mance of all original TweetEval baselines (Barbieri
et al., 2020): a frequency-based SVM classifier,
fastText (Joulin et al., 2017), a Bidirectional LSTM,
RoBERTa-base (Liu et al., 2019), a RoBERTa-
base model trained on Twitter from scratch (RoB-
Twitter) and the original TweetEval RoBERTa-base
model. As another baseline we include BERTweet
(Nguyen et al., 2020), trained on almost 1 billion
tweets from 2013 to 2019.

Language model fine-tuning. Fine-tuning is per-
formed on the training sets of each corresponding
dataset, using their corresponding development sets
for validation. We followed TweetEval training
protocols for tweet classification, where only the
learning rate and number of epochs are tuned (Bar-
bieri et al., 2020). All reported results for language
models are based on an average of three runs.

7.2 Results

Table 1 shows the main results of our TweetNLP
default language model and comparison systems on
nine Twitter-based tasks.7 The default TimeLMs-
21 model achieves the overall results on most tasks,
especially comparing it with a comparable general-
purpose RoBERTa-based model. In the following
we also provide details of our experimental results

7The BERTweet result on Irony is marked with * as their
pre-training corpus overlapped with the Irony dataset, which
was constructed using distant supervision.

on languages other than English , and for the inte-
grated word and tweet embedding models.

Multilingual sentiment analysis results. In ad-
dition to the English evaluation, we report results
on multilingual sentiment analysis (Table 2). The
evaluation is performed on the UMSAB multin-
gual sentiment analysis benchmark (Barbieri et al.,
2022). For this evaluation we compare XLM-T
fine-tuned on all the language-specific training sets
of UMSAB with XLM-R (Conneau et al., 2020)
using the same fine-tuning strategy. As an ad-
ditional indicative baseline, we include fastText
trained on the language-specific training sets. As
can be observed, our domain-specific XLM-T lan-
guage model achieves the best overall results in all
languages, further reinforcing the importance of
in-domain language model training.

Word embedding results. As a sanity check
to verify the quality of the word embeddings,
we simply test them on standard word similar-
ity datasets: The WS-Sim similarity and WS-
Rel relatedness subsets (Agirre et al., 2009) from
WordSim-353 (Finkelstein et al., 2002), SemEval-
2017 (Camacho-Collados et al., 2017) and MEN
(Bruni et al., 2014). Then, we compared the re-
sults with the pre-trained fastText model trained
on the Common Crawl (Bojanowski et al., 2017),
and Wikipedia. According to Spearman correla-
tion, the results of our Twitter embeddings were
0.77 (WS-Sim), 0.72 (WS-Rel), 0.69 (SemEval),
and 0.79 (MEN).8 In contrast, the pre-trained fast-
Text Common Crawl results were 0.84 (WS-Sim),
0.64 (WS-Rel), 0.67 (SemEval), and 0.81 (MEN).
We should note that these datasets are not specific
to social media and even so, our trained embed-
dings outperform the standard pre-trained fastText
in two datasets. In particular, there seems to be a
marked difference between similarity and related-
ness, where our Twitter embeddings appear to be
more suited to relatedness.

Tweet embedding results. For tweet embed-
dings we explore a tweet retrieval task setting
which consists of finding the reply to a given tweet
from the 10k replies in the search space. We ran-
domly sampled 3k tweet-reply pairs that do not

8While not directly comparable given the different sizes,
we also compared with our previously-released Twitter-
specific 100-dimensional fastText embeddings (Camacho-
Collados et al., 2020). The results for these embeddings were
consistently lower: 0.65 (WS-Sim), 0.43 (WS-Rel), 0.52 (Se-
mEval), and 0.76 (MEN).

43

Emoji Emotion Hate Irony Offensive Sentiment Stance Topic NER
SVM 29.3 64.7 36.7 61.7 52.3 62.9 67.3 30.5 -

fastText 25.8 65.2 50.6 63.1 73.4 62.9 65.4 24.0 -
BLSTM 24.7 66.0 52.6 62.8 71.7 58.3 59.4 27.0 -

RoB-Base 30.9 76.1 46.6 59.7 79.5 71.3 68.0 50.1 58.0
RoB-Twitter 29.3 72.0 46.9 65.4 77.1 69.1 66.7 - -
TweetEval 31.4 78.5 52.3 61.7 80.5 72.6 69.3 56.8 56.8
BERTweet 33.4 79.3 56.4 82.1* 79.5 73.4 71.2 52.7 58.7

TweetNLP (TimeLMs-21) 34.0 80.2 55.1 64.5 82.2 73.7 72.9 58.8 59.7
Evaluation metric M-F1 M-F1 M-F1 F(i) M-F1 M-Rec AVG (F) M-F1 M-F1

Table 1: Test results in the nine TweetNLP-supported tasks.

Arabic English French German Hindi Italian Portuguese Spanish ALL
fastText 45.98 50.85 54.82 59.56 37.08 54.65 55.05 50.06 51.01
XLM-R 64.31 68.52 70.52 72.84 53.39 68.62 69.79 66.03 66.75

TweetNLP (XLM-T) 66.89 70.63 71.18 77.35 56.35 69.06 75.42 68.52 67.91

Table 2: Sentiment analysis results (Macro-F1) on the UMSAB unified benchmark. XLM-R and TweetNLP models
are fine-tuned on the training sets of all languages.

overlap with training data and split them into 3 sets
of 1k pairs. We report accuracy@1 and average
models’ performance on the 3 sets. We also in-
clude results on sentence similarity, using the STS-
benchmark (Cer et al., 2017) and reporting Spear-
man’s correlation. We list tweet-reply retrieval
accuracy and STS-benchmark Spearman’s correla-
tion in Table 3. We compare with recent supervised
(Reimers and Gurevych, 2019, Sentence-BERT;
all-mpnet-base-v2), and unsupervised (Liu et al.,
2021, Mirror-BERT), (Gao et al., 2021, SimCSE)
sentence embedding models.9 On the task of tweet-
reply retrieval, our tweet-embeddings model sig-
nificantly outperforms all-mpnet-base-v2 trained
with around 1B sentence pairs. This highlights the
importance of in-domain training. On the STS-
Benchmark, all-mpnet-base-v2 achieves the best
performance and our tweet-embeddings perform
the worst among baselines but they are generally in
a similar ballpark. To complement this evaluation,
we plan to test our tweet embeddings with a textual
similarity dataset in the tweet domain in the future.

8 Conclusion and Future Work

In this demo paper we have presented TweetNLP,
an all-round platform for NLP specialized in so-
cial media. The platform is powered by relatively
lightweight language models trained on Twitter,
and adapted (fine-tuned) to various popular NLP
tasks on social media, such as sentiment analysis
and offensive language identification. In addition

9Baseline checkpoint links are included in the Appendix.

Model Retrieval STS

Sentence-BERT 6.1 77.0
all-mpnet-base-v2 15.8 83.4
Mirror-RoBERTa 8.8 79.6
SimCSE-RoBERTa 9.2 80.3

TweetNLP (Tweet-embeddings) 26.7 70.7

Table 3: Results of sentence and tweet embedding mod-
els on tweet-reply retrieval and the STS-benchmark.

to sharing the models, TweetNLP provides an on-
line demo, a Python library, and a tutorial to make
the most of the models, regardless of the expertise
of the user. TweetNLP also enables easy inspection
of the models by non-programmers, which can help
identify harmful biases or errors, that in turn would
help improve the models in the future.

While this first release version of TweetNLP is
self-contained and complete, our goal is to keep
updating it with both new models and tasks. Since
social media data is at the core of TweetNLP, we are
planning to develop new datasets and models for so-
cial media tasks. In particular, our idea is to go be-
yond tweet classification tasks, which are currently
well covered in TweetNLP. For instance, low-level
tasks such as syntactic parsing and part-of-speech
tagging has been traditionally hard in noisy environ-
ments such as social media. Finally, in the future
we are also planning to extend TweetNLP to other
social media platforms such as Reddit, LinkedIn
or Instagram, and to provide support for languages
other than English in a wider variety of tasks.

44

9 Impact Statement

This paper deals with social media data, in par-
ticular with Twitter. All Twitter regulations were
followed and data was extracted through the offi-
cial Twitter API. To mitigate the potential effect of
working with this type of data, all dataset-related
tweets were anonymized, with URLs removed. In
most cases dataset creators made an effort to re-
move offensive or harmful content from the tweets.
Nonetheless, models trained on this data may am-
plify existing biases present in the social media
platform. While this is in many cases unavoidable,
we hope that by making this demo public with
model prototypes, experts will be able to more eas-
ily inspect these biases and we will be able to better
understand the potential biases of models trained
on this type of data.

Acknowledgements

We acknowledge the support of UKRI (in
particular the UKRI Future Leaders Fellow-
ship scheme), Snap Inc., the Cardiff Uni-
versity Innovation for All scheme and the
R&D&I grant PID2020-116118GA-I00 funded by
MCIN/AEI/10.13039/501100011033 for partially
funding this project.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
19–27, Boulder, Colorado. Association for Computa-
tional Linguistics.

Dimosthenis Antypas, Asahi Ushio, Jose Camacho-
Collados, Leonardo Neves, Vítor Silva, and
Francesco Barbieri. 2022. Twitter topic classifica-
tion. arXiv preprint arXiv:2209.09824.

Timothy Baldwin, Paul Cook, Marco Lui, Andrew
MacKinlay, and Li Wang. 2013. How noisy social
media text, how diffrnt social media sources? In Pro-
ceedings of the Sixth International Joint Conference
on Natural Language Processing, pages 356–364,
Nagoya, Japan. Asian Federation of Natural Lan-
guage Processing.

Timothy Baldwin, Marie Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization

and named entity recognition. In Proceedings of the
Workshop on Noisy User-generated Text, pages 126–
135, Beijing, China. Association for Computational
Linguistics.

Francesco Barbieri, Valerio Basile, Danilo Croce, Malv-
ina Nissim, Nicole Novielli, and Viviana Patti. 2016.
Overview of the evalita 2016 sentiment polarity clas-
sification task. In Proceedings of third Italian con-
ference on computational linguistics (CLiC-it 2016)
& fifth evaluation campaign of natural language pro-
cessing and speech tools for Italian. Final Workshop
(EVALITA 2016).

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetEval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644–1650, Online. Association for Computational
Linguistics.

Francesco Barbieri, Jose Camacho-Collados, Francesco
Ronzano, Luis Espinosa-Anke, Miguel Ballesteros,
Valerio Basile, Viviana Patti, and Horacio Saggion.
2018. SemEval 2018 task 2: Multilingual emoji
prediction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 24–33, New
Orleans, Louisiana. Association for Computational
Linguistics.

Francesco Barbieri, Luis Espinosa Anke, and Jose
Camacho-Collados. 2022. Xlm-t: Multilingual lan-
guage models in twitter for sentiment analysis and be-
yond. In Proceedings of the Language Resources and
Evaluation Conference, pages 258–266, Marseille,
France. European Language Resources Association.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Farah Benamara, Cyril Grouin, Jihen Karoui, Véronique
Moriceau, and Isabelle Robba. 2017. Analyse
d’opinion et langage figuratif dans des tweets: présen-
tation et résultats du défi fouille de textes deft2017.
In Défi Fouille de Textes DEFT2017. Atelier TALN
2017. Association pour le Traitement Automatique
des Langues (ATALA).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

45

https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/I13-1041
https://aclanthology.org/I13-1041
https://doi.org/10.18653/v1/W15-4319
https://doi.org/10.18653/v1/W15-4319
https://doi.org/10.18653/v1/W15-4319
https://hal.inria.fr/hal-01414731/document
https://hal.inria.fr/hal-01414731/document
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S18-1003
https://doi.org/10.18653/v1/S18-1003
https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/2022.lrec-1.27
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://hal.archives-ouvertes.fr/hal-01912785/document
https://hal.archives-ouvertes.fr/hal-01912785/document
https://hal.archives-ouvertes.fr/hal-01912785/document
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

learners. Advances in neural information processing
systems, 33:1877–1901.

Henrico Brum and Maria das Graças Volpe Nunes. 2018.
Building a sentiment corpus of tweets in Brazilian
Portuguese. In Proceedings of the Eleventh Inter-
national Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49(1-47).

Jose Camacho-Collados, Yerai Doval, Eugenio
Martínez-Cámara, Luis Espinosa-Anke, Francesco
Barbieri, and Steven Schockaert. 2020. Learning
cross-lingual word embeddings from twitter via dis-
tant supervision. In Proceedings of the interna-
tional AAAI conference on web and social media,
volume 14, pages 72–82.

Jose Camacho-Collados, Mohammad Taher Pilehvar,
Nigel Collier, and Roberto Navigli. 2017. SemEval-
2017 task 2: Multilingual and cross-lingual semantic
word similarity. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 15–26, Vancouver, Canada. Association
for Computational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A Twitter corpus and benchmark
resources for German sentiment analysis. In Proceed-
ings of the Fifth International Workshop on Natural
Language Processing for Social Media, pages 45–
51, Valencia, Spain. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter part-of-speech tagging for
all: Overcoming sparse and noisy data. In Proceed-
ings of the International Conference Recent Advances
in Natural Language Processing RANLP 2013, pages
198–206, Hissar, Bulgaria. INCOMA Ltd. Shoumen,
BULGARIA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Manuel C. Díaz-Galiano, Eugenio Martínez-Cámara,
M. Ángel García Cumbreras, Manuel García Vega,
and Julio Villena Román. 2018. The democratization
of deep learning in tass 2017. Procesamiento del
Lenguaje Natural, 60:37–44.

Lev Finkelstein, Gabrilovich Evgeniy, Matias Yossi,
Rivlin Ehud, Solan Zach, Wolfman Gadi, and Ruppin
Eytan. 2002. Placing search in context: The concept
revisited. ACM Transactions on Information Systems,
20(1):116–131.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a #twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 368–378, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Danqi Hu, Charles M Jones, Valerie Zhang, and Xi-
aoyan Zhang. 2021. The rise of reddit: How social
media affects retail investors and short-sellers’ roles
in price discovery. Available at SSRN 3807655.

Hang Jiang, Yining Hua, Doug Beeferman, and Deb
Roy. 2022. Annotating the tweebank corpus on
named entity recognition and building nlp models
for social media analysis. In Proceedings of the Lan-
guage Resources and Evaluation Conference, pages
7199–7208, Marseille, France. European Language
Resources Association.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1001–1012, Doha, Qatar.
Association for Computational Linguistics.

46

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/L18-1658
https://aclanthology.org/L18-1658
https://www.jair.org/index.php/jair/article/view/10857
https://doi.org/10.18653/v1/S17-2002
https://doi.org/10.18653/v1/S17-2002
https://doi.org/10.18653/v1/S17-2002
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/W17-1106
https://doi.org/10.18653/v1/W17-1106
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/R13-1026
https://aclanthology.org/R13-1026
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5556
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5556
http://theory.stanford.edu/~matias/papers/context_search.pdf
http://theory.stanford.edu/~matias/papers/context_search.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://aclanthology.org/P11-1038
https://aclanthology.org/P11-1038
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807655
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807655
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807655
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.3115/v1/D14-1108
https://doi.org/10.3115/v1/D14-1108

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1442–1459, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves,
Luis Espinosa Anke, and Jose Camacho-collados.
2022. TimeLMs: Diachronic language models from
Twitter. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 251–260, Dublin, Ire-
land. Association for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55–60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. SemEval-
2018 task 1: Affect in tweets. In Proceedings of The
12th International Workshop on Semantic Evaluation,
pages 1–17, New Orleans, Louisiana. Association for
Computational Linguistics.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31–
41, San Diego, California. Association for Computa-
tional Linguistics.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. BERTweet: A pre-trained language model
for English tweets. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 9–14, On-
line. Association for Computational Linguistics.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A. Smith.
2013. Improved part-of-speech tagging for online
conversational text with word clusters. In Proceed-
ings of the 2013 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 380–
390, Atlanta, Georgia. Association for Computational
Linguistics.

Braja Gopal Patra, Dipankar Das, Amitava Das, and Ra-
jendra Prasath. 2015. Shared task on sentiment anal-
ysis in indian languages (sail) tweets-an overview. In
International Conference on Mining Intelligence and
Knowledge Exploration, pages 650–655. Springer.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2020. Embeddings in natural language processing:
Theory and advances in vector representations of
meaning. Synthesis Lectures on Human Language
Technologies, 13(4):1–175.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, and Rada Mihalcea. 2020. Beneath the tip of
the iceberg: Current challenges and new directions in
sentiment analysis research. IEEE Transactions on
Affective Computing.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1524–1534, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 502–
518, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Asahi Ushio and Jose Camacho-Collados. 2021. T-
NER: An all-round python library for transformer-
based named entity recognition. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 53–62, Online. Association
for Computational Linguistics.

47

https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.acl-demo.25
https://aclanthology.org/2022.acl-demo.25
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S16-1003
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://aclanthology.org/N13-1039
https://aclanthology.org/N13-1039
https://link.springer.com/chapter/10.1007/978-3-319-26832-3_61
https://link.springer.com/chapter/10.1007/978-3-319-26832-3_61
https://arxiv.org/abs/2005.00357
https://arxiv.org/abs/2005.00357
https://arxiv.org/abs/2005.00357
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D11-1141
https://aclanthology.org/D11-1141
https://doi.org/10.18653/v1/S17-2088
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 task 3: Irony detection in En-
glish tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

Katrin Weller, Axel Bruns, Jean Burgess, Merja Mahrt,
and Cornelius Puschmann. 2013. Twitter and society.
Peter Lang New York.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Qi Yang, Weinan Wang, Lucas Pierce, Rajan Vaish,
Xiaolin Shi, and Neil Shah. 2021. Online communi-
cation shifts in the midst of the covid-19 pandemic:
A case study on snapchat. Proceedings of the Inter-
national AAAI Conference on Web and Social Media,
15(1):830–840.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 task 6: Identifying and cat-
egorizing offensive language in social media (Of-
fensEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 75–86, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In
In Proceedings of the LREC 2010 workshop on
new challenges for NLP frameworks, pages 45–50,
Valetta, Malta.

A Languages supported

In addition to English, the sentiment analysis demo
(including hashtag analysis) is also available for
the following languages: Amharic, Arabic, Arme-
nian, Basque, Bengali, Bulgarian, Burmese, Cata-
lan, Chinese, Czech, Danish, Dhivehi, Dutch, Esto-
nian, Finnish, French, Georgian, German, Greek,
Haitian, Hebrew, Hindi, Hungarian, Icelandic, In-
donesian, Italian, Japanese, Kannada, Khmer, Ko-
rean, Kurdish, Lao, Latvian, Lithuanian, Malay-
alam, Marathi, Nepali, Norwegian, Oriya, Panjabi,
Persian, Polish, Pushto, Romanian, Russian, Ser-
bian, Sindhi, Sinhala, Slovenian, Spanish, Swedish,
Tagalog, Tamil, Telegu, Thai, Turkish, Uighur,

Ukranian, Urdu, Vietnamese, Welsh. These lan-
guages are supported both by a XLM-T multilin-
gual model and the Twitter API.

B Model Links

Table 4 lists all TweetNLP models and their corre-
sponding Hugging Face model hub links.

We release the word embeddings along
with Gensim-optimized versions: (1) English-
monolingual word embeddings are available at
https://tweetnlp.org/downloads/
twitter-2021-124m-300d.new.bin; (2)
Multilingual word embeddings are available at
https://tweetnlp.org/downloads/
twitter-multilingual-300d.new.
bin.

Table 5 lists the baselines used for the evaluation
(Section 7) and their corresponding Hugging Face
hub links.

48

https://doi.org/10.18653/v1/S18-1005
https://doi.org/10.18653/v1/S18-1005
https://www.peterlang.com/document/1109452
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://ojs.aaai.org/index.php/ICWSM/article/view/18107
https://ojs.aaai.org/index.php/ICWSM/article/view/18107
https://ojs.aaai.org/index.php/ICWSM/article/view/18107
https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.18653/v1/S19-2010
https://tweetnlp.org/downloads/twitter-2021-124m-300d.new.bin
https://tweetnlp.org/downloads/twitter-2021-124m-300d.new.bin
https://tweetnlp.org/downloads/twitter-multilingual-300d.new.bin
https://tweetnlp.org/downloads/twitter-multilingual-300d.new.bin
https://tweetnlp.org/downloads/twitter-multilingual-300d.new.bin

Model Link

TweetEval https://huggingface.co/cardiffnlp/twitter-roberta-base
TimeLMs-21 (default) https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m
XLM-T https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base
Sentiment Analysis https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
Multilingual Sentiment Analysis https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
Emotion Recognition https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion
Emoji Prediction https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji
Irony Detection https://huggingface.co/cardiffnlp/twitter-roberta-base-irony
Hate Speech Detection https://huggingface.co/cardiffnlp/twitter-roberta-base-hate
Offensive Language Identification https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive
Stance Detection (abortion) https://huggingface.co/cardiffnlp/twitter-roberta-base-stance-abortion
Topic Classification https://huggingface.co/cardiffnlp/tweet-topic-21-multi
Named Entity Recognition https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-all
Tweet Embeddings https://huggingface.co/cambridgeltl/tweet-roberta-base-embeddings-v1

Table 4: Hugging Face model links of all the NLP models included in TweetNLP (if available).

Model Link

RoBERTa-base https://huggingface.co/roberta-base
XLM-R https://huggingface.co/xlm-roberta-base
BERTweet https://huggingface.co/vinai/bertweet-base
Sentence-BERT https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
all-mpnet-base-v2 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
Mirror-RoBERTa https://huggingface.co/cambridgeltl/mirror-roberta-base-sentence-drophead
SimCSE-RoBERTa https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base

Table 5: Baseline models’ Hugging Face links (if available).

49

https://huggingface.co/cardiffnlp/twitter-roberta-base
https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m
https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion
https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji
https://huggingface.co/cardiffnlp/twitter-roberta-base-irony
https://huggingface.co/cardiffnlp/twitter-roberta-base-hate
https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive
https://huggingface.co/cardiffnlp/twitter-roberta-base-stance-abortion
https://huggingface.co/cardiffnlp/tweet-topic-21-multi
https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-all
https://huggingface.co/cambridgeltl/tweet-roberta-base-embeddings-v1
https://huggingface.co/roberta-base
https://huggingface.co/xlm-roberta-base
https://huggingface.co/vinai/bertweet-base
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/cambridgeltl/mirror-roberta-base-sentence-drophead
https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 50 - 59
December 7-11, 2022 c©2022 Association for Computational Linguistics

JoeyS2T: Minimalistic Speech-to-Text Modeling with JoeyNMT

Mayumi Ohta
Computational Linguistics

Heidelberg University, Germany
ohta@cl.uni-heidelberg.de

Julia Kreutzer
Google Research

jkreutzer@google.com

Stefan Riezler
Computational Linguistics & IWR
Heidelberg University, Germany

riezler@cl.uni-heidelberg.de

Abstract

JoeyS2T is a JoeyNMT (Kreutzer et al., 2019)
extension for speech-to-text tasks such as au-
tomatic speech recognition and end-to-end
speech translation. It inherits the core philos-
ophy of JoeyNMT, a minimalist NMT toolkit
built on PyTorch, seeking simplicity and acces-
sibility. JoeyS2T’s workflow is self-contained,
starting from data pre-processing, over model
training and prediction to evaluation, and is
seamlessly integrated into JoeyNMT’s compact
and simple code base. On top of JoeyNMT’s
state-of-the-art Transformer-based encoder-
decoder architecture, JoeyS2T provides speech-
oriented components such as convolutional lay-
ers, SpecAugment, CTC-loss, and WER eval-
uation. Despite its simplicity compared to
prior implementations, JoeyS2T performs com-
petitively on English speech recognition and
English-to-German speech translation bench-
marks. The implementation is accompanied
by a walk-through tutorial and available on
https://github.com/may-/joeys2t.

1 Introduction

End-to-end models recently have been shown to
be able to outperform complex pipelines of indi-
vidually trained components in many NLP tasks.
For example, in the area of automatic speech recog-
nition (ASR) and speech translation (ST), the per-
formance gap between end-to-end models and cas-
caded pipelines, where an acoustic model is fol-
lowed by an HMM for ASR, or an ASR model is
followed by a machine translation (MT) model for
ST, seems to be closed (Sperber et al., 2019; Ben-
tivogli et al., 2021). An end-to-end approach has
several advantages over a pipeline approach: First,
it mitigates error propagation through the pipeline.
Second, its data requirements are simpler since in-
termediate data interfaces to bridge components
can be skipped. Furthermore, intermediate com-
ponents such as phoneme dictionaries in ASR or
transcriptions in ST need significant amounts of ad-

ditional human expertise to build. For end-to-end
models, the overall model architecture is simpler,
consisting of a unified end-to-end neural network.
Nonetheless, end-to-end components can be ini-
tialized from non end-to-end data, e.g., in audio
encoding layers (Xu et al., 2021) or text decoding
layers (Li et al., 2021).

ASR or ST tasks usually have a higher entry bar-
rier than MT, especially for novices who have little
experience in machine learning, but also for NLP
researchers who have previously only worked on
text and not speech processing. This can also be
seen in the population of the different tracks of NLP
conferences. For example, the “Speech and Multi-
modality” track of ACL 2022 had only a third of
the number of papers in the “Machine Translation
and Multilinguality” track.1 However, thanks to
the end-to-end paradigm, those tasks are now more
accessible for students or entry-level practitioners
without huge resources, and without the experi-
ence of handling the different modules of a cas-
caded system or speech processing. The increased
adoption of Transformer architectures (Vaswani
et al., 2017) in both text (Kalyan et al., 2021) and
speech processing (Dong et al., 2018; Karita et al.,
2019a,b) has further eased the transfer of knowl-
edge between the two fields, in addition to making
joint modeling easier and more unified.

Reviewing existing code bases for end-to-end
ASR and ST—for example, DeepSpeech (Han-
nun et al., 2014), ESPnet (Inaguma et al., 2020;
Watanabe et al., 2020), fairseq S2T (Wang et al.,
2020), NeurST (Zhao et al., 2021) and Speech-
Brain (Ravanelli et al., 2021)—it becomes appar-
ent that the practical use of open-source toolkits
still requires significant experience in navigating
large-scale code, using complex data formats, pre-
processing, neural text modeling, and speech pro-
cessing in general. High code complexity and a

1https://public.tableau.com/views/ACL2022map/
Dashboard1?:showVizHome=no

50

https://github.com/may-/joeys2t
https://public.tableau.com/views/ACL2022map/Dashboard1?:showVizHome=no
https://public.tableau.com/views/ACL2022map/Dashboard1?:showVizHome=no

lack of documentation are frustrating hurdles for
novices. We propose JoeyS2T, a minimalist and
accessible framework, to help novices get started
with speech recognition and translation, to accel-
erate their learning process, and to make ASR and
ST more accessible and transparent, that is directly
targeting novices and their needs.

We hope that making more accessible imple-
mentations will also have trickle-down effects of
making the research built on top of it more ac-
cessible and more linguistically and geograph-
ically diverse (Joshi et al., 2020). This ef-
fect has already been observed for the adoption
of JoeyNMT for text MT for low-resource lan-
guages (∀ et al., 2020; Camgoz et al., 2020; Zhao
et al., 2020; Zacarías Márquez and Meza Ruiz,
2021; Ranathunga et al., 2021; Mirzakhalov et al.,
2021). Furthermore, speech technology has an even
higher potential for language inclusivity (Black,
2019; Abraham et al., 2020; Zhang et al., 2022; Liu
et al., 2022).

2 Speech-to-Text Modeling

Automatic speech recognition and translation re-
quire mapping a speech feature sequence X =
{xi ∈ Rd} to a text token sequence Y = {yt ∈ V}.
The continuous speech signal in its raw wave form
is pre-processed into a sequence of discrete frames
that are each represented as d-dimensional speech
feature vectors xi, e.g., log Mel filterbanks at the
i-th time frame. In contrast, a textual sequence is
naturally composed of discrete symbols that can
be broken down into units of different granularity,
e.g. characters, sub-words, or words. These units
then form a vocabulary, so in the above formulation
yt is the t-th target token from the vocabulary V .
The goal of S2T modeling is then to find the most
probable target token sequence Ŷ from all possible
vocabulary combinations V∗:

Ŷ = argmax
Y ∈V∗

p(Y | X). (1)

2.1 Why End-to-End Modeling?
In conventional HMM modeling, the posterior
probability p(Y | X) from Eq. 1 is decomposed
into three components by introducing the HMM
state sequences S = {st}:

p(Y | X) ≈ p(X | S)︸ ︷︷ ︸
Acoustic Model

p(S | Y)︸ ︷︷ ︸
Lexical Model

p(Y)︸ ︷︷ ︸
LM

. (2)

The components correspond to an acoustic model
p(X | S), a lexical representation model p(S |

Y), and a language model p(Y). For practitioners,
this means that three individual models need to be
implemented, trained and combined. This comes
with a large overhead, since each of them requires
dedicated linguistic resources and experience in
training and tuning. Attention-based deep neural
networks have reduced this burden significantly
since they implicitly model all three components
in a single neural network, mapping X directly to
Y (Chorowski et al., 2015; Chan et al., 2016).

2.2 Optimization
Most approaches to sequence-to-sequence learning
tasks like MT use the cross-entropy (Xent) loss for
optimization, and break the sequence prediction
task down to a token-level objective. The posterior
probability from above is modeled as the product
of output token probabilities conditioned on the
entire input sequence X and the target prefix y<t:

pxent(Y | X) :=
∏

t

p(yt | y<t;X). (3)

A popular alternative in ASR is to employ
Connectionist Temporal Classification (CTC) loss
(Graves and Jaitly, 2014). CTC uses a Markov as-
sumption to model the transition of states similar
to conventional HMM:

pctc(Y | X) :=
∑

A

∏

t

p(at | X), (4)

where A denotes the set of valid alignments from
X to Y , at ∈ A is one possible alignment at the
t-th time step, and marginalizing the conditional
probability p(at | X) over all valid possible align-
ments yields the sequence-level probability.

This CTC formulation is suitable to learn mono-
tonic alignments between audio and text, and it
also can handle very long sequences efficiently by
solving dynamic programming on the state tran-
sition graph. The assumption of conditional in-
dependence at different time steps is a potentially
harmful simplification which is compensated for
by a token-level objective and by jointly minimiz-
ing cross-entropy and CTC loss (Hori et al., 2017;
Watanabe et al., 2017). The final optimization ob-
jective in the JoeyS2T implementation is a loga-
rithmic linear combination of the label-smoothed
cross-entropy loss and the CTC loss defined above:

Ltotal :=(1− λ) log pxent(Y | X)

+ λ log pctc(Y | X), (5)

where λ ∈ [0, 1] is an interpolation parameter.

51

3 Design Principles

Simplicity: We devoted considerable effort to
keep JoeyS2T’s module structure simple and flat. It
directly employs the PyTorch (Paszke et al., 2019)
backend and has a low level of abstraction (details
in Section 4.6). JoeyS2T has a minimal list of
external dependencies that can be easily installed
via the PyPI2 tool. Even for pre-processing, ex-
ternal dependencies on tools such as Kaldi (Povey
et al., 2011) are avoided. For filterbank feature ex-
traction, we use TorchAudio3 which is seamlessly
integrated into PyTorch. In contrast to other toolk-
its, speech modules extended in JoeyS2T are only
built for speech-to-text modeling. It does not imple-
ment speech enhancement, nor speaker detection
or speech generation. While this might appear like
a limitation, we believe that the reduction of func-
tionalities to a carefully identified minimum for ST
and ASR is the key for increased accessibility.4

Accessibility: We also have written extensive
documentation and walk-through tutorials to help
newcomers become more familiar with speech tech-
nologies. JoeyS2T also provides pretrained mod-
els including configuration files which lower the
barrier to get started. To guarantee the accessi-
bility of the code, we open-sourced JoeyS2T un-
der a very permissive license (Apache 2.0). The
JoeyS2T developer community actively supports
user questions and requests. We maintain an open
platform to discuss bug fixes, possible extensions
etc. All contributions are first automatically con-
trolled by the internal unit tests and will manually
be reviewed by our team.

Reproducibility: To ensure that the reported re-
sults are comparable and reproducible, we release
models trained on publicly available data. Our
evaluation metrics are described in detail (tokeniza-
tion, punctuation handling etc.). All pre- and post-
processing scripts are published with a data down-
load path and explicit hyperparameter configura-
tions. We track all code changes in our repository
and provide version information which is often a
critical factor for reproducibility as bug fixes can
affect evaluation scores.

2https://pypi.org/
3https://github.com/pytorch/audio
4A clean code base can always be extended by users once

they are more proficient. For example, JoeyNMT has been suc-
cessfully extended to other modalities and integrated into web
interfaces by advanced users. See https://github.com/
joeynmt/joeynmt#projects-and-extensions

4 Implementation and Usage

4.1 Hyperparameter Configuration
JoeyS2T sets up experiments based on a YAML-
style configuration file which declares the whole
pipeline, just like JoeyNMT. Processes are run in a
Python interface without relying on external Bash
or Perl scripts. In the configuration file, users can
choose between the tasks MT (Machine Translation)
or S2T (Speech-to-Text) in order to inform JoeyS2T
about the input data type: audio or text. The hy-
perparameters of speech-related modules such as
SpecAugment, 1d-Conv etc. can also be specified
in the same configuration file.5

4.2 Data Loading and Pre-processing
Source Audios: We separated computationally
heavy pre-processing steps from model training,
e.g., the conversion from raw wave forms to spec-
trograms by Fourier transformation. We employ
the TorchAudio API to extract audio features in
the pre-processing scripts. JoeyS2T includes mod-
ules for Cepstral Mean Variance Normalization
(CMVN) (Viikki and Laurila, 1998) and SpecAug-
ment (Park et al., 2019) by default. These are ap-
plied minibatch-wise before the input data are fed
into the encoder.

Data Loading: As a precautionary measure to
avoid memory allocation errors (which can happen
for large audio inputs) we implemented on-the-fly
data loading: we only store the path to the data
in the iterator, and load the actual spectrogram
features into memory every time a minibatch is
constructed.

Target Texts: For target texts, we expect users
to prepare a tokenization model independently and
to specify the path to the trained tokenizer. Be-
sides rule-based character-level tokenization and
basic white space splitting, we currently support
subword-nmt tokenizers (Sennrich et al., 2016)
and SentencePiece tokenizers (Kudo and Richard-
son, 2018). Users can specify tokenizer options
in JoeyS2T’s configuration file. During training,
JoeyS2T applies text tokenization on the fly. Since
the text length can be calculated only after tokeniza-
tion, instance filtering by length is applied in this
step. Thanks to this flexible on-the-fly tokeniza-
tion, dynamic data augmentation methods i.e., BPE
Dropout (Provilkov et al., 2020), SwitchOut (Wang

5Sample configuration files for different datasets are avail-
able at https://github.com/may-/joeys2t/configs

52

https://pypi.org/
https://github.com/pytorch/audio
https://github.com/joeynmt/joeynmt#projects-and-extensions
https://github.com/joeynmt/joeynmt#projects-and-extensions
https://github.com/may-/joeys2t/configs

Figure 1: Architecture of JoeyS2T. We reuse
JoeyNMT’s basic building blocks and extended them by
essential audio-specific modules.

et al., 2018) or ADA (Lam et al., 2021) can be
easily integrated.

4.3 Architectures

JoeyS2T supports a Transformer-based encoder-
decoder architecture (see Figure 1). We reuse
the self-attention encoder and decoder layers of
JoeyNMT, and modify them in order to support
speech-specific components.

Input Representations: Instead of converting to-
ken embeddings from discrete one-hot encodings
to continuous vectors (as done for text input), we
directly feed the sequence of filterbank vectors to
the encoder. The embedding size in text-based
JoeyNMT thus corresponds to the filterbank fre-
quency size in JoeyS2T.

Encoder: The biggest difference to the origi-
nal text-to-text Transformer architecture is the 1-
dimensional convolution layer (1d-Conv) placed
before the self-attention encoder. It compresses
potentially redundant features along the time di-
mension in order to capture phonetic structures.
Each 1d-Conv layer has a stride of 2. This further
downsamples the sequence by a factor of 2l, where
l is the number of 1d-Conv layers. The reduction
of the input length is essential for computation
speed: Speech feature sequences are usually much
longer than text token sequences, and the compu-
tational complexity of one self-attention block is
O(u2 · d) (Vaswani et al., 2017), where u is the
maximal input length (number of tokens in textual
input, or number of time frames in speech input),
and d is the embedding size.

Decoder: We reuse the decoder construction of
the original JoeyNMT code, but add one additional

linear layer for the CTC loss on top of the self-
attentive decoder layers.

Inference: We support greedy and beam search
based on the token probability distributions. All
inference enhancements introduced in JoeyNMT
v2.0 such as repetition penalty, n-gram blocker,
probability scoring, attention visualization of cross-
attention heads in transformer layers, etc. are sup-
ported by JoeyS2T as well.

4.4 Evaluation Metrics
JoeyS2T supports Character F-score
(ChrF) (Popović, 2015), BLEU (Papineni
et al., 2002) and Word Error Rate (WER) based
on Levenshtein distance (Navarro, 2001) as
evaluation metrics for ASR and ST. We import
sacrebleu7 (Post, 2018) for ChrF and BLEU,
and editdistance8 (Hyyrö, 2001) for WER. In
addition, perplexity and accuracy can be monitored
during training on Tensorboard (Abadi et al.,
2015).

4.5 Documentation and Tutorial
We follow the documentation strategy of JoeyNMT,
which means that all extended functions have their
own docstring and in-line comments for tensor
shapes. Unit tests covering essential modules are
automatically triggered on every commit to the
repository.

In the hands-on tutorial, we present working ex-
amples for ASR and ST as Jupyter notebooks.9 The
walk-through tutorial is self-contained and explains
the whole pipeline: installation steps, data down-
loading, data pre-processing, configuration, model
training/fine-tuning, inference and evaluation. We
will keep the tutorial up to date with potential future
API changes.

4.6 Code complexity
JoeyNMT exhibits the spirit of minimalism by aim-
ing to achieve 80% of the output quality with 20%
of a common toolkit’s code size (80/20 principle;
(Pareto, 1896)). Table 3 gives statistics on code

6nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.1.0
7https://github.com/mjpost/sacrebleu
8https://github.com/roy-ht/editdistance
9Demo video: https://youtu.be/bpBtq2jLolQ

10https://github.com/espnet/espnet/tree/master/
espnet2 (commit hash 039cc5d)

11https://github.com/pytorch/fairseq/tree/main/
fairseq (commit hash ad3bec5)

12https://github.com/may-/joeys2t/tree/main/
joeynmt (commit hash a80802a)

53

https://github.com/mjpost/sacrebleu
https://github.com/roy-ht/editdistance
https://youtu.be/bpBtq2jLolQ
https://github.com/espnet/espnet/tree/master/espnet2
https://github.com/espnet/espnet/tree/master/espnet2
https://github.com/pytorch/fairseq/tree/main/fairseq
https://github.com/pytorch/fairseq/tree/main/fairseq
https://github.com/may-/joeys2t/tree/main/joeynmt
https://github.com/may-/joeys2t/tree/main/joeynmt

LibriSpeech 100h (WER ↓)
System Architecture dev-clean dev-other test-clean test-other

Kahn et al. (2020)† BiLSTM 14.00 37.02 14.85 39.95
Laptev et al. (2020)† Transformer 10.3 24.0 11.2 24.9
ESPnet‡ Transformer 8.1 20.2 8.4 20.5
ESPnet‡ Conformer 6.3 17.4 6.5 17.3
JoeyS2T Transformer 10.66 ± 0.36 23.82 ± 0.34 12.02 ± 0.32 24.75 ± 0.37

LibriSpeech 960h (WER ↓)
System Architecture dev-clean dev-other test-clean test-other

Gulati et al. (2020)† Conformer 1.9 4.4 2.1 4.9
ESPnet‡ Conformer 2.3 6.1 2.6 6.0
SpeechBrain* Conformer 2.13 5.51 2.31 5.61
fairseq S2T* Transformer 3.23 8.01 3.52 7.83
fairseq wav2vec2* Conformer 3.17 8.86 3.39 8.57
JoeyS2T Transformer 3.79 ± 0.27 8.84 ± 0.39 4.31 ± 0.52 8.66 ± 0.35

Table 1: Averaged results in WER on the English LibriSpeech dataset over three runs with standard deviations
(±). We compute the WER on lowercased transcriptions without punctuations using SacreBLEU’s 13a tokenizer.
†: results were reported in the papers linked above. ‡: results were taken from the repository linked above. *: we
downloaded their pretrained models from the repository, and ran the inference and the evaluation on the same test
data as we use in JoeyS2T.

MuST-C ver. ASR (WER ↓) MT (BLEU ↑)
System train eval tst-COMMON tst-HE tst-COMMON tst-HE

Gangi et al. (2019)† v1 v1 27.0 - 25.3 -
Zhang et al. (2020)† v1 v1 - - 29.69 -
ESPnet‡ v1 v1 12.70 - 27.63 -
fairseq S2T* v1 v1 12.72 10.93 - -
JoeyS2T v2 v1 18.86±0.37 15.19±0.56 23.07±0.14 20.21±0.17
fairseq S2T* v1 v2 11.88 10.43 - -
JoeyS2T v2 v2 12.95±0.32 11.16±0.31 27.17±0.63 24.85±0.68

MuST-C ver. Cascade ST (BLEU ↑) End2End ST (BLEU ↑)
System train eval tst-COMMON tst-HE tst-COMMON tst-HE

Gangi et al. (2019)† v1 v1 18.5 - 17.3 -
Zhang et al. (2020)† v1 v1 22.52 - 20.67 -
ESPnet‡ v1 v1 - - 22.91 -
fairseq S2T* v1 v1 - - 22.70 21.70
JoeyS2T v2 v1 21.89±0.64 21.03±0.66 20.53±0.29 21.13±0.46
fairseq S2T* v1 v2 - - 23.20 22.23
JoeyS2T v2 v2 23.95±0.59 22.65±0.58 23.33±0.39 22.90±0.69

Table 2: Averaged results on the MuST-C en-de dataset over three runs with standard deviations (±). We compute
the BLEU on truecased translations with punctuations using SacreBLEU’s 13a tokenizer.6 †: results were reported
in the papers linked above. ‡: results were taken from the repository linked above. *: we downloaded their pretrained
models from the repository, and ran the inference and evaluation on the same test data as we use in JoeyS2T.

complexity. In terms of the numbers of Python files
and code lines, JoeyS2T is 10–11 times more com-
pact than ESPnet (Inaguma et al., 2020; Watanabe
et al., 2020) and fairseq (Wang et al., 2020). How-
ever, both ESPnet and fairseq are general-purpose
toolkits, covering a wide range of tasks beyond MT,

ASR or ST, such as language modeling or speech
synthesis, while JoeyS2T is designed for a speech-
to-text tasks only. Yet JoeyS2T’s comment-to-code
ratio is much higher than that of the competitors.

JoeyS2T offers a flat code structure in order
to make debugging along the stack trace easier

54

https://github.com/espnet/espnet/tree/master/egs2/librispeech_100/asr1
https://github.com/espnet/espnet/tree/master/egs2/librispeech_100/asr1
https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1#without-lm
https://huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech
https://huggingface.co/facebook/s2t-small-librispeech-asr
https://huggingface.co/facebook/wav2vec2-base-960h
https://github.com/espnet/espnet/tree/master/egs/must_c
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/espnet/espnet/tree/master/egs/must_c
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md

ESPnet210 fairseq11 JoeyS2T12

Python files 287 407 24
Code lines 41427 65097 5450
Comment lines 10260 11042 2137

Comment/Code Ratio 0.25 0.17 0.39

Table 3: Code complexity measured using https://
github.com/AlDanial/cloc v1.94.

and to reduce the number of code files and nested
classes/functions to read through. In contrast,
fairseq’s codebase is organized hierarchically. This
deep hierarchy comes from the structured class
inheritance, which is an important component of
object-oriented programming for experienced de-
velopers. However, such hierarchical class in-
heritance is sometimes a big stumbling block for
novices (Wiedenbeck et al., 1999). We intention-
ally abandon deeply inherited class design and use
novice-friendly flat structure instead. As a result,
developers do not have to allocate their cognitive
resources to framework-specific software design
principles, but they can concentrate on the logic
they want to realize. JoeyS2T encourages novices
to dive into speech-to-text research before they ma-
ture in high-context system design such as hierar-
chical class inheritance or decorators.

5 Experimental Results on Benchmarks

Despite its simplicity, JoeyS2T achieves a perfor-
mance on standard benchmarks that is comparable
to other high-functional speech-to-text toolkits.

5.1 ASR on LibriSpeech

LibriSpeech (Panayotov et al., 2015) is the de-facto
standard English ASR benchmark that contains 960
hours of audiobooks in Project Gutenberg. The
corpus is publicly available under the CC BY 4.0
license and many works set their goal to achieve
state-of-the-art WER on its test splits.

Tables 1 present the results of models trained on
100h and 960h audio, respectively. JoeyS2T shows
comparable performance with current Transformer-
based models, which are generally outperformed
by Conformer (Gulati et al., 2020) models.

5.2 ST on MuST-C

MuST-C (Cattoni et al., 2021) is a publicly avail-
able speech translation corpus built from English
TED Talks. It consists of English transcriptions
and translations into 14 languages, contributed by

volunteers. We trained our model on the English-
German subset of version 2, and evaluated the
model both on version 1 and version 2 tst-COMMON,
and tst-HE splits.

MuST-C is a challenging dataset due to its spon-
taneous speech that contains hesitations, disfluent
utterances, etc. on the source side. Furthermore,
the ground-truth target texts derived from the sub-
titles are also noisy. There are some additional
descriptions of non-verbal information, i.e., “(ap-
plause)” “(laughter)”, or “♪ (music)”. Those are
not actually pronounced in the source, but provided
in the target, which makes learning more difficult.
We normalized such noisy expressions and spec-
ified them as special tokens during the subword
training, so that they are not tokenized into sub-
words but kept as single tokens. For the sake of
reproducibility, we provide a preprocessing script
for all normalization steps.

For ST tasks, we first pretrained ASR models
and MT models using the gold transcriptions. Then
we initialized the encoder layers of an end-to-end
ST model with the pretrained ASR encoders and
the decoder layers with the pretrained MT decoders,
and further trained it on the end-to-end ST task.

The ST results can be found in Table 2. JoeyS2T
shows competitive results, both in end-to-end sce-
narios and in a cascade using the same pre-trained
models. We also include the ASR and MT pretrain-
ing results for reference.

6 Conclusion & Future Work

We described JoeyS2T, an extension of the
JoeyNMT toolkit to the spoken language process-
ing tasks ASR and ST. JoeyS2T is characterized
by its minimalist design, prioritization of simplic-
ity, accessibility and reproducibility in its code and
documentation. The code is self-contained and
requires minimal prior experience with speech or
language processing. In benchmark evaluations,
JoeyS2T performed comparable or superior to other
ASR or ST code bases, while having much lower
code complexity.

While its functionality is kept minimal, support
for state-of-the-art architectures such as wav2vec
and Conformer might be desired for future exten-
sions.

Limitations

The limitations of our work mainly concern the
reproducibility of comparable state-of-the-art re-

55

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

sults. First, there are many different preprocessing
variants which are quite complex (length filtering,
speed shift, lowercasing, punctuation normaliza-
tion etc.) and not always clearly documented. Sec-
ond, the same problem appears in evaluation. There
is no commonly accepted evaluation scheme (in-
cluding lower-cased vs. true-cased results, with or
without punctuation, etc.). While the sacrebleu
library is a first step to addressing this problem in
MT, we believe that the speech processing commu-
nity also needs such efforts to standardize speech-
to-text evaluation.

Since the goal of our work is not to present a new
state-of-the-art in speech-to-text modeling, we did
not invest a large effort into hyperparameter tuning,
but only varied three different random seeds in our
setup, and used the default settings for competitor
systems.

Acknowledgements

We would like to thank the members of the StatNLP
group at Heidelberg University and the AIMS Sene-
gal students for their feedback on the tutorial. Fur-
thermore, we appreciate the discussions with the
Masakhane13 community in the early stages of the
toolkit development. We also thank Yaraku Inc.14

for the opportunity to publish JoeyS2T tutorial arti-
cles.15

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Basil Abraham, Danish Goel, Divya Siddarth, Kalika
Bali, Manu Chopra, Monojit Choudhury, Pratik Joshi,
Preethi Jyoti, Sunayana Sitaram, and Vivek Seshadri.
2020. Crowdsourcing speech data for low-resource

13https://www.masakhane.io/
14https://www.yarakuzen.com/
15https://atmarkit.itmedia.co.jp/ait/articles/

2208/17/news002.html

languages from low-income workers. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 2819–2826, Marseille, France. Eu-
ropean Language Resources Association.

Luisa Bentivogli, Mauro Cettolo, Marco Gaido, Alina
Karakanta, Alberto Martinelli, Matteo Negri, and
Marco Turchi. 2021. Cascade versus direct speech
translation: Do the differences still make a differ-
ence? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2873–2887, Online. Association for Computa-
tional Linguistics.

Alan W Black. 2019. Cmu wilderness multilingual
speech dataset. In ICASSP 2019 - 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5971–5975.

Necati Cihan Camgoz, Oscar Koller, Simon Hadfield,
and Richard Bowden. 2020. Sign language trans-
formers: Joint end-to-end sign language recognition
and translation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10023–10033.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-
tivogli, Matteo Negri, and Marco Turchi. 2021. Must-
c: A multilingual corpus for end-to-end speech trans-
lation. Computer Speech & Language, 66:101155.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4960–4964.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume
1, NIPS’15, page 577–585, Cambridge, MA, USA.
MIT Press.

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-
transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5884–5888.

∀, Wilhelmina Nekoto, Vukosi Marivate, Tshi-
nondiwa Matsila, Timi Fasubaa, Taiwo Fagbo-
hungbe, Solomon Oluwole Akinola, Shamsuddeen
Muhammad, Salomon Kabongo Kabenamualu, Sa-
lomey Osei, Freshia Sackey, Rubungo Andre Niy-
ongabo, Ricky Macharm, Perez Ogayo, Orevaoghene
Ahia, Musie Meressa Berhe, Mofetoluwa Adeyemi,
Masabata Mokgesi-Selinga, Lawrence Okegbemi,
Laura Martinus, Kolawole Tajudeen, Kevin Degila,
Kelechi Ogueji, Kathleen Siminyu, Julia Kreutzer,
Jason Webster, Jamiil Toure Ali, Jade Abbott,

56

https://www.tensorflow.org/
https://www.tensorflow.org/
https://aclanthology.org/2020.lrec-1.343
https://aclanthology.org/2020.lrec-1.343
https://www.masakhane.io/
https://aclanthology.org/2020.lrec-1.343
https://www.yarakuzen.com/
https://aclanthology.org/2020.lrec-1.343
https://atmarkit.itmedia.co.jp/ait/articles/2208/17/news002.html
https://aclanthology.org/2020.lrec-1.343
https://atmarkit.itmedia.co.jp/ait/articles/2208/17/news002.html
https://aclanthology.org/2020.lrec-1.343
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.1109/ICASSP.2019.8683536
https://doi.org/10.1109/ICASSP.2019.8683536
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.1109/ICASSP.2018.8462506

Iroro Orife, Ignatius Ezeani, Idris Abdulkadir Dan-
gana, Herman Kamper, Hady Elsahar, Goodness
Duru, Ghollah Kioko, Murhabazi Espoir, Elan van
Biljon, Daniel Whitenack, Christopher Onyefuluchi,
Chris Chinenye Emezue, Bonaventure F. P. Dossou,
Blessing Sibanda, Blessing Bassey, Ayodele Olabiyi,
Arshath Ramkilowan, Alp Öktem, Adewale Akin-
faderin, and Abdallah Bashir. 2020. Participatory re-
search for low-resourced machine translation: A case
study in African languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2144–2160, Online. Association for Computa-
tional Linguistics.

Mattia A. Di Gangi, Matteo Negri, and Marco Turchi.
2019. Adapting Transformer to End-to-End Spoken
Language Translation. In Proc. Interspeech 2019,
pages 1133–1137.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-
works. International conference on machine learn-
ing, pages 1764–1772.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruom-
ing Pang. 2020. Conformer: Convolution-augmented
transformer for speech recognition. In Interspeech
2020, 21st Annual Conference of the International
Speech Communication Association, pages 5036–
5040, Shanghai, China. ISCA.

Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

Takaaki Hori, Shinji Watanabe, and John Hershey. 2017.
Joint CTC/attention decoding for end-to-end speech
recognition. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 518–529, Vancouver,
Canada. Association for Computational Linguistics.

Heikki Hyyrö. 2001. Explaining and extending the bit-
parallel approximate string matching algorithm of
myers. Technical report, Citeseer.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki
Karita, Nelson Yalta, Tomoki Hayashi, and Shinji
Watanabe. 2020. ESPnet-ST: All-in-one speech
translation toolkit. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 302–311,
Online. Association for Computational Linguistics.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Jacob Kahn, Ann Lee, and Awni Hannun. 2020. Self-
training for end-to-end speech recognition. In 2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7084–7088.
IEEE.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. AMMUS : A survey
of transformer-based pretrained models in natural
language processing. CoRR, abs/2108.05542.

Shigeki Karita, N. Chen, Tomoki Hayashi, Takaaki Hori,
H. Inaguma, Ziyan Jiang, Masao Someki, Nelson
Yalta, Ryuichi Yamamoto, Xiao fei Wang, Shinji
Watanabe, Takenori Yoshimura, and Wangyou Zhang.
2019a. A comparative study on transformer vs rnn in
speech applications. 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 449–456.

Shigeki Karita, Nelson Yalta, Shinji Watanabe, Marc
Delcroix, Atsunori Ogawa, and Tomohiro Nakatani.
2019b. Improving transformer-based end-to-end
speech recognition with connectionist temporal clas-
sification and language model integration. In INTER-
SPEECH.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler.
2019. Joey NMT: A minimalist NMT toolkit for
novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP): System
Demonstrations, pages 109–114, Hong Kong, China.
Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Tsz Kin Lam, Mayumi Ohta, Shigehiko Schamoni,
and Stefan Riezler. 2021. On-the-fly aligned data
augmentation for sequence-to-sequence ASR. In
22nd Annual Conference of the International Speech
Communication Association, INTERSPEECH 2021,
pages 4261–4265. International Speech Communica-
tion Association.

Aleksandr Laptev, Roman Korostik, Aleksey Svischev,
Andrei Andrusenko, Ivan Medennikov, and Sergey
Rybin. 2020. You do not need more data: Improving
end-to-end speech recognition by text-to-speech data
augmentation. In 2020 13th International Congress
on Image and Signal Processing, BioMedical Engi-
neering and Informatics (CISP-BMEI), pages 439–
444. IEEE.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.

57

https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.21437/Interspeech.2019-3045
https://doi.org/10.21437/Interspeech.2019-3045
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.18653/v1/P17-1048
https://doi.org/10.18653/v1/P17-1048
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.acl-long.68

In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 827–838,
Online. Association for Computational Linguistics.

Zoey Liu, Crystal Richardson, Richard Hatcher, and
Emily Prud’hommeaux. 2022. Not always about
you: Prioritizing community needs when developing
endangered language technology. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3933–3944, Dublin, Ireland. Association for
Computational Linguistics.

Jamshidbek Mirzakhalov, Anoop Babu, Aigiz Ku-
nafin, Ahsan Wahab, Behzod Moydinboyev, Sardana
Ivanova, Mokhiyakhon Uzokova, Shaxnoza Pulatova,
Duygu Ataman, Julia Kreutzer, Francis Tyers, Orhan
Firat, John Licato, and Sriram Chellappan. 2021.
Evaluating multiway multilingual nmt in the turkic
languages. In Proceedings of the Sixth Conference
on Machine Translation, Punta Cana, Dominican Re-
public.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching. ACM Comput. Surv., 33(1):31–88.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5206–5210.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Vilfredo Pareto. 1896. Cours d’économie politique:
professé à l’Universi∀té de Lausanne, volume 1. F.
Rouge.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. SpecAugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026–
8037.

Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech
recognition and understanding, CONF. IEEE Signal
Processing Society.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Surangika Ranathunga, En-Shiun Annie Lee, Mar-
jana Prifti Skenduli, Ravi Shekhar, Mehreen Alam,
and Rishemjit Kaur. 2021. Neural machine transla-
tion for low-resource languages: A survey. CoRR,
abs/2106.15115.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. 2021. SpeechBrain: A
general-purpose speech toolkit. arXiv preprint
arXiv:2106.04624.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2019. Attention-Passing Models for
Robust and Data-Efficient End-to-End Speech Trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 7:313–325.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Olli Viikki and Kari Laurila. 1998. Cepstral domain
segmental feature vector normalization for noise ro-
bust speech recognition. Speech Communication,
25(1-3):133–147.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference

58

https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
http://arxiv.org/abs/2106.15115
http://arxiv.org/abs/2106.15115
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1162/tacl_a_00270
https://doi.org/10.1162/tacl_a_00270
https://doi.org/10.1162/tacl_a_00270
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6

on Natural Language Processing: System Demon-
strations, pages 33–39, Suzhou, China. Association
for Computational Linguistics.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neu-
big. 2018. SwitchOut: an efficient data augmentation
algorithm for neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 856–861,
Brussels, Belgium. Association for Computational
Linguistics.

Shinji Watanabe, Florian Boyer, Xuankai Chang,
Pengcheng Guo, Tomoki Hayashi, Yosuke Higuchi,
Takaaki Hori, Wen-Chin Huang, Hirofumi Inaguma,
Naoyuki Kamo, et al. 2020. The 2020 ESPNet
update: New features, broadened applications, per-
formance improvements, and future plans. arXiv
preprint arXiv:2012.13006.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R.
Hershey, and Tomoki Hayashi. 2017. Hybrid
CTC/Attention Architecture for End-to-End Speech
Recognition. IEEE Journal of Selected Topics in
Signal Processing, 11(8):1240–1253.

Susan Wiedenbeck, Vennila Ramalingam, Suseela
Sarasamma, and Cynthia L Corritore. 1999. A com-
parison of the comprehension of object-oriented and
procedural programs by novice programmers. Inter-
acting with Computers, 11(3):255–282.

Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, Shen
Huang, Qi Ju, Tong Xiao, and Jingbo Zhu. 2021.
Stacked acoustic-and-textual encoding: Integrating
the pre-trained models into speech translation en-
coders. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2619–2630, Online. Association for Computa-
tional Linguistics.

Delfino Zacarías Márquez and Ivan Vladimir Meza Ruiz.
2021. Ayuuk-Spanish neural machine translator. In
Proceedings of the First Workshop on Natural Lan-
guage Processing for Indigenous Languages of the
Americas, pages 168–172, Online. Association for
Computational Linguistics.

Biao Zhang, Ivan Titov, Barry Haddow, and Rico Sen-
nrich. 2020. Adaptive feature selection for end-to-
end speech translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2533–2544, Online. Association for Computational
Linguistics.

Shiyue Zhang, Ben Frey, and Mohit Bansal. 2022. How
can NLP help revitalize endangered languages? a
case study and roadmap for the Cherokee language.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1529–1541, Dublin, Ireland.
Association for Computational Linguistics.

Chengqi Zhao, Mingxuan Wang, Qianqian Dong, Rong
Ye, and Lei Li. 2021. NeurST: Neural speech transla-
tion toolkit. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 55–62, Online. Association for Computational
Linguistics.

Xingyuan Zhao, Satoru Ozaki, Antonios Anastasopou-
los, Graham Neubig, and Lori Levin. 2020. Auto-
matic interlinear glossing for under-resourced lan-
guages leveraging translations. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5397–5408, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

59

https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.americasnlp-1.19
https://doi.org/10.18653/v1/2020.findings-emnlp.230
https://doi.org/10.18653/v1/2020.findings-emnlp.230
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 60 - 71
December 7-11, 2022 c©2022 Association for Computational Linguistics

FairLib : A Unified Framework for Assessing and Improving Fairness

Xudong Han1 Aili Shen1,2∗ Yitong Li3 Lea Frermann1

Timothy Baldwin1,4 Trevor Cohn1

1The University of Melbourne 2Alexa AI, Amazon
3Huawei Technologies Co., Ltd. 4MBZUAI

xudongh1@student.unimelb.edu.au ailishen@amazon.com

liyitong3@huawei.com {lfrermann,tbaldwin,t.cohn}@unimelb.edu.au

Abstract

This paper presents FairLib , an open-source
Python library for assessing and improving
model fairness. It provides a systematic frame-
work for quickly accessing benchmark datasets,
reproducing existing debiasing baseline mod-
els, developing new methods, evaluating mod-
els with different metrics, and visualizing their
results. Its modularity and extensibility enable
the framework to be used for diverse types of
inputs, including natural language, images, and
audio. It incorporates 14 debiasing methods,
including pre-processing, at-training-time, and
post-processing approaches. The built-in met-
rics cover the most commonly acknowledged
fairness criteria, and can be further generalized
and customized for fairness evaluation.1

1 Introduction

While neural methods have achieved great success,
it has been shown that naively-trained models often
learn spurious correlations with protected attributes
like user demographics or socio-economic factors,
leading to allocation harms, stereotyping, and other
representation harms (Badjatiya et al., 2019; Zhao
et al., 2018; Li et al., 2018; Díaz et al., 2018; Wang
et al., 2019). As a result, there is a surge of interest
in assessing and improving fairness.

Various bias evaluation metrics have been in-
troduced in previous studies to gauge different
types of biases. One common family of fairness
assessment is group fairness which measures per-
formance disparities across demographic groups.
Different instantiations of group fairness have been
proposed, including demographic parity (Feldman
et al., 2015), where the positive prediction rate
should be identical across groups (irrespective
of the gold label), or equal opportunity (Hardt
et al., 2016) where all groups should have an equal

∗This work was done when Aili Shen was at The Univer-
sity of Melbourne.

1Please check out the demo notebook and the demo video.

chance of false negative prediction (equalized odds
extends the notion to include equal true positive
rates). More recent work addressed disparities
within classes and demographic groups (Shen et al.,
2022b). While these approaches reflect the nature
of fairness increasingly faithfully, they have been
applied and evaluated inconsistently in previous
work, which impedes systematic analysis and com-
parison of proposed approaches.

In terms of bias mitigation, diverse debias-
ing methods have been proposed, including at-
training-time (Li et al., 2018; Elazar and Goldberg,
2018; Shen et al., 2022a), and pre- (Zhao et al.,
2017; Wang et al., 2019) and post-processing ap-
proaches (Han et al., 2022a; Ravfogel et al., 2020).
Although these methods have been proved effective
for bias mitigation, it is challenging to reproduce
results and compare methods because of inconsis-
tencies in training strategy and model selection
criteria, which demonstrably affect the results.

We present FairLib , a well-documented, open-
source framework for assessing and improving fair-
ness. FairLib implements a number of common
debiasing approaches in a unified framework to
facilitate reproducible and consistent evaluation,
and provides interfaces for developing new debi-
asing methods. Moreover, a dataset interface sup-
ports adoption of both built-in and newly developed
methods for new tasks and corpora. For better pre-
sentation, FairLib also provides utilities for result
summarization and visualization.

FairLib is implemented in Python using PyTorch
and is easy to use: it can be run from the command
line, or imported as a package into other projects.
To demonstrate its utility, we use FairLib to repro-
duce a battery of debiasing results from the recent
NLP literature, and show that improved and system-
atic hyperparameter tuning leads to demonstrable
improvements over the originally reported results.
FairLib is released under Apache License 2.0 and

60

xudongh1@student.unimelb.edu.au
ailishen@amazon.com
liyitong3@huawei.com
{lfrermann,tbaldwin,t.cohn}@unimelb.edu.au
https://colab.research.google.com/github/HanXudong/fairlib/blob/main/tutorial/fairlib_demo.ipynb
https://youtu.be/yGubVfAhpuo

is available on GitHub.2 Detailed documentation
and tutorials are available on FairLib ’s website.3

2 Benchmark Datasets

In addition to evaluating bias wrt. a user group, we
require datasets where each input instance is anno-
tated with protected attributes (e.g., gender) and a
target class label (e.g., sentiment). However, for a
variety of reasons, only a small subset of datasets
contains protected attribute labels, and annotating
protected labels can be difficult.

To standardize fairness studies, FairLib provides
APIs to access various publicly available fairness
benchmark datasets, including: (1) text corpora for
occupation classification (BIOS, De-Arteaga et al.
(2019)), sentiment analysis (MOJI, Blodgett et al.
(2016)), and part-of-speech tagging (TRUSTPILOT,
Hovy (2015)); (2) structured data for the tasks
of recidivism prediction (COMPAS, Larson et al.
(2016)), and income prediction (ADULT, Kohavi
et al. (1996)); and (3) image data to address colored
handwritten digit recognition (COLOREDMNIST,
Arjovsky et al. (2019)), objective classification
(COCO, Zhao et al. (2017)), and event classifi-
cation (IMSITU, Zhao et al. (2017)).4

3 Fairness Criteria

FairLib includes a variety of widely-used fairness
evaluation metrics from the literature.

Representational Fairness: To evaluate
whether sensitive information (such as demograph-
ics) is encoded in the representations of a trained
model, previous work has proposed to estimate the
leakage using an attacker (Elazar and Goldberg,
2018; Wang et al., 2019). Specifically, an attacker
is trained to reverse-engineer protected attributes
of inputs based on learned representations or the
original inputs. FairLib provides flexible APIs
to estimate information leakage at any representa-
tional level, based on different attackers (including
linear and neural models).

Group Fairness: To evaluate whether model
predictions are fair towards the protected attributes,
Barocas et al. (2019) present formal definitions of
three types of group fairness criteria, which capture
different levels of (conditional) independence be-
tween the protected attribute g, the target variable

2https://github.com/HanXudong/fairlib
3https://hanxudong.github.io/fairlib
4Check the FairLib website for a full list of built-in

datasets.

y, and the model prediction ŷ. Table 1 summarizes
the statistical fairness criteria and maps them to
confusion-matrix-derived scores. The group fair-
ness criteria evaluate the disparity of these scores
across subgroups and classes.

Aggregation of subset performance metrics to
a single figure of merit typically consists of two
steps: (1) group-wise aggregation within each class,
which reflects performance disparities across pro-
tected groups for each class; and (2) class-wise ag-
gregation, to aggregate group-wise disparities for
all classes (i.e., the vector from step 1) into a single
number. The choice of aggregation function re-
flects different assumptions of fairness, and varies
in previous work. Table 2 lists existing aggregation
approaches which are built in to FairLib .5

4 Bias Mitigation

This section reviews the three primary types of
debiasing methods, followed by Section 4.1, a sum-
mary of bias mitigation methods implemented in
FairLib .

Pre-processing adjusts the training dataset to
be balanced across protected groups before train-
ing, such that the input feature space is expected to
be uncorrelated with the protected attributes. Typ-
ical approaches here adopt long-tail learning ap-
proaches for debiasing, such as resampling the
training set such that the number of instances
within each protected group is identical (Zhao et al.,
2018; Wang et al., 2019; Han et al., 2022a).

At training time introduces constraints into the
optimization process for model training. A pop-
ular method is adversarial training, which jointly
trains: (i) a discriminator to recover protected at-
tribute values; and (ii) the main model to correctly
predict the target classes while at the same time pre-
venting protected attributes from being correctly
predicted (Wadsworth et al., 2018; Elazar and Gold-
berg, 2018; Li et al., 2018; Wang et al., 2019; Zhao
and Gordon, 2019; Han et al., 2021).

Post-processing aims to adjust a trained clas-
sifier according to protected attributes, such that
the final predictions are fair to different protected
groups. For example, Ravfogel et al. (2020) it-
eratively project fixed text representations from a
trained model to a null-space of protected attributes.
Han et al. (2022a) adjust the predictions for each
protected group by searching for the best prior for

5In Section 6.3, we further introduce a framework for
generalized aggregation in FairLib .

61

https://github.com/HanXudong/fairlib
https://hanxudong.github.io/fairlib
https://hanxudong.github.io/fairlib/reference_component_benchmark_datasets.html

Type Main Idea Metric (M)

Independence (ŷ ⊥ g) Positive rate of each protected group is the same TP+FP
TP+FP+TN+FN (Positive Rate)(Demographic Parity; Feldman et al. (2015))

Separation (ŷ ⊥ g|y) Acknowledges correlation between g and y TP
TP+FN (Recall or TPR)

(Equalized Odds; Hardt et al. (2016)) FP
FP+TN (Fall-out or FPR)

Sufficiency (y ⊥ g|ŷ) Predictions are calibrated for all groups TP
TP+FP (Precision)

(Test Fairness; Chouldechova (2017)) TN
TN+FN (NPV)

Table 1: Built-in fairness evaluation metrics in FairLib .

Formulation Reference

βc =
1
G

∑
g |Mc,g −M c| Shen et al. (2022b)

βc =
1

G−1

∑
g |Mc,g −M c|2 Lum et al. (2022)

βc = maxg |Mc,g −M c| Yang et al. (2020)
βc = ming Mc,g Lahoti et al. (2020)
βc = ming

Mc,g

Mc
Zafar et al. (2017)

βc = maxg Mc,g −ming Mc,g Bird et al. (2020)
βc =

maxg Mc,g
ming Mc,g

Feldman et al. (2015)

δ =
√

1
C

∑
c β

2
c Romanov et al. (2019)

δ = 1
C

∑
c βc Li et al. (2018)

Table 2: A subset of aggregation approaches for fairness
evaluation from the literature that have are implemented
in FairLib . C and G refer to the number of distinct
classes and protected groups. Mc,g is the evaluation
results of class c and group g wrt. a particular evaluation
metric M , such as TPR. βc denotes the aggregation
of group-wise disparities within class c, and following
class-wise aggregation results in δ, which is the fairness
score.

each group-specific component.

4.1 Implemented Methods

Table 3 lists 14 debiasing methods that are imple-
mented in FairLib . It can be beneficial to employ
different debiasing methods simultaneously (e.g.,
combine pre-processing and training-time meth-
ods (Wang et al., 2019; Han et al., 2022a)), which
FairLib supports, and technically, every combina-
tion of these methods can be directly used without
any further modifications.

5 Model Comparison

Typically, debiasing methods suffer from
performance–fairness trade-offs, and no single
method achieves both the best performance and
fairness, making comparison between fairness
methods difficult. In this section, we first introduce
trade-off plots for model comparison, and then
discuss model selection criteria that can be used

4.0 3.5 3.0 2.5 2.0 1.5 1.0
log10

0.4

0.5

0.6

0.7

0.8

Pe
rfo

rm
an

ce

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Fa
irn

es
s

Figure 1: Tuning the tradeoff hyperparameter of
FAIRSCL. Similar trade-offs can be obtained for other
debiasing methods.

for reporting numerical results.
Performance–fairness Trade-off is a com-

mon way of comparing different debiasing meth-
ods without the requirement for model selection.
Specifically, there is usually a trade-off hyperpa-
rameter for each debiasing method, which controls
to what extent the model will sacrifice performance
for better fairness, such as the number of iterations
for null-space projection in INLP,6 or the strength
of the additional contrastive losses in FAIRSCL.
Figure 1 shows a trade-off plot over different val-
ues of the trade-off hyperparameter of FAIRSCL
for occupation classification, wherein we evaluate
performance with accuracy, and use equal oppor-
tunity as the fairness criterion (see Section 8.1 for
details).7

Instead of trade-offs wrt. different hyperparame-
ter values, it can be more instructive to compute the
maximum fairness that can be achieved by differ-
ent models at a fixed performance level, and vice
versa. Figure 2 shows an example of comparing the
Pareto frontiers of INLP with FAIRSCL, where
the results are obtained by varying the hyperpa-
rameters as illustrated in Figure 1. For a particular
method, a Pareto optimal point corresponds to a
model (i.e., a particular value of the trade-off hy-

6Cf., Table 3 for explanations of mentioned methods.
7Note that all figures and tables of results in this paper are

direct outputs of FairLib .

62

Type Model Main Idea

Pre-

BD (Zhao et al., 2017) Equalize the size of protected groups.
CB (Wang et al., 2019) Down-sample the majority protected group within each class.
JB (Lahoti et al., 2020) Jointly balance the Protected attributes and classes.
BTEO (Han et al., 2022a) Balance protected attributes within advantage classes.

At-

ADV (Li et al., 2018) Prevent protected attributes from being identified by the discriminator.
EADV (Elazar and Goldberg, 2018) Employ multiple discriminators for adversarial training.
DADV (Han et al., 2021) Employ multiple discriminators with orthogonality regularization.
AADV & ADADV (Han et al., 2022b) Enable discriminators to use target labels as inputs during training.
GATE (Han et al., 2022a) Address protected factors with an augmented representation.
FAIRBATCH (Roh et al., 2021) Minimize CE loss gap though minibatch resampling.
FAIRSCL (Shen et al., 2022a) Adopt supervised contrastive learning for bias mitigation.
EOCLA (Shen et al., 2022b) Minimize the CE loss gap within each target label by adjusting the loss.

Post- INLP (Ravfogel et al., 2020) Remove protected attributes through iterative null-space projection.
GATE soft (Han et al., 2022a) Adjust the prior for each group-specific component in GATE.

Table 3: Built-in methods for bias mitigation, which are grouped into three types: Pre-processing, At training time,
and Post-processing.

0.3 0.4 0.5 0.6 0.7 0.8
Accuracy

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

Fa
irn

es
s

Models
FairSCL
INLP

Figure 2: Pareto frontier curves derived from Figure 1.

perparameter) such that performance and fairness
cannot be improved without causing a degradation
in the other criterion.

Model Selection refers to the process of select-
ing the combination of hyperparameters that leads
to best performance. In single-objective learning,
model selection is based on a single metric, such as
the loss on the dev set. In debiasing, however, both
performance and fairness need to be considered for
model selection, and a common method is Con-
strained Selection, which selects the best model
given thresholds of the performance and fairness:

f∗ = argmax
f

q(f) s.t.
Perf(f) > hPerf

Fair(f) > hFair
(1)

where f denotes a candidate model, Perf(f) and
Fair(f) are the performance and fairness evaluation
results for f , respectively, q is a real valued score
function that maps the model f to a number, and
h denotes corresponding thresholds. For instance,
using q(f) = Fair(f) results in the selection of the
fairest candidate model.

Instead of measuring performance and fairness
separately, one can explicitly measure their trade-
off as the distance from a particular model f to the

optimal point8 (DTO, Han et al. (2021)):

DTO(f) =
√

(1− Perf(f))2 + (1− Fair(f))2 ,

which originates from the multi-objective optimiza-
tion literature (Marler and Arora, 2004). Lower is
better, with an optimal value of 0. Note that DTO
should be minimized in Equation (1).

DTO(f) is the default q function in FairLib .
FairLib also supports the definition of customized
cues, such as Perf(f), Fair(f), and DTO(f). Given
the flexibility of FairLib , most selection criteria in
previous work can be reproduced, such as: (1) the
maximum performance (Lahoti et al., 2020; Roh
et al., 2021), which is based on a particular utility
metric, such as accuracy and F-measures; (2) con-
strained selection (Han et al., 2021; Subramanian
et al., 2021); and (3) minimising DTO (Han et al.,
2022b; Shen et al., 2022b).

6 FairLib Design and Architecture

Here, we describe the four modules of FairLib ,
namely data, model, evaluation, and analysis.

6.1 Data Module
The data module manages inputs, target labels, and
protected attributes for model training and evalu-
ation. To enable different pre-processing debias-
ing methods in supporting any types of inputs, the
BaseDataset class is implemented for sampling
and weight calculation based on the distribution of
classes and protected attributes. Dataset classes in-
herit functionality from BaseDataset with an addi-
tional property for loading different types of inputs.

8The optimum point is assumed to be a model that achieves
1 performance and 1 fairness. See Appendix B for details.

63

Specifically, FairLib includes Dataset classes for
vector, matrix, and sequential inputs, to support
structural, image, and text inputs. Once inputs are
loaded by Dataset, pre-processing debiasing meth-
ods are automatically applied.

6.2 Model Module

This is the core module of FairLib , which imple-
ments the At-training-time and Post-processing de-
biasing methods described in Section 4.1 and Ta-
ble 3. The methods can be applied to instances of
the BaseModel class. One built-in child class of
BaseModel is an MLP classifier for structural inputs,
which can be fully integrated with HuggingFace’s
transformers library.9 Specifically, the MLP can
be used as the task-specific output layer, on top of
the backbone networks from transformers (e.g.
BERT (Devlin et al., 2019)), to handle a wide vari-
ety of inputs and tasks.

FairLib supports the combination of different
bias mitigation methods with thousands of pre-
trained models across classification tasks and data
types, including text, image, and audio modalities.

6.3 Evaluation Module

This module implements the fairness metrics de-
scribed in Section 3, and several performance mea-
sures. Performance measures are based on the
classification evaluation metrics implemented in
scikit-learn (Buitinck et al., 2013), including Ac-
curacy, F-score, and ROC AUC. However, no es-
tablished fairness evaluation suite exists. Noting
that the calculation of existing fairness metrics is
always based on confusion matrices, FairLib in-
cludes an Evaluator class which can: (1) calcu-
late any confusion-matrix based fairness metrics;
and (2) conduct group-wise and class-wise aggre-
gations as specified by users.

6.4 Analysis Module

This module provides utilities for model compar-
ison as introduced in Section 5, with the three
main functions of: (1) conducting post-hoc early-
stopping and model selection in parallel as intro-
duced in Section 5;10 (2) organizing the results as
a Pandas DataFrame (pandas development team,
2020), which can be used to create plots and LATEX

9https://github.com/huggingface/trans
formers

10Multi-processing is supported through the joblib li-
brary.

tables;11 and (3) creating interactive plots, cover-
ing different comparison settings such as Figures 2
and 4.12

7 Usage

In this section, we demonstrate the basic use of
FairLib . For further details, see the online inter-
active demos for examples of adding customized
models, datasets, and metrics.

The following command shows an example for
training and evaluating a STANDARD model:

python fairlib --dataset Bios_gender
--emb_size 768 --num_classes 28
--encoder_architecture BERT

↪→
↪→

where the task dataset, the number of distinct
classes, the encoder architecture, and the dimension
of embeddings extracted from the corresponding
encoder need to be specified. The above case trains
a BERT classifer over the BIOS dataset, where
there are 28 professions.

In order to apply built-in debiasing methods, ad-
ditional options for debiasing can be added to the
command-line to realise combinations of methods:

python fairlib --dataset Bios_gender
--emb_size 768 --num_classes 28
--encoder_architecture BERT --BT
Resampling --BTObj EO
--adv_debiasing --INLP

↪→
↪→
↪→
↪→

The above example employs BTEO (Pre-), ADV

(At-), and INLP (Post-) at the same time for a
BERT classifer debiasing over the BIOS dataset.

FairLib can also be imported as a Python library;
see Appendix D for more examples.

8 Benchmark Experiments

To evaluate FairLib , we conduct extensive experi-
ments to compare models implemented in FairLib
with their original reported results over two bench-
mark datasets. In Appendix A, we provide more
experimental details.

8.1 Settings
We conduct experiments over two NLP classifica-
tion tasks — sentiment analysis (MOJI) and biogra-
phy classification (BIOS) — using the same dataset
splits as previous work (Elazar and Goldberg, 2018;
Ravfogel et al., 2020; Han et al., 2021; Shen et al.,
2022a; Han et al., 2022a).

11All results are stored for later analysis, and are publicly
available here.

12See here for more examples.

64

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://joblib.readthedocs.io/en/latest/
https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html
https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html
https://github.com/HanXudong/Fair_NLP_Classification/tree/main/analysis/results
https://hanxudong.github.io/fairlib/tutorial_notebooks/tutorial_interactive_plots.html

MOJI BIOS

Method Performance↑ Fairness↑ DTO ↓ ∆ ↑ Performance↑ Fairness↑ DTO ↓ ∆ ↑
STANDARD 72.30± 0.46 61.19± 0.44 47.68 0.56 82.25± 0.24 85.11± 0.81 23.17 0.69
BTEO 75.39± 0.14 87.75± 0.38 27.49 6.25 83.83± 0.25 90.54± 0.91 18.73 4.04
ADV 75.64± 0.73 89.33± 0.56 26.59 7.37 81.66± 0.22 90.74± 0.77 20.54 2.23
DADV 75.55± 0.41 90.40± 0.12 26.27 5.23 81.85± 0.19 90.64± 0.48 20.42 2.29
ADADV 75.02± 0.69 90.87± 0.17 26.60 0.00 81.91± 0.34 88.96± 0.59 21.19 0.00
FAIRBATCH 75.06± 0.60 90.55± 0.50 26.67 1.99 82.24± 0.13 89.50± 1.25 20.63 0.51
FAIRSCL 75.73± 0.34 87.82± 0.43 27.15 0.73 82.06± 0.16 84.27± 0.83 23.86 1.01
EOCLA 75.28± 0.50 89.23± 0.79 26.97 0.25 81.78± 0.27 88.87± 0.94 21.35 1.13
INLP 73.34 85.60 30.30 15.90 82.30 88.62 21.04 9.21

Table 4: Evaluation results ± standard deviation (%) on the test set of MOJI and BIOS tasks, averaged over 5 runs
with different random seeds. ∆: the DTO improvement of FairLib to the reported results in previous work. See
Appendix A.2 for dataset statistics.

Following Han et al. (2022a), we report the over-
all Accuracy as the performance, and the Equal Op-
portunity as the fairness criterion, calculated based
on the Recall gap across all protected groups.

8.2 Experimental Results

Table 4 summarizes the results produced by Fair-
Lib . Compared with previous work, STANDARD,
ADADV, FAIRSCL and EOCLA achieve similar
results to the original paper. In contrast, the re-
implemented BTEO, ADV, DADV, FAIRBATCH,
and INLP outperform the results reported in their
original paper due to the better-designed hyperpa-
rameter tuning and model selection.13

9 Related Work

Several toolkits have been developed for learning
fair AI models (Bellamy et al., 2018; Saleiro et al.,
2018; Bird et al., 2020). We discuss the two most
closely-related frameworks.

The most related work to FairLib is AI Fairness
360 (AIF360), which is the first toolkit to bring to-
gether bias detection and mitigation (Bellamy et al.,
2018). Like FairLib , AIF360 supports a variety of
fairness criteria and debiasing methods, and is de-
signed to be extensible. The biggest difference over
FairLib is that AIF360 is closely tied to scikit-learn,
and does not support other ML frameworks such as
PyTorch. This not only limits the applicability of
AIF360 to NLP and CV tasks where neural model
architectures are now de rigeur, but also implies
a lack of GPU support. Moreover, AIF360 only
provides fundamental analysis features, such as
comparing debiasing wrt. a single evaluation met-
ric, while the analysis module of FairLib has richer

13We provide further details of hyperparameter tuning in an
online document.

features for model comparison, for example, select-
ing Pareto-models and interactive visualization.

The second closely-related library is Fair-
Learn (Bird et al., 2020), which is also targeted
at assessing and improving fairness for both classi-
fication and regression tasks. However, similar to
AIF360, FairLearn is mainly developed for scikit-
learn, meaning complex CV and NLP tasks are not
supported. Additionally, FairLearn currently only
supports four debiasing algorithms,14 as opposed
to the 14 methods supported in FairLib , providing
fuller coverage of different debiasing methods.

In summary, FairLib complements existing fair-
ness libraries by: (1) implementing a broad range
of competitive debiasing approaches, with a spe-
cific focus on debiasing neural architectures which
underlie many CV and NLP tasks; and (2) compre-
hensive tools for interactive model comparison to
help users explore the effects of different debiasing
approaches.

10 Conclusion

In this paper, we present FairLib , a new open-
source Python library and framework for measur-
ing and improving fairness, which implements a
wide range of fairness metrics and 14 debiasing
approaches. With better-designed hyperparameter
tuning and model selection, the reproduced mod-
els in FairLib outperform the results reported in
the original work. FairLib also has remarkable
flexibility and extensibility, such that new models,
debiasing methods, and datasets can be easily de-
veloped and evaluated.

14https://fairlearn.org/main/user_guide
/mitigation.html

65

https://github.com/HanXudong/fairlib/blob/main/docs/hyperparameter_tuning.md
https://github.com/HanXudong/fairlib/blob/main/docs/hyperparameter_tuning.md
https://fairlearn.org/main/user_guide/mitigation.html
https://fairlearn.org/main/user_guide/mitigation.html

Acknowledgements

We thank the anonymous reviewers for their help-
ful feedback and suggestions. This work was
funded by the Australian Research Council, Dis-
covery grant DP200102519. This research was
undertaken using the LIEF HPC-GPGPU Facility
hosted at the University of Melbourne. This Fa-
cility was established with the assistance of LIEF
Grant LE170100200.

Ethical Considerations

This work provides an unified framework for mea-
suring and improving fairness. Although FairLib
assumes access to training datasets with protected
attributes, this is the same data assumption made
by all debiasing methods. To avoid harm and be
trustworthy, we only use attributes that have been
publicly disclosed or the user has self-identified,
or toy datasets. All data in this study is publicly
available and used under strict ethical guidelines.

References

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

Pinkesh Badjatiya, Manish Gupta, and Vasudeva Varma.
2019. Stereotypical bias removal for hate speech de-
tection task using knowledge-based generalizations.
In The World Wide Web Conference, pages 49–59.

Solon Barocas, Moritz Hardt, and Arvind Narayanan.
2019. Fairness and Machine Learning. http://ww
w.fairmlbook.org.

Rachel KE Bellamy, Kuntal Dey, Michael Hind,
Samuel C Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep
Mehta, Aleksandra Mojsilovic, et al. 2018. Ai fair-
ness 360: An extensible toolkit for detecting, under-
standing, and mitigating unwanted algorithmic bias.
arXiv preprint arXiv:1810.01943.

Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn,
Roman Lutz, Vanessa Milan, Mehrnoosh Sameki,
Hanna Wallach, and Kathleen Walker. 2020. Fair-
learn: A toolkit for assessing and improving fairness
in ai. Microsoft, Tech. Rep. MSR-TR-2020-32.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social
media: A case study of African-American English.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1119–1130.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaël Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, pages 108–122.

Alexandra Chouldechova. 2017. Fair prediction with
disparate impact: A study of bias in recidivism pre-
diction instruments. Big data, 5(2):153–163.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A
case study of semantic representation bias in a high-
stakes setting. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, pages
120–128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Mark Díaz, Isaac Johnson, Amanda Lazar, Anne Marie
Piper, and Darren Gergle. 2018. Addressing age-
related bias in sentiment analysis. In Proceedings
of the 2018 CHI Conference on Human Factors in
Computing Systems, pages 1–14.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 11–
21.

Michael Feldman, Sorelle A Friedler, John Moeller,
Carlos Scheidegger, and Suresh Venkatasubramanian.
2015. Certifying and removing disparate impact. In
proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining,
pages 259–268.

Xudong Han, Timothy Baldwin, and Trevor Cohn. 2021.
Diverse adversaries for mitigating bias in training.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 2760–2765.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2022a. Balancing out bias: Achieving fairness
through training reweighting. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2022). To appear.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2022b. Towards equal opportunity fairness

66

http://www.fairmlbook.org
http://www.fairmlbook.org
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://www.aclweb.org/anthology/2021.eacl-main.239

through adversarial learning. arXiv preprint
arXiv:2203.06317.

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-
ity of opportunity in supervised learning. Advances
in Neural Information Processing Systems, 29:3315–
3323.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 752–762.

Ron Kohavi et al. 1996. Scaling up the accuracy of
naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pages 202–207.

Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee,
Flavien Prost, Nithum Thain, Xuezhi Wang, and
Ed Chi. 2020. Fairness without demographics
through adversarially reweighted learning. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 728–740.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia
Angwin. 2016. How we analyzed the compas recidi-
vism algorithm.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 25–30.

Kristian Lum, Yunfeng Zhang, and Amanda Bower.
2022. De-biasing "bias" measurement. In 2022
ACM Conference on Fairness, Accountability, and
Transparency (FAccT ’22), Seoul, Republic of Korea.
ACM.

R Timothy Marler and Jasbir S Arora. 2004. Survey of
multi-objective optimization methods for engineer-
ing. Structural and multidisciplinary optimization,
26(6):369–395.

The pandas development team. 2020. pandas-
dev/pandas: Pandas. Zenodo.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256.

Yuji Roh, Kangwook Lee, Steven Euijong Whang, and
Changho Suh. 2021. Fairbatch: Batch selection for
model fairness. In Proceedings of the 9th Interna-
tional Conference on Learning Representations.

Alexey Romanov, Maria De-Arteaga, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
Anna Rumshisky, and Adam Kalai. 2019. What’s

in a name? reducing bias in bios without access
to protected attributes. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4187–4195.

Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse
London, Abby Stevens, Ari Anisfeld, Kit T Rodolfa,
and Rayid Ghani. 2018. Aequitas: A bias and fair-
ness audit toolkit. arXiv preprint arXiv:1811.05577.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022a. Does representational
fairness imply empirical fairness? In Proceedings
of the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natural
Language Processing. Association for Computational
Linguistics. To appear.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022b. Optimising equal oppor-
tunity fairness in model training. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4073–4084,
Seattle, United States. Association for Computational
Linguistics.

Shivashankar Subramanian, Xudong Han, Timothy
Baldwin, Trevor Cohn, and Lea Frermann. 2021.
Evaluating debiasing techniques for intersectional
biases. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2492–2498, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Christina Wadsworth, Francesca Vera, and Chris Piech.
2018. Achieving fairness through adversarial learn-
ing: an application to recidivism prediction. FAT/ML
Workshop.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei
Chang, and Vicente Ordonez. 2019. Balanced
datasets are not enough: Estimating and mitigating
gender bias in deep image representations. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 5310–5319.

Forest Yang, Mouhamadou Cisse, and Sanmi Koyejo.
2020. Fairness with overlapping groups; a proba-
bilistic perspective. Advances in neural information
processing systems, 33:4067–4078.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez
Rogriguez, and Krishna P Gummadi. 2017. Fairness
constraints: Mechanisms for fair classification. In
Artificial Intelligence and Statistics, pages 962–970.
PMLR.

Han Zhao and Geoff Gordon. 2019. Inherent trade-
offs in learning fair representations. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

67

https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.3115/v1/P15-1073
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.1145/3531146.3533105
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2022.naacl-main.299
https://doi.org/10.18653/v1/2022.naacl-main.299
https://aclanthology.org/2021.emnlp-main.193
https://aclanthology.org/2021.emnlp-main.193
https://proceedings.neurips.cc/paper/2019/file/b4189d9de0fb2b9cce090bd1a15e3420-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b4189d9de0fb2b9cce090bd1a15e3420-Paper.pdf

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification us-
ing corpus-level constraints. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2979–2989.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20.

68

A Experimental Details

A.1 Datasets

MOJI: This sentiment analysis dataset was col-
lected by Blodgett et al. (2016), and contains tweets
that are either African American English (AAE)-
like or Standard American English (SAE)-like.
Each tweet is annotated with a binary ‘race’ label
(based on language use: either AAE or SAE), and
a binary sentiment score determined by (redacted)
emoji contained in it.

BIOS: The second task is biography classifica-
tion (De-Arteaga et al., 2019), where biographies
were scraped from the web, and annotated for bi-
nary gender and 28 classes of profession.

A.2 Results Statistics

For each hyperparameter combination, we repeat
experiments 5 time with different random seeds
drawn from a discrete uniform distribution. The
mean values and standard deviation are calculated
based on the 5 runs. Due to the fact that INLP
is a post-processing approach and its results with
respect a given number of iterations are highly af-
fected by the random seed, we only report results
for 1 run. One way of getting statistics of INLP is
selecting the trade-off hyperparameter of INLP for
each random seed, however, this may not be a fair
comparison with other methods as fixed hyperpa-
rameters have been used.

B Model Comparison

Figure 3 illustrates the key ideas of model compar-
ison.

C Experimental Results

Trade-off plots for the selected methods are shown
in Figure 4. Over the MOJI dataset (Figure 4a), it
can be seen that almost all methods lead to similar
results, with a fairness score less than 0.9, except
for INLP, which is substantially worse than the
other methods. As increasing the values of each
model’s trade-off hyperparameter (i.e., achieving
better fairness at the cost of performance), ADADV

outperforms other methods.
The trade-off plot for BIOS is quite different to

MOJI: (1) INLP becomes a reasonable choice; (2)
FAIRSCL does not work well over this dataset,
consistent with the original paper; (3) BTEO is the
only method that achieves better performance than
the STANDARD model while increasing fairness;

(4) EOCLA could be the best choice as it achieves
much better fairness than others at a comparable
performance level.

D Further Usage

In this section, we demonstrate how to use FairLib .
Users can run existing models or add their own
models, datasets, and metrics as needed.

D.1 Basics

FairLib also support YAML configuration files with
training options:

python fairlib --conf_file opt.yaml

which is useful for reproducing experimental re-
sults, as FairLib saves the YAML file for each run.

from fairlib.base_options import options

from fairlib import networks

config_file = 'opt.yaml'

Get options

state =

options.get_state(conf_file=config_file)↪→

Init the model

model = networks.get_main_model(state)

Training with debiasing

model.train_self()

Checkpoints, evaluation results, outputs, and the
configuration file are saved to the default or a spec-
ified directory.

D.2 Performing Analysis

As introduced in Section 6.4, the first step to an-
alyze a trained model is selecting the best epoch.
Here we provide an example for retrieving experi-
mental results for FAIRSCL, and selecting the best
epoch-checkpoint:

from fairlib.load_results import
model_selection_parallel↪→

FairSCL_df = model_selection(

model_id= "FSCL",

GAP_metric_name = "TPR_GAP",

Performance_metric_name = "accuracy",

selection_criterion = "DTO",

n_jobs=20,

index_column_names = ["fcl_lambda_y",

"fcl_lambda_g"],↪→

save_path = "FairSCL_df.pkl",)

69

(a) Trade-off (b) Pareto Trade-off

Figure 3: performance–fairness trade-offs of FAIRSCL (blue points) and INLP (orange crosses) over the BIOS
dataset. The vertical and horizontal red dashed line in Figure 3b are examples of constrained model selection
wrt. a performance threshold of 0.7 and fairness threshold of 0.96. Figure 3a also provides an example for DTO.
The green dashed vertical and horizontal lines denote the best performance and fairness, respectively, and their
intersection point is the Utopia point. The length of green dotted lines from A and B to the Utopia point are the
DTO for candidate models A and B, respectively.

(a) MOJI (b) BIOS

Figure 4: Performance–fairness trade-offs of selected models over the MOJI and BIOS datasets.

where the fairness metric is TPR GAP (corre-
sponding to Equal Opportunity fairness); the per-
formance is measured with Accuracy score; the
best epoch is selected based on DTO; and the
tuned trade-off hyperparameters are used as the
index. n_jobs is an optional argument for multi-
processing, and the resulting DataFrame will be
saved to the specified directory.

Assuming Bios_gender_results is a Python
dictionary of retrieved experimental results from
the first step, indexed by the corresponding method
name, we provide the following function for model

comparison:

from fairlib.tables_and_figures import
final_results_df↪→

Bios_results = {

"INLP":INLP_df,

"FairSCL":FairSCL_df,}

Bios_gender_main_results =

final_results_df(↪→

results_dict = Bios_results,

pareto = True,
selection_criterion = "DTO",

70

return_dev = True,)

where model selection is performed based on DTO.
Each method has one selected model in the result-
ing DataFrame, which can then be used to create
tables.

If visualization is desired, users can disable
model selection by setting selection_criterion

= None, in which case all Pareto frontier points
will be returned.

D.3 Customized Datasets
A custom dataset class must implement the
load_data function. Take a look at this sam-
ple implementation; the split is stored in a direc-
tory self.data_dir. The args.data_dir is ei-
ther loaded from the arguments -data_dir or from
the default value. split has three possible string
values, "train", "dev", "test", indicating the
split that will be loaded.

Then the load_data function must assign the
value of self.X as inputs, self.y as target labels,
and self.protected_label as information for de-
biasing, such as gender, age, and race.

from fairlib.dataloaders.utils import
BaseDataset↪→

class SampleDataset(BaseDataset):
def load_data(self):

Load data from pickle file

filename = self.split+"df.pkl"

_Path = self.args.data_dir /

filename↪→

data = pd.read_pickle(_Path)

Save loaded data

self.X = data["X"]

self.y = data["y"]

self.protected_label =

data["protected_label"]↪→

As a child class of BaseDataset, Pre-processing
related operations will be automatically applied to
the SampleDataset.

D.4 Customized Models
Recall that our current MLP implementation (Sec-
tion 6.2) can be used as a classification head for
different backbone models, and the new model will
support all built-in debiasing methods.

Take a look at the following example: we use
BERT as the feature extractor, and then use the
extracted features as the input to the MLP classifier
to make predictions.

We only need to define three functions: (1)
__init__, which is used to initialize the model
with pretrained BERT parameters, MLP classifier,
and optimizer; (2) forward, which is the same as
before, where we extract sentence representations
then use the MLP to make predictions; and (3)
hidden, which is used to get hidden representa-
tions for adversarial training.

from transformers import BertModel

from fairlib.networks.utils import
BaseModel↪→

class BERTClassifier(BaseModel):
model_name = 'bert-base-cased'

def __init__(self, args):

super(BERTClassifier,

self).__init__()↪→

self.args = args

Load pretrained model parameters.

self.bert =

BertModel.from_pretrained(

self.model_name)

Init the classification head

self.classifier = MLP(args)

Init optimizer, criterion, etc.

self.init_for_training()

def forward(self, input_data,

group_label = None):↪→

Extract representations

bert_output =

self.bert(input_data)[1]↪→

Make predictions

return self.classifier(bert_output,

group_label)↪→

def hidden(self, input_data,

group_label = None):↪→

Extract representations

bert_output =

self.bert(input_data)[1]↪→

return self.classifier.hidden(

bert_output, group_label)

71

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 72 - 79
December 7-11, 2022 c©2022 Association for Computational Linguistics

ELEVANT: A Fully Automatic Fine-Grained
Entity Linking Evaluation and Analysis Tool

Hannah Bast and Matthias Hertel and Natalie Prange
University of Freiburg

Freiburg, Germany
{bast,hertelm,prange}@cs.uni-freiburg.de

Abstract

We present Elevant, a tool for the fully auto-
matic fine-grained evaluation of a set of en-
tity linkers on a set of benchmarks. Elevant
provides an automatic breakdown of the per-
formance by various error categories and by
entity type. Elevant also provides a rich and
compact, yet very intuitive and self-explanatory
visualization of the results of a linker on a
benchmark in comparison to the ground truth.
A live demo, the link to the complete code
base on GitHub and a link to a demo video
are provided under https://elevant.cs.
uni-freiburg.de .

1 Introduction

Entity linking is a fundamental problem, and a first
step for or component of many NLP applications.
In this paper, we consider end-to-end entity linking
systems, which do the following: given a text and
a set of entities, identify each mention of one of
those entities in the text and say which of these
entities it is.

Due to its fundamental importance and wide ap-
plicability, there is vast literature on entity linking,
and also a large number of concrete software tools.
Many publications also come with an evaluation,
which compares the entity linker introduced in the
publication with existing linkers, usually on a vari-
ety of benchmarks. There are also several standard
benchmarks, which are found in many evaluations.
This is a positive and pleasing development.

The typical statistics include overall precision
and recall, that is, which percentage of the found
mentions were correct and which percentage of the
correct mentions were found. It is a frequent expe-
rience that the numbers in the evaluation are very
good, yet the experience when applying that entity
linker in an own application are less convincing.
And not so rarely, there is even trouble reproducing
the results from the publication.

The problem is that overall precision, recall, and
F1 tell us little about the particular strengths and
weaknesses of a particular entity linker for a par-
ticular application. Particular benchmarks often
require very particular skills from an entity linker,
and an entity linker may be deliberately or unknow-
ingly tuned towards these particularities. To find
out about the strengths and weaknesses of an entity
linker, one needs to look at the results in more de-
tail, which typically has three aspects:
(1) look at particular types of errors,
(2) look at particular types of entities,
(3) look at particular pieces of text.
Doing this on the raw input and output files is te-
dious, so that often small scripts are written to aid
this process. However, these scripts are usually
quite basic and imperfect. It also means that re-
searchers do the same work over and over again.

It is the purpose of this paper to provide a com-
prehensive and easy-to-use tool, which every entity-
linking researcher can and wants to use to analyze
and understand the performance of a particular en-
tity linker in detail.

1.1 Contributions

We consider these as our main contributions:

• We provide Elevant, a tool for the fully auto-
matic fine-grained evaluation of a given set of en-
tity linkers on a given set of benchmarks. The
evaluation has two parts: a table with overall and
fine-grained statistics, and a panel that provides a
rich visualization of the concrete results that con-
tribute to a selected statistics from the table.
• The table provides one row per experiment (a
particular entity linker evaluated on a particular
benchmark). Each column stands for one of a rich
set of error categories: all errors, various kinds of
entity detection errors, various kinds of entity dis-
ambiguation errors, errors on entities of particular
type. There are controls to show and hide individ-

72

https://elevant.cs.uni-freiburg.de
https://elevant.cs.uni-freiburg.de

ual columns or groups of columns. A screenshot of
this part of the tool is shown in Figure 1.
• For each table cell, Elevant provides a rich vi-
sualization of the result of that particular entity
linker on that benchmark for that category. The
visualization is compact and intuitive, providing
for each text record all information about true pos-
itives, false positives, and false negatives. The in-
formation is displayed with intuitive highlights and
more detailed information provided on mouseover.
Figure 2 shows a screenshot of this visualization.
• As a result of the compact single-column vi-
sualization, Elevant can also provide an intuitive
side-by-side comparison of the concrete results of
two experiments.
• For each table column, Elevant can generate a
graph that shows the results of all linkers over all
benchmarks in the table for that category. An ex-
ample for such a graph is shown in Figure 3.
• The code for Elevant is open source, well doc-
umented, and easy to use. We support various
standard formats for both the benchmarks and the
results from the entity linkers. There is a demo web-
site available under https://elevant.cs.
uni-freiburg.de, which shows the results of
a variety of well-known entity linkers evaluated on
a variety of well-known benchmarks.

2 Related Work

GERBIL (Usbeck et al., 2015) is similar to Elevant
in that it provides a web-based platform for the
comparison of a given set of entity linking systems
on a given set of benchmarks. GERBIL is widely
used and has helped standardizing benchmarks and
the evaluation measures on these benchmarks. El-
evant goes one step further by not only providing
aggregate measures for the whole benchmarks (like
precision, recall, and F1), but a detailed breakdown
of the results by error category and entity type, and
the ability to look at the results of different methods
in detail, both in comparison to the ground truth
and in comparison with each other.

ORBIS (Odoni et al., 2018) is similar to Elevant
in that it provides overall statistics and a visualiza-
tion of individual annotations. However, ORBIS
does not provide a fine-grained error analysis and
the visualization is less rich and less compact com-
pared to that of Elevant. In particular, the visual-
ization uses two columns: one for the annotations
from the entity linker and one for those from the

ground truth. This makes it difficult to grasp the
most important information at one glance and there
is no support for the comparison of two entity link-
ers. While the source code is publicly available and
easy to install, errors can occur during usage due
to dependency issues. Elevant avoids this issue by
providing an easy-to-use docker setup.

VEX (Heinzerling and Strube, 2015) is a web
app for visual error analysis of entity linking sys-
tems. Benchmark texts are displayed with high-
lighted predicted entities and ground truth entities.
The highlights are color-coded such that true pos-
itives, false positives and false negatives can be
distinguished. VEX focuses on showing clusters
of entities, that is, indicating which predicted men-
tions and ground truth mentions have been linked
to the same entity. For this purpose, identical enti-
ties are connected via lines. VEX does not display
a system’s evaluation results and does not allow
direct comparison of different systems.

As part of their work on entity linking on
Wikipedia, Klang and Nugues (2018) provide a
system for visualizing annotations in Wikipedia ar-
ticles such as hyperlinks or an entity linking tool’s
entity predictions. Identical entities are visualized
by using the same annotation color. The tool is
not meant for evaluating linking results against a
ground truth. That is, no ground truth entities are
displayed and the tool does not provide informa-
tion about true positives, false positives or false
negatives.

Strobl et al. (2020) provide a similar but more
rudimentary system as part of their work on entity
linking on Wikipedia. Predicted links are shown as
hyperlinks to Wikipedia articles which correspond
to the predicted entity. The color of the hyperlink
indicates whether the hyperlink is an original intra-
Wikipedia hyperlink or has been added by the entity
linking system. An additional color is used for
predicted unknown entities.

Multiple publications propose a fine-grained
evaluation of entity linking systems on different en-
tity types or frequent linking errors. Ling and Weld
(2012) and Gillick et al. (2014) assign fine-grained
types to recognized entities. Ling et al. (2015) dis-
cuss difficult decisions in the design of entity link-
ing systems and benchmarks, which are common
sources of linking errors, such as whether to link
common entities, how specific the entities should
be, which entities to link in case of metonymies,
considered entity types and overlapping entities.

73

https://elevant.cs.uni-freiburg.de
https://elevant.cs.uni-freiburg.de

Figure 1: Evaluation results for various experiments. The types used in the per-type evaluation are configurable.
The real web app contains many more error categories (see Section 4.1).

Figure 2: Visualization of predicted entities (highlighted text) and ground truth labels (underlined text) for a specific
system (Ambiverse) and benchmark (MSNBC). True positives are shown in green, false positives and false negatives
in red and unevaluated unknown entities in blue. Detailed information for each annotation is shown on mouseover.

Many of these decisions motivate our error types
in Section 4.1. Rosales-Méndez et al. (2019) man-
ually relabel three benchmarks to evaluate linking
systems among dimensions such as the mention’s
base form, part of speech and overlap. Brasoveanu
et al. (2018) propose an error classification based
on the source of the error (e.g. knowledge base
errors, dataset errors, annotator errors, etc.). They
then manually categorize errors into these classes
for a selected set of benchmarks and entity linking
systems. Elevant follows this trend and goes one
step further by providing a fully automatic classi-
fication into fine-grained error categories. Thus,
by eliminating the need for expensive human labor,
Elevant makes the fine-grained evaluation of entity
linking errors feasible on a large scale.

3 Basic Principles

The core of Elevant is a web app that helps users an-
alyze and compare results of various entity linking
systems over various benchmarks in great detail.
To this end, the user can add an experiment and
evaluate its results using Elevant. We define an
experiment as a run of a particular linker with par-
ticular settings over a particular benchmark. The
pipeline for adding an experiment is as follows:
(1) add the benchmark (unless it already exists),
(2) run an entity linker on that benchmark,
(3) automatically evaluate the result in detail.
The following subsections explain how each of
these steps can be executed using Elevant.

74

Figure 3: A graph generated by Elevant showing the NER F1 score for various entity linkers and benchmarks.

3.1 Adding a benchmark
In order to add a benchmark to Elevant, it is enough
to run a single Python script. This script converts
a given input benchmark into Elevant’s internally
used article file format. Files in this format con-
tain one JSON object per line which holds infor-
mation for a single article such as its text, title,
ground truth labels or entity predictions. Addi-
tionally, the script annotates ground truth labels
with the entities’ types (for a fine-grained per-type
evaluation) and the entities’ names (for presenta-
tion purposes). Elevant supports three different
benchmark formats: the common NLP Interchange
Format (NIF), the IOB format used by Hoffart et al.
(2011) for their AIDA-CoNLL dataset, and a sim-
ple JSONL format that only requires information
about the benchmark’s article texts, the ground
truth label spans and the corresponding references
to ground truth entities. Entity references can be
from Wikidata, Wikipedia or DBpedia. Entity ref-
erences from Wikipedia or DBpedia are internally
converted to Wikidata. Several popular entity link-
ing benchmarks are already included in Elevant
(see Section 4.7) and can be used out of the box.

3.2 Running an entity linker
In order to produce entity linking results that can be
evaluated with Elevant, the user has two options:
(1) They can feed the output of the entity linker
they wish to evaluate into a provided Python script
that converts the linking results into Elevant’s in-
ternal format. The script supports linking results
in NIF, the Ambiverse (Hoffart et al., 2011) output
format or a simple JSONL format that only requires
information about the predicted entity spans and

corresponding entity references. Like ground truth
entity references, references to predicted entities
can be from Wikidata, Wikipedia or DBpedia and
are converted to Wikidata internally.
(2) They can implement the entity linker within El-
evant. The same Python script used for converting
entity linking results can then be used to produce
new linking results in the required format with the
implemented linker. Several entity linkers are al-
ready implemented (detailed in Section 4.8) and
can be used out of the box.

3.3 Evaluating entity linking results

Once the entity linking results are in the required
format, they can be evaluated with another Python
script. That script produces output files containing
the evaluation results. Using these output files, the
results can be instantly viewed in the web app.

4 Features

4.1 Error type classification

Elevant automatically classifies each false positive
and false negative into the following three cate-
gories and 15 subcategories, to provide detailed
information about strengths and weaknesses of a
linker.

NER false negatives are ground truth mentions
which the linker did not link to an entity. They are
divided into the following disjunct subcategories:
• Lowercased: The first letter in the mention is
lower-cased. Linkers that rely on the upper case
too much have many errors in this subcategory on
benchmarks that contain lower-cased mentions.

75

• Partially included: Not lowercased and a sub-
span of the mention is linked to an entity. Of-
ten a less specific mention is recognized instead
of a more specific one, e.g. recognizing “2022
World Cup” instead of “2022 World Cup”.
• Partial overlap: Neither lowercased nor partially
included and a span overlapping with the false
negative is linked to an entity, e.g. recognizing
“The Americans” instead of “The Americans”.
• Other: Remaining undetected mentions.

NER false positives are predicted mentions not
labeled in the ground truth. They are further di-
vided into the following disjunct subcategories:
• Lowercased: The predicted mention is lower-
cased (no named entity) and does not overlap with
any ground truth mention. These are often men-
tions of abstract entities, which appear in the knowl-
edge base, but are usually not labeled in entity link-
ing benchmarks, for example, love (Q316).
• Ground truth entity unknown: The ground truth
of the predicted mention is Unknown, which means
that the true entity is not part of the knowledge
base, but an entity from the knowledge base was
predicted. Linkers that fail to produce NIL predic-
tions have many errors in this subcategory.
• Wrong span: The predicted mention overlaps

with a ground truth mention that has the same entity,
but the spans do not match exactly.
• Other: Remaining false detections.

Disambiguation errors are NER true positives
that are linked to the wrong entity. They count as
false positives and false negatives. They are further
divided into the following disjunct subcategories:
• Demonym: The mention is a demonym (i.e., it
is contained in a list of demonyms from Wikidata),
such as “German”. Confusions between a coun-
try, the people from that country or the language
spoken in that country fall into this category.
• Metonymy: The mention is a location name (for
example, Berlin), but the ground truth is not (for
example, government of Germany (Q159493)), yet
the linker wrongly predicted the location.
• Partial name: The mention is a part of the ground
truth entity’s name, e.g., the last name of a person.
• Rare: The linker predicted the most popular can-
didate entity (with candidate sets derived by entity
names and Wikipedia hyperlink texts, and popular-
ity measured by the number of Wiki sites about an
entity) instead of a less popular one.

• Other: Remaining disambiguation errors.

For linkers where we have access to the candidate
sets, the following disambiguation error subcate-
gories are reported. They overlap with the previous
five subcategories.

• Wrong candidates: The ground truth entity is not
contained in the candidate set.
• Multiple candidates: The ground truth entity
is contained in the candidate set, but the wrong
candidate was predicted.

4.2 Evaluation per entity type

Elevant assigns a type to each entity and computes
precision, recall and F1 score per entity type. Many
entity linking benchmarks contain more than the
classic person, location and organization entities.
We therefore chose 29 entity types that cover the en-
tities in the included benchmarks well, yet are not
too abstract to include many Wikidata entries that
are not linked in the benchmarks. Example types
are person, location, organization, languoid, taxon,
brand, award, event and chemical entity (for the
full list see Elevant’s documentation on GitHub).
The types are not restricted to named entities, but
include other types of interest, such as profession,
sport and color. A type t is assigned to an entity
e, if t and e are connected in a manually corrected
Wikidata dump via a property path that starts with
an instance of (P31) relation and is followed by an
arbitrary amount of subclass of (P279) relations.
The types are configurable and detailed instructions
for the configuration are given in Elevant’s docu-
mentation.

4.3 Rich visualization

Elevant provides a rich and compact visualization
of an entity linker’s predictions in comparison to
the ground truth labels; see Figure 2. Predictions
are shown as highlighted text, while ground truth la-
bels are shown as underlined text. Both predictions
and ground truth labels are color-coded such that
true positives, false positives, false negatives and
unknown entities can be distinguished at a glance.
On mouse-over, tooltips with additional informa-
tion about the predicted entity or ground truth en-
tity are shown, such as their Wikidata name and ID.
When the user selects one of the error categories or
entity types mentioned above, annotations that fall
into the selected category are emphasized.

76

4.4 System comparison

Aside from letting the user compare the evaluation
results of different entity linkers in various cate-
gories, Elevant comes with a feature to compare
the predictions of two entity linkers for a selected
benchmark side by side. This allows the user to
closely and comfortably examine where differences
in the evaluation results of two systems are coming
from.

4.5 Automatic graph generation

For each category in the evaluation results table,
Elevant can generate a graph that shows the re-
sults of all linkers over all benchmarks that are
currently displayed in the table for that category.
See Figure 3 for an example. Which linkers and
benchmarks are included in the graph can be con-
trolled by filtering the linkers and benchmarks that
are to be included in the table as described in the
next section.

4.6 Additional web app features

In addition to the prominent features described
above, the Elevant web app comes with several fea-
tures that improve overall usability. Each selectable
component such as the experiment, error category
or benchmark article has a corresponding URL pa-
rameter. The URL is automatically adjusted when
a component is selected. This makes sharing the
currently inspected results, e.g. the results of a par-
ticular linker for a particular error category on a
particular benchmark as easy as copying and shar-
ing the current URL.

When evaluating multiple entity linkers on mul-
tiple benchmarks, the evaluation results table can
quickly become huge. In order to keep the focus
on the currently most relevant results, Elevant has
filter text fields which support regular expressions.
Only linkers and benchmarks whose names match
the filter texts are displayed in the table.

Our goal was to make the Elevant web app as in-
tuitive as possible such that no additional resources
would be necessary in order to understand and use
it. To this end, the web app itself provides unobtru-
sive yet easily accessible explanations for its com-
ponents. A mouseover button for example gives
detailed explanations about the annotations such as
the (already intuitive) color code. Hovering over
the table header of an error category opens a tooltip
that not only explains the corresponding error cate-
gory but also gives an example for an entity linker

error that falls into this category. Hovering over
precision, recall or F1-score table cells opens a
tooltip that shows the total numbers of true posi-
tives, false positives, false negatives and ground
truth mentions for the corresponding category.

4.7 Included benchmarks

Elevant contains the following benchmarks:
• AIDA-CoNLL (Hoffart et al., 2011), a collection
of 216 and 231 news articles from the 1990s for
validation and testing.
• KORE50 (Hoffart et al., 2012), 50 difficult, hand-
crafted sentences.
• MSNBC (Cucerzan, 2007), 20 news articles
from 2007.
• MSNBC updated (Guo and Barbosa, 2018), a

version of MSNBC without entities that do no
longer exist in Wikipedia.
• DBPedia Spotlight (Mendes et al., 2011), 35
paragraphs from New York Times articles.

4.8 Included linkers

Elevant contains pre-computed results of the fol-
lowing entity linkers on the included benchmarks.
• TagMe (Ferragina and Scaiella, 2010)
• DBpedia Spotlight (Daiber et al., 2013)
• GENRE (Cao et al., 2021b)
• Efficient EL (Cao et al., 2021a)
• Neural EL (Gupta et al., 2017)
• Ambiverse (Seyler et al., 2018) (NER), (Hoffart
et al., 2011) (NED)

TagMe and DBpedia Spotlight can be run out
of the box with Elevant. For GENRE, Efficient
EL and Neural EL, we provide code with an easy
docker setup that yields results in a format sup-
ported by Elevant. Furthermore, Elevant can pro-
cess any linking results file which is in NIF, the
Ambiverse output format or a simple JSONL for-
mat as described in Section 3.2. These formats are
also explained in detail in Elevant’s documentation.

Additionally, we include a simple baseline that
is based on prior probabilities computed from
Wikipedia hyperlinks. The baseline uses the SpaCy
(Honnibal et al., 2020) NER tagger with slight
modifications (such as filtering out dates) to de-
tect entity mentions. All entities with an alias that
matches the mention text are considered as candi-
date entities for a mention. The aliases of an entity
are the anchor texts of incoming intra-Wikipedia

77

hyperlinks to an entity’s Wikipedia article, as well
as the entity’s Wikidata aliases. From these en-
tity candidates, the entity that has most frequently
been linked with the mention text in Wikipedia is
predicted.

4.9 Extendability

New benchmarks or entity linking results can easily
be added to Elevant if they are in one of the sup-
ported formats using Elevant’s conversion scripts
as described in Section 3.1 and Section 3.2. Ad-
ditionally, support for other benchmark or entity
linking result formats can be added with little ef-
fort. The process for implementing new format
readers for benchmarks or entity linking results is
explained in Elevant’s documentation and existing
format readers can be used as templates.

4.10 Easy knowledge base update

Elevant stores information about entities in several
files that are generated from two sources: Wikidata
and Wikipedia. The information extracted from
Wikidata includes an entity’s name, aliases, types
and its corresponding Wikipedia URL. The infor-
mation extracted from Wikipedia includes intra-
Wikipedia link frequencies (how often is a hyper-
link’s anchor text in Wikipedia linked to a certain
Wikipedia article) and Wikipedia redirects which
are needed to reliably map Wikipedia entities to
Wikidata. All of these files can either be down-
loaded from our servers or generated with three
simple commands. The simplicity of the data gen-
eration allows for regular updates of the data.

4.11 Open source

Our code is open source (Apache License 2.0) and
is available on GitHub 1. A Docker setup allows
an easy installation and usage. All links and a web
demo are provided at https://elevant.cs.
uni-freiburg.de.

5 Conclusion

Elevant is a powerful, general-purpose, easy-to-use
system for the in-depth evaluation and comparison
of a set of entity linkers on a given set of bench-
marks. Typical evaluations of entity linking sys-
tems only provide aggregated figures like precision,
recall and the F1 score. Elevant goes beyond this
by providing a breakdown of the results by entity

1https://github.com/ad-freiburg/
elevant/

type and by error category, as well as an intuitive
visualization of true positives, false negatives, and
false positives on the concrete texts. This can help
both practitioners (to understand for which kind
of texts a given entity linker is suited) as well as
researchers (to help understand in detail the par-
ticular weaknesses of their entity linker and try to
improve those).

References
Adrian Brasoveanu, Giuseppe Rizzo, Philipp Kuntschik,

Albert Weichselbraun, and Lyndon J. B. Nixon. 2018.
Framing named entity linking error types. In 11th
International Conference on Language Resources
and Evaluation, LREC 2018.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021a.
Highly parallel autoregressive entity linking with
discriminative correction. In 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, pages 7662–7669.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021b. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, EMNLP-CoNLL 2007, pages 708–
716.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In 9th In-
ternational Conference on Semantic Systems, ISEM
2013, pages 121–124.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
on-the-fly annotation of short text fragments (by
wikipedia entities). In 19th ACM Conference on In-
formation and Knowledge Management, CIKM 2010,
pages 1625–1628.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. CoRR,
abs/1412.1820.

Zhaochen Guo and Denilson Barbosa. 2018. Robust
named entity disambiguation with random walks. Se-
mantic Web, 9(4):459–479.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In 2017 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2017,
pages 2681–2690.

78

https://elevant.cs.uni-freiburg.de
https://elevant.cs.uni-freiburg.de
https://github.com/ad-freiburg/elevant/
https://github.com/ad-freiburg/elevant/
http://www.lrec-conf.org/proceedings/lrec2018/summaries/612.html
https://doi.org/10.18653/v1/2021.emnlp-main.604
https://doi.org/10.18653/v1/2021.emnlp-main.604
https://openreview.net/forum?id=5k8F6UU39V
https://aclanthology.org/D07-1074/
https://aclanthology.org/D07-1074/
https://doi.org/10.1145/2506182.2506198
https://doi.org/10.1145/2506182.2506198
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/1871437.1871689
http://arxiv.org/abs/1412.1820
http://arxiv.org/abs/1412.1820
https://doi.org/10.3233/SW-170273
https://doi.org/10.3233/SW-170273
https://doi.org/10.18653/v1/d17-1284
https://doi.org/10.18653/v1/d17-1284
https://doi.org/10.18653/v1/d17-1284

Benjamin Heinzerling and Michael Strube. 2015. Vi-
sual error analysis for entity linking. In 53rd Annual
Meeting of the Association for Computational Lin-
guistics and 7th International Joint Conference on
Natural Language Processing of the Asian Feder-
ation of Natural Language Processing, ACL 2015,
pages 37–42.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
KORE: keyphrase overlap relatedness for entity dis-
ambiguation. In 21st ACM International Conference
on Information and Knowledge Management, CIKM
2012, pages 545–554.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In 2011 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2011, pages
782–792.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Marcus Klang and Pierre Nugues. 2018. Linking,
searching, and visualizing entities in wikipedia. In
11th International Conference on Language Re-
sources and Evaluation, LREC 2018.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. Transactions of
the Association for Computational Linguistics, 3:315–
328.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained
entity recognition. In 26th AAAI Conference on Arti-
ficial Intelligence, AAAI 2012.

Pablo N. Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. 2011. Dbpedia spotlight: shedding
light on the web of documents. In 7th International
Conference on Semantic Systems, I-SEMANTICS
2011, pages 1–8.

Fabian Odoni, Philipp Kuntschik, Adrian M. P.
Brasoveanu, and Albert Weichselbraun. 2018. On the
importance of drill-down analysis for assessing gold
standards and named entity linking performance. In
14th International Conference on Semantic Systems,
SEMANTiCS 2018, volume 137, pages 33–42.

Henry Rosales-Méndez, Aidan Hogan, and Barbara
Poblete. 2019. Fine-grained evaluation for entity link-
ing. In 2019 Conference on Empirical Methods in
Natural Language Processing and 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 718–727.

Dominic Seyler, Tatiana Dembelova, Luciano Del Corro,
Johannes Hoffart, and Gerhard Weikum. 2018. A
study of the importance of external knowledge in the
named entity recognition task. In 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, pages 241–246.

Michael Strobl, Amine Trabelsi, and Osmar R. Zaïane.
2020. WEXEA: wikipedia exhaustive entity anno-
tation. In 12th Language Resources and Evaluation
Conference, LREC 2020, pages 1951–1958.

Ricardo Usbeck, Michael Röder, Axel-Cyrille Ngonga
Ngomo, Ciro Baron, Andreas Both, Martin Brümmer,
Diego Ceccarelli, Marco Cornolti, Didier Cherix,
Bernd Eickmann, Paolo Ferragina, Christiane Lemke,
Andrea Moro, Roberto Navigli, Francesco Piccinno,
Giuseppe Rizzo, Harald Sack, René Speck, Raphaël
Troncy, Jörg Waitelonis, and Lars Wesemann. 2015.
GERBIL: general entity annotator benchmarking
framework. In 24th International Conference on
World Wide Web, WWW 2015, pages 1133–1143.

79

https://doi.org/10.3115/v1/p15-4007
https://doi.org/10.3115/v1/p15-4007
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1145/2396761.2396832
https://aclanthology.org/D11-1072/
https://aclanthology.org/D11-1072/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
http://www.lrec-conf.org/proceedings/lrec2018/summaries/93.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/93.html
https://doi.org/10.1162/tacl_a_00141
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1016/j.procs.2018.09.004
https://doi.org/10.1016/j.procs.2018.09.004
https://doi.org/10.1016/j.procs.2018.09.004
https://doi.org/10.18653/v1/D19-1066
https://doi.org/10.18653/v1/D19-1066
https://doi.org/10.18653/v1/P18-2039
https://doi.org/10.18653/v1/P18-2039
https://doi.org/10.18653/v1/P18-2039
https://aclanthology.org/2020.lrec-1.240/
https://aclanthology.org/2020.lrec-1.240/
https://doi.org/10.1145/2736277.2741626
https://doi.org/10.1145/2736277.2741626

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 80 - 97
December 7-11, 2022 c©2022 Association for Computational Linguistics

A Pipeline for Generating, Annotating and Employing Synthetic Data for
Real World Question Answering

Matt Maufe
Filament AI, UK

University of Warwick, UK
matt.maufe@filament.ai

James Ravenscroft
Filament AI, UK

University of Warwick, UK
james.ravenscroft@filament.ai

Rob Procter
University of Warwick, UK

The Alan Turing Institute, UK
Rob.Procter@warwick.ac.uk

Maria Liakata
Queen Mary University of London, UK

The Alan Turing Institute, UK
m.liakata@qmul.ac.uk

Abstract

Question Answering (QA) is a growing area of
research, often used to facilitate the extraction
of information from within documents. State-
of-the-art QA models are usually pre-trained
on domain-general corpora like Wikipedia and
thus tend to struggle on out-of-domain docu-
ments without fine-tuning. We demonstrate
that synthetic domain-specific datasets can be
generated easily using domain-general models,
while still providing significant improvements
to QA performance. We present two new tools
for this task: A flexible pipeline for validat-
ing the synthetic QA data and training down-
stream models on it, and an online interface
to facilitate human annotation of this gener-
ated data. Using this interface, crowdworkers
labelled 1117 synthetic QA pairs, which we
then used to fine-tune downstream models and
improve domain-specific QA performance by
8.75 F1.

1 Introduction

Having enough relevant training data is a key
factor for achieving strong performance in machine
learning and NLP (Hoffmann et al., 2022), but
for many tasks, large domain-specific datasets are
expensive and time-consuming to create manually.
This is especially true for tasks like Extractive
Question Answering (QA), which both relies on
domain-specific knowledge and requires skilled
annotators. These difficulties have led to increased
interest in synthetic data generation recently (Feng
et al., 2021) through various methods such as
bootstrapping from smaller datasets, or through
generative models which create entirely new data.

We make the following contributions:

• A modular architecture-agnostic pipeline that
takes as input unstructured documents and pro-
duces both synthetic QA pairs and a QA model
trained on them; We show in Section 4.3 that us-
ing this synthetic domain-specific data allows
for a dramatic improvement on the QA task
compared to baseline state-of-the-art models,
especially on unanswerable questions.

• A web-based tool that allows annotators to label
various aspects of the synthetic data with ease,
alongside guidelines to help ensure consistency
and quality in their labels.

• We release1 this annotation tool and its guide-
lines for general use. While we use and evalu-
ate this pipeline in the domain of business news,
the pipeline is sufficiently flexible to be applied
to other domains, including potentially being
applicable to abstractive QA.

2 Background and Related Work

Grammaticality Models allow for improving the
quality of synthetic data and subsequent perfor-
mance in downstream tasks by better aligning it
with real user data. On benchmark datasets, such
as the Corpus of Linguistic Acceptability (CoLA,
Warstadt et al., 2019) which contains a wide range
of examples from published linguistics literature,
current state-of-the-art models (Sun et al., 2019)
can achieve a Matthew’s Correlation Coefficient
score (Matthews, 1975) of approximately 0.775
(Wang et al., 2022), exceeding human performance
(0.713, Warstadt et al., 2019) in some cases,
though this can vary significantly depending on
the sentence’s syntactic complexity and length
(Warstadt and Bowman, 2020).

Synthetic NLP Data Generation Synthetic data
1GitHub

80

https://github.com/FilamentAI/qa-annotation

Figure 1: The overall pipeline. The question generation process (blue) generates synthetic QA pairs, which are
validated by the grammaticality model. The annotation tool is used to present this data to users for annotation, and
the resultant labelled data is then used to fine-tune the grammaticality (red) and QA (purple) models.

generation is an attractive option for dataset cre-
ation, especially for domain-specific tasks. Various
methods for bootstrapping from smaller datasets
have been devised, such as back-translation (Sen-
nrich et al., 2015) and Sibylvariant transformations
(Harel-Canada et al., 2022). Backtranslation pro-
duces paraphrases through round-trip translation,
while Sibylvariant transformations modify or com-
bine texts in predictable ways to create new data
with a different label.

Of particular interest are methods that use text
generation models to create entirely new data,
rather than simply paraphrasing or combining in-
puts predictably. A variety of these models have
been used to generate new QA pairs (Grover et al.,
2021), such as the T5 model (Raffel et al., 2020)
and BERT (Devlin et al., 2018).

Synthetic data generation can be particularly use-
ful when fine-tuning a model on a specific domain,
for which manually-curated datasets may not ex-
ist. Whilst high quality datasets such as SQuAD
2.0 (Rajpurkar et al., 2018) do exist for QA tasks,
they tend to only have general content, e.g. from
Wikipedia. Thus models trained on them often
struggle on more domain-specific tasks (Ramponi
and Plank, 2020, see also Section 4.3 below).

Evaluation of Synthetic QA Pairs Evaluating
Question Generation (QG) models can be difficult
due to the nature of the problem: A good ques-
tion tends to have various qualities (grammatical,
answerable, non-trivial to answer, etc.) that are
difficult to capture in a single metric, especially
one that correlates well with human judgements

(Hosking and Riedel, 2019). Nonetheless, several
metrics such as BLEU (Papineni et al., 2002) and
BERTScore (Zhang et al., 2020) have been pro-
posed, though they rely on having reference ques-
tions available and often do not capture whether or
not the question is answerable (Nema and Khapra,
2018). However, Rajpurkar et al. (2018) show
that the use of unanswerable questions when train-
ing QA models is important for real-world perfor-
mance, making it a metric of interest.

Round-trip evaluation, such as the methods pro-
posed by Alberti et al. (2019), allows for evaluat-
ing the generated data by checking how consistent
downstream model results are when synthetic data
is used as the model input, e.g. if the generated
answer is found for a synthetic question when the
question is input to a QA model. We adopt this
approach and discuss it further in Section 4.2.

3 System Overview

Figure 1 shows an overview of our system for cre-
ating domain-specific synthetic QA pairs which are
used to train downstream models. The QG process
(see Section 3.2 for details) creates domain-specific
QA pairs from unlabelled texts. This data is then
annotated for grammaticality and correctness using
the annotation tool, allowing for the creation of
two new domain-specific datasets to fine-tune both
grammaticality and QA models.

We take a subset of a proprietary knowledge
base as our set of input documents and use this
to create our domain-specific QA dataset (which
we call “SYFTER”). The knowledge base contains

81

Figure 2: The question generation pipeline.

documents obtained by scraping online articles and
is focused on business news, such as information
about corporate structures, and is thus quite distinct
in subject matter from our external domain-general
data (SQuAD 2.0, see Section 3.2).

3.1 Grammaticality Validation

We use a pre-trained BERT model2 (Devlin et al.,
2018) to evaluate the grammaticality of each syn-
thetic question and answer and we discard ungram-
matical ones under the intuition that encouraging
the synthetic data to be grammatically correct re-
sults in the final dataset being more similar to
questions posed by real users and improved per-
formance on the downstream task.

We use the “in-domain” data from the Corpus
of Linguistic Acceptability (CoLA, Warstadt et al.,
2019) dataset to train our grammaticality model in
the domain-general setting.

While from a linguistic perspective (Lau et al.,
2017), grammaticality can be seen as either a bi-
nary or a gradient feature, we use it as a binary
label to better standardise with other papers and
with CoLA. Furthermore, annotators are unlikely
to hold consistent beliefs about the degree to which
something is ungrammatical, given the high level
of subjectivity inherent in such a judgement, and so
treating it as binary reduces the potential for noise
in the labels.

Because both the CoLA and SYFTER grammat-
icality datasets have a large degree of class im-
balance3, we use SMOTE (Chawla et al., 2002)
to oversample the ungrammatical instances and
achieve a uniform class distribution.

2bert-base-uncased
3Approximately 25% and 10% ungrammatical respectively

3.2 Synthetic Question-Answer Pair
Generation

The Question Generation process takes as input
a natural language document (in our case, a para-
graph or a single sentence) and outputs a QA pair
that can be answered from this document. This is
done using two models: One to select answer can-
didates from the document, and one that generates
a question based on both the answer and the full
document, for each candidate. The full process is
shown in Figure 2.

We extend Patil Suraj’s question-generation li-
brary (Patil, 2022) to work with any SQuAD 2.0-
format dataset rather than only ones available from
HuggingFace, as well as enabling it to gracefully
discard invalid answers without breaking, and par-
tially integrating it into our own pipeline.

We use two separate T5 (Raffel et al., 2020) mod-
els fine-tuned on SQuAD V14 data for both answer
selection and question generation5, and specify the
task at inference time in natural language follow-
ing the prompting paradigm (Brown et al., 2020).
We “highlight” the answer token during question
generation as described in (Chan and Fan, 2019).6

Because the underlying model is abstractive rather
than extractive, it occasionally produces answer
candidates that do not appear in the context and are
thus unusable for extractive QA, which we discard.

Prior to answer selection, we filter out unsuitable
input documents in two stages: We first filter out
documents that are very short7 or which match at

4Due to time constraints, we did not re-train on SQuAD
2.0, but the model performs well nonetheless (Section 4.2)

5valhalla/t5-small-qa-qg-hl and valhalla/t5-base-qg-hl re-
spectively.

6E.g. “generate question: The <hl>dog<hl> is red”.
7Less than 10 tokens

82

https://huggingface.co/bert-base-uncased
https://huggingface.co/
https://huggingface.co/valhalla/t5-small-qa-qg-hl
https://huggingface.co/valhalla/t5-small-qg-hl

least one of a set of RegEx filters (see Appendix
A for details), allowing us to remove any that are
clearly semantically null. We then apply a second
filter using a BERT Part-of-Speech model8 such
that only documents that contain a verb, or an aux-
iliary verb and a proper noun, are included so as to
remove documents that do not present information
that questions can be built around.

Each sentence in each filtered document is input
to the answer selection model, which identifies
answer candidates within them. Intuitively, a span
is an answer candidate if a question can be built
around it, and so the model tends to select ones
representing entities or relations.

Questions are then generated, conditioned on
each answer and the entire associated document,
and if validated by the grammaticality model they
are added to the synthetic QA dataset.

The resultant dataset can then be input directly
into the annotation tool.

An ablation test over the filters (including the
grammaticality model) can be found in Appendix
C.

3.3 Question Answering

We use an ALBERT (Lan et al., 2019) Question
Answering model to predict an answer represented
as a span within the document, indicated by two
token indices (start and end).

The model is able to provide “null answers”,
indicating that the question cannot be answered,
either directly or by having its prediction changed
to the null answer if the null-answer’s confidence
score is above a “null-answer threshold” (regard-
less of the original prediction’s confidence score).

We utilise SQuAD 2.0 (Rajpurkar et al., 2018)
for the initial fine-tuning of our QA model, as it
is a large high-quality dataset containing both an-
swerable and unanswerable questions, and as a
general-domain dataset it allows us to demonstrate
the utility of our domain transfer methods.

The resultant QA model is then fine-tuned on
our domain-specific “SYFTER” dataset in order
to adapt it to our desired domain, which focuses
on news articles about commercial events such as
product launches and earnings reports (whereas
SQuAD’s data comes from Wikipedia and focuses
more on history, politics, and geography).9

8vblagoje/bert-english-uncased-finetuned-pos
9SQuAD’s domains can be explored here.

3.3.1 Detecting Unanswerable Questions
During development, we noticed that when trained
on a single domain (SQuAD or SYFTER), the QA
models could learn to effectively identify if a ques-
tion from that domain could be answered or not, but
performance on this task would drop significantly
when trained on both domains.

This was likely due to a combination of our
“unanswerable question” label being applied more
broadly (to nonsensical questions as well as unan-
swerable ones), and due to the significant amount
of class imbalance in the dataset (especially for the
SYFTER data), as well as a small amount of noise
in the labels detected through manual inspection.

We explored various methods to resolve this
problem when using combined training data, and
discuss an ablation study over them in Appendix B,
with results in Table 7.

• We appended “source markers” to the end of
each question, prior to tokenisation, which indi-
cated the domain that the question came from:
either “[SQuAD]” or “[SYFTER]”, in order to
allow the model to better learn domain-specific
features.

• We tuned the ‘null-answer threshold” on the
validation set.

• We investigated training the model simultane-
ously for the tasks of both QA and sequence
classification as “answerable” / “unanswer-
able”. This follows findings from Crawshaw
(2020) that multitask learning can often im-
prove performance, and given the interdepen-
dence between question answering and detect-
ing if a question can be answered.

• Finally, we used alpha-weighted Focal Loss
(Lin et al., 2017) rather than Cross Entropy
Loss for sequence classification in the multitask
setting to better handle class imbalance.

3.4 Data Annotation

In order to label the synthetic data for supervised
training, we created an annotation tool10 using
Streamlit (Treuille et al., 2018) which allows an-
notators to view model-generated QA pairs, along
with their associated context document, and anno-
tate them in various ways. An example of how QA
pairs are presented within the tool can be found in
Figure 5 in Appendix D.

We used a series of three preliminary studies to

10A video demo can be found here

83

https://huggingface.co/vblagoje/bert-english-uncased-finetuned-pos
https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/
https://www.youtube.com/watch?v=VHBHE1pVWzA

Figure 3: The annotation process. The answerability and relevance of questions (blue) is dependent on the document,
without considering external knowledge. Answers (purple) must appear within the document to be accepted.

Model Training Data # Train Examples Macro F1 Score
BERT CoLA 10584 61.18
BERT SYFTER 2796 75.74
BERT CoLA + SYFTER 13608 74.68

Table 1: The Grammaticality model results. The best setting is indicated in bold text. “# Train Examples” refers to
the data after oversampling.

iteratively refine our annotation tool and guidelines,
with each study involving 10 participants (who did
not participate in subsequent studies). This allowed
us to identify and fix any points of misunderstand-
ing before using the tool for the final annotation
study on the entire dataset. As with the final an-
notation study, these were done via Prolific11 and
under the same annotator filters (as well as filtering
out previous participants).

Following each preliminary study, we followed
up with annotators in cases where they had made
unintuitive judgements or appeared to have mis-
understood, and used these discussions to refine
the guidelines presented. The final guidelines are
shown in Appendix D.1.

Each annotator was assigned to a group with two
others, and each group of three annotators provided
annotations for 2% of the total dataset, with gold
labels coming from majority judgements.

The annotation process is shown in Figure 3.
Questions marked as unsuitable (for either reason)
are not labelled further, and comprise the set of
unanswerable questions for the SYFTER domain.

Questions were judged on suitability (whether
the question is answerable and relevant to the doc-
ument) as well as grammaticality.

Grammaticality for both questions and answers
was posed to annotators as a question of “reading
naturally”, in order to better mimic real user ques-
tions and avoid the subjective issues inherent to
judging grammaticality.

11https://www.prolific.co/

Answers were judged on both naturalness and
quality. In the latter case, an answer was considered
“adequate” if it answered the question but had either
extraneous details or was missing details, and “pre-
cise and correct” if it answered the question with
all of the relevant details, but no more.

We asked annotators to rewrite questions and
answers that did not read naturally, as well as inad-
equate answers, and did not allow for the submis-
sion of the labels until the texts were corrected or
the question was marked as unsuitable (e.g. if they
could not be corrected within our constraints).

4 Experiments and Results

The Grammaticality and Question Answering mod-
els are tested in both the setting of interest (com-
bined domain-general and domain-specific data) as
well as two baseline data settings (domain-general
data only12, and domain-specific data only). This
allows us to both measure how useful the synthetic
data is as an addition to domain-general data and
to also evaluate the feasibility of fine-tuning using
only synthetic data, which would reduce time and
expense significantly given its small size.

The combined test sets for the Grammaticality
and QA models are produced by combining the ap-
propriate domain-general data (CoLA or SQuAD)
with the domain-specific SYFTER data and then
testing the model on this combination dataset.

We evaluate the Question Generation process

12CoLA for the grammaticality task, SQuAD for the QA
task

84

https://www.prolific.co/

Test Dataset QA Model Exact Match Similarity
SQuAD 2.0 RoBERTa 67.81% 81.89%
SYFTER RoBERTa 64.55% 77.27%

Table 2: Roundtrip evaluation of our QA datasets’ quality, using an off-the-shelf QA model. The RoBERTa model
was trained on SQuAD 2.0. Best results indicated in bold text.

Document Question Answer
"International law firm Ashurst announces the
appointment of Matthias Weissinger as partner in
Munich.

Who is the new partner of
Ashurst in Munich?

Matthias Weissinger

To date we’ve delivered more than one billion pieces
of protective equipment to the frontline.

How many pieces of
protective equipment have
been delivered to the
frontline?

more than one billion

As a major food sector player, Bel fully assumes its
duty to do everything possible to ensure the
continuity of its operations.

What sector is Bel a major
player in?

food

Table 3: Example Question-Answer Pairs Generated from Documents

Figure 4: Human Evaluation results on the annotated data. Only QA pairs that had a suitable question were judged
further on the other metrics. Percentages shown are based on annotator consensus rather than individual judgements.

Model Training Data % Synthetic Answerable Unanswerable Overall
Training Data EM F1 EM EM F1

ALBERT SQuAD 2.0 0% 84.87 91.09 12.16 61.06 65.25
ALBERT SYFTER 100% 53.26 59.71 72.00 57.26 63.34
ALBERT SQuAD 2.0 + SYFTER 0.62% 71.74 83.24 40.00 64.96 74.00

Table 4: Question Answering model results on the SYFTER test set. The best settings are shown in bold.

85

in both the domain-general and domain-specific
settings, but do not evaluate the combined setting
due to the nature of the evaluation (see Section 4.2).

4.1 Grammaticality Classification

We evaluate the grammaticality model using the
model’s F1 score, treating grammaticality as a
binary sequence classification task, and achieve
strong results in both the synthetic-only and com-
bined data settings, as shown in Table 1. The
domain-specific model actually performs better
than both the domain-general model and the
combined-data setting, despite training on only
a small amount of synthetic data, indicating the
importance of using domain-specific data during
training.

4.2 Synthetic Question-Answer Pair
Generation

We evaluate the synthetic questions through
roundtrip evaluation as discussed in Section 2. For
each generated QA pair, we use an off-the-shelf QA
model13 to answer the generated question (based
on its associated context) and then compare the
answers in two ways: Exact match; and compar-
ing their similarity with their most-similar ques-
tion at the token level using length-normalised Lev-
enshtein distance (Levenshtein, 1966) via NLTK
(Bird et al., 2009). Intuitively, if the question is
well-formed and precise, and the answer is relevant
to it, the QA model should find the correct answer.

As shown in Table 2, the synthetic data is of
high quality, reaching similar levels to SQuAD 2.0,
which was manually created by humans. Further-
more, Table 3 shows examples of the synthetic data
produced and used. The generated questions are
both fluent and of interest, and the answers are both
precise and correct. The first question is slightly
stilted, but still easily understandable.

Finally, the annotation process can also be
thought of as a form of human evaluation and, as
shown by Figure 4, the vast majority of the data
was found to be of high-quality (suitable, reading
naturally, and correct+precise answers). However,
48.6% of the data, including unsuitable questions,
did require some input from annotations in some
form (not counting data that was imprecise but oth-
erwise good). This indicates that while the data
tends to be of high-quality overall, about half of

13deepset/roberta-base-squad2, which has strong perfor-
mance on SQuAD 2 data

the datapoints do contain a small amount of noise.
69.7% of the questions are suitable and have correct
answers, which can be considered the key factors
for good synthetic QA data, and as such a high
percentage of the data could be used to train a QA
system as-is without needing corrections.

4.3 Question Answering

We take approximately 11.6% of the total anno-
tated SYFTER data (117 questions, approximately
21% of which are unanswerable) to use as the QA
test set, and split it at the document-level to avoid
potential information leaks from the training data.

The QA model is evaluated through both the “Ex-
act Match” (EM) score, and at the token level using
F1 score, via the HuggingFace wrapper around the
official SQuAD evaluation script. In both cases, the
text is first lowercased and normalised to remove
articles and standardise whitespace. EM and F1 are
identical for unanswerable questions.

We present the results from the best setting,
which uses null-answer threshold tuning and multi-
task learning without Focal Loss (see Appendix B),
in Table 4.

The SYFTER-only model performs well de-
spite the SYFTER dataset being much smaller than
SQuAD 2.0, and is much better at handling unan-
swerable questions. By combining the two, we
achieve the best overall performance, and maintain
reasonable performance on unanswerable questions
despite the issues discussed in Section 3.3.1.

5 Conclusion

We present a pipeline for using and evaluating syn-
thetic QA data and an interface for annotating it, as
well as annotation guidelines. The combination of
domain-general and synthetic data allows our QA
model to perform significantly better (+ 9 F1) on
domain-specific documents than it did when trained
solely on a similar amount of domain-general data.
The pipeline is simple to apply to both current and
future state-of-the-art models, enabling better per-
formance in low-resource domains.

6 Acknowledgements

This work is supported by an Innovate UK grant
under the KTP scheme (KTP 11714) to Rob Procter,
Maria Liakata and Filament AI, as well as the Alan
Turing Institute (EP/N510129/1). Maria Liakata
has been supported by a UKRI/EPSRC Turing AI
Fellowship EP/V030302/1.

86

https://huggingface.co/deepset/roberta-base-squad2
https://github.com/huggingface/datasets/blob/2.4.0/datasets/squad_v2/squad_v2.py

7 Limitations

Whilst our system demonstrates that we can
achieve significant improvements from synthetic
domain-specific data with minimal additional time
and expense, it does have certain limitations: We
do not consider “adversarial questions” when train-
ing, and it thus would likely struggle on these kinds
of questions based on findings such as those from
Bartolo et al. (2021).

We also found that our synthetic data primarily
consists of questions which identify entities (e.g.
“Who is the CEO of Microsoft?”, “When did Mi-
crosoft acquire Bethesda Softworks?”, “What are
the five principles of good leadership?”), and does
not contain many examples of questions about re-
lationships between entities (e.g. “Is selling ice
cream more profitable than selling widgets?”), and
answers to the latter may be of relatively poor qual-
ity.

This is likely due to what appears to be a simi-
lar trend in SQuAD V1 that the Question Genera-
tion model was trained on: SQuAD primarily asks
questions with short entity-focused answers (dates,
names, etc.) (Qu et al., 2021) and approximately
half of the answers in SquAD (Rajpurkar et al.,
2016) are proper nouns, dates, or other numbers
indicating that their corresponding questions are
likely entity-focused.

The questions of interest to us are generally
entity-based and so this limitation does not directly
impact our own usage of the model, but we recog-
nise that it potentially limits its applicability to
other domains. In the future, the model’s perfor-
mance on non-entity questions could be investi-
gated and improved through tools like AdaTest
(Ribeiro and Lundberg, 2022).

The tool also still requires some amount of hu-
man involvement to annotate and filter the synthetic
data, and the Grammaticality model results (Table 1
indicates that filtering with purely domain-general
models would be ineffective. However, it is pos-
sible to generate the QA pairs without annotation
and, given the high quality of the data (Figure 4),
it may be reasonably possible to use the data di-
rectly (treating it all as suitable and grammatical) to
achieve a still-significant boost to domain-specific
performance.

The main problem with not using human anno-
tation would be that our “unanswerable questions”
are all ones marked as “unsuitable” by humans,
and thus using the synthetic data directly would

lead to only having synthetic questions that are
considered to be answerable. This could be im-
proved through extending the QG pipeline to also
produce deliberately-unanswerable examples, but
is not currently possible.

Finally, whilst we use the grammaticality model
for validation during the question generation pro-
cess, we do not train either the Answer Selection or
Question Generation models with grammaticality
as a second objective function. Training it in a mul-
titask setting would likely have guided it towards
producing better input, and may have produced
more (valid) data from the corpus.

8 Ethics Statement

Machine learning tasks often involve the potential
for ethical issues, especially when using human an-
notators to label data. We chose to use Prolific14 as
a platform to find and pay annotators, as it offered
a reputation for enforcing ethical payments as well
as useful filters such as education level and native
language.

We also submitted our project to the University
of Warwick’s internal ethics process, and were ap-
proved without having to make any adjustments.

Prolific annotators are paid a fixed amount, but
if a task’s average hourly payment falls below a
minimum (£5 / $6.50 per hour), it is required to
rectify this and increase the payments.

The mean rate of pay for annotators was re-
ported as £15.63 during the preliminary studies and
£15.50 during the primary annotation study, though
these figures are under-estimates as our own time-
tracking indicates that annotators generally spent a
significant amount of time not annotating the data
questions (but still recorded by Prolific as being
on-task). This is well in excess of the UK living
wage of £9.50, as well as the “real living wage” of
up to £11.05 proposed by The Living Wage Foun-
dation15.

The use of synthetic data does have some inher-
ent potential ethical issues: “Model hallucination”
is a well-known phenomenon where models can
create unfaithful data (e.g. convincing, but false an-
swers to questions) and which can cause real-world
harm if the information it provides is acted on (Ji
et al., 2022). This can affect our own models if the
data generation models hallucinate and lead to the
QA model internalising incorrect knowledge.

14https://www.prolific.co/
15As discussed here.

87

https://www.prolific.co/
https://www.livingwage.org.uk/

Thankfully, there are various ways to identify
these occurrences and mitigate this harm, includ-
ing perhaps the simplest method of specifying the
context in which the data was created and used at
appropriate downstream points, so that users can
better assess its veracity for themselves.

To limit this harm, we strongly suggest that other
researchers take this into account in their own work,
and take the appropriate actions, for instance using
human annotators to verify the data and actively
designing models to be robust against hallucination,
as done in work like Su et al. (2022).

Finally, despite using a model to create our QA
data, and the fact that synthetic data can clearly be
very useful, bias is still likely to exist in the data
(carried forward from both the model’s original
training data and the human factor of the annotation
done), and we suggest that any data produced be in-
vestigated and debiased through tools like AdaTest
(Ribeiro and Lundberg, 2022).

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob Devlin,

and Michael Collins. 2019. Synthetic qa corpora
generation with roundtrip consistency.

Max Bartolo, Tristan Thrush, Robin Jia, Sebastian
Riedel, Pontus Stenetorp, and Douwe Kiela. 2021.
Improving question answering model robustness with
synthetic adversarial data generation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Ying-Hong Chan and Yao-Chung Fan. 2019. A recur-
rent BERT-based model for question generation. In
Proceedings of the 2nd Workshop on Machine Read-
ing for Question Answering, pages 154–162, Hong
Kong, China. Association for Computational Linguis-
tics.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. 2002. SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.

Michael Crawshaw. 2020. Multi-task learning with
deep neural networks: A survey.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for nlp.

Khushnuma Grover, Katinder Kaur, Kartikey Tiwari,
Rupali, and Parteek Kumar. 2021. Deep learning
based question generation using t5 transformer. In
Advanced Computing, pages 243–255, Singapore.
Springer Singapore.

Fabrice Harel-Canada, Muhammad Ali Gulzar, Nanyun
Peng, and Miryung Kim. 2022. Sibylvariant transfor-
mations for robust text classification. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1771–1788, Dublin, Ireland. Association
for Computational Linguistics.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Tom Hosking and Sebastian Riedel. 2019. Evaluating
rewards for question generation models.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2022. Survey of halluci-
nation in natural language generation.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations.

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2017. Grammaticality, acceptability, and probability:
A probabilistic view of linguistic knowledge. Cogni-
tive Science, 41(5):1202–1241.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. 2017. Focal loss for dense object
detection.

88

https://doi.org/10.48550/ARXIV.1906.05416
https://doi.org/10.48550/ARXIV.1906.05416
https://doi.org/10.18653/v1/2021.emnlp-main.696
https://doi.org/10.18653/v1/2021.emnlp-main.696
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.48550/ARXIV.2009.09796
https://doi.org/10.48550/ARXIV.2009.09796
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.2105.03075
https://doi.org/10.48550/ARXIV.2105.03075
https://link.springer.com/chapter/10.1007/978-981-16-0401-0_18
https://link.springer.com/chapter/10.1007/978-981-16-0401-0_18
https://doi.org/10.18653/v1/2022.findings-acl.140
https://doi.org/10.18653/v1/2022.findings-acl.140
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.1902.11049
https://doi.org/10.48550/ARXIV.1902.11049
https://doi.org/10.48550/ARXIV.2202.03629
https://doi.org/10.48550/ARXIV.2202.03629
https://doi.org/10.48550/ARXIV.1909.11942
https://doi.org/10.48550/ARXIV.1909.11942
https://doi.org/https://doi.org/10.1111/cogs.12414
https://doi.org/https://doi.org/10.1111/cogs.12414
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=31411&option_lang=eng
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=31411&option_lang=eng
https://doi.org/10.48550/ARXIV.1708.02002
https://doi.org/10.48550/ARXIV.1708.02002

B.W. Matthews. 1975. Comparison of the predicted and
observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) - Protein Struc-
ture, 405(2):442–451.

Preksha Nema and Mitesh M. Khapra. 2018. Towards
a better metric for evaluating question generation
systems. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3950–3959, Brussels, Belgium. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, , and
Wei-Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation.

Suraj Patil. 2022. Question Generation using transform-
ers.

Fanyi Qu, Xin Jia, and Yunfang Wu. 2021. Asking ques-
tions like educational experts: Automatically generat-
ing question-answer pairs on real-world examination
data.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text.

Alan Ramponi and Barbara Plank. 2020. Neural unsu-
pervised domain adaptation in nlp—a survey.

Marco Tulio Ribeiro and Scott Lundberg. 2022. Adap-
tive testing and debugging of NLP models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3253–3267, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation models
with monolingual data.

Dan Su, Xiaoguang Li, Jindi Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, and Pascale Fung. 2022. Read before
generate! faithful long form question answering with
machine reading.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration.

Adrien Treuille, Thiago Teixeira, and Amanda Kelly.
2018. Streamlit.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2022.
Glue benchmark leaderboard.

Alex Warstadt and Samuel R. Bowman. 2020. Lin-
guistic analysis of pretrained sentence encoders with
acceptability judgments.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

89

https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.18653/v1/D18-1429
https://doi.org/10.18653/v1/D18-1429
https://doi.org/10.18653/v1/D18-1429
https://aclanthology.org/P02-1040.pdf
https://aclanthology.org/P02-1040.pdf
https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation
https://doi.org/10.48550/ARXIV.2109.05179
https://doi.org/10.48550/ARXIV.2109.05179
https://doi.org/10.48550/ARXIV.2109.05179
https://doi.org/10.48550/ARXIV.2109.05179
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://doi.org/10.48550/ARXIV.2006.00632
https://doi.org/10.48550/ARXIV.2006.00632
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.18653/v1/2022.acl-long.230
https://doi.org/10.48550/ARXIV.1511.06709
https://doi.org/10.48550/ARXIV.1511.06709
https://doi.org/10.48550/ARXIV.2203.00343
https://doi.org/10.48550/ARXIV.2203.00343
https://doi.org/10.48550/ARXIV.2203.00343
https://doi.org/10.48550/ARXIV.1904.09223
https://doi.org/10.48550/ARXIV.1904.09223
https://streamlit.io/
https://gluebenchmark.com/leaderboard
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1901.03438
http://arxiv.org/abs/1805.12471
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675

A RegEx Document Filters

Table 5 shows the different RegEx filters that we
apply to documents in order to filter out ones that
are likely to be difficult to select valid answers
from. Documents are filtered if any substring in
them is a match for the expression.

The first expression, which filters out documents
that appear to be too similar to contracts, addition-
ally contains certain whitelist expressions which
prevent otherwise-matching documents from being
removed. These can be seen in Table 6. In order to
be whitelisted, the text that matched the initial filter
must fully match the whitelist expression (though
the entire document does not have to match).

For clarity when dealing with leading/trailing
whitespace, each expression is wrapped in “dou-
ble quotes”, but these quotes are not part of the
actual expression. Matches with each expression
are emphasised for clarity.

90

RegEx Expression Intended Matches Example Match
“ ?\([0-9A-Za-z]+\)(\([0-9A-Za-z]+\))*” Contract-like doc-

uments
“B 1: Financial
Instruments accord-
ing to Regulation
17(1)(a) of the Reg-
ulations”

“^[0-9]+\.? ?.+” Numeric List “1. Reassure cus-
tomers and em-
ployees”

“^[ivx]+\.? .+” Roman-numeric
List

“xi If the financial
instrument has
such a period”

“\[?\]” Empty square
brackets

“[] An acquisition
or disposal of finan-
cial instruments”

“Regulation(s)? [0-9]+” Regulations
contract-like

“B 2: Financial In-
struments with sim-
ilar economic effect
according to Reg-
ulation 17 of the
Regulations”

“^.{0,15}$” Very short docu-
ments

“content”

“^(.{0.5})?\(.+\).{0,5}$” Mostly in brackets “(please tick the ap-
propriate box or
boxes):”

Table 5: RegEx Filters for Documents

RegEx Expression Purpose Example Documents Whitelisted
“ ?\([A-Z]+s?\)” Allow acronyms “CPE Lite is Huawei’s latest mini cus-

tomer premises equipment (CPE).”
“ ?\([A-Z]?[0-9a-z]{4,}\)” Allow short brack-

eted words
“Bel reported strong sales momentum
in the first two months of the year in
global(mature) markets”

Table 6: RegEx Whitelists for Documents, applied to the “Contract-like” filter.

91

B Question Answering Ablation

We performed an ablation study over the Question
Answering Model components discussed in Sec-
tion 3.3.1, and found that in some cases they signif-
icantly improve the performance on unanswerable
questions, especially the use of multitask learning.
The results of this ablation are shown in Table 7.

Whilst we found that some settings (Source
Markers, Focal Loss) did not appear to be useful,
we nonetheless believe that the utility of source
markers when using more domains would be an
interesting avenue for future investigation.

C Question Generation Filter Ablation

We performed an ablation study over the Ques-
tion Generation filters discussed in Section 3.2
and found that the individual filters tend to have a
significant impact on the model’s performance on
unanswerable questions, but relatively little when
considering answerable questions. Given that the
filters were primarily designed to filter out docu-
ments that were likely to produce low-quality unan-
swerable questions, this is as expected. The set
of filters that we used does not provide the best
overall F1 Score, but provides a model whose per-
formance is significantly more balanced than the
nominally best-performing model, a trait that we
found valuable.

For these tests, we trained and tested the QA
model only on SYFTER data so as to most clearly
see the effects of the filter(s) used (since SQuAD
data is not filtered in our pipeline).

92

Source Markers Threshold Tuning Multitask Focal Loss Performance Gain (F1)
Answerable No Answer Overall

x x x x 91.02 72.97 85.11
✓ x x x - 2.2 + 0 - 1.48
x ✓ x x - 0.66 + 1.35 + 0
x x ✓ x - 1.98 + 4.06 + 0
x x ✓ ✓ - 2.14 + 0 - 1.44
✓ ✓ ✓ ✓ - 1.91 + 1.35 - 0.84

Table 7: Relative performance gains on the ALBERT QA model in different training settings. A checkmark indicates
that the component was used, an “x” that it was not. Focal loss is only applicable in the multitask setting. Best
setting shown in bold.

Filter Performance Gain (F1)
Length RegEx Part of Speech Grammaticality Answerable No Answer Overall

x x x x 72.35 40.00 66.22
✓ x x x 65.60 48.00 62.16
x ✓ x x 73.8 24 64
x x ✓ x 73.67 52 69.5
x x x ✓ 71.95 36 65.24
✓ ✓ ✓ ✓ 59.71 72.00 63.34

Table 8: Relative QA performance gains on the SYFTER test set model using different SYFTER training data
filtered in different ways. A checkmark indicates that the component was used, an “x” that it was not. Best setting
shown in bold. Only SYFTER data was used for training.

93

D Annotation Tool

Figure 5 shows an example of how QA Pairs are
presented to annotators in the annotation tool. See
Section 3.4 for details.

A video demo of the tool can be found here

D.1 Annotation Guidelines
We present a set of annotation guidelines which can
be given to annotators in order to obtain consistent
labels by “calibrating” their expectations of what
is and is not a valid QA pair. The guidelines for
labelling questions can be found in Figure 6 and
for answers in Figure 7.

94

https://www.youtube.com/watch?v=VHBHE1pVWzA

Figure 5: An example of how QA pairs are presented in the annotation tool.95

Figure 6: Annotation guidelines for judging question suitability and naturalness.96

Figure 7: Annotation guidelines for judging answer naturalness and quality.97

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 98 - 108
December 7-11, 2022 c©2022 Association for Computational Linguistics

DeepKE: A Deep Learning Based Knowledge Extraction Toolkit
for Knowledge Base Population

Ningyu Zhang1, Xin Xu1, Liankuan Tao1, Haiyang Yu1, Hongbin Ye1, Shuofei Qiao1,
Xin Xie1, Xiang Chen1, Zhoubo Li1, Lei Li1, Xiaozhuan Liang1, Yunzhi Yao1,

Shumin Deng1, Peng Wang1, Wen Zhang1, Zhenru Zhang2, Chuanqi Tan2, Qiang Chen2,
Feiyu Xiong2, Fei Huang2, Guozhou Zheng1, Huajun Chen1 ∗
1 Zhejiang University & AZFT Joint Lab for Knowledge Engine

2 Alibaba Group
http://deepke.zjukg.cn/

Abstract

We present an open-source and extensible
knowledge extraction toolkit DeepKE, sup-
porting complicated low-resource, document-
level and multimodal scenarios in knowledge
base population. DeepKE implements various
information extraction tasks, including named
entity recognition, relation extraction and at-
tribute extraction. With a unified framework,
DeepKE allows developers and researchers to
customize datasets and models to extract in-
formation from unstructured data according to
their requirements. Specifically, DeepKE not
only provides various functional modules and
model implementation for different tasks and
scenarios but also organizes all components by
consistent frameworks to maintain sufficient
modularity and extensibility. We release the
source code at GitHub1 with Google Colab tu-
torials and comprehensive documents2 for be-
ginners. Besides, we present an online system3

for real-time extraction of various tasks, and a
demo video4.

1 Introduction

As Information Extraction (IE) techniques develop
fast, many large-scale Knowledge Bases (KBs)
have been constructed. Those KBs can provide
back-end support for knowledge-intensive tasks in
real-world applications, such as language under-
standing (Che et al., 2021), commonsense reason-
ing (Lin et al., 2019) and recommendation systems
(Wang et al., 2018). However, most KBs are far
from complete due to the emerging entities and rela-
tions in real-world applications. Therefore, Knowl-
edge Base Population (KBP) (Ji and Grishman,

∗ Corresponding author: C.Hua (huajunsir@zju.edu.cn)
1Github: https://github.com/zjunlp/DeepKE
2Docs: https://zjunlp.github.io/DeepKE/
3Project website: http://deepke.zjukg.cn/
4Video: http://deepke.zjukg.cn/demo.mp4

2011) has been proposed, which aims to extract
knowledge from the text corpus to complete the
missing elements in KBs. For this target, IE is an
effective technology that can extract entities and
relations from raw texts and link them to KBs (Yan
et al., 2021; Sui et al., 2021).

To date, a few remarkable open-source and
long-term maintained IE toolkits have been devel-
oped, such as Spacy (Vasiliev, 2020) for named
entity recognition (NER), OpenNRE (Han et al.,
2019) for relation extraction (RE), Stanford Ope-
nIE (Martínez-Rodríguez et al., 2018) for open
information extraction, RESIN for event extraction
(Wen et al., 2021) and so on (Jin et al., 2021). How-
ever, there are still several non-trivial issues that
hinder the applicability of real-world applications.

Firstly, there are various important IE tasks, but
most existing toolkits only support one task. Sec-
ondly, although IE models trained with those tools
can achieve promising results, their performance
may degrade dramatically when there are only a
few training instances or in other complex real-
world scenarios, such as encountering document-
level and multimodal instances. Therefore, it is
necessary to build a knowledge extraction toolkit
facilitating the knowledge base population that sup-
ports multiple tasks and complicated scenarios:
low-resource, document-level and multimodal.

In this paper, we share with the community a new
open-source knowledge extraction toolkit called
DeepKE (MIT License), which supports knowl-
edge extraction tasks (named entity recognition,
relation extraction and attribute extraction) in the
standard supervised setting and three complicated
scenarios: low-resource, document-level and mul-
timodal settings. To facilitate usage, we design a
unified framework for data processing, model train-
ing and evaluation. Developers and researchers can
quickly customize their datasets and models for

98

http://deepke.zjukg.cn/
https://github.com/zjunlp/DeepKE
https://zjunlp.github.io/DeepKE/
http://deepke.zjukg.cn/
http://deepke.zjukg.cn/demo.mp4

• Single Sentence

It was one o’clock when we left Lauriston Gardens,

Sherlock Holmes led me meet Gregson from Scotland Yard.

[PER]

[LOC]

[ORG][PER]

• Document

... Elias Brown (May 9, 1793 - July 7, 1857) was a

Representative from Maryland. Born near Baltimore,

Maryland, Brown attended the common schools ... He died

near Baltimore, Maryland, and is interred in a private cemetery

near Eldersburg, Maryland. ...

Intra-sentence (Maryland, country,)

(Baltimore, located in, Maryland)

(Eldersburg, located in, Maryland)

Inter-sentence (Baltimore, country,)

(Eldersburg, country,)

Piolo Pascual gives Arci Munoz a

kiss as they meet at SIFY

Rel:per/per/couple

• MultiModal

Low ResourceDiverse Data

Off-the-shelf Usage Flexible Training

Figure 1: The examples of tasks with different scenarios in DeepKE.

various tasks without knowing too many technical
details, writing tedious glue code, or conducting
hyper-parameter tuning. We will provide mainte-
nance to meet new requests, add new tasks, and fix
bugs in the future. We highlight our major contri-
butions as follows:

• We develop and release a knowledge base
population toolkit that supports low-resource,
document-level and multimodal information
extraction.

• We offer flexible usage of the toolkit with suf-
ficient modularity as well as automatic hyper-
parameter tuning; thus, developers and re-
searchers can implement customized models
for information extraction.

• We provide detailed documentation, Google
Colab tutorials, an online real-time extraction
system and long-term technical support.

2 Core Functions

DeepKE is designed for different knowledge extrac-
tion tasks, including named entity recognition, rela-
tion extraction and attribute extraction. As shown
in Figure 1, DeepKE supports diverse IE tasks in
standard single-sentence supervised, low-resource
few-shot, document-level and multimodal settings,
which makes it flexible to adapt to practical and
complicated application scenarios.

2.1 Named Entity Recognition

As an essential task of IE, named entity recognition
(NER) picks out the entity mentions and classifies
them into pre-defined semantic categories given
plain texts. For instance, given the sentence “It was
one o’clock when we left Lauriston Gardens, and
Sherlock Holmes led me meet Gregson from Scot-
land Yard.”, NER models will predict that “Lau-
riston Gardens” as a location, “Sherlock Holmes”
and “Gregson” as persons, and “Scotland Yard”
as an organization. To achieve supervised NER,
DeepKE adopts the pre-trained language model
(Devlin et al., 2019) to encode sentences and make
predictions. DeepKE also implements NER in the
few-shot setting (including in-domain and cross-
domain) (Chen et al., 2022a) and the multimodal
setting.

2.2 Relation Extraction

Relation Extraction (RE), a common task in IE
for knowledge base population, predicts semantic
relations between pairs of entities from unstruc-
tured texts (Wu et al., 2021). To allow users to
customize their models, we adopt various mod-
els to accomplish standard supervised RE, includ-
ing CNN (Zeng et al., 2015), RNN (Zhou et al.,
2016), Capsule (Zhang et al., 2018a), GCN (Zhang
et al., 2018c, 2019), Transformer (Vaswani et al.,
2017) and BERT (Devlin et al., 2019). Meanwhile,
DeepKE provides few-shot and document-level

99

support for RE. For low-resource RE, DeepKE re-
implements5 KnowPrompt (Chen et al., 2022b), a
recent well-performed few-shot RE method based
on prompt-tuning. Note that few-shot RE is sig-
nificant for real-world applications, which enables
users to extract relations with only a few labeled
instances. For document-level RE, DeepKE re-
implements DocuNet (Zhang et al., 2021) to ex-
tract inter-sentence relational triples within one
document. Document-level RE is a challenging
task that requires integrating information within
and across multiple sentences of a document (Nan
et al., 2020). RE is also implemented in the multi-
modal setting described in Section 4.4.

2.3 Attribute Extraction

Attribute extraction (AE) plays an indispensable
role in the knowledge base population. Given a
sentence, entities and queried attribute mentions,
AE will infer the corresponding attribute type. For
instance, given a sentence “诸葛亮，字孔明，
三国时期杰出的军事家、文学家、发明家。”
(Liang Zhuge, whose courtesy name was Kong-
ming, was an extraordinary strategist, litterateur
and inventor in the Three Kingdoms period.), an
entity “诸葛亮” (Liang Zhuge), and an attribute
mention “三国时期” (Three Kingdoms period),
DeepKE can predict the corresponding attribute
type “朝代” (Dynasty). DeepKE adopts various
models for AE (Table 1).

3 Toolkit Design and Implementation

We introduce the design principle of DeepKE as
follows: 1) Unified Framework: DeepKE utilizes
the same framework for various task objectives
with respect to Data, Model and Core components;
2) Flexible Usage: DeepKE offers convenient
training and evaluation with auto-hyperparameter
tuning and the docker for operational efficiency;
3) Off-the-shelf Models: DeepKE provides pre-
trained models (Chinese models with pre-defined
schemas) for information extraction. We will in-
troduce details of components in DeepKE and the
unified framework in the following sections.

3.1 Data Module

The data module is designed for preprocessing and
loading input data. The tokenizer in DeepKE imple-
ments tokenization for both English and Chinese

5The code is re-organized in a unified format for flexible
usage in DeepKE.

Figure 2: The architecture and example code.

(in Appendix A.3). Global images and local visual
objects are preprocessed as visual information in
the multimodal setting. Developers can feed their
own datasets into the tokenizer and preprocessor
through the dataloader to obtain the tokens or im-
age patches.

3.2 Model Module
The model module contains main neural networks
leveraged to achieve three core tasks. Various neu-
ral networks, including CNN, RNN, Transformer
and the like, can be utilized for model implementa-
tion, which encodes texts into specific embedding
for corresponding tasks. To adapt to different sce-
narios, DeepKE utilizes diverse architectures in
distinct settings, such as BERT for standard RE and
BART (Lewis et al., 2020) for few-shot NER. We
implement the BasicModel class with a unified
model loader and saver to integrate multi-
farious neural models.

3.3 Core Module
In the core code of DeepKE, train, validate,
and predict methods are pivotal components.
As for the train method, users can feed the ex-
pected parameters (e.g., the model, data, epoch,
optimizer, loss function, .etc.) into it without writ-
ing tedious glue code. The validate method is
for evaluation. Users can modify the sentences in
the configuration for prediction and then utilize the
predict method to obtain the result.

100

3.4 Framework Module

The framework module integrates three aforemen-
tioned components and different scenarios. It sup-
ports various functions, including data process-
ing, model construction and model implementa-
tion. Meanwhile, developers and researchers can
customize all hyper-parameters by modifying con-
figuration files formatted as “*.yaml”, from which
we apply Hydra6 to obtain users’ configuration. We
also offer an off-the-shelf automatic hyperparam-
eter tuning component. In DeepKE, we have im-
plemented frameworks for all application functions
mentioned in Section 2. For other future potential
application functions, we have reserved interfaces
for their implementation.

4 Toolkit Usage

4.1 Single-sentence Supervised Setting

All tasks, including NER, RE and AE, can be imple-
mented in the standard single-sentence supervised
setting by DeepKE. Every instance in datasets only
contains one sentence. The datasets of these tasks
are all annotated with specific information, such
as entity mentions, entity categories, entity offsets,
relation types and attributes.

4.2 Low-resource Setting

In real-world scenarios, labeled data may not be
sufficient for deep learning models to make predic-
tions for satisfying users’ specific demands. There-
fore, DeepKE provides low-resource few-shot sup-
port for NER and RE, which is exceedingly dis-
tinctive. DeepKE offers a generative framework
with prompt-guided attention to achieve in-domain
and cross-domain NER. Meanwhile, DeepKE im-
plements knowledge-informed prompt-tuning with
synergistic optimization for few-shot relation ex-
traction.

4.3 Document-Level Setting

Relations between two entities not only emerge
in one sentence but appear in different sentences
within the whole document. Compared to other
IE toolkits, DeepKE can extract inter-sentence re-
lations from documents, which predicts an entity-
level relation matrix to capture local and global
information.

6https://hydra.cc/

Figure 3: An example of the online system.

4.4 Multimodal Setting

Multimodal knowledge extraction is supported in
DeepKE. Intuitively, rich image signals related to
texts are able to enhance context knowledge and
help extract knowledge from complicated scenar-
ios. DeepKE provides a Transformer-based multi-
modal entity and relation extraction method named
IFAformer with prefix-based attention for multi-
modal NER and RE. Specifically, IFAformer si-
multaneously concatenates the textual and visual
features in keys and values of the multi-head atten-
tion at each transformer layer, which can implicitly
align multimodal features between texts and ob-
jects in text-related images7.

4.5 Online System & cnSchema-based
Off-the-shelf Models

Besides this toolkit, we release an online system
in http://deepke.zjukg.cn. As shown in
Figure 3, we train our models in different scenarios
with multilingual support (English and Chinese)
and deploy them for online access. The system
can be directly applied to recognize named enti-
ties, extract relations, classify attributes from plain
texts, and visualizes extracted relational triples as
knowledge graphs. The models are trained with
the pre-defined schema (The system cannot ex-
tract knowledge out of the schema scope.) and
offer flexible usage for users to obtain their cus-
tomized models with their own schemas. Further-
more, DeepKE provides off-the-shelf extraction
models with Chinese pre-trained language models
(Cui et al., 2021b) based cnSchema8 supporting 28
entity types and 50 relation categories.

7Implementation details in https://github.
com/zjunlp/DeepKE/tree/main/example/ner/
multimodal.

8http://cnschema.openkg.cn/

101

https://hydra.cc/
http://deepke.zjukg.cn
https://github.com/zjunlp/DeepKE/tree/main/example/ner/multimodal
https://github.com/zjunlp/DeepKE/tree/main/example/ner/multimodal
https://github.com/zjunlp/DeepKE/tree/main/example/ner/multimodal
http://cnschema.openkg.cn/

Scenario Task Dataset Method F1

Single-sentence

NER
CoNLL-2003

BERT
94.73

People’s Daily 95.62

RE DuIE

CNN 96.74
RNN 94.43
Capsule 96.23
GCN 96.74
Transformer 96.54
BERT 95.79

AE Online

CNN 94.16
RNN 93.06
Capsule 94.57
GCN 94.50
Transformer 94.15
BERT 99.03

Document RE DocRED

BERT_base* 53.20
CorefBERT∗

base 56.96
ATLOP-BERT∗

base 61.30
DeepKE (BERTbase) 61.86

RoBERTa_large* 59.62
CorefRoBERTa∗large 60.25
ATLOP-RoBERTa∗large 63.40
DeepKE (RoBERTalarge) 64.55

Multimodal

NER Twitter17

AdapCoAtt-BERT-CRF∗ 84.10
ViLBERT∗

base 85.04
UMT* 85.31
DeepKE (IFAformer) 87.39

RE MNRE

BERT+SG* 62.80
BERT+SG+Att∗ 63.64
MEGA* 66.41
DeepKE (IFAformer) 81.67

Table 1: F1 Score (%) of the single-sentence,
document-level and multimodal scenarios. * means
these baselines are from other papers.

5 Experiment and Evaluation

5.1 Single-sentence Supervised Setting
The performance of the standard single-sentence
supervised setting is reported in Table 1.

Named Entity Recognition We conduct NER
experiments on two datasets: CoNLL-2003 (Sang
and Meulder, 2003) for English and People’s
Daily9 for Chinese. The English part of CoNLL-
2003 contains four types of entities: persons (PER),
locations (LOC), organizations (ORG) and miscel-
laneous (MISC). People’s Daily dataset is a Chi-
nese dataset containing 45,518 entities classified
into three categories PER, LOC and ORG. It is
observed that DeepKE yields comparable perfor-
mance with various encoders for these datasets.
Meanwhile, DeepKE supports any English and Chi-
nese NER datasets with BIO tags.

Relation Extraction We conduct RE experi-
ments on the Chinese DuIE dataset10 with 10 rela-
tion categorie Each sample contains one original

9https://github.com/OYE93/
Chinese-NLP-Corpus/tree/master/NER/
People’s%20Daily

10http://ai.baidu.com/broad/download

Model
Entity Category

PER ORG LOC* MISC* Overall

LC-BERT 76.25 75.32 61.55 59.35 68.12
LC-BART 75.70 73.59 58.70 57.30 66.82
Template. 84.49 72.61 71.98 73.37 75.59
DeepKE (LightNER) 90.96 76.88 81.57 82.08 78.97

Table 2: F1 scores of in-domain low-resource NER on
CoNLL-2003. * indicates low-resource entity types
(100-shot).

Model
Dataset

MIT Movie MIT Restaurant ATIS

Neigh.Tag. 1.4 3.6 3.4
Example. 29.6 26.1 16.5
MP-NSP 36.8 48.2 74.8
LC-BERT 45.2 40.9 78.5
LC-BART 30.4 11.1 74.4
Template. 54.2 60.3 88.9
DeepKE (LightNER) 75.6 67.4 89.4

Table 3: F1 scores of cross-domain few-shot NER (20-
shot).

sentence, one head entity, one tail entity in the sen-
tence, their offsets, and the relation between them.
We utilize six different neural networks in DeepKE
for evaluation. Users can select models before train-
ing by changing only one hyper-parameter11. We
report the performance of all models in Table 1.

Attribute Extraction The Chinese dataset for
AE is from an online resource12. In each sample,
one entity is annotated with its attribute type, value,
and offset. Attributes in the dataset are classified
into 6 categories. The training set contains 13,815
samples. The validation set contains 3,131 samples,
and the test set includes 5,921 samples. Like RE,
we leverage six neural models to extract attributes
from the given sentence to evaluate DeepKE.

5.2 Low-resource Setting
We report the performance of the low-resource set-
ting (NER and RE) in Table 2, 3, and 4.

Named Entity Recognition We conduct exper-
iments in both in-domain and cross-domain few-
shot settings with LightNER (Chen et al., 2022a).
Following Cui et al. (2021a), for the in-domain
few-shot scenario, we reduce the number of train-
ing samples for certain entity categories by down-
sampling one dataset. Specifically, from CoNLL-

11The hyper-parameter -model to select networks is in
https://github.com/zjunlp/DeepKE/blob/
main/example/re/standard/conf/config.
yaml.

12https://github.com/leefsir/triplet_
extraction

102

https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily
https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily
https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/People's%20Daily
http://ai.baidu.com/broad/download
https://github.com/zjunlp/DeepKE/blob/main/example/re/standard/conf/config.yaml
https://github.com/zjunlp/DeepKE/blob/main/example/re/standard/conf/config.yaml
https://github.com/zjunlp/DeepKE/blob/main/example/re/standard/conf/config.yaml
https://github.com/leefsir/triplet_extraction
https://github.com/leefsir/triplet_extraction

Method
Split

K=8 K=16 K=32

Fine-Tuning 41.3 65.2 80.1
GDPNet 42.0 67.5 81.2
PTR 70.5 81.3 84.2
DeepKE (KnowPrompt) 74.3 82.9 84.8

Table 4: F1 scores of few-shot relation extraction

2003, we choose 100 “LOC” and 100 “MISC” as
the low-resource entities and 2,496 “PER” and
3,763 “ORG” as the rich-resource entities. We
leverage DeepKE to carry out the few-shot ex-
periments and adopt BERT and BART with label-
specific classifier layers as strong baselines denoted
as LC-BERT and LC-BART. We also use template-
based BART (Template.) (Cui et al., 2021a) as
the competitive few-shot baseline. From Table
2, DeepKE outperforms other methods for both
rich- and low-resource entity types, which illus-
trates that DeepKE has an outstanding performance
on in-domain few-shot NER. In the cross-domain
setting where the target entity categories and tex-
tual style are different from the source domain
with limited labeled data available for training, we
adopt the CoNLL-2003 dataset as an ordinary do-
main, and MIT Movie Review (Liu et al., 2013),
MIT Restaurant Review (Liu et al., 2013) and Air-
line Travel Information Systems (ATIS) (Hakkani-
Tür et al., 2016) datasets as target domains. The
few-shot NER model in DeepKE is trained on
CoNLL-2003 and fine-tuned on 20-shot target do-
main datasets (randomly sampled per entity cat-
egory). We employ prototype-based Neigh.Tag.
(Wiseman and Stratos, 2019), Example. (example-
based NER) (Ziyadi et al., 2020), MP-NSP (Multi-
prototype+NSP) (Huang et al., 2020), LC-BERT,
LC-BART and Template. as competitive baselines.
From Table 3, we notice that DeepKE achieves the
most excellent few-shot performance.

Relation Extraction For few-shot relation ex-
traction, we use SemEval 2010 Task-8 (Hendrickx
et al., 2010), a conventional dataset of relation clas-
sification with nine bidirectional relations and one
unidirectional relation OTHER. We utilize a SOTA
few-shot RE method, KnowPrompt (Chen et al.,
2022b) which incorporates knowledge into prompt-
tuning with synergistic optimization, to conduct 8-,
16-, and 32-shot experiments compared with other
baselines, such as GDPNet (Xue et al., 2021) and
PTR (Han et al., 2021). Table 4 shows that DeepKE
outperforms those baseline methods.

5.3 Document-level Setting
DeepKE can extract intra- and inter- sentence re-
lations among multiple entities within one docu-
ment. We leverage a large-scale document-level
RE dataset, DocRED (Ye et al., 2020), containing
3,053/1,000/1,000 instances for training, validation
and testing, respectively. We use cased BERT-base
and RoBERTa-large (Liu et al., 2019) as encoders.
Compared with BERT-based and RoBERTa-based
models, including Coref (Ye et al., 2020), and AT-
LOP (Zhou et al., 2021), DeepKE appears the bet-
ter or comparable performance than baselines as
shown in Table 1.

5.4 Multimudal Setting
We report the performance of NER and RE in the
multimodal scenario in Table 1.

Named Entity Recognition Multimodal NER
experiments are conducted on Twitter-2017 (Lu
et al., 2018) including texts and images from Twit-
ter (2016-2017). The baselines for comparison are
AdapCoAtt-BERT-CRF (Zhang et al., 2018b), ViL-
BERT (Lu et al., 2019) and UMT (Yu et al., 2020).
We notice DeepKE can obtain a performance im-
provement compared with baselines.

Relation Extraction We use MNRE (Zheng
et al., 2021b), a multimodal RE dataset contain-
ing sentences and images containing 23 relation
categories. Previous SOTA models including
BERT+SG (Zheng et al., 2021a), BERT+SG+Att
(BERT+SG with attention calculating semantic
similarity between textual and visual graphs) and
MEGA (Zheng et al., 2021a), are leveraged for com-
parison. We further observe that DeepKE yields
better performance than baselines.

6 Conclusion

In practical application, the knowledge base popu-
lation struggles with low-resource, document-level
and multimodal scenarios. To this end, we propose
DeepKE, an open-source and extensible knowledge
extraction toolkit. We conduct extensive experi-
ments that demonstrate the models implemented
by DeepKE can achieve comparable performance
compared to some state-of-the-art methods. Be-
sides, we provide an online system supporting real-
time extraction (with the pre-defined schemas)
without training. We will offer long-term main-
tenance to fix bugs, solve issues, add documents
(tutorials) and meet new requests.

103

Broader Impact Statement

As noted in Manning (2022), linguistics and
knowledge-based artificial intelligence were
rapidly developing, and knowledge (explicit or
implicit) as potential dark matter13 for language
understanding still faces obstacles to acquisition
and representation. To this end, IE technologies
that aim to extract knowledge from unstructured
data can serve as valuable tools to not only govern
domain resources (e.g., medical, business) but also
benefit deep language understanding and reasoning
ability. Note that the proposed toolkit, DeepKE,
can offer flexible usage in widespread IE scenarios
with pre-trained off-the-shelf models. We hope to
deliver the benefits of the proposed DeepKE to the
natural language processing community.

Acknowledgments

We want to express gratitude to the anonymous
reviewers for their kind comments. This work
was supported by National Natural Science Foun-
dation of China (No.62206246, 91846204 and
U19B2027), Zhejiang Provincial Natural Science
Foundation of China (No. LGG22F030011),
Ningbo Natural Science Foundation (2021J190),
and Yongjiang Talent Introduction Programme
(2021A-156-G).

References
Wanxiang Che, Yunlong Feng, Libo Qin, and Ting

Liu. 2021. N-LTP: An open-source neural language
technology platform for Chinese. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 42–49, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Chen, Lei Li, Shumin Deng, Chuanqi Tan,
Changliang Xu, Fei Huang, Luo Si, Huajun
Chen, and Ningyu Zhang. 2022a. LightNER: A
lightweight tuning paradigm for low-resource NER
via pluggable prompting. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 2374–2387, Gyeongju, Republic of Ko-
rea. International Committee on Computational Lin-
guistics.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022b. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization

132082: An ACL Odyssey: The Dark Matter of Language
and Intelligence

for relation extraction. In WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April
25 - 29, 2022, pages 2778–2788. ACM.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue
Zhang. 2021a. Template-based named entity recog-
nition using BART. In Proceedings of ACL/IJCNLP,
volume ACL/IJCNLP 2021 of Findings of ACL.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, and
Ziqing Yang. 2021b. Pre-training with whole word
masking for chinese BERT. IEEE ACM Trans. Au-
dio Speech Lang. Process., 29:3504–3514.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186. Association for Computational Linguis-
tics.

Dilek Hakkani-Tür, Gökhan Tür, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional RNN-LSTM. In Pro-
ceedings of INTERSPEECH, pages 715–719. ISCA.

Xu Han, Tianyu Gao, Yuan Yao, Deming Ye, Zhiyuan
Liu, and Maosong Sun. 2019. Opennre: An open
and extensible toolkit for neural relation extraction.
In Proceedings of EMNLP-IJCNLP.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2021. PTR: prompt tuning with rules
for text classification. arXiv:2105.11259.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of Se-
mEval@ACL Workshop.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2020. Few-
shot named entity recognition: A comprehensive
study. arXiv:2012.14978.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges.
In The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, Proceedings of the Conference, 19-24 June,
2011, Portland, Oregon, USA, pages 1148–1158.
The Association for Computer Linguistics.

Zhuoran Jin, Yubo Chen, Dianbo Sui, Chenhao Wang,
Zhipeng Xue, and Jun Zhao. 2021. CogIE: An in-
formation extraction toolkit for bridging texts and
CogNet. In Proceedings of ACL-IJCNLP, pages 92–
98.

104

https://doi.org/10.18653/v1/2021.emnlp-demo.6
https://doi.org/10.18653/v1/2021.emnlp-demo.6
https://aclanthology.org/2022.coling-1.209
https://aclanthology.org/2022.coling-1.209
https://aclanthology.org/2022.coling-1.209
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.1109/TASLP.2021.3124365
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.21437/Interspeech.2016-402
https://doi.org/10.21437/Interspeech.2016-402
https://doi.org/10.18653/v1/D19-3029
https://doi.org/10.18653/v1/D19-3029
http://arxiv.org/abs/2105.11259
http://arxiv.org/abs/2105.11259
https://aclanthology.org/S10-1006/
https://aclanthology.org/S10-1006/
https://aclanthology.org/S10-1006/
http://arxiv.org/abs/2012.14978
http://arxiv.org/abs/2012.14978
http://arxiv.org/abs/2012.14978
https://aclanthology.org/P11-1115/
https://aclanthology.org/P11-1115/
https://doi.org/10.18653/v1/2021.acl-demo.11
https://doi.org/10.18653/v1/2021.acl-demo.11
https://doi.org/10.18653/v1/2021.acl-demo.11

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of ACL, pages
7871–7880. Association for Computational Linguis-
tics.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi-
ang Ren. 2019. Kagnet: Knowledge-aware graph
networks for commonsense reasoning. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 2829–2839. Association
for Computational Linguistics.

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and
James R. Glass. 2013. Asgard: A portable architec-
ture for multilingual dialogue systems. In Proceed-
ings of ICASSP, pages 8386–8390. IEEE.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv:1907.11692.

Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang,
and Heng Ji. 2018. Visual attention model for name
tagging in multimodal social media. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1990–1999, Melbourne, Australia. As-
sociation for Computational Linguistics.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan
Lee. 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language
tasks. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.

Christopher D Manning. 2022. Human language under-
standing & reasoning. Daedalus, 151(2):127–138.

José-Lázaro Martínez-Rodríguez, Ivan López-Arévalo,
and Ana B. Ríos-Alvarado. 2018. Openie-based ap-
proach for knowledge graph construction from text.
Expert Syst. Appl., 113:339–355.

Guoshun Nan, Zhijiang Guo, Ivan Sekulic, and Wei Lu.
2020. Reasoning with latent structure refinement for
document-level relation extraction. In Proceedings
of ACL, pages 1546–1557. Association for Compu-
tational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of HLT-NAACL, pages 142–147. ACL.

Dianbo Sui, Chenhao Wang, Yubo Chen, Kang Liu, Jun
Zhao, and Wei Bi. 2021. Set generation networks for

end-to-end knowledge base population. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 9650–9660. Association for
Computational Linguistics.

Yuli Vasiliev. 2020. Natural Language Processing with
Python and SpaCy: A Practical Introduction. No
Starch Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi
Guo. 2018. DKN: deep knowledge-aware network
for news recommendation. In Proceedings of WWW,
pages 1835–1844. ACM.

Haoyang Wen, Ying Lin, Tuan Lai, Xiaoman Pan, Sha
Li, Xudong Lin, Ben Zhou, Manling Li, Haoyu
Wang, Hongming Zhang, Xiaodong Yu, Alexander
Dong, Zhenhailong Wang, Yi Fung, Piyush Mishra,
Qing Lyu, Dídac Surís, Brian Chen, Susan Windisch
Brown, Martha Palmer, Chris Callison-Burch, Carl
Vondrick, Jiawei Han, Dan Roth, Shih-Fu Chang,
and Heng Ji. 2021. RESIN: A dockerized schema-
guided cross-document cross-lingual cross-media in-
formation extraction and event tracking system. In
In Proceedings of NAACL-HLT.

Sam Wiseman and Karl Stratos. 2019. Label-agnostic
sequence labeling by copying nearest neighbors. In
Proceedings of ACL, pages 5363–5369. Association
for Computational Linguistics.

Tongtong Wu, Xuekai Li, Yuan-Fang Li, Gholamreza
Haffari, Guilin Qi, Yujin Zhu, and Guoqiang Xu.
2021. Curriculum-meta learning for order-robust
continual relation extraction. In Proceedings of
AAAI.

Fuzhao Xue, Aixin Sun, Hao Zhang, and Eng Siong
Chng. 2021. Gdpnet: Refining latent multi-view
graph for relation extraction. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 14194–14202. AAAI Press.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Pa-
pers), Virtual Event, August 1-6, 2021, pages 5808–
5822. Association for Computational Linguistics.

105

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.1109/ICASSP.2013.6639301
https://doi.org/10.1109/ICASSP.2013.6639301
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P18-1185
https://doi.org/10.18653/v1/P18-1185
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.1016/j.eswa.2018.07.017
https://doi.org/10.1016/j.eswa.2018.07.017
https://doi.org/10.18653/v1/2020.acl-main.141
https://doi.org/10.18653/v1/2020.acl-main.141
https://aclanthology.org/W03-0419/
https://aclanthology.org/W03-0419/
https://doi.org/10.18653/v1/2021.emnlp-main.760
https://doi.org/10.18653/v1/2021.emnlp-main.760
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3178876.3186175
https://doi.org/10.1145/3178876.3186175
https://doi.org/10.18653/v1/2021.naacl-demos.16
https://doi.org/10.18653/v1/2021.naacl-demos.16
https://doi.org/10.18653/v1/2021.naacl-demos.16
https://doi.org/10.18653/v1/p19-1533
https://doi.org/10.18653/v1/p19-1533
https://ojs.aaai.org/index.php/AAAI/article/view/17241
https://ojs.aaai.org/index.php/AAAI/article/view/17241
https://ojs.aaai.org/index.php/AAAI/article/view/17670
https://ojs.aaai.org/index.php/AAAI/article/view/17670
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451

Deming Ye, Yankai Lin, Jiaju Du, Zhenghao Liu, Peng
Li, Maosong Sun, and Zhiyuan Liu. 2020. Coref-
erential reasoning learning for language representa-
tion. In Proceedings of EMNLP, pages 7170–7186.
Association for Computational Linguistics.

Jianfei Yu, Jing Jiang, Li Yang, and Rui Xia. 2020.
Improving multimodal named entity recognition via
entity span detection with unified multimodal trans-
former. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3342–3352, Online. Association for Computa-
tional Linguistics.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Pro-
ceedings of EMNLP, pages 1753–1762. The Asso-
ciation for Computational Linguistics.

Ningyu Zhang, Xiang Chen, Xin Xie, Shumin Deng,
Chuanqi Tan, Mosha Chen, Fei Huang, Luo Si, and
Huajun Chen. 2021. Document-level relation extrac-
tion as semantic segmentation. In Proceedings of
IJCAI, pages 3999–4006. ijcai.org.

Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guany-
ing Wang, Xi Chen, Wei Zhang, and Huajun Chen.
2019. Long-tail relation extraction via knowledge
graph embeddings and graph convolution networks.
In Proceedings of NAACL-HLT, pages 3016–3025.
Association for Computational Linguistics.

Ningyu Zhang, Shumin Deng, Zhanling Sun, Xi Chen,
Wei Zhang, and Huajun Chen. 2018a. Attention-
based capsule network with dynamic routing for re-
lation extraction. In In Proceedings of EMNLP.

Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang.
2018b. Adaptive co-attention network for named en-
tity recognition in tweets. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1).

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018c. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings
of EMNLP, pages 2205–2215. Association for Com-
putational Linguistics.

Changmeng Zheng, Junhao Feng, Ze Fu, Yi Cai, Qing
Li, and Tao Wang. 2021a. Multimodal Relation
Extraction with Efficient Graph Alignment, page
5298–5306. Association for Computing Machinery,
New York, NY, USA.

Changmeng Zheng, Zhiwei Wu, Junhao Feng, Ze Fu,
and Yi Cai. 2021b. Mnre: A challenge multimodal
dataset for neural relation extraction with visual evi-
dence in social media posts. In 2021 IEEE Interna-
tional Conference on Multimedia and Expo (ICME),
pages 1–6.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of ACL, pages

Word Named Entity Tag

U.N. B-ORG
official O
Ekeus B-PER
heads O

for O
Baghdad B-LOC

. O

Israel B-LOC
approves O

Arafat B-PER
s O

flight O
to O

West B-LOC
Bank I-LOC

. O

Table 5: Examples of the input format for NER.

207–212, Berlin, Germany. Association for Compu-
tational Linguistics.

Wenxuan Zhou, Kevin Huang, Tengyu Ma, and Jing
Huang. 2021. Document-level relation extraction
with adaptive thresholding and localized context
pooling. In In proceedings of AAAI, pages 14612–
14620. AAAI Press.

Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade
Huang, and Weizhu Chen. 2020. Example-based
named entity recognition. arXiv:2008.10570.

A Toolkit Usage Details

In this section, we introduce how to use DeepKE
exhaustively.

A.1 Build a Model From Scratch

Prepare the Runtime Environment Users can
clone the source code from the DeepKE GitHub
repository and create a runtime environment. There
are two convenient methods to create the envi-
ronment. Users can choose to either leverage
Anaconda or run the docker file provided in the
repository. Besides, all dependencies can be
installed by running pip install deepke
directly. If developers would like to modify
the source code of DeepKE, the following com-
mands should be executed: running python
setup.py install, modifying code and then
running python setup.py develop. Users
can also use corresponding datasets (e.g., default
or customized datasets) to obtain specific informa-
tion extraction models. All datasets need to be
downloaded or uploaded in the folder named data.

106

https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.emnlp-main.582
https://doi.org/10.18653/v1/2020.acl-main.306
https://doi.org/10.18653/v1/2020.acl-main.306
https://doi.org/10.18653/v1/2020.acl-main.306
https://doi.org/10.18653/v1/d15-1203
https://doi.org/10.18653/v1/d15-1203
https://doi.org/10.24963/ijcai.2021/551
https://doi.org/10.24963/ijcai.2021/551
https://doi.org/10.18653/v1/n19-1306
https://doi.org/10.18653/v1/n19-1306
https://doi.org/10.18653/v1/d18-1120
https://doi.org/10.18653/v1/d18-1120
https://doi.org/10.18653/v1/d18-1120
https://doi.org/10.1609/aaai.v32i1.11962
https://doi.org/10.1609/aaai.v32i1.11962
https://doi.org/10.18653/v1/d18-1244
https://doi.org/10.18653/v1/d18-1244
https://doi.org/10.1145/3474085.3476968
https://doi.org/10.1145/3474085.3476968
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.1109/ICME51207.2021.9428274
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://ojs.aaai.org/index.php/AAAI/article/view/17717
https://ojs.aaai.org/index.php/AAAI/article/view/17717
https://ojs.aaai.org/index.php/AAAI/article/view/17717
http://arxiv.org/abs/2008.10570
http://arxiv.org/abs/2008.10570

Named Entity Recognition As shown in Table
5, the input data files with BIO tags for standard
and few-shot NER contain two columns separated
by a single space. Each word has been put on
a separate line, and there is an empty line after
each sentence. The two columns represent two
items: the word and the named entity tag. Before
training, all datasets with the formats mentioned
above should be fed into NER models through the
data loader. Developers can implement training
and evaluation by running example code run.py to
obtain a fine-tuned NER model, which will be used
in the prediction period. For inference, users can
run predict.py with a single sentence and obtain the
output recognized entity mentions and types.

Relation Extraction The training input with the
CSV format of standard RE is shown in Table 6.
There are five components in the format, includ-
ing a sentence, a relation, the head and tail entity
of the relation, the head entity offset and the tail
entity offset. For few-shot RE, one input sample,
as shown in Figure 4, contains sentence tokens
including words and punctuation, the head entity
and tail entities with their mention names and po-
sition spans, and the relation between them. For
example, an input of few-shot relation extraction
instance is the format of {"token": ["the", "dol-
phin", "uses", "its", "flukes", "for", "swimming",
"and", "its", "flippers", "for", "steering", "."], "h":
{"name": "dolphin", "pos": [1, 2]}, "t": {"name":
"flukes", "pos": [4, 5]}, "relation": "Component-
Whole(e2,e1)"} (h: head entity, t: tail entity, pos:
position). The document-level RE training format
is shown in Figure 5. One sample consists of a
sample title, sentences separated into words and
punctuation in one document, an entity set (includ-
ing entity mentions, sentence IDs the entities are
located in, entity position spans and entity types in
the document) and a relation label set (including the
head and tail entity IDs, relations and evidence sen-
tence IDs). After training and validation, users can
run the predict function given an input sentence
with head and tail entity to obtain corresponding
relations.

Attribution Extraction The input CSV files for-
matted as Table 7 should be given to train the at-
tribution extraction (AE) model. One sample con-
tains six components: a raw sentence, a queried
attribute type, an entity and its offset, the entity’s
corresponding attribute value and the attribute men-

Sentence Relation Head HO Tail TO

When it comes to
beautiful sceneries
in Hangzhou, West
Lake first emerges
in mind.

city:
located in

West
Lake

50 Hangzhou 40

Harry Potter, a wiz-
ard, graduated from
Hogwarts School of
Witchcraft and Wiz-
ardry.

school:
graduated
from

Harry
Potter

0 Hogwarts
School of
Witchcraft
and Wiz-
ardry

39

Table 6: Examples of the input format for standard RE.
HO: Head Offset, TO: Tail Offset.

Figure 4: The input format of few-shot RE.

tion offset. After training, users will obtain a fine-
tuned AE model, which can be leveraged to infer
attributes. Given a sentence with an entity and a
candidate attribute mention, the AE model will pre-
dict the attribute type with confidence. Note that
all operations mentioned above are guided in the
example code file run.py and predict.py.

A.2 Auto-Hyperparameter Tuning

To achieve automatic hyper-parameters fine-tuning,
DeepKE adopts Weight & Biases, a machine learn-
ing toolkit for developers to reduce label-intensive
hyper-parameter tuning. With DeepKE, users
can visualize results and tune hyper-parameters
automatically. Note that all metrics and hyper-
parameter configurations can be customized to
meet diverse settings for different tasks. For
more details on automatic hyper-parameter tuning.

Sentence Attribute Entity EO AV AVO

1903年，亨利·福特
创建福特汽车公司

创始人 福特 9 亨利·福特 6

吴会期，字行可，号
子官，明朝工部郎中

朝代 吴会期 0 明朝 12

Table 7: Examples of the input format AE.
EO: Entity Offset, AV: Attribute Value, AVO: Attribute
Value Offset.

107

Figure 5: The input format of document-level RE.

Task Scenario Language

NER

Supervised Chinese
Few-shot English, Chinese
Multimodal English

RE

Supervised Chinese
Few-shot English
Multimodal English
Document English

AE Supervised Chinese

Table 8: Language supported in DeepKE.

please refer to the official document14.

A.3 Language Support

The current version of DeepKE supports English
and Chinese implementation for three IE tasks, as
shown in Table 8.

A.4 Notebook Tutorials

We provide Google Colab tutorials15 and jupyter
notebooks in the GitHub repository as an exem-
plary implementation of every task in different sce-
narios. These tutorials can be run directly, thus,
leading developers and researchers to have a whole
picture of DeepKE’s powerful functions.

14https://docs.wandb.ai
15https://colab.research.google.com/

drive/1vS8YJhJltzw3hpJczPt24O0Azcs3ZpRi?
usp=sharing

B Contributions

Ningyu Zhang from Zhejiang University, AZFT
Joint Lab for Knowledge Engine, conducted the
whole development of DeepKE and wrote the pa-
per.

Xin Xu from Zhejiang University, AZFT Joint
Lab for Knowledge Engine developed the standard
NER and wrote the paper.

Liankuan Tao, Shuofei Qiao, Peng Wang,
Haiyang Yu from Zhejiang University, AZFT Joint
Lab for Knowledge Engine develop the standard
RE and AE, the deepke python package, and docu-
ments and provides consistent maintenance.

Hongbin Ye from Zhejiang University, AZFT
Joint Lab for Knowledge Engine developed the
online system and constructed the online demo.

Xin Xie, Xiang Chen from Zhejiang Univer-
sity, AZFT Joint Lab for Knowledge Engine devel-
oped the few-shot relation extraction model Know-
Prompt and the document-level relation extraction
model DocuNet.

Zhoubo Li, Lei Li, Xiaozhuan Liang, Yunzhi
Yao, Shumin Deng, Wen Zhang from Zhejiang
University, AZFT Joint Lab for Knowledge En-
gine developed the Google Colab and proofread
the paper.

Zhenru Zhang, Chuanqi Tan, Qiang Chen,
Feiyu Xiong, Fei Huang from Alibaba Group,
proofread the paper and advised the project.

Guozhou Zheng, Huajun Chen from Zhejiang
University, AZFT Joint Lab for Knowledge Engine
advised the project, suggested tasks, and led the
research.

108

https://docs.wandb.ai
https://colab.research.google.com/drive/1vS8YJhJltzw3hpJczPt24O0Azcs3ZpRi?usp=sharing
https://colab.research.google.com/drive/1vS8YJhJltzw3hpJczPt24O0Azcs3ZpRi?usp=sharing
https://colab.research.google.com/drive/1vS8YJhJltzw3hpJczPt24O0Azcs3ZpRi?usp=sharing

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 109 - 120
December 7-11, 2022 c©2022 Association for Computational Linguistics

AnEMIC: A Framework for Benchmarking ICD Coding Models
Juyong Kim∗1, Abheesht Sharma∗2, Suhas Shanbhogue∗2, Pradeep Ravikumar1, and Jeremy C. Weiss3

1Machine Learning Department, Carnegie Mellon University
2Birla Institute of Technology & Science, Pilani – Goa Campus

3National Library of Medicine, National Institutes of Health
{juyongk,pradeepr}@cs.cmu.edu

{f20171014,f20170769}@goa.bits-pilani.ac.in
jeremy.weiss@nih.gov

Abstract

Diagnostic coding, or ICD coding, is the task of
assigning diagnosis codes defined by the ICD
(International Classification of Diseases) stan-
dard to patient visits based on clinical notes.
The current process of manual ICD coding is
time-consuming and often error-prone, which
suggests the need for automatic ICD coding.
However, despite the long history of auto-
matic ICD coding, there have been no stan-
dardized frameworks for benchmarking ICD
coding models.

We open-source an easy-to-use tool named
AnEMIC, which provides a streamlined
pipeline for preprocessing, training, and eval-
uating for automatic ICD coding. We correct
errors in preprocessing by existing works, and
provide key models and weights trained on the
correctly preprocessed datasets. We also pro-
vide an interactive demo performing real-time
inference from custom inputs, and visualiza-
tions drawn from explainable AI to analyze the
models. We hope the framework helps move
the research of ICD coding forward and helps
professionals explore the potential of ICD cod-
ing. The framework and the associated code
are available here.

1 Introduction

Diagnostic coding is the task of assigning alphanu-
meric codes to diagnoses and procedures after a
patient visits a healthcare provider. These codes
are typically specified by a medical classification
standard called the International Classification of
Diseases (ICD). Diagnostic coding, or ICD coding,
is an integral component of medical billing, and
integral to claims paid by health insurance carriers.
The diagnostic coding process alone accounts for
approximately 21% of medical administrative costs
in the US (Tseng et al., 2018). During this process,
a professional coder reviews the patient’s medical
records, including clinical narratives, and manually

∗ Equal contribution.

selects ICD codes. Since the task requires in-depth
clinical knowledge and understanding of medical
records, and importantly, due to the fact that there
are a large number of ICD codes, the task is labor-
intensive and error-prone (Manchikanti, 2002).

These difficulties motivate the need for auto-
matic ICD coding systems which perform diag-
nosis classification given a patient’s health record
(Kaur et al., 2021; Yan et al., 2022). This has been
the subject of considerable research, with some of
the early work dating back to the 1990s (Larkey
and Croft, 1996), to more recent deep neural NLP
approaches. There are a few outstanding and major
challenges in the diagnostic coding task. Firstly,
the label space, the set of all ICD codes, is large,
and the label distribution is highly imbalanced. Sec-
ondly, the input text, i.e., the discharge summaries,
is noisy and can contain abstruse medical terms,
lesser-known abbreviations, misspelt words, etc.
Also, they are much longer than what most state-
of-the-art models take as input.

Along with those challenges, the absence of a
benchmark has impeded the progress of research.
Due to privacy restrictions that limit access to even
publicly available clinical databases, researchers
have to create datasets manually from these, and
this results in discrepancies in the actual datasets
used in individual papers. For instance, the label
set of MIMIC-III top-50 dataset varies among the
literature, and some of them are even used incor-
rectly. Inconsistency in processing the dataset and
the inevitable errors introduced as a result of this
makes it hard to compare different methods.

In this paper, we introduce a framework for
benchmarking automatic ICD coding with the
MIMIC clinical database. We name our frame-
work AnEMIC, for An Error-reduced MIMIC ICD
Coding benchmark. To the best of our knowledge,
AnEMIC is the first attempt to collate and bench-
mark different deep learning approaches for au-
tomatic ICD coding with a configurable pipeline.

109

https://github.com/dalgu90/icd-coding-benchmark

Our contributions can be summarized as follows:

• We provide a pipeline covering the entire
process of automatic ICD coding, including
preprocessing, training, and evaluation. The
whole process is easily configurable with the
use of YAML files. We additionally provide
key deep learning-based ICD coding models.

• We correct errors in the most widely used
datasets and provide benchmark results of the
key models on the new datasets.

• We open-source an easy-to-use interactive
demo that enables researchers to test their
models on custom inputs and visualize input
attribution scores for explainability.

The remainder of the paper is organized as fol-
lows. In Section 2, we discuss popular automatic
ICD coding approaches and datasets. Section 3
details our approaches for preprocessing, training,
evaluation, and our demo application. In Section 4,
we perform a quantitative and qualitative analysis
of AnEMIC. Finally, we conclude with discussion
and future work in Section 5.

2 Related Work

2.1 ICD Coding
Over the history of automatic diagnosis coding,
approaches have ranged from classical methods
such as rule-based approaches (Farkas and Szarvas,
2008), traditional ML models such as SVMs (Per-
otte et al., 2014), to more recent Deep Learning-
based methods. A neural network-based approach
was first attempted by Prakash et al. (2017). A
prominent deep learning approach is CAML (Mul-
lenbach et al., 2018), which uses a CNN encoder
with a unique per-label attention mechanism. Since
CAML, there have been many other CNN and
RNN-based approaches (Yu et al., 2019; Vu et al.,
2020). A few notable CNN based approaches in-
clude using dilated convolutional layers (Ji et al.,
2020) and multi-filter convolutional layers (Li and
Yu, 2020; Luo et al., 2021).

Additionally, researchers have leveraged the hi-
erarchy of ICD codes (Cao et al., 2020; Xie
et al., 2019), used external knowledge sources like
Wikipedia (Bai and Vucetic, 2019), and knowledge
graphs such as UMLS (Yuan et al., 2022) and Free-
base (Teng et al., 2020), etc. More recently, there
has been an effort to use Transformer-based lan-
guage models pretrained on clinical datasets, al-
beit without much success (Pascual et al., 2021;

Zhang et al., 2020; Ji et al., 2021). Instead, us-
ing a few Transformer encoder layers trained from
scratch has proven to be more effective (Biswas
et al., 2021).

Kaur et al. (2021) and Yan et al. (2022) perform
extensive literature reviews of automatic ICD cod-
ing approaches. The reader is referred to these
surveys for a more detailed description of various
architectures and approaches.

2.2 ICD Coding Datasets and Benchmark

Typical ICD coding dataset consists of discharge
summaries and the corresponding sets of ICD
codes. There are many ICD coding datasets in
various languages, but not all are publicly available.
The most widely used datasets are from MIMIC-
III1 and MIMIC-II2 databases. The MIMIC-III
clinical database (Johnson et al., 2016) is a col-
lection of medical records from an intensive care
unit (ICU) at a hospital between 2001 and 2012.
MIMIC-III consists of multiple tables containing
diagnosis, procedures, clinical notes, etc., and each
patient admission is indicated with an HADM_ID
identifier. MIMIC-II is a subset of the MIMIC-III
dataset and contains medical records between 2001
and 2008 3.

CAML (Mullenbach et al., 2018) published the
preprocessing code of their MIMIC-III full and top-
50 datasets, and since then, these have been the
most widely used datasets. We correct some errors
in preprocessing of CAML and make the process
easily configurable. Also, compared to a leader-
board that only manages reported performance, our
work provides a framework for benchmarking, i.e.,
users can run the code to reproduce the results and
further perform research on top of it.

3 ICD Coding Benchmark

AnEMIC has been designed so that researchers can
easily configure the overall process with config files
and therefore, easily start research on ICD coding
with minimal code. Also, the architecture has mod-
ularity at the center of its design so that researchers
can replace one module with another or with their
own implementation. Such design enables easy
comparison between models and reduces burden
while developing new models.

1
https://physionet.org/content/mimiciii/1.4/

2
https://archive.physionet.org/mimic2/

3There is also the recently released MIMIC-IV database, but clinical notes
for this are currently not yet available.

110

https://physionet.org/content/mimiciii/1.4/
https://archive.physionet.org/mimic2/

Figure 1: The ICD coding benchmark pipeline of AnEMIC. We provide a pipeline covering the entire process of
ICD coding. All steps in the pipeline can be easily configured with YAML files.

Our system also provides an interactive demo for
visualizing model predictions with input attribution
scores. This demo will help users analyze the per-
formance and interpretability of their models.

In the following subsections, we explain each
stage in the pipeline. From now on, we will focus
on ICD coding dataset from MIMIC-III since it is
the most widely used dataset for this task. Figure 1
illustrates the overall pipeline.

3.1 Data Preprocessing
The first step of the pipeline is to preprocess
the available clinical dataset, i.e., the MIMIC-III
database. As with other parts of the pipeline, we
specify preprocessing-related options in a YAML
config file.

Many of the preprocessing steps are inspired
by CAML’s preprocessing pipeline. However,
an important observation to be noted here is
that there are errors in CAML’s preprocessing
pipeline. Unfortunately, many subsequent works
use CAML’s code, and hence, the results obtained
by most papers are on the incorrectly preprocessed
dataset. This will be discussed later in this subsec-
tion and Appendix A.

3.1.1 ICD Code Preprocessing
In the MIMIC-III database, the DIAGNOSES_ICD
and PROCEDURES_ICD tables contain the ICD-9 di-
agnosis and procedure codes, respectively, of every
admission. Since MIMIC-III has ICD-9 codes with-
out the period punctuation (e.g. 4019 instead of
401.9), we reformat those ICD codes to their orig-
inal format adopting the method of CAML, and
use them as labels. ICD-9 codes can have lead-
ing and trailing zeros, so care must be taken to re-
tain them when processing. However, in CAML’s
preprocessing code, some of ICD codes are im-
plicitly treated as integer or floating point num-

bers4, resulting in an incorrect set of ICD-9 la-
bels. While correcting this error, we provide an op-
tion incorrect_code_loading to reproduce the
behavior of CAML for researchers who want to
make a comparison with previous works.

In addition to the above option, we also provide
an option code_type to use either diagnosis, pro-
cedure, or both types of ICD codes. We set "both"
as the default.

3.1.2 Clinical Note Preprocessing
From the NOTEEVENTS table of MIMIC-III contain-
ing clinical notes in various categories, we select
notes belonging to the Discharge_Summary cate-
gory. We provide several options of standard NLP
preprocessing for the discharge summary. These
can be turned on/off from the config file.

• Convert text to lowercase.
• Remove punctuation marks using \w+ as the

RegEx expression, i.e., retain only alphanu-
meric characters.

• Either remove numeric characters, or replace
all numeric characters with “n”.

• Remove stopwords; we use the list of stop-
words provided by NLTK, and add common
medical terms like “hospital”, “admission”,
“history”, etc. to the list.

• Stem or lemmatize the text; we provide popu-
lar choices for these such as “WordNet Lem-
matizer” and “Porter Stemmer”.

• Truncate the text to a maximum length.

After note preprocessing, we build the vocabu-
lary and train a Word2Vec model on preprocessed
discharge summaries using the Gensim library (Ře-
hůřek and Sojka, 2010). Word2Vec embeddings are
used to initialize the embedding layers of models.

4Due to not specifying data types when loading tables

111

3.1.3 Top-k Codes and Data Splitting
Many works report results on two datasets –
“MIMIC-III full” and “MIMIC-III top-50”. The
latter contains the top-50 frequent ICD codes as la-
bels and examples with at least one of these labels.

An important point to note is that MIMIC-III has
some duplicate ICD codes, i.e., an ICD code can
be repeated multiple times in one admission. These
duplicate codes need to be removed when counting
the ICD code occurrence. This is another source of
error in CAML’s code: they do not remove the du-
plicate codes while counting the ICD codes occur-
rence, resulting in a change in the top-50 ICD codes.
While we correctly select the top-50 ICD codes, we
also provide an option count_duplicate_codes
to reproduce the behavior of CAML.

For data splitting, we use the splits of HADM_IDs
provided by CAML. They provide separate sets of
splits for the full and top-50 datasets, and the split
for top-50 dataset has substantially smaller number
of examples. To make full use of MIMIC-III, we
use the splits of the CAML’s full dataset for both
versions of our dataset.

As a result of data preprocessing, we have four
main variants of the dataset – “MIMIC-III full”,
“MIMIC-III top-50”, “MIMIC-III full (old)”, and
“MIMIC-III top-50 (old)”. Here “(old)” refers to
the CAML variants.

3.2 Supported Models
This subsection describes the models we provide in
the framework and the criteria for choosing mod-
els. To provide researchers with good baselines for
ICD coding research, we selected models based on
novelty or superior performance. For now, we have
chosen a subset of models for which the code is
publicly available, but we do plan on implementing
other approaches in the near future which have not
been open-sourced. The models and the trainer are
based on PyTorch.

The models currently supported by the frame-
work are as follows:

• CAML (Mullenbach et al., 2018) is a land-
mark model in automatic ICD coding which
uses a label attention layer. We also imple-
ment the vanilla CNN model in the paper and
refer to it as CNN.

• MultiResCNN (Li and Yu, 2020) uses multi-
ple CNNs with different filter sizes in parallel.

• DCAN (Ji et al., 2020) uses dilated convolu-
tional layers for ICD coding.

Figure 2: A snapshot of ICD coding interactive demo
showing ICD code predictions and the integrated gradi-
ent. Input text is extracted from Tsumoto et al. (2019).

• TransICD (Biswas et al., 2021) is the first
Transformer-based approach that achieved re-
sults comparable to the CNN-based model.

• Fusion (Luo et al., 2021) uses multi-CNN,
Transformer encoder, and label attention.

To replicate the author’s work in our own sys-
tem, we re-wired the model from the author’s code
to make it compatible with our framework. This
allows users to also easily tweak the model and its
hyperparameters with the config files.

3.3 Training and Evaluation
To train and evaluate the models, we implement a
trainer module that manages training and evalua-
tion, with sub-modules for the additional function-
alities related to training, such as objective func-
tions, logging, and managing checkpoints. Fol-
lowing the design principle of the framework, the
trainer module is also highly configurable so the
users can easily customize training and visualize
metrics by modifying config files. This also applies
to evaluation metrics, and we provide all major
evaluation metrics adopted by the automatic ICD
coding literature.

3.4 Interactive Demo
In order to enable users to use trained models off-
the-shelf, we open source an interactive web ap-

112

plication based on Streamlit. Using the app, users
can feed in a new discharge summary and get the
ICD code predictions in real time without writing
code to preprocess the input text and to run the
models. The app also allows users to change the
models and toggle the preprocessing options on the
fly so that they can compare models and change
preprocessing options.

A major highlight of the app is explainability
visualization, i.e., the attribution or importance
scores for each word present in the input clini-
cal note. We provide two methods – Integrated
Gradients (Sundararajan et al., 2017) and attention
scores. Upon choosing the attribution method with
an ICD code, the app displays the input tokens
with important words highlighted. Note that this
interpretability feature is model-agnostic because
the explainable AI techniques we use such as inte-
grated gradients are in turn model-agnostic.

A screenshot of the app running on a discharge
summary is shown in Figure 2. The bottom of
Figure 2 shows the integrated gradient (IG) visual-
ization of ICD code 250.00 “Type II diabetes”. We
can see that important terms like “diabetes mellitus”
exhibit high IG scores5. Overall, we expect the in-
teractive demo will be helpful for both researchers
who want to validate models, and professionals
who want explanations of the model’s predictions.

4 Results

In this section, we discuss the quantitative and qual-
itative results of AnEMIC. On quantitative aspects,
we discuss the brief statistics of the datasets and the
benchmark results on the our ICD coding datasets.
For the qualitative results, we present and analyze
some example of interpretability visualization from
our demo application.

4.1 Quantitative Results
Dataset Statistics Table 1 shows brief statis-
tics of our ICD coding datasets and the CAML’s
datasets (old). Our full dataset contains the same
number of examples as CAML’s full dataset since
we used the same data split. However, it has a dif-
ferent set of labels since we corrected the prepro-
cessing of CAML. Our top-50 dataset has the same
number of labels as CAML’s top-50 dataset, but
the label set differs6. Also, our top-50 dataset has
substantially more examples since the data split of

5Red and blue color in the visualization represent positive and negative
scores, respectively.

6Please refer to Table 4 in the Appendix to compare.

Dataset AnEMIC CAML (old)

Full Top-50 Full Top-50

labels 8930 50 8922 50
Mean # labels 15.88 5.73 16.10 5.78
examples
- Train set 47723 44728 47723 8066
- Val set 1631 1569 1631 1573
- Test set 3372 3234 3372 1729

Table 1: Statistics of the MIMIC-III full and top-50
datasets. Mean # labels refers to the average number of
labels per example.

the full dataset is used to make full use of MIMIC-
III. It has a slightly less number of examples than
the full dataset since examples without any of the
top-50 codes are removed.

Benchmark Results To provide the benchmark
of our ICD coding datasets, we trained the models
introduced in Section 3.2. Hyper-parameters for
each model are chosen as reported in the respective
paper or code. Note that these hyper-parameters
are tuned to CAML datasets, so may not be optimal
for our datasets, especially for the top-50 dataset.
For DCAN and TransICD model, only the MIMIC-
III top-50 experiments was performed, so we use
the hyper-parameters for the top-50 dataset in the
full dataset experiment. For each model, we ran
the experiment three times and computed the mean
and variance of the results. Table 2 and 3 shows
the benchmark results. Among the models that we
implemented, MultiResCNN and Fusion achieved
the best test performance on the MIMIC-III full
dataset, and DCAN performed best on the MIMIC-
III top-50 dataset.

To validate the implementation of key models
and the CAML version of dataset, we also ran the
same experiments on the CAML version of the
datasets. Overall, the results display similar level
of performance as reported in the papers. Please
see Appendix C for the full results and details of
the reproduction experiments.

4.2 Qualitative Analysis

Explainability Visualization Figure 3 shows
some examples of explainability visualization from
the demo app. For each example, we extract the
window around the word with the highest attribu-
tion score. In the left figure, for a fixed discharge
summary and an ICD code (599.0, Urinary tract

113

Model Macro AUC Micro AUC Macro F1 Micro F1 P@8 P@15

CNN 0.835±0.001 0.974±0.000 0.034±0.001 0.420±0.006 0.619±0.002 0.474±0.004

CAML 0.893±0.002 0.985±0.000 0.056±0.006 0.506±0.006 0.704±0.001 0.555±0.001

MultiResCNN 0.912±0.004 0.987±0.000 0.078±0.005 0.555±0.004 0.741±0.002 0.589±0.002

DCAN 0.848±0.009 0.979±0.001 0.066±0.005 0.533±0.006 0.721±0.001 0.573±0.000

TransICD 0.886±0.010 0.983±0.002 0.058±0.001 0.497±0.001 0.666±0.000 0.524±0.001

Fusion 0.910±0.003 0.986±0.000 0.081±0.002 0.560±0.003 0.744±0.002 0.589±0.001

Table 2: Test set results on the MIMIC-III full dataset. The results are shown using the mean±standard deviation
format.

Model Macro AUC Micro AUC Macro F1 Micro F1 P@5

CNN 0.913±0.002 0.936±0.002 0.627±0.001 0.693±0.003 0.649±0.001

CAML 0.918±0.000 0.942±0.000 0.614±0.005 0.690±0.001 0.661±0.002

MultiResCNN 0.928±0.001 0.950±0.000 0.652±0.006 0.720±0.002 0.674±0.001

DCAN 0.934±0.001 0.953±0.001 0.651±0.010 0.724±0.005 0.682±0.003

TransICD 0.917±0.002 0.939±0.001 0.602±0.002 0.679±0.001 0.643±0.001

Fusion 0.932±0.001 0.952±0.000 0.664±0.003 0.727±0.003 0.679±0.001

Table 3: Test set results on the MIMIC-III top-50 dataset. The results are shown using the mean±standard deviation
format.

Figure 3: Interpretability visualization examples. Left: the integrated gradients of various models on a fixed input
and a fixed ICD code (HADM_ID=100020, ICD-9 599.0). Right: the integrated gradients of CAML for various ICD
codes on a fixed input (HADM_ID=139574).

infection, site not specified), we examine the in-
tegrated gradients of various models. From the
figure, we can observe that all models correctly at-
tribute their prediction to the words relevant to the
diagnosis. In the right figure, for a fixed discharge
summary and a model (CAML), we visualize the
integrated gradients of some ICD codes that are
predicted as positive. As the figure shows, different
parts of the input are attributed and they are all se-
mantically relevant to the corresponding ICD code.
As both figures illustrate, our interactive demo pro-
vides an effective visualization tool for explaining
the model’s predictions.

5 Conclusions and Future Work

In this work, we present AnEMIC, a comprehen-
sive framework for automatic diagnostic coding. It

serves as a standardized benchmark for ICD cod-
ing on MIMIC-III by correcting errors in existing
datasets and providing popular deep learning-based
models. Our framework has a modularized and
easy-to-use config-based design, and researchers
can easily experiment by writing config files or
adding custom submodules. We also provide an
interactive app for performing real-time inference
and visualization for model explainability.

AnEMIC is under active development and wel-
comes contributions from the community. Upcom-
ing updates to our pipelines include adding more
recent approaches and models, especially those that
incorporate additional sources of external knowl-
edge, as well as supporting other datasets like the
MIMIC-II dataset.

114

References
Tian Bai and Slobodan Vucetic. 2019. Improving medi-

cal code prediction from clinical text via incorporat-
ing online knowledge sources. In The World Wide
Web Conference, WWW ’19, page 72–82, New York,
NY, USA. Association for Computing Machinery.

Biplob Biswas, Thai-Hoang Pham, and Ping Zhang.
2021. Transicd: Transformer based code-wise atten-
tion model for explainable icd coding.

Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Sheng-
ping Liu, and Weifeng Chong. 2020. HyperCore: Hy-
perbolic and co-graph representation for automatic
ICD coding. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3105–3114, Online. Association for Computa-
tional Linguistics.

Richárd Farkas and György Szarvas. 2008. Auto-
matic construction of rule-based icd-9-cm coding
systems. In BMC bioinformatics, volume 9, pages
1–9. Springer.

Shaoxiong Ji, Erik Cambria, and Pekka Marttinen. 2020.
Dilated convolutional attention network for medical
code assignment from clinical text. In Proceedings of
the 3rd Clinical Natural Language Processing Work-
shop, pages 73–78, Online. Association for Compu-
tational Linguistics.

Shaoxiong Ji, Matti Hölttä, and Pekka Marttinen. 2021.
Does the magic of bert apply to medical code as-
signment? a quantitative study. Comput. Biol. Med.,
139(C).

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1–9.

Rajvir Kaur, Jeewani Anupama Ginige, and Oliver Obst.
2021. A systematic literature review of automated
ICD coding and classification systems using dis-
charge summaries. CoRR, abs/2107.10652.

Leah S Larkey and W Bruce Croft. 1996. Combining
classifiers in text categorization. In Proceedings of
the 19th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 289–297.

Fei Li and Hong Yu. 2020. Icd coding from clinical
text using multi-filter residual convolutional neural
network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8180–8187.

Junyu Luo, Cao Xiao, Lucas Glass, Jimeng Sun, and
Fenglong Ma. 2021. Fusion: Towards automated
ICD coding via feature compression. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2096–2101, Online. Association
for Computational Linguistics.

Laxmaiah Manchikanti. 2002. Implications of fraud
and abuse in interventional pain management. Pain
Physician, 5(3):320.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable predic-
tion of medical codes from clinical text. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1101–1111, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Damian Pascual, Sandro Luck, and Roger Wattenhofer.
2021. Towards BERT-based automatic ICD coding:
Limitations and opportunities. In Proceedings of the
20th Workshop on Biomedical Language Processing,
pages 54–63, Online. Association for Computational
Linguistics.

Adler Perotte, Rimma Pivovarov, Karthik Natarajan,
Nicole Weiskopf, Frank Wood, and Noémie Elhadad.
2014. Diagnosis code assignment: models and eval-
uation metrics. Journal of the American Medical
Informatics Association, 21(2):231–237.

Aaditya Prakash, Siyuan Zhao, Sadid A Hasan, Vivek
Datla, Kathy Lee, Ashequl Qadir, Joey Liu, and
Oladimeji Farri. 2017. Condensed memory networks
for clinical diagnostic inferencing. In Thirty-first
AAAI conference on artificial intelligence.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, page 3319–3328.
JMLR.org.

Fei Teng, Wei Yang, Li Chen, LuFei Huang, and Qiang
Xu. 2020. Explainable prediction of medical codes
with knowledge graphs. Frontiers in Bioengineering
and Biotechnology, 8:867.

Phillip Tseng, Robert S Kaplan, Barak D Richman, Ma-
hek A Shah, and Kevin A Schulman. 2018. Admin-
istrative costs associated with physician billing and
insurance-related activities at an academic health care
system. Jama, 319(7):691–697.

Shusaku Tsumoto, Tomohiro Kimura, Haruko Iwata,
and Shoji Hirano. 2019. Estimation of disease code
from electronic patient records. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
2698–2707. IEEE.

Thanh Vu, Dat Quoc Nguyen, and Anthony Nguyen.
2020. A label attention model for icd coding from
clinical text. In Proceedings of the Twenty-Ninth

115

https://doi.org/10.1145/3308558.3313485
https://doi.org/10.1145/3308558.3313485
https://doi.org/10.1145/3308558.3313485
https://doi.org/10.48550/ARXIV.2104.10652
https://doi.org/10.48550/ARXIV.2104.10652
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.acl-main.282
https://doi.org/10.18653/v1/2020.clinicalnlp-1.8
https://doi.org/10.18653/v1/2020.clinicalnlp-1.8
https://doi.org/10.1016/j.compbiomed.2021.104998
https://doi.org/10.1016/j.compbiomed.2021.104998
http://arxiv.org/abs/2107.10652
http://arxiv.org/abs/2107.10652
http://arxiv.org/abs/2107.10652
https://doi.org/10.18653/v1/2021.findings-acl.184
https://doi.org/10.18653/v1/2021.findings-acl.184
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/N18-1100
https://doi.org/10.18653/v1/2021.bionlp-1.6
https://doi.org/10.18653/v1/2021.bionlp-1.6
https://doi.org/10.3389/fbioe.2020.00867
https://doi.org/10.3389/fbioe.2020.00867
https://doi.org/10.24963/ijcai.2020/461
https://doi.org/10.24963/ijcai.2020/461

International Joint Conference on Artificial Intel-
ligence, IJCAI-20, pages 3335–3341. International
Joint Conferences on Artificial Intelligence Organi-
zation. Main track.

Xiancheng Xie, Yun Xiong, Philip S. Yu, and Yangyong
Zhu. 2019. Ehr coding with multi-scale feature at-
tention and structured knowledge graph propagation.
In Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management,
CIKM ’19, page 649–658, New York, NY, USA. As-
sociation for Computing Machinery.

Chenwei Yan, Xiangling Fu, Xien Liu, Yuanqiu Zhang,
Yue Gao, Ji Wu, and Qiang Li. 2022. A survey of
automated international classification of diseases cod-
ing: development, challenges, and applications. In-
telligent Medicine.

Ying Yu, Min Li, Liangliang Liu, Zhihui Fei, Fang-
Xiang Wu, and Jianxin Wang. 2019. Automatic icd
code assignment of chinese clinical notes based on
multilayer attention birnn. Journal of Biomedical
Informatics, 91:103114.

Zheng Yuan, Chuanqi Tan, and Songfang Huang. 2022.
Code synonyms do matter: Multiple synonyms
matching network for automatic ICD coding. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 808–814, Dublin, Ireland. As-
sociation for Computational Linguistics.

Zachariah Zhang, Jingshu Liu, and Narges Razavian.
2020. BERT-XML: Large scale automated ICD cod-
ing using BERT pretraining. In Proceedings of the
3rd Clinical Natural Language Processing Workshop,
pages 24–34, Online. Association for Computational
Linguistics.

A Notes on ICD Code Preprocessing

In CAML’s preprocessing pipeline, there are
two errors. Firstly, when they load the
DIAGNOSES_ICD and PROCEDURES_ICD tables into
Pandas dataframes, the ICD codes are loaded
without specifying a data type, dtype in the
pd.read_csv() method, resulting in the loss of
some of leading zeros (e.g. 0040 → 40). This
affects more than 190 codes out of 8930 in MIMIC-
III. Also, when they store the converted ICD codes
(with period) into a file and re-read it, data type is
not specified, resulting in that some of the codes are
converted as floating number and lose leading and
trailing zeros. This also affects many ICD codes.
For example, a major top-50 ICD code, 93.90 is
not selected.

Secondly, MIMIC-III has duplicate ICD codes
in the DIAGNOSES_ICD and PROCEDURES_ICD table,

i.e., an ICD code can be repeated in one admis-
sion7. While preprocessing, CAML’s code does
not remove such duplicate codes, and as a result
of this, some ICD codes were selected as top-50
incorrectly.

As a result, CAML’s MIMIC-III full dataset
has 8922 labels, while our correctly fixed dataset
has 8930 labels. Moreover, our MIMIC-III top-50
dataset has ICD codes 93.90, V45.82, and CAML’s
dataset has 33.24, 45.13 instead.

Table 4 lists the ICD codes in CAML’s, our,
and TransICD’s MIMIC-III top-50 datasets. Tran-
sICD (Biswas et al., 2021) corrected the first men-
tioned error, i.e., loading ICD codes incorrectly, but
counts duplicate ICD codes when choosing top-50
codes, resulting in another incorrect set of top-50
codes.

B Sample Configuration File

Figure 4 shows the YAML config files for prepro-
cessing our MIMIC-III full dataset, to show the
configurable pipeline of AnEMIC. Users can cre-
ate their own ICD coding datasets with, for exam-
ple, different top-k or word stemmer, by customiz-
ing options in the config file. Also, for more cus-
tomized behavior, users can implement submodules
of the pipeline – for example, tokenizer and embed-
ding trainer, and register in the ConfigMapper to
be used in the config file.

C Reproduction Results on the CAML’s
Dataset

In this section, we describe the reproduction ex-
periments and explain the results. To ensure that
our framework correctly re-implemented the old,
CAML version of the datasets and the key mod-
els, we trained the models on the old datasets and
compared the results with the ones reported in the
papers. As in the benchmark experiments, for each
configuration, we ran experiments three times and
computed the mean and the standard deviation. To
make a fair comparison between the models, we
created three sets of the old datasets and used each
of them for each run of model training. Effectively,
the runs will have different weight initialization,
including the embedding matrix.

The results are shown in Table 5 and 6. Overall,
our reproduction shows similar performance as re-
ported in the papers and preserves the relative order

7For example, ICD code 33.24 appears 11 times in the admission with
HADM_ID=193989.

116

https://doi.org/10.1145/3357384.3357897
https://doi.org/10.1145/3357384.3357897
https://doi.org/https://doi.org/10.1016/j.imed.2022.03.003
https://doi.org/https://doi.org/10.1016/j.imed.2022.03.003
https://doi.org/https://doi.org/10.1016/j.imed.2022.03.003
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103114
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103114
https://doi.org/https://doi.org/10.1016/j.jbi.2019.103114
https://doi.org/10.18653/v1/2022.acl-short.91
https://doi.org/10.18653/v1/2022.acl-short.91
https://doi.org/10.18653/v1/2020.clinicalnlp-1.3
https://doi.org/10.18653/v1/2020.clinicalnlp-1.3

No. CAML TransICD AnEMIC
1 401.9 20053 401.9 20053 401.9 20046
2 38.93 14444 38.93 14444 38.93 12866
3 428.0 12842 428.0 12842 428.0 12842
4 427.31 12594 427.31 12594 427.31 12589
5 414.01 12179 414.01 12179 414.01 12178
6 96.04 9932 96.04 9932 96.04 9493
7 96.6 9161 96.6 9161 96.6 9102
8 584.9 8907 584.9 8907 584.9 8906
9 250.00 8784 250.00 8784 250.00 8783
10 96.71 8619 96.71 8619 272.4 8503
11 272.4 8504 272.4 8504 96.71 8426
12 518.81 7249 518.81 7249 518.81 7249
13 99.04 7147 99.04 7147 99.04 7102
14 39.61 6809 39.61 6809 39.61 6781
15 599.0 6442 599.0 6442 599.0 6442
16 530.81 6156 530.81 6156 530.81 6154
17 96.72 5926 96.72 5926 96.72 5815
18 272.0 5766 272.0 5766 272.0 5766
19 285.9 5296 285.9 5296 285.9 5295
20 88.56 5240 88.56 5240 88.56 5045
21 244.9 4788 244.9 4788 244.9 4785
22 486 4733 486 4733 486 4732
23 38.91 4575 38.91 4575 285.1 4499
24 285.1 4499 285.1 4499 38.91 4449
25 36.15 4390 36.15 4390 36.15 4387
26 276.2 4358 276.2 4358 276.2 4358
27 496 4296 496 4296 496 4296
28 99.15 4172 99.15 4172 99.15 4162
29 995.92 3792 995.92 3792 995.92 3792
30 V58.61 3698 V58.61 3698 V58.61 3697
31 507.0 3592 507.0 3592 507.0 3592
32 038.9 3580 038.9 3580 038.9 3580
33 88.72 3500 88.72 3500 585.9 3367
34 585.9 3367 585.9 3367 403.90 3350
35 403.90 3350 403.90 3350 311 3347
36 311 3347 311 3347 88.72 3305
37 305.1 3272 305.1 3272 305.1 3272
38 37.22 3248 37.22 3248 412 3203
39 412 3203 412 3203 37.22 3147
40 33.24 3188 33.24 3188 39.95 3133
41 39.95 3178 39.95 3178 287.5 3002
42 287.5 3002 287.5 3002 410.71 3001
43 410.71 3001 410.71 3001 276.1 2985
44 276.1 2985 276.1 2985 V45.81 2943
45 V45.81 2943 V45.81 2943 424.0 2876
46 424.0 2878 424.0 2878 V15.82 2741
47 45.13 2849 45.13 2849 511.9 2693
48 V15.82 2741 V15.82 2741 93.90 2656
49 511.9 2693 511.9 2693 V45.82 2651
50 37.23 2659 93.90 2663 37.23 2619

51 V45.82 2651 37.23 2659 33.24 2607
52 403.91 2566 V45.82 2651 403.91 2566
53 V29.0 2529 403.91 2566 45.13 2552
54 424.1 2517 V29.0 2529 V29.0 2529
55 785.52 2501 424.1 2517 424.1 2517
56 V58.67 2497 785.52 2501 785.52 2501
57 427.89 2396 V58.67 2497 V58.67 2497
58 327.23 2328 427.89 2396 427.89 2396
59 997.1 2313 327.23 2328 327.23 2328
60 99.55 2304 997.1 2313 997.1 2313
61 93.9 2233 99.55 2304 99.55 2275

Table 4: Top-61 frequency ICD codes from differently
processed datasets. The frequency of each code to select
the top-50 labels is shown next to each code. Note the
frequencies of ICD codes are affected by preprocessing
method and error. The top-50 ICD codes that are not
contained in all three top-50 sets are marked in bold.

of performance among the models, illustrating that
our code can be used in the research of automatic
ICD coding.

Despite the effort of re-implementing the ex-

Figure 4: The YAML config file for preprocessing the
MIMIC-III full dataset.

isting datasets and key models, there is a minor
difference from the CAML’s preprocessing, specif-
ically in training vocabulary and embeddings, that
may affect the results. In our preprocessing, the
vocabulary and embeddings are trained together
from Gensim’s word2vec training, which means

117

Model Macro AUC Micro AUC Macro F1 Micro F1 P@8 P@15

CNN
Repr 0.833±0.003 0.974±0.000 0.027±0.005 0.419±0.006 0.612±0.004 0.467±0.001

Orig 0.806 0.969 0.042 0.419 0.581 0.443

CAML
Repr 0.880±0.003 0.983±0.000 0.057±0.000 0.502±0.002 0.698±0.002 0.548±0.001

Orig 0.895 0.986 0.088 0.539 0.709 0.561

MultiResCNN
Repr 0.905±0.003 0.986±0.000 0.076±0.002 0.551±0.005 0.738±0.003 0.586±0.003

Orig 0.910±0.002 0.986±0.001 0.085±0.007 0.552±0.005 0.734±0.002 0.584±0.001

DCAN
Repr 0.837±0.005 0.977±0.001 0.063±0.002 0.527±0.002 0.721±0.001 0.572±0.001

Orig Not available

TransICD
Repr 0.882±0.010 0.982±0.001 0.059±0.008 0.495±0.005 0.663±0.007 0.521±0.006

Orig Not available

Fusion
Repr 0.910±0.003 0.986±0.000 0.076±0.007 0.555±0.008 0.744±0.003 0.588±0.003

Orig 0.915 0.987 0.083 0.554 0.736 N/A

Table 5: Reproduced test set results on the MIMIC-III full (old) dataset. For each model, the upper row (Repr)
shows the reproduction results in mean±standard deviation, and the lower row (Orig) shows the results in the
original papers.

Model Macro AUC Micro AUC Macro F1 Micro F1 P@5

CNN
Repr 0.892±0.003 0.920±0.003 0.583±0.006 0.652±0.008 0.627±0.007

Orig 0.876 0.907 0.576 0.625 0.620

CAML
Repr 0.865±0.017 0.899±0.008 0.495±0.035 0.593±0.020 0.597±0.016

Orig 0.875 0.909 0.532 0.614 0.609

MultiResCNN
Repr 0.898±0.006 0.928±0.003 0.590±0.012 0.666±0.013 0.638±0.005

Orig 0.899±0.004 0.928±0.002 0.606±0.011 0.670±0.003 0.641±0.001

DCAN
Repr 0.915±0.002 0.938±0.001 0.614±0.001 0.690±0.002 0.653±0.004

Orig 0.902±0.006 0.931±0.001 0.615±0.007 0.671±0.001 0.642±0.002

TransICD
Repr 0.895±0.003 0.924±0.002 0.541±0.010 0.637±0.003 0.617±0.005

Orig 0.894±0.001 0.923±0.001 0.562±0.004 0.644±0.003 0.617±0.003

Fusion
Repr 0.904±0.002 0.930±0.001 0.606±0.009 0.677±0.003 0.640±0.001

Orig 0.909 0.933 0.619 0.674 0.647

Table 6: Reproduced test set results on the MIMIC-III top-50 (old) dataset. For each model, the upper row (Repr)
shows the reproduction results in mean±standard deviation, and the lower row (Orig) shows the results in the
original papers.

that rare words in the corpus are replaced with the
UNK token before training word2vec. In CAML’s
preprocessing, the embeddings are trained without
replacing UNK tokens, and later, the embeddings
of the frequent words are extracted. Also, in our
code, only the train corpus is used to train the em-
bedding, while the CAML’s code uses the whole
corpus. Furthermore, when choosing words for
the vocabulary, CAML’s code counts the number
of documents, i.e., discharge summary note, that
each word appears in, while our code uses the total

occurrences of each word. Here, both codes use
only the train corpus.

D More Attribution Scores of MIMIC-III

Table 7∼10 show more examples of interpretability
visualization. When the model predicted an ICD
code correctly, then the relevant part of the input
text is attributed. The cases when a model does not
predicted are the second and third row of Table 8.

118

Intergrated Gradients for 428.0 (Congestive heart failure unspecified), HADM_ID=158682

CNN
CAML
MultiResCNN
DCAN
TransICD
Fusion

Table 7: Integrated gradients of various models on a fixed input and a fixed ICD code

Intergrated Gradients for 285.9 (Anemia, unspecified), HADM_ID=100408

CNN
CAML
MultiResCNN
DCAN
TransICD
Fusion

Table 8: Integrated gradients of various models on a fixed input and a fixed ICD code

Integrated Gradients of Fusion, HADM_ID=148372
96.04 (Insertion of endotracheal tube)

38.91 (Arterial catheterization)

427.31 (Atrial fibrillation)

250.00 (Diabetes mellitus without mention of complication, type ii or unspecified type)

401.9 (Unspecified essential hypertension)

Table 9: Integrated gradients of Fusion for various ICD codes on a fixed input

Integrated Gradients of MultiResCNN, HADM_ID=135796
414.01 (Coronary atherosclerosis of native coronary artery)

427.31 (Atrial fibrillation)

96.6 (Enteral infusion of concentrated nutritional substances)

38.93 (Venous catheterization, not elsewhere classified)

584.9 (Acute renal failure, unspecified)

Table 10: Integrated gradients of Fusion for various ICD codes on a fixed input

119

Acknowledgements

We acknowledge the support of Center for Machine
Learning and Health at Carnegie Mellon University.
This work was supported by the intramural research
program at the U.S. National Library of Medicine,
National Institutes of Health.

120

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 121 - 127
December 7-11, 2022 c©2022 Association for Computational Linguistics

SPEAR : Semi-supervised Data Programming in Python

Guttu Sai Abhishek1∗, Harshad Ingole1∗, Parth Laturia1∗, Vineeth Dorna1∗,
Ayush Maheshwari1∗, Rishabh Iyer2, Ganesh Ramakrishnan1

{gsaiabhishek5, harshad.ingole99, parthlaturia, vineethdorna}@gmail.com,
{ayusham, ganesh}@cse.iitb.ac.in,

rishabh.iyer@utdallas.edu
1Indian Institute of Technology Bombay

2The University of Texas at Dallas

Abstract

We present SPEAR, an open-source python li-
brary for data programming with semi super-
vision. The package implements several re-
cent data programming approaches including
facility to programmatically label and build
training data. SPEAR facilitates weak su-
pervision in the form of heuristics (or rules)
and association of noisy labels to the train-
ing dataset. These noisy labels are aggre-
gated to assign labels to the unlabeled data
for downstream tasks. We have implemented
several label aggregation approaches that ag-
gregate the noisy labels and then train using
the noisily labeled set in a cascaded manner.
Our implementation also includes other ap-
proaches that jointly aggregate and train the
model for text classification tasks. Thus, in
our python package, we integrate several cas-
cade and joint data-programming approaches
while also providing the facility of data pro-
gramming by letting the user define label-
ing functions or rules. The code and tutorial
notebooks are available at https://github.
com/decile-team/spear. Further, exten-
sive documentation can be found at https:
//spear-decile.readthedocs.io/. Video
tutorials demonstrating the usage of our pack-
age are available here. We also present some
real-world use cases of SPEAR.

1 Introduction

Supervised machine learning approaches require
large amounts of labeled data to train robust ma-
chine learning models. For classification tasks
such as spam detection, (movie) genre categoriza-
tion, sequence labelling, and so on, modern ma-
chine learning systems rely heavily on human-
annotated gold labels. Creating labeled data can
be a time-consuming and expensive procedure that
necessitates a significant amount of human effort.
To reduce dependence on human-annotated labels,

∗Authors contributed equally

various techniques such as semi-supervision, dis-
tant supervision, and crowdsourcing have been
proposed. In order to help reduce the subjec-
tivity and drudgery in the labeling process, sev-
eral recent data programming approaches (Bach
et al., 2019; Chatterjee et al., 2020; Awasthi et al.,
2020; Maheshwari et al., 2021) have proposed the
use of human-crafted labelling functions or auto-
matic LFs (Maheshwari et al., 2022a) to weakly
associate labels with the training data. Users en-
code supervision in the form of labelling functions
(LFs), which assign noisy labels to unlabeled data,
reducing dependence on human labeled data. LFs
can defined as first-order logic rules as a compo-
sition of semantic role attributes (Sen et al., 2020)
or syntactic grammar rules (Sahay et al., 2021).

While most data-programming approaches
cited above provide their source code in the pub-
lic domain, a unified package providing access
to all data programming approaches is however
missing. In this work, we describe SPEAR, a
python package that implements several existing
data programming approaches while also provid-
ing a platform for integrating and benchmark-
ing newer ones. Inspired by frameworks such as
Snorkel (Lison et al., 2021; Ratner et al., 2017;
Zhang et al., 2021) and algorithm based labeling
in Matlab1, we provide a facility for users to de-
fine LFs. Further, we develop and integrate several
recent data programming models that uses these
LFs. We provide many easy-to-use jupyter note-
books and video tutorials for helping new users get
quickly started. Though we provide implementa-
tion on 5 text datasets, our package can be easily
integrated with vision and speech datasets as well.
The users can get started by installing the package
using the below command.

pip install decile-spear

1https://www.mathworks.com/help/vision/ug/create-
automation-algorithm-for-labeling.html

121

https://github.com/decile-team/spear
https://github.com/decile-team/spear
https://spear-decile.readthedocs.io/
https://spear-decile.readthedocs.io/
https://youtube.com/playlist?list=PLW8agt_HvkVnOJoJAqBpaerFb-z-ZlqlP

Unlabeled Set

Designing LFs
@preprocessor
@continuous_scorer
@labeling_function

LA

Joint-Learning(JL)
CAGE
Only-L
L2R
PR
ImplyLoss

Labeled Set

 Apply LFs on data

PreLabels.generate_pickle()

def how_LF():
 if text contains ‘how’:

return Description

def how_long_LF():
 if text contains ‘how long’:

return Numeric

Figure 1: Flow of the SPEAR library.

In Table 1, we compare our library with other
existing packages such as Wrench (Zhang et al.,
2021), SkWeak(Lison et al., 2021), Imply Loss
(Awasthi et al., 2020), Snorkel (Bach et al., 2019)
and Matlab. Wrench (Zhang et al., 2021) pro-
vides facility for semi-supervised and unsuper-
vised label aggregation approaches, however, it
does not provide mechanism to find useful sub-
set of unlabeled data and defining continuous LFs.
SkWeak (Lison et al., 2021) does not integrate
semi-supervised LA approaches in the package.
SPEAR addresses the shortcomings of existing
packages by providing features such as designing
of discrete and continuous LFs, integrating un-
supervised and semi-supervised aggregation ap-
proaches and facility to choose labeled set using
subset selection approaches.

2 Package Flow

The SPEAR package consists of three components
(and they are applied in the same order): (i) De-
signing LFs, (ii) applying LFs, and (iii) applying a
label aggregator (LA).
Initially, the user is expected to declare an enum
class listing all the class labels. The enum class as-
sociates the numeric class label with the readable
class name. As part of (i), SPEAR provides the fa-
cility for manually creating LFs. LFs can be in the
form of regex rules as well. Additionally, we also
provide the facility of declaring a @preprocessor
decorator to use an external library such as spacy2,
nltk, etc. which can be optionally invoked by the
LFs. Thereafter, as part of (ii), the LFs can be ap-
plied on the unlabeled (and labeled) set using an

2https://spacy.io

apply function that returns a matrix of dimension
#LFs × #instances. The matrix is then provided as
input to the selected label aggregator (LA) in (iii),
as shown in Figure1. We integrate several LA op-
tions into SPEAR. Each LA aggregates multiple
noisy labels (obtained from the LFs) to associate
a single class label with an instance. Additionally,
we have also implemented in SPEAR, several joint
learning approaches that employ semi-supervision
and feature information. The high-level flow of
the SPEAR library is presented in Figure 1.

3 Designing and Applying LFs

User interacts with the library by designing label-
ing functions. Similar to Ratner et al. (2017), la-
beling functions are python functions which take
a candidate as an input and either associates class
label or abstains. However, continuous LFs re-
turns a continuous score in addition to the class
label. These continuous LFs are more natural to
program and lead to improved recall (Chatterjee
et al., 2020).

3.1 Designing LFs

SPEAR uses a @labeling_function() decorator
to define a labeling function. Each LF, when ap-
plied on an instance, can either return a class label
or not return anything, i.e. abstain. The LF decora-
tor has an additional argument that accepts a list of
preprocessors. Each preprocessor can be either de-
clared as a pre-defined function or can employ ex-
ternal libraries. The pre-processor transforms the
data point before applying the labeling function.

@labeling_function(cont_scorer, resources,
preprocessors, label)

def CLF1(x,**kwargs):

122

Package Designing &
applying LFs

Continuous
LFs

Unsup LA Semi-sup
LA

Labeled-data
subset selection

Snorkel(Ratner et al.,
2017)

✓ ✗ ✗ ✓ ✗

Imply Loss (Awasthi
et al., 2020)

✗ ✗ ✗ ✓ ✗

Matlab ✓ ✗ ✗ ✗ ✗

SkWeak (Lison et al.,
2021)

✓ ✓ ✓ ✗ ✗

Wrench (Zhang et al.,
2021)

✓ ✗ ✓ ✓ ✗

SPEAR ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of SPEAR against available packages.

return label if kwargs["continuous_score"] >=
threshold else ABSTAIN

The LF can express pattern matching rules in
the form of heuristics, distant supervision by using
external knowledge bases and other data resources
to label datapoints. LFs on SMS dataset can be
seen in the example notebook here.

Continuous LFs: In the discrete LFs, users
construct heuristic patterns based on dictionary
lookups or thresholded distance for the classifica-
tion tasks. However, the keywords in hand-crafted
dictionaries might be incomplete. Chatterjee et al.
(2020) proposed a comprehensive alternative that
design continuous valued LFs that return scores
derived from soft match between words in the sen-
tence and the dictionary.

SPEAR provides the facility to declare contin-
uous LFs, each of which returns the associated
label along with a confidence score using the
@continuous_scorer decorator. The continuous
score can be accessed in the LF definition through
the keyword argument continuous_score. As
evident from Table 1, no other existing package
provisions for both semi-supervised aggregation
and subset selection modules.

@continuous_scorer()
def similarity(sentence,**kwargs):
word_vecs = featurizer(sentence)
keyword_vecs = featurizer(kwargs["keywords"])
return similarity(word_vecs,keyword_vecs)

3.2 Applying LFs

Once LFs are defined, users can analyse labeling
functions by calculating coverage, overlap, con-
flicts, empirical accuracy for each LF which helps

to re-iterate on the process by refining new LFs.
The metrics can be visualised within the SPEAR

tool, either in the form of a table or graphs as
shown in Figure 2.

PreLabels is the master class which encapsu-
lates a set of LFs, the dataset to label and enum
of class labels. PreLabels facilitates the process of
applying the LFs on the dataset, and of analysing
and refining the LF set. We provide functions to
store labels assigned by LFs and associated meta-
data such as mapping of class name to numeric
class labels on the disk in the form json file(s).
The pre-labeling performed using the LFs can be
consolidated into labeling performed using several
consensus models described in Section 4.

sms_pre_labels = PreLabels(name="sms",
data=X_V, gold_labels=Y_V,

data_feats=X_feats_V, rules=rules,
labels_enum=ClassLabels, num_classes=2)

4 Models

We implement several data-programming ap-
proaches in this demonstration that includes sim-
ple baselines such as fully-supervised, semi-
supervised and unsupervised approaches.

4.1 Joint Learning (Maheshwari et al., 2021)
The joint learning (JL) module implements a semi-
supervised data programming paradigm that learns
a joint model over LFs and features. JL has
two key components, viz., feature model (fm) and
graphical model (gm) and their sum is used as a
training objective. During training, the JL requires
labeled (L), validation (V), test (T) sets consisting
of true labels and an unlabeled (U) set whose true
labels are to be inferred. The model API closely

123

https://github.com/decile-team/spear/blob/main/notebooks/SMS_SPAM/sms_labeling.ipynb

Figure 2: LF analysis on the SMS dataset presented in the form of graph visualization within the SPEAR tool. The
statistics include precision, coverage, conflict and empirical accuracy for each LF.

follows that of scikit-learn (Pedregosa et al., 2011)
to make the package easily accessible to the ma-
chine learning audience. The primary functions
are: (1) fit_and_predict_proba, which trains
using the prelabels assigned by LFs and true labels
of L data and predicts the probabilities of labels
for each instance of U data (2) fit_and_predict,
similar to the previous one but which predicts
labels of U using maximum posterior probabil-
ities (3) predict_(fm/gm)_proba, predicts the
probabilities, using feature model(fm)/graphical
model(gm) (4) predict_(fm/gm), predicts labels
using fm/gm based on learned parameters. We
also provide functions save or load_params to
save or load the trained parameters.

As another unique feature (c.f. Table 1), our li-
brary supports a subset-selection framework that
makes the best use of human-annotation efforts.
The L set can be chosen using submodular func-
tions such as facility location, max cover, etc.
We utilise the submodlib3 library for the subset
selection algorithms. Some of the function al-
ternatives for subset selection are rand_subset,
unsup_subset, sup_subset_indices and
sup_subset_save_files.

3https://github.com/decile-team/submodlib

4.2 Only-L
In this, the classifier P (y|x) is trained only on the
labeled data. Following Maheshwari et al. (2021),
we provide facility to use either Logistic Regres-
sion or a 2-layered neural network. Our package is
flexible to allow other architectures to be plugged-
in as well.

4.3 CAGE (Chatterjee et al., 2020)

This accepts both continuous and discrete LFs.
Further, each LF has an associated quality guide
component, that refers to the fraction of times the
LF predicts the correct label; this stabilises train-
ing in absence of V set. In our package, CAGE

accepts U and T sets during training. CAGE has
member functions similar to (except there are no
fm or gm variants to predict_proba, predict
functions in Cage) JL module, with different ar-
guments, serving the same purpose. It should be
noted that this model doesn’t need labeled(L) or
validation(V) data.

4.4 Learning to Reweight (L2R) (Ren et al.,
2018)

This method is an online meta-learning approach
for reweighting training examples with a mix of
U and L. It leverages validation set to determine
and adaptively assigns importance weights to ex-
amples based on the gradient direction. This does

124

https://github.com/decile-team/submodlib

M
ac

ro
-F

1

50

60

70

80

90

SMS MITR IMDB

Only-L L2R L+USnorkel Posterior Reg ImplyLoss Joint Learning (JL)
JL with Subset Selection

Figure 3: Experiments on SMS, IMDB and MIT-R dataset and comparison with various approaches. We use JL
combined with supervised subset selection for obtaining numbers.

not employ additional parameters to weigh or de-
noise individual rules.

4.5 L+ USnorkel (Ratner et al., 2017)
This method trains a supervised classifier on L set
and Snorkel’s generative model on U set. Snorkel
is a generative model that models class probabil-
ities based on discrete LFs for consensus on the
noisy and conflicting labels. It assigns a linear
weight to each rule based on an agreement objec-
tive and label examples in U .

4.6 Posterior Regularization (PR) (Hu et al.,
2016)

This is a method that enables to simultaneously
learn from L and logic rules by jointly learning
a rule and feature network in a teacher-student
setup. The student network learns parameter θ us-
ing the L set and teacher networks attempts to im-
itates the student network in a joint learning man-
ner. The teacher network encodes logic rules as a
regularization term in the overall loss objective.

4.7 Imply Loss (Awasthi et al., 2020)
This approach uses additional information in the
form of labeled rule exemplars and trains with a
denoised rule-label loss. They leverage both rules
and labeled data by mapping each rule with exem-
plars of correct firings (i.e., instantiations) of that
rule. Their joint training algorithms denoise over-
generalized rules and train a classification model.
It has two main components:

1. Rule Network: It learns to predict whether
a given rule has overgeneralized on a given

sample using latent coverage variables.

2. Classification Network: It is trained on L and
U to predict the output label and maximize
the accuracy on unseen test instances using a
soft implication loss.

This module contains the following primary
classes:

1. DataFeeder - It will essentially take all the
parameters as input and create a data feeder
class with all these parameters as its at-
tributes.

2. HighLevelSupervisionNetwork (HLS) - It
will take the 2 networks, the mode or the
approach that needs to be used to train the
model, the required parameters, the direc-
tory storing model checkpoints at different
instances and the instances and labels from
the labeled dataset (L) and create an object
named "hls".

HLS object will have many member functions of
which the 2 significant are:
(a) hls.train: This function, when called with the
required mode, will train the 2 network attributes
of the object.
(b) hls.test: It supports 3 types of testing:

(i) test_w: this will test the rule network and the
related model of the object.

(ii) test_f: this will test the classification net-
work and the related model of the object.

(iii) test_all: this will test both the networks and
models of the class.

125

sped accelerated

<Semantic context>
… electrons …

Pre-edit: Highly charged electrons are sped more.

Post-edit: Highly charged electrons are accelerated more.

LF1

गमर्मी ऊष्मा

Semantic context: ईंधन टैंक

Source: उच्च मैक संख्या पर उड़ानों के �लए, ईंधन टैंक उच्च गमर्मी का
अनुभव कर सकता है।

Target: उच्च मैक संख्या पर उड़ानों के �लए, ईंधन टैंक उच्च ऊष्मा का
अनुभव कर सकता है।

LF

sped accelerated

<Lexical right of keyword>
… more

LF2

SPEAR

nth LF

Figure 4: Mutiple LFs generated from post-editor edits based on semantic and lexical features while editing science
(domain-specific) document in English.

5 Experiments

We prepared jupyter tutorial notebooks for two
standard text classification datasets, namely SMS,
YouTube and TREC. We took LFs on these
datasets from Awasthi et al. (2020) and train us-
ing approaches implemented in this paper. Fig-
ure 3 shows performance of various approaches
implemented using our package on additional two
datasets, MIT-R and IMDB. We can integrate im-
age classification tasks by defining appropriate
feature extraction module and rules.

6 Use Cases

SPEAR is employed in project UDAAN4 for re-
ducing post editing efforts. UDAAN (Mahesh-
wari et al., 2022b) is an end-to-end translation and
post-editing eco-system for domain-aware, target
vocabulary-constrained translation. Specifically,
based on the post editor’s patterns of changes to
the target language document, candidate label-
ing functions are generated (based on a combina-
tion of heuristics and linguistic patterns) by the
UDAAN workbench (c.f. Figure 4 for examples
of LFs). SPEAR is then used to invoke these LFs
on a combination of the edited (i.e., labeled) data
and the not yet edited (i.e., unlabeled) data to
present consolidated edits to the post-editor. This
use case has been presented in the flow chart in

4https://www.udaanproject.org/

Figure 4 – we present the appropriate incorpora-
tion of SPEAR into the post-editing environment
of an ecosystem such as for translation (UDAAN)
or even for Optical Character Recognition5 or Au-
tomatic Speech Recognition (ASR).

As a part of the COVID-19 third wave prepared-
ness, SPEAR was deployed for the Municipal Cor-
poration of Greater Mumbai (MCGM)’s Health
Ward6 for predicting the COVID-19 status of pa-
tients, to help in preliminary diagnosis.

6.1 Demonstration Case

For the purpose of demonstration, apart from the
use cases outlined above, we can choose a text
classification dataset and form regex or continuous
rules after observing a few data points. Once the
LFs are developed, they can be deployed in con-
junction with any of the semi- and un-supervised
algorithms present in the package (c.f. Section 4)
and to compare these algorithms against each
other.

7 Conclusion and Future Work

SPEAR is a unified package for semi-supervised
data programming that enables quick annotation
of training data and facilitates training of machine
learning models. It eases the use of developing

5https://www.cse.iitb.ac.in/~ocr/
6https://colab.research.google.com/drive/

1tNUObqSDypUos7YNvnqvemALlkrrsB0z

126

https://github.com/decile-team/spear/tree/main/notebooks/
https://udaanproject.org/
https://udaanproject.org/
https://udaanproject.org/
https://www.udaanproject.org/
https://udaanproject.org/
https://www.cse.iitb.ac.in/~ocr/
https://colab.research.google.com/drive/1tNUObqSDypUos7YNvnqvemALlkrrsB0z
https://colab.research.google.com/drive/1tNUObqSDypUos7YNvnqvemALlkrrsB0z

LFs and label aggregation approaches. This allows
for better reproducibility, benchmarking and eas-
ier ML development in low-resource settings such
as in textual post-editing. Presently, we are inte-
grating automatic LF induction approaches such
as Snuba (Varma and Ré, 2018) that employ a
small labeled set to induce LFs automatically. This
will significantly increase the scope of labeling
datasets, reducing the extent of human interven-
tion in designing LFs. The package is written in
Python3 and open-sourced with a MIT License7,
open for community contribution.

8 Acknowledgements

We thank anonymous reviewers for providing con-
structive feedback. Ayush Maheshwari is sup-
ported by a Fellowship from Ekal Foundation
(www.ekal.org). Ganesh Ramakrishnan is grate-
ful to IBM Research, India (specifically the IBM
AI Horizon Networks - IIT Bombay initiative) as
well as the IIT Bombay Institute Chair Professor-
ship for their support and sponsorship.

References
Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal,

and Sunita Sarawagi. 2020. Learning from rules
generalizing labeled exemplars. In 8th Interna-
tional Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong
Luo, Haidong Shao, Cassandra Xia, Souvik Sen,
Alex Ratner, Braden Hancock, Houman Alborzi,
et al. 2019. Snorkel drybell: A case study in deploy-
ing weak supervision at industrial scale. In Proceed-
ings of the 2019 International Conference on Man-
agement of Data, pages 362–375.

Oishik Chatterjee, Ganesh Ramakrishnan, and Sunita
Sarawagi. 2020. Robust data programming with
precision-guided labeling functions. In AAAI.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep
neural networks with logic rules. arXiv preprint
arXiv:1603.06318.

Pierre Lison, Jeremy Barnes, and Aliaksandr Hubin.
2021. skweak: Weak supervision made easy for
NLP. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing: System Demonstrations,
pages 337–346, Online. Association for Computa-
tional Linguistics.
7https://opensource.org/licenses/MIT

Ayush Maheshwari, Oishik Chatterjee, KrishnaTeja
Killamsetty, Rishabh K. Iyer, and Ganesh Ramakr-
ishnan. 2021. Data programming using semi-
supervision and subset selection. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics.

Ayush Maheshwari, Krishnateja Killamsetty, Ganesh
Ramakrishnan, Rishabh Iyer, Marina Danilevsky,
and Lucian Popa. 2022a. Learning to robustly ag-
gregate labeling functions for semi-supervised data
programming. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 1188–
1202.

Ayush Maheshwari, Ajay Ravindran, Venkatapathy
Subramanian, Akshay Jalan, and Ganesh Ramakr-
ishnan. 2022b. Udaan – machine learning based
post-editing tool for document translation.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.

Alexander J Ratner, Stephen H Bach, Henry R Ehren-
berg, and Chris Ré. 2017. Snorkel: Fast training set
generation for information extraction. In Proceed-
ings of the 2017 ACM international conference on
management of data, pages 1683–1686.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In International Conference
on Machine Learning, pages 4334–4343.

Atul Sahay, Anshul Nasery, Ayush Maheshwari,
Ganesh Ramakrishnan, and Rishabh Iyer. 2021.
Rule augmented unsupervised constituency parsing.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 4923–4932.

Prithviraj Sen, Marina Danilevsky, Yunyao Li, Sid-
dhartha Brahma, Matthias Boehm, Laura Chiticariu,
and Rajasekar Krishnamurthy. 2020. Learning ex-
plainable linguistic expressions with neural induc-
tive logic programming for sentence classification.
In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 4211–4221.

Paroma Varma and Christopher Ré. 2018. Snuba: au-
tomating weak supervision to label training data. In
Proceedings of the VLDB Endowment. International
Conference on Very Large Data Bases, volume 12,
page 223. NIH Public Access.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yam-
ing Yang, Mao Yang, and Alexander Ratner. 2021.
Wrench: A comprehensive benchmark for weak su-
pervision. In Thirty-fifth Conference on Neural In-
formation Processing Systems Datasets and Bench-
marks Track (Round 2).

127

https://openreview.net/forum?id=SkeuexBtDr
https://openreview.net/forum?id=SkeuexBtDr
https://doi.org/10.18653/v1/2021.acl-demo.40
https://doi.org/10.18653/v1/2021.acl-demo.40
https://opensource.org/licenses/MIT
http://arxiv.org/abs/2008.09887
http://arxiv.org/abs/2008.09887
https://doi.org/10.48550/ARXIV.2203.01644
https://doi.org/10.48550/ARXIV.2203.01644

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 128 - 136
December 7-11, 2022 c©2022 Association for Computational Linguistics

Evaluate & Evaluation on the Hub:
Better Best Practices for Data and Model Measurements

Leandro von Werra∗, Lewis Tunstall∗, Abhishek Thakur∗, Alexandra Sasha Luccioni∗,
Tristan Thrush, Aleksandra Piktus, Felix Marty, Nazneen Rajani,

Victor Mustar, Helen Ngo, Omar Sanseviero, Mario Šaško,
Albert Villanova, Quentin Lhoest, Julien Chaumond,

Margaret Mitchell, Alexander M. Rush, Thomas Wolf, Douwe Kiela
Hugging Face, Inc.

{leandro,lewis,abhishek,sasha.luccioni,douwe}@huggingface.co

Abstract

Evaluation is a key part of machine learning
(ML), yet there is a lack of support and tool-
ing to enable its informed and systematic prac-
tice. We introduce Evaluate and Eval-
uation on the Hub—a set of tools to facili-
tate the evaluation of models and datasets in
ML. Evaluate is a library to support best
practices for measurements, metrics, and com-
parisons of data and models. Its goal is to
support reproducibility of evaluation, central-
ize and document the evaluation process, and
broaden evaluation to cover more facets of
model performance. It includes over 50 effi-
cient canonical implementations for a variety
of domains and scenarios, interactive documen-
tation, and the ability to easily share implemen-
tations and outcomes. The library is available
at https://github.com/huggingface/evaluate. In
addition, we introduce Evaluation on the Hub,
a platform that enables the large-scale evalua-
tion of over 75,000 models and 11,000 datasets
on the Hugging Face Hub, for free, at the click
of a button. Evaluation on the Hub is available
at https://huggingface.co/autoevaluate.

Demo screencast: youtu.be/6rU177zRj8Q

1 Introduction

Evaluation is a crucial cornerstone of machine
learning—not only can it help us gauge whether
and how much progress we are making as a field, it
can also help determine which model is most suit-
able for deployment in a given use case. However,
while the progress made in terms of hardware and
algorithms might look incredible to a ML practi-
tioner from several decades ago, the way we eval-
uate models has changed very little. In fact, there
is an emerging consensus that in order to meaning-
fully track progress in our field, we need to address
serious issues in the way in which we evaluate ML
systems (Kiela et al., 2021; Bowman and Dahl,
2021; Raji et al., 2021; Hutchinson et al., 2022).

∗Equal contribution.

Figure 1: Average number of evaluation datasets and
metrics per paper, based on 10 random samples per year
from EMNLP proceedings over the past two decades.
More recent papers use more datasets and metrics, while
fewer of them report statistical significance test results.

In order to have a clearer idea regarding the way
model evaluation has evolved in our field, we have
carried out our own analysis on a random sample
of EMNLP papers from the past two decades, and
present our results in Figure 1. It can be observed
that the number of evaluation datasets and metrics
per paper has increased over time, suggesting that
model evaluation is becoming increasingly com-
plex and heterogeneous. However, auxiliary tech-
niques such as testing for significance, measuring
statistical power, and using appropriate sampling
methods have become less common, making re-
sults harder to judge when comparing new results
to previous work. We believe that while datasets
are now more easily accessible thanks to shared
repositories (Lhoest et al., 2021), model evalua-
tion is still unnecessarily cumbersome, with a frag-
mented ecosystem and a lack of consensus around
evaluation approaches and best practices.

The goal of this work is to address three practi-
cal challenges in model evaluation for ML: repro-
ducibility, centralization, and coverage.

Reproducibility: ML systems are extremely sen-
sitive to small (and often undocumented) choices

128

https://github.com/huggingface/evaluate
https://huggingface.co/autoevaluate
https://youtu.be/6rU177zRj8Q

such as random seeds and hyperparameters (Pineau
et al., 2021). Model performance is often not com-
pared with proper statistical testing that takes this
variance into account, making many self-reported
comparisons unreliable. Our goal is to standardize
this process and thereby improve the reproduction
of ML evaluations.

Centralization: Historically, ML metrics have
been poorly documented, exacerbating an already
insufficient community-wide understanding of their
usage and shortcomings (Post, 2018). As metrics
and datasets change, the onus is on the commu-
nity to keep results up-to-date, causing unnecessary
replication of work (Ma et al., 2021) and the prolif-
eration of outdated artifacts (Luccioni et al., 2022).

Coverage: ML as a field still focuses heavily on
accuracy-based metrics. While important, this fo-
cus glosses over other critical facets such as effi-
ciency (Min et al., 2021), bias and fairness (Qian
et al., 2022), robustness (Goel et al., 2021), and
how these factor into choosing a model (Ethayarajh
and Jurafsky, 2020; Ma et al., 2021).

We introduce the open source Evaluate library
and the Evaluation on the Hub platform to address
many of these problems. We believe that better
evaluation can happen, if we—as a community—
establish better best practices and remove hurdles.

2 Related work

Open-Source Tools for Evaluation There is a
long history of open source projects aiming to cap-
ture various measurements, metrics and statisti-
cal testing methods for ML. Torchmetrics (Detlef-
sen et al., 2022) implements a large number of
model evaluation metrics for PyTorch (Paszke
et al., 2019), which is similar to evaluation metrics
found in Keras (Chollet et al., 2015) for Tensor-
Flow. Libraries like Scikit-learn (Pedregosa et al.,
2011), SciPy (Virtanen et al., 2020), Statsmod-
els (Seabold and Perktold, 2010), NLTK (Bird et al.,
2009), TrecTools (Palotti et al., 2019), RL Relia-
bility Metrics (Chan et al., 2020), NetworkX (Hag-
berg et al., 2008), Scikit-image (Van der Walt
et al., 2014), GEM (Gehrmann et al., 2021),
TorchFidelity (Obukhov et al., 2020) also sup-
port many evaluation measures across many do-
mains. As integrating metrics into specific frame-
works can be difficult, there are also many libraries
dedicated to individual evaluations for example

rouge_score, 1 BARTScore (Yuan et al., 2021), or
SacreBLEU (Post, 2018). The fragmentation of
the ecosystem leads to various problems, such as a
wide range of incompatible conventions and APIs,
or misreporting due to differing implementations
and results.

In Evaluate, we provide one single interface
backed by a centralized Hub. Metrics can easily be
shared, are version controlled, have a standardized
interface, and allow for multimodal inputs.

Evaluation as a Service The idea of Evaluation
as a Service (Ma et al., 2021; Kiela et al., 2021),
whereby models are submitted for another party to
be centrally evaluated, has recently gained traction
as a more reproducible way to conduct model eval-
uation. Central evaluation also facilitates holding
challenges and competitions around datasets (Ya-
dav et al., 2019; Pavao et al., 2022; Akhbardeh
et al., 2021) as opposed to simply evaluating self-
reported model results or comparing model scores
with benchmark suites (Bajaj et al., 2016; Coleman
et al., 2017; Wang et al., 2018, 2019; Kardas et al.,
2020; Reddi et al., 2020; Liu et al., 2021; Goel et al.,
2021; Dror et al., 2019). The advantages of con-
ducting evaluation centrally are multiple, including
better reproducibility, forward/backward compati-
bility, and the ability to measure models along mul-
tiple axes of evaluation (e.g. efficiency and fairness,
in addition to accuracy), which can help contribute
towards a more systematic approach to evaluation.

Issues with Evaluation Several studies of ML re-
search and practice have been carried out in recent
years on different aspects pertaining to ML eval-
uation, and together they paint a bleak picture of
evaluation in our field. For instance, a 2019 large-
scale replication study of 255 ML papers found
that only 63% of the results they reported could
be systematically replicated (Raff, 2019). A com-
plementary survey of 3,800 papers from Papers
with Code has shown that a large majority of met-
rics used do not adequately reflect models’ perfor-
mance and that they largely do not correlate with
human judgement (Blagec et al., 2021). Finally, a
recent study of 770 papers in machine translation
from the last decade found that while 108 new met-
rics have been proposed for the task, 99.8% of pa-
pers continue to use BLEU score for reporting re-
sults (Marie et al., 2021), despite the fact that the

1github.com/google-research/google-
research/tree/master/rouge

129

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge

original BLEU score (Papineni et al., 2002) has
been shown to vary based on user-chosen param-
eters such as tokenization, which vary across lan-
guages (Post, 2018; Ananthakrishnan et al., 2007).
These issues motivate the development of the tools
presented in this work.

3 Library: Evaluate

The Evaluate library provides canonical implemen-
tations of a large set of evaluation modules. Mod-
ules are available to the community via a single,
easy-to-use API. We provide extensive and detailed
documentation cards for each, describing their cor-
rect usage, range of values and possible pitfalls, in
a similar vein to model and dataset cards (Mitchell
et al., 2019; Gebru et al., 2021). To facilitate ex-
tensibility, each evaluation model lives in a sepa-
rate Git repository, and new modules can be easily
contributed. The core library is released under the
Apache 2.0 license and is available on GitHub, 2

making it easy to adopt and deploy.
The library is designed to address the main chal-

lenges discussed in Section 1. Metrics are ver-
sioned and documented to support reproducibil-
ity within the framework. The core system is cen-
tralized to facilitate comparisons across models
in a consistent manner supporting best practices,
and data is stored in Git to allow backups and
cloning. Finally, the tool is inherently designed for
a multi-model, multi-evaluation paradigm support-
ing broad evaluation coverage by default.

3.1 Library Structure

Evaluate aims to support a range of model and
dataset comparisons. It offers three distinct types
of evaluation modules:

Metrics: Metrics to provide a score for model
performance (e.g. accuracy or BLEU score). They
play a central role for decisions around the use and
deployment of models, allowing models to be com-
pared and evaluated based on given benchmarks.

Comparisons: Comparisons are used to compare
the predictions of two models (e.g. McNemar’s
test). When comparing two models, these scores
can help determine whether the difference in the
models’ behavior is statistically significant.

Measurements: Measurements are used to inves-
tigate the characteristics of a dataset (e.g. fraction

2github.com/huggingface/evaluate

of duplicates, skew in label distribution). These
statistics are a crucial step for gleaning more in-
sights regarding training or evaluation datasets.

3.2 Library Tour
We demonstrate how Evaluate works with a quick
tour of its features. In this section we focus on met-
rics, but the showcased methods work identically
for the other types of evaluation modules.

Core Library Any metric, measurement, or com-
parison can be loaded using its name.

import evaluate
metric = evaluate.load("accuracy")

The name can refer to a local file path or the name
of a repository on the Hugging Face Hub.

Users can add predictions and/or references one
at a time or pass all of them directly to compute().

batches can be added sequentially
metric.add_batch(predictions = [1, 1],

references = [1, 0])
metric.compute()

or in one compute call
metric.compute(predictions = [1, 1],

references = [1, 0])

Note that the sequential method is particularly
useful in a multi-worker setup, where each worker
adds data and the compute operation happens at the
end. Evaluate uses Apache Arrow as its backend,
which means that adding data to the metric does
not use any additional memory. The full set of data
is only loaded when the metric is computed.

Several metrics can be bundled together and fol-
low the same API as a single metric, returning all
results at once.

evaluate.combine(["accuracy", "f1"])

Evaluator Evaluate also offers a higher level
API called the Evaluator. Evaluator enables anyone
to quickly evaluate a model on a task. Evaluator
encapsulates task-specific pre- and post-processing
and streamlines data preparation, model inference
and metric computation. This makes the evaluation
of any (model, dataset, metric) triplet on
a task seamless: 3

task = evaluator("text-classification")
task.compute(model_or_pipeline=model,

data=data, metric=metric)

3Currently text, token, and image classification as well as
question-answering are supported with more coming soon.

130

https://github.com/huggingface/evaluate

Evaluator employs pipelines from the Transform-
ers library 4 (or any other object with the same
API) to carry out model inference. While evalu-
ating downstream performance of the model, the
Evaluator keeps track of the inference efficiency
via metrics such as throughput and latency. This
provides another dimension along which models
can be compared, especially relevant in applied sce-
narios where inference times may be as crucial to a
model’s success as its performance on the core met-
rics. The Evaluator also supports (optional) confi-
dence interval computations via bootstrapping on
any metric.

3.3 Documentation

Recent years have seen several proposals for stan-
dardized documentation of both models (Mitchell
et al., 2019) and datasets (Gebru et al., 2021), argu-
ing that this improves their accessibility as well as
enabling a better understanding of their limitations
and biases across different audiences. We have
adopted this line of work within Evaluate – accom-
panying each evaluation module is a documenta-
tion card that describes the measurement, metric or
comparison and how to use it. This card includes
its intended use (i.e., whether it is specific to a task
such as machine translation or a dataset such as
SQuAD), its range, and code snippets that a user
can copy within their application. These cards also
contain a section on limitations and biases of the
module, such as their applicability for certain lan-
guages (this is especially relevant for metrics such
as BERTScore and COMET, which leverage pre-
trained models), the size of the models used to cal-
culate them (e.g., GPT-2, the default model used
for calculating MAUVE, is over 3 GB), and the fact
that certain modules (e.g., perplexity) are not com-
parable across different datasets when built from
different models or preprocessing steps.

Our goal with these documentation cards is two-
fold. On the one hand, we hope that they will ed-
ucate users regarding the scope and intention of
different evaluation approaches, how they are cal-
culated and how to interpret their values. On the
other hand, we aim to improve best practices in
terms of evaluation approaches. This can be as sim-
ple as measuring F1 score instead of relying simply
on accuracy for imbalanced datasets, but also pre-
ferring a more reproducible and systematic metric
such as SacreBLEU over a more variable one such

4huggingface.co/docs/transformers/main_classes/pipelines

as BLEU. We encourage the creators of new mod-
ules to write documentation cards to inform the
community regarding the intended usages of their
metric, measurement, or comparison; their possi-
ble limitations and biases; and to provide examples
of best practices for using them.

3.4 Community Contributions
Since the code for metrics is stored in individual
repositories on the Hugging Face Hub, anyone can
add new metrics and load them with Evaluate with-
out needing to wait for reviews or approval. Any
piece of evaluation code can be easily pushed to
the Hugging Face Hub, which allows for sharing
the exact same implementation with direct collabo-
rators and the broader research community. These
community metrics complement the canonical mod-
ules and are stored under the user’s namespace.
The Evaluate library also includes a command line
interface (CLI) to make community contributions
more accessible.

evaluate-cli create "My awesome metric"

This command creates a repository on the Hub,
clones it, populates it with a template and pushes
it to the Hub. The user only needs to implement
the metric logic, write a README containing the
metric card, and push their changes to the Hub us-
ing Git. We automatically provide live interaction
widgets for each module, allowing users to develop
a proper intuition for evaluation modules’ usage,
along with access to their documentation. Further-
more, our community discussion feature 5 allows
members of the community to flag problematic
evaluations or to ask for details regarding results,
which model creators can then engage with.

4 Service: Evaluation on the Hub

The Evaluation on the Hub platform extends the
Evaluate library to a free service model: anyone
can evaluate any model on any dataset using any
compatible metric, without requiring any code.
This service utilizes models, datasets, and metrics
standardized through the Hugging Face Hub. All
evaluation results using this method are produced
by the same pipeline with versioned implementa-
tions, and so are inherently reproducible. When a
new model, dataset, or metric is produced, anyone
can rerun the evaluation. As such, Evaluation on

5huggingface.co/docs/hub/repositories-pull-requests-
discussions

131

https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/spaces/evaluate-metric/comet
https://huggingface.co/spaces/evaluate-metric/mauve
https://huggingface.co/spaces/evaluate-metric/perplexity
https://huggingface.co/spaces/evaluate-metric/f1
https://huggingface.co/spaces/evaluate-metric/accuracy
https://huggingface.co/spaces/evaluate-metric/sacrebleu
https://huggingface.co/docs/transformers/main_classes/pipelines
https://huggingface.co/spaces/evaluate-metric/bleu
https://huggingface.co/docs/hub/repositories-pull-requests-discussions
https://huggingface.co/docs/hub/repositories-pull-requests-discussions

Figure 2: Evaluation on the Hub diagram

the Hub facilitates large-scale evaluation of over
75,000 models and 11,000 datasets.

The service model further supports the goals of
reproducibility and centralization. While the Evalu-
ate library can ensure that the metrics used are con-
sistent, it cannot ensure that the model was trained
and evaluated using a reproducible set of hyperpa-
rameters and data. Incorporating Evaluate into a
model hosting and training environment makes it
possible to guarantee this consistency. Centraliza-
tion also provides a further benefit of joining these
metrics with model and data card documentation.

4.1 System architecture

The system architecture is shown in Figure 2. Upon
submission, an evaluation job is triggered, which
downloads the dataset and model(s) from the cen-
tralized Hub, computes metrics, and opens a pull
request with the results.

Evaluation jobs are configured through a sim-
ple interface 6 that specifies the task, dataset, met-
rics, and models to be evaluated. For each task, we
compute a set of common metrics using the Eval-
uate library; users can also select additional met-
rics from the Hub 7 to be included in the evaluation.
For many datasets on the Hub, we provide evalua-
tion metadata that defines a default configuration
for users to launch evaluation jobs with a single
click. Users can also add evaluation metadata to
their own datasets to provide one-click evaluations
to the community. The interface for triggering an
evaluation is shown in Figure 3 (left).

We use AutoTrain 8, Hugging Face’s AutoML
6huggingface.co/spaces/autoevaluate/model-evaluator
7huggingface.co/metrics
8huggingface.co/autotrain

platform, to run evaluation jobs. The results from
each evaluation are stored as metadata associated
with model cards. The model predictions for each
evaluation are also stored as dataset repositories on
the Hub, enabling further analysis of, e.g., model
errors.

4.2 Documenting Evaluation

The tool is permissioned so that model owners have
the ability to select which evaluations they want
to display with their model. This documentation
is managed through a pull request system that al-
lows owners to see evaluations that have been run.
If a pull request is approved by the model owner,
the results are added visibly to the model card as
part of its documentation. However, all evaluation
pull requests are public by default, so even if one
is closed by model owners, members of the com-
munity can still see the scores.

Upon approval, the results become visible on
an interactive Leaderboard 9 associated with the
underlying dataset. We aggregate all model eval-
uations (both verified and self-reported) through
these leaderboards that allow users to filter results
across task and dataset. Models are ranked so that
users can find the best scoring model for task X on
dataset Y. The interface for model leaderboards is
shown in Figure 3 (left).

5 Use Cases

Evaluate and Evaluation on the Hub are already
actively used by our community for a variety of
tasks. There are many applications of these tools,
and we highlight some of the most important use

9huggingface.co/spaces/autoevaluate/leaderboards

132

https://huggingface.co/spaces/autoevaluate/model-evaluator
https://huggingface.co/metrics
https://huggingface.co/autotrain
https://huggingface.co/spaces/autoevaluate/leaderboards

Figure 3: (left) Model Evaluator User Interface; (right) Leaderboards User Interface.

cases observed in practice.

Use case 1: Choosing the best model. If the
task is known and the aim is to find an appropri-
ate model, the Hub Leaderboard (which aggregates
all the evaluation results for a dataset representa-
tive of that task) can act as a trusted source. In case
a particularly interesting model is not yet on the
leaderboard, its evaluation can easily be triggered,
directly from the Hub, and its results will automati-
cally appear on the leaderboard, allowing it to be
compared to previous models.

Use case 2: Reproducibility of results. If a new
dataset is created, it can be uploaded directly to the
Hub to trigger evaluation coverage on many models
without needing any code. Researchers can trust
in the reproducibility and consistency of this eval-
uation of these models on this dataset. Similarly,
open-source implementations for measurements,
metrics and comparisons can easily be shared and
plugged into the Evaluator to enable reproducibil-
ity on a range of other model facets. If a paper does
not report results for a given model on a dataset of
interest, it can be evaluated and verified.

Use case 3: Deciding on deployment. When
deciding on which variant of a model to deploy to
production, it is important to consider the broad
performance of the model across multiple metrics.
It may also be important to test on held-out test
sets, and to measure the latency and throughput
of a model. With the Evaluator, researchers can
quickly evaluate on several datasets and also get the
measured timing and latency information to make
an informed decision.

Use case 4: Adding a new metric. When a
new evaluation module (i.e., metric, measurement
or comparison) is developed, it needs to be dis-

tributed for wider use. Historically, for use-cases
like Kaggle competitions, metrics are shared as
code snippets, requiring participants to copy the
evaluation code, which can be error-prone and in-
convenient. With Evaluate, anyone can create a
new evaluate module—be it a metric, measure-
ment, or comparison—alongside its documentation
card with instructions. 10 Anybody with the access
rights can then quickly use the module with the
standard loading mechanism.

6 Conclusion

Evaluate and Evaluation on the Hub aim to facili-
tate better evaluation of machine learning data and
models by improving reproducibility, centraliza-
tion, and coverage of evaluation tools. Evaluate
is an open-source, community-driven library that
standardizes evaluation. Evaluation on the Hub is
a reproducible no-code alternative for evaluation
across models, datasets, and metrics. We hope that
this set of tools can help facilitate better best prac-
tices for model and data evaluation.

Ethical Issues and Limitations

There are multiple aspects of model evaluation that
we have not (yet) addressed but that remain impor-
tant in the broader landscape of our community and
the way ML is used in real-world settings. For in-
stance, we have currently focused on metrics and
measurements that have been developed and tested
for high-resource languages such as English, and
only cover a handful of metrics that explicitly sup-
port multilinguality. Similarly, while we strove to
cover as many metrics as possible, most of our cov-
erage is for text-based metrics, and we have yet to

10Example of a custom metric added by a community mem-
ber: hf.co.co/spaces/jordyvl/ece

133

https://huggingface.co/spaces/jordyvl/ece

add as many metrics from other modalities, multi-
modal metrics, or to provide as large a selection
for measurements and comparisons. Furthermore,
while we have documented the computational and
memory requirements of our evaluation approaches
via documentation cards, several metrics require
downloading large models such as GPT-2, which
can be inaccessible for users with slower Internet
speeds or insufficient memory. Finally, we are still
working towards a greater reproducibility of evalu-
ation results, for instance by adding identifiers that
will indicate which version of a metric and dataset
was used for evaluating a model (in the case of
code changes, for instance), allowing users to eas-
ily replicate results if needed. We will continue im-
proving our tools to address these limitations and
provide support for more uses cases.

Acknowledgements

We thank the many contributors to the Hugging
Face open source ecosystem. We thank Chunte Lee
for designing the Evaluation on the Hub diagram
in Figure 2.

References
Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-

dalena Biesialska, Ondřej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina España-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). WMT at EMNLP.

R Ananthakrishnan, Pushpak Bhattacharyya, M Sasiku-
mar, and Ritesh M Shah. 2007. Some issues in auto-
matic evaluation of English-Hindi MT: more blues
for BLEU. ICON, 64.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. MS Marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Kathrin Blagec, Georg Dorffner, Milad Moradi, and
Matthias Samwald. 2021. A critical analysis of met-
rics used for measuring progress in artificial intelli-
gence. arXiv pre-print, 2008.02577:1–28.

Samuel R Bowman and George E Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? arXiv preprint arXiv:2104.02145.

Stephanie Chan, Sam Fishman, John Canny, Anoop Ko-
rattikara, and Sergio Guadarrama. 2020. Measuring
the reliability of reinforcement learning algorithms.
In International Conference on Learning Representa-
tions, Addis Ababa, Ethiopia.

François Chollet et al. 2015. Keras. https://keras.
io.

Cody Coleman, Deepak Narayanan, Daniel Kang, Tian
Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle
Olukotun, Chris Ré, and Matei Zaharia. 2017. Dawn-
bench: An end-to-end deep learning benchmark and
competition. In NIPS ML Systems Workshop.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock,
Ananya Harsh, Teddy Koker, Luca Di Liello, Daniel
Stancl, Changsheng Quan, Maxim Grechkin, and
William Falcon. 2022. TorchMetrics - Measuring
Reproducibility in PyTorch.

Rotem Dror, Segev Shlomov, and Roi Reichart. 2019.
Deep dominance-how to properly compare deep neu-
ral models. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2773–2785.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of NLP leaderboards.
arXiv preprint arXiv:2009.13888.

Timnit Gebru, Jamie Morgenstern, Briana Vec-
chione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. 2021. Datasheets
for datasets. Communications of the ACM, 64(12):86–
92.

Sebastian Gehrmann, Tosin Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khy-
athi Raghavi Chandu, Miruna-Adriana Clinciu, Di-
panjan Das, Kaustubh Dhole, Wanyu Du, Esin Dur-
mus, Ondřej Dušek, Chris Chinenye Emezue, Varun
Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yu-
fang Hou, Yacine Jernite, Harsh Jhamtani, Yangfeng
Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal
Ladhak, Aman Madaan, Mounica Maddela, Khy-
ati Mahajan, Saad Mahamood, Bodhisattwa Prasad
Majumder, Pedro Henrique Martins, Angelina
McMillan-Major, Simon Mille, Emiel van Mil-
tenburg, Moin Nadeem, Shashi Narayan, Vitaly
Nikolaev, Andre Niyongabo Rubungo, Salomey
Osei, Ankur Parikh, Laura Perez-Beltrachini, Ni-
ranjan Ramesh Rao, Vikas Raunak, Juan Diego Ro-
driguez, Sashank Santhanam, João Sedoc, Thibault
Sellam, Samira Shaikh, Anastasia Shimorina,

134

https://aclanthology.org/2021.wmt-1.1/
https://aclanthology.org/2021.wmt-1.1/
https://www.cse.iitb.ac.in/~pb/papers/icon07-bleu.pdf
https://www.cse.iitb.ac.in/~pb/papers/icon07-bleu.pdf
https://www.cse.iitb.ac.in/~pb/papers/icon07-bleu.pdf
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://www.nltk.org/book/
https://www.nltk.org/book/
https://www.nltk.org/book/
https://arxiv.org/abs/2008.02577
https://arxiv.org/abs/2008.02577
https://arxiv.org/abs/2008.02577
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2104.02145
https://arxiv.org/abs/2104.02145
https://openreview.net/pdf?id=SJlpYJBKvH
https://openreview.net/pdf?id=SJlpYJBKvH
https://keras.io
https://keras.io
https://dawn.cs.stanford.edu/benchmark/papers/nips17-dawnbench.pdf
https://dawn.cs.stanford.edu/benchmark/papers/nips17-dawnbench.pdf
https://dawn.cs.stanford.edu/benchmark/papers/nips17-dawnbench.pdf
https://github.com/Lightning-AI/metrics
https://github.com/Lightning-AI/metrics
https://aclanthology.org/P19-1266/
https://aclanthology.org/P19-1266/
https://arxiv.org/abs/2009.13888
https://arxiv.org/abs/2009.13888
https://arxiv.org/abs/1803.09010
https://arxiv.org/abs/1803.09010

Marco Antonio Sobrevilla Cabezudo, Hendrik Stro-
belt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila
Yerukola, and Jiawei Zhou. 2021. The GEM bench-
mark: Natural language generation, its evaluation
and metrics. In Proceedings of the 1st Workshop on
Natural Language Generation, Evaluation, and Met-
rics (GEM 2021), pages 96–120, Online. Association
for Computational Linguistics.

Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan,
Jason Wu, Stephan Zheng, Caiming Xiong, Mo-
hit Bansal, and Christopher Ré. 2021. Robustness
gym: Unifying the NLP evaluation landscape. arXiv
preprint arXiv:2101.04840.

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008.
Exploring network structure, dynamics, and func-
tion using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United
States).

Ben Hutchinson, Negar Rostamzadeh, Christina Greer,
Katherine Heller, and Vinodkumar Prabhakaran.
2022. Evaluation gaps in machine learning practice.
arXiv preprint arXiv:2205.05256.

Marcin Kardas, Piotr Czapla, Pontus Stenetorp, Sebas-
tian Ruder, Sebastian Riedel, Ross Taylor, and Robert
Stojnic. 2020. AxCell: Automatic extraction of re-
sults from machine learning papers. EMNLP.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, et al. 2021. Dynabench: Rethinking benchmark-
ing in NLP. arXiv preprint arXiv:2104.14337.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A commu-
nity library for natural language processing. arXiv
preprint arXiv:2109.02846.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaicheng Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye, and Graham Neubig. 2021. EXPLAINABOARD:
An Explainable Leaderboard for NLP. arXiv preprint
arXiv:2104.06387.

Alexandra Sasha Luccioni, Frances Corry, Hamsini Srid-
haran, Mike Ananny, Jason Schultz, and Kate Craw-
ford. 2022. A framework for deprecating datasets:
Standardizing documentation, identification, and
communication. In 2022 ACM Conference on Fair-
ness, Accountability, and Transparency, pages 199–
212.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya
Jain, Ledell Wu, Robin Jia, Christopher Potts, Ad-
ina Williams, and Douwe Kiela. 2021. Dynaboard:
An evaluation-as-a-service platform for holistic next-
generation benchmarking. Advances in Neural Infor-
mation Processing Systems, 34:10351–10367.

Benjamin Marie, Atsushi Fujita, and Raphael Rubino.
2021. Scientific credibility of machine translation
research: A meta-evaluation of 769 papers. arXiv
preprint arXiv:2106.15195.

Sewon Min, Jordan Boyd-Graber, Chris Alberti,
Danqi Chen, Eunsol Choi, Michael Collins, Kelvin
Guu, Hannaneh Hajishirzi, Kenton Lee, Jenni-
maria Palomaki, Colin Raffel, Adam Roberts, Tom
Kwiatkowski, Patrick Lewis, Yuxiang Wu, Hein-
rich Küttler, Linqing Liu, Pasquale Minervini, Pon-
tus Stenetorp, Sebastian Riedel, Sohee Yang, Min-
joon Seo, Gautier Izacard, Fabio Petroni, Lucas Hos-
seini, Nicola De Cao, Edouard Grave, Ikuya Ya-
mada, Sonse Shimaoka, Masatoshi Suzuki, Shumpei
Miyawaki, Shun Sato, Ryo Takahashi, Jun Suzuki,
Martin Fajcik, Martin Docekal, Karel Ondrej, Pavel
Smrz, Hao Cheng, Yelong Shen, Xiaodong Liu,
Pengcheng He, Weizhu Chen, Jianfeng Gao, Bar-
las Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Wen-tau Yih. 2021.
NeurIPS 2020 EfficientQA competition: Systems,
analyses and lessons learned. In Proceedings of the
NeurIPS 2020 Competition and Demonstration Track,
volume 133 of Proceedings of Machine Learning Re-
search, pages 86–111. PMLR.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Ge-
bru. 2019. Model cards for model reporting. In Pro-
ceedings of the Conference on Fairness, Accountabil-
ity, and Transparency, FAT* ’19, page 220–229, New
York, NY, USA. Association for Computing Machin-
ery.

Anton Obukhov, Maximilian Seitzer, Po-Wei Wu, Se-
men Zhydenko, Jonathan Kyl, and Elvis Yu-Jing Lin.
2020. High-fidelity performance metrics for gen-
erative models in PyTorch. Version: 0.3.0, DOI:
10.5281/zenodo.4957738.

Joao Palotti, Harrisen Scells, and Guido Zuccon. 2019.
Trectools: an open-source Python library for infor-
mation retrieval practitioners involved in TREC-like
campaigns. SIGIR’19. ACM.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Adrien Pavao, Isabelle Guyon, Anne-Catherine Letour-
nel, Xavier Baró, Hugo Escalante, Sergio Escalera,

135

https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://aclanthology.org/2021.naacl-demos.6.pdf
https://aclanthology.org/2021.naacl-demos.6.pdf
https://www.osti.gov/biblio/960616
https://www.osti.gov/biblio/960616
https://dl.acm.org/doi/fullHtml/10.1145/3531146.3533233
https://aclanthology.org/2020.emnlp-main.692/
https://aclanthology.org/2020.emnlp-main.692/
https://aclanthology.org/2021.naacl-main.324/
https://aclanthology.org/2021.naacl-main.324/
https://aclanthology.org/2021.emnlp-demo.21/
https://aclanthology.org/2021.emnlp-demo.21/
https://aclanthology.org/2021.acl-demo.34/
https://aclanthology.org/2021.acl-demo.34/
https://dl.acm.org/doi/abs/10.1145/3531146.3533086
https://dl.acm.org/doi/abs/10.1145/3531146.3533086
https://dl.acm.org/doi/abs/10.1145/3531146.3533086
https://dynabench.org/dynaboard.pdf
https://dynabench.org/dynaboard.pdf
https://dynabench.org/dynaboard.pdf
https://aclanthology.org/2021.acl-long.566.pdf
https://aclanthology.org/2021.acl-long.566.pdf
https://proceedings.mlr.press/v133/min21a.html
https://proceedings.mlr.press/v133/min21a.html
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.5281/zenodo.4957738
https://doi.org/10.5281/zenodo.4957738
https://dl.acm.org/doi/10.1145/3331184.3331399
https://dl.acm.org/doi/10.1145/3331184.3331399
https://dl.acm.org/doi/10.1145/3331184.3331399
https://aclanthology.org/P02-1040/
https://aclanthology.org/P02-1040/
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Tyler Thomas, and Zhen Xu. 2022. CodaLab Com-
petitions: An open source platform to organize scien-
tific challenges. Ph.D. thesis, Université Paris-Saclay,
France.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in Python. the Journal of machine Learning
research, 12:2825–2830.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo Larochelle.
2021. Improving reproducibility in machine learn-
ing research: a report from the NeurIPS 2019 repro-
ducibility program. Journal of Machine Learning Re-
search, 22.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. arXiv preprint arXiv:1804.08771.

Rebecca Qian, Candace Ross, Jude Fernandes, Eric
Smith, Douwe Kiela, and Adina Williams. 2022.
Perturbation augmentation for fairer NLP. arXiv
preprint arXiv:2205.12586.

Edward Raff. 2019. A step toward quantifying indepen-
dently reproducible machine learning research. Ad-
vances in Neural Information Processing Systems,
32.

Inioluwa Deborah Raji, Emily M Bender, Amandalynne
Paullada, Emily Denton, and Alex Hanna. 2021. AI
and the everything in the whole wide world bench-
mark. arXiv preprint arXiv:2111.15366.

Vijay Janapa Reddi, Christine Cheng, David Kanter,
Peter Mattson, Guenther Schmuelling, Carole-Jean
Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody
Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared
Duke, Dave Fick, J. Scott Gardner, Itay Hubara,
Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St.
John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton
Lokhmotov, Francisco Massa, Peng Meng, Paulius
Micikevicius, Colin Osborne, Gennady Pekhimenko,
Arun Tejusve Raghunath Rajan, Dilip Sequeira,
Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thom-
son, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Ya-
mada, Bing Yu, George Yuan, Aaron Zhong, Peizhao
Zhang, and Yuchen Zhou. 2020. MLPerf Inference
Benchmark. ISCA.

Skipper Seabold and Josef Perktold. 2010. statsmodels:
Econometric and statistical modeling with python. In
9th Python in Science Conference.

Stefan Van der Walt, Johannes L Schönberger, Juan
Nunez-Iglesias, François Boulogne, Joshua D
Warner, Neil Yager, Emmanuelle Gouillart, and Tony
Yu. 2014. scikit-image: image processing in python.
PeerJ, 2:e453.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. 2020. Scipy 1.0: fundamental
algorithms for scientific computing in python. Na-
ture methods, 17(3):261–272.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv
preprint arXiv:1804.07461.

Deshraj Yadav, Rishabh Jain, Harsh Agrawal, Prithvi-
jit Chattopadhyay, Taranjeet Singh, Akash Jain,
Shiv Baran Singh, Stefan Lee, and Dhruv Batra. 2019.
EvalAI: Towards Better Evaluation Systems for AI
Agents. arXiv preprint arXiv:1902.03570.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems, volume 34, pages 27263–27277. Curran As-
sociates, Inc.

136

https://tel.archives-ouvertes.fr/LISN-AO/hal-03629462v1
https://tel.archives-ouvertes.fr/LISN-AO/hal-03629462v1
https://tel.archives-ouvertes.fr/LISN-AO/hal-03629462v1
https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/volume22/20-303/20-303.pdf
https://www.jmlr.org/papers/volume22/20-303/20-303.pdf
https://www.jmlr.org/papers/volume22/20-303/20-303.pdf
https://aclanthology.org/W18-6319.pdf
https://aclanthology.org/W18-6319.pdf
https://arxiv.org/abs/2205.12586
https://arxiv.org/abs/1909.06674
https://arxiv.org/abs/1909.06674
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/1911.02549
https://arxiv.org/abs/1911.02549
https://peerj.com/articles/453/?report=reader&utm_source=TrendMD&utm_campaign=PeerJ_TrendMD_1&utm_medium=TrendMD
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://papers.nips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://papers.nips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://papers.nips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://aclanthology.org/W18-5446/
https://aclanthology.org/W18-5446/
https://arxiv.org/abs/1902.03570
https://arxiv.org/abs/1902.03570
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 137 - 147
December 7-11, 2022 c©2022 Association for Computational Linguistics

KeywordScape: Visual Document Exploration using Contextualized
Keyword Embeddings

Henrik Voigt1, Monique Meuschke3, Sina Zarrieß2 and Kai Lawonn1

1University of Jena 2University of Bielefeld 3University of Magdeburg
1first.last@uni-jena.de

2first.last@uni-bielefeld.de
3last@isg.cs.uni-magdeburg.de

Abstract

Although contextualized word embeddings
have led to great improvements in automatic
language understanding, their potential for
practical applications in document exploration
and visualization has been little explored. Com-
mon visualization techniques used for, e.g.,
model analysis usually provide simple scatter
plots of token-level embeddings that do not
provide insight into their contextual use. In
this work, we propose KeywordScape, a visual
exploration tool that allows users to overview,
summarize, and explore the semantic content of
documents based on their keywords. While ex-
isting keyword-based exploration tools assume
that keywords have static meanings, our tool
represents keywords in terms of their contextu-
alized embeddings. Our application visualizes
these embeddings in a semantic landscape that
represents keywords as islands on a spherical
map. This keeps keywords with similar context
close to each other, allowing for a more precise
search and comparison of documents.

1 Introduction

Recent work in Natural Language Processing
(NLP) has brought great advances in the contex-
tual modeling of word meanings in texts (Peters
et al., 2018; Devlin et al., 2019; Radford et al.,
2019). When it comes to visualizing the meaning
contained in a collection of documents, keywords
still play an important role (El-Assady et al., 2020;
Ji et al., 2017; Kim et al., 2017). Keyword-based
methods have a number of advantages because they
are intuitive and easy to visualize, for example, in a
bar chart showing the frequency of a keyword over
different years in a document collection. However,
one of the major limitations in existing approaches
is that it assumes that a keyword has a static mean-
ing across different texts and domains. This as-
sumption is highly unrealistic (Schütze, 1998; Nav-
igli, 2009). A term like training means something

quite different in the context of machine learning
than in psychology.

There are tools for visualizing document collec-
tions at different levels of granularity. To get an
overview of a set of texts, it is often beneficial to
use visualizations that group texts on a high level
according to their overarching meaning, also called
topic. This is done by John et al. (2019); Kim et al.
(2017); Dang and Nguyen (2018); Le and Akoglu
(2019), e.g. to distinguish scientific texts on the
topic of machine learning visually from texts from
the field of psychology. To find documents that
match a semantic query, e.g., a list of related key-
words such as learning, curriculum, pre-training,
low-level document exploration is required. Here,
users must evaluate the meaning of specific para-
graphs, sentences, and keywords in a given context.
Current visual document exploration systems do
not use contextualized neural representations and
rely on topic models or frequency-based keyword
clustering techniques (Wang et al., 2014; Ganesan
et al., 2015; Kim et al., 2017; Yang et al., 2017; Ji
et al., 2019; John et al., 2019). These allow high-
level comparison of documents but are unable to
distinguish content based on low-level semantic
meaning.

In this work, we propose KeywordScape, a tool
that visualizes keywords in their semantic contexts
as islands on a map to support meaning-driven doc-
ument exploration. This makes it possible to ex-
plore the potential of contextualized word embed-
dings for visual document exploration by exploiting
their strengths for disambiguation.

In the following, we clarify how our work fits
into the current research context. We demonstrate
the applicability of contextualized keywords in a
visualization system architecture, explain the user
interactions it supports, and show its application in
use cases that solve real-world problems. The main
contributions of this paper include:

• Provision of a novel method for visualizing

137

contextualized keyword embeddings as visual
islands.

• Design and implementation of a meaning-
preserving visual document exploration sys-
tem.

2 Related Work

Visualization of text has been explored extensively
in the VIS community. This section refers to re-
lated work in the sub-field of visual document ex-
ploration, reviewing relevant methods and ideas
for visualizing document collections. Furthermore,
we show how recent developments in the field of
NLP, and in particular neural word embeddings,
feed into these solutions.

2.1 Visual Document Exploration
Visual exploration of documents is a well-
researched task (Heimerl et al., 2016; Mitra and
Craswell, 2017; Zhang et al., 2018; John et al.,
2018; Han et al., 2018). The most frequently stud-
ied methods can be categorized into visual topic
modeling (Dou et al., 2013; Kucher et al., 2018a;
John et al., 2019; Kim et al., 2017; Dang and
Nguyen, 2018; Le and Akoglu, 2019), visual in-
formation retrieval (Koch et al., 2014; Kraker et al.,
2016; Heimerl et al., 2016; Dias et al., 2019) and
visual sentiment analysis (Dai and Prout, 2016;
Martins et al., 2017; Kucher et al., 2018b, 2020).
Visual topic modeling is most closely related to
our approach. A topic model generally aims to ex-
tract groups of keywords as coherent topics and
assign the documents in the collection to these
topics. Visual topic modeling supports the explo-
ration of these topic models by visually represent-
ing the extracted topics and making them interac-
tive. A large proportion of current applications
for visual topic modeling such as VISTopic (Yang
et al., 2017), LDAExplore (Ganesan et al., 2015)
or TopEx (Olex et al., 2021) in their NLP pipelines
is based on methods like LDA (Blei et al., 2003),
LSA (Deerwester et al., 1990) or HDP (Wang et al.,
2011). The visualization pipeline relies on clus-
tering algorithms like K-Means (Kanungo et al.,
2002) or dimensionality reduction methods like
PCA (F.R.S.), t-SNE (Maaten and Hinton, 2008),
or UMAP (McInnes et al., 2018).

2.2 Neural Embedding Visualization
Visualizations of static neural word embeddings
are used to explore document spaces (Berger et al.,

2017; Ji et al., 2017, 2019) sentiment spaces (Dai
and Prout, 2016; Martins et al., 2017; Kucher
et al., 2020) or concept spaces (Park et al., 2018;
Heimerl and Gleicher, 2018). Depending on how
the visual models are constructed, the approaches
can be divided into neural embedding visualiza-
tions (Mitra and Craswell, 2017; Chen et al., 2018;
Li et al., 2018) and interactive human-in-the-loop
applications (El-Assady et al., 2020; Park et al.,
2018). In both, the idea of representing individ-
ual word tokens in a condensed form that cap-
tures their semantic meaning is applied. The high-
dimensional representations are reduced to a lower
dimension and visualized with colored dots or icons
as visual metaphors for individual words or docu-
ments (Smilkov et al., 2016; El-Assady et al., 2020).
Complete static embedding spaces are visualized
in Li et al. (2016); Chen et al. (2018); Molino et al.
(2019). Liu et al. (2018) visually investigate the
semantic relations in embedding spaces of static
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) embeddings. Our work differs
from this in that, unlike in the methods presented
above, the contextual embedding spaces are not
a fixed set and dynamically new embeddings are
created for each token in the respective document
based on its occurrence in the context.

3 KeywordScape System

We propose a system architecture shown in Fig-
ure 1 consisting of a NLP Pipeline and a Vi-
sualization Pipeline. The first parses the doc-
uments into a map of contextualized representa-
tions based on BERT (Devlin et al., 2019) and
UMAP (McInnes et al., 2018). The second is
responsible for the visualization and is based on
the D3 library (Bostock et al., 2011), the HTML
canvas element for rendering, and SVG for addi-
tional data manipulation and information display.
For a video demonstration of the system, visit
https://youtu.be/6jaF7HiPzTk.

3.1 NLP Pipeline

3.1.1 Text Processing
Parsing. Each document of the collected set is
parsed into a text string. The free library science-
parse from AllenAI (sci) is used. For each docu-
ment title, the authors, the year of publication, the
abstract, and the text of the document are extracted.
Cleaning. After parsing the documents into text
strings, the text is broken down into word tokens

138

https://youtu.be/6jaF7HiPzTk

Figure 1: The KeywordScape System Architecture. Within the NLP Pipeline, the document collection is pre-
processed, keywords are extracted and embedded alongside documents and paragraphs. The high-dimensional
representations are projected onto a unit sphere and forwarded to the Visualization Pipeline. Here, maps of different
granularity can be switched and explored with a variety of interaction techniques.

using the SpaCy library (spa). A cleaning proce-
dure is applied to filter out all non-lexical tokens.
Paragraphing. The document is divided into para-
graphs with a size of 512 tokens or less. This
corresponds to the encodable context width of the
BERT model (Devlin et al., 2019).
Keyword Extraction. A set of N different key-
words is determined by a user-selected extrac-
tion method, either TextRank (Mihalcea and Ta-
rau, 2004), RAKE (Rose et al., 2010), or TF-
IDF (Ramos, 2003). A single document is thus
visually represented by the semantic coverage of
its most relevant N contextualized keywords. In
order to be consistent across the collection and to
adapt to the respective document size, the number
of keywords is calculated individually for each doc-
ument. To achieve this, the user determines what
percentage p% of words in a document are treated
as keywords. For our visualizations, we set the
keyword percentage p per document to 5%.

3.1.2 Word Embedding
For each document, each paragraph is passed to
the BERT model and the embedding vector of the
last layer of all tokens with dimension 768 is ex-
tracted. All word embeddings that do not belong to
keywords are removed. If a keyword is composed
of subword embeddings, the average embedding
is used. This results in a contextualized represen-
tation of each keyword based on the paragraph in
which it occurs. Unlike methods with pure key-
word extraction, this provides a fine-grained repre-
sentation of meaning. Each of the contextualized

keyword embeddings is labeled by its lemmatized
word form to reduce unnecessary variance and fa-
cilitate navigation in the visualization.

3.1.3 Map Creation
Map Granularity. Three maps are created to en-
able iterative exploration of document collections
at different levels of semantic granularity. The
first map is a document map that creates a sin-
gle representation for each document by using a
SentenceBERT embedding of its abstract (Reimers
and Gurevych, 2019). The second map is a para-
graph map that applies the same technique to all
paragraphs in the corpus. The third map is a con-
textualized keyword map, which is the focus of
this work and will therefore be explained in more
detail in the following subsections.
Dimensional Reduction. The contextually
embedded keyword vectors are reduced to a
lower, plottable dimension using the UMAP al-
gorithm (McInnes et al., 2018; uma). A unit sphere
is used as the reduction space, which allows points
to be treated as [lat, lon] expressions. Reducing
the points to the surface of a unit sphere has the
advantage that all embeddings are mapped relative
to all other embeddings on the sphere. This offers
a smooth visual exploration of the keyword land-
scape.
Quantization. To avoid overlapping points in
the visual map and to make the number of points
manageable for the browser-internal visualization
pipeline, the unit sphere is quantized into elemen-
tary quadrilaterals, each of which represents all

139

Figure 2: Overview of the KeywordScape interface. Left: Search interface that allows users to search for documents
in the collection. Right: Map visualization of keyword islands of the ReCOVery corpus with interaction bar.

points contained in its area. The minimum side
length of a quadrilateral is 0.1 degrees. With
the help of this quantization, the approach can be
scaled up to 250 documents using a keyword per-
centage of 5%. This ensures a fast construction of
the map in the browser and enables fluid interac-
tion.

3.2 Visualization Pipeline

3.2.1 Document Map and Paragraph Map

The document map and paragraph map were cre-
ated with the aim of allowing users to iteratively
refine the granularity of the context of interest dur-
ing visual exploration. The document map provides
an overview of the collection. Each document is
represented as a single point on the unit sphere that
positions semantically similar document embed-
dings close to each other. As a visual metaphor for
a coherent semantic region, labeled and coloured
grid cells are used as an adaptation of the visualiza-
tion technique heatmap. The unit sphere is divided
into a grid of user-defined size. For each grid cell,
the most frequently occurring keywords in it are
displayed adaptive to the zoom level. The cells are
coloured according to the density of dots in each
cell. The higher the density of dots in a cell, the
lighter the colour. In this way, document clusters
can be quickly identified, and at the same time,
one gets an idea of the most important keywords
in these clusters. The paragraph map shows the
distribution of paragraph embeddings over the en-

tire unit sphere. Similar to the document map, a
coloured grid with adaptive labeling is used. The
map makes it possible to find topics covered in in-
dividual paragraphs, allowing for a more detailed
examination than at the document level.

3.2.2 Contextualized Keyword Map
The contextualized keyword map (see Figure 2) is
the focus of this work and enables a visual keyword
search that takes into account the semantic mean-
ing of the individual keywords. The embedding
points in [lat, lon] of the contextualized keyword
map are projected onto a geoequirectangular map
projection. The geo-voronoi microlibrary (geo) of
D3 is used to create a Delaunay triangulation of the
points on the sphere. A Voronoi map is calculated
from this triangulation. Each Voronoi region repre-
sents a set of quantized word points in the space of
the semantic map. The visual metaphor of the sea
and visual islands is used to represent a keyword
context. Islands represent clusters of keywords that
occur together in the same context. To determine
the visual islands, an HDBSCAN (McInnes et al.,
2017) clustering is applied to the Voronoi map,
which assigns a cluster probability to each Voronoi
region with respect to the cluster probability of its
center. Cluster probability is the basis for colour
coding, in that higher probabilities encode a darker,
land-like colour and lower probabilities encode a
blue, sea-like colour, resulting in the creation of vi-
sual islands. The positions of the islands in relation
to each other on the map represent their semantic

140

Figure 3: The main interaction techniques projection,
filtering, brushing, hovering, rank & tag, zoom & pan
within the KeywordScape interaction loop.

distance. The labels of the keywords in a visual
island represent the keywords with the highest fre-
quency in the respective Voronoi region.

4 User Interaction

KeywordScape offers a number of interaction tech-
niques, which are illustrated in Figure 3 and ex-
plained below:
Projections. To create a projection a search query
in form of a set of keywords is translated into a
selection of embedding points. From the resulting
set of points, a contour map is interpolated based
on the density of the selected points in each region
of the map. The contour map is then projected onto

the contextualized keyword map. This makes it
possible to visualize a user’s search similar to rain
showers on a weather map, as shown in Figure 3.
Filtering. Filtering is used in combination with the
projection function. The user can define queries
to the system either via the text-based search or
via predefined query selectors such as timestamps,
keywords, authors, star ratings, or tags. The query
is then translated into a projection condition and a
visual expression of the query is projected onto the
map so that the user can visually understand where
within the semantic landscape of the document col-
lection the query applies. For example, if the user
selects a particular author as a query selector, all
documents that the author has contributed to the
corpus are filtered out, their keywords extracted
and projected onto the KeywordScape. With the
help of this view, the user can easily see which
semantic regions the author mainly focuses on.
Zooming. A filtered semantic map generates re-
gions of interest that can be examined in detail
using the zoom function. Zooming in combination
with adaptive region labeling makes it possible to
examine the keywords of a context island with in-
creasing granularity.
Brushing. Brushing highlights a specific area of
interest to find the documents with keywords in that
area. Visual islands characterized by a collection of
keywords occurring in the same context are made
visually tangible in this way and the documents
containing these contexts are listed. An application
of the brushing feature is shown in Figure 3.
Ranking. Ranking allows the corpus to be adapted
to personal interests. Users award stars in a range
from 0-5, making it possible to quickly filter out
personally relevant documents, e.g. as support
when writing a survey paper.
Tagging. Assigning tags to the documents allows
quick access to document sets. This can be com-
bined with the projection function to visualize the
map coverage of several selected documents. In ad-
dition, tagging and projection are used to visually
compare documents by dividing them into different
tag groups and projecting the similarities as well as
the differences of the two tag groups against each
other, as shown in Figure 5.
Hovering. The hovering interaction is applied to
the document map and the paragraph map. The
tool displays the corresponding document in the
search bar when the mouse pointer hovers over its
representation in the map. When clicked, a de-

141

Figure 4: Document, paragraph, and contextualized keyword map of the ReCOVery corpus showing the semantic
content of newspaper articles during the COVID-19 pandemic at different levels of granularity. Left: The document
map allows users to identify documents with a similar main topic such as sports, trump, or foreign policy. Center:
The paragraph map highlights more specific contexts below the document level, such as women suffering from
abortions caused by COVID-19 infections, the situation of employees, and the impact of the COVID-19 pandemic
on children. Right: The contextualized keyword map focuses on fine-grained keyword islands like the basketball
season.

tailed document preview is displayed, containing
meta-information such as title, author, date of pub-
lication as well as the most important keywords of
the document and its abstract. The interaction tech-
niques are evaluated in a user study. For a detailed
description, please refer to the appendix A.

5 Use Cases

We apply the KeywordScape tool to two different
document data sets. To show the applicability of the
tool for everyday use, e.g., to get an overview of the
content of news articles, we visualize the reliable
sources of the ReCOVery Corpus of Zhou et al.
(2020) in Section 5.1. These include newspaper
articles from trusted news outlets. To illustrate the
tool’s ability to decompose the semantic occurrence
of keywords into different contexts, we visualize
the food.com data set from Majumder et al. (2019),
which is used to generate personalized recipes from
user preferences in Section 5.2.

5.1 Newspaper Articles

We visualize 250 newspaper articles from trusted
news outlets of the ReCOVery corpus (Zhou et al.,
2020). The document map provides an overview
of the main topics covered in the articles, such as
sports, foreign policy, or trump (see Figure 4). In
particular, sources related to trump appear to have
high coverage. At the paragraph level, it is partic-
ularly interesting that the context of abortion as a
problem of women struggling with a COVID-19
infection is mentioned in many paragraphs. A user

Figure 5: Visualization of similarities and differences
of documents with regard to their keywords in context.
Cividis coloured contours show regions where the con-
tents of the documents overlap, black outlined contours
show regions where the contents of the documents differ
from each other.

with only a document-level visualization might not
have been able to detect this because the contexts
in which this subject is discussed are hidden behind
the larger topic of the article. Using the contextual-
ized keyword map, specific contexts in the semantic
region of sports can be explored. For example, arti-
cles debating the progress of the basketball season
can be found by brushing their contextualized key-
words in the associated context island, as shown in
Figure 4. The ability to examine keywords in rela-
tion to their meaning in context proves particularly
useful for high-interest terms such as trump. A
large number of articles use the polarizing keyword
to attract interested users. A decomposition into the
individual contexts in which it occurs, e.g. vaccine
or china, would not be possible with a conventional
keyword search, because the meaning of the word

142

Figure 6: Contextualized keyword map of food recipes
from the food.com data set. Contours outline the density
of the keyword cheese within the different contexts of
the map.

is not taken into account with these methods.

5.2 Food Recipes

We visualize 1500 recipes from the food.com data
set (Majumder et al., 2019). Recipes, by their very
nature, consist of several ingredients that are com-
bined into one dish. An example question for recipe
exploration could be: In which cooking contexts
are certain ingredients used together? A conven-
tional keyword search for the ingredient cheese
would give us all the recipes that use cheese, no
matter what the context. By projecting the keyword
cheese onto the contextualized keyword map, as
shown in Figure 6, a nice decomposition of the
different cooking contexts in which cheese is used
becomes visible. Obviously, cheese is very popu-
larly used in a cooking context with macaroni, as
in the dish Mac’n’Cheese. It also makes frequent
appearances in burger recipes. Some cheeses, such
as cream cheese, are used in the context of baking
recipes. This shows the appearance of the keyword
near the visual island of the main keyword cake.
Others occur near the bread island in connection
with the production of sandwiches. Also, it is very
interesting to see that on the right side below, a
small amount of cheese is used along with chili.
By brushing the region it turns out that it covers
tacos with chili and cheese dip.

6 Conclusion

In this paper, we introduced KeywordScape, a visu-
alization tool that implements a novel method for
visualizing contextualized keyword embeddings as
visual islands. The tool takes advantage of the ben-
efits that contextualized word embeddings bring
in contrast to static word embeddings by applying
them in a visually searchable contextualized key-
word map - a KeywordScape. We implemented a

system architecture based on a BERT transformer
language model and its ability to represent word
meanings. We explained the interaction capabilities
that the visualization application provides to the
user and illustrated its usability in real-world use
cases. Our results show that viewing the meaning
of keywords in context leads to new and interesting
insights into the document collection, as exempli-
fied by newspapers or cooking recipes.

Acknowledgements

We thank the Michael Stifel Center Jena for fund-
ing this work, which is part of the Carl Zeiss
Foundation-funded project ’A Virtual Workshop
for Digitization in the Sciences’ (062017-02).

References
d3-geo-voronoi. https://github.com/Fil/
d3-geo-voronoi. Accessed: 2021-06-01.

science-parse. https://github.com/allenai/
science-parse. Accessed: 2021-06-01.

spacy. https://github.com/explosion/spaCy. Ac-
cessed: 2021-06-01.

umap. https://github.com/lmcinnes/umap. Ac-
cessed: 2021-06-01.

M. Berger, Katherine McDonough, and Lee M. Sever-
sky. 2017. cite2vec: Citation-driven document explo-
ration via word embeddings. IEEE Transactions on
Visualization and Computer Graphics, 23:691–700.

D. Blei, A. Ng, and Michael I. Jordan. 2003. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022.

M. Bostock, Vadim Ogievetsky, and J. Heer. 2011. D³
data-driven documents. IEEE Transactions on Visu-
alization and Computer Graphics, 17:2301–2309.

Juntian Chen, Yubo Tao, and Hai Lin. 2018. Visual
exploration and comparison of word embeddings. J.
Vis. Lang. Comput., 48:178–186.

X. Dai and Robert Prout. 2016. Unlocking super bowl
insights: Weighted word embeddings for twitter sen-
timent classification. Proceedings of the The 3rd Mul-
tidisciplinary International Social Networks Confer-
ence on SocialInformatics 2016, Data Science 2016.

T. Dang and V. Nguyen. 2018. Commodeler: Topic
modeling using community detection. In Eu-
roVA@EuroVis.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. 1990. Indexing by latent semantic
analysis. Journal of the Association for Information
Science and Technology, 41:391–407.

143

https://github.com/Fil/d3-geo-voronoi
https://github.com/Fil/d3-geo-voronoi
https://github.com/allenai/science-parse
https://github.com/allenai/science-parse
https://github.com/explosion/spaCy
https://github.com/lmcinnes/umap

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Amanda Gonçalves Dias, E. Milios, and M. C. F.
Oliveira. 2019. Trivir: A visualization system to sup-
port document retrieval with high recall. Proceedings
of the ACM Symposium on Document Engineering
2019.

Wenwen Dou, L. Yu, X. Wang, Z. Ma, and W. Rib-
arsky. 2013. Hierarchicaltopics: Visually exploring
large text collections using topic hierarchies. IEEE
Transactions on Visualization and Computer Graph-
ics, 19:2002–2011.

Mennatallah El-Assady, Rebecca Kehlbeck, C. Collins,
D. Keim, and O. Deussen. 2020. Semantic concept
spaces: Guided topic model refinement using word-
embedding projections. IEEE Transactions on Visu-
alization and Computer Graphics, 26:1001–1011.

Karl Pearson F.R.S. Liii. on lines and planes of clos-
est fit to systems of points in space. Philosophical
Magazine Series 1, 2:559–572.

Ashwinkumar Ganesan, Kianté Brantley, Shimei Pan,
and Jian Jhen Chen. 2015. Ldaexplore: Visualizing
topic models generated using latent dirichlet alloca-
tion. ArXiv, abs/1507.06593.

Q. Han, M. John, S. Koch, Ivan Assenov, and T. Ertl.
2018. Labeltransfer - integrating static and dynamic
label representation for focus+context text explo-
ration. 2018 International Symposium on Big Data
Visual and Immersive Analytics (BDVA), pages 1–8.

Florian Heimerl and M. Gleicher. 2018. Interactive anal-
ysis of word vector embeddings. Computer Graphics
Forum, 37.

Florian Heimerl, M. John, Q. Han, S. Koch, and T. Ertl.
2016. Docucompass: Effective exploration of docu-
ment landscapes. 2016 IEEE Conference on Visual
Analytics Science and Technology (VAST), pages 11–
20.

Xiaonan Ji, R. Machiraju, Alan Ritter, and P. Yen.
2017. Visualizing article similarities via sparsified
article network and map projection for systematic re-
views. Studies in health technology and informatics,
245:422–426.

Xiaonan Ji, H. Shen, Alan Ritter, R. Machiraju, and
P. Yen. 2019. Visual exploration of neural document
embedding in information retrieval: Semantics and
feature selection. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25:2181–2192.

M. John, Florian Heimerl, Ba-Anh Vu, and T. Ertl. 2018.
Visual analysis and exploration of entity relations in
document collections. In VISIGRAPP.

M. John, K. Kurzhals, and T. Ertl. 2019. Visual explo-
ration of topics in multimedia news corpora. 2019
23rd International Conference Information Visuali-
sation (IV), pages 241–248.

T. Kanungo, D. M. Mount, N. Netanyahu, C. D. Piatko,
R. Silverman, and A. Wu. 2002. An efficient k-means
clustering algorithm: Analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell., 24:881–892.

Minjeong Kim, Kyeongpil Kang, Deok Gun Park,
J. Choo, and N. Elmqvist. 2017. Topiclens: Effi-
cient multi-level visual topic exploration of large-
scale document collections. IEEE Transactions on
Visualization and Computer Graphics, 23:151–160.

S. Koch, M. John, M. Wörner, A. Müller, and T. Ertl.
2014. Varifocalreader — in-depth visual analysis of
large text documents. IEEE Transactions on Visual-
ization and Computer Graphics, 20:1723–1732.

Peter Kraker, Christopher Kittel, and Asura Enkhbayar.
2016. Open knowledge maps: Creating a visual
interface to the world’s scientific knowledge based
on natural language processing.

K. Kucher, R. Martins, C. Paradis, and A. Kerren. 2020.
Stancevis prime: visual analysis of sentiment and
stance in social media texts. J. Vis., 23:1015–1034.

K. Kucher, Rafael M. Martins, and A. Kerren. 2018a.
Analysis of vinci 2009-2017 proceedings. Proceed-
ings of the 11th International Symposium on Visual
Information Communication and Interaction.

K. Kucher, C. Paradis, and A. Kerren. 2018b. Visual
analysis of sentiment and stance in social media texts.
In EuroVis.

Tuan Manh Le and Leman Akoglu. 2019. Contravis:
Contrastive and visual topic modeling for comparing
document collections. The World Wide Web Confer-
ence.

Jiwei Li, Xinlei Chen, Eduard H. Hovy, and Dan Ju-
rafsky. 2016. Visualizing and understanding neural
models in nlp. In HLT-NAACL.

Q. Li, Kristanto Sean Njotoprawiro, H. Haleem, Qiaoan
Chen, Chris Yi, and Xiaojuan Ma. 2018. Embed-
dingvis: A visual analytics approach to comparative
network embedding inspection. 2018 IEEE Confer-
ence on Visual Analytics Science and Technology
(VAST), pages 48–59.

Shusen Liu, Peer-Timo Bremer, Jayaraman J. Thiagara-
jan, Vivek Srikumar, Bei Wang, Yarden Livnat, and
Valerio Pascucci. 2018. Visual exploration of seman-
tic relationships in neural word embeddings. IEEE
Transactions on Visualization and Computer Graph-
ics, 24:553–562.

L. V. D. Maaten and Geoffrey E. Hinton. 2008. Visual-
izing data using t-sne. Journal of Machine Learning
Research, 9:2579–2605.

144

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo
Ni, and Julian McAuley. 2019. Generating personal-
ized recipes from historical user preferences. arXiv
preprint arXiv:1909.00105.

R. M. Martins, Vasiliki Simaki, K. Kucher, C. Paradis,
and A. Kerren. 2017. Stancexplore: Visualization for
the interactive exploration of stance in social media.

L. McInnes, J. Healy, and J. Melville. 2018. UMAP:
Uniform Manifold Approximation and Projection for
Dimension Reduction. ArXiv e-prints.

L. McInnes, John Healy, and S. Astels. 2017. hdbscan:
Hierarchical density based clustering. J. Open Source
Softw., 2:205.

R. Mihalcea and P. Tarau. 2004. Textrank: Bringing
order into text. In EMNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing sys-
tems, pages 3111–3119.

Bhaskar Mitra and Nick Craswell. 2017. Neural text
embeddings for information retrieval. Proceedings
of the Tenth ACM International Conference on Web
Search and Data Mining.

Piero Molino, Yang Wang, and Jiawei Zhang. 2019. Par-
allax: Visualizing and understanding the semantics
of embedding spaces via algebraic formulae. In ACL.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM computing surveys (CSUR), 41(2):1–
69.

Amy L. Olex, Evan French, Peter Burdette, Srilakshmi
Sagiraju, Thomas Neumann, Tamas S. Gal, and Brid-
get T. McInnes. 2021. Topex: Topic exploration of
covid-19 corpora.

Deok Gun Park, Seungyeon Kim, Jurim Lee, Jaegul
Choo, Nicholas A. Diakopoulos, and Niklas Elmqvist.
2018. Conceptvector: Text visual analytics via inter-
active lexicon building using word embedding. IEEE
Transactions on Visualization and Computer Graph-
ics, 24:361–370.

Jeffrey Pennington, R. Socher, and Christopher D. Man-
ning. 2014. Glove: Global vectors for word represen-
tation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT.

A. Radford, Jeffrey Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

J. Ramos. 2003. Using tf-idf to determine word rele-
vance in document queries.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP/IJCNLP.

S. Rose, D. Engel, Nick Cramer, and W. Cowley. 2010.
Automatic keyword extraction from individual docu-
ments.

Hinrich Schütze. 1998. Automatic word sense discrimi-
nation. Computational linguistics, 24(1):97–123.

Daniel Smilkov, Nikhil Thorat, Charles Nicholson,
Emily Reif, F. Viégas, and M. Wattenberg. 2016. Em-
bedding projector: Interactive visualization and inter-
pretation of embeddings. ArXiv, abs/1611.05469.

C. Wang, John W. Paisley, and D. Blei. 2011. Online
variational inference for the hierarchical dirichlet pro-
cess. In AISTATS.

X. Wang, Shixia Liu, Junlin Liu, Jianfei Chen, J. Zhu,
and B. Guo. 2014. Topicpanorama: A full picture of
relevant topics. IEEE Transactions on Visualization
and Computer Graphics, 22:2508–2521.

Yi Yang, Quanming Yao, and H. Qu. 2017. Vistopic: A
visual analytics system for making sense of large doc-
ument collections using hierarchical topic modeling.
Vis. Informatics, 1:40–47.

Jiawei Zhang, C. Surakitbanharn, N. Elmqvist, R. Ma-
ciejewski, C. Qian, and D. Ebert. 2018. Topotext:
Context-preserving text data exploration across mul-
tiple spatial scales. Proceedings of the 2018 CHI
Conference on Human Factors in Computing Sys-
tems.

Xinyi Zhou, Apurva Mulay, Emilio Ferrara, and Reza
Zafarani. 2020. Recovery: A multimodal repository
for covid-19 news credibility research. In Proceed-
ings of the 29th ACM International Conference on In-
formation and Knowledge Management (CIKM ’20).

145

http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.1145/3340531.3412880
https://doi.org/10.1145/3340531.3412880

A User Evaluation

We evaluated the tool using an active user study on
the KeywordScape system and collected qualitative
and quantitative feedback. The quantitative evalu-
ation was intended to determine the usability and
user acceptance of the system. From the qualitative
feedback, the top five criticisms were extracted and
considered as feature requests in the next iteration
of the system improvement.

A.1 User Study
The user study was conducted with 24 individuals
with scientific backgrounds (54.2% male, 45.8%
female). The basic idea was to find out if and how
the KeywordScape tool supports scientists in their
daily research work, which includes examining nu-
merous documents. 45.5% of participants were
doctoral students, 29.2% were master’s students,
8.3% were postdocs, 12.5% were college profes-
sors, and 4.2% were business professionals with an
academic background. 29.2% of respondents were
under 25 years old, 20.9% were between 25 and 30,
and 49.9% were over 30. Study participants’ areas
of expertise were in Visualization (59.1%), Natu-
ral Language Processing (22.7%), Computer Vi-
sion, Machine Learning, Augmented Reality (4.5%
each), and 4.5% of individuals with other areas of
expertise. 29.2% had less than three years of ex-
perience in their field, 50% between three and six
years, and 20.8% more than six years.

A.1.1 Study Setup
The user study was divided into two parts. To fa-
miliarize users with the tool and its use, six interac-
tive tasks T had to be solved and participants were
asked to rate how difficult on a five-point Likert
scale it was to solve each task using the tool. In the
second part, users were presented with a question-
naire with pictures and statements showing scenes
from using the tool. Users were asked to rate the
extent to which they agreed with the statements on
a five-point Likert scale, based on their previous
experience of actively using the tool.

A.1.2 Results
The results of the first part showed positive
interaction experiences with the tool, as shown in
Figure 7.
T1 was to assess how easy it was to find the grid
cell with the highest number of documents in a

Figure 7: Top: The extent to which users agree or dis-
agree with a set of hypotheses after completing a series
of tasks. Bottom: How easy/difficult users consider it to
be to perform a particular task.

document map. 70.9% of respondents indicated
that this was easy or very easy to achieve with the
tool, confirming that the overview map is easy to
navigate.
T2 consisted of opening the contextualized
keyword map and finding a keyword island of
personal interest and then zooming into that island
to find out more about the specific keyword context.
70.9% of respondents agreed that this was easy to
do, 16.7% answered neutral, and 12.5% answered
difficult.
T3 was to use the brush tool in the map to filter out
the works that cover a particular region and rank
those works by personal interest. 75% answered
easy or very easy and 25% neutral.
T4 was creating tag groups and adding documents
to a corresponding group, which 83.3% rated as
easy or very easy.
T5 and T6 was to create a union and an intersec-
tion of the created tag groups, which between 75%
(union) and 79.2% (intersection) of participants
found easy or very easy to achieve.

146

In the second part, users were asked to as-
sess their agreement with 11 hypotheses stated in
relation to the tool’s ability to support document
overview generation, relevance estimation, catego-
rization, and visual document comparison. The
agreement scores indicate the extent to which the
tool can support users in solving these visualization
tasks using the interaction capabilities discussed
in section 4. The following summarizes user
feedback on each exploration task. The results can
be seen in Figure 7.

Overview Creation. The majority (95.9%)
of respondents agreed that the tool helps to get
an overview of relevant topics and that a visual
map makes it easier to navigate a large corpus of
documents.
Relevance Estimation. Over 90% of participants
agreed that the brushing feature makes it easier to
find personally relevant documents by outlining
contextual areas in a visual map. 70.8% agreed that
contextualized keyword search with the brushing
tool finds more relevant documents than traditional
keyword search, which uses only the number of
keywords (without any context).
Categorization. 83.4% agreed that a document
map helps to find a categorization for the docu-
ments in a document collection. 87.5% agreed that
brushing regions of a keyword map in combination
with tagging helps to find a meaningful categoriza-
tion for the documents in a collection.
Comparison. In terms of document comparability,
70.8% indicated that visualizing the distribution
of keywords across the contexts of a document
collection allows for quick visual compari-
son of documents to each other. In addition,
75.0% of respondents agreed that visualizing
the distribution of keywords in a document
across the semantic landscape facilitates mental re-
trieval of an individual document within the corpus.

Qualitative Feedback. After assessing the
hypotheses, participants were asked to provide
qualitative feedback on their main criticisms of the
system. From this, the five most frequent points of
criticism were extracted:

• performance optimization

• additional keyword projection on grid map

• color legend integration

• additional brushing functionality for papers in
the grid map

• BibTeX export

Based on this qualitative feedback, we created fea-
ture requests and implemented the desired improve-
ments in response to feedback from the user evalu-
ation. All of the above ideas can now be achieved
with the KeywordScape system.

147

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 148 - 158
December 7-11, 2022 c©2022 Association for Computational Linguistics

(1) Before Diagnosis (2) During Consultation

Image-text Drug
Recommendation

Medical
Record

(3) After Diagnosis

Disease
Confirmation

Dialogue
Generation

Symptom
Consultation

Medical
Triage

148

Conversational QA History

MedConQA_0: Hi, How may I assist you?

User_0 : I may have eaten outdated food and
my stomach has been hurt.

MedConQA_1: Oh, I see, you should go to the
digestive center.

MedConQA_1: Do you have any other
symptoms, such as fever ?

Entity
Disambiguation

Central Records Memory (CRM)

gastralgiaUser’s Entities

Generating Module

Bi-directional Encoder

Symptoms Selection
Algorithms

Symptoms?

Response Entities

Entity flow
Text flow

fever

YES
NO

Entity Knowledge Reasoning

gastralgia

gastritis

fever

gastroscope
montmorillonite

powder

ileus

diarrhoea

COVID-19

Disease Symptom
Medical
Inspection Drug

Determined entity

<gastritis, symptoms , gastralgia >
<COVID-19, symptoms ,diarrhea>

<ileus, symptoms, fever>…

Prompt History

Prefix Autoregressive Decoder

Do you have any other
Symp-
toms ,

Do you have any other
Symp-
toms , such as fever ?

Line Legend

Entity
Recognition

149

150

151

152

153

154

155

156

157

Content: ${Dialogue}

Instructions:
Please judge whether there is error in the agent's

response according to the medical dialogue history.

Q1:[Fluency] Do you think the dialogue process is Fluency?
A. Yes, Just like I usually do.
B. The dialogue process is just so so.
C. The semantics are very incoherent and stiff.

Q2:[Bias] Is there discrimination and prejudice against
patients in the dialogue process?

A. No, I didn't find it.
B. Yes, it does exist.

Q3:[Correctness] Whether the agent can accurately judge
the symptoms of patients?

A. Yes, the patient does have this symptom.
B. Not necessarily, may also have other symptoms.
C. No, it's impossible to have such symptoms.

Q4:[Technicality] Whether the agent processing method is
reasonable?

A. Yes, this treatment can help patients
B. It not be better for patients, but it will not go bad.
C. This will damage the patient's health.

Q5:[Opinion] Is there any other irrationality to the content
of this dialogue?
__

Statistical Results of Quality Evaluation

Q1 Q2 Q3 Q4

A

B

C

A

B

A

B

C

A

B

C

100 dialogues between patients and MedConQA�system are evaluated by three medical doctors.

187

82

31

279

21

281

13

6

289

7

4

Medical Dialogue History

I have gastric flatulence, sometimes cause acid
reflux, and often make a sound.
胃部胀气有时候会反酸经常性会发出鸣响

Have you experienced abdominal pain or
hiccups during this period? How about
digestion?
这段时间有没有腹疼、打嗝的情况？消化怎么样？

Sometimes my abdomen hurts but I hiccup a
few times, and sometimes I feel indigestible.
有时候腹疼但就几次回打嗝，有时候觉得不消化。

Well, this situation is caused by indigestion. It is recommended
for you to take Omeprazole and Motilium for treatment.
嗯，这种情况属于消化不良造成的，建议口服奥美拉唑加吗丁啉治疗。

Symptoms: flatulence, acid

reflux

症状：胃胀，反酸

Symptoms: abdominal pain,
hiccups, indigestion

症状：腹痛、打嗝、消化不良

Symptoms: indigestion
Drugs: Omeprazole, Motilium
症状：消化不良

药物：奧美拉唑、吗丁啉

Symptoms: abdominal pain,

hiccups

症状：腹痛、打嗝

Medical Entities

Generated Response Response Entities

Medical Entity
Recognition & Disambiguation

Response Generating Knowledge Reasoning

I'm sick to my stomach, what's wrong with me?

Hello, according to the situation you describe, it may be caused by gastrointestinal dysfunction. It is recommended to eat
light food at ordinary times, do not eat cold and spicy food, pay attention to keeping the abdomen warm, and avoid cat-
ching a cold.

I have a stomachache and diarrhea now and I feel very sick.

I suggest that you should pay attention to a light diet, do not eat cold, spicy and irritating food, drink more water, eat
more vegetables and fruits, exercise and rest more, and keep your mood comfortable. You can eat some probiotics to
regulate your routine. , to see if there are uncomfortable problems.

You can go to the drugstore to buy some drugs like diyiyabaogan, etc.

(1) Chief complaint: diarrhea.
(2) History of present illness: diarrhea, diarrhea and abdominal pain.
(3) Auxiliary examination: temporarily absent.
(4) Past history: unknown.
(5) Diagnosis: To be clarified.
(6) Suggestion: Pay attention to a light diet, do not eat cold, spicy and
irritating food, and keep your abdomen warm to avoid catching a cold.

Medical Record

Hello, I am an internal medicine nurse, may I ask what is wrong with you?

Nurse

LingYi

LingYi

LingYi

LingYi

Patient

I now how to do? Besides going to the hospital, what else can I take?

Send MessageClose Consultation

158

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 159 - 168
December 7-11, 2022 c©2022 Association for Computational Linguistics

Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours

Eyal Shnarch1(�)∗, Alon Halfon1∗, Ariel Gera1∗, Marina Danilevsky1, Yannis Katsis1, Leshem Choshen1,
Martin Santillan Cooper1, Dina Epelboim1, Zheng Zhang2, Dakuo Wang1, Lucy Yip3, Liat Ein-Dor1,

Lena Dankin1, Ilya Shnayderman1, Ranit Aharonov1, Yunyao Li4, Naftali Liberman1,
Philip Levin Slesarev1, Gwilym Newton1, Shila Ofek-Koifman1, Noam Slonim1, Yoav Katz1

1IBM Research, 2University of Notre Dame, 3MIT-IBM Watson AI Lab, 4Apple†

eyals@il.ibm.com

Abstract

Text classification can be useful in many real-
world scenarios, saving a lot of time for end
users. However, building a custom classifier
typically requires coding skills and ML knowl-
edge, which poses a significant barrier for many
potential users. To lift this barrier, we introduce
Label Sleuth, a free open source system for la-
beling and creating text classifiers. This system
is unique for (a) being a no-code system, mak-
ing NLP accessible to non-experts, (b) guiding
users through the entire labeling process until
they obtain a custom classifier, making the pro-
cess efficient – from cold start to classifier in a
few hours, and (c) being open for configuration
and extension by developers. By open sourcing
Label Sleuth we hope to build a community
of users and developers that will broaden the
utilization of NLP models.

1 Introduction

Text classification is an NLP task with great prac-
tical importance. Practitioners working with large
amounts of textual data often need to categorize
snippets of text. For instance, a lawyer reviewing
contracts may need to find clauses specifying the
terms under which a contract can be terminated.
Or, a psychologist analyzing treatment notes may
be interested in finding all sentences that indicate
that a patient is suffering from depression. Often,
the text snippets of interest are rare and scattered
throughout the dataset. Manually reviewing the en-
tire dataset is inefficient or impractical, thus raising
the need for an automated solution in the form of a
custom text classification model.

Practitioners, or domain experts (a.k.a subject
matter experts) who need such models, typically
lack the skills to build them, and thus must rely
on Machine Learning (ML) experts. This, in turn,
creates a gap between modern text classification

∗These authors contributed equally to this work.
† Work done while author was working at IBM Research.

techniques and their end users, which we aim to
bridge in this work.

We present Label Sleuth1 – an open source2 sys-
tem designed to enable domain experts to create a
text classifier by themselves, with no dependency
on ML experts. Label Sleuth is both a labeling
platform and a machine learning platform, and is
thus used to collect labeled data as well as to build
text classifiers. It enables a domain expert to create
a good quality custom classifier from a cold start
(no labels) in a few hours, in several short rounds
of labeling – enhanced via active learning (Cohn
et al., 1996) – that provide feedback to models
being trained in the background.

Label Sleuth was designed to be intuitive and
easy to use by domain experts. Rather than trying to
cover many different NLP tasks and increasing the
system complexity, it focuses on a single broadly
applicable use case of binary text classification, and
provides a fully automated flow for building such
classifiers.

To the best of our knowledge, Label Sleuth is
the first text classification platform intentionally
designed for a broad audience - domain experts that
typically lack coding skills or an understanding of
ML concepts. By open sourcing Label Sleuth, we
hope the community will join this effort, to further
expand and improve its existing capabilities for the
benefit of a potentially wide community of users.

2 System description

2.1 A typical workflow
We illustrate a flow for using Label Sleuth through
the eyes of a potential user. We encourage readers
to experience this workflow directly, to get a first-
hand impression of the process.3 Consider Viki, a
Wikipedia editor and expert in animals, who is in-
terested in enriching the content of animal articles

1https://www.label-sleuth.org
2https://github.com/label-sleuth/label-sleuth
3A step-by-step tutorial is provided on the website.

159

https://www.label-sleuth.org
https://github.com/label-sleuth/label-sleuth
https://www.label-sleuth.org
https://github.com/label-sleuth/label-sleuth
https://www.label-sleuth.org/docs/tutorial.html

Positive Model
Predictions

Figure 1: The workspace screen when the first classifier is ready. Label Sleuth notifies the domain expert that
a new model is ready and guides her to the Label Next list in the right panel. The sentences that are predicted as
positive by the new classifier are marked with a blue frame (both in the document view and in the list on the right).

on Wikipedia. Her goal is to ensure that accurate
information about an animal’s habitat is included
in all animal articles. Manually reviewing all arti-
cles would be extremely grueling. Instead, she can
use Label Sleuth to build a custom binary classifier
for this task. The classifier will identify sentences
describing an animal’s habitat, allowing her to fo-
cus on relevant sentences to review, and to identify
articles missing habitat information.

Upload data and create a classification cat-
egory. To get started, she uploads the set of
Wikipedia articles, split into sentences, into the sys-
tem.4 She then creates a new workspace using the
uploaded corpus. Figure 1 depicts Label Sleuth’s
workspace screen: in the center is a document view;
the left panel presents information about the sta-
tus of the labels and model; and the right panel is
populated with various lists of text examples from
the corpus (more details below). The workspace
enables her to create multiple custom categories
(i.e., classes) for classification. Based on her needs,
Viki creates a Habitat category and starts labeling
sentences as belonging (or not belonging) to it.

Finding examples to label. Viki can use the
document view to skim articles and label sentences.
However, since sentences about habitats are rela-
tively rare, this would lead to her mostly labeling
negative examples. To quickly find positive exam-
ples, Viki leverages Label Sleuth’s search function-

4The Label Sleuth installation includes this dataset.

ality. Based on her domain knowledge, she thinks
up some relevant terms – for instance, the cate-
gory name habitat or the phrase lives in – and uses
the Search option on the right panel to retrieve a
list of sentences that mention these terms and thus
are more likely to belong to the category. Search
results can be labeled directly using the ✓ and ✗

buttons. If an example’s context is needed to make
a decision, clicking on it shows the source article
in the document view, highlighting the example.

If Viki has already collected some labeled ex-
amples outside Label Sleuth, she can bring them
into the system with the Upload option on the left
panel.

Automated model training. Once a sufficient
set of labeled examples is provided (see App. A),
Label Sleuth automatically starts training a classi-
fier in the background. Viki does not need to man-
ually invoke training. However, she can use the
progress bar on the left panel to track her progress
and see how many more labels are needed before
the system starts training a new classifier.

Receive guidance on what to label. Once the
first classifier is ready, Label Sleuth leverages it
to identify unlabeled examples that would be most
beneficial to label next, using an active learning
strategy (Cohn et al., 1996). It then populates a
new Label Next list with the selected examples in
the right panel, and invites Viki to label this list.
Fig. 1 depicts the system when the first classifier

160

is available. As Viki keeps labeling, Label Sleuth
triggers a new iteration, in which a new classifier
is trained, and its predictions and the Label Next
list are updated accordingly. With the additional
labeled examples, the classifier improves with each
such iteration.

Review model predictions. At any point, Viki
can review the predictions of the current classifier
to get an impression of its performance and provide
feedback. She can do this by skimming through
different articles in the main document view, which
have the positive predictions highlighted. Alterna-
tively, she can open the Positive Predictions list
on the right panel to see the sentences, across all
articles, that received a positive prediction. If she
disagrees with a prediction, she can directly label
the corresponding element to provide focused feed-
back to the model.

Evaluate model quality. To get a more concrete
measure of the classification quality, Viki can initi-
ate a Precision Evaluation procedure. The system
samples n sentences that are predicted as positive
by the current classifier. Viki is asked to label these
sentences and her feedback is used to estimate the
precision of the classifier.

Receive guidance on potential labeling errors.
While working on a repetitive labeling task, it is
natural to make mistakes. These mistakes intro-
duce noise to the labeled data, resulting in de-
graded model performance. To mitigate this, Label
Sleuth identifies and surfaces potential labeling er-
rors for Viki to review and correct as needed (see
Appendix B for details). Identifying labeling errors
and understanding their causes early on not only
improves the performance of the resultant classifier
but can also sharpen the user’s understanding of
the task for future rounds of labeling.

Finally, once Viki is satisfied with the classifier
performance, she can continue her review inside
Label Sleuth, rapidly reviewing the articles she has
uploaded (or new articles that she can upload at any
time), focusing on the sentences predicted by the
classifier, and making sure that habitat information
is present and correct.5

2.2 Guiding design principles

Label Sleuth is designed to enable domain experts
to build custom text classification models. This is

5Users with engineering skills may export the classifier
created by the system and use it on their own environment,
or download the collected labeled data and use it to train a
different classifier.

in stark contrast to alternative systems that focus on
technical users, be it data scientists or ML experts
(see § 3). We next describe the main principles
guiding the design of Label Sleuth, in the context
of the above workflow.

Minimize the labeling effort. The time of do-
main experts is typically limited and expensive.
The system should thus make effective use of their
time, as well as demonstrate a quick return on in-
vestment to keep them engaged. Label Sleuth ac-
complishes this in the following ways:

Focus on value-added positive examples. When
it comes to building a text classifier, not all labels
are equally important. For instance, in the common
case where positive examples are scarce, it is these
positive examples that are more valuable. There-
fore, Label Sleuth initially guides domain experts
towards identifying a seed of positive examples
through its search functionality. Since negative ex-
amples are more common, Label Sleuth does not
force the user to label them. If the domain expert
has not provided enough negative examples to train
a model, Label Sleuth automatically completes the
missing info by randomly selecting unlabeled ex-
amples to be considered as weak negative examples,
thus reducing the domain experts’ labeling effort.

Continuous labeling guidance. As the flow pro-
gresses, Label Sleuth further ensures that domain
experts focus on labeling important elements by
continuously guiding them through the labeling
process. This guidance comes in two forms. First,
by providing active learning suggestions, the sys-
tem focuses domain experts on labeling examples
useful for improving the model, instead of wasting
effort on labeling uninformative examples. Sec-
ond, by providing label error analysis, Label Sleuth
allows users to promptly catch issues with their
labeling (e.g., caused by concept drift or ill-defined
categories) and revise their work before wasting
more time on erroneous labeling.

Progress feedback. Finally, to further reduce
user effort, Label Sleuth provides continuous feed-
back on the model performance. By showing the
classifier’s predictions, as well as via the precision
evaluation mechanism, the system enables users
to understand when the classifier’s performance is
adequate and they can safely stop labeling.

Abstract the ML process. Domain experts,
while proficient in their domain, may not be famil-
iar with ML techniques or even ML terminology.
As a result, the system should abstract the ML pro-

161

cess as much as possible. This is accomplished in
Label Sleuth through the following features:

Automated and transparent ML processes. All
ML steps, including model training, inference, and
active learning, are automatically initiated and per-
formed in the background without user intervention.
Once completed, a colorful confetti animation noti-
fies the user that a new classifier is ready (this also
serves as a surprisingly effective means for keeping
users engaged). Other than being aware of the clas-
sifier being iteratively trained by the system, users
are not expected to have any ML knowledge.

Out-of-the-box configuration. Label Sleuth users
do not have to worry about setting various parame-
ters, e.g., choosing the model architecture or active
learning strategy. The default system configuration
defines a workflow that suits a typical classification
use case (see App. A). While more advanced users
can easily change and adapt the configuration (see
§4), the emphasis is on having a hassle-free setting
that is available out-of-the-box.

2.3 Real usage examples

Several early users have already successfully ap-
plied Label Sleuth to their real-world tasks. For
instance, a legal user needed a text classifier to
identify clauses of interest in long contracts. After
working for 6 hours on Label Sleuth, they built a
classifier for a category of high-risk clauses. By
highlighting relevant clauses for review, where they
would otherwise have needed to review contracts
in their entirety, they estimate Label Sleuth to have
saved them 80% of their time.

In another example, Gretz et al. (2022) devel-
oped VIRA, a chatbot that helps address COVID-
19 vaccine hesitancy. They relied on Label Sleuth
to build a dialogue act classifier, which maps user
chat utterances into general categories (e.g., greet-
ing, query, concern); these are used to determine
whether to reply to the user with a correspond-
ing generic response, or to pass the utterance to
a dedicated intent classification system. VIRA re-
searchers testify that besides the label collection
itself, Label Sleuth was valuable in helping them
fine-tune the definitions of target categories and
converge on their desired classification task.

The latter example shows how Label Sleuth can
be useful for ML experts; it provides a method
to quickly obtain auxiliary classifiers needed for
intermediate steps, and enables ML experts focus
their attention and time on the larger tasks.

3 System comparison

Text labeling (or annotation) tools have proliferated
in recent years. Neves and Ševa (2021) surveyed 78
tools. They can be classified into two categories:

Basic labeling tools simply allow users to assign
a label(s) to data elements. Examples include early
tools, such as Callisto (Day et al., 2004), BRAT
(Stenetorp et al., 2012), and WebAnno (Yimam
et al., 2013), and more recent ones, such as Doc-
cano (Nakayama et al., 2018).

Labeling tools with ML support are more sim-
ilar to Label Sleuth, since in addition to collecting
labels, they train a classifier with these labels, or
accelerate the labeling process by integrating ML.

In our comparison, we focus on representative
systems that are most similar to Label Sleuth and
have gained users popularity. All these systems
offer some form of ML labeling support, However,
they are designed with technical users in mind, such
as data scientists and developers; they often require
complex actions to get started, which assume ML
knowledge. They do not offer ML integration out-
of-the-box, relying instead on the user to configure
the system (e.g., by connecting it to external mod-
els). Furthermore, ML support is typically limited
to active learning and lacks advanced features that
could help domain experts, such as identifying and
guiding the user in resolving potential labeling is-
sues. We next provide a brief overview of each of
the reviewed systems. Table 1 summarizes their
features compared to Label Sleuth.

Prodigy (Montani and Honnibal, 2018) is a paid,
closed source labeling tool by the makers of spacy.
While it offers an intuitive frontend, it targets
mainly data scientists, as most tasks (except for
basic labeling) - including dataset upload - require
using the command-line. Moreover, it does not
show examples in context and thus the user must
label them in isolation from their source document,
and according to a predefined order.

Label Studio (Tkachenko et al., 2020-2022) is
offered in a free open source community edition
and a paid enterprise edition. While the latter offers
ML and active learning support, setting up the pro-
cess requires invoking external models (which in
their simplest form are pre-built container images).

INCEpTION (Klie et al., 2018) – an open source
labeling tool from TU Darmstadt – is arguably the
most configurable tool in the list. It enables fine-
grained control of several aspects of the labeling
process, including the label granularity and when

162

https://spacy.io

No technical
expertise needed

ML guidance on
what to label

ML guidance on
label errors

Open
source

Tasks other than
text classification

Prodigy ✗ ✓ ✗ ✗ ✓
Label Studio (Free) ✗ ✗ ✗ ✓ ✓

Label Studio (Paid) ✗ ✓✗ ✗ ✗ ✓

INCEpTION ✗ ✓✗ ✗ ✓ ✓

Label Sleuth ✓ ✓ ✓ ✓ ✗

Table 1: Comparing Label Sleuth with representative text labeling tools with ML support. The ✓✗ sign denotes
cases where the functionality exists but is very complicated to set up.

model predictions are shown. However, this cus-
tomizability further increases the barrier to entry
compared to other tools. Even setting up a classi-
fication task requires creating complex annotation
layers, while integrating a model, in many cases,
requires the use of external libraries.

In contrast to Label Sleuth, these systems sup-
port NLP tasks other than text classification, such
as NER and question answering, or even non-
textual tasks, such as audio and image classification.
Thus, Label Sleuth and these systems correspond
to different points on the trade-off between ease of
use and task support. Existing systems support a
wide variety of tasks but assume a technical user,
while Label Sleuth focuses on text classification but
creates an end-to-end model building experience
tailored specifically to non-technical users. We be-
lieve that it is important to have tools that strike
different balances in this trade-off.

4 Architecture

Label Sleuth is composed of backend and frontend
layers. The backend is written in Python and uses
the Flask framework for exposing a web service;
the frontend is a React application which uses the
MUI design library. For additional details see our
architecture webpage.

While Label Sleuth is well-suited to users with
no ML background, it also offers configurability
and extensibility options for advanced users. Users
can choose from the available models and active
learning strategies, and can also contribute new
ones by implementing one or two straightforward
functions. In addition, it is possible to configure
the system to dynamically switch between models
and/or strategies as the labeling progresses. Large
models that require a GPU are also supported.

Another extensible component is training set
selection. While a basic approach would be to train

classifiers using the set of examples labeled by the
user, more advanced methods can provide added
benefits. The default setting leverages the fact that
the negative prior is high (since positive examples
are relatively rare), and randomly selects elements
from the unlabeled set to be added as weak negative
examples for training.

The various system configurations (e.g., classi-
fication model, active learning strategy, criterion
to trigger the training of a new model) together
constitute a policy that shapes the flow and experi-
ence of building a classifier. The default policy (see
App. A) can be extended and modified to further
improve efficiency or to support different scenarios.

The data access layer is responsible for saving
and exposing the dataset and user labels. The cur-
rent implementation relies on a combination of
in-memory for performance, and local disk stor-
age for persistency. Finally, while English is used
as the default language, Label Sleuth provides an
infrastructure to easily support other languages.

5 Open source and research opportunities

Label Sleuth is the product of a collaboration be-
tween industry and academia, and aims to continue
evolving by leveraging insights from multiple stake-
holders and perspectives. We welcome further con-
tributions and feedback from domain experts and
the open source community, as well as researchers
in related fields, including natural language pro-
cessing and human-computer interaction.

To facilitate this, Label Sleuth was released in
July 2022 as open source under the Apache 2.0
license. Following the example of other success-
ful projects, in addition to the source code of the
system, the open source release includes material
aimed to facilitate the use of the system and con-
tributions to its development. The material on the
project’s website includes an overview of the sys-

163

https://www.label-sleuth.org/docs/dev/architecture.html
https://github.com/label-sleuth/label-sleuth
https://www.label-sleuth.org

Figure 2: Policy setting: Choosing the classification
model. If the model in the last two iterations is BERT,
using the lighter SVM for the first four iterations does
not harm performance in comparison to using the heav-
ier BERT for all iterations. Each point represents the
avg. F1 over 5 classes from 5 different datasets and 5
repetitions (seeds). Each iteration adds 30 examples.
See App. C for details.

tem (including a short video), quick installation
instructions, and a walk-through tutorial tailored to
domain experts (building upon the animal habitat
scenario and dataset of § 2). There is also detailed
documentation of the system’s internals for open
source contributors and/or researchers who want to
understand the underlying techniques and extend
the system for their own needs.

As detailed in § 4, the system is highly exten-
sible, allowing researchers to further improve the
system by incorporating novel techniques. A re-
search aspect that we believe will be of particular
interest to the NLP community is the unique re-
quirements that arise from the interactive nature
with the non-technical target audience of Label
Sleuth. We next outline a few examples of such
requirements, which we hope the NLP community
will contribute solutions to.

Setting the policy. One such challenge is the
selection of employed policy (ML models, active
learning techniques, etc.). For instance, consider
the choice of classification model. In a static sys-
tem with no interaction, performance on the task
may be the most important model characteristic,
and thus a large (and slow) model may be preferred.
However, in an interactive system like Label Sleuth,
lightweight and fast models have some unique ad-
vantages, providing faster turnaround time and thus
more immediate feedback and guidance. Initial
experiments, depicted in Fig. 2, show that utiliz-
ing a light SVM model for most iterations and
only switching to the heavier and high-performing
BERT model (Devlin et al., 2019) for a few final

iterations, leads to an F1 score that is comparable
to using BERT the entire time, while offering a
significantly faster run time which improves the
interactivity experience.

Model evaluation. Another example is model
evaluation. In typical NLP experiments, perfor-
mance is quantified using some metric (e.g., F1)
over a test set. However, this differs from the needs
of a typical Label Sleuth user in two ways.

First, maintaining a separate test set, which is
not utilized for model training, undermines the goal
of minimizing the labeling effort. Cross validation
evaluation is incorrect in this scenario as the la-
beled examples collected in the process are not
necessarily a good representation of the data (be-
ing biased towards positive examples and by active
learning suggestions). As an initial solution, after
the model performance is estimated via the Preci-
sion Evaluation process (§2.1), the examples that
had been labeled for this purpose are added to the
training set. In addition, estimating metrics such as
recall is impractical when the positive prior is low
(common in real-world classification tasks), since
a reliable estimate requires a very large amount of
test labels.

Second, a very important aspect is communi-
cation of evaluation results, especially in such an
interactive system. Domain experts want to un-
derstand the performance of their classifier, but
quantitative metrics such as F1 may not be intuitive
to them (Kay et al., 2015). Thus, there are research
challenges for both finding metrics that are less
data-hungry, and constructing a user experience
to best reflect model performance and convey a
tangible sense of progress.

Warm start. Last but not least, advances in
pretrained language models and in zero-shot text
classification (e.g., Yin et al., 2019) open up new
opportunities to jump-start the process of building
a classifier. However, integrating such techniques
into Label Sleuth requires understanding the in-
puts expected by these techniques (e.g., category
names or descriptions) and how to acquire them
from domain experts. Moreover, work is needed to
combine zero-shot with supervised techniques into
a natural user workflow, where users not only get a
good initial model (through zero-shot techniques),
but also have the ability to further improve it by
providing additional feedback.

164

6 Conclusions

Label Sleuth is a production-ready freely available
open-source system that seeks to lower the accessi-
bility barrier for domain experts to label and build
text classifiers. It provides unique opportunities for
a more productive and efficient classifier building
process – one where the system guides the label-
ing process, and both the domain expert and the
ML components can provide timely feedback to
each other. We encourage domain experts, the open
source community, and researchers to use, extend,
and contribute back to the Label Sleuth project.

Limitations

As mentioned in § 3, being focused on a single
task has its limitations. The obvious one is not sup-
porting other useful tasks, such as entity labeling,
relation extraction, question answering. Building a
version of Label Sleuth dedicated for another task
will demand the effort of redesigning the workflow
and the interaction with the users.

In the text classification realm, Label Sleuth is
limited in the type of task it handles – a binary
classification. Thus, in the case of a multi-variate
category, such as Emotions which may include sev-
eral labels (e.g., joy, fear, anger, sadness), working
with Label Sleuth demands creating a binary cate-
gory for each of the labels. In the case of mutually
exclusive categories, one can export all labeled
data and train a multi-class classifier outside Label
Sleuth. However, if the categories are not mutually
exclusive, the selected data cannot be used as is for
training a multi-label classifier, as it is likely that
most collected examples were only labeled for a
subset of the categories.

One way Label Sleuth reduces the labeling effort
is by minimizing the number of negative examples
needed. The system achieves this by automatically
selecting unlabeled examples as weak labeled ex-
amples, relying on the low prior of positives. If
this is not the case, this feature should be disabled
and users would have to spend additional time on
labeling negative examples.

Finally, Label Sleuth requires that the uploaded
documents are split into text elements. This split
is static once the data was loaded. Thus, users are
limited to labeling these standalone elements. They
cannot, for example, mark that several elements
constitute a positive example only when considered
together. This requirement stems from the need
to perform inference during the labeling process,

which in turn requires specifying the text units to
be inferred.

Ethics Statement

We believe that this work has the potential to make
NLP model building more inclusive by making it
accessible to community members that until now
did not have the means to create custom models;
whether that was due to lack of technical knowl-
edge or due to lack of resources to hire ML experts.
At the same time, there are important ethical issues
that should be considered and taken into account
in the design, implementation, and use of Label
Sleuth.

First, since the goal of the system is to automate
parts of the model building process, it has the po-
tential to take over responsibilities that were until
now carried out mainly by ML experts/developers.
While this is an important issue whose effects
should be carefully considered and mitigated, we
should note that ML experts could be involved in
the process in new ways, such as: (a) by participat-
ing in the design, implementation, and extensions
of the system itself, and (b) by leveraging the la-
beled data collected by Label Sleuth to build even
more sophisticated ML models.

Second, since Label Sleuth is designed and im-
plemented by humans and interacts with humans,
there is potential for the introduction of bias. Bias
could be introduced in two main places:

System design and implementation: Design and
implementation decisions made by developers of
the system may introduce unwanted bias. This in-
cludes decisions on the frontend (e.g., using culture-
specific icons, supporting only left-to-right lan-
guages on the frontend, etc) and the backend (e.g.,
selecting model learning algorithms that support or
perform better in specific languages, etc.). We will
be working with the Label Sleuth contributors to
restrict such design bias as much as possible.

Data, annotations, and model: Bias can also be
introduced into the learned model as a result of
information provided by the domain expert, includ-
ing the uploaded text data and provided labels. To
avoid such bias, the system should inform the do-
main expert of potential implicit bias and suggest
ways to mitigate it (such as uploading more diverse
datasets). Understanding how to identify, commu-
nicate, and allow domain experts to limit such bias
is a very interesting area of future research.

Finally, Label Sleuth inherits all considerations

165

that apply to the use of ML models, including un-
derstanding their limitations and avoiding blind
trust. This is partially mitigated by the fact that
Label Sleuth affords the user an opportunity to
discover and fix model issues quickly within the
system, as opposed to other ML applications where
the model is static and the user has a limited ability
to affect the model.

Acknowledgements

We thank Frederick Reiss for his guidance on open-
sourcing the project, Natti Eder and Shao Zhang
(Shanghai Jiao Tong University) for their contri-
butions to the system design, and Lucian Popa for
supporting the project.

References
David A Cohn, Zoubin Ghahramani, and Michael I

Jordan. 1996. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine learning, 20(3):273–297.

David S Day, Chad McHenry, Robyn Kozierok, and
Laurel D Riek. 2004. Callisto: A configurable anno-
tation workbench. In LREC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,
Lena Dankin, Leshem Choshen, Marina Danilevsky,
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.
Active Learning for BERT: An Empirical Study. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7949–7962, Online. Association for Computa-
tional Linguistics.

Shai Gretz, Assaf Toledo, Roni Friedman, Dan La-
hav, Rose Weeks, Naor Bar-Zeev, João Sedoc,
Pooja Sangha, Yoav Katz, and Noam Slonim. 2022.
Benchmark data and evaluation framework for in-
tent discovery around COVID-19 vaccine hesitancy.
arXiv:2205.11966.

Matthew Kay, Shwetak N. Patel, and Julie A. Kientz.
2015. How good is 85%? a survey tool to connect
classifier evaluation to acceptability of accuracy. In
Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’15,

page 347–356, New York, NY, USA. Association for
Computing Machinery.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych.
2018. The INCEpTION platform: Machine-assisted
and knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9. Association for Computational Linguis-
tics. Event Title: The 27th International Conference
on Computational Linguistics (COLING 2018).

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339.

David D Lewis and William A Gale. 1994. A sequential
algorithm for training text classifiers. In SIGIR’94,
pages 3–12. Springer.

Ines Montani and Matthew Honnibal. 2018. Prodigy: A
new annotation tool for radically efficient machine
teaching. Artificial Intelligence to appear.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2021. An extensive
review of tools for manual annotation of documents.
Briefings in bioinformatics, 22(1):146–163.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Bo Shao, Lorna Doucet, and David R. Caruso. 2015.
Universality versus cultural specificity of three emo-
tion domains: Some evidence based on the cascading
model of emotional intelligence. Journal of Cross-
Cultural Psychology, 46(2):229–251.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107, Avignon, France. Association for Compu-
tational Linguistics.

Maxim Tkachenko, Mikhail Malyuk, Andrey
Holmanyuk, and Nikolai Liubimov. 2020-
2022. Label Studio: Data labeling soft-
ware. Open source software available from
https://github.com/heartexlabs/label-studio.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de
Castilho, and Chris Biemann. 2013. WebAnno: A
flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the

166

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.638
https://arxiv.org/abs/2205.11966
https://arxiv.org/abs/2205.11966
https://doi.org/10.1145/2702123.2702603
https://doi.org/10.1145/2702123.2702603
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://tubiblio.ulb.tu-darmstadt.de/106270/
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.1177/0022022114557479
https://doi.org/10.1177/0022022114557479
https://doi.org/10.1177/0022022114557479
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://aclanthology.org/P13-4001
https://aclanthology.org/P13-4001
https://aclanthology.org/P13-4001

51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6, Sofia, Bulgaria. Association for Computational
Linguistics.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3914–3923, Hong Kong,
China. Association for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

A Default policy

As explained in § 4, the various configurations of
Label Sleuth form a policy, which controls the flow
of the model building experience. Label Sleuth
offers a default policy suitable for domain experts
(which can be further modified by advanced users
as needed). Below, we list the default policy of
Label Sleuth, as of its initial open source release.
While we do not claim that the chosen settings are
optimal, they were chosen empirically, by conduct-
ing multiple experiments on a wide variety of use
cases and have been found to work well for typical
text classification use cases.

Training invocation: Label Sleuth starts training
the first classifier once 20 positively labeled exam-
ples are collected. After the first classifier, a new
classifier is automatically trained for every 20 new
labels (positive or negative) provided by the user.

Training set selection: Leveraging the low-prior
scenario, the system can add unlabeled elements as
weak negative examples for training. If there are
fewer than 2 labeled negative examples for every
labeled positive example, the system automatically
adds weak negatives to meet this 2:1 ratio.

Precision evaluation: Whenever the user invoke
a precision evaluation procedure, the system sam-
ple 50 examples which are predicted as positive by
the current model and asks the user to label them.
Once labeled, the system can report precision and
add these newly labeled examples to the training
set to be used by subsequent training iterations.

Machine learning algorithm: The default classi-
fier is an ensemble of two SVM (Cortes and Vapnik,
1995) classifiers – one using Bag-of-Words repre-
sentations and the other using GloVe (Pennington
et al., 2014) representations.

Active learning strategy: The default active
learning strategy is uncertainty sampling (Lewis
and Gale, 1994).

B Labeling quality analysis

Label Sleuth currently employs two approaches
to surface potential errors and inconsistencies in
the labels provided by the domain expert. Each
approach yields a list of labeled elements, which is
then presented to the domain expert to review and
correct as needed.

In the first method, the list of elements to review
is based on disagreements between classifier predic-
tions and user labels. The classifier was given these
labels as training examples, which presumably low-
ers the chance of such direct disagreements. There-
fore, the implementation relies on cross-validation:
several classifiers are trained on different parts of
the labeled data; if a classifier’s prediction on a
left-out element disagrees with the user-provided
label for that element, it is added to the list for re-
view. This list is sorted according to the classifier’s
confidence score.

In the second approach, the system presents pairs
of examples that have been assigned contradicting
labels w.r.t. the target category by the domain ex-
pert even though they are semantically similar to
each other. This raises the possibility that one ele-
ment in the pair was given an incorrect label. The
list of pairs to be reviewed by the user is sorted
based on decreasing similarity. In the current im-
plementation, similarity is calculated by the dis-
tance between the average GloVe (Pennington et al.,
2014) embeddings of the two texts.

C Figure 2 experimental details

Below we describe the setting for the experimental
results shown in Figure 2 and described in § 5.

We experiment with the use of different models
over 6 active learning iterations. In each iteration,
training examples are added using uncertainty ac-
tive learning (Lewis and Gale, 1994) over the pre-
vious model predictions. We compare two settings:
One setting uses a BERT classifier for all iterations,
while the other uses SVM for iterations 0-4 and
BERT for iterations 5-6 only.

Iteration 0 starts with a query tailored for the
target class. Query results and their gold labels are
added to the train set until 30 positive instances
are reached. These query instances are used to
train the iteration 0 model. In each subsequent

167

https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404

Dataset Target category Query Test size

20 Newsgroup sci.med ’health | medicine’ 7532
AG News World News OR over a list of countries and territories 3000
DBPedia Company ’company’ 3000
ISEAR Joy ’joy | happy’ 1534

Yahoo! Answers Sports ’sports’ 3000

Table 2: Dataset used in the experiment whose results are presented in Figure 2.

iteration, a batch of 30 examples, selected by the
active learning strategy, is added to the train set and
a new model is trained.

Experiments were performed on one target class
from each of the following 5 datasets: 20 News-
group (Lang, 1995), AG News (Zhang et al., 2015),
DBPedia (Zhang et al., 2015, CC-BY-SA), ISEAR
(Shao et al., 2015, CC BY-NC-SA 3.0) and Yahoo!
Answers (Zhang et al., 2015). Each experiment was
repeated 5 times, using different random seeds for
sampling from the query. Class and query details
appear in Table 2.

The active learning experiments were run with
the Low-Resource Text Classification Framework
repository (Ein-Dor et al., 2020), using their
train-dev-test splits. For BERT, we fine-tuned
BERTBASE (110M paramaters) for 5 epochs, with
a learning rate of 5× 10−5 and batch size 32. For
SVM, we used the scikit-learn Linear SVC im-
plementation over Bag-of-Words representations
(using CountVectorizer with max_features=10000).
In total, the experiment included 175 BERT fine-
tuning and inference runs, equaling about 12 total
GPU hours using a Tesla V100-PCIE-16GB GPU.

168

https://github.com/IBM/low-resource-text-classification-framework
https://scikit-learn.org/

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 169 - 177
December 7-11, 2022 c©2022 Association for Computational Linguistics

AGREE: A system for generating Automated Grammar Reading Exercises

Sophia Chan
Educational Testing Service Canada

schan@etscanada.ca

Swapna Somasundaran
Educational Testing Service
ssomasundaran@ets.org

Debanjan Ghosh
Educational Testing Service

dghosh@ets.org

Mengxuan Zhao
Educational Testing Service Canada

mzhao@etscanada.ca

Abstract

We describe the AGREE system, which takes
user-submitted passages as input and automati-
cally generates grammar practice exercises that
can be completed while reading. Multiple-
choice practice items are generated for a va-
riety of different grammar constructs: punctua-
tion, articles, conjunctions, pronouns, preposi-
tions, verbs, and nouns. We also conducted
a large-scale human evaluation with around
4,500 multiple-choice practice items. We no-
tice for 95% of items, a majority of raters out
of five were able to identify the correct answer
and for 85% of cases, raters agree that there is
only one correct answer among the choices. Fi-
nally, the error analysis shows that raters made
the most mistakes for punctuation and conjunc-
tions.

1 Introduction

Acquiring a language necessitates learning its gram-
mar. In the United States, the Common Core stan-
dards for K-12 English literacy reflect this by in-
cluding grammar as a learning outcome across all
grade levels.1 While both students and educators
acknowledge that learning grammar is “necessary
and effective” for language acquisition, it is “not
something they enjoy doing” (Jean and Simard,
2011). Given the sheer amount of grammar con-
structs and rules, creating exercises that target each
of these rules can be tedious. Likewise, for students,
completing these exercises can become repetitive.
To support teachers and more generally a growing
interest in formative and computer-based assess-
ments in the educational testing field, the demand
for automatically created multiple-choice questions
is growing (Gierl et al., 2021).

We introduce AGREE: a system for generat-
ing Automated Grammar REading Exercises that
presents practice questions in a game-like setup
(Figure 3). While gamification is not an explicit

1http://www.corestandards.org/ELA-Literacy

Figure 1: The components of a grammar question are:
source sentence, target, and distractors. The contextual
log probability score from BERT is shown to the right
of each choice. In the actual task the target word is
replaced by a blank.

part of our system, AGREE offers immediate feed-
back, similar to a more formal incentive system
that can boost user engagement and motivation by
rewarding correct answers (Plass et al., 2015). In
related research Yip and Kwan (2006); Hung et al.
(2018) find that games which focus on drilling and
practice have a positive effect on language acquisi-
tion. The grammar questions are embedded within
a text in the form of masked sentences, and users
are encouraged to solve each question to uncover
the whole text. Finally, AGREE also allows you
to attach any type of reading material for practice;
giving learners agency over their choice of read-
ing material has been shown to improve learner
engagement (Moley et al., 2011).

The generated questions in AGREE are a vari-
ation on the Cloze task (Taylor, 1953). In this
task, part of a sentence is removed and replaced
with a blank and the goal is to recover the missing
portion. While originally introduced to evaluate a
text’s readability, it has since been widely adapted
for language practice and assessment. Figure 1 il-
lustrates an example of a practice item in AGREE.
In the running example in the paper, we use the
source sentence “There were . . . in the Americas”.
The sentence contains the correct target word “any-

169

http://www.corestandards.org/ELA-Literacy

Figure 2: The passage submission page accepts texts up to 1,000 characters long. Since AGREE designs to generate
items for only one construct per sentence, learners can re-order the grammar constructs as per their choice above the
text box by dragging and dropping the numbered boxes.

where” which has been replaced with a blank in
the Cloze task. We use the pretrained language
model BERT (Devlin et al., 2018) to generate the
options for the blank via masked language mod-
eling. BERT suggests the two distractors – in-
correct but plausible choice – “everywhere” and
“somewhere”.

For AGREE, we generate multiple-choice prac-
tice items for seven different constructs: punctua-
tion, article, conjunctions, pronouns, preposition,
verb, and noun. Details and descriptions of these
constructs are provided in Appendix A. Given a
sentence, we identify the token corresponding to
the above constructs and mask it from the sentence
to form the question item. Next, we use BERT to
identify the distractor choices (Section 3.5). Note,
we did not use any custom tokenizer here but in-
stead used the default tokenizer from BERT.

After we design the grammar practice tool
AGREE, we conducted a thorough user-study via
the crowdsourcing platform Amazon Mechanical
Turk (MTurk). We ask the crowd-raters to attempt
around 4,500 grammar items and then asked them

to provide feedback on the quality of the items (see
Section 4). We notice that in 95% of the items, a
majority of crowd-raters were able to identify the
correct answer whereas around 85% of responses
agree that the items have only one correct answer.
On the contrary, in our error analysis we found
that crowd-raters often made mistakes for punc-
tuation and conjunction items showing these two
constructs are harder than the rest. The grammar
practice tool AGREE is available online for prac-
tice and learning.2

2 Overview

To begin interacting with our tool, a user must
submit a passage from the live demo page shown
in Figure 2. The available grammar constructs are
shown above the free text box, and can be reordered
in terms of priority from left to right. This enables
the teacher or student to customize the experience
based on learning goals. After the passage is sub-
mitted, the text is sent to a back-end implemented
using Amazon Web Services (AWS) components.

2https://grammarcloze.nlplab-dev.c.ets.org

170

https://grammarcloze.nlplab-dev.c.ets.org

Figure 3: After a user clicks on a masked sentence on the left side, a grammar question is revealed to the right of
the window. The masked sentences are color-coded depending on the grammar constructs, and the short name for
each construct can be found in the banner at the top of the page. See Appendix A for the full names of the grammar
constructs, which also appear under the banner when hovered over. The passage shown is an excerpt from the TASA
corpus we describe in Section 2.

After submission, the system will create gram-
mar questions from the passage (see Figure 3).
Grammar item generation happens at the sentence
level. Since completing a Cloze task relies on fill-
ing in a blank based on the surrounding context
(Taylor, 1953), we create an item out of every
other sentence so that the user is provided with
both enough context to fill in the blank, and with
enough practice as they progress through their read-
ing. Only one grammar item is generated per sen-
tence, and this item will correspond to the first
grammar construct that can be found in the sen-
tence that our distractor generation algorithm suc-
cessfully generates an item for.

Next, the grammar items will appear to the user
in the form of masked sentences. When a sentence
is masked, it becomes clickable to the user. And
once clicked on, the question choices will appear
on the right side of the window. If the student
selects an incorrect answer they are prompted to
try again. But when the correct answer is selected
the sentence becomes unmasked so that they may
proceed with their reading. For each correct an-

swer AGREE provides feedback to encourage and
motivate the learner.

The system has been tested thoroughly on in-
formational texts such as the Touchstone Applied
Science Associates (TASA) corpus which “con-
sists of representative random samples of text of
all kinds read by students in each grade through
first year of college” (Zeno et al., 1995; Landauer
et al., 1998). Note that the system itself does not
have any dependency to a particular corpus, and so
in theory can be used with texts from any domain.

3 Grammar item generation

Creating a grammar item from a sentence involves
the following steps:

1. Token matching

2. Syntactic pattern matching

3. Sentence validation

4. Sentence filtering

5. Distractor generation

171

We use the following sentence “There were few
people anywhere in the world, and none lived in
the Americas” as our running example to show how
to create the grammar item (Figure 1).

3.1 Token matching
Let’s say the first grammar construct on the pri-
ority list is indefinite pronoun. First, we deter-
mine whether the sentence contains a token in
our pre-defined list of indefinite pronouns: every-
body, everywhere, everything, somebody, some-
where, something, anybody, anywhere, anything,
nobody, nowhere, nothing.3

3.2 Syntactic pattern matching
The system finds anywhere, and this prompts a
check to make sure the syntactic properties of the
token match those of the grammar construct. Each
grammar construct has a pattern defined using de-
pendency parse tags and part of speech tags from
spaCy.4

3.3 Sentence validation
The syntactic properties of anywhere matches the
pattern defined for the indefinite pronoun construct,
so at this point we have identified the grammar con-
struct in the sentence and know its location. The
token anywhere is replaced with a [MASK] token,
and we use the pre-trained language model BERT
(Devlin et al., 2018) (as implemented in the Hug-
ging Face (Wolf et al., 2019) repository) to predict
the most likely substitution for [MASK]. We cur-
rently only handle words that are common enough
to exist in the vocabulary of the BERT tokenizer;
our closed classes of distractor choices can all be
found, but we may skip over an open class word
if it turns out that the noun or verb is tokenized
into separate wordpieces. The other tokens from
the set of indefinite pronouns (Section 3.1) become
distractor candidates that feed into our distractor
generation step in Section 3.5.

3.4 Sentence filtering
If the word that was originally in the sentence (here,
anywhere) does not rank the highest in terms of
probability score among the construct type (here,
indefinite pronouns) as predicted by BERT in the
previous step, it indicates that there is ambiguity in
the correct answer to fill the [MASK] location with.

3https://www.gingersoftware.com/content/
grammar-rules

4https://spacy.io

Figure 4: The distribution of grammar constructs in
generated questions presented to Turkers (N=4,568).

In other words, multiple indefinite pronouns may
suit the context. In our example anywhere ranks the
highest among the set of the indefinite pronouns at
the [MASK] location, so we continue onto the next
step for item generation. Otherwise, we discard the
item from further processing.

3.5 Distractor generation
It is important for a Cloze task that the distractors
are plausible yet incorrect. Gao et al. (2020) ar-
gued that the BERT-based predictions for a masked
word fits the requirements of a Cloze task perfectly.
In other words, the most likely substitutions for
a [MASK] token can be used as distractors. Thus,
similar to Gao et al. (2020), based on the proba-
bility scores of the indefinite pronouns, we select
the highest ranking candidates (except the token
anywhere) as the distractor.

For nouns and verbs, the process remains the
same except parts-of-speech tags are used in the
place of a pre-defined list of tokens. We use the
lemminflect package to create the list of possible
candidates by inflecting the stem word.5

For comma items, the candidates are all possible
relocations of the comma. We create the distractor
candidates by inserting a [MASK] token in-between
every word.

4 Evaluation

We are interested in evaluating the quality of the
multiple-choice items in AGREE. To that end,
we conduct a large-scale MTurk study where we
present crowd-raters with our generated grammar
exercises as shown in Figure 3. We ask the raters
to select their choice for each item, and to answer
followup questions along four aspects of item qual-
ity. We paid raters $1.70 USD for completing our

5https://lemminflect.readthedocs.io

172

https://www.gingersoftware.com/content/grammar-rules
https://www.gingersoftware.com/content/grammar-rules
https://spacy.io
https://lemminflect.readthedocs.io

Figure 5: The distribution of grammar constructs in
generated questions with two or fewer correct answers
(N=455).

prerequisite task and $2.00 USD for completing
our main task, which is approximately equivalent
to $20-$24 USD (per hour). In total, the evaluation
cost $12,575 USD.

4.1 Prerequisite task
We conducted a set of prerequisite tasks to select
the raters for our main task on AGREE. A rater
must have at least 10,000 approved HITs, ≥ 95% of
HIT approval, a Masters qualification, and reside
in the United States. We also ask the raters to
answer a set of 20 publicly available TOEFL Junior
reading comprehension questions (typically used
for assessing English language skills of students
11 or older) so that we can gauge raters’ English
proficiency.6

The mean score on this set of reading compre-
hension questions among 79 raters is 96%, and
95% of raters received a score of 90% or higher,
meaning they got at most two questions out of 20
incorrect. Responses from this high-performing
group make up 99.8% of our responses. Given that
the raters have some competence in the language,
we expect that they will be able to identify the cor-
rect answer among the choices. If they are unable
to do so, it will provide a strong indication that our
generated items are incorrectly keyed.

4.2 Main task
Raters are presented with two passages containing
grammar questions from AGREE. The setup is
identical to how we present the questions on the
front-end (Figure 3), and the method for generating
grammar items is the same as described previously
(Section 3). Each passage is around 10 sentences
long, taken from the beginning of either a TASA

6https://www.ets.org/toefl_junior/prepare/
standard_sample_questions/reading_comprehension

(Zeno et al., 1995) or a TIPSTER (Harman, 1993)
document. Altogether 4,568 grammar constructs
items were presented to the raters. Five different
raters responded to each item to select the correct
answer. The distribution of the items is shown in
Figure 4.

Among the 4,568 items that we generated, for
76% of items all five raters answered correctly. If
we consider items where the majority of raters an-
swered correctly (i.e, three or more selected the tar-
get), then the proportion increases to 95%. This is
an indication that nearly all our items are correctly
keyed. On the contrary, there were 455 instances
where only a minority of raters chose the correct
answer. Among these items, the article, verb, and
noun items are less frequent whereas the punctua-
tion and conjunctions items are the most frequent
(see Figure 5).

To shed some light on why raters made mistakes
on certain items, we randomly select one example
each of punctuation and conjunctions items where
no raters answered correctly. Note that we present
the choices here in order of their ranking from
BERT (the log probability is in parentheses), but
when presented to raters the choices are randomly
shuffled. Here is an example of a problematic punc-
tuation (comma) item:

source sentence: With so many children
in the family___ there___ was a con-
stant___ buzz of activity
target: ... family, ... (12.76)
distractor: ... constant, ... (7.17)
distractor: ... there, ... (6.07)

And here is an example of a problematic con-
junctions (coordinating conjunction) item:

source sentence: Many of these people
did not go to the theater, of course, ___
to keep playgoers happy, acting troupes
had to provide a variety of plays.
target: but (13.93)
distractor: and (13.39)
distractor: so (12.18)

In both items, all five raters selected the highest-
ranking distractor as their answer. This supports
the idea that the contextual probabilities are useful
predictors of distractor-context fit. While the place-
ment of the comma in the target is the only proper
usage in the punctuation example, one might argue
that both but and and are grammatical in the con-
junctions source sentence. However, the use of the

173

https://www.ets.org/toefl_junior/prepare/standard_sample_questions/reading_comprehension
https://www.ets.org/toefl_junior/prepare/standard_sample_questions/reading_comprehension

connective but more accurately describes the rela-
tionship between the first and second clause. Given
that the probability of the distractor and target are
so close in the conjunctions example, we suspect
that the distance between the probabilities provides
some signal about item difficulty, but future work
is needed to investigate and calibrate the difficulty
of the grammar items.

The purpose of our MTurk experiment is not
only to measure how many items are solvable
by the raters, but also to know specific aspects
about them. Such as whether (1) the items are
correctly keyed (i.e., we have accurately and un-
ambiguously identified the target) (2) the item con-
tains nonfunctional distractors (Gierl et al., 2017),
(3) the item can be distinguished from a human-
generated one, and finally, (4) the item was difficult.
To answer these four questions we also asked the
same group of raters to respond a five-point Likert
scale (Strongly Disagree, Disagree, Neutral, Agree,
Strongly Agree) to the following statements, re-
spectively.

1. I felt that there was more than one correct
answer

2. I felt that some response options were too ob-
viously wrong

3. The question was likely created by a teacher

4. The question was easy

Figure 6 presents four bar charts displaying the
distribution of the responses to the above four ques-
tions from left to right. We find corroborating ev-
idence that the items are correctly keyed: 85% of
responses agree that the items have only one cor-
rect answer (Figure 6(a)). As for whether some
options are too obviously wrong, the results appear
to be mixed; no clear pattern in the responses can
be observed (Figure 6(b)). We find that more often
than not, raters found our items indistinguishable
from those created by teachers, but here we also
do not observe a clear pattern (Figure 6(c)). Fi-
nally, nearly all responses say that the items are
easy. Gathering data from second language learn-
ers could help clarify whether the items are easy
for English learners as well (Figure 6(d)).

Overall, the MTurk results paint a promising pic-
ture for the utility of our items. Since 95% of items
were answered correctly by a majority of raters,

and 85% agree that there was only one correct an-
swer, we have strong indicators that nearly all our
items are correctly keyed.

5 Related work

Tools that enhance authentic texts in support of
grammar acquisition include WERTi (Meurers
et al., 2010), FLAIR (Chinkina and Meurers, 2016),
and GrammarTagger (Hagiwara et al., 2021). Ex-
cept for a verb practice activity in WERTi, these
tools provide few opportunities for immediate feed-
back. Our system fills this gap by generating
multiple-choice practice questions from authentic
texts.

On the other hand, there are also systems
that generate multiple-choice grammar questions.
FAST (Chen et al., 2006) covers nine grammatical
categories and Lee et al. (2016) create a system
for learning preposition usage. We extend these
works by not only covering a range of grammatical
categories and collecting perception responses, but
also conducting a large-scale evaluation on item
performance (i.e., whether the item can be solved
by the user with some competence in the language).

6 Conclusion

We describe AGREE, a system and procedure for
converting an informational passage into game-like
grammar practice exercises that can be completed
while reading. We find in human evaluations that
nearly all the multiple-choice questions we gener-
ate for the exercises are correctly keyed, and can
therefore be used to provide immediate feedback
to students. We also observe for almost 95% of
items that a majority of the raters were able to
identify the correct target. On the contrary, raters
made the most mistakes for punctuation and con-
junctions. Although we did not design our system
to include gamification explicitly, it is set up in a
way that makes it easy to incorporate in the future.
The system can automatically generate a wealth of
questions for which the correct answer is identi-
fied, and these questions can be used by whomever
(e.g., game designers) to create a game that rewards
learners when they correctly solve them.

7 Future work

AGREE is a proof of concept system we built with
the intent of allowing users to personalize grammar
items according to their unique goals. The user
interface does not currently prevent learners from

174

(a) I felt that there was more
than one correct answer.

(b) I felt that some re-
sponse options were too
obviously wrong.

(c) The question was
likely created by a
teacher.

(d) The question was easy.

Figure 6: Bar charts displaying the distribution of responses for each item quality aspect over the five Likert scale
options (N=22,840).

progressing through the passage without provid-
ing answer for each question. In fact, it is likely
that they can still complete the reading since it is
usually a weakly semantic element missing from
the sentence. A truly gamified system may choose
to block out the rest of the passage before the cur-
rent question is answered, or make it so that the
next question cannot be clicked on until the current
question is answered.

As it stands, the system allows teachers some
control over the generated items; the reading ma-
terial itself and the ranking of grammar constructs
can be customized. However, teachers do not have
control at the level of individual items. We may
want to build in this finer-grained control in the
future so that the exercises can be adapted more
closely to their needs. Currently, the number of
questions generated for a given construct (e.g.,
preposition) depends on that construct’s ranking,
its frequency in the text, and how well it is covered
in the manually created list of distractor choices.
For example, there may be fewer preposition items
generated than expected due to the fact that we
use a reduced set of prepositions in AGREE. If
we expand the set of distractor choices to cover
all possible prepositions, we would likely run into
latency issues.

While increasing the coverage of existing con-
structs is one potential line of future work, it may be
more important to find ways to align our constructs
to existing EFL (English as a Foreign Language)
curricula if we want to create efficacious questions.
Since the constructs that a learner struggles with
is influenced by—among other factors—aspects of
their learner profile such as English level (Hawkins
and Buttery, 2010) and language background, an
efficacious system should take these aspects into
account. Doing so may allow AGREE to provide
more personalized feedback and generate distrac-
tors that can be calibrated. For example, we can

imagine using token-level probabilities to make
filtering decisions about whether an item is appro-
priate for a certain language level. The distance
between the target log probability and the log prob-
ability of the hardest distractor can be smaller for a
learner whose language level is higher, assuming
that as language ability improves, so does the abil-
ity to discriminate between a correct choice and a
plausible yet incorrect one.

This raises the question about the threshold at
which a token can be considered grammatical ver-
sus not, as illustrated in the coordinating conjunc-
tion example in Section 4.2. According to Larsen-
Freeman (2001), one way to think about grammar
is to see it as an interaction between form/structure,
meaning/semantics, and use/pragmatics. Schneider
and Gilquin (2016) also argue that, when it comes
to learner English, there is no “clear dichotomy be-
tween innovation and error”. Following this line of
thinking, we view the threshold for grammaticality
as context-specific and tied to pedagogical goals.

More experimentation is also needed to deter-
mine how the quality of the questions changes
when individual components are altered or replaced.
To increase the flexibility of the system, we can
think of replacing the token matching and syntactic
pattern matching components with a more special-
ized model that identifies the gap locations, such
as the one described in Felice et al. (2022). As
such, making the system more functional would in-
volve building in the ability to evaluate the output
of individual components in addition to the final
output.

175

References
Chia-Yin Chen, Hsien-Chin Liou, and Jason S Chang.

2006. Fast–an automatic generation system for gram-
mar tests. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 1–4.

Maria Chinkina and Detmar Meurers. 2016. Linguis-
tically aware information retrieval: Providing input
enrichment for second language learners. In Pro-
ceedings of the 11th Workshop on Innovative use of
NLP for Building Educational Applications, pages
188–198.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Mariano Felice, Shiva Taslimipoor, and Paula Buttery.
2022. Constructing open cloze tests using genera-
tion and discrimination capabilities of transformers.
arXiv preprint arXiv:2204.07237.

Lingyu Gao, Kevin Gimpel, and Arnar Jensson. 2020.
Distractor analysis and selection for multiple-choice
cloze questions for second-language learners. In
Proceedings of the 15th Workshop on Innovative Use
of NLP for Building Educational Applications, pages
102–114.

Mark J Gierl, Okan Bulut, Qi Guo, and Xinxin Zhang.
2017. Developing, analyzing, and using distractors
for multiple-choice tests in education: A compre-
hensive review. Review of Educational Research,
87(6):1082–1116.

Mark J Gierl, Hollis Lai, and Vasily Tanygin. 2021.
Advanced Methods in Automatic Item Generation.
Routledge.

Masato Hagiwara, Joshua Tanner, and Keisuke Sak-
aguchi. 2021. Grammartagger: A multilingual,
minimally-supervised grammar profiler for language
education. arXiv preprint arXiv:2104.03190.

Donna Harman. 1993. Overview of the first trec con-
ference. In Proceedings of the 16th Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 36–47.

John A Hawkins and Paula Buttery. 2010. Criterial
features in learner corpora: Theory and illustrations.
English Profile Journal, 1.

Hsiu-Ting Hung, Jie Chi Yang, Gwo-Jen Hwang, Hui-
Chun Chu, and Chun-Chieh Wang. 2018. A scoping
review of research on digital game-based language
learning. Computers & Education, 126:89–104.

Gladys Jean and Daphnée Simard. 2011. Grammar
teaching and learning in l2: Necessary, but boring?
Foreign Language Annals, 44(3):467–494.

Thomas K Landauer, Peter W Foltz, and Darrell Laham.
1998. An introduction to latent semantic analysis.
Discourse Processes, 25(2-3):259–284.

Diane Larsen-Freeman. 2001. Teaching grammar.
Teaching English as a Second or Foreign Language,
3:251–266.

John SY Lee, Donald Sturgeon, and Mengqi Luo. 2016.
A call system for learning preposition usage. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 984–993.

Detmar Meurers, Ramon Ziai, Luiz Amaral, Adriane
Boyd, Aleksandar Dimitrov, Vanessa Metcalf, and
Niels Ott. 2010. Enhancing authentic web pages
for language learners. In Proceedings of the Fifth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 10–18.

Pauline F Moley, Patricia E Bandré, and John E George.
2011. Moving beyond readability: Considering
choice, motivation and learner engagement. Theory
into Practice, 50(3):247–253.

Jan L Plass, Bruce D Homer, and Charles K Kinzer.
2015. Foundations of game-based learning. Educa-
tional Psychologist, 50(4):258–283.

Gerold Schneider and Gaëtanelle Gilquin. 2016. Detect-
ing innovations in a parsed corpus of learner english.
International Journal of Learner Corpus Research,
2(2):177–204.

Wilson L Taylor. 1953. Cloze procedure: A new tool
for measuring readability. Journalism Quarterly,
30(4):415–433.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Florence WM Yip and Alvin CM Kwan. 2006. Online
vocabulary games as a tool for teaching and learn-
ing english vocabulary. Educational Media Interna-
tional, 43(3):233–249.

Susan Zeno, Stephen H Ivens, Robert T Millard, and
Raj Duvvuri. 1995. The Educator’s Word Frequency
Guide. Touchstone Applied Science Associates.

A Grammar constructs

Each grammar construct and its sub-constructs are
listed in Table 1, along with the set of distractor
candidates used for the token matching step from
Section 3.1 and distractor candidate generation step
from Section 3.5.

176

Construct Distractor candidates

Punctuation
Comma location CMA All possible relocations

Punctuation PCT : : ,
Article ART the, a, an

Conjunctions

Coordinating conjunction COO for, nor, but, or, yet, so, and
Subordinating conjunction SUB after, although, because, before, if, once, since,

than, unless, until, when, whenever, while, as
Correlative conjunction COR either/or, neither/nor, both/and, as/so,

whether/or

Pronouns

Indefinite pronoun IDP everybody, everywhere, everything, somebody,
somewhere, somewhere, something, anybody,
anywhere, anything, nobody, nowhere, nothing

Interrogative pronoun ITP who, which, what, whose, whom
Possessive pronoun POS my, mine, your, yours, our, ours, their, theirs
Reflexive pronoun REL myself, yourself, herself, himself, itself,

yourselves, ourselves, themselves
Preposition PRP to, toward, on, onto, in, into

Noun NOU NN, NNS
Verb VRB VB, VBD, VBG, VBN, VBP, VBZ

Table 1: The available grammar constructs and their distractor candidates. All the possible tokens are enumerated
except for comma location where the candidates are all possible relocations of the comma, and noun and verb items
where candidates are inflections of the word stem.

177

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 178 - 190
December 7-11, 2022 c©2022 Association for Computational Linguistics

BotSIM: An End-to-End Bot Simulation Framework
for Commercial Task-Oriented Dialog Systems

Guangsen Wang♣ Samson Tan◇∗ Shafiq Joty♣ Gang Wu♣ Jimmy Au♣ Steven Hoi♣
♣Salesforce Research

◇AWS AI Research & Education
{guangsen.wang, sjoty, jimmy.au, gang.wu, shoi}@salesforce.com

Abstract

We present BotSIM, a data-efficient end-to-
end Bot SIMulation framework for commer-
cial text-based task-oriented dialog (TOD) sys-
tems. BotSIM consists of three major compo-
nents: 1) a Generator that can infer semantic-
level dialog acts and entities from bot defini-
tions and generate user queries via model-based
paraphrasing; 2) an agenda-based dialog user
Simulator (ABUS) to simulate conversations
with the dialog agents; 3) a Remediator to ana-
lyze the simulated conversations, visualize the
bot health reports and provide actionable re-
mediation suggestions for bot troubleshooting
and improvement. We demonstrate BotSIM’s
effectiveness in end-to-end evaluation, reme-
diation and multi-intent dialog generation via
case studies on two commercial bot platforms.
BotSIM’s “generation-simulation-remediation”
paradigm accelerates the end-to-end bot eval-
uation and iteration process by: 1) reducing
manual test cases creation efforts; 2) enabling
a holistic gauge of the bot in terms of NLU and
end-to-end performance via extensive dialog
simulation; 3) improving the bot troubleshoot-
ing process with actionable suggestions. A
demo of our system can be found at https:
//tinyurl.com/mryu74cd and a demo video
at https://youtu.be/qLi5iSoly30.

1 Introduction

The typical dialog system development cycle con-
sists of dialog design, pre-deployment testing, de-
ployment, performance monitoring, model im-
provement and iteration. As in any production soft-
ware system, effective and comprehensive testing
at all stages is of paramount importance. Unfortu-
nately, evaluating and troubleshooting production
TOD systems is still a largely manual process re-
quiring large amount of human conversations with
the systems. This process is time-consuming, ex-
pensive, and inevitably fails to capture the breadth

∗Work done at Salesforce Research.

Figure 1: BotSIM overview including the generator,
simulator, and remediator. The dotted (optional) paths
from users can be used for bot performance monitor-
ing: they can provide production chat logs or manually
crafted utterances when creating evaluation goals.

of language variation present in the real world (Tan
et al., 2021). The time- and labor-intensive na-
ture of such an approach is further exacerbated
when the developer significantly changes the dia-
log flows, since new sets of test dialogs will need
to be created (Benvie et al., 2020). Performing
comprehensive end-to-end bot evaluation is highly
challenging due to the need for additional annota-
tion efforts. Finally, there is a lack of analytical
tools for interpreting test results and troubleshoot-
ing underlying bot issues.

To address these limitations, we present BotSIM,
a Bot SIMulation environment for data-efficient
end-to-end commercial bot evaluation, remedia-
tion via multi-intent dialog generation and agenda-

178

https://tinyurl.com/mryu74cd
https://tinyurl.com/mryu74cd
https://youtu.be/qLi5iSoly30

based dialog user simulation (Schatzmann et al.,
2007). BotSIM consists of three major modules,
namely Generator, Simulator, and Remediator (Fig-
ure 1). We use a pretrained sequence-to-sequence
T5 model (Zhang et al., 2019; Raffel et al., 2020) in
the Generator to simulate lexical and syntactic vari-
ations in user queries via paraphrasing. The Gen-
erator is also responsible to generate various tem-
plates needed by the Simulator. To make BotSIM
more platform- and task- agnostic, we adopt dialog-
act level ABUS to simulate conversations with bots
via APIs. The dialog acts are automatically inferred
by the Generator via a unified interface to convert
bot designs of different platforms to a universal
graph representation. The graph has all dialogs as
nodes and their transitions as edges. Through graph
traversal, BotSIM offers a principled and scalable
approach to generating and exploring multi-intent
conversations. Not only can the conversation path
generation greatly increase evaluation coverage for
troubleshooting dialog errors caused by faulty de-
signs (e.g., unexpected dialog loops), it is also valu-
able for bot design improvements. The Remediator
summarizes bots’ health status in a dashboard for
easy comprehension. It also analyzes the simulated
conversations to identify any issues and further pro-
vides actionable suggestions to remedy them.

BotSIM’s “generation-simulation-remediation”
paradigm can significantly accelerate bot develop-
ment and evaluation, reducing human efforts, cost
and time-to-market. Our contributions include:

• We propose BotSIM, a modular, data-efficient
bot simulation framework. To the best of our
knowledge, this is the first work focused on
end-to-end evaluation, diagnosis and remedia-
tion of commercial bots via ABUS.

• BotSIM offers a principled approach to gener-
ating and simulating multi-intent dialogs for
comprehensive evaluation coverage and better
bot design.

• We finetuned a T5 paraphrasing model on par
with the state-of-the-art performance to gen-
erate diverse user responses for greater test
coverage of language variation.

• An easy-to-use Streamlit1 Web App with
Flask back-end and SQL database is devel-
oped for bot practitioners. The App can be
deployed as a docker container or to Heroku2.

1
https://streamlit.io/

2
https://www.heroku.com

Figure 2: “Investigate Charges” flow of the DialogFlow
CX pre-built “Financial Service Agent” mega-agent

2 Related Work

There are two main categories of dialog user sim-
ulators, namely the agenda-based user simulator
(ABUS) (Schatzmann et al., 2007; Li et al., 2016;
Shi et al., 2019; Zhu et al., 2020; Liu et al., 2021;
Shah et al., 2018) and recent neural-based user sim-
ulator (NUS) (Asri et al., 2016; Crook and Marin,
2017; Kreyssig et al., 2018; Gur et al., 2018; Liu
et al., 2017). Since BotSIM is designed to sup-
port commercial bot evaluation and remediation,
we focus on the review of the testing capacities of-
fered by some existing bot platforms rather than the
simulators. Recently, ABUS is also used in Ama-
zon’s Alexa conversation (Acharya et al., 2021) for
training an end-to-end dialog agent, which is also
beyond the scope of our discussion.

2.1 IBM Watson Assistant

IBM Watson assistant offers a suite of open-source
Python libraries and notebooks to help analyze cus-
tomer bots using manually created or annotated test
cases (Benvie et al., 2020). An exemplar test case
used for the standard regression testing is given in
Table 2. Given the annotated conversations, the
notebooks offer some analytical functions to com-
pute two metrics, namely coverage (NLU) and ef-
fectiveness (task completion) to monitor the bot
performance. However, the manual annotation and
analysis still require significant expertise and in-
volvement of bot teams. Large scale automatic pre-
deployment performance evaluation and analysis
are also infeasible since there may not be enough
chat logs.

2.2 Google DialogFlow CX

CX offers a built-in regression testing environment
for users to create test dialogs and perform regres-
sion testing. To create “golden” test cases, users

179

https://streamlit.io/
https://www.heroku.com

Methods Stages Automation Metrics

Regression End-to-end Pre-deployment Monitoring
Test case
curation

User
Simulation NLU

Task
Completion

CX ✓ ✓
Watson ✓ ✓ ✓ ✓
Botium ✓ ✓
BotSIM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of bot evaluation capabilities of the reviewed commercial bot platforms

User: May I book a flight to New York?

Labels Intent: #flight
Entity: @Destination

Bot: When would you like to depart?

Table 2: Example of IBM Watson assistant test case

need to manually chat with the bot and annotate
each system turn with correct intent, entity and dia-
log transitions. During regression testing, each bot
response is matched against the golden labels to de-
tect regressions. To achieve good regression testing
coverage, users have to “design” testing dialogs to
cover as many conversation paths as possible. How-
ever, the number of paths grows exponentially with
the number of intents and dialog branches, mak-
ing it almost impossible to craft testing cases for
all paths (Figure 2). For end-to-end performance
evaluation, even more annotated dialogs are needed
to cover the language variation in user responses,
which will greatly intensify the manual efforts.

2.3 Botium: Bots Testing Bots

Botium3 offers a unified platform for regression
testings of various bot platforms via platform-
specific connectors and “Botium scripts (test cases)”
(Appendix A). The core component, dubbed as
“Botium Box”, analogous to a bot testing “IDE”,
can be used to connect different bot platforms, cre-
ate testing cases and conduct regression testings.
However, the testing capability is constrained by
the underlying platforms. For example, users may
be still required to design testing dialogs manu-
ally. Therefore, Botium cannot perform large scale
end-to-end pre-deployment testing.

The overall comparison of different platforms
is given in Table 1. Most current platforms only
focus on regression testing. While regression test-
ing is important to ensure correct and consistent
system behaviours, it is also vital to perform pre-
deployment evaluation to avoid poor user adoption

3
https://www.botium.ai/

and retention rate. Although some platforms are
capable of computing turn-level NLU metrics, they
require significant manual efforts in curating or an-
notating test cases. In addition, the NLU metrics do
not directly translate to the end-to-end goal comple-
tion performance. We will show how BotSIM can
help circumvent these limitations via large scale
automatic dialog generation and simulation.

3 BotSIM

BotSIM system overview is shown in Figure 1.
3.1 Generator
The generator takes bot designs and intent utter-
ances as input and produces the required configu-
ration files and dialog goals for dialog simulation.

Dialog act maps. Most commercial TOD bots
follow a “rule-action-message” design scheme and
there exist clear mappings from system messages
to rules/actions. For example, the utterance “May
I get your email?” (message) is used to “Collect”
(action) the “Email” (slot) with entity type “Email”
from the user. Therefore, this message can be
mapped to the “request_Email” dialog act by the
generator parser. As the only platform-specific
component, the parser acts as an “adaptor” to unify
bot definitions from different platforms to a com-
mon representation of dialog act maps (example in
Figure 3) from bot messages to dialog acts. Such
(local) dialog acts are automatically inferred by
the parser for each dialog. Furthermore, the parser
unifies the entire bot design as a graph, where in-
dividual dialogs are vertices and their transitions
are edges. Each graph node is initially associated
with its “local” dialog act map. The dialog act map
of a “mega” dialog containing references to other
dialogs will be updated by including all the “local”
dialog act maps of the dialog nodes along the paths
starting from the mega dialog to the terminating
dialogs (e.g., “End_Chat”). The algorithm is de-
tailed in Appendix 1. The graph modeling not only
enables BotSIM to naturally support the simula-
tion of mega-agents with multiple intents/dialogs

180

https://www.botium.ai/

Figure 3: Automatically generated dialog act maps for
the mega dialog “Check the status of an existing issue”
from the Salesforce Einstein BotBuilder Template Bot.

(Figure 2), it also offers a scalable and control-
lable approach to exploring conversation paths for
greater test coverage and potentially benefiting the
conversation design as well.

The generated dialog act maps serve as the Bot-
SIM NLU module to map system messages to di-
alog acts via fuzzy matching.4 In particular, the
two dialog acts, “dialog_success_message” and
“intent_success_message” are the golden labels
indicating a successful dialog and a correct in-
tent classification, respectively. They are inferred
heuristically by taking the first message as “in-
tent_success_message” and last message as “di-
alog_success_mesage”. BotSIM users are required
to review or revise these two dialog acts for each
evaluation dialog to confirm their correctness.

Simulation goals. For agenda-based dialog sim-
ulation, a user goal comprises a set of dialog acts
and entity slot-value pairs needed to complete the
task defined by the goal. The dialog acts and slots
are from the parsed dialog act maps and the entity
values are randomly initialised according to some
heuristics. As the entity values are mostly related
to products/services, to better test bot NER capabil-
ities, users can replace these random values to real
ones when generating simulation goals. Below is a
snippet of a simulation goal. The goal is generated
by collecting the entity-value pairs in the dialog act
map and the ontology. The “inform_slots” contains
entities to be “informed” to the bot, whereas the

4
https://github.com/seatgeek/thefuzz

“request_slots” comprises entities to be “requested”
from the bot.
Check_the_status_of_an_existing_issue_0:
goal: Check_the_status_of_an_existing_issue
inform_slots:

Email_for_Look_Up: andrews@ms-mail.com
Case_Number: C379870
Intent: Can I check the latest status of

my reported issue?
request_slots:

Check_the_status_of_an_existing_issue: UNK
...

All the entity-value pairs in “inform_slots” of the
goals are used to test bots’ NLU capabilities. The
special “intent” slot contains the intent queries
generated by the paraphrasing models for pre-
deployment testing or user-provided evaluation ut-
terances for performance monitoring.
T5 paraphrasing model. As a core model com-
ponent, we fine-tune a T5-base (Raffel et al., 2020)
model for paraphrasing. To further improve the di-
versity, model ensemble with an off-the-shelf Hug-
gingface Pegasus (Zhang et al., 2019) model5 is
adopted. The paraphrasing models take intent utter-
ances as input and output their top N paraphrases
by beam search. The paraphrases are subsequently
filtered by discarding candidates with low semantic
similarity scores and edit distances. The filtered
paraphrases serve as the “intent” slot values of the
goals as intent queries for pre-deployment testing.
Our T5-base paraphrasing model has very com-
petitive performance on par with the state-of-the-
art HVQ-VAE model as shown in Table 3. It is
worth noting that the T5 model yields significantly
lower self-BLEU scores, which means the gener-
ated paraphrases share less lexical similarities with
the source sentences, a merit desirable for BotSIM
in generating dialogs to cover greater breadth of
language variation. More details of the T5 model
are discussed in Appendix B.
3.2 Simulator
We use a dialog-act-level ABUS rather than NUS
for the following reasons. First, BotSIM targets
commercial use cases and simulation duration and
computation are crucial non-functional consider-
ations. NUS inference usually requires GPUs,
which can significantly increase the barrier to entry
and operational cost. Second, NUS requires large
amounts of annotated data to train and are prone
to overfitting. Finally, dialogue-act-level simula-
tion is more platform- and task-agnostic. The user

5
https://huggingface.co/tuner007/pegasus_

paraphrase

181

https://github.com/seatgeek/thefuzz
https://huggingface.co/tuner007/pegasus_paraphrase
https://huggingface.co/tuner007/pegasus_paraphrase

WIKI-Answers QQP

Target (↑) Self(↓) iBLEU (↑) Target(↑) Self(↓) iBLEU(↑)
HVQ-VAE 39.5 33.0 24.9 30.5 40.2 16.4

T5-base 33.9 23.9 23.9 29.1 35.2 16.3

Table 3: Paraphrasing model comparison. BLEUs are computed from the top one paraphrase with the reference
(Target-BLEU)/input (Self-BLEU). iBLEUs are obtained by a weighted sum of target (0.8) and self BLEUs (-0.2).

simulator can be viewed as a dialog agent with its
NLU, NLG and dialog state manager.

NLU. BotSIM uses dialog act maps to map bot
messages to dialog acts via fuzzy matching.

NLG. For efficient end-to-end dialog simulation,
template-based NLG is adopted to convert user
dialog acts to natural language responses. Given
a dialog act, e.g., “request_Email”, a response is
randomly chosen from a set of pre-defined tem-
plates with a “Email” slot, which is replaced by
the value in the goal during dialog simulation. The
plug-and play user response templates can be con-
stantly updated to include more language variation
as encountered in real use cases.

Dialog state manager. Rule-based dialog man-
ager is used for its simplicity and robustness. The
dialog states are maintained as a stack-like struc-
ture called agenda. During simulation, user dialog
acts are popped from the agenda to respond to dif-
ferent system dialog acts. The two most important
rules are for responding to “request” and “inform”
dialog acts. While most of the bot behaviours/mes-
sages can be converted to these two dialog acts,
BotSIM allows users to implement new rules to
accommodate novel dialog acts that may only exist
in their own bot designs. Figure 4 illustrates an
API-based conversation turn between BotSIM and
the bot during dialog simulation: Based on the di-
alog acts matched by the NLU, the state manager
applies the corresponding rules to generate the user
dialog acts. They are then converted to natural lan-
guage responses by the NLG and sent back to the
bot. The conversation ends when the task has been
successfully finished or an error has been captured.

3.3 Remediator

The remediator generates health reports, performs
analyses, and provides actionable insights to trou-
bleshoot and improve dialog systems. The reports
are presented in a dashboard in Figure 5. More
detailed introduction is given in Appendix C.

Figure 4: A conversation turn between BotSIM and the
bot during a dialog simulation.

Bot health reports. The bot health dashboard
consists of a set of multi-level performance reports.
At the highest level, users can have a historical view
of most recent simulation/test sessions (e.g., after
each major bot update) to evaluate the impacts of
bot changes from the performance trend in Figure
5(1). Users can also investigate a selected test
session as in Figure 5(2). Given a test session,
users can select a dialog/intent to check the detailed
performance in Figure 5(3). From the detailed
intent and NER plots, one can easily identify the
most confusing intents and entities.
Actionable remediation suggestions. The out-
puts of the Remediator comprises actionable sug-
gestions from analysing the simulated dialogs with
errors in Figure 5(4). The dashboard allows de-
tailed investigation of all intent or NER errors to-
gether with the simulated conversation. The root
causes of the failed conversations are identified via
backtracking of the simulation agenda. For intent
models, the intent queries/paraphrases that lead to
intent errors are grouped by the original intent utter-
ances sorted by the number of errors in descending
order (drop-down list of Figure 5(4)). Depending
on the classified intent labels, the remediator would
suggest some follow-up actions (Figure 5(5)). For
example, augmenting the intent training set with
the queries deemed to be out-of-domain by the cur-
rent intent model, moving the intent utterance to
another intent if most of paraphrases of the former
intent utterance are classified to the latter intent.
Conversation analytics. Another useful com-
ponent of the Remediator is the suite of conver-

182

Figure 5: Remediator dashboard including bot health reports, actionable suggestions and conversation analytics.

sation analytical tools to gain more insights for
troubleshooting and improving their dialog sys-
tems. They include: confusion matrix analysis
(Figure 5(7)) for identifying confusion among in-
tents and potential intent clusters (Thoma, 2017),
tSNE (van der Maaten and Hinton, 2008) cluster-
ing of the sentence embeddings of intent utterances
(Figure 5(8)) to help evaluate the training data
quality and detect intent overlaps.

Conversation graph modelling Powered by the
underlying conversation graph model, the conver-
sation flow visualisation tool (Figure 5(9)) helps
users explore their current dialog designs. For ex-
ample, users can select the “source” and “target”
dialogs to investigate the generated dialog paths.
Not only is the tool valuable for comprehensive test-
ing coverage of conversation paths, it also offers
a controllable approach to troubleshooting dialog
design related errors or improving the bot design.

4 Case Studies

4.1 Salesforce Einstein Bot

The “Template Bot” is the pre-built bot of the Sales-
force Einstein BotBuilder platform. It has six in-
tents with hand-crafted training utterances.

Experimental setup. We sample 150 utterances
per intent as the training set (train-original) and
use the rest for evaluation (eval-original). The six
intents are: “Transfer to agent (TA)”, “End chat
(EC)”, “Connect with sales (CS)”, “Check issue
status (CI)”, “Check order status (CO)” and “Re-
port an issue (RI)”. We show how BotSIM can be
used to perform data-efficient end-to-end evalua-
tion through dialog user simulation. To probe the
baseline system, we apply the paraphrasing models
to the “train-original” utterances to get the “train-
paraphrases” dataset and use it as the development
set. Simulation goals are created by taking the
“train-paraphrases” as the intent queries to capture
the variations in real user intent queries. The “train-
paraphrases” goals are then used to evaluate the
dialog system via dialog simulation. After simu-
lation, the Remediator produces the performance
reports and remediation suggestions. Although the
Remediator provides suggestions for remedying
both intent and NER errors, we focus on the in-
tent model since it can be retrained (NER model
has not supported retraining yet). Another reason
is that the entity values in the goals are randomly
generated and may not reflect the real-world val-
ues. Since the impact of the NER is removed, the
improvement of intent performance directly trans-

183

Model Eval. TA EC CS CI CO RI

Baseline
original 0.92±0.03 0.95±0.02 0.89±0.03 0.93±0.03 0.94±0.02 0.82±0.04
paraphr. 0.88±0.01 0.93±0.01 0.85±0.01 0.91±0.01 0.93±0.01 0.77 ±0.02

Retrained
original 0.92±0.03 0.97±0.02 0.93±0.03 0.95±0.02 0.96±0.02 0.87±0.04
paraphr. 0.89±0.01 0.94±0.01 0.90±0.01 0.94±0.01 0.94±0.01 0.80±0.02

Table 4: Results for the Einstein Bots case study, before and after retraining the intent model with the augmented
training set (F1 with 95% confidence interval computed with 10K bootstrapped samples).

CB (86) MP (66) LC (139) IC (224) CC (142) Acc

Baseline 0.84±0.06 0.83±0.07 0.88±0.04 0.95±0.02 0.96±0.02 0.90

Retrained 0.91±0.04 0.89±0.06 0.94±0.03 0.95±0.02 0.95±0.03 0.92

Table 5: F1 (95% confidence interval) comparison of intent models before and after retraining for CX case study

lates to the improvement of dialog success rate. It
is also important to note that the suggestions are
meant to be used as guidelines rather than strictly
followed. They can also be extended by users to
include domain expertise. To validate the effective-
ness of the remediation suggestions, we augment
the recommended misclassified paraphrases to the
“train-original” set to form the “train-augmented”
set and retrain the intent model. We then compare
the performance before and after retraining on the
goals created from the “evaluation-original”.
Results and analytics. We observe consistent
improvements for all intents on the human-written
“eval-original” set after model retraining. More
challenging intents (lower F1s), e.g., “RI” and
“CS”, saw larger performance gains compared to
the easier ones such as “EC” (higher F1s). This
demonstrates the efficacy of BotSIM and is likely
due to more paraphrases being selected for retrain-
ing the model on the more challenging intents.
We applied the paraphrasing models to the “eval-
original” set to get the “eval-paraphrases” set to
further increase the test coverage. In Table 9, the
second row (✗) shows the number of misclassi-
fied “eval-original” utterances. Out of the remain-
ing correctly classified “eval-original” utterances
in the first row(✓), substantially larger number of
them have at least one of their paraphrases in “eval-
paraphrases” wrongly classified by the same intent
model. This indicates that the diversity introduced
by the paraphrasing models potentially expands the
test coverage by a large margin.

4.2 Google DialogFlow CX

We use the pre-built financial service mega-agent
for the flow-based evaluations. Even for a single
flow in Figure 2, it is non-trivial to manually design

conversations to cover all paths. Through BotSIM’s
conversation graph modeling, the flow-based con-
versations can be simulated by generating goals
consisting of the dialog acts of all dialog nodes
along a traversal path. On top of these flow-based
dialog paths, paraphrases of the intent utterances
can be used as the intent queries to probe the NLU
performance via dialog simulation. To simulate pre-
deployment testing, we choose five flows and split
the intent utterances into train and evaluation sets.
The intent F1 scores are given in Table 5. The flows
are “Check Balance (CB)”, “Make Payment (MP)”,
“Lost Card”, “Investigate Charges(IC)”, “Compare
Cards (CC)”. Since the financial bot has only ∼30
utterances for training each intent, to obtain a more
reliable test set, we use the “eval-paraphrases” set
together with the “eval-original”. The total number
of evaluation intent queries are inside the parenthe-
ses of the Table 5 header. Similar to the previous
study, retrained intent model outperforms the base-
line in terms of both F1 and accuracy (Table 5),
especially for the challenging flows such as “CB”,
“MP”.

5 Conclusion

We presented BotSIM, a modular end-to-end bot
simulation framework for multi-intent dialog gen-
eration and evaluation of commercial TOD systems
via agenda-based dialog user simulation. Our case
studies show that BotSIM can save substantial man-
ual effort in bot evaluation, troubleshooting and
improvement. BotSIM can be easily extended to
support new platforms by implementing a set of
well-defined parser functions to convert bot mes-
sages to dialog acts. We are in the midst of open-
sourcing the codes including the Web App. We
also plan to support more platforms as future work.

184

6 Limitations

For efficiency reasons, BotSIM adopts a template-
based NLG model for converting user dialog acts
to natural languages. Although the template-NLG
is more controllable and flexible compared to the
model-based NLG, they may lack naturalness. One
possible future improvement includes a combina-
tion of template-based NLG and the model-based
NLG. For example, we can train a model-based
NLG to generate templates (Wiseman et al., 2018)
for BotSIM’s response templates. In this way, both
efficiency and naturalness can be achieved.

7 Broader Impact

The pretrained language-model based paraphrasers
(T5-base and Pegasus) used in this study are pre-
trained and finetuned with large scale of text cor-
pora scraped from the web, which may contain
biases. These biases may even be propagated to the
generated paraphrases, causing harm to the subject
of these stereotypes. Although the paraphrasing
models are only applied to generate the testing in-
tent queries, BotSIM users are advised to take into
consideration these ethical issues and may wish to
manually inspect or otherwise filter the generated
paraphrases.

References
Anish Acharya, Suranjit Adhikari, Sanchit Agarwal,

Vincent Auvray, Nehal Belgamwar, Arijit Biswas,
Shubhra Chandra, Tagyoung Chung, Maryam Fazel-
Zarandi, Raefer Gabriel, Shuyang Gao, Rahul Goel,
Dilek Hakkani-Tür, Jan Jezabek, Abhay Jha, Jiun-
Yu Kao, Prakash Krishnan, Peter Ku, Anuj Goyal,
Chien-Wei Lin, Qing Liu, Arindam Mandal, Ange-
liki Metallinou, Vishal Ishwar Naik, Yi Pan, Shachi
Paul, Vittorio Perera, Abhishek Sethi, Minmin Shen,
Nikko Strom, and Eddie Wang. 2021. Alexa con-
versations: An extensible data-driven approach for
building task-oriented dialogue systems. In Proceed-
ings of NAACL-HLT 2021, pages 125–132.

Layla El Asri, Jing He, and Kaheer Suleman. 2016. A
sequence-to-sequence model for user simulation in
spoken dialogue systems. CoRR, abs/1607.00070.

Adam Benvie, Eric Wayne, and Matthew Arnold. 2020.
Watson assistant continuous improvement best prac-
tices.

Paul A Crook and Alex Marin. 2017. Sequence to Se-
quence Modeling for User Simulation in Dialog Sys-
tems. In Proceedings of the 18th Annual Conference
of the International Speech Communication Associa-
tion (INTERSPEECH 2017), pages 1706–1710. ISCA
- International Speech Communication Association.

Izzeddin Gur, Dilek Hakkani-Tur, Gokhan Tur, and
Pararth Shah. 2018. User modeling for task oriented
dialogues.

Tom Hosking, Hao Tang, and Mirella Lapata. 2022. Hi-
erarchical sketch induction for paraphrase generation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2489–2501, Dublin, Ireland.
Association for Computational Linguistics.

Florian Kreyssig, Iñigo Casanueva, Pawel
Budzianowski, and Milica Gasic. 2018. Neural user
simulation for corpus-based policy optimisation for
spoken dialogue systems. CoRR, abs/1805.06966.

Xiujun Li, Zachary C. Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016. A
user simulator for task-completion dialogues. CoRR,
abs/1612.05688.

Bing Liu, Gökhan Tür, Dilek Hakkani-Tür, Pararth
Shah, and Larry P. Heck. 2017. End-to-end opti-
mization of task-oriented dialogue model with deep
reinforcement learning. CoRR, abs/1711.10712.

Jiexi Liu, Ryuichi Takanobu, Jiaxin Wen, Dazhen Wan,
Hongguang Li, Weiran Nie, Cheng Li, Wei Peng, and
Minlie Huang. 2021. Robustness testing of language
understanding in task-oriented dialog. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a POMDP dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the
Association for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152, Rochester,
New York. Association for Computational Linguis-
tics.

185

http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
http://arxiv.org/abs/1607.00070
https://www.ibm.com/downloads/cas/V0XQ0ZRE
https://www.ibm.com/downloads/cas/V0XQ0ZRE
http://arxiv.org/abs/1811.04369
http://arxiv.org/abs/1811.04369
https://aclanthology.org/2022.acl-long.178
https://aclanthology.org/2022.acl-long.178
http://arxiv.org/abs/1805.06966
http://arxiv.org/abs/1805.06966
http://arxiv.org/abs/1805.06966
http://arxiv.org/abs/1612.05688
http://arxiv.org/abs/1612.05688
http://arxiv.org/abs/1711.10712
http://arxiv.org/abs/1711.10712
http://arxiv.org/abs/1711.10712
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038

Pararth Shah, Dilek Hakkani-Tür, Gökhan Tür, Ab-
hinav Rastogi, Ankur Bapna, Neha Nayak, and
Larry P. Heck. 2018. Building a conversational
agent overnight with dialogue self-play. CoRR,
abs/1801.04871.

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou Yu.
2019. How to build user simulators to train rl-based
dialog systems. arXiv preprint arXiv:1909.01388.

Hong Sun and Ming Zhou. 2012. Joint learning of a dual
SMT system for paraphrase generation. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 38–42, Jeju Island, Korea. Association
for Computational Linguistics.

Samson Tan, Shafiq Joty, Kathy Baxter, Araz Taeihagh,
Gregory A. Bennett, and Min-Yen Kan. 2021. Relia-
bility testing for natural language processing systems.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4153–4169, Online. Association for Computational
Linguistics.

Martin Thoma. 2017. Analysis and optimization of
convolutional neural network architectures.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2018. Learning neural templates for text gen-
eration. CoRR, abs/1808.10122.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2019. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. Convlab-
2: An open-source toolkit for building, evaluating,
and diagnosing dialogue systems. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics.

A Regression test cases for Botium

Below is a Botium regression testing case (script):

T01_Check_Card_Balance
#me
What is the due amount for my card?
#bot
Can I have the last 4 digit card number?
INTENT balance_enquiry
#me
5789.
#bot
You have $50.8 due for this card.
INTENT balance_enquiry
ENTITY_VALUES 5789

It is important to note that the Botium “end-to-
end” testing is different from BotSIM as it aims to
ensure the bot interface and operation work across
different devices without regression errors. In other
words, they are still for detecting regressions rather
performance evaluation. For BotSIM’s end-to-end
evaluation, we refer to the setup that BotSIM takes
in bot designs and automatically 1) parses bot de-
signs, 2) generates test cases, 3) performs large-
scale end-to-end dialog simulations, 4) analyzes
outputs and provides actionable remediation sug-
gestions for troubleshooting and improvement.

B T5-base paraphrasing model

Pytorch (Paszke et al., 2019) is used to fine-tune
the T5-base model with the adam optimizer. The
effective batch size is 128. The learning rate is
1e-4 and no warm-up is applied. The maximum
sequence length is 128. Four NVIDIA A100 GPUs
are used. After each epoch, we compute the iBLEU
scores on the development set according to (Hosk-
ing et al., 2022; Sun and Zhou, 2012) to decide
whether to keep the current checkpoint or not. The
best model was obtained after 88 epochs.

B.1 Paraphrase datasets

We use the datasets released in the HVQ-VAE pa-
per (Hosking et al., 2022) for finetuning the para-
phrasing model. The datasets are “Wiki-Answers”,
“QQP” and “MSCOCO”. Instead of training a sep-
arate model for each dataset as in (Hosking et al.,
2022), we fintune a single paraphrasing model from
the pooled dataset of the three. Additionally, we
also curate our own set of paraphrasing datasets
and use them together with the other three datasets.
The dataset information is given in Table 6. Note
some of the datasets are not initially designed for
paraphrasing tasks. Therefore, they may also con-
tain noisy or trivial labels for paraphrasing. There-
fore, a filtering process is applied to select the fi-
nal training sentence pairs. The filtering process
applies thresholds on semantic and lexical scores
to strike a good balance between lexical variation
and semantic similarity between the paraphrasing
sentence pairs. In particular, we use sentence trans-
former (Reimers and Gurevych, 2019) score to
measure the semantic similarity and FuzzyWuzzy
ratio (based on Levenshtein distance 6) for lexi-
cal diversity. Sentence pairs with low semantic

6
https://pypi.org/project/python-Levenshtein/

186

http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/1801.04871
https://aclanthology.org/P12-2008
https://aclanthology.org/P12-2008
https://doi.org/10.18653/v1/2021.acl-long.321
https://doi.org/10.18653/v1/2021.acl-long.321
http://arxiv.org/abs/1707.09725
http://arxiv.org/abs/1707.09725
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1808.10122
http://arxiv.org/abs/1808.10122
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
https://pypi.org/project/python-Levenshtein/

Algorithm 1 Dialog act maps inference from bot designs (MetaData/API)

local_dialog_act_maps = {}
for dialog ∈ all_dialogs do

local_dialog_act_maps [dialog] = {}
for message ∈ all_messages do

dialog_act = infer_dialog_act_from_message(message)
if dialog_act not in local_dialog_act_maps [dialog] then

local_dialog_act_maps [dialog][dialog_act] = []
end if
local_dialog_act_maps [dialog][dialog_act].append(message)

end for
end for
global_dialog_act_maps = {}
for dialog ∈ all_non_end_dialogs do

global_dialog_act_maps[dialog] = local_dialog_act_maps[dialog]
for end_dialog ∈ all_end_dialogs do

for node ∈ conv_graph.simple_paths(dialog, end_dialog) do
global_dialog_act_maps[dialog].update(local_dialog_act_maps[node])

end for
end for

end for

similarities (noisy labels) or low Levenshtein dis-
tances (trivial labels with little lexical variation)
are discarded. We also performed a benchmark
of iBLEU scores in Table 3. The paraphrases are
generated via beam search with the same beam size
of 10. The results of HVQ-VAE are taken from the
original paper. The discrepancy of the QQP results
from the paper is due to some train/eval data over-
lap we found in their original setup. We contacted
the authors and they provided the updated QQP
results and the fixed datasets. We thus used the
bug-fixed version for finetuning and evaluating our
T5-base model. The off-the-shelf Pegasus model
has the largest model size but performed the worst
compared to the other two models across all scores.
Since the author did not reveal anything about the
model, we cannot finetune it with the same datasets
as the T5-base. Using the same setup as HVQ-
VAE, we finetuned a T5-base-Single-Task model
for each task and it consistently outperformed the
HVQ-VAE model on the task that it was trained
on. On the contrary, The single-task models per-
formed significantly worse on the task they were
not trained on (see the numbers with *), indicating
the negative impacts of domain mismatch. In addi-
tion, it is impractical to finetune a new model for
each new dataset or task. Therefore, we pooled all
datasets together and finetuned a single model “T5-
base-Multi-Task”. Although the multi-task model

performs slightly worse than the single-task ones
on each individual task, the overall performance
is still on par with the state-of-the-art HVQ-VAE
model, especially on the QQP task. Therefore, we
choose the “T5-base-Multi-Task” as the BotSIM
paraphrasing model.

We apply the same filtering principle for the
training data preparation to the generated para-
phrases to keep the ones with high semantic and
low lexical similarities. In Figure 6, we show
the number of candidates before and after filter-
ing when generating the “train-paraphrases” set.
For simple intents like “TA” and “EC”, almost half
of the original candidates are discarded. More chal-
lenging intents have more surviving paraphrases
due to larger variation in their training utterances.
The filtered candidates are then used as the intent
queries for creating the simulation goals.

B.2 Investigation into misclassified
paraphrases

From Table 9, we can see the paraphrasing mod-
els help increase the testing coverage as some cor-
rectly classified original intent queries (prediction
✓) have misclassified paraphrase intent queries
(prediction ✗). Below we show two successfully
classified original utterances with their wrongly
classified paraphrases of the “Report an issue (RI)”
intent.

187

Task Sent-Transformer score FuzzRatio No. Final Pairs

SNLI NLI [0.70, 0.99] - 13,635
MNLI NLI [0.80, 0.99] - 32.398

PAWS-Wiki Paraphrasing - - 19,004
tapaco-en Paraphrasing [0.50, 0.99] 70 14,735

WIKI-Answers Paraphrasing - - 79,6679
QQP Paraphrasing - - 16,3621

MSCOCO Paraphrasing - - 47,3210

Table 6: Datasets for T5-base paraphrasing model finetuning. “-” means no filtering applied.

WIKI-Answers QQP

Target (↑) Self(↓) iBLEU (↑) Target(↑) Self(↓) iBLEU(↑)
Pegasus 31.4 55.3 14.0 23.8 46.0 9.9

HVQ-VAE 39.5 33.0 24.9 30.5 40.2 16.4
T5-base-Wiki 42.7 42.7 25.6 14.9 20.0 7.9*
T5-base-QQP 32.3 46.8 16.5* 31.9 42.7 17.0

T5-base-Multi-Task 33.9 23.9 23.9 29.1 35.2 16.3

Table 7: Performance benchmarking of different paraphrasing models. The BLEU scores are computed from the
top one paraphrase candidate with respect to the reference (Target-BLEU) or the input (Self-BLEU) sentence. The
iBLEU scores are calculcated using Target-BLEU ∗ 0.8 − Self-BLEU ∗ 0.2. Numbers with asterisk* denote the
“zero-shot” performance.

0

1000

2000

3000

4000

TA EC CS CI CO RI

Before After

Number of paraphrases before and after filtering

Figure 6: Number of paraphrase candidates before
and after semantic and lexical filtering for “train-
paraphrases”

{
My order was damaged in

shipping: [
Why did my order get damaged

during shipping?,
Why was my order damaged when

it was shipped?,
Shipping damaged my order.,
The order was damaged when it

was shipped.

],
The bottle of conditioner was

open when it arrived i need
a replacement: [

I need a new bottle of
conditioner because the
one that arrived was open.
,

I need a replacement for the
opened bottle of
conditioner.,

I need a replacement for the
open bottle of conditioner
.,

I need a new bottle of
conditioner because the
one I received was open.

]
}

As suggested by the Remediator, users can select
some of the high-quality paraphrases to augment
the original intent training set to refine the intent
models. They can also filter from the evaluation
(manual-crafted utterances or product chat logs)
paraphrases to create a larger evaluation set for
performance monitoring. This saves substantial hu-

188

Dataset Intent enquiries TA EC CS CI CO RI

Train
train-original 150 150 150 150 150 150

train-augmented 255 184 212 268 215 294

Dev train-paraphrases 1465 1467 1754 1989 1895 1786

Eval
eval-original 182 145 183 222 205 178

eval-paraphrases 1190 933 1648 2172 1936 1795

Table 8: Dataset information for the Einstein Template Bot case study.

eval-original TA EC CS CI CO RI

prediction ✓ 9 17 27 33 34 61
prediction ✗ 9 7 16 19 8 26

Table 9: Test coverage expansion via paraphrasing

man efforts in creating or annotating dialog testing
data.

C Remediator reports and analytical tools

The Remdediator outputs are detailed in the bot
health report dashboard shown in Figure 5. The
left panel gives users options to navigate through
the dashboard. For example, they can select differ-
ent bot platforms, datasets, test ids and intents. The
bot health report (the first row of Figure 5) offers a
multi-scale view of simulation performance. At the
highest level is the historical comparison of most
recent testing sessions (Figure 5(1)). For example,
a testing session may be needed after each major
bot update. From the historical performance com-
parison, users can see how certain changes impact
the overall bot performance and decide whether to
keep or revert the update.

Given the historical performance, users may
be interested in further investigating a particular
testing session. They can do so by selecting one
from the drop-list of all testing sessions and enable
the “Check Summary Report” option in the multi-
selection box. The resulting overall bot health re-
port for the selected test session is shown in Fig-
ure 5(2). It summarizes the simulation information
including number of intents, entities and simula-
tion episodes. The two doughnut charts depict the
dataset distribution and the overall success metrics.

To investigate the detailed performance report
of each individual intent (Figure 5(3)), users can
navigate to “Check Dialog Report” and select a
dialog from the drop-list. The detailed dialog report
presents the intent and NER performance. One

can quickly identify the most confusing intents or
entities and focus their efforts to investigate and
resolve the confusions.

To help troubleshoot the identified errors, users
can select “Investigate Dialog” to see the remedia-
tion suggestions. Figure 5(5) shows the misclassi-
fied intent query paraphrases and their correspond-
ing original utterances, grouped by the wrongly
predicted intent labels. Given the prediction re-
sults, suggestions are provided for possible further
actions. For the given example, all paraphrases of
the utterance “Can you give me the status of my
order” have been classified as the “check order”
intent, indicating an annotation error of the origi-
nal utterance. Therefore, this utterance should be
moved from the “check issue” intent to the “check
order” intent.

To gain more insights into their bot systems,
users can harness the conversation analytical tools
for better comprehension of the simulation results.
To understand more about the intent classifier,
confusion matrix analysis is applied to the intent
predictions of the simulated conversations(in Fig-
ure 5(7)). A detailed and sortable intent perfor-
mance can be displayed by checking the checkbox,
allowing users to quickly identify the worst per-
forming intents in terms of recall, precision or F1
rates. This helps them plan and allocate resources
to improve the poor-performing intents.

To gauge the quality of the intent training utter-
ances and identify intent overlaps, tSNE clustering
is performed based on the sentence transformer
embeddings of the intent training utterances. By
examining the clusters, not only can users find in-
tents with significant overlaps in the training data
semantic space, they can also potentially discover
novel intents from production chat logs to aid di-
alog flow re-design. The dashboard can be easily
extended to to support more analytical tasks.

189

D Streamlit web app

Finally, we give some brief discussions of the
Streamlit Web App. The motivation is to offer
BotSIM not just as a framework for developers but
also as an easy-to-use app to end users such as
bot admins without diving into technical details.
The app can be deployed as a docker container or
to the Heroku platform. We use Streamlit as the
front-end and Flask as the backend. A set of API
functions are designed to communicate with Bot-
SIM. For multi-platform support, keeping track of
the simulation status and historical performance,
a SQL-based database is used. BotSIM supports
two types of databases including Sqlite3 and Post-
gres. To support Heroku deployment, particularly
its ephemeral file system, cloud storage such as
AWS S3 is used to store the simulation logs and
results.

190

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 191 - 199
December 7-11, 2022 c©2022 Association for Computational Linguistics

DeepGen: Diverse Search Ad Generation and Real-Time Customization

Konstantin Golobokov♢, Junyi Chai♣, Victor Ye Dong♣,
Mandy Gu♣, Bingyu Chi♣, Jie Cao♣, Yulan Yan♠, Yi Liu♣

♢ Azure AI, ♣ Bing Ads, ♠ News & Feeds
Microsoft, Redmond, USA

{FirstName.LastName}@microsoft.com

Abstract

We present DeepGen, a system deployed at
web scale for automatically creating sponsored
search advertisements (ads) for Bing Ads cus-
tomers. We leverage state-of-the-art natural
language generation (NLG) models to generate
fluent ads from advertiser’s web pages in an
abstractive fashion and solve practical issues
such as factuality and inference speed. In ad-
dition, our system creates a customized ad in
real-time in response to the user’s search query,
therefore highlighting different aspects of the
same product based on what the user is looking
for. To achieve this, our system generates a di-
verse choice of smaller pieces of the ad ahead
of time and, at query time, selects the most rel-
evant ones to be stitched into a complete ad.
We improve generation diversity by training a
controllable NLG model to generate multiple
ads for the same web page highlighting differ-
ent selling points. Our system design further
improves diversity horizontally by first running
an ensemble of generation models trained with
different objectives and then using a diversity
sampling algorithm to pick a diverse subset of
generation results for online selection. Exper-
imental results show the effectiveness of our
proposed system design. Our system is cur-
rently deployed in production, serving ∼4% of
ads globally on Bing.

1 Introduction

Search advertising is the largest segment of digital
advertising for its projected $203B out of $515B
market share worldwide in 2022 (Statista, 2022).
Traditionally, advertisers manually create ads for
their web pages to start an advertising campaign.
There is a growing need to automate this process,
either to lessen the burden for small and medium
businesses, or to create millions of ads for large
businesses that have lots of products.

A classical automated ad generation system re-
lies on extraction rules as described in Section 2.1,

Figure 1: An example of an ad copy (grey box) com-
prised of ad assets. Red box is used for ad title assets,
and green box is used for ad description assets. This ad
could be shown for search query “Surface 8".

for example, extracting key phrases from adver-
tiser’s web pages as ad titles. However, per our
experience, extraction-based methods are not very
successful in generating the much longer ad de-
scription. Refer to Figure 1 for the example ad
title and description assets. Therefore, we aim to
generate ads in an abstractive fashion. In this work,
we focus on improving ad performance from two
aspects: factuality and customization.

To achieve the optimal ad performance, our cur-
rent system creates a customized ad in real-time
in response to a user’s search query. As shown
in Figure 2, different ads are displayed for differ-
ent queries, although they are advertising the same
web page. We dynamically customize ad copies by
stitching the generated ad assets together given the
user’s search context, approximating the ultimate
goal of real-time customized generation. Our work
makes the following contributions:

1. We demonstrate an NLG application that
leverages cutting-edge models, which can ab-
stractively generate and instantaneously stitch
ad text, matching human quality and achiev-
ing real-time ad content customization.

2. We record a significant click-through-rate
gain of 13.28% over an extraction-based sys-
tem as a baseline. Our system is currently
deployed at web scale, serving ∼4% of ads
shown on Bing search engine.

191

URL: https://www.surveymonkey.com/mp/online-polls
Ad Asset Preparation

All Generated Assets Semantically Diverse Assets

Ad Copy Serving

Customized Ads Created Based on
User Query

Extracted Landing Page Text

Bing Document
Understanding

Generation
Model

Generation
Model

Semantic De-
Duplication

Real-Time Ad
Stitching

create poll online survey template

How to Create an Online Poll - SurveyMonkey Audience

https:/ / www.surveymonkey.com/polls/ surveys

Ad Create simple to sophisticated surveys online. Measure & act on

feedback.. Give your teams the data they need to make smarter decisions

Create a Poll for Free - Customizable Survey Templates

https:/ / www.surveymonkey.com/polls/ surveys

Ad Are you looking for a fast way to get feedback? Get instant feedback

with online polls

Search Engine User Search Engine User

Figure 2: An illustration of the end-to-end DeepGen system. First, multiple ad assets are generated based on various
parts of the advertiser’s web page. Semantically diverse ad assets are then selected and prepared for serving. Finally,
customized ads are created based on user queries. Transparent blocks are the NLP models, solid blocks are the
surrounding infrastructure. Generative models are shown in orange, discussed in Section 2. The rest of the system is
presented in Section 3.

2 Ads Generation System

Our system for ad content generation and stitch-
ing is automated end-to-end as shown in Figure 2.
Advertisers only need to supply us with their do-
main names, landing page targeting rules, and a bid
for each rule (e.g., bid $0.5 for URLs containing
“shoes”). Our Search Indexing infrastructure crawls
all landing pages under advertiser domain names
that match targeting rules and runs the Document
Understanding (DU) pipeline to extract textual in-
formation as per Section 2.1. After that, we run
multiple NLG models concurrently. This parallel
design enables us to scale modeling horizontally:
we can add or remove generation models at will.
The models can either generate an ad asset or a
full ad copy. For a full ad copy we simply split it
into assets. At the end of generation stage, we have
many title and description assets generated for each
advertiser URL.

2.1 Baselines
Extraction-based systems The extraction tech-
niques have evolved in Bing Ads over a decade and
we consider them a strong industrial baseline in
this paper. This baseline can produce title assets
of high quality, but it does not perform as well for
the longer description assets. For extraction candi-
dates, we leverage parts of the website extracted by
Bing DU pipeline, as per example below:

• Page Title - the document title present in meta-
data; <title> tag for HTML documents

• Visual Headings - the visually emphasized

document title present in the document, visi-
ble to user

• First/Best Body Snippet - first (top-most)/best
document body snippet extracted by Bling
(Xiong et al., 2019)

Examples of the above landing page text extracted
by DU pipeline can be seen on the left in Figure 2.

Abstractive generation baseline We consider
models finetuned directly on advertiser written ad
copies as the baseline for abstractive generation
approach. We finetune UniLMv2 (Bao et al., 2020)
on advertiser-written full ad copies, with learning
rate of 5 · 10−5. We refer to such models as Ad-
Copy models as they generate one ad copy for each
source sequence. See Figure 3 for an example
of source/target sequences for this task. Multi-
ple AdCopy models were successfully deployed in
production with significant business gains (Wang
et al., 2021). Some best practices we learned are:
1) advertiser-written ads have a very skewed dis-
tribution with some advertiser having millions of
template generated ads. Therefore we sample the
3000 URLs with the most ad impressions in the
past year per advertiser domain, obtaining 3M-5M
training examples; 2) validation and test sets ran-
domly split from training set do not work well; they
need to be constructed from different advertisers
than those in training set to avoid overfitting. We
use validation set of size 300K-500K examples and
a test set of 30K-50K examples. We use ROUGE1-
F1 (Lin, 2004) on validation set to select the best
checkpoint during training.

192

We inference with beam search of size 5 with
code optimization, leveraging Einsum operator in
cross-attention stage to avoid the encoder cache
copy, per the FastSeq (Yan et al., 2021) implementa-
tion. This optimization allows us to increase batch
size and brings 5x speed up in our task. Our gener-
ation models can be seen in the center of Figure 2
in orange color.

Figure 3: An example of a source and generated target
sequence pair for the baseline AdCopy model.

2.2 Factuality Improvement
To evaluate the quality of generated ads, we mainly
rely on human evaluation. For that, we sample a
stratified sample of at most 50 examples per do-
main, and then uniformly subsample 500 – 1000
examples per human evaluation task. This way, we
get an evaluation result from diverse portions of our
demand, not letting very large domains dominate.
We work with a pool of professional judges, trained
to evaluate ads in an unbiased way. We further ex-
amine evaluation examples and give feedback to
the judges in case there is a misunderstanding of
the judgement guidelines. Thus, we evaluate the
quality of generated ad texts along the following 4
aspects:

• Text Quality: evaluates grammar and style,
with levels Good, Fair, Bad, Embarrassing,
and Not Scorable.

• Human Likeness: whether it looks like human-
written, with levels Yes and No.

• Factuality: whether the generated information
is supported by landing page, with levels Yes
and No.

• Relevance: whether the generated text is rele-
vant to advertiser’s business, with levels Yes
and No.

We define an ad text to be “Overall Good” if it
gets “Good” or “Fair” for Text Quality, and “Yes”
for Human Likeness, Factuality, and Relevance.
Refer to Figure 4 in the Appendix A for an example
human judge interface. To be allowed for further

A/B testing, the Overall Good Rate needs to be at
least 90% with confidence greater than 97.5%.

As shown in Table 1, our baseline model does
not have a significant difference in quality from
the advertiser written ads. However, the overall
good rate for both is curtailed by lower factuality
scores. For example, our AdCopy model can gen-
erate popular claims like “Free Shipping" or “15%
Discount" which do not exist in the landing page.
This is similar to the hallucination issue in abstrac-
tive summarization (Filippova, 2020; Maynez et al.,
2020b).

To alleviate the extrinsic hallucinations (Maynez
et al., 2020a) in our ads, we employ phrase-based
cross-check filtering. For that, we use a list of po-
tentially erroneous phrases and patterns obtained
by studying human evaluation results for our gen-
erated ads. Our approach is similar to entity-based
filtering per Nan et al. (2021).

Some cross-check examples are 1) Phrase Check:
a list of sensitive or potentially misleading phrases
(e.g., “Free Return”, “Promo Code: ABC”); 2)
Brand Check: brand list compiled from our search
engine’s knowledge graph (Noy et al., 2019; Chai
et al., 2021); 3) Domain Check: checking patterns
like “xyz.com” against landing page URL.

We add the cross check rules at two stages: (1)
We filter training data with cross check rules before
training (train x-check); and (2) We filter generated
text after the inference (infer x-check). Per Ta-
ble 1, both train x-check and infer x-check improve
quality significantly, with the greatest improvement
when both are used together.

For an AdCopy model, we do observe that
∼ 15% of generated ad copies are filtered dur-
ing the post-inference cross check. This effect is
ameliorated by the fact that we use multiple NLG
models, allowing them to backfill each other’s cov-
erage. The remaining coverage is backfilled with
extraction candidates. Due to this system design,
the eventual URL coverage does not suffer from
the cross check.

2.3 Controllable Generation at Asset-Level

To model diversity explicitly, we build a control-
lable NLG model to generate multiple ad assets
for the same source sequence. We accomplish
this is via control codes, categorical variables that
represent the desired output property and are pre-
pended to the model inputs during training and
testing, Keskar et al. (2019) and Ficler and Gold-

193

Technique Overall Text Quality Human Like Factuality Relevance
Advertiser-written 90.7 ± 2.1 97.9 ± 1.0 98.1 ± 1.0 92.7 ± 1.9 99.0 ± 0.7
Baseline: AdCopy w/o check 89.8 ± 2.2 98.8 ± 0.8 98.5 ± 0.9 91.1 ± 2.1 98.9 ± 0.7
AdCopy w/ train check 94.7 ± 1.6 99.6 ± 0.5 99.0 ± 0.7 95.6 ± 1.5 99.6 ± 0.5
AdCopy w/ infer check 94.4 ± 1.9 98.8 ± 0.9 98.5 ± 1.0 95.6 ± 1.7 98.8 ± 0.9
AdCopy w/ train + infer check 96.3 ± 1.5 100.0 99.4 ± 0.6 97.0 ± 1.3 99.7 ± 0.4

Table 1: A comparison of Ad Copy models (as per Section 2.1) via human evaluation. 95% confidence intervals
(CI) are reported. Results that outperform advertiser baseline at p < 0.05 level are bolded.

Technique Overall Text Quality Human Like Factuality Relevance
Advertiser Title Asset 98.2 ± 0.9 99.9 ± 0.2 100.0 98.4 ± 0.9 100.0
Extraction Title Asset 99.0 ± 0.7 99.4 ± 0.6 99.6 ± 0.5 99.6 ± 0.5 100.0
Guided Title Asset 98.1 ± 0.6 99.8 ± 0.2 100.0 98.3 ± 0.5 99.6 ± 0.3
Advertiser Desc Asset 98.2 ± 0.9 99.9 ± 0.2 99.9 ± 0.2 98.4 ± 0.9 100.0
Guided Desc Asset 95.3 ± 0.9 97.6 ± 0.7 98.8 ± 0.5 97.9 ± 0.6 99.2 ± 0.4

Table 2: A comparison of Guided Asset generation model against advertiser written ads and extraction-based titles
via human evaluation. 95% CI are reported. Results better than advertiser baseline at p < 0.05 level are bolded.

berg (2017). We refer to it as Guided model, as the
generation is guided by the control codes.

We assume each landing page can be advertised
along 12 categories for different selling points. Ex-
ample categories are Product or Service, Advertiser
Name or Brand, Location, etc.; they are borrowed
from the instructions on the web portal where ad-
vertisers create ads. We then use human judges
to classify ∼6500 distinct advertiser-written assets
into categories. We finetune BERT-base-uncased
(Devlin et al., 2018) for asset category classification
task and obtain ∼80% prediction accuracy, using a
random 80/20 split for train/test sets and learning
rate of 5 ∗ 10−5.

We then inference ad category for each ad as-
set in the NLG model training set, prepending the
resulting category control code as plaintext at the
beginning of each NLG source sequence. Thus, we
obtain a data set of 6M ad assets (both title and
description together) for training the Guided NLG
models. Otherwise, our generative modeling deci-
sions align with Section 2.1. During inference, we
evaluate the model on all available categories, by
prepending each control code to the landing page
information.

Human evaluation results for our Guided NLG
model are shown in Table 2. The overall title as-
set quality of the Guided model does not have
significant difference to that of advertiser-written
assets, with Extraction titles outperforming both.
The advertiser-written description assets are better,
though the overall good rate of Guided model is

Title Asset Count PB↓ SB↓ Dist↑
Advertiser 18.4 13.4 71.0 45.3
Generated 24.4 6.7 41.0 66.6
Generated + DPP 14.2 4.5 25.3 80.5
Guided 13.3 7.8 33.6 74.9
Ensemble 12.1 5.8 31.2 77.0
Guided + DPP 7.8 5.0 18.3 86.9
Ensemble + DPP 7.7 3.6 17.0 88.3

Table 3: Averaged results of the diversity evaluation on
English title assets. For PairwiseBLEU (PB) and Self-
BLEU (SB) scores, lower is better, for Distinct N-gram
(Dist) scores, higher is better. Average count of title
assets per URL (Count) is also reported. Differences
of over 1 point are bolded. Ensemble here is for an
ensemble of AdCopy models. Generated assets include
the combination of Guided, Ensemble, and Extraction
titles.

still well above our quality bar of 90%. The ad-
vantage of Guided model in this case is that it is
able to explicitly capture different advertising cat-
egories for both title and description. Extraction
technique cannot produce good ad descriptions in
our experience.

3 Serving and Customization System

3.1 Diverse Selection

At this stage, we aim to select a semantically di-
verse subset of T title and D description assets for
each URL to send to online serving components.
By selecting a subset of ad texts, we aim to both

194

reduce the load on the ad serving system, as well
as improve diversity of the generated texts. We
use CDSSM (Shen et al., 2014) model, trained on
web search logs, to map each text asset to a dense
vector, such that the ad texts with high degree of se-
mantic similarity will map to representations with
higher cosine similarity (i.e., closer in the embed-
ding space) to one another. Then, we sample a
diverse subset of points in the CDSSM embedding
space with k-DPP maximum a posteriori inference
algorithm as per Chen et al. (2018), stopping after
we select T titles or D descriptions. Refer to Fig-
ure 2 (bottom middle) for an example of removing
semantic duplicates in such fashion.

We use PairwiseBLEU (PB) (Shen et al., 2019),
SelfBLEU (SB) (Zhu et al., 2018), and Distinct
N-gram (DistN) (Xu et al., 2018) scores to evaluate
the diversity of the title assets before and after k-
DPP diverse sampling. We calculate the average di-
versity metrics for ∼2000 EN URLs randomly sam-
pled from a stratified sample of 50 URLs/domain.
Since all instances of each metric show similar
trends, we follow suit with Tevet and Berant (2020)
and average each metric over different N-gram op-
tions. Refer to Table 3 for diversity score details.

We find that generated title assets are more di-
verse than the ones provided by the advertiser in
general. In addition, k-DPP helps further increase
the asset diversity. We also compare title assets
from the Guided model with those from an ensem-
ble of AdCopy models. We find that the Guided
model by itself can generate title assets in simi-
lar quantity and with similar diversity as the ones
produced by several AdCopy models combined,
trained as per the NLG baseline method in Sec-
tion 2.1 on different versions of training data.

3.2 Real-Time Stitching

The diversified ad assets are then ingested into the
online serving infrastructure. At query time, we
stitch together a customized ad copy, optimizing
for the auction win rate1 (with some level of ex-
ploration). From our domain knowledge, the ear-
lier asset positions (e.g., Title 1) influence the ad
auction result more than the later ones (e.g., De-
scription 2), as shown in Figure 1. Thus, we per-
form a greedy sequential selection and consider
T +(T −1)+(T −2)+D+(D−1) permutation

1Auction is the final stage to decide which ads will be
displayed. Auction win rate is the probability of an ad winning
an auction. Ads with better quality and CTR have a better
chance to win the auction.

options. For example, we first select asset for Title
1 position from T title assets, and then select asset
for Title 2 position from the remaining T − 1 title
assets.

We use a logistic regression (LR) model to score
each asset position: Title 1, Title 2, Title 3, De-
scription 1, Description 2. We use features from ad
auction log like string hash, length, unigrams and
bigrams from asset texts. We also cross these with
the query text to a total sparse feature dimensional-
ity per position of ∼4B. The LR model learns the
probability of winning the auction for a given ad
copy. It is continuously trained daily, using ∼10B
data examples from the previous day’s log for train-
ing with batch size as 1000 and learning rate as
0.02, and ∼ 300M examples from current day’s
log for validation.

We include an exploration mechanism to allow
newly added assets to be shown to users and to
de-bias the model. Due to sequential nature of
our stitching process, we model exploration as a
sequential contextual bandit (CB) problem. At each
asset position, the CB uses the LR score and the
gradient sum of LR features as a heuristic for the
trial count (Mcmahan et al., 2013) to select an asset
using Thompson Sampling strategy (Agrawal and
Goyal, 2017). As a result, we sample from a total
of T + (T − 1) + (T − 2) + D + (D − 1) Beta
distributions to stitch together an ad copy.

4 A/B Testing

DeepGen is deployed globally to serve Dynamic
Search Ads (DSA), which accounts for ∼ 4% of
all Bing Ads displayed globally. In A/B testing, we
split the production user traffic randomly between
the treatment experiment that enables the proposed
experimental techniques and the control experi-
ment that uses existing production techniques. We
use 10% of production traffic for the control exper-
iment. We use the difference in business metrics
between two experiments to decide if treatment is
effective.

Two key business metrics are Revenue Per Mille
(RPM) – revenue per every thousand search result
page views (SRPV) and Quick Back Rate (QBR)
– the rate of users clicking the back button after
clicking on an ad, which is a proxy for user dissat-
isfaction (lower QBR is better). RPM is driven by
Impression Yield (IY, number of ads shown divided
by number of search result page views) and Click-
Through Rate (CTR, number of clicks divided by

195

Metric Exp. 1 Exp. 2 Explanation
Days 5 10 Number of days for the experiment.

Traffic% 5.0 10.0 Percentage of the Bing user traffic allocated for the experiment.
∆RPM% +24.87 +10.65 Revenue (USD) from 1000 Search Results Page Views (SRPVs).
∆IY% +11.87 +14.43 Average number of ads shown per page.
∆CTR% +13.28 -0.19 Proportion of ads clicked from ads shown.
∆QBR% +5.27 +1.82 Proportion of ad clicks that resulted in a back-click within 20 sec.

Table 4: A summary of the business metrics from A/B tests performed on DSA ad traffic. Results statistically
significant at p < 0.05 level are bolded.

total number of ads displayed). Usually there is a
trade-off between RPM (revenue) and QBR (user
satisfaction). DeepGen increases CTR (proportion
of ads clicked from ads displayed) and IY (number
of ads displayed per page), thus also increasing ad
revenue. We do so by generating high-quality ads
that are customized to the user. We avoid sacrific-
ing user or advertiser satisfaction by ensuring the
ads to be faithful to the landing page.

In Exp. 1, we compare DeepGen (treatment)
against the extraction system (control). As shown
in Table 4, we observe strong RPM (revenue) gain,
driven by both IY and CTR, which means that
personalized ad copies generated by DeepGen are
more likely to win the auction as well as to be
clicked by the user. In this experiment, we record a
13.28% CTR gain. We acknowledge the increase
in QBR (user dissatisfaction), which could be at-
tributed to the still higher factuality of the extrac-
tion system, as shown in Table 2.

We use Exp. 2 as an ablation for real-time cus-
tomization. DeepGen is used in both treatment and
control, but we replace real-time stitching with pre-
computed stitching in control. For this experiment,
we build a separate model to stitch assets into multi-
ple ad copies offline, and only rank the pre-stitched
ad texts during query time (online). There is sig-
nificant RPM (revnue) gain, though it is mainly
driven by IY but not CTR. This may suggest that
online stitching has a higher chance of winning
the auction as it covers much larger permutation
space than the offline stitching. But for those ad
copies that did win an auction, they have similar
attractiveness to the user whether stitched online or
offline. This experiment shows online stitching to
be an integral part of our system.

Thus, DeepGen increases revenue by generating
high-quality ads customized to the user while being
mindful of user satisfaction by ensuring the ads to
be faithful to the landing page.

5 Related Work

The early automated content generation approaches
focused on template-based ad text generation
(Bartz et al., 2008; Fujita et al., 2010; Thomaidou
et al., 2013). These approaches have potential to
suffer from ad fatigue (Abrams and Vee, 2007).

More recently, deep Reinforcement Learning
(RL) was shown effective for ad text generation
(Hughes et al., 2019; Kamigaito et al., 2021; Wang
et al., 2021), using a general attractiveness model
as a reward policy and yielding up to 7.01% ob-
served CTR gain per Kamigaito et al. (2021). CTR
is an important metrics, as reflects the relevance
of an ad from user’s perspective (Yang and Zhai,
2022).

Product headline generation is a closely related
direction of work, where a single headline is gener-
ated to advertise a line of related products, based
on each product’s advertiser-written title. Kanungo
et al. (2021) use BERT-large (Devlin et al., 2018)
encoder finetuned for generation with UniLM-like
masked attention, as per Dong et al. (2019), op-
timized using a self-critical RL objective, as per
Hughes et al. (2019). Kanungo et al. (2022) fur-
ther produce SC-COBART by finetuning a BART
model, using control codes, as per Keskar et al.
(2019), for bucketized CTR and length of a head-
line, optimized with a mixture of MLE and self-
cricial RL objectives. SC-COBART improves es-
timated CTR by 5.82% over their previous work
(Kanungo et al., 2021).

In another line of work, product descriptions
are generated either with templates (Wang et al.,
2017), pointer-generator encoders (Zhang et al.,
2019), commonsense knowledge-base guidance
(Chan et al., 2020; Zhang et al., 2021), or CVAEs
(Shao et al., 2021), yielding up to 13.17% CTR
gain in A/B test per Shao et al. (2021).

196

6 Conclusion

In this work, we present an automated end-to-end
search advertisement text generation solution. We
employ deep NLG modeling for ad content genera-
tion and diverse selection. We leverage real-time
LR rankers for content stitching. The generation
techniques provide us a rich source of high-quality
ad content, which performs strongly against hu-
man and extraction baselines. We further apply
diverse selection via semantic embedding, which
allows us to surpass human content diversity, while
ensuring the system’s scalability. Finally, we use
real-time ranking to stitch not just attractive, but a
truly customized ad for each user based on query
and search intent. The system combines several
NLP approaches to provide a cutting edge solu-
tion to automated ad generation and showcases an
significant CTR gain over an extraction baseline.

References
Zoë Abrams and Erik Vee. 2007. Personalized ad deliv-

ery when ads fatigue: An approximation algorithm.
pages 535–540.

Shipra Agrawal and Navin Goyal. 2017. Near-optimal
regret bounds for thompson sampling. J. ACM, 64(5).

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang,
Nan Yang, Xiaodong Liu, Yu Wang, Songhao Piao,
Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon.
2020. Unilmv2: Pseudo-masked language mod-
els for unified language model pre-training. CoRR,
abs/2002.12804.

Kevin Bartz, Cory Barr, and Adil Aijaz. 2008. Natural
language generation for sponsored-search advertise-
ments. In Proceedings of the 9th ACM Conference on
Electronic Commerce, EC ’08, page 1–9, New York,
NY, USA. Association for Computing Machinery.

Junyi Chai, Yujie He, Homa Hashemi, Bing Li, Darak-
sha Parveen, Ranganath Kondapally, and Wenjin Xu.
2021. Automatic construction of enterprise knowl-
edge base. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 11–19, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Zhangming Chan, Yuchi Zhang, Xiuying Chen, Shen
Gao, Zhiqiang Zhang, Dongyan Zhao, and Rui Yan.
2020. Selection and generation: Learning towards
multi-product advertisement post generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3818–3829, Online. Association for Computa-
tional Linguistics.

Laming Chen, Guoxin Zhang, and Hanning Zhou. 2018.
Fast greedy map inference for determinantal point
process to improve recommendation diversity. In
Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18,
page 5627–5638, Red Hook, NY, USA. Curran Asso-
ciates Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. CoRR, abs/1905.03197.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
CoRR, abs/1707.02633.

Katja Filippova. 2020. Controlled hallucinations:
Learning to generate faithfully from noisy data.
CoRR, abs/2010.05873.

Atsushi Fujita, Katsuhiro Ikushima, Satoshi Sato, Ryo
Kamite, Ko Ishiyama, and Osamu Tamachi. 2010.
Automatic generation of listing ads by reusing promo-
tional texts. In Proceedings of the 12th International
Conference on Electronic Commerce: Roadmap for
the Future of Electronic Business, ICEC ’10, page
179–188, New York, NY, USA. Association for Com-
puting Machinery.

J. Weston Hughes, Keng-hao Chang, and Ruofei Zhang.
2019. Generating better search engine text adver-
tisements with deep reinforcement learning. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’19, page 2269–2277, New York, NY, USA.
Association for Computing Machinery.

Hidetaka Kamigaito, Peinan Zhang, Hiroya Takamura,
and Manabu Okumura. 2021. An empirical study
of generating texts for search engine advertising. In
NAACL.

Yashal Shakti Kanungo, Gyanendra Das, Pooja A, and
Sumit Negi. 2022. Cobart: Controlled, optimized,
bidirectional and auto-regressive transformer for ad
headline generation. In KDD 2022.

Yashal Shakti Kanungo, Sumit Negi, and Aruna Ra-
jan. 2021. Ad headline generation using self-critical
masked language model. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 263–
271, Online. Association for Computational Linguis-
tics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL:
A conditional transformer language model for con-
trollable generation. CoRR, abs/1909.05858.

197

https://doi.org/10.1007/978-3-540-77105-0_57
https://doi.org/10.1007/978-3-540-77105-0_57
https://doi.org/10.1145/3088510
https://doi.org/10.1145/3088510
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
https://doi.org/10.1145/1386790.1386792
https://doi.org/10.1145/1386790.1386792
https://doi.org/10.1145/1386790.1386792
https://doi.org/10.18653/v1/2021.emnlp-demo.2
https://doi.org/10.18653/v1/2021.emnlp-demo.2
https://doi.org/10.18653/v1/2020.emnlp-main.313
https://doi.org/10.18653/v1/2020.emnlp-main.313
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1905.03197
http://arxiv.org/abs/1905.03197
http://arxiv.org/abs/1905.03197
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/1707.02633
http://arxiv.org/abs/2010.05873
http://arxiv.org/abs/2010.05873
https://doi.org/10.1145/2389376.2389401
https://doi.org/10.1145/2389376.2389401
https://doi.org/10.1145/3292500.3330754
https://doi.org/10.1145/3292500.3330754
https://www.amazon.science/publications/cobart-controlled-optimized-bidirectional-and-auto-regressive-transformer-for-ad-headline-generation
https://www.amazon.science/publications/cobart-controlled-optimized-bidirectional-and-auto-regressive-transformer-for-ad-headline-generation
https://www.amazon.science/publications/cobart-controlled-optimized-bidirectional-and-auto-regressive-transformer-for-ad-headline-generation
https://doi.org/10.18653/v1/2021.naacl-industry.33
https://doi.org/10.18653/v1/2021.naacl-industry.33
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858

Chin-Yew Lin. 2004. Rouge: a package for automatic
evaluation of summaries. In Workshop on Text Sum-
marization Branches Out, Post-Conference Workshop
of ACL 2004, Barcelona, Spain, pages 74–81.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020a. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan T. McDonald. 2020b. On faithfulness and
factuality in abstractive summarization. CoRR,
abs/2005.00661.

H. Brendan Mcmahan, Gary Holt, D. Sculley, Michael
Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd
Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar
Hrafnkelsson, Tom Boulos, and Jeremy Kubica. 2013.
Ad click prediction: A view from the trenches. Pro-
ceedings of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Part
F1288:1222–1230.

Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero
Nogueira dos Santos, Henghui Zhu, Dejiao Zhang,
Kathleen McKeown, and Bing Xiang. 2021. Entity-
level factual consistency of abstractive text summa-
rization. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2727–2733,
Online. Association for Computational Linguistics.

Natasha Noy, Yuqing Gao, Anshu Jain, Anant
Narayanan, Alan Patterson, and Jamie Taylor. 2019.
Industry-scale knowledge graphs: Lessons and chal-
lenges. Communications of the ACM, 62(8):36–43.

Huajie Shao, Jun Wang, Haohong Lin, Xuezhou Zhang,
Aston Zhang, Heng Ji, and Tarek F. Abdelzaher.
2021. Controllable and diverse text generation in
e-commerce. CoRR, abs/2102.11497.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’Aurelio Ranzato. 2019. Mixture models for di-
verse machine translation: Tricks of the trade. CoRR,
abs/1902.07816.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. CIKM 2014 - Proceedings of the 2014
ACM International Conference on Information and
Knowledge Management, pages 101–110.

Statista. 2022. Search advertising - worldwide | statista
market forecast.

Guy Tevet and Jonathan Berant. 2020. Evaluating the
evaluation of diversity in natural language generation.
CoRR, abs/2004.02990.

Stamatina Thomaidou, Ismini Lourentzou, Panagiotis
Katsivelis-Perakis, and Michalis Vazirgiannis. 2013.
Automated snippet generation for online advertising.
In Proceedings of the 22nd ACM International Con-
ference on Information & Knowledge Management,
CIKM ’13, page 1841–1844, New York, NY, USA.
Association for Computing Machinery.

Jinpeng Wang, Yutai Hou, Jing Liu, Yunbo Cao, and
Chin-Yew Lin. 2017. A statistical framework for
product description generation. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 187–192, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Xiting Wang, Xinwei Gu, Jie Cao, Zihua Zhao, Yulan
Yan, Bhuvan Middha, and Xing Xie. 2021. Reinforc-
ing pretrained models for generating attractive text
advertisements. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining
(ACM SIGKDD). Applied Data Science Track.

Lee Xiong, Chuan Hu, Chenyan Xiong, Daniel Cam-
pos, and Arnold Overwijk. 2019. Open domain web
keyphrase extraction beyond language modeling. In
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5174–5183. ACL, ACL.

Jingjing Xu, Xuancheng Ren, Junyang Lin, and Xu Sun.
2018. Diversity-promoting GAN: A cross-entropy
based generative adversarial network for diversified
text generation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3940–3949, Brussels, Belgium.
Association for Computational Linguistics.

Yu Yan, Fei Hu, Jiusheng Chen, Nikhil Bhendawade,
Ting Ye, Yeyun Gong, Nan Duan, Desheng Cui,
Bingyu Chi, and Ruofei Zhang. 2021. FastSeq: Make
sequence generation faster. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, pages 218–226, Online. Association
for Computational Linguistics.

Yanwu Yang and Panyu Zhai. 2022. Click-through
rate prediction in online advertising: A literature
review. Information Processing & Management,
59(2):102853.

Chao Zhang, Jingbo Zhou, Xiaoling Zang, Qing Xu,
Liang Yin, Xiang He, Lin Liu, Haoyi Xiong, and
Dejing Dou. 2021. CHASE: Commonsense-Enriched
Advertising on Search Engine with Explicit Knowl-
edge, page 4352–4361. Association for Computing
Machinery, New York, NY, USA.

Tao Zhang, Jin Zhang, Chengfu Huo, and Weijun Ren.
2019. Automatic generation of pattern-controlled
product description in e-commerce. In The World
Wide Web Conference, WWW ’19, page 2355–2365,

198

https://www.microsoft.com/en-us/research/publication/rouge-a-package-for-automatic-evaluation-of-summaries/
https://www.microsoft.com/en-us/research/publication/rouge-a-package-for-automatic-evaluation-of-summaries/
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
http://arxiv.org/abs/2005.00661
http://arxiv.org/abs/2005.00661
https://doi.org/10.1145/2487575.2488200
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.18653/v1/2021.eacl-main.235
https://doi.org/10.1145/3331166
https://doi.org/10.1145/3331166
http://arxiv.org/abs/2102.11497
http://arxiv.org/abs/2102.11497
http://arxiv.org/abs/1902.07816
http://arxiv.org/abs/1902.07816
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.1145/2661829.2661935
https://doi.org/10.1145/2661829.2661935
https://www.statista.com/outlook/dmo/digital-advertising/search-advertising/worldwide
https://www.statista.com/outlook/dmo/digital-advertising/search-advertising/worldwide
http://arxiv.org/abs/2004.02990
http://arxiv.org/abs/2004.02990
https://doi.org/10.1145/2505515.2507876
https://aclanthology.org/I17-2032
https://aclanthology.org/I17-2032
https://www.microsoft.com/en-us/research/publication/reinforcing-pretrained-models-for-generating-attractive-text-advertisements/
https://www.microsoft.com/en-us/research/publication/reinforcing-pretrained-models-for-generating-attractive-text-advertisements/
https://www.microsoft.com/en-us/research/publication/reinforcing-pretrained-models-for-generating-attractive-text-advertisements/
https://www.microsoft.com/en-us/research/publication/open-domain-web-keyphrase-extraction-beyond-language-modeling/
https://www.microsoft.com/en-us/research/publication/open-domain-web-keyphrase-extraction-beyond-language-modeling/
https://doi.org/10.18653/v1/D18-1428
https://doi.org/10.18653/v1/D18-1428
https://doi.org/10.18653/v1/D18-1428
https://doi.org/10.18653/v1/2021.acl-demo.26
https://doi.org/10.18653/v1/2021.acl-demo.26
https://doi.org/10.1016/j.ipm.2021.102853
https://doi.org/10.1016/j.ipm.2021.102853
https://doi.org/10.1016/j.ipm.2021.102853
https://doi.org/10.1145/3459637.3481902
https://doi.org/10.1145/3459637.3481902
https://doi.org/10.1145/3459637.3481902
https://doi.org/10.1145/3308558.3313407
https://doi.org/10.1145/3308558.3313407

New York, NY, USA. Association for Computing
Machinery.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
CoRR, abs/1802.01886.

A Ad Text Quality Judgement UI

Figure 4: User interface for human ad quality evalua-
tion.

199

http://arxiv.org/abs/1802.01886
http://arxiv.org/abs/1802.01886

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 200 - 213
December 7-11, 2022 c©2022 Association for Computational Linguistics

ACCoRD: A Multi-Document Approach to
Generating Diverse Descriptions of Scientific Concepts

Sonia K. Murthy, Kyle Lo, Daniel King, Chandra Bhagavatula, Bailey Kuehl
Sophie Johnson, Jonathan Borchardt, Daniel S. Weld, Tom Hope, Doug Downey

Allen Institute for Artificial Intelligence
{soniam,kylel,daniel,chandrab,baileyk,

sophiej,jonathanb,danw,tomh,dougd}@allenai.org

Abstract

Systems that automatically define unfamiliar
terms hold the promise of improving the acces-
sibility of scientific texts, especially for readers
who may lack prerequisite background knowl-
edge. However, current systems assume a sin-
gle “best” description per concept, which fails
to account for the many ways a concept can be
described. We present ACCoRD, an end-to-end
system tackling the novel task of generating
sets of descriptions of scientific concepts. Our
system takes advantage of the myriad ways a
concept is mentioned across the scientific litera-
ture to produce distinct, diverse descriptions of
target concepts in terms of different reference
concepts. In a user study, we find that users pre-
fer (1) descriptions produced by our end-to-end
system, and (2) multiple descriptions to a single
“best” description. We release the ACCoRD cor-
pus which includes 1,275 labeled contexts and
1,787 expert-authored concept descriptions to
support research on our task.

1 Introduction

Readers of scientific papers often encounter unfa-
miliar concepts, which impedes their understanding
(Portenoy et al., 2022). This is because papers as-
sume a priori knowledge, and often lack definitions
for the scientific terms that they use. While readers
may turn to external encyclopedic resources like
Wikipedia, these contain descriptions for only a
small fraction of scientific concepts (King et al.,
2020), which has motivated the development of
systems that automatically extract or generate de-
scriptions for scientific concepts. Unfortunately,
current systems only surface a single “best” result
for all users, which is often extracted from a single
input document (Espinosa-Anke and Schockaert,
2018; Vanetik et al., 2020; Veyseh et al., 2019;
Kang et al., 2020). The one-best description may
not be accessible for all readers, given varying back-
ground knowledge.

Input Output

corpus of scientific
documents

MultiRC

+
MultiRC is like SQuAD,

except MultiRC deliberately
attempts to include

multi-sentence reasoning.

MultiRC is like MCTest,
except MultiRC doesn’t

assume exactly one correct
answer.

...
MultiRC is a dataset of short

paragraphs and questions
that can be answered from

the content of the paragraph.

ACCoRD
system

target concept

Figure 1: ACCoRD’s approach to Description Set
Generation. Given a corpus of papers and a target con-
cept to be described (red, e.g. MultiRC), our system pro-
duces a diverse set of descriptions. These are generated
using mentions of the target concept in terms of mul-
tiple other reference concepts (orange) from extracted
contexts (blue), resulting in a diverse set of descriptions.

Scientific concepts can be described in multiple
distinct ways. In this work, we propose that a set
of descriptions is more useful for users than a sin-
gle description. Humans learn new concepts by
understanding how they relate to other, known con-
cepts (Rumelhart and Ortony, 1977; Spiro, 1980;
NRC, 2018), and providing multiple descriptions
allows us to highlight multiple such relationships,
contributing to a more complete understanding.
Furthermore, providing multiple descriptions in-
creases the number of potentially helpful connec-
tions between a new concept and concepts within
the user’s specific background knowledge (see Fig-
ure 1), increasing accessibility. This relational ap-
proach to human concept learning has been for-
malized through the lens of Analogical Transfer
Theory (Gentner, 1983; Kurtz et al., 2001; Gen-
tner and Goldin-Meadow, 2003) and has long been
employed as a tool in scientific discourse and edu-
cation (Treagust et al., 1992; Heywood, 2002). Our
work expands upon the notion of a description in
the context of description generation systems to
include analogy-like descriptions that are currently

200

1

3

2

Figure 2: Demo screenshots. (1) Users search for a target scientific concept from a pre-defined list and are shown
cards for top reference concepts used to describe the target concept in terms of a particular relation. (2) Users
click to expand the cards to see the extracted snippet (context) that produced the generated concept description, in
addition to a link to the source paper. (3) Spans of text that are shared between the extracted context and generated
description are highlighted to facilitate easy comparison.

not captured by either scientific definition (Kang
et al., 2020) or relation extraction (Wadden et al.,
2019) systems.

In this work, we present Automatic Compar-
ison of Concepts with Relational Descriptions
(ACCoRD) – an end-to-end system that tackles
the novel task of producing a set of distinct descrip-
tions for a given target concept.1 Given text from
scientific papers, our system first extracts all sen-
tences from the corpus that describe the concept in
terms of any other concept. Then, conditioned on
the extractions, ACCoRD generates succinct, self-
contained descriptions of the concepts’ relationship
using GPT-3 (Brown et al., 2020) in the few-shot
setting. The system finally selects a smaller, yet
diverse subset of descriptions that captures the rich-
ness of a concept’s usages by including multiple
relation types and reference concepts.

Our contributions are:

1. We introduce Description Set Generation
(DSG), the novel task of generating multi-
ple distinct descriptions of a single target
concept. In support of this task, we release
the ACCoRD corpus, an expert-annotated re-
source of 1,275 labeled contexts and 1,787
hand-authored concept descriptions.

2. We present ACCoRD, an end-to-end system
for DSG that outputs a diverse set of descrip-
tions for concepts in computer science.

3. We conduct a user study demonstrating that
1System demo, code, and data set available at

github.com/allenai/ACCoRD.

users prefer multiple descriptions over a single
“best” description, and that they prefer our
system’s generated concept descriptions over
those of an extractive baseline.

2 Description Set Generation

2.1 Task definition
We define Description Set Generation (DSG) as:
Given a large corpus of N scientific documents, a
target concept to be described, and a desired output
size |S|, output a set S of succinct, self-contained,
and distinct descriptions of the target concept (Fig-
ure 1). Unlike prior work, which defines the task in
terms of a single output description per scientific
concept (Jin et al., 2013; Kang et al., 2020), DSG
proposes outputting a set of descriptions. One can
view DSG as a generalization of the format used in
prior work (i.e. single-description outputs are sets
with |S| = 1).

2.2 Approach
DSG is an open-ended task, and many possible
description sets could form valid output for a given
concept. To facilitate the generation of descriptions
that are useful and factual, in this work, we focus
on descriptions that meet three criteria: (i) They
are derived from an extracted snippet of a scientific
document, referred to as the context, which
contains the target concept. In our experiments, the
contexts are limited to 1-2 contiguous sentences.
(ii) They must mention another concept, referred
to as the reference concept, which is mentioned
in the extracted context and is related to the

201

http://github.com/allenai/ACCoRD

target concept by one of the four relations in
{is-a,is-like,part-of,used-for}.
This relation must also be reflected in the extracted
context. (iii) The description must contain an
elaboration, or a span of text that further explains
the specified relation between the target and
reference concepts. For example, a description
cannot only say that “SQuAD is like TriviaQA”
but it must also specify that they “are both reading
comprehension data sets.” These elaborations must
be supported by the associated extracted context.

The description criteria described above enabled
us to build a system that produced many descrip-
tions preferred by users, as we show in our exper-
iments.2 However, the DSG task is more general
than our specific formulation, and experimenting
with other description formats in DSG is an impor-
tant item of future work.

3 Data set

To support work on DSG, we compile and release
the ACCoRD corpus. The data set consists of 1,275
labeled contexts and 1,787 hand-authored concept
descriptions, and induces diversity among these
concept descriptions in two key ways. First, our
data set allows for concept descriptions beyond
the typical is-a relation. Second, a single target
concept is allowed to be described in terms of any
number of other concepts in the source text.

3.1 Data set construction
To construct the ACCoRD corpus, we consider the
abstract, introduction, and related works sections
of 698 computer science (CS) papers randomly
sampled from S2ORC (Lo et al., 2020). We iden-
tify candidate contexts of 1-2 contiguous sentences
with at least one CS concept via string matching
against a high-precision set of CS concepts from
ForeCite (King et al., 2020).3

Annotators were instructed to assign a binary
label to each candidate context indicating whether
the context sentence(s) contained a description of

2Our specification of descriptions according to these three
criteria naturally include statements that would commonly be
considered “definitions.” For example, the Wikipedia defini-
tion of BERT, “BERT is a transformer-based machine learning
technique for natural language processing (NLP) pre-training.”
can be viewed as an is-a relational statement describing
BERT in terms of the reference concept “transformer-based
machine learning technique” with the elaboration “for natural
language processing (NLP) pre-training”

3ForeCite also assigns scores for each of its concepts that
represent their likelihood to be a scientific concept. We filter
to concepts with a ForeCite score ≥ 1.0.

Extracted context Hand-authored descriptions
word embedding is
a word
representation that
captures semantic
and syntactic
similarities between
words. it has been
widely utilized for a
variety of tasks,
such as sentence
classification [42],
relation
classification [41],
and sentiment
analysis [38], since
the introduction of
word2vec software.
(Shi et al., 2019)

[sentence classification, relation
classification] is a task that
word embedding has been uti-
lized for since the introduction of
word2vec software.

sentence classification is like [rela-
tion classification, sentiment anal-
ysis] in that they are both tasks
that word embedding has been
used for since the introduction of
word2vec software.

relation classification is like [sen-
tence classification, sentiment
analysis] in that they are both
tasks that word embedding has
been used for since the introduc-
tion of word2vec software.

word representation has been used
for [sentence classification, rela-
tion classification, sentiment anal-
ysis] since the introduction of
word2vec software.

Table 1: Sample entry from the ACCoRD corpus. The
ACCoRD annotation procedure uniquely allows each
positively-labeled context to yield multiple concept de-
scriptions for target ForeCite concept(s) (red) present
in an extracted context. Diversity among these concept
descriptions is induced through multiple relation types
(yellow) and distinct reference concepts (green), each
with an elaboration that specifies the relationship be-
tween the target and reference concepts (blue).

the target ForeCite concept in terms of any other
concept in the context. Inter-annotator agreement
for this annotation task was Cohen’s κ = 0.658.

For each extracted context that was assigned a
positive label, annotators were instructed to author
as many descriptions of the target ForeCite concept
that follow criteria (i)-(iii) above (see Appendix
A.1). These criteria allow each positively-labeled
context to yield multiple concept descriptions if
a target concept was described in terms of multi-
ple other concepts in the source text, if multiple
descriptive relations are applicable for a concept
pair, or if the extraction contained multiple target
concepts (see Table 1).

4 System overview

The ACCoRD system has 3 pipeline stages: (1)
extract sentences that describe one scientific con-
cept in terms of another, (2) generate succinct,
self-contained descriptions of the concepts’ rela-
tionship, and (3) select the top descriptions for each
concept (see Figure 3).

202

Extract sentences w/ SciBERT1 3Generate descriptions w/ GPT-3 Select top descriptions

... ...

2

...

✔

✔

✖

✖

Figure 3: ACCoRD system implemetation. Our system (1) extracts context sentences (blue) from scientific
documents that describe a target scientific concept (red) in terms of another using SciBERT (Beltagy et al., 2019)
finetuned on the ACCoRD corpus, (2) generates succinct, self-contained, and distinct descriptions of the target’s
relationship to each reference concept (orange) from the extracted contexts using GPT-3 (Brown et al., 2020) in the
few-shot setting, and (3) selects a final description set involving multiple relation types and reference concepts.

Extraction We build a two-stage model to iden-
tify sentences that describe a target concept in
terms of another concept. First, a SciBERT (Belt-
agy et al., 2019) text classifier trained on the bi-
nary labels from the ACCoRD corpus identifies
reasonable candidate contexts. Second, a different
multilabel SciBERT classifier trained on the rela-
tion types in ACCoRD predicts a relation type for
each candidate context. The inputs to both models
have the target scientific concepts demarcated fol-
lowing Wu and He (2019). Details on training and
hyperparameter tuning are in Appendix A.3.

Generation Each extracted candidate is then in-
put into a generative model, which produces a suc-
cinct, self-contained summary of the concept rela-
tionship described in the context. For the generator,
we use GPT-3’s davicini-instruct-beta
model (Brown et al., 2020) in the few-shot setting.
Details on how GPT-3 was prompted and heuristi-
cally post-processed are in Appendix A.4.

Selection For each target concept, we identify a
smaller, easily-consumable set4 of informative de-
scriptions from the larger pool of candidates. First,
we filter descriptions to only those that involve a
reference concept from ForeCite (King et al., 2020).
Second, note that each description has an associ-
ated context classified with relations in the extrac-
tion step. Using these, for each (target, relation)
pair, we choose the most frequent k reference con-
cepts among the descriptions. Third, we select a
top description for each (target, relation, reference)
triple by selecting the one with the highest predic-

4If |S| is large, ordering the set may be an important sub-
problem, which we leave for future work.

tion score from our multilabel extraction model.

4.1 ACCoRD generates diverse descriptions
By identifying concept descriptions across the sci-
entific literature, our system captures a diversity
of descriptions for a given target concept. We
measure this diversity for a set of 150 popular
natural language processing concepts using two
metrics: the number of candidate descriptions
prior to the selection stage of our system and the
number of unique reference concepts contained in
those descriptions.5 For descriptions involving the
compare and is-a relations, we find an average
of 153 and 373 candidate descriptions per target
concept, respectively. These candidate descriptions
contain an average of 15 unique reference concepts
per target concept for is-a descriptions and 11 for
compare descriptions (see Figure 4). This shows
that our system captures a wealth of information
that is not retained by a “single best” approach.

5 User study

The experiments in the previous section show that
our system produces meaningful diversity in gen-
erated descriptions. We perform a user study with
the full end-to-end system in order to answer two
key questions regarding our system’s utility:

• RQ1: Which method of producing concept
descriptions do users most prefer?

• RQ2: Does there exist a single “best” descrip-
tion per user?

5We report these statistics per relation type exhibited in
the description. For brevity, we restrict this to the two most
commonly observed relation types.

203

is-a compare

Number of unique reference concepts

Co
un

t

10

20

30

0

40

0 20 200

Figure 4: Distribution over number of unique reference
concepts per target among 150 popular NLP concepts.
For each target concept, ACCoRD produces candidate
descriptions involving a variety of reference concepts
and relations.

5.1 Study description
Our study consisted of two parts: The first aimed
to understand users’ preferences for sets of descrip-
tions, and the second aimed to understand their
preferences for individual descriptions within sets.

Participants We recruited 22 participants
through Upwork with at least a bachelor’s degree
in computer science and whose expertise included
NLP (see Appendix A.5 for details). Participants
were asked to imagine they were reading a section
in a paper and came across a scientific concept
they wanted to learn more about.

Design We selected a set of 20 popular NLP con-
cepts from ForeCite. For each concept, we obtained
three sets of six descriptions. Each set was gener-
ated from a system variant:

• generate-stratify the output of our complete
system: generated descriptions that were se-
lected according to our ranking and filter-
ing methods. This set was comprised of the
top three descriptions for each of the relation
classes compare and is-a.

• extract-stratify the raw extractions for the de-
scriptions in generate-stratify.

• generate-naive the output of the generation
step of our system, but without the final strat-
ified selection step. Instead, the top six de-
scriptions for this set were selected using the
prediction scores from our extractive model.

In Part One of the study, participants reported
their level of expertise with each concept on a 5-
point scale ranging from 1 = “I do not know this
concept” to 5 = “I know the concept and could
explain it to someone else.” For each concept, par-
ticipants then read the three sets of descriptions

extract-stratify generate-naive generate-stratify
Description set

4

8

12

N
um

be
r o

f p
ar

tic
ip

an
ts

Figure 5: User preferences for description sets. Partici-
pants strongly preferred descriptions sets that contained
generated descriptions (generate-stratify, generate-
naive) over the set that contained extracted text snippets
(extract-stratify). Participants’ preference for the set
produced by ACCoRD’s more sophisticated descrip-
tion selection component was less pronounced, but still
resulted in a higher minimum preference count than
generate-naive.

and selected the set they found most helpful for the
imagined setting. At the end of Part One, partici-
pants gave a free-response description of how they
determined their preference for the description sets.
In particular, we asked them to articulate which
features of the description sets were important in
determining a preference.

In Part Two of the study, participants were shown
each of the descriptions from our complete sys-
tem’s output (generate-stratify) and asked to in-
dicate their preference for each description in a
multiple choice: “I would want to see this descrip-
tion of the concept,” “No preference/opinion,” “I
would not want to see this description of the con-
cept.” At the end of Part Two, participants gave
two free-response explanations: (1) why they pre-
ferred certain descriptions over others and (2) how
their criteria may have differed when rating sets of
descriptions compared to individual descriptions.

5.2 Results
RQ1: Users prefer our system’s generated de-
scriptions over baselines The three description
sets we tested were aimed at understanding users’
preferences for the individual components of our
system, in particular (1) whether users preferred the
final summarized concept descriptions to the raw
extractions and (2) whether our stratified selection

204

method of filtering the descriptions was preferred.
As shown in Figure 5, aggregated over the re-

sponses for all 20 concepts in our study, partici-
pants strongly preferred both versions of the gen-
erated description sets, which received a median
score of 7.5 for generate-naive (95% CI = [5.9,
9.1]) and 10.0 for generate-stratify ([8.4, 11.6])
compared to the raw extractions from extract-
stratify at 4.0 ([2.9, 5.1]). These results also suggest
a preference for the description set obtained using
ACCoRD’s stratified selection method generate-
stratify over generate-naive.

RQ2: There is no single “best” description per
user ACCoRD’s approach is based on the hy-
pothesis that users prefer a set of descriptions to a
single “best” description per concept. Our findings
support this hypothesis: When presented with mul-
tiple individual descriptions from our end-to-end
system, generate-stratify, participants on average
preferred around 3 descriptions for a given target
concept (µ = 3.41, 95% CI = [3.03, 3.79]).

5.3 Qualitative analysis
Analyzing the free-text responses from study partic-
ipants generally confirmed the results of our quanti-
tative findings, while shedding more light on users’
considerations in evaluating concept descriptions.

Users prefer concise descriptions Participants
most consistently articulated some preference for
shorter, more concise, and more direct descriptions
of the target concept (n = 11). This provides
strong support for the generative component of
our system; however, a number of users (n = 5)
noted that the generations were not always accurate
(see Appendix for error analysis). Additionally,
though participants appreciated the conciseness of
the generated descriptions, many (n = 6) noted
referencing the extracted text for additional context,
confirming our design choice of displaying each
generation with its source text (see Figure 2).

Many users prefer analogical descriptions Our
work expands the notion of a description in the
context of description generation systems, to in-
clude analogy-like descriptions that are currently
not captured by either scientific definition (Kang
et al., 2020) or relation extraction (Wadden et al.,
2019) systems. A number of participants (n = 9)
noted that descriptions that drew connections be-
tween other concepts in this fashion were helpful,
in particular because they could ease learning and

memorization of the concept (P18), reflected their
own process when trying to synthesize new infor-
mation (P19), and helped make sense of the many
similar model architectures (P14).

6 Related Work

Learning new concepts Cognitive theories of
learning have asserted that effective ways of
describing a new concept to someone tend to
take advantage of structured background knowl-
edge (Spiro, 1980; Bazerman, 1985) by grounding
descriptions to already-familiar concepts (NRC,
2018). Systems that assume a single “best” re-
sult for all users limit the accessibility of techni-
cal knowledge to diverse audiences (Teevan et al.,
2010). These considerations motivate our system
and novel task definition, which extends the con-
ventional description generation setting to include
multiple target descriptions for a single concept.

Description generation While previous work
has investigated extracting and generating defini-
tions of scientific concepts (Espinosa-Anke and
Schockaert, 2018; Vanetik et al., 2020; Veyseh
et al., 2019; Kang et al., 2020), they focus on
producing a single canonical description for each
concept. These methods also approach definition
generation from a single-document perspective,
which doesn’t account for the multitude of ways a
concept might be described outside of the context
of that paper. In contrast, we aim to preserve multi-
ple distinct descriptions that take advantage of the
corpus-wide mentions of a given concept. In addi-
tion, unlike the data sets these models are trained
on (e.g. W00 (Jin et al., 2013)), our ACCoRD cor-
pus includes descriptions that involve comparative
relationships between concepts beyond the typi-
cal is-a relationship. Such extractions of concept
comparisons have been targeted in the context of re-
lation extraction systems (Wadden et al., 2019), and
their corresponding data sets (Luan et al., 2018).
However, these do not include differentia between
the concept pairs that elaborate on the concepts’
relationships, making them unsuitable as data for
our concept description setting.

7 Future work

7.1 Improving generation quality
Our results show that a generation component that
produces succinct, direct descriptions of a target
concept is helpful for a user-friendly system for

205

DSG. However, our qualitative feedback suggests
that this is also an important area for future work,
as poor generation quality was often cited as the
reason users preferred the set with only extracted
descriptions (see Tables 3 and 4 for an analysis of
extraction-stage and generation-stage errors).

7.2 Controllable generation
Beyond resolving errors in generation, future
work might investigate methods for controllable
generation that are better tailored to user needs.
For example, in our user study free-text responses,
participants suggested that users may require differ-
ent kinds of descriptions based on the type of con-
cept being described. In particular, two participants
(P14, P21) noted that they preferred set generate-
naive, which contained more "canonical" descrip-
tions, for simple, standalone data set concepts that
could be explained straightforwardly. On the other
hand, for more complex method and system-based
concepts, like RoBERTa, GPT, and LSTM, users
expressed preference for descriptions that made
comparisons to other concepts (as produced by our
complete system). Adding a word-sense disam-
biguation module to future versions of our system
will also be important, especially for domains like
biomedicine where a single scientific term will of-
ten have multiple usages.

7.3 Potential for personalization
While we showed in Section 5.2 that participants of-
ten had multiple preferred descriptions per concept,
a question remains—Are these preferences similar
or different across users? To investigate, we com-
pute the Fleiss’ κ score measuring agreement in
participant preference votes across the six available
descriptions for each concept, and find this to be
low on average across concepts (µ = 0.06, 95% CI
= [0.04, 0.09]). Likewise, only a minority of users
(µ = 0.34, 95% CI = [0.31, 0.36]) listed the top-
voted description among their preferred ones, on
average. The high variation in preferences across
participants suggests potential for personalization
in the DSG task. In this section, we investigate
future avenues for operationalizing personalization
within description generation systems.

We consider how level of expertise in a con-
cept might affect a user’s preferences over descrip-
tions. In Figure 6, we plot the Fleiss’ κ scores
for user preferences over descriptions against the
average level of self-reported expertise of the con-
cepts. While we do observe low agreement in pref-

erences overall, interestingly the lowest agreement
scores are found for concepts for which participants
mostly self-rated as having low expertise. Fitting
a linear model to the data, we find the estimated
slope coefficient is significantly greater than zero
(b = 0.03628, p < 0.05).6

adversarial training

beam search

bert

distant supervision

domain shift

dropout

elmo
fasttext

glove

gpt

hierarchical softmax
imagenet

lstm

newsqa

resnet

roberta

variational autoencoder

word2vec

0.0

0.1

0.2

0.3

1 2 3 4 5
Average self-rated concept expertise

Fl
ei

ss
’ κ

Figure 6: User agreement (Fleiss’ κ) in description
preferences for each concept versus average concept
expertise level. We find low agreement in preferences
overall, with the lowest agreement scores for concepts
for which participants also indicated low expertise.

8 Conclusion

We have presented ACCoRD, an end-to-end system
for the novel task of Description Set Generation
(DSG). In user studies, our methods were preferred
over baseline approaches and produce a diversity of
generated concept descriptions. We also release the
ACCoRD corpus to facilitate development of future
systems for DSG. We hope that such systems will
help increase the accessibility of scientific literature
for people with diverse background knowledge.

Acknowledgements

This project was supported in part by NSF Conver-
gence Accelerator Award 2132318, NSF RAPID
grant 2040196, ONR grant N00014-18-1-2193, and
the Allen Institute for Artificial Intelligence (AI2).
We thank Elena Glassman for providing valuable
feedback on our system demonstration.

6We further investigated this by, for each concept, segment-
ing participants into high and low expertise groups (i.e. above
or below the global median expertise of 4.0) and computing av-
erage agreement within those groups. The difference in mean
agreement between high (µ = 0.08) and low (µ = 0.05)
expertise groups was not statistically significant.

206

References
Mohammed N. A. Ali, Guanzheng Tan, and Aamir Hus-

sain. 2019. Boosting arabic named-entity recognition
with multi-attention layer. IEEE Access, 7:46575–
46582.

Peter Anderson, Ayush Shrivastava, Devi Parikh, Dhruv
Batra, and Stefan Lee. 2019. Chasing ghosts: In-
struction following as bayesian state tracking. In
NeurIPS.

Charles Bazerman. 1985. Physicists reading physics.
Written Communication, 2:23 – 3.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: Pretrained language model for scientific text. In
EMNLP.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Yin-Wen Chang, Alexander M. Rush, John DeNero,
and Michael Collins. 2014. A constrained viterbi
relaxation for bidirectional word alignment. In ACL.

Luis Espinosa-Anke and Steven Schockaert. 2018. Syn-
tactically aware neural architectures for definition
extraction. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 378–385,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Dedre Gentner. 1983. Structure-mapping: A theoretical
framework for analogy. Cogn. Sci., 7:155–170.

Dedre Gentner and Susan Goldin-Meadow. 2003. Lan-
guage in mind: Advances in the study of language
and thought. MIT press.

David Heywood. 2002. The place of analogies in sci-
ence education. Cambridge Journal of Education,
32:233 – 247.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL.

Yiping Jin, Min-Yen Kan, Jun-Ping Ng, and Xiangnan
He. 2013. Mining scientific terms and their defini-
tions: A study of the ACL Anthology. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 780–790,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Dongyeop Kang, Andrew Head, Risham Sidhu, Kyle Lo,
Daniel Weld, and Marti A. Hearst. 2020. Document-
level definition detection in scholarly documents: Ex-
isting models, error analyses, and future directions.
In Proceedings of the First Workshop on Scholarly
Document Processing, pages 196–206, Online. Asso-
ciation for Computational Linguistics.

Daniel King, Doug Downey, and Daniel S. Weld. 2020.
High-Precision Extraction of Emerging Concepts
from Sientific Literature. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR

’20), Virtual Event, China. ACM.

Kenneth J. Kurtz, Chun-Hui Miao, and Dedre Gentner.
2001. Learning by analogical bootstrapping. The
Journal of the Learning Sciences, 10(4):417–446.

Chu-Cheng Lin and Jason Eisner. 2018. Neural particle
smoothing for sampling from conditional sequence
models. In NAACL.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Boyu Lu, Frank Shyu, Yun-Nung (Vivian) Chen, Hung
yi Lee, and Lin-Shan Lee. 2017. Order-preserving
abstractive summarization for spoken content based
on connectionist temporal classification. ArXiv,
abs/1709.05475.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreferencefor scientific knowledge
graph construction. In Proc. Conf. Empirical Meth-
ods Natural Language Process. (EMNLP).

Sainik Kumar Mahata, Avishek Garain, Adityar Ray-
ala, Dipankar Das, and Sivaji Bandyopadhyay. 2019.
Jumt at wmt2019 news translation task: A hybrid
approach to machine translation for lithuanian to en-
glish. ArXiv, abs/1908.01349.

NRC. 2018. How people learn: Brain, mind, experi-
ence, and school: Expanded edition. In The National
Academies Press, Washington, DC.

Jason Portenoy, Marissa Radensky, Jevin D. West, Eric
Horvitz, Daniel S. Weld, and Tom Hope. 2022. Burst-
ing scientific filter bubbles: Boosting innovation via
novel author discovery. In CHI.

Alexandre Reiffers-Masson and Vincent Labatut. 2017.
Opinion-based centrality in multiplex networks: A
convex optimization approach. Network Science,
5:213 – 234.

David Rumelhart and Andrew Ortony. 1977. Schooling
and the acquisition of knowledge. Lawrence Erlbaum
Associates, Hillsdale, NJ.

207

http://arxiv.org/abs/arXiv:1903.10676
http://arxiv.org/abs/arXiv:1903.10676
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/N18-2061
https://doi.org/10.18653/v1/N18-2061
https://doi.org/10.18653/v1/N18-2061
https://aclanthology.org/D13-1073
https://aclanthology.org/D13-1073
https://doi.org/10.18653/v1/2020.sdp-1.22
https://doi.org/10.18653/v1/2020.sdp-1.22
https://doi.org/10.18653/v1/2020.sdp-1.22
https://doi.org/10.1145/3397271.3401235
https://doi.org/10.1145/3397271.3401235
http://www.jstor.org/stable/1466739
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/https://doi.org/10.17226/9853
https://doi.org/https://doi.org/10.17226/9853

Weijia Shi, Muhao Chen, Pei Zhou, and Kai-Wei Chang.
2019. Retrofitting contextualized word embeddings
with paraphrases. In EMNLP.

Rand J. Spiro. 1980. Schema theory and reading com-
prehension: New directions.

Jun Suzuki, Kevin Duh, and Masaaki Nagata. 2011.
Distributed minimum error rate training of smt using
particle swarm optimization. In IJCNLP.

Jaime Teevan, Susan T. Dumais, and Eric Horvitz. 2010.
Potential for personalization. ACM Trans. Comput.-
Hum. Interact., 17(1).

David F. Treagust, Reinders Duit, Paul Joslin, and Ivo E.
Lindauer. 1992. Science teachers’ use of analogies:
observations from classroom practice. International
Journal of Science Education, 14:413–422.

Natalia Vanetik, Marina Litvak, Sergey Shevchuk, and
Lior Reznik. 2020. Automated discovery of math-
ematical definitions in text. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 2086–2094, Marseille, France. European
Language Resources Association.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2019. A joint model
for definition extraction with syntactic connection
and semantic consistency. CoRR, abs/1911.01678.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Shanchan Wu and Yifan He. 2019. Enriching pre-
trained language model with entity information for re-
lation classification. In Proceedings of the 28th ACM
International Conference on Information and Knowl-
edge Management, CIKM ’19, page 2361–2364, New
York, NY, USA. Association for Computing Machin-
ery.

Huangjie Zheng, Lingxi Xie, Tianwei Ni, Ya Zhang,
Yanfeng Wang, Qi Tian, Elliot K. Fishman, and
Alan Loddon Yuille. 2018. Phase collaborative net-
work for multi-phase medical imaging segmentation.
ArXiv, abs/1811.11814.

208

https://doi.org/10.1145/1721831.1721835
https://aclanthology.org/2020.lrec-1.256
https://aclanthology.org/2020.lrec-1.256
http://arxiv.org/abs/1911.01678
http://arxiv.org/abs/1911.01678
http://arxiv.org/abs/1911.01678
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119
https://doi.org/10.1145/3357384.3358119

A Appendix

A.1 ACCoRD corpus examples that deviate from criteria
In a small fraction of cases, the hand-labeled descriptions deviate from the criteria. First, in < 4.6% of
examples, we allowed annotators to specify a reference concept not explicitly mentioned in the extracted
context. These were limited to obvious cases; e.g. “neural network” is a reference concept for target
concept “recurrent neural network.” Second, < 0.4% of examples do not contain an elaboration. The
majority of these cases are of the used-for relation, where the reference concept and elaboration are a
single entity (e.g. “gav is used for query processing in stable environments.”)

A.2 ACCoRD addresses a meaningfully novel task
To verify that the ACCoRD corpus addresses a novel task that is not well-captured by existing resources,
we compare our system’s results on ACCoRD to those of existing state-of-the-art scientific definition
and relation extraction systems. For our definition extraction baseline, we test HEDDEx (Kang et al.,
2020) trained on W00 (Jin et al., 2013), a similarly-sized corpus of definition sentences from workshop
papers from the 2000 ACL Conference. Since HEDDEx was originally only intended to produce a single
canonical definition of scientific terms and symbols at the sentence-level, we also evaluate its performance
on the subset of ACCoRD that was marked as containing an “is-a” relationship between the reference
and target concept, to more faithfully evaluate its potential. For our relation extraction baseline, we test
DyGIE++ (Wadden et al., 2019) trained on SciERC (Luan et al., 2018), a scientific relation extraction data
set. Table 2 shows these results for the union of the 1- and 2-sentence source text settings in ACCoRD, as
our qualitative conclusions remained unchanged across these settings. Our model trained on ACCoRD
outperforms models that target related tasks, even when they beat a baseline that always assigns positive
labels, suggesting that our data set addresses an importantly different task.

Model Train set F1
HEDDEx W00 0.329
HEDDExis-a W00 0.449
DyGIE++ SciERC 0.532
SciBERT ACCoRD 0.624

Positive baseline 0.484

Table 2: Results for our extractive model and relevant baselines on the ACCoRD test set (n = 674). Our model
trained on ACCoRD outperforms models that target related tasks, even when they beat a baseline that always assigns
positive labels, suggesting that our data set addresses an importantly different task.

A.3 Extraction models training and hyperparameter tuning details
For context identification, the model was trained with using a classification head on the [CLS] token.
Across 5 random seed runs, within which we performed 5-fold cross validation over 3509 examples,
we searched over training configurations and hyperparameters: model in {SciBERT, RoBERTa-Large}
loss function in {negative log-likelihood, soft F1}, number of epochs in {5, 10, 15}, learning rates in
{1e-5, 5e-5, 1e-4}, and batch size in {16, 32}. We found that the SciBERT model with soft F1 loss was
performing the best with respect to the positive class F1. Overall, our best model was a SciBERT classifier
with [CLS], trained with soft F1 loss over 10 epochs, a learning rate of 1e-5, and batch size of 16.

We followed a similar process for the multilabel relation classification model, except instead of a
softmax we used a sigmoid over the [CLS] classification head to enable multilabel predictions, whose
logit values were thresholded at 0. Our best model here was SciBERT trained with a weighted binary
cross entropy loss (weight = 2) over 10 epochs, a learning rate of 5e-5, and batch size of 32.

A.4 GPT-3 prompting and post-processing details
We provide the model with a prompt that includes the instruction “Describe the provided concept in terms
of another concept in the text” along with five hand-picked (extraction, ground truth concept description)

209

example pairs from the ACCoRD corpus. We hand-select example pairs for each relation type, and for
each query extraction, provide the examples of the relation type predicted by the multilabel classifier.

Each generated description is then post-processed to heuristically identify the reference concept, using
noun chunking and regular expressions based on our description templates. We then apply additional
heuristics to the descriptions as a first-pass filter for low-quality GPT-3 generations, e.g. removing
descriptions that have any mention of unresolved references like “our work,” descriptions that erroneously
contain a reference concept that is an author’s name, and descriptions with more than one occurrence of
the target concept (to prevent descriptions of the target concept in terms of itself).

A.5 User study participant details
Of the 22 participants, all of whom had at least a bachelor’s degree in computer science, 8 participants
additionally had a Master’s degree and 3 had obtained a PhD in computer science. 14 participants indicated
having up to three years of experience in NLP, five had 4-6 years of experience, and three others indicated
having more than 7 years of experience.

210

(a) compare relation

N
um

be
r o

f d
es

cr
ip

tio
ns

Target concept

Number of descriptions per target concept: compare relation

(b) is-a relation

Figure 7: Number of candidate descriptions for 50 target NLP concepts, for each relation type present in our system
demo, prior to the selection stage of ACCoRD. Our system identifies, extracts, and generates approximately twice
as many candidate descriptions of the compare relation than of the is-a relation.

211

Error type Percentage Sample extraction Sample generation
Generation
is an in-
accurate
synthesis of
extraction

24% in the modern context, mt systems can be cat-
egorized into statistical machine translation
(smt) and neural machine translation (nmt).
smt has had its share in making mt very pop-
ular among the masses. (Mahata et al., 2019)

neural machine translation is like statistical
machine translation in that they are both types
of mt systems and have had their share in
making mt very popular among the masses.

in the nlp community, beam search and
importance sampling are common. unfor-
tunately, beam search considers only the
approximate-top-k taggings from an expo-
nential set (wiseman and rush, 2016) , and
importance sampling requires the construc-
tion of a good proposal distribution (dyer et
al., 2016) . (Lin and Eisner, 2018)

beam search is like importance sampling in
that they are both methods that consider only
the approximate-top-k taggings from an ex-
ponential set and require the construction of
a good proposal distribution.

Generation
is tech-
nically
correct, but
unhelpful
because
it lacks
important
details

15% however, these approaches lack geometric pri-
ors and contain no mechanism for reasoning
about the likelihood of alternative trajecto-
ries -a crucial skill for the task, e.g., ’would
this look more like the goal if i was on the
other side of the room?’. due to this limi-
tation, many previous works have resorted
to performing inefficient first-person search
through the environment using search algo-
rithms such as beam search [4, 6] . (Anderson
et al., 2019)

beam search is a search algorithm that is used
for first-person search through the environ-
ment.

Generation
is incoherent

8% in recent years, generative models like vae
and gan [20, 11] and their extensions have
become popular and have been applied to var-
ious scenarios due to their impressive perfor-
mance. since the arterial and venous phases
form different data distribution, to build a
relation between them refers to the domain
adaptation using generative models, where
pix2pix [19] , cyclegan [50] and unit [28] etc.
are typical models in this field. (Zheng et al.,
2018)

vae is like gan in that they are both generative
models that have been applied to various sce-
narios due to their impressive performance
and since the arterial and venous phases form
different data distribution, to build a relation
between them refers to the domain adaptation
using generative models.

the trained model can be fine-tuned for down-
stream nlp tasks such as question answering
and language inference without substantial
modification. bert outperforms previous state-
of-the-art models in the eleven nlp tasks in
the glue benchmark (wang et al., 2018) by a
significant margin. (Jawahar et al., 2019)

question answering is like language inference
in that they are both nlp tasks that bert out-
performs previous state-of-the-art models in
the eleven nlp tasks in the glue benchmark
(wang et al., 2018) by a significant margin.

Second
sentence of
extraction
is appended
verbatim,
resulting in
a difficult
to read,
incoherent,
or inaccurate
generation

6% recent statistical machine translation (smt)
systems employ a linear combination of sev-
eral model components, such as translation
models, language models, and reordering
models. translation is performed by select-
ing the most-likely translation, which is the
candidate translation with the highest score
based on the different model components.
(Suzuki et al., 2011)

language model is like translation model in
that they are both model components that are
used in recent statistical machine translation
(smt) systems and translation is performed by
selecting the most-likely translation, which
is the candidate translation with the highest
score based on the different model compo-
nents.

Table 3: Error analysis of ACCoRD system output: generation stage. Common generation error types for a
sample (n = 100) of ACCoRD system outputs include generations that are an inaccurate synthesis of source text;
generations that are technically correct but unhelpful because they lack important details; incoherent generations;
and instances where the second sentence of extraction is appended verbatim, often resulting in a difficult to read,
incoherent, or inaccurate generation. A final error type not shown was, appending irrelevant information, which
occurred in 5% of the sample. Multiple error types can be present in the same generation.

212

Error type Percentage Sample extraction Sample generation
Poor target
concept
delimitation
resulting in
inaccurate
generation

6% in order to ensure accurate word alignments,
most systems employ a post-hoc symmetriza-
tion step to combine directional word align-
ers, such as ibm model 4 (brown et al., 1993)
or hidden markov model (hmm) based align-
ers (vogel et al., 1996) . several authors have
proposed bidirectional models that incorpo-
rate this step directly, but decoding under
many bidirectional models is np-hard and
finding exact solutions has proven difficult.
(Chang et al., 2014)

ibm model is like hidden markov model in
that they are both directional word aligners
and have been used to create post-hoc sym-
metrization steps.

Extracted
text is miss-
ing details
or contains
unresolved
references
that make it
difficult to
produce a
high quality
generation

6% most of them generalize widespread existing
unilayer measures such as degree [29, 17, 1]
, betweenness [28, 34, 11] , closeness [29,
35] , eigenvector [17, 33, 1] , pagerank [31,
20, 13] or hits [26] . these generalizations
rely on the adaptation of unilayer concepts
to the multilayer case. (Reiffers-Masson and
Labatut, 2017)

pagerank is like degree, betweenness, close-
ness, eigenvector and hits in that they are all
unilayer measures that generalize to the mul-
tilayer case.

[22] . their system achieved good results on
various labeling tasks, including ner and pos,
without depending on any manual feature en-
gineering. (Ali et al., 2019)

ner is like pos in that they are both labeling
tasks that the system achieved good results
on without depending on any manual feature
engineering.

Poor sen-
tencization
of scientific
text

4% various approaches have been proposed
for sequence-tosequence problems, such as
speech recognition [15, 16] , neural machine
translation [17, 18] , and dialogue modeling
[19, 20] . among various deep-learning-based
methods, cho et al. (Lu et al., 2017)

neural machine translation is like speech
recognition in that they are both ap-
proaches for sequence-tosequence problems
and among various deep-learning-based
methods, cho et al.

Table 4: Error analysis of ACCoRD system output: extraction stage. Common extraction error types for a sample
(n = 100) of ACCoRD system outputs include poor delimitation of the target ForeCite concept within candidate
extractions, resulting in an inaccurate generation; low quality extracted text that results in low quality generation;
and poor sentence delimitation of scientific text. Multiple error types can be present in the same generation.

213

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 214 - 223
December 7-11, 2022 c©2022 Association for Computational Linguistics

Automatic Comment Generation for Chinese Student Narrative Essays

Zhexin Zhang1∗, Jian Guan1∗, Guowei Xu2, Yixiang Tian2 and Minlie Huang1†
1The CoAI group, DCST; 1Institute for Artificial Intelligence; 1State Key Lab of Intelligent Technology and Systems;

1Beijing National Research Center for Information Science and Technology; 1Tsinghua University, Beijing 100084, China.
2TAL Education Group.

{zx-zhang18,j-guan19}@mails.tsinghua.edu.cn, {xuguowei,tianyixiang}@tal.com

aihuang@tsinghua.edu.cn

Abstract

Automatic essay evaluation can help reduce
teachers’ workload and enable students to re-
fine their works rapidly. Previous studies focus
mainly on giving discrete scores for either
the holistic quality or several distinct traits.
However, real-world teachers usually provide
detailed comments in natural language, which
are more informative than single scores. In this
paper, we present the comment generation task,
which aims to generate comments for specified
segments from given student narrative essays.
To tackle this task, we propose a planning-
based generation model, which first plans
a sequence of keywords, and then expands
these keywords into a complete comment. To
improve the correctness and informativeness of
generated comments, we adopt two following
techniques: (1) training an error correction
module to filter out incorrect keywords, and
(2) recognizing fine-grained structured features
from source essays to enrich the keywords.
To support the evaluation of the task, we
collect a human-written Chinese dataset,
which contains 22,399 essay-comment pairs.
Extensive experiments show that our model
outperforms strong baselines significantly.
Moreover, we exert explicit control on our
model to generate comments to describe the
strengths or weaknesses of inputs with a 91%
success rate. We deploy the model at http:
//coai.cs.tsinghua.edu.cn/static/
essayComment/. A demo video is available at
https://youtu.be/IuFVk8dUxbI. Our code
and data are available at https://github.
com/thu-coai/EssayCommentGen.

1 Introduction

Automatic essay evaluation is a useful educational
application of natural language processing (Page,
1966), which is beneficial for reducing teachers’
workload and enabling students to improve writing

*Equal contribution.
†Corresponding author.

Title: ;<9=>
(The Lights of Home)
Body:
...
?@ABCDEFGEHIJKLMN%OPQ%R
JLST%RJ=UVW%XYZ[\
9]=^_`2abc%def,g9%
dhi9%djklm9%dnopq
9%Urstj.?@ABCDEFGEuI
(In the morning there are few people and it
is better to go in the evening. In the
evening, the lights come on. Red, white,
green and yellow colored lights are like
blooming flowers, which are on 12 zodiac
signs, plants, restaurants and famous
buildings. All of them are so beautiful.)
...

!"vwxyz{|}~%,
-~�W����9����.
(The use of simile and
environmental descriptions
vividly write the visual
characteristics of the portrayed
object.)

/0�"23#$678
9:&(),-.
(The appropriate use of some
idioms will make your essay
more vivid.)

Essay

Strengths

Weaknesses

Figure 1: An example for the comment generation task.
Given an essay with a specified segment (separated
from the rest using special tokens <extra_id_0> and
<extra_id_1>), the model should generate a sentence
to comment the strengths or weaknesses of the segment.

skills independently. Prior studies focus mainly
on automatic essay scoring (AES) in terms of ei-
ther holistic scores (Cozma et al., 2018) or trait-
specific scores (Mathias and Bhattacharyya, 2020;
Song et al., 2020). However, real-world teachers
usually provide detailed comments in natural lan-
guage, which are more informative so that students
can know more about the strengths and weaknesses
of their works.

In this work, we present the first study on au-
tomatic comment generation, which requires gen-
erating a fluent comment in natural language to
describe strengths or weaknesses for a specified
segment from a given student essay, as exemplified
in Figure 1. We only focus on narrative essays in
this work, which comprise more than 90% of our
originally collected essays. The challenges of the
task mainly lie in the following three folds: (1) Cap-
turing the linguistic features of the essay, ranging
from the wording, rhetorical methods (e.g., “simile”
in the example) to discourse structures. (2) Gen-
erating coherent comments to correctly reflect the
strengths or weaknesses (e.g., the segment does not
use idioms in the example) of the essay. (3) Gen-
erating informative and diverse comments since
generic comments such as “it is good” do not pro-

214

http://coai.cs.tsinghua.edu.cn/static/essayComment/
http://coai.cs.tsinghua.edu.cn/static/essayComment/
http://coai.cs.tsinghua.edu.cn/static/essayComment/
https://youtu.be/IuFVk8dUxbI
https://github.com/thu-coai/EssayCommentGen
https://github.com/thu-coai/EssayCommentGen

vide any helpful guidance for students, and it is
also expected to generate diverse comments for
different essays.

To tackle the problem, we propose a planning-
based generation model (Yao et al., 2019), which
first plans a sequence of keywords concerning spe-
cific writing skills such as “simile”, and then ex-
pands the keywords into a coherent comment. On
the one hand, planning helps build explicit connec-
tions between essays and underlying skills, which
alleviates the degeneration issue that the model
focuses on predicting common elements such as
“more vivid” and tends to generate generic com-
ments (Fan et al., 2019). On the other hand, we can
exert direct control on the intermediate keywords
to improve the correctness and informativeness of
generated comments. Specifically, we fine-tune
BERT (Devlin et al., 2019) to serve as an error
correction module to filter out incorrect keywords,
which is trained to discriminate matching relations
between essays and keywords. Moreover, we rec-
ognize structured features from source essays in
terms of idioms, proverbs, quotes, descriptive and
rhetorical methods using heuristic techniques or
pretrained classifiers. Then we combine these fea-
tures with the predicted keywords. To control the
type of generated comments, we insert a binary
control code before the keywords and comments
(0/1 for describing strengths/weaknesses). In the
comment generation stage, we inject noise into the
ground-truth keywords during training (Tan et al.,
2021) to alleviate the exposure bias issue intro-
duced by planning (Ranzato et al., 2016).

To support training and evaluation of the pro-
posed task, we collect a Chinese dataset that con-
tains 22,399 essay-comment pairs. Extensive ex-
periments show that our model outperforms strong
baselines in correctness, informativeness and diver-
sity. Furthermore, we build a website to enable real-
time interaction with our deployed model, where
a user can upload a Chinese student essay and see
comments along with recognized structured fea-
tures for most paragraphs.

2 Related Work

Automatic Essay Scoring There have been wide
explorations for automatic essay scoring, including
holistic essay scoring and trait-specific essay scor-
ing (Mathias and Bhattacharyya, 2020). Holistic
essay scoring aims to assign an overall score for the
essay. Taghipour and Ng (2016); Tay et al. (2018)

used LSTM and Dong and Zhang (2016); Dong
et al. (2017) used CNN to give a total score for the
essay. Cozma et al. (2018) utilized word embed-
ding clusters and string kernels to achieve strong
performances. Yang et al. (2020) jointly resolved
the essay scoring task and the essay ranking task
through fine-tuning the BERT model. Trait-specific
essay scoring aims to assign different scores for dif-
ferent traits of an essay, such as thesis clarity (Ke
et al., 2019), style (Mathias and Bhattacharyya,
2018) and narrative quality (Somasundaran et al.,
2018). Mathias and Bhattacharyya (2020) com-
pared different trait-agnostic approaches to auto-
matically score many different essay traits. How-
ever, all these works assign numeric scores for an
essay, while we focus on generating a readable
comment.

Essay Assessment Systems Attali and Burstein
(2006) constructed a system named E-rater, which
could provide numeric scores for different features
such as grammar and style. LinggleWrite (Tsai
et al., 2020) focused on grammatical error correc-
tion and automatic essay scoring. The system most
similar to ours is IFlyEA (Gong et al., 2021), which
has grammar level analysis techniques and compo-
nents for discourse and rhetoric analysis. It also
integrates the fine-grained analysis to form a review
for the whole essay using templates. However, our
system is capable of generating diverse and natu-
ral comments without the usage of templates and
could give comments for different segments of the
essay.

Planning-based Generation Humans usually
outline the overall framework before writing. Many
works have explored planning-based text genera-
tion, which first predicts an intermediate represen-
tation as a plan and then generates the complete
text conditioned on the plan. The plan could be
a series of keywords (Yao et al., 2019), an action
sequence (Fan et al., 2019; Goldfarb-Tarrant et al.,
2020) or a dense keyword distribution (Kang and
Hovy, 2020; Kong et al., 2021). Tan et al. (2021)
progressively refined the produced domain-specific
content keywords into complete passages in multi-
ple stages. In this paper, we adapt planning to the
automatic comment generation task and improve
the correctness and informativeness by revising the
intermediate keywords.

215

3 Method

We formulate our task as follows: given an essay
X = (x1, x2, · · · , xM) with M tokens and a spec-
ified segment from xi to xj (the segment is sepa-
rated from the rest using special tokens), the model
should generate a comment Y = (y1, y2, · · · , yN)
with N tokens for the segment. The comment ei-
ther shows praise for the strengths of the segment,
or gives advice to improve the weaknesses of the
segment.

Essay: ... <extra_id_0> ... In the evening, the lights
come on. Red, white, green and yellow colored lights
are like blooming flowers, which are on 12 zodiac
signs, plants, restaurants and famous buildings. All of
them are so beautiful. <extra_id_1> ...

Comment Keyword Planner

simile
echo

Error Correction Module

Feature
Recognition
Module

simile
echo

rhetorical method: simile
descriptive method: environmental visual

simile
rhetorical descriptive
environmental visual

Comment Generator

Comment: The use of simile and environmental descriptions vividly write
the visual characteristics of the portrayed object.

Figure 2: An overview of our model. The comment key-
word planner takes an essay with a specified segment
as input, and generates a sequence of keywords. To im-
prove the correctness and informativeness of generated
comments, we modify the keyword sequence by first fil-
tering out incorrect keywords using the error correction
module and then inserting structured features from the
feature recognition module. Then we feed the polished
keyword sequence into the comment generator along
with the original essay to get the final comment. During
training, we train different modules separately.

3.1 Model Overview

As shown in Figure 2, we propose a planning-based
model, which first plans an out-of-order sequence
of keywords and then organizes them into a com-
plete comment. Furthermore, we add an error
correction module which filters out incorrect key-
words using a fine-tuned BERT classifier. We also
employ a feature recognition module to recognize
fine-grained structured features such as idioms, de-
scriptive and rhetorical methods from the source
essay X to enrich the keywords. Moreover, in the
comment generation stage, we perturb the input
keywords by inserting a random word to alleviate
the exposure bias problem. To control the type of
the generated comment, we insert a binary control
code before generating the keywords and comment.

3.2 Two-staged Planning

Directly generating comments may make mod-
els fail to learn specific writing skills and sim-
ply over-fit the generic components such as “it is
good”, which make up the majority of each com-
ment. Therefore, we extract relatively important
keywords that have higher TF-IDF (Manning et al.,
2010) values than a fixed threshold 0.3 from com-
ments, which are more likely to relate to specific
writing skills. Then we employ a comment key-
word planner to predict the keywords, and a com-
ment generator to organize them into a complete
comment. In order to insert new keywords obtained
from the feature recognition module without worry-
ing about insertion positions, we randomly shuffle
the extracted keywords. We train the planner and
generator by optimizing the negative log-likelihood
of ground truths, respectively, formally as follows:

Lplan = − 1

T

T∑

t=1

logP (kt|X, k<t), (1)

Lgen = − 1

N

N∑

t=1

logP (yt|X,K, y<t), (2)

where K = (k1, k2, · · · , kT) with T tokens is the
extracted keyword sequence.

3.3 Keywords Filtering and Adding

Intermediate keywords have a significant impact
on the quality of generated comments. We observe
two main problems in generated keywords: (1) The
writing skills reflected by some keywords are not
used in the source essay (e.g., “echo” in Figure 2),
which makes it difficult for the comment generator
to generate a correct comment. (2) The generated
keywords are not enough to cover the used writing
skills (e.g., environmental description in Figure 2),
which decreases the informativeness of the gener-
ated comment. Therefore, we adopt an error cor-
rection module and a feature recognition module to
modify the keywords and improve the correctness
and informativeness of generated comments.

Error Correction Module To filter out incor-
rect keywords from a keyword sequence, we fine-
tune a BERT classifier to predict the probability
P (ci = 1|X, ki) for a keyword ki being incorrect,
where ci is the binary label to indicate whether ki
is correct (ci = 1) or not (ci = 0). During training,
we take original essay-keyword pairs as positive
examples and randomly sampled keywords from

216

the whole dataset to create the same number of
negative examples. We derive the loss function as
follows:

Lcor = − 1

T

T∑

i=1

(
logP (ci = 1|X, ki)+

logP (ci = 0|X, k̂i)
)
, (3)

P (ci|X, ki) = softmax(Wh + b), (4)

where k̂i denote the i-th keyword in the randomly
sampled keyword sequence, h denotes the hidden
state at the position of the [CLS] token and W and
b are learnable parameters. The fine-tuned BERT
classifier achieves 79.8% accuracy on the test set.

Feature Recognition Module After filtering out
incorrect keywords using the error correction mod-
ule, the keyword sequence may still miss some im-
portant features in the source essays. Therefore, we
recognize five kinds of fine-grained features from
inputs1.We show several examples of the struc-
tured features in Table 1. For idioms, proverbs and
quotes, we directly perform word-by-word match-
ing with private off-the-shelf corpora. And we
randomly insert the keys of these features into the
keyword sequence. We also randomly insert the
values of idioms into the keyword sequence. For
each kind of descriptive and rhetorical methods2,
we fine-tune BERT as a binary sentence classifier
using about 50k manually annotated examples. The
fine-tuned BRETs could achieve 92% - 98% accu-
racy for different kinds of descriptive and rhetori-
cal methods. Then we randomly insert both keys
and values of these features recognized by the fine-
tuned BERTs into the keyword sequence. We only
insert keywords that are not in the sequence to
avoid duplication. Finally, we feed the polished
keyword sequence into the comment generator to
generate the final comment. Note that the comment
generator has seen similar fine-grained features ex-
tracted by TF-IDF algorithm during training.

3.4 Comment Generation
In the comment generation stage, the lack of ex-
posure to the generated keyword sequence (i.e.,
the exposure bias issue) may impair the generation
performance. To alleviate this issue, we follow
Tan et al. (2021) to perturb the input keywords

1https://openai.100tal.com/documents/article/
page

2All kinds of descriptive and rhetorical methods are shown
in the appendix.

Keys Values

成语 无坚不摧
idiom indestructible

俗语 好事不出门，坏事传千里
proverb bad news travels fast

引用 千里之行，始于足下
quote a journey of a thousand miles be-

gins with single step

描写方法 动作描写
descriptive method action description

修辞方法 比喻
rhetorical method simile

Table 1: Examples for five kinds of fine-grained struc-
tured features. Keys indicate the feature type and values
indicate the feature content.

during training. We try various perturbation tech-
niques including replacing a keyword with a ran-
domly sampled one and removing one keyword
randomly (Tan et al., 2021), and find that simply
inserting a random keyword leads to the best per-
formance in automatic evaluation.

4 Experiments

4.1 Dataset

As there is no available dataset for our task, we
manually collected a large Chinese dataset to train
and evaluate our model. We first collect a large
number of pictures of student essays along with
comments from professional teachers and the stu-
dents’ grades from an online school3. Then we
filtered out the essays written by students below the
fourth grade to ensure the essays contain abundant
writing skills, and retained only narrative essays
in this work. Afterwards, we asked crowd-sourced
annotators to convert the pictures into texts with
the following requirements: (1) Correcting mis-
spellings or incorrect punctuation marks; (2) Refus-
ing incomplete essays; (3) Refusing comments that
do not correspond to specific segments; (4) Mark-
ing the type of comments, i.e., describing strengths
or weaknesses. Then we converted marked com-
ment types to binary control codes and insert them
before comments and extracted keywords. The de-
tailed statistics are shown in Table 2. We ensure
the essays in the training, validation and test sets
do not have overlapping titles.

3https://www.xueersi.com/

217

https://openai.100tal.com/documents/article/page
https://openai.100tal.com/documents/article/page
https://www.xueersi.com/

Train Valid Test

Examples 18,100 2,263 2,036
Essays 3,996 540 887

Avg. Title Len 5.82 6.06 6.10
Avg. Essay Len 406.89 382.85 345.08
Avg. Number of Par 4.92 4.46 4.28
Avg. Segment Len 97.58 96.15 79.64
Avg. Comment Len 33.92 39.09 38.54

Strength Ratio 84.38% 80.69% 79.47%
Weakness Ratio 15.62% 19.31% 20.53%

Avg. Number of Key 3.65 3.74 4.14

Table 2: Dataset statistics. Len/Par/Key is the abbrevi-
ation of Length/Paragraph/Keyword. We compute the
length by counting the number of Chinese characters.
Segment is the specified segment which should be com-
mented on. Strength/Weakness Ratio means the propor-
tion of the comments that describe strengths/weaknesses
of segments.

4.2 Baselines
We use LongLM (Guan et al., 2022) as our back-
bone model, which is pretrained on a large Chinese
novel dataset with an encoder-decoder transformer
architecture. We also use GPT2 (Radford et al.,
2019) as a baseline. They directly generate com-
ments conditioned on the source essays with speci-
fied segments. To verify the effectiveness of each
proposed component, we exclude them from our
model one by one: (1) w/o feature: excluding the
feature recognition module; (2) w/o correct: ad-
ditionally excluding the error correction module;
(3) w/o perturb: additionally excluding the pertur-
bations added to the keywords when training the
comment generator.

4.3 Experiment Settings
Due to limited resources, we follow LongLMBase’s
hyper-parameters (224M parameters) and utilize
the public pretrained checkpoint to initialize our
model. We set the learning rate to 3e-5 and batch
size to 40. We set GPT2 to the small version with
102M parameters. Other hyper-parameters are the
same as LongLM.

In both the planning and comment generation
stages, we use top-p sampling with p = 0.9 (Holtz-
man et al., 2020) combined with beam search (num-
ber of beams is 4). We only retain comments for
automatic evaluation. For the error correction mod-
ule, we fine-tune a pretrained Chinese BERT (Cui
et al., 2020) on auto-constructed data. We set the
learning rate to 1e-5 and batch size to 16. For all
models, we select the best checkpoint based on the

Models B-1 B-2 B-3 B-4 D-3 D-4

GPT2 19.01 11.49 8.90 7.59 7.23 8.65
LongLM 33.40 26.16 22.98 21.13 6.05 7.39

Our Model 36.16 28.32 24.87 22.86 9.61 13.56
w/o feature 35.39 27.53 24.14 22.19 9.28 13.05
w/o correct 34.88 26.64 23.07 21.01 11.49 15.73
w/o perturb 33.94 25.58 22.02 19.97 12.25 16.90

Ground Truth 100 100 100 100 24.81 28.29

Table 3: Automatic evaluation results. The best perfor-
mance is highlighted in bold. All results are multiplied
by 100. Note that the components are incrementally
removed in the ablation study. For example, w/o correct
excludes the feature recognition module and the error
correction module.

performance on the validation set. To improve the
training speed, we train our model on two gpus with
mixed precision training and early stop is adopted.

4.4 Automatic Evaluation

Metrics We adopt the following automatic met-
rics for evaluation on the test set. (1) BLEU (B-n):
We use n = 1, 2, 3, 4 to evaluate n-gram overlap
between generated and ground-truth comments (Pa-
pineni et al., 2002). (2) Distinct (D-n): We use
the ratio of distinct n-grams to all the generated
n-grams (Li et al., 2016) to measure the generation
diversity (n = 3, 4).

Result Table 3 shows the automatic evaluation
results. Although GPT2 has higher generation
diversity, its BLEU score is significantly lower
than our backbone model LongLM, suggesting its
worse generation quality. Compared with GPT2
and LongLM, our model improves significantly on
both BLEU and Distinct scores, indicating higher
quality and diversity of the generated comments.
As for the ablation study, we can draw the follow-
ing conclusions: (1) Using fine-grained features to
enrich the keywords improves both the quality and
diversity of the generated comments. (2) Error cor-
rection module mainly improves the BLEU scores.
We note that it has a negative effect on diversity,
which suggests the classifier may tend to retain
commonly used keywords. (3) Adding perturba-
tions to inputs of the comment generator mainly
improves the quality of the composed comments
as indicated by a higher BLEU score. Besides,
through explicitly extracting informative keywords
from the comments, we enforce the model to at-
tend on the distinct part of the comments, which
greatly improves the generation diversity (compar-
ing LongLM and w/o perturb). In summary, all

218

Models Correctness Informativeness Coherence
Win / Lose / Tie κ Win / Lose / Tie κ Win / Lose / Tie κ

Ours vs. LongLM 33∗/ 12 / 55 0.71 37∗/ 15 / 48 0.79 8 / 9 / 83 0.73
Ours vs. Humans 15 / 26 / 59 0.46 24 / 18 / 58 0.77 5 / 11 / 84 0.38

Table 4: Manual evaluation results. The scores indicate the percentage of win, lose or tie (%) when comparing our
model with LongLM or humans. κ denotes Fleiss’s kappa to measure the inter-annotator agreement. ∗ means the
difference is significant with p-value< 0.01 (Wilcoxon signed-rank test).

components positively impact the quality or the di-
versity of the generated comments, and our model
strikes a good balance between these two aspects.

4.5 Manual Evaluation

We conduct pair-wise comparisons with LongLM
and humans (i.e., ground-truth comments). We
randomly sample 100 examples from the test set
and obtain 300 examples in total. For each pair of
comments along with the input, we hire three well-
trained professional annotators to give a preference
(win, lose or tie) in terms of three aspects: (1) Cor-
rectness: whether the strengths or weaknesses iden-
tified by the comment are actually present in the
segment; (2) Informativeness: how much informa-
tive information such as “idiom” does the comment
contain; (3) Coherence, whether the comment is
coherent in terms of grammatical correctness, and
inter-sentence relatedness, causal and temporal de-
pendencies. Each aspect is evaluated independently
and annotators are unaware of the comments source.
We adopt majority voting to make the final deci-
sions among three annotators.

As shown in Table 4, our model significantly
outperforms LongLM in terms of correctness and
informativeness and is comparable with LongLM
in coherence. Notably, our model can generate
more informative comments than humans thanks
to additional information from the feature recog-
nition module, despite the risk of making mis-
takes. All results show fair (0.2< κ ⩽0.4), mod-
erate (0.4< κ ⩽0.6) or substantial (0.6< κ ⩽0.8)
inter-annotator agreement.

We also manually evaluate the controllability of
our model to generate two different types of com-
ments (describing strengths or weaknesses). We
randomly sample 50 essays from the test set, and
generate two comments for each essay to describe
strengths and weaknesses, respectively, using dif-
ferent control codes. Then for each example, we
ask three well-trained annotators to decide whether
the generated comment is consistent with the given
control code. We also adopt majority voting to

Figure 3: An screenshot of our demo website.

make final decisions among three annotators. We
find that 91% of the comments are successfully con-
trolled by the control code and the Fleiss’s kappa
is 0.85, indicating almost perfect inter-annotator
agreement. We conclude that our model has good
controllability to generate different kinds of com-
ments so that it can meet the needs of different
users for showing praise or giving advice.

5 Demonstration

A screenshot of our demo website is shown in
Figure 3. After entering the title and the body
of the article, the user can submit a request and
get the result after a few seconds. We comment
on all paragraphs except those that contain less
than 15 Chinese characters and do not have any
recognized structured features. Also, we show
recognized fine-grained structured features on the
right. The sentences and keywords corresponding
to these features are underlined and marked green.
With these comments and fine-grained features,

219

the user can fully understand the essay’s strengths
and weaknesses. Besides the demo website, we
also create a github repository at https://github.
com/thu-coai/EssayCommentGen, where users
can freely use our code and data under the MIT
license.

6 Conclusion

We present a planning-based model for a new task
named essay comment generation, which first plans
a sequence of keywords and then expands these
keywords into a complete comment. Furthermore,
we utilize an error correction module and a fea-
ture recognition module to modify the generated
keywords for improving the correctness and infor-
mativeness of final comments. We manually collect
a new Chinese dataset for this task. Extensive ex-
periments show that our model outperforms strong
baselines. We have deployed our model online to
help with the automatic essay evaluation. We ex-
pect our work to facilitate further research on this
new task and benefit both teachers and students.

Acknowledgement

This work was supported by National Key
R&D Program of China, under Grant No.
2020AAA0104500. This work was supported by
the National Science Foundation for Distinguished
Young Scholars (with No. 62125604) and the
NSFC projects (Key project with No. 61936010
and regular project with No. 61876096). This work
was also supported by the Guoqiang Institute of
Tsinghua University, with Grant No. 2019GQG1
and 2020GQG0005, and sponsored by Tsinghua-
Toyota Joint Research Fund.

References
Yigal Attali and Jill Burstein. 2006. Automated essay

scoring with e-rater® v. 2. The Journal of Technology,
Learning and Assessment, 4(3).

Mădălina Cozma, Andrei Butnaru, and Radu Tudor
Ionescu. 2018. Automated essay scoring with string
kernels and word embeddings. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
503–509.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for Chinese natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,

pages 657–668, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Fei Dong and Yue Zhang. 2016. Automatic features for
essay scoring–an empirical study. In Proceedings of
the 2016 conference on empirical methods in natural
language processing, pages 1072–1077.

Fei Dong, Yue Zhang, and Jie Yang. 2017. Attention-
based recurrent convolutional neural network for au-
tomatic essay scoring. In Proceedings of the 21st
conference on computational natural language learn-
ing (CoNLL 2017), pages 153–162.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650–
2660.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4319–4338.

Jiefu Gong, Xiao Hu, Wei Song, Ruiji Fu, Zhichao
Sheng, Bo Zhu, Shijin Wang, and Ting Liu. 2021.
Iflyea: A chinese essay assessment system with au-
tomated rating, review generation, and recommen-
dation. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 240–248.

Jian Guan, Zhuoer Feng, Yamei Chen, Ruilin He, Xiaoxi
Mao, Changjie Fan, and Minlie Huang. 2022. Lot: A
story-centric benchmark for evaluating chinese long
text understanding and generation.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Dongyeop Kang and Eduard H. Hovy. 2020. Self-
supervised text planning for paragraph completion
task. In EMNLP.

Zixuan Ke, Hrishikesh Inamdar, Hui Lin, and Vincent
Ng. 2019. Give me more feedback II: Annotating
thesis strength and related attributes in student es-
says. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3994–4004, Florence, Italy. Association for Compu-
tational Linguistics.

220

https://github.com/thu-coai/EssayCommentGen
https://github.com/thu-coai/EssayCommentGen
https://www.aclweb.org/anthology/2020.findings-emnlp.58
https://www.aclweb.org/anthology/2020.findings-emnlp.58
http://arxiv.org/abs/2108.12960
http://arxiv.org/abs/2108.12960
http://arxiv.org/abs/2108.12960
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/P19-1390
https://doi.org/10.18653/v1/P19-1390
https://doi.org/10.18653/v1/P19-1390

Xiangzhe Kong, Jialiang Huang, Ziquan Tung, Jian
Guan, and Minlie Huang. 2021. Stylized story gen-
eration with style-guided planning. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2430–2436, Online. Association
for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Christopher Manning, Prabhakar Raghavan, and Hinrich
Schütze. 2010. Introduction to information retrieval.
Natural Language Engineering, 16(1):100–103.

Sandeep Mathias and Pushpak Bhattacharyya. 2018.
Thank “goodness”! a way to measure style in student
essays. In Proceedings of the 5th Workshop on Natu-
ral Language Processing Techniques for Educational
Applications, pages 35–41, Melbourne, Australia. As-
sociation for Computational Linguistics.

Sandeep Mathias and Pushpak Bhattacharyya. 2020.
Can neural networks automatically score essay traits?
In Proceedings of the Fifteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 85–91.

Ellis B Page. 1966. The imminence of... grading essays
by computer. The Phi Delta Kappan, 47(5):238–243.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. ICLR.

Swapna Somasundaran, Michael Flor, Martin
Chodorow, Hillary Molloy, Binod Gyawali, and
Laura McCulla. 2018. Towards evaluating nar-
rative quality in student writing. Transactions
of the Association for Computational Linguistics,
6:91–106.

Wei Song, Ziyao Song, Lizhen Liu, and Ruiji Fu. 2020.
Hierarchical multi-task learning for organization eval-
uation of argumentative student essays. In IJCAI,
pages 3875–3881.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 conference on empirical methods in
natural language processing, pages 1882–1891.

Bowen Tan, Zichao Yang, Maruan Al-Shedivat, Eric
Xing, and Zhiting Hu. 2021. Progressive generation
of long text with pretrained language models. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4313–4324.

Yi Tay, Minh C Phan, Luu Anh Tuan, and Siu Cheung
Hui. 2018. Skipflow: Incorporating neural coherence
features for end-to-end automatic text scoring. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Chung-Ting Tsai, Jhih-Jie Chen, Ching-Yu Yang, and
Jason S Chang. 2020. Lingglewrite: a coaching sys-
tem for essay writing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 127–133.

Ruosong Yang, Jiannong Cao, Zhiyuan Wen, Youzheng
Wu, and Xiaodong He. 2020. Enhancing automated
essay scoring performance via fine-tuning pre-trained
language models with combination of regression and
ranking. Findings of the Association for Computa-
tional Linguistics: EMNLP, 2020:1560–1569.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7378–7385.

A Data Collection

As described in “Section 4.1: Dataset” in our paper,
we first collect a large number of pictures of teacher
commented student essays and then ask annotators
to convert the pictures into texts. We show an
example of the original pictures in Figure 4. The
corresponding text annotated by humans is shown
in Figure 5.

B Manual Evaluation

To perform manual evaluation, we hire well-trained
professional annotators from a Chinese crowd-
sourcing company. For the pairwise comparison
evaluation, the annotation instructions are sum-
marized as follows: (1) Correctness. Annotators
should neglect slight incoherence of the comments
and focus on the correctness aspect. If both com-
ments are correct or incorrect, the result should be
a tie. Otherwise, the correct comment should be
labeled as a win while the other comment should be
labeled as a loss. (2) Informativeness. Annotators
should neglect slight incoherence of the comments
and focus on the informativeness aspect. If two
comments contain close amounts of informative

221

https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/2021.findings-acl.215
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/W18-3705
https://doi.org/10.18653/v1/W18-3705

Figure 4: An example of the original pictures of teacher commented student essays.

!"#$%&

'()*+,-./0'123456789:;/
0<=>?/@ABCDE50@F@/G4HIJK
L%58F(MN/0G2OPQRST(UVW/X
YZFOP[\5
]0^HI_'``abcdVW,6e/(fg

hi[\[j/0klmnopq/rs0THIta
uv/wxyfghz[\{|F}i/0~�[\�
x()!�,�#[J5
4��/0THIY�[\50�~�y��c�

x!"/��y)#$a:����,��/��'y
)#$��a�)�K�5���,Xx'y����
a<=�,��5�s/0THI��F(���
,¡¢Y£F0�,¤¥5¦�§4��E¨,©ª^
«T¬­/®¯(°j±5¦�,²³:��X´()
��,µ$5
0�F¶·¸2OPQRS/0�?¹ºj5»�

¼½0a()¾¿À¾¿Áy)#$'Âº�ÃMÄg
hÅÆ50_ÇÈFy)#$É!"#$5
ÇÈFyU#$/0ÊOP[\Ë!"#$Ì£F

ÍÎ,c}ÏÐFÑÒ5
'0THI,ÓÔ�/0�Õ�FÖ×,!"#$/

0�ØnÙÚ

ÛÜÝÞßàáßâãä åæÝçèááßâãä éêÝãëìßä

``ab íÊ¨æîï/
æ¿¡ðñò5

óBÝÞãôßâàãõä

¦�,²³:
��X´()
��,µ$5

öÊ÷ø/ù
úûæ¿ü�
¡ð/ýþÿ
!5

óBÝÞãôßâàãõä

'0THI,
ÓÔ�/0�
Õ�FÖ×,
!"#$/0
�ØnÙÚ

"#$%&ú
'x(a)*
,/0�w+
')*îï(
�,-,.//
y0úû)1
Mü235

4BÝ5ß67âßÞÞä

Figure 5: An example of the essay with comments annotated by human. The source essay is on the left side and the
commented segments are bolded and underlined. The segments along with the comments are shown on the right.
Comments could point out the strengths or weaknesses of the segments.

222

information, the result should be a tie. Otherwise,
the more informative comment should be labeled
as a win while the other comment should be la-
beled as a loss. (3) Coherence. Annotators should
focus on the correctness aspect. If both comments
are coherent or incoherent, the result should be a
tie. Otherwise, the coherent comment should be
labeled as a win while the other comment should
be labeled as a loss. We give each annotator ¥1.8
for annotating one pair of comments and one anno-
tator’s hourly rate is about ¥108.

For the controllability evaluation, we offer an-
notators the generated comment and the control
token. Annotators should judge whether the com-
ment points out the strengths or weaknesses as the
control token specifies. We give each annotator
¥0.5 for annotating one sample and one annotator’s
hourly rate is about ¥90.

C Keywords Polishing Details

On the test set, we filter out 1.23 keywords using
the error correction module and add 1.50 keywords
using the feature recognition module for generating
each comment on average.

D Structured Features

All descriptive methods include:

• 味觉描写 (taste description)

• 心理描写 (psychology description)

• 嗅觉描写 (smell description)

• 外貌描写 (appearance description)

• 环境描写 (environment description)

• 神态描写 (expression description)

• 语言描写 (language description)

• 动作描写 (action description)

• 视觉描写 (vision description)

• 触觉描写 (touch description)

All rhetorical methods include:

• 比喻 (simile)

• 拟人 (personification)

• 排比 (parallelism)

• 反问 (rhetorical question)

• 设问 (hypophora)

223

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 224 - 231
December 7-11, 2022 c©2022 Association for Computational Linguistics

MIC: A Multi-task Interactive Curation Tool

Shi Yu1∗∗, Mingfeng Yang2, Jerrod Parker3, and Stephen Brock2

1Broadridge Financial Solutions, shi.yu@broadridge.com
2Vanguard Group, {mingfeng yang, stephen brock}@vanguard.com

3Thomson Reuters, jerrodparker20@gmail.com

Abstract

This paper introduces MIC, a Multi-task
Interactive Curation tool, a human-machine
collaborative curation tool for multiple NLP
tasks. The tool aims to borrow recent advances
in literature to solve pain-points in real NLP
tasks. Firstly, it supports multiple projects
with multiple users which enables collabora-
tive annotations. Secondly, MIC allows easy
integration of pre-trained models, rules, and
dictionaries to auto label the text and speed
up the labeling process. Thirdly, MIC sup-
ports annotation at different scales (span of
characters and words, tokens and lines, or doc-
ument) and different types (free text, sentence
labels, entity labels, and relationship triplets)
with easy GUI operations.

1 Introduction

With the recent advances in many frontiers, high-
quality annotations are essential to the success of
NLP applications. Numerous organizations have
accumulated vast amounts of unlabeled text data
that they want to utilize in NLP applications. How-
ever, for many of these tasks (text summariza-
tion, relation extraction, named-entity recognition),
aquiring labels can be very costly and susceptible
to error. Furthermore, domain adaptation (Han and
Eisenstein, 2019), which is the common approach
of fine-tuning gigantic domain agnostic NLP mod-
els on a small amount of domain-specific labeled
data, commonly has difficulty on new emerging /
specific domains that lack similar labeled datasets
and still requires annotations from scratch. Mean-
while, adoption of accelerated ML solutions have
shown to reduce the workload and budget required
for manual labeling. Example techniques include
active learning, weak supervision, data augmen-
tation, and many others. To concur the time-
consuming, labor-intensive, and expensive annota-
tion challenges, recent trends in annotation tool de-

∗All authors contributed equally

velopment (Lin et al., 2019; Lee et al., 2020) focus
on cost-effective and human-machine collaborative
mechanisms, which leverage the processing power
of state-of-the-art models pre-trained on large cor-
pora and high-accuracy human intelligence on rare
ambiguous incidents.

Please visit www.textmic.com using username
ds and password demouser123 to visit the demo
system. A screencast video is at https://youtu.be/

pHxt5k_mLvw. The github repo of MIC is at https:

//github.com/cyberyu/textmic.

2 Related Work

In the past decade, there were about 30 popular
annotation tools published. Among them, there
are well-known tools like BRAT (Stenetorp et al.,
2012), which supports a wide variety of NLP tasks,
including entity recognition, event extraction, and
POS (part-of-speech) tagging. GATE Teamware
(Bontcheva et al., 2013) is both a desktop applica-
tion and a web tool that focuses on user manage-
ment and supports multi-user roles. Yedda (Yang
et al., 2018) is a recent tool built on Python that
offers auto-labeling via machine learning and pro-
vides both command line and web-based interfaces.
SANTO (Hartung et al., 2018), which is designed
primarily for slot-filling tasks, enables the forma-
tion of relational structures from an ontology. It
also visualizes the annotations of every user at once
to help project owners monitor the quality of an-
notations. TALEN (Mayhew and Roth, 2018) spe-
cialises in the annotation of rare entities. EasyTree
(Tratz and Phan, 2018) is specifically designed for
the annotation of dependency trees and is integrated
with the Amazon Mechanical Turk crowdsourcing
platform. AlpacaTag (Lin et al., 2019) and LEAN-
LIFE (Lee et al., 2020) leverage machine learning
models, active learning, and weak supervision, re-
spectively, to provide annotation recommendations
to reduce annotation costs.

The annotation visualization design of our tool

224

https://youtu.be/pHxt5k_mLvw
https://youtu.be/pHxt5k_mLvw
https://github.com/cyberyu/textmic
https://github.com/cyberyu/textmic

System Annotation
Type

Adjud
-ication

Intelligent Interactive
Annotation

External
Dependencies

Programming
Language

MIC Classify, Link Yes pre-trained models, crowd
-sourcing weak-supervision

MongoDB, PostgreSQL Python,Django,Vue.js

RedCoat (Stewart et al., 2019) Classify, Link Yes hierarchical entities MongoDB Javascript, Python
SANTO (Hartung et al., 2018) Link - ontology-driven Apache,MySQL PHP
TALEN (Mayhew and Roth, 2018) Classify Yes entity propagation, internet search - Unknown
EasyTree (Tratz and Phan, 2018) Classify,Link Yes crowd-sourcing Amazon Turk Java Servlet, Javascript
AlpacaTag (Lin et al., 2019) Classify Yes recommendation, crowd-sourcing - Python, Django
LEAN-LIFE (Lee et al., 2020) Classify, Link Yes crowd-sourcing, weak-supervision - Python
SLATE (Kummerfeld, 2019) Classify, Link Yes terminal-based annotation - Python
BRAT (Stenetorp et al., 2012) Classify, Link Yes - Apache Python,Javascript
GATE (Bontcheva et al., 2013) Classify, Link Yes - - Java
YEDDA (Yang et al., 2018) Classify Yes - - Python
WAT-SL (Kiesel et al., 2017) Classify Yes - Apache Java
SAWT (Samih et al., 2016) Classify - - - Python, PHP
GraphAnno (Gast et al., 2015) Classify, Link - - - Ruby
CorA (Bollmann et al., 2014) Classify - - - PHP,Javascript
WebAnno (Yimam et al., 2013) Classify, Link - - - Java
Anafora (Chen and Styler, 2013) Classify, Link Yes - - Python
ANALEC (Landragin et al., 2012) Classify, Link - - Java
LabelStudio labelstud.io Classify, Link Yes text, images, video, audio Commercial React, MST, Python
Prodigy https://prodi.gy/ Classify, Link Yes active learning in annotation Commercial Python
Tagtog tagtog.com Classify, Link Yes support annotations in PDF Commercial Java, Python
LightTag lighttag.io Classify, Link Yes support inter-annotator, project management Commercial Python

Table 1: A comparison of annotation tools released recently. MIC supports classification (sentence, NER) and link
prediction (relationship); Adjudication: MIC encourages human-machine collaborative annotation; thus, human
annotators can correct mistaken machine-generated labels. Relying on role configuration, experienced reviewers
can also correct/reject any individual human annotator’s labeling results, or even reject the entire annotation results
from a specific annotator and ask for re-annotation.

is inspired by RedCoat (Stewart et al., 2019), a
web-based annotation tool that supports the stack-
ing and inheritance of hierarchical entities using
flexible Javascript visualization. We applied the
same visual design style in MIC using Vue.js to
display a large number of stacked annotations from
different human curators, hand written rules, and
models. Besides sharing many common features,
the proposed annotation tool has some unique char-
acteristics and strengths compared to all existing
tools. We summarize and compare the main char-
acteristics of MIC with other tools, including some
commercial products, in Table 1. Recent advances
in annotation tool development focus more on in-
telligent capabilities such as auto-annotation, rec-
ommendation, crowd-sourcing, weak-supervision,
and many other STOA aspects.

3 System Description and Key Features

Rather than specifying a task such as named en-
tity recognition or sentence labeling, MIC is de-
signed to flexibly support any annotations that can
be formulated as one of three annotation types:
sentence-level labeling, word/phrase-level labeling,
or entity-relation-entity triplet labeling. These can
be applied to items that are single documents, lines,
phrases, tokens, or token combinations. Further-
more, MIC is able to manage annotation tasks asso-
ciated with interactions among various annotation
types. For example, one can restrict the annotation
task on named entities among sentences having
positive sentiment score, or limit the findings of re-

lationship triplets that contain the entity Olympics
with the entity type as event.

One major novelty of MIC is its support of
human-machine interactive annotation via a flex-
ible user interface. For each annotation task, the
human annotator can be empowered by a set of pre-
trained ML models to quickly generate machine-
annotated labels. These pre-trained models are
either built-in models from popular data science
packages or novel open-source implementations
from Github. Pre-trained models can be configured
by administrators via the MIC backend interface
and each annotation project can associate with mul-
tiple models. Pre-trained models are grouped in
three categories: sentence labeling, NER labeling
and relationship labeling. All pre-trained models
are hosted as RESTFUL API endpoints, and for
each annotation category the input/output parame-
ters of all endpoints are required to follow the same
standards so various models can be interchanged
easily. Though machine generated labels cannot
be directly considered as ground-truth annotations,
the advantages here are two fold. First, instead of
requiring the annotator to write everything from
scratch, they start from the most likely machine-
generated outputs, and MIC supports quick and
intuitive editing operations. This helps the human
annotator to spend effort effectively and focus on
correcting difficult examples. Second, if the hu-
man annotator load and apply multiple machine-
generated outputs on the same text, those machine
outputs can be exported as noisy labels to train a

225

labelstud.io
https://prodi.gy/
tagtog.com
lighttag.io

consensus model using weak supervision.
Finally, MIC has been designed to manage an-

notation tasks for multiple projects and multiple
users. Multi-project setting allows MIC to be
configured flexibly to support diverse annotation
tasks. For each project, new textual data can be
loaded to seek curations at sentence level, named
entity level or relationship level, or any combina-
tions of them. From MIC’s backend user interface,
one can associate a number of relevant ML mod-
els/dictionaries/rules to a project to allow quick
generation of machine labels. The textual data
can be fully unlabeled, partially labeled, or inte-
grated with ground truth labels. In cases where
the data is partially or fully labeled with ground
truths, the administrator can setup a built-in val-
idation process to monitor performance of anno-
tations as the task continues. Annotation perfor-
mance can be evaluated by comparing ground truth
labels with human/machine generated labels, or
comparing ground truth labels against consensus
labels learned by weak supervision. The multi-user
setting allows MIC to involve multiple parties in
the annotation pipeline. Each project can allow
users with different roles such as Administrator,
Curator, Data Scientist, Reviewer, etc., and their
operational accesses are categorized and limited by
roles to ensure the integrity of the annotation task.

In conclusion, the main novelties of MIC are (1)
Extendable framework to integrate customized an-
notation models; (2) Multi-project and multi-user
management; (3) Support of multi-layer annota-
tions from sentences to entities and relations; (4)
State-of-art user interface design for annotations.

4 MIC Annotation

4.1 General Architecture

MIC is a web-based annotation system that was
developed using Django, Quasar and Vue.js frame-
works. As its conceptual framework shows (Fig-
ure 1), the frontend of MIC relies on Quasar and
Vue.js to provide a flexible and interactive user in-
terface. The main web application is developed in
Django, therefore we have a python native envi-
ronment and an integrated backend administrative
panel. One of MIC’s most notable features is its
web-based project management interface which al-
lows users to set up an annotation project, invite
annotators/reviewers, define task scope, setup ma-
chine models, and quickly manage exports/imports
of annotations and text. These management fea-

tures were achieved efficiently through Django’s
admin panel. MIC uses PostgreSQL to store the
textual data, manage project/user data, record an-
notation progress, and store all annotations.

Besides a series of Django REST Web APIs that
establish the backbone of the tool, MIC can be
extended to include a wide range of interactive
curation APIs for specific annotation tasks. This
means MIC plays the role of a web annotation
server while other endpoints can be distributed on
multiple machines as machine labeling servers to
optimize the computational balance and latency of
annotations.

4.2 Annotation Interface

The main annotation layout is composed of three
connected areas: automatic labeling zone (left
panel), annotation zone (central panel), and sum-
marization zone (right panel), as shown in Figure 2.

MIC provides three types of automatic labeling
tools to speed up annotation: machine models, dic-
tionaries and rules. At the same time, MIC also sup-
ports annotation at three different levels: sentences,
entities and relationships. Users can freely choose
the most appropriate auto-tool to annotate text at
the most relevant level. For each annotator, MIC
allows arbitrary stacking of human/machine labels
on the text. To successfully save the results of an
annotator’s work, MIC will check whether there
are any contradictory labels assigned to a unique
token sequence. For example, the entity labels of
Nikolaus van der Pas can be saved as (Nikolaus:
Person), (van der Pas: Person), (Nikolaus: Entity)
and (Pas: Entity). MIC allows saving all four differ-
ent annotations though they overlap on each other.
However, MIC will ask for resolution if the unique
token sequence (sentence position dependent) Niko-
laus van der Pas has two contradictory labels. The
reason of allowing flexible annotations as such is
to minimize the burden of human resolutions. As a
matter of fact, lots of similar conflicts can be con-
sidered as noise, and can be resolved successfully
by well-designed machine learning models.

With MIC, annotators can create three levels
of labels simultaneously, which means users can
switch back and forth among the three levels and
complete the labels for each page. In another way,
annotators can focus on sentence-level annotation
of all pages first and save the results, and the revisit
and finish annotations for the other two layers later.
Every annotation task can be scoped as arbitrary

226

Figure 1: An overview of general architecture of MIC

Figure 2: Annotation Interface of MIC

combinations of labels from the three levels. This
feature make MIC very useful to gather important
annotations from different perspectives for a same
data set iteratively, which is commonly desired in
industrial applications.

4.3 Annotation Summarization Panel

It is worth highlighting that MIC contains a well-
designed annotation summarization panel (right
panel) to efficiently and concisely provide valuable
information about the annotations provided by mul-
tiple users. The panel has four controllable head
icons: (1) Annotations, (2) Sorting, (3) Users, and
(4) Issues. If a reviewer wants to group all annota-
tions by categories, she can review all labels using
the Annotations icon. Click-in will expand into
all individual labels, and reviewer acceptance and
rejection can be applied here. MIC supports all an-
notations being associated with confidence scores.
For human annotators we can fix the score as 1
or allow them to explicitly score their confidence
per each annotation. For machine learning mod-
els, the API Endpoints must return an additional

output parameter representing uncertainty. Thus, a
reviewer can rank all candidate annotations by their
uncertainty scores using the sorting function. The
third function Users allows the reviewer to group
all annotations by annotator. Here, the reviewer
can accept or reject all annotations from a specific
annotator. This feature, combined with the ease of
integrating weak labelers, makes MIC a great weak
supervision data preparation tool. For example, the
annotator can quickly try out multiple weak label-
ers, view some of their annotations, choose to reject
the noisy labelers, and then export the remaining
labels to be fed into an offline model to denoise
the weak labels. The last function Issues is used to
highlight potential conflicts that may be of concern
for the reviewer such as contradictory annotations
on the same unique token sequence. Another fea-
ture in this summarization panel is that clicking on
any annotation listed here will redirect and high-
light the corresponding tokens in the original text.
This feature is very useful to quickly review and
correct the annotations.

227

5 Case Studies

5.1 Market News Insider Trade Annotation
In the case study demo, the goal is to use MIC to
extract facts about potential insider trades from a
financial news feed. We assume the user is a sub-
ject matter expert (SME) curator with some basic
knowledge of NLP and machine learning. The an-
notator has several goals. Firstly, from all the news
feeds she needs to select those that are relevant to
insider selling or buying. Since there is no machine
learning model classifier distinguishing the insider
trading concept at hand, the annotator decides to
use a simple rule inside buy/sell to quickly gener-
ate machine labels. The rule is defined as a SpaCy
rule in the admin panel such that if a sentence after
lemmatization contains both words inside and buy
or sell, then the machine auto-generated label will
be set to Inside Trade. The annotator reviews re-
sults at the sentence-level panel, and manually cor-
rects some mistaken predictions. Then, she saves
the sentence labeling results and hides all sentences
that are not related to insider trading. She switches
the annotation panel from sentence to NER label-
ing, and uses several out-of-the-box NER models
(i.e. from FLAIR (Akbik et al., 2019) or SpaCy) to
quickly generate automatic NER tags for persons,
organizations, locations, and others.

Next, the annotator switches the panel from NER
to Relation to extract semantic relationships about
insider trading. Her goal here is to extract buy and
sell relationships that occur between two entities
(usually the subject person entity is defined as the
head and the object stock entity is defined as the
tail). Instead of spending tedious effort to find de-
sired relationships manually, the annotator applies
an open relation extraction (OpenRE) model to au-
tomatically extract candidate relationships. If the
annotator wants to further designate the extracted
relationships as one of the three pre-defined types
buy, sell and own, she can change the relation type
to any text in the confirmation menu.

The MIC OpenRE model is based on the MaMa
open information extraction (OpenIE) model de-
scribed in (Wang et al., 2020) and built using the
code from (theblackcat102, 2020). The OpenRE
model carries out several steps such as named en-
tity recognition, verb phrase pattern matching, pre-
trained language model inference, and triplet post-
processing. Since each step may produce uncer-
tainty in its output, the OpenRE approach tends to
generate noisy candidate relationships.

In our demo, we published an OpenRE endpoint
API that uses BERT-large-cased as the pre-trained
language model (Devlin et al., 2019). For each
page, it may produce about 40 to 100 noisy re-
lations. Thus, the annotator needs to review and
confirm all outputs in the summarization panel.

This case study demonstrates how to use MIC to
accomplish multiple tasks of annotation, starting
from sentence labeling, then named entity detec-
tion and finally extract important financial seman-
tic relationships from text. All annotated entities
and relationships are associated with three different
positional indices: (1) sentence index, (2) token po-
sition index, and (3) character position index. This
allows precise identifications and visualizations of
extracted entities and relationships. Users can save
these annotations and visualize them directly in
MIC, or export them as JSON format for general
machine learning model training and validation
outside of MIC.

6 Evaluation of Annotation Efficiency
and Accuracy

We conducted a benchmark study to investigate the
efficiency and accuracy of MIC in real annotations.
Three different data sets were used for task prepa-
ration: (1) CoNNL2003 (Tjong Kim Sang and
De Meulder, 2003); (2) NYT Open Relation Extrac-
tion Benchmark (Mesquita et al., 2013); (3) Propri-
etary fintech customer support call transcripts. The
first and second data sets are publicly accessible
and widely used as NER and Relation Extraction
benchmarks. The third data is a proprietary data set
and the goal is to obtain three levels of annotations.
The first level is sentence tagging: the annotator
needs to extract the main customer complaint sen-
tences from the call transcript if the complaint is
related to buy/sell financial product (stocks/funds),
denoted as a buy/sell relevant sentence. All other
sentences are irrelevant. The second level is NER:
Among the relevant sentences, tag any mentioned
financial products (stock/fund tickers, bank names,
and others) as named entities. The third level is to
annotate any unary relationship, if related to buy
or sell, of annotated entities if mentioned in the
same sentence. For example, Sell Apple Stock,
Buy NVDA, Exchange Money Market Funds, and
so on. We compared four annotation tools, includ-
ing free version of Prodigy, YEDDA (Yang et al.,
2018), GATE(Bontcheva et al., 2013) and the pro-
posed MIC tool. Four annotators selected from the

228

https://huggingface.co/bert-large-cased

2Tool CoNNL NYT Call
Avg Time F1-score Avg Time F1-score Avg Time F1-score

Prodigy 63 0.75 94 0.52 208 0.86
YEDDA 85 0.76 101 0.60 189 0.82
GATE 84 0.75 118 0.62 150 0.78
MIC-NM 45 0.74 74 0.64 60 0.84
MIC-M 38 0.78 95 0.59 44 0.88

Table 2: Comparison of Average Annotation Time (integers as minutes) for different tasks and the Average F1-
scores.

master internship program were trained to perform
annotations. Each annotator spent about 2 hours
on each tool using labeled data to get familiar with
a tool’s specific annotation mechanism. Then, a
random sample of 50-sentence corpora from data
sets (1) and (2), and 20 random transcriptions of
data set (3) were assigned for annotation. For each
annotator, sentences/transcriptions were stratified
samplings by different annotation tools, so there
was no occurrence of seen sentences across differ-
ent tools. In this setting, each task had four samples,
assigned to four annotators in parallel and all an-
notated once using the same tool. Because data in
all tasks comes with ground truth labels, we mea-
sure annotation performance in this step through
evaluating the micro-entity precision, recall, and
then calculate the F1 scores of the annotated labels
against the ground truth labels. The average anno-
tation time and F1-scores of four annotators spent
on this task-tool combination were recorded and
compared in Table 2. Notice that CONLL and NYT
are popular data sets studied in literature, and the
best F1-score achieved by ML models on CONLL
is around 0.76(Parker and Yu, 2021), and 0.59 for
NYT (Sun and Wu, 2019).

We compared MIC in two configurations: (1)
MIC-NM only allowed manual annotations, so no
pre-trained model was used. (2) MIC-M included
pre-trained annotation models so annotators could
confirm final labels using auto-annotations. In the
MIC-M setting, MIC included four NER models
(FLAIR, FINBERT HMM, EN CORE WEB MD,
SNIPS), one MaMa RE model (Wang et al., 2020),
and a proprietary intent classification model to clas-
sify sentences. The average annotation time of four
annotators, and the F1-score of their annotated re-
sults evaluated by ground truths, are reported in
Table 1. As shown, on almost all tasks, MIC signif-
icantly reduced annotation time and obtained com-
parable performance. One exception was for the

NYT task using MIC-M, where the MAMA (Wang
et al., 2020) model was slow in execution, and re-
sults were very noisy. Thus annotators spent extra
effort filtering the results and accidental misses
caused performance drop. In particular, annota-
tors found MIC very helpful in annotating long
call transcripts because it provided a friendly in-
terface filtering irrelevant sentences and allowed
smooth switches among sentence/entity/relation
annotations. In contrast, in other tools, annota-
tors were overwhelmed by a dominant number
of unrelated sentences, which caused serious dis-
tractions. Another advantage annotator liked MIC
most was the stacked investigation of multiple auto-
annotations tagged by pre-trained models, espe-
cially on CONNL task where pre-trained NER
models were domain-homogeneous. In contrast,
when annotating financial product entities, the four
pre-trained models were not very helpful, mainly
because those models had never adapted to the Fi-
nancial NER domain.

7 Scalability and Deployment

For budget reasons, the demo system of MIC
hosted at www.textmic.com is deployed on a sin-
gle AWS T3.xlarge instance. However, RESTFUL
APIs can be distributed to different physical in-
stances for better performance and richer model
capacity. Thus MIC could host a wide range of
large-scale pre-trained models in its library and al-
low easy adaption of relevant models in specific
annotation tasks.

8 Future Development

Our roadmap to enhance MIC for the future lies
ahead in several directions. We are interested
in connecting MIC to advanced processes cloud-
based APIs such as zero-shot learning, few-shot
learning, and textual entailment models to pro-
vide annotators access to more SoTA NLP models.

229

Figure 3: Django backend management of pre-trained
annotation models

Additionally, we’ll implement automated training
pipelines for several weak supervision algorithms
including (Ratner et al., 2017; Shang et al., 2018;
Parker and Yu, 2021) to allow automatic denoising
of conflicting human or machine labels.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Marcel Bollmann, Florian Petran, Stefanie Dipper, and
Julia Krasselt. 2014. CorA: A web-based annota-
tion tool for historical and other non-standard lan-
guage data. In Proceedings of the 8th Workshop
on Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities (LaTeCH), pages 86–
90, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Kalina Bontcheva, Hamish Cunningham, Ian Roberts,
Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation, 47:1007–
1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Volker Gast, Lennart Bierkandt, and Christoph Rzym-
ski. 2015. Creating and retrieving tense and aspect
annotation with graphanno, a lightweight tool for
multi-level annotation. In ACL 2015.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4238–4248, Hong Kong,
China. Association for Computational Linguistics.

Matthias Hartung, Hendrik ter Horst, Frank Grimm,
Tim Diekmann, Roman Klinger, and Philipp Cimi-
ano. 2018. SANTO: A web-based annotation tool
for ontology-driven slot filling. In Proceedings
of ACL 2018, System Demonstrations, pages 68–
73, Melbourne, Australia. Association for Compu-
tational Linguistics.

Johannes Kiesel, Henning Wachsmuth, Khalid Al-
Khatib, and Benno Stein. 2017. WAT-SL: A cus-
tomizable web annotation tool for segment label-
ing. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 13–16, Valencia, Spain. Association for Com-
putational Linguistics.

Jonathan K. Kummerfeld. 2019. SLATE: A super-
lightweight annotation tool for experts. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 7–12, Florence, Italy. Association for
Computational Linguistics.

Frédéric Landragin, Thierry Poibeau, and Bernard Vic-
torri. 2012. ANALEC: a new tool for the dynamic
annotation of textual data. In Proceedings of the
Eighth International Conference on Language Re-
sources and Evaluation (LREC-2012), pages 357–
362, Istanbul, Turkey. European Languages Re-
sources Association (ELRA).

Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Seyeon
Lee, Qinyuan Ye, Elizabeth Boschee, Leonardo
Neves, and Xiang Ren. 2020. LEAN-LIFE: A
label-efficient annotation framework towards learn-
ing from explanation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 372–
379, Online. Association for Computational Linguis-
tics.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu
Lan, and Xiang Ren. 2019. AlpacaTag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual

230

https://doi.org/10.3115/v1/W14-0612
https://doi.org/10.3115/v1/W14-0612
https://doi.org/10.3115/v1/W14-0612
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/N13-3004
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/P18-4012
https://doi.org/10.18653/v1/P18-4012
https://www.aclweb.org/anthology/E17-3004
https://www.aclweb.org/anthology/E17-3004
https://www.aclweb.org/anthology/E17-3004
https://doi.org/10.18653/v1/P19-3002
https://doi.org/10.18653/v1/P19-3002
http://www.lrec-conf.org/proceedings/lrec2012/pdf/638_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/638_Paper.pdf
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010

Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Stephen Mayhew and Dan Roth. 2018. TALEN: Tool
for annotation of low-resource ENtities. In Proceed-
ings of ACL 2018, System Demonstrations, pages
80–86, Melbourne, Australia. Association for Com-
putational Linguistics.

Filipe Mesquita, Jordan Schmidek, and Denilson Bar-
bosa. 2013. Effectiveness and efficiency of open
relation extraction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 447–457, Seattle, Washing-
ton, USA. Association for Computational Linguis-
tics.

Jerrod Parker and Shi Yu. 2021. Named entity recogni-
tion through deep representation learning and weak
supervision. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3828–3839, Online. Association for Computational
Linguistics.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proc. VLDB Endow., 11(3):269–282.

Younes Samih, Wolfgang Maier, and Laura Kallmeyer.
2016. SAWT: Sequence annotation web tool. In
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 65–70,
Austin, Texas. Association for Computational Lin-
guistics.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054–2064, Brussels, Belgium. Association for
Computational Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Michael Stewart, Wei Liu, and Rachel Cardell-Oliver.
2019. Redcoat: A collaborative annotation tool
for hierarchical entity typing. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019 - System Demonstrations, pages 193–
198. Association for Computational Linguistics.

Changzhi Sun and Yuanbin Wu. 2019. Distantly su-
pervised entity relation extraction with adapted man-
ual annotations. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 7039–7046.
AAAI Press.

theblackcat102. 2020. language-
models-are-knowledge-graphs-
pytorch. https://github.com/theblackcat102/

language-models-are-knowledge-graphs-pytorch.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Stephen Tratz and Nhien Phan. 2018. A web-based sys-
tem for crowd-in-the-loop dependency treebanking.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation, LREC
2018, Miyazaki, Japan, May 7-12, 2018. European
Language Resources Association (ELRA).

Chenguang Wang, Xiao Liu, and Dawn Song. 2020.
Language models are open knowledge graphs.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. YEDDA: A lightweight collaborative text
span annotation tool. In Proceedings of ACL 2018,
System Demonstrations, pages 31–36, Melbourne,
Australia. Association for Computational Linguis-
tics.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1–6, Sofia, Bulgaria.
Association for Computational Linguistics.

231

https://doi.org/10.18653/v1/P18-4014
https://doi.org/10.18653/v1/P18-4014
https://www.aclweb.org/anthology/D13-1043
https://www.aclweb.org/anthology/D13-1043
https://doi.org/10.18653/v1/2021.findings-acl.335
https://doi.org/10.18653/v1/2021.findings-acl.335
https://doi.org/10.18653/v1/2021.findings-acl.335
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.18653/v1/W16-5808
https://doi.org/10.18653/v1/D18-1230
https://doi.org/10.18653/v1/D18-1230
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://doi.org/10.18653/v1/D19-3033
https://doi.org/10.18653/v1/D19-3033
https://doi.org/10.1609/aaai.v33i01.33017039
https://doi.org/10.1609/aaai.v33i01.33017039
https://doi.org/10.1609/aaai.v33i01.33017039
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
http://www.lrec-conf.org/proceedings/lrec2018/summaries/339.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/339.html
http://arxiv.org/abs/2010.11967
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/P18-4006
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/P13-4001

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 232 - 241
December 7-11, 2022 c©2022 Association for Computational Linguistics

SUMMARY WORKBENCH
Unifying Application and Evaluation of Text Summarization Models

Shahbaz Syed Dominik Schwabe Martin Potthast

Leipzig University
<shahbaz.syed@uni-leipzig.de>

Abstract

This paper presents SUMMARY WORKBENCH,
a new tool for developing and evaluating text
summarization models. New models and eval-
uation measures can be easily integrated as
Docker-based plugins, allowing to examine the
quality of their summaries against any input
and to evaluate them using various evaluation
measures. Visual analyses combining multi-
ple measures provide insights into the models’
strengths and weaknesses. The tool is hosted
at https://tldr.demo.webis.de and also supports
local deployment for private resources.

1 Introduction

Automatic text summarization reduces a long text
to its most important parts and generates a sum-
mary. Usually, a learning-based summarization
model is developed in two basic steps: model devel-
opment and model evaluation. Given a collection
of documents accompanied by one or more human-
written (reference) summaries, first a set of features
representing the documents is manually created or
automatically extracted through supervised learn-
ing. The resulting model is then used to generate
one or more (candidate) summaries, which are ana-
lyzed manually and/or with evaluation measures for
their similarity to the reference summaries. These
steps are iterated, optimizing the model and its pa-
rameters using a validation set. The models that
perform best in the validation are selected for eval-
uation on the test set. With standardized test sets
for each document collection, comparisons with
models created earlier are reported.

However, these steps are associated with com-
paratively tedious tasks: During model develop-
ment, summaries of individual documents are of-
ten generated and immediately evaluated to iden-
tify deficiencies and improve the model, including
comparisons to other models. The latter requires
third-party models to be operational despite their
heterogeneous software stacks. Such “on-the-fly

evaluation” during development entails that can-
didate and reference summaries as well as source
documents are analyzed manually or by automatic
measures. This multi-text comparison is often not
supported by visualization, although this leads to
a better understanding of the content coverage and
possible selection biases of a model (Vig et al.,
2021; Syed et al., 2021b). The analysis of evalua-
tion results for model selection also benefits from
visual support (Tenney et al., 2020). Previous re-
search in the field of automatic summarization has
not yet resulted in a unified set of tools for these
purposes which is the main goal of this paper.

With SUMMARY WORKBENCH, we introduce the
first unified combination of application and visual
evaluation environments for text summarization
models. Currently, it integrates 15 well-known
summarization models (26 variants in total) and
10 standard evaluation measures from the litera-
ture. With FeatureSum, it also includes a new
feature-based extractive summarization model that
implements features from the literature predating
the deep learning era. Underlying all of the above
is a specification and interface that allows easy in-
tegration of new models and measures to facilitate
large-scale experiments and their reproducibility.

In what follows, Section 2 reviews related work
on tools to assist summarization research and devel-
opment. Section 3 overviews the key design prin-
ciples of the SUMMARY WORKBENCH, and Section 4
provides a complete overview of all the models
and measures hosted to date. Included are general-
purpose models, guided models that accept user
prompts to guide summary generation, and mod-
els tailored to argumentative language and to news
articles. A wide range of commonly employed eval-
uation measures are included, covering both lexical
as well as semantic overlap measures.1

1Source code is available at https://github.com/webis-de/
summary-workbench.

232

https://tldr.demo.webis.de
https://github.com/webis-de/summary-workbench
https://github.com/webis-de/summary-workbench

2 Related Work

The development of tools for summarization re-
search has gained momentum recently, and several
tools have been presented for (sub)tasks of the two
steps above: Tools such as HuggingFace (Wolf
et al., 2020), FairSeq (Ott et al., 2019), Summer-
Time (Ni et al., 2021), TorchMetrics (Detlefsen
et al., 2022), SacreROUGE(Deutsch and Roth,
2020), PyTorch Hub,2 and TensorFlow Hub3 fo-
cus on hosting several state-of-the-art text summa-
rization models and automatic evaluation measures.
These tools have significantly improved accessibil-
ity to working models. However, only some pro-
vide a very minimal interface for inference of sum-
maries and their online/offline comparative analy-
ses. Many authors also choose to share their models
independently, be they on GitHub or elsewhere, as
standalone repositories instead of integrating with
any tools. To lower the bar of (latter) integration as
much as possible, SUMMARY WORKBENCH simplifies
model and measure integration as plugins (using
Docker). In this way, models under development or
private ones can be locally compared to others and
can be archived together with all their dependen-
cies for reproducibility. Similar efforts have been
made in the information retrieval community via
the Docker-based toolkit such as Anserini (Yang
et al., 2018).

Tools such as LIT (Tenney et al., 2020), Summ-
Vis (Vig et al., 2021), and Summary Explorer (Syed
et al., 2021b) focus on qualitative model evaluation
by providing static visual analyses of the relation
between the summary and its source document.
SUMMARY WORKBENCH adapts some of their visual-
izations next to new ones, and complements them
with interactive visual analytics for quantitative
evaluation according to multiple measures. Users
can explore the distribution of scores, select data
points of interest and inspect them in relation to the
source document to better understand the dataset.

The success of past summarization research and
development has relied a lot on in-depth manual er-
ror analyses. This being one of the most laborious
tasks in every natural language generation evalua-
tion, we believe that visually comparing summaries
from multiple models for many different texts, and
contextualizing manual review with multiple mea-
sures is crucial to both scale up error analysis, and
to better understand the capabilities and limitations
2https://pytorch.org/hub/
3https://www.tensorflow.org/hub/

of the technology. As this still requires juggling
many different, incompatible tools, the unified ap-
proach of SUMMARY WORKBENCH aims at lowering
the bar for scaling up interactive experimentation.

3 An Interactive Visual Summarization
Model Development & Evaluation Tool

SUMMARY WORKBENCH implements two interactive
views corresponding to the two basic summariza-
tion model development steps: a summarization
view and an evaluation view.

3.1 Summarization View
Figure 1 shows the summarization view, where
multiple extractive/abstractive summarization mod-
els can be used to summarize texts, web pages, or
scientific documents on demand, controlling for
summary length. For scientific documents, rele-
vant sections from a given paper to be summarized
can be chosen. Explicit guidance signals for fo-
cused summarization can be provided as input to
corresponding models (reviewed in Section 4).

Generated summaries (candidates) can be visu-
ally inspected for their lexical overlaps (highlighted
on demand) with their source document or with an-
other summary. This provides a quick overview
of the models’ effectiveness at capturing important
content as well as any factual errors prevalent in
abstractive summarization (Maynez et al., 2020).
Additional functionalities include uploading multi-
ple documents to be summarized via a single file,
and command line access to all models.

3.2 Evaluation View
Figure 2 shows the evaluation view, where can-
didate summaries are compared with reference
summaries using multiple lexical/semantic content
overlap measures. Candidate summaries from mul-
tiple models, either generated using the summariza-
tion view or uploaded as a file where each example
is encoded as < doc, ref, c1, c2, ..., cn > can be evalu-
ated. Lexical/semantic overlap of candidate/refer-
ence summaries ci/ref with the source document
doc can also be visualized. Computed scores can
be neatly exported as CSV or LATEX tables.

Scores from the chosen evaluation measures can
be further explored through an interactive plotter.
Among other things, the plotter allows users to
visually correlate different evaluation measures,
identify outliers/challenging source documents or
strongly abstractive summaries among the candi-

233

https://pytorch.org/hub/
https://www.tensorflow.org/hub/

Summarization via Multiple Models Summary Agreement Analysis

Figure 1: Two key components of the summarization view: On the left, an input text can be summarized via multiple
extractive and abstractive summarization models; lexical overlap is highlighted on demand for each candidate
summary and can be adjusted for varying n-gram lengths. On the right, content agreement among summaries from
different models; any summary can be selected as the reference against which the others can be visually compared.

dates. This facilitates a deeper understanding of the
quantitative performance of the models as well as
an understanding of the evaluation datasets. Two
more use cases of the interactive plotter are ex-
plained in Section 5.

3.3 Plugin Server
New summarization models and evaluation mea-
sures are integrated as container-based plugins. A
model/measure plugin can either be a local direc-
tory or a remote Git repository containing specifica-
tion of dependent software and data (checkpoints,
embeddings, lexicons), and implementations of
the interfaces SummarizerPlugin and MeasurePlu-
gin. Model metadata such as name, type, version,
source, citation, and other custom arguments are
provided as YAML configurations. Each plugin
runs inside a Docker container with its own server
that handles API calls following the OpenAPI spec-
ification.4 This setup allows users to safely self-
host the entire application. Developed plugins can
be easily shared with the community via Dock-
erHub images or Git repositories. Examples are
found in our tool’s technical documentation.5

4https://www.openapis.org
5https://webis.de/summary-workbench/

4 Models and Measures

SUMMARY WORKBENCH hosts 15 extractive/abstrac-
tive summarization models and 10 lexical/semantic
evaluation measures for English text. Each of these
is configured as a Docker-based plugin that can
be customized and instantiated accordingly. For
details on model checkpoints, see Appendix A.

4.1 Summarization Models
We provide a diverse set of models applicable to
multiple text domains such as news, argumenta-
tive texts, web pages, and product reviews. Model
types include extractive, abstractive, supervised,
unsupervised, and guided summarization, the latter
requiring additional user input.

General-purpose Summarization
Models that work in an unsupervised fashion or
leverage external knowledge via contextual embed-
dings are supposed to be capable of summarizing
any kind of text. We provide the following models
suitable for general-purpose text summarization.

FeatureSum is our new extractive summarization
model which scores a sentence in the text based on
a combination of standard features to identify key
sentences (Luhn, 1958; Nenkova and McKeown,
2012): TF-IDF, content units (named entities, noun
phrases, numbers), position in text, mean lexical

234

https://www.openapis.org
https://webis.de/summary-workbench/

Content Overlap Viewer Interactive Plotter

Figure 2: Two key components of the evaluation view: On the left, a text overlap viewer displays content coverage
of the summaries in relation to the source document via lexical and semantic overlap (via Spacy embeddings).
On the right, an interactive plotter allows selecting examples with specific scores for a combination of evaluation
measures. Additionally, the distribution of scores is also shown.

connectivity (number of tokens shared with the re-
maining sentences), ratio of words that are not stop
words, length (relative to the longest sentence in
the text), and word overlap with the title. The final
score of a sentence is the product of the individual
feature values. Sentences are then ranked based on
these scores to produce the final summary. Differ-
ent combinations of these features can be chosen by
simply toggling them in the interface. This also al-
lows for dynamically reproducing existing models
from the literature provided their specific feature
sets are available.
TextRank (Mihalcea and Tarau, 2004) is a graph-
based model which employs PageRank (Brin and
Page, 1998) on the document graph consisting of
sentences as nodes to compute the strength of their
connections. Top-ranked sentences within a length
budget are taken as the extractive summary. We
also provide the two variants PositionRank and
TopicRank, which consider the sentence position
and its overlap with topic sentence (document’s
title or its first sentence) to compute the ranking
via PyTextRank (Nathan, 2016).
BERTSum (Miller, 2019) employs contextual em-
beddings from BERT (Devlin et al., 2019) to ex-
tract key sentences in an unsupervised fashion by
first clustering all sentence embeddings using k-
means (Hartigan and Wong, 1979) and then retriev-
ing those closest to the centroids as the summary.
PMISum (Padmakumar and He, 2021) is an unsu-
pervised extractive model that includes measures
to score the relevance and redundancy of the sen-

tences of the source document. These measures
are based on pointwise mutual information (PMI)
computed by pre-trained language models. Sum-
mary sentences are selected via a greedy algorithm
to maximize relevance and minimize redundancy.

LoBART (Manakul and Gales, 2021) addresses the
input length limitations of transformers (Vaswani
et al., 2017) that restrict capturing long-span depen-
dencies in long document summarization. Local
self-attention and explicit content selection mod-
ules are introduced to effectively summarize long
documents such as podcast transcripts and scien-
tific documents.

Longformer2Roberta effectively combines Long-
former (Beltagy et al., 2020), developed for pro-
cessing long documents, and RoBERTa (Liu et al.,
2019), a robustly trained BERT model as the de-
coder, based on leveraging pre-trained checkpoints
of large language models (Rothe et al., 2020).

Guided Summarization
The following models accept explicit inputs pro-
vided by users to guide the summarization process
towards generating user-specific summaries.

Biased TextRank (Kazemi et al., 2020) is an ex-
tension of the TextRank model which takes an ex-
plicit user input as the “focus”, represented via
contextual embeddings to guide the ranking of the
document sentences. Summary extraction is based
on the semantic alignment between the document
sentences and the provided focus signal.

235

Visualizing correlation between evaluation metrics Comparing model variants via a single metric

Figure 3: Two example use cases of interactive plotter of the evaluation view: On the left, correlations between
pairs of evaluation measures are analyzed. On the right, abstractive summaries from two variants of the T5 model
for the chosen data point (highlighted yellow) are shown.

GSum (Dou et al., 2021) is a guidance-based ab-
stractive model that takes different types of exter-
nal guidance signals: text inputs, highlighted sen-
tences, keywords, or extractive oracle summaries
derived from the training data. These signals along
with the source text are used to generate focused
and faithful abstractive summaries.

Argument Summarization
Summarizing argumentative texts (opinions, prod-
uct reviews) requires that the model be able to iden-
tify high-quality, informative, and argumentative
sentences from the text. We provide three models
specifically developed for this task.

ArgsRank (Alshomary et al., 2020) is an extrac-
tive model for creating argument snippets. It aug-
ments TextRank with two new criteria: centrality
in context and argumentativeness to help the model
retrieve important and argumentative sentences.

ConcluGen (Syed et al., 2021a) is a transformer
model for generating informative conclusions of
argumentative texts by balancing the trade-off be-
tween abstractiveness and informativeness of the
output. It was finetuned on the Conclugen cor-
pus comprised of pairs of argumentative text and a
human-written conclusion.

COOP (Iso et al., 2021) is an unsupervised opinion

summarization model that employs latent vector
aggregation by searching for optimal input com-
binations of sentence embeddings to address the
summary vector degeneration problem caused by
simple averaging. Specifically, it finds convex com-
binations that maximize the word overlap between
the source document and its summary.

News Summarization
A majority of the existing summarization mod-
els are trained on news datasets, since news have
been and are readily available. These models have
shown strong performance in creating fluent ab-
stractive summaries (Huang et al., 2020). We pro-
vide the following models for summarizing news.

BART (Lewis et al., 2020) is a transformer de-
noising autoencoder for pre-training sequence-to-
sequence models. Its main objective is to recon-
struct the source text corrupted by employing ar-
bitrary noising functions (masking text spans, ran-
domly shuffling sentences) which helps the model
learn better representations of the source texts for
text summarization (Huang et al., 2020).

T5 (Raffel et al., 2020) is a unified text-to-text
transformer model that exploits the strengths of
transfer learning on a variety of problems that can
be modeled as text generation tasks. A task-specific

236

prefix is added to each input sequence (e.g., “sum-
marize:<document>”) that teaches the model to
summarize accordingly.

Pegasus (Zhang et al., 2020a) is a transformer
model pre-trained with a self-supervised summari-
zation-specific training objective called “gap-sen-
tences generation”: important sentences are re-
moved/masked from the source text and must be
jointly generated as output from the remaining sen-
tences, similar to an extractive summary.

CLIFF (Cao and Wang, 2021) leverages con-
trastive learning for generating abstractive sum-
maries that are faithfully and factually consistent
with the source texts. Reference summaries are
used as positive examples while automatically gen-
erated erroneous summaries are used as the nega-
tive examples for training the model.

Newspaper3k is an open-source library for extract-
ing news articles from the web which provides
a module for extractive summarization that ranks
sentences based on keywords and title words.6

4.2 Evaluation Measures
Evaluation measures for summarization typically
quantify the lexical/semantic overlap of a candidate
summary with a reference summary. We provide
the following measures covering both.

Lexical Measures
Measures based on lexical overlap return precision,
recall, or F1 scores on varying granularities of text
between the candidate summary and one or more
reference summaries.

BLEU (Papineni et al., 2002) is a standard measure
for machine translation adapted for summarization.
It includes a brevity penalty to account for length
differences while computing n-gram overlap.

ROUGE (Lin, 2004) is the most common measure
for summarization which computes precision, re-
call, and F1 scores based on n-gram overlap, where
n-grams include unigrams, bigrams, and the longest
common subsequence.

METEOR (Banerjee and Lavie, 2005) aligns a
candidate with a set of references by mapping each
unigram of a candidate to 0/1 unigrams of the ref-
erence based on exact, stem, synonym, and para-
phrase matches. It then computes precision, re-
call, and F9 scores (i.e., weighted harmonic mean,
strongly emphasizing recall) based on that.
6https://newspaper.readthedocs.io/en/latest/

CIDEr (Vedantam et al., 2015) is a consensus-
based measure (originally for evaluating image
captioning) which measures the similarity of a can-
didate against a set of references by counting the
frequency of the common n-grams of a candidate.

Semantic Measures
Measures based on semantic overlap compute the
semantic alignment between candidates and refer-
ences at the token/word/sentence level based on
their static/contextual embeddings.

Greedy Matching (Rus and Lintean, 2012) aligns
a candidate and a reference by greedily matching
each candidate word to a reference word based on
their embeddings’ cosine similarity. Average simi-
larity over all candidate words aligned to reference
words and vice versa are computed whose average
is the final score.

MoverScore (Zhao et al., 2019) combines con-
textual embeddings from BERT using the word
mover’s distance (Kusner et al., 2015) to compare a
candidate against a set of references by considering
both the amount of shared content as well as the
extent of deviation between them.

BERTScore (Zhang et al., 2020b) computes a
similarity score for each candidate token with
each reference token using contextual embeddings
from BERT. The measure is also robust to adver-
sarial modifications of the generated text.

BLEURT (Sellam et al., 2020) is a learned mea-
sure based on BERT that models human judgments
with a few thousand biased training examples. The
model is pre-trained using millions of synthetic ex-
amples created via scores from existing measures
(BLEU, ROUGE, BERTScore), and textual entail-
ment, for better generalization.

BARTScore (Yuan et al., 2021) uses the weighted
log probability of generating one text given an-
other to compute faithfulness (source → candidate),
precision (reference → candidate), recall (candi-
date → reference), and the F1 score.

CosineSim includes two embedding-based co-
sine similarity measures using Spacy word vec-
tors (Honnibal et al., 2020) and Sentence-
BERT (Reimers and Gurevych, 2019).

5 Interaction Use Cases

Figure 3 shows two use cases of the interactive
plotter. First, users can analyze any correlation

237

https://newspaper.readthedocs.io/en/latest/

Figure 4: Customization options available for visualization of document and summary overlap. Users can select the
minimum word overlap, preserve duplicate words, and ignore stop words to be visualized. Also, they can instantly
preview each color scheme and set it as their default. The tool provides colorful, soft gradient-based, and grayscale
schemes to account for color blindness.

between two measures of choice for a summariza-
tion model. Here, we find that MoverScore and
BERTScore have strong correlation as they both
employ contextual embeddings from BERT to com-
pute the overlap between candidate and reference
summaries. Likewise, we find that the static token
embeddings from Spacy have a broader distribution
of scores in comparison.

As a second use case, the interactive plotter al-
lows comparing two variants of the same model
architecture using any measure. Here, we inspect
the T5 model (its 3B and 11B variants) using
BERTScore to find that the larger variant gener-
ates a summary very similar to the reference while
the smaller variant creates a summary that is topi-
cally related but not accurate in comparison to the
reference.

6 Conclusion

In this paper we present SUMMARY WORKBENCH, a
tool that unifies the application and evaluation of
text summarization models. The tool supports inte-
grating summarization models and evaluation mea-
sures of all kinds via a Docker-based plugin system
that can also be locally deployed. This allows safe
inspection and comparison of models on existing
benchmarks and easy sharing with the research

community in a software stack-agnostic manner.
We have curated an initial set of 15 models (26 in-
cluding all variants) and 10 evaluation measures
and welcome contributions from the text summa-
rization community. An extension of the tool’s
features to related text generation tasks such as
paraphrasing and question answering is foreseen.

7 Ethical Statement and Limitations

Our tool builds on open source models and evalu-
ation measures contributed by the corresponding
authors. We expect all users of our tool to diligently
cite the authors of all models and measures when
they use them via our tool, instead of just citing our
tool. The tool provides direct links to the relevant
sources for each hosted summarization model and
evaluation measure to facilitate this.

The models and measures may have intrinsic
biases, which ideally, our tool may help to iden-
tify. However, our tool itself may have biases, es-
pecially with respect to its visualizations: Visu-
alization in general is a difficult task, and visual
analytics for data analysis in particular may lead
to invalid conclusions if the underlying visualiza-
tion itself is flawed. Although we did our best to
avoid any non-standard visualizations and relied on
widely used tools to plot them, we caution users of

238

possible errors from either the dependent libraries
or their integration in our tool. Validating a visual
analytics tool poses non-trivial research tasks of its
own right, which we leave for future work. We do
hope that the community will diligently report any
errors they may encounter.

To account for color blindness, we strived to pro-
vide multiple (soft) gradient-based color schemes
and grayscale colors (Figure 4) for all our visual-
izations. Instant previews of each color scheme are
available to help users customize the tool’s visuals.

References
Milad Alshomary, Nick Düsterhus, and Henning

Wachsmuth. 2020. Extractive snippet generation for
arguments. In Proceedings of the 43rd International
ACM SIGIR conference on research and development
in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, pages 1969–1972. ACM.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings
of the Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation and/or Sum-
marization@ACL 2005, Ann Arbor, Michigan, USA,
June 29, 2005, pages 65–72. Association for Compu-
tational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual web search engine. Com-
put. Networks, 30(1-7):107–117.

Shuyang Cao and Lu Wang. 2021. CLIFF: contrastive
learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 6633–6649. Association for Computa-
tional Linguistics.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock,
Ananya Harsh, Teddy Koker, Luca Di Liello, Daniel
Stancl, Changsheng Quan, Maxim Grechkin, and
William Falcon. 2022. TorchMetrics - Measuring
Reproducibility in PyTorch.

Daniel Deutsch and Dan Roth. 2020. SacreROUGE: An
open-source library for using and developing summa-
rization evaluation metrics. In Proceedings of Second
Workshop for NLP Open Source Software (NLP-OSS),
pages 120–125. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. Gsum: A general
framework for guided neural abstractive summariza-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2021, Online, June 6-11, 2021,
pages 4830–4842. Association for Computational
Linguistics.

John A Hartigan and Manchek A Wong. 1979. Algo-
rithm as 136: A k-means clustering algorithm. Jour-
nal of the royal statistical society. series c (applied
statistics), 28(1):100–108.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Dandan Huang, Leyang Cui, Sen Yang, Guangsheng
Bao, Kun Wang, Jun Xie, and Yue Zhang. 2020.
What have we achieved on text summarization? In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 446–469.
Association for Computational Linguistics.

Hayate Iso, Xiaolan Wang, Yoshihiko Suhara, Stefanos
Angelidis, and Wang-Chiew Tan. 2021. Convex ag-
gregation for opinion summarization. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 16-20 November, 2021, pages 3885–
3903. Association for Computational Linguistics.

Ashkan Kazemi, Verónica Pérez-Rosas, and Rada Mi-
halcea. 2020. Biased textrank: Unsupervised graph-
based content extraction. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, COLING 2020, Barcelona, Spain (Online), De-
cember 8-13, 2020, pages 1642–1652. International
Committee on Computational Linguistics.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kil-
ian Q. Weinberger. 2015. From word embeddings to
document distances. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages
957–966. JMLR.org.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training

239

https://doi.org/10.1145/3397271.3401186
https://doi.org/10.1145/3397271.3401186
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
http://arxiv.org/abs/2004.05150
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.21105/joss.04101
https://doi.org/10.21105/joss.04101
https://doi.org/10.18653/v1/2020.nlposs-1.17
https://doi.org/10.18653/v1/2020.nlposs-1.17
https://doi.org/10.18653/v1/2020.nlposs-1.17
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2020.emnlp-main.33
https://doi.org/10.18653/v1/2021.findings-emnlp.328
https://doi.org/10.18653/v1/2021.findings-emnlp.328
https://doi.org/10.18653/v1/2020.coling-main.144
https://doi.org/10.18653/v1/2020.coling-main.144
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
https://doi.org/10.18653/v1/2020.acl-main.703

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Hans Peter Luhn. 1958. The automatic creation of liter-
ature abstracts. IBM Journal of Reseach and Devop-
ment, 2(2):159–165.

Potsawee Manakul and Mark J. F. Gales. 2021. Long-
span summarization via local attention and content
selection. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume
1: Long Papers), Virtual Event, August 1-6, 2021,
pages 6026–6041. Association for Computational
Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan T. McDonald. 2020. On faithfulness and fac-
tuality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 1906–1919. Association for Com-
putational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing , EMNLP 2004, A meeting of SIGDAT,
a Special Interest Group of the ACL, held in con-
junction with ACL 2004, 25-26 July 2004, Barcelona,
Spain, pages 404–411. ACL.

Derek Miller. 2019. Leveraging BERT for ex-
tractive text summarization on lectures. CoRR,
abs/1906.04165.

Paco Nathan. 2016. PyTextRank, a Python implemen-
tation of TextRank for phrase extraction and summa-
rization of text documents.

Ani Nenkova and Kathleen McKeown. 2012. A survey
of text summarization techniques. In Mining text
data, pages 43–76. Springer.

Ansong Ni, Zhangir Azerbayev, Mutethia Mutuma, Troy
Feng, Yusen Zhang, Tao Yu, Ahmed Hassan Awadal-
lah, and Dragomir R. Radev. 2021. Summertime:
Text summarization toolkit for non-experts. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2021, Online and Punta Cana,

Dominican Republic, 7-11 November, 2021, pages
329–338. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2019, Minneapo-
lis, MN, USA, June 2-7, 2019, Demonstrations, pages
48–53. Association for Computational Linguistics.

Vishakh Padmakumar and He He. 2021. Unsupervised
extractive summarization using pointwise mutual in-
formation. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, EACL 2021,
Online, April 19 - 23, 2021, pages 2505–2512. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980–3990.
Association for Computational Linguistics.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Trans. Assoc. Comput. Lin-
guistics, 8:264–280.

Vasile Rus and Mihai C. Lintean. 2012. A comparison
of greedy and optimal assessment of natural language
student input using word-to-word similarity metrics.
In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, BEA@NAACL-
HLT 2012, June 7, 2012, Montréal, Canada, pages
157–162. The Association for Computer Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7881–7892.
Association for Computational Linguistics.

Shahbaz Syed, Khalid Al Khatib, Milad Alshomary,
Henning Wachsmuth, and Martin Potthast. 2021a.

240

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2021.acl-long.470
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://aclanthology.org/W04-3252/
https://aclanthology.org/W04-3252/
http://arxiv.org/abs/1906.04165
http://arxiv.org/abs/1906.04165
https://doi.org/10.5281/zenodo.4637885
https://doi.org/10.5281/zenodo.4637885
https://doi.org/10.5281/zenodo.4637885
https://doi.org/10.18653/v1/2021.emnlp-demo.37
https://doi.org/10.18653/v1/2021.emnlp-demo.37
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/n19-4009
https://doi.org/10.18653/v1/2021.eacl-main.213
https://doi.org/10.18653/v1/2021.eacl-main.213
https://doi.org/10.18653/v1/2021.eacl-main.213
https://www.aclweb.org/anthology/P02-1040/
https://www.aclweb.org/anthology/P02-1040/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://aclanthology.org/W12-2018/
https://aclanthology.org/W12-2018/
https://aclanthology.org/W12-2018/
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704

Generating informative conclusions for argumenta-
tive texts. In Findings of the Association for Com-
putational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, volume ACL/IJCNLP 2021
of Findings of ACL, pages 3482–3493. Association
for Computational Linguistics.

Shahbaz Syed, Tariq Yousef, Khalid Al Khatib, Stefan
Jänicke, and Martin Potthast. 2021b. Summary ex-
plorer: Visualizing the state of the art in text summa-
rization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, EMNLP 2021, Online and
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 185–194. Association for Computational
Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
EMNLP 2020 - Demos, Online, November 16-20,
2020, pages 107–118. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image descrip-
tion evaluation. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 4566–4575. IEEE
Computer Society.

Jesse Vig, Wojciech Kryscinski, Karan Goel, and
Nazneen Fatema Rajani. 2021. Summvis: Interactive
visual analysis of models, data, and evaluation for
text summarization. CoRR, abs/2104.07605.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini:
Reproducible ranking baselines using lucene. ACM
J. Data Inf. Qual., 10(4):16:1–16:20.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, De-
cember 6-14, 2021, virtual, pages 27263–27277.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020a. PEGASUS: pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 563–578. Association for
Computational Linguistics.

A Model Details

Summarizer Model

BERTSummarizer distilbert-base-uncased
LoBART podcast_4K_ORC
Longformer2Roberta patrickvonplaten/longformer2roberta-

cnn_dailymail-fp16
ConcluGen dbart
CLIFF pegasus_cnndm
COOP megagonlabs/bimeanvae
BART facebook/bart-large
Pegasus google/pegasus
T5-Base huggingface.co/t5-base

Evaluator Model

BARTScore facebook/bart-large-cnn
Spacy Similarity en_core_web_lg
SBERT roberta-large-nli-stsb-mean-

tokens
BLEURT bleurt-base-128
BERTScore roberta-large-mnli
Greedy Matching glove.6B.300d
MoverScore MoverScoreV1

241

https://doi.org/10.18653/v1/2021.findings-acl.306
https://doi.org/10.18653/v1/2021.findings-acl.306
https://doi.org/10.18653/v1/2021.emnlp-demo.22
https://doi.org/10.18653/v1/2021.emnlp-demo.22
https://doi.org/10.18653/v1/2021.emnlp-demo.22
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.1109/CVPR.2015.7299087
https://doi.org/10.1109/CVPR.2015.7299087
http://arxiv.org/abs/2104.07605
http://arxiv.org/abs/2104.07605
http://arxiv.org/abs/2104.07605
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3239571
https://doi.org/10.1145/3239571
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Abstract.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 242 - 249
December 7-11, 2022 c©2022 Association for Computational Linguistics

Arabic Word-level Readability Visualization
for Assisted Text Simplification

Reem Hazim, Hind Saddiki, Bashar Alhafni, Muhamed Al Khalil, Nizar Habash
Computational Approaches to Modeling Language Lab

New York University Abu Dhabi
{rh3015,hind.saddiki,alhafni,muhamed.alkhalil,nizar.habash}@nyu.edu

Abstract

This demo paper presents a Google Docs add-
on for automatic Arabic word-level readability
visualization. The add-on includes a lemmatiza-
tion component that is connected to a five-level
readability lexicon and Arabic WordNet-based
substitution suggestions. The add-on can be
used for assessing the reading difficulty of a
text and identifying difficult words as part of
the task of manual text simplification. We make
our add-on and its code publicly available.1,2

1 Introduction

Models for automatic readability assessment and
automatic text simplification are relevant to many
natural language processing (NLP) tasks such as
developing pedagogical language technologies that
assist students with learning languages, or teach-
ers with curriculum design and writing assessment,
as well as personalized paraphrasing of NLP sys-
tems’ outputs to target different users with different
readability levels.

Developing robust models for readability assess-
ment and simplification requires the creation of
large-scale lexical and annotated resources for train-
ing and evaluation. For example, parallel texts with
different paired readability levels can be used to
train readability models as well as simplification
models. Figure 1 presents an example from an Ara-
bic novel paired with a simplified version targeting
the fifth-grade readability level. Properly identify-
ing which words and phrases need to be rewritten in
a simplified manner for a specific target readability
level and audience requires word-level readability
annotation in a framework that enables easy edit-
ing of the original text, as well as easy checking on
the updated text. To our knowledge, most of the
available tools for readability assessment work on
the document or the sentence levels.

1http://samer-addon.camel-lab.com/
2https://github.com/CAMeL-Lab/samer-add-on

2ULJLQDO�7H[W�

ࠤࢳ�झࠚߜ�ॖࡃࡥᇭණ�ዺዏ৏দ�ஹழ�ƈषॱॆघ�झघƒ�ᏸᏒ�ᏸᎫߜᄓࣃ�झࣴ೐ಿ�ஹழƨ�ŭॖࡃঁࡺࣃ�
�कᒎᑿऊƨƏृࡊࢳ߾�ƃƨ�ŭƓߜ Ʊށ Ʊށ߾�ऊƇ�୘ସଌ�ၑᅊƇƨƃ߹ࡊ ऐ࿇ႤƇ�Ʀƃࡥ�߹ࠡ�ŭࣈߜƏߜ፬ፆƃ�ᏸᏒ

�ໆຩƇƨ� ᒎᑲऐᄍ�ഏ೦ߜ�Ʊኂሼރ Ưߴ ࠚ ƨ�ŭƓഏೳࢇघ�ኂሼߜ�ᒐᄲഏೳࠚࢇ�ŭࡹࣇव፾፽�ƫ Ɓ෭෨ख़ƃ́
:H�OLYH��P\�ODG\��LQ�D�WURXEOHG�DJH�ZKRVH�GLUW�ODGHQ�DLU�GRHV�QRW�
VHWWOH��QRU�GR�LWV�VZRUGV�UHVW�LQ�WKHLU�VFDEEDUGV��DIWHU�WKH�ERQGV�RI�
WKH�KRXVH�RI�$EEDV�GLVVROYHG��DQG�WKHLU�VWDWH�EHFDPH�OLNH�WRUQ�OLPEV�
SUH\HG�XSRQ�E\�HYHU\�SUHGDWRU�DQG�UDLGHG�E\�HYHU\�RSSRUWXQLVW��

6LPSOLILHG�7H[W

�झ࿇Ⴄ�́ࠚߜ�ॖࡃࡥ�झघƒ�ᏸᏒ�ᏸᎫृ߹ࠋ�ᒎᑉ�ஹழࡥ�ƃ߭ࡊߜ�झࣴ೐ಿ�ஹழƨ�ŭƧƑॖࡃঁࡺࣃ
कᒎᑿऊƨƏृࡊࢳ߾�ƃƨ�ŭƓߜ Ʊށ ��ᏸᏒࢦࡃᒎᑐঁߜ�ŭࠡ߹ࡥ��Ʀƃࠧࢆॱ߹߾�ऊƇ�୘ସଌ�Ɗ෭෨ृ߹ࡊ

�ƨࡥᄍ� ࡹॱ߹ߜ�व፾፽ࡹࣇ�ŭࠚࢇᒐᄲഏೳߜ�घ�ኂሼࢇᒎᑉƨ�ŭƓഏೳࢷᒎᑲऐᄍ�कߜ�Ʊኂሼރ
:H�OLYH��P\�ODG\��LQ�D�GLIILFXOW�DJH�ZKRVH�GXVW�GRHV�QRW�FOHDU�DQG�
ZKRVH�VZRUGV�GR�QRW�UHVW�LQ�WKHLU�VKHDWKV��DIWHU�WKH�MRLQWV�RI�WKH�
KRXVH�RI�$EEDV�ZHUH�FXW�RII��DQG�WKHLU�VWDWH�EHFDPH�OLNH�WRUQ�ERG\�
SDUWV�SUH\HG�XSRQ�E\�HYHU\�SUHGDWRU�DQG�DWWDFNHG�E\�HYHU\�HQHP\�

Figure 1: An example original sentence from the Arabic
novel “The Knight of Bani Hamdan” (Al-Jarim, 1945).
The red-marked words are all of readability level 4 and
5 (difficult) per Al Khalil et al. (2018)’s readability
lexicon. The simplified text rewrites those words into
lower (easier) levels (green-marked words). The English
translations are a best attempt to convey the complexity
level of the Arabic word choices to non-Arabic readers.

The system presented in this paper addresses this
limitation by focusing on word-level readability
visualization to assist human annotators working
on identifying text readability levels and adjust-
ing texts to simplify them in a controlled setting.
This effort is part of a project on the Simplifica-
tion of Arabic Masterpieces for Extensive Read-
ing (SAMER) (Al Khalil et al., 2017, 2018, 2020;
Jiang et al., 2020). The project goals include the
creation of a lemma-based graded readability lexi-
con for Arabic and a corpus of parallel original and
simplified texts from Arabic novels (such as those
presented in Figure 1). The project plans to target
two different simplified readability levels: Grades
4-5 (Level III) and Grades 6-8 (Level IV).

While our focus is on Arabic, a language with

242

http://samer-addon.camel-lab.com/
https://github.com/CAMeL-Lab/samer-add-on

limited annotated resources for text simplification,
the components we developed can be easily ex-
tended to other languages. The demo system is a
Google Docs add-on that includes morphological
analysis and light disambiguation of Arabic text,
visualization of word readability levels, and access
to substitution options with their own explicit read-
ability levels. We make our add-on and its code
publicly available.1,2

Next, we present some relevant Arabic linguistic
facts (§2), and discuss related work (§3). We then
present our design and implementation decisions
(§4). In §5 we discuss some examples and use
cases.

2 Relevant Arabic Linguistic Facts

Modern Standard Arabic (MSA) poses many chal-
lenges for NLP tasks (Habash, 2010). Two in par-
ticular are directly relevant to the task at hand, and
affect many of our design decisions: morphological
richness and orthographic ambiguity.3

Morphological Richness Arabic employs a com-
bination of templatic, affixational, and cliticization
morphological operations to realize a large number
of features such as gender, number, person, case,
state, aspect, voice, and mood, in addition to a
number of attachable pronominal, preposition and
determiner clitics. This leads to a very large num-
ber of words to model. To address this aspect, we
utilize a morphological analysis component that is
optimized for efficient representation (Graff et al.,
2009; Taji et al., 2018).

Orthographic Ambiguity Arabic is commonly
written with optional diacritical marks – which are
often omitted – leading to rampant ambiguity. Or-
thographic ambiguity and morphological richness
interact heavily with each other. For example the
word AëXQ 	̄ frdhA4 has four core lemmas (Jiang

et al., 2020): the verbs X ��Q�	̄ far∼ad ‘individualize,

separate in units’, and �X �P rad∼ ‘answer, return’;

and the nouns X �Q�	̄ fard ‘individual, unit’ and �X �P
rad∼ ‘response, return’.

3We do not handle dialectal variants in this effort, although
we acknowledge that dialectal differences from MSA are an
important factor in readability assessment, since MSA is not
the native variant of Arabic learned at home (Ferguson, 1959;
Holes, 2004; Carroll et al., 2017).

4Arabic HSB transliteration (Habash et al., 2007).

Level Grade Age Examples

I 1 6 úÎ �« ,
�
É
�
¿

@ , Q�
J.

�
» , �I��
�K.

house, big, to eat, on

II 2-3 7-8 @ 	X @
 ,
�̈ �Y �	g , ú

	G @ñ �¢ ��
�

@ ,I.

�ë �	X
gold, cylindrical, to cheat, if

III 4-5 9-10 øQ �	«
�

@ , Y ��g �ñ�Ó , �éË �XAª�Ó , �é
KP�

lung, equation, united, to entice

IV 6-8 11-14
��I
�
º�	K , ú

�̄
� @P , �é 	J�
 	K

A �Ò �£ , XA��J�

��̄ @�
economy, tranquility,
sophisticated, to breach

V 9+ 15 - �ú
æ.
�ª ��� ,¨ �	X �ñ

�
Ë , 	¬AJ
 �¢Ó� , �éÓ �X

�

@

epidermis, spectroscope,
witty, bronchial

Table 1: The five readability levels, their grade equiv-
alencies, and lemma and English gloss examples,
abridged from Al Khalil et al. (2020).

3 Related Work

Readability Resources Text readability leveling
is relevant to a wide range of NLP applications such
as text simplification and automatic readability as-
sessment. Most research on readability leveling
has focused on English, leading to the develop-
ment of many resources (Collins-Thompson and
Callan, 2004; Pitler and Nenkova, 2008; Feng et al.,
2010; Vajjala and Meurers, 2012; Xia et al., 2016;
Nadeem and Ostendorf, 2018; Vajjala and Lučić,
2018; Deutsch et al., 2020; Lee et al., 2021).

Specifically for MSA, datasets and modeling
approaches have been created and developed by
leveraging text targeted towards L1 readers (na-
tive speakers) (Al-Khalifa and Al-Ajlan, 2010;
Al Tamimi et al., 2014; El-Haj and Rayson, 2016;
Khalil et al., 2018) and L2 learners (non-native
speakers) (Forsyth, 2014; Saddiki et al., 2018).
More recently, Al Khalil et al. (2020) developed
a 26,578-lemma lexicon (later extended to over
40,000 lemmas) with a five-level readability scale.
Examples of vocabulary from the different readabil-
ity levels and their corresponding grades and ages
are shown in Table 1. This lexicon anchors read-
ability at the lemma representation of the words.
We use this lexicon as our reference for readability
levels.

Jiang et al. (2020) developed the online Read-
ability Leveled Arabic Thesaurus interface that
leverages Al Khalil et al. (2020)’s lexicon, and
extends its coverage.5 For a given user input word,
this interface provides the word’s possible lemmas,

5http://samer.camel-lab.com/

243

http://samer.camel-lab.com/

roots, English glosses, related Arabic words and
phrases from the Arabic WordNet (Black et al.,
2006), and readability on a five-level readability
scale. We make use of many components of Jiang
et al. (2020)’s interface in our add-on.

Readability Visualization To the best of our
knowledge, there has not been much work on de-
veloping web-based visualization tools for word-
level readability assessment, neither for Arabic nor
for other languages. Most of the existing tools
work on the document or the sentence levels. Such
tools include Readable6 and datayze’s Readability
Analyzer7 for English, and the recently proposed
FABRA for French (Wilkens et al., 2022).8 The
lack of word-level tools for Arabic has motivated
us to create an easy-to-use Google Docs add-on for
word-level readability visualization.

Arabic Morphological Analysis and Disam-
biguation There are a number of tools that sup-
port Arabic morphological analysis and disam-
biguation and specifically lemmatization (Pasha
et al., 2014; Darwish and Mubarak, 2016; Obeid
et al., 2020, 2022). Inspired by the JavaScript
Chrome extension developed by Khalifa et al.
(2016) to assist Arabic learners in understanding
text written in MSA or dialectal Arabic (DA), we
implement a version of the Buckwalter core mor-
phological analysis algorithm (Buckwalter, 2002)
in JavaScript as part of our add-on.

4 Design and Implementation

4.1 Design Considerations
We designed our interface with the following con-
siderations in mind.

Openness and Ease-of-use The system needs
to be powerful and provides additive or comple-
mentary value to existing text editors, so that sim-
plifications and changes can be evaluated on the
fly and with minimal overhead. This needs to be
accomplished with minimal usability tradeoffs.

Handling Arabic Ambiguity and Rich Morphol-
ogy The system needs to be able to analyze fully
inflected words and relate them to their lemmas
and part-of-speech (POS) tags. The lemmas and
POS tags will be used to identify the readability
levels from Al Khalil et al. (2020)’s lexicon and

6https://readable.com/
7https://datayze.com/readability-analyzer.php
8https://cental.uclouvain.be/fabra/

to link with the Arabic WordNet databases (Black
et al., 2006). Additionally, the interface needs to
provide the users with access to all the analyses of
a given word.

Visualizing Readability The interface needs to
provide summary readability statistics in word-
token and word-type spaces over full documents
or arbitrary text selections. It should highlight the
words in context in a clear way to indicate intu-
itively which words are easier and which are harder.
And finally, the interface needs to provide access
to the readability levels of other unchosen analyses
of any word.

Access to Word Substitutions The system
should support the text simplification process
by displaying suggestions for related words and
phrases, e.g., synonyms, antonyms, hypernyms,
and hyponyms, with different readability levels.
We build on the work of Jiang et al. (2020) who
used the Arabic Wordnet to accomplish the same.

Explicit/Implicit Word Readability Markup
The system should allow the recording of explicit
readability levels such that when the automatic pro-
cesses make mistakes, users can overwrite them.
We want those corrections and annotations to be
persistent across different future versions of the an-
alyzer and lexicon. At the same time, unnecessary
over-specification can be distracting to the reader
or annotator and should be minimized. The sys-
tem should support the ability to import and export
text files that could be marked for readability using
external tools.

4.2 Implementation

Google Docs Add-on We opted to implement our
interface as a Google Docs add-on, which allows us
to use one of the world’s most used editing frame-
works, without sacrificing any of Google Docs’
advantages such as multi-author editing and other
familiar word-editing supports.

We implemented the tool’s front-end in HTML,
CSS and JavaScript. The back-end was imple-
mented in JavaScript, and it also utilizes the Apps
Script Document Service, which is a JavaScript
API used to read and modify Google Docs pro-
grammatically.

Readability Analysis and Visualization The
tool analyzes user input in four main steps that are
summarized in Figure 2. First, in the back-end, the

244

https://readable.com/
https://datayze.com/readability-analyzer.php
https://cental.uclouvain.be/fabra/

Figure 2: A flowchart depicting the steps that our tool takes to process user input. First, the user input is pre-
processed and tokenized. Next, the lemma and part-of-speech of each token are determined using a morphological
analyzer. Then, the tool looks up each lemma in the readability database to identify its readability level. The tool
then highlights individual words accordingly and produces summary statistics describing the overall text readability.

text is pre-processed and tokenized, and non-word
tokens are discarded. Second, the tokens are fed
into the morphological analysis algorithm, which
produces the most likely lemma and POS pair for
each word. Third, we look up the lemmas in the
readability database to identify their readability lev-
els.9 Finally, we use the Apps Script Document
API to highlight words with different colors ac-
cording to their readability levels. The tool also
presents a summary of the text’s readability dis-
tribution levels in a bar chart colored consistently
with the readability level word highlights.

Morphological and Lexical Analyses Inspired
by Khalifa et al. (2016)’s Chrome extension and
Obeid et al. (2020)’s out-of-context MLE disam-
biguation mode, we implemented a version of the
Buckwalter core morphological analysis algorithm
(Buckwalter, 2002) in JavaScript as part of our add-
on. Besides being used to determine readability
levels, all lemma analyses are presented in a side
bar to allow investigating and reassigning readabil-
ity levels if needed. It is worth noting that the
readability lexicon we use does not handle lexi-
cal polysemy. This is mainly due to the lexical
representation that is used in the lexicon, which fol-
lows the representation of the Standard Arabic Mor-
phological Analyzer (SAMA) (Graff et al., 2009).
However, the design of our tool is independent of
the granularity level of lexical representation and
therefore, any updates to these components in the
future can be easily integrated in our tool.

Figure 3 presents an instance of the SAMER
Google Docs add-on with marked up text.

9We treat Proper nouns (Names) as a separate level.

Explicit/Implicit Word Readability Markup
By default, the system deterministically specifies
a readability level for any specific word based on
its morphological and lexical readability resources.
When disagreement with the automatic levels hap-
pen, as in automatic errors or importing text that
was leveled externally, we ensure that the differ-
ences from the deterministic readability levels are
not lost. To accomplish this, a prefix #<i># is
explicitly added in front of the word in question
forcing the tool to interpret the word as having
readability level of value <i>. For example, the
word I. �J» ktb has a readability level of 1. How-
ever, the user can manually assign it a level of 5
by adding #5# (Indo-Arabic digit 5) in front of the

word, like so: I. �J»#5# #5#ktb . We also provide an
interface button as part of the morphological side
bar discussed above to make such assignment.

The add-on also provides multiple markup visu-
alization modes to navigate between explicit and
implicit readability level markup.

(a) Show: Explicitly mark all words with their
readability levels.

(b) Minimize: Minimize all the markups by set-
ting their font size to 1pt.

(c) Hide: Remove any markup whose readabil-
ity level matches the internal level chosen by
the analyzer and only keep the disagreeing
markups. By default the Hide mode also min-
imizes the markup; however, the user can eas-
ily select the full text and resize it to a pre-
ferred font size (Hide+Resize).

(d) Delete: Delete all markup from the text.

Figure 4 shows the supported markup modes.

245

Figure 3: The SAMER Google Docs add-on visualizing word-level and document-level readability.

���������������$0 (01/3�����6$0(5�H[DPSOHV���*RRJOH�'RFV

KWWSV���GRFV�JRRJOH�FRP�GRFXPHQW�G��N&B��P0�;�&:Y26W3W28�[M6P7].�:&]RFO,�R2B']��HGLW ���

�([DPSOH��0DUNXS�

����ǂߜ����ᒐᄲഏೳࠚࢇ������ǁ�ኂሼ�������ǃ����ŭƓഏೳࢇघ������Ǆ����ഏ೦ Ưߴ ࠚ ƨ��

����ǁߜ�ᒎᑲऐᄍ�������ǁރ�Ʊኂሼ�������ǅݿ����ໆຩƇƨ��

�6KRZ�

�������ǂߜ����ᒐᄲഏೳࠚࢇ������ǁ����ኂሼ������ǃ����ŭƓഏೳࢇघ������Ǆ����ഏ೦ Ưߴ ࠚ ƨ������ǁߜ����ᒎᑲऐᄍ������ǁރ����Ʊኂሼ������ǅݿ����ໆຩƇƨ���0LQLPL]H�

घ������Ǆ����ഏ೦ࢇ��ኂሼ��ŭƓഏೳࠚࢇᒐᄲഏೳߜ Ưߴ ࠚ ƨߜ��ᒎᑲऐᄍރ��Ʊኂሼ������ǅݿ����ໆຩƇƨ���+LGH�

घ������Ǆ����ഏ೦ࢇ��ኂሼ��ŭƓഏೳࠚࢇᒐᄲഏೳߜ Ưߴ ࠚ ƨߜ��ᒎᑲऐᄍރ��Ʊኂሼ��

����ǅݿ����ໆຩƇƨ��

�+LGH�
���
�5HVL]H�

घ��ഏ೦ࢇ��ኂሼ��ŭƓഏೳࠚࢇᒐᄲഏೳߜ Ưߴ ࠚ ƨރ��Ʊኂሼߜ�ᒎᑲऐᄍݿ��ໆຩƇƨ���'HOHWH�

Figure 4: The different word-level markup modes that
are supported by our tool.

5 SAMER Add-on: Examples and Use
Cases

We present some examples of how the SAMER
project Google Docs add-on can be used to analyze
the readability of a literary text. We also discuss po-
tential use cases of our tool across a variety of tasks
and how it can be extended to other languages.

Examples Figure 3 shows the result of using the
tool to analyze a short segment of a novel. After
clicking on the Doc Level button at the top, the tool
highlights each word according to its readability
level using different colors, and presents a summary
distribution of words in each readability level.

Figure 5 shows the result of selecting a specific
word (�IÊm� 	' @ AnHlt ‘be disbanded’) and clicking
on the Word Level button at the top. A side bar
appears showing the different lemma analyses by
readability level. Various word substitution alterna-
tives are presented to the user including synonyms,
hypernyms and hyponyms, with their associated
readability levels. If the user decides to change the
word, they can simply rewrite it and rerun the read-
ability analysis. If the user decides to change the
automatically assigned readability level, they can
either change it directly manually, or by clicking on
the Assign button to change that specific word’s
readability level markup or the Assign All button
to change all of its occurrences in the document.

Use Cases Our goal behind creating an easy-to-
use Google Docs add-on tool for Arabic word-level
readability analysis is to enable users to edit texts
easily based on a specific target readability level.
We intend for our tool to be used by human an-
notators to identify text readability levels and to
simplify texts in a controlled setting. However, we
envision that our tool can be used to assist writers
in either making texts more sophisticated (harder
readability) or in providing alternatives for specific
words that have the same readability level.

Extending to Other Languages Although our
work focuses on Arabic, the SAMER add-on tool is
designed in a modular way and it can be easily ex-
tended to other languages. More concretely, the fol-

246

Figure 5: An example of selecting a specific word and identifying all of its analyses with their readability levels.

lowing core components are needed to make such
an extension possible: (1) a readability level lexi-
con that relates lemmas to their readability levels;
(2) a morphological analysis database that specifies
prefixes, suffixes, stems and lemmas, and their co-
occurrence compatibilities; (3) a statistical lemma-
based disambiguation model; and (4) synonym, hy-
pernym, hyponym and antonym lexical databases,
such as those found in WordNet (Fellbaum, 2010).

6 Conclusion

We presented a Google Docs add-on for automatic
Arabic word-level readability visualization. Our
add-on includes a lemmatization component that is
connected to a five-level readability lexicon and
Arabic WordNet-based substitution suggestions.
The add-on can be used for assessing the reading
difficulty of a text and identifying difficult words
as part of the task of manual text simplification.

In future work, we plan on enhancing our tool’s
readability analysis by leveraging additional mor-
phosyntatic features (Saddiki et al., 2018). We will
use the add-on to annotate a corpus of parallel orig-
inal and simplified texts from Arabic novels.

Limitations and Ethical Considerations

We acknowledge that the add-on we developed
could be used maliciously to: (a) modify texts un-
der false pretenses, (b) plagiarize, or (c) profile
people in a biased way using their writing style.
We also acknowledge that automatic errors in read-
ability analysis can lead to harmful results even
when used with good intent. We further recognize
that the use of highlighting as a visualization mech-
anism limits the conventional use of highlighting in
text editing. Another limitation of our work is the
lack of extrinsic and intrinsic evaluation. However,
we are not aware of any manually annotated Arabic
word-level readability datasets . We plan to develop
such datasets using our tool. Finally, we acknowl-
edge that further user studies are needed to confirm
the effectiveness of our tool in aiding annotators to
perform tasks such as text simplification.

Acknowledgements

This project is funded by a New York University
Abu Dhabi Research Enhancement Fund grant. We
thank Zhengyang Jiang, Go Inoue, and Ossama
Obeid for helpful discussions.

247

References
Ali Al-Jarim. 1945. Fāris Banı̄ H. amdān (The Knight of

Bani Hamdan). Hindawi Foundation.

Hend S Al-Khalifa and Amani A Al-Ajlan. 2010. Au-
tomatic readability measurements of the Arabic text:
An exploratory study. Arabian Journal for Science
and Engineering, 35(2 C):103–124.

Muhamed Al Khalil, Nizar Habash, and Zhengyang
Jiang. 2020. A large-scale leveled readability lexicon
for Standard Arabic. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
3053–3062, Marseille, France. European Language
Resources Association.

Muhamed Al Khalil, Nizar Habash, and Hind Saddiki.
2017. Simplification of Arabic masterpieces for ex-
tensive reading: A project overview. Procedia Com-
puter Science, 117:192–198.

Muhamed Al Khalil, Hind Saddiki, Nizar Habash, and
Latifa Alfalasi. 2018. A leveled reading corpus of
Modern Standard Arabic. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Abdel Karim Al Tamimi, Manar Jaradat, Nuha Al-
Jarrah, and Sahar Ghanem. 2014. AARI: automatic
Arabic readability index. International Arab Journal
of Information Technology, 11(4):370–378.

William Black, Sabri Elkateb, Horacio Rodriguez, Musa
Alkhalifa, Piek Vossen, Adam Pease, and Christiane
Fellbaum. 2006. Introducing the Arabic wordnet
project. In Proceedings of the Global WordNet Con-
ference (GWC), pages 295–300.

Tim Buckwalter. 2002. Buckwalter Arabic morphologi-
cal analyzer version 1.0. Linguistic Data Consortium
(LDC) catalog number LDC2002L49, ISBN 1-58563-
257-0.

Kevin S Carroll, Bashar Al Kahwaji, and David Litz.
2017. Triglossia and promoting Arabic literacy in
the United Arab Emirates. Language, Culture and
Curriculum, 30(3):317–332.

Kevyn Collins-Thompson and James P. Callan. 2004.
A language modeling approach to predicting read-
ing difficulty. In Proceedings of the Human Lan-
guage Technology Conference of the North American
Chapter of the Association for Computational Lin-
guistics: HLT-NAACL 2004, pages 193–200, Boston,
Massachusetts, USA. Association for Computational
Linguistics.

Kareem Darwish and Hamdy Mubarak. 2016. Farasa: A
new fast and accurate Arabic word segmenter. In Pro-
ceedings of the Language Resources and Evaluation
Conference (LREC), Portorož, Slovenia.

Tovly Deutsch, Masoud Jasbi, and Stuart Shieber. 2020.
Linguistic features for readability assessment. In Pro-
ceedings of the Fifteenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
1–17, Seattle, WA, USA → Online. Association for
Computational Linguistics.

Mahmoud El-Haj and Paul Rayson. 2016. OSMAN —
a novel Arabic readability metric. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 250–255,
Portorož, Slovenia. European Language Resources
Association (ELRA).

Christiane Fellbaum. 2010. Wordnet. In Theory and
Applications of Ontology: Computer Applications,
pages 231–243. Springer.

Lijun Feng, Martin Jansche, Matt Huenerfauth, and
Noémie Elhadad. 2010. A comparison of features for
automatic readability assessment. In Coling 2010:
Posters, pages 276–284, Beijing, China. Coling 2010
Organizing Committee.

Charles F Ferguson. 1959. Diglossia. Word, 15(2):325–
340.

Jonathan Forsyth. 2014. Automatic readability predic-
tion for modern standard Arabic. In Proceedings of
the Workshop on Open-Source Arabic Corpora and
Processing Tools (OSACT).

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash, Abdelhadi Soudi, and Tim Buckwalter.
2007. On Arabic Transliteration. In A. van den
Bosch and A. Soudi, editors, Arabic Computational
Morphology: Knowledge-based and Empirical Meth-
ods, pages 15–22. Springer, Netherlands.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing, volume 3. Morgan & Claypool
Publishers.

Clive Holes. 2004. Modern Arabic: Structures, Func-
tions, and Varieties. Georgetown Classics in Arabic
Language and Linguistics. Georgetown University
Press.

Zhengyang Jiang, Nizar Habash, and Muhamed
Al Khalil. 2020. An online readability leveled Arabic
thesaurus. In Proceedings of the 28th International
Conference on Computational Linguistics: System
Demonstrations, pages 59–63, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics (ICCL).

Salam Khalifa, Houda Bouamor, and Nizar Habash.
2016. DALILA: The dialectal Arabic linguistic learn-
ing assistant. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 1098–1102, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Muhamed Al Khalil, Hind Saddiki, Nizar Habash, and
Latifa Alfalasi. 2018. A Leveled Reading Corpus of
Modern Standard Arabic. In Proceedings of the Lan-
guage Resources and Evaluation Conference (LREC),
Miyazaki, Japan.

Bruce W. Lee, Yoo Sung Jang, and Jason Lee. 2021.
Pushing on text readability assessment: A trans-
former meets handcrafted linguistic features. In Pro-

248

https://www.hindawi.org/books/70593971/
https://www.hindawi.org/books/70593971/
https://aclanthology.org/2020.lrec-1.373
https://aclanthology.org/2020.lrec-1.373
https://aclanthology.org/L18-1366
https://aclanthology.org/L18-1366
https://aclanthology.org/N04-1025
https://aclanthology.org/N04-1025
https://doi.org/10.18653/v1/2020.bea-1.1
https://aclanthology.org/L16-1038
https://aclanthology.org/L16-1038
https://aclanthology.org/C10-2032
https://aclanthology.org/C10-2032
https://doi.org/10.18653/v1/2020.coling-demos.11
https://doi.org/10.18653/v1/2020.coling-demos.11
https://aclanthology.org/L16-1175
https://aclanthology.org/L16-1175
https://doi.org/10.18653/v1/2021.emnlp-main.834
https://doi.org/10.18653/v1/2021.emnlp-main.834

ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10669–
10686, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Farah Nadeem and Mari Ostendorf. 2018. Estimat-
ing linguistic complexity for science texts. In Pro-
ceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 45–55, New Orleans, Louisiana. Association
for Computational Linguistics.

Ossama Obeid, Go Inoue, and Nizar Habash. 2022.
Camelira: An Arabic Multi-Dialect Morphological
Disambiguator. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP 2022) Demo Track, Abu Dhabi, United
Arab Emirates.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMeL tools: An open source python toolkit for Ara-
bic natural language processing. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 7022–7032, Marseille, France. Euro-
pean Language Resources Association.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of Ara-
bic. In Proceedings of the Language Resources and
Evaluation Conference (LREC), pages 1094–1101,
Reykjavik, Iceland.

Emily Pitler and Ani Nenkova. 2008. Revisiting read-
ability: A unified framework for predicting text qual-
ity. In Proceedings of the 2008 Conference on Empir-
ical Methods in Natural Language Processing, pages
186–195, Honolulu, Hawaii. Association for Compu-
tational Linguistics.

Hind Saddiki, Nizar Habash, Violetta Cavalli-Sforza,
and Muhamed Al Khalil. 2018. Feature optimization
for predicting readability of Arabic L1 and L2. In
Proceedings of the 5th Workshop on Natural Lan-
guage Processing Techniques for Educational Appli-
cations, pages 20–29, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani,
and Nizar Habash. 2018. An Arabic Morphologi-
cal Analyzer and Generator with Copious Features.
In Proceedings of the Fifteenth Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology (SIGMORPHON), pages 140–150.

Sowmya Vajjala and Ivana Lučić. 2018. On-
eStopEnglish corpus: A new corpus for automatic
readability assessment and text simplification. In Pro-
ceedings of the Thirteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 297–304, New Orleans, Louisiana. Association
for Computational Linguistics.

Sowmya Vajjala and Detmar Meurers. 2012. On improv-
ing the accuracy of readability classification using

insights from second language acquisition. In Pro-
ceedings of the Seventh Workshop on Building Ed-
ucational Applications Using NLP, pages 163–173,
Montréal, Canada. Association for Computational
Linguistics.

Rodrigo Wilkens, David Alfter, Xiaoou Wang, Alice
Pintard, AnaÃ¯s Tack, Kevin P. Yancey, and Thomas
FranÃ§ois. 2022. Fabra: French aggregator-based
readability assessment toolkit. In Proceedings of
the Language Resources and Evaluation Conference,
pages 1217–1233, Marseille, France. European Lan-
guage Resources Association.

Menglin Xia, Ekaterina Kochmar, and Ted Briscoe.
2016. Text readability assessment for second lan-
guage learners. In Proceedings of the 11th Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 12–22, San Diego, CA. Associa-
tion for Computational Linguistics.

249

https://doi.org/10.18653/v1/W18-0505
https://doi.org/10.18653/v1/W18-0505
https://www.aclweb.org/anthology/2020.lrec-1.868
https://www.aclweb.org/anthology/2020.lrec-1.868
https://aclanthology.org/D08-1020
https://aclanthology.org/D08-1020
https://aclanthology.org/D08-1020
https://doi.org/10.18653/v1/W18-3703
https://doi.org/10.18653/v1/W18-3703
https://doi.org/10.18653/v1/W18-0535
https://doi.org/10.18653/v1/W18-0535
https://doi.org/10.18653/v1/W18-0535
https://aclanthology.org/W12-2019
https://aclanthology.org/W12-2019
https://aclanthology.org/W12-2019
https://aclanthology.org/2022.lrec-1.130
https://aclanthology.org/2022.lrec-1.130
https://doi.org/10.18653/v1/W16-0502
https://doi.org/10.18653/v1/W16-0502

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 250 - 257
December 7-11, 2022 c©2022 Association for Computational Linguistics

LogiTorch: A PyTorch-based library
for logical reasoning on natural language

Chadi Helwe, Chloé Clavel, Fabian Suchanek
Télécom Paris, Institut Polytechnique de Paris, France

{chadi.helwe, chloe.clavel, suchanek}@telecom-paris.fr

Abstract

Logical reasoning on natural language is one
of the most challenging tasks for deep learning
models. There has been an increasing inter-
est in developing new benchmarks to evaluate
the reasoning capabilities of language models
such as BERT. In parallel, new models based
on transformers have emerged to achieve ever
better performance on these datasets. However,
there is currently no library for logical reason-
ing that includes such benchmarks and models.

This paper introduces LogiTorch, a PyTorch-
based library that includes different logical rea-
soning benchmarks, different models, as well
as utility functions such as co-reference reso-
lution. This makes it easy to directly use the
preprocessed datasets, to run the models, or to
finetune them with different hyperparameters.
LogiTorch is open source and can be found on
GitHub1.

1 Introduction

Machine reasoning over natural language has been
an object of research since the 1950s (Newell and
Simon, 1956; McCarthy et al., 1960). One prototyp-
ical task in the domain is Textual Entailment: Given
a premise (such as “I ate a cake”), the goal is to
determine whether a hypothesis (“I ate something
sweet”) is entailed or not. Other logical reason-
ing tasks are question answering, multiple choice
question answering, and proof generation.

Lately, deep learning models have shown im-
pressive performance on tasks such as these, in
particular transformer-based models such as BERT
(Devlin et al., 2019) and GPT-3 (Brown et al.,
2020). However, the models can be distracted
easily by trap words, syntactic variations (Kass-
ner and Schütze, 2020), or negation (Kassner and
Schütze, 2020; Ettinger, 2020; Hossain et al., 2020,
2022; Helwe et al., 2021). Hence, the question
of whether these models can logically reason on

1https://github.com/LogiTorch/logitorch

text is still open (Niven and Kao, 2019; Helwe
et al., 2021). New models are being created in-
cessantly (e.g., LogiGAN (Pi et al., 2022) and
Logiformer (Xu et al., 2022) in 2022), and new
datasets are being created to evaluate these mod-
els, including, e.g., LogiQA (Liu et al., 2021b) and
ProofWriter (Tafjord et al., 2021). The initiative of
open-sourcing toolkits has accelerated the progress
in the field of natural language processing, driven
by projects such as Transformers (Wolf et al., 2020)
from HuggingFace and Stanza (Qi et al., 2020)
from Stanford. However, this progress has not yet
arrived in the field of logical reasoning: researchers
still have to find and download different models,
parameterize them, find the corresponding datasets,
bring them into suitable formats, and fine-tune the
models. The datasets are maintained on different
Web pages, exhibit different formats (JSON vs. full
text, numerical vs. textual labels, etc.), and follow
different conventions, which makes it cumbersome
to apply one model across several sources. The
models themselves are implemented in different
frameworks, have different input and output for-
mats, require different dependencies, and differ in
the way of running them, which makes it burden-
some to exchange one model for another. Some
models are not even available online, but have to
be re-implemented from scratch based on the di-
agrams in the scientific publications. All of this
hinders reproducibility, re-usability, comparability,
and ultimately scientific progress in the area.

In this paper, we propose to bring the benefits of
open source libraries to the domain of logical rea-
soning: we build a Python library, LogiTorch, that
includes 14 datasets and 4 implemented models for
3 different logical reasoning tasks. All models can
be called in a unified way, all datasets of one task
are available in the same standardized format, and
all models can be run with all datasets of the same
task. All models have been re-implemented from
the research papers that proposed them, and they

250

https://github.com/LogiTorch/logitorch
https://github.com/LogiTorch/logitorch

have been validated by subjecting them to the same
experiments as the original papers, with compara-
ble results. More models and benchmarks are in
preparation. LogiTorch works on top of PyTorch
(Paszke et al., 2019), and uses the Transformers
library. It also includes utility functions used for
preprocessing, such as coreference resolution and
discourse delimitation.

The rest of the paper is organized as follows.
Section 2 discusses the design and components
of LogiTorch, and describes the datasets, utility
functions, and models. Section 3 shows the ex-
perimental results of our implemented models on
different logical reasoning tasks. We conclude in
Section 4.

2 LogiTorch

LogiTorch is our Python library for logical reason-
ing on natural language text. Figure 1 shows the
tree structure of our library. It is built on top of
PyTorch and consists of 5 parts:
Datasets. We gathered different logical reasoning
datasets that allow users to evaluate the reasoning
capabilities of deep learning models on natural lan-
guage. Once a dataset is called from LogiTorch, it
is downloaded, and wrapped into an object that in-
herits the Dataset class of PyTorch. This means that
all datasets are accessible via the same interface.
We describe the datasets in detail in Section 2.1.
Data Collators. Different models require differ-
ent preprocessing steps for the same data and same
task: one model may work on numerical vectors,
the other on textual input. Hence, we designed, for
each pair of a dataset and a model, a data collator
that brings the dataset into the format required by
the model.
Utilities. Some models require supplementary fea-
tures in addition to the input text. For example,
the DAGN model (Huang et al., 2021) requires the
discourse structure of the input in order to create a
logical graph representation of it. For such cases,
LogiTorch provides different utility functions, most
notably for discourse structure analysis, corefer-
ence resolution, and logical expression extraction,
which we discuss in Section 2.2.
Models. LogiTorch provides several deep learn-
ing models that have been designed to perform
logical reasoning tasks such as proof generation
and textual entailment. For each model, we ei-
ther provide an implementation from scratch, or a
wrapper over its original implementation. For the

LogiTorch
datasets

qa
mcqa
proof_qa
te

data_collators
utilities
models
pl_models

Figure 1: Tree structure of LogiTorch

transformer-based models, we use the Transform-
ers library from HuggingFace for the implemen-
tation of the models. We describe the models in
detail in Section 2.3.
PyTorch Lightning Models. For each imple-
mented model, we also provide a PyTorch
Lightning version. It includes the model, the
optimizer, the training loop, and the validation
evaluation. For example, the PRover model (Saha
et al., 2020) has a PyTorch Lightning version
called PLPRover. This allows users to play with
features such as multi-GPU and fast-low precision
training without modifying the training loop.

2.1 Datasets
The current implemented datasets focus on eval-
uating the reasoning capabilities of deep learning
models. They cover four tasks: Multiple Choice
Question Answering (MCQA), Question Answer-
ing (QA), Proof Generation, and Textual Entail-
ment (TE). Table 1 shows the task and the number
of instances of each dataset. Let us now describe
each task and the associated datasets.

Multiple Choice Question Answering (MCQA)
is the task of choosing the correct answer to a ques-
tion from a list of possible answers. Here is an
example taken from the LogiQA dataset (Liu et al.,
2021b):

Context: David knows Mr. Zhang’s friend Jack,
and Jack knows David’s friend Ms. Lin. Ev-
eryone of them who knows Jack has a master’s
degree, and everyone of them who knows Ms.
Lin is from Shanghai.
Question: Who is from Shanghai and has a mas-
ter’s degree?
Choices: (A) David (B) Jack (C) Mr. Zhang (D)
Ms. Lin

We implement the following MCQA datasets,

251

Dataset Task Training Instances Validation Instances Testing Instances

AR-LSAT MCQA 1,630 231 230
ReClor MCQA 4,368 500 1,000
LogiQA MCQA 7,376 651 651
RuleTaker QA 587,922 84,030 173,496
ProofWriter QA/Proof Generation 585,860 85,520 174,180
ParaRules Plus QA 360,000 64,658 10,798
AbductionRules QA 80,024 11,432 22,928
ConTRoL TE 6,719 799 805
SNLI TE 550,152 10,000 10,000
MNLI TE 392,702 20,000 20,000
RTE TE 2,490 277 3,000
Negated SNLI TE - - 1,500
Negated MNLI TE - - 1,500
Negated RTE TE - - 1,500

Table 1: Datasets implemented in LogiTorch

which all require reasoning capabilities to choose
the correct answer:
AR-LSAT (Zhong et al., 2021) is a dataset that
was constructed by selecting the analytical reason-
ing section of 90 LSAT exams from 1991 to 2016.
LogiQA (Liu et al., 2021b) assesses the logical
deductive ability of language models for the case
where the correct answer to a question is not explic-
itly included in the question. The corpus includes
paragraph-question pairs translated from the Na-
tional Civil Servants Examination of China.
ReCloR (Yu et al., 2019) is a corpus consisting
of questions retrieved from standardized exams
such as LSAT and GMAT. To adequately evaluate
a model without allowing it to take advantage of
artifacts in the corpus, the testing set is split into
two sets: the EASY set where the instances are
biased, and the HARD set where they are not.

Question Answering (QA) is the task of answer-
ing a question given a context. Here is an exam-
ple:

Context: Erin is young. Erin is not kind. If
someone is young and not kind then they are big.
Question: Erin is big ?
Answer: True

Again, we implement the QA datasets that focus
on reasoning:
RuleTaker (Clark et al., 2021) is a set of many
datasets to evaluate the deductive ability of lan-
guage models. Each dataset consists of facts and
rules and a boolean question. The model has to per-
form logical deductions from the rules and facts in
order to answer the question. The dataset includes
synthetically generated subsets that require differ-
ent depths of reasoning, i.e., different numbers of

deduction steps to answer a question. The dataset
also includes the Bird dataset (which showcases
McCarthy’s problem of abnormality (McCarthy,
1986)), the Electricity dataset (which simulates the
functions of an appliance), and the ParaRules cor-
pus (where crowd workers paraphrased sentences
such as “Bob is cold” to “In the snow sits Bob,
crying from being cold”).
ParaRules Plus (Bao, 2021) is an improved ver-
sion of ParaRules (Clark et al., 2021). It has more
examples for the instances with larger reasoning
depths.
AbductionRules (Young et al., 2022) is a dataset
that evaluates the abductive reasoning capabilities
of language models. It is generated similarly to
ParaRule Plus, but in this task, the model has to
generate an answer to explain an observation.

Proof Generation is an extension of the QA task,
where each answer has to be accompanied by a
proof. Here is an example:

Context: Fact 1: Erin is young.
Fact 2: Erin is not kind.
Rule1: If someone is young and not kind then
they are big.
Question: Erin is big ?
Answer: True
Proof: (Fact 1 & Fact 2) → Rule 1

We have one dataset so far, ProofWriter (Tafjord
et al., 2021), which was designed similarly to the
RuleTaker datasets. However, the ProofWriter
dataset contains proofs for the answer of each ques-
tion. Furthermore, there is a variant of the dataset
that considers the open-world assumption.

Textual Entailment (TE, also RTE) is the task of
predicting whether a premise entails or contradicts

252

1 import pytorch_lightning as pl
2 from pytorch_lightning.callbacks import ModelCheckpoint
3 from torch.utils.data.dataloader import DataLoader
4
5 from logitorch.data_collators.ruletaker_collator import RuleTakerCollator
6 from logitorch.datasets.qa.ruletaker_dataset import RuleTakerDataset
7 from logitorch.pl_models.ruletaker import PLRuleTaker
8
9 train_dataset = RuleTakerDataset("depth-5", "train")

10 val_dataset = RuleTakerDataset("depth-5", "val")
11
12 ruletaker_collate_fn = RuleTakerCollator()
13
14 train_dataloader = DataLoader(train_dataset, batch_size=32, collate_fn=ruletaker_collate_fn)
15 val_dataloader = DataLoader(val_dataset, batch_size=32, collate_fn=ruletaker_collate_fn)
16
17 model = PLRuleTaker(learning_rate=1e-5, weight_decay=0.1)
18
19 checkpoint_callback = ModelCheckpoint(
20 save_top_k=1,
21 monitor="val_loss",
22 mode="min",
23 dirpath="models/",
24 filename="best_ruletaker.ckpt",
25)
26 trainer = pl.Trainer(callbacks=[checkpoint_callback], accelerator="gpu", gpus=1)
27 trainer.fit(model, train_dataloader, val_dataloader)

Listing 1: Training the RuleTaker Model

1 from logitorch.pl_models.ruletaker import PLRuleTaker
2
3 model = PLRuleTaker.load_from_checkpoint("models/best_ruletaker.ckpt")
4
5 context = "Bob is smart. If someone is smart then he is kind."
6 question = "Bob is kind."
7
8 model.predict(context, question)

Listing 2: Predicting with the RuleTaker Model

a hypothesis. Here is an example:

Premise: The two boys are in martial arts poses
in an outside basketball court.
Hypothesis: The two boys are not outdoors.
Answer: Contradiction

SNLI (Bowman et al., 2015) is a large human-
annotated corpus of premise-hypothesis pairs that
are labeled with “entailment”, “contradiction”, or
“neutral”. The premises of this dataset are image
captions from Flickr30k, while its hypotheses were
generated by human annotators.
MNLI (Williams et al., 2018) is a large dataset that
was labeled in the same way as SNLI. However,
unlike SNLI, MNLI covers different text genres
such as fiction, telephone speech, and letters. It
also has longer instances.
RTE (Dagan et al., 2005; Haim et al., 2006; Gi-
ampiccolo et al., 2007, 2008; Bentivogli et al.,
2009) is a much smaller dataset than SNLI and
MNLI. It has just two classes, “entailment” and
“non-entailment”.
Negated TE (Hossain et al., 2020) is a testing
set of benchmarks to evaluate the understanding
of negation in language models. Each negated

benchmark was created by randomly selecting 500
premise-hypothesis pairs from SNLI, MNLI, and
RTE datasets and introducing the negation “not”.
For each pair, three new pairs were generated
(negated premise/hypothesis, premise/negated hy-
pothesis, and negated premise/negated hypothesis).
ConTRoL (Liu et al., 2021a) is a dataset of
context-hypothesis pairs to evaluate contextual rea-
soning capabilities over long texts. In contrast to
other TE datasets, the corpus consists of passage-
long premises, and it evaluates different types of
reasoning such as analytical or temporal reasoning,
which makes this task more challenging.

2.2 Utilities

LogiTorch implements several utility functions that
can be used for feature engineering:
Coreference Resolution is the task of finding all
mentions in a text that refer to the same entity. For
example, in “Zidane is one of the best footballers.
He won the World Cup in 1998”, the words “Zi-
dane” and “he” refer to the same person. Coref-
erence resolution is used by the Focal Reasoner
model (Ouyang et al., 2021) to construct a graph of

253

fact triples, where the same mentions are connected
with an undirected edge. In LogiTorch, we im-
plemented a wrapper over a finetuned SpanBERT
(Joshi et al., 2020) for coreference resolution.
Logical Expression Extraction is the task of ex-
tracting a logical representation from a text, in or-
der to infer new logical expressions. For example,
the sentence “If you have no keyboarding skills,
you will not be able to use a computer” can be split
into α = “you have no keyboarding skills” and β
= "you are not be able to use a computer”. The
sentence can then be rewritten as α → β. From
this, we can infer by transposition that ¬β → ¬α,
which corresponds to “If you are able to use a com-
puter, you have keyboarding skills”. The LRea-
soner model (Wang et al., 2022) uses this utility
function to extend the input with logical expres-
sions. In LogiTorch, we developed a wrapper over
the code provided by LReasoner for this purpose.
Discourse Delimitation is the task of splitting a
text into elementary discourse units (EDU). It is
used for the rhetorical structure theory (RST), in
which it is a tree representation of a text where
the leaves are EDUs, and the edges are rhetorical
relations. For example, “A signal in a pure analog
system can be infinitely detailed, while digital sys-
tems cannot produce signals that are more precise
than their digital unit” is split into two EDUs: “A
signal in a pure analog system can be infinitely
detailed”, and “digital systems cannot produce sig-
nals that are more precise than their digital unit”.
The DAGN model (Huang et al., 2021) requires
EDUs to construct a graph of discourse units.

2.3 Models

LogiTorch currently implements four models:
RuleTaker (QA task) (Clark et al., 2021) is a
RoBERTa-Large model (Liu et al., 2019) that has
been finetuned first on the RACE dataset (Lai et al.,
2017), and then finetuned again for rule-based rea-
soning. The model takes as input facts and rules
and a boolean question. The output is either True
or False. The RoBERTa model has a similar archi-
tecture to BERT, but performs better on many NLP
tasks. This is because it is pretrained for a longer
period, with large batches, and on a larger dataset.
The pretraining task is only the Masked Language
Modeling (MLM) task, but the masked tokens are
changed after each training epoch.
ProofWriter (QA and proof generation)
(Tafjord et al., 2021) is a T5 model (Raffel et al.,

2020) finetuned to perform rule-based reasoning.
It takes as input facts and rules and a question.
The output is either True, False, or Unknown (if
the trained dataset considers the open-world as-
sumption). T5 is a text-to-text transfer transformer
that was pretrained on a variety of NLP problems
such as textual entailment, coreference resolution,
linguistic acceptability, and semantic equivalence.
PRover (QA and proof generation) (Saha et al.,
2020) is built on RoBERTa with three modules:
the QA module, Node module, and Edge module.
The QA module is responsible for answering a
question as either True or False. The Node and
Edge modules are responsible for generating proofs.
The Node module predicts the relevant rules and
facts used to generate the answer, and the Edge
module predicts the link between two relevant facts
and between a relevant fact and a relevant rule.
BERTNOT (TE task) (Hosseini et al., 2021) is a
BERT model that is pretrained using the unlikeli-
hood loss and knowledge distillation functions for
the MLM task to model negation. Then it is fine-
tuned on textual entailment tasks. This model is
more robust on examples containing negations, and
performs better on the negated NLI dataset than the
original BERT.
Future releases will include newer models such as
LReasoner (Huang et al., 2021), Focal Reasoner
(Ouyang et al., 2021), AdaLoGN (Li et al., 2022),
Logiformer (Xu et al., 2022), and LogiGAN (Pi
et al., 2022).

2.4 Library Usage

Listing 1 shows a detailed example of how a model
can be trained on a rule-based reasoning dataset
for QA. The RuleTaker model is trained on its cor-
responding dataset. In Lines 9-10, we initialize
the training and validation datasets with the Rule-
TakerDataset. We specify which sub-dataset and
which split we want to use. In Line 12, we initialize
the RuleTaker data collator for preprocessing the
datasets. We then use the Dataloader to pre-load the
datasets and use them as batches. In Line 17, we ini-
tialize the PyTorch Lightning version of RuleTaker
and specify the learning rate, and the weight decay.
PyTorch Lightning provides the ModelCheckpoint,
which allows monitoring the validation loss and
saving the best model. In Line 26, we use the Py-
Torch Lightning’s Trainer to automate the training
loop. It takes several parameters, including the
accelerator, which allows training on different de-

254

Depth
RuleTaker1 PRover2 ProofWriter2

LogiTorch Original LogiTorch Original LogiTorch Original3

0 99.9 100 100 100 99.9 100
1 98.6 98.4 99.7 99.0 98.0 99.1
2 99.1 98.4 99.5 98.8 96.7 98.6
3 99.2 98.9 99.7 99.1 97.2 98.5
4 99.7 99.2 99.7 98.8 98.1 98.7
5 99.3 99.8 99.5 99.3 99.1 99.3
All 99.3 99.2 99.7 99.3 98.4 99.2

Table 2: Accuracies of different models for the QA task at different reasoning depths. 1 Depth-5 of the testing set of
RuleTaker dataset. 2 Depth-5 of the testing set of ProofWriter dataset. 3 The original implementation uses a (more
powerful) T5-11B model.

vices such as CPUs, GPUs, and TPUs. Finally,
we train the model with the fit function. Future
releases will also provide pre-configured pipelines
to train models.

Listing 2 shows the code for testing the best-
saved model of Listing 1. In Line 3, we load the
best model. In Line 8, we use the predict function,
which takes as input a context and a question, and
predicts either 0 (for False) or 1 (for True).

Dataset LogiTorch’s BERTNOT Original BERTNOT

SNLI
Val 90.4 89.00
Neg 47.8 45.96

MNLI
Val 83.2 84.31
Neg 64.0 60.89

RTE
Val 65.6 69.68
Neg 57.7 74.47

Table 3: Results of our BERTNOT implementation on
different textual-entailment datasets.

3 Evaluation

We compared the performance of each model in
LogiTorch to the performance of the model in the
original paper on the same datasets: we trained
the Ruletaker model on the training set of Rule-
Taker with language reasoning paths up to depth
5 and tested it on its testing set; we trained the
PRover and ProofWriter models on the training set
of ProofWriter with language reasoning paths up
to depth 5 and tested them on the corresponding
testing set; and we trained the BERTNOT model (a
pretrained BERT Base Cased model) on the MLM
task, with the negated Wikipedia corpus provided
by Hosseini et al. (2021) (included in LogiTorch),
finetuned the model on each TE dataset (MNLI,
SNLI, and RTE) and tested it on its negated coun-
terparts (Hossain et al., 2020). All models use the
same settings as in the original papers.

Table 2 shows the results of the three differ-
ent models on the QA task at different reasoning
depths. Our model implementations achieve near-
perfect accuracies, which are comparable to the
performance in the original papers. Table 3 shows
the performance on the TE task on each TE training
dataset (SNLI, MNLI, and RTE). Again, our model
achieves nearly the same results as reported in the
original paper (Hosseini et al., 2021) on the MNLI
and SNLI datasets. We are getting lower results on
the RTE dataset. We assume that this is because
the finetuned model has a high variance due to the
small size of the training set of RTE.

4 Conclusion

We have introduced LogiTorch, a Python library for
logical reasoning on natural language. It is built on
top of PyTorch in combination with the Transform-
ers and PyTorch Lightning libraries. LogiTorch in-
cludes an extensive list of textual logical reasoning
datasets and utility functions, and different imple-
mented models. The library allows researchers and
developers to easily use logical reasoning datasets
and train logical reasoning models with just a few
lines of code. The library is available on GitHub
and is under active development.

For future work, we will add new datasets, and
implement models such as DAGN, Focal Reasoner,
and LogiGAN with their utility functions for fea-
ture engineering. Finally, we want to invite re-
searchers and developers to contribute to Logi-
Torch. We believe that such a library will lower the
hurdles to research in the area, foster re-usability,
encourage comparative evaluation, strengthen re-
producibility, and advance the culture of open soft-
ware and data.
Acknowledgements. This work was partially
funded by ANR-20-CHIA-0012-01 (“NoRDF”).

255

https://github.com/LogiTorch/logitorch

5 Ethical Considerations

Users of LogiTorch should distinguish the datasets
and models of our library from the originals. They
should always credit and cite both our library and
the original data source, as in “We used Logi-
Torch’s (Helwe et al., 2022) re-implementation of
BERTNOT (Hosseini et al., 2021)”. These condi-
tions are mentioned on our GitHub page.

References
Qiming Bao. 2021. Pararule plus: A larger deep multi-

step reasoning dataset over natural language.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Confer-
ence on International Joint Conferences on Artificial
Intelligence, pages 3882–3890.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics.

Danilo Giampiccolo, Hoa Trang Dang, Bernardo
Magnini, Ido Dagan, Elena Cabrio, and Bill Dolan.
2008. The fourth pascal recognizing textual entail-
ment challenge. In TAC.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B Dolan. 2007. The third pascal recog-
nizing textual entailment challenge. In ACL-PASCAL
workshop on textual entailment and paraphrasing.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In The Second PASCAL Challenges
Workshop on Recognising Textual Entailment.

Chadi Helwe, Chloé Clavel, and Fabian Suchanek. 2022.
Logitorch: A pytorch-based library for logical rea-
soning on natural language. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations.

Chadi Helwe, Chloé Clavel, and Fabian M Suchanek.
2021. Reasoning with transformer-based models:
Deep learning, but shallow reasoning. In 3rd Confer-
ence on Automated Knowledge Base Construction.

Md Mosharaf Hossain, Dhivya Chinnappa, and Eduardo
Blanco. 2022. An analysis of negation in natural
language understanding corpora. In Annual Meeting
of the Association for Computational Linguistics.

Md Mosharaf Hossain, Venelin Kovatchev, Pranoy
Dutta, Tiffany Kao, Elizabeth Wei, and Eduardo
Blanco. 2020. An analysis of natural language infer-
ence benchmarks through the lens of negation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9106–9118.

Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R De-
von Hjelm, Alessandro Sordoni, and Aaron Courville.
2021. Understanding by understanding not: Model-
ing negation in language models. In North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Yinya Huang, Meng Fang, Yu Cao, Liwei Wang, and
Xiaodan Liang. 2021. Dagn: Discourse-aware graph
network for logical reasoning. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5848–5855.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Annual Meeting of
the Association for Computational Linguistics.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794.

256

https://github.com/LogiTorch/logitorch

Xiao Li, Gong Cheng, Ziheng Chen, Yawei Sun, and
Yuzhong Qu. 2022. Adalogn: Adaptive logic graph
network for reasoning-based machine reading com-
prehension. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7147–7161.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021a. Natural language inference in context-
investigating contextual reasoning over long texts.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13388–13396.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021b. Logiqa: a
challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3622–3628.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

John McCarthy. 1986. Applications of circumscription
to formalizing common-sense knowledge. Artificial
intelligence, 28(1):89–116.

John McCarthy et al. 1960. Programs with common
sense. RLE and MIT computation center Cambridge,
MA, USA.

Allen Newell and Herbert Simon. 1956. The logic
theory machine–a complex information processing
system. IRE Transactions on information theory,
2(3):61–79.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Annual Meeting of the Association for
Computational Linguistics.

Siru Ouyang, Zhuosheng Zhang, and Hai Zhao. 2021.
Fact-driven logical reasoning. arXiv preprint
arXiv:2105.10334.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Xinyu Pi, Wanjun Zhong, Yan Gao, Nan Duan, and
Jian-Guang Lou. 2022. Logigan: Learning logical
reasoning via adversarial pre-training. arXiv preprint
arXiv:2205.08794.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 122–
136.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 3621–3634.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and Nan
Duan. 2022. Logic-driven context extension and data
augmentation for logical reasoning of text. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 1619–1629.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Fangzhi Xu, Jun Liu, Qika Lin, Yudai Pan, and Lin-
gling Zhang. 2022. Logiformer: A two-branch graph
transformer network for interpretable logical reason-
ing. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1055–1065.

Nathan Young, Qiming Bao, Joshua Bensemann, and
Michael Witbrock. 2022. Abductionrules: Training
transformers to explain unexpected inputs. arXiv
preprint arXiv:2203.12186.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2019. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. 2021. Ar-lsat: Investigating analytical
reasoning of text. arXiv preprint arXiv:2104.06598.

257

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 258 - 265
December 7-11, 2022 c©2022 Association for Computational Linguistics

stopes - Modular Machine Translation Pipelines

Pierre Andrews* and Guillaume Wenzek* and Kevin Heffernan* and Onur Çelebi*

and Anna Sun and Ammar Kamran and Yingzhe Guo
and Alexandre Mourachko and Holger Schwenk and Angela Fan

Meta AI / mortimer@fb.com

Abstract
Neural machine translation, as other natural
language deep learning applications, is hun-
gry for data. As research evolves, the data
pipelines supporting that research evolve too,
oftentimes re-implementing the same core com-
ponents. Despite the potential of modular code-
bases, researchers have but little time to put
code structure and reusability first. Unfor-
tunately, this makes it very hard to publish
clean, reproducible code to benefit a wider au-
dience. In this paper, we motivate and describe
stopes , a framework that addresses these
issues while empowering scalability and versa-
tility for research use cases. This library was
a key enabler of the No Language Left Behind
project, establishing new state of the art perfor-
mance for a multilingual machine translation
model covering 200 languages. stopes and
the pipelines described are released under
the MIT license at https://github.com/
facebookresearch/stopes.

1 Introduction

Machine translation (MT) aims at removing lan-
guage barriers in our connected society. The cur-
rent trend in the MT research field is moving to-
wards using deep machine learning models training
either many bi-lingual models, translating between
a single pair of languoids, or multi-lingual models
that handle many languoids at once. Training data
usually comes from open aligned data sources such
as Barrault et al. (2020), Schwenk et al. (2021) or
raw web corpora like CommonCrawl (CC). Re-
cently, initiatives like (Bapna et al., 2022) and the
No Language Left Behind project (NLLB Team
et al., 2022) strive to extend the scope of supported
languoids by training on large scale datasets, reach-
ing over 18 and 25 billion sentence pairs respec-
tively.

The end-to-end process of developing and iter-
ating on a neural machine translation model in-

*Lead Library Maintainers.

volves a lot of large scale steps. Getting large
amounts of data prepared for translation training
usually starts with raw monolingual data composed
of unaligned sentences for each languoid of inter-
est. This web data is usually processed, cleaned,
and finally "mined" to be aligned in pairs of trans-
lated sentences (see 5.2). It is then tokenized and
transformed into a format that can be used for train-
ing. Once trained, the machine translation model
is evaluated using benchmark datasets, on which
the exact same pre-processing has to be applied.
Large translation models are often later distilled
to produce smaller models suitable for practical
production usecases (see 5.3).

In research use cases, the main focus is on get-
ting results fast. We have observed that the path
of predilection is to build ad-hoc solutions to solve
the problem directly at hand, often adapting older
scripts or copying snippets of code that colleagues
have found to work. This enables quick iteration
on research ideas but it causes a lot of problems on
the long term:

1. Scaling and data processing throughput is of-
ten an after-though.

2. Ad-hoc scripts are built with the idiosyn-
crasies of each users and experiment, making
it hard to share research pipelines or adapt to
different hardware setups.

3. Open-sourcing research and making it repro-
ducible by third parties becomes a task of it-
self, ensuring scripts will run properly in dif-
ferent environment and without failed experi-
mental code/setup (Pineau et al., 2021; Ulmer
et al., 2022).

4. When working with disjoint scripts, re-
searchers spend a lot of time "baby sitting"
execution, making sure one script runs prop-
erly and waiting for it to finish before moving
to the next step in their pipeline.

258

https://github.com/facebookresearch/stopes
https://github.com/facebookresearch/stopes

We present a new framework, stopes , that
was developed to solve some of the problems
discussed in the scope of the No Language
Left Behind (NLLB) (NLLB Team et al., 2022)
machine translation project to process billions
of sentences in over 200 languages. The goal
of the framework is to ensure a good separation
between the hardware setup and the core logic of
the data processing by proposing a clean API for
sharing commonly used processing steps, while
enforcing consistent and shareable configurations
of experiments. stopes can scale to a research
project like NLLB, but is built to be versatile
and can be applied to other research use cases,
https://facebookresearch.github.
io/stopes/docs/quickstart provides
an example of running this on a smaller dataset.
In section 3, we introduce the design of this
python library, with concrete examples in section 4.
Section 5 discusses applications within the NLLB
where stopes is used.

2 Related Work

While large scale data processing architectures
already exist, they are often optimized for pro-
duction use cases. Spark (Spark), ray (Ray) or
beam (Beam) are a few leading examples. These
frameworks have a steep learning curve and do
not always map easily to research clusters’ setup
or researchers’ work habits. They can also prove
very challenging to use with nascent research ideas
and tools, whose codebases are not yet stable or
production-ready. Bitextor (Bitextor) provides a
bitext mining pipeline built in python, but it lacks
modularity and requires learning the complex APIs
of snakemake.

With stopes , we are aiming for a “minimal
API surface” without sacrificing features, provid-
ing a clean yet versatile API that can be used as
if writing standard python scripts (see Section ref-
sec:example). This simple API has its drawbacks,
but it makes it easier to pick up for researchers than
complex graph planning systems like Luigi (Luigi)
and AirFlow (AirFlow), These industry standards
are better suited for production pipelines that do
not change often and are maintainted by production
teams. Spacy (Spacy) provides research oriented
NLP pipelines, but is less flexible than stopes as
our framework is more geared towards describing
sometimes pipelines in pure python.

3 Framework

The general architecture of stopes is geared to-
wards pipelines that can be run as separate, some-
times interdependent, jobs on a cluster or in mul-
tiprocessing. The idea being that a pipeline can
be divided in a set of separate steps that can be
expressed as processing units. Jobs can be sent
to a job scheduler, like SLURM (Slurm), which
is widespread on academic compute clusters or
FBLearner (Dunn, 2016), which Meta uses for dis-
tributed machine learning pipelines; or run locally
on a single computer depending on the data scale.

The idea behind the stopes framework is to
make it easy to build reproducible pipelines. This
is done though modules, a module is just a python
class with a run function that executes something.
A module can then be scheduled with the stopes ’
launcher, this will decide where the code gets exe-
cuted (locally or on a cluster) and then wait for the
results to be ready.

3.1 Concepts

module: Encapsulate a reusable single step of a
neural network pipeline and its requirements. The
step is assumed to be able to execute on its own
given some inputs and eventually generates an out-
put. Modules will most often be executed as an iso-
lated job, so should not depend on anything other
than its own configuration (e.g. no global variables
or odd i/o dependencies). This ensures that each
module can be ran separately, or in parallel if pos-
sible. A module’s configuration serves the purpose
of defining a clear API of the step.

pipeline: A python function which connects
stopes modules together for some end-to-end
purpose. Pipelines may contain non-module
logic to help with intermediate functionality, and
are primarily structured like functions as op-
posed to stopes modules which resemble python
callables. In some cases, pipelines may also call
other pipelines in intermediate steps.

launcher: The orchestrator of your pipeline.
The power of stopes comes from the launcher
that will manage the execution of the modules, find
the correct machines with matching requirements
(if executing on a cluster), and deal with memoiza-
tion (see below). The launcher abstracts the exe-
cution/scheduling of modules as it looks like any
asyncio function and can be called like a python
function and utilized in conjunction with regular
python code.

259

https://facebookresearch.github.io/stopes/docs/quickstart
https://facebookresearch.github.io/stopes/docs/quickstart

3.2 Configuration

When running experiments in machine translation,
we often change how the data is processed or what
data we ingest. For instance, we might want to
change the vocabulary size, which would require re-
training a tokenization model (e.g. sentence-piece1

or BPE (Sennrich et al., 2016)). To keep track of
experiments and ensure reproducibility, all parame-
ters that can influence the results need to be stored
in configuration files that can easily be shared with
other researchers.
stopes makes it easy to keep track of con-

figurations as it leverages the hydra configuration
system (Yadan, 2019) as inputs for modules and
pipelines. This guarantees proper tracking of con-
figurations through the execution of a pipeline, but
also brings extra technical benefits to the end user:

1. New configurations can be composed from
existing configuration files, allowing for better
organization of all steps within a pipeline.

2. Any part of a configuration can be overrid-
den at runtime and across multiple runs. This
makes it easy, for example, to change what
cluster the code is running on, what model
architecture is used for training, or what tok-
enization approach is used.

3.3 Caching/Memoization

As we can see in Section 5, machine translation
research pipelines are complex and involve a lot
of steps. When repeating these steps over many
languoids, some of the jobs executing the pipeline
are bound to fail. Failure is common when exe-
cuting large pipelines over long periods of time,
jobs might timeout in the cluster queue, disk might
fail because of IO pressure and machines might go
down for maintenance.

It is therefore very important to be able to re-
run a pipeline over and over and not have to start
from the scratch. To avoid this, stopes memo-
izes the output of each module runs based on its
input configuration. If the module is re-run with
the same configuration, stopes will recover the
results from disk instead of re-running. This can be
seen as a cache of the results, indexed on the input
configuration of each module. The exact cache in-
validation logic can be manually tuned by the user
to accommodate more complex situations.

1https://github.com/google/
sentencepiece

This is also very practical when iterating on con-
figuration driven experiments as stopes will fig-
ure out automatically what steps of the pipeline
needs to be re-run when the configuration changes,
keeping track of identical steps in the pipeline that
were not affected by the experimental configuration
change and re-using cached results.

4 Example Code

Figure 1 shows a sample usage of the stopes li-
brary2 to build a FAISS index3. FAISS (Johnson
et al., 2019) is a tool that can be used to build
large scale indexes and perform nearest neighbor
searches on them; FAISS has become a keystone
to machine translation research as it allows for
efficient alignment of multilingual text when us-
ing language-agnostics embeddings like Feng et al.
(2020) or Heffernan et al. (2022) (e.g. Khandelwal
et al. (2021) or Section 5.2). It takes tensors as in-
put, but first the index has to be trained, usually on
a sample of the data we want to store in the index.

Line 5: We initialize the launcher to be able
to schedule modules for execution. The launcher
is managed by a configuration, so we can easily
change where the code is executed (SLURM clus-
ter, aws, locally) and other constraints of the exe-
cution. Every call to ‘launcher.schedule‘ will be
managed by the designated ‘launcher‘, sent to the
cluster once, or in multiple jobs if necessary, or just
retrieved from the cache if the config permits.

Line 7: We initialize an encoding mod-
ule, which takes in raw text and embeds it.
stopes provides code to embed text with
LASER2 and LASER3 as well as with Hugging-
Face sentence-transformers (Reimers
and Gurevych, 2019). To keep the code short, we
only show the pipeline glue and not each module
implementation.

Line 12: We create a sample from the embedded
text files. Here, update(config.sample,
input_embeddings=embedded) takes the
module configuration from the Hydra configura-
tion and inserts the references to the output files
from the previous pipeline step. This pattern can
also be seen in the other steps of this pipeline where
each step is connected to the previous through in-
termediate output results.

2Modules referred to in the sample code can be found in
the stopes open source repository.

3We have omitted the imports from the sample to keep it
short.

260

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece

... imports omitted
async def pipeline(config):

setup a launcher to connect jobs together
launcher = hydra.utils.instantiate(config.launcher)
encode all shards
embedded = await

launcher.schedule(PreprocessEncodeModule(config=config.embed_text))
extract a sample of the embeddings
train_sample = await launcher.schedule(

SampleEmbeddingModule(config=update(config.sample, input_embeddings=embedded))
)
train the faiss index on the sample
trained_index = await launcher.schedule(

TrainFAISSIndexModule(
config=update(config.train_index, input_embeddings=train_sample)

)
)
fill the index with content
populated_index = await launcher.schedule(

PopulateFAISSIndexModule(
config=update(

config.populate_index,
index=trained_index,
input_embeddings=embedded,

)
)

)
print(f"Indexes are populated in: {populated_index}")

setup main with Hydra
@hydra.main(config_path="conf", config_name="config")
def main(config: DictConfig) -> None:

asyncio.run(pipeline(config))

Figure 1: Sample pipeline to build a FAISS Index with stopes

Lines 17 and 22: These lines use very similar
logic to call different modules. As noted above,
we can see the use of the configurations passed by
Hydra extended with the results from the previous
steps.
From this, we see that stopes pipeline code
reads as normal python code where functions are
called and pass results to each other. The core of
stopes hides the complexity of memoization and
cluster scheduling inside the simple API call to
launcher.schedule. This makes the pipeline
easy to understand and allows researcher to focus
on building data processing and stay close to their
research goals instead of getting bogged down in
boilerplate APIs or in optimization/scaling issues.

5 Applications

The stopes library was used to build the major
data processing pipelines that are used to build the
NLLB large multilingual translation models as well
as its distilled version (NLLB Team et al., 2022).
These pipelines were battle tested on petabytes

of data and are open-sourced at https://github.
com/facebookresearch/stopes. In this section
we discuss some of the pipelines and show how
they can reuse the same modules. Source code can
be found in the above github repository.

5.1 Language Identification

The production of large amount of monolingual
data starts with a strong language identification
(LID) model (see NLLB Team et al., 2022). The
pipeline for training an LID model is a recurring
archetype used commonly in neural network train-
ing pipelines for machine translation. LASER3
distillation (Heffernan et al., 2022), training NMT
models for evaluation, etc., all use a similar
pipeline.

The pipeline is illustrated in Figure 2 and uses
the following steps:

SPM Training: Eventually, we will use a
sentence-piece model (SPM) to tokenize input data
for neural network training. To be able to do this
tokenization, the SPM itself must be first trained

261

https://github.com/facebookresearch/stopes
https://github.com/facebookresearch/stopes

Input

Train
 SPM

Encode
 SPM

SPM
 model

Shard 1

Binarize

Shard 2

Shard 3

Shard 4

Shard 5

Tokenized
 Input Sharding Train LID

Figure 2: LID Model Training Pipeline

on a sample of data.
SPM Encoding: Once we have a trained SPM,

we can apply it over all the sentences in the in-
put data to tokenize the raw text to prepare it for
training.

Sharding: This step is used to split the data into
manageable shards that help distribute the pipeline
work over multiple jobs, and also at the training
phase to be able to fit the training data in the mem-
ory available on each training machine.

Binarization: The SPM tokenization process
creates tokenized text, but the model training loop
requires numerical tensors to do the neural network
training. The binarization process takes each token
and the SPM vocabulary to create binary tensors
from the tokenized text.

Model Training: We use fairseq (Ott et al.,
2019) and fastText (Joulin et al., 2017) to train LID
models and other NMT models.

5.2 Bitext Mining

The bitext mining pipeline follows the idea intro-
duced by Schwenk et al. (2021). The pipeline can
mine pairs of sentences between two languoids
given monolingual data and evaluate the mining
quality. It follows the following major steps:

Monolingual Data: The base data comes from a
mix of existing “clean” data (Barrault et al., 2020)
and noisy web data. Most of this data is not aligned
in language pairs, and often not tagged with a par-
ticular languoid. The monolingual pipeline runs
a language identification (LID) model, splits text
into sentences, and then cleans the text. The LID
model itself is trained as discussed in Section 5.1

FAISS Indexing: FAISS (Johnson et al., 2019)
is a tool to build large indexes for similarity
searches. Section 4 shows a sample pipeline to
build such an index. In bi-text mining, the FAISS
index serves as the core tool to find similar sen-
tences between two languoids. This works by

filling the index with sentences embedded with
LASER3 (Heffernan et al., 2022), which encodes
sentences from different languages into the same
space, so they can be clustered by FAISS. The min-
ing pipeline then builds a separate index for each
languoid, embedding all the sentences identified
in the monolingual data, sampling them to train
a FAISS index (i.e. to learn the clustering), and
then populating the index with all the embedded
sentences for that langoid.

Mining for Aligned Sentences: To align sen-
tences between two languoids, we go over all
embedded sentences from one languoid and use
the cosine distances of the k-nearest neighbors
in the other languoid index compute above and
output alignments using a margin-based scoring
measure (Artetxe and Schwenk, 2019). Once
we’ve built indexes and embeddings for a few lan-
guages, we can run this step in parallel quite easily.
stopes makes this trivial as it will pickup the
embeddings and indexes from its cache and jump
straight to the last step of the mining pipeline, with-
out the user having to figure out what has already
been pre-computed.

Evaluating Translation: There is no direct eval-
uation procedure to gauge mining quality. There-
fore, the best way to evaluate the mining perfor-
mance is to use the aligned bitext it produces to
train a neural machine translation model. We focus
on training bi-lingual translation models as they are
faster to train and evaluate. We can then track the
change in BLEU score (Papineni et al., 2002) for
a given model and languoids pair to evaluate the
specialized encoders and mining parameters.

Figure 3 illustrates the high level process of mining
for two languoids. The figure shows the process
for two languoids, but when mining for training a
large language model as the one discussed in NLLB
Team et al. (2022), we ran this stopes pipeline
over 450 pairs, aligning over a billion sentences.

262

LID Model

Monolingual
 Filtering

Data Lang1

Encode Text

Data Lang2

Encode Text

LASER3 Specialized
 Encoders

Embedded
 Text

Train/Populate
 Index

Mine Indexes
Embedded

 Text Train/Populate
 Index

Mine Indexes

FAISS Index

FAISS Index

Bitext

NMT Training

BLEU
 Score

Web Data

Figure 3: Mining Pipeline

Raw Data Lang1

Monolingual
 Pipeline

Raw Data Lang2

Filtered Data
 Lang1 Sampling

Filtered Data
 Lang2 Sampling

Filtered
 Bitext Data

Fairseq
 Training

Shard 1

Bitext Data

Fairseq
 Generation

Shard 2

Shard 3

Fairseq
 Generation

Shard 4

Bitext
 Filtering/Encoding

Distilled
 Model

Figure 4: Distillation Pipeline

This is where the strong configuration system in-
troduced by stopes comes handy as we need
to manage different configurations for over two
thousand pairs of languoids. Being able to write
the pipeline once and scale it to many languoids
through simple configuration composition and hori-
zontal scaling on a SLURM cluster without having
to rewrite core logic greatly accelerates the speed
at which research is conducted. The pipeline that
was used by the NLLB project is available on the
stopes repository and can be run by anyone a
"small" scale to mine data with our approach4.

5.3 Large Model Distillation
The distillation pipeline is based on the sequence-
level knowledge distillation proposed by Kim and
Rush (2016), using a large pre-trained teacher
model to help train a smaller student model with
comparable or better performance, which is prac-
tical for inference efficiency. An overview of the
steps are visualized in Figure 4 and described be-
low:

Monolingual Data: Our monolingual source
data comes from Wikipedia corpus dumps5. The
monolingual pipeline is the same as the one de-
scribed in Section 5.2.

Sampling: We sample with replacement from
the monolingual dataset to ensure that we have
enough target sentences for each languoid, given a
fixed-size monolingual source dataset.

Generation: We use the FairseqGenerate
module to generate translations of each shard of

4See the quickstart at https://facebookresearch.
github.io/stopes/docs/quickstart

5https://dumps.wikimedia.org/other/
cirrussearch/current/

monolingual data by running beam search using
the teacher model.

Bitext Filtering: We filter the teacher-generated
bitext data to make sure the training data is high
quality. We use LID and sentence length filtering
to ensure that the generated data matches the target
languoid and that the sentence lengths are similar.

SPM Encoding: We use a pre-trained SPM to
tokenize the raw text.

Binarization: We binarize the bitext data into
the format required for training in fairseq as
described in Section 5.2.

Training: Using the binarized bitext data, we
use the module TrainFairseqModule to train
a multilingual distilled model, the final product of
our pipeline.

6 Conclusion

The stopes framework provides a clean API to
describe research pipelines for machine translation.
We have shown that this is useful for developing
large scale machine translation datasets and models
for the No Language Left Behind project (NLLB
Team et al., 2022). We believe that this framework
and its reference implementations of common steps
in NLP pipelines is versatile and can be used to help
researchers in the field. The stopes framework
documentation and sources can be found under
the MIT license at https://facebookresearch.
github.io/stopes/ and has been tested to not
require a complex cluster setup. We therefore hope
that it will help other researchers focus on their
research goals, and avoid time-consuming technical
details not unique to their specific task.

263

https://facebookresearch.github.io/stopes/docs/quickstart
https://facebookresearch.github.io/stopes/docs/quickstart
https://dumps.wikimedia.org/other/cirrussearch/current/
https://dumps.wikimedia.org/other/cirrussearch/current/
https://facebookresearch.github.io/stopes/
https://facebookresearch.github.io/stopes/

7 Screencast Video

The demo screencast can be found at
https://fb.sharepoint.com/:
f:/s/PublicContent/EsuaUW_
_krBJo57yDgbbbysBw5yN5txcRsjw4eY
lYRFIFQ?e=tAlkVQ.

References
Airflow. https://github.com/apache/
airflow. Accessed: 2022-07-19.

Beam. https://beam.apache.org/. Ac-
cessed: 2022-07-19.

Bitextor. https://github.com/bitextor/
bitextor. Accessed: 2022-07-19.

Common crawl. https://commoncrawl.org/.
Accessed: 2022-07-19.

Luigi. https://github.com/spotify/
luigi. Accessed: 2022-07-19.

Ray. https://www.ray.io/. Accessed: 2022-
07-19.

Slurm. https://slurm.schedmd.com/. Ac-
cessed: 2022-07-19.

Spacy. https://spacy.io/. Accessed: 2022-07-
19.

Spark. https://spark.apache.org/. Ac-
cessed: 2022-07-19.

Mikel Artetxe and Holger Schwenk. 2019. Margin-
based parallel corpus mining with multilingual sen-
tence embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3197–3203, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi-
rat, Daan van Esch, Aditya Siddhant, Mengmeng Niu,
Pallavi Baljekar, Xavier Garcia, Wolfgang Macherey,
Theresa Breiner, Vera Axelrod, Jason Riesa, Yuan
Cao, Mia Xu Chen, Klaus Macherey, Maxim Krikun,
Pidong Wang, Alexander Gutkin, Apurva Shah, Yan-
ping Huang, Zhifeng Chen, Yonghui Wu, and Mac-
duff Hughes. 2022. Building machine translation
systems for the next thousand languages.

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-
jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages

1–55, Online. Association for Computational Linguis-
tics.

Jeffrey Dunn. 2016. Introducing FBLearner
flow: Facebook’s ai backbone. https:
//engineering.fb.com/2016/05/09/
core-data/introducing-fblearner-
flow-facebook-s-ai-backbone/. Ac-
cessed: 2022-07-19.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2020. Language-agnostic
BERT sentence embedding. CoRR, abs/2007.01852.

Kevin Heffernan, Onur Çelebi, and Holger Schwenk.
2022. Bitext mining using distilled sentence repre-
sentations for low-resource languages.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Association for Computational
Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. pages 311–318.

264

https://fb.sharepoint.com/:f:/s/PublicContent/EsuaUW__krBJo57yDgbbbysBw5yN5txcRsjw4eYlYRFIFQ?e=tAlkVQ
https://fb.sharepoint.com/:f:/s/PublicContent/EsuaUW__krBJo57yDgbbbysBw5yN5txcRsjw4eYlYRFIFQ?e=tAlkVQ
https://fb.sharepoint.com/:f:/s/PublicContent/EsuaUW__krBJo57yDgbbbysBw5yN5txcRsjw4eYlYRFIFQ?e=tAlkVQ
https://fb.sharepoint.com/:f:/s/PublicContent/EsuaUW__krBJo57yDgbbbysBw5yN5txcRsjw4eYlYRFIFQ?e=tAlkVQ
https://github.com/apache/airflow
https://github.com/apache/airflow
https://beam.apache.org/
https://github.com/bitextor/bitextor
https://github.com/bitextor/bitextor
https://commoncrawl.org/
https://github.com/spotify/luigi
https://github.com/spotify/luigi
https://www.ray.io/
https://slurm.schedmd.com/
https://spacy.io/
https://spark.apache.org/
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.18653/v1/P19-1309
https://doi.org/10.48550/ARXIV.2205.03983
https://doi.org/10.48550/ARXIV.2205.03983
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
http://arxiv.org/abs/2007.01852
http://arxiv.org/abs/2007.01852
https://doi.org/10.48550/ARXIV.2205.12654
https://doi.org/10.48550/ARXIV.2205.12654
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://doi.org/10.48550/ARXIV.1606.07947
https://doi.org/10.48550/ARXIV.1606.07947
https://doi.org/10.48550/ARXIV.2207.04672
https://doi.org/10.48550/ARXIV.2207.04672

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv
Sinha, Vincent Larivière, Alina Beygelzimer, Flo-
rence d’Alché Buc, Emily Fox, and Hugo Larochelle.
2021. Improving reproducibility in machine learning
research (a report from the neurips 2019 reproducibil-
ity program). J. Mach. Learn. Res., 22(1).

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, Armand Joulin, and Angela Fan.
2021. CCMatrix: Mining billions of high-quality
parallel sentences on the web. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6490–6500, Online. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Dennis Ulmer, Elisa Bassignana, Max Müller-Eberstein,
Daniel Varab, Mike Zhang, Christian Hardmeier, and
Barbara Plank. 2022. Experimental standards for
deep learning research: A natural language process-
ing perspective.

Omry Yadan. 2019. Hydra - a framework for elegantly
configuring complex applications. Github.

265

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2021.acl-long.507
https://doi.org/10.18653/v1/2021.acl-long.507
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.48550/ARXIV.2204.06251
https://doi.org/10.48550/ARXIV.2204.06251
https://doi.org/10.48550/ARXIV.2204.06251
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 266 - 281
December 7-11, 2022 c©2022 Association for Computational Linguistics

GEMv2: Multilingual NLG Benchmarking in a Single Line of Code

Sebastian Gehrmann11, Abhik Bhattacharjee3, Abinaya Mahendiran24, Alex Wang25, Alexandros Papangelis2,
Aman Madaan4, Angelina McMillan-Major15, Anna Shvets10, Ashish Upadhyay32, Bernd Bohnet11, Bingsheng Yao31,

Bryan Wilie38, Chandra Bhagavatula1, Chaobin You40, Craig Thomson42, Cristina Garbacea46, Dakuo Wang20,26,
Daniel Deutsch47, Deyi Xiong40, Di Jin2, Dimitra Gkatzia8, Dragomir Radev50, Elizabeth Clark11, Esin Durmus34,

Faisal Ladhak7, Filip Ginter48, Genta Indra Winata38, Hendrik Strobelt16,20, Hiroaki Hayashi4,33,
Jekaterina Novikova49, Jenna Kanerva48, Jenny Chim29, Jiawei Zhou14, Jordan Clive6, Joshua Maynez11, João Sedoc25,
Juraj Juraska43, Kaustubh Dhole9, Khyathi Raghavi Chandu22, Laura Perez-Beltrachini44, Leonardo F. R. Ribeiro37,

Lewis Tunstall15, Li Zhang47, Mahima Pushkarna11, Mathias Creutz45, Michael White39, Mihir Sanjay Kale11,
Moussa Kamal Eddine52, Nico Daheim30, Nishant Subramani1,21, Ondrej Dusek5, Paul Pu Liang4,

Pawan Sasanka Ammanamanchi17, Qi Zhu41, Ratish Puduppully44, Reno Kriz18, Rifat Shahriyar3, Ronald Cardenas44,
Saad Mahamood51, Salomey Osei21, Samuel Cahyawijaya13, Sanja Štajner28, Sebastien Montella27, Shailza Jolly36,

Simon Mille28, Tahmid Hasan3, Tianhao Shen40, Tosin Adewumi19, Vikas Raunak23, Vipul Raheja12, Vitaly Nikolaev11,
Vivian Tsai11, Yacine Jernite15, Ying Xu46, Yisi Sang35, Yixin Liu50, Yufang Hou16

1Allen Institute for AI, 2Amazon Alexa AI, 3Bangladesh University of Engineering and Technology, 4Carnegie Mellon
University, 5Charles University, 6Chattermill, 7Columbia University, 8Edinburgh Napier University, 9Emory University,

10Fablab in Paris by Inetum, 11Google Research, 12Grammarly, 13HKUST, 14Harvard University, 15Hugging Face, 16IBM
Research, 17IIIT Hyderabad, 18Johns Hopkins University, 19Luleå University of Technology, 20MIT-IBM Watson AI Lab,

21Masakhane, 22Meta AI, 23Microsoft, 24Mphasis NEXT Labs, 25New York University, 26Northeastern University, 27Orange
Labs, 28Pompeu Fabra University, 29Queen Mary University of London, 30RWTH Aachen University, 31Rensselaer Polytechnic

Institute, 32Robert Gordon University, 33Salesforce Research, 34Stanford University, 35Syracuse University, 36TU
Kaiserslautern, 37Technical University of Darmstadt, 38The Hong Kong University of Science and Technology, 39The Ohio

State University, 40Tianjin University, 41Tsinghua University, 42University of Aberdeen, 43University of California, Santa Cruz,
44University of Edinburgh, 45University of Helsinki, 46University of Michigan, 47University of Pennsylvania, 48University of

Turku, 49Winterlight Labs, 50Yale University, 51trivago N.V., 52École Polytechnique
gehrmann@google.com, gem-benchmark@googlegroups.com

Abstract

Evaluations in machine learning rarely use
the latest metrics, datasets, or human evalu-
ation in favor of remaining compatible with
prior work. The compatibility, often facilitated
through leaderboards, thus leads to outdated
but standardized evaluation practices. We pose
that the standardization is taking place in the
wrong spot. Evaluation infrastructure should
enable researchers to use the latest methods and
what should be standardized instead is how to
incorporate these new evaluation advances. We
introduce GEMv2, the new version of the Gen-
eration, Evaluation, and Metrics Benchmark
which uses a modular infrastructure for dataset,
model, and metric developers to benefit from
each other’s work. GEMv2 supports 40 docu-
mented datasets in 51 languages, ongoing on-
line evaluation for all datasets, and our interac-
tive tools make it easier to add new datasets to
the living benchmark.

1 Introduction

The standard evaluation process in natural language
processing involves comparisons to prior results
in a fixed environment, often facilitated through
benchmarks and leaderboards. This process, if exe-
cuted correctly, can advance reproducibility (Belz
et al., 2021) and standardize evaluation choices that

lead to better dataset diversity. But static bench-
marks also prevent the adoption of new datasets or
metrics (Raji et al., 2021), and many evaluation ad-
vancements are thus put aside. That means that the
focus on surpassing the best prior reported scores
reinforces outdated evaluation designs. Further-
more, this process ignores properties that do not
match the leaderboard metric (Ethayarajh and Ju-
rafsky, 2020; Bowman and Dahl, 2021; Dehghani
et al., 2021). This issue is particularly pertinent
in natural language generation (NLG) since the
model quality cannot be estimated using accu-
racy and instead, NLG relies on automatic and
human evaluation approaches that constantly im-
prove (Gehrmann et al., 2022; Kasai et al., 2022).

To bridge the gap between advantages of leader-
boards and in-depth and evolving evaluations,
the Generation, Evaluation, and Metrics bench-
mark (GEM, Gehrmann et al., 2021) proposed a
“living” benchmark. As such, GEM is participatory
in that contributors propose new datasets and ex-
pand the selection of metrics. Model developers
using GEM retain full agency over the evaluation
process but are able to choose from a wider range
of tasks and metrics. GEM further introduced eval-
uation suites (Mille et al., 2021; Dhole et al., 2021)
that are compatible with its datasets and test various
robustness and fairness aspects of models.

266

Figure 1: One of the data cards for GEM datasets. (a) shows the header which has the name, a summary, and example
code to load it. (b) links to relevant papers and websites, alongside an author list. (c) is the Quick-Use section which
summarizes the most important aspect of a dataset, including language(s), PII, and licensing information. (d) is the
detailed view which has multiple sections. Each section provides a glance at categories of included questions on
hover, and expands to full details on click.

We uncovered several shortcomings in GEMv1
that hindered its scaling and adoption: (1) Central-
ized data management made adding new datasets
too complex. (2) Computing all metrics in a sin-
gle framework led to dependency issues and was
challenging for those with limited compute re-
sources. (3) Participants needed more guidance
in our dataset documentation process (McMillan-
Major et al., 2021) to guarantee data card quality.

We introduce GEMv2, a modular and extendable
NLG evaluation infrastructure which allows for
continuous integration of newly developed datasets.
We release a data card collection and rendering
tool that makes it easier to follow for both card
creators and readers. These improvements led to
an expansion of GEM from 13 to 40 tasks and from
18 to 51 supported languages. We also introduce
an online evaluation process that collects model
outputs and computes metrics for all datasets.

2 Features and Functionality

Since evaluation practices evolve, we focus on
modularity and maintainability to ensure that new
dataset and metrics are compatible with all other
features. Model developers are able to use new
datasets and metrics without any changes to their
existing setup. In this section, we describe the sup-
ported user [J]ourneys for various stakeholders in
generation research.
J1 - Document a Dataset Every GEM dataset
is documented using the data card template by
McMillan-Major et al. (2021), which we revised
using the Data Card Playbook (Pushkarna et al.,
2022). A new card can be filled out or an existing
one updated via an interactive form that provides
detailed instructions for each field.1

J2 - Choose a Dataset The data card viewer
1huggingface.co/spaces/GEM/

DatasetCardForm

267

huggingface.co/spaces/GEM/DatasetCardForm
huggingface.co/spaces/GEM/DatasetCardForm

presents information at multiple detail levels in sep-
arate columns. Anyone can quickly get a high-level
overview of a dataset or read extended information
on a documentation category (see Figure 1).
J3 - Create a Data Loader Each dataset has a
separate repository at huggingface.co/GEM,
with a loader using the Datasets library (Lhoest
et al., 2021).2 Through this, all supported datasets
can be loaded via the same code,

from datasets import load_dataset
data = load_dataset(

'GEM/$dataset_name',
'$config_name')

where $config_name is the (optional) specifica-
tion of the dataset configuration to use. To stratify
how datasets are accessed, they are implemented
according to the following conventions:

• linearized_input: Linearization pro-
cesses convert structured input to a string. For
reproducibility, we implement linearization
schemes from prior work (e.g., Saleh et al.,
2019; Kale and Rastogi, 2020).

• target and references: String targets
and List[string] references ensure compatibil-
ity with existing training and eval scripts.

• gem_id: A unique example ID is used to
track data points regardless of shuffling.

J4 - Evaluate a Model Model outputs can be eval-
uated locally using the gem-metrics library or
online which will add the outputs to our result
overview (J6).3 Both methods require a standard-
ized input format that specifies the dataset and split
and which allows us to evaluate all 100+ data splits
via the call gem_metrics outputs.json.
J5 - Add a new Metric In gem-metrics, each
metric implements a compute() function and
our library handles caching, parallelism, tokeniza-
tion, etc. To avoid dependency conflicts, a metric
can optionally specify a docker environment, as
suggested by Deutsch and Roth (2022).

from .texts import Predictions
from .texts import References
from .metric import ReferencedMetric

class NewMetric(ReferencedMetric):
def _initialize(self):

"""Load models and artifacts."""
pass

2Documentation on how to add new datasets can be found
at gem-benchmark.com/tutorials.

3huggingface.co/spaces/GEM/
submission-form

def compute(
self,
cache,
predictions: Predictions,
references: References) -> Dict:

"""Compute the metric."""
pass

J6 - Use Prior Results Comparisons to prior work
often only copy reported numbers which could be
computed using different evaluation parameters,
and a lack of released model outputs frequently
prevents a fair side-by-side comparison outside of
leaderboards (Gehrmann et al., 2022).4 To improve
comparability, we add every online submission to a
growing corpus of model outputs which evaluation
researchers can use to develop better metrics or to
conduct analyses.

3 Dataset Selection and Loading

To identify candidate datasets, continued to follow
the SuperGLUE process (Wang et al., 2019) by
soliciting tasks to be included from the research
community. Our request to suggest multilingual,
challenging, and/or interesting NLG tasks led to
40 submissions. To avoid quality judgments, we
imposed only three requirements for selection: (1)
consent from dataset authors, (2) availability un-
der a permissive license, (3) the task needs to
be able to be cast as a text-to-text problem. 27
tasks were selected in addition to the 13 existing
ones (Gehrmann et al., 2021).Three datasets are
simplification evaluation sets added to the Wiki-
Auto loader (Jiang et al., 2020), while all others
have independent data loaders.5 All data loaders
and cards were produced as part of a month-long
hackathon, and we invited the dataset authors and
GEM participants to contribute to one or more of
the datasets. Afterwards, the organizers managed
the ongoing maintenance. New datasets can be
added on an ongoing basis, subject to the three re-
quirements. GEMv2 currently supports 40 datasets,
listed in Appendix A and described in this section.

Figure 2 shows the distributions of training ex-
ample count, task types, and their input and target
lengths. Data-to-text and summarization are most
common, followed by response generation. While
data-to-text tasks are spread across resource avail-
ability categories, summarization datasets tend to

4Marie (2022) discusses how this practice leads to harmful
claims using a translation example (Costa-jussà et al., 2022).

5Changes to datasets are documented in the appendix.

268

huggingface.co/GEM
gem-benchmark.com/tutorials
huggingface.co/spaces/GEM/submission-form
huggingface.co/spaces/GEM/submission-form

0 5 10 15

Data-to-Text
Summarization

Response Generation
Simplification
Paraphrasing

Question Generation
Reasoning

Slide Generation

0 5 10 15
Count

<1k
1k<10k

10k<100k
>100k

Training Size

0 1000 2000 3000 4000 5000
Input Length

0

100

200

300

400

500

Ta
rg

et
 L

en
gt

h

Figure 2: An overview of the properties of the currently supported datasets in GEM. (Top left) A histogram of
the supported task types. The most represented tasks are Data-to-Text, followed by Summarization, Response
Generation, and Simplification. (Bottom Left) The frequency of different training corpus sizes for dataset config-
urations, broken down by their task types. While some task types are represented across all resource availability
levels, some are concentrated on high resource. (Right) An overview of input and target lengths of different dataset
configurations according to the mT5 tokenizer (Xue et al., 2021). Summarization tasks have input lengths of over
1,000 while all other tasks remain under 1,000 tokens. There is a lot more between-task variance in output length.
Four dataset configurations are hidden due to the axis truncation.

be larger. While datasets vary in target length, the
median input length tends to remain under 500
tokens, likely motivated by modeling limitations.
Exceptions to this are summarization, with input
lengths beyond what is supported by most mod-
els (e.g., WikiCatSum (Perez-Beltrachini et al.,
2019) and XLSum (Hasan et al., 2021)), and a
class of data-to-text datasets with the communica-
tive goal to generate game summaries from large
sports statistic tables (e.g., Hayashi et al., 2019;
Thomson et al., 2020; Puduppully et al., 2019a).

We put an emphasis on language diversity,
as prior work has found that fewer than 30%
of NLG publications (even counting evaluations
on machine translation) evaluate on non-English
tasks (Gehrmann et al., 2022). While a lot of this
focus on English can be traced to a lack of multi-
lingual resources, many non-English NLG datasets
have been released in recent years (e.g., Hasan
et al., 2021; Ladhak et al., 2020; Mille et al., 2020;
Cahyawijaya et al., 2021). As shown in Table 2,
we support languages across all resource classes in
the taxonomy by Joshi et al. (2020). However, the
focus on English is still apparent in the number of
datasets supporting a particular language, shown
in Table 1, where English is far above all other lan-
guages. Moreover, most of the language diversity

stems from the three highly multilingual datasets
XLSum (Hasan et al., 2021), WikiLingua (Ladhak
et al., 2020), and data from the surface realization
shared task ’20 (Mille et al., 2020). Excluding
those, there are 13 datasets supporting non-English
languages, 9 of which are exclusively non-English.

Of the 40 datasets, 14 have multiple configura-
tions which can differ in task setup, languages, their
encoding in romanized or original script, or do-
main. For example, we modified WikiLingua (Lad-
hak et al., 2020) to have splits from and to any of
the 18 supported languages, enabling better cross-
lingual evaluations. Seventeen datasets have chal-
lenge splits, many of which were created for GEM.
For example, the challenge set for the conversa-
tional weather dataset (Balakrishnan et al., 2019)
selects examples from the original test split with
complex discourse relations.

4 Data Cards

Each dataset is accompanied by documentation
about how it was created, who created it, how it
should be used, and the risks in using it (Bender
and Friedman, 2018; Gebru et al., 2018). Our orig-
inal data documentation process (McMillan-Major
et al., 2021) required filling out a markdown tem-
plate following instructions in a separate guide. We

269

Count Languages

1 Amharic, Azerbaijani, Bengali, Burmese, Dutch,
Gujarati, Hausa, Igbo, Javanese, Kirundi, Kyr-
gyz, Marathi, Nepali, Oromo, Pashto, Per-
sian, Pidgin, Punjabi, Scottish Gaelic, Ser-
bian, Sinhala, Somali, Sundanese, Swahili,
Swedish, Tamil, Telugu, Tigrinya, Ukrainian,
Urdu, Uzbek, Welsh, Yoruba

2 Czech, Italian, Thai, Turkish, Vietnamese
3 Arabic, Finnish, Hindi, Japanese, Korean, Por-

tuguese
4 Indonesian
6 Chinese, German, Russian, Spanish
8 French
28 English

Table 1: The languages supported in GEMv2 and in
how many of its datasets they appear.

analyzed the existing template and the resulting
data cards under the dimensions provided in the
data card playbook (Pushkarna et al., 2022) and
identified the following improvements:
• Accountability: It needs to be clear who will

maintain and extend the data cards when a dataset
changes, when limitations of a dataset are found,
or when it is deprecated (Corry et al., 2021).

• Utility: The recommended evaluation process
for a dataset should be prominently shown.

• Quality: We need a process to validate data card
completeness and quality.

• Impact & Consequences: It needs to be clear
that we are curators, not editors, and that critiques
reflect on the data, not the creators.

• Risk & Recommendations I: We need to expand
the documentation of potential PII issues.

• Risk & Recommendations II: To help decide
whether to use a dataset, the card needs to dis-
cuss differences from other datasets with similar
communicative goals.

We modified our template following these insights
and to be in line with the playbook approach of
dividing between telescope, periscope, and micro-
scope questions based on the length of the expected
answer. We implemented this template in an inter-
active collection tool that can create new cards or
load and update existing ones. The tool shows
progress bars for the overall answer status and a
breakdown for each of the subsections to indicate
where more content should be added. The tool fur-
ther improves the user experience by conditionally
rendering questions based on prior answers, e.g., Is
there a risk of PII? → What kind of PII?

The output of the tool is a structured json file that

Tax. Languages

0 West African Pidgin English, Sinhala
1 Azerbaijani, Burmese, Gujarati, Igbo, Javanese,

Kirundi, Kyrgyz, Nepali, Oromo, Pashto, Scot-
tish Gaelic, Somali, Sundanese, Telugu, Welsh

2 Amharic, Hausa, Marathi, Punjabi, Swahili,
Tigrinya, Yoruba

3 Bengali, Indonesian, Tamil, Thai, Ukrainian,
Urdu, Uzbek

4 Czech, Dutch, Finnish, Hindi, Italian, Korean,
Persian, Portuguese, Russian, Serbian, Swedish,
Turkish, Vietnamese

5 Arabic, Chinese, English, French, German,
Japanese, Spanish

Table 2: Supported languages categorized into the re-
source taxonomy by Joshi et al. (2020).

we convert into a simple markdown file for the data
loader and an optimized web viewer and embedded
in our website (Figure 1). The viewer presents im-
portant information at the top and splits the detailed
rendering into three columns, corresponding to the
telescope, periscope, and microscope split. This
enables an easy navigation since high-level infor-
mation can be found by focusing on the left column,
moving toward the right for additional details.

The structured format enables us to study trends
in dataset construction practices beyond those
shown in Section 3.6 For example, 66% of the
data cards report that PII is unlikely or definitely
not included, while it is likely or definitely included
in 33%. In the free-text explanations, we find four
types of justifications for absent PII: The major-
ity (7) stated that the data format or domain was
restricted to avoid PII. Two stated that the data is
in the public domain (e.g., Wikipedia) and another
two used fully simulated data. One response de-
scribed that crowd raters were instructed to avoid
mentioning PII. We found that multiple of the PII-
likely datasets only use public domain data, indi-
cating that there is confusion about PII definitions.

Another typically hidden aspect is the data sourc-
ing. Our datasets present an almost even split be-
tween automatically-, crowdworker-, and expert-
created datasets, with crowdworker-created ones
being slightly more common, possibly confounded
if experts were hired through crowdworking plat-
forms, as was done for SQuality (Wang et al., 2022).
It may thus also possible to compare which of
these collection methods leads to more insight-
ful modeling results. We follow up by asking

6We encourage others to use the publicly available files for
additional investigations.

270

https://huggingface.co/spaces/GEM/DatasetCardForm
https://huggingface.co/spaces/GEM/DatasetCardForm

Figure 3: System architecture for hosting GEM on the Hugging Face Hub

which crowdworking platform was used and un-
surprisingly, Amazon Mechanical Turk was the
most frequent answer, followed by participatory
experiments and other non-specified platforms.

5 System Design

To support the automatic evaluation of outputs, we
use the Hugging Face Hub to integrate datasets,
metrics, and user interfaces for GEM users to sub-
mit their outputs. The system architecture is shown
in Figure 3, and consists of five main components:
Spaces We host Streamlit applications on Spaces7

for the submission of predictions, downloading of
results, and visualization of model performance.
Datasets Dataset repositories are used to host the
datasets, submissions, evaluations, and results.
AutoTrain We use AutoTrain8, Hugging Face’s
AutoML platform, to run all evaluation jobs using
Hugging Face Benchmarks, a library that defines
how metrics are computed within AutoTrain.9

Metrics We use GEM-metrics to perform the
metric computations. In addition to supporting
common metrics like BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004), the Docker integration
simplifies the calculation of multiple model-based
metrics like BLEURT (Sellam et al., 2020).

On submission, a dataset repository with
the model outputs is created under the

7huggingface.co/spaces
8huggingface.co/autotrain
9github.com/huggingface/hf_benchmarks

GEM-submissions organisation on the
Hugging Face Hub. In parallel, an evaluation
job is triggered in AutoTrain which downloads
the submission from the Hub, along with all
the reference splits of the GEM datasets. These
references are used to compute a wide variety of
NLG metrics via GEM-metrics. The resulting
metrics are then pushed to a dataset repository on
the Hub, and used to source the visualization of
results on the GEM website10 and Space.11

6 Conclusion

We introduce GEMv2 which unifies infrastructure
for generation research. We propose a consistent
workflow from documenting and choosing datasets
to loading and evaluating on them while keeping
all supported datasets and metrics compatible with
each other. We demonstrate the scalability by
releasing the initial version with support for 40
datasets in 51 languages. Of the supported datasets,
23 are improved through configurations, filtering,
and re-splitting processes and 17 datasets have chal-
lenge sets. We release a submission tool that com-
putes metrics and makes model outputs available to
download for evaluation researchers. Researchers
who are interested in integrating their dataset are
welcome to contact us for support.

10gem-benchmark.com
11huggingface.co/spaces/GEM/results

271

huggingface.co/spaces
huggingface.co/autotrain
github.com/huggingface/hf_benchmarks
gem-benchmark.com
huggingface.co/spaces/GEM/results

7 Broader Impact

As discussed in the main part of the paper, GEMv2
aims to avoid any explicit curation decisions about
inclusion and exclusion of datasets beyond licens-
ing and consent. This is a change from the orig-
inally set out strict inclusion criteria based on
dataset quality. The reason for this is that the en-
tire research community should be the authority to
decide whether a dataset is useful and what it is use-
ful for. For example, a dataset with noisy outputs
may still be useful to study hallucination avoidance
methods. However, this change has implications
on how dataset deprecation needs to be handled,
in particular for datasets with newly found issues
or datasets with better alternatives. Documenting
issues and alternatives using the data cards is thus
becoming more important in GEMv2 and we en-
courage researchers to update data cards. Another
side effect of positioning GEMv2 as infrastructure
that support dataset creators is a decreased risk of
erasure. All our documentation and dataset loaders
center the work of the creators to encourage users
to cite the datasets they use.

Another open issue that we have been working
on is the interplay between multilingualism and
metrics. We now support multiple languages for
which no NLG metrics have been tested, and for
which our tokenization schemes may be inappro-
priate. The freedom to combine every dataset with
every metric may lead to more flawed evaluations
in those cases. In addition, some datasets were re-
leased with specific metrics that we do not support
yet.

A final issue we want to point out is the lack of
discussion of human evaluation in this overview
paper which we omitted for brevity. Human evalu-
ation does not scale and every task requires its own
evaluation approach, especially when the goal is to
deploy a system to real users. We have thus taken
the approach to develop better human evaluation
for only a subset of tasks, solving issues pointed
out by Tang et al. (2022), Howcroft et al. (2020),
and van der Lee et al. (2019), and we will release
detailed instructions separately. However, these
instructions will not replace a better understanding
of the users of deployed systems.

References
Fernando Alva-Manchego, Louis Martin, Antoine Bor-

des, Carolina Scarton, Benoît Sagot, and Lucia Spe-

cia. 2020. ASSET: A dataset for tuning and evalua-
tion of sentence simplification models with multiple
rewriting transformations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4668–4679, Online. Association
for Computational Linguistics.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Constrained
decoding for neural NLG from compositional repre-
sentations in task-oriented dialogue. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 831–844, Florence,
Italy. Association for Computational Linguistics.

Anya Belz, Shubham Agarwal, Anastasia Shimorina,
and Ehud Reiter. 2021. A systematic review of re-
producibility research in natural language processing.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 381–393, Online.
Association for Computational Linguistics.

Emily M. Bender and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational
Linguistics, 6:587–604.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen tau Yih, and Yejin
Choi. 2020. Abductive commonsense reasoning. In
International Conference on Learning Representa-
tions.

Samuel R. Bowman and George Dahl. 2021. What will
it take to fix benchmarking in natural language under-
standing? In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4843–4855, Online. Association for
Computational Linguistics.

Bill Byrne, Karthik Krishnamoorthi, Saravanan Ganesh,
and Mihir Kale. 2021. TicketTalk: Toward human-
level performance with end-to-end, transaction-based
dialog systems. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 671–680, Online. Association for
Computational Linguistics.

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To-
ward a realistic and diverse dialog dataset. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4516–4525,
Hong Kong, China. Association for Computational
Linguistics.

272

https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/2020.acl-main.424
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/2021.eacl-main.29
https://doi.org/10.18653/v1/2021.eacl-main.29
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://doi.org/10.1162/tacl_a_00041
https://openreview.net/forum?id=Byg1v1HKDB
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/D19-1459
https://doi.org/10.18653/v1/D19-1459

Samuel Cahyawijaya, Genta Indra Winata, Bryan Wilie,
Karissa Vincentio, Xiaohong Li, Adhiguna Kun-
coro, Sebastian Ruder, Zhi Yuan Lim, Syafri Ba-
har, Masayu Khodra, Ayu Purwarianti, and Pascale
Fung. 2021. IndoNLG: Benchmark and resources for
evaluating Indonesian natural language generation.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8875–8898, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Frances Corry, Hamsini Sridharan, Alexandra Sasha
Luccioni, Mike Ananny, Jason Schultz, and Kate
Crawford. 2021. The problem of zombie datasets:
A framework for deprecating datasets. CoRR,
abs/2111.04424.

Marta R. Costa-jussà, James Cross, Onur Çelebi,
Maha Elbayad, Kenneth Heafield, Kevin Heffer-
nan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loïc Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Rop-
ers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. CoRR,
abs/2207.04672.

Mathias Creutz. 2018. Open subtitles paraphrase cor-
pus for six languages. In Proceedings of the 11th
edition of the Language Resources and Evaluation
Conference (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Mostafa Dehghani, Yi Tay, Alexey A. Gritsenko, Zhe
Zhao, Neil Houlsby, Fernando Diaz, Donald Metzler,
and Oriol Vinyals. 2021. The benchmark lottery.
CoRR, abs/2107.07002.

Daniel Deutsch and Dan Roth. 2022. Repro: An Open-
Source Library for Improving the Reproducibility
and Usability of Publicly Available Research Code.
ArXiv, abs/2204.13848.

Ashwin Devaraj, Iain Marshall, Byron Wallace, and
Junyi Jessy Li. 2021. Paragraph-level simplifica-
tion of medical texts. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4972–4984, Online.
Association for Computational Linguistics.

Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann,
Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abi-
naya Mahendiran, Simon Mille, Ashish Srivastava,
Samson Tan, et al. 2021. Nl-augmenter: A frame-
work for task-sensitive natural language augmenta-
tion. arXiv preprint arXiv:2112.02721.

Ondřej Dušek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 421–426, Tokyo, Japan. Association for Com-
putational Linguistics.

Ondřej Dušek and Filip Jurčíček. 2019. Neural genera-
tion for Czech: Data and baselines. In Proceedings
of the 12th International Conference on Natural Lan-
guage Generation, pages 563–574, Tokyo, Japan.
Association for Computational Linguistics.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123–156.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is in
the eye of the user: A critique of NLP leaderboards.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4846–4853, Online. Association for Computa-
tional Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione,
Jennifer Wortman Vaughan, Hanna Wallach, Hal
Daumé III, and Kate Crawford. 2018. Datasheets
for datasets. In Proceedings of the Fifth Workshop on
Fairness, Accountability, and Transparency in Ma-
chine Learning, Stockholm, Sweden.

Sebastian Gehrmann, Tosin Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khy-
athi Raghavi Chandu, Miruna-Adriana Clinciu,
Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin
Durmus, Ondřej Dušek, Chris Chinenye Emezue,
Varun Gangal, Cristina Garbacea, Tatsunori
Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jham-
tani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv
Kumar, Faisal Ladhak, Aman Madaan, Mounica
Maddela, Khyati Mahajan, Saad Mahamood, Bod-
hisattwa Prasad Majumder, Pedro Henrique Martins,
Angelina McMillan-Major, Simon Mille, Emiel van
Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly
Nikolaev, Andre Niyongabo Rubungo, Salomey
Osei, Ankur Parikh, Laura Perez-Beltrachini,
Niranjan Ramesh Rao, Vikas Raunak, Juan Diego

273

https://doi.org/10.18653/v1/2021.emnlp-main.699
https://doi.org/10.18653/v1/2021.emnlp-main.699
http://arxiv.org/abs/2111.04424
http://arxiv.org/abs/2111.04424
https://doi.org/10.48550/arXiv.2207.04672
https://doi.org/10.48550/arXiv.2207.04672
http://www.lrec-conf.org/proceedings/lrec2018/pdf/131.pdf
http://www.lrec-conf.org/proceedings/lrec2018/pdf/131.pdf
http://arxiv.org/abs/2107.07002
https://arxiv.org/abs/2204.13848
https://arxiv.org/abs/2204.13848
https://arxiv.org/abs/2204.13848
https://doi.org/10.18653/v1/2021.naacl-main.395
https://doi.org/10.18653/v1/2021.naacl-main.395
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8670
https://doi.org/10.18653/v1/W19-8670
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/2020.emnlp-main.393
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
http://arxiv.org/abs/1803.09010
http://arxiv.org/abs/1803.09010

Rodriguez, Sashank Santhanam, João Sedoc,
Thibault Sellam, Samira Shaikh, Anastasia Shimo-
rina, Marco Antonio Sobrevilla Cabezudo, Hendrik
Strobelt, Nishant Subramani, Wei Xu, Diyi Yang,
Akhila Yerukola, and Jiawei Zhou. 2021. The
GEM benchmark: Natural language generation,
its evaluation and metrics. In Proceedings of the
1st Workshop on Natural Language Generation,
Evaluation, and Metrics (GEM 2021), pages 96–120,
Online. Association for Computational Linguistics.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sel-
lam. 2022. Repairing the cracked foundation: A sur-
vey of obstacles in evaluation practices for generated
text. CoRR, abs/2202.06935.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. XL-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis
Konstas, Andrew Finch, Minh-Thang Luong, Gra-
ham Neubig, and Katsuhito Sudoh. 2019. Findings
of the third workshop on neural generation and trans-
lation. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 1–14, Hong Kong.
Association for Computational Linguistics.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation: NLG
needs evaluation sheets and standardised definitions.
In Proceedings of the 13th International Conference
on Natural Language Generation, pages 169–182,
Dublin, Ireland. Association for Computational Lin-
guistics.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural CRF model for
sentence alignment in text simplification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7943–7960, On-
line. Association for Computational Linguistics.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Juraj Juraska, Kevin Bowden, and Marilyn Walker. 2019.
ViGGO: A video game corpus for data-to-text gener-
ation in open-domain conversation. In Proceedings
of the 12th International Conference on Natural Lan-
guage Generation, pages 164–172, Tokyo, Japan.
Association for Computational Linguistics.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97–102, Dublin, Ireland.
Association for Computational Linguistics.

Moussa Kamal Eddine, Antoine Tixier, and Michalis
Vazirgiannis. 2021. BARThez: a skilled pretrained
French sequence-to-sequence model. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 9369–9390, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jenna Kanerva, Filip Ginter, Li-Hsin Chang, Iiro Ras-
tas, Valtteri Skantsi, Jemina Kilpeläinen, Hanna-Mari
Kupari, Jenna Saarni, Maija Sevón, and Otto Tarkka.
2021. Finnish paraphrase corpus. In Proceedings
of the 23rd Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 288–298, Reykjavik,
Iceland (Online). Linköping University Electronic
Press, Sweden.

Jenna Kanerva, Filip Ginter, and Sampo Pyysalo. 2020.
Turku enhanced parser pipeline: From raw text to
enhanced graphs in the IWPT 2020 shared task. In
Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 162–173, Online. Association for Com-
putational Linguistics.

Jenna Kanerva, Samuel Rönnqvist, Riina Kekki, Tapio
Salakoski, and Filip Ginter. 2019. Template-free
data-to-text generation of Finnish sports news. In
Proceedings of the 22nd Nordic Conference on Com-
putational Linguistics, pages 242–252, Turku, Fin-
land. Linköping University Electronic Press.

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras,
Lavinia Dunagan, Jacob Morrison, Alexander R. Fab-
bri, Yejin Choi, and Noah A. Smith. 2022. Bidimen-
sional leaderboards: Generate and evaluate language
hand in hand. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics, Seattle, Washington.
Association for Computational Linguistics.

Joongwon Kim, Mounica Maddela, Reno Kriz, Wei Xu,
and Chris Callison-Burch. 2021a. BiSECT: Learning
to split and rephrase sentences with bitexts. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6193–
6209, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Seokhwan Kim, Yang Liu, Di Jin, Alexandros Papan-
gelis, Karthik Gopalakrishnan, Behnam Hedayatnia,
and Dilek Z. Hakkani-Tür. 2021b. “how robust r u?”:
Evaluating task-oriented dialogue systems on spoken
conversations. 2021 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
1147–1154.

274

https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
http://arxiv.org/abs/2202.06935
http://arxiv.org/abs/2202.06935
http://arxiv.org/abs/2202.06935
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/D19-5601
https://aclanthology.org/2020.inlg-1.23
https://aclanthology.org/2020.inlg-1.23
https://doi.org/10.18653/v1/2020.acl-main.709
https://doi.org/10.18653/v1/2020.acl-main.709
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/W19-8623
https://doi.org/10.18653/v1/W19-8623
https://aclanthology.org/2020.inlg-1.14
https://aclanthology.org/2020.inlg-1.14
https://doi.org/10.18653/v1/2021.emnlp-main.740
https://doi.org/10.18653/v1/2021.emnlp-main.740
https://aclanthology.org/2021.nodalida-main.29
https://doi.org/10.18653/v1/2020.iwpt-1.17
https://doi.org/10.18653/v1/2020.iwpt-1.17
https://aclanthology.org/W19-6125
https://aclanthology.org/W19-6125
https://doi.org/10.18653/v1/2021.emnlp-main.500
https://doi.org/10.18653/v1/2021.emnlp-main.500

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4034–4048,
Online. Association for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Benjamin Marie. 2022. Science left behind.

Angelina McMillan-Major, Salomey Osei, Juan Diego
Rodriguez, Pawan Sasanka Ammanamanchi, Sebas-
tian Gehrmann, and Yacine Jernite. 2021. Reusable
templates and guides for documenting datasets and
models for natural language processing and gener-
ation: A case study of the HuggingFace and GEM
data and model cards. In Proceedings of the 1st Work-
shop on Natural Language Generation, Evaluation,
and Metrics (GEM 2021), pages 121–135, Online.
Association for Computational Linguistics.

Simon Mille, Anya Belz, Bernd Bohnet, Thiago Cas-
tro Ferreira, Yvette Graham, and Leo Wanner. 2020.
The third multilingual surface realisation shared task
(SR’20): Overview and evaluation results. In Pro-
ceedings of the Third Workshop on Multilingual Sur-
face Realisation, pages 1–20, Barcelona, Spain (On-
line). Association for Computational Linguistics.

Simon Mille, Kaustubh Dhole, Saad Mahamood, Laura
Perez-Beltrachini, Varun Gangal, Mihir Kale, Emiel
van Miltenburg, and Sebastian Gehrmann. 2021. Au-
tomatic construction of evaluation suites for natural
language generation datasets. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher,
and Nazneen Fatema Rajani. 2021. DART: Open-
domain structured data record to text generation. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 432–447, Online. Association for Computa-
tional Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201–206, Saarbrücken, Germany. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipan-
jan Das. 2020. ToTTo: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186, Online. As-
sociation for Computational Linguistics.

Laura Perez-Beltrachini and Mirella Lapata. 2021. Mod-
els and datasets for cross-lingual summarisation. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
9408–9423, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Laura Perez-Beltrachini, Yang Liu, and Mirella Lapata.
2019. Generating summaries with topic templates
and structured convolutional decoders. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5107–5116, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019a.
Data-to-text generation with entity modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2023–

275

https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2020.findings-emnlp.360
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://medium.com/@bnjmn_marie/science-left-behind-ca0a58231c20
https://doi.org/10.18653/v1/2021.gem-1.11
https://doi.org/10.18653/v1/2021.gem-1.11
https://doi.org/10.18653/v1/2021.gem-1.11
https://doi.org/10.18653/v1/2021.gem-1.11
https://doi.org/10.18653/v1/2021.gem-1.11
https://aclanthology.org/2020.msr-1.1
https://aclanthology.org/2020.msr-1.1
https://openreview.net/forum?id=CSi1eu_2q96
https://openreview.net/forum?id=CSi1eu_2q96
https://openreview.net/forum?id=CSi1eu_2q96
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2021.emnlp-main.742
https://doi.org/10.18653/v1/2021.emnlp-main.742
https://doi.org/10.18653/v1/P19-1504
https://doi.org/10.18653/v1/P19-1504
https://doi.org/10.18653/v1/P19-1195

2035, Florence, Italy. Association for Computational
Linguistics.

Ratish Puduppully and Mirella Lapata. 2021. Data-to-
text generation with macro planning. Transactions of
the Association for Computational Linguistics, 9:510–
527.

Ratish Puduppully, Jonathan Mallinson, and Mirella La-
pata. 2019b. University of Edinburgh’s submission to
the document-level generation and translation shared
task. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 268–272, Hong
Kong. Association for Computational Linguistics.

Mahima Pushkarna, Andrew Zaldivar, and Oddur Kjar-
tansson. 2022. Data cards: Purposeful and transpar-
ent dataset documentation for responsible ai.

Jun Quan, Shian Zhang, Qian Cao, Zizhong Li, and
Deyi Xiong. 2020. RiSAWOZ: A large-scale multi-
domain Wizard-of-Oz dataset with rich semantic an-
notations for task-oriented dialogue modeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 930–940, Online. Association for Computa-
tional Linguistics.

Inioluwa Deborah Raji, Emily Denton, Emily M. Ben-
der, Alex Hanna, and Amandalynne Paullada. 2021.
AI and the everything in the whole wide world bench-
mark. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. arXiv e-prints,
page arXiv:1606.05250.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

Fahimeh Saleh, Alexandre Berard, Ioan Calapodescu,
and Laurent Besacier. 2019. Naver labs Europe’s
systems for the document-level generation and trans-
lation task at WNGT 2019. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 273–279, Hong Kong. Association for
Computational Linguistics.

Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier,
Benjamin Piwowarski, and Jacopo Staiano. 2020. Ml-
sum: The multilingual summarization corpus. arXiv
preprint arXiv:2004.14900.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018.
BLEU is not suitable for the evaluation of text simpli-
fication. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 738–744, Brussels, Belgium. Association for
Computational Linguistics.

Edward Sun, Yufang Hou, Dakuo Wang, Yunfeng
Zhang, and Nancy X. R. Wang. 2021. D2S:
Document-to-slide generation via query-based text
summarization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1405–1418, Online. As-
sociation for Computational Linguistics.

Xiangru Tang, Alexander Fabbri, Haoran Li, Ziming
Mao, Griffin Adams, Borui Wang, Asli Celikyilmaz,
Yashar Mehdad, and Dragomir Radev. 2022. Inves-
tigating crowdsourcing protocols for evaluating the
factual consistency of summaries. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5680–5692,
Seattle, United States. Association for Computational
Linguistics.

Craig Thomson, Ehud Reiter, and Somayajulu Sripada.
2020. SportSett:basketball - a robust and maintain-
able data-set for natural language generation. In Pro-
ceedings of the Workshop on Intelligent Information
Processing and Natural Language Generation, pages
32–40, Santiago de Compostela, Spain. Association
for Computational Lingustics.

Jörg Tiedemann and Lars Nygaard. 2004. The OPUS
corpus - parallel and free: http://logos.uio.
no/opus. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’04), Lisbon, Portugal. European Lan-
guage Resources Association (ELRA).

Sara Tonelli, Alessio Palmero Aprosio, and Francesca
Saltori. 2016. Simpitiki: a simplification corpus for
italian. In CLiC-it/EVALITA.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Ja-
son Phang, and Samuel R. Bowman. 2022. SQuAL-
ITY: Building a long-document summarization
dataset the hard way. arXiv preprint 2205.11465.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS

276

https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.1162/tacl_a_00381
https://doi.org/10.18653/v1/D19-5630
https://doi.org/10.18653/v1/D19-5630
https://doi.org/10.18653/v1/D19-5630
https://doi.org/10.48550/ARXIV.2204.01075
https://doi.org/10.48550/ARXIV.2204.01075
https://doi.org/10.18653/v1/2020.emnlp-main.67
https://doi.org/10.18653/v1/2020.emnlp-main.67
https://doi.org/10.18653/v1/2020.emnlp-main.67
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/084b6fbb10729ed4da8c3d3f5a3ae7c9-Abstract-round2.html
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1606.05250
https://doi.org/10.18653/v1/D19-5631
https://doi.org/10.18653/v1/D19-5631
https://doi.org/10.18653/v1/D19-5631
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/D18-1081
https://doi.org/10.18653/v1/D18-1081
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2021.naacl-main.111
https://doi.org/10.18653/v1/2022.naacl-main.417
https://doi.org/10.18653/v1/2022.naacl-main.417
https://doi.org/10.18653/v1/2022.naacl-main.417
https://aclanthology.org/2020.intellang-1.4
https://aclanthology.org/2020.intellang-1.4
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
http://logos.uio.no/opus
http://www.lrec-conf.org/proceedings/lrec2004/pdf/320.pdf
http://logos.uio.no/opus
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.18653/v1/W19-8643
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html

2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Ying Xu, Dakuo Wang, Mo Yu, Daniel Ritchie, Bing-
sheng Yao, Tongshuang Wu, Zheng Zhang, Toby
Jia-Jun Li, Nora Bradford, Branda Sun, Tran Bao
Hoang, Yisi Sang, Yufang Hou, Xiaojuan Ma, Diyi
Yang, Nanyun Peng, Zhou Yu, and Mark Warschauer.
2022. Fantastic questions and where to find them:
FairytaleQA – an authentic dataset for narrative com-
prehension. Association for Computational Linguis-
tics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Li Zhang, Huaiyu Zhu, Siddhartha Brahma, and Yunyao
Li. 2020. Small but mighty: New benchmarks for
split and rephrase. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1198–1205, Online. As-
sociation for Computational Linguistics.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and
Minlie Huang. 2020. CrossWOZ: A large-scale Chi-
nese cross-domain task-oriented dialogue dataset.
Transactions of the Association for Computational
Linguistics, 8:281–295.

A Dataset Overviews

We provide a detailed overview of all the supported
datasets in Table 3. Input and output lengths are
reported in number of tokens according to the mT5
tokenizer (Xue et al., 2021). When multiple config-
urations for a dataset are available, we report the
median of the sizes and lengths.

B Changes to Datasets

B.1 BiSECT

The original released BiSECT (Kim et al., 2021a)
training, validation, and test splits are maintained
to ensure a fair comparison. Note that the original
BiSECT test set was created by manually selecting
583 high-quality Split and Rephrase instances from
1000 random source-target pairs sampled from the
EMEA and JRC-Acquis corpora from the OPUS
parallel corpus (Tiedemann and Nygaard, 2004).

As the first challenge set, we include the HSPLIT-
Wiki test set, containing 359 pairs (Sulem et al.,
2018). For each complex sentence, there are four
reference splits; To ensure replicability, as refer-
ence splits, we again follow the original BiSECT
paper and present only the references from HSplit2-
full. In addition to the two evaluation sets used
in the original BiSECT paper, we also introduce a
second challenge set. For this, we initially consider
all 7,293 pairs from the EMEA and JRC-Acquis
corpora. From there, we classify each pair using
the classification algorithm from Section 4.2 of the
original BiSECT paper. The three classes are as
follows:

1. Direct Insertion: when a long sentence l con-
tains two independent clauses and requires
only minor changes in order to make a fluent
and meaning-preserving split s.

2. Changes near Split, when l contains one in-
dependent and one dependent clause, but mod-
ifications are restricted to the region where l
is split.

3. Changes across Sentences, where major
changes are required throughout l in order to
create a fluent split s.

We keep only pairs labeled as Type 3, and after
filtering out pairs with significant length differences
(signaling potential content addition/deletion), we
present a second challenge set of 1,798 pairs.

277

https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2020.emnlp-main.91
https://doi.org/10.18653/v1/2020.emnlp-main.91
https://doi.org/10.1162/tacl_a_00314
https://doi.org/10.1162/tacl_a_00314

Dataset Citation Task Language(s) Taxonomy Size Input Length Output Length

ART (Bhagavatula et al., 2020) Reasoning en 5 50k 138 41
BiSECT (Kim et al., 2021a) Simplification en, de, es, fr 5 200k–1M 266–434 224–387
Cochrane (Devaraj et al., 2021) Simplification en 5 3.5k
CommonGen (Lin et al., 2020) Data-to-Text en 5 70k 80
Conversational Weather (Balakrishnan et al., 2019) Response Generation en 5 25k 417 315
CrossWOZ (Zhu et al., 2020) Response Generation zh 5 5k
CS Restaurants (Dušek and Jurčíček, 2019) Response Generation cs 4 3.5k 70 58
DART (Nan et al., 2021) Data-to-Text en 5 60k
DSTC 10 (Kim et al., 2021b) Data-to-Text en 5 20k 1337 95
E2E NLG (Novikova et al., 2017; Dušek

et al., 2020; Dušek et al., 2019)
Data-to-Text en 5 35k 146 135

FairytaleQA (Xu et al., 2022) Question Geneartion en 5 8.5k 335 15.9
IndoNLG (Cahyawijaya et al., 2021) Summarization id, jv, su 1–3 14k–200k 2021 456
MLB (Puduppully et al., 2019a) Data-to-Text en 5 23k 24665 2580
MLSum (Scialom et al., 2020) Summarization es, de 5 220k–250k 4152 147
Opusparcus (Creutz, 2018) Paraphrasing de, en, fi, fr, ru, sv 4–5 0–35M
OrangeSum (Kamal Eddine et al., 2021) Summarization fr 5 21k–30k 1984 138
RiSAWOZ (Quan et al., 2020) Response Generation zh 5 10k
RotoWire En-De (Wiseman et al., 2017; Hayashi

et al., 2019)
Data-to-Text en, de 5 242

Schema-Guided Dialog (Rastogi et al., 2020) Response Generation en 5 165k 188 51
SciDuet (Sun et al., 2021) Slide Generation en 5 2k
SIMPITIKI (Tonelli et al., 2016) Simplification it 4 815
SportSett (Thomson et al., 2020) Data-to-Text en 5 3.7k 5990 1620
Squad V2 (Rajpurkar et al., 2016) Question Generation en 5 120k 768 55
SQuALITY v1.1 (Wang et al., 2022) Summarization en 2500 5000 227
Surface Realization ST 2020 (Mille et al., 2020) Data-to-Text ar, en, es, fr, hi, in 3–5 250k 892 126

ko, ja, pt, ru, zh
TaskMaster (Byrne et al., 2019) Response Generation en 5 190k 972 55
ToTTo (Parikh et al., 2020) Data-to-Text en 5 120k 357
Turku Hockey (Kanerva et al., 2019) Data-to-Text fi 4 2.7k–6.1k 158 58
Turku Paraphrase (Kanerva et al., 2021) Paraphrasing fi 4 81k–170k 87 47
ViGGo (Juraska et al., 2019) Data-to-Text en 5 5.1k 120 109
WebNLG (Gardent et al., 2017a,b) Data-to-Text en, ru 4–5 14k–35k 169.5 157
WikiAuto
+ASSET/TURK/Split&Rephrase (Jiang et al., 2020; Alva-

Manchego et al., 2020; Xu
et al., 2016; Zhang et al., 2020)

Simplification en 5 480k

WikiCatSum (Perez-Beltrachini et al., 2019) Summarization en 5 48k 43527 256
WikiLingua (Ladhak et al., 2020) Summarization ar, cs, de, en, es, fr, 3–5 5k–3.8M 1607–4650 159–489

hi, id, it, ja, ko, nl,
pt, ru, th, tr, vi, zh 2244.5 200.5

XLSum (Hasan et al., 2021) Summarization om, fr, am, ar, az, bn, 0–5 1.3k–300k 1470–9924 137–614
cy, en, es, gd, fa,
gu, ha, hi, ig, id, ja,
ko, ky, mr, my, ne,
ps, pcm, pt, pa, rn, ru,
sr, si, so, sw, ta, te,
th, ti, tr, uk, ur, uz,
vi, yo, zh-CN, zh-TW 3486.5 237

XSum (Narayan et al., 2018) Summarization en 5 23k 1845 153
XWikis (Perez-Beltrachini and Lapata,

2021)
Summarization en, de, fr, cs 4-5 44k–461k 1743 102

Table 3: Detailed information about all the datasets currently supported in GEM. We present the name of the dataset,
the paper(s) in which the dataset was introduced, the NLG task it performs, the languages the dataset caters to and
their resourcedness taxonomy class, the size of the training set (rounded), and the lengths of input and output.

B.2 FairytaleQA

The original release of FairytaleQA (Xu et al.,
2022) used separate files to store the fairytale story
content and experts-labeled QA-pairs. It provided
baseline benchmarks on both Question Answering
and Question Generation tasks. In GEMv2, we
re-organize the data to be specifically prepared for
the Question Generation task. The original dataset
contains 2 answers created by different annotators
in the evaluation and test splits, but we only take
the first answer into consideration for the Question
Generation task. The input for this task would be
the concatenation of each answer labeled by hu-
man experts and the related story section(s), and
the output target would be the corresponding ques-
tion labeled by human experts.

B.3 MLB Data to Text
We follow the serialization format introduced
in (Puduppully and Lapata, 2021) for the lin-
earized_input field. Specifically, we serialize the
home team records, the visiting team records, and
the player records. We next serialize the records of
the innings in chronological order.

B.4 Opusparcus
Compared to the original release of Opusparcus
(Creutz, 2018), available through the Language
Bank of Finland,12 the GEMv2 release contains a
few additions to facilitate the use of this resource:

The validation and test sets now come in two
versions, the so-called regular validation and test
sets and the full sets. The regular sets only contain

12https://www.kielipankki.fi/corpora/
opusparcus/

278

https://www.kielipankki.fi/corpora/opusparcus/
https://www.kielipankki.fi/corpora/opusparcus/

sentence pairs that qualify as paraphrases. The full
sets are the original sets from the original release,
which contain all sentence pairs successfully anno-
tated by the annotators, including the sentence pairs
that were rejected as paraphrases. The validation
sets were called development sets in the original
release.

The training sets are orders of magnitudes larger
than the validation and test sets. Therefore the train-
ing sets have not been annotated manually and the
true paraphrase status of each entry is unknown. In
the original release, each training set entry is ac-
companied by an automatically calculated ranking
score, which reflects how likely that entry contains
a true paraphrase pair. The entries are ordered in
the data, best first, worst last. If you use the origi-
nal release, you need to control yourself how large
and how clean a portion of the training data you
will use.

In the GEMv2 release, the training sets come
in predefined subsets. Using the so-called quality
parameter, the user can control for the estimated
proportion (in percent) of true paraphrases in the
retrieved training subset. Allowed quality values
range between 60 and 100, in increments of 5 (60,
65, 70, ..., 100). A value of 60 means that 60 % of
the sentence pairs in the training set are estimated
to be true paraphrases (and the remaining 40 %
are not). A higher value produces a smaller but
cleaner set. The smaller sets are subsets of the
larger sets, such that the quality=95 set is a subset
of quality=90, which is a subset of quality=85, and
so on. Depending on this parameter, the dataset can
fall into all resourcedness categories in Figure 2.

B.5 ROTOWIRE_English-German
We introduce a field linearized_input, which serial-
izes the input table into a string. We follow a serial-
ization format similar to that of Saleh et al. (2019).
More specifically, we serialize all the records of the
home team followed by that of the visiting team.
We next serialize the records of the players of the
home team followed by that of the visiting team.
We rank the players by points in descending order.
In addition, we add information about the relative
rank of a player within a team following Pudup-
pully et al. (2019b).

B.6 SciDuet
The original released SciDuet (Sun et al., 2021)
uses two json files to store paper information and
slide information, respectively. In GEMv2, we

merge these two files and reorganize the structure
so that each data instance contains the complete in-
put (i.e., paper title/abstract/section headers/section
content, as well as slide title) and output (i.e., slide
text content). In addition, we introduce a new chal-
lenging dataset in GEMv2 by removing slides if
their titles match with any section headers from the
corresponding paper.

B.7 SIMPITIKI
The original release of SIMPITIKI (Tonelli et al.,
2016) includes two xml files, corresponding to the
version 1 and version 2 respectively. The second
version has better sentence boundaries. However,
no training, validation and test splits were officially
proposed for both release. In GEM, we randomly
and independently split both xml files into training,
validation and test sets. Note that version 1 and
version 2 have different splits. We also generated
challenge sets were some simplification transfor-
mations in the test set are not part of the training
set and thus unseen in the training phase. Then, as
SIMPITIKI leverages data from Wikipedia and the
Municipality of Trento corpora, we further propose
splits based on the respective data source.

B.8 SportSett Basketball
Similar to MLB Data-to-Text, SportSett also fol-
lows the serialization format introduced in (Pudup-
pully and Lapata, 2021) for the linearized_input
field. The serialisation starts with current game’s
information such as date and venue of the game.
This is followed with both team’s information (line-
scores) including their next game’s information as
well. Finally, the players’ information (box-scores)
is serialised, starting with home team’s players and
then visiting team’s players.

B.9 squad_v2
SQuAD2.0 (Rajpurkar et al., 2016) combines the
100,000 questions in SQuAD1.1 with over 50,000
unanswerable questions written adversarially by
crowdworkers to look similar to answerable ones.
The original SQuAD2.0 dataset has only training
and dev (validation) splits. A new test split is cre-
ated from the train split and added as part of the
squad_v2 dataset.

B.10 Taskmaster-3
According to Byrne et al. (2021), the Taskmaster-3
(also called TicketTalk) dataset consists of 23,789
movie ticketing dialogs, where the customer’s goal

279

is to purchase tickets after deciding on theater, time,
movie name, number of tickets, and date, or opt
out of the transaction. This collection was created
using the "self-dialog" method, i.e., a single, crowd-
sourced worker is paid to create a conversation
writing turns for both speakers- the customer and
the ticketing agent.

B.11 Turku Hockey
To ease the use of the data, in addition to the
game-level structuring as used in the original Turku
Hockey data release (Kanerva et al., 2019), we pro-
vide a simplified event-level structuring. In the
event-level generation, the structured input data is
linearized to string representation separately for
each game event, and the task objective is thus to
generate the description separately for each game
event directly using the linearized input representa-
tion. In comparison, the objective of the game-level
generation is to process the structured data for the
entire game at once, and generate descriptions for
all relevant events. The linearized event inputs are
produced using similar approach as described in
the original paper.

B.12 Turku Paraphrase
In GEMv2, the Turku Paraphrase data can be
loaded with three different configurations, plain,
classification, and generation. While the plain con-
figuration models the data similarly to the original
release, the two other options directly applies sev-
eral transformations beneficial for the named task.
In classification each example is provided using
both (text1, text2, label) and (text2, text1, label)
ordering, as paraphrase classification does not de-
pend on the order of the given statements. In cases
with a directionality annotation in the paraphrase
pair, the label is flipped accordingly when creating
the additional examples. In generation, on the other
hand, the data is pre-processed to include only ex-
amples suitable for the paraphrase generation task,
therefore discarding, e.g., negative and highly con-
text dependent examples, which does not fit the
generation task as such. In addition, the examples
with annotated directionality (one statements be-
ing more detailed than the other, for instance one
mentioning a woman while the other a person), the
example is always provided using ordering where
the input is more detailed and the output more gen-
eral in order to prevent model hallucination (model
learning to generate facts not present in the input).
For more details about the annotated labels and the

directionality, see Kanerva et al. (2020).

B.13 WikiLingua

The original release of WikiLingua (Ladhak et al.,
2020) released a dataset of article-summary pairs
in 18 languages, but had only created train/val/test
splits for 4 langauge pairs (es-en, tr-en, ru-en, vi-
en), for the purposes of crosslingual evaluation.
As part of GEMv1, we created train/val/test splits
for all 18 languages. To further facilitate building
multilingual and crosslingual models for all 18 lan-
guages, the GEMv2 release contains the following
changes to the GEMv1 release:

In the original WikiLingua release, each
document-summary pair in any of the 17 non-
English languages has a corresponding parallel
document-summary pair in English. A given En-
glish document-summary pair can have parallel
document-summary pairs in multiple languages. In
order to facilitate crosslingual experiments across
all language pairs, for the GEMv2 release, we
align document-summary pairs across the other
17 languages via English. For example, if a given
document-summary pair in English has correspond-
ing parallel pairs in Turkish and Vietnamese, we
can then align these to get Turkish-Vietnamese par-
allel pairs. As a result, in addition to supporting all
the functionality in GEMv1, the v2 loader allows
the user to specify and load crosslingual data for
any language pair in the dataset.

In addition to the original evaluation sets (val and
test), we also have sub-sampled versions in order
to facilitate faster development cycles. To create
the sub-sampled versions, for each evaluation set,
we randomly sample 3, 000 instances.13

We further clean the dataset by removing pay-
loads for thumbnails that were scraped into the
document and summary texts and we filter out all
instances with a summary length longer than 60%
of the input document length. This removes around
5% of the data.

C Contribution Statements

Organizing GEM would not be possible without
community contributions and the mutual goal of
improving NLG and its evaluation. To give proper
credit to all contributors, this section lists the in-
volvements of all co-authors. Besides the detailed
list, everyone contributed to discussion sessions,

13Evaluation sets that have fewer than 3, 000 instances were
not sub-sampled.

280

made dataset suggestions, and participated in proof
reading the final paper.

Dataset Loaders The new data loaders and as-
sociated data cards were created by the following
people:
ART: Chandra Bhagavatula, Nico Daheim, Aman
Madaan
BiSect: Jenny Chim, Reno Kriz
Conversational Weather: Vipul Raheja, Michael
White
CrossWOZ: Qi Zhu
DSTC10: Nico Daheim, Di Jin, Alexandros
Papangelis
FairyTaleQA: Bingsheng Yao
IndoNLG: Bryan Wilie, Samuel Cahyawijaya,
Genta Indra Winata
MLB: Ratish Puduppully
Opusparcus: Mathias Creutz
OrangeSum: Moussa Kamal Eddine
RiSAWOZ: Tianhao Shen, Deyi Xiong, Chaobin
You
RotoWire En-De: Hiroaki Hayashi, Ratish Pudup-
pully
SciDuet: Yufang Hou, Dakuo Wang
SIMPITIKI: Sebastien Montella, Vipul Raheja
Split and Rephrase: Cristina Garbacea, Reno Kriz,
Li Zhang
SportSett: Craig Thomson, Ashish Upadhyay
Squad V2: Abinaya Mahendiran
SQuALITY: Alex Wang
Surface Realisation ST: Bernd Bohnet, Simon
Mille
TaskMaster: Tosin Adewumi
ToTTo (port): Abinaya Mahendiran
Turku Hockey: Filip Ginter, Jenna Kanerva
Turku Paraphrase: Filip Ginter, Jenna Kanerva
ViGGo: Juraj Juraska, Aman Madaan
WikiCatSum: Ronald Cardenas Acosta, Laura
Perez-Beltrachini
WikiLingua (port): Jenny Chim, Faisal Ladhak
XLSum: Abhik Bhattacharjee, Tahmid Hasan, Rifat
Shahriyar
XSum (port): Abinaya Mahendiran
XWikis: Ronald Cardenas Acosta, Laura Perez-
Beltrachini

Lewis Tunstall designed and implemented the in-
frastructure to host GEMv2 on the Hugging Face
Hub. Sebastian Gehrmann addressed the remain-
ing loader issues and ported the remaining GEMv1
datasets. Anna Shvets developed dataset-agnostic

bias detection filters. Simon Mille coordinated
progress during the hackathon.

Documentation The updated tutorials for using
GEM and adding new data loaders were developed
and tested by Jenny Chim, Paul Pu Liang, and Anna
Shvets.

Data Cards The questions in the revised data
card template were created during sessions led by
Mahima Pushkarna with the help of Yacine Jer-
nite, Angelina McMillan-Major, Nishant Subra-
mani, Pawan Sasanka Ammanamanchi, and Sebas-
tian Gehrmann. The collection tool was imple-
mented by Yacine Jernite and Sebastian Gehrmann.
The data card rendering tool was developed by Vi-
vian Tsai and Mahima Pushkarna.

Human Evaluation The human evaluation work-
ing group is led by João Sedoc. Its members
include Jenny Chim, Elizabeth Clark, Daniel
Deutsch, Kaustubh Dhole, Khyathi Raghavi
Chandu, Sebastian Gehrmann, Yufang Hou, Yixin
Liu, Saad Mahamood, Simon Mille, Vitaly Niko-
laev, Salomey Osei, Dragomir Radev, Yisi Sang,
and Alex Wang.

Metrics The metrics library, originally developed
for GEMv1, was extended by Jordan Clive, Nico
Daheim, Daniel Deutsch, Ondrej Dusek, Sebastian
Gehrmann, Aman Madaan, Joshua Maynez, Vikas
Raunak, Leonardo F. R. Ribeiro, and Anna Shvets.

Paper Writing and Analyses Sebastian
Gehrmann led the writing of the paper. Abinaya
Mahendiran and Jekaterina Novikova contributed
analyses that were used to create Figure 2 and
Table 3.

Submission Infrastructure Lewis Tunstall led
the development of the submission infrastructure.
Hendrik Strobelt led the extension of the result
visualization tool to ensure compatibility with the
new submission system.

Baselines Additional baseline results were pro-
vided by Tosin Adewumi, Mihir Sanjay Kale,
Joshua Maynez, and Leonardo F. R. Ribeiro.

281

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 282 - 288
December 7-11, 2022 c©2022 Association for Computational Linguistics

KGI: An Integrated Framework for Knowledge Intensive Language Tasks

Md Faisal Mahbub Chowdhury∗, Michael Glass∗, Gaetano Rossiello,
Alfio Gliozzo and Nandana Mihindukulasooriya

{mchowdh, mrglass, gliozzo}@us.ibm.com, {gaetano.rossiello, nandana}@ibm.com
IBM Research AI, Yorktown Heights, NY, USA

Abstract

In this paper, we present a system to showcase
the capabilities of the latest state-of-the-art re-
trieval augmented generation models trained
on knowledge-intensive language tasks, such
as slot filling, open domain question answer-
ing, dialogue, and fact-checking. Moreover,
given a user query, we show how the output
from these different models can be combined
to cross-examine the outputs of each other. Par-
ticularly, we show how accuracy in dialogue
can be improved using the question answering
model. We are also releasing all models used in
the demo as a contribution of this paper. A short
video demonstrating the system is available at
https://ibm.box.com/v/emnlp2022-demo.

1 Introduction

Recently, we proposed Re2G (Glass et al., 2022),
the core of our KGI (Knowledge Graph Induc-
tion) system. Re2G combines both neural initial re-
trieval and reranking into a BART-based sequence-
to-sequence generation. We show that the end-
to-end reranking component also permits merging
retrieval results from sources with incomparable
scores, enabling an ensemble of BM25 and neu-
ral initial retrieval. Moreover, to train our sys-
tem end-to-end, we introduce a novel variation of
knowledge distillation to train the initial retrieval,
reranker, and generation using only ground truth
on the target sequence output. We find large gains
in four diverse tasks: zero-shot slot filling, question
answering, fact-checking, and dialog, with relative
gains of 9% to 34% over the previous state-of-the-
art on the KILT leaderboard (Petroni et al., 2021)1.

In this work, we describe the complete KGI sys-
tem, which is an enhancement of our previous work.
We demonstrate how users can asynchronously in-
teract with the system in real-time, not only for

*These authors contributed equally to this work.
1https://eval.ai/web/challenges/challenge-

page/689/overview

Figure 1: KGI: System Architecture

completing triples (aka slot filling), but also for
dialogue, fact-checking, and open-domain question
answering. We empirically show that our system
is the state of the art for these tasks on the KILT
leaderboard. In addition, we show how dialog ac-
curacy can be improved by exploiting the question
answering model, a novel approach demonstrated
in this paper.

There are several different intended usages of
our system. For example, KGI allows users to
interact with different levels of verbosity. Also,
it enables users to cross-examine results through
different KILT tasks that are part of the same GUI.

We are releasing our best KGI core models
(i.e. Re2G) that we used in this paper at https:
//huggingface.co/ibm .

2 System Architecture

The KGI system (Figure 1) is a web-based applica-
tion that enables users to asynchronously interact
with the system in real-time and allows users to ob-
tain results from four different task-specific models
simultaneously in different tabs in the GUI. These
models are trained using Re2G model as shown in
Figure 2. There is a corresponding ANN (Approxi-

282

https://ibm.box.com/v/emnlp2022-demo
https://huggingface.co/ibm
https://huggingface.co/ibm

Query

M
a
rg

in
a
liz

a
tio

n

Q
u

e
ry

E
n
c
o
d
e

r

A
d
d
 Q

u
e
ry

Top-N

Passages

Top-K

Passages output

ANN

Index

BM25

Index

Reranker Generator

Figure 2: Re2G (Retrieve, Rerank, Generate) model (Glass et al., 2022)

mate Nearest Neighbors) index, in this case HNSW
(Hierarchical Navigable Small World) (Malkov and
Yashunin, 2018) using the open source FAISS li-
brary (Johnson et al., 2017)2. These indexes con-
tain the passage vectors for the source corpus of
the corresponding tasks. More details about the
KGI core models, particularly how a model can be
trained and a corresponding index can be created,
can be found in Glass et al. (2021, 2022).

The KGI core model, such as Re2G, takes a
textual query as input and returns a set of gener-
ated texts as results together with a set of passages
as supporting evidences/references for each of the
tasks such as slot filling or fact-checking. Refer to
Table 1 for examples.

2.1 Dialog supported by QA

There are two settings for dialog from the GUI.
“conventional-dialog” is solely based on the KGI
dialog model, while in the “hybrid” settings the
system also interacts with the KGI QA model de-
pending on the comments entered by the user. The
system uses a simple Convolutional Neural Net-
works (CNN) based text classification model to
detect whether the latest comment entered by the
user is a question. If a comment is identified as a
question, and if it contains at least one noun phrase
without a pronoun or adverb, the system creates
a query by appending all such noun phrases from
the previous user utterances in the current dialog
history (with full-stop as separators) with the ques-
tion and pass it to the QA model. If none of the
tokens in the best-ranked answer provided by the
QA model is part of the same dialog history, the
system picks the QA answer (and corresponding
evidences) as the response for the dialog.

3 Application to Diverse NLP Tasks

3.1 The tasks

As mentioned earlier, we demonstrate the robust-
ness of our system on four NLP tasks that are

2https://github.com/facebookresearch/faiss

part of the KILT leaderboard. Among them, fact-
checking requires deep knowledge about the claim
and reasoning over multiple documents. In slot
filling, the goal is to collect information on certain
relations of entities. For the open domain QA, the
goal is producing the correct answer for a question
after reasoning over an entire knowledge source
(in this case, Wikipedia), without a predefined lo-
cation for the answer. Finally, for dialog the goal
of the system is to engage in chitchat, relying on
topical and factual knowledge, on a wide array of
(non-specified) topics with a user. There is another
task, entity linking, in KILT in which we did not
participate.

The KILT benchmark consists of eleven datasets
spanning five distinct tasks. All these task-specific
datasets in this benchmark are grounded in the
same snapshot of Wikipedia. We refer the read-
ers to Petroni et al. (2021) for details about the
datasets. Table 1 shows the input and output types
for the four different tasks considered.

3.2 Application of KGI

The KGI system, although originally designed for
zero-shot slot filling, is based on a very general ap-
proach: conditional generation with retrieval. An
input text is used to retrieve passages from a corpus
of knowledge, then a generation component condi-
tions both the input text and the returned passages
to produce an output text.

The KILT benchmark was introduced to evaluate
the capabilities of pre-trained language models to
address NLP tasks that require access to external
knowledge. As mentioned by the organizers, devel-
oping general models for such knowledge-intensive
tasks is difficult as each task might require compu-
tationally expensive indexing of custom knowledge
sources, in addition to dedicated infrastructure. So,
it is a perfect playground to verify the generaliz-
ability and robustness of KGI.

Training models for each of the above tasks are
carried out in two phases: DPR training and gener-
ation training. The training procedure and hyperpa-

283

https://github.com/facebookresearch/faiss

rameters are exactly the same as described in our
earlier works (Glass et al., 2021, 2022)34.

The slot filling dataset, T-REx (Elsahar et al.,
2018), provides as input a head entity and rela-
tion, and expects as output the entity or term that
fills the slot, also called the tail entity. The T-REx
dataset contains 2.3M instances. We use only 370k
training instances by down-sampling the relations
that occur more than 5000 times. This reduces the
training time required while keeping state-of-the-
art performance. The development and test sets
each have 5k instances.

The question answering datasets are “open” ver-
sions of Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017). Unlike
the original versions, the relevant Wikipedia page
must be found by a retrieval step. The training sets
for Natural Questions and TriviaQA contain 87k
and 62k questions, with another 3k and 5k for the
development and 1.4k and 6.5k for test.

The fact-checking dataset in KILT is FEVER
(Fact Extraction and VERification). It is a combi-
nation of the two FEVER versions (Thorne et al.,
2018, 2019) omitting the NOTENOUGHINFO class.
There are approximately 10k instances in the devel-
opment and test sets, and 100k for training. FEVER
is a classification task, but we cast it as a generation
task by training the model to generate either the
token “SUPPORTS” or “REFUTES”.

Wizard of Wikipedia (Dinan et al., 2018) is the
dialog dataset. The input is a short dialog history
ending with the information seeker’s turn. The ex-
pected output is a fact presented conversationally
or just an utterance or question mentioning content
from a relevant Wikipedia page. It is the smallest
dataset with approximately 3k instances in devel-
opment and test and 64k in train.

3.3 Results
Table 2 shows the results of our system on KILT
datasets for different tasks. At the time of the sub-
mission in 2021, our earlier version of KGI core
models (namely, KGI0 and KGI1) achieved the best
results in the KILT leaderboard. Our new KGI core
models, Re2G, achieves significantly better results.
In fact, it considerably advanced the state-of-the-
art across five KILT datasets, and still holds the top
position in four of the five. Particularly, our sys-
tem architecture permits us to ensemble DPR and

3https://github.com/IBM/kgi-slot-filling
4https://github.com/IBM/kgi-slot-filling/tree/

re2g

BM25, which is enabled by our incorporation of a
reranker, further improving accuracy. Our online
knowledge distillation is able to improve the perfor-
mance of DPR in four of the five datasets, despite
the loss in end-to-end training not depending on
the DPR scores.

4 Examples and Analysis

4.1 Complementing information from
different applications

As mentioned earlier, one of our goals is to al-
low a user to interact with different levels of ver-
bosity and then cross-examine the results to check
whether response from one application (e.g. fact
checking) supports response from another applica-
tion (e.g. dialog). This can be checked not only
by looking at the responses but also through the
accompanying evidences. Figure 3 shows such an
example where the user intends to know the host of
the 2014 Soccer World Cup. This has been formu-
lated in different ways according to the application.
All four KGI models for the corresponding appli-
cations provided the correct answer (Brazil). Note,
all the models use the Wikipedia corpus (as pro-
vided by the KILT organizers) as the knowledge
source, yet the corresponding supporting evidences
are not always the same.

In real world scenarios, the ability to cross-check
information and compare complementing evidence
is important for decision making, specially for sub-
ject matter experts.

4.2 Dialog by exploiting results of open
domain QA

Our view is that the most natural choice to automat-
ically combine results from different task specific
models and improve results of a particular task is
dialog. So, we created a hybrid settings for the
dialog application as described in Section 2.1.

We asked an experienced AI researcher (whose
background is not NLP and who was not in-
volved in building this system) to be a user of
our system and compare the hybrid and stan-
dalone/conventional dialog settings. We gave the
user the following instructions –

• The user will perform 20 independent conver-
sations.

• The user can chat about anything he likes.

• The user should not make the topic of the con-
versation explicit to the system. We wanted

284

https://github.com/IBM/kgi-slot-filling
https://github.com/IBM/kgi-slot-filling/tree/re2g
https://github.com/IBM/kgi-slot-filling/tree/re2g

Task Dataset Input Example Output Example

Slot filling T-REx Head
[SEP]
Relation

Elizabeth Cromwell [SEP] spouse Tail Entity Oliver Cromwell

Fact
checking

FEVER Claim
sentence

Slovenia uses the euro. Truth Clas-
sification

SUPPORTS

Dialog Wizard of
Wikipedia

Dialog
history

... Those sound wonderful. Can
you tell me any more information?
* Iceland is sparsely populated
and in fact has the smallest
population in Europe. * What
other countries are around it?

Next dialog
turn

Denmark, Iceland,
Finland, Norway
and Sweden are all
Nordic countries.

Question
Answering

TriviaQA,
Natural
Questions

Question When did bram stoker’s dracula come
out?

Answer 1987

Table 1: Application of conditional generation with retrieval to KILT tasks

T-REx (Slot Filling)
R-Prec Recall@5 Accuracy F1 KILT-AC KILT-F1

Re2G (Glass et al., 2022) 80.70 89.00 87.68 89.93 75.84 77.05
KGI1 (Glass et al., 2021) 74.36 83.14 84.36 87.24 69.14 70.58

KILT-WEB 2 (Piktus et al., 2021) 75.64 87.57 81.34 84.46 64.64 66.64
SEAL (Bevilacqua et al., 2022) 67.80 81.52 83.72 86.53 60.08 61.72

KGI0 (Glass et al., 2021) 59.70 70.38 77.90 81.31 55.54 56.79
Natural Questions (Question Answering)

R-Prec Recall@5 Accuracy F1 KILT-AC KILT-F1
Re2G (Glass et al., 2022) 70.78 76.63 51.73 60.97 43.56 49.80

SEAL (Bevilacqua et al., 2022) 63.16 68.19 53.74 62.24 38.78 44.40
KGI0 (Glass et al., 2021) 63.71 70.17 45.22 53.38 36.36 41.83

KILT-WEB 2 (Piktus et al., 2021) 59.83 71.17 51.59 60.83 35.32 40.73
RAG (Petroni et al., 2021) 59.49 67.06 44.39 52.35 32.69 37.91

TriviaQA (Question Answering)
R-Prec Recall@5 Accuracy F1 KILT-AC KILT-F1

Re2G (Glass et al., 2022) 72.68 74.23 76.27 81.40 57.91 61.78
SEAL (Bevilacqua et al., 2022) 68.36 76.36 70.86 77.29 50.56 54.99

KILT-WEB 2 (Piktus et al., 2021) 58.85 71.55 72.73 79.54 45.55 49.57
KGI0 (Glass et al., 2021) 60.49 63.54 60.99 66.55 42.85 46.08

MultiDPR (Maillard et al., 2021) 61.49 68.33 59.60 66.53 42.36 46.19
FEVER (Fact Checking)

R-Prec Recall@5 Accuracy KILT-AC
Re2G (Glass et al., 2022) 88.92 92.52 89.55 78.53

SEAL (Bevilacqua et al., 2022) 81.45 89.56 89.54 71.28
KILT-WEB 2 (Piktus et al., 2021) 74.77 87.89 88.99 65.68

KGI0 (Glass et al., 2021) 75.60 84.95 85.58 64.41
MultiDPR (Maillard et al., 2021) 74.48 87.52 86.32 63.94

Wizard of Wikipedia (Dialog)
R-Prec Recall@5 Rouge-L F1 KILT-RL KILT-F1

Hindsight (Paranjape et al., 2021) 56.08 74.27 17.06 19.19 11.92 13.39
Re2G (Glass et al., 2022) 60.10 79.98 16.76 18.90 11.39 12.98

SEAL (Bevilacqua et al., 2022) 57.55 78.96 16.65 18.34 10.45 11.63
KGI0 (Glass et al., 2021) 55.37 78.45 16.36 18.57 10.36 11.79

RAG (Petroni et al., 2021) 57.75 74.61 11.57 13.11 7.59 8.75
KILT-WEB 2 (Piktus et al., 2021) 41.54 68.25 13.94 15.66 6.55 7.57

Table 2: KILT leaderboard top systems. Re2G (Glass et al., 2022), KGI0 (Glass et al., 2021) and KGI1 (Glass et al.,
2021) are different KGI core models from our recent work.

285

Figure 3: Response from different task models of our system for the same common query

the system to understand it from the conversa-
tion.

• The user should limit his interactions to 3
turns, where the first and second utterances
by the user will be followed by a question.
This ensures that in both of the settings, the
system has the same context for the conversa-
tion. Note, the QA model is only exploited by
the system during a dialog when a question is
asked.

• The question in each of the conversation
should be a factoid question.

• At the end of each conversation, the user will
mark which of the dialog settings provided a
better factually correct response.

According to the user, in 10 out of 20 conver-
sations the hybrid settings provided better factual
results. In the rest of the 10 conversations, the re-
sponses were the same, i.e. the system opted for
the output generated by the dialog model. To put

it differently, in this limited human evaluation, in
the hybrid settings whenever the system choose the
QA model generated response, it was always cor-
rect. Table 3 shows few examples of conversations
conducted by the human user.

5 Conclusions

In this work, we present our KGI system and show
how a user can asynchronously interact with it in
real time simultaneously for four NLP tasks. This
allows users to interact with same system with dif-
ferent levels of verbosity. The KGI core models
(Re2G) is still the state of the art (in some cases,
by wide margin) for 4 out these 5 tasks in the KILT
leaderboard. We are releasing those models to the
community as part of this paper.

In addition, we show how dialog accuracy can
be improved by exploiting open domain QA where
both models are grounded in the same snapshot
of knowledge source. In future work, we would
like to exploit results from fact checking and slot
filling to further improve accuracy of the response

286

Conversation 1:

Human: I think a lot of young people are addicted to social media platforms.

KGI (both dialog): I think so too. Social media can be used to promote a product or service, but it can

also be used as a way to get information and ideas.

Human: I sometimes check Facebook and post photos there but I don’t use it very often.

KGI (both dialog): I don’t use it as much myself, but I do see it as a way to get information and ideas.

Human: Do you know when was Facebook first launched?

KGI (hybrid dialog): February 4, 2004 .

KGI (conventional dialog): I’m not sure, but I do know that it was founded by Mark Zuckerberg in the 1980s.

Conversation 2:

Human: I use my mobile phone all the time, it is really useful.

KGI (both dialog): I love my mobile phone, it is a portable telephone that can make and receive calls over a

radio frequency link while the user is moving within a telephone service area.

Human: Yes, I can’t imagine how we managed to work together when we didn’t have mobile phones.

KGI (both dialog): Modern mobile telephone services use a cellular network architecture, and, therefore,

mobile telephones are called "cellular telephones" or "cell phones" in North America.

Human: Interesting. Who is the inventor of cell phones?

KGI (hybrid dialog): William Rae Young, Jr.

KGI (conventional dialog): I am not sure, but I do know that the first handheld mobile phone was envisioned

in the early stages of radio engineering.

Conversation 3:

Human: I ate two doughnuts for breakfast today.

KGI (both dialog): I love doughnuts. They are a type of fried dough confectionery.

Human: Yes, they are so delicious. I love them too.

KGI (both dialog): The doughnut is popular in many countries and prepared in various forms as a sweet

snack that can be homemade or purchased in bakeries, supermarkets, food stalls,

and franchised specialty vendors.

Human: What are the main ingredients used to make doughnuts?

KGI (both dialog): They are usually deep fried from a flour dough, and typically either ring-shaped or a

number of shapes without a hole.

Conversation 4:

Human: Harry Potter books have been translated into more than 80 languages.

KGI (both dialog): The first book, Harry Potter and the Philosopher’s Stone, has been translated into over

75 languages.

Human: I see. I think all the books in the series are really popular all over the world.

KGI (both dialog): Yes, they are very popular. The first book, Harry Potter and the Philosopher’s Stone,

was published in 1997.

Human: What’s the title of the last book?

KGI (both dialog): It’s called the Deathly Hallows. It was released on 21 July 2007.

Table 3: Examples of conversations done by the human evaluator to compare different KGI dialog settings. The
responses provided by the hybrid dialog in the first 2 conversations are different and better.

in dialog. We have also directed our efforts to-
wards improving the retrieval of relevant knowl-
edge which would enable improvement in end-to-

end performance by supplying better passages to
the generation component.

287

References
Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,

Wen tau Yih, Sebastian Riedel, and Fabio Petroni.
2022. Autoregressive search engines: Generat-
ing substrings as document identifiers. ArXiv,
abs/2204.10628.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci,
Christophe Gravier, Jonathon Hare, Frederique Lafor-
est, and Elena Simperl. 2018. T-REx: A large scale
alignment of natural language with knowledge base
triples. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, and Alfio Gliozzo. 2021. Robust re-
trieval augmented generation for zero-shot slot filling.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub
Chowdhury, Ankita Naik, Pengshan Cai, and Alfio
Gliozzo. 2022. Re2G: Retrieve, rerank, generate.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2701–2715, Seattle, United States. Association
for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Jean Maillard, Vladimir Karpukhin, Fabio Petroni, Wen-
tau Yih, Barlas Oguz, Veselin Stoyanov, and Gargi
Ghosh. 2021. Multi-task retrieval for knowledge-
intensive tasks. In ACL/IJCNLP (1), pages 1098–
1111. Association for Computational Linguistics.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824–836.

Ashwin Paranjape, Omar Khattab, Christopher Potts,
Matei Zaharia, and Christopher D Manning. 2021.
Hindsight: Posterior-guided training of retrievers
for improved open-ended generation. arXiv preprint
arXiv:2110.07752.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544, Online.
Association for Computational Linguistics.

Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Dmytro Okhonko, Samuel Broscheit, Gautier Izacard,
Patrick Lewis, Barlas Oğuz, Edouard Grave, Wen-tau
Yih, et al. 2021. The web is your oyster–knowledge-
intensive nlp against a very large web corpus. arXiv
preprint arXiv:2112.09924.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2019.
The fever2. 0 shared task. In Proceedings of the Sec-
ond Workshop on Fact Extraction and VERification
(FEVER), pages 1–6.

288

https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/2021.emnlp-main.148
https://aclanthology.org/2021.emnlp-main.148
https://aclanthology.org/2022.naacl-main.194
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 289 - 297
December 7-11, 2022 c©2022 Association for Computational Linguistics

Twitter-Demographer: A Flow-based Tool to Enrich Twitter Data

Federico Bianchi
Stanford University

Stanford, California, USA
fede@stanford.edu

Vincenzo Cutrona
SUPSI

Lugano, Switzerland
vincenzo.cutrona@supsi.ch

Dirk Hovy
Bocconi University

Milano, Italy
dirk.hovy@unibocconi.it

Abstract
Twitter data have become essential to Natu-
ral Language Processing (NLP) and social sci-
ence research, driving various scientific dis-
coveries in recent years. However, the tex-
tual data alone are often not enough to con-
duct studies: especially, social scientists need
more variables to perform their analysis and
control for various factors. How we aug-
ment this information, such as users’ location,
age, or tweet sentiment, has ramifications for
anonymity and reproducibility, and requires
dedicated effort. This paper describes Twitter-
Demographer, a simple, flow-based tool to en-
rich Twitter data with additional information
about tweets and users. Twitter-Demographer
is aimed at NLP practitioners, psycho-linguists,
and (computational) social scientists who want
to enrich their datasets with aggregated infor-
mation, facilitating reproducibility, and pro-
viding algorithmic privacy-by-design measures
for pseudo-anonymity. We discuss our design
choices, inspired by the flow-based program-
ming paradigm, to use black-box components
that can easily be chained together and ex-
tended. We also analyze the ethical issues re-
lated to the use of this tool, and the built-in
measures to facilitate pseudo-anonymity.

1 Introduction

Twitter data are at the heart of NLP and social sci-
ence research (Steinert-Threlkeld, 2018), used to
study policy and decision-making, and understand
public opinion’s consequences better. Its accessi-
bility and the variety and abundance of the data
make Twitter one of the most fruitful sources to
experiment with new NLP methods, and to gener-
ate insights into societal behavior (Munger, 2017).
Given that 199 million people communicate on
Twitter daily,1 it becomes fundamental to find ways

1https://s22.q4cdn.com/826641620/file
s/doc_financials/2021/q1/Q1’21-Sharehold

to interpret this information better.
However, researchers often need more than pure

text data to control for the effects of various co-
variates, stratify the data into sensible subgroups,
and assess their reliability. Social sciences typi-
cally require a recourse to external variables like
age or location to control for confounds. In addi-
tion, NLP research has shown that integrating socio-
demographic information can improve a wide range
of classification tasks (Volkova et al., 2013; Hovy,
2015; Lynn et al., 2017; Li et al., 2018; Hovy and
Yang, 2021). By default, this information is not
available, and a wide range of NLP tools have been
developed to infer measures from the text (i.e., sen-
timent, syntactic structure: (Balahur, 2013; Kong
et al., 2014, inter alia) and user (age, gender, in-
come, person or company: (Preoţiuc-Pietro et al.,
2015; Wang et al., 2019, inter alia).

Here, we introduce Twitter-Demographer, a tool
that provides a simple and extensible interface for
NLP and social science researchers. Starting from
tweet ids (the common way to share Twitter data),
the tool hydrates the original text and can enrich it
with additional information like the sentiment of
the tweets, topics, or estimated demographic infor-
mation of the author, using existing tools. Twitter-
Demographer builds on previous research (Wang
et al., 2019; Barbieri et al., 2020; Wolf et al., 2020),
but puts all these efforts together in one simple
tool that can be used with little effort. Twitter-
Demographer can be applied to extract information
from different languages, as its default components
are either multi-lingual or language-independent.2

Twitter-Demographer has a simple API that can be
used to add user-defined components quickly and
effectively.

er-Letter.pdf
2Note, however, that the use of language-specific classifiers

might restrict the usage to specific languages.

289

https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2021/q1/Q1'21-Shareholder-Letter.pdf

One of our goals is to provide and enforce
the generation of reproducible data enrichment
pipelines (i.e., they can be shared and produce
the same results if components are kept the same).
With data enrichment we mean the process of ex-
tending a dataset, e.g., adding new inferred proper-
ties, or disambiguating its content (Cutrona et al.,
2019). Our flow-based infrastructure makes it
easy to produce and share pipelines with other re-
searchers to reconstruct the extended datasets.

Most importantly, inferring user-related at-
tributes poses a privacy issue, even for research
purposes. We implement several algorithmic
privacy-by-design solutions to facilitate pseudo-
anonymity of the users, and to reduce the chance
that their personal data or identifiers can be used to
identify natural persons.

We believe that Twitter-Demographer can help
(computational) social scientists wanting to analyze
the properties of their datasets in more depth, and
provide NLP practitioners with a unified way to
enrich and share data.

Contributions We introduce Twitter-
Demographer, a new tool to enrich datasets
of tweets with additional information. The
extensible tool enables NLP practitioners and
computational social scientists to quickly adapt
their own datasets with the features required
for a specific analysis. Twitter-Demographer
encodes the resulting enrichment pipeline in a
stable, shareable, and reproducible format and
implements privacy-by-design principles.

2 The flow-based paradigm

The flow-based paradigm is a programming
paradigm that uses a data processing factory
metaphor for designing applications as networks
of black-box processes (Morrison, 2010). The
paradigm is helpful for data handling because it
allows users to easily combine different black-
box components in many ways, fitting different
requirements time by time. Each component im-
plements a specific task, takes some inputs, and
returns some outputs. Many solutions employ this
kind of paradigm (e.g., Apache NiFi3). These so-
lutions are directed at experts like data engineers
because they require some knowledge about the
low-level details (e.g., how to handle data sources,
data streams, and event-based executions).

3https://nifi.apache.org/

The advantage of the flow-based paradigm is that
users do not have to know the intrinsic logic of each
block (hence black-box). They only have to focus
on combining blocks to ensure the proper mapping
between inputs/outputs of consecutive blocks. In-
deed, the main disadvantages of manually building
these pipelines are that (i) they require massive
effort to be defined; (ii) they are sensitive to vari-
ous hurdles, e.g., what happens if we cannot find
one tweet or its location is unavailable? (iii) they
are error-prone, with minor errors possibly tearing
down entire pipelines, e.g., what happens if a Web
service changes its exchange data format, or is no
longer available?

Twitter-Demographer has been imagined as
a low coupled set of components that operates
on a dataset in tabular format (e.g., a Pandas
DataFrame). Each component takes the dataset
as input, applies some operations on it (e.g., adding
columns), and returns the modified dataset. Com-
ponents can be integrated into pipelines: we aim
for high cohesion and low coupling principles to
reduce possible errors at the component level. Each
component exposes a set of required inputs (i.e.,
columns that must be contained in the input dataset)
and a set of generated outputs (i.e., names of the
new columns added to the dataset). Using this
information, we can chain different components
together to introduce dependencies (e.g., to run
the sentiment analysis classifier, we need first to
query Twitter and create a new column containing
the text of tweets). Exposing the input and the
outputs allows for the consistency between differ-
ent components to be checked beforehand to avoid
compatibility issues.

The flow-based setup makes it possible to re-
place any component with another one implement-
ing the same task with a different logic, as long as
the new component respects the communication in-
terface (i.e., expected inputs and generated outputs).
It is worth noting that the paradigm does not force
a specific absolute order between components: a
component requiring some columns as input (e.g.,
colX , colY) must be placed in any position after
the components generating such columns.

The goal of Twitter-Demographer is two-fold: 1)
providing an easy-to-use interface for data enrich-
ment and 2) providing a system that allows more
expert users to re-use and modify existing com-
ponents that are already implemented in Twitter-
Demographer easily.

290

https://nifi.apache.org/

create the demographer object 1

demo = Demographer() 2

3

re = Rehydrate(token) 4

me = NominatimDecoder() 5

st = SentimentClassifier(model_name) 6

7

add the components 8

demo.add_component(re) 9

demo.add_component(me) 10

demo.add_component(st) 11

12

run the pipeline 13

new_data = demo.infer(data) 14

Listing 1: Example of Twitter-Demographer basic usage.
‘data‘ variable is a simple DataFrame with one column
containing the tweet ids.

While it is true that Twitter-Demographer is
mainly based on the composition of existing tools,
these are wrapped into off-the-shelf components
that simplify the usage of the proposed analytics
methodologies.

3 Twitter-Demographer

We show the class diagram of Twitter-
Demographer in Figure 1. While Listing 1
shows an example application of the tool. Line
2 instantiates the Demographer object, which
is responsible for handling the entire pipeline
(i.e., it also performs compatibility checks on
components). Lines 4-6 show the instantiation
of the different data augmentation components
that will be used in the pipeline (a rehydration
component to collect additional information from
the tweets, a location decoder based on Nominatim,
and a sentiment classifier). Lines 9-11 add the
components to the demographer object, creating
the enrichment pipeline. Finally, line 14 runs the
entire pipeline on the data, generating the enriched
dataset.

We anyway guarantee the flexibility to allow new
components to be implemented. A Component
(Listing 2) is a simple abstract class that can be
easily inherited and implemented: introducing a
custom classification pipeline requires only adding
a custom classifier to the pipeline, which inherits
this class and implements the methods that handle
inputs, outputs and the method to run the inference
on the data.

Inputs and outputs are exploited by Demogra-
pher to handle control over the chain of possible
components that can be added. A component can-
not be added to a pipeline if it requires inputs that

class Component(ABC):

def __init__(self):
self.outputs = self.outputs()

@abc.abstractmethod
def outputs(self):

pass

@abc.abstractmethod
def inputs(self):

pass

@abc.abstractmethod
def infer(self, *args):

pass

Listing 2: The implementation of the Component ab-
stract class. ‘inputs‘, ‘outputs‘, and ‘infer‘ are all ab-
stract methods that have to be implemented by the in-
heriting classes.

are not available in the original data, or that are
not generated by previous components. For the
sake of providing people with a simple system
to extend, the current implementation of Twitter-
Demographer represents these variables as lists of
strings representing names of columns in data. As
a next step, we will improve the current implemen-
tation by adopting a pure OOP point of view (i.e.,
inputs and outputs will turn into interfaces, with
configurable parameters).

Listing 3 shows an example of an implemented
classifier; this is similar to how we implemented
some of our components. However, we report
it also to show that this part of the pipeline can
be used by interested researchers as an example
of code to extend to support custom behaviors in
Twitter-Demographer.

Twitter-Demographer saves the intermediate
computation steps, right after each component has
been executed, to handle down-streaming unex-
pected errors (e.g., lost internet connection). In
those situations, the computation can be restarted
from checkpoints.

4 Components

Twitter-Demographer is a container of components
and can be extended as they are provided by the
community. Some components come with an au-
tomatic caching logic, especially when the com-
ponent relies on external services with a limited
request rate (e.g., public API accessed with free ac-
counts with limited requests). For example, the lo-
calization component implements a caching mech-

291

Demographer

List<Component> components
String[] inputs

validate()
infer()

Component

String name
List<string> inputs
List<string> outputs

infer()

HuggingFaceClassifier

model
tokenizer

Rehydrate

String bearer_token

NominatimDecoder
TopicModeler

String embedding_model
int number_of_topics

GenderAndAge

LIWCAnalyzer

PerspectiveScorer BaseClustering

contains1 *

Figure 1: The UML class diagram of the current Twitter-Demographer setup. Demographer is the main class that
handles the execution of the different Components. Component is an abstract class that defines required inputs and
produced outputs, as well as an abstract infer() method that has to be implemented by its subclasses. Many of the
available implementations of the Component class are reported in the UML diagram; the others have been removed
to keep the image self-contained.

class UserClassifier(Component):

def __init__(self, model):
super().__init__()
self.m = model

def outputs(self):
return ["sentiment"]

def inputs(self):
return ["text"]

def infer(self, data):
return {"sentiment" :

self.m.predict(data["text"])}

Listing 3: A user-defined component for sentiment clas-
sification of tweets. Users add their own classifiers to
the pipeline by wrapping them inside the Component
abstraction.

anism to avoid repeating requests with the same
labels, saving requests. The current version of
Twitter-Demographer is shipped with the following
main components wrapped inside:

Rehydrate Many datasets are released as lists of
tweet IDs. This is a requirement that has to be met
to release data without violation of Twitter policies.
Our Rehydrate Component is based on Twitter API
v2. This component allows reconstructing tweets
in batches of 100 per request. It automatically
waits when Twitter API Rate Limits are reached
and starts again when those limits have been reset.4

This component handles the retrieval of all the in-
formation that can be collected on Twitter from the
single tweet ID. It requires a Twitter API key.

4This is a property we inherit from Tweepy https://
www.tweepy.org/

Nomimatim Decoder (Open Street Map) We
use Open Street Map as our main source for the
localization step, which is the reconciliation of user-
written locations to real locations. In our context,
we make use of the location present in Twitter pro-
files. This process is generally less precise than
the geolocation given by Twitter, but it also greatly
increases the recall as users often fill this field in
their profile. This localizer outputs the detected
country and city.

Since there is currently no evaluation on the ac-
curacy of this method for Twitter data, we predict
locations from the dataset from (Basile et al., 2019)
to check how many times the country predicted by
the localizer was correct. We asked a single human
annotator to annotate 300 samples from this dataset:
the prediction is annotated as valid (1) if the coun-
try predicted by the model is effectively the one
that can be inferred from the user-written location;
otherwise, the prediction is annotated as wrong (0)
in two occasions: if no country can be inferred
from the user location, but the localizer still returns
something, or when a country can be inferred but
the localizer returns nothing. Table 1 shows exam-
ples of user locations with the predicted country
and the label assigned by the annotator. The final
accuracy of these predictions is 0.85, suggesting
that the localizer is reliable enough for this kind of
data. We also repeated the experiment by consider-
ing city annotations, observing a final accuracy of
0.80.

By default, this component relies on the publicly
available Nominatim service,5 which comes with
a rate limit of 1 request per second; however, the

5https://nominatim.openstreetmap.org/

292

https://www.tweepy.org/
https://www.tweepy.org/
https://nominatim.openstreetmap.org/

Location Predicted Score

Florida, USA United States 1
Regno Unito United Kingdom 1
120 countries United Kingdom 0

Table 1: Examples of annotations from the localizer. In
the second example, the user location was written in
Italian, but the model was nevertheless able to predict
the correct country. In the third example, the localizer
should not have predicted something, since 120 coun-
tries is not a country. We count this as an error.

component also supports a local installation of the
Nominatim service as its backend.6

HuggingFace Transformer Classifier Hugging-
Face transformers (Wolf et al., 2020) is now one
of the most used libraries in the NLP field. Thanks
to the HuggingFace Hub, models can be deployed
online and used by everyone. We provide a general
wrapper for the HuggingFace Transformer Classi-
fier. This library is based on the recent advance-
ment in NLP related to the introduction of trans-
former models.

With this wrapper, any classification pipeline al-
ready present on the HuggingFace website can be
used to classify the data (e.g., Hate Speech detec-
tion, Sentiment Analysis, Emotion Detection, and
Topic Classifier). Obviously, users need to ensure
they are using the correct model and assess the
performance of the original works. While this judg-
ment may require specific background knowledge,
in the end it comes down to, for example, finding
a model for sentiment analysis from the Hugging-
Face models’ catalog,7 then checking the original
publication to ensure the model is reliable for the
specific ongoing task. However, once the model
has been found it is only necessary to specify the
model name in the pipeline to get the predictions.

Word Counters Similarly to Dehghani et al.
(2017) we also integrate the support for Linguistic
Inquiry Word Count (LIWC) (Tausczik and Pen-
nebaker, 2010) in our application. LIWC provides
meaningful linguistic and psychological categories
that can be used to analyze text. LIWC is propri-
etary and will require interested users to buy the
dictionary.

We also integrate Empath (Fast et al., 2016), an
open-source tool to analyze text across different

6A Docker image for deploying Nominatim is avail-
able at https://hub.docker.com/r/mediagis/no
minatim/.

7https://huggingface.co/models

lexical categories (similarly to what LIWC does).
The author shows that for the same categories, Em-
path correlates with LIWC.

Toxicity Classifiers Perspective API8 is cur-
rently one of the most reliable classifier for toxicity
detection in text. Trained on a proprietary dataset,
the results on different dataset show consistent pre-
dictive power (with AUC often higher than 0.9).
Perspective API offers the annotation for one main
label, called textittoxicity that has been used in sev-
eral other research works (Gehman et al., 2020).

However, the API offers different predictive la-
bels. In our current component, we include the ones
suggested by the authors of the APIs, namely TOX-
ICITY, SEVERE TOXICITY, IDENTITY ATTACK,
INSULT, PROFANITY, THREAT. This API comes
with a rate limit of 1 request per second, but it is
free; otherwise, users can get an upgraded API key
directly from Perspective and use it in the tool.

Gender and Age Predictor Predicting gen-
der and age is very important to understand
speaker characteristics better. To this end, Twitter-
Demographer also includes a wrapper around the
M3 classifier (Wang et al., 2019) that can be used to
predict binary gender, age group (i.e., ≥40, 30-39,
19-29, <18) and identifies if the Twitter account is
an organization profile or not.9 M3 has been shown
to be an efficient method to predict demographic
variables over Twitter data. This predictor uses in-
formation from the profile image, the user name,
and the user description to infer the variables.

Figure 2 shows an example of a dataset enriched
with sentiment prediction and location.

4.1 Additional Features
Twitter-Demographer exposes additional and more
advanced behaviors through the use of Python dec-
orators. This can be used by more expert users to
extend their own pipelines. For example, a com-
mon use case is to handle “missing” elements in the
pipelines: a geolocalizer cannot be run if the user-
written location is not retrieved. This can break the
pipeline (i.e., running the Geolocation on None
generates an error). However, this is often not
known at the beginning of the pipeline. This re-
quires writing code to 1) temporarily skip data with
missing text, 2) run the classifiers 3) return, to the
caller, the entire dataset annotated with the new

8https://www.perspectiveapi.com/
9See Section 5 and Section 6 for a discussion of privacy

by design and limitations

293

https://hub.docker.com/r/mediagis/nominatim/
https://hub.docker.com/r/mediagis/nominatim/
https://huggingface.co/models
https://www.perspectiveapi.com/

Figure 2: An example of a dataset enriched with sentiment analysis (2 is positive, 1 is neutral), location, and age of
the sender information. The ‘location’ field, extracted with Twitter APIs, has been disambiguated and split into
‘nominatim_city’ and ‘nominatim_country’. Screen names have been hashed (see Section 5 for a discussion on
privacy).

property where possible (to not compromise other
steps). Twitter-Demographer exposes a simple dec-
orator that automatically applies this kind of filter-
ing (see Listing 4). The same functionality can be
useful for pipelines including sentiment classifiers.

@not_null("text")
def infer(self, data):

[...]
preds = model.predict(data["text"])

return {"locations": preds}

Listing 4: Extending class methods with decorators to
support more complex behaviors. The ‘not_null’ deco-
rator handles skipping null values in the ‘text’ column
so that the pipeline does not break during the flow.

4.2 Additional Resources

Twitter-Demographer is available as a Python pack-
age,10 released under the research-friendly and
open-source MIT license. It is also published on
the PyPi repository,11 and can be installed with the
pip package manager. Tutorial notebooks are re-
leased on the GitHub repository. A two minutes
video showcasing Twitter-Demographer usage can
be found on YouTube.12. There is also a longer ver-
sion of the video.13. The package has 57 GitHub
stars and more than 6,000 downloads at the time of
submission.

10https://github.com/MilaNLProc/twitte
r-demographer

11https://pypi.org/project/twitter-dem
ographer/

12https://www.youtube.com/watch?v=NYlj
rfkLnU8

13https://www.youtube.com/watch?v=JGWQ
ZVf2Vdw

5 Privacy by Design

Following the recommendations of the EU’s Gen-
eral Data Protection Regulation (GDPR) (Euro-
pean Parliament and Council of European Union,
2016), we implement a variety of measures to en-
sure pseudo-anonymity by design. Using Twitter-
Demographer provides several built-in measures
to remove identifying information and protect user
privacy: 1) removing identifiers, 2) unidirectional
hashing, and 3) aggregate label swapping.

At the end of the reconstruction, we drop most
of the personal information that we have recon-
structed (e.g., tweet ID, profile URLs, images, and
so on). The information is anonymized whenever
possible, e.g., screen names are replaced with a
globally consistent, unidirectional hash code. In
this way, we can retain the user-features mapping
within the dataset (enabling further analysis, like
aggregations), without allowing people to identify
Twitter users (at least not without significant and
targeted effort). In addition, we randomly swap the
set of labels of a subset of the final data, i.e., some
labels attached to one instance are transferred to
another instance. This procedure reduces the pos-
sibility of finding correlations between individual
texts and their labels, which reduces its value for
model training. However, we expect this use not
to be a user priority. On the other hand, swapping
does not affect aggregate statistics and the kind of
analysis based on them.

6 Conclusions

We are constantly improving this library to sup-
port more use cases and models. For example, we
are working on making the geolocation indepen-
dent of third-party APIs like Nominatim, trying
to support the download of the Nominatim index
instead to query (thus improving speed and mit-
igating rate limits). We are introducing multiple

294

https://github.com/MilaNLProc/twitter-demographer
https://github.com/MilaNLProc/twitter-demographer
https://pypi.org/project/twitter-demographer/
https://pypi.org/project/twitter-demographer/
https://www.youtube.com/watch?v=NYljrfkLnU8
https://www.youtube.com/watch?v=NYljrfkLnU8
https://www.youtube.com/watch?v=JGWQZVf2Vdw
https://www.youtube.com/watch?v=JGWQZVf2Vdw

methods for topic modeling and additional com-
ponents for text-clustering (Bianchi et al., 2021;
Grootendorst, 2022) and hyperparameter optimiza-
tion tools to find the optimal values for these. We
aim to provide a simple interface to address dif-
ferent user needs. While the tool is momentarily
focused on Twitter, most of the components that
we have defined have a broader usage (e.g., the
localization component).

Ethical Considerations and Limitations

Inferring demographic attributes of users has many
advantages for both data analysis and social science
research, but it has obvious dual-use potential. I.e.,
ill-intentioned users could abuse it for their own
gains. Users might have chosen not to disclose their
information on purpose, so inferring them might
go against their wishes. Given the “right” tools, we
can also infer protected attributes. Moreover, col-
lecting enough demographic attributes can identify
real owners of individual users, or at least reduce
the number of potential candidates substantially.
The latter raises privacy concerns.

As outlined in Section 5, inferring user attributes
carries the risk of privacy violations. We follow the
definitions and recommendations of the European
Union’s General Data Protection Regulation for
algorithmic pseudo-anonymity. We implement sev-
eral measures to break a direct mapping between
attributes and identifiable users without reducing
the generalizability of aggregate findings on the
data. Our measures follow the GDPR definition of
a “motivated intruder”, i.e., it requires “effort” to
undo our privacy protection measures. However,
given enough determination and resources, a bad
actor might still be able to circumvent or reverse-
engineer these measures. This is true independent
of Twitter-Demographer, though, as existing tools
could be used more easily to achieve those goals.
Using Twitter-Demographer provides practitioners
with a reasonable way to protect anonymity.

Twitter-Demographer does not come without
limitations. Some of these are related to the com-
ponents’ precision; for example, the Nominatim
decoder can fail the disambiguation - even if it
has been adopted by other researchers and services.
Users must be aware of these limitations and check
the components’ performance.

While Twitter-Demographer makes it easy to
define a reproducible pipeline, it cannot prevent the
fact that tweets might disappear over time. Thus,

running Twitter-Demographer on the same data
after some months can generate different results
due to missing tweets.

Twitter-Demographer wraps the API
from (Wang et al., 2019) for age and gender
prediction. However, those predictions come
at cost of over-generalizing and stereotyping:
age ranges are extremely broad (e.g., the senior
population is put in the same group "> 40"), and
gender is represented as binary (i.e., male/female).
To this end, our intent is not to make normative
claims about gender, as this is far from our beliefs.

Twitter-Demographer needs both text and user
profile pictures of a tweet to make inferences; for
that reason, Twitter-Demographer has to include
such information in the dataset during the pipeline
execution. While this information is public (e.g.,
user profile pictures), the final dataset also contains
inferred information, which may not be publicly
available (e.g., gender or age of the user). We can-
not completely prevent misuse of this capability,
but we have taken steps to reduce the risk and pro-
mote privacy by design substantially.

Not all components in Twitter-Demographer are
available for all languages. For example, Empath
is only available in English. LIWC is instead avail-
able in other languages but requires getting ac-
cess to different dictionaries. The same goes for
the availability of components like classifiers, lan-
guages like English have more resources than other
low-resource ones.

Eventually, Twitter-Demographer assumes that
the users are aware of the limits of the components
they are using. The use of HuggingFace models,
for example, requires users to check if the models
are indeed effective on the data of interest: using a
pre-pandemic sentiment classifier on more recent
data, might overestimate the number of positive
tweets due to the presence of the word “positive”
in messages regarding COVID positivity.

Acknowledgments

DH is a member of the Bocconi Institute for Data
Science and Analytics (BIDSA). This work was
partially conducted while FB was a member of
BIDSA. This project has partially received funding
from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 949944,
INTEGRATOR).

295

References
Alexandra Balahur. 2013. Sentiment analysis in social

media texts. In Proceedings of the 4th Workshop on
Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis, pages 120–128, Atlanta,
Georgia. Association for Computational Linguistics.

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetEval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644–1650, Online. Association for Computational
Linguistics.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54–63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Federico Bianchi, Silvia Terragni, and Dirk Hovy. 2021.
Pre-training is a hot topic: Contextualized document
embeddings improve topic coherence. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 759–766, Online.
Association for Computational Linguistics.

Vincenzo Cutrona, Flavio De Paoli, Aljaž Košmerlj,
Nikolay Nikolov, Matteo Palmonari, Fernando
Perales, and Dumitru Roman. 2019. Semantically-
enabled optimization of digital marketing campaigns.
In The Semantic Web - ISWC 2019 - 18th Interna-
tional Semantic Web Conference, Auckland, New
Zealand, October 26-30, 2019, Proceedings, Part
II, volume 11779 of Lecture Notes in Computer Sci-
ence, pages 345–362. Springer.

Morteza Dehghani, Kate M Johnson, Justin Garten,
Reihane Boghrati, Joe Hoover, Vijayan Balasubra-
manian, Anurag Singh, Yuvarani Shankar, Linda
Pulickal, Aswin Rajkumar, et al. 2017. Tacit: An
open-source text analysis, crawling, and interpreta-
tion tool. Behavior research methods, 49(2):538–
547.

European Parliament and Council of European Union.
2016. Regulation (EU) 2016/679.

Ethan Fast, Binbin Chen, and Michael S Bernstein. 2016.
Empath: Understanding topic signals in large-scale
text. In Proceedings of the 2016 CHI conference on
human factors in computing systems, pages 4647–
4657.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association

for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 752–762, Beijing, China. Asso-
ciation for Computational Linguistics.

Dirk Hovy and Diyi Yang. 2021. The importance of
modeling social factors of language: Theory and
practice. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 588–602, Online. Association
for Computational Linguistics.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1001–1012, Doha, Qatar.
Association for Computational Linguistics.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 25–30, Melbourne,
Australia. Association for Computational Linguistics.

Veronica Lynn, Youngseo Son, Vivek Kulkarni, Niran-
jan Balasubramanian, and H. Andrew Schwartz. 2017.
Human centered NLP with user-factor adaptation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1146–1155, Copenhagen, Denmark. Association for
Computational Linguistics.

J. Paul Morrison. 2010. Flow-Based Programming, 2nd
Edition: A New Approach to Application Develop-
ment. CreateSpace, Scotts Valley, CA.

Kevin Munger. 2017. Tweetment effects on the tweeted:
Experimentally reducing racist harassment. Political
Behavior, 39(3):629–649.

Daniel Preoţiuc-Pietro, Vasileios Lampos, and Nikolaos
Aletras. 2015. An analysis of the user occupational
class through Twitter content. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1754–1764, Beijing,
China. Association for Computational Linguistics.

Zachary C Steinert-Threlkeld. 2018. Twitter as data.
Cambridge University Press.

296

https://aclanthology.org/W13-1617
https://aclanthology.org/W13-1617
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/2021.acl-short.96
https://doi.org/10.18653/v1/2021.acl-short.96
https://doi.org/10.1007/978-3-030-30796-7_22
https://doi.org/10.1007/978-3-030-30796-7_22
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.3115/v1/D14-1108
https://doi.org/10.3115/v1/D14-1108
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/D17-1119
https://doi.org/10.3115/v1/P15-1169
https://doi.org/10.3115/v1/P15-1169

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: Liwc and comput-
erized text analysis methods. Journal of language
and social psychology, 29(1):24–54.

Svitlana Volkova, Theresa Wilson, and David Yarowsky.
2013. Exploring demographic language variations
to improve multilingual sentiment analysis in social
media. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1815–1827, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Zijian Wang, Scott Hale, David Ifeoluwa Adelani, Prze-
myslaw Grabowicz, Timo Hartman, Fabian Flöck,
and David Jurgens. 2019. Demographic inference
and representative population estimates from multi-
lingual social media data. In The World Wide Web
Conference, pages 2056–2067. ACM.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

297

https://aclanthology.org/D13-1187
https://aclanthology.org/D13-1187
https://aclanthology.org/D13-1187
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 298 - 310
December 7-11, 2022 c©2022 Association for Computational Linguistics

Azimuth: Systematic Error Analysis for Text Classification

Gabrielle Gauthier-Melançon, Orlando Marquez Ayala, Lindsay Brin, Chris Tyler,
Frédéric Branchaud-Charron, Joseph Marinier, Karine Grande, Di Le

ServiceNow
{gabrielle.gm,orlando.marquez,lindsay.brin}@servicenow.com

Abstract

We present Azimuth, an open-source and easy-
to-use tool to perform error analysis for text
classification. Compared to other stages of the
ML development cycle, such as model train-
ing and hyper-parameter tuning, the process
and tooling for the error analysis stage are
less mature. However, this stage is critical
for the development of reliable and trustwor-
thy AI systems. To make error analysis more
systematic, we propose an approach compris-
ing dataset analysis and model quality assess-
ment, which Azimuth facilitates. We aim to
help AI practitioners discover and address ar-
eas where the model does not generalize by
leveraging and integrating a range of ML tech-
niques, such as saliency maps, similarity, uncer-
tainty, and behavioral analyses, all in one tool.
Our code and documentation are available at
github.com/servicenow/azimuth.

1 Introduction

As academic and research labs push the boundaries
of artificial intelligence, more and more enterprises
are including NLP models1 in their real-world sys-
tems. This is exciting yet risky due to the com-
plexity of current deep learning models and their
increasing social impact. Whereas in traditional
software development, engineers have methods to
trace errors to code, it is challenging to isolate
sources of error in AI systems.

NLP models can suffer from poor linguistic ca-
pabilities (Ribeiro et al., 2020), hallucinations (Ji
et al., 2022), learning spurious correlations via an-
notation artifacts (Gururangan et al., 2018), or am-
plifying social biases (Chang et al., 2019; Stanczak
and Augenstein, 2021). In addition to the adverse
effects that these problems can cause to both indi-
viduals and society, deploying problematic mod-
els can lead to legal and financial penalties (Burt,

1While models are part of pipelines that can include pre-
and post-processors, we use the term models for simplicity.

Figure 1: The exploration space of Azimuth allows users
to explore dataset and pipeline quality across different
data subpopulations.

2021). Even when poorly functioning models have
no adverse social effects, they can still degrade
trust, leading to problems with user adoption (Ko-
cielnik et al., 2019; McKendrick, 2021).

While it may be unreasonable to expect a per-
fect model, AI practitioners should communicate
existing limitations so that stakeholders can make
informed decisions about deployment, risk miti-
gation, and allocation of resources for further im-
provements (Arnold et al., 2019; Mitchell et al.,
2019). However, the current common error anal-
ysis practices may not be sufficiently thorough to
provide this visibility, limiting our capacity to build
safe, trustworthy AI systems.

As part of the ML development cycle, practition-
ers choose appropriate metrics based on business
requirements. These metrics should assess whether
NLP models have acquired the linguistic skills to
perform the specified task. While metrics are use-
ful to rapidly compare different models, they are
only the beginning of quality assessment as they do
not expose failure modes, i.e., types of input where
the model fails, and do not readily indicate what
can be improved. Furthermore, relying on metrics
alone can be harmful, as they can overestimate qual-
ity and robustness while hiding unintended biases
(Ribeiro et al., 2020; Bowman and Dahl, 2021).

To discover and address these limitations, er-

298

github.com/servicenow/azimuth

ror analysis is crucial. Unfortunately, compared
to other stages of the ML development cycle, the
error analysis stage is less mature. While various
tools are commonly used to train and tune neural
networks2, there is less convergence and adoption
of both standards and tools to analyze errors. Anal-
ysis is typically conducted using custom scripts,
spreadsheets, and Jupyter notebooks, guided by a
practitioner’s intuition, which may help uncover
some problems while missing others. Large evalu-
ation sets make per-example analysis of incorrect
predictions time-consuming and tedious. Because
this error analysis process is often informal, ad hoc,
and cumbersome, practitioners often skip or rush
this stage, focusing solely on high-level metrics.
This hinders traceability and accountability, and
introduces risks, especially for models deployed in
production.

To alleviate these issues, we contribute the fol-
lowing:

• A systematic and intuitive error analysis pro-
cess that practitioners can follow to improve
their ML applications.

• Azimuth, an open-source and easy-to-use tool
that facilitates this process, making thorough
error analysis of text classification models eas-
ier and more accessible.

2 Systematic Error Analysis

The goal of error analysis is to understand where
and why a model succeeds or fails, to better in-
form both model improvement and deployment
decisions. We propose a process grouped into two
categories: (1) dataset analysis and (2) model qual-
ity assessment, as illustrated in Fig. 2. Dataset
analysis involves assessing and improving the data
used to train and evaluate the model, while qual-
ity assessment focuses on model behavior. This
process should be iterative, as analyzing model pre-
dictions can help identify and fix dataset problems,
and dataset findings can help explain and reduce
model errors. A limitation of our approach is that it
does not currently assess whether models are learn-
ing a task ethically. While some of the techniques
we refer to below can be used for this purpose,
building ethical NLP systems is outside the scope
of this paper.

2Hugging Face Transformers, Ray Tune, etc.

2.1 Dataset Analysis

Dataset analysis is indispensable to validate that
the available data is appropriate for the given ML
task and to suggest possible approaches to solve it.
It should be conducted both before and throughout
the ML development cycle, as it can guide model
improvements. This analysis should encompass
all data splits, although held-out evaluation sets re-
quire special care to avoid overfitting. High-quality
data is essential as it impacts both model quality
and the choice of models that will be deployed
(Northcutt et al., 2021).

We identify four common types of dataset prob-
lems: data shift, class imbalance, class definition,
and problematic examples. While these may not
apply to all tasks, they illustrate common data prob-
lems. The first three can be detected by analyzing
data at the dataset level, while problematic exam-
ples require example-level analysis.

Data Shift. The training and validation splits
must be compared to identify significant data
shift caused by inadequate sampling or poor la-
beling practices (e.g., duplicated examples, miss-
ing classes). Taking into consideration the chal-
lenges in creating high-quality datasets (Bowman
and Dahl, 2021), one must guard against signifi-
cant differences in data distributions across splits
as they may cause quality problems or lead to poor
choices in model selection and training.

Class Imbalance. In classification tasks, class
imbalance occurs when there are differences in the
proportion or number of examples in each class
relative to each other. This is problematic because
models often overpredict classes that are overrep-
resented in the training data, whereas class imbal-
ance in the evaluation data may cause performance
metrics to be misleading. If unwanted class imbal-
ance is present, practitioners may choose to resolve
the issue through data augmentation for specific
classes, or by upsampling or downsampling.

Class Definition. The classes used in the ML
task affect what the model will learn. Practitioners
may need the assistance of domain experts to deter-
mine whether the classes are defined appropriately.
For instance, class overlap is a symptom of poor
class definition that can be seen when groups of
examples in multiple classes overlap semantically,
resulting in classes that are not easily separable.
Some semantic overlap may be acceptable and not
cause model confusion, whereas other overlap may
indicate low data quality or poor dataset construc-

299

Figure 2: Proposed approach for systematic error analysis.

tion, leading to poor model performance. Improv-
ing class definition can include relabeling misla-
beled examples, better defining classes by merging
or splitting them, and augmenting data for specific
classes.

Problematic Examples. Multiple kinds of chal-
lenges can arise at the example level. This in-
cludes examples outside the expected domain, “dif-
ficult” examples with exceptional characteristics
(e.g., words from other languages, long sentences)
but for which model performance is desired, ex-
amples for which humans would disagree on the
label, and accidental mislabeling issues. These
problems can confuse class boundaries and cause
model errors. Resolution options include relabel-
ing examples, removing examples from datasets,
and targeted data augmentation.

2.2 Model Quality Assessment
Once datasets are deemed sufficient in quality, prac-
titioners train and tune models aiming to find the
best candidates. Quality assessment consists of ex-
amining how well the selected models perform on
a specified evaluation set as well as their ability to
generalize beyond the evaluation set. The objective
is to understand where and why the model fails.
Issues exposed in model quality assessment can
also inspire further dataset improvements.

Assessing quality by examining metrics is the
aspect of error analysis that is typically performed,
as it is relatively fast to conduct (Church and Hes-
tness, 2019). This quantitative assessment allows
for quick comparison across models or model ver-
sions using known scores such as precision, re-
call, or F1. This can include metrics to measure
model calibration, such as expected calibration er-
ror (ECE), as well as metrics that quantify business
value, safety, and bias.

As practitioners already tend to analyze high-
level metrics to have a basic notion of model qual-
ity, we focus here on other approaches to evaluate
generalization. To help discover and correct failure
modes before models are deployed, we propose

four types of evaluation: (1) assess model quality
according to data subpopulations, (2) discover an-
notation artifacts, (3) perform behavioral testing,
and (4) conduct uncertainty-based analysis.

Data Subpopulations are subsets of datasets
with shared characteristics such as examples with
long text, entities, keywords, same label, etc. Mod-
els may behave differently on these subpopulations,
but high-level metrics can hide these failure modes.
Guided by domain knowledge, this analysis can
help ensure that the model generalizes well under
various input characteristics. Often, performance
on problematic subpopulations can be improved by
targeted data augmentation.

Annotation Artifacts are patterns in the labeled
data that can be exploited by models to learn simple
heuristics instead of learning to perform the task,
and yet achieve high metric scores (Gururangan
et al., 2018). The result is a model that relies un-
desirably on specific features, such as words that
tend to correlate with the label only in the available
datasets. Annotation artifacts can be discovered
by leveraging feature-based explainability meth-
ods, such as saliency maps, to approximately de-
termine the importance of every token when the
model makes a prediction. Once such artifacts are
found, practitioners can refine the datasets to help
models decrease their reliance on them.

Behavioral Testing assesses model robustness
by validating model behavior based on input and
output (Ribeiro et al., 2020). Perturbing a dataset
and observing the corresponding predictions can
help identify important errors, biases, or other po-
tentially harmful aspects of the model that may not
be otherwise obvious. For production models, this
type of testing is critical, as the range of user input
is infinite, while the evaluation datasets are finite.
Models that change predictions or their confidence
values when the input is slightly altered without
changing its semantics can have unintended conse-
quences and may lose the user’s trust.

Uncertainty-based Analysis includes assessing
examples that are more difficult for the model to

300

learn. Examination of lower-confidence predictions
can help indicate regions of the data distribution
where the model may fail in the future, similar to
Data Maps (Swayamdipta et al., 2020). A more so-
phisticated approach is to find predictions with high
epistemic uncertainty, computed with techniques
such as Bayesian deep ensembles (Wilson and Iz-
mailov, 2020). Augmenting the training dataset
with more representative examples from these data
regions can improve model quality.

Systematic error analysis will help practitioners
obtain the following:

• Datasets deemed sufficient in quality that can
be used for training and evaluation.

• Identified failure modes: known situations
where the model fails to generalize.

To help practitioners achieve these outcomes, we
contribute Azimuth to the NLP community.

3 Azimuth, an Open-Source Tool

Azimuth was developed as an internal tool at Ser-
viceNow and open sourced in April 2022. It facil-
itates our proposed approach to systematize error
analysis of ML systems. While it is currently tai-
lored for text classification, it could be extended
to support other use cases. The tool was built by
a cross-collaborative team of scientists, engineers,
and designers, with a human-centered approach
that focuses on the AI practitioner’s needs.

Before launching Azimuth, the user defines in
a configuration file the dataset splits and pipelines
to load and analyze. In Azimuth, pipelines refer
to the ML model as well as any pre-processing
and post-processing steps. The tool is built on top
of the Hugging Face (HF) datasets library (Lhoest
et al., 2021) and easily interfaces with HF pipelines
(Wolf et al., 2020). For flexibility, any Python
function can be defined as a pipeline. If pipelines
are unavailable, Azimuth can still be used, although
with limited features, by reading predictions from
a file. The tool can also be used for dataset analysis
without a pipeline.

3.1 User Workflow
Azimuth leads users through two main screens: the
dashboard and the exploration space. At startup,
users are brought to the dashboard, which presents
a summary of the different capabilities and flags
potential dataset and pipeline problems (Fig. 6).
The dashboard is linked to the exploration space

through pre-selected filters that allow a more de-
tailed investigation of issues raised on the dash-
board. For example, as shown in Fig. 3, pipeline
quality is indicated by metrics on different data sub-
populations, such as label, prediction, and smart
tag (defined below). By clicking on a row, the user
is brought to the exploration space filtered on the
corresponding subpopulation.

Figure 3: On the dashboard, pipeline quality is broken
down by different data subpopulations.

The exploration space allows the user to ex-
plore the dataset and pipeline quality by filtering on
different data subpopulations, model confidence,
and/or the presence of certain text. Data can be
shown for predictions both before and after post-
processing (e.g., thresholding). Changing the fil-
ters will update all available visualizations and ta-
bles split over three tabs. The first tab displays
several quality metrics, a histogram of confidence
scores for correct and incorrect predictions, and
word clouds indicating word importance (Fig. 1).
The second tab displays the confusion matrix (Fig.
7). The last tab shows the details of the raw data and
predictions, allowing users to inspect individual ex-
amples and their smart tags, and propose actions
for those that are problematic (Fig. 4). Clicking on
a particular example takes users to its details page,
which provides additional information such as the
prediction at each post-processing step, behavioral
test results, and semantically similar examples from
each dataset split (Fig. 12).

Figure 4: The exploration space displays examples
along with their predictions and smart tags. The user
can propose actions to improve the dataset.

3.2 Smart Tags

An integral feature of Azimuth is the concept of
smart tags, which are tags assigned to dataset ex-
amples based on predefined rules. Smart tags al-

301

low users to explore the dataset and model predic-
tions through various data subpopulations, helping
to detect failure modes and to identify problem-
atic examples. Some smart tags are straightfor-
ward (examples with few tokens), while others are
more complex (examples with high epistemic un-
certainty). They are grouped in families, based on
their associated capabilities, which may require ac-
cess to only the dataset or to both the dataset and
the pipeline.

To assist the process of improving the dataset,
Azimuth has a “proposed action” field with options
to indicate further actions that should be taken on
specific examples. There are natural correspon-
dences between certain smart tags and proposed
actions. Users can filter examples in the exploration
space by a certain smart tag to focus specifically on
an aspect of dataset analysis. For instance, the high
epistemic uncertainty smart tag can detect hard-to-
predict examples that may require actions such as
relabeling, removing examples, or augmenting the
training set with similar examples. In the same
vein, smart tags from the similarity analysis may
highlight examples that suggest the need to add
new classes or merge existing ones. There is also a
generic proposed action investigate to signal that
further troubleshooting is required as no concrete
action is clear yet.

3.3 Capabilities

Azimuth provides a variety of capabilities for both
dataset analysis and model quality assessment. Fig.
5 depicts how the different capabilities map to the
approach proposed in section 2. Our documen-
tation includes a detailed list of each feature and
smart tag that are part of Azimuth’s capabilities.

Class Size Analysis. Azimuth surfaces classes
having too few examples, which may indicate class
imbalance within a split. The tool also detects a
form of dataset shift by raising warnings when the
number of examples across classes is not similarly
distributed across splits.

Syntax Analysis. The Spacy library (Honnibal
et al., 2020) is used to inspect the syntax of exam-
ples. Besides detecting significant differences in
sentence length between dataset splits, we use de-
pendency trees and part-of-speech tags to explore
model behavior when examples are missing a sub-
ject, verb, or object. Syntactic smart tags can help
identify problematic examples and explore model
performance on atypical syntax.

Similarity Analysis. Azimuth leverages the
SentenceTransformers framework (Reimers and
Gurevych, 2019) to compute sentence embeddings.
We use these embeddings to calculate the similarity
of all pairs of examples in all dataset splits, and per-
form similarity search using faiss (Johnson et al.,
2019). Smart tags and nearest neighbors based
on similarity values allow for surfacing potential
dataset shift, class overlap, or problematic exam-
ples. For example, some smart tags surface exam-
ples that are distant from their nearest neighbors,
while others identify examples where the neighbors
belong to a different class.

Prediction Analysis. Visualizations and metrics,
such as the confusion matrix and the expected cali-
bration error, help assess model quality. This type
of analysis also includes threshold comparison as
well as smart tags that compare prediction results
across different pipelines.

Explainability. We generate saliency maps (Kin-
dermans et al., 2019) to reveal why a particular
prediction was made in terms of the relevance of
each input token to the prediction (Bastings and
Filippova, 2020; Atanasova et al., 2020). We use
a gradient-based technique as it is fast to compute
and available for all token-based models.

In the exploration space, saliency maps are
shown for each example in the filtered subpopu-
lation. Additionally, word clouds allow inspection
of the most salient words for correct (green) and
incorrect (red) predictions, which can help identify
words present in examples that the model strug-
gles to classify. Differences between word clouds
for a specific data subpopulation, such as class la-
bel, can hint at spurious correlations or a model’s
over-reliance on specific words, as exemplified in
section B.3.2. Lastly, on the example details page,
the user can compare the example’s most salient
words to those of similar training examples, which
may help explain misclassification.

Behavioral Analysis. Azimuth uses behavioral
testing to help assess the general linguistic capabil-
ities of NLP models. As an initial implementation,
we use NLPAug (Ma, 2019) and custom functions
to create Robustness Invariance tests: input pertur-
bations that should not change the model predic-
tions (Ribeiro et al., 2020). Predictions obtained
with and without perturbations are compared to re-
veal areas where the model lacks robustness. Smart
tags highlight examples whose predictions have
changed unexpectedly, helping to identify specific

302

Figure 5: The steps of our proposed approach are pictured in gray boxes while the corresponding Azimuth
capabilities are in black boxes. "All smart tags" means that all capabilities and their smart tags can be useful for this
step.

problems. In addition, users can define new func-
tions to test other linguistic capabilities, such as
those proposed in CHECKLIST.

Uncertainty-based Analysis. Users can explore
examples based on model confidence and visualize
their confidence distribution in a histogram. Some
smart tags highlight predictions that are almost
correct, based on model confidence. Filtering out
these predictions can help focus on examples that
are more problematic for the model, which often
hint at mislabeling or larger dataset issues, such as
poorly defined labels. In contrast, focusing on the
almost correct predictions can help identify class
overlap or issues that may be addressed by targeted
data augmentation. For models with dropout, we
additionally use Baal (Atighehchian et al., 2019) to
compute a smart tag that surfaces examples with
high epistemic uncertainty, which have a greater
chance of being problematic.

3.4 Design

UX design and research are essential to create valu-
able and usable ML systems. Our design priorities
for Azimuth were focused on supporting the error
analysis process by increasing efficiency, balancing
guidance with flexibility and user control, and fos-
tering user delight. Through collaborative design
sessions, workshops, and user interviews with AI
practitioners, we improved Azimuth quickly and
iteratively. In particular, user interviews uncov-
ered several challenges that we addressed with de-
sign modifications, including disentangling differ-
ent levels of analysis and preventing choice paraly-
sis (details in A.1).

As a result, Azimuth’s design approach gen-
erally follows a paradigm of guided exploration,
which shaped the creation of features such as the
dashboard and the control panel on the exploration
space. Additionally, the navigation and progressive
disclosure lead users to discover important features
and take action quickly by separating, but linking,
high-level warnings and detailed investigation. We
make the process enjoyable and efficient by includ-

ing visualizations and the ability to search, filter,
hide and show information as needed. The content
and communications provide context and guidance
without being obstructive. For example, Azimuth
prioritizes contextual information icons or subtle
explanations, and our color system helps to assign
priority and call attention to warnings and errors.
See Appendix A for details.

3.5 Extensibility
To customize the error analysis experience, users
can easily change a variety of settings in Azimuth’s
configuration file. For instance, users can change
the encoder used for the similarity analysis, or the
thresholds that determine class imbalance.

Azimuth capabilities are implemented via
Modules, which use a dataset, a configuration,
and optionally a model to perform the desired anal-
yses with distributed computing and caching. Our
repository contains details on how to add a new
Module3.

For more complex modifications, we encourage
the community to submit issues on our GitHub
page. As the process of error analysis continues to
be refined, we hope that Azimuth will grow along
with the community.

3.6 Case Study
We verified the utility of our methodology and
Azimuth by applying them to a DistilBert model
trained on CLINC-OOS (Larson et al., 2019). This
large intent classification dataset has 150 “in-scope”
classes spanning several domains and one Out-of-
Scope (OOS) class. Our goal is to demonstrate how
Azimuth’s features can efficiently direct users to
specific, resolvable problems, even with CLINC-
OOS’s large size and wide topic range. Below
we summarize the most salient findings while Ap-
pendix B includes more details.

• no_close tags (26 examples) revealed classes
with discordant semantic spaces across dataset

3https://github.com/ServiceNow/
azimuth/tree/main/azimuth/modules

303

https://github.com/ServiceNow/azimuth/tree/main/azimuth/modules
https://github.com/ServiceNow/azimuth/tree/main/azimuth/modules

splits.
• conflicting_neighbors smart tags surfaced

overlapping class pairs. For some examples,
multiple labels were applicable, possibly war-
ranting a multi-label classification model.

• Despite the relatively clean nature of the
dataset, conflicting_neighbors smart tags sur-
faced 25 mislabeled examples in the training
set and 18 in the validation set.

• Accuracy was worse than average on several
data subpopulations, including short sentences
(∼8% worse than long sentences), examples
lacking a verb (∼10% worse than average),
and examples failing the punctuation robust-
ness test (∼20% worse than average).

• Word clouds revealed possible annotation arti-
facts such as model dependence on a specific
verb or the plural form of a particular noun.

• Behavioral testing showed a high failure rate
for typos (∼25%), surfacing classes for which
the model depended on specific tokens.

• The model is underconfident, warranting tem-
perature scaling or a lower threshold.

Overall, our analysis revealed multiple issues
that could be addressed through data cleaning and
augmentation. Moreover, the high overall valida-
tion accuracy (94%) hides a lack of robustness.

4 Related Work

There exist other tools that can help practitioners
evaluate their NLP systems beyond observing met-
rics. Broadly speaking, these solutions are imple-
mented as component libraries, standalone applica-
tions, or some combination thereof.

Small components have a lower investment of
effort to get started but may require more technical
expertise to use. While they can produce results
quickly, they fail to address the problem of ad-hoc
processes and may lead to a "paradox of choice"
(Goel et al., 2021). Examples include the CHECK-
LIST Python package (Ribeiro et al., 2020) that can
be used for behavioral testing and the AllenNLP In-
terpret toolkit (Wallace et al., 2019) that computes
gradient-based saliency maps.

On the other hand, standalone applications may
require more effort to set up and it may not be obvi-
ous how to integrate them into the ML development
process. Their benefits are that, once setup, less
technical practitioners can use them and their us-
age can be standardized. CrossCheck (Arendt et al.,

2021) and Robustness Gym (Goel et al., 2021) are
used as Jupyter widgets, while Errudite (Wu et al.,
2019) and Language Interpretability Tool (LIT)
(Tenney et al., 2020) exist both as standalone appli-
cations and as widgets in Jupyter notebooks.

Currently, Azimuth is a standalone application
that requires low setup effort and can be integrated
into the ML development cycle as proposed in sec-
tion 2. At the same time, we provide the benefits of
existing third-party component libraries, added as
features in an easy-to-use interface. We built Az-
imuth to assist in performing comprehensive error
analysis using a single tool by including functional-
ity found elsewhere: filtering and analysis of behav-
ior on subpopulations (CrossCheck, Errudite, LIT,
Robustness Gym), input variations such as counter-
factual error analysis, robustness testing (Errudite,
LIT, Robustness Gym), model comparison (Cross-
Check, LIT), and explainability techniques (LIT,
AllenNLP Interpret).

5 Conclusion

We propose a systematic approach to error analysis
as an iterative workflow between dataset analysis
and model quality assessment. We contribute Az-
imuth to the NLP community in order to facilitate
this approach. Future work includes expanding our
capabilities, exposing potential ethical concerns in
the data or ML models, and extending Azimuth
to cover other tasks and domains. We welcome
open-source contributions.

Ethical Considerations

We believe our proposed approach to systematize
the error analysis stage of the ML development cy-
cle should help decrease the adverse social effects
that error-prone models can create as well as in-
crease user adoption and trust. An important gap in
our approach is that it does not explicitly suggest
techniques that can detect whether models behave
ethically or whether datasets used to train these
models contain harmful biases.

Acknowledgements

We thank ServiceNow for sponsoring the devel-
opment of Azimuth, especially our colleagues in-
volved in building and publicizing it. We also thank
ServiceNow teams and users in the NLP commu-
nity for their useful feedback.

304

References
Dustin Arendt, Zhuanyi Shaw, Prasha Shrestha, Ellyn

Ayton, Maria Glenski, and Svitlana Volkova. 2021.
CrossCheck: Rapid, reproducible, and interpretable
model evaluation. In Proceedings of the Second
Workshop on Data Science with Human in the Loop:
Language Advances, pages 79–85, Online. Associa-
tion for Computational Linguistics.

Matthew Arnold, Rachel KE Bellamy, Michael Hind,
Stephanie Houde, Sameep Mehta, Aleksandra Mo-
jsilović, Ravi Nair, K Natesan Ramamurthy, Alexan-
dra Olteanu, David Piorkowski, et al. 2019. Fact-
sheets: Increasing trust in ai services through sup-
plier’s declarations of conformity. IBM Journal of
Research and Development, 63(4/5):6–1.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256–3274, Online. Association for
Computational Linguistics.

Parmida Atighehchian, Frederic Branchaud-Charron,
Jan Freyberg, Rafael Pardinas, and Lorne Schell.
2019. Baal, a bayesian active learning library.
https://github.com/ElementAI/baal/.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 149–155, Online. Association for Com-
putational Linguistics.

Samuel R. Bowman and George Dahl. 2021. What will
it take to fix benchmarking in natural language under-
standing? In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4843–4855, Online. Association for
Computational Linguistics.

Andrew Burt. 2021. New AI regulations are coming. Is
your organization ready? Harvard Business Review.

Kai-Wei Chang, Vinodkumar Prabhakaran, and Vicente
Ordonez. 2019. Bias and fairness in natural language
processing. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP):
Tutorial Abstracts, Hong Kong, China. Association
for Computational Linguistics.

Kenneth Ward Church and Joel Hestness. 2019. A sur-
vey of 25 years of evaluation. Natural Language
Engineering, 25(6):753–767.

Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary
Taschdjian, Mohit Bansal, and Christopher Ré. 2021.

Robustness gym: Unifying the NLP evaluation land-
scape. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Demonstrations, pages 42–55, Online. As-
sociation for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107–112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2022. Survey of halluci-
nation in natural language generation.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo,
Maximilian Alber, Kristof T Schütt, Sven Dähne,
Dumitru Erhan, and Been Kim. 2019. The (un) relia-
bility of saliency methods. In Explainable AI: Inter-
preting, Explaining and Visualizing Deep Learning,
pages 267–280. Springer.

Rafal Kocielnik, Saleema Amershi, and Paul N Bennett.
2019. Will you accept an imperfect ai? exploring
designs for adjusting end-user expectations of ai sys-
tems. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pages 1–14.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language

305

https://doi.org/10.18653/v1/2021.dash-1.13
https://doi.org/10.18653/v1/2021.dash-1.13
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://github.com/ElementAI/baal/
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready
https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready
https://aclanthology.org/D19-2004
https://aclanthology.org/D19-2004
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/2021.naacl-demos.6
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.48550/ARXIV.2202.03629
https://doi.org/10.48550/ARXIV.2202.03629
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://doi.org/10.18653/v1/2021.emnlp-demo.21

processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Edward Ma. 2019. Nlp augmentation. https://
github.com/makcedward/nlpaug.

Joe McKendrick. 2021. Artificial intelligence’s biggest
stumbling block: Trust. Forbes.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

Curtis Northcutt, Anish Athalye, and Jonas Mueller.
2021. Pervasive label errors in test sets destabilize
machine learning benchmarks. In Proceedings of
the Neural Information Processing Systems Track on
Datasets and Benchmarks.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Karolina Stanczak and Isabelle Augenstein. 2021. A
survey on gender bias in natural language processing.
CoRR, abs/2112.14168.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107–118, Online. Association for Computa-
tional Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Computa-
tional Linguistics.

Andrew G Wilson and Pavel Izmailov. 2020. Bayesian
deep learning and a probabilistic perspective of gener-
alization. Advances in neural information processing
systems, 33:4697–4708.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Perric
Cistac, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. pages 38–45. Association for
Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel Weld. 2019. Errudite: Scalable, reproducible,
and testable error analysis. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 747–763, Florence, Italy.
Association for Computational Linguistics.

306

https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug
https://www.forbes.com/sites/joemckendrick/2021/08/30/artificial-intelligences-biggest-stumbling-block-trust/?sh=5cc359b67cb3
https://www.forbes.com/sites/joemckendrick/2021/08/30/artificial-intelligences-biggest-stumbling-block-trust/?sh=5cc359b67cb3
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/f2217062e9a397a1dca429e7d70bc6ca-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/f2217062e9a397a1dca429e7d70bc6ca-Paper-round1.pdf
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2112.14168
http://arxiv.org/abs/2112.14168
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P19-1073
https://doi.org/10.18653/v1/P19-1073

A Azimuth Design

The Azimuth team employed human-centered de-
sign methods to create interfaces that propose a
workflow to AI practitioners while taking into ac-
count the exploratory nature of their work.

A.1 Design Challenges
User interviews surfaced functional challenges that
we were able to address with design modifications.
We present several examples below.

First, early design iterations centered the user ex-
perience around the exploration space, allowing for
unstructured analysis and exploration of individ-
ual examples. However, this space did not provide
enough high-level insights nor sufficient guidance
to inform a user’s next actions. We created the
dashboard (Fig. 6) to summarize these insights and
guide the user’s exploration of the dataset.

Figure 6: The dashboard was added to address the need
to separate but link different levels of analysis.

Second, the notion of data subpopulations was
included very early on in the form of filtering via
individual dropdown menus. This did not show
all possible filtering options nor their distributions
across the dataset. As Fig. 10 illustrates, the con-
trol panel that replaced the dropdown menus now
shows users how filters can be combined as well
as the filters that result in the largest number of
model errors. For example, filtering the dataset by
prediction oil_change_how will result in a data sub-
population where the model performed very well
(the line is almost entirely green).

Third, we grappled with the trade-off between
providing users with all possible avenues of explo-
ration versus presenting a limited set of options
that are relevant in the context of the user’s activity.
We ended up replacing the initial option for users
to select data subsets by individual confidence his-
togram bins, which led to choice paralysis or hap-

hazardness, with the option to select data subsets
by picking a confidence threshold. For example,
users can now view all examples where the model
assigned a confidence less than 80%.

A.2 Guidance

Colors. A consistent color scheme is used to draw
attention to warnings, as shown in the confusion
matrix in Fig. 7.

Figure 7: Example of Azimuth color system.

Documentation. To help guide our users, each
section element has direct links to our detailed
product documentation, as shown in Fig. 8.

Figure 8: Links to product documentation are embedded
throughout the application.

Tooltips. Tooltips are also available on essential
elements to identify and define key concepts, show
calculation methods, define terms, and provide
information on how to use certain functionality, as
shown in Fig. 9.

A.3 Flexibility

Filtering. A control panel, illustrated in Fig. 10,
allows users to filter the dataset and predictions
across diverse criteria, such as containing a particu-
lar word or having a certain confidence score. The

307

Figure 9: Tooltips help give context to users.

user can also filter by label, predicted class, and all
available smart tags. Predictions can also be shown
with and without post-processing, which can help
distinguish model errors from errors related to the
post-processing steps.

Figure 10: Control panel provides sophisticated filter-
ing.

Sorting and Column Customization. As shown
in Fig. 11, many of our tables allow users to
show/hide columns as they see fit, in addition to
sorting the table information based on the content
in the columns.

Figure 11: Users can sort by column and customize
what they see.

B Case Study Details

B.1 Dataset and Model Details
We chose a DistilBert model (Sanh et al., 2019)
from among the best ranking models on Paper-
sWithCode4. The CLINC-OOS dataset and the
DistilBert model were both downloaded from the
Hugging Face Hub. We configured Azimuth to
use a threshold of 0.5. When the model score was
below this value, examples were classified as the
rejection class, also known as Out-of-Scope (OOS).
Azimuth provides the option to conduct analyses
before or after post-processing (in this case, thresh-
olding to OOS); we took advantage of this option
for some analyses below. We used the Imbalanced
training split and the validation split as the evalua-
tion set.

B.2 Dataset Analysis
B.2.1 Dataset Shift
We examined data shift by inspecting misclassi-
fied examples from the evaluation set using the
no_close_train smart tag, which identifies those
having no training examples that are similar to
them. This approach identified 26 examples that
were candidates for targeted data augmentation.
Data augmentation could be guided by looking at
the example’s most salient tokens and its most sim-
ilar examples in the training set.

For instance, as shown in Fig. 12, an example
mentioning "travel time" was labeled “distance”,
but predicted as “travel alert” with low confidence
(41%). According to the saliency map, the model
focuses on the words “travel” and “time”. Most
similar examples in the training data were labeled
as "distance" but did not contain the word “travel”.
In addition, the examples in the training data con-
taining the word “travel” were predominantly la-
beled “travel alert,” followed by “travel notifica-
tion” and “vaccines”. Augmenting the class “dis-
tance” in the training data with examples contain-
ing words related to "travel time" could be a way
to address this data shift issue.

B.2.2 Class Imbalance
Azimuth detects class imbalance in the training
set, which is normal given the split that we chose.
Another observation is that the OOS class is over-
represented in the evaluation set, compared to other
classes.

4https://paperswithcode.com/sota/
text-classification-on-clinc-oos

308

https://paperswithcode.com/sota/text-classification-on-clinc-oos
https://paperswithcode.com/sota/text-classification-on-clinc-oos

Figure 12: Example of possible dataset shift on the example details page.

B.2.3 Class Definition
The dataset covers a large variety of topics with
its 150 intents, not all of which are at the same
hierarchical level of semantic meaning. This can
cause the model to have difficulty differentiating
between intents. The conflicting_neighbors smart
tags surfaced many examples for which it was not
easy to determine the correct label, or where mul-
tiple labels could apply. This helped direct us to
overlapping class pairs, including those that are
effectively supersets of other intents. For example:

• There is some ambiguity between the intents
“restaurant suggestion” and “travel sugges-
tion”. When the example refers to a restau-
rant in a particular city, the ground-truth label
is "travel suggestion" rather than "restaurant
suggestion", but the model did not learn this
distinction.

• Some intents cover large semantic spaces,
such as “translate” and “define”, making them
difficult to predict correctly. For example,
“how do I ask about the weather in chinese”
is predicted as “weather” instead of "trans-
late" because the text can be interpreted as a
weather-related question.

B.2.4 Problematic Examples
Using similarity smart tags (conflicting_neighbors
and no_close), we were able to detect 18 misla-
beled examples in the evaluation set and 25 in the
training set. Notably, we also found a mislabeling

pattern where four examples were labeled “change
accent” instead of “change account”. This dataset
is relatively clean and, for better or worse, does not
reflect the messiness and ambiguity of real-world
data. Although these examples make up a small
proportion of the dataset, it is notable that we were
able to surface them relatively easily. Fig. 13 shows
a subset of the mislabeled examples.

Figure 13: Subset of problematic examples.

B.3 Model Quality Assessment

The model is 99.2% accurate on the training set
and 93.9% accurate on the evaluation set without
post-processing. The errors in the evaluation set
are either misclassifications (5.8%) or rejections to

309

OOS (0.3%). When adding a threshold of 0.5, the
accuracy decreases to 90.7%. On the other hand,
misclassification errors decrease to 1.6% and OOS
gets predicted more often instead of predicting the
wrong in-scope class (7.7%).

B.3.1 Data Subpopulations
We examined misclassification rates for different
data subpopulations, such as label and a variety of
smart tags. Several interesting issues were quickly
revealed:

• The model has lower accuracy on a few in-
tents when evaluated on the training set, es-
pecially when examples contain the word
"name", which can be found in intents such as
"what is your name" and "change user name"
(respectively ∼75% and ∼82% accuracy on
the training set). These observations on the
training data already tell us that some intents
are more difficult to learn than others.

• Compared to average evaluation set accuracy,
the model performs better (+3%) on long sen-
tences (more than 15 tokens) and worse (-5%)
on short sentences (less than three tokens).
Short sentences are more often predicted as
OOS. The model also performs worse on
examples having no verbs (often short sen-
tences), with a drop of ∼12% in accuracy
compared to the average.

• As expected, the model has lower accuracy on
examples with conflicting or few similar ex-
amples. Compared to average, we see a drop
in accuracy of ∼25% on examples tagged
with the conflicting_neighbors smart tag and
a drop of ∼10% on examples tagged with the
no_close smart tags.

• The accuracy is lower than average (∼20%)
on examples that fail any punctuation ro-
bustness tests (failed_punctuation smart tag).
These tests are considered to fail if the predic-
tion changes when the punctuation is altered.

B.3.2 Annotation Artifacts Discovery
Exploration with Azimuth revealed the following
cases where model predictions depended on spe-
cific words or word forms, as well as other cases
described below in “Behavioral testing”. As shown
in Fig. 14, predicting "accept reservations" intent
is highly dependent on the word “reservations”.
When examples in the evaluation set contain the
singular form "reservation", the model makes mis-
takes.

Figure 14: Important words are shown for correct and
incorrect predictions for the "accept reservations" intent.

B.3.3 Behavioral Testing
Azimuth flagged the high failure rate of behavioral
tests on both the training and evaluation sets, due
largely to the high failure rate when introducing
typos (approximately 22-25% failure across several
tests for both dataset splits). Additionally, model
predictions changed for some examples when alter-
ing the punctuation, especially when introducing
a comma or a period. Although the overall failure
rate for this test was low (∼2%), users may con-
sider this type of failure unacceptable. Together,
these tests suggest a robustness issue that should be
addressed through dataset augmentation or pipeline
design.

Further exploration of individual examples, via
saliency maps and smart tags for behavioral tests,
revealed several intents that were highly dependent
on single tokens, indicating potential annotation
artifacts. For instance, the model fails when “lug-
gage” is misspelled in examples labeled as “lost
luggage”. Similarly, it fails when “rewards” is mis-
spelled in examples labeled as “redeem rewards”.

B.3.4 Uncertainty-based Analysis
The model is generally underconfident, having a
maximum confidence of 90% and an expected cal-
ibration error (ECE) of 0.21 on the evaluation set.
This could be addressed via temperature scaling.
The model is particularly underconfident on spe-
cific intents, such as "what is your name" and "pto
used", with top confidence scores around 60% to
70%.

The high_epistemic_uncertainty smart tag sur-
faced 48 examples, most of them labeled as OOS.
The model only has an accuracy of ∼30% on these
examples, demonstrating how difficult they are to
classify. Some examples include "idk", labeled
as "maybe", and "what’s today’s high and low",
labeled as "weather".

310

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 311 - 318
December 7-11, 2022 c©2022 Association for Computational Linguistics

SYNKB: Semantic Search for Synthetic Procedures

Fan Bai♣ Alan Ritter♣ Peter Madrid♠ Dayne Freitag♢ John Niekrasz♢

♣ School of Interactive Computing, Georgia Institute of Technology
♠ Biosciences Division, SRI International

♢ Artificial Intelligence Center, SRI International
{fan.bai, alan.ritter}@cc.gatech.edu

{peter.madrid, daynefreitag, john.niekrasz}@sri.com

Abstract

In this paper we present SYNKB,1 an open-
source, automatically extracted knowledge
base of chemical synthesis protocols. Simi-
lar to proprietary chemistry databases such as
Reaxsys, SYNKB allows chemists to retrieve
structured knowledge about synthetic proce-
dures. By taking advantage of recent advances
in natural language processing for procedural
texts, SYNKB supports more flexible queries
about reaction conditions, and thus has the po-
tential to help chemists search the literature for
conditions used in relevant reactions as they
design new synthetic routes. Using customized
Transformer models to automatically extract in-
formation from 6 million synthesis procedures
described in U.S. and EU patents, we show that
for many queries, SYNKB has higher recall
than Reaxsys, while maintaining high preci-
sion. We plan to make SYNKB available as an
open-source tool; in contrast, proprietary chem-
istry databases require costly subscriptions.2

1 Introduction

Commercial chemistry databases, such as Reaxys3

are invaluable tools for chemists, who issue struc-
tured SQL-like queries to retrieve precise infor-
mation about chemical reactions described in the
literature. Large, high-quality datasets are also cru-
cial for synthetic route planning (Klucznik et al.,
2018), automation (Coley et al., 2019b; Collins
et al., 2020), and machine learning approaches to
retrosynthesis (Coley et al., 2019a). In addition
to proprietary, manually curated databases such as
Reaxys, recent work has begun to use automatically
extracted data from reactions described in patents
(Tetko et al., 2020), however existing databases are
limited to basic reaction information, and do not

1Demo URL: https://tinyurl.com/synkb
Introduction video: https://screencast-o-matic.

com/watch/c3jVQsVZwOV
2Code: https://github.com/bflashcp3f/SynKB.
3
https://www.elsevier.com/solutions/reaxys

include important details such as concentrations or
order of additions (Coley et al., 2019b). The lack
of high-quality data has been identified as a key
challenge in developing recommendation models
for reaction conditions (Struble et al., 2020).

In this paper, we present SYNKB, a working sys-
tem that demonstrates the application of modern
NLP methods to extract large quantities of struc-
tured information about chemical synthesis proce-
dures from text. SYNKB has a number of advan-
tages with respect to existing chemistry databases
such as Reaxys: (1) We show that by automatically
extracting information from millions of synthesis
procedures described in U.S. and European patents
using state-of-the-art NLP methods, we can achieve
significantly higher recall than existing chemistry
databases while maintaining high precision. In
§3, we demonstrate SYNKB’s coverage is comple-
mentary to Reaxys; see Figure 2 for details. (2)
SYNKB’s novel graph search supports better cover-
age of reaction conditions than existing chemistry
databases; this includes concentrations, reaction
times, order of the addition of reagents, catalysts,
etc. (3) We will make SYNKB available as open-
source software on publication, in contrast, most
existing chemistry databases are proprietary, with
the notable exception of Lowe (2017), which we
compare to in §3.

We have built an online demo, which can be
viewed at the following URL: https://tinyurl.
com/synkb. We will also release the source code
and patent-based extractions used to build SYNKB
on publication.

2 SYNKB

SYNKB is an open-source system that allows
chemists to perform structured queries over large
corpora of synthesis procedures. In this section, we
present each component of SYNKB, as illustrated
in Figure 1. Our corpus collection is first presented
in §2.1. Section 2.2 describes how a corpus of six

311

https://tinyurl.com/synkb
https://screencast-o-matic.com/watch/c3jVQsVZwOV
https://screencast-o-matic.com/watch/c3jVQsVZwOV
https://github.com/bflashcp3f/SynKB
https://www.elsevier.com/solutions/reaxys
https://tinyurl.com/synkb
https://tinyurl.com/synkb

(6 million synth. procedures)

US06169084 - Preparation of (2-methyl-4-(4-methyl-1-
piperazinyl)-10H-thieno[2,3-b][1,5]benzodiazepine)dihydrate E.
1. A 0.5 g sample of technical grade olanzapine was suspended in ethyl
acetate (10 mL) and toluene (0.6 mL).

2. The mixture was heated to 80° C. until all the solids dissolved.

3. The solution was cooled to 60° C. and water (1 mL) was added slowly.

 …

7. TGA mass loss was 10.5%.

8. Yield: 0.3 g.

Synthesis Procedures Semantic Search

Q: What solvents are used in the reactions that produce
(2-methyl-4-(4-methyl-1-piperazinyl…?

Patent ID Solvent Full Procedure
US06169084 ethyl acetate / toluene A 0.5 g sample of…

… … …

Q: What amount is ethyl acetate at when used to
suspend olanzapine?

Patent ID Amount Full Procedure
US06169084 10 mL A 0.5 g sample of…

… … …

Extracted Information

2. Slot Filling (procedure-level)
Patent ID Reagent Solvent Product Yield …

US06169084 olanzapine ethyl acetate / toluene (2-methyl-4-(4-methyl..) 0.3 g …
… … … … … ….

1. Shallow Semantic Parsing (operation-level)

Figure 1: Overview of our semantic search system SYNKB, which searches over 6 million chemical synthesis
procedures collected from patents. Users can enter structured queries to retrieve procedures concerning procedure-
level or operation-level information.

million procedures is annotated with sentence-level
action graphs, in addition to protocol-level slots
relevant to chemical reactions, including starting
materials, solvents, reaction products, yields, etc.
After automatically annotating and indexing, we
experiment with the semantic search capabilities
enabled by SYNKB in §2.3.

2.1 Corpus Collection

We extract structured representations of synthetic
protocols from a corpus of chemical patents (Bai
et al., 2021), which includes over six million chem-
ical synthesis procedures extracted from around
300k U.S. and European patents (written in En-
glish). The U.S. portion of this corpus comes
from an open-source corpus of chemical synthe-
sis procedures (Lowe, 2017), which covers 2.4
million synthetic procedures extracted from U.S.
patents (USPTO4, 1976-2016). For the European
portion, we apply the Lowe (2017) reaction identi-
fication pipeline to European patents. Specifically,
we download patents from EPO5 (1978-2020) as
XML files and select patents containing the IPC
(International Patent Classification) code ‘C07’ for

4
https://www.uspto.gov/

learning-and-resources/bulk-data-products
5
https://www.epo.org/searching-for-patents/

data/bulk-data-sets.html

processing as they are in the category of organic
chemistry. Next, the synthesis procedure identifier
developed by Lowe (2012), a trained Naive Bayes
classifier, is applied to the Description section of
all selected patents. As a result, we obtain another
3.7 million procedures from European patents.

2.2 Extracting Reaction Details from
Synthetic Procedures

To facilitate semantic search, we automatically
annotate the corpus of 6 million synthetic proce-
dures described above with semantic action graphs
(Kulkarni et al., 2018) in addition to chemical reac-
tion slots (Nguyen et al., 2020) using Transformer
models that are pre-trained on a large corpus of
scientific procedures (Bai et al., 2021).

Shallow Semantic Parsing. We first perform
sentence-level annotation, where each step in the
procedure is annotated with a semantic graph
(Tamari et al., 2021). Nodes in the graph are ex-
perimental operations and their typed arguments,
whereas labeled edges specify relations between
the nodes (see the example shallow semantic parse
in Figure 1). Here we use the CHEMSYN frame-
work (Bai et al., 2021), which covers 24 types of
nodes (such as Action, Reagent, Amount, Equip-
ment, etc.) and 17 edge types (e.g. Acts-on and

312

https://www.uspto.gov/learning-and-resources/bulk-data-products
https://www.uspto.gov/learning-and-resources/bulk-data-products
https://www.epo.org/searching-for-patents/data/bulk-data-sets.html
https://www.epo.org/searching-for-patents/data/bulk-data-sets.html

Measure). With these annotated semantic graphs,
users can search for operation-level information,
for example, the amount of DMF when used as a sol-
vent to dissolve HATU (this will be further discussed
in §3). Following Tamari et al. (2021), we split
semantic graph annotation into two sub-tasks, Men-
tion Identification (MI) for node prediction and Ar-
gument Role Labeling (ARL) for edge prediction.
We use the same fine-tuning architectures as in
Tamari et al. (2021). Models are fine-tuned on the
CHEMSYN corpus, which consists of 992 chemical
synthesis procedures extracted from patents, and
the resulting performance (averages across five ran-
dom seeds) is shown in Table 1. We select model
checkpoints via the Dev set performance out of five
random seeds, and use the selected checkpoint for
inference on our 6 million synthetic procedures.

Slot Filling. In the second task, we annotate pro-
cedures from a protocol perspective, i.e., identify-
ing key entities playing certain roles in a protocol,
which can be queried in a slot-based search. We use
the CHEMU training corpus proposed in Nguyen
et al. (2020). This dataset includes 10 pre-defined
slot types concerning chemical compounds and re-
lated entities in chemical synthesis processes such
as Starting Material, Solvent, and Product. Similar
to the Mention Identification task, we treat Slot
Filling as a sequence tagging problem. However,
the input in Slot Filling is the entire protocol, rather
than a single sentence, as in mention identification.
We fine-tune models on the CHEMU dataset (see
Table 1 for results), and then run inference on the
chemical patent corpus using the learned model.

ProcBERT. We use ProcBERT (Bai et al., 2021),
a BERT-based model that is pre-trained on in-
domain data (scientific protocols), as the backbone
for all of our models, and develop task-specific
fine-tuning architectures on top of it. The com-
parison between ProcBERT and other pre-trained
models is presented in Table 1. Because ProcBERT
is pre-trained using in-domain data, we find that it
outperforms both BERTlarge (Devlin et al., 2019)
and SciBERT (Beltagy et al., 2019) on all three
tasks.

2.3 Semantic Search

SYNKB offers search modalities specific to each
of these two forms of annotation, i.e., semantic
action graphs and chemical reaction slots, along
with features designed to support practical use. The

Annotation Task Dataset Pre-trained Model
BERTlarge SciBERT ProcBERT

Mention Identification CHEMSYN
95.260.1 95.820.2 95.970.2

Argument Role Labeling 92.870.5 93.270.2 93.570.2

Slot Filling CHEMU 95.100.2 95.630.1 96.190.1

Table 1: Test set F1 scores of fine-tuned models for
the three annotation tasks. These numbers, averages
across five random seeds with standard deviations as
subscripts, are taken from our previous work Bai et al.
(2021). Models using ProcBERT for contextual em-
beddings perform the best on all three tasks and are
used for automatic annotations on six million synthesis
procedures to construct SYNKB.

SYNKB (ours) USPTO-Lowe Reaxys

License Open source Open source Subscription
Procedures (mill.) 6 2.4 57
Entity Types 24 8 10
Relation Types 17 - -
Annotation Automatic Automatic Manual

Table 2: Comparison between our SYNKB and two
performant databases. Our SYNKB provides more fine-
grained annotations (more entity types and unique rela-
tion annotations) than the other two systems and covers
more procedures than USPTO-Lowe, a database built us-
ing the largest open-source synthesis procedure corpus
(Lowe, 2017).

first type of query supported by SYNKB is seman-
tic graph search, which allows users to search
for synthesis procedures based on the semantic
parse of the constituent operations. We adapt the
graph query formalism proposed originally for syn-
tactic dependencies in Valenzuela-Escárcega et al.
(2020).6 Formally, the input query G = (V,E)
is a labeled directed graph. Each node vi ∈ V is
specified as a set of constraints on matching entities
(a single or multi-token span). For example, users
can specify the node as DMF or [word=DMF], which
triggers an exact match on entity mentions con-
taining the word “DMF”. They can also constrain
the entity type of the node using the expression
[entity=Type].7 Moreover, nodes can be named
captures when surrounded with (?<name>...),
e.g., the query (?<solvent> DMF) captures DMF as
the solvent. As for the edge e = (vi, vj , l) ∈ E,
we need to specify the direction and the semantic re-
lation. Considering the query (?<solvent> DMF)
>measure (?<amount> 1 ml), it represents a se-

6We refer readers to the tutorial of Odinson query lan-
guage for more details of this graph query formalism.

7We store entity labels with the BIO tagging scheme,
so users can match a single token entity with the expression
[entity=B-Type] and a multi-token entity with the expres-
sion [entity=B-Type][entity=I-Type]*.

313

https://gh.lum.ai/odinson/queries.html

mantic graph containing two entity nodes captured
as solvent and amount, and an edge signaling the
measure relation and its direction (from solvent
to amount).

In addition, SYNKB supports slot-based search,
which presents a structured search interface, with
entries corresponding to CHEMU slots. A keyword
entered into any entry restricts the retrieved set to
procedures where the extracted slot contains the
indicated keyword. Like the graph search, this
returns a set of tuples with elements named with
matching slots and containing the matching entity
strings. The special token “?” can be used to match
any slot value.

As for the implementation, the semantic graph
search module is powered by Odinson (Valenzuela-
Escárcega et al., 2020), an open-source Lucene-
based query engine. Odinson pre-indexes the an-
notated corpus by generating the inverted index for
each procedure. Given an input query, Odinson per-
forms a two-step matching process, where it first
examines the node constraints via the inverted in-
dex; if this step works well, the semantic relations
will be verified in the second step. The two-step
matching process improves the speed of Odinson,
and thus enables interactive querying. As for the
slot-based search, it is supported by Elasticsearch8

with the exception that, when users perform both
types of search at the same time, we use the meta-
data search feature of Odinson for slot filters (we
store slot values as metadata) to improve the sys-
tem’s response speed.

3 Empirical Comparison

In §2, we described the design and implementa-
tion of SYNKB including the underlying models,
data preparation, and semantic search features. To
demonstrate the utility of SYNKB for assisting
chemists to search the literature for reaction details,
we now evaluate its search features on ten exam-
ple questions (Q1-Q10 in Table 3), which were
collected from synthetic chemists working on the
design of new synthesis protocols. In §3.1, we eval-
uate the slot-based search module of SYNKB and
compare it with two existing databases which pro-
vides similar search features. In §3.2, we demon-
strate how to use our novel semantic graph search
module to answer operation-specific questions and
evaluate its retrieved answers and procedures.

8
https://www.elastic.co/elasticsearch/

3.1 Slot-based Search Evaluation

We benchmark the slot-based search module of
SYNKB against Reaxys, one of the leading pro-
prietary chemistry databases, and USPTO-Lowe,
an automatically extracted database built using
a large open-source synthesis procedure corpus
(Lowe, 2017). Below, we first introduce these two
databases briefly, and then evaluate the results of all
three systems on the chemist-proposed questions.

3.1.1 Chemistry Databases

The first database we compare with is Reaxys, a
web-based commercial chemistry database, which
contains comprehensive chemistry data, includ-
ing chemical properties, compound structures, etc.
What particularly interests us in Reaxys is that it
contains expert-curated reaction procedures col-
lected from extensive published literature such as
chemistry-related patents and periodicals.9 Also,
key experimental entities in those reaction proce-
dures, like participating reagents and reaction tem-
perature, are specified. Thus, similar to our slot-
based search, Reaxys allows users to search for
reaction procedure information by applying text
filters. Users can use its Query Builder module
to specify multiple chemical reaction-specific fil-
ters, and then Reaxys returns all matched reaction
procedures along with identified entities in those
procedures, which are available for download.

Apart from Reaxys, we also build a database
using USPTO-Lowe (Lowe, 2017), the largest
available open-source chemical synthesis proce-
dure corpus as introduced in §2.1, for comparison.
Similar to our SYNKB, this corpus includes auto-
matic annotations of experimental entities on 2.4
million contained reaction procedures.10 However,
our SYNKB provides more fine-grained and com-
prehensive entity annotations (see Table 2 for the
statistics of three experimented databases), and also
annotates the relations between extracted entities,
which constitute semantic graphs (§2.2) enabling
operation-specific semantic graph search. As for
the implementation, we load USPTO-Lowe’s entity
annotation into Elasticsearch, so this customized
database can be used in the same way as the slot-
based search module of our SYNKB.

9
https://www.elsevier.com/solutions/reaxys/

features-and-capabilities/content
10
https://www.nextmovesoftware.com/leadmine.

html

314

https://www.elastic.co/elasticsearch/
https://www.elsevier.com/solutions/reaxys/features-and-capabilities/content
https://www.elsevier.com/solutions/reaxys/features-and-capabilities/content
https://www.nextmovesoftware.com/leadmine.html
https://www.nextmovesoftware.com/leadmine.html

System Input Query # Proce. # Ans. Ans. Prec.

Slot-based Search

Q1 - What are the solvents used for reactions containing the reagent triphosgene?
Reaxys {"reagent":"triphosgene"} 35 7 100%
USPTO-Lowe

{"reagent":"triphosgene", "solvent":"?"}
3157 104 90%

SYNKB 7184 127 94%

Q2 - What are the yields (percent) of reactions producing (5-Methylpyrimidin-2-yl)methanol?
Reaxys {"product":"(5-Methylpyrimidin-2-yl)methanol"} 1 1 100%
USPTO-Lowe

{"product":"(5-Methylpyrimidin-2-yl)methanol", "yield (percent)":"?"}
1 1 100%

SYNKB 1 1 100%

Q3 - What are the products of reactions containing the reagent trimethylsilyldiazomethane?
Reaxys {"reagent":"trimethylsilyldiazomethane"} 438 75 100%
USPTO-Lowe

{"reagent":"trimethylsilyldiazomethane", "product":"?"}
517 335 98%

SYNKB 1033 708 96%

Q4 - What are the products of reactions containing the reagent chlorosulfonic acid and the solvent chlorobenzene?
Reaxys {"reagent":"chlorosulfonic acid"} AND {"solvent":"chlorobenzene"} 148 65 100%
USPTO-Lowe

{"reagent":"chlorosulfonic acid", "solvent":"chlorobenzene", "product":"?"}
6 2 100%

SYNKB 9 4 100%

Q5 - What are the reaction times for reactions using reagent CDI (carbonyldiimidazole)?
Reaxys {"reagent":"CDI"} OR {"reagent":"carbonyldiimidazole"} 93 24 100%
USPTO-Lowe

{"reagent": "CDI OR carbonyldiimidazole", "reaction time":"?"}
3722 339 100%

SYNKB 6377 511 94%

Q6 - What are the reaction temperatures for reactions containing reagent trifluoromethanesulfonic acid?
Reaxys {"reagent":"trifluoromethanesulfonic acid"} 104 3 100%
USPTO-Lowe

{"reagent":"trifluoromethanesulfonic acid", "temperature":"?"}
727 124 100%

SYNKB 1937 243 98%

Semantic Graph Search

Q7 - What are the reagents used to dilute plasma?

SYNKB
plasma <acts-on diluted >using (?<reagent>
[entity=B-Reagent][entity=I-Reagent]*)

24 16 100%

Q8 - What is the pH of a solution after being titrated with NaOH?
SYNKB (?<ph> [entity=B-pH][entity=I-pH]+) <setting titrated >using NaOH 39 21 95%

Q9 - What are the common pore sizes of PTFE filters?

SYNKB
PTFE filter >measure (?<pore_size>
[entity=B-Generic-Measure][entity=I-Generic-Measure]*)

183 39 92%

Q10 - What molar concentration is the reagent HATU at when dissolved in the solvent DMF?

SYNKB
HATU >measure (?<mole> [] [word=mmol|word=mol]) []{1,10} DMF >measure
(?<volume> [] [word=ml|word=l])

447 289 100%

Table 3: Search queries and resulting performance on 10 chemist-proposed questions for Reaxys, USPTO-Lowe,
and SYNKB (ours). # Proc. is the number of returned procedures containing valid answers, and # Ans. refers to the
number of distinct answer slots or captures in these procedures. The first six questions (Q1-Q6) are answerable
for all three databases as they only require entity annotation while the last four questions (Q7-Q10) can only be
answered by our SYNKB using our unique semantic action graph annotation. SYNKB consistently shows better
recall than two compared databases while being highly accurate.

3.1.2 Comparison with Examples

We now compare three systems on six ques-
tions that were proposed by chemists (Q1-Q6)
as these questions only require annotations on
experimental entities and thus can be answered
in all three systems. For example, Q1 (“What
solvents are used in reactions involving triphos-
gene?”) can be answered by the SYNKB
query {"reagent":"triphosgene", "solvent":"?"},
as reagent and solvent are query-able ChEMU slots.
Similarly, for Reaxys, experimental entities are
specified for corresponding text filters.

We evaluate the output of each system from two
perspectives: 1) recall, which is measured by the
number of returned procedures containing valid

answers and the number of distinct answer slots or
captures in these procedures; and 2) precision, the
proportion of correct answers among all predicted
answers. In cases where the number of answers
exceeds 50, we sample 50 answers from the full set
to estimate precision.

The search queries and performance on each
question for the three systems are shown in Ta-
ble 3. We can see that, SYNKB consistently re-
trieves a larger number of relevant procedures and
answers than Reaxys (5 out of 6 questions) while
maintaining high precision. USPTO-Lowe, which
uses a rule-based annotation model, shows compet-
itive performance on precision but trails behind our
SYNKB in terms of recall for all 6 questions. This

315

comparison clearly shows the strength of our sys-
tem: by leveraging state-of-the-art NLP for chem-
ical synthesis procedures (Bai et al., 2021), we
can provide chemists with abundant information,
which is non-proprietary and delivered with high
precision. Furthermore, we plot the Venn diagram
(Figure 2) over the retrieved answers, which shows
the percentage of unique and shared answers for
each system out of all retrieved answers (we do
macro-average across six questions.) Interestingly,
only 18.1% of retrieved answers are shared among
all three systems, and both our SYNKB and Reaxys
contain a large number of unique answers, which
take 31.5% and 17.4% of retrieved answers respec-
tively. This shift in answer distribution suggests
that our open-source SYNKB can be a good com-
plement to proprietary chemistry databases like
Reaxys, and it is better for users to use both of
them if possible instead of choosing one over the
other.

3.2 Semantic Graph Search Evaluation

We evaluate our novel semantic graph search
on four operation-specific questions (Q7-Q10).
Unlike the six questions introduced above, these
questions place constraints on the relations
between mentioned entities, and thus are not
answerable for Reaxys and USPTO-Lowe (due
to the lack of relation annotation). For instance,
to answer Q7 “What are the reagents used to
dilute plasma?”, a system needs to first locate the
particular operation in a procedure where plasma
is diluted, and then identify the reagent, which fa-
cilitates this dilution operation. This whole process
can be realized in our semantic graph search mod-
ule. Concretely, the graph-based query we use for
Q7 is: “plasma <acts-on diluted >using (?<reagent>

[entity=B-Reagent][entity=I-Reagent]*)”, which
matches procedures containing “plasma” and
“diluted” connected in the same semantic graph
and returns used reagents in the form of named
captures. We evaluate the performance of the
semantic graph search module by manually
inspecting predicted answers (randomly sampling
50 answers for Q10), and show results in Table
3. Similar to the findings in the slot-based search
evaluation, SYNKB shows good coverage while
maintaining high precision.

SynKB

Reaxys USPT
O-Lo

we

18.2%
0.1% 23.6%

31.5%

17.4% 9.2%
0.0%

Figure 2: Venn diagram on the answer distribution of six
slot-based search questions (macro-average) for all three
databases. We can see that both our SYNKB and Reaxys
cover high percentage of unique answers, suggesting
that users should use them together if possible.

4 Related Work

Lowe (2012) was the first to develop a complete
information extraction pipeline for chemical syn-
thesis procedures, using a mostly rule-based ap-
proach. Subsequently, there have been several
efforts to extract information from experimental
procedures by either developing more performant
extraction models (Vaucher et al., 2020; Guo et al.,
2021) or designing extraction frameworks for other
types of scientific literature, like wet-lab protocols
(Kulkarni et al., 2018) and material science publica-
tions (Mysore et al., 2019; Kuniyoshi et al., 2020;
Olivetti et al., 2020; O’Gorman et al., 2021). In this
paper, we use the state-of-the-art NLP models for
chemical synthesis procedures (Bai et al., 2021) to
build the largest open-source knowledge base that
searches synthetic procedure details. Our system
is complementary to many proprietary chemistry
databases, such as Reaxys, SciFinder11, and Pis-
tachio12, in terms of contained information and
search modalities.

Recent work has also developed slot-based
classifiers to extract structured representations of
events (from social media), supporting structured
queries (Zong et al., 2020). In contrast, we present
a semantic search system, which is customized
for chemical synthesis procedures with specialized
search features. In addition, recent work has ex-
plored extractive search systems (Ravfogel et al.,
2021) that allow experts to specify syntactic pat-

11
https://scifinder.cas.org

12
https://www.nextmovesoftware.com/pistachio.

html

316

https://scifinder.cas.org
https://www.nextmovesoftware.com/pistachio.html
https://www.nextmovesoftware.com/pistachio.html

terns, including syntactic structures of the input
and capture slots. The graph-based queries in our
SYNKB enable a similar capability in the domain
of synthetic procedures, however SYNKB’s queries
are defined over semantic graphs that encode ac-
tions in synthetic protocols and associated semantic
arguments.

5 Conclusion

In this paper, we present SYNKB, a system for
large-scale extraction and querying of chemical
synthesis procedures. SYNKB provides efficient
searches against semantic action graphs and chemi-
cal reaction slots derived from 6 million synthesis
procedures contained in chemical patents. A quan-
titative comparison with Reaxys, one of the lead-
ing commercial databases of reaction information,
demonstrates the competence and versatility of our
freely accessible system.

Ethical Considerations and Broader
Impacts

Proprietary chemistry databases, such as Reaxys
require costly subscriptions, limiting scientific in-
quiry for those who do not have the means to access
this valuable source of information. In this paper,
we presented an open-source semantic search sys-
tem, SYNKB, which demonstrates state-of-the-art
NLP methods can enable automatically extracted
databases of synthetic procedure operational details
that are competitive with Reaxys in terms of recall.
We will make our code and data freely available.

The data contained in SYNKB is based on au-
tomatic extraction from both European and U.S.
patents that are in the public domain. Our use com-
plies with the terms of service of the U.S. Patent
and Trademark Office and the European Patent Of-
fice.

Acknowledgements

We thank Wei Xu for helpful discussion and com-
ments on a previous draft. This material is based
upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract
No. HR001119C0108. The views, opinions, and/or
findings expressed are those of the author(s) and
should not be interpreted as representing the offi-
cial views or policies of the Department of Defense
or the U.S. Government.

References
Fan Bai, Alan Ritter, and Wei Xu. 2021. Pre-train or an-

notate? domain adaptation with a constrained budget.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5002–5015, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A Pretrained Language Model for Scientific
Text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3615–3620, Hong Kong, China.

Connor W Coley, Wengong Jin, Luke Rogers, Timo-
thy F Jamison, Tommi S Jaakkola, William H Green,
Regina Barzilay, and Klavs F Jensen. 2019a. A
graph-convolutional neural network model for the
prediction of chemical reactivity. Chemical science,
10(2):370–377.

Connor W Coley, Dale A Thomas III, Justin AM Lum-
miss, Jonathan N Jaworski, Christopher P Breen, Vic-
tor Schultz, Travis Hart, Joshua S Fishman, Luke
Rogers, Hanyu Gao, et al. 2019b. A robotic platform
for flow synthesis of organic compounds informed
by ai planning. Science, 365(6453):eaax1566.

Nathan Collins, David Stout, Jin-Ping Lim, Jeremiah P
Malerich, Jason D White, Peter B Madrid, Mario
Latendresse, David Krieger, Judy Szeto, Vi-Anh Vu,
et al. 2020. Fully automated chemical synthesis:
toward the universal synthesizer. Organic Process
Research & Development, 24(10):2064–2077.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186, Minneapolis, Minnesota.

Jiang Guo, A Santiago Ibanez-Lopez, Hanyu Gao, Vic-
tor Quach, Connor W Coley, Klavs F Jensen, and
Regina Barzilay. 2021. Automated chemical reac-
tion extraction from scientific literature. Journal of
chemical information and modeling.

Tomasz Klucznik, Barbara Mikulak-Klucznik,
Michael P McCormack, Heather Lima, Sara
Szymkuć, Manishabrata Bhowmick, Karol Molga,
Yubai Zhou, Lindsey Rickershauser, Ewa P Gajew-
ska, et al. 2018. Efficient syntheses of diverse,
medicinally relevant targets planned by computer
and executed in the laboratory. Chem, 4(3):522–532.

Chaitanya Kulkarni, Wei Xu, Alan Ritter, and Raghu
Machiraju. 2018. An annotated corpus for machine
reading of instructions in wet lab protocols. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational

317

https://doi.org/10.18653/v1/2021.emnlp-main.409
https://doi.org/10.18653/v1/2021.emnlp-main.409
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Linguistics: Human Language Technologies, Volume
2 (Short Papers), pages 97–106.

Fusataka Kuniyoshi, Kohei Makino, Jun Ozawa, and
Makoto Miwa. 2020. Annotating and extracting syn-
thesis process of all-solid-state batteries from scien-
tific literature. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 1941–
1950.

Daniel Lowe. 2017. Chemical reactions from US
patents (1976-2016).

Daniel M. Lowe. 2012. Extraction of Chemical Struc-
tures and Reactions from the Literature (Doctoral
Thesis).

Sheshera Mysore, Zachary Jensen, Edward Kim, Kevin
Huang, Haw-Shiuan Chang, Emma Strubell, Jeffrey
Flanigan, Andrew McCallum, and Elsa Olivetti. 2019.
The materials science procedural text corpus: Anno-
tating materials synthesis procedures with shallow
semantic structures. In Proceedings of the 13th Lin-
guistic Annotation Workshop, pages 56–64.

Dat Quoc Nguyen, Zenan Zhai, Hiyori Yoshikawa,
Biaoyan Fang, Christian Druckenbrodt, Camilo
Thorne, Ralph Hoessel, S. Akhondi, Trevor Cohn,
Timothy Baldwin, and K. Verspoor. 2020. ChEMU:
Named Entity Recognition and Event Extraction of
Chemical Reactions from Patents. Advances in Infor-
mation Retrieval, pages 572 – 579.

Elsa A Olivetti, Jacqueline M Cole, Edward Kim, Olga
Kononova, Gerbrand Ceder, Thomas Yong-Jin Han,
and Anna M Hiszpanski. 2020. Data-driven materials
research enabled by natural language processing and
information extraction. Applied Physics Reviews,
7(4).

Tim O’Gorman, Zach Jensen, Sheshera Mysore, Kevin
Huang, Rubayyat Mahbub, Elsa Olivetti, and An-
drew McCallum. 2021. Ms-mentions: Consistently
annotating entity mentions in materials science proce-
dural text. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1337–1352.

Shauli Ravfogel, Hillel Taub-Tabib, and Yoav Goldberg.
2021. Neural extractive search. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing: System
Demonstrations, pages 210–217.

Thomas J Struble, Juan C Alvarez, Scott P Brown, Mi-
lan Chytil, Justin Cisar, Renee L DesJarlais, Ola En-
gkvist, Scott A Frank, Daniel R Greve, Daniel J Grif-
fin, et al. 2020. Current and future roles of artificial
intelligence in medicinal chemistry synthesis. Jour-
nal of medicinal chemistry, 63(16):8667–8682.

Ronen Tamari, Fan Bai, Alan Ritter, and Gabriel
Stanovsky. 2021. Process-level representation of
scientific protocols with interactive annotation. In
Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2190–2202, Online.
Association for Computational Linguistics.

Igor V Tetko, Pavel Karpov, Ruud Van Deursen, and
Guillaume Godin. 2020. State-of-the-art augmented
nlp transformer models for direct and single-step
retrosynthesis. Nature communications, 11(1):1–11.

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, and
Dane Bell. 2020. Odinson: A fast rule-based infor-
mation extraction framework. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 2183–2191, Marseille, France. European
Language Resources Association.

Alain C Vaucher, Federico Zipoli, Joppe Geluykens,
Vishnu H Nair, Philippe Schwaller, and Teodoro
Laino. 2020. Automated extraction of chemical syn-
thesis actions from experimental procedures. Nature
communications, 11(1):1–11.

Shi Zong, Ashutosh Baheti, Wei Xu, and Alan Rit-
ter. 2020. Extracting a knowledge base of covid-
19 events from social media. arXiv preprint
arXiv:2006.02567.

318

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://doi.org/10.18653/v1/2021.eacl-main.187
https://doi.org/10.18653/v1/2021.eacl-main.187
https://aclanthology.org/2020.lrec-1.267
https://aclanthology.org/2020.lrec-1.267

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 319 - 326
December 7-11, 2022 c©2022 Association for Computational Linguistics

Camelira: An Arabic Multi-Dialect Morphological Disambiguator

Ossama Obeid1, Go Inoue1,2, Nizar Habash1

1Computational Approaches to Modeling Language (CAMeL) Lab
New York University Abu Dhabi

2Mohamed bin Zayed University of Artificial Intelligence
{oobeid,nizar.habash}@nyu.edu

go.inoue@mbzuai.ac.ae

Abstract

We present Camelira, a web-based Arabic
multi-dialect morphological disambiguation
tool that covers four major variants of Arabic:
Modern Standard Arabic, Egyptian, Gulf, and
Levantine. Camelira offers a user-friendly web
interface that allows researchers and language
learners to explore various linguistic informa-
tion, such as part-of-speech, morphological
features, and lemmas. Our system also pro-
vides an option to automatically choose an ap-
propriate dialect-specific disambiguator based
on the prediction of a dialect identification
component. Camelira is publicly accessible
at http://camelira.camel-lab.com.

1 Introduction

The last two decades have witnessed remarkable
progress in Natural Language Processing (NLP)
for Arabic and its dialects despite many challenges
such as its diglossic nature, morphological com-
plexity, and orthographic ambiguity (Darwish et al.,
2021). These efforts have led to many practical ap-
plications for various NLP tasks including tokeniza-
tion, part-of-speech (POS) tagging, morphological
disambiguation, named entity recognition, dialect
identification (DID), and sentiment analysis (Pasha
et al., 2014; Abdelali et al., 2016; Obeid et al.,
2019; Abdul-Mageed et al., 2020b, inter alia).

Tools for core technologies like POS tagging
and morphological disambiguation are primary
examples of such successful applications, e.g.,
MADAMIRA (Pasha et al., 2014), Farasa (Abde-
lali et al., 2016), UDPipe (Straka et al., 2016), and
Stanza (Qi et al., 2020). However, there are still
gaps to be filled in terms of coverage and usability.
For example, these systems only support Modern
Standard Arabic (MSA) and Egyptian Arabic, but
not other widely spoken dialects such as Gulf and
Levantine. In addition, these web interfaces only
present the top prediction, although the alterna-
tive readings could provide valuable information

for analyzing the models’ behavior. In contrast,
morphological analyzers such as ElixirFM (Smrž,
2007), CALIMAStar (Taji et al., 2018b), CALIMA
Egyptian (Habash et al., 2012) show all the differ-
ent readings for a given word out of context but
without disambiguated analyses in context. These
tools assume that users already know the input DID;
however, this is not necessarily the case for second
language learners.

To address these limitations, we present
Camelira,1,2 a web interface for Arabic multi-
dialect morphological disambiguation that covers
four major variants of Arabic: MSA, Egyptian,
Gulf, and Levantine. Our system takes an input
sentence and provides automatically disambiguated
readings for each word in context, as well as its
alternative out-of-context readings. We also show-
case the integration of a state-of-the-art morpho-
logical disambiguator (Inoue et al., 2022) with the
highest performing fine-grained Arabic DID sys-
tem (Salameh et al., 2018) on the MADAR DID
shared task (Bouamor et al., 2019). Camelira pro-
vides an option to automatically choose a dialect-
specific disambiguator based on the prediction of
the DID component. To the best of our knowledge,
our work is the first to demonstrate an integrated
web application that leverages both Arabic morpho-
logical disambiguation and DID systems.

Our contributions are as follows: (a) We
present a user-friendly web interface that allows
researchers and language learners to explore the de-
tailed linguistic analysis of a given Arabic sentence.
(b) We include three major Arabic dialects (Egyp-
tian, Gulf, and Levantine) in addition to MSA, to
make our tool more accessible to a wider audience.
(c) We integrate DID to automatically select the ap-
propriate disambiguator; a feature that helps users
with limited knowledge of Arabic dialects.

1http://camelira.camel-lab.com
2Camelira is named after CAMeL Tools (Obeid et al.,

2020), and in homage to MADAMIRA (Pasha et al., 2014).

319

http://camelira.camel-lab.com
http://camelira.camel-lab.com

2 Arabic Linguistic Facts

The Arabic language poses a number of challenges
for NLP (Habash, 2010). We highlight three as-
pects that are most relevant to multi-dialectal mor-
phological modeling: dialectal variations, morpho-
logical richness, and orthographic ambiguity.

First, Arabic is characterized with diglossia and
its large number of dialects (Ferguson, 1959; Holes,
2004). MSA is the shared standard variant used
in official contexts, while the dialects are the va-
rieties of daily use. MSA and the dialects vary
among themselves in different aspects, such as lex-
icons, morphology, and syntax. Second, Arabic is
a morphologically rich and complex language. It
employs a combination of templatic, affixational,
and cliticization morphological operations to repre-
sent numerous grammatical features such as gen-
der, number, person, case, state, mood, aspect,
and voice, in addition to a number of attachable
pronominal, preposition, and determiner clitics.
Third, Arabic is orthographically highly ambigu-
ous. This is due to its orthographic conventions
where diacritical marks are often omitted, leading
to a high degree of ambiguity. For example, MSA
can have 12 different morphological analyses per
word on average (Pasha et al., 2014).

3 Related Work

Morphological Analysis and Disambiguation
Morphological analysis is the task of producing
a complete list of readings (analyses) for a given
word out of context. Morphological analysis has
a wide range of applications, including treebank
annotation (Maamouri et al., 2003, 2011, 2009)
and improving morphological modeling (Habash
et al., 2005; Inoue et al., 2017; Zalmout and
Habash, 2017; Khalifa et al., 2020). Over the past
two decades, there have been numerous efforts in
building morphological analyzers for Arabic, e.g.
BAMA (Buckwalter, 2002), MAGEAD (Habash
and Rambow, 2006; Altantawy et al., 2010), AL-
MORGEANA (Habash, 2007), ElixirFM (Smrž,
2007), SAMA (Graff et al., 2009), CALIMA Egyp-
tian (Habash et al., 2012), CALIMA Gulf (Khal-
ifa et al., 2017), AlKhalil Morpho Sys (Boud-
lal et al., 2010; Boudchiche et al., 2017) and
CALIMAStar (Taji et al., 2018b). Among these
efforts, ElixirFM3 and CALIMAStar

4 provide easy-
to-use web interfaces, allowing the user to ex-

3http://quest.ms.mff.cuni.cz/elixir
4http://calimastar.camel-lab.com/

plore all the possible morphological analyses for
a given word. In addition to these rule-based ap-
proaches, Eskander et al. (2016) used a corpus-
based paradigm completion technique (Eskander
et al., 2013) to develop a morphological analyzer
for Levantine; and (Khalifa et al., 2020) used the
same technique to develop a morphological ana-
lyzer for Gulf.

Morphological disambiguation is the subsequent
process of identifying the correct analysis in con-
text from the list of different analyses produced
by a morphological analyzer. Examples of this in
Arabic start with MADA (Habash et al., 2005) and
many following efforts (Pasha et al., 2014; Khal-
ifa et al., 2016; Zalmout and Habash, 2017, 2020;
Khalifa et al., 2020; Inoue et al., 2022), where
they rank the analyses based on the predictions of
morphological taggers. While these models have
achieved significant improvement over time, only
MADAMIRA (Pasha et al., 2014) offers a web in-
terface5 that’s accessible to a general audience. In
this work, we present a user-friendly web interface
for state-of-the-art morphological disambiguation
models to make these recent advances more acces-
sible to a wider audience, such as linguists and
language learners. Our interface also provides all
the alternative readings of each input word with the
associated prediction scores, allowing researchers
to investigate the model’s behavior.

Dialect Identification Dialect identification
(DID) is the task of automatically identifying the
language variety of a given text. DID for Arabic
and its variants has attracted increasing attention in
recent years. A number of shared tasks have been
organized, including VarDial (Malmasi et al., 2016;
Zampieri et al., 2017, 2018), MADAR (Bouamor
et al., 2019), and NADI (Abdul-Mageed et al.,
2020a, 2021, 2022), along with continuous efforts
in dataset creation (Zaidan and Callison-Burch,
2011; Mubarak and Darwish, 2014; Zaghouani
and Charfi, 2018; Baimukan et al., 2022, inter
alia). These evaluation campaigns have led to
the development of practical applications, such
as ADIDA6 (Obeid et al., 2019), a web inter-
face for fine-grained Arabic DID based on the
highest performing system in the MADAR shared
task (Salameh et al., 2018). In this work, we em-
ploy one of the DID systems described by Salameh

5http://madamira.camel-lab.com/
6http://adida.camel-lab.com/

320

http://quest.ms.mff.cuni.cz/elixir
http://calimastar.camel-lab.com/
http://madamira.camel-lab.com/
http://adida.camel-lab.com/

Figure 1: The Camelira interface with an MSA example sentence celebrating the winning of a racehorse named
“Dream.” In this example, the automatically diacritized forms of the words are presented together with their POS.
The first word (on the right), which is highlighted, is selected by the user. The two lower boxes show all the possible
out-of-context analyses (on the right) and the detailed features and gloss for the top in-context analysis (on the left).

et al. (2018);7 however, we differ from their work
in that we combine DID with multi-dialect mor-
phological disambiguation to allow users to easily
select an appropriate dialect-specific Arabic disam-
biguator based on the DID prediction.

4 System Design and Implementation

4.1 Design Considerations

We want an easy-to-use one-stop online-accessible
user interface that supports the analysis of Arabic
sentences from different dialects, and with access
to under-the-hood decisions about disambiguation.
To that end, we are inspired by three web inter-
faces: MADAMIRA (Pasha et al., 2014) for in-
context disambiguation, CALIMAStar (Taji et al.,
2018a) for out-of-context analysis, and ADIDA
(Obeid et al., 2019) for dialect identification. Fur-
thermore, we would like the web interface to have
a responsive design with streamlined user expe-
riences across a range of devices from mobile to
desktops.

7We use regional level classification instead of fine-grained
city-level classification because the morphological analyzers
are designed at the regional level.

4.2 Implementation

Back-end The back-end is implemented in
Python using Flask8 to serve a REST API. We
implemented the MODEL-6 DID system described
by Salameh et al. (2018) for automatic dialect iden-
tification and the morphological disambiguation
system described by Inoue et al. (2022). The im-
plementation of the morphological disambiguator
was provided by the CAMeL Tools9 Python API
(Obeid et al., 2020). We plan to add our MODEL-6
implementation to CAMeL Tools.

For morphological disambiguation, we use the
unfactored model with a morphological analyzer
for all variants. We chose the unfactored models be-
cause they are faster than the factored models and
only slightly lower in performance. Table 1 shows
the performance accuracy of Camelira’s morpho-
logical disambiguation models. We report numbers
on DEV as presented in Inoue et al. (2022).

For DID, we train our MODEL-6 using the
TRAIN split and evaluate using the DEV and TEST
splits following Salameh et al. (2018). Table 2
compares the performance of our implementation
with that of Salameh et al. (2018). Our results are
slightly lower due to implementation differences.

8https://flask.palletsprojects.com/
9https://github.com/CAMeL-Lab/camel_tools

321

https://flask.palletsprojects.com/
https://github.com/CAMeL-Lab/camel_tools

Figure 2: The Camelira interface presenting the same example in Figure 1 using the Arabic user interface.

ALL TAGS POS
MSA 95.9 98.7
EGY 90.5 94.0
GLF 93.8 96.6
LEV 85.5 92.7

Table 1: Accuracy of Camelira’s morphological disam-
biguation models based on Inoue et al. (2022)’s unfac-
tored+Morph models. ALL TAGS is the accuracy of
the combined morphosyntactic features.

DEV TEST
Camelira 92.8 93.5
Salameh et al. 93.1 93.6

Table 2: Accuracy of Camelira’s implementation of the
MODEL-6 DID model compared with Salameh et al.
(2018)’s implementation of the same model.

Front-end The front-end was implemented using
Vue.js10 for model view control and Bulma11 for
styling and creating a responsive design that works
well across devices.

4.3 The Camelira Interface

The Camelira interface is divided into three main
areas, the Input Area, Text Output Area, and Mor-
phological Analysis Area. Figure 1 shows an ex-

10https://vuejs.org/
11https://bulma.io/

ample of a disambiguated MSA sentence in the
Camelira web interface. We also provide the op-
tion of viewing the interface in Arabic as seen in
Figure 2.

Input Area At first, only the Input Area is dis-
played which provides users with an input box
where they can enter the sentence they wish to
disambiguate. Users are also presented with a drop-
down menu where they can select whether to dis-
ambiguate the input sentence as a particular dialect
(MSA, Egyptian, Gulf, or Levantine) or to have the
dialect be automatically selected.

Text Output Area Once the submit button is
clicked and the sentence has been disambiguated,
the Text Output Area is displayed. First, the di-
alect indicator displays which dialect was used to
analyze the provided input. Then, an output box
displays the disambiguated sentence in three dif-
ferent views: (a) the Diacritized/POS view which
displays the diacritized text (if supported by the
selected dialect’s resources) along with the POS
tag of each word, (b) the Tokenized view which
displays each disambiguated word in its tokenized
form where tokens are delimited by a ‘+’ character,
and (c) the Lemmatized view where each word is
displayed in its lemmatized form. Figure 3 is the
same as Figure 1 except that the text output is in
Tokenized mode.

322

https://vuejs.org/
https://bulma.io/

Figure 3: The Camelira interface with an MSA example sentence and “Tokenized” display tab. This is an exact
replica of the input and output choices as in Figure 1 except that the word forms are presented in full tokenization.

Morphological Analysis Area Below the Text
Output Area, the Morphological Analysis Area con-
sists of the Analysis List box (on the right), which
displays all analyses of a given word sorted by their
disambiguation ranking order, and the Analysis
Viewer box (on the left), which displays a selected
analysis in an easy-to-read form with more morpho-
logical feature details. The analysis list displays
the disambiguation score of each analysis as well
as the values for a reduced set of features.

Clicking on a word in the Text Output Area se-
lects that word, displaying its analyses in the analy-
sis list and analysis viewer boxes. Clicking on an
analysis in the Analysis List will display its user-
friendly form in the Analysis Viewer. By default,
the top analysis is selected.

Dialect Identification and Morphological Dis-
ambiguation Figures 4 and 5 present Egyptian
and Gulf Arabic examples, respectively. Both are
presented in a mobile setting to demonstrate our
responsive design.

In the case of Figure 4, the user selected Auto-
Detect for dialect identification. In the Gulf exam-
ple, the user selected Gulf Arabic directly. Note
that the Gulf Arabic does not show diacritizations
since its training data did not include diacritized
forms (Khalifa et al., 2020).

5 Conclusion and Future Work

We presented Camelira, a user-friendly web inter-
face for Arabic multi-dialect morphological disam-
biguation that covers four major variants of Ara-
bic. The system takes a sentence as input and pro-
vides an automatically disambiguated reading for
each word, as well as its alternative readings, allow-
ing users to explore various linguistic information,
such as part-of-speech, morphological features, and
lemmas. Camelira also provides an option to au-
tomatically choose an appropriate dialect-specific
disambiguator based on the prediction of its dialect
identification component.

In the future, we plan to extend our disambigua-
tion system to cover other Arabic dialects such
as Maghrebi and Yemeni Arabic. We also plan
to continue to update the system using future im-
provements in terms of efficiency and accuracy in
CAMeL Tools (Obeid et al., 2020).

Limitations and Ethical Considerations

We acknowledge that our system is currently lim-
ited to specific variants of Arabic and it can pro-
duce erroneous predictions especially on different
dialects, genres, and styles that are not covered
in the current system’s training data. We also ac-
knowledge that our work on core and generic NLP
technologies can be used as part of the pipeline of
other systems with malicious intents.

323

Figure 4: The Camelira interface with an Egyptian ex-
ample sentence: "A very cool song [video clip], you’ll
regret it if you don’t watch it." In this example, the input
text is automatically correctly detected as Egyptian.

Acknowledgements

Some of this work was carried out on the High
Performance Computing resources at New York
University Abu Dhabi. We thank Salam Khalifa
and Bashar Alhafni for their insightful comments
and helpful discussions. We also thank anonymous
reviewers for their helpful comments.

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for Arabic. In Proceedings of the Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), pages
11–16, San Diego, California.

Muhammad Abdul-Mageed, Chiyu Zhang, Houda
Bouamor, and Nizar Habash. 2020a. NADI 2020:
The first nuanced Arabic dialect identification shared
task. In Proceedings of the Fifth Arabic Natu-
ral Language Processing Workshop, pages 97–110,
Barcelona, Spain (Online).

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim
Elmadany, Houda Bouamor, and Nizar Habash. 2021.
NADI 2021: The second nuanced Arabic dialect iden-
tification shared task. In Proceedings of the Sixth Ara-

Figure 5: The Camelira interface with a Gulf example
sentence: "Go up to your room, I don’t want to hear you
talking about this subject again." In this example, the
user specified the input dialect as Gulf.

bic Natural Language Processing Workshop, pages
244–259, Kyiv, Ukraine (Virtual).

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim
Elmadany, Houda Bouamor, and Nizar Habash. 2022.
NADI 2022: The Third Nuanced Arabic Dialect
Identification Shared Task. In Proceedings of the
Seven Arabic Natural Language Processing Work-
shop (WANLP 2022).

Muhammad Abdul-Mageed, Chiyu Zhang, Azadeh
Hashemi, and El Moatez Billah Nagoudi. 2020b.
AraNet: A deep learning toolkit for Arabic social
media. In Proceedings of the 4th Workshop on Open-
Source Arabic Corpora and Processing Tools, with a
Shared Task on Offensive Language Detection, pages
16–23, Marseille, France. European Language Re-
source Association.

Mohamed Altantawy, Nizar Habash, Owen Rambow,
and Ibrahim Saleh. 2010. Morphological Analysis
and Generation of Arabic Nouns: A Morphemic
Functional Approach. In Proceedings of the Lan-
guage Resources and Evaluation Conference (LREC),
Valletta, Malta.

Nurpeiis Baimukan, Houda Bouamor, and Nizar Habash.
2022. Hierarchical aggregation of dialectal data
for Arabic dialect identification. In Proceedings of
the Language Resources and Evaluation Conference,
pages 4586–4596, Marseille, France. European Lan-
guage Resources Association.

Houda Bouamor, Sabit Hassan, and Nizar Habash. 2019.

324

https://www.aclweb.org/anthology/N16-3003/
https://www.aclweb.org/anthology/N16-3003/
https://aclanthology.org/2020.wanlp-1.9
https://aclanthology.org/2020.wanlp-1.9
https://aclanthology.org/2020.wanlp-1.9
https://aclanthology.org/2021.wanlp-1.28
https://aclanthology.org/2021.wanlp-1.28
https://www.aclweb.org/anthology/2020.osact-1.3
https://www.aclweb.org/anthology/2020.osact-1.3
https://aclanthology.org/2022.lrec-1.489
https://aclanthology.org/2022.lrec-1.489

The MADAR shared task on Arabic fine-grained di-
alect identification. In Proceedings of the Fourth Ara-
bic Natural Language Processing Workshop, pages
199–207, Florence, Italy.

Mohamed Boudchiche, Azzeddine Mazroui, Mohamed
Ould Abdallahi Ould Bebah, Abdelhak Lakhouaja,
and Abderrahim Boudlal. 2017. AlKhalil Morpho
Sys 2: A robust Arabic morpho-syntactic analyzer.
Journal of King Saud University - Computer and
Information Sciences, 29(2):141–146.

Abderrahim Boudlal, Abdelhak Lakhouaja, Azzeddine
Mazroui, Abdelouafi Meziane, MOAO Bebah, and
M Shoul. 2010. Alkhalil Morpho Sys1: A mor-
phosyntactic analysis system for Arabic texts. In
Proceedings of the International Arab Conference on
Information Technology, pages 1–6.

Tim Buckwalter. 2002. Buckwalter Arabic morphologi-
cal analyzer version 1.0. Linguistic Data Consortium
(LDC) catalog number LDC2002L49, ISBN 1-58563-
257-0.

Kareem Darwish, Nizar Habash, Mourad Abbas,
Hend Al-Khalifa, Huseein T Al-Natsheh, Houda
Bouamor, Karim Bouzoubaa, Violetta Cavalli-Sforza,
Samhaa R El-Beltagy, Wassim El-Hajj, et al. 2021.
A panoramic survey of natural language processing
in the arab world. Communications of the ACM,
64(4):72–81.

Ramy Eskander, Nizar Habash, and Owen Rambow.
2013. Automatic extraction of morphological lex-
icons from morphologically annotated corpora. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1032–1043, Seattle, Washington, USA.

Ramy Eskander, Nizar Habash, Owen Rambow, and
Arfath Pasha. 2016. Creating resources for Dialectal
Arabic from a single annotation: A case study on
Egyptian and Levantine. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING), pages 3455–3465, Osaka, Japan.

Charles F Ferguson. 1959. Diglossia. Word, 15(2):325–
340.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwal-
ter. 2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash. 2007. Arabic Morphological Represen-
tations for Machine Translation. In Antal van den
Bosch and Abdelhadi Soudi, editors, Arabic Compu-
tational Morphology: Knowledge-based and Empiri-
cal Methods. Kluwer/Springer.

Nizar Habash, Ramy Eskander, and Abdelati Hawwari.
2012. A Morphological Analyzer for Egyptian Ara-
bic. In Proceedings of the Workshop of the Special
Interest Group on Computational Morphology and
Phonology (SIGMORPHON), pages 1–9, Montréal,
Canada.

Nizar Habash and Owen Rambow. 2006. MAGEAD: A
morphological analyzer and generator for the Arabic

dialects. In Proceedings of the International Confer-
ence on Computational Linguistics and the Confer-
ence of the Association for Computational Linguistics
(COLING-ACL), pages 681–688, Sydney, Australia.

Nizar Habash, Owen Rambow, and George Kiraz. 2005.
Morphological Analysis and Generation for Arabic
Dialects. In Proceedings of the Workshop on Compu-
tational Approaches to Semitic Languages (CASL),
pages 17–24, Ann Arbor, Michigan.

Nizar Y Habash. 2010. Introduction to Arabic natural
language processing. Morgan & Claypool Publish-
ers.

Clive Holes. 2004. Modern Arabic: Structures, Func-
tions, and Varieties. Georgetown Classics in Arabic
Language and Linguistics. Georgetown University
Press.

Go Inoue, Salam Khalifa, and Nizar Habash. 2022. Mor-
phosyntactic tagging with pre-trained language mod-
els for Arabic and its dialects. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1708–1719, Dublin, Ireland.

Go Inoue, Hiroyuki Shindo, and Yuji Matsumoto. 2017.
Joint Prediction of Morphosyntactic Categories for
Fine-Grained Arabic Part-of-Speech Tagging Exploit-
ing Tag Dictionary Information. In Proceedings
of the Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 421–431, Vancou-
ver, Canada.

Salam Khalifa, Sara Hassan, and Nizar Habash. 2017.
A morphological analyzer for Gulf Arabic verbs. In
Proceedings of the Workshop for Arabic Natural Lan-
guage Processing (WANLP), Valencia, Spain.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2016. Yamama: Yet another multi-dialect Arabic
morphological analyzer. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING), pages 223–227, Osaka, Japan.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2020. Morphological analysis and disambiguation
for Gulf Arabic: The interplay between resources
and methods. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 3895–
3904, Marseille, France. European Language Re-
sources Association.

Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim
Buckwalter. 2003. Arabic treebank: Part 1 v 2.0.
Linguistic Data Consortium (LDC2003T06).

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma
Gaddeche, Wigdan Mekki, Sondos Krouna, and
Basma Bouziri. 2009. The penn Arabic treebank part
3 v 3.1. Linguistic Data Consortium (LDC2008E22).

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma
Gaddeche, Wigdan Mekki, Sondos Krouna, Basma
Bouziri, and Wadji Zaghouani. 2011. Arabic tree-
bank: Part 2 v 3.1.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić,
Preslav Nakov, Ahmed Ali, and Jörg Tiedemann.
2016. Discriminating between similar languages and
Arabic dialect identification: A report on the third

325

https://doi.org/10.18653/v1/W19-4622
https://doi.org/10.18653/v1/W19-4622
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://doi.org/10.18653/v1/2022.findings-acl.135
https://www.aclweb.org/anthology/2020.lrec-1.480
https://www.aclweb.org/anthology/2020.lrec-1.480
https://www.aclweb.org/anthology/2020.lrec-1.480
https://aclanthology.org/W16-4801
https://aclanthology.org/W16-4801

DSL shared task. In Proceedings of the Third Work-
shop on NLP for Similar Languages, Varieties and
Dialects (VarDial3), pages 1–14, Osaka, Japan. The
COLING 2016 Organizing Committee.

Hamdy Mubarak and Kareem Darwish. 2014. Using
Twitter to collect a multi-dialectal corpus of Arabic.
In Proceedings of the Workshop for Arabic Natural
Language Processing (WANLP), Doha, Qatar.

Ossama Obeid, Mohammad Salameh, Houda Bouamor,
and Nizar Habash. 2019. ADIDA: Automatic dialect
identification for Arabic. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 6–11, Minneapolis, Minnesota.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMeL tools: An open source python toolkit for Ara-
bic natural language processing. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 7022–7032, Marseille, France. European
Language Resources Association.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A fast, comprehensive tool for
morphological analysis and disambiguation of Ara-
bic. In Proceedings of the Language Resources and
Evaluation Conference (LREC), pages 1094–1101,
Reykjavik, Iceland.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online.

Mohammad Salameh, Houda Bouamor, and Nizar
Habash. 2018. Fine-grained Arabic dialect identi-
fication. In Proceedings of the International Confer-
ence on Computational Linguistics (COLING), pages
1332–1344, Santa Fe, New Mexico, USA.

Otakar Smrž. 2007. ElixirFM — Implementation
of Functional Arabic Morphology. In Proceed-
ings of the Workshop on Computational Approaches
to Semitic Languages (CASL), pages 1–8, Prague,
Czech Republic. ACL.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4290–
4297, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Dima Taji, Jamila El Gizuli, and Nizar Habash. 2018a.
An Arabic dependency treebank in the travel do-
main. In Proceedings of the Workshop on Open-
Source Arabic Corpora and Processing Tools (OS-
ACT), Miyazaki, Japan.

Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani,
and Nizar Habash. 2018b. An Arabic morphological
analyzer and generator with copious features. In Pro-
ceedings of the Fifteenth Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 140–150, Brussels, Belgium.

Wajdi Zaghouani and Anis Charfi. 2018. ArapTweet:
A Large Multi-Dialect Twitter Corpus for Gender,
Age and Language Variety Identification. In Pro-
ceedings of the Language Resources and Evaluation
Conference (LREC), Miyazaki, Japan.

Omar F Zaidan and Chris Callison-Burch. 2011. The
Arabic Online Commentary Dataset: an Annotated
Dataset of Informal Arabic With High Dialectal Con-
tent. In Proceedings of the Conference of the Asso-
ciation for Computational Linguistics (ACL), pages
37–41.

Nasser Zalmout and Nizar Habash. 2017. Don’t throw
those morphological analyzers away just yet: Neural
morphological disambiguation for Arabic. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
704–713, Copenhagen, Denmark.

Nasser Zalmout and Nizar Habash. 2020. Joint dia-
critization, lemmatization, normalization, and fine-
grained morphological tagging. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 8297–8307, Online.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
Scherrer, and Noëmi Aepli. 2017. Findings of the
VarDial evaluation campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), pages 1–15,
Valencia, Spain.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Ahmed Ali, Suwon Shon, James Glass, Yves Scher-
rer, Tanja Samardžić, Nikola Ljubešić, Jörg Tiede-
mann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Dirk Speelman, Antal van den
Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank
Jain. 2018. Language identification and morphosyn-
tactic tagging: The second VarDial evaluation cam-
paign. In Proceedings of the Fifth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial 2018), pages 1–17, Santa Fe, New Mexico,
USA.

326

https://aclanthology.org/W16-4801
https://doi.org/10.18653/v1/N19-4002
https://doi.org/10.18653/v1/N19-4002
https://www.aclweb.org/anthology/2020.lrec-1.868
https://www.aclweb.org/anthology/2020.lrec-1.868
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://doi.org/10.18653/v1/W18-5816
https://doi.org/10.18653/v1/W18-5816
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/W17-1201
https://doi.org/10.18653/v1/W17-1201
https://aclanthology.org/W18-3901
https://aclanthology.org/W18-3901
https://aclanthology.org/W18-3901

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 327 - 337
December 7-11, 2022 c©2022 Association for Computational Linguistics

POTATO: The Portable Text Annotation Tool
Jiaxin Pei 1 Aparna Ananthasubramaniam1 Xingyao Wang2 Naitian Zhou 3

Apostolos Dedeloudis4 Jackson Sargent1 David Jurgens1
1School of Information, University of Michigan, Ann Arbor, MI, USA

2Department of Computer Science, University of Illinois, Urbana Champaign, IL, USA
3School of Information, University of California, Berkeley, CA, USA

4The American College of Greece, Athens, Greece
1{pedropei, akananth, jackson, jurgens}@umich.edu

2xingyao6@illinois.edu 3naitian@berkeley.edu 4apostolosdedgmail.com

Abstract

We present POTATO, the Portable text
annotation tool, a free, fully open-sourced an-
notation system that 1) supports labeling many
types of text and multimodal data; 2) offers
easy-to-configure features to maximize the
productivity of both deployers and annotators
(convenient templates for common ML/NLP
tasks, active learning, keypress shortcuts, key-
word highlights, tooltips); and 3) supports a
high degree of customization (editable UI, in-
serting pre-screening questions, attention and
qualification tests). Experiments over two an-
notation tasks suggest that POTATO improves
labeling speed through its specially-designed
productivity features, especially for long docu-
ments and complex tasks. POTATO is available
at https://github.com/davidjurgens/

potato and will continue to be updated.

1 Introduction

Much of NLP requires annotated data. As NLP
has tried to tackle increasingly more complex lin-
guistic phenomena or diverse labeling and clas-
sification tasks, the annotation process has in-
creased in complexity—yet the need for and bene-
fit of large labeled datasets remain (Halevy et al.,
2009; Sun et al., 2017). Modern annotation tools
like Label Studio (Tkachenko et al., 2021), Light-
Tag (Perry, 2021), Doccano (Nakayama et al.,
2018), and Prodigy (Explosion, 2017) have par-
tially filled this gap, providing a variety of solu-
tions to different types of annotations. However,
these tools each bring their own challenges: requir-
ing external access, limiting visual configurability
for complex tasks, or even costing hundreds of
dollars—prohibitive for small groups. We intro-
duce POTATO, The Portable text annotation tool,
which allows practitioners to quickly design and
deploy complex annotations tasks.

POTATO has been designed, developed, and
tested over a two-year period with the following de-

Easy to deploy
● 10+ templates and schemas
● Easy multilingual/multi-task annotation
● Fit for both internal annotation and

crowdsourcing
● Editable UI

Improving productivity
● Active learning
● Conditional highlighting
● Keyboard shortcut input
● Label tooltips

Better quality control
● Built-in attention test
● Qualification test
● Pre- and post-screening questions
● Built-in time tracker

High accessibility
● Free for everyone
● Fully open-sourcing
● Easy sharing annotation logs and

configurations

Figure 1: The four core design goals of POTATO: easy
to deploy, greater productivity, better quality control,
and high accessibility. Each design goal comes with a
series of features that can make data annotation easier
and more reliable.

sign goals in mind (Figure 1): 1) High accessibil-
ity. POTATO is open-sourced under the MIT license
and free to anyone. POTATO is built with minimal
dependencies to allow researchers and developers
to easily build and integrate their own features. 2)
Easy to deploy. POTATO comes with templates
covering a wide range of annotation tasks like best-
worst-scaling, text classification, and multi-modal
conversation. Anyone can start a new annotation
project with simple configurations. POTATO is also
rapidly and easily deployable in local and web-
based configurations and has seamless integration
with common crowdsourcing platforms like Ama-
zon Mechanical Turk and Prolific. POTATO flexibly
supports diverse annotation needs. With our spe-
cially designed schema rendering and custom ren-
dering mechanism, POTATO allows nearly all kinds
of text annotation tasks and is visually customiz-
able to support complex task designs and layout.
3) Better quality control. Attaining reliable anno-
tations is one of the core goals of data annotation
tasks. POTATO is designed with a series of fea-
tures that can help to improve annotation quality,
including built-in attention tests, prestudy qualifica-
tion tests, and an annotation time tracker. POTATO

also allows deployers to easily set up pre- and post-

327

https://github.com/davidjurgens/potato
https://github.com/davidjurgens/potato

screening questions (e.g. demographics or psy-
chological surveys), which can help researchers to
better understand potential biases in data labeling.
4) Productivity enhancing. POTATO comes with
a series of productivity features for both deploy-
ers and annotators like active learning, conditional
highlighting, and keyboard shortcuts. While exist-
ing systems like Doccano (Nakayama et al., 2018)
and Lighttag (Perry, 2021) offer different subsets
of these features, POTATO aims to support a holistic
annotation experience by meeting all of these needs.
Experiments on two annotation tasks demonstrate
that POTATO leads to more efficient data labeling
for complex tasks.

2 Architecture and Design

POTATO is written in Python and focuses on porta-
bility and simplicity in annotation and deployment.
The user interface is created through an extensible
HTML template and configuration file, which al-
lows practitioners to quickly develop and deploy
common setups like Likert-scale annotation while
also supporting extensive display customization.
The POTATO server populates the interface with
data provided by the operator and supports display-
ing any HTML-supported modality, e.g., text or
images. An overview of the architecture is shown
in Figure 2.
Data Management POTATO loads data in com-
mon file formats, such as delimited files or newline-
delimited JSON. This allows it to ingest data in
the JSON format supplied by the Twitter or Reddit
APIs, as well as other types of data used by the de-
ployer. All formats are converted into internal data
structures that link the deployer-selected instance
ID to annotations. At a minimum, deployers must
specify which field represents the unique instance
ID and, for most tasks, the text to be annotated.
The data may contain other columns which will be
included in the final output and can optionally be
used in customized visualizations.
Annotation Schema Rendering POTATO allows
deployers to select one or more forms of annotation
for their data using predefined schema types, such
as multiple choice or best-worst scaling. Deployers
fill out which options should be shown and then
each scheme is rendered into HTML upon the com-
pletion of loading the data. Annotation instructions
can be provided as an external URL that annotators
may view or using HTML text shown in POTATO

that annotators may collapse vertically to free up

screen space. POTATO provides default HTML
templates that automatically lay out each scheme’s
annotation questions. However, deployers may ad-
ditionally customize the HTML templates and se-
lect their own layout using JINJA expressions (e.g.,
{{text}}; Jinja) to specify where parts of the
annotation task and data are populated within the
user-defined template.

User Management Annotators create accounts
and then log in to view their tasks using a secure
user management system. When used with crowd-
sourcing platforms, POTATO also allows workers
to directly jump to the annotation task using their
crowdsourcing user ID. For each new annotator,
POTATO automatically assigns instances as con-
figured by the deployer and all the annotations
are recorded on the backend. When logging out
and back in, annotators resume at the most recent
unannotated item. POTATO also allows deployers
to, with minimum configurations, set up pre- and
post-screening questions (e.g., having annotators
provide demographics or complete psychological
questionnaires), pre-study tests, and attention tests
to identify unreliable annotators.

Active Learning In some settings such as data with
imbalanced classes, active learning helps re-order
items to surface those that may provide more in-
formation to downstream classifiers (Settles, 2009;
Monarch, 2021). Prior annotation interfaces have
included active learning to help maximize data util-
ity (Stenetorp et al., 2012; Wiechmann et al., 2021;
Li et al., 2021). POTATO includes a configurable
active learning setup to prioritize important sam-
ples and potentially improves data quality with
limited labeling budgets. In its default setting,
POTATO periodically trains a logistic regression
classifier using unigram and bigram features on the
currently annotated data; unlabeled instances are
sorted by classifier confidence and items with low
confidence are prioritized, while still including a
deployer-specified percentage of a random sample.
Deployers may change or reconfigure this model
easily.

Design highlights POTATO is designed to flexibly
support diverse annotation tasks and improve the
productivity of annotators. Here we briefly high-
light several features of POTATO. First, with simple
configurations, deployers can quickly add keyboard
shortcuts to specific options or tooltips to help an-
notators. Second, in settings where an annotator
is reading a dense or long passage, or where there

328

Config.yaml
...

...

things-to-be-annotated.json

{"id": "item_1", "text": "Aliquam eius modi ut."}
{"id": "item_2", "text": "Numquam dolorem labore
voluptatem dolore etincidunt neque."}

...

Data
Management

Schema
Rendering

user: potato@email.com

user: tomato@email.com

...

 "annotation_schemes": [
 {
 "annotation_type": "multiselect",
 "name": "favorite_color",
 "description": "What colors are
mentioned in the text?",
 "labels": [
 "blue", "maize", "green", "white"
],
 },
]

Login / Sign-up

Data
Rendering

Currently logged in as potato@email.com

User Annotation State
user: potato@email.com
annotated_ids: {(item_1, {...}), ...}
remaining_ids: [item_3, item_4, ...]

...

Active Learning
Model(s)

{{instance.text}}

Currently logged in as {{user}}

(1) train

(2) reorder

User
Management

Assigned instances

User annotations

Current
instance

Figure 2: The overall architecture of POTATO features a modular design that decouples the task specification from
the rendering, allowing rapid deployment of new task designs and separate customization of the visualization.

are many potentially subtle cues, annotators are
likely to struggle due to having to slowly and care-
fully read each passage or accidentally omitting
relevant annotations due to the complexity of the
task. POTATO introduces a new feature, condi-
tional highlighting, to help in these settings, where
the deployer specifies certain keywords to trigger
highlights in the text, drawing the annotator’s fo-
cus to those words or phrases. For example, if
annotating for Twitter-based stance towards politi-
cians, a deployer might use keywords and phrases
for common politicians or political parties to en-
sure these are not missed. If conditional highlight-
ing is enabled, POTATO will also randomly label
some words with highlights, based on a deployer-
specified rate, to ensure annotators do not rely too
heavily on highlights.

3 Deployment and Tasks

POTATO is designed with a quickly-deployable
Python-based server architecture that can be run lo-
cally or hosted on any device. To launch a POTATO

instance, the deployer first defines a YAML file
that specifies the annotation schemes, data sources,
server configuration, and any custom visualizations.
If POTATO is launched without a YAML, the pro-
gram will provide the deployer the option of fol-
lowing a series of prompts about their task to auto-
matically generate a YAML file for them. A YAML
file is then passed to the server on the command
line to launch the server for annotation.

Currently, POTATO supports eight annotation
scheme types: multiple-selection (checkboxes),
single-selection (radio buttons), best-worst scal-
ing, Likert scale, free-form text, span-based la-
bels, numbers, and dropdown list. Deployers can
easily set up one or more of these schemes in
the YAML file—e.g., asking annotators to rate a

news article on different dimensions using multi-
ple Likert scales and then summarizing the arti-
cle in a free text response. For each annotation
instance, POTATO can take a single document, mul-
tiple documents as a list (e.g. dialogue and best-
worst-scaling), as well as a dictionary of documents
(e.g. a pair of documents for pairwise comparison).
POTATO will automatically display the instance to
annotators based on the input types and the YAML
configurations. The POTATO documentation con-
tains example YAML templates for several com-
mon annotation tasks such as sentiment analysis,
question-answering, and image-based labeling.

POTATO is self-hosted and can be served lo-
cally or exposed publicly. Each running instance
of POTATO serves one task, but multiple annota-
tion tasks can be stored in a single installation,
to be served using different configuration files at
different times. POTATO allows flexible ways for
annotators to login. For internal usage, POTATO

allows annotators to sign up and log in with email
addresses. POTATO also allows annotators to di-
rectly log in with a URL argument (e.g. username
in the crowdsourcing platform), which can be used
in crowdsourcing settings where a dedicated link is
created for an annotation task. POTATO has been
tested with popular crowdsourcing platforms in-
cluding Prolific and Amazon Mechanical Turk.

POTATO has been deployed in a variety of anno-
tation settings over a two-year period, including a
27-class annotation scheme for classifying immi-
gration framing (Mendelsohn et al., 2021); rating
condolences and empathy for Reddit comments
with hundreds of words (Zhou and Jurgens, 2020);
best-worst scaling for rating intimacy in questions
(Pei and Jurgens, 2020); rating Reddit threads for
their prosociality (Bao et al., 2021); rating, on a
Likert-scale, sentences for scientific uncertainty

329

(a) Likert Ratings (b) Text-box (c) Best-Worst Scaling Annotation

(d) Text Categorization (e) Image-based Rating

(f) Pairwise comparison (g) Span-based dialogue analysis

Figure 3: Screenshots of example tasks supported by POTATO, which are included as templates. Examples 3a-3c
show single-task annotations, while Example 3d shows a multitask setup with three multi-select labels. Example
3e shows how POTATO supports multimedia as annotation options. 3f shows a pairwise Likert annotation and 3g
shows a span-based annotation for dialogue analysis. Examples omit the common interface header that shows
annotators how many instances remain and links to the annotation codebook.

(Pei and Jurgens, 2021), intimacy in multilingual
tweet (Pei et al., 2022) and similarity in scientific
findings (Wright et al., 2022); and rating the ap-
propriateness of GIF replies to messages, which
showed an animated GIF in the interface (Wang
and Jurgens, 2021).

Figure 3 shows some of the interfaces from our
documentation’s example templates. These tem-
plates cover a wide range of NLP tasks and can be
easily adapted to support a quick start of common
annotation tasks. The configuration-based setup of
POTATO allows researchers to easily share their an-
notation settings and replicate annotation settings
used by existing works. POTATO also comes with a
dedicated project hub where researchers can easily
open-source their annotation project and already
includes projects in our previous studies. Such a
feature could help to improve the replicability of
NLP/ML annotations and we welcome submissions
from the entire research community.

4 Comparison with Existing Systems

POTATO has been developed to fill a key niche
left by existing systems for providing visual cus-
tomization, easy annotator-support features, and
rapid development. The ultimate goal is to provide
simple and comprehensive solutions to common an-
notation tasks as well as allow personalized design
for complex tasks. Table 1 shows the comparisons
between POTATO and other common text annota-
tion tools over a series of important dimensions
including flexibility, productivity, quality, and ac-
cessibility. We highlight major differentiators next.
Please note that we only compare annotation sys-
tems that are currently available for anyone to use,
free of cost.
Flexibility POTATO is designed to maximize flex-
ibility for a variety of annotation settings. For
common annotation tasks like text classification,
POTATO comes with a wide range of templates

330

Label Studio Doccano FLAT LightTag Prodigy Tagtog FITAnnotator BRAT WebAnno/INCEpTION POTATO

Multiple Schema 3 3 3 3 3 3

Multimodal 3 3 3 3 3

Span-Based Annotation 3 3 3 3 3 3 3 3
Flexibility

Editable UI 3 3 3 3 3

Active Learning 3* 3 3 3 3

Conditional Highlighting 3Productivity
Keyboard Shortcuts 3 3 3 3 3 3

Quality control

Prestudy Qualification Test 3

Attention Test 3

Behavioral Tracking 3

Pre- and Post-screeing Questions 3

Open-Source 3 3 3 3 3 3

Easy Sharing and Replicating 3Accessibility
Price Free Free Free Free for academia $390 $59/person/month Not available Free Free Free

Table 1: Comparisons between POTATO and other text annotation systems over four themes. * means the feature
is not available for the free plan.

and allows a quick start for deployers. However,
unlike many existing annotation tools, which pro-
vide fixed user interfaces with selected types of
annotation tasks (e.g., Doccano offers neither tem-
plates nor an editable UI (Nakayama et al., 2018)),
POTATO allows deployers to customize their own
annotation interface to support diverse needs. For
example, Wang and Jurgens (2021) used animated
GIFs as the labels in the annotation and Mendel-
sohn et al. (2021) used a 27-class scheme under
three categories, both of which required visual cus-
tomization to make the task feasible. POTATO also
allows deployers to easily set up unlimited numbers
of similar annotation tasks, which can be especially
helpful for multilingual annotations. For exam-
ple, for all the other data annotation systems, the
deployers need to set up separate tasks and guide-
lines for each language. With POTATO, deployers
only need to create a sheet containing translated
guidelines and POTATO’s built-in script can help to
generate annotation sites for each language.

Productivity POTATO is designed to maximize
the productivity of both annotators and deployers.
While most of the existing annotation tools gen-
erally focus on labeling data, POTATO supports
a series of features that can help with the entire
data annotation pipeline. POTATO allows easily-
customizable keyboard shortcuts to allow efficient
annotation. For visually or cognitively challeng-
ing settings, POTATO allows conditional highlights,
which helps to reduce task complexity and focus
annotators’ attention. Finally, active learning can
reduce the annotation time needed to curate an
informative dataset. Often, annotation tools that
offer a highly customizable annotation interface
do not also implement productivity features: the
open-sourced version of LabelStudio (Tkachenko
et al., 2021) only supports keypress shortcuts, while
Flat (Gompel et al., 2017) supports none of these

features. For deployers, POTATO allows seamless
integration with common crowdsourcing platforms
like Amazon Mechanical Turk and Prolific.

Quality control Collective high-quality and reli-
able annotations is the ultimate goal of data label-
ing tasks and is usually the key to the success of
the final ML/NLP systems. POTATO comes with
a series of quality control feature which helps de-
ployers to reliably collect annotations. While some
other annotation systems like Label Studio and We-
bAnno also support agreement calculation, none
of the existing systems come with features that
help deployers to improve the annotation quality
and analyze factors affecting it. POTATO allows
deployers to easily set up prestudy qualification
tests (annotators have to pass a small test to par-
ticipate in the full annotation) and attention tests
(attention test questions are randomly inserted in
the annotation queue as configured by the deployer)
to identify unreliable annotators before, within, and
after annotation. POTATO also allows deployers to
freely insert survey questions before and after the
annotation phase. Deployers can easily define dif-
ferent pages of pre- and post-screening questions
with minimum effort and POTATO also provides a
series of templates for common survey questions
like user consent and demographic information.
Recent studies suggest that the background of an-
notators has substantial effects on the quality and
bias of data labeling and further affects the fairness
of ML/NLP models (e.g., Sap et al., 2022). With
POTATO, researchers can easily collect background
information of annotators and analyze the effect of
annotator backgrounds on data labeling.

Accessibility POTATO is free to use and actively
maintained. While commercial annotation tools
like Prodigy (Explosion, 2017) can come with more
functionality, these tools are expensive; for exam-
ple, Prodigy costs $390 USD for individual users,

331

and Tagtog (Cejuela et al., 2014) costs at least $59
USD per person per month. These costs are po-
tentially prohibitive for students and researchers
without access. POTATO is fully open-sourced and
is deployed with minimum dependencies. More-
over, in addition to giving the flexibility to freely
define UIs and annotation settings, POTATO allows
researchers to easily share their annotation settings
with a simple YAML file, aiding in replication and
future extension of prior work.

5 Experimental Analysis

POTATO was designed to minimize set-up time and
per-instance annotation time while maintaining an-
notation accuracy. Therefore, we conduct a user
study to compare the time for setup and annotation
time per instance compared to its free competi-
tors. We compare POTATO’s performance on two
long and complex tasks, each involving identify-
ing themes and causes in narrative summaries of
reports of completed suicides:

• Task 1 contains long documents, with two
annotation schemes with a total of 22 labels.
The task requires labeling whether each nar-
rative contains each of 13 work-related transi-
tions (e.g., retirement, layoffs) and 9 housing-
related transitions. The average document
contains 13.4 sentences and 1,180 characters.

• Task 2 is comprised of shorter documents,
with the same tasks and labels. This alter-
native version shows only a single sentence
of the narrative in Task 1 and asks annota-
tors to judge whether each contains the same
categories. The average sentence (annotation
item) contains 88 characters.

Annotation Setup One annotator completed 50 an-
notations for Task 1 and 100 annotations for Task
2 on POTATO and a number of freely available
and feature-rich annotation tools: Microsoft Ex-
cel, Doccano (Nakayama et al., 2018), Label Stu-
dio (Tkachenko et al., 2021), and LightTag (Perry,
2021). The annotator was highly familiar with
the task and classification scheme, having anno-
tated 1000+ instances of each task prior to this
user study, so familiarity with the codebook was
not a factor. Given the complexity of the task,
POTATO was initialized with 118 keywords to asso-
ciate with conditional highlights (e.g., retir*, layoff,
work*), key bindings, and classes included tooltips

summarizing each label. To test the effect of these
productivity-enhancing features, we include a ver-
sion of POTATO that does not include these fea-
tures, called Inconvenient POTATO. To ensure the
same level of familiarity with each document, the
documents annotated with each tool are randomly
sampled from a larger set of 203,531 documents.

For each annotation tool we measure the time
to set up an annotation task without counting time
taken to (1) install and familiarize ourselves with
the tool (e.g., trial and error in set-up), (2) generate
the annotation data files, and (3) write the proper-
ties of each label and keywords. Each tool was con-
figured as comparably as possible (e.g., keypress
shortcuts were always enabled and active learning
disabled). To reduce the influence of initial unfa-
miliarity with each tool on per-instance timing, the
annotator completed 10 untimed instances. Then,
for each tool, we record the time spent annotating
per instance.

Results Across both annotation tasks, POTATO

is approximately 30-50% faster than competitors
like Excel, Label Studio, and LightTag (Figure 4b-
c). Annotating short documents is comparable in
time to Doccano (4b), while long documents are
slightly faster in POTATO (4c). Without conve-
nience features like conditional highlighting, key
mappings, and tooltips, POTATO’s per-instance an-
notation time increases to be more comparable with
other tools. We conclude that the difference in per-
instance annotation time is likely attributable to
these design features.

Including convenience features increases task
setup time (Figure 4a), taking just over 4 extra min-
utes to configure at set-up. Our results suggest that,
compared to using POTATO with convenience fea-
tures, the base setup without convenience features
has lower overall task time (including setup) un-
til an annotator has seen ∼20 long documents or
∼100 short documents. We note that POTATO with-
out convenience features takes less time to set up
than Label Studio and LightTag; with these three
features, POTATO takes roughly the same amount
of time to set up as Doccano, even though Doccano
only supports one feature (keypress shortcut).

The two tasks we chose share features with many
common NLP annotation tasks that make them
well-suited to a system like POTATO. We highlight
two comparative observations across the interface
from the user study. First, Doccano and POTATO

have the most annotator-friendly interfaces, which

332

LightTag

LabelStudio

Excel

Doccano

InconvenientPotato

Potato

0 100 200 300
Time (seconds)

(a) Task Setup Time

LightTag

LabelStudio

Excel

Doccano

InconvenientPotato

Potato

0 2 4 6 8
Mean Per Instance Annotation Time (seconds)

(b) Short Document, 2 tasks, 22 labels

LightTag

LabelStudio

Excel

Doccano

InconvenientPotato

Potato

0 10 20 30 40
Mean Per Instance Annotation Time (seconds)

(c) Long Document, 2 tasks, 22 labels

Figure 4: Times from our user study (§5) to (a) set up a task; (b) annotate one short document or (c) annotate one
long document show the time savings of POTATO.

allow for fast coding. For instance, custom key-
press shortcuts allow us to create 22 different bind-
ings that make logical sense to the annotator. Un-
like other tools, these two tools did not require any
use of the mouse (e.g., others required pressing sub-
mit with the mouse), which reduced the annotation
time; in short document tasks, where the time to
read the document is low, these time savings be-
come especially important. The default page layout
in POTATO also better supports content interpreta-
tion; for example, the text and labels frequently
fit on one page with no scrolling, and by placing
the text on top of the labels, the annotator did not
need to scroll down in order to read the text—and
since the annotator had the keypress bindings mem-
orized, the task could often be accomplished with
no scrolling. Finally, since other tools often re-
quired uploading data to external servers, there was
often a load time of 1-2 seconds per document;
again, saving this time with locally-deployed tools
was especially salient with short documents.

Second, both tasks involve assigning a large
number of independent labels. The keyword high-
lights allow the annotator to quickly identify which
subset of these labels are likely to be relevant to the
document, while the key mappings allow them to
quick apply the correct labels. Keyword highlights
are particularly useful for longer documents (e.g.,
Task 1), because they help identify the text that
is likely relevant to a given label, which is often
buried in a large amount of irrelevant text (e.g.,
most labels apply to one of ∼13 sentences). Addi-
tionally, if none of the labels applied to a document,
the annotator needed to ensure that she did not over-
look a relevant phrase in the long text; in POTATO

the lack of relevant keywords allowed us to quickly
confirm that none of the labels applied, while with-
out keyword highlights, the annotator read these
documents twice. The time savings associated with
keyword highlights likely explains the slight per-

instance advantage POTATO has over Doccano for
long documents but not short documents.

6 Conclusion and Future Plans

POTATO distinguishes itself with a comprehensive
suite of productivity-enhancing features that allow
annotators to efficiently and accurately label data
and researchers to quickly configure complex tasks
on a wide range of data types. POTATO was created
both for the computational scholar and the overbur-
dened student or crowdworker, looking to annotate
more data in their limited time.

POTATO has been in continuous development for
over two years and will continue to be developed
to support new task designs, easier management,
and faster annotation.

For management, we aim to have (1) a unified
GUI for deployers to create new tasks and manage
existing tasks, (2) a GUI that supports real-time
monitoring of annotation process, mirroring tools
like Webanno (Yimam et al., 2013), and (3) inte-
gration with common social media platforms to
display content with original interfaces (e.g. dis-
playing tweets with their native UI).

For annotators, we aim to support simple lin-
guistic search to help annotators find and prioritize
instances to annotate, and to support personaliza-
tion in aspects such as annotators’ visualization and
keybindings. We also plan to conduct experiments
and explore different design choices to reduce an-
notator burn-out.

Acknowledgments

The authors thank members of the Blalablab and
all the annotators who have used POTATO through-
out the years for their feedback on how to make
POTATO better. This material is based in part upon
work supported by the National Science Founda-
tion under Grant No IIS-1850221.

333

7 Ethics and Broader Impacts

As a highly configurable annotation tool, POTATO’s
biggest ethical and societal implications will likely
come from the questions the tool is used to answer
and the ways in which researchers choose to deploy
the tool. POTATO was built with accessibility, so-
cial responsibility, and usefulness at the forefront,
and the tool’s default settings afford a range of
values-driven practices, which we will discuss be-
low. However, a major risk is that POTATO requires
researchers to self-regulate when encouraging re-
searchers to opt into ethical values often proves
unsuccessful (Hagendorff, 2020). For instance, the
tool does not build in any safeguards against unethi-
cal questions or harmful applications (Buolamwini
and Gebru, 2018; Mitchell et al., 2019; Benjamin,
2019) and does not actively prevent the exploita-
tion of crowdworkers (Irani and Silberman, 2013;
Shmueli et al., 2021). Moreover, since POTATO is
a tool designed to improve the efficiency of typical
prediction task workflows, it cannot address exis-
tential critiques of machine learning (e.g., harms of
classification as a practice).

POTATO was created using principles of univer-
sal design, prioritizing broadly experienced ease
of use, low effort, intuitiveness, flexibility, toler-
ance for error, and perceptibility of key information
(Persson et al., 2015). Since POTATO is uniquely
annotator-focused, rather than deployer-focused,
tasks are readily designed in a way that maximizes
worker wellbeing and productivity. The applica-
tion’s design is largely accessible and inclusive and
the tool contains many of the types of features that
crowdworkers find useful (e.g., low effort to con-
figure, reduces cognitive burden of complex tasks,
easy to correct errors by going back, login flow that
supports screen readers and doesn’t use captcha,
annotation guidelines readily visible in tooltip and
hyperlink) (Zyskowski et al., 2015; Swaminathan
et al., 2017). That said, certain features of the in-
terface may be inaccessible for workers. Moreover,
tools like POTATO can worsen annotators’ mental
health by promoting fragmented work, multitask-
ing, and poor work-life balance (Williams et al.,
2019) and by displaying triggering text without
masks or warnings (Shmueli et al., 2021). Many
of these potential accessibility and psychological
harms can be addressed through improvements in
the interface. Because of the ease of secondary de-
velopment — especially adding new HTML front-
end templates — POTATO allows the research com-

munity to explore more design opportunities for
inclusive annotation and responsible crowdsourc-
ing. Ideally, a future version of this tool would
use community-led design to develop more uni-
versally accessible, inclusive templates for users
(Spiel et al., 2020).

In designing POTATO, we prioritized develop-
ing mechanisms for just, equitable compensation.
By allowing annotators to track time spent on the
task, POTATO facilitates paying crowdworkers a
fair hourly wage rather than the per-task payment
schemes that frequently lead to low hourly wages
(Fort et al., 2011; Gray and Suri, 2019). A key
accessibility feature, the timer promotes flexibility
(e.g., allows people to take longer or build in micro-
breaks) instead of imposing needlessly restrictive
per-task time requirements that can create barri-
ers for disabled workers (Zyskowski et al., 2015).
Our goal in creating POTATO was to empower and
support the annotator. For instance, although we pi-
loted a timer to alert annotators when the expected
task time had elapsed, we ultimately removed this
feature in order to eliminate additional stress.

Another important problem in computational so-
cial research is inaccurately labeled and biased
datasets, which are a cause of inequitably felt down-
stream harms (Olteanu et al., 2019; Blodgett et al.,
2020; Mehrabi et al., 2021). POTATO may have
the potential to reduce many common sources of
bias by promoting high-quality annotations: con-
venience features lower cognitive load and reduce
reliance on personal heuristics that may increase
bias; researchers can use tooltips to provide spe-
cific, easily accessed instructions to minimize an-
ticipated sources of bias; since the base annotation
time is lower, and there are no per-instance annota-
tion time limits, annotators may feel less pressure
to label faster at the expense of poor annotation
quality. However, POTATO may amplify the re-
searchers’ own biases in the data: annotators may
rely too heavily on keyword highlights and tooltips,
which can bias the data if keywords common in mi-
nority communities are over- or underrepresented,
or the tooltip text does not include instructions
relevant to certain communities in the data. Fu-
ture experiments can study the effect of POTATO’s
productivity-enhancing features on mitigating or
amplifying different types of bias.

Finally, an important goal in developing POTATO

was to facilitate studying complex social ques-
tions without being limited by existing labeled data:

334

since the tool makes it easier and faster to design
complex tasks and collect data, researchers can
think critically about what problems would be most
beneficial and impactful, and design tasks that ac-
tually answer those questions (Wiens et al., 2019;
Abebe et al., 2020). Since POTATO facilitates the
deployment of multilingual tasks, researchers can
more easily test the the generalizability of their re-
sults across linguistic and cultural contexts (Joshi
et al., 2020). A major challenge in applied machine
learning is the lack of diversity among researchers
(Orife et al., 2020); since POTATO is free, open-
sourced, and easy to use, we hope the tool will
facilitate participation by scholars who are not as-
sociated with well-funded R1 universities and also
by community members outside academia.

References
Rediet Abebe, Solon Barocas, Jon Kleinberg, Karen

Levy, Manish Raghavan, and David G Robinson.
2020. Roles for computing in social change. In
Proceedings of the 2020 Conference on Fairness, Ac-
countability, and Transparency, pages 252–260.

Jiajun Bao, Junjie Wu, Yiming Zhang, Eshwar Chan-
drasekharan, and David Jurgens. 2021. Conversa-
tions gone alright: Quantifying and predicting proso-
cial outcomes in online conversations. In Proceed-
ings of the Web Conference 2021, pages 1134–1145.

Ruha Benjamin. 2019. Race after technology: Aboli-
tionist tools for the new jim code. Social Forces.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in nlp. arXiv
preprint arXiv:2005.14050.

Joy Buolamwini and Timnit Gebru. 2018. Gender
shades: Intersectional accuracy disparities in com-
mercial gender classification. In Conference on fair-
ness, accountability and transparency, pages 77–91.
PMLR.

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J Marygold, Raymund Stefancsik, Gillian H
Millburn, Burkhard Rost, FlyBase Consortium, et al.
2014. Tagtog: interactive and text-mining-assisted
annotation of gene mentions in plos full-text articles.
Database, 2014.

Explosion. 2017. Prodigy. https://prodi.gy.

Karën Fort, Gilles Adda, and K Bretonnel Cohen. 2011.
Amazon mechanical turk: Gold mine or coal mine?
Computational Linguistics, 37(2):413–420.

M van Gompel, K Sloot, Martin Reynaert, and APJ
van den Bosch. 2017. Folia in practice. the infras-
tructure of a linguistic annotation format.

Mary L Gray and Siddharth Suri. 2019. Ghost work:
How to stop Silicon Valley from building a new
global underclass. Eamon Dolan Books.

Thilo Hagendorff. 2020. The ethics of ai ethics: An
evaluation of guidelines. Minds and Machines,
30(1):99–120.

Alon Halevy, Peter Norvig, and Fernando Pereira.
2009. The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2):8–12.

Lilly C Irani and M Six Silberman. 2013. Turkopticon:
Interrupting worker invisibility in amazon mechani-
cal turk. In Proceedings of the SIGCHI conference
on human factors in computing systems, pages 611–
620.

Jinja. JINJA template designer documentation.
https://jinja.palletsprojects.com/
en/3.0.x/templates/.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the nlp
world. arXiv preprint arXiv:2004.09095.

Yanzeng Li, Bowen Yu, Li Quangang, and Tingwen
Liu. 2021. FITAnnotator: A Flexible and Intelligent
Text Annotation System. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Demonstrations, pages 35–
41.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A sur-
vey on bias and fairness in machine learning. ACM
Computing Surveys (CSUR), 54(6):1–35.

Julia Mendelsohn, Ceren Budak, and David Jurgens.
2021. Modeling framing in immigration discourse
on social media. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2219–2263.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

Robert Munro Monarch. 2021. Human-in-the-Loop
Machine Learning: Active learning and annotation
for human-centered AI. Simon and Schuster.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Alexandra Olteanu, Carlos Castillo, Fernando Diaz,
and Emre Kıcıman. 2019. Social data: Bi-
ases, methodological pitfalls, and ethical boundaries.
Frontiers in Big Data, 2:13.

335

https://prodi.gy
https://jinja.palletsprojects.com/en/3.0.x/templates/
https://jinja.palletsprojects.com/en/3.0.x/templates/
https://github.com/doccano/doccano
https://github.com/doccano/doccano

Iroro Orife, Julia Kreutzer, Blessing Sibanda, Daniel
Whitenack, Kathleen Siminyu, Laura Martinus,
Jamiil Toure Ali, Jade Abbott, Vukosi Marivate,
Salomon Kabongo, et al. 2020. Masakhane–
machine translation for africa. arXiv preprint
arXiv:2003.11529.

Jiaxin Pei and David Jurgens. 2020. Quantifying inti-
macy in language. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5307–5326.

Jiaxin Pei and David Jurgens. 2021. Measuring
sentence-level and aspect-level (un) certainty in sci-
ence communications. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 9959–10011.

Jiaxin Pei, Vítor Silva, Maarten Bos, Yozon Liu,
Leonardo Neves, David Jurgens, and Francesco
Barbieri. 2022. Semeval 2023 task 9: Multi-
lingual tweet intimacy analysis. arXiv preprint
arXiv:2210.01108.

Tal Perry. 2021. Lighttag: Text annotation platform. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 20–27.

Hans Persson, Henrik Åhman, Alexander Arvei Yn-
gling, and Jan Gulliksen. 2015. Universal design, in-
clusive design, accessible design, design for all: dif-
ferent concepts—one goal? on the concept of acces-
sibility—historical, methodological and philosophi-
cal aspects. Universal Access in the Information So-
ciety, 14(4):505–526.

Maarten Sap, Swabha Swayamdipta, Laura Vianna,
Xuhui Zhou, Yejin Choi, and Noah A. Smith. 2022.
Annotators with attitudes: How annotator beliefs
and identities bias toxic language detection.

Burr Settles. 2009. Active learning literature survey.

Boaz Shmueli, Jan Fell, Soumya Ray, and Lun-Wei Ku.
2021. Beyond fair pay: Ethical implications of nlp
crowdsourcing. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 3758–3769.

Katta Spiel, Kathrin Gerling, Cynthia L Bennett, Eme-
line Brulé, Rua M Williams, Jennifer Rode, and Jen-
nifer Mankoff. 2020. Nothing about us without us:
Investigating the role of critical disability studies in
hci. In Extended Abstracts of the 2020 CHI Con-
ference on Human Factors in Computing Systems,
pages 1–8.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and
Abhinav Gupta. 2017. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In Proceed-
ings of the IEEE international conference on com-
puter vision, pages 843–852.

Saiganesh Swaminathan, Kotaro Hara, and Jeffrey P
Bigham. 2017. The crowd work accessibility prob-
lem. In Proceedings of the 14th International Web
for All Conference, pages 1–4.

Maxim Tkachenko, Mikhail Malyuk, Nikita
Shevchenko, Andrey Holmanyuk, and Nikolai
Liubimov. 2021. Label studio: Data labeling soft-
ware, 2020-2021. Open source software available
from https://github. com/heartexlabs/label-studio.

Xingyao Wang and David Jurgens. 2021. An animated
picture says at least a thousand words: Selecting
gif-based replies in multimodal dialog. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 3228–3257.

Max Wiechmann, Seid Muhie Yimam, and Chris
Biemann. 2021. Activeanno: General-purpose
document-level annotation tool with active learning
integration. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies: Demonstrations, pages 99–105.

Jenna Wiens, Suchi Saria, Mark Sendak, Marzyeh
Ghassemi, Vincent X Liu, Finale Doshi-Velez, Ken-
neth Jung, Katherine Heller, David Kale, Mo-
hammed Saeed, et al. 2019. Do no harm: a roadmap
for responsible machine learning for health care. Na-
ture medicine, 25(9):1337–1340.

Alex C Williams, Gloria Mark, Kristy Milland, Ed-
ward Lank, and Edith Law. 2019. The perpetual
work life of crowdworkers: How tooling practices
increase fragmentation in crowdwork. Proceed-
ings of the ACM on Human-Computer Interaction,
3(CSCW):1–28.

Dustin Wright, Jiaxin Pei, David Jurgens, and Is-
abelle Augenstein. 2022. Modeling Information
Change in Science Communication with Semanti-
cally Matched Paraphrases.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system
for distributed annotations. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
1–6.

Naitian Zhou and David Jurgens. 2020. Condolences
and empathy in online communities. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 609–
626.

336

https://arxiv.org/abs/2111.07997
https://arxiv.org/abs/2111.07997

Kathryn Zyskowski, Meredith Ringel Morris, Jeffrey P
Bigham, Mary L Gray, and Shaun K Kane. 2015.
Accessible crowdwork? understanding the value
in and challenge of microtask employment for peo-
ple with disabilities. In Proceedings of the 18th
ACM Conference on Computer Supported Cooper-
ative Work & Social Computing, pages 1682–1693.

337

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 338 - 350
December 7-11, 2022 c©2022 Association for Computational Linguistics

KGxBoard: Explainable and Interactive Leaderboard for Evaluation of
Knowledge Graph Completion Models

Haris Widjaja∗1, Kiril Gashteovski∗2, Wiem Ben Rim2, Pengfei Liu1,4,
Christopher Malon3, Daniel Ruffinelli5, Carolin Lawrence2, Graham Neubig1,4

1 Carnegie Mellon University; 2 NEC Laboratories Europe;
3 NEC Laboratories America; 4 Inspired Cognition; 5 University of Mannheim;

Abstract

Knowledge Graphs (KGs) store information in
the form of (head, predicate, tail)-triples. To
augment KGs with new knowledge, researchers
proposed models for KG Completion (KGC)
tasks such as link prediction; i.e., answering
(h; p; ?) or (?; p; t) queries. Such models
are usually evaluated with averaged metrics on
a held-out test set. While useful for tracking
progress, averaged single-score metrics cannot
reveal what exactly a model has learned—or
failed to learn. To address this issue, we pro-
pose KGxBoard1: an interactive framework for
performing fine-grained evaluation on mean-
ingful subsets of the data, each of which tests
individual and interpretable capabilities of a
KGC model. In our experiments, we highlight
the findings that we discovered with the use of
KGxBoard, which would have been impossible
to detect with standard averaged single-score
metrics.

1 Introduction

Knowledge Graphs (KGs) are graph databases that
store information about entities and the relations
between them in the form of (head, predicate, tail)-
triples (Weikum et al., 2021). Because of their
flexible structure, KGs are used for storing gen-
eral real-world data (Rebele et al., 2016) as well
as domain-specific data covering various domains
(Abu-Salih, 2021), including medicine (Chandak
et al., 2022), IoT (Le-Phuoc et al., 2016) and fi-
nance (Cheng et al., 2020). KGs play an important
role in NLP: they are used for many downstream
tasks, including language modeling (Logan et al.,
2019), entity linking (Radhakrishnan et al., 2018)
and question answering (Saxena et al., 2022).

A common problem for KGs is that they are in-
complete (i.e., they do not contain all facts about
the world or the particular domain), which could

∗Equal contribution
1All resources (code, data, demo, video, etc.) are available

on https://github.com/neulab/KGxBoard

lead to limitations in performance for the down-
stream tasks. To tackle this problem of incomplete-
ness, the research community has worked on many
KG Completion (KGC) tasks, most prominently on
link prediction: predicting new facts within the KG
by providing ranked predictions to the queries (h;
p; ?) or (?; p; t) (Clouatre et al., 2021). Models
for KGC tasks are typically evaluated with single-
score metrics that are averaged over a held-out test
set. For instance, for a KGC query—e.g., (h; p;
?)—, hits@k indicates the average number of cor-
rect answers from the test set that appear within the
top-k ranked entities predicted by the KGC model.2

While using such scores is important for tracking
the progress of KGC models, researchers observed
that a more fine-grained evaluation is needed (Pal-
monari and Minervini, 2020), because the aver-
aged metrics cannot answer the question of what
properties have the models actually learned—or
failed to learn. To investigate what properties were
learned by the KGC models, researchers have de-
signed specific datasets and experimental setups.
For example, Rim et al. (2021) used the idea of
behavioral testing applied to NLP models (Ribeiro
et al., 2020) to perform more fine-grained tests for
relation symmetry. In particular, they measured the
performance of KGC models for queries that con-
tain symmetric relations; i.e., relations that are true
for both (h; p; t) and (t; p; h) such as (X; marriedTo;
Y). However, their proposed framework only con-
tains a limited number of tests and might not cover
model properties of interest to other researchers.

To make the fine-grained evaluation more
generic—and to compare different KGC mod-
els across different properties—we propose
KGxBoard: a method and software implementa-
tion for fine-grained evaluation of KGC models
(see illustration in Fig. 1). KGxBoard splits the
evaluated data into groups (buckets) according to
certain properties of the data. For instance, one can

2See Sec. 2 for more details about hits@k and other metrics

338

https://github.com/neulab/KGxBoard

Figure 1: Illustration of KGxBoard’s functionalities. With the single analysis mode, the user can see the overall
performance of a given KGC model, as well as the performance of the model across multiple buckets (i.e., partitions
of the evaluated data). For example, we observed that the TuckER model performs very well on triples with Many-
to-one (M-1) relations. However, it performs poorly on triples with One-to-many (1-M) relations and symmetric
relations. With the multiple analysis mode, the user can compare the overall and bucketized performance across
different models. Such a view enables the user to compare the models in a fine-grained manner; e.g., Rescal is
ranked 4th in the overall performance, but it is ranked 1st for the triples having symmetric relations. Likewise,
DistMult is ranked 5th in the overall performance and 1st for the triples with One-to-one relations. In both modes,
the user can interact with the UI to see details of the data buckets, change the evaluation metrics, etc.

split the test data into two buckets of data points
such that one bucket contains triples with symmet-
ric and the other with asymmetric relations. Conse-
quently, the users can observe the performance of
each of these buckets separately, while also having
an overview of the overall performance scores.

KGxBoard builds upon ExplainaBoard (Liu
et al., 2021), which is an explainable leaderboard
for NLP tasks. We adapt ExplainaBoard to the
KGC tasks3 by providing: (1) a method and soft-
ware implementation for fine-grained evaluation
of KGC models, integrated into ExplainaBoard;
(2) APIs for porting results from two popular
KGC frameworks—PyKeen (Ali et al., 2021) and
LibKGE (Broscheit et al., 2020)—directly into
KGxBoard format; (3) interface for reading cus-
tomized features for fine-grained evaluation; (4)
experimental study exposing problems with KGC
models that cannot be spotted with averaged scor-
ing; (5) experimental study showing that the find-
ings from the fine-grained evaluation of KGxBoard
can be used for automatic debugging of the models.

3KGxBoard can handle the KGC tasks on answering
queries of the form (?, p, t), (h, ?, t) and (h, p, ?). For simplic-
ity, when we refer to KGC models in this paper, we refer to
models that provide predictions of the form (h, p, ?).

2 Preliminaries

The performance of KGC models is evaluated on a
held-out test set of golden KG triples. In particular,
the models return a set of ranked answers to the
queries—e.g., (h; p; ?)—, where the correctness of
the answers is evaluated against the golden triples.
The final score is averaged over the examples from
the held-out test set. The standard scores used in
the literature are:

(1) Hits@k = 1
|D|

∑
(h,r,t)∈D 1[rank(t) ≤ k]

(2) MRR = 1
|D|

∑
(h,r,t)∈D

1
rank(t)

(3) MR = 1
|D|

∑
(h,r,t)∈D rank(t)

where D is the set of test triples, and h, r, t are the
head, relation and tail of the KG triple respectively.

3 KGxBoard’s Fine-grained Evaluation

Prior work in NLP has pointed to the issues of
using single-score metrics, which do not expose
what exact properties of the data were (or were
not) learned by the models (Narayan et al., 2021);
e.g., some information extraction models perform
poorly when there is a conjunction present in the

339

"custom_features": {
"rel_type": {

"dtype": "string",
"description": "predicate symmetry",
"num_buckets": 2

}
}

Figure 2: Defining custom features for bucketization of
the evaluation data (e.g., validation or test data).

sentence (Gashteovski et al., 2022). To better un-
derstand what properties were (or were not) learned
by the NLP models, people have proposed multi-
faceted or explainable and interactive leaderboards
(for more details on related work, see Appendix A).

Following ExplainaBoard (Liu et al., 2021), the
basic idea of KGxBoard’s fine-grained evaluation
is to breakdown the performance measure (e.g.,
Hits@10) over individual groups (buckets) in ad-
dition to the performance score over the overall
evaluation dataset. This approach involves three
steps: (i) define features upon which the evaluation
dataset is going to be partitioned; (ii) partition eval-
uation dataset into different buckets based on the
defined features; and (iii) calculate performance
w.r.t. each bucket. In contrast to ExplainaBoard,
KGxBoard is tailored for the KG completion tasks
and their evaluation metrics.

3.1 Feature definition

The feature definition describes the manner upon
which KGxBoard is going to partition the evalu-
ated data into buckets. For example, if the feature
is about predicate symmetry, then the data is di-
vided in 2 buckets: (1) triples that have predicates
which are considered symmetric;4 (2) triples with
asymmetric predicates. Because each data point
can be assigned to one of these buckets with a label
"symmetric" or "asymmetric" (strings), the user de-
fines the feature "predicate symmetry" accordingly
(as shown on Figure 2).

Built-in Features. KGxBoard supports several
built-in features that will automatically bucketize
the evaluation data of any models to be analyzed.
The built-in features include several widely used
properties of the data, such as predicate symmetry
(Trouillon et al., 2016) and entity type hierarchy
(Rim et al., 2021); see details in Appendix B.

4predicates that are true for both (h; p; t) and (t; p; h); e.g.,
the predicate p=marriedTo: (x; p; y) ⇐⇒ (y; p; x).

User
InterfaceBackend

Database

System output

Bucketize

CLI

SDK

LibKGE

PyKEEN

API

Figure 3: General overview of KGxBoard’s architecture.
SDK: Software Development Kit; CLI: Command-Line
interface.

Customized Features. KGxBoard also allows
users to customly define their own features by spec-
ifying additional information in the system output
file. If, for example, the users want to define the
bucketization features for predicate symmetry, then
they only need to specify this in a json file (Fig. 2).

3.2 Partitioning of Evaluation Data into
Different Buckets

For the built-in features, KGxBoard automatically
assigns each data point to its respective bucket. For
the customized features, once the custom features
were defined, the user should place each data point
to its respective customized bucket via the bucke-
tization functions (explained in Section 4.4). This
data is then fed into KGxBoard, which automati-
cally computes the relevant metrics for each bucket.

3.3 Calculate Performance w.r.t. each Bucket

KGxBoard computes the relevant metrics (de-
scribed in Section 2) for each bucket individually,
as well as for the overall evaluation dataset.

Confidence Interval. KGxBoard has been en-
dowed with the ability to quantify to what degree
we can trust the result of each bucket. Specifi-
cally, as illustrated in Figure 1, each bin has been
equipped with an error bar and its width reflects the
reliability of the bucket performance. KGxBoard
supports two ways to calculate the confidence in-
terval: bootstrapped re-sampling (Efron, 1992) and
t-test (Nakagawa and Cuthill, 2007) .

4 KGxBoard: System Overview

A general overview of the KGxBoard architecture
is illustrated in Figure 3. The users can provide the
data for the models through the front-end (via the

340

Figure 4: Using the frontend to upload a new model.

UI) or the back-end (via the CLI or the SDK). Then,
these results are stored in a database (DB), which
can be accessed and viewed either with the visual
interface, programmatically, or with the command-
line interface. In general, the users can choose
three ways to use KGxBoard’s functionalities: (i)
directly from the interactive web interface; (ii)
through an API from KGC frameworks (PyKEEN
and LibKGE); (iii) through the command-line in-
terface with already provided data.

4.1 Frontend
We adopt a React-based technology stack5 to cre-
ate an interactive web app as the frontend of
KGxBoard. Assuming that a user has generated the
input data in prior steps (e.g., through the API from
KGC libraries; see Section 4.3), she can upload the
data via the frontend interface (Figure 4). The data
is then passed on to the backend, which stores it
in a database. The frontend provides two types of
analysis of the models’ evaluation: single analysis
aims to identify the strengths and weaknesses of
a given KG completion model; pairwise/multiple
analysis can help users figure out where one model
is better (or worse) than the other when two (or
more) models are selected; for illustration of the
frontend, see Figure 1.

4.2 Backend
The backend is built on top of ExplainaBoard’s
backend code (Liu et al., 2021). The main function-

5https://reactjs.org/

alities for KGxBoard’s backend are: (i) defining
the evaluation metrics for the link prediction task:
Hits@k, MRR and MR; (ii) computing the overall
scores and the buckets’ scores with the built-in fea-
tures; (iii) handling customized feature buckets if
the user provided any; (iv) storing the results in the
DB; (v) communicate the results with the frontend
in an interactive manner.

4.3 API with KGC Libraries

KGxBoard comes with APIs that can translate
the output of two widely used KGC libraries—
PyKEEN (Ali et al., 2021) and LibKGE (Broscheit
et al., 2020)—into KGxBoard format. In particular,
the APIs write the system-output files in KGxBoard
format which does not contain buckets, only re-
sults from the models. If the user wishes to add
customized buckets, she can either write or reuse
already existing bucketization function(s), which
will rewrite the data in KGxBoard format with the
desired bucketizations.

4.4 Bucketization functions

The bucketization functions are procedures that do
two main actions: (1) define the buckets; (2) assign
a bucket label to each data example. Here’s an
example of a bucketization function pseudocode
that defines relations as being either symmetric or
asymmetric:

s_rels -> set of symmetric rels.
def bucketize_rel_sym(s_rels):

define the buckets properties
bucket_name = "rel_sym"; dtype = "string"
descr="rel's symmetry prop."; num_buckets=2

assign bucket to example data
for triple in predict_data:

if triple['predicate'] in s_rels:
triple.bucket = 'symmetric'

else:
triple.bucket = 'asymmetric'

5 Experimental Study

To showcase the usefulness of KGxBoard, we con-
ducted the following experimental study: (1) buck-
etized comparison of models: we provide insights
on the buckets’ performance about different mod-
els trained with one KGC framework, which would
have been impossible to discover with standard
metrics; (2) comparison of models trained on dif-
ferent KGC frameworks with different hyperparam-
eter settings: showing how KGxBoard can be used
to discover differences between models trained in

341

https://reactjs.org/

different environments; (3) automatic debugging:
showing the ability of automatic debugging of the
models by using insights from certain buckets.

5.1 Experimental Setup

Datasets. We used two widely used datasets: (1)
FB15K-237 (Toutanova and Chen, 2015), con-
structed from Freebase (Bollacker et al., 2008),
covering relations between people, locations, etc.;
(2) WN18RR (Dettmers et al., 2018), constructed
from WordNet (Miller, 1992) and represents con-
nections between words in English, such as syn-
onyms and hypernyms. The models were trained,
validated and tested with the standard dataset split
(the reported results are on the test sets).

Models and KGC Frameworks. For our ex-
periments, we trained the KGC models on two
commonly used KGC frameworks: PyKEEN and
LibKGE. With PyKEEN we trained the following
models for link prediction: DistMult (Yang et al.,
2015), ConvE (Dettmers et al., 2018), RESCAL
(Nickel et al., 2011), RotatE (Sun et al., 2019),
TransE (Bordes et al., 2013) and TuckER (Balaze-
vic et al., 2019). PyKEEN provides hyperparame-
ters to reproduce the results of the original work of
a given model, which we used to train the models.
To compare the same models trained with differ-
ent hyperparameters and frameworks, we also used
the pretrained models obtained by Ruffinelli et al.
(2020) as a result of extensive hyperparameter op-
timization using LibKGE (Broscheit et al., 2020).
Specifically, we used the models ConvE, DistMult,
Rescal and TransE (see training details in App. D).

Bucketizations. We partitioned the test data into
different interpretable groups based on either built-
in or customized features (e.g., relation type). All
together, for FB15K-237 / WN18RR we have 303
/ 35 unique buckets respectively. The large differ-
ence in the number of buckets between the datasets
is mainly due to the significantly higher number of
relations in the FB15K-237 dataset (237 v.s. 11).
We provide further details on the buckets in App. C.

5.2 Bucketized Comparison of Models

To get an overview of the fine-grained evaluation of
the KGC models, we used the predictions from Py-
KEEN on the FB15K-237 and WN18RR datasets.
By ranking different systems with the MRR met-
ric in two ways: (1) based on their overall perfor-
mance; and (2) based on bucket-wise performance;

Overall rank b= b ̸=

TuckER 1 / 1 .601 / .543 .399 / .457
ConvE 2 / 3 .301 / .486 .699 / .514
RotatE 3 / 5 .257 / .686 .743 / .314
Rescal 4 / 2 .261 / .457 .739 / .543

DistMult 5 / 4 .541 / .400 .459 / .600
TransE 6 / 6 .868 / .800 .132 / .200

Table 1: Ranking of KGC models (trained with Py-
KEEN) according to the MRR score. 1 indicates best
rank. b=/b̸=: the fraction of buckets where the ranking
of a given model is equivalent/not equivalent compared
to the overall rank of the model. Results are on the
datasets FB15K-237 / WN18RR.

we obtain that, as shown in Table 1, the overall rank-
ing of the models is significantly different than the
ranking of the models for each individual bucket.

For example, TuckER is ranked as the best-
performing model on both FB15K-237 and
WN18RR. However, TuckER is not ranked as best
performing model for approximately 40% and 46%
of the buckets for FB15K-237 and WN18RR re-
spectively. For instance, when taking a closer look
at FB15K-237, we find that for the bucket featur-
ized by symmetric relations, TuckER is ranked 2nd
and Rescal is ranked 1st (on the overall test set,
Rescal is ranked 4th) and for the One-to-one re-
lations, TuckER is also ranked 2nd and DistMult
is ranked 1st (on the overall test set, DistMult is
ranked 5th); see Figure 1.

Such findings would be impossible to spot with
standard averaged metrics over the entire test set,
and are similar in spirit to previous results that show
how alternative evaluation methods can expose
differences in overall model performance (Wang
et al., 2019; Rim et al., 2021). With KGxBoard,
researchers can diagnose issues with any KGC
model on customized properties of the data (i.e.,
customized bucketizations of the evaluation data).

5.3 Bucketized Comparison of Models
Trained with Different Hyperparameters

Similarly as with the fine-grained comparison be-
tween different models (Sec. 5.2), KGxBoard can
be used to compare one model that was trained on
multiple sets of different hyperparameters (HPs)
and implementations. For this purpose, we train
each of the four KGC models (ConvE, Rescal, Dist-
Mult and TransE) with two sets of HPs on two KGC
libraries—PyKEEN and LibKGE—and showcase
the differences. Note that the implementation from
different libraries can vary significantly w.r.t. the

342

HP search space and the degree of customization.6

On the one hand, we trained each model with the
hyperparameters that aim to reproduce the work of
the original papers (trained with PyKEEN; the HP
combination was proposed in PyKEEN’s documen-
tation). On the other hand, we used model configu-
rations resulting from a HP optimization pipeline
that ensures improved overall results (trained with
LibKGE; HP combination proposed by Ruffinelli
et al. (2020)). We refer to each of the former
models as ORIGHP-MODEL and to the latter as
OPTIMHP-MODEL. While the OPTIMHP mod-
els always outperform their ORIGHP counterparts,
we still observed many cases where the ranking of
the models flipped on some buckets. For example,
ORIGHP-CONVE performs better than OPTIMHP-
CONVE for: (1) the FB15K-237 triples with rela-
tion between award ceremony and award winner;
(2) FB15K-237 triples whose tail entity types are
of type "musical work" (details in App. E).

5.4 Automatic Debugging of Models Using
Buckets

Hits@1 ConvE TuckER RotatE Rescal
Debugging test

Before debug. .0000 .0000 .0000 .0000
Naive .0625 .1875 .0465 .1642

In-danger .1562 .2083 .0465 .2015
Original test

Before debug. .2710 .3108 .2627 .2596
Naive .2416 .3010 .2627 .2594

In-danger .2574 .3004 .2627 .2594

Table 2: Debugging results for the relations with most
symmetry violations (Hits@1).

Grouping related properties of the model into
buckets offers not only the potential to diagnose
problems, but also the potential to fix them by de-
bugging. We show here how the debugging tech-
niques of Malon et al. (2022) may be adapted to
fix problems with KG embeddings, illustrating the
idea with one particular bucket: relation symmetry.

Updating the relation embedding to improve
symmetry for one relation will have no effect on
other relations generally, so we debug only one
relation r at a time. For debugging, we collect a
sub-bucket consisting of triples (h, r, t) that vio-
late symmetry in a stricter sense: the reverse triple
(t, r, h) is in the training set and the trained model

6For instance, while LibKGE allows the customized ini-
tialization of the embeddings through HPs, PyKEEN requires
changing the source code. More details in App. D.

predicts h as the tail for (t, r, ?) with rank one, but
t has rank greater than one among the predictions
for (h, r, ?). Ten triples from the sub-bucket con-
stitute the debugging set, which is used to learn
better model parameters, and the remaining triples
are held out to form the debugging test set.

We debug the relation with the most symme-
try violations (in the above sense) for four mod-
els: ConvE, TuckER, RotatE and Rescal.7 A naive
method, which we call intensive fine-tuning, simply
fine-tunes the model on the debugging set alone un-
til all its triples are predicted at rank one. We freeze
entity embeddings during intensive fine-tuning, be-
cause updating the entity embedding will not gen-
eralize to improve symmetry on any held-out en-
tities. To monitor whether this learning comes at
the expense of forgetting other triples, we evaluate
performance on the original test set before and after
debugging, in addition to the debugging test set.

We also adapt the proposed method of Malon
et al. (2022) to KGE. In this method, we first run the
intensive fine-tuning, then collect twenty triples at
random from the training set, which were correctly
predicted at rank one after the original rank-tuning,
but whose rank fell after the intensive fine-tuning.
We use these twenty examples together with the ten
debugging examples in a second round of intensive
fine-tuning, again starting with the parameters of
the original model. The hope is to learn the debug-
ging examples while anchoring the performance of
triples that are “in danger” of being forgotten.

Table 2 shows debugging results for the four
models. In all cases, naive debugging improves
Hits@1 on the held-out test debugging examples,
and in-danger debugging often yields a further im-
provement. The impact of debugging on Hits@1 of
the original test set is less than 1% for all models
except ConvE, which has interaction parameters
that are applied to many relations. For ConvE, the
in-danger method cuts this sacrifice in half. We
provide more detailed analysis in Appendix F.

6 Conclusions

We presented KGxBoard: an interactive frame-
work for fine-grained and interpretable evaluation
on meaningful subsets of the data, each of which
tests individual and interpretable capabilities of a
KGC model. We highlighted insights that would be
impossible to detect with standard leaderboards.

7The other two models, Distmult and TransE, did not have
enough symmetry violations to fill a debugging set.

343

References
Bilal Abu-Salih. 2021. Domain-specific Knowledge

Graphs: A Survey. Journal of Network and Com-
puter Applications, 185:103076.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-
rent Vermue, Sahand Sharifzadeh, Volker Tresp, and
Jens Lehmann. 2021. PyKEEN 1.0: A Python Li-
brary for Training and Evaluating Knowledge Graph
Embeddings. Journal of Machine Learning Research,
22(82):1–6.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
DBpedia: A Nucleus for a Web of Open Data. In The
semantic web, pages 722–735. Springer.

Ivana Balazevic, Carl Allen, and Timothy M.
Hospedales. 2019. TuckER: Tensor Factorization
for Knowledge Graph Completion. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processin (EMNLP), pages 5184–5193.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
Collaboratively Created Graph Database for Structur-
ing Human Knowledge. In Proceedings of the ACM
SIGMOD International Conference on Management
of Data (SIGMOD).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
Relational Data. Advances in Neural Information
Processing Systems (NeurIPS).

Samuel R. Bowman and George E. Dahl. 2021. What
Will it Take to Fix Benchmarking in Natural Lan-
guage Understanding? In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), page 4843–4855.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek,
Patrick Betz, and Rainer Gemulla. 2020. LibKGE-A
Knowledge Graph Embedding Library for Repro-
ducible Research. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations (EMNLP), pages 165–
174.

Payal Chandak, Kexin Huang, and Marinka Zitnik. 2022.
Building a Knowledge Graph to Enable Precision
Medicine. bioRxiv.

Dawei Cheng, Fangzhou Yang, Xiaoyang Wang, Ying
Zhang, and Liqing Zhang. 2020. Knowledge Graph-
based Event Embedding Framework for Financial
Quantitative Investments. In Proceedings of the In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages
2221–2230.

Louis Clouatre, Philippe Trempe, Amal Zouaq, and
Sarath Chandar. 2021. MLMLM: Link Prediction

with Mean Likelihood Masked Language Model. In
Proceedings of the Annual Meeting on Association
for Computational Linguistics (ACL), pages 4321–
4331.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2D
Knowledge Graph Embeddings. In Proceedings
of the AAAI Conference on Artificial Intelligence
(AAAI), pages 1811–1818.

Bradley Efron. 1992. Bootstrap Methods: Another
Look at the Jackknife. In Breakthroughs in Statistics,
pages 569–593. Springer.

Kawin Ethayarajh and Dan Jurafsky. 2020. Utility is
in the Eye of the User: A Critique of NLP Leader-
boards. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 4846–4853.

Niklas Friedrich, Kiril Gashteovski, Mingying Yu,
Bhushan Kotnis, Caroline Lawrence, Mathias
Niepert, and Goran Glavas̆. 2022. AnnIE: An An-
notation Platform for Constructing Complete Open
Information Extraction Benchmark. In Proceedings
of the Annual Meeting on Association for Compu-
tational Linguistics (ACL): System Demonstrations,
page 44–60.

Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina
Presutti, Francesco Draicchio, Alberto Musetti, and
Paolo Ciancarini. 2012. Automatic Typing of DB-
pedia Entities. In Proceedings of the International
Semantc Web Conference (ISWC), pages 65–81.

Kiril Gashteovski, Mingying Yu, Bhushan Kotnis, Car-
olin Lawrence, Mathias Niepert, and Goran Glavas̆.
2022. BenchIE: A Framework for Multi-Faceted
Fact-Based Open Information Extraction Evaluation.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
4472–4490.

Filip Ilievski, Daniel Garijo, Hans Chalupsky,
Naren Teja Divvala, Yixiang Yao, Craig Rogers,
Rongpeng Li, Jun Liu, Amandeep Singh, Daniel
Schwabe, et al. 2020. KGTK: A Toolkit for Large
Knowledge Graph Manipulation and Analysis. In In-
ternational Semantic Web Conference (ISWC), pages
278–293. Springer.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2017. Knowledge Base Completion: Baselines Strike
Back. In Proceedings the Workshop on Represen-
tation Learning for NLP (Rep4NLP@ACL), page
69–74.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking Benchmarking in NLP. In

344

https://www.sciencedirect.com/science/article/abs/pii/S1084804521000990
https://www.sciencedirect.com/science/article/abs/pii/S1084804521000990
https://jmlr.org/papers/v22/20-825.html
https://jmlr.org/papers/v22/20-825.html
https://jmlr.org/papers/v22/20-825.html
https://link.springer.com/chapter/10.1007/978-3-540-76298-0_52
https://aclanthology.org/D19-1522/
https://aclanthology.org/D19-1522/
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://dl.acm.org/doi/10.1145/1376616.1376746
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://aclanthology.org/2021.naacl-main.385/
https://aclanthology.org/2021.naacl-main.385/
https://aclanthology.org/2021.naacl-main.385/
https://aclanthology.org/2020.emnlp-demos.22/
https://aclanthology.org/2020.emnlp-demos.22/
https://aclanthology.org/2020.emnlp-demos.22/
https://www.biorxiv.org/content/10.1101/2022.05.01.489928v1
https://www.biorxiv.org/content/10.1101/2022.05.01.489928v1
https://dl.acm.org/doi/abs/10.1145/3397271.3401427
https://dl.acm.org/doi/abs/10.1145/3397271.3401427
https://dl.acm.org/doi/abs/10.1145/3397271.3401427
https://aclanthology.org/2021.findings-acl.378/
https://aclanthology.org/2021.findings-acl.378/
https://ojs.aaai.org/index.php/AAAI/article/view/11573/11432
https://ojs.aaai.org/index.php/AAAI/article/view/11573/11432
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_41
https://link.springer.com/chapter/10.1007/978-1-4612-4380-9_41
https://aclanthology.org/2020.emnlp-main.393/
https://aclanthology.org/2020.emnlp-main.393/
https://aclanthology.org/2020.emnlp-main.393/
https://aclanthology.org/2022.acl-demo.5/
https://aclanthology.org/2022.acl-demo.5/
https://aclanthology.org/2022.acl-demo.5/
https://link.springer.com/chapter/10.1007/978-3-642-35176-1_5
https://link.springer.com/chapter/10.1007/978-3-642-35176-1_5
https://aclanthology.org/2022.acl-long.307/
https://aclanthology.org/2022.acl-long.307/
https://link.springer.com/chapter/10.1007/978-3-030-62466-8_18
https://link.springer.com/chapter/10.1007/978-3-030-62466-8_18
https://aclanthology.org/W17-2609/
https://aclanthology.org/W17-2609/
https://aclanthology.org/2021.naacl-main.324/

Proceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 4110–4124.

Bhushan Kotnis, Kiril Gashteovski, Julia Gastinger,
Giuseppe Serra, Francesco Alesiani, Timo Sztyler,
Ammar Shaker, Na Gong, Carolin Lawrence, and
Zhao Xu. 2022a. Human-Centric Research for NLP:
Towards a Definition and Guiding Questions. arXiv
preprint arXiv:2207.04447.

Bhushan Kotnis, Kiril Gashteovski, Daniel Rubio, Am-
mar Shaker, Vanesa Rodriguez-Tembras, Makoto
Takamoto, Mathias Niepert, and Carolin Lawrence.
2022b. MILIE: Modular & Iterative Multilingual
Open Information Extraction. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 6939–6950.

Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Hung Ngo
Quoc, Tuan Tran Nhat, and Manfred Hauswirth. 2016.
The Graph of Things: A Step Towards the Live
Knowledge Graph of Connected Things. Journal
of Web Semantics, 37:25–35.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaicheng Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye, and Graham Neubig. 2021. ExplainaBoard: An
Explainable Leaderboard for NLP. In Proceedings
of the Annual Meeting on Association for Compu-
tational Linguistics (ACL): System Demonstrations,
pages 280—-289.

Robert IV L. Logan, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
Wife Hillary: Using Knowledge Graphs for Fact-
Aware Language Modeling. In Proceesings of the
Annual Meeting on Association for Computational
Linguistics (ACL), page 5962–5971.

Christopher Malon, Kai Li, and Erik Kruus. 2022. Fast
few-shot debugging for NLU test suites. In Proceed-
ings of Deep Learning Inside Out (DeeLIO 2022):
The 3rd Workshop on Knowledge Extraction and In-
tegration for Deep Learning Architectures, pages 79–
86. Association for Computational Linguistics.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel
Ruffinelli, Rainer Gemulla, and Heiner Stucken-
schmidt. 2018. Fine-grained Evaluation of Rule-and
Embedding-Based Systems for Knowledge Graph
Completion. In Proceedings of the International Se-
mantic Web Conference (ISWC), pages 3–20.

George A. Miller. 1992. WordNet: A Lexical Database
for English. Communications of the ACM, 38:39–41.

Pasquale Minervini, Claudia d’Amato, Nicola Fanizzi,
and Floriana Esposito. 2015. Efficient learning of
entity and predicate embeddings for link prediction
in knowledge graphs. In Proceedings of the Inter-
national Workshop on Uncertainty Reasoning for
the Semantic Web (URSW@ISWC), volume 1479 of
CEUR Workshop Proceedings, pages 26–37.

Aisha Mohamed, Shameem Parambath, Zoi Kaoudi,
and Ashraf Aboulnaga. 2020. Popularity Agnostic
Evaluation of Knowledge Graph Embeddings. In
Conference on Uncertainty in Artificial Intelligence
(UAI), pages 1059–1068.

Shinichi Nakagawa and Innes C Cuthill. 2007. Effect
size, confidence interval and statistical significance:
A practical guide for biologists. Biological reviews,
82(4):591–605.

Avanika Narayan, Piero Molino, Karan Goel, Willie
Neiswanger, and Christopher Re. 2021. Personal-
ized Benchmarking with the Ludwig Benchmarking
Toolkit. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS).

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A Three-Way Model for Collective
Learning on Multi-Relational Data. In Proceedings
of the International Conference on Machine Learning
(ICML), pages 809–816.

Matteo Palmonari and Pasquale Minervini. 2020.
Knowledge Graph Embeddings and Explainable AI.
Knowledge Graphs for Explainable Artificial Intel-
ligence: Foundations, Applications and Challenges,
47:49.

Yanhui Peng and Jing Zhang. 2020. LineaRE: Simple
but Powerful Knowledge Graph Embedding for Link
Prediction. In IEEE International Conference on
Data Mining (ICDM), pages 422–431. IEEE.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva
Varma. 2018. ELDEN: Improved Entity Linking Us-
ing Densified Knowledge Graphs. In Proceedings
of the Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
1844–1853.

Thomas Rebele, Fabian Suchanek, Johannes Hoffart,
Joanna Biega, Erdal Kuzey, and Gerhard Weikum.
2016. YAGO: A Multilingual Knowledge Base from
Wikipedia, WordNet, and GeoNames. In Proceed-
ings of the International Semantic Web Conference
(ISWC), pages 177–185. Springer.

Marco Tulio Ribeiro, Tongshuang Sherry Wu, Carlos
Guestrin, and Sameer Singh. 2020. Beyond Accu-
racy: Behavioral Testing of NLP Models with Check-
List. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL), page
4902–4912.

Wiem Ben Rim, Carolin Lawrence, Kiril Gashteovski,
Mathias Niepert, and Naoaki Okazaki. 2021. Be-
havioral Testing of Knowledge Graph Embedding
Models for Link Prediction. In Proceedings of the
Conference on Automated Knowledge Base Construc-
tion (AKBC).

Daniel Ruffinelli, Samuel Broscheit, and Rainer
Gemulla. 2020. You CAN Teach an Old Dog New
Tricks! On Training Knowledge Graph Embeddings.

345

https://arxiv.org/pdf/2207.04447.pdf
https://arxiv.org/pdf/2207.04447.pdf
https://aclanthology.org/2022.acl-long.478/
https://aclanthology.org/2022.acl-long.478/
https://www.sciencedirect.com/science/article/abs/pii/S1570826816000196
https://www.sciencedirect.com/science/article/abs/pii/S1570826816000196
https://aclanthology.org/2021.acl-demo.34/
https://aclanthology.org/2021.acl-demo.34/
https://aclanthology.org/P19-1598/
https://aclanthology.org/P19-1598/
https://aclanthology.org/P19-1598/
https://doi.org/10.18653/v1/2022.deelio-1.8
https://doi.org/10.18653/v1/2022.deelio-1.8
https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_People/Profs/rgemulla/publications/meilicke18ruleemb.pdf
https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_People/Profs/rgemulla/publications/meilicke18ruleemb.pdf
https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_People/Profs/rgemulla/publications/meilicke18ruleemb.pdf
https://dl.acm.org/doi/10.1145/219717.219748
https://dl.acm.org/doi/10.1145/219717.219748
http://ceur-ws.org/Vol-1479/paper3.pdf
http://ceur-ws.org/Vol-1479/paper3.pdf
http://ceur-ws.org/Vol-1479/paper3.pdf
https://proceedings.mlr.press/v124/mohamed20a.html
https://proceedings.mlr.press/v124/mohamed20a.html
https://pubmed.ncbi.nlm.nih.gov/17944619/
https://pubmed.ncbi.nlm.nih.gov/17944619/
https://pubmed.ncbi.nlm.nih.gov/17944619/
https://openreview.net/pdf?id=hwjnu6qW7E4
https://openreview.net/pdf?id=hwjnu6qW7E4
https://openreview.net/pdf?id=hwjnu6qW7E4
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://arxiv.org/abs/2004.14843
https://arxiv.org/abs/2004.10037
https://arxiv.org/abs/2004.10037
https://arxiv.org/abs/2004.10037
https://aclanthology.org/N18-1167/
https://aclanthology.org/N18-1167/
https://people.mpi-inf.mpg.de/~jbiega/papers/yago_iswc2016.pdf
https://people.mpi-inf.mpg.de/~jbiega/papers/yago_iswc2016.pdf
https://aclanthology.org/2020.acl-main.442/
https://aclanthology.org/2020.acl-main.442/
https://aclanthology.org/2020.acl-main.442/
https://openreview.net/forum?id=3_2B2MliB8V
https://openreview.net/forum?id=3_2B2MliB8V
https://openreview.net/forum?id=3_2B2MliB8V
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr

In Proceedings of the International Conference on
Learning Representations (ICLR).

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), page 8328–8350.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-Sequence Knowledge Graph
Completion and Question Answering. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL), page 2814–2828.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge Graph Embedding
by Relational Rotation in Complex Space. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha
Talukdar, and Yiming Yang. 2020. A Re-evaluation
of Knowledge Graph Completion Methods. In Pro-
ceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), page 5516–5522.

Tristan Thrush, K. N. Bharadwaj Tirumala, An-
mol Gupta, Max Bartolo, Pedro Rodriguez, Tariq
Kane, William Gaviria Rojas, Peter Mattson, Adina
Williams, and Douwe Kiela. 2022. Dynatask: A
Framework for Creating Dynamic AI Benchmark
Tasks. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL):
System Demonstrations, pages 174–181.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus Latent Features for Knowledge Base and Text
Inference. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality@ACL, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
Embeddings for Simple Link Prediction. In Pro-
ceedings of the International Conference on Machine
Learning (ICML), pages 2071–2080.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla,
Samuel Broscheit, and Christian Meilicke. 2019. On
Evaluating Embedding Models for Knowledge Base
Completion. In Proceedings of the Workshop on Rep-
resentation Learning for NLP (RepL4NLP@ACL),
page 104–112.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph Embedding by Trans-
lating on Hyperplanes. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages
1112–1119.

Gerhard Weikum, Xin Luna Dong, Simon Razniewski,
Fabian Suchanek, et al. 2021. Machine Knowledge:
Creation and Curation of Comprehensive Knowledge
Bases. Foundations and Trends® in Databases, 10(2-
4):108–490.

Yang Xiao, Jinlan Fu, Weizhe Yuan, Vijay Viswanathan,
Zhoumianze Liu, Yixin Liu, Graham Neubig, and
Pengfei Liu. 2022. DataLab: A Platform for Data
Analysis and Intervention. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (ACL): System Demonstrations,
page 182–195.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding Entities and Rela-
tions for Learning and Inference in Knowledge Bases.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning Hierarchy-aware Knowledge
Graph Embeddings for Link Prediction. In Proceed-
ings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 3065–3072.

346

https://aclanthology.org/2020.emnlp-main.669/
https://aclanthology.org/2020.emnlp-main.669/
https://aclanthology.org/2020.emnlp-main.669/
https://aclanthology.org/2022.acl-long.201/
https://aclanthology.org/2022.acl-long.201/
https://arxiv.org/abs/1902.10197
https://arxiv.org/abs/1902.10197
https://aclanthology.org/2020.acl-main.489/
https://aclanthology.org/2020.acl-main.489/
https://aclanthology.org/2022.acl-demo.17/
https://aclanthology.org/2022.acl-demo.17/
https://aclanthology.org/2022.acl-demo.17/
https://aclanthology.org/W15-4007/
https://aclanthology.org/W15-4007/
https://aclanthology.org/W15-4007/
http://proceedings.mlr.press/v48/trouillon16.pdf
http://proceedings.mlr.press/v48/trouillon16.pdf
https://dl.acm.org/doi/10.1145/2629489
https://dl.acm.org/doi/10.1145/2629489
https://aclanthology.org/W19-4313/
https://aclanthology.org/W19-4313/
https://aclanthology.org/W19-4313/
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ojs.aaai.org/index.php/AAAI/article/view/8870
https://ieeexplore.ieee.org/document/9483802
https://ieeexplore.ieee.org/document/9483802
https://ieeexplore.ieee.org/document/9483802
https://aclanthology.org/2022.acl-demo.18/
https://aclanthology.org/2022.acl-demo.18/
https://arxiv.org/abs/1412.6575
https://arxiv.org/abs/1412.6575
https://ojs.aaai.org/index.php/AAAI/article/view/5701
https://ojs.aaai.org/index.php/AAAI/article/view/5701

Appendix

A Discussion on Related Work

A.1 Evaluation of NLP Models

Recent work in NLP has pointed to the problems
of using single-score metrics (Ethayarajh and Ju-
rafsky, 2020; Narayan et al., 2021; Bowman and
Dahl, 2021; Kotnis et al., 2022a). In particular,
such single-score metric evaluations do not expose
the data-centric properties that were not learned
by the models (e.g., problems with learning named
entities that span across multiple tokens). In NLP,
such issues are tackled by proposing multifaceted
and/or explainable leaderboards and benchmarks
(Liu et al., 2021; Gashteovski et al., 2022; Friedrich
et al., 2022; Kotnis et al., 2022b; Xiao et al., 2022;
Kiela et al., 2021; Thrush et al., 2022). To the
best of our knowledge, there is no prior work that
proposes such multi-faceted leaderboards for KG
completion models.

A.2 Evaluation of KGC Models

KGC Benchmarks. Prior work has shown that
learning latent representations—i.e., KG Embed-
dings (KGEs)—for the entities and relations is
highly beneficial for tackling KGC tasks (Min-
ervini et al., 2015; Ruffinelli et al., 2020). Re-
searchers have evaluates the effects of hyperpa-
rameters (and different training strategies) of KGE
models for link prediction. In particular, Kadlec
et al. (2017) studied the effects of different train-
ing objectives on the DistMult model (Yang et al.,
2015) and found that using the cross entropy loss
function is a better alternative to the binary cross
entropy. Ruffinelli et al. (2020) performed a sys-
tematic study on many KGE models with the
LibKGE framework (Broscheit et al., 2020) and
found that training components make a huge dif-
ference in model performance. Safavi and Koutra
(2020) proposed a more data-centric benchmark
(CoDEx), which improves upon previous bench-
marks by proposing additional datasets extracted
from Wikidata (Vrandečić and Krötzsch, 2014) and
then using them to improve current KGE models.
Sun et al. (2020) proposed an evaluation frame-
work such that it breaks ties of same-score answers
according to different strategies. PyKEEN (Ali
et al., 2021) is another KGE framework and bench-
mark, which facilitates the training and evaluation
of KGE models for KG completion tasks across
a variety of datasets. Although highly useful for

overall evaluation, none of these frameworks pro-
vide fine-grained evaluation of KGE models, nor
an interactive interface for such evaluation.

Metrics. Other line of work focused on propos-
ing different metrics for exposing different prob-
lems within the KGE models (Wang et al., 2019),
though these metrics are averaged scores over the
entire test set and do not provide additional insights
about where the models make mistakes. Prior work
has shown that the standard averaged evaluation
metrics hits@k and MRR favor popular entities
and relations (Mohamed et al., 2020). Contrary to
such approaches, KGxBoard operates across the
standard metrics (hits@k, MRR and MR), but in
addition it supports highly customized fine-grained
analysis and interactive interface.

Studying Specific Properties. Other line of work
targets specific properties of the models, i.e., eval-
uating if a set of KGE models learned some spe-
cific properties. For example, relation symmetry
is a property that has been extensively studied in
the literature (Trouillon et al., 2016; Sun et al.,
2019; Peng and Zhang, 2020; Zhang et al., 2020;
Wang et al., 2014). Other line of work investigated
other properties, such as entity type hierarchy (Rim
et al., 2021; Zhang et al., 2020), (inverse) equiva-
lence (Meilicke et al., 2018), subsumption (Meil-
icke et al., 2018), relation and entity frequency (Mo-
hamed et al., 2020) and entity distribution (Bordes
et al., 2013).

KG Analyzers. Recently, there were proposals
for systems that analyse already constructed KGs
(Ilievski et al., 2020). Such work, however, does
not cover the evaluation of KGC models, it only
covers analysis of already existing KGs.

B Details on Built-in Features

KGxBoard comes with built-in features that buck-
etize the data automatically. Some of the built-in
features in KGxBoard are dataset-specific, while
others are dataset-agnostic.

• Length of head/tail entity: the number of tokens
in the head/tail entity (dataset-agnostic).

• Frequency of head/tail entity: the frequency of
tail entity in the training set (dataset-agnostic).

• Frequency of the predicate: the frequency of the
predicate in the training set (dataset-agnostic).

• Symmetry of relation: the symmetry of entity
relations (dataset-specific; for now KGxBoard

347

supports FB15K-237).
• Entity type level: the most specific (highest) en-

tity type level of true tail entity (dataset-specific,
for now we support FB15K-237). In particu-
lar, we mapped each Freebase entity to its DB-
pedia (Auer et al., 2007) counterpart, and then
used DBpedia’s type information (Gangemi et al.,
2012) in order to determine the most specific
type level that is available in the data; e.g., if we
have information (Barack Obama; type; Person)
and (Barack Obama; type; Politician), we use
the latter because it is more specific.

C Details on Customized Buckets

To provide more fine-grained analysis that goes
beyond the built-in features for bucketization, as
well as to showcase the ability of KGxBoard to han-
dle customized buckets, we partition the test data
into buckets, based on the following customized
features:

Buckets by relations. Each data point is placed
in a bucket according to its relation. For example,
the triples (England; /location/location/contains;
Lancaster) and (Los Angeles; /location/location/-
contains; Beverly Hills) are placed in the same
bucket because they have the same relation. This
bucketization is dataset-agnostic and we used it for
both FB15K-237 and WN18RR.

Buckets by relation types 1-1, 1-M, M-1 or M-
M. Following Bordes et al. (2013), we partition
the data into four possible buckets according to
their relation properties: 1-to-1 (1-1), 1-to-many
(1-M), many-to-1 (M-1) and many-to-many (M-M).
According to this definition, each relation has a
property on how many entities it can have as a head
or tail. For example, the relation isAuthorOfBook is
1-M relation (because one author can be the author
of several books) and the relation sportsTeamLoca-
tion is 1-1 relation (because one sports team can
have only one home location).

Tail entity type (level 1). The entity type (level 1,
as described by Rim et al. (2021)) of the gold entity
that needs to be predicted. This customized feature
is specific for FB15K-237 and not for WN18RR.
In particular, we leverage similar approach as with
the built-in entity type level feature (described in
Appendix B): we mapped each Freebase entity to
its DBpeda counter part and then used DBpedia’s
type information to determine the type at level 1 of
the entity type hierarchy.

Tail entity type (level 2). The entity type (level
2, as described by Rim et al. (2021)) of the gold
entity that needs to be predicted. As with the previ-
ous customized feature, this customized feature is
specific for FB15K-237 and not for WN18RR.

Relation’s symmetry (for WN18RR). In Ap-
pendix B, we described KGxBoard’s built-in fea-
ture that bucketizes the data into symmetric and
asymmetric relations for the FB15K-237 dataset.
This feature, however, is not natively supported
by KGxBoard for the WN18RR dataset. For
WN18RR, we followed Rim et al. (2021) and (1)
got a set of all unique relations from WN18RR;
(2) manually defined which relation is symmetric
and which one is not. Then, we assigned a bucket
(symmetric or asymmetric) to each data point in
the test set.

D Training Details for PyKEEN and
LibKGE

PyKEEN provides hyperparameters to reproduce
the results of the original work of a given
model, which we used to train RotatE, ConvE,
TuckER, TransE and Rescal on both WN18RR and
FB15K237 datasets. After training TransE, the hy-
perparameters for WN18RR returned a very low
MRR result indicating that it failed to train for the
task, and for DistMult, no configuration files cor-
responding to the above-mentioned datasets were
provided. In such cases, we used insights from
LibKGE (Ruffinelli et al., 2020) to train the models
with PyKEEN to the best of our abilities; to im-
plement the same models in the two frameworks,
we match some parameters such as the number of
epochs, embedding dimensions, initializer function,
optimizer and learning rate arguments, including
the scheduler and its parameters. However, the hy-
perparameters of a KGE model on the mentioned
frameworks are not matched one-to-one. LibKGE
allows the user to set both the initializer of the re-
lation and entity embeddings along with setting
the lookup embedder weight, patience, regularizer,
dropout. In contrast, PyKEEN only allows the
naming of the initializer function. Moreover, while
negative sampling is possible in both frameworks,
PyKEEN allows setting the negative sampler func-
tion that describes how to generate corrupt triples
for training and allows the setting of negatives per
positive triples as well as the filtering and corrup-
tion scheme, where LibKGE allows the previous
as well as adding the number of samples for each

348

head, relation, object. We expect that these differ-
ences in implementation and hyperparameters will
have an impact on the results seen on KGcBoard.
We provide the used hyperparameters and trained
models with our code.

It is worth noting that PyKEEN does provide
configurations for the same models with optimized
parameters, but since the MRR and Hits@k results
of these models are outperformed by the LibKGE
models, we chose to make this comparison to both
feature the difference in hyperparameters as well as
the framework implementation in our experiments.
For the models trained on LibKGE, we used the pre-
trained models obtained by Ruffinelli et al. (2020)
as a result of hyperparameter optimization using
LibKGE (Broscheit et al., 2020).

E Detailed Results for Bucketized
Comparison of Models

In these experiments, we showcase how the users
can use KGxBoard in order to compare one model
trained on multiple hyperparameter settings. As ex-
plained in Section 5.3, on the one hand, we trained
each model with the hyperparameters that aim to
reproduce the work of the original papers (dubbed
ORIGHP-MODEL); on the other hand we used
pretrained models that use a hyperparameter op-
timization pipeline that ensures improved overall
results (dubbed OPTIMHP-MODEL). Each model
trained with the ORIGHP hyperparameter settings
was trained with PyKEEN, by using the hyperpa-
rameters combination that aims to reproduce the
results from the original papers and was proposed
in PyKEEN’s documentation. Each model trained
with the OPTIMHP hyperparameter settings was
trained with LibKGE, by using the hyperparameter
combination proposed by Ruffinelli et al. (2020).
The results are summarized in Table 3.

While the OPTIMHP models always outperform
their ORIGHP counterparts in both FB15K-237
and WN18RR datasets, we still observed many
cases where the ranking of the models flipped on
some buckets. For example, OPTIMHP-CONVE
on FB15K-237 performs better than ORIGHP-
CONVE on the overall score, as well as on 88% of
all the buckets. However, ORIGHP-CONVE per-
forms better than OPTIMHP-CONVE for several
buckets, including (1) the FB15K-237 triples with
relation between award ceremony and award win-
ner; (2) FB15K-237 triples whose tail entity types
are of type "musical work". In a more extreme case

Model Overall rank MRR score b= b ̸=

(OPTIMHP / ORIGHP)

FB15K-237
ConvE 1 / 2 0.44 / 0.39 0.88 0.12
Rescal 1 / 2 0.45 / 0.38 0.83 0.17

DistMult 1 / 2 0.44 / 0.31 0.91 0.09
TransE 1 / 2 0.42 / 0.19 0.98 0.02

WN18RR
ConvE 1 / 2 0.46 / 0.28 1.00 0.00
Rescal 1 / 2 0.48 / 0.29 1.00 0.00

DistMult 1 / 2 0.48 / 0.27 1.00 0.00
TransE 1 / 2 0.24 / 0.13 0.91 0.09

Table 3: Comparison of KGC models trained with dif-
ferent hyperparameter settings. The shown results com-
pare each model between its OPTIMHP and ORIGHP
hyperparameter settings. The models trained with OP-
TIMHP are trained with hyperparameter optimization
pipeline that ensures improved overall results. The
models trained with ORIGHP use hyperparamter set-
tings that aim to replicate the results from the orig-
inal papers. 1 in Overall rank indicates better rank.
The models were trained and tested on the FB15K-237
and WN18RR datasets. b=/b̸= indicates the fraction of
buckets where the overall rank is equivalent/not equiva-
lent as the bucket’s rank.

for FB15K-237, when we compared OPTIMHP-
TRANSE with ORIGHP-TRANSE, the optimized
OPTIMHP-TRANSE is ranked as 1st on the over-
all score and in 98% of the buckets (this is to be
expected, given that the difference in the overall
score is 23 percentage points). Yet, in 2% of the
buckets (4 buckets in total), ORIGHP-TRANSE is
ranked as 1st.

F Detailed Results for Debugging

Table 4 shows debugging results for ConvE, Tucker,
RotatE, and Rescal. In all cases, naive debugging
improves Hits@1 on the held-out test debugging
examples, and in-danger debugging often yields a
further improvement. In cases where debugging
Hits@5 and Hits@10 were high to begin with, de-
bugging sometimes worsens these metrics, because
most of the debugging examples will be teaching
the model to swap the order of examples already
in the top 5 or 10, rather than bring something new
into the top 5 or 10 hits.

Only on ConvE does the naive method reduce
original Hits@1 by more than 1%. This impact
is possible because ConvE (and Tucker) have in-
teraction parameters that can affect other relations,
where RotatE and Rescal have only relation and en-
tity embeddings, so that the debugging affects only

349

Model / relation Hits@1 Hits@5 Hits@10 MR MRR
ConvE/dated

Debugging test
Before debugging .0000 .9062 1.0000 3.3125 .3556
Naive .0625 .3125 .5312 11.7188 .1863
In-danger .1562 .7812 .9688 3.9688 .3943

Original test
Before debugging .2710 .4734 .5690 186.0528 .3677
Naive .2416 .4464 .5433 237.9980 .3402
In-danger .2574 .4614 .5595 203.3516 .3546
Tucker/adjoins

Debugging test
Before debugging .0000 .8542 .9583 3.7708 .3895
Naive .1875 .8542 .9167 5.0208 .4749
In-danger .2083 .8333 .9167 6.7917 .4678

Original test
Before debugging .3108 .5396 .6283 106.4038 .4171
Naive .3010 .5262 .6162 126.6328 .4055
In-danger .3004 .5232 .6140 119.0497 .4041
RotatE/friendship

Debugging test
Before debugging .0000 .0000 .0000 41.0465 .0419
Naive .0465 .1860 .4302 18.9651 .1493
In-danger .0465 .1860 .4535 21.2791 .1468

Original test
Before debugging .2627 .4605 .5432 346.0619 .3554
Naive .2627 .4605 .5432 345.7814 .3554
In-danger .2627 .4605 .5432 345.8078 .3554
Rescal/adjoins

Debugging test
Before debugging .0000 .7761 .9030 5.5597 .3385
Naive .1642 .7313 .8507 9.2687 .4038
In-danger .2015 .6716 .8060 9.1194 .4040

Original test
Before debugging .2596 .4665 .5562 295.5532 .3574
Naive .2594 .4665 .5560 295.6199 .3573
In-danger .2594 .4665 .5560 295.7509 .3573

Table 4: Debugging results for the relations with most symmetry violations.

the relation being debugged. On ConvE, the in-
danger method reduces original Hits@1, 5, and 10
by about half as much as the naive method, while
significantly improving all metrics on the debug-
ging set. For the other models, the naive method
can achieve simple and effective debugging.

350

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 351 - 358
December 7-11, 2022 c©2022 Association for Computational Linguistics

FALTE: A Toolkit for Fine-grained Annotation for Long Text Evaluation

Tanya Goyal1 Junyi Jessy Li2 Greg Durrett1
1 Department of Computer Science 2 Department of Linguistics

The University of Texas at Austin
tanyagoyal@utexas.edu

Abstract

A growing swath of NLP research is tackling
problems related to generating long text, in-
cluding tasks such as open-ended story gen-
eration, summarization, dialogue, and more.
However, we currently lack appropriate tools to
evaluate these long outputs of generation mod-
els: classic automatic metrics such as ROUGE
have been shown to perform poorly, and newer
learned metrics do not necessarily work well
for all tasks and domains of text. Human rating
and error analysis remain a crucial component
for any evaluation of long text generation. In
this paper, we introduce FALTE, a web-based
annotation toolkit designed to streamline such
evaluations. Our tool allows researchers to col-
lect fine-grained judgments of text quality from
crowdworkers using an error taxonomy spe-
cific to the downstream task. Using the task
interface, annotators can select and assign error
labels to text span selections in an incremen-
tal paragraph-level annotation workflow. The
latter functionality is designed to simplify the
document-level task into smaller units and re-
duce cognitive load on the annotators. Our tool
has previously been used to run a large-scale
annotation study that evaluates the coherence
of long generated summaries, demonstrating its
utility.

1 Introduction

Recent years have seen a significant improvement
in the generation capabilities of large language
models (Lewis et al., 2020; Zhang et al., 2020;
Brown et al., 2020), across tasks such as machine
translation, open-ended story generation, summa-
rization, and others. As these models generate ex-
tremely fluent and human-like text, their errors are
more subtle than those of prior models and harder
to detect (Clark et al., 2021). Overlap-based auto-
matic metrics such as ROUGE (Lin, 2004), BLEU
(Papineni et al., 2002), and BERTScore (Zhang
et al., 2019) have historically been the most popular

Contradiction Repetition Coherence/Fluency

Mrs. Bennet tells her husband, Mr. Bennet, that
Netherfield Park has been leased to a single man of
large fortune from the north of England. His name is
Mr. Bingley. She assumes he will want to marry one of
their daughters.

Mr. Bennet doesn't see the need to visit the man but
agrees to after Mrs. Bennet insists that he do so, as it's
likely the man will fall in love with one of their
daughters. Mr. Bennet says the girls can go visit Mr.
Bingley instead of him. Their daughter Elizabeth
enters the room.

Lady Lucas tells the Bennets that Sir William was very
impressed with Mr. Bingley, who is young, handsome,
and very agreeable. Mrs. Bennet hopes to see one of
her daughters happily settled at Netherfield.

Figure 1: An example of fine-grained annotation using
FALTE. A single annotation consists of a text span high-
lighted by a crowdworker and an error category attached
to it. FALTE allows task designers to define their own
error taxonomy. Error categories in this taxonomy, e.g.
contradiction and repetition in the above example, can
be modified to require two associated text spans.

metrics used to evaluate the outputs of such genera-
tion models. However, recent work has shown that
these are unreliable measures of quality (Fabbri
et al., 2021), especially for longer text and more
open-ended tasks that can have multiple reasonable
answers (Wang et al., 2022).

For generation tasks, human evaluation of out-
puts is generally considered to be the gold standard.
Such evaluations are primarily conducted using
untrained annotators recruited through crowdsourc-
ing platforms like Mechanical Turk1 and Upwork.2

However, even deploying human evaluators for a
task is not a straightforward solution. Recent work
(Karpinska et al., 2021; Clark et al., 2021) showed
that untrained human crowdworkers fail to reliably

1https://www.mturk.com/
2https://www.upwork.com

351

https://www.mturk.com/
https://www.upwork.com

distinguish human-written and model-written out-
puts for strong language models like GPT-3 (Brown
et al., 2020), focusing on task designs where anno-
tators are asked to evaluate the generated outputs
holistically. To address these limitations, Dou et al.
(2022) recommend fine-grained evaluation of text
quality that is more successful at eliciting quality
annotations from untrained crowdworkers. Instead
of holistically rating the quality of the whole gener-
ated output, they instead ask annotators to identify
text spans that correspond to errors from a pre-
defined taxonomy. Moreover, human evaluation
conducted using such fine-grained annotations also
provides insights into error distributions of current
models and reveals avenues for improvement. Fig-
ure 1 shows an example of fine-grained annotations
at the span-level collected using our tool - FALTE;
this is similar to the prior work.

In this paper, we are interested in the evaluation
of long text. Human evaluation practices from short
text evaluation studies (e.g. paragraph-level text
from (Dou et al., 2022)), are not feasible for long
text evaluation scenarios (Akoury et al., 2020). In
fact, a majority of recent work on long text evalua-
tion, e.g. evaluation of long generated summaries
(Mao et al., 2022; Zhang et al., 2022), does not
conduct any human evaluation, possibly due to the
the difficulty in getting high-quality annotations
from crowd workers for long texts. In this paper,
we introduce FALTE (Fine-grained Annotation for
Long Text Evaluation), a web-based annotation
tool to address this gap. Our tool is designed to
allow for fine-grained evaluation while also sim-
plifying the long text annotation task through the
design of the UI and task workflow. To achieve
these goals, FALTE is centered around the follow-
ing main functionality:

• Fine-grained annotations: Prior generation
quality evaluation has primarily focused on
collecting document-level labels along mul-
tiple dimensions, such as fluency, grammar,
etc. In this work, we ask annotators to select
specific text spans that exhibit errors in a par-
ticular error taxonomy, allowing for a more
nuanced evaluation of model errors.

• Decomposing the document-level task into
smaller sub-tasks: FALTE decomposes the
overall document-level task into paragraph-
level annotation tasks to simplify the user in-
terface and reduce the cognitive load for the

Task Designer

‣ Task Specification: Error
taxonomy

‣ Input Data: JSON file with
raw document texts

Task interface

Crowdworkers

Annotate the document text
paragraph by paragraph

Crowd annotations
saved to server-side

database.

Figure 2: Overall Workflow

crowd workers. This is motivated by prior re-
search in crowdsourcing (Mayer and Moreno,
2003; Kapelner and Chandler, 2010; Hauser
et al., 2019) that shows that incrementally in-
troducing texts motivate workers to pay more
attention to all units of the task text. We allow
task designers to set this granularity of anno-
tation. FALTE also provides tools to crowd
workers to easily navigate back and forth be-
tween paragraphs.

• Flexibility over error definitions: Finally,
we refrain from setting a fixed error taxonomy
to support annotation studies along different
quality dimensions. Even within the same
dimension, researchers may wish to opt for
a different error taxonomy across different
languages or datasets. Therefore, we allow
them to define their own set of categories for
annotation that aligns with their specific use
case. We also allow them to pre-define if each
error category must be associated with one or
two text spans during annotation.

Figure 1 shows an example of fine-grained anno-
tations that can be collected using FALTE. Each
error in the collected annotations is associated with
a corresponding text span; this helps in pinpointing
exactly where the error occurred and support fur-
ther downstream analysis. Note that each error in
the error taxonomy can additionally be modified to
require two associated text spans, to support error
categories like repetition and contradiction.

2 FALTE Tool Description

FALTE is a web-based annotation toolkit designed
to help researchers run large-scale annotation stud-

352

ies evaluating the quality of model generated text.
The dataset collected through FALTE has the fol-
lowing form: annotators highlight errors e ∈ E
in a given document d where each annotation e
consists of a text span t ∈ d and corresponding
error category c. Annotators incrementally proceed
through the document and annotate as many errors
as they can identify in the text. In this section, we
will outline the workflow for the two stakeholders:
1) task designers (researchers) that employ the
tool to run these studies, and 2) crowd annotators
that interact with our web interface and provide
annotations for the quality of long text. The overall
workflow is outlined in Figure 2.

2.1 Task Designer Workflow
FALTE is designed to be flexible across different
long document annotation tasks, for both data col-
lection and evaluation use cases. Here, we describe
the different action items for the task designers to
create the annotation website and launch a study.

Define the error taxonomy In order to support
annotation studies across a variety of quality di-
mensions and tasks, we allow task designers to
define their own error taxonomy. FALTE supports
an arbitrary number of error classes.

For each category defined, task designers addi-
tionally classify these as either singleton or paired.
For the singleton errors, each crowd annotation cor-
responds to a pair of text span and an error category
(as shown in Figure 1). For paired, each annotation
is a tuple containing two text spans and the error
category. This latter functionality was introduced
to cover error types such as repetition errors which
are naturally defined between pairs of text spans.
Note that although the tool does not support error
annotations with more than two text spans, these
use cases can be tackled within FALTE’s frame-
work by creating chains of paired error annotations.

To specify their error categories and their spec-
ifications, researchers simply edit a configuration
file. The contents of these configuration files are
then reflected on the task interface when the web
application is launched.

Define the annotation granularity Our annota-
tion tool is aimed at collecting annotations for long
machine generated text, say ~30-40 sentences or
longer, although it can be deployed in shorter set-
tings as well. To simplify this document level anno-
tation task, we allow task designers to decompose
the annotation workflow into iterative paragraph

level annotation tasks. Note that paragraph here
can be defined to correspond to segments of text of
any length. In this paper and the demo, we use the
terms segment and paragraph interchangeably.

Under this setting, initially the crowd annotators
are only shown the first paragraph (or other speci-
fied unit of text) for annotation. Once annotation
for that paragraph is completed, workers can pro-
ceed to subsequent paragraphs with the option to
navigate back. We will discuss this in more detail
in Section 2.2.

The FALTE tool expects a JSON file with con-
taining all of the text to be annotated as input. Each
document in this JSON is represented by a List
of Strings; each list item represents a paragraph.
Therefore, task designers can control the length of
the annotation unit (paragraph) for each document
individually through this input file.

Setting up and launching the crowd an-
notation study Our tool accepts the above
task specifications and generates all relevant
client and server side code. The task designer
can then launch their annotation website us-
ing their preferred cloud platform; we host
our example demo website using Heroku3 at
https://coherence-annotation-summaries.
herokuapp.com/id=oai1. After the task anno-
tation website is live, task designers can recruit
crowd annotators and collect annotations for text
quality.

2.2 Crowd Annotator Workflow
As previously mentioned, each worker starts the
annotation process with the first paragraph of the
text and incrementally annotates succeeding para-
graphs.

Figure 3 shows the task interface and outlines the
annotation steps for annotating a single text span
in the Current Paragraph box, after annotations
have already been completed for paragraphs in the
Context box. The stepwise workflow is:

1. Highlight span containing error: First, the
worker selects the text span in the Current Para-
graph containing the error using the click-and-
drag motion. The highlighted text will automat-
ically populate in the relevant text box at the
bottom.

2. Choose error type: Next, the worker chooses
an error type or label for the highlighted text.
3https://www.heroku.com/

353

https://coherence-annotation-summaries.herokuapp.com/id=oai1
https://coherence-annotation-summaries.herokuapp.com/id=oai1
https://www.heroku.com/

Highlighted Text in the Current Paragraph box
will automatically get populated here.

Option only appears when
paired error type is selected

STEP 5: Click on this button to record this error annotation.

After all errors in the current paragraph have
been annotated, click on this button to go to
the next paragraph for annotation.

After all paragraphs are annotated click on
the Submit button to submit your annotations
for all paragraphs.

Click on Remove to delete a previous annotation.

Figure 3: Annotation interface and workflow for a crowd annotator to annotate a single text span. The interface
displays the previously annotated paragraphs in the Context box. The previous annotations are displayed at the
bottom of the web page. At this stage of the task, the crowdworker annotates errors in the Current Paragraph. To
aid their annotation, crowdworkers can hover over named entities to highlight other instances of the entity (in gray).

Note that Figure 3 currently shows placeholder
error types; the actual task interface will list the
error types defined by the task designer in the
previous section.

3. Highlight paired text: If the error type selected
in Step 2 is of type paired, the worker is further
asked to select an additional text span. For our
repetition error type, this additional span would
be the first occurrence of the repeated informa-
tion (as shown in Figure 3). The additional text
span can be selected from either the Context
box or the Current Paragraph box. This step is
skipped if the worker selects a singleton error .

4. Optional comments: The annotation interface
also provides the option of providing any addi-
tional free-text commentary for the annotated
text span(s) and category tuple. In our experi-
ments, we noticed that crowd workers tended to
primarily use this option to convey their confi-
dence about that particular span’s annotation.

5. Add annotation: Finally, the worker clicks on
the Add button to save error annotation. This
will be instantly reflected in the Previous Anno-
tations section at the bottom of the page.

The above procedure is repeated to annotate all
errors in the Current Paragraph, after which the

354

worker clicks on the No more errors. Go to next
paragraph button to update both the Context and
Current Paragraph boxes; the Current Paragraph
will now reflect the next paragraph of the document
text. Finally, after errors in all paragraphs of the
document have been annotated, the worker clicks
on the Submit button that stores their error anno-
tations for the whole document in the server-side
database.

Coreference Cues Since the annotation interface
is designed for long documents, we found that be-
ing able to quickly find instances of entities was
very helpful during our pilot studies. The scope
of this functionality can be controlled by the re-
searchers: in our pilot study (discussed in Section
3), this was only enabled for named entities using
string match on names. Specifically, if the user hov-
ers their cursor over any named entity mention in
the Current Paragraph section, the tool also high-
lighted all other instances of that entity. Putting
the cursor over Findon in the Current Paragraph
highlights the other instance of the same character
in Figure 3. It is equivalent to searching (CTRL+F)
for the entity, but saves keystrokes.

Making Revisions Workers may make mistakes
during the annotation process or simply change
their mind about previously annotated errors. We
provide tools to address this in the FALTE inter-
face. The bottom of the web page displays the Pre-
vious Annotations section that lists all prior error
annotations by the crowd worker. The worker can
remove erroneously annotated error tuples from
this table using the Remove buttons corresponding
to each annotation.

Navigation Flexibility Furthermore, the inter-
face also provides flexibility in navigating between
the different paragraphs of the document text; work-
ers can use the Previous Paragraph button to go
back and annotate any missed errors in text spans.

This final annotation workflow and these ad-
ditional functionalities were designed based on
worker feedback in pilot studies. For example, the
pilot study asked annotators to select the error type
(step 2) before highlighting the text span (step 1).
This order was reversed based on the preference of
multiple crowdworkers.

2.3 Output Data
All error annotations displayed in the Previous An-
notation section get stored on a database when the

crowdworker clicks on the Submit button.
Each row in the database table corresponds to

a single error annotation. Our tool logs in the fol-
lowing fields: Document ID (string), Paragraph ID
(int), Text Span (string), Span Start Index (int),
Span End Index (int), Error Category (string),
Paired Text (string), Optional Comments (string).
The latter two are optional fields that may be empty
for some errors. We log the span start and end
indices in addition to the text to disambiguate be-
tween multiple instances of the same text. Addi-
tionally, FALTE generates a unique session ID for
each (document, annotator) pair to distinguish be-
tween the annotations of different crowdworkers
for the same document.

2.4 System Implementation

FALTE is a web-based annotation framework that
has been tested with Google Chrome, Mozilla
Firefox, and Safari browsers. Currently, the
crowd annotation is only supported on desktop
browsers and not on mobile or other touchscreen
devices. The client side interface is made using
HTML5, CSS, and JavaScript. The sever side
uses the Python-based web framework Flask4 and
the PostgresSQL database5 to manage and store
user annotations, both of which are open-sourced.
Our example demo website is hosted here:
https://coherence-annotation-summaries.
herokuapp.com/id=oai1.6

3 Use Case

FALTE has been used to collect crowd annota-
tions for one long document evaluation task: co-
herence evaluation of long model-generated sum-
maries (Goyal et al., 2022). The annotation study
was conducted for narrative summaries of books
and movies. The study defined 7 different errors
across two categories (1) coherence, and (2) lan-
guage and fluency errors.

Table 1 outlines the statistics of the annotated
dataset in the coherence study. The study was run
for 160 summary documents. Each summary was
an average of 36 sentences long, which is approxi-
mately 12 times the length of the most common use
case in summarization research, that of evaluating
news summaries. For each document, annotations

4https://flask.palletsprojects.com/
5https://www.postgresql.org/
6See https://github.com/tagoyal/falte-tool for

the implementation of the tool.

355

https://coherence-annotation-summaries.herokuapp.com/id=oai1
https://coherence-annotation-summaries.herokuapp.com/id=oai1
https://flask.palletsprojects.com/
https://www.postgresql.org/
https://github.com/tagoyal/falte-tool

Data Statistic Count

Documents Annotated 160
Average Length (words) 480

Average Length (sentences) 36
Error Annotations Collected 9.6K

Crowd Annotators 12

Error Categories 7
Singleton 5

Paired 2

Table 1: Statistics for texts evaluated in the coherence
evaluation study conducted using FALTE.

were collected from 3 crowd annotators, totalling
9.6K error annotations across all summaries.

The study showed that: (1) The strategy of fine-
grained annotation is better suited for long docu-
ments compared to document-level annotation. The
study showed that the inter-annotator agreement of
document-level labels for long texts is 0.19 com-
pared to 0.48 reported for news summaries that
are considerably shorter (Fabbri et al., 2021). (2)
FALTE can be used to run a large-scale annota-
tion study. In fact, the paper (Goyal et al., 2022)
shows that the collected annotations are high qual-
ity and can be used to train a strong classifier for
automatically identifying coherence errors in text.

The results also outline other benefits of fine-
grained annotation. Different annotators have dif-
ferent criterion for judging the overall quality of
text. The task design decision of explicitly break-
ing it down through a taxonomy and prompting
for rationales, i.e. the text spans, provides insight
into which errors types are more critical for each
annotator. Note that due to the nature of the task
design (identifying all error spans in a document),
we saw that annotators tend to be high precision
low recall (Dou et al., 2022; Goyal et al., 2022),
i.e. they rarely highlight non-error spans, but tend
to miss error spans. Devising techniques that can
improve recall for such task designs is a promising
research question that we leave for future work.

4 Related Work

Reference-based evaluation is the most popular
evaluation paradigm for generation models. These
include overlap-based metrics (Lin, 2004; Papineni
et al., 2002; Banerjee and Lavie, 2005), or distribu-
tional similarity metrics (Zhang et al., 2019; Kusner
et al., 2015), and others. However, recent work has
shown that these do not correlate with human judg-
ments of quality (Dhingra et al., 2019; Kryściński

et al., 2019; Fabbri et al., 2021).
Human evaluation of generation quality is gen-

erally considered to be more reliable, although
there do not exist any fixed protocols for conduct-
ing these studies (Celikyilmaz et al., 2020). In
recent work, both Likert scale rating and A/B test-
ing based evaluation frameworks have been widely
used (Celikyilmaz et al., 2020; Clark et al., 2021).
However, across both these frameworks, tasks are
generally designed to elicit document-level qual-
ity judgments from crowdworkers that are insuffi-
cient to measure the quality of generated text (Clark
et al., 2021; Karpinska et al., 2021; Gehrmann et al.,
2022). Particularly, Clark et al. (2021) show that
crowd annotators often conflate multiple dimen-
sions of quality, and tend to primarily focus on
surface properties like grammaticality while eval-
uating summaries. Therefore, in our task design,
we focus on fine-grained error annotations that al-
low annotators to clearly distinguish between the
different error categories and their occurrences.

The document-level task design of the prior work
discussed above is quite straightforward to set up
using the basic UI components provided by crowd-
sourcing platforms such as Mechanical Turk. How-
ever, creating a user-friendly interface for fine-
grained annotation collection is much more chal-
lenging. Dou et al. (2022) create a task interface
for fine-grained annotations of short generated text.
In contrast, our iterative tool design is motivated by
prior crowdsourcing research (Kapelner and Chan-
dler, 2010; Hauser et al., 2019) that shows that
worker performance and attention increases with
an incremental task design for longer tasks. More-
over, decomposition into smaller paragraph-level
annotations also reduces the cognitive load on the
annotator (Mayer and Moreno, 2003; Brosnan et al.,
2021).

5 Conclusion

We present FALTE, a web-based annotation tool
to collect fine-grained error annotations for text. It
provides an easy-to-use interface to annotate and
submit fine-grained annotations and is equipped
with capabilities such as navigational flexibility
and coreference highlighting that are specifically
designed for better user experience while annotat-
ing long documents. On the task designer side, our
tool is highly customizable: task designers can de-
fine their own error taxonomy, error category spec-
ifications, and annotation granularity. Therefore,

356

it can accommodate a wide variety of evaluation
objectives, e.g. different dimensions of quality like
coherence or factuality, language or task-specific
taxonomies, and more. We hope that FALTE can
support the design and launch of fine-grained hu-
man evaluation studies in the future.

Acknowledgments

This project was partially supported by Good Sys-
tems,7 a UT Austin Grand Challenge to develop
responsible AI technologies, a grant from the UT
Austin Office of the Vice President for Research
through the “Creating Connections for National
Security Research Grants” program, a grant from
Open Philanthropy, NSF grants IIS-2107524, IIS-
2145479, and gifts from Salesforce, Amazon, and
Adobe.

References
Nader Akoury, Shufan Wang, Josh Whiting, Stephen

Hood, Nanyun Peng, and Mohit Iyyer. 2020. STO-
RIUM: A Dataset and Evaluation Platform for
Machine-in-the-Loop Story Generation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6470–6484.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the acl workshop on intrinsic and ex-
trinsic evaluation measures for machine translation
and/or summarization, pages 65–72.

Kylie Brosnan, Bettina Grün, and Sara Dolnicar. 2021.
Cognitive load reduction strategies in questionnaire
design. International Journal of Market Research,
63(2):125–133.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey. arXiv
preprint arXiv:2006.14799.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A Smith.
2021. All that’s ‘human’is not gold: Evaluating hu-
man evaluation of generated text. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7282–7296.
7https://goodsystems.utexas.edu/

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William Cohen. 2019.
Handling divergent reference texts when evaluating
table-to-text generation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 4884–4895.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah Smith, and Yejin Choi. 2022. Is GPT-3 text
indistinguishable from human text? scarecrow: A
framework for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7250–7274, Dublin, Ireland. Association
for Computational Linguistics.

Alexander Richard Fabbri, Wojciech Kryściński, Bryan
McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2021. SummEval: Re-evaluating
Summarization Evaluation. Transactions of the Asso-
ciation for Computational Linguistics, 9:391–409.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sel-
lam. 2022. Repairing the cracked foundation: A sur-
vey of obstacles in evaluation practices for generated
text. arXiv preprint arXiv:2202.06935.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.
SNaC: Coherence error detection for narrative sum-
marization. Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing.

David Hauser, Gabriele Paolacci, and Jesse Chandler.
2019. Common concerns with mturk as a partici-
pant pool: Evidence and solutions. In Handbook
of research methods in consumer psychology, pages
319–337. Routledge.

Adam Kapelner and Dana Chandler. 2010. Preventing
satisficing in online surveys. Proceedings of Crowd-
Conf.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265–1285.

Wojciech Kryściński, Nitish Shirish Keskar, Bryan Mc-
Cann, Caiming Xiong, and Richard Socher. 2019.
Neural text summarization: A critical evaluation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 540–551.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. 2015. From word embeddings to document
distances. In International conference on machine
learning, pages 957–966. PMLR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.

357

https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501

2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871–7880.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74–81.

Ziming Mao, Chen Henry Wu, Ansong Ni, Yusen Zhang,
Rui Zhang, Tao Yu, Budhaditya Deb, Chenguang
Zhu, Ahmed Awadallah, and Dragomir Radev. 2022.
DYLE: Dynamic Latent Extraction for Abstractive
Long-Input Summarization. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1687–1698.

Richard E Mayer and Roxana Moreno. 2003. Nine
ways to reduce cognitive load in multimedia learning.
Educational psychologist, 38(1):43–52.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen,
Jason Phang, and Samuel R Bowman. 2022.
SQuALITY: Building a Long-Document Summa-
rization Dataset the Hard Way. arXiv preprint
arXiv:2205.11465.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. BERTScore: Evalu-
ating Text Generation with BERT. In International
Conference on Learning Representations.

Yusen Zhang, Ansong Ni, Ziming Mao, Chen Henry Wu,
Chenguang Zhu, Budhaditya Deb, Ahmed Awadallah,
Dragomir Radev, and Rui Zhang. 2022. Summn: A
multi-stage summarization framework for long input
dialogues and documents. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1592–
1604, Dublin, Ireland. Association for Computational
Linguistics.

358

https://doi.org/10.18653/v1/2022.acl-long.112
https://doi.org/10.18653/v1/2022.acl-long.112
https://doi.org/10.18653/v1/2022.acl-long.112

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 359 - 370
December 7-11, 2022 c©2022 Association for Computational Linguistics

SEAL: Interactive Tool for Systematic Error Analysis and Labeling

Nazneen Rajani†, Weixin Liang‡, Lingjiao Chen‡, Meg Mitchell†, James Zou‡
† Hugging Face ‡ Department of Computer Science, Stanford University

{nazneen, meg}@huggingface.co {wxliang,lingjiao,jamesz}@stanford.edu

Abstract
With the advent of Transformers, large lan-
guage models (LLMs) have saturated well-
known NLP benchmarks and leaderboards with
high aggregate performance. However, many
times these models systematically fail on tail
data or rare groups not obvious in aggregate
evaluation. Identifying such problematic data
groups is even more challenging when there
are no explicit labels (e.g., ethnicity, gender,
etc.) and further compounded for NLP datasets
due to the lack of visual features to character-
ize failure modes (e.g., Asian males, animals
indoors, waterbirds on land etc.). This paper
introduces an interactive Systematic Error Anal-
ysis and Labeling (SEAL) tool that uses a two-
step approach to first identify high error slices
of data and then in the second step introduce
methods to give human-understandable seman-
tics to those under-performing slices. We ex-
plore a variety of methods for coming up with
coherent semantics for the error groups using
language models for semantic labeling and a
text-to-image model for generating visual fea-
tures. SEAL toolkit and demo screencast is
available at https://huggingface.co/spaces/

nazneen/seal.

1 Introduction

Machine learning systems that seemingly perform
well on average can still make systematic errors
on important subsets of data. Examples include
such systems performing poorly for marginalized
groups in chatbots (Stuart-Ulin, 2018), recruiting
tools (Hamilton, 2018), cloud products (Kayser-
Bril, 2020), ad targeting (Hao, 2019), credit ser-
vices (Knight, 2019), and image cropping (Hamil-
ton, 2020). Discovering and labeling systematic
errors in ML systems is an open research prob-
lem that would enable building robust models that
generalize across subpopulations of data.

Uncovering underperforming groups of data of a
ML system is not straightforward. Firstly, the high-
dimensional space of the representations learned by

Figure 1: SEAL interactive tool for discovering system-
atic errors in model performance. Steps 1 and 2 include
extracting the model embeddings and clustering data-
points with high-loss. Steps 3 and 4 include semantic
labeling of error groups and generating visual features
to support debugging.

the deep learning models makes it difficult to iden-
tify such groups of systematic errors. Secondly, it
is difficult to extract and label the hidden semantic
information in such groups with high errors with-
out a human-in-the-loop setup. Identifying system-
atic model failures requires practitioners to think
creatively about model evaluation (Ribeiro et al.,
2020; Wu et al., 2019; Goel et al., 2021b; Kiela
et al., 2021; Yuan et al., 2022). However, current
approaches are mostly limited to examining and
manipulating model mispredictions. The onus of
identifying what group or subset of data to evalu-
ate still falls on the practitioner, making it ineffi-
cient and prone to oversight. Recent works on fine-
grained error analysis, such as Domino (Eyuboglu
et al., 2022) and Spotlight (d’Eon et al., 2022) pro-
vide solutions to this problem but focus on image
datasets which are easier to visualize.

Error analysis for text data is less explored and
more challenging. It also highlights the need to
provide semantic summaries of text, which we
tackle in SEAL. For example, NLP models could

359

https://huggingface.co/spaces/nazneen/seal
https://huggingface.co/spaces/nazneen/seal

a b

c

Figure 2: SEAL interface showing high-error groups for the distilbert-base-uncased model evaluated on the
yelp_polarity dataset. The interface comprises of various components: (a) examples from the dataset in the high
error groups (sorted by loss), (b) statistics of tokens in high error groups relative to the entire evaluation set, (c)
interactive 2d visualization of the model embeddings showing groups of errors in color and low-loss groups in gray.
The colors indicate different error clusters. If the dataset has annotated classes, the visualization includes symbols
to represents those classes (⋄ and ◦ in the above figure). The panel on the left has multiple widgets that a user can
control to be able to interactively understand their model’s mispredictions relative to the rest of the model’s outputs.
Apart from the dataset and model, the user can select the loss quantile that want to examine for systematic errors, if
they want SEAL to group those errors using kmeans++ with the number of clusters, and how many data points they
want to visualize at a time in the visual component of the interface downsampled proportional to the group size (we
use Altair for plotting that supports a maximum of 5000 data points to be visualized at once).

underperform on hundreds of possible input types –
longer inputs, inputs from non-native speaker, in-
puts with topic domains underrepresented in train-
ing, etc. This is a huge barrier of entry for most
non-expert ML users who wish to gain a better un-
derstanding of their model and datasets with such
existing tools. Model evaluation should ideally give
actionable insights into a model’s performance on
a dataset in the form of data curation (Liang and
Zou, 2022) or model patching (Goel et al., 2021a).

Our desiderata is a tool that summarizes fail-
ures of a model on textual data in a concise, coher-
ent and human intepretable way. Systematic Error
Analysis and Labeling (SEAL) is an interactive
tool to 1. identify candidate groups of data with
high systematic errors and 2. generate semantic la-
bels for those groups. For 1, we use k-means++ on
subset of evaluation data with highest loss. Seman-
tic labeling uses LLMs (like GPT3) in zero-shot

setting for identifying concepts or topics common
to examples in the candidate group. We also ex-
plored using a text-to-image model to generate vi-
sual features for high error clusters using the Dall-
e-mini (Dayma et al., 2021). Semantic descriptions
(via labeling or visual features) of such systematic
model errors not only enable practitioners to better
understand the failure modes of their model dur-
ing evaluation but also gives actionable insight to
fix them via some form of model patching or data
augmentation.

2 SEAL

We present Systematic Error Analysis and Labeling
(SEAL), an interactive visualization tool that pro-
vides rich data point comparison for text classifica-
tion systems, enabling fine-grained understanding
of model performance on data groups as shown in

360

Figure 2. It comes pre-loaded with model outputs
for most downloaded HuggingFace (HF) models
and datasets, as well as scripts for loading data for
any dataset provided by the Datasets API and ex-
tracting embeddings of any HF-compatible model.1

2.1 Error Discovery and Analysis
Identifying model failures via error discovery is
a crucial step in engineering robust systems that
generalize to diverse subsets of data. SEAL uses
the model’s loss on a datapoint as a proxy for po-
tential bugs or errors. Past work has examined
model behavior on individual datapoints for map-
ping training datasets (Swayamdipta et al., 2020).
We hope to leverage information about model be-
havior on individual evaluation data-points in a
similar fashion. We use quantiles for dividing the
model loss region for further analysis. For exam-
ple, Figure 2 shows the 0.99 loss quantile for the
distilbert-base-uncased model (Sanh et al., 2019)
on the yelp_polarity (Zhang et al., 2015) sentiment
classification dataset. The SEAL interface allows
the user to control the loss quantile for fine-grained
analysis using the widget on the side panel.

SEAL uses k-means++ for clustering the high-
loss candidate datapoints from the above step.
Meng et al. (2022) used k-means for topic discov-
ery on the entire dataset and showed that the clus-
ters are stable only when k is very high (k >> 100)
because of the scale of the embedding space. In
contrast, SEAL only clusters the very high loss
slice (> 0.98 quantile).

We use the representations of the models’ final
hidden layer (before the softmax) as embeddings.
If the evaluation dataset selected by the user has
ground truth annotations, then it groups the clusters
by error-types (false-positives and false-negatives
for binary classification). The visualization compo-
nent of the SEAL interface shows the error clusters
and their types using colors and symbols respec-
tively. We use a standard heuristic of setting the
number of clusters in k-means++ to be approxi-
mately

√
n/2, where n is the group size.

2.2 Semantic Error Labeling
Semantic error labeling is important for identifying
the underlying concept or topic connecting the dat-
apoints in a error group. Systematic errors can be
mathematically modeled and fixed by data curation.

1Based on usage data from July’22 at
https://huggingface.co/models?pipeline_tag=
text-classification&sort=downloads

Contrast this with random errors that cannot be
mathematically modeled or fixed via data curation.
Past work analyzing NLP models have shown sys-
tematic errors on various tasks including sentiment
classification, natural language inference, and read-
ing comprehension (McCoy et al., 2019; Kaushik
et al., 2020; Jia and Liang, 2017). SEAL uses
pretrained LLMs (such as GPT3 (Ouyang et al.,
2022) or Bloom (BigScience, 2022)) for semantic
labeling of error clusters that could highlight such
possible systematic bugs in model performance.
We craft a prompt consisting of instruction and ex-
amples in the clusters extracted in the previous step
as follows.

1 def build_prompt(content)
2 instruction = 'In this task , we`ll

assign a short and precise label to
a group of documents based on the
topics or concepts most relevant to
these documents. The documents are
all subsets of a ${task} dataset.'

3

4 examples = '\n - '.join(content)
5

6 prompt = instruction + '- ' +
examples+ '\n Group label:'

7

8 return prompt

Here task is the task under consideration for ex-
ample ‘sentiment classification’ in our case. The
arg to the function is a dataframe or dataframe
column with the dataset content as string that the
model uses for classification. Our prompt design
was experimented first in the few-shot setting be-
fore adapting to the zero-shot.

For the results and use case discussion in Sec-
tion 3, we use the OpenAI GPT3 API 2 via the CLI.
The maximum token length is limited to 4000 and
so we truncate the prompt to that length before feed-
ing the model. We observed that for many larger
groups of high-loss examples (> 25) SEAL labels
degenerate to generic output such as “customer re-
views of products”, “movies reviews”, “restaurant
reviews”, etc. To prevent this and to generate co-
herent group labels, we sub-cluster the bigger error
groups until their size is < 25. We verified the
group labels by running the Blei et al. (2003) LDA
topic model on the examples in each cluster after a
pre-processing step. The pre-processing included
tokenizing, lemmatizing, and removing stopwords.
For each dataset domain, we also removed the do-
main word list – (‘movie, watch, film, character’
for the IMDB dataset, ‘food, place, location, ser-

2https://beta.openai.com/playground

361

https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads
https://huggingface.co/models?pipeline_tag=text-classification&sort=downloads
https://beta.openai.com/playground

Group label Size Group acc.

Albert Base v2 on Yelp (overall acc: 0.95)

Club reviews 574 0.90 (-5%)
Movie theater reviews 231 0.85 (-10%)
Dentist reviews 69 0.88 (-7%)
Chain restaurant reviews 61 0.88 (-7%)
Frozen custard reviews 37 0.83 (-12%)
Waterfront business reviews 11 0.72 (-23%)

Distilbert Base Uncased on Amazon (overall acc: 0.89)

Bath product reviews 78 0.79 (-10%)
Vaccuum cleaner reviews 34 0.76 (-13%)
Eragon book reviews 28 0.67 (-22%)
SD card reviews 13 0.61 (-28%)

Distillbert Base Uncased on IMDB (overall acc: 0.86)

Reviews of movies starring ‘Bill’ 644 0.79 (-7%)
Adventure movie reviews 583 0.81 (-5%)
Reviews of foreign films 262 0.80 (-6%)
Movies with ‘stranger’ in title 121 0.76 (-10%)
Reviews of movies with pyschopaths 94 0.78 (-8%)
Reviews of mystery movies 72 0.75 (-11%)

Table 1: Results obtained from using SEAL on three sen-
timent classification datasets. The columns shows the
group labels generated by GPT3, the size of the group
in the overall evaluation set, and the group accuracy.

vice, time, room, restaurant’ for the Yelp dataset,
and ‘book, author, pages, read, product’ for the
Amazon dataset). The concept tokens in the labels
assigned by GPT3 were in the top-6 topics for these
datasets.

SEAL also supports querying the dalle-mini API
to generate visual features that would support with
error discovery.3 We augment the semantic labels
generated using a LLM with the text-to-image dif-
fusion model such as the dalle-mini. The goal is
to further support systematic error discovery espe-
cially for users that are not domain experts in the
dataset they are using. For example it is easy to
imagine what ‘frozen custard’ but it might not be
obvious what ‘hooters slot club’ is or what a ‘water-
front business in Phoenix, AZ’ means. As shown
in Figure 3, the visual features help with further
analysis and provide clear actionable insights.

2.3 System Architecture

The interface is implemented as a Streamlit3 ap-
plication with some customized HTML/JavaScript
component that handles interactions in the tool.
We use the Altair library customized with HTM-
L/JavaScript and CSS for richer interactive visu-
alization of embeddings. The visual component

3https://huggingface.co/spaces/dalle-mini/
dalle-mini

Figure 3: Examples of visualizations generated using
Dalle-mini (Craiyon) for a sample of error groups.

of the tool enables a user to interactively hover on
data points and get information about the content,
label, prediction, loss, and cluster (as in Figure 5).
All the data preprocessing is powered by the Pan-
das library and all the manipulations on the data
(such as extracting the layer embeddings, cluster-
ing, etc.) are stored as DataFrames thus providing
a single interface for users to extend with custom
data processing functions. We also provide pre-
processing scripts to generate and cache all data
required by SEAL to ensure fast response times
in the interface. The scripts also include code to
run inference (forward pass) on any HF dataset and
model as well as a hook to extract learned repre-
sentations from any layer of a loaded model. The
workflow in SEAL also enables users to interac-
tively visualize data points with high loss using the
streamlit slider widget to control the loss quantile
that is highlighted on the interface.

3 Results and Case Study

In this section, we discuss some results using
the SEAL pipeline and walk through a case study
for an interactive analysis with the tool.

3.1 Experimental Results

Table 1 shows the results obtained using SEAL on
three sentiment classification datasets, Ama-
zon (McAuley and Leskovec, 2013), Yelp (Zhang
et al., 2015), and IMDB (Maas et al., 2011) for
Distilbert (Sanh et al., 2019) and Albert (Lan et al.,

362

https://huggingface.co/spaces/dalle-mini/dalle-mini
https://huggingface.co/spaces/dalle-mini/dalle-mini

Figure 4: Snapshot of SEAL showing the table of ex-
amples with highest-loss and their clusters.

2020). For each dataset block in the table, we se-
lect the subset of group labels that were not generic
(“customer reviews”, “book reviews”) and either
had proper names in them such as “LensCrafters”,
“Eragon” or common nouns with properties such as
“trashy movies”, “fine dining”, “overpriced chain
restaurants”. 4 We then measured model perfor-
mance on all examples in the evaluation dataset
that matched the group description to obtain the
group accuracy. Table 2 shows the content for a
random sample of examples in the error categories
discovered using SEAL.

An unintended but interesting use case
of SEAL is to discover mislabeled candidate
examples. We found that some groups have labels
describing a sentiment such as “trashy movies”,
“terrible food” but with opposite ground truth
sentiment. On further investigation, we found
that indeed many of the groups have noisy labels
and the model is actually predicting the correct
sentiment. Table 3 in the appendix shows a sample
of such mislabeled candidate examples from each
dataset studied in this paper.

Limitations. SEAL relies on the semantic ro-
bustness of the labeling LLM such as GPT3. We
did not test cluster labeling on NLP tasks that re-
quire understanding semantic phenomena or func-
tion word.

3.2 Case Study

SEAL with its interactive interface enables prac-
titioners to discover possible systematic errors in
their models. In this section, we walk-through

4See relation /r/HasProperty https://github.com/
commonsense/conceptnet5/wiki/Relations

Figure 5: Snapshot from the SEAL interface highlight-
ing a group of examples with high-loss that are candi-
dates for a systematic error type where reviews consist
of customer experiences being better than their expecta-
tion of the place.

a case study of identifying such errors with the
Albert-base-v2 model finetuned and evaluated on
the Yelp dataset. The user first loads the model and
dataset in the tool and examines the examples with
the highest-loss as in Figure 4. They notice that
the example includes customer reviews where there
was discrepancy between expectation and reality.
They then want to zoom in to figure out similar
reviews in the dataset where customers experiences
differed from their expectations. They run the clus-
tering and visualize the high-loss examples interac-
tively. After trying a few values of ‘# of clusters’,
the user finds that indeed there are many other such
examples that surface in the visualization compo-
nent of SEAL as shown in Figure 5. The model
underperforms on examples of the type where the
customer expectation is negative but the reality is
actually positive.

4 Mathematical robustness of SEAL

In this section, we provide theoretical guarantees
for the stability of semantic labels generated by the
SEAL pipeline. More specifically, our stability
theorem states that a small perturbation of the input
of our SEAL pipeline would only cause a small
bounded difference of the semantic labels. An im-
plication of our theoretical results is that, even if
two users are using different versions of an evalua-
tion set (e.g., a different split, or a smaller subset),
SEAL would generate similar semantic labels.

More formally, we ask: How does a small
change in the input dataset {(xi, yi)}ni=1 affect
the semantic label tuple M ≜ {mk}Kk=1? Here,
K denotes the number of explanations, mk ≜
(wk, sk, ak) encodes the kth explanation message,
where wk, sk, and ak represent the sentence vector,
the number of data points explained by this mes-

363

https://github.com/commonsense/conceptnet5/wiki/Relations
https://github.com/commonsense/conceptnet5/wiki/Relations

Group label Content Label Pred

Club reviews Being from Southern California, the “scene” is so much fun. There are several clubs to go to and any night is a great time.
That brings us to the Phoenix scene and The Cash.Oh wait, there is no scene for the ladies. Not going to bash them to hard,
because it’s the only consistent place that we have. Yes it caters to the Country music crowd, but they do play spurts of other
music through out the weekend evenings.The mixed drinks could be better, but the prices are reasonable.

0 1

I used to come here for years, maybe about a year back.. the best weekend drinkfests back then: Fridays were ladies night
(dollar well, wines and domestics, $2 you call its, and no cover). Saturdays were free beer night (draft bud light, coors light
and pbr til they gave out 1,000 of each.. again, no cover). Was always packed and played a decent variety of music; pitchers
for beer pong were also always dirt cheap. And despite, the bartenders were way personable and fun.I’m not trying to sound
like a cheapskate, as I am in the service industry myself.. but there must’ve been a change of ownership since my prior
experiences.[..]

0 1

Dentist reviews Thank you for all the emails you sent me on my review! I was surprised at how many responses I recieved from people
searching for the right dentist..I shared my new dentist information and even got some movie tickets from my dentist for the
referrals! I find it funny how since I wrote this review how many people have reviewed with 5 stars... They must have a lot
of friends and family! I hope everyone reads my review and picks the right dentist for your needs! Happy Holidays

0 1

After dealing with a two week long migraine and severe pressure and pain in my face, I called around looking for an ENT
that could get me in ASAP. Dr. Simms was available for a same day appointment and I scheduled with him for that afternoon.
The wait time itself wasn’t bad - 10-15 minutes after completing paperwork. Dr. Simms was personable enough and after
evaluating me, told me that he would like to treat for a sinus infection with antibiotics and prednisone. As I had just moved
and newly became a student, I didn’t yet have health insurance set up.[..]

0 1

Chain restaurant
reviews

I tried Cozymel’s on a recommendation from my parents. Living in San Diego, I never go to chain Mexican places - there
are just too many other places to try. I was expecting Cozymel’s to be okay, nothing great.We went for lunch, and I was
happy to see a whole page of lunch specials for about $8. Usually, an enchilada combo plate could set you back close to $15
at a Mexican chain. Not here (during lunch at least). I ordered the taco salad with black beans instead of meat. It came in an
enormous flour tortilla shell - tostada style.[..]

1 0

I still can’t get over how I paid $2.99 for a coffee and 3 doughnuts! What a deal. I was debating whether or not to go to Krispy
Kreme or Winchells but decided on the latter since it wasn’t a chain and I could get Krispy Kreme elsewhere...Winchell’s
shares space with Subway which was a little random but I didn’t have any problem with it because the woman helping
me and what I assume to be the owner were both very nice and sweet. I hadn’t eaten doughnuts in a little over a year so I
decided to go with a boston creme (one of my favorites) and got a chocolate glazed chocolate doughnut for my sister and a
glazed for my friend.[..]

1 0

Table 2: Random sample from under-performing groups discovered by SEAL for the Yelp dataset. Results for other
datasets are in Table 4 in the appendix. 0 and 1 indicate negative and positive sentiment classes respectively. The
reviews ending in [..] have been truncated to save space.

sage, and the average accuracy among those data
points. Here we show that under some assump-
tions, the outputs of SEAL, i.e. the set of mk, is
relatively robust to randomness in the input dataset.
To be more precise, we need a distance metric on
explanation message space.

Definition 4.1. Given any two semantic label tuple
M = {mk}Kk=1 and M ′ = {m′

k}Kk=1, define a
distance dmax(M,M ′) between them as

max
1≤i≤K

min
1≤j≤K

∥mi −m′
j∥2 + ∥m′

i −mj∥2

Remark. The ℓ2 distance ∥∥2 is defined on the
vectorized explanation. In other words, we concate-
nate the sentence vector, data point number, and
the accuracy value in one single vector, and then
measure the distance of two explanation messages
by the distance of their corresponding expanded
vectors.

Here, a small distance value dmax implies a small
difference in the explanation word vector, the size
of each cluster, and the accuracy within each clus-
ter. To see this, note that a small distance implies
that for any messages mi and mj in M , one can

find two other messages m′
i and m′

j in M ′, which
are close to them. That is to say, each for any mes-
sage in M , there is a message in M ′ approximately
equal to it. Now we can answer the raised question.

Theorem 1. Let S and T denote two set of n data
points i.i.d. from some data distribution P . Sup-
pose the probability space of P is compact with
size B, and the density function is bounded. Let
MS and MT be the semantic label tuples gener-
ated by SEAL with input S and T . If S and T
differs in o(

√
n) data points, and the the clustering

algorithm gives the exactly optimal solution, then
we have

dmax(MS ,MT)
P−→ 0,

i.e., dmax(MS ,MT) converges to 0 in probability.

The proof of this theorem is in the Appendix. It
implicitly relies on Lipschitz continuity of the sen-
tence generation network, which actually holds for
most DNNs with finite input space. This indicates
SEAL is robust to small perturbation in the input
dataset: a small shift in the input dataset only leads
to small explanation change. Such a smooth ex-
planation change is particularly useful when users

364

gradually update the their dataset.

5 Conclusion

In this work we introduced SEAL, an interactive
visualization tool for discovering systematic er-
rors and labeling them. Through case studies we
showed how SEAL can efficiently identify the sys-
tematic failures of state-of-the-art sentiment clas-
sification models on well known datasets. We re-
leased a set of pre-computed model outputs to en-
able easy, out-of-the-box use especially for non-
coding audience such as domain experts. We hope
this work will positively contribute to the ongo-
ing efforts in building tools for systematic error
analysis and model debugging.

6 Ethics Statement

Many datasets currently used and open-sourced
by the NLP community are mainly crawled from
the web and therefore are not representative of a
majority of geographies. There are biases that can
distill into parameters of models trained on such
biased datasets and may even be further amplified
in the generated model outputs. All datasets we
experimented with are in English, and all models
are trained on English datasets.

We use GPT3 for semantic labeling and it is
well-known that LLMs such as GPT3 can generate
toxic, harmful, hate content that might have also
percolated into our tool. Similarly, the semantic
similarity metrics used in our tool including the
BERTScore and the word-embeddings carry biases
of the data they were trained on. We request our
users to be aware of these ethical issues that might
affect their analyses.

Acknowledgements

We thank the anonymous reviewers for their con-
structive feedback. We are also thankful to David
McClure and Christopher Akiki whose work in-
spired some of the interactive components in the
demo accompanying this paper.

References
BigScience. 2022. Bigscience large open-science open-

access multilingual language model.

David M. Blei, Andrew Y. Ng, Michael I. Jordan, and
John Lafferty. 2003. Latent dirichlet allocation. Jour-
nal of Machine Learning Research, 3:2003.

Boris Dayma, Suraj Patil, Pedro Cuenca, Khalid Saiful-
lah, Tanishq Abraham, Phuc Le Khac, Luke Melas,
and Ritobrata Ghosh. 2021. Dall·e mini.

Greg d’Eon, Jason d’Eon, James R Wright, and Kevin
Leyton-Brown. 2022. The spotlight: A general
method for discovering systematic errors in deep
learning models. In 2022 ACM Conference on Fair-
ness, Accountability, and Transparency, pages 1962–
1981.

Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-
Benoit Delbrouck, Christopher Lee-Messer, Jared
Dunnmon, James Zou, and Christopher Ré. 2022.
Domino: Discovering systematic errors with cross-
modal embeddings. In International Conference on
Learning Representations (ICLR).

Karan Goel, Laurel Orr, Nazneen Fatema Rajani, Jesse
Vig, and Christopher Ré. 2021a. Goodwill hunting:
Analyzing and repurposing off-the-shelf named en-
tity linking systems. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 205–
213, Online. Association for Computational Linguis-
tics.

Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan,
Jason Wu, Stephan Zheng, Caiming Xiong, Mohit
Bansal, and Christopher Ré. 2021b. Robustness gym:
Unifying the nlp evaluation landscape. arXiv preprint
arXiv:2101.04840.

Isobel Asher Hamilton. 2018. Amazon built an AI tool
to hire people but had to shut it down because it was
discriminating against women.

Isobel Asher Hamilton. 2020. Twitter is investigating
after anecdotal data suggested its picture-cropping
tool favors white faces.

Karen Hao. 2019. Facebook’s ad-serving algorithm
discriminates by gender and race.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Nicolas Kayser-Bril. 2020. Google apologizes after its
Vision AI produced racist results.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vid-
gen, Grusha Prasad, Amanpreet Singh, Pratik Ring-
shia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.

365

https://huggingface.co/blog/bloom
https://huggingface.co/blog/bloom
https://doi.org/10.5281/zenodo.5146400
https://doi.org/10.18653/v1/2021.naacl-industry.26
https://doi.org/10.18653/v1/2021.naacl-industry.26
https://doi.org/10.18653/v1/2021.naacl-industry.26
https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10
https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10
https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10
https://www.businessinsider.com/twitter-investigating-picture-preview-algorithm-racial-bias-2020-9
https://www.businessinsider.com/twitter-investigating-picture-preview-algorithm-racial-bias-2020-9
https://www.businessinsider.com/twitter-investigating-picture-preview-algorithm-racial-bias-2020-9
https://www.technologyreview.com/2019/04/05/1175/facebook-algorithm-discriminates-ai-bias/
https://www.technologyreview.com/2019/04/05/1175/facebook-algorithm-discriminates-ai-bias/
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://algorithmwatch.org/en/story/google-vision-racism/
https://algorithmwatch.org/en/story/google-vision-racism/

Dynabench: Rethinking benchmarking in NLP. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4110–4124, Online. Association for Computa-
tional Linguistics.

Will Knight. 2019. The Apple Card Didn’t ’See’ Gen-
der—and That’s the Problem.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Weixin Liang and James Zou. 2022. Metashift: A
dataset of datasets for evaluating contextual distri-
bution shifts and training conflicts. In International
Conference on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: Understanding rating dimen-
sions with review text. In Proceedings of the 7th
ACM Conference on Recommender Systems, RecSys
’13, page 165–172, New York, NY, USA. Association
for Computing Machinery.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang, and
Jiawei Han. 2022. Topic discovery via latent space
clustering of pretrained language model representa-
tions. In Proceedings of the ACM Web Conference
2022, pages 3143–3152.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Alexander Rakhlin and Andrea Caponnetto. 2006. Sta-
bility of k-means clustering. Advances in neural
information processing systems, 19.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Chloe Rose Stuart-Ulin. 2018. Microsoft’s politically
correct chatbot is even worse than its racist one.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel S Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 747–763.

Jun Yuan, Jesse Vig, and Nazneen Rajani. 2022. iSEA:
An interactive pipeline for semantic error analysis of
NLP models. In 27th International Conference on
Intelligent User Interfaces. ACM.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level Convolutional Networks for Text
Classification. arXiv:1509.01626 [cs].

366

https://doi.org/10.18653/v1/2021.naacl-main.324
https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/
https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=MTex8qKavoS
https://openreview.net/forum?id=MTex8qKavoS
https://openreview.net/forum?id=MTex8qKavoS
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.48550/ARXIV.2203.02155
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one
https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.1145/3490099.3511146
https://doi.org/10.1145/3490099.3511146
https://doi.org/10.1145/3490099.3511146
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1509.01626

A Appendix: Proofs

Proof. Here we prove the proof for Theorem 1. To proceed, we need a few lemmas.

Lemma 2 (adapted from Proposition 5.1. in (Rakhlin and Caponnetto, 2006)). Assume the density of P
(with respect to the Lebesgue measure λ over Z) is bounded away from 0, i.e. dP > µdλ for some µ > 0.
Suppose the clusterings A and B are minimizers of the K-means objective W (C) over the sets S and
T , respectively. Suppose that at most o(

√
n) data points are different between the two dataset S and T

sampled from P . Then

dmax

({
cS,1, . . . , cS,K

}
,
{
cT,1, . . . , cT,K

}) P−→ 0.

where cS,i and cT,i are the centers of the i-th cluster generated from S and T , separately.

Lemma 3. Assume the density of P (with respect to the Lebesgue measure λ over Z) is bounded away
from 0, i.e. dP > µdλ for some µ > 0. Suppose

dmax

({
cS,1, . . . , cS,K

}
,
{
cT,1, . . . , cT,K

})
≤ ε.

and the ML model that generates the sentence vector is Lipschitz continuous with parameter β. Then

dmax (MS ,MK) ≤ 3εmax{6K2B, β}

where cc,m depends only on c and m.

Proof. We first note that, by triangle inequality, we have

dmax(MS ,MK)

= max
1≤i≤K

min
1≤j≤K

∥mS,i −mT,j∥2 + ∥mS,j −mT,i∥2

≤ max
1≤i≤K

min
1≤j≤K

∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2 + ∥sS,i − sT,j∥2

+∥sS,j − sT,i∥2 + ∥aS,i − aT,j∥2 + ∥aS,j − aT,i∥2
Note that, by minj{aj + bj + cj} ≤ max{3minj aj , 3minj bj , 3minj cj}, the inner minimization is
bounded by 3 times the maximum of min1≤j≤K ∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2, min1≤j≤K ∥sS,i −
sT,j∥2 + ∥sS,j − sT,i∥2, min1≤j≤K ∥aS,i − aT,j∥2 + ∥aS,j − aT,i∥2. Now let us consider those terms
separately:

1. minj ∥wS,i −wT,j∥2 + ∥wS,j −wT,i∥2: By Lipschitz continuity, the distance between two sentence
vectors can be bounded by the distance between their corresponding cluster centers. More precisely,

∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2 ≤ β∥cS,i − cT,j∥2 + β∥cS,j − cT,i∥2
and thus

min
j

∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2 ≤ βmin
j

∥cS,i − cT,j∥2 + ∥cS,j − cT,i∥2

By the assumption, the right hand side is bounded by ε, and thus

min
j

∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2 ≤ βε

2. minj ∥sS,i − sT,j∥2 + ∥sS,j − sT,i∥2: By the assumption, we know that, for any given i, we can find
j, such that ∥cS,i− cT,j∥+ ∥cS,j − cT,i∥ ≤ ε. That is to say, the cluster centers’ distance is at most ϵ.
Since the distribution space is bounded by B, there are at most ε, there are at most 2ϵB data points
are clustered differently. As there are K clusters, in total at most 2ϵK2B data points are clustered
differently. This gives a natural upper bound

min
j

∥sS,i − sT,j∥2 + ∥sS,j − sT,i∥2 ≤ 6εK2B

367

3. min ∥aS,i − aT,j∥2 + ∥aS,j − aT,i∥2: Now applying a similar argument in 2, we know that in total
at most 2ϵK2B data points are clustered differently. Thus, at most 2ϵK2B data points affect the
accuracy value. This means

min
j

∥aS,i − aT,j∥2 + ∥aS,j − aT,i∥2 ≤ 6εK2B

Combining those results, we can conclude that

min
1≤j≤K

∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2 + ∥sS,i − sT,j∥2

+∥sS,j − sT,i∥2 + ∥aS,i − aT,j∥2 + ∥aS,j − aT,i∥2
≤3max{6εK2B, βε}

This is independent of i, and thus we can take the maximum over i, which gives

max
i

min
1≤j≤K

∥wS,i − wT,j∥2 + ∥wS,j − wT,i∥2 + ∥sS,i − sT,j∥2

+∥sS,j − sT,i∥2 + ∥aS,i − aT,j∥2 + ∥aS,j − aT,i∥2
≤3max{6εK2B, βε}

That is,

dmax(MS ,MT) ≤3max{6εK2B, βε}

which completes the proof.

Combining the above two lemmas directly proves the robustness statement.

B Appendix: More Examples

368

Group label Group content sample

Amazon

Customer reviews for a
product that has been dis-
continued

Another reviewer recently advised that this is the model to look for. I was just advised at a well known retailer that this model has been
discontinued. Is this true or is this a classic bait-and-switch technique? Their current weekly sales circular features this model at a sale price.
When you get to the store, they don’t have it but when they look it up in their computer, it shows up as "Discontinued". It is difficult to relate
reviews to actual products when the reviews you base your buying decision on could be about(a)different model(s) from the one you actually
buy online or in-store. The Creative Labs’ own website does not give model numbers so they are adding to the confusion.

The software mentioned on my May 16th review IS called "AVID Xpress" – not "AVID Express" – when my review was edited someone
changed the spelling, possibly thinking it was a typo/mistake?

Although this show is very fascinating I find every episode to be almost the same. Starting with Morgan Freeman stating "when I was a
young boy..." then something he did to get in trouble, or something he witnessed that ruined his fragile eggshell mind. Followed by rhetorical
questions and theories, and tons and tons of examples. The examples even have examples. Maybe I just understand this stuff and the show
really dumbs it down, but I feel like I wasted money investing in season 3. Which by the way, although not currently available, (I don’t have
cable and I still had the privilege of watching this before the DVD came out) but I will still probably end up buying it on DVD which is
cheaper than I already paid for the electronic proprietary/DRM version on Amazon Unbox

Unreliable book reviews I do not intend to review content here. This new edition is so full of typographical errors that sometimes the reader will have to intuit what
the author really wrote. It is clear that the proofreaders of this edition were not actually reading; they were simply following the little red
lines under the "misspelled" words. This has resulted in some truly bizarre apparent statements by the author, unreproducible here due to
copyright laws. Disclaimer– I have not purchased this book, merely checked it out of the library.

It’s been several years since I’ve read "Silent Spring," one of the most significant environmental books ever written, but I must respond to the
posting by "seem," which is titled "murderous, over the top propaganda" (I correctly your misspelling of the last word): His recommendation
to read "DDT: A Case Study in Scientific Fraud" was put out by the Heartland Institute and is, in itself, a "fraud." The Heartland Institute
is one of the most pro-chemical, pro-industry, anti-environmental and right-wing organizations around. Nothing they put out should be
believed for a second.

Shame on all the booksellers selling this ten dollar book for $75 and up!Devorss is re-publishing this book in August!I took note of the
sellers AND WILL NEVER BUY FROM THEM!

Yelp

Terrible dry cleaners in
Phoenix

I went here for the first time on First Fridays, yeah so what. I promise that I won’t hang out here all the time and ruin it for all you true Bikini
lovers. My mini pitcher was $3.50 and then 5 minutes later a chick walked up and got charged $6.00 for two mini pitchers, hmmm, male
discrimination or they can’t do simple math? I’ll only go back when it’s 110 outside and want to put a buzz on early in the afternoon.

Mediocre dry cleaning. I want to like this business..why? 1. I like to support Yelp advertisers 2.prime location!!! It is literally around the
corner from me and I will probably still go there once in awhile out of convenience. Once or twice I called rushing to get there before they
closed and they waited a minute over closing time which was very nice of them. However, this review is simply based off of satisfaction with
my clothing. Almost every time I have come there I have to ask to redo my shirts. It drive me nuts because the employees are nice about it.
When I woke up today and had 50 dollars worth of clothing needed to be dry cleaned I drove 20 minutes to my old favorite cleaners in
Arcadia. I knew that I trust them with my clothes and after years, never had to deal with such an inconvenience. I’m sorry but had to only
give 3 stars. I might be back one more time.. only when I have to. John I read your message and appreciate that so I updated my review out
of appreciation towards your response. I want to come back because it is convenient. Thanks for caring

This place is tiny and has more high-end expensive beads than other stores in Phoenix. I’ve found some really special items here. You
shouldn’t expect to buy more than a few strands at a time, as it just isn’t affordable. Go somewhere else for quantity, and just get a few things
to spice up your mix from Bead World.

IMDB

Terrible movies You have to be awfully patient to sit through a film with one-liners so flat and unfunny that you wonder what all the fuss was about when
WHISTLING IN THE DARK opened to such an enthusiastic greeting from audiences in the 1940s.

On top of some weak
one-liners and ordinary sight gags, the plot is as far-fetched as the tales The Fox (Red Skelton) tells his radio audience. You have to wonder
why anyone would think he could come up with a real-life solution on how to commit the perfect crime and get away with it. But then,
that’s how unrealistic the comedy is.

But–if you’re a true Red Skelton fan and enjoy a look back at how comedies were made
in the ’40s–you can at least enjoy the amiable cast supporting him. Ann Rutherford and Virginia Grey do nicely as his love interest and
Conrad Veidt, as always, makes an interesting villain. One of his more amusing moments is his reaction to Skelton explaining the mysteries
of wearing turbans. "I never knew that," he muses, impressed by a minor point that is cleverly introduced.

All in all, typical
nonsense that requires you to accept the lack of credibility and just accept the gags as they are. Not always easy for a discriminating viewer
as many of them simply fall flat, the way many comedies of this era do because the novelty of the sight gags and one-liners has simply worn
off.

If they gave out awards for the most depraved and messed-up movies in the world, Japanese cinema would clean up: their exploitation cinema
wipes the floor with most other contenders, the most extreme examples being absolutely jaw-dropping exercises in bad taste, nauseating gore,
freakish weirdness, and misogynistic sex.

Guts of a Beauty is a prime example of such whacked out filth, offering discerning
viewers just over an hour of full-on debauchery and gratuitous violence topped off with some very insane J-splatter goodness.

The film opens with a young woman named Yoshimi, whose search for her missing sister has led her into the hands of some nasty yakuza,
who proceed to rape her and shoot her full of strong dope called Angel Rain[...]

European Union movie
is disappointing and full
of clichés

SPOILERS AHEAD

It is really unfortunate that a movie so well produced turns out to be

such a disappointment.
I thought this was full of (silly) clichés and

that it basically tried to hard.

To the (American) guys out there: how
many of you spend your

time jumping on your girlfriend’s bed and making monkey

sounds? To the (married) girls:
how many of you have suddenly

gone from prudes to nymphos overnight–but not with your

husband? To the French:
would you really ask about someone

being "à la fac" when you know they don’t speak French? Wouldn’t

you use a
more common word like "université"?

I lived in France for a while and I sort of do know and understand[...]

Obviously made on the cheap to capitalize on the notorious "Mandingo," this crassly pandering hunk of blithely rancid Italian sexploitation
junk really pours on the sordid stuff with a commendable lack of taste and restraint: The evil arrogant white family who own and operate a
lavish slave plantation spend a majority of the screen time engaging in hanky panky both each other and their various slaves[...]

Table 3: Mislabeled candidate examples for the three sentiment classfication datasets. All the examples have GT as
positive. Examples ending in [..] have been truncated to save space.369

Group label Content Label Pred

Reviews of mys-
tery movies

Based on a Stephen King novel, NEEDFUL THINGS provides the intrigue and eeriness to keep you in your seat. A mysterious
man(Max von Sydow) comes to town and soon becomes the most talked about citizen. Could it be that the devil himself has set up
shop as an antique dealer in a small town in Maine? von Sydow is masterful and dynamic in this role that dominates the screen. Also
starring are Ed Harris and Bonnie Bedelia. Harris is steady and Bedelia is deserving of your attention. Also in support are J.T. Walsh
and Amanda Plummer. Not the best, nor the worst adaptation of King’s horror on the screen.

0 1

Before I begin, let me get something off my chest: I’m a huge fan of John Eyres’ first film PROJECT: SHADOWCHASER. The film,
a B-grade cross of both THE TERMINATOR & DIE HARD, may not be the work of a cinematic genius, but is a hugely entertaining
action film that became a cult hit (& spawned two sequels & a spin off). Judge and Jury begins with Joseph Meeker, a convicted
killer who was sent to Death Row following his capture after the so-called "Bloody Shootout" (which seems like a poor name for a
killing spree. Meeker kills three people while trying to rob a convenience store), being led to the electric chair. There is an amusing
scene where Meeker talks to the priest about living for sex but meeting his one true love (who was killed during the shootout),
expressing his revenge for the person who killed her. Michael Silvano, a washed-up football star who spends his days watching his
son Alex practicing football with his high school team (and ends up harassing his son’s coach). But once executed, Meeker returns
as a revenant (or as Kelly Perine calls "a hamburger without the fries")[..]

0 1

Let me say this about Edward D. Wood Jr. He had a passion for his work that I wish more people did have. If we all had the
optimism and the commanding hope of Ed Wood, the world would probably be a much better place. Being familiar with Ed Wood’s
story and having seen the most wonderful biopic "Ed Wood" (1994) several times, I admire his boldness and his strives for the job
he loved; I still admire his never-say-die attitude. He had a love for directing that I wish more people in modern-day Hollywood
had.But that doesn’t make his movies any more fun to watch. And "Glen or Glenda," his first and most confessional film, is probably
his very worst."Glen or Glenda" is a deadening cult movie about a cross-dresser named Glen (played by director/writer Ed Wood
himself) who despite his love for his fiancée Barbara (Dolores Fuller), cannot seem to conquer his lust for transvestitism, in which
he dresses in women’s clothing and a wig and thus becomes...Glenda! Glen/Glenda’s story is narrated by a doctor and he too is
talked and watched over by a mysterious character called "The Scientist" played by veteran horror star Bela Lugosi.[..]

0 1

Adventure
movie reviews

Just exactly HOW director John Madden come to settle with Nicolas Cage and Penelope Cruz playing the roles of an Italian Officer
and a Greek Villager in an honourable story: "Captain Correli´s Mandolin", just escapes me! Witness: a wobbly, inconsistent accent
by Cage amid horrendous over-acting, with Cruz – more adequately cast as a spoiled Latino opposite Johnny Depp in "Blow" –
in basically a repeat performance under the guise of a Greek nurse... ay, it was painful. But there were saving graces.The story
itself is thrilling-to-tragic, and Cage does have some (– redeeming, this is !–) musical ability. Next, a superb performance by John
Hurt (Cruz´s father, the village doctor) of Oscar Callibre, as well as by Irene Papas, each as village elders, as well as by Christian
Bale (Papas´ son) among the village freedom fighters, go far towards counter-balancing awkward performances (especially at
the beginning) by Cruz and Cage. Nicely, the last two seem to grow into their respective roles as the film progresses, but it´s
teeth-gnashing early on. Finally, the scenery itself and the photography could garner a technical award, and such provides pleasant
distractions when most needed.[..]

1 0

Daisy Movie Review By James Mudge From beyondhollywood.com. On paper, "Daisy" sounds like an Asian film fan’s dream come
true, directed by "Infernal Affairs" co-helmer Andrew Lau and starring everybody’s favourite sassy girl, popular Korean actress Jeon
Ji Hyun. Unfortunately, despite the talent involved, and the fact that the crew flew halfway around the world to shoot in Amsterdam ,
the film turns out to be a bit of a disappointment, being a clich’d romantic drama which wallows in misery and self importance.
The plot follows Hye Young (Jeon Ji Hyun), a rather naive Korean girl who lives in Amsterdam , spending her life working in her
grandfather’s antique shop and doing portraits for tourists. One day, she begins receiving flowers at exactly the same time from a
secret admirer, who she believes to be a mystery man from her past who once built her a nice little bridge. One day she meets Jeong
Woo (Lee Seong Jae, also in "Holiday" and "Public Enemy"), who unbeknownst to her is actually an Interpol agent tracking Asian
criminals in the Netherlands .With Hye Young assuming that Jeong Woo is responsible for the flowers, the two fall very slowly into
a chaste romantic relationship. However, it turns out that the man sending the flowers is actually Park Yi (Jung Woo Sung, from
"Sad Movie" and "Musa"), an assassin working for a Chinese crime syndicate. Inevitably, the love triangle turns tragic and the two
men end up facing off while poor Hye Young tries to work out which of the two is the love of her life.Although "Daisy" is ostensibly
a love story, it has the feel of a funeral, with a slow, sombre pace and a plot which piles on the misery. Half of the film’s running
time is taken up with scenes of the characters staring longingly out of windows into the rain, with the silence broken only by bouts
of self pitying narration.[..]

1 0

Table 4: Random sample from under-performing groups discovered by SEAL for the IMDB dataset. 0 and 1
indicates negative and positive sentiment classes respectively.

370

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 371 - 378
December 7-11, 2022 c©2022 Association for Computational Linguistics

Hands-On Interactive Neuro-Symbolic NLP with DRaiL

Maria Leonor Pacheco1

Microsoft Research &
University of Colorado Boulder
maria.pacheco@colorado.edu

Shamik Roy
Purdue University
roy98@purdue.edu

Dan Goldwasser
Purdue University

dgoldwas@purdue.edu

Abstract

We recently introduced DRaiL, a declarative
neuro-symbolic modeling framework designed
to support a wide variety of NLP scenarios. In
this demo, we enhance DRaiL with an easy
to use Python interface equipped with meth-
ods to define, modify and augment models in-
teractively, as well as with methods to debug
and visualize the predictions made. We demon-
strate this interface with two challenging NLP
tasks: analyzing moral sentiment in political
discourse, and analyzing opinions about the
Covid-19 vaccine.

1 Introduction

Language in real world settings is complex and
ambiguous, and relies on a shared understanding
of the world for its interpretation. Most current
NLP methods represent language in a latent high-
dimensional space by learning word co-occurrence
patterns from massive amounts of textual data (De-
vlin et al., 2019; Brown et al., 2020). This repre-
sentation is very powerful, but it can be insufficient
to capture non-linguistic context such as the phys-
ical, social and cultural environments (Bisk et al.,
2020). Manually annotating these diverse sources
of context is a major challenge, and as a result, in-
teractive and humans-in-the-loop approaches are
gaining popularity to enhance and correct NLP
models (Lertvittayakumjorn and Toni, 2021). How-
ever, the complexity of the representation learned
by deep learning models create challenges for the
communication between humans and machines. To
circumvent these challenges, most existing humans-
in-the-loop techniques solicit people to provide
feedback on individual predictions instead, or al-
low people to augment the dataset by providing
additional examples (Wang et al., 2021). While
straightforward, working in the space of the raw

1Work done while the first author was at Purdue University.

inputs does not take advantage of the ability of hu-
mans to make abstractions and reason over them,
like forming concepts to generalize from observa-
tions to new examples (Rogers and McClelland,
2004), turning raw sensory inputs into high-level
semantic knowledge (Navon, 1977), and deduc-
tively drawing inferences via conceptual rules and
statements (Johnson, 1988).

Neuro-symbolic representations present us with
an opportunity us to enrich expressive language
representations. On the one hand, symbols can be
used to represent higher-level concepts and abstrac-
tions to characterize the information expressed in
the text without resorting to individual annotations.
On the other hand, distributed representations can
help us ground these concepts and generalize to lin-
guistic variations. Moreover, symbolic rules allow
us to explicitly model the dependencies between as-
pects of the language and higher-level abstractions
and behaviors. Most importantly, neuro-symbolic
representations are inherently explainable, making
them particularly useful for interactive and humans-
in-the-loop approaches. Recently, we introduced
DRaiL (Pacheco and Goldwasser, 2021), a neuro-
symbolic modeling framework for NLP. In this
work, we enhance DRaiL with a Python interface
to facilitate the interactive exploration of neuro-
symbolic NLP models. We demonstrate how to
model two challenging language scenarios using
DRaiL, and propose a set of diagnostic and visual-
ization operations to probe and debug DRaiL pre-
dictions. Then, we demonstrate how we can inter-
actively enhance and modify DRaiL programs to
correct mistakes and introduce additional knowl-
edge. This work represents a first step towards
an interactive neuro-symbolic framework. An exe-
cutable version of this demo is publicly available,
and it includes the full code flow to run an exam-
ple2. The source code for DRaiL, as well as its
documentation and additional examples have been

2https://bit.ly/3uLH26s

371

https://bit.ly/3uLH26s

released to the community3

2 Case Studies

Morality Framing in Political Discourse We
previously introduced Morality Framing, a knowl-
edge representation framework for capturing sen-
tence and entity level moral sentiment (Roy et al.,
2021). It is built on top of the Moral Foundation
Theory (MFT) (Haidt and Joseph, 2004; Haidt and
Graham, 2007) that proposes six Moral Founda-
tions (MFs). Morality Frames extend MFT by in-
troducing entity sentiment dimensions. The MFs
are considered as frame predicates, and positive
and negative entity roles are associated with each
predicate. For example, the MF ‘Care/Harm’ is mo-
tivated by entities that are either ‘providing care’
or ‘doing harm’ to a specific target entity.

Morality Frame Predicate: Care/Harm
[New cyber center]CARING will provide hands-on learn-
ing to prepare midshipmen to protect [US]TARGET from
[cyber terrorists and thugs]HARMING.

The full list of morality frames can be found in
the original paper. Given a text, the task is to iden-
tify - (1) the predicate (MF), and (2) the moral roles
of the entities mentioned in the text. The dataset
contains 1.5k tweets by US congress-members an-
notated for MF and entity roles.. We also released
a dataset of 9.5k unlabeled tweets on the abortion
issue, which we explore in this demo.

The Covid-19 Vaccination Debate In previ-
ous work, we proposed a holistic analysis frame-
work to analyze opinions about the Covid-19 vac-
cine (Pacheco et al., 2022). This framework builds
on Morality Frames, and connects it with opinion
analysis. In addition to predicting MFs and entity
roles, we predict the stance with respect to the vac-
cine (i.e. pro-vax or anti-vax), and we model a set
of repeating themes frequently used to discuss the
vaccine in social media.

Stance: Anti-Vax, Theme: Government distrust
I never saw anything like this [government]OPRESSING
’s obsession with [citizens]TARGET getting the Covid vac-
cine. Is this a trial run for a socialist dictatorship?

Our analysis identifies the stance expressed in
the post (anti-vaccination) and the reason for it
(distrust of government). Given the ideologically
polarized climate of social media discussion on this
topic, we also aim to characterize the moral atti-
tudes expressed in the text (oppression), and how

3https://gitlab.com/purdueNlp/DRaiL

different entities mentioned in it are perceived. The
dataset contains 750 tweets geo-located in the U.S.
annotated for morality frames and stance, as well
as a set of themes identified interactively. We also
released a dataset of 85k unlabeled tweets about
the covid vaccine, which we explore in this demo.

3 Problem Specification

In this section, we demonstrate how to model the
scenarios described in Section 2. To model a prob-
lem in DRaiL, we need to decompose the domain
into a set of entities, labels, predicates and prob-
abilistic rules that express the different decisions
and their inter-dependencies. To predict morality
frames, we break down the problem into two main
decisions: 1) the most prominent moral founda-
tion expressed in the tweet, and 2) for each entity
mentioned in the tweet, the role they playing. In
addition to this, we include some contextualizing
information. For political tweets, we model the
topic being discussed, the author of the tweet, and
their party affiliation. In the case of covid-19 de-
bate, we model the stance (i.e. pro or anti vax), as
well as the main theme highlighted in the argument
(e.g. government distrust).

In this demo, we present a Python API that al-
lows us to instantiate and learn DRaiL programs.
The API is centered around a Learner class. We
currently support two types of learners, a Local-
Learner in which rule weights are learned inde-
pendently of each other, and a GlobalLearner in
which all rule weights are learned jointly. The
learner receives a set of parameters, including the
inference algorithm and loss function to be used,
as well as the learning rate.

from drail.learn.global_learner import GlobalLearner

learner = GlobalLearner(
infer_algorithm="ad3",
loss_fn="hinge_loss",
learning_rate=2e-5)

Entities and Predicates Entities are the base ele-
ments in a DRaiL program. Entities are named, and
can correspond to either symbolic elements (e.g. a
topic) or attributed elements (e.g. a tweet associ-
ated with its textual content). Then, we can specify
relations between one or more entities in DRaiL.
Relations can correspond to observed or predicted
information. When observations are available for
a particular relation, either as input information or
as training data, it can be passed to DRaiL using
column separated files. Each column in the file will

372

https://gitlab.com/purdueNlp/DRaiL

correspond to each of the entities involved in the
relation. For example:

learner.define_entity("Tweet")
learner.define_entity("Entity")
learner.define_entity("Role")

learner.define_predicate("HasEntity",
ents=["Tweet", "Entity"],
data_file="has_entity.txt")

learner.define_predicate("HasRole",
ents=["Tweet", "Entity", "Role"],
data_file="has_role.txt")

Rules and Constraints In DRaiL, decisions and
dependencies between different decisions can be
modeled using probabilistic rules. We can ex-
press these rules using templates of the form:
P0 ∧ P1... ∧ Pn−1 ⇒ Pn, where the body of the
rule template can contain observed or predicted
predicates, and the head corresponds to the output
to be predicted (given the body). Rules can be
grounded in data, and each rule grounding is asso-
ciated with a weight representing the likelihood of
the rule grounding holding true. In DRaiL, these
weights are learned using neural nets. For this rea-
son, each rule template is associated to a feature
function and a neural scoring function.

We support different types of rules. We can
define simple rules that map observed inputs to
predicted outputs, and estimate the likelihood of
each possible assignment. For example, mapping
tweets to MFs:

learner.define_rule(
"IsTweet(T) => HasMf(T,M)^?",
lmd=1.0,
features=["tweet_bert"],
nn=BertClassifier(config_r0))

Or we can write rules that capture the dependencies
between different aspects, and estimate the likeli-
hood them co-occurring. For example, MFs and
vaccination stances:

learner.define_rule(
"IsTweet(T) & HasStance(T,S)^? => HasMf(T,M)^?",
lmd=1.0,
features=["tweet_bert", "stace_1hot"],
nn=Bert1HotClassifier(config_r2))

Here, lmd is a hyper-parameter that can be used to
manually tune the importance of each rule. Given
a learned weight w for a given rule, its final weight
will be calculated by multiplying lmd*w. We use
? after a predicate to signal that this is a predicate
that is not observed, and should be predicted.

Finally, we can also write hard dependencies or
constraints that enforce behaviors. For example,
enforcing entities to maintain the same polarity
when mentioned in tweets with the same stance:

learner.define_hardconstr(
"HasEntity(T1,E) & HasEntity(T2,E) &

HasStance(T1,'anti-vax')^? & HasStance(T2,
'anti-vax')^? & HasSentiment(T1,E,'neg')^? =>
HasSentiment(T2,E,'neg')^?")

↪→
↪→
↪→

Feature Extractors and Scoring Functions
DRaiL gives us the flexibility to define any fea-
ture function and neural architecture to represent
rules and learn their weights. To define feature
functions, we need to extend DRaiL’s FeatureEx-
tractor class. This programmatic interface gives
us a lot of flexibility with passing and importing
resources, as well as manipulating features:

from drail.features.feature_extractor import FeatureExtractor
from transformers import AutoTokenizer

class MF_ft(FeatureExtractor):
def __init__(self, id2data):

super(MF_ft, self).__init__()
self.id2data = id2data
self.tokenizer = AutoTokenizer.from_pretrained(

'bert-base-uncased')

def entity_bert(self, rule_gr):
pred = rule_gr.get_body_predicate("HasEntity")
(tweet, entity) = pred['arguments']
text = self.id2data[tweet][entity]['text']
bert_input = self.tokenizer.encode(text)
return bert_input

The constructor allows us to pass any data struc-
ture. In the example above, we pass a dictionary
that maps entity ids to their attributes (e.g. the
text of the tweet). Then, we import the trans-
formers library to obtain the inputs for BERT.
Alternatively, this could be pre-computed and
passed to the constructor directly. DRaiL allows
us to obtain the predicates and arguments of each
rule grounding with the function RuleGround-
ing.get_body_predicate(name, position=0),
which returns the predicate as a dictionary of the
form {"name": name, "arguments": [arg0,
arg1, ...]}. Custom FeatureExtractors can
be instantiated in the learner by doing:

learner.fe = MF_ft(id2data="id2data.json")

DRaiL provides a similar programmatic inter-
face to define neural scoring functions, which is
built on top of PyTorch:

from drail.neuro.nn_model import NeuralNetworks
from transformers import AutoConfig, AutoModel, BertModel
import torch

class BertClassifier(NeuralNetworks):

def __init__(self, config):
super(BertClassifier, self).__init__(config)

def build_architecture(self):
self.bert_model = AutoModel.from_pretrained(

'bert-base-uncased',
add_pooling_layer=True)

self.dropout = torch.nn.Dropout(config["dropout_prob"])
self.hidden2label = torch.nn.Linear(config["h_dim"],

config["o_dim"])↪→

373

def forward(self, x):
will return feats that were defined in feat function
bert_inputs = self.get_inputs(x)
outputs = self.bert_model(bert_inputs['input_ids'],

bert_inputs['attention_mask'],
bert_inputs['token_type_ids'])

↪→
↪→
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.hidden2label(pooled_output)

Given that the neural architectures are defined
programmatically, there is a lot of flexibility as to
what each architecture can look like. For each rule,
we can define a configuration dictionary config
which can be passed to the constructor of the neural
classifier. This allows us to specify variable param-
eters (e.g. number of hidden/output units), and to
reuse classifiers for different rules.

To see the full set of rules that were tested for
each use case, we refer the user to our previous
work (Roy et al., 2021; Pacheco et al., 2022), and
to the live demo and repository linked to this paper.

Grounding, Inference and Learning To instan-
tiate our database and ground our rules, we need
to call the create_dataset function and pass the
directory that contains the files that were defined
for each predicate. We are able to specify train, dev
and test splits by creating filters in the database.
This operation is useful when we want to perform
K-fold cross-validation, as it allows us to dynami-
cally change the splits in an execution loop.
db = learner.create_dataset("data_dir")
db.add_filter(

name="isTrain", pred_name="IsTweet", entity_name="Tweet",
ids=train_tweet_ids↪→

)

DRaiL transforms all rule groundings into linear
inequalities corresponding to their disjunctive form,
and inference is then defined as an integer linear
program:

y∈{0,1}nP (y|x) ≡y∈{0,1}n
∑

ψr,t∈Ψ

wr ψr(xr, yr)

s.t. c(xc, yc) ≤ 0; ∀c ∈ C

(1)

Where each rule grounding r, generated from tem-
plate t, with input features xr and predicted vari-
ables yr defines the potential ψr(xr, yr), added to
the linear program with a weight wr. DRaiL im-
plements both exact and approximate inference to
solve the MAP problem, in the latter case, the AD3

algorithm is used (Martins et al., 2015). Weights
wr are learned using neural networks defined over
parameter set θ. For training using large-margin
estimation, DRaiL uses the structured hinge loss:

max
ŷ∈Y

(∆(ŷ, y) +
∑

ψr∈Ψ
Φt(xr, ŷr; θ

t))−
∑

ψr∈Ψ
Φt(xr, yr; θ

t)

Where Φt represents the neural net associated with
rule template t, and parameter set θt. Here, y corre-
sponds to the gold assignments, and ŷ corresponds
to the prediction resulting from the MAP inference
defined in Eq. 1. Note that alternative estimations
are also supported. More details can be found in the
modeling paper (Pacheco and Goldwasser, 2021).

Our Python API wraps up all of this function-
ality in just two functions: train and predict.
Additional parameters can be specified to select
the optimizer, use loss augmented inference, or hot
start the parameters by training rules locally first.
We have found that hot starting parameters locally
consistently improves performance across tasks.
This finding is in line with previous work experi-
menting with deep structured prediction objectives
(Han et al., 2019). The predict function returns
two elements: results has the aggregated predic-
tions in a data structure that can be directly used to
evaluate performance using the sklearn.metrics
library, while preds contains the resulting set of
active predicates.

from sklearn.metrics import classification_report

learner.train(db,
train_filter="isTrain",
dev_filter="isDev",
patience=10,
local_hot_start=True)

results, preds = learner.predict(db,
test_filter="isTest")

y_gold = results.metrics["HasMF"]['gold_data']
y_pred = results.metrics["HasMF"]['pred_data']
classification_report(y_gold, y_pred, digits=4)

4 Interactive Evaluation and Debugging

In this section, we present an evaluation module
equipped with functions to interactively debug and
visualize DRaiL models. These functions are espe-
cially valuable when evaluating model predictions
over unlabeled data, where we cannot directly mea-
sure performance. To showcase this capability, we
use the sets of unlabeled tweets about abortion and
the covid-19 vaccine described in Sec. 2.

4.1 Visualizing and Interpreting Results

In this section, we present a non-exhaustive list of
the visualization operations supported by our API.
freq_graph(pred,ent,filters): plots a bar graph
of frequencies for entity ent in active pred pred-
icates (e.g. frequency_graph("HasMF", "MF")
will plot the distribution of MFs for all tweets. The
optional parameter filters allows us to specify
filters in the form of logical predicates. For exam-

374

ple, if we want to plot MF frequencies by political
party, we can do:
learner.freq_graph("HasMF", "MF", filters=["IsAuthor(T,A) &

HasParty(A, 'democrat')", "IsAuthor(T,A) & HasParty(A,
'republican')"])

↪→
↪→

Note that more than one filter can be used to com-
pare frequencies. If no filters are passed, general
frequencies will be plotted (one bar per value).

freq_ents(pred,ent,k,filter): outputs the top k
most frequent ent entities in predicate pred.
learner.freq_ents("HasEntity", "Entity", k=10)

diag_rank_graph(pred,ent,ent_inst,top_filter,
bottom_filter): plots a graph that visualizes the
normalized rank scores based of the frequencies
of entity ent=ent_inst in active predicates
pred. This graph uses a diagonal to contrast the
frequencies of the predicate activations that satisfy
the top_filter and the bottom_filter. For
example:
learner.diag_rank_graph("HasEntity", "Entity", "planned

parenthood", top_filter="IsAuthor(T,A) &
HasParty(T,'republican')", bottom_filter="IsAuthor(T,A) &
HasParty(T,'democrat')")

↪→
↪→
↪→

ent_rel_graph(pred,k,filter): plots an entity-
relation graph for active predicates pred. Option-
ally, a k can be used to limit the graph to the top k
most frequent activations. For example:

learner.ent_rel_rank_graph("HasRole", k=8,
filter="IsAuthor(T,A) & HasParty(T,'democrat') &
HasMF(T,'fairness')")

↪→
↪→

corr_matrix(pred_1,ent_1,filter_1,pred_2,ent_-
1,filter_2): plots a correlation matrix between
ent_1 and ent_1. Optionally, filters can be
specified to constrain the examples considered.

learner.corr_matrix(pred_1="HasMF", ent_1="MF",
pred_2="HasTheme", ent_2="Theme")↪→

plot_embed(pred, ent, filter): plots a 2D visual-
ization of the representation learned for a given
entity. To reduce the dimensionality, we use t-
sne (van der Maaten and Hinton, 2008). Note that
DRaiL will learn a representation for each entity
and relation in the program using the neural archi-
tecture specified. These representations can also be
shared across rules. For more details, see (Pacheco
and Goldwasser, 2021).

learner.plot_embed("HasTheme", "Theme")

4.2 Human Interventions
In this section, we focus on the ability of inter-
actively correcting and enhancing DRaiL models.
Going by the visualizations demonstrated above
for political tweets, we can observe that overall,
the results are what we would expect. However,
we can spot some unexpected predictions. For ex-
ample, in the normalized rank graph for planned
parenthood, we found that the moral role do-cheat
had a high democrat score, which contradicts the

375

general sentiment of liberals towards Planned Par-
enthood. Additionally, in the entity-relation graph,
we observe the entity abortion being portrayed as
a cheating entity in a high number of cases. To
tackle this likely errors, we experiment with the
following interventions:

Introducing bias with new rules and constraints
Given that democrats generally have a pro-choice
stance, we can introduce a rule that discourages a
negative polarity for the abortion entity:

learner.define_rule(
"IsTweet(T) & IsAuthor(A,T) & HasParty(A,'democrat') &

HasEntity(T,'abortion') & HasPolarity(R,'neg') =>
~HasRole(T,'abortion',R)^?"),

↪→
↪→
lmd=1.0,
features=None,
nn=None

To represent this rule, we set the features and neural
net to None. This will make DRaiL learn a single
weight for the rule, instead of learning a neural
scoring function over a feature representation. Note
that this is a design choice, and we always have the
option of defining features and a neural classifiers
for newly introduced rules. By adding this rule, we
are able to alter our entity-relation graph:

Augmenting programs with new predicates
While the rule introduced above altered our high-
frequency entity-relation graph, upon closer inspec-
tion of the cases that were not covered by the soft
constraint (using the freq_ents function to look at
example tweets), we find that we likely still have
errors. Tweets that have an overall negative tone
are wrongly identified as portraying abortion in
negative light. Some examples are: we do not want
to go back to the days before women had a consti-
tutional right to abortion, president trump has said
that women should face punishment for exercising
their constitutional right to abortion.

By looking at these examples, we can see that
they talk about abortion as a constitutional right.
To deal with this challenge, we can take advantage
of the fact that we can represent entities in DRaiL
using distributed representations, and introduce a
new predicate that captures the similarity between
a custom phrase explaining the concept of constitu-
tional rights and the text of a tweet:

learner.define_entity("Phrase")
learner.define_latent_predicate(

"MentionsConcept",
ents=["Phrase", "Tweet"])

Given that we do not have supervision for this
predicate, DRaiL allows us to define it as latent.
Then, we can define two additional rules, the first
one uses SBERT, a pre-trained sentence similarity
model (Reimers and Gurevych, 2019) to capture
the likelihood that a tweet mentions constitutional
rights. The second one is a constraint that enforces
tweets that frame abortion as a constitutional right
to have the entity abortion in a positive role.
learner.define_rule(

"InEvent(T,Z) => MentionsConcept('abortion is a
constitutional right', T)^?",↪→

lmd=1.0,
features=["tweet_bert"],
nn=SBERT())

learner.define_hardconstr(
"InEvent(T,Z) & HasEntity(T, 'abortion') &

HasPolarity(R,'neg') MentionsConcept('abortion is a
constitutional right', T)^? =>
~HasRole(T,'abortion',R)^?"))

↪→
↪→
↪→

Upon further inspection of example tweets, we
found that the addition of the new predicate reduced
more than 50% of the remaining errors.

5 DRaiL vs. Other Systems

In previous work, we have positioned the modeling
approach of DRaiL with respect to related work, in-
cluding declarative languages to express probabilis-
tic graphical models (Richardson and Domingos,
2006; Bach et al., 2017), relational and graph em-
beddings (Bordes et al., 2013; Schlichtkrull et al.,
2018), and a comprehensive set of neuro-symbolic
systems (Wang and Poon, 2018; Manhaeve et al.,
2018; Cohen et al., 2020). While performing an
exhaustive comparison between systems is beyond
the scope of this demo, we refer the reader to the
DRaiL modeling paper for this analysis (Pacheco
and Goldwasser, 2021), as well as to the many
successful applications of our modeling strategy
(Pujari and Goldwasser, 2019; Jain et al., 2020;
Widmoser et al., 2021; Lee et al., 2021; Roy et al.,
2021; Mehta et al., 2022; Pacheco et al., 2022).

6 Summary

In this paper, we present an interactive API for
DRaiL, a recently introduced neuro-symbolic mod-
eling framework. We demonstrate how to use
this API to model a challenging NLP problem,
and interactively debug predictions on unlabeled
datasets, where traditional evaluation techniques
cannot be applied. We motivate the advantage of
neuro-symbolic representations to communicate
knowledge from humans to machines, and show
that we can effectively enhance the performance of
the model by interactively adding new knowledge.

376

References
Stephen H. Bach, Matthias Broecheler, Bert Huang,

and Lise Getoor. 2017. Hinge-loss Markov random
fields and probabilistic soft logic. Journal of Ma-
chine Learning Research (JMLR).

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

William W. Cohen, Fan Yang, and Kathryn Mazaitis.
2020. Tensorlog: A probabilistic database imple-
mented using deep-learning infrastructure. J. Artif.
Intell. Res., 67:285–325.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jonathan Haidt and Jesse Graham. 2007. When morality
opposes justice: Conservatives have moral intuitions
that liberals may not recognize. Social Justice Re-
search, 20(1):98–116.

Jonathan Haidt and Craig Joseph. 2004. Intuitive ethics:
How innately prepared intuitions generate culturally
variable virtues. Daedalus, 133(4):55–66.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019. Joint
event and temporal relation extraction with shared

representations and structured prediction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 434–444, Hong
Kong, China. Association for Computational Linguis-
tics.

Ayush Jain, Maria Leonor Pacheco, Steven Lancette,
Mahak Goindani, and Dan Goldwasser. 2020. Iden-
tifying collaborative conversations using latent dis-
course behaviors. In Proceedings of the 21th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 74–78, 1st virtual meeting. As-
sociation for Computational Linguistics.

Ralph H. Johnson. 1988. Gilbert harman change in
view: Principles of reasoning (cambridge, ma: Mit
press 1986). pp. ix 147. Canadian Journal of Philos-
ophy, 18(1):163–178.

I-Ta Lee, Maria Leonor Pacheco, and Dan Goldwasser.
2021. Modeling human mental states with an entity-
based narrative graph. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4916–4926, Online.
Association for Computational Linguistics.

Piyawat Lertvittayakumjorn and Francesca Toni. 2021.
Explanation-based human debugging of NLP mod-
els: A survey. Transactions of the Association for
Computational Linguistics, 9:1508–1528.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kim-
mig, Thomas Demeester, and Luc De Raedt. 2018.
Deepproblog: Neural probabilistic logic program-
ming. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
NIPS’18, page 3753–3763, Red Hook, NY, USA.
Curran Associates Inc.

André F. T. Martins, Mário A. T. Figueiredo, Pedro
M. Q. Aguiar, Noah A. Smith, and Eric P. Xing. 2015.
Ad3: Alternating directions dual decomposition for
map inference in graphical models. Journal of Ma-
chine Learning Research, 16(16):495–545.

Nikhil Mehta, Maria Pacheco, and Dan Goldwasser.
2022. Tackling fake news detection by continually
improving social context representations using graph
neural networks. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1363–1380,
Dublin, Ireland. Association for Computational Lin-
guistics.

David Navon. 1977. Forest before trees: The prece-
dence of global features in visual perception. Cogni-
tive Psychology, 9(3):353 – 383.

Maria Pacheco, Tunazzina Islam, Monal Mahajan, An-
drey Shor, Ming Yin, Lyle Ungar, and Dan Gold-
wasser. 2022. A holistic framework for analyzing
the COVID-19 vaccine debate. In Proceedings of

377

https://doi.org/10.18653/v1/2020.emnlp-main.703
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1041
https://doi.org/10.18653/v1/D19-1041
https://doi.org/10.18653/v1/D19-1041
https://aclanthology.org/2020.sigdial-1.10
https://aclanthology.org/2020.sigdial-1.10
https://aclanthology.org/2020.sigdial-1.10
https://doi.org/10.1080/00455091.1988.10717172
https://doi.org/10.1080/00455091.1988.10717172
https://doi.org/10.1080/00455091.1988.10717172
https://doi.org/10.18653/v1/2021.naacl-main.391
https://doi.org/10.18653/v1/2021.naacl-main.391
https://doi.org/10.1162/tacl_a_00440
https://doi.org/10.1162/tacl_a_00440
http://jmlr.org/papers/v16/martins15a.html
http://jmlr.org/papers/v16/martins15a.html
https://doi.org/10.18653/v1/2022.acl-long.97
https://doi.org/10.18653/v1/2022.acl-long.97
https://doi.org/10.18653/v1/2022.acl-long.97
https://doi.org/https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/https://doi.org/10.1016/0010-0285(77)90012-3
https://aclanthology.org/2022.naacl-main.427
https://aclanthology.org/2022.naacl-main.427

the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5821–5839,
Seattle, United States. Association for Computational
Linguistics.

Maria Leonor Pacheco and Dan Goldwasser. 2021.
Modeling content and context with deep relational
learning. Transactions of the Association for Compu-
tational Linguistics, 9:100–119.

Rajkumar Pujari and Dan Goldwasser. 2019. Using nat-
ural language relations between answer choices for
machine comprehension. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4010–4015, Minneapolis, Minnesota.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Matthew Richardson and Pedro Domingos.
2006. Markov logic networks. Mach. Learn.,
62(1–2):107–136.

T. Rogers and James L. McClelland. 2004. Seman-
tic cognition: A parallel distributed processing ap-
proach.

Shamik Roy, Maria Leonor Pacheco, and Dan Gold-
wasser. 2021. Identifying morality frames in political
tweets using relational learning. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9939–9958, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web, pages 593–
607, Cham. Springer International Publishing.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Hai Wang and Hoifung Poon. 2018. Deep probabilistic
logic: A unifying framework for indirect supervision.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1891–1902, Brussels, Belgium. Association for Com-
putational Linguistics.

Zijie J. Wang, Dongjin Choi, Shenyu Xu, and Diyi Yang.
2021. Putting humans in the natural language pro-
cessing loop: A survey. In Proceedings of the First

Workshop on Bridging Human–Computer Interac-
tion and Natural Language Processing, pages 47–52,
Online. Association for Computational Linguistics.

Manuel Widmoser, Maria Leonor Pacheco, Jean Hon-
orio, and Dan Goldwasser. 2021. Randomized deep
structured prediction for discourse-level processing.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1174–1184, Online.
Association for Computational Linguistics.

378

https://doi.org/10.1162/tacl_a_00357
https://doi.org/10.1162/tacl_a_00357
https://doi.org/10.18653/v1/N19-1403
https://doi.org/10.18653/v1/N19-1403
https://doi.org/10.18653/v1/N19-1403
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.18653/v1/2021.emnlp-main.783
https://doi.org/10.18653/v1/2021.emnlp-main.783
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/D18-1215
https://doi.org/10.18653/v1/D18-1215
https://aclanthology.org/2021.hcinlp-1.8
https://aclanthology.org/2021.hcinlp-1.8
https://doi.org/10.18653/v1/2021.eacl-main.100
https://doi.org/10.18653/v1/2021.eacl-main.100

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 379 - 388
December 7-11, 2022 c©2022 Association for Computational Linguistics

Paraphrastic Representations at Scale

John Wieting1, Kevin Gimpel2, Graham Neubig3, and Taylor Berg-Kirkpatrick4

1Google Research
2Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

3Carnegie Mellon University, Pittsburgh, PA, 15213, USA
4University of California San Diego, San Diego, CA, 92093, USA

jwieting@alumni.cmu.edu, kgimpel@ttic.edu, gneubig@cs.cmu.edu, tberg@eng.ucsd.edu

Abstract
We present a system that allows users to
train their own state-of-the-art paraphrastic
sentence representations in a variety of lan-
guages. We release trained models for English,
Arabic, German, Spanish, French, Russian,
Turkish, and Chinese. We train these mod-
els on large amounts of data, achieving signif-
icantly improved performance from our orig-
inal papers on a suite of monolingual seman-
tic similarity, cross-lingual semantic similarity,
and bitext mining tasks. Moreover, the result-
ing models surpass all prior work on efficient
unsupervised semantic textual similarity, even
significantly outperforming supervised BERT-
based models like Sentence-BERT (Reimers
and Gurevych, 2019). Most importantly, our
models are orders of magnitude faster than
other strong similarity models and can be used
on CPU with little difference in inference
speed (even improved speed over GPU when
using more CPU cores), making these models
an attractive choice for users without access
to GPUs or for use on embedded devices. Fi-
nally, we add significantly increased function-
ality to the code bases for training paraphras-
tic sentence models, easing their use for both
inference and for training them for any desired
language with parallel data. We also include
code to automatically download and prepro-
cess training data.1

1 Introduction

Measuring sentence similarity (Agirre et al., 2012)
is an important task in natural language pro-
cessing, and has found many uses including
paraphrase detection (Dolan et al., 2004), bitext
mining (Schwenk and Douze, 2017), language
modelling (Khandelwal et al., 2019), question-
answering (Lewis et al., 2021), and as reward func-
tions or evaluation metrics for language generation

1Code, including an easy to install PyPi package, re-
leased models including Hugging Face implementations,
demo, and data are available at https://github.com/jwieting/
paraphrastic-representations-at-scale.

tasks (Wieting et al., 2019a). Within this context,
fast and light-weight methods are particularly use-
ful as they make it easy to compute similarity over
the ever-increasing volumes of web text available.
For instance, we may want to mine a hundred mil-
lion parallel sentences (Schwenk et al., 2021) or
use a semantic similarity reward when fine-tuning
language generation models on tens of millions
of training examples. These tasks are much more
feasible when using approaches that are fast, can
be run on CPU, and use little RAM, allowing for
increased batch size.

This need for fast inference is one motivation for
using sentence embeddings. Sentence embeddings
allow the search for similar sentences to be linear in
the number of sentences, or even sub-linear when
using highly optimized tools like Faiss (Johnson
et al., 2017) that allow for efficient nearest neigh-
bor search. This is contrast to models, like cross-
attention models, which are quadratic during infer-
ence as they require both of the texts being com-
pared as inputs. As we show in this paper, our sim-
ple and interpretable word-averaging sentence em-
bedding models (Wieting et al., 2016b; Wieting and
Gimpel, 2018; Wieting et al., 2019b), are orders
of magnitude faster to compute than prior embed-
ding approaches while simultaneously possessing
significantly stronger performance on monolingual
and cross-lingual semantic similarity tasks. Since
we are simply averaging embeddings and have no
neural architecture, any models based on neural
architectures, especially large pretrained neural ar-
chitectures which are increasingly used, will not be
as fast as the models described in this paper. Lastly,
we also show that this approach is competitive with
LASER (Artetxe and Schwenk, 2019), a state-of-
the-art multilingual model, on mining bitext and
has stronger performance on cross-lingual seman-
tic similarity, while having inference speeds that
are twice as fast on GPU and orders of magnitude
faster on CPU.

379

https://github.com/jwieting/paraphrastic-representations-at-scale
https://github.com/jwieting/paraphrastic-representations-at-scale

We make several contributions in this paper that
go beyond our prior work. Firstly, we reformat the
code to support training models on tens of millions
of sentence pairs efficiently and with low RAM us-
age. Secondly, we train an English model on 25.85
million paraphrase pairs from ParaNMT (Wieting
and Gimpel, 2018), a paraphrase corpus we previ-
ously constructed automatically from bitext. We
then train models directly on X-English bitext for
Arabic, German, Spanish, French, Russian, Turk-
ish, and Chinese, producing models that are able to
distinguish both paraphrases in English and their
respective languages as well as cross-lingual X-
English paraphrases. Even though all models are
able to model semantic similarity in English, we
find that training on ParaNMT specifically leads to
stronger models as it is easier to filter the data to
remove noise and sentence pairs with little to no di-
versity. We refer to our models as PARAGRAM-SP,
abbreviated as P-SP,2 referring to how the models
are based on averaging subword units generated
by sentencepiece (Kudo and Richardson, 2018).
We make all of these models available to the com-
munity for use on downstream tasks.

We also add functionality to our implementa-
tion. Besides the support for efficient, low-memory
training on tens of million of sentence pairs de-
scribed above, we add code to support (1) reading
in a list of sentences and producing a saved numpy
array of the sentence embeddings; (2) reading in a
list of sentence pairs and producing cosine similar-
ity scores; and (3) downloading and preprocessing
evaluation data, bitext, and paraphrase data. For
bitext and paraphrase data, we provide support for
training using either text files or HDF5 files.

Lastly, this paper contains new experiments
showcasing the limits of these scaled-up models
and detailed comparisons with prior work on a
suite of semantic similarity tasks in a variety of
languages. We release our code and models to
the community in the hope that they will be found
useful for research and applications, as well as us-
ing them as a base to build stronger, faster models
covering more of the languages of the world.

2Our English model is P-SP, and the cross-lingual models
are P-SP-AR, P-SP-DE, P-SP-ES, P-SP-FR, P-SP-RU, P-SP-
TR, and P-SP-ZH.

2 Related Work

2.1 English Semantic Similarity

Our learning and evaluation setting is the same as
that of our earlier work that seeks to learn para-
phrastic sentence embeddings that can be used for
downstream tasks (Wieting et al., 2016b,a; Wieting
and Gimpel, 2017; Wieting et al., 2017; Wieting
and Gimpel, 2018). We trained models on noisy
paraphrase pairs and evaluated them primarily on
semantic textual similarity (STS) tasks. More re-
cently, we made use of parallel bitext for training
paraphrastic representations for other languages
as well that are also able to model cross-lingual
semantic similarity (Wieting et al., 2019a, 2020).
Prior work in learning general sentence embed-
dings has used autoencoders (Socher et al., 2011;
Hill et al., 2016), encoder-decoder architectures
(Kiros et al., 2015; Gan et al., 2017), and other
sources of supervision and learning frameworks
(Le and Mikolov, 2014; Pham et al., 2015; Arora
et al., 2017; Pagliardini et al., 2017).

For English semantic similarity, we compare to
well known sentence embedding models such as
InferSent (Conneau et al., 2017), GenSen (Subra-
manian et al., 2018), the Universal Sentence En-
coder (USE) (Cer et al., 2018), as well as BERT
(Devlin et al., 2019).3 We use the pretrained BERT
model in two ways to create a sentence embedding.
The first way is to concatenate the hidden states
for the CLS token in the last four layers. The sec-
ond way is to concatenate the hidden states of all
word tokens in the last four layers and mean pool
these representations. Both methods result in a
4096 dimension embedding. We also compare to
a more recently released model called Sentence-
BERT (Reimers and Gurevych, 2019). This model
is similar to InferSent in that it is trained on natu-
ral language inference data (SNLI; Bowman et al.,
2015). However, instead of using pretrained word
embeddings, they fine-tune BERT in a way to in-
duce sentence embeddings. Lastly, we also com-
pare to the unsupervised version of SimCSE (Gao
et al., 2021), which fine-tunes a pretrained encoder
on contrastive pairs, where positive pairs are ob-
tained by using dropout on a single input sentence.

3Note that in all experiments using BERT, including
Sentence-BERT, the large, uncased version is used.

380

2.2 Cross-Lingual Semantic Similarity and
Semantic Similarity in Non-English
Languages

Most previous work for cross-lingual representa-
tions has focused on models based on encoders
from neural machine translation (Espana-Bonet
et al., 2017; Schwenk and Douze, 2017; Schwenk,
2018) or deep architectures using contrastive losses
(Grégoire and Langlais, 2018; Guo et al., 2018;
Chidambaram et al., 2019). Recently, other ap-
proaches using large Transformer (Vaswani et al.,
2017) have been proposed, trained on vast quanti-
ties of text (Conneau et al., 2020; Liu et al., 2020;
Tran et al., 2020). We primarily focus our com-
parison for these settings on LASER (Artetxe and
Schwenk, 2019), a model trained for semantic sim-
ilarity across more than 100 languages. Their
model uses an LSTM encoder-decoder trained on
hundreds of millions of parallel sentences. They
achieve state-of-the-art performance on a variety of
multilingual sentence embeddings tasks including
bitext mining. We also compare to LaBSE (Feng
et al., 2022), a contrastive model trained on six bil-
lion parallel pairs across languages and was also
trained on monolingual text using a masked lan-
guage modelling objective.

3 Methods

We first describe our objective function and then
describe our encoder.

Training. The training data consists of a se-
quence of parallel sentence pairs (si, ti) in source
and target languages respectively. Note that for
training our English model, the source and target
languages are both English as we are able to make
use of an existing paraphrase corpus. For each sen-
tence pair, we randomly choose a negative target
sentence t′i during training that is not a translation
or paraphrase of si. Our objective is to have source
and target sentences be more similar than source
and negative target examples by a margin δ:

min
θsrc,θtgt

∑

i

[
δ−fθ(si, ti) + fθ(si, t

′
i))
]
+

(1)

where the similarity function is defined as:

fθ(s, t) = cos
(
g(s; θsrc), g(t; θtgt)

)
(2)

where g is the sentence encoder with parameters
for each language θ = (θsrc, θtgt). To select t′i

we choose the most similar sentence in some set
according to the current model parameters, i.e., the
one with the highest cosine similarity. We found we
could achieve the strongest performance by tying
all parameters together for each language, more
precisely, θsrc and θtgt are the same.

Negative Sampling. Negative examples are se-
lected from the sentences in the batch from the op-
posing language when training with bitext and from
any sentence in the batch when using paraphrase
data. In all cases, we choose the negative exam-
ple with the highest cosine similarity to the given
sentence s, ensuring that the negative is not in fact
paired with s in the batch. To select even more diffi-
cult negative examples that aid training, we use the
mega-batching procedure of Wieting and Gimpel
(2018), which aggregates M mini-batches to create
one “mega-batch” and selects negative examples
from this mega-batch. Once each pair in the mega-
batch has a negative example, the mega-batch is
split back up into M mini-batches for training. Ad-
ditionally, we anneal the mega-batch size by slowly
increasing it during training. This yields improved
performance by a significant margin.

Encoder. Our sentence encoder g simply aver-
ages the embeddings of subword units generated
by sentencepiece (Kudo and Richardson, 2018);
we refer to our model as PARAGRAM-SP, abbrevi-
ated as P-SP. This means that the sentence piece
embeddings themselves are the only learned param-
eters of this model.

4 Code and Usage

We added a number of features to the code base
to improve performance and make it easier to use.
First, we added code to support easier inference.
Examples of using the code programmatically to
embed sentences and score sentence pairs (using
cosine similarity) are shown in Figure 1.

Our code base also supports functionality that
allows one to read in a list of sentences and produce
a saved numpy array of the sentence embeddings.
We also included functionality that allows one to
read in a list of sentence pairs and produce the
sentence pairs along with their cosine similarity
scores in an output file. These scripts allow our
models to be used without any programming for the
two most common use cases: embedding sentences
and scoring sentence pairs. Examples of their usage
with a trained model are shown in Figure 2.

381

1 from models import load_model
2

3 text1 = ’This is a test.’
4 text2 = ’This is another test.’
5

6 # Load English paraphrase model
7 model_name = ’paraphrase -at-scale/model.

para.lc.100.pt’
8 sp_model = ’paraphrase -at-scale/paranmt.

model’
9

10 model , _ = load_model(model_name=
model_name , sp_model=sp_model)

11

12 # Obtain sentence embedding
13 embeddings = model.embed_raw_text ([text1

, text2]) # 2D numpy array of
sentence embeddings

14 cosine_scores = model.score_raw_text ([(
text1 , text2)]) # list of cosine
scores

Figure 1: Usage example of programmatically loading
one of our pretrained models and obtaining sentence
embeddings and scores for two sentences.

1 python -u embed_sentences.py --sentence -
file paraphrase -at-scale/example -
sentences.txt --load -file paraphrase
-at -scale/model.para.lc.100.pt --
output -file sentence_embeds.np

2

3 python score_sentence_pairs.py --
sentence -pair -file paraphrase -at-
scale/example -sentences -pairs.txt --
load -file paraphrase -at-scale/model.
para.lc.100.pt

Figure 2: Usage examples to embed sentences and
score sentence pairs. The first command is a usage
example of scoring a list of sentence pairs. The file
example-sentences-pairs.txt contains a list of sen-
tences, one per line. The output of the script is a saved
numpy array of sentence embeddings in the same order
of the input sentences. The second command is a us-
age example of scoring a list of sentence pairs. The
file example-sentences-pairs.txt contains pairs of
tab-separated sentences, one per line. The output of
the script is a text file containing the tab separated list
of sentences along with their cosine scores in the same
order of the input sentences.

Secondly, we added a training mode using HDF54

format, allowing training data to remain on disk
during training. This leads to a significant reduc-
tion in RAM usage during training, which is espe-
cially true when using more than 10 million train-
ing examples. Efficient training can now be done
on CPU only using only a few gigabytes of RAM.

Lastly, we also added code for preprocessing

4https://docs.h5py.org/en/stable/

1 cd preprocess/bilingual && bash do_all.
sh fr-es-de

2 cd ../..
3 cd preprocess/paranmt && bash do_all.sh

0.4 1.0 0.7

Figure 3: Usage examples to download and preprocess
bilingual and ParaNMT data. The first command down-
loads and preprocesses (filters, trains sentencepiece
models, tokenizes if language is zh, converts files to
hdf5 format) en-X bilingual data. The third command
downloads and preprocesses ParaNMT data. The ar-
guments are used to filter the data (semantic similarity
scores between 0.4 and 1.0 and trigram overlap below
0.7, which have been used in prior papers when gen-
erating training data for paraphrase generation (Iyyer
et al., 2018; Krishna et al., 2020)).

en ar de es fr ru tr zh

25.85M 8.23M 6.47M 6.75M 6.46M 9.09M 5.12M 4.18M

Table 1: The number of sentence pairs used to train
our models. For English, the data is ParaNMT, and for
the other languages, the data is a collection of bitext
detailed in Section 5.1.

data, including scripts to download and evaluate
on the STS data (English, non-English, and cross-
lingual), as well as code to download and pro-
cess bitext and ParaNMT automatically. For bi-
text, our scripts download the data, filter the data
by length,5 lowercase, remove duplicates, train a
sentencepiece model, encode the data with the
sentencepiece model, shuffle the data, and pro-
cess the data into HDF5 format for efficient use.
For ParaNMT, our scripts download the data, use
a language classifier to filter out non-English sen-
tences6 (Joulin et al., 2017), filter the data by para-
phrase score, trigram overlap, and length,7 train a
sentencepiece model, encode the data with the
sentencepiece model, and process the data into
HDF5 format. Examples are shown in Figure 3.

5 Experiments

5.1 Experimental Setup
Data. For our English model, we train on se-
lected sentence pairs from ParaNMT (Wieting and
Gimpel, 2018). We filter the corpus by only includ-
ing sentence pairs where the paraphrase score for
the two sentences is≥ 0.4. We additionally filtered

5We remove sentences with the number of tokens (untok-
enized) smaller than 3 or greater than 100.

6https://fasttext.cc
7We remove sentences with the number of tokens (untok-

enized) smaller than 5 or greater than 40.

382

https://docs.h5py.org/en/stable/
https://fasttext.cc

Model Semantic Textual Similarity (STS)
2012 2013 2014 2015 2016 Avg.

BERT (CLS) 33.2 29.6 34.3 45.1 48.4 38.1
BERT (Mean) 48.8 46.5 54.0 59.2 63.4 54.4
InferSent 61.1 51.4 68.1 70.9 70.7 64.4
GenSen 60.7 50.8 64.1 73.3 66.0 63.0
USE 61.4 59.0 70.6 74.3 73.9 67.8
Sentence-BERT 66.9 63.2 74.2 77.3 72.8 70.9
LASER 63.1 47.0 67.7 74.9 71.9 64.9
P-SP 68.7 64.7 78.1 81.4 80.0 74.6

Sentence-BERT 71.0 76.5 73.2 79.1 74.3 74.8
P-SP 71.2 76.5 74.6 83.0 79.1 76.9

Table 2: Results of our models and models from prior work on English STS. In the first part of the table, we
show results, measured in Pearson’s r × 100, for each year of the STS tasks 2012-2016 as well as the average
performance across all years. In the second part, we evaluate based on the Spearman’s ρ×100 of the concatenation
of the datasets of each year with the 2013 SMT dataset removed following (Reimers and Gurevych, 2019).

Model Dim. ar-ar ar-en es-es es-en tr-en

LASER 1024 69.3\68.8 65.5\66.5 79.7\79.7 59.7\58.0 72.0\72.1
LaBSE 768 68.6\69.1 72.2\74.5 79.5\80.8 65.5\65.7 72.9\72.1
Espana-Bonet et al. (2017) 2048 59 44 78 49 76
Chidambaram et al. (2019) 512 - - 64.2 58.7 -

2017 STS 1st Place - 75.4 74.9 85.6 83.0 77.1
2017 STS 2nd Place - 75.4 71.3 85.0 81.3 74.2
2017 STS 3rd Place - 74.6 70.0 84.9 79.1 73.6

P-SP 1024 76.2\76.7 78.3\78.4 85.8\85.6 78.4\77.8 79.2\79.5

Table 3: Comparison of our models with those in the literature on non-English and cross-lingual STS. We also
include the top 3 systems for each dataset from the SemEval 2017 STS shared task. Performance is measured in
Pearson’s r ×100. We also include results in Spearmans’s ρ ×100 after a slash for LASER, LaBSE, and P-SP.

sentence pairs by their trigram overlap (Wieting
et al., 2017), which is calculated by counting tri-
grams in the two sentences, and then dividing the
number of shared trigrams by the total number in
the sentence with fewer tokens. We only include
sentence pairs where the trigram overlap score is
≤ 0.7. The paraphrase score is calculated by aver-
aging PARAGRAM-PHRASE embeddings (Wieting
et al., 2016b) for the two sentences in each pair and
then computing their cosine similarity. The purpose
of the lower threshold is to remove noise while the
higher threshold is meant to remove paraphrases
that are too similar.

Our training data is a mixture of Open Subtitles
20188 (Lison and Tiedemann, 2016), Tanzil cor-
pus9 (Tiedemann, 2012), Europarl10 for Spanish,
Global Voices11 (Tiedemann, 2012), and the Mul-
tiUN corpus.12 We follow the same distribution
for our languages of interest across data sources as
Artetxe and Schwenk (2019) for a fair comparison.

8http://opus.nlpl.eu/OpenSubtitles.php
9http://opus.nlpl.eu/Tanzil.php

10http://opus.nlpl.eu/Europarl.php
11https://opus.nlpl.eu/GlobalVoices.php
12http://opus.nlpl.eu/MultiUN.php

One exception, though, is we do not include train-
ing data from Tatoeba13 (Tiedemann, 2012) as they
do, since this domain is also in the bitext mining
evaluation set. The amount of data used to train
each of our models is shown in Table 1.

Hyperparameters. For all models, we fix the
batch size to 128, margin δ to 0.4, and the an-
nealing rate to 150.14 We set the size of the
sentencepiece vocabulary to 50,000, using a
shared vocabulary for the models trained on bitext.
If a word is not in vocabulary, we simply exclude it,
unless the text only consists of unknown words in
which case we use a single unknown-word token.
We optimize our models using Adam (Kingma and
Ba, 2014) with a learning rate of 0.001 and train
models for 25 epochs.

For training on the bilingual corpora, we tune
each model on the 250 example 2017 English STS
task (Cer et al., 2017). We vary dropout on the
embeddings over {0, 0.1, 0.3} and the mega-batch
size M over {60, 100, 140}.

13https://opus.nlpl.eu/Tatoeba.php
14Annealing rate is the number of minibatches that are

processed before the megabatch size is increased by 1.

383

http://opus.nlpl.eu/OpenSubtitles.php
http://opus.nlpl.eu/Tanzil.php
http://opus.nlpl.eu/Europarl.php
https://opus.nlpl.eu/GlobalVoices.php
http://opus.nlpl.eu/MultiUN.php
https://opus.nlpl.eu/Tatoeba.php

For training on ParaNMT, we fix the hyperpa-
rameters in our model due to the increased data size
making tuning more expensive. We use a mega-
batch size M of 100 and set the dropout on the
embeddings to 0.0.

5.2 Evaluation

We evaluate sentence embeddings using the Sem-
Eval semantic textual similarity (STS) tasks from
2012 to 2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016) as was done initially for sentence embed-
dings in (Wieting et al., 2016b). Given two sen-
tences, the aim of the STS tasks is to predict their
similarity on a 0-5 scale, where 0 indicates the sen-
tences are on different topics and 5 means they are
completely equivalent. As our test set, we report
the average Pearson’s r over each year of the STS
tasks from 2012-2016 as is convention.

Most work evaluating accuracy on STS tasks
has averaged the Pearson’s r over each individ-
ual dataset for each year of the STS competition.
However, Reimers and Gurevych (2019) computed
Spearman’s ρ over concatenated datasets for each
year of the STS competition. To be consistent
with previous work, we re-ran their model and
calculated results using the standard method, and
thus our results are not the same as those reported
Reimers and Gurevych (2019). However, we also
include results using their approach for complete-
ness. One other difference between these two ways
of calculating the results is the inclusion of the
SMT dataset of the 2013 task, which we also ex-
clude when replicating the approach in Reimers
and Gurevych (2019).

For cross-lingual semantic similarity and seman-
tic similarity in non-English languages, we eval-
uate on the STS tasks from SemEval 2017. This
evaluation contains Arabic-Arabic, Arabic-English,
Spanish-Spanish, Spanish-English, and Turkish-
English datasets. The datasets were created by
translating one or both pairs of an English STS
pair into Arabic (ar), Spanish (es), or Turkish (tr).
Following convention, we report results with Pear-
son’s r for all systems, but also include results in
Spearman’s ρ for LASER, LaBSE, and P-SP.

We also evaluate on the Tatoeba bitext mining
task introduced by Artetxe and Schwenk (2019).
The dataset consists of up to 1,000 English-aligned
sentence pairs for over 100 languages. The aim
of the task is to find the nearest neighbor for each
sentence in the other language according to cosine

Language LASER XLM-R mBART CRISS LaBSE P-SP

ar 7.8 52.5 61.0 22.0 9.1 8.8
de 1.0 11.1 13.2 2.0 0.7 1.5
es 2.1 24.3 39.6 3.7 1.6 2.4
fr 4.3 26.3 39.6 7.3 4.0 5.4
ru 5.9 25.9 31.6 9.7 4.7 5.6
tr 2.6 34.3 48.8 7.1 1.6 1.4

Avg. 4.0 29.1 39.0 8.6 3.6 4.2

Table 4: Results on the Tatoeba bitext mining task
(Artetxe and Schwenk, 2019). Results are measured
in error rate ×100.

similarity. Performance is measured by computing
the error rate.

6 Results

English Semantic Similarity. The results for
our English semantic similarity evaluation are
shown in Table 2. Our P-SP model has the best
performance across each year of the task, signif-
icantly outperforming all prior work. We outper-
form methods that use large pre-trained models
including Sentence-BERT which is supervised, as
it is trained on NLI data (Bowman et al., 2015).

We also include results from SimCSE (Gao et al.,
2021). We compare to the unsupervised version,
since our model is also unsupervised. We evaluate
using the Spearman’s ρ of the concatenation of the
datasets for each year, and find our average perfor-
mance over the 2012-2016 datasets to be 76.9, com-
pared to 77.4 and 77.9 for the RoBERTa-base (Liu
et al., 2019) and RoBERTa-large versions of Sim-
CSE. While our performance is slightly lower, we
note that they tune their model on the dev set of
the STS Benchmark (Cer et al., 2017), which con-
tains a subset of the data from STS tasks which we
use for evaluation. Therefore, they are tuning on a
subset of the evaluation data, and it is unclear how
tuning on this test data affects model performance.

Cross-Lingual Semantic Similarity. The re-
sults for the non-English and cross-lingual seman-
tic similarity evaluation are shown in Table 3. From
the results, our model again outperforms all prior
work using sentence embeddings. The only sys-
tems that have better performance are the top (non-
embedding based) systems from SemEval 2017 for
Spanish-English.15

15The top systems for this task used supervision and relied
on state-of-the-art translation models to first translate the non-
English sentences to English.

384

Bitext Mining. The results on the Tatoeba bitext
mining task from Artetxe and Schwenk (2019) are
shown in Table 4. The results show that our em-
beddings are competitive, but have slightly higher
error rates than LASER. The models are so close
that the difference in error rate for the two models
across the 6 evaluations is 0.2, corresponding to a
difference of about 2 mismatched sentence pairs
per dataset. LaBSE performs a bit better, but was
trained on much more data then both LASER and
our method. We also compare to mBART, XLM-R,
and CRISS.16

This bitext mining result is in contrast to the re-
sults on cross-lingual semantic similarity, suggest-
ing that our embeddings account for a less literal
semantic similarity, making them more adept at
detecting paraphrases but slightly weaker at iden-
tifying translations. It is also worth noting that
LASER was trained on Tatoeba data outside the
test sets, which could also account for some of the
slight improvement over our model.

7 Speed Analysis

Model GPU CPU

P-SP 13,863 12,776
LASER 6,033 26
Sentence-Bert 288 2
InferSent 4,445 16

Table 5: Speed as measured in sentences/second on
both GPU (Nvidia 1080 TI) and CPU (single core).

We analyze the speed of our models as well as se-
lected popular sentence embedding models from
prior work. To evaluate inference speed, we mea-
sure the time required to embed 120,000 sentences
from the Toronto Book Corpus (Zhu et al., 2015).
Preprocessing of sentences is not factored into the
timing, and each method sorts the sentences by
length prior to computing the embeddings to re-
duce padding and extra computation. We use a
batch size of 64 for each model. The number of
sentences embedded per second is shown in Ta-
ble 5.

From the results, we see that our model is eas-
ily the fastest on GPU, sometimes by an order of
magnitude. Interestingly, using a single core of
CPU, we achieve similar speeds to inference on
GPU, which is not the case for any other model.
Moreover, we repeated the experiment, this time

16Results are copied from (Tran et al., 2020).

using 32 cores and achieved a speed of 15,316 sen-
tences/second. This is even faster than when using
a GPU and indicates that our model can effectively
be used at scale when GPUs are not available. It
also suggests our model would be appropriate for
use on embedded devices.

8 Conclusion

In this paper, we present a system for the learning
and inference of paraphrastic sentence embeddings
in any language for which there is paraphrase or
bilingual parallel data. Additionally, we release our
trained sentence embedding models in English, as
well as Arabic, German, Spanish, French, Russian,
Turkish, and Chinese. These models are trained
on tens of million of sentence pairs resulting in
models that achieve state-of-the-art performance
on unsupervised English semantic similarity and
are state-of-the-art or competitive on non-English
semantic similarity, cross-lingual semantic similar-
ity, and bitext mining.

Moreover, our models are significantly faster
than prior work owing to their simple architecture.
They can also be run on CPU with little to no loss
in speed from running them on GPU—-something
that no strong models from prior work are able to
do. Lastly, we release our code that has been mod-
ified to make training and inference easier, with
support for training on large corpora, preprocess-
ing paraphrase and bilingual corpora and evaluation
data, as well as scripts for easy inference that can
generate embeddings or semantic similarity scores
for sentences supplied in a text file.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Iñigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 252–263, Denver, Colorado. Association for
Computational Linguistics.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014), pages 81–91, Dublin, Ireland. As-
sociation for Computational Linguistics.

385

https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 497–511, San Diego,
California. Association for Computational Linguis-
tics.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In *SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics – Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393, Montréal, Canada. Association for Computa-
tional Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity, pages 32–43, Atlanta, Georgia, USA. As-
sociation for Computational Linguistics.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In Proceedings of the International Con-
ference on Learning Representations.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transac-
tions of the Association for Computational Linguis-
tics, 7:597–610.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Muthu Chidambaram, Yinfei Yang, Daniel Cer, Steve
Yuan, Yunhsuan Sung, Brian Strope, and Ray
Kurzweil. 2019. Learning cross-lingual sentence
representations via a multi-task dual-encoder model.
In Proceedings of the 4th Workshop on Represen-
tation Learning for NLP (RepL4NLP-2019), pages
250–259, Florence, Italy. Association for Computa-
tional Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources.
In COLING 2004: Proceedings of the 20th Inter-
national Conference on Computational Linguistics,
pages 350–356, Geneva, Switzerland. COLING.

Cristina Espana-Bonet, Adám Csaba Varga, Alberto
Barrón-Cedeño, and Josef van Genabith. 2017. An
empirical analysis of nmt-derived interlingual em-
beddings and their use in parallel sentence identifi-
cation. IEEE Journal of Selected Topics in Signal
Processing, 11(8):1340–1350.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen
Arivazhagan, and Wei Wang. 2022. Language-
agnostic BERT sentence embedding. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 878–891, Dublin, Ireland. Association
for Computational Linguistics.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li,
Xiaodong He, and Lawrence Carin. 2017. Learn-
ing generic sentence representations using convolu-
tional neural networks. In Proceedings of the 2017

386

https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://aclanthology.org/S12-1051
https://aclanthology.org/S12-1051
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/W19-4330
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/C04-1051
https://aclanthology.org/C04-1051
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/D17-1254
https://doi.org/10.18653/v1/D17-1254
https://doi.org/10.18653/v1/D17-1254

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2390–2400, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Francis Grégoire and Philippe Langlais. 2018. Extract-
ing parallel sentences with bidirectional recurrent
neural networks to improve machine translation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 1442–1453, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Mandy Guo, Qinlan Shen, Yinfei Yang, Heming
Ge, Daniel Cer, Gustavo Hernandez Abrego, Keith
Stevens, Noah Constant, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2018. Effective parallel
corpus mining using bilingual sentence embeddings.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 165–176, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Felix Hill, Kyunghyun Cho, and Anna Korhonen.
2016. Learning distributed representations of sen-
tences from unlabelled data. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1367–1377, San
Diego, California. Association for Computational
Linguistics.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with GPUs. arXiv
preprint arXiv:1702.08734.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2019. Generalization
through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems
28, pages 3294–3302.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020.
Reformulating unsupervised style transfer as para-
phrase generation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 737–762, Online. Asso-
ciation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. arXiv
preprint arXiv:1405.4053.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale
Minervini, Heinrich Küttler, Aleksandra Piktus, Pon-
tus Stenetorp, and Sebastian Riedel. 2021. PAQ: 65
million probably-asked questions and what you can
do with them. Transactions of the Association for
Computational Linguistics, 9:1098–1115.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA).

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised learning of sentence embed-
dings using compositional n-gram features. arXiv
preprint arXiv:1703.02507.

Nghia The Pham, Germán Kruszewski, Angeliki
Lazaridou, and Marco Baroni. 2015. Jointly opti-
mizing word representations for lexical and senten-
tial tasks with the C-PHRASE model. In Proceed-
ings of the 53rd Annual Meeting of the Association

387

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://aclanthology.org/C18-1122
https://aclanthology.org/C18-1122
https://aclanthology.org/C18-1122
https://doi.org/10.18653/v1/W18-6317
https://doi.org/10.18653/v1/W18-6317
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.18653/v1/N16-1162
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://doi.org/10.1162/tacl_a_00415
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.3115/v1/P15-1094
https://doi.org/10.3115/v1/P15-1094
https://doi.org/10.3115/v1/P15-1094

for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 971–981,
Beijing, China. Association for Computational Lin-
guistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Holger Schwenk. 2018. Filtering and mining paral-
lel data in a joint multilingual space. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 228–234, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2021. Wiki-
Matrix: Mining 135M parallel sentences in 1620
language pairs from Wikipedia. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 1351–1361, Online. Association for
Computational Linguistics.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of the
2nd Workshop on Representation Learning for NLP,
pages 157–167, Vancouver, Canada. Association for
Computational Linguistics.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in Neu-
ral Information Processing Systems.

Sandeep Subramanian, Adam Trischler, Yoshua Ben-
gio, and Christopher J Pal. 2018. Learning gen-
eral purpose distributed sentence representations via
large scale multi-task learning. arXiv preprint
arXiv:1804.00079.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Chau Tran, Yuqing Tang, Xian Li, and Jiatao Gu. 2020.
Cross-lingual retrieval for iterative self-supervised
training. arXiv preprint arXiv:2006.09526.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016a. Charagram: Embedding words and
sentences via character n-grams. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1504–1515, Austin,
Texas. Association for Computational Linguistics.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016b. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of the Interna-
tional Conference on Learning Representations.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019a. Beyond BLEU:training
neural machine translation with semantic similarity.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4344–4355, Florence, Italy. Association for Compu-
tational Linguistics.

John Wieting and Kevin Gimpel. 2017. Revisiting re-
current networks for paraphrastic sentence embed-
dings. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2078–2088, Vancouver,
Canada. Association for Computational Linguistics.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 451–462, Melbourne, Australia.
Association for Computational Linguistics.

John Wieting, Kevin Gimpel, Graham Neubig, and Tay-
lor Berg-Kirkpatrick. 2019b. Simple and effective
paraphrastic similarity from parallel translations. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4602–
4608, Florence, Italy. Association for Computational
Linguistics.

John Wieting, Jonathan Mallinson, and Kevin Gimpel.
2017. Learning paraphrastic sentence embeddings
from back-translated bitext. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 274–285, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

John Wieting, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2020. A bilingual generative trans-
former for semantic sentence embedding. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1581–1594, Online. Association for Compu-
tational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

388

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/P18-2037
https://doi.org/10.18653/v1/P18-2037
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/2021.eacl-main.115
https://doi.org/10.18653/v1/W17-2619
https://doi.org/10.18653/v1/W17-2619
https://doi.org/10.18653/v1/W17-2619
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://doi.org/10.18653/v1/D16-1157
https://doi.org/10.18653/v1/D16-1157
https://doi.org/10.18653/v1/P19-1427
https://doi.org/10.18653/v1/P19-1427
https://doi.org/10.18653/v1/P17-1190
https://doi.org/10.18653/v1/P17-1190
https://doi.org/10.18653/v1/P17-1190
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P19-1453
https://doi.org/10.18653/v1/P19-1453
https://doi.org/10.18653/v1/D17-1026
https://doi.org/10.18653/v1/D17-1026
https://doi.org/10.18653/v1/2020.emnlp-main.122
https://doi.org/10.18653/v1/2020.emnlp-main.122

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 389 - 395
December 7-11, 2022 c©2022 Association for Computational Linguistics

Snoopy: An Online Interface for Exploring the Effect of Pretraining Term
Frequencies on Few-Shot LM Performance

Yasaman Razeghi∗♢ Raja Sekhar Reddy Mekala ∗♢

Robert L. Logan IV♢ Matt Gardner♠ Sameer Singh♢♣
♢University of California, Irvine ♠Microsoft Semantic Machines ♣Allen Institute for AI

{yrazeghi, rmekala, rlogan, sameer}@uci.edu
mattgardner@microsoft.com

Abstract
Current evaluation schemes for large language
models often fail to consider the impact of the
overlap between pretraining corpus and test
data on model performance statistics. Snoopy
is an online interface that allows researchers to
study this impact in few-shot learning settings.
Our demo provides term frequency statistics
for the Pile, which is an 800GB corpus, ac-
companied by the precomputed performance of
EleutherAI/GPT models on more than 20 NLP
benchmarks, including numerical, common-
sense reasoning, natural language understand-
ing, and question-answering tasks. Snoopy al-
lows a user to interactively align specific terms
in test instances with their frequency in the
Pile, enabling exploratory analysis of how term
frequency is related to the accuracy of the mod-
els, which are hard to discover through au-
tomated means. A user can look at correla-
tions over various model sizes and numbers
of in-context examples and visualize the re-
sult across multiple (potentially aggregated)
datasets. Using Snoopy, we show that a re-
searcher can quickly replicate prior analyses for
numerical tasks, while simultaneously allowing
for much more expansive exploration that was
previously challenging. Snoopy is available at
https://nlp.ics.uci.edu/snoopy.

1 Introduction

Large language models have achieved impres-
sive few-shot performance on various NLP bench-
marks with in-context learning (Black et al., 2022;
Chowdhery et al., 2022; Brown et al., 2020). This
improvement is primarily driven by increasing the
scale of the models and the pretraining data (Ben-
der et al., 2021; Kaplan et al., 2020). By leveraging
diverse data sources such as GitHub and arXiv,
these models have demonstrated the ability to per-
form complicated tasks such as quantitative reason-
ing (Lewkowycz et al., 2022) and writing computer
programs (Chen et al., 2021).

∗First two authors contributed equally.

However, the current evaluation schemes for
these language models often underestimate the
possibility of data leakage between the evaluation
data and the pretraining data. Various studies have
demonstrated the capacity of large language mod-
els to memorize the pretraining data (Carlini et al.,
2021, 2022), as well as the impact of pretraining
term frequency on reasoning performance (Razeghi
et al., 2022). These observations highlight the im-
portance of measuring the impact of pretraining
data in evaluating large language models.

A critical barrier to performing research related
to pretraining data statistics is the cost of analyz-
ing the large corpus of pretraining data. Since
the size of these corpora is usually large (e.g.,
Pile is 800GB), analyses involving the pretraining
data can be time-consuming and expensive. Fur-
thermore, evaluating large language models such
as GPT-J-6B is also expensive—even inference
queries require high-memory GPUs—which fur-
ther impedes analysis of the capabilities and limita-
tions of large language models.

To facilitate research in understanding the rela-
tionship between the pretraining corpus and model
behavior, we introduce Snoopy, an online platform
that assists researchers in studying the impact of
pretraining term frequencies on language model
performance on downstream tasks. Snoopy in-
cludes unigram and low-order co-occurrence statis-
tics of terms in the Pile dataset (the pretraining
data for all of the EleutherAI/GPT models). It uses
these counts to show the correlation between the
model’s few-shot performance on instances and the
frequency of instance terms in the pretraining data
(illustrated in Figure 1). Our web app supports this
analysis on more than 20 NLP benchmarks (mostly
from the lm-evaluation-harness (Gao et al., 2021b))
including, numerical and commonsense reasoning,
natural language understanding, and question an-
swering tasks. In addition, the user can highlight
desired terms on the plots, explore individual in-

389

mailto:yrazeghi@uci.edu
mailto:rmekala@uci.edu
mailto:rlogan@uci.edu
mailto:sameer@uci.edu
mailto:sameer@uci.edu
mailto:mattgardner@microsoft.com
https://nlp.ics.uci.edu/snoopy

Figure 1: Using Snoopy to study the effect of term
frequencies on GPT-J-6B’s 2-shot accuracy on multi-
plication. Each point represents a term (numbers in this
case), with x-axis the frequency of the term in pretrain-
ing corpus and y-zxis the average performance on the
instances that include that term (for 2-shot multiplica-
tion using GPT-J-6B). Snoopy demonstrates a strong
correlation between the accuracy of a number and its
frequency in pretraining data. Users can select terms to
highlight i.e. 11, 12, 24, 23 here.

stances from each dataset, highlight terms in each
instance based on their frequency in the pretrain-
ing data, and provide accuracy vs. frequency plots
aggregated over multiple datasets. Snoopy will fa-
cilitate and encourage this research direction on
the impact of pretraining data statistics on large
language model’s evaluation schemes, an essential
yet overlooked direction in the science of language
models that can further shed light on our under-
standing of large language models’ capabilities.

2 Snoopy Architecture

In this section, we describe the architecture be-
hind Snoopy (as illustrated in Figure 2) Snoopy pre-
computes term counts from pretraining data and
instance-level performance statistics on evaluation
datasets, and allows users to create performance vs.
frequency plots dynamically. In the following, we
describe each of these components.

2.1 Calculating the Term Frequencies
We process the Pile dataset (Gao et al., 2021a),
which is among the few corpora for pretraining the
language models that are publicly available. We
first tokenize the corpus using the spaCy English
tokenizer (Honnibal and Montani, 2017). Then, we
count the number of times each token, i.e., term,
appears in the pretraining corpus, which we call
the term frequency. While counting the terms, we
eliminate all the stop words and tokens with a count

of less than 100 to reduce the memory usage. To
calculate the co-occurrences of terms, we count the
times every two terms appear in a window of 5 in
the pretraining data. We use Amazon Elastic Map
Reduce (EMR)1 to process the pretraining data.

2.2 Instance-Level Model Accuracy

For a quick, interactive interface and a smooth user
experience that facilitates exploration, we precom-
pute the accuracy of the EleutherAI GPT models
on each instance on several NLP benchmarks using
the lm-evaluation-harness framework (Gao et al.,
2021b). While our current version supports a sub-
set of tasks and models from this framework, we
will gradually expand this demo to include more
tasks with instance-level performance metrics and
all of the models trained on the Pile dataset.

2.3 Matching Terms to Evaluation Instances

With term frequencies and instance-level model ac-
curacies computed, we next need to determine how
terms are matched to evaluation instances. Snoopy
supports two different approaches. For numerical
reasoning tasks, we only use the numbers in each
instance as the terms to study since the operand
is fixed across all instances. For other natural lan-
guage benchmarks, all non-stopwords extracted in
Section 2.1 are used as terms by default. However,
using a provided “custom” option, the user can
also specify certain terms by uploading a CSV file
containing all these desired terms.

2.4 Performance vs. Frequency Plots

To visually capture the relation between a term’s
pretraining frequencies and model performance on
instances associated with that term, we introduce
Performance vs. Frequency plots (Figure 1). In
these plots, the y-axis shows the average perfor-
mance over all instances that includes that term
while the x-axis shows the frequency of the term.
An example of this plot for the multiplication task
evaluated on GPT-J-6B on 2-shot settings is pro-
vided in Figure 1. In addition to plotting term-
specific accuracies, we plot a curve that captures
the aggregate effect of frequency on accuracy. This
curve is generated by partitioning the instances
into 10 quantiles based on term frequencies, taking
the average accuracy over instances in the same
quantile, and then connecting these averages using
lines. For example, we average the accuracy over

1https://aws.amazon.com/emr/

390

https://aws.amazon.com/emr/

Figure 2: Architecture for Snoopy. We first process the pretraining corpus to compute term counts (and co-
occurrences), and gather the evaluation results from the lm-evaluation-harness (Gao et al., 2021b) framework for
models of interest. We combine these to generate performance vs. term frequency plots for various datasets.

all instances from the Commitment Band dataset
that has the term pay for the y-axis and put the
frequency of term pay on the x-axis as shown in
Figure 2.

3 Snoopy Capabilities

As mentioned in Section 1, Snoopy supports a sub-
set of tasks from lm-evaluation-harness benchmark
(Gao et al., 2021b) in addition to all numerical
reasoning tasks from Razeghi et al. (2022). It pro-
vides a simple and performant interface that allows
researchers to compare results across various ex-
perimental settings with visualizations of the pre-
computed results in a user-friendly manner. The
plots are generated using Plotly.js,2 which enables
easy download, zoom in-and-out, and re-scaling
of the plots. The following is a brief description
of Snoopy’s functionalities on numerical reasoning
and other language understanding tasks.

3.1 Numerical Reasoning Tasks

For numerical reasoning, the user can study and
visualize all the tasks from Razeghi et al. (2022),
i.e. arithmetic (addition and multiplication), con-
version of time units, and operator inference. Users
can specify the number of examples in the prompt
(the number of shots: 2, 4, 8) and the size of the
language model (choosing between GPT-Neo-1.3B,
GPT-Neo-2.7B, and GPT-J-6B). Users can also se-
lect terms (numbers) to highlight on the plots.

Figure 3: The performance vs. frequency plot for Com-
mitment Bank dataset with multiple highlighted terms.

3.2 NLP Benchmarks

Our tool also allows studying the impact of
term frequencies on various commonsense rea-
soning tasks (COPA (Roemmele et al., 2011),
HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2020)), natural language understanding tasks
(CoLA (Warstadt et al., 2019), MNLI (Nangia et al.,
2017), MRPC (Dolan and Brockett, 2005), QNLI
(Wang et al., 2019b)), and question answering tasks
(ARC (Clark et al., 2018), LogiQA (Liu et al.,
2020), OpenbookQA (Mihaylov et al., 2018)). For
this group of tasks, we provided the accuracy of
GPT-J-6B models with 2, 4 and 8 number of shots.
Example usage for GPT-J-6B 2-shot experiment on
the Commitment Bank (Wang et al., 2019a) dataset

2https://plotly.com/javascript/

391

https://plotly.com/javascript/

is provided in Figure 3.

3.3 Term Highlighting
The user can also select terms to highlight and vi-
sualize on the plot. For example, in Figure 1 the
location of specified terms (e.g numbers 11, 12, 23,
24) is highlighted for numerical reasoning (multi-
plication) and in Figure 3, the terms (e.g pay, man,
going, she, he) are highlighted for Commitment
Band dataset.

3.4 Multi Dataset Comparison
With multi dataset comparison, users can select
multiple datasets to visualize their performance vs.
frequency on the same plot. An example of this
feature is provided in Figure 5 in which the user
has specified the datasets of SST, TriviaQA, and
WNLI. Using this option, the user can compare the
ranges of frequency terms and performance, the
overall impact of pretraining term frequencies on
model performance, and the impact of individual
terms across multiple tasks. For example, the terms
“man”, “woman”, “he” and “she” are individually
highlighted for all of these datasets (Figure 6).

3.5 Multi Dataset Aggregation
Multi dataset aggregation allows the user to study
the aggregate performance of the model containing
specific terms across all selected datasets. For in-
stance, we may want to see if the model is more
accurate on any instance (across datasets) that in-
cludes the word “he” compared to the word “she”.
To answer this question, we can select all datasets
from the dataset menu, select the terms “he” and
“she” in the term input section, and see the dif-
ference in performance using the Multi Dataset
Aggregation option. An example of this analysis is
provided in the next section in which we provide a
case study using Snoopy (Figure 7).

3.6 Plots for a Subset of Terms
Other than visualizing the accuracy v.s. frequency
plots on all terms for instances from a given dataset,
we also support the capability to plot the correla-
tion line for a certain subset of user-defined terms.
This option further facilitates research in studying
the effect of certain terms with various frequen-
cies on the model’s performance. Using the op-
tion of “import CSV”, the user can upload a CSV
file containing desired terms. Once the upload is
completed, Snoopy visualizes the specific terms
frequency plots. These plots illustrate the average

Figure 4: Using the dataset menu for choosing SST,
TriviaQA, and WNLI tasks, specifying the number of
shots as 2 and the language model as GPT-J-6B.

Figure 5: Visualizing the performance v.s single term
frequency plots for SST, TriviaQA, and WNLI.

performance on instances with the specific terms
on the y-axis and the pertaining frequency of these
terms on the x axis.

4 Case Study

In this section, we present a case study of using
Snoopy. Here, we want to study the effect of term-
frequencies on GPT-J-6B model accuracy in 2-shot
in-context learning setting. We are going to per-
form this study on three different datasets of senti-
ment analysis (SST), Question Answering (Trivi-
aQA), and a reading comprehension task (WNLI).

Step 1: We want to investigate whether the GPT-
J-6B model accuracy on instances is affected by
the unigram term frequencies on the mentioned
datasets. First, we need to specify the model,
dataset, and the number of shots we want to focus
on. For this case, we want to observe the impact
of term frequencies on GPT-J-6B models with 2
shot on SST, TriviaQA, and WNLI tasks. We do
this using the drop-down menus shown in Figure 4.
Upon this selection, Snoopy generates the accuracy
v.s frequency plots for all these three datasets.

Step 2: Now, we want to observe if the model
performance is different on instances with certain

392

Figure 6: Highlighting specific terms such as “he”,
“she”, “man”, and “woman” on performance vs fre-
quency plots (for multiple datasets).

Figure 7: Comparing the overall performance of GPT-J-
6B model on instances from SST, TriviaQA, and WNLI
datasets that include the terms “he” or “she”.

Figure 8: Example instances from the TriviaQA ques-
tions. The terms are color-coded based on their pretrain-
ing term frequency (red are frequent, blue are rare).

terms of “he”, “she”, “man”, and “woman”. We
use the “add terms” option to add these specific
terms as shown in Figure 6; instances from the SST
dataset containing the term “he” have much higher

Figure 9: Performance v.s co-occurrences of term fre-
quency plots for SST, TriviaQA, and WNLI.

average performance than those with “she”, which
is not the case for WNLI and TriviaQA datasets.

Step 3: In this step, we want to study the aver-
age accuracy of GPT-J-6B on instances containing
these terms over all three datasets. By choosing the
comparison option (presented in Figure 7), we see
that GPT-J-6B model performance on instances that
contain the term “he” in comparison to instances
with the term “she” on the three datasets. We ob-
serve that the model has better performance on SST
instances contaning the term “he” in comparison to
the instances with the term “she”. This is not the
case for WNLI and triviaQA datasets.

Step 4: Figure 8 provide an example for Snoopy’s
instance visualization feature. Using this feature,
Snoopy provides a random selection of instances
from each dataset. This option helps the user get fa-
miliar with instance queries from each dataset and
observe the model performance on each instance.
Moreover, the user can select the Highlight Fre-
quent words option. This option color codes the
terms on the instances based on their frequency in
the pretraining dataset, as shown in Figure 8.

Step 5: Now we want to visualize the average
performance of GPT-J-6B vs. the count of co-
occurrences of terms on the x-axis as a measure
of frequency for these three datasets. To do so, we
select the option of co-occurrence instead of the
unigram from the top bar as shown in Figure 9.

5 Related Work

Studying the Pretraining Data Dodge et al.
(2021) have studied the pretraining data of large lan-
guage models. They provide documentation for the
C4 corpus which has been used as a part of pretrain-
ing datasets such as Pile (Gao et al., 2021a). Many

393

works have illustrated language model capabilities
to memorize parts of the pretraining data (Carlini
et al., 2021; McCoy et al., 2021). Recently, some
works has measured the model’s memorization of
pretraining data through controlled experiments on
fact retrieval (Akyürek et al., 2022), classification
tasks (Magar and Schwartz, 2022), and text gener-
ation (Carlini et al., 2022). All this research em-
phasizes the importance of studying the pretraining
data statistics and considering the pretraining data
in interpreting the model evaluation performances.

Evaluation Frameworks for LMs Since the
emergence of large language models, many works
have provided a unified and easy to use framework
for evaluating them (Wolf et al., 2019; Gao et al.,
2021b; Srivastava et al., 2022). Our demo, Snoopy,
can augment these frameworks by associating pre-
training data statistics to the evaluation scheme.

6 Conclusions

In this paper, we presented Snoopy, a tool that en-
ables researchers to study the impact of pretrain-
ing term frequencies on a model’s few-shot per-
formance without requiring expensive computing
resources. We illustrated how Snoopy could be
used to create performance vs. frequency plots,
aggregate statistics over multiple datasets, and sev-
eral other functionalities for further investigating
pretraining data statistics. We hope that this tool
makes it easier for researchers to study the effect of
term frequencies on language model performance.

Acknowledgements

This material is sponsored in part by the
DARPA MCS program under Contract No.
N660011924033 with the United States Office Of
Naval Research, by an Amazon Research Award,
and by awards IIS-2046873 and IIS-204098 from
the National Science Foundation.

References
Ekin Akyürek, Tolga Bolukbasi, Frederick Liu, Binbin

Xiong, Ian Tenney, Jacob Andreas, and Kelvin Guu.
2022. Tracing knowledge in language models back
to the training data. ArXiv preprint, abs/2205.11482.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model. ArXiv preprint, abs/2204.06745.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. ArXiv preprint, abs/2202.07646.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. ArXiv preprint,
abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. ArXiv preprint,
abs/2204.02311.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

394

https://arxiv.org/abs/2205.11482
https://arxiv.org/abs/2205.11482
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Margaret
Mitchell, and Matt Gardner. 2021. Documenting
large webtext corpora: A case study on the colos-
sal clean crawled corpus. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1286–1305, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2021a.
The Pile: An 800gb dataset of diverse text for lan-
guage modeling. ArXiv preprint, abs/2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021b. A
framework for few-shot language model evaluation.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeff Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv,
abs/2001.08361.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative
reasoning problems with language models. ArXiv
preprint, abs/2206.14858.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. LogiQA: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 3622–3628. ijcai.org.

Inbal Magar and Roy Schwartz. 2022. Data contami-
nation: From memorization to exploitation. ArXiv
preprint, abs/2203.08242.

R Thomas McCoy, Paul Smolensky, Tal Linzen, Jian-
feng Gao, and Asli Celikyilmaz. 2021. How much
do language models copy from their training data?
evaluating linguistic novelty in text generation using
raven. ArXiv preprint, abs/2111.09509.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Nikita Nangia, Adina Williams, Angeliki Lazaridou,
and Samuel Bowman. 2017. The RepEval 2017
shared task: Multi-genre natural language inference
with sentence representations. In Proceedings of the
2nd Workshop on Evaluating Vector Space Represen-
tations for NLP, pages 1–10, Copenhagen, Denmark.
Association for Computational Linguistics.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot numerical reasoning. Find-
ings of the Association for Computational Linguistics:
EMNLP 2022.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90–95.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models. ArXiv preprint, abs/2206.04615.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019a. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. CoLA: The corpus of linguistic accept-
ability (with added annotations).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. ArXiv preprint,
abs/1910.03771.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

395

https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://doi.org/10.18653/v1/2021.emnlp-main.98
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://arxiv.org/abs/2111.09509
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.18653/v1/W17-5301
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2206.04615
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 396 - 405
December 7-11, 2022 c©2022 Association for Computational Linguistics

BMCook: A Task-agnostic Compression Toolkit for Big Models

Zhengyan Zhang1, Baitao Gong2, Yingfa Chen1, Xu Han1, Guoyang Zeng2

Weilin Zhao1, Yanxu Chen3, Zhiyuan Liu1,4†, Maosong Sun1,4†
1 DCST, Institute for AI, BNRIST, Tsinghua University, Beijing, China
2 Model Best Inc. 3 Zhili College, Tsinghua University, Beijing, China

4 International Innovation Center of Tsinghua University, Shanghai, China
zy-z19@mails.tsinghua.edu.cn {liuzy,sms}@tsinghua.edu.cn

Abstract

Recently, pre-trained language models (PLMs)
have achieved great success on various NLP
tasks and have shown a trend of exponen-
tial growth in model size. To alleviate
the unaffordable computational costs brought
by the size growth, model compression has
been widely explored. Existing efforts have
achieved promising results in compressing
medium-sized models for specific tasks, while
task-agnostic compression for big models with
over billions of parameters is rarely studied.
Task-agnostic compression can provide an effi-
cient and versatile big model for both prompt-
ing and delta tuning, leading to a more gen-
eral impact than task-specific compression.
Hence, we introduce a task-agnostic compres-
sion toolkit BMCook for big models. In
BMCook, we implement four representative
compression methods, including quantization,
pruning, distillation, and MoEfication. Devel-
opers can easily combine these methods to-
wards better efficiency. To evaluate BMCook,
we apply it to compress T5-3B (a PLM with 3
billion parameters). We achieve nearly 12x ef-
ficiency improvement while maintaining over
97% of the original T5-3B performance on
three typical NLP benchmarks. Moreover, the
final compressed model also significantly out-
performs T5-base (a PLM with 220 million pa-
rameters), which has a similar computational
cost. BMCook is publicly available at https:
//github.com/OpenBMB/BMCook.

1 Introduction

As the sizes of pre-trained language models (PLMs)
increase, especially after reaching 10 billion pa-
rameters (Brown et al., 2021; Rae et al., 2021;
Zhang et al., 2021a, 2022a; Chowdhery et al., 2022;
Black et al., 2022), powerful intelligence capa-
bilities emerge in these big models, supporting
PLMs to accomplish tasks that previous smaller

† Corresponding authors

Q P D M

TensorFlow (Abadi et al., 2016) X X
PyTorch (Paszke et al., 2019) X X
TextPruner (Yang et al., 2022) X
TextBrewer (Yang et al., 2020) X X
BMCook (this work) X X X X

Table 1: Comparisons between different compression
toolkits. “Q”, “P”, “D”, and “M” denote quantiza-
tion, pruning, distillation, and MoEfication, respec-
tively. Our BMCook is the first compression toolkit
to support all four compression techniques.

models could not do, such as quantitative reason-
ing (Lewkowycz et al., 2022) and long-form ques-
tion answering (Nakano et al., 2021). Despite the
success of big models, their exponentially growing
sizes impose unaffordable computational costs for
real-world applications.

To improve the efficiency of PLMs, model com-
pression is an essential solution. There are several
compression techniques, including model distilla-
tion (Hinton et al., 2015), model quantization (Bai
et al., 2021), and model pruning (Liang et al.,
2021). Based on these techniques, practitioners
can conduct task-specific compression during fine-
tuning (Sun et al., 2019) and task-agnostic com-
pression during pre-training (Sanh et al., 2019).
Previous studies mainly focus on applying task-
specific compression for medium-sized PLMs with
around one-hundred million parameters, such as
BERTBASE (Zafrir et al., 2019; Jiao et al., 2020;
Hou et al., 2020; Xia et al., 2022), while com-
pressing large-scale PLMs with over billions of
parameters is rarely studied.

In this work, we focus on the task-agnostic com-
pression of big models because it enables devel-
opers to utilize the powerful intelligence of big
models with fewer computation resources for both
prompting (Brown et al., 2021) and delta tuning
(aka parameter-efficient tuning) (Houlsby et al.,
2019; Ding et al., 2022). Both prompting and delta
tuning are the current core approaches to drive big

396

https://github.com/OpenBMB/BMCook
https://github.com/OpenBMB/BMCook

models. There exist two challenges for the task-
agnostic compression of big models. First, big
models require high compression rates to achieve
affordable costs while existing compression toolk-
its only support one or two techniques as shown in
Table 1, which cannot provide enough compression
rates. Second, existing compression implementa-
tion ignores the memory challenge brought by big
models. They are usually based on HuggingFace
Transformers (Wolf et al., 2020), which cannot well
support the training of large-scale PLMs.

In this work, we introduce BMCook, a task-
agnostic compression toolkit for big models. BM-
Cook has three main characteristics: (1) Zero-
redundancy training. BMCook is developed on an
efficient training toolkit, BMTrain1, which supports
the zero-redundancy optimizer with offloading (Ra-
jbhandari et al., 2020; Ren et al., 2021a) to handle
the memory challenge. (2) Flexible combination.
To achieve better efficiency, we make BMCook
flexible to support arbitrary combinations of dif-
ferent compression techniques. To this end, we
implement four popular compression techniques
and distribute each technique to different parts of
one unified training life-cycle. (3) Runtime model
modification. Since some compression techniques
require to access the inner hidden states of PLMs,
developers have to modify the code of model im-
plementation provided by a third-party package. To
make the compression easier to operate, BMCook
implements runtime modification by monkey patch
to get rid of modifying the source code of PLMs.

We evaluate the effectiveness of BMCook on T5-
3B (Raffel et al., 2020), a T5 model with 3 billion
parameters. Experimental results show that BM-
Cook achieves nearly 12x compression efficiency
by combining all four techniques while maintain-
ing over 97% original performance on three typ-
ical NLP benchmarks, including SST-2 (Socher
et al., 2013), MNLI (Williams et al., 2018), and
SQuAD (Rajpurkar et al., 2016). Besides, the com-
pressed model significantly outperforms T5-base,
which has similar computation costs.

BMCook is supported by Open Lab for Big
Model Base (OpenBMB)2. We hope BMCook can
help researchers explore better compression meth-
ods for large-scale PLMs in the future and help
practitioners to improve their model efficiency in
real-world applications.

1https://github.com/OpenBMB/BMTrain
2https://www.openbmb.org/en/home

2 Design and Implementation

As mentioned in the introduction, we imple-
ment three main characteristics in BMCook, zero-
redundancy training, flexible combination, and run-
time model modification. In this section, we will
introduce the design and the implementation details
of these three characteristics.

2.1 Zero-redundancy Training

Due to the outrageous model size, big models re-
quire large memory to store their parameters and
optimizer states, which cannot be maintained in
one GPU. Recently, zero-redundancy optimizer has
been proposed to solve this problem (Rajbhandari
et al., 2020), which distributes the parameters and
the optimizer states to multiple GPUs instead of
storing all of them in one GPU repetitively. If more
GPUs are used, each GPU requires less memory,
which can alleviate the memory challenge brought
by big models. Since BMCook targets the compres-
sion of big models, the training of big models is an
important part. Therefore, we implement BMCook
based on an efficient training toolkit — BMTrain,
which supports zero-redundancy optimizer with
parameter checkpointing (Chen et al., 2016) and
offloading (Ren et al., 2021b).

2.2 Flexible Combination

Previous work on model compression usually ex-
plores one or two specific techniques. Due to the
huge model size, we have to combine different tech-
niques to achieve extreme compression. Hence,
BMCook explores to build a unified compression
framework that can support different techniques.
Specifically, BMCook supports model distillation,
model pruning, model quantization, and model
MoEfication. By better utilizing these techniques,
we distribute them into different parts of one unified
life-cycle as shown in Figure 1. With this scope, we
decouple these techniques in the implementation
and support arbitrary combinations. Next, we will
show more details about these techniques.

Model quantization aims to represent parame-
ters by low-bit fixed-precision values and reduce
both the memory and computational costs. For
example, the computation of an 8-bit quantized
model is 4 times faster than that of a 32-bit model.
There are two main ways to quantize the param-
eters, post-training quantization and quantization-
aware training. Current deep learning frameworks,
such as PyTorch (Paszke et al., 2019) and Tensor-

397

https://github.com/OpenBMB/BMTrain
https://www.openbmb.org/en/home

Quantized
PLM

Input

Output

Label

LM Loss
+ Distillation

Loss
Optimize
with Pruning

PLM
MoEfy

MoE PLM

1. Output Computation 2. Loss Computation 3. Parameter Update 4. Post-processing

FFN Layer

Self-Attention

Quantization

fp32 to int8

fp32 to int8

FFN Layer

Self-Attention

||y-yteacher||2
Distillation Pruning MoEfication

Pruning
Mask

y

FFN Layer

Self-Attention

y

FFN

Self-Attention

y

FFN FFN

Figure 1: Life-cycle of the training process, including output computation, loss computation, parameter update, and
post-processing. Each computation technique is bundled into a specific step. Specifically, quantization influences
the output computation, distillation influences the loss computation, pruning influences the parameter update, and
MoEfication influences the post-processing.

Flow (Abadi et al., 2016), have already supported
post-training quantization. Post-training quantiza-
tion directly quantizes the parameters of a PLM,
which may bring a significant performance degra-
dation. To alleviate the degradation caused by quan-
tization, Stock et al. (2021) propose quantization-
aware training (QAT). It simulates the quantization
during the training, i.e., the parameters are quan-
tized during the forward propagation, making the
parameters adapted to low-bit fixed-precision com-
putation.

Towards better performance, BMCook supports
QAT. Specifically, we replace all linear layers in
PLMs with quantized linear layers. In quantized
linear layers, we simulate the quantized matrix
multiplication. Since the linear layers account
for more than 90% of the computation in the
Transformer (Han et al., 2022), model quantiza-
tion brings significant efficiency improvement.

Model distillation aims to guide the training
of a compressed model by a larger teacher model.
Traditional distillation adds the KL divergence be-
tween the outputs of teacher models and student
models as an extra training objective (Hinton et al.,
2015). For PLMs, Sun et al. (2019); Jiao et al.
(2020); Liu et al. (2022); Park et al. (2021) find
that it is also effective to make the inner compu-
tation results of student models close to those of
their teachers. For example, they add the MSE loss
between the hidden states of student models and
teacher models.

Note that the model distillation module in BM-
Cook is only to provide additional training loss
instead of reducing the size of the model. Any
compression technique requiring further training
can be combined with model distillation to improve
the performance of compressed models.

Model pruning aims to prune the redundant pa-
rameters of a model. There are two typical ap-
proaches, structured pruning and unstructured prun-
ing. Structured pruning removes complete mod-
ules (e.g., layers) from the model (Fan et al., 2020;
Wang et al., 2020; Zhang et al., 2021b; Xia et al.,
2022). Instead, unstructured pruning removes in-
dividual parameters from the model (Han et al.,
2015; Chen et al., 2020; Xu et al., 2021). Both
of them change the forward and backward process
of the model according to their pruned parame-
ters. To decouple pruning and quantization, we
distribute the pruning operations to the optimiza-
tion step, where we set the pruned parameters to
zero after parameter update. Due to this, we keep
redundant parameters pruned during the forward
and backward processes without directly affecting
these processes.

Note that unstructured pruning cannot guaran-
tee efficiency improvement in most cases because
parallel processing devices, such as GPUs, usually
do not provide optimized sparse computation op-
erations (Zheng et al., 2022). Hence, BMCook
implements unstructured pruning with 2:4 spar-
sity, which is well supported by Sparse Tensor

398

1 def _forward(module_self , x):
2 x = module_self.forward_old(x)
3 bmt.inspect.record_tensor(x, "

hidden_states")
4 return x
5

6 module.forward_old = module.forward
7 module.forward = types.MethodType(

_forward , module)

Figure 2: Example of monkey patch. Add a tensor
recording step to a forward function.

Core (Zhou et al., 2021). 2:4 sparsity means that ev-
ery four continuous parameters have two zeros. In
this way, the sparse computation is guaranteed to be
twice as fast as the dense computation. Besides, for
structured pruning, we implement CoFi (Xia et al.,
2022) in BMCook, which adds L0-regularization
to the parameters of the model to learn an optimal
sparse mask.

MoEfication aims to transform the feedfor-
ward networks (FFNs) in Transformers to the
equivalent mixture-of-expert (MoE) version (Fe-
dus et al., 2021), which significantly reduces the
computational costs of FFNs (Zhang et al., 2022b).
Since Transformers (Vaswani et al., 2017) adopt
ReLU (Nair and Hinton, 2010) as the activation
function of FFNs and there exists an obvious sparse
activation phenomenon, we can only involve part
of FFNs for a specific input without affecting the
model performance. The transformation process
does not change the number and the values of
model parameters. Therefore, we treat MoEfication
as a post-processing technique. It can be applied to
any compressed model to achieve better efficiency.

To train routers for expert selection, MoEfication
requires the hidden states to simulate the compu-
tation process of FFNs. The training of routers is
localized to specific FFNs and is dealt with by an
external MoEfication package.

In summary, BMCook is the first to contain a
series of compression techniques. And, benefiting
from the decoupled implementation of compression
techniques, practitioners can design their own com-
pression strategies with arbitrary combinations.

2.3 Runtime Model Modification

All of the compression techniques mentioned in
the last subsection require modifying the life-cycle
of the training process, i.e., the implementation
code of PLMs. Taking distillation as an example,
to compute the mean squared error between the
hidden states of the teacher model and the student

1 config = ConfigParser(args.config)
2 # for distillation
3 Trainer.forward = BMDistill.set_forward(

model , teacher , Trainer.forward ,
config)

4 # for pruning
5 BMPrune.compute_mask(model , config)
6 BMPrune.set_optim_for_pruning(optimizer)
7 # for quantization
8 BMQuant.quantize(model , config)
9 # for moefication

10 Trainer.forward = BMMoE.get_hidden(model
, config , Trainer.forward)

Figure 3: Based on the configuration file, practitioners
can turn on a specific compression module with one or
two lines of code.

model, we have to modify the forward functions to
make the hidden states become return values. Ex-
isting compression toolkits usually ask developers
to modify the codes (Yang et al., 2020, 2022). For
example, in the case of distillation, after developers
modify the forward functions, the toolkit provides
the implementation of the loss calculation.

However, the model implementation is usually
provided by a third-party package, such as Hug-
gingFace Transformers, making the manual modi-
fication inconvenient. Besides, the modification is
simple and similar across different PLMs. Hence,
BMCook explores to implement runtime modifica-
tion in a general way to keep the source code clean
and make it easy to compress different PLMs.

Specifically, we utilize the characteristic of mon-
key patch in Python. Monkey patch is to modify the
behavior of an object at runtime. As shown in Fig-
ure 2, we first rename the original forward function
of the module as forward_old, and then define
a new forward function containing forward_old
and a tensor recording step. Finally, we assign the
new forward function to the module. The inspect
function for recording is to store the tensor in a
global dictionary. After the whole forward process
is finished, we can access the tensor by its name.

Both knowledge distillation and MoEfication re-
quire accessing the hidden states of PLMs. Consid-
ering that different modules have different foward
functions, e.g., attention modules take hidden states
and attention masks as input, we choose to ac-
cess the hidden states of layer normalization mod-
ules and provide a general interface to add tensor
recording to their forward functions. The inputs of
layer normalization modules are only hidden states
and are widely used before or after other modules.
Hence, based on layer normalization modules, we

399

1 {
2 "distillation": {
3 "ce_scale": 0,
4 "mse_hidn_scale": 1,
5 "mse_hidn_module": ["[post]encoder.output_layernorm :[post]encoder.

output_layernorm", "[post]decoder.output_layernorm :[post]decoder.
output_layernorm"],

6 "mse_hidn_proj": false
7 },
8 "pruning": {
9 "is_pruning": true , "pruning_mask_path": "prune_mask.bin",

10 "pruned_module": ["ffn.ffn.w_in.w.weight", "ffn.ffn.w_out.weight", "
input_embedding"],

11 "mask_method": "m4n2_1d"
12 },
13 "quantization": { "is_quant": true},
14 "MoEfication": {
15 "is_moefy": false ,
16 "first_FFN_module": ["ffn.layernorm_before_ffn"]
17 }
18 }

Figure 4: Example of the configuration file.

can access nearly all hidden states of PLMs.
Similarly, we also modify the linear layers and

optimizer by monkey patching for quantization and
pruning. For quantization, we replace the matrix
multiplication in the forward functions of linear
layers with a quantized one. For pruning, we mod-
ify the behavior of the optimizer’s step function.
We keep the original operation and add a pruning
step after the parameter update.

In summary, BMCook utilizes runtime modifi-
cation to keep the source code clean and provides
general interfaces to compress different PLMs.

2.4 Usage and Configuration
Since different compression modules are decoupled
in BMCook, we implement each module indepen-
dently, where each module is usually a Python file
and provides one or two general interfaces. Bene-
fiting from the general interfaces, BMCook can be
applied to a PLM with only a few lines of code as
shown in Figure 3. The details of compression are
mainly determined by a configuration file, which
will be used by different compression modules. In
practice, users can easily reuse the code of pre-
training for compression by adding a few lines of
code to import compression modules and then set-
ting the configuration file. Note that BMCook sup-
ports the PLMs implemented based on BMTrain
and ModelCneter3 has provided BMTrain-based
implementations of almost all mainstream PLMs.

As shown in Figure 4, the configuration file is a
3https://github.com/OpenBMB/ModelCenter

JSON file. The keys are the names of the compres-
sion modules. The values are the configurations of
the compression modules. Note that the module
names used in the configuration file are correspond-
ing to the names provided by PyTorch. Therefore,
BMCook can access the modules by their names.

The key of knowledge distillation is
distillation. Currently, BMCook sup-
ports two kinds of distillation objectives, KL
divergence between output distributions (turn
on when ce_scale>0) and mean squared error
(MSE) between hidden states (turn on when
mse_hidn_scale>0). Practitioners need to
specify the hidden states used for MSE by
mse_hidn_module. Meanwhile, the dimensions
of the hidden states may be different between
teacher and student models. Therefore, the hidden
states of the teacher model need to be projected
to the same dimension as those of the student
model. Practitioners can turn on mse_hidn_proj
for simple linear projection.

The key of model pruning is pruning. Practi-
tioners can turn on pruning by is_pruning. The
pruning mask is stored in pruning_mask_path.
The pruned modules are specified by
pruned_module. To simplify the list, practi-
tioners can only provide the suffix of the modules.
The mask method mask_method is to choose the
algorithm for the computation of the pruning mask.

The key of quantization is quantization. Prac-
titioners can turn on quantization by is_quant,
which will replace all linear layers with quantized

400

https://github.com/OpenBMB/ModelCenter

Model Activated Model Size SST-2 MNLI-m SQuAD 1.0
Acc Acc EM F1

Original Model
T5-Base 0.34GB 0.9278 0.8626 0.8076 0.8890
T5-Large 0.60GB 0.9461 0.8938 0.8474 0.9193
T5-3B 2.42GB 0.9621 0.9087 0.8754 0.9379

Single Module

Structured Pruning 1.21GB 0.9014 0.8472 0.8072 0.8877
Unstructured Pruning 1.21GB 0.9576 0.8946 0.8592 0.9262
Quantization 0.60GB 0.9598 0.9075 0.8746 0.9374
MoEfication 1.61GB 0.9529 0.8961 0.8502 0.9260

Combination Quant + Pruning 0.30GB 0.9518 0.8902 0.8628 0.9289
Quant + Pruning + MoE 0.20GB 0.9518 0.8819 0.8316 0.9110

Table 2: Evaluation of original models and compressed models. In the combination experiments, we use unstruc-
tured pruning due to its superior performance in the single module experiments. The size of adapters keeps the
same for all PLMs. Activated model size is used to measure the compression rate because the computational cost,
i.e., FLOPS, is linear to the model size.

linear layers. BMCook provides the simulation of
8-bit quantization.

The key of MoEfication is MoEfication. Practi-
tioners can turn on MoEfication by is_moefy. The
hidden states used for router training are specified
by first_FFN_module, which is the nearest layer
normalization module before each FFN. Providing
the suffix of the modules is also sufficient.

3 Evaluation

To validate the effectiveness of BMCook, we study
task-agnostic compression on T5-3B (Raffel et al.,
2020), which has 3 billion parameters. Since
task-agnostic compression would benefit various
downstream tasks, we evaluate the performance of
adapter tuning (Houlsby et al., 2019) of T5-3B and
its compressed variants. We also study T5-Base
and T5-Large, which have 220 million and 770
million parameters, respectively.

Training and evaluation data. We use the Pile
dataset (Gao et al., 2020) for task-agnostic com-
pression training, which is a large-scale corpus for
pre-training language models. The training objec-
tive is masked language modeling used by T5. Note
that we turn on distillation during the compression
training in all experiments because we find knowl-
edge distillation with MSE loss can improve model
performance in our pilot experiments. Besides, we
choose three downstream datasets for evaluation:
SST-2 (Socher et al., 2013), a representative single-
sentence classification dataset, MNLI (Williams
et al., 2018), a representative sentence-pair clas-
sification dataset, SQuAD v1.1 (Rajpurkar et al.,
2016), a representative question-answer dataset.
For the first two datasets, we use accuracy as the
evaluation metric. For the third dataset, we use both

exact match and F1 score as the evaluation metrics.
We evaluate model performance on their develop-
ment sets. We adopt the same task templates and
label words of the original T5 paper (Raffel et al.,
2020).

Hyper-parameters. The learning rate of task-
agnostic compression training is 1e-4 while that
of adapter tuning ranges from 1e-6 to 1e-5. The
batch size of task-agnostic compression training
and adapter tuning is 32. We use 4 NVIDIA A100
GPUs in the experiments. The training step of task-
agnostic compression training ranges from 10K to
50K according to the compression methods. The
training epoch of adapter tuning ranges from 3 to
5.

To fairly compare the efficiency of T5-3B and its
variants, we define a new metric, named activated
model size, because Brown et al. (2021) mentioned
that the computation of Transformer is linear in the
model size, which excludes the embedding layer.
Hence, we consider the parameters of self-attention
networks and FFNs. For the original model, the
activated model size is equal to its original model
size. Although it is intuitive to directly compare the
speedup of compressed models, there is no infer-
ence toolkit supporting all the compressed methods.
Hence, we focus on the theoretical computational
cost in this work.

In the evaluation, we set the pruning sparsity to
50%, i.e., we prune 50% of the parameters and re-
duce half of the activated model size. Besides, we
quantize the parameters to 8 bits, which reduces
three-fourths of the activated model size compared
to the floating-point version. For MoEfication, we
dynamically involve 50% of parameters in FFNs
for specific input. Therefore, the activated model

401

size of the modified FFNs is about half of the origi-
nal FFNs. Note that Transformer consists of both
attention layers and FFNs and the model size of
FFNs are about 70%. The final activated model size
of the modified Transformer is about 66% of the
original one. If we combine all three techniques,
we can achieve a compressed model with about
one-twelfth of the original activated size.

We report the evaluation results in Table 2. From
this table, we have three observations: (1) In the ex-
periment of single modules, quantization achieves
the best efficiency and performance. Unstructured
pruning achieves the second-best efficiency and per-
formance, and significantly outperforms structured
pruning. It suggests that directly removing layers
may bring significant performance degradation. Be-
sides, as a post-processing method, which does not
require further pre-training, MoEfication maintains
over 98% original performance while reducing 33%
of the activation model size. (2) Different compres-
sion techniques can be combined to archive better
efficiency while maintaining most of performance.
For example, combining quantization, unstructured
pruning, and MoEfication achieves a compressed
model with about one-twelfth of the original acti-
vated size and maintains over 97% original perfor-
mance. (3) Compressing big models can get better
small models. For example, Quant+Pruning+MoE
is smaller than T5-base while this model signifi-
cantly outperforms T5-base.

4 Conclusion and Future Work

In this paper, we introduce a task-agnostic com-
pression toolkit for big models, named BMCook.
This toolkit contains four popular techniques and
is designed to be flexible to support arbitrary com-
binations. Users can easily compress a PLM by
adding several lines to its pre-training code and
specifying the strategy in a configuration file.

In the future, there are three directions to further
improve BMCook. First, we will enrich the op-
tions of existing compression techniques, such as
knowledge distillation on attention matrices (Jiao
et al., 2020) and extreme low-bit quantization (Bai
et al., 2021). Second, there are some other com-
pression techniques that are not covered by BM-
Cook, such as weight sharing (Lan et al., 2020)
and low-rank decomposition (Chen et al., 2021).
Third, we will explore the automatic search for bet-
ter compression strategies or configurations. Given
a specific computation budget, we want to find the

compression strategy that achieves the best model
performance, which is similar to neural architecture
search (Elsken et al., 2019).

Meanwhile, we will also plan to enrich the in-
ference toolkits to support different compression
techniques. Although compression techniques have
been fast developed, the inference toolkits are still
lagging behind. Recently, there are some efforts to
support compressed models in inference, such as
BMInf (Han et al., 2022) and DeepSpeed-MoE (Ra-
jbhandari et al., 2022), while they are still limited
to specific compression techniques.

Acknowledgments

This work is supported by the National Key R&D
Program of China (No. 2020AAA0106502), In-
stitute Guo Qiang at Tsinghua University and
NExT++ project from the National Research Foun-
dation, Prime Minister’s Office, Singapore under
its IRC@Singapore Funding Initiative.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, Manjunath Kudlur, Josh Levenberg, Rajat
Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2016. Tensorflow: A system for large-
scale machine learning. In Proceedings of the OSDI,
pages 265–283.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin
Jin, Xin Jiang, Qun Liu, Michael R. Lyu, and Irwin
King. 2021. Binarybert: Pushing the limit of BERT
quantization. In Proceedings of ACL/IJCNLP, pages
4334–4348.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang,
and Samuel Weinbach. 2022. Gpt-neox-20b: An
open-source autoregressive language model. arxiv
preprint arXiv:2204.06745.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, et al. 2021.
Language models are Few-Shot learners. In Pro-
ceedings of NeurIPS, pages 1877–1901.

402

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.18653/v1/2021.acl-long.334
https://doi.org/10.48550/arXiv.2204.06745
https://doi.org/10.48550/arXiv.2204.06745
http://arxiv.org/abs/2005.14165

Patrick H. Chen, Hsiang-Fu Yu, Inderjit S. Dhillon, and
Cho-Jui Hsieh. 2021. DRONE: data-aware low-rank
compression for large NLP models. In Proceedings
of NeurIPS, pages 29321–29334.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained BERT networks. In Proceedings of NeurIPS.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinod-
kumar Prabhakaran, Emily Reif, Nan Du, et al. 2022.
PaLM: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tun-
ing: A comprehensive study of parameter efficient
methods for pre-trained language models. arXiv
preprint arXiv:2203.06904.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-
ter. 2019. Neural architecture search: A survey. J.
Mach. Learn. Res., 20:55:1–55:21.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In Proceedings of ICLR.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint 2101.03961.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Song Han, Jeff Pool, John Tran, and William J Dally.
2015. Learning both weights and connections for ef-
ficient neural networks. In Proceedings of NeurIPS,
pages 1135–1143.

Xu Han, Guoyang Zeng, Weilin Zhao, Zhiyuan Liu,
Zhengyan Zhang, Jie Zhou, Jun Zhang, Jia Chao,
and Maosong Sun. 2022. BMInf: An efficient
toolkit for big model inference and tuning. In Pro-
ceedings of ACL Demonstration, pages 224–230.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic
BERT with adaptive width and depth. In Proceed-
ings of NeurIPS.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In Proceedings of ICML, pages 2790–2799.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of EMNLP, pages
4163–4174.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Proceed-
ings of ICLR.

Aitor Lewkowycz, Anders Andreassen, David Do-
han, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol
Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. 2022.
Solving quantitative reasoning problems with lan-
guage models. arXiv preprint arXiv:2206.14858.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi,
and Xiaotong Zhang. 2021. Pruning and quantiza-
tion for deep neural network acceleration: A survey.
arXiv preprint 2101.09671.

Chang Liu, Chongyang Tao, Jiazhan Feng, and
Dongyan Zhao. 2022. Multi-granularity structural
knowledge distillation for language model compres-
sion. In Proceedings of ACL, pages 1001–1011.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of ICML, pages 807–814.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight,
Benjamin Chess, and John Schulman. 2021. We-
bGPT: Browser-assisted question-answering with
human feedback. arXiv preprint arXiv:2112.09332.

Geondo Park, Gyeongman Kim, and Eunho Yang.
2021. Distilling linguistic context for language
model compression. In Proceedings of EMNLP,
pages 364–378.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:

403

https://proceedings.neurips.cc/paper/2021/hash/f56de5ef149cf0aedcc8f4797031e229-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f56de5ef149cf0aedcc8f4797031e229-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://doi.org/10.48550/arXiv.2204.02311
http://jmlr.org/papers/v20/18-598.html
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://aclanthology.org/2022.acl-demo.22
https://aclanthology.org/2022.acl-demo.22
https://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6f5216f8d89b086c18298e043bfe48ed-Abstract.html
http://proceedings.mlr.press/v97/houlsby19a.html
https://aclanthology.org/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
http://arxiv.org/abs/2101.09671
http://arxiv.org/abs/2101.09671
https://doi.org/10.18653/v1/2022.acl-long.71
https://doi.org/10.18653/v1/2022.acl-long.71
https://doi.org/10.18653/v1/2022.acl-long.71
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://aclanthology.org/2021.emnlp-main.30
https://aclanthology.org/2021.emnlp-main.30
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

An imperative style, high-performance deep learn-
ing library. In Proceedings of NeurIPS.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, H. Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Johannes
Welbl, Sumanth Dathathri, et al. 2021. Scaling lan-
guage models: Methods, analysis & insights from
training gopher. arXiv preprint arXiv:2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified Text-to-Text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-
mad Awan, Jeff Rasley, and Yuxiong He. 2022.
Deepspeed-moe: Advancing mixture-of-experts in-
ference and training to power next-generation AI
scale. In Proceedings of ICML, volume 162, pages
18332–18346.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: memory optimiza-
tions toward training trillion parameter models. In
Proceedings of SC, page 20.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
EMNLP, pages 2383–2392.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021a. Zero-
offload: Democratizing billion-scale model training.
In Proceedings of ATC, pages 551–564.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021b. Zero-
offload: Democratizing billion-scale model training.
In Proceedings of USENIX ATC, pages 551–564.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint 1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP, pages 1631–1642.

Pierre Stock, Angela Fan, Benjamin Graham, Edouard
Grave, Rémi Gribonval, Hervé Jégou, and Armand
Joulin. 2021. Training with quantization noise for
extreme model compression. In Proceedings of
ICLR.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of EMNLP, pages 4323–
4332.

Ashish Vaswani, Noam Shazeer, Niki Parmar, and
Jakob Uszkoreit. 2017. Attention is all you need. In
Proceedings of NeurIPS, pages 5998–6008.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020.
Structured pruning of large language models. In Pro-
ceedings of EMNLP, pages 6151–6162.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT, pages 1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of EMNLP Demonstration,
pages 38–45.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate
models. In Proceedings of ACL, pages 1513–1528.

Dongkuan Xu, Ian En-Hsu Yen, Jinxi Zhao, and Zhibin
Xiao. 2021. Rethinking network pruning – under the
pre-train and fine-tune paradigm. In Proceedings of
NAACL-HLT, pages 2376–2382.

Ziqing Yang, Yiming Cui, and Zhigang Chen. 2022.
Textpruner: A model pruning toolkit for pre-trained
language models. In Proceedings of ACL, pages 35–
43.

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang
Che, Ting Liu, Shijin Wang, and Guoping Hu. 2020.
Textbrewer: An open-source knowledge distillation
toolkit for natural language processing. In Proceed-
ings of ACL, pages 9–16.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8BERT: Quantized 8bit BERT.
arXiv preprint 1910.06188.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022a. OPT: open pre-
trained transformer language models. arXiv preprint
arXiv:2205.01068.

Zhengyan Zhang, Yuxian Gu, Xu Han, Shengqi Chen,
Chaojun Xiao, Zhenbo Sun, Yuan Yao, Fanchao
Qi, Jian Guan, Pei Ke, Yanzheng Cai, Guoyang
Zeng, Zhixing Tan, Zhiyuan Liu, Minlie Huang,

404

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf
https://openreview.net/forum?id=dV19Yyi1fS3
https://openreview.net/forum?id=dV19Yyi1fS3
https://aclanthology.org/D19-1441
https://aclanthology.org/D19-1441
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.emnlp-main.496
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2022.acl-long.107
https://aclanthology.org/2022.acl-long.107
https://aclanthology.org/2021.naacl-main.188
https://aclanthology.org/2021.naacl-main.188
https://aclanthology.org/2022.acl-demo.4
https://aclanthology.org/2022.acl-demo.4
https://doi.org/10.18653/v1/2020.acl-demos.2
https://doi.org/10.18653/v1/2020.acl-demos.2
http://arxiv.org/abs/1910.06188
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068

Wentao Han, Yang Liu, Xiaoyan Zhu, and Maosong
Sun. 2021a. CPM-2: large-scale cost-effective pre-
trained language models. AI Open, 2:216–224.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022b. MoEfication:
Transformer feed-forward layers are mixtures of ex-
perts. In Findings of ACL 2022.

Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Qun Liu,
and Maosong Sun. 2021b. Know what you don’t
need: Single-shot meta-pruning for attention heads.
AI Open, 2:36–42.

Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma,
Yuqing Yang, Fan Yang, Yang Wang, Mao Yang, and
Lidong Zhou. 2022. SparTA: Deep-Learning model
sparsity via Tensor-with-Sparsity-Attribute. In Pro-
ceedings of OSDI, pages 213–232.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhi-
jie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng
Li. 2021. Learning n:m fine-grained structured
sparse neural networks from scratch. In Proceedings
of ICLR.

405

https://doi.org/10.1016/j.aiopen.2021.12.003
https://doi.org/10.1016/j.aiopen.2021.12.003
https://arxiv.org/abs/2110.01786
https://arxiv.org/abs/2110.01786
https://arxiv.org/abs/2110.01786
https://doi.org/10.1016/j.aiopen.2021.05.003
https://doi.org/10.1016/j.aiopen.2021.05.003
https://www.usenix.org/conference/osdi22/presentation/zheng-ningxin
https://www.usenix.org/conference/osdi22/presentation/zheng-ningxin
https://openreview.net/forum?id=K9bw7vqp_s
https://openreview.net/forum?id=K9bw7vqp_s

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 406 - 434
December 7-11, 2022 c©2022 Association for Computational Linguistics

ALToolbox: A Set of Tools for Active Learning Annotation of
Natural Language Texts

Akim Tsvigun1,3 ♢, Leonid Sanochkin1,3 ♢, Daniil Larionov2,5, Gleb Kuzmin1,5,
Artem Vazhentsev1,4, Ivan Lazichny1, Nikita Khromov4, Danil Kireev5,

Aleksandr Rubashevskii4, Olga O. Shahmatova7, Dmitry V. Dylov4,
Igor Galitskiy1, Artem Shelmanov1,6

1AIRI, 2MIPT, 3HSE, 4Skoltech, 5FRC CSC RAS, 6MBZUAI
7National Medical Research Centre of Cardiology

{tsvigun, sanochkin, shelmanov}@airi.net
artem.shelmanov@mbzuai.ac.ae

Abstract

We present ALToolbox – an open-source frame-
work for active learning (AL) annotation in nat-
ural language processing. Currently, the frame-
work supports text classification, sequence tag-
ging, and seq2seq tasks. Besides state-of-the-
art query strategies, ALToolbox provides a set
of tools that help to reduce computational over-
head and duration of AL iterations and increase
annotated data reusability. The framework aims
to support data scientists and researchers by
providing an easy-to-deploy GUI annotation
tool directly in the Jupyter IDE and an exten-
sible benchmark for novel AL methods. We
prepare a small demonstration of ALToolbox
capabilities available online1,2. The code of the
framework is published under the MIT license3.

1 Introduction

The development of text processing applications
based on machine learning (ML) usually requires
a lot of labeled data. Despite numerous annotated
corpora designed for various tasks and available for
resource-rich languages, in practice, the business
logic of an application is often very specific and
cannot be implemented using only public resources.
Manual annotation of natural language corpora is a
tedious and time-consuming task, which can take
up to 30-40% of the application development time.

For rather simple tasks, the annotation of corpora
can be organized using crowd-sourcing. However,
crowd-sourcing is not suitable for specific domains
like medicine, finance, information technology, or
any other field that requires specific qualifications
or knowledge of business logic. It is also problem-
atic to apply crowd-sourcing when the annotation
scheme is complex and requires some premature

1http://demo.nlpresearch.group
2http://demo-video.nlpresearch.group
3https://github.com/AIRI-Institute/al_

toolbox
♢ Equal contribution

training of annotators. In each of the aforemen-
tioned cases, annotation of each instance becomes
expensive because it requires hiring people with a
high qualification or a specific skill set.

Active learning (AL) is a well-known technique
that speeds up data annotation by leveraging model
output for selecting instances demonstrated to hu-
man experts (Cohn et al., 1996; Settles and Craven,
2008). It focuses human effort on instances that are
the most informative for model training, decreas-
ing redundancy and filtering out noisy outliers. AL
helps to achieve a certain level of model perfor-
mance using only a fraction of the labor required
to exhaustively annotate a given dataset.

In this work, we present ALToolbox – an open-
source framework that contains a comprehensive
set of tools for practical AL annotation in text clas-
sification, sequence tagging, and seq2seq tasks.
The main goal of the framework is to support data
scientists and researchers. They usually need to test
new ideas very quickly, and the lack of annotation
is a common obstacle to this. ALToolbox aims to
address several practical obstacles to deploying AL:
(1) data annotated with AL should be reusable; (2)
AL should not consume excessive computational
resources, while the annotation process should be
interactive without delays for annotators; (3) anno-
tation should be quick and fluent.

(1) Instances selected with AL that are infor-
mative for one model can be not informative for
a different model of another type. This hurts the
reusability of data annotated with the help of AL.
For example, Lowell et al. (2019) shows that if
we use predictions of one model for selecting in-
stances during AL, but train a model of a different
type on the selected data, the performance of the lat-
ter can be even worse compared to the case when
it is trained on data labeled without AL. Lowell
et al. (2019) call this effect acquisition-successor
mismatch (ASM) problem (where acquisition is a

406

mailto:shelmanov@airi.net
mailto:artem.shelmanov@mbzuai.ac.ae
http://demo.nlpresearch.group
http://demo-video.nlpresearch.group
https://github.com/AIRI-Institute/al_toolbox
https://github.com/AIRI-Institute/al_toolbox

Feature Paladin ActiveAnno AlpacaTag FAMIE Small-Text ALToolbox (Ours)
Text classification ✓ ✓ ✓ ✓
Sequence tagging ✓ ✓ ✓
Seq2seq ✓
SOTA query strategies ✓ ✓ ✓
SOTA neural models ✓ ✓ ✓ ✓ ✓ ✓
Computationally efficient AL ✓ ✓
Annotated data reusability ✓
Annotation GUI ✓ ✓ ✓ ✓ ✓
Serverless annotation in Jupyter ✓
Extensible benchmark ✓
Multilinguality ✓ ✓ ✓
Compat. with other AL frameworks ✓ ✓
Acquisition model adaptation ✓
Proactive learning ✓

Table 1: Comparison of NLP-related AL frameworks.

model used for selecting instances during AL and
successor is a model trained on the labeled data
for the final application). To address this prob-
lem, we include in the framework several pipelines
for the preparation of acquisition models and post-
processing of data annotated with the help of AL.
These pipelines leverage the Pseudo-labeling for
the Acquisition-Successor Mismatch (PLASM) al-
gorithm based on the effect of knowledge distil-
lation (Hinton et al., 2015) in AL revealed by
Shelmanov et al. (2021); Tsvigun et al. (2022b).
PLASM effectively mitigates ASM, making data
collected with AL reusable for training models of
various architectures.

(2) Applying AL is not free. It introduces addi-
tional computational overhead which usually sums
up from training an acquisition model and per-
forming its inference. For resource-intensive mod-
els such as modern neural networks, this over-
head might be prohibitive due to the cost of GPU-
accelerated computations for their training and in-
ference. Due to the ASM problem, it is not possible
to simply replace a resource-intensive model (e.g.
ELECTRA) with a small one (e.g. DistilBERT).
PLASM addresses this problem and allows to use
small versions of acquisition models obtained using
distillation, which speeds up training and inference.
ALToolbox also implements an unlabeled pool sub-
sampling algorithm, which leverages uncertainty of
instances to avoid repetitive predictions on the part
of the unlabeled pool, speeding up the inference
phase of AL iterations (Tsvigun et al., 2022b).

(3) AL itself speeds up the annotation proce-
dure, but the time required for deploying an AL-
empowered annotation system and integrating an-
notation with existing data processing pipelines can
diminish its benefits. Removing obstacles between
the data processing workflow and annotation tools
can facilitate rapid evaluation of new ideas. There-
fore, in ALToolbox, besides a set of state-of-the-

art query strategies, we also provide a serverless
AL-empowered annotation tool that is natively inte-
grated directly into the Jupyter Notebook IDE. This
tool is suitable for labeling small datasets and test-
ing new ideas quickly, which, we believe, is useful
for data scientists and researchers. This tool is easy
to start and is fully integrated with the familiar IDE,
while also being flexible and extensible.

There are many UI-centric academic and com-
mercial annotation systems for end users that sup-
port AL annotation: WebAnno (Yimam et al.,
2013), AlpacaTag (Lin et al., 2019), Paladin
(Nghiem et al., 2021), ActiveAnno (Wiechmann
et al., 2021), FAMIE (Van Nguyen et al., 2022),
Prodigy (Montani and Honnibal, 2018) (a com-
mercial system), and others. However, they lack
many practical features that serve the goal of rapid
annotation, compatibility with pipelines for data
analysis and IDEs, and reusability of the annotated
data. There are also several low-level AL packages
that focus on providing various query strategies
and can be used as building blocks for more elabo-
rated systems: LibAct (Yang et al., 2017), ModAL
(Danka and Horvath, 2018), Baal (Atighehchian
et al., 2020), Small-text (Schröder et al., 2021).
However, most of them also overlook the problem
of reusability and computational efficiency. Only
Small-text is specifically tailored to NLP tasks.

The contributions of the proposed framework:

• a comprehensive collection of state-of-the-art
query strategies for sequence tagging, text
classification, and seq2seq tasks;

• a benchmarking tool for experimental evalua-
tion of novel AL methods;

• pipelines for acquisition model preparation
and for data post-processing that provide
reusability of annotated data and computa-
tional efficiency of AL;

• a serverless GUI for AL annotation integrated

407

Method Paladin ActiveAnno AlpacaTag FAMIE Small-Text ALToolbox (ours)
AcTune (Yu et al., 2022) ✓
ALPS (Yuan et al., 2020) ✓ ✓
BADGE (Ash et al., 2020) ✓ ✓ ✓
BAIT (Ash et al., 2021) ✓
BALD (Houlsby et al., 2011) ✓
BatchBALD (Kirsch et al., 2019) ✓
BERT-KM (Yuan et al., 2020) ✓ ✓ ✓
BLEUVar (Xiao et al., 2020) ✓
Breaking Ties (Luo et al., 2004) ✓ ✓
CAL (Margatina et al., 2021) ✓ ✓
Cluster-Margin (Citovsky et al., 2021) ✓
Coreset (Sener and Savarese, 2018) ✓ ✓
Discriminative AL (Gissin and Shalev-Shwartz, 2019) ✓
EGL (Settles et al., 2007) ✓ ✓
ENSP (Wang et al., 2019) ✓
Entropy (Roy and Mccallum, 2001) ✓ ✓
IDDS (Tsvigun et al., 2022a) ✓
LC (Lewis and Gale, 1994) ✓ ✓ ✓ ✓
MNLP (Shen et al., 2017) ✓ ✓ ✓
NSP (Ueffing and Ney, 2007) ✓
SEALS (Coleman et al., 2022) ✓

Table 2: The comparison of AL frameworks by implemented query strategies.

directly into the Jupyter notebook IDE for data
scientists and researchers.

2 Framework Description

The ALToolbox framework is a Python library with
several executable scripts, as well as a Jupyter wid-
get implemented in JavaScript. In this section, we
describe the key features of the framework.

2.1 Query Strategies

One of the key components of AL pipelines is a
query strategy that specifies what instances are se-
lected for annotation. ALToolbox provides clas-
sical and state-of-the-art query strategies for text
classification, sequence tagging, and seq2seq tasks.
Table 2 summarizes strategies implemented in our
framework and in software packages from the re-
lated work.

Uncertainty sampling is one of the most widely-
used types of AL query strategies. ALTool-
box provides several basic uncertainty estimation
methods based on softmax prediction probability:
Least Confidence (LC) (Lewis and Gale, 1994),
Maximum Normalized Log-Probability (MNLP)
(Shen et al., 2017), Breaking Ties (BT) (Luo et al.,
2004), Prediction entropy (PE) (Roy and Mccal-
lum, 2001), Normalized Sequence Probability
(NSP) (Ueffing and Ney, 2007). Since a predictive
distribution of a single deterministic neural network
cannot be used to obtain reliable uncertainty scores
(Sener and Savarese, 2018; Mukhoti et al., 2021),
some works have ventured into the development
of Bayesian query strategies (Siddhant and Lipton,
2018). ALToolbox implements one of the widely-
adopted strategies – Bayesian Active Learning by
Disagreement (BALD) (Houlsby et al., 2011). It

selects instances that provide the biggest amount of
information about true model parameters by know-
ing the true label of the considered instance. In
practice, the strategy approximates variational in-
ference in a Bayesian neural network using Monte-
Carlo dropout (Gal and Ghahramani, 2016). AL-
Toolbox also includes a batched version of BALD –
BatchBALD (Kirsch et al., 2019), which is modi-
fied to jointly score and select for annotation multi-
ple instances on each AL iteration.

An alternative for uncertainty sampling is
diversity-based sampling. In this category, the core-
set algorithm (Sener and Savarese, 2018) leverages
data geometry and aims to minimize the bound
between an average loss over any given subset of
the dataset and the remaining data points. Recently
proposed Contrastive Active Learning (CAL) pri-
oritizes instances, which predictive likelihoods di-
verge the most from their neighbors in the training
set (Margatina et al., 2021). The Cluster-Margin
algorithm (Citovsky et al., 2021) is designed to
select large batches for annotation. It prioritizes
instances that are diverse and that the model is not
confident about. BERT-KM (Yuan et al., 2020)
clusters texts in the unlabeled pool using their
contextualized embeddings and selects the nearest
neighbors of cluster centers. Active Learning by
Processing Surprisal (ALPS) (Yuan et al., 2020)
leverages pre-trained models, self-supervised learn-
ing objective, and clustering to solve the cold-start
problem in AL. AcTune (Yu et al., 2022) can be
used as a wrapper over uncertainty-based query
strategies. It selects the most uncertain instances
from regions obtained by clustering the unlabeled
pool and ranking them by uncertainty and diversity.

ALToolbox also contains several gradient-based

408

Figure 1: Serverless GUI annotation tool integrated into the Jupyter IDE.

query strategies. Expected Gradient Length
(EGL) aims to prioritize instances that would im-
part the greatest change to the current model if we
add them to the training set with their labels (Settles
et al., 2007). Batch Active Learning by Diverse
Gradient Embeddings (BADGE) measures un-
certainty as the gradient magnitude with respect to
parameters in the final (output) layer (Ash et al.,
2020). Batch Active learning via Information
maTrices (BAIT) selects batches of instances by
optimizing a bound on the MLE error in terms of
the Fisher information (Ash et al., 2021).

Furthermore, ALToolbox provides several query
strategies for seq2seq tasks. NSP (Ueffing and
Ney, 2007) is an analogue of LC for text genera-
tion, which calculates the length-normalized total
probability of a generated sequence. ENSP (Wang
et al., 2019) makes several stochastic runs using
Monte-Carlo dropout and averages the probabili-
ties of the sequences. The BLEUVar (Xiao et al.,
2020) algorithm strives to measure the variance of
texts generated under Monte-carlo dropout by us-
ing the BLEU metric (Papineni et al., 2002). The
IDDS (Tsvigun et al., 2022a) strategy, shown to
be state-of-the-art for the abstractive text summa-
rization task, selects instances that are semantically
dissimilar from the already annotated instances,
avoiding outliers and borderline instances.

Finally, the framework provides the ability to use
different strategies for different AL iterations. For
example, one could use a cold-start method (e.g.
ALPS) at several first iterations and later switch to
another strategy such as LC.

2.2 Supported Models
ALToolbox is compatible with the HuggingFace
Transformers library (Wolf et al., 2020), allowing
the usage of state-of-the-art Transformer models
like BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019), ELEC-
TRA (Clark et al., 2020), and others. The sup-
port of some older RNN-based models like CNN-
BiLSTM-CRF (Ma and Hovy, 2016) for sequence
tagging is implemented via a wrapper around the
Flair library (Akbik et al., 2019). Users can also im-
plement their own models directly using PyTorch.
ALToolbox provides several custom neural model
implementations in PyTorch, including the classi-
cal CNN for text classification (Le et al., 2018).

2.3 Jupyter Annotation Tool
ALToolbox provides a simple serverless tool with
a GUI for AL annotation integrated directly into
Jupyter Notebook, which is one of the most popu-
lar IDEs for the Python language and data analysis
(Figure 1). It supports annotation for text classifica-
tion and sequence tagging tasks like named entity

409

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

Actune + CAL 92.0 ± 0.5 94.3 ± 0.0 94.8 ± 0.2 95.0 ± 0.2 94.4 ± 0.0
Actune + Entropy 91.7 ± 0.5 94.1 ± 0.3 94.7 ± 0.4 94.8 ± 0.3 94.2 ± 0.2
Actune + LC 92.0 ± 0.3 94.2 ± 0.2 94.7 ± 0.4 95.0 ± 0.0 94.3 ± 0.3
ALPS 90.6 ± 0.3 92.3 ± 0.5 92.9 ± 0.5 93.4 ± 0.6 92.6 ± 0.2
BADGE 92.2 ± 0.3 94.3 ± 0.1 94.7 ± 0.2 95.0 ± 0.2 94.3 ± 0.1
BAIT 92.2 ± 0.4 94.3 ± 0.1 95.0 ± 0.2 95.1 ± 0.4 94.4 ± 0.1
BALD 92.2 ± 0.6 93.9 ± 0.1 94.8 ± 0.4 95.2 ± 0.1 94.3 ± 0.2
Breaking Ties (BT) 92.3 ± 0.3 94.5 ± 0.3 94.9 ± 0.1 95.0 ± 0.0 94.4 ± 0.1
CAL 92.3 ± 0.7 94.5 ± 0.3 94.8 ± 0.3 95.1 ± 0.1 94.4 ± 0.2
Coreset 91.9 ± 0.1 93.8 ± 0.3 94.7 ± 0.5 95.1 ± 0.1 94.2 ± 0.1
Entropy 92.0 ± 0.1 94.4 ± 0.1 94.9 ± 0.1 95.0 ± 0.2 94.4 ± 0.1
Least Confidence (LC) 92.3 ± 0.5 94.3 ± 0.3 95.0 ± 0.4 95.0 ± 0.2 94.4 ± 0.1
Mahalanobis Distance 91.6 ± 0.4 94.0 ± 0.3 94.8 ± 0.2 95.0 ± 0.1 94.2 ± 0.1
Random 90.8 ± 0.4 92.5 ± 0.1 92.9 ± 0.4 93.4 ± 0.5 92.6 ± 0.2

Table 3: Accuracy of RoBERTa on AG News with various AL strategies on several AL iterations with query
size = 1% (1200 instances). Average refers to the average result throughout the AL cycle. We select with bold
state-of-the-art results with respect to confidence intervals. The results are averaged for 5 runs with different seeds
to ensure the stability.

recognition and event extraction.
The tool is implemented using Jupyter widgets

– a built-in feature of the Jupyter IDE for creating
extensions. This widget can be configured with
various AL query strategies and models, including
Transformers. After the tool object is invoked, the
IDE displays the widget in a notebook cell, and
AL annotation begins. For example, to add NER
annotation, a user can select a corresponding text
fragment with a mouse and add a label to it. For
text classification, a label can be chosen from a
predefined list via selectable buttons. On each it-
eration, the user receives instances for annotation
in mini-batches. The user can annotate all or just a
part of them and invoke the next iteration of an AL
algorithm with the “Next iteration” button asking
for a new minibatch of unlabeled instances.

The annotation tool performs all necessary com-
putations asynchronously with GUI and returns
new instances without any delay. It keeps a list
of instances sorted by their “informativeness” and
updates it as soon as possible in the background.

The user can interrupt annotation at any time and
resume it after a while. The tool tracks changes
made by the user on the hard drive. The annotation
is accumulated in easy-to-parse JSON files.

The target audience of this tool is data scientists
and researchers. It is very easy to launch and mod-
ify: new graphical elements can be added using
Jupyter Widgets as well. Using Jupyter also helps
to reduce the effort of combining the system with
data processing pipelines. We consider this tool
might be useful for rapid annotation in small to
medium projects and for testing new ideas quickly.
However, we note that it lacks many useful features
of full-fledged annotation systems, e.g., the ability
to work with multiple users simultaneously. Cre-

ating a complex GUI for annotation is out of the
scope of this project since a wide range of similar
projects have already been released, e.g. DocAnno
(Nakayama et al., 2018), LabelStudio (Tkachenko
et al., 2020-2022), ActiveAnno (Wiechmann et al.,
2021). The ALToolbox framework can be easily
integrated into such annotation systems with the
help of API.

2.4 Tools for Computational Efficient Active
Learning and Reusable Annotation

ALToolbox contains a set of scripts that help to
improve the computational efficiency of AL while
keeping annotated data reusable. AL requires a
substantial amount of computations on each itera-
tion, which depends on the complexity and the size
of the acquisition model. Using smaller and lighter
models can lead to performance degradation of AL
due to the ASM problem discussed in the intro-
duction. We mitigate this problem by implement-
ing tools for the “Pseudo-Labeling for Acquisition-
Successor Mismatch” (PLASM) algorithm (Tsvi-
gun et al., 2022b). This algorithm leverages small
distilled models (e.g. DistilBERT) during the ac-
quisition of instances, but after the annotation is
finished it trains the original full-sized models (e.g.
BERT) on the acquired data and uses it for auto-
matic pseudo-labeling of the whole unlabeled pool
of instances. The mistakes in automatic annota-
tion are cleaned with the help of the TracIn method
(Pruthi et al., 2020). Finally, the successor model
is trained on the data that contains gold-standard
labels and cleaned automatically labeled instances.

PLASM reduces or completely removes the gap
in performance that appears when the successor
model is different from the acquisition model. It
makes the annotated data reusable for training suc-

410

Classic AL PLASM Classic AL +
 UPS

PLASM +
 UPS

0

2k

4k

6k

8k

10k

12k

14k
Overall train time
Overall inference time

AL setting

Ti
m

e
(s

ec
on

ds
)

Figure 2: Duration in seconds of all the training and
inference phases of the simulated AL with different
acquisition settings on AG News with query size = 1%
and 15 AL iterations. ELECTRA is used as a successor
model, and DistilBERT – for acquisition in PLASM.

cessor models of various architectures. ALTool-
box provides scripts for automatic model distilla-
tion and a pipeline for data post-processing with
PLASM. All the necessary post-processing can be
done by invoking a single function.

For large datasets, making predictions for the
whole unlabeled set on each iteration to obtain the
uncertainty estimates may require an enormous
amount of time and resources. Consequently, in
the framework, we also implement the “unlabeled
pool subsampling” (UPS) algorithm (Tsvigun et al.,
2022b), which samples the instances from the unla-
beled pool according to their uncertainty estimates
on previous iterations.

Figures 2, 21, 23 illustrate time benefits brought
by PLASM and UPS on AG News, IMDB, and
CoNLL-2003, respectively. PLASM accelerates
the training phase of AL by 35% / 65% / 34%,
while UPS accelerates the inference phase by 65%
/ 61% / 63%. Their combination speeds up all AL
iteration computations by up to 63% / 67% / 38%,
respectively, making AL much more interactive.
Figures 19a, 20a, 22a show that the performance
of the successor model does not deteriorate when
these algorithms are used. Figures 19b, 20b, 22b,
in turn, show that the ASM problem leads to a
substantial decrease in the model performance.

We also provide scripts for domain adaptation of
acquisition models. Margatina et al. (2022) demon-
strate that self-supervised adaptation (Gururangan
et al., 2020) of pre-trained Transformers on the
unlabeled pool of instances helps to speed up AL.

2.5 Benchmarking Tool for Query Strategies
ALToolbox provides an extensible and easy-to-use
benchmarking tool for testing new AL query strate-

gies and unlabeled pool subsampling strategies. To
experiment with a new strategy, a user implements
it in the form of a Python class and runs the evalua-
tion script, specifying the path to the correspond-
ing class module as an argument. The script per-
forms several iterations of simulated AL annotation
and constructs the dependence of the model per-
formance scores on the size of the labeled data.
Experiments are launched multiple times with dif-
ferent random seeds to obtain confidence intervals
of the results.

Using this tool, we provide the evaluation re-
sults of implemented query strategies, which can
be used as a reference. The experiments with text
classification are conducted on AG News (Zhang
et al., 2015), IMDB (Maas et al., 2011), and
CoLA (Warstadt et al., 2018); with sequence tag-
ging – on CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003); with abstractive text sum-
marization – on AESLC (Zhang and Tetreault,
2019), WikiHow (Koupaee and Wang, 2018), and
PubMed (Cohan et al., 2018). We provide the re-
sults with big and lightweight Transformers and
with several different query sizes:

• Selecting k% of instances (for text classifica-
tion & abstractive text summarization) / to-
kens (for sequence tagging). In this setting,
we randomly select and annotate k% of in-
stances / tokens as the initial seed and select
k% of instances / tokens for annotation on
each AL iteration according to the query func-
tion. This configuration aims to benchmark
strategies in a high-resource AL mode. We
refer to it as query size = k%.

• Selecting 100 instances / tokens on each AL
iteration and as the initial seed. This con-
figuration aims to benchmark strategies in a
medium-resource AL mode. We refer to it as
query size = 100.

• Selecting 10 instances / tokens on each AL
iteration. The initial seeding procedure differs
between tasks under this mode. For text clas-
sification, we randomly select and annotate 1
instance of each class as the initial seed. For
other tasks, we annotate 10 randomly chosen
instances / tokens. This configuration aims
to benchmark strategies in a low-resource AL
mode. We refer to it as query size = 10.

Dataset statistics, model details, and hyperpa-
rameters are presented in Tables 4–6.

411

Table 3 depicts the results on AG News with
RoBERTa-base as an acquisition model, and query
size = 1%. We can see that most of the strategies
perform roughly similar with CAL and LC showing
the best performance across all AL iterations. Fig-
ure 3 also demonstrates the results throughout the
whole AL cycle of the best-performing query strate-
gies according to the average accuracy throughout
the AL cycle. Figure 4 provides the comparison
of the duration of computations for various query
strategies. Tables 7–18 compare query strategies
on text classification datasets for various settings
and models. Figures 5–10 visualize the results of
the best-performing query strategies.

Sequence tagging results are presented in Tables
19–23. MNLP demonstrates the best quality in
terms of F1-micro score excluding the “no entity”
tag (“O”). Figures 11–13 show the iteration-wise
scores. The duration of computations for various
strategies is presented in Figure 23.

For abstractive text summarization, due to the
big size of the unlabeled pool of WikiHow and
Pubmed, on each AL iteration, we randomly sub-
sample the unlabeled pool to 10,000 instances. Ta-
bles 24–27 provide the average results throughout
the AL cycle and results on several iterations, while
Figures 15–18 illustrate the results during the entire
AL cycle. Finally, Figure 14 compares the duration
of execution of the seq2seq query strategies.

3 Related Work

The comparison of ALToolbox with other frame-
works from the related work on AL in NLP is pre-
sented in Table 1.

First of all, ALToolbox supports two most de-
manded NLP tasks: text classification and sequence
tagging. It also works with abstractive text sum-
marization, which is a seq2seq task. Other frame-
works support only one of the tasks: Paladin, Ac-
tiveAnno, and Small-Text work only with text clas-
sification, while AlpacaTag and FAMIE support
only sequence tagging.

Table 2 compares AL frameworks by imple-
mented query strategies. Paladin, ActiveAnno,
and AlpacaTag implement only the basic strate-
gies. FAMIE implements several modern methods
like ALPS and BADGE, but lacks many others. We
note that Small-Text implements many recently pro-
posed query strategies, including CAL, BADGE,
and BERT-KM. However, ALToolbox provides the
most comprehensive set of state-of-the-art query

strategies and also allows combining them.
Except for ALToolbox and FAMIE (Van Nguyen

et al., 2022), the computational overhead and the
AL-caused time delays have been inexplicably dis-
missed in the prior art. FAMIE entails training a
bigger model in the background during the labeling
of each batch while using a smaller one as a proxy
for acquisition. Such knowledge distillation makes
the AL annotation process more interactive but also
carries an additional computational burden, requir-
ing extra resources for training and running two
models. On the contrary, the knowledge distillation
within our framework reduces both the time needed
to complete an AL iteration and the overall amount
of computation.

We note that neither FAMIE, nor other frame-
works, address the ASM problem that hinders the
reusability of annotated data. The tools for model
distillation and annotated data post-processing
based on the PLASM algorithm in our framework
help to mitigate the ASM, so a user, for example,
can train XLNet using data acquired with Distil-
BERT without significant performance penalties.

Most of the considered systems provide an elab-
orated GUI for annotation by end-users. Our frame-
work aims to support data scientists and researchers
and provides a fast-to-deploy minimalistic annota-
tion system directly in the Jupyter IDE.

None of the considered systems provides easy-
to-use scripts for conducting experiments with new
AL methods. ALToolbox implements an extensi-
ble benchmarking tool that we hope will simplify
research in AL for NLP.

One of the problems that are currently out of
the scope of ALToolbox is efficient task assign-
ments to multiple annotators. Proactive learning
implemented in Paladin addresses this problem.
We consider this feature as future work.

4 Conclusion

We introduced ALToolbox, an open-source frame-
work for practical AL in NLP. Besides many other
features, the framework addresses the problems of
computational efficiency of AL and data reusabil-
ity. We hope that our framework will foster the
development of new AL methods and remove some
practical obstacles to deploying AL annotation.

In future work, we are looking forward to adding
the support of more text generation tasks, intro-
ducing proactive learning, and providing tools for
hyperparameter selection in AL.

412

Acknowledgements

We thank anonymous reviewers for their insightful
suggestions to improve this paper. The work was
supported by the Russian Science Foundation grant
20-71-10135 (all sections except Section 2.4). The
work by Olga Shakhmatova and Dmitry V. Dylov
on Section 2.4 and the GUI annotation tool is sup-
ported by the grant of RFBR #19-29-01240. The
experiments were supported in part by computa-
tional resources of HPC facilities at HSE Univer-
sity (Kostenetskiy et al., 2021).

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and
Sham Kakade. 2021. Gone fishing: Neural active
learning with fisher embeddings. In Advances in
Neural Information Processing Systems, volume 34,
pages 8927–8939. Curran Associates, Inc.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy,
John Langford, and Alekh Agarwal. 2020. Deep
batch active learning by diverse, uncertain gradient
lower bounds. In International Conference on Learn-
ing Representations.

Parmida Atighehchian, Frédéric Branchaud-Charron,
and Alexandre Lacoste. 2020. Bayesian active learn-
ing for production, a systematic study and a reusable
library. arXiv preprint arXiv:2006.09916.

Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros
Karydas, Anand Rajagopalan, Afshin Rostamizadeh,
and Sanjiv Kumar. 2021. Batch active learning at
scale.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615–621, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

David A Cohn, Zoubin Ghahramani, and Michael I
Jordan. 1996. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145.

Cody Coleman, Edward Chou, Julian Katz-Samuels,
Sean Culatana, Peter Bailis, Alexander C. Berg,
Robert Nowak, Roshan Sumbaly, Matei Zaharia, and
I. Zeki Yalniz. 2022. Similarity search for efficient
active learning and search of rare concepts. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
36(6):6402–6410.

Tivadar Danka and Peter Horvath. 2018. modAL: A
modular active learning framework for Python. arXiv
preprint arXiv:1805.00979.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Daniel Gissin and Shai Shalev-Shwartz. 2019. Dis-
criminative active learning. arXiv preprint
arXiv:1907.06347.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and
Máté Lengyel. 2011. Bayesian active learning for
classification and preference learning. arXiv preprint
arXiv:1112.5745.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal.
2019. Batchbald: Efficient and diverse batch acquisi-
tion for deep bayesian active learning. Advances in
neural information processing systems, 32.

P. S. Kostenetskiy, R. A. Chulkevich, and V. I. Kozyrev.
2021. HPC Resources of the Higher School of Eco-
nomics. Journal of Physics: Conference Series,
1740(1):012050.

413

https://proceedings.neurips.cc/paper/2021/file/4afe044911ed2c247005912512ace23b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4afe044911ed2c247005912512ace23b-Paper.pdf
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://doi.org/10.48550/ARXIV.2107.14263
https://doi.org/10.48550/ARXIV.2107.14263
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.1609/aaai.v36i6.20591
https://doi.org/10.1609/aaai.v36i6.20591
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
http://arxiv.org/abs/1503.02531
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1088/1742-6596/1740/1/012050

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ihow: A large scale text summarization dataset.
CoRR, abs/1810.09305.

Hoa T Le, Christophe Cerisara, and Alexandre Denis.
2018. Do convolutional networks need to be deep
for text classification? In Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence.

David D Lewis and William A Gale. 1994. A sequential
algorithm for training text classifiers. In SIGIR’94,
pages 3–12. Springer.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu Lan,
and Xiang Ren. 2019. AlpacaTag: An active learning-
based crowd annotation framework for sequence tag-
ging. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 58–63, Florence, Italy.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

David Lowell, Zachary C. Lipton, and Byron C. Wal-
lace. 2019. Practical obstacles to deploying active
learning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
21–30, Hong Kong, China. Association for Computa-
tional Linguistics.

Tong Luo, K. Kramer, S. Samson, A. Remsen, D.B.
Goldgof, L.O. Hall, and T. Hopkins. 2004. Active
learning to recognize multiple types of plankton. In
Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., volume 3,
pages 478–481 Vol.3.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In The 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, Proceedings of the Conference, 19-24 June,
2011, Portland, Oregon, USA, pages 142–150. The
Association for Computer Linguistics.

Katerina Margatina, Loic Barrault, and Nikolaos Ale-
tras. 2022. On the importance of effectively adapting
pretrained language models for active learning. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 825–836, Dublin, Ireland. As-
sociation for Computational Linguistics.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault,
and Nikolaos Aletras. 2021. Active learning by ac-
quiring contrastive examples. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 650–663, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ines Montani and Matthew Honnibal. 2018. Prodigy:
A new tool for radically efficient machine teaching.
https://prodi.gy/.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort,
Philip HS Torr, and Yarin Gal. 2021. Deterministic
neural networks with appropriate inductive biases
capture epistemic and aleatoric uncertainty. arXiv
preprint arXiv:2102.11582.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasu-
fumi Taniguchi, and Xu Liang. 2018. doccano: Text
annotation tool for human. Software available from
https://github.com/doccano/doccano.

Minh-Quoc Nghiem, Paul Baylis, and Sophia Anani-
adou. 2021. Paladin: an annotation tool based on
active and proactive learning. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 238–243, Online. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Nicholas Roy and Andrew Mccallum. 2001. Toward
optimal active learning through sampling estimation
of error reduction. Proceedings of the 18th Interna-
tional Conference on Machine Learning.

Christopher Schröder, Lydia Müller, Andreas Niekler,
and Martin Potthast. 2021. Small-text: Active learn-
ing for text classification in python.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks. In
2008 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2008, Proceedings
of the Conference, 25-27 October 2008, Honolulu,

414

http://arxiv.org/abs/1810.09305
http://arxiv.org/abs/1810.09305
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D19-1003
https://doi.org/10.18653/v1/D19-1003
https://doi.org/10.1109/ICPR.2004.1334570
https://doi.org/10.1109/ICPR.2004.1334570
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://aclanthology.org/P11-1015/
https://doi.org/10.18653/v1/2022.acl-short.93
https://doi.org/10.18653/v1/2022.acl-short.93
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://doi.org/10.18653/v1/2021.emnlp-main.51
https://prodi.gy/
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.18653/v1/2021.eacl-demos.28
https://doi.org/10.18653/v1/2021.eacl-demos.28
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
http://arxiv.org/abs/2107.10314
http://arxiv.org/abs/2107.10314
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://www.aclweb.org/anthology/D08-1112/
https://www.aclweb.org/anthology/D08-1112/

Hawaii, USA, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1070–1079. Association
for Natural Language Processing.

Burr Settles, Mark Craven, and Soumya Ray. 2007.
Multiple-instance active learning. Advances in neu-
ral information processing systems, 20.

Artem Shelmanov, Dmitri Puzyrev, Lyubov
Kupriyanova, Denis Belyakov, Daniil Larionov,
Nikita Khromov, Olga Kozlova, Ekaterina Artemova,
Dmitry V. Dylov, and Alexander Panchenko. 2021.
Active learning for sequence tagging with deep
pre-trained models and Bayesian uncertainty
estimates. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages
1698–1712, Online. Association for Computational
Linguistics.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. arXiv
preprint arXiv:1707.05928.

Aditya Siddhant and Zachary C. Lipton. 2018. Deep
Bayesian active learning for natural language pro-
cessing: Results of a large-scale empirical study.
In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages
2904–2909, Brussels, Belgium. Association for Com-
putational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Maxim Tkachenko, Mikhail Malyuk, Andrey
Holmanyuk, and Nikolai Liubimov. 2020-
2022. Label Studio: Data labeling soft-
ware. Open source software available from
https://github.com/heartexlabs/label-studio.

Akim Tsvigun, Ivan Lysenko, Danila Sedashov, Ivan
Lazichny, Eldar Damirov, Vladimir Karlov, Artemy
Belousov, Leonid Sanochkin, Maxim Panov, Alexan-
der Panchenko, Mikhail Burtsev, and Artem Shel-
manov. 2022a. Active learning for abstractive text
summarization. In Findings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing.

Akim Tsvigun, Artem Shelmanov, Gleb Kuzmin,
Leonid Sanochkin, Daniil Larionov, Gleb Gusev,
Manvel Avetisian, and Leonid Zhukov. 2022b. To-
wards computationally feasible deep active learning.
In Findings of the Association for Computational
Linguistics: NAACL 2022, pages 1198–1218, Seattle,
United States. Association for Computational Lin-
guistics.

Nicola Ueffing and Hermann Ney. 2007. Word-level
confidence estimation for machine translation. Com-
put. Linguistics, 33(1):9–40.

Minh Van Nguyen, Nghia Trung Ngo, Bonan Min, and
Thien Huu Nguyen. 2022. Famie: A fast active learn-
ing framework for multilingual information extrac-
tion.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan, and
Maosong Sun. 2019. Improving back-translation
with uncertainty-based confidence estimation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 791–802, Hong
Kong, China. Association for Computational Linguis-
tics.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Max Wiechmann, Seid Muhie Yimam, and Chris
Biemann. 2021. ActiveAnno: General-purpose
document-level annotation tool with active learning
integration. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Demonstrations, pages 99–105, Online.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tim Z. Xiao, Aidan N. Gomez, and Yarin Gal.
2020. Wat zei je? detecting out-of-distribution
translations with variational transformers. CoRR,
abs/2006.08344.

Yao-Yuan Yang, Shao-Chuan Lee, Yu-An Chung, Tung-
En Wu, Si-An Chen, and Hsuan-Tien Lin. 2017.
libact: Pool-based active learning in python. arXiv
preprint arXiv:1710.00379.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Chris Biemann. 2013. Webanno: A
flexible, web-based and visually supported system for
distributed annotations. In Proceedings of the 51st

415

https://www.aclweb.org/anthology/2021.eacl-main.145
https://www.aclweb.org/anthology/2021.eacl-main.145
https://www.aclweb.org/anthology/2021.eacl-main.145
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://aclanthology.org/2022.findings-naacl.90
https://aclanthology.org/2022.findings-naacl.90
https://doi.org/10.1162/coli.2007.33.1.9
https://doi.org/10.1162/coli.2007.33.1.9
https://doi.org/10.48550/ARXIV.2202.08316
https://doi.org/10.48550/ARXIV.2202.08316
https://doi.org/10.48550/ARXIV.2202.08316
https://doi.org/10.18653/v1/D19-1073
https://doi.org/10.18653/v1/D19-1073
https://doi.org/10.18653/v1/2021.naacl-demos.12
https://doi.org/10.18653/v1/2021.naacl-demos.12
https://doi.org/10.18653/v1/2021.naacl-demos.12
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2006.08344
http://arxiv.org/abs/2006.08344

Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 1–6.

Yue Yu, Lingkai Kong, Jieyu Zhang, Rongzhi Zhang,
and Chao Zhang. 2022. Actune: Uncertainty-based
active self-training for active fine-tuning of pretrained
language models. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1422–1436.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-
Graber. 2020. Cold-start active learning through self-
supervised language modeling. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7935–7948,
Online. Association for Computational Linguistics.

Rui Zhang and Joel Tetreault. 2019. This email could
save your life: Introducing the task of email subject
line generation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 446–456, Florence, Italy. Association
for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-
formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649–657.

416

https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/2020.emnlp-main.637
https://doi.org/10.18653/v1/P19-1043
https://doi.org/10.18653/v1/P19-1043
https://doi.org/10.18653/v1/P19-1043
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

A Dataset Statistics and Model Hyperparameters

Dataset Train Test Mean document length (tokens) C
CoNLL-2003 15K/203.6K 3.7K/46.4K 14.5 4(5)
AG News 120K 7.6K 53.1 4
IMDb 25K 25K 300.0 2
CoLA 8.5K 1K 11.3 2
AESLC 14.4K 1.9K 142.4 -
WikiHow 184.6K 1K 377.5 -
Pubmed 119.1K 6.7K 495.4 -

Table 4: Dataset statistics. We provide a number of instances / tokens (for sequence tagging) for the training and
test sets and average lengths of documents in terms of tokens. C is a number of classes / entity types for text
classification and sequence tagging datasets.

Task Model Checkpoint # Param.

Text classification

BERT bert-base-uncased 110M
DistilBERT distilbert-base-uncased 67M
ELECTRA google/electra-base-discriminator 110M

DistilELECTRA lsanochkin/distilelectra-base 67M
RoBERTa roberta-base 125M

DistilRoBERTa distilroberta-base 82M

Sequence tagging
ELECTRA google/electra-base-discriminator 110M

BERT bert-base-cased 110M
DistilBERT distilbert-base-cased 67M

Abstractive text summarization BART facebook/bart-base 139M
PEGASUS google/pegasus-large 570M

Table 5: Transformers model checkpoints from the HuggingFace repository (Wolf et al., 2020)

Hparam Sequence tagging Classification BART PEGASUS
Number of epochs 15 5 6 4
Batch size 16 16 16 2
Gradient accumulation steps 1 1 1 8
Min. number of training steps 1000 1000 350 200
Max. sequence length - 256 1024 1024
Optimizer AdamW
Learning rate 5e-5 2e-5 2e-5 5e-4
Weight decay 0.01 0.01 0.028 0.03
Gradient clipping 1. 1. 0.28 0.3
Sheduler STLR
% warm-up steps 10
Num. beams at evaluation - - 4 4
Generation max. length - - Adapt. Adapt.

Table 6: Hyperparameter values of Transformers. The hyperparameters are chosen according to evaluation scores
on the validation datasets when models are trained using the whole available training data. Adapt refers to adaptive
length, when generation maximum length is equal to the maximum summary length on the train set.

417

B Query Strategy Benchmark

For the tables in this section, we select with bold state-of-the-art results with respect to the confidence
intervals. When all the values are within the confidence interval, we only select with bold the largest
average value. The results are averaged for 10 runs with different seeds for query size = 10 and for 5
runs for other query size settings to ensure stability. The Average column refers to the average result
throughout the AL cycle.

B.1 Text Classification
B.1.1 AG News
Query size = 1 %

2 4 6 8 10 12 14

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Breaking Ties (BT)
CAL
Least Confidence (LC)
Random

Labeled Data, %

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

Figure 3: Accuracy of the best performing query strategies according to average accuracy throughout the AL cycle
(BT, CAL, and LC) on AG News with RoBERTa with query size = 1%.

Actune + CAL

Actune + Ent.

Actune + LC

ALPS
BADGE

BAIT
BALD

Break. Ties

CAL
Coreset

Entropy

LC Mahal. Dist.

0

5k

10k

15k

20k

Query Strategy

A
v.

 Q
ue

ry
 T

im
e

(s
ec

on
ds

)

Figure 4: Average duration in seconds of one AL query with different strategies on AG News with RoBERTa as an
acquisition model and query size = 1% (1200 instances). Hardware configuration is provided in Appendix C.

418

Query size = 100

500 1000 1500 2000

0.84

0.86

0.88

0.9

0.92

0.94

Break. Ties (BT)
LC
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) RoBERTa

500 1000 1500 2000

0.84

0.86

0.88

0.9

0.92

Break. Ties (BT)
LC
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT

Figure 5: Accuracy of the best performing query strategies with different acquisition models on AG News with
query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 88.95 ± 0.85 90.95 ± 0.18 91.83 ± 0.2 92.49 ± 0.27 93.06 ± 0.25 91.7 ± 0.16
BAIT 88.21 ± 1.36 90.56 ± 0.28 91.57 ± 0.28 92.23 ± 0.31 92.87 ± 0.15 91.32 ± 0.36
BALD 88.24 ± 1.04 90.0 ± 0.74 90.98 ± 0.29 91.26 ± 0.46 91.98 ± 0.32 90.69 ± 0.39
BT 88.96 ± 0.48 90.9 ± 0.25 92.01 ± 0.26 92.53 ± 0.28 93.11 ± 0.29 91.66 ± 0.06
CAL 88.08 ± 0.93 90.67 ± 0.15 91.73 ± 0.31 92.42 ± 0.17 92.91 ± 0.23 91.48 ± 0.16
Coreset 87.97 ± 1.26 90.32 ± 0.42 91.33 ± 0.24 91.72 ± 0.17 92.23 ± 0.32 90.97 ± 0.26
Entropy 88.02 ± 1.14 90.65 ± 0.35 91.24 ± 0.38 91.95 ± 0.42 92.58 ± 0.3 91.15 ± 0.27
LC 88.06 ± 1.33 90.91 ± 0.23 91.99 ± 0.2 92.55 ± 0.15 93.14 ± 0.28 91.65 ± 0.15
Random 87.35 ± 0.66 89.33 ± 0.31 89.8 ± 0.46 90.26 ± 0.28 90.77 ± 0.45 89.68 ± 0.27

Table 7: Accuracy of RoBERTa on AG News with various AL strategies with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BALD 86.57 ± 0.26 89.06 ± 0.49 90.17 ± 0.21 90.57 ± 0.17 90.99 ± 0.29 89.82 ± 0.23
BT 87.71 ± 0.8 89.84 ± 0.22 90.81 ± 0.15 91.36 ± 0.19 91.67 ± 0.26 90.52 ± 0.12
CAL 87.37 ± 0.34 89.43 ± 0.37 90.37 ± 0.34 91.11 ± 0.22 91.59 ± 0.26 90.2 ± 0.2
Coreset 86.84 ± 0.59 89.31 ± 0.34 89.96 ± 0.23 90.51 ± 0.36 91.1 ± 0.21 89.81 ± 0.28
Entropy 86.27 ± 0.57 89.15 ± 0.63 90.05 ± 0.28 90.65 ± 0.55 91.19 ± 0.23 89.81 ± 0.37
LC 87.15 ± 0.67 89.3 ± 0.76 90.39 ± 0.3 91.13 ± 0.33 91.83 ± 0.34 90.19 ± 0.31
Random 86.17 ± 1.48 88.48 ± 0.39 89.19 ± 0.48 89.52 ± 0.43 89.81 ± 0.23 88.83 ± 0.4

Table 8: Accuracy of DistilBERT on AG News with various AL strategies with query size = 100.

419

Query size = 10

50 100 150 200 250

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Break. Ties (BT)
Coreset
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) RoBERTa-base

50 100 150 200 250

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Break. Ties (BT)
Coreset
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT-base

Figure 6: Accuracy of the best performing query strategies with different acquisition models on AG News with
query size = 10.

AL Strat. Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 68.47 ± 7.84 85.13 ± 1.43 88.2 ± 0.58 88.68 ± 0.62 89.38 ± 0.25 89.86 ± 0.24 89.8 ± 0.18 87.3 ± 1.59
BALD 60.0 ± 6.97 79.58 ± 3.13 84.34 ± 1.4 85.64 ± 1.63 86.48 ± 1.1 87.37 ± 1.18 87.61 ± 1.13 83.77 ± 1.23
BT 67.98 ± 5.91 85.64 ± 1.31 88.56 ± 0.32 89.13 ± 0.32 89.39 ± 0.41 89.83 ± 0.36 90.1 ± 0.26 87.66 ± 0.51
CAL 58.04 ± 6.22 68.89 ± 7.78 86.33 ± 2.47 87.43 ± 1.47 88.58 ± 0.84 88.81 ± 0.57 89.38 ± 0.37 83.23 ± 1.77
Coreset 73.21 ± 3.27 85.49 ± 1.82 87.93 ± 0.63 88.94 ± 0.36 89.29 ± 0.31 89.77 ± 0.46 89.69 ± 0.43 87.44 ± 0.8
Entropy 60.64 ± 8.75 82.29 ± 1.72 86.45 ± 0.5 87.33 ± 0.8 88.45 ± 0.6 89.25 ± 0.49 89.32 ± 0.61 85.57 ± 0.83
LC 61.86 ± 8.49 85.36 ± 0.88 87.38 ± 0.51 88.47 ± 0.59 88.99 ± 0.38 89.35 ± 0.27 89.65 ± 0.23 86.6 ± 0.25
Random 68.33 ± 3.88 84.41 ± 1.52 85.95 ± 0.94 87.05 ± 0.92 87.68 ± 0.57 88.09 ± 0.39 88.47 ± 0.47 85.73 ± 0.69

Table 9: Accuracy of RoBERTa on AG News with various AL strategies with query size = 10.

AL Strat. Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BT 67.95 ± 5.39 84.27 ± 0.3 87.2 ± 0.66 87.9 ± 0.51 88.59 ± 0.39 88.91 ± 0.19 89.19 ± 0.26 86.48 ± 0.31
CAL 58.87 ± 6.36 70.09 ± 4.32 82.72 ± 2.05 85.72 ± 1.17 87.29 ± 0.67 87.68 ± 0.78 88.31 ± 0.48 81.84 ± 1.64
Coreset 67.07 ± 5.52 81.52 ± 2.31 84.74 ± 1.37 86.91 ± 0.87 87.72 ± 0.49 88.17 ± 0.34 88.61 ± 0.24 85.0 ± 0.84
Entropy 56.19 ± 9.83 80.54 ± 2.05 84.65 ± 1.15 85.97 ± 0.89 86.48 ± 1.12 87.21 ± 0.55 87.5 ± 0.61 83.47 ± 0.89
LC 54.96 ± 4.34 82.28 ± 1.18 85.33 ± 0.9 86.99 ± 0.75 87.86 ± 0.39 88.38 ± 0.24 88.57 ± 0.38 84.76 ± 0.49
Random 65.56 ± 5.91 82.14 ± 2.01 84.87 ± 0.69 86.29 ± 0.58 86.77 ± 0.43 87.11 ± 0.44 87.37 ± 0.42 84.46 ± 0.91

Table 10: Accuracy of DistilBERT on AG News with various AL strategies with query size = 10.

420

B.1.2 IMDB
Query size = 100

500 1000 1500 2000

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

BALD
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) RoBERTa

500 1000 1500 2000

0.65

0.7

0.75

0.8

0.85

0.9

BALD
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT

Figure 7: Accuracy of the best performing query strategies with different acquisition models on IMDB with query
size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 89.66 ± 1.17 91.91 ± 0.31 92.32 ± 0.59 92.69 ± 0.4 93.22 ± 0.17 92.35 ± 0.05
BALD 90.31 ± 0.32 91.89 ± 0.17 92.65 ± 0.13 92.95 ± 0.14 93.01 ± 0.16 92.39 ± 0.08
CAL 90.24 ± 1.27 92.14 ± 0.22 92.64 ± 0.14 92.92 ± 0.26 93.1 ± 0.28 92.32 ± 0.12
Coreset 89.16 ± 1.37 91.9 ± 0.3 92.63 ± 0.32 92.64 ± 1.35 92.79 ± 0.67 92.28 ± 0.25
LC / BT / Entropy 90.38 ± 0.46 92.3 ± 0.19 92.69 ± 0.21 93.08 ± 0.13 93.14 ± 0.26 92.49 ± 0.09
Random 89.77 ± 0.98 90.77 ± 0.58 91.46 ± 0.26 91.67 ± 0.4 92.04 ± 0.26 91.19 ± 0.36

Table 11: Accuracy of RoBERTa on IMDB with various AL strategies with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 84.32 ± 0.42 86.92 ± 0.71 87.97 ± 0.29 88.81 ± 1.13 89.34 ± 0.42 87.82 ± 0.36
BALD 84.82 ± 0.6 87.2 ± 0.32 88.67 ± 0.2 88.79 ± 0.51 89.35 ± 0.14 88.09 ± 0.13
CAL 84.13 ± 1.28 86.72 ± 0.55 88.29 ± 0.38 88.93 ± 0.32 88.86 ± 0.76 87.67 ± 0.46
Coreset 84.1 ± 0.52 86.38 ± 0.89 87.63 ± 0.5 88.47 ± 0.42 89.1 ± 0.31 87.46 ± 0.33
LC / BT / Entropy 83.92 ± 1.38 86.47 ± 1.16 88.41 ± 0.54 89.19 ± 0.32 89.29 ± 0.18 87.74 ± 0.35
Random 82.81 ± 3.7 85.77 ± 0.61 86.84 ± 0.51 87.45 ± 0.33 88.06 ± 0.49 86.56 ± 0.5

Table 12: Accuracy of DisitlBERT on IMDB with various AL strategies with query size = 100.

421

Query size = 10

50 100 150 200 250

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

BADGE
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) RoBERTa

50 100 150 200 250

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

BADGE
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT

Figure 8: Accuracy of the best performing query strategies with different acquisition models on IMDB with query
size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 69.49 ± 6.4 87.29 ± 1.35 89.16 ± 0.69 90.36 ± 0.45 90.46 ± 0.63 90.98 ± 0.28 91.13 ± 0.32 88.54 ± 0.53
BALD 67.08 ± 4.56 84.04 ± 2.66 88.09 ± 1.61 89.49 ± 0.76 90.56 ± 0.3 87.85 ± 5.56 90.81 ± 0.64 87.64 ± 0.66
CAL 60.22 ± 4.41 83.73 ± 4.75 89.33 ± 0.54 90.23 ± 0.26 90.77 ± 0.32 91.19 ± 0.32 91.4 ± 0.26 86.81 ± 0.83
Coreset 64.3 ± 6.06 86.92 ± 1.1 88.49 ± 1.44 89.36 ± 0.79 90.5 ± 0.32 90.77 ± 0.25 90.72 ± 0.26 87.27 ± 1.0
LC / BT / Entropy 60.26 ± 4.86 87.0 ± 0.87 89.08 ± 1.07 90.34 ± 0.34 90.35 ± 0.79 90.9 ± 0.49 91.3 ± 0.33 88.24 ± 0.46
Random 68.14 ± 5.58 86.6 ± 1.32 88.53 ± 1.09 89.3 ± 0.49 89.65 ± 0.51 89.79 ± 0.81 90.01 ± 0.53 87.55 ± 0.67

Table 13: Accuracy of RoBERTa on IMDB with various AL strategies with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 56.53 ± 2.66 75.41 ± 2.65 81.96 ± 1.26 83.25 ± 1.5 83.95 ± 1.0 84.76 ± 0.79 85.19 ± 0.93 80.31 ± 1.21
BALD 55.61 ± 3.27 69.51 ± 5.22 79.44 ± 3.64 83.21 ± 1.15 83.86 ± 1.34 83.08 ± 3.52 85.14 ± 1.36 78.86 ± 3.86
CAL 55.67 ± 2.69 68.58 ± 4.09 80.85 ± 1.48 83.04 ± 1.15 84.3 ± 0.78 84.98 ± 0.47 85.26 ± 0.91 78.9 ± 0.81
Coreset 54.6 ± 3.48 69.77 ± 6.89 81.33 ± 0.96 82.65 ± 1.35 83.76 ± 0.83 84.2 ± 0.64 84.7 ± 0.55 79.04 ± 1.83
LC / BT / Entropy 55.31 ± 2.62 70.53 ± 4.88 80.23 ± 2.3 83.0 ± 1.73 84.18 ± 1.11 84.21 ± 1.95 85.22 ± 0.72 79.22 ± 1.68
Random 55.45 ± 2.78 70.41 ± 5.61 80.01 ± 2.64 83.24 ± 1.6 84.61 ± 0.48 84.63 ± 0.68 85.21 ± 0.67 79.45 ± 1.51

Table 14: Accuracy of DistilBERT on IMDB with various AL strategies with query size = 10.

422

B.1.3 CoLA
Query size = 100

500 1000 1500 2000

0.76

0.78

0.8

0.82

0.84

0.86

CAL
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) ELECTRA

500 1000 1500 2000

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Coreset
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT

Figure 9: Accuracy of the best performing query strategies with different acquisition models on CoLA with query
size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 80.59 ± 1.13 82.61 ± 0.8 83.78 ± 0.29 85.22 ± 0.8 85.27 ± 0.6 83.76 ± 0.24
BALD 67.44 ± 5.74 77.34 ± 1.1 78.81 ± 0.53 79.67 ± 0.54 80.56 ± 0.4 77.73 ± 1.15
CAL 80.38 ± 1.34 82.28 ± 1.27 84.12 ± 0.72 84.95 ± 0.76 85.41 ± 1.01 83.73 ± 0.58
Coreset 80.31 ± 1.14 82.32 ± 1.1 84.33 ± 0.69 84.51 ± 0.62 85.16 ± 0.32 83.57 ± 0.62
LC / BT / Entropy 80.97 ± 1.07 83.32 ± 0.49 85.04 ± 0.78 85.38 ± 0.52 86.03 ± 0.3 84.11 ± 0.24
Random 79.94 ± 0.3 81.33 ± 0.6 82.41 ± 0.83 83.53 ± 1.0 84.54 ± 0.64 82.58 ± 0.38

Table 15: Accuracy of ELECTRA on CoLA with various AL strategies with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 71.74 ± 2.1 75.19 ± 1.44 76.97 ± 0.76 78.09 ± 1.38 78.78 ± 1.17 76.58 ± 1.89
BALD 59.12 ± 6.86 63.99 ± 5.21 69.3 ± 2.97 71.27 ± 1.44 72.11 ± 1.42 67.93 ± 2.05
CAL 71.58 ± 1.34 75.05 ± 1.08 76.8 ± 0.77 77.83 ± 0.53 79.1 ± 0.87 76.58 ± 0.46
Coreset 70.51 ± 3.42 75.23 ± 1.01 76.82 ± 0.86 77.89 ± 0.88 79.39 ± 0.81 76.61 ± 0.31
LC / BT / Entropy 72.12 ± 0.94 75.36 ± 0.95 77.28 ± 0.61 78.31 ± 0.51 79.1 ± 0.82 76.71 ± 0.29
Random 70.35 ± 2.44 74.06 ± 1.08 74.96 ± 1.34 76.28 ± 1.69 76.41 ± 1.49 74.8 ± 0.91

Table 16: Accuracy of DistilBERT on CoLA with various AL strategies with query size = 100.

423

Query size = 10

50 100 150 200 250
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

BADGE
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) ELECTRA

50 100 150 200 250
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Coreset
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT

Figure 10: Accuracy of the best performing query strategies with different acquisition models on CoLA with query
size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 64.25 ± 6.58 77.2 ± 1.63 79.41 ± 0.56 80.44 ± 0.61 81.01 ± 0.81 81.15 ± 0.53 81.65 ± 0.6 79.16 ± 1.18
BALD 67.41 ± 5.06 76.7 ± 1.85 78.68 ± 0.52 79.54 ± 0.59 80.62 ± 0.47 80.7 ± 2.03 81.35 ± 0.93 78.76 ± 8.01
CAL 65.88 ± 8.86 76.59 ± 2.68 79.7 ± 1.05 80.72 ± 0.43 80.73 ± 0.67 81.5 ± 0.49 80.88 ± 1.33 79.05 ± 0.97
Coreset 62.89 ± 9.54 74.61 ± 3.22 79.61 ± 0.58 79.99 ± 0.96 80.57 ± 0.54 80.89 ± 0.79 81.28 ± 0.63 78.42 ± 0.82
LC / BT / Entropy 66.27 ± 4.05 76.71 ± 0.79 79.61 ± 0.9 80.5 ± 0.59 80.59 ± 0.42 79.6 ± 3.68 81.56 ± 0.57 79.16 ± 0.43
Random 64.11 ± 8.0 76.39 ± 1.91 78.83 ± 0.79 79.6 ± 0.69 79.95 ± 0.81 79.97 ± 0.67 80.79 ± 0.83 78.36 ± 0.6

Table 17: Accuracy of ELECTRA on CoLA with various AL strategies with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 63.66 ± 4.45 67.17 ± 2.53 69.64 ± 1.61 71.74 ± 1.63 72.69 ± 1.06 73.08 ± 0.64 73.68 ± 0.53 70.63 ± 1.28
BALD 59.39 ± 7.76 64.93 ± 2.71 68.4 ± 2.55 70.32 ± 1.18 71.2 ± 1.19 72.24 ± 1.05 73.2 ± 0.92 69.23 ± 1.05
CAL 60.2 ± 7.09 69.11 ± 1.3 71.02 ± 1.27 71.82 ± 1.32 72.3 ± 1.37 72.86 ± 1.06 73.64 ± 0.79 70.81 ± 0.86
Coreset 63.23 ± 6.22 69.91 ± 1.63 71.29 ± 1.16 72.13 ± 1.03 72.99 ± 0.67 73.43 ± 0.54 73.92 ± 0.61 71.68 ± 0.67
LC / BT / Entropy 61.19 ± 6.3 67.33 ± 2.37 70.04 ± 1.59 71.4 ± 0.92 71.77 ± 0.86 72.49 ± 0.99 73.01 ± 0.85 70.23 ± 1.22
Random 56.86 ± 7.72 64.13 ± 2.11 67.72 ± 1.98 69.96 ± 1.77 71.19 ± 0.96 72.08 ± 0.63 71.8 ± 1.34 68.53 ± 1.02

Table 18: Accuracy of DistilBERT on CoLA with various AL strategies with query size = 10.

424

B.2 Sequence Tagging
B.2.1 CoNLL-2003
Query size = 2% (tokens)

5 10 15 20 25 30

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

BALD
MNLP
Random

Labeled Data, %

P
er

fo
rm

an
ce

, F
1

Figure 11: Overall F1-micro score of the best performing query strategies with ELECTRA on CoNLL-2003 with
query size = 2% (tokens).

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

BALD 87.46 ± 0.75 90.47 ± 0.28 91.09 ± 0.18 91.52 ± 0.2 90.5 ± 0.14
MNLP 88.23 ± 0.31 90.55 ± 0.24 91.17 ± 0.27 91.51 ± 0.14 90.75 ± 0.07
Random 87.23 ± 0.47 89.43 ± 0.56 90.47 ± 0.57 90.78 ± 0.21 89.72 ± 0.2

Table 19: Overall F1-micro score of ELECTRA on CoNLL-2003 with various AL strategies with query size = 2%
(tokens).

425

Query size = 100 (tokens)

20 40 60 80 100 120 140 160
0.3

0.4

0.5

0.6

0.7

0.8

BALD
MNLP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, F
1

a) ELECTRA

20 40 60 80 100 120 140 160

0.2

0.3

0.4

0.5

0.6

0.7

BALD
MNLP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, F
1

b) DistilBERT

Figure 12: Overall F1-micro score of the best performing query strategies with different acquisition models on
CoNLL-2003 with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

BALD 57.52 ± 14.08 67.65 ± 7.13 76.44 ± 2.76 80.27 ± 5.72 71.4 ± 2.21
MNLP 61.32 ± 10.1 76.36 ± 3.65 81.87 ± 3.44 84.16 ± 0.61 77.84 ± 2.59
Random 60.35 ± 6.36 72.22 ± 2.52 78.99 ± 1.98 81.16 ± 1.07 75.16 ± 1.57

Table 20: Overall F1-micro score of ELECTRA on CoNLL-2003 with various AL strategies with query size = 100
(tokens).

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

BALD 37.21 ± 6.39 47.6 ± 7.48 59.34 ± 7.41 65.86 ± 4.07 52.88 ± 9.22
MNLP 44.73 ± 5.0 62.96 ± 4.71 69.88 ± 2.53 74.2 ± 2.0 65.27 ± 1.64
Random 37.53 ± 4.21 56.22 ± 2.09 63.39 ± 2.57 67.76 ± 2.29 58.51 ± 1.81

Table 21: Overall F1-micro score of DistilBERT on CoNLL-2003 with various AL strategies with query size = 100
(tokens).

426

Query size = 10 (tokens)

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BALD
MNLP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, F
1

a) ELECTRA

50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

0.6

BALD
MNLP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, F
1

b) DistilBERT

Figure 13: Overall F1-micro score of the best performing query strategies with different acquisition models on
CoNLL-2003 with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BALD 18.34 ± 7.99 35.53 ± 8.32 45.57 ± 11.36 50.33 ± 10.24 57.12 ± 7.12 57.93 ± 3.54 63.94 ± 6.42 49.02 ± 15.28
MNLP 22.28 ± 10.34 42.1 ± 7.49 58.07 ± 4.37 63.99 ± 3.77 70.33 ± 2.17 73.03 ± 2.58 74.95 ± 1.86 60.41 ± 3.31
Random 24.43 ± 7.2 39.82 ± 6.3 52.22 ± 7.31 59.54 ± 5.19 65.74 ± 4.47 69.36 ± 2.52 71.74 ± 2.75 56.11 ± 3.99

Table 22: Overall F1-micro score of ELECTRA on CoNLL-2003 with various AL strategies with query size = 10
(tokens).

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BALD 12.85 ± 6.45 20.7 ± 5.03 29.23 ± 6.59 34.78 ± 8.26 39.33 ± 9.11 43.39 ± 6.78 46.76 ± 6.07 33.43 ± 6.15
MNLP 19.46 ± 3.38 31.2 ± 3.85 42.4 ± 3.0 50.63 ± 2.33 54.17 ± 3.1 58.52 ± 2.82 58.85 ± 2.0 46.42 ± 2.31
Random 15.43 ± 5.45 25.82 ± 5.65 33.39 ± 6.04 39.3 ± 5.16 43.86 ± 5.6 49.55 ± 4.51 53.45 ± 3.49 38.0 ± 4.56

Table 23: Overall F1-micro score of DistilBERT on CoNLL-2003 with various AL strategies with query size = 10
(tokens).

427

B.3 Abstractive Text Summarization
B.3.1 AESLC
Query size = 10

SacreBLEUVar

IDDS
Random

NSP
ENSP

0

500

1000

1500

2000

2500

3000

3500

Query Strategy

A
v.

 Q
ue

ry
 T

im
e

(s
ec

on
ds

)

Figure 14: Average duration in seconds of one AL query with different strategies on AESLC with BART as an
acquisition model and query size = 10. Hardware configuration is provided in Appendix C.

20 40 60 80 100 120 140 160

12

14

16

18

20

22

24

26

28

30

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-1

a) ROUGE-1

20 40 60 80 100 120 140 160

6

8

10

12

14

16

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-2

a) ROUGE-2

20 40 60 80 100 120 140 160

12

14

16

18

20

22

24

26

28

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-L

a) ROUGE-L

Figure 15: ROUGE scores of the best performing query strategies with BART as an acquisition model on AESLC
with query size = 10.

20 40 60 80 100 120 140 160

5

10

15

20

25

30

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-1

a) ROUGE-1

20 40 60 80 100 120 140 160

2

4

6

8

10

12

14

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-2

a) ROUGE-2

20 40 60 80 100 120 140 160

5

10

15

20

25

30

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-L

a) ROUGE-L

Figure 16: ROUGE scores of the best performing query strategies with PEGASUS as an acquisition model on
AESLC with query size = 10.

428

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
SacreBLEUVar 18.77 ± 2.21 23.46 ± 1.18 26.25 ± 0.69 27.53 ± 0.45 24.6 ± 0.96
IDDS 19.76 ± 0.82 27.3 ± 0.41 27.44 ± 0.3 28.7 ± 0.32 26.67 ± 0.08
Random 18.07 ± 2.26 24.0 ± 1.55 25.9 ± 0.88 27.47 ± 0.45 24.65 ± 0.94
NSP 17.09 ± 2.25 22.15 ± 2.16 24.88 ± 0.94 26.56 ± 0.46 23.22 ± 0.97
ENSP 14.57 ± 2.92 23.2 ± 1.16 25.41 ± 0.79 27.42 ± 0.92 23.74 ± 1.24

ROUGE-2
SacreBLEUVar 9.0 ± 1.12 11.26 ± 0.89 12.86 ± 0.62 13.59 ± 0.56 12.05 ± 0.71
IDDS 10.69 ± 0.53 15.2 ± 0.34 14.89 ± 0.29 15.26 ± 0.26 14.51 ± 0.07
Random 8.73 ± 1.24 11.69 ± 0.93 12.6 ± 0.49 13.72 ± 0.43 12.08 ± 0.63
NSP 7.92 ± 1.35 10.86 ± 1.34 12.03 ± 0.59 12.79 ± 0.26 11.15 ± 0.66
ENSP 6.69 ± 1.51 11.37 ± 0.67 12.36 ± 0.46 13.5 ± 0.58 11.52 ± 0.66

ROUGE-L
SacreBLEUVar 18.51 ± 2.19 22.93 ± 1.17 25.64 ± 0.73 26.91 ± 0.51 24.08 ± 0.99
IDDS 19.52 ± 0.81 26.73 ± 0.39 26.78 ± 0.29 27.92 ± 0.31 26.1 ± 0.08
Random 17.79 ± 2.21 23.48 ± 1.53 25.22 ± 0.84 26.81 ± 0.44 24.07 ± 0.92
NSP 16.88 ± 2.21 21.81 ± 2.13 24.39 ± 0.9 26.05 ± 0.38 22.81 ± 0.95
ENSP 14.41 ± 2.89 22.76 ± 1.12 24.93 ± 0.75 26.85 ± 0.92 23.3 ± 1.2

Table 24: ROUGE scores of BART on AESLC with various AL strategies with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
SacreBLEUVar 15.5 ± 1.59 25.11 ± 1.05 26.47 ± 1.19 28.02 ± 0.83 25.13 ± 0.58
IDDS 17.19 ± 1.58 28.23 ± 0.61 28.02 ± 0.42 29.18 ± 0.45 27.42 ± 0.15
Random 13.65 ± 3.34 26.42 ± 1.05 27.57 ± 0.7 27.86 ± 0.71 25.49 ± 0.8
NSP 13.12 ± 3.11 21.68 ± 3.79 25.05 ± 1.28 26.72 ± 1.02 23.03 ± 0.89
ENSP 12.39 ± 2.14 22.27 ± 2.13 23.37 ± 4.21 26.87 ± 0.55 23.36 ± 1.18

ROUGE-2
SacreBLEUVar 7.01 ± 0.86 12.67 ± 0.63 13.67 ± 0.54 14.72 ± 0.6 12.74 ± 0.49
IDDS 7.94 ± 0.81 14.19 ± 0.37 14.27 ± 0.22 14.65 ± 0.24 13.68 ± 0.11
Random 6.3 ± 1.68 13.23 ± 0.71 14.21 ± 0.39 14.15 ± 0.56 12.83 ± 0.49
NSP 5.91 ± 1.62 10.24 ± 2.01 12.2 ± 0.77 13.14 ± 0.49 11.04 ± 0.56
ENSP 5.25 ± 0.9 10.53 ± 1.22 11.23 ± 2.42 12.9 ± 0.82 11.15 ± 0.69

ROUGE-L
SacreBLEUVar 15.07 ± 1.55 24.47 ± 0.84 25.81 ± 0.75 27.2 ± 0.83 24.43 ± 0.57
IDDS 16.8 ± 1.57 27.53 ± 0.56 27.36 ± 0.33 28.4 ± 0.43 26.75 ± 0.15
Random 13.24 ± 3.23 25.65 ± 0.99 26.82 ± 0.58 27.13 ± 0.69 24.76 ± 0.75
NSP 12.75 ± 3.07 20.99 ± 3.72 24.21 ± 1.27 25.93 ± 1.04 22.33 ± 0.93
ENSP 12.0 ± 2.11 21.63 ± 2.12 22.71 ± 4.2 26.12 ± 0.61 22.71 ± 1.21

Table 25: ROUGE scores of PEGASUS on AESLC with various AL strategies with query size = 10.

429

B.3.2 WikiHow
Query size = 10

20 40 60 80 100 120 140 160

25.5

26

26.5

27

27.5

28

28.5

29

29.5

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-1

a) ROUGE-1

20 40 60 80 100 120 140 160

6.5

7

7.5

8

8.5

9

9.5

10

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-2

a) ROUGE-2

20 40 60 80 100 120 140 160

18

19

20

21

22

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-L

a) ROUGE-L

Figure 17: ROUGE scores of the best performing query strategies with BART as an acquisition model on WikiHow
with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
BLEUVar 26.88 ± 0.6 27.61 ± 0.72 27.64 ± 0.64 28.08 ± 0.39 27.65 ± 0.41
IDDS 27.64 ± 0.41 28.8 ± 0.3 28.93 ± 0.53 28.69 ± 0.33 28.71 ± 0.36
Random 27.57 ± 0.55 28.11 ± 0.66 28.19 ± 0.59 28.42 ± 0.75 28.15 ± 0.49
NSP 26.52 ± 0.49 27.41 ± 0.81 27.23 ± 1.1 27.51 ± 1.09 27.41 ± 0.85
ENSP 26.91 ± 0.47 27.6 ± 0.48 27.53 ± 0.8 27.83 ± 0.93 27.52 ± 0.71

ROUGE-2
BLEUVar 7.43 ± 0.3 8.64 ± 0.22 9.19 ± 0.2 9.54 ± 0.23 8.83 ± 0.16
IDDS 8.0 ± 0.17 9.1 ± 0.1 9.65 ± 0.17 9.75 ± 0.21 9.3 ± 0.13
Random 7.77 ± 0.21 8.73 ± 0.31 9.2 ± 0.25 9.62 ± 0.29 8.93 ± 0.13
NSP 7.27 ± 0.22 8.32 ± 0.26 8.69 ± 0.31 8.76 ± 0.43 8.54 ± 0.35
ENSP 7.4 ± 0.18 8.43 ± 0.17 8.61 ± 0.34 8.85 ± 0.4 8.44 ± 0.26

ROUGE-L
BLEUVar 18.82 ± 0.37 20.07 ± 0.41 20.56 ± 0.34 20.9 ± 0.36 20.25 ± 0.21
IDDS 19.48 ± 0.21 20.87 ± 0.13 21.4 ± 0.28 21.39 ± 0.27 20.98 ± 0.18
Random 19.35 ± 0.49 20.29 ± 0.36 20.75 ± 0.36 21.05 ± 0.42 20.5 ± 0.23
NSP 18.5 ± 0.36 19.88 ± 0.53 20.11 ± 0.6 20.08 ± 0.81 19.94 ± 0.46
ENSP 18.65 ± 0.27 19.67 ± 0.29 20.43 ± 0.72 20.71 ± 0.43 19.97 ± 0.6

Table 26: ROUGE scores of BART on WikiHow with various AL strategies with query size = 10.

430

B.3.3 PubMed
Query size = 10

20 40 60 80 100 120 140 160

20

22

24

26

28

30

32

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-1

a) ROUGE-1

20 40 60 80 100 120 140 160
6

7

8

9

10

11

12

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-2

a) ROUGE-2

20 40 60 80 100 120 140 160
13

14

15

16

17

18

19

20

IDDS
NSP
Random

Num. labeled instances

P
er

fo
rm

an
ce

, R
ou

ge
-L

a) ROUGE-L

Figure 18: ROUGE scores of the best performing query strategies with BART as an acquisition model on PubMed
with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
BLEUVar 26.07 ± 1.01 27.92 ± 1.2 27.91 ± 1.0 27.52 ± 0.93 27.51 ± 0.87
IDDS 28.86 ± 1.41 29.98 ± 1.11 30.06 ± 0.97 29.83 ± 0.84 29.89 ± 0.97
Random 26.8 ± 2.27 26.77 ± 1.55 27.8 ± 0.78 27.23 ± 0.84 27.45 ± 1.37
NSP 26.31 ± 0.97 27.48 ± 0.87 27.48 ± 2.07 26.02 ± 6.82 27.15 ± 1.18
ENSP 26.16 ± 1.16 27.75 ± 1.56 27.65 ± 1.32 27.53 ± 1.62 27.51 ± 1.12

ROUGE-2
BLEUVar 8.61 ± 0.27 9.95 ± 0.31 10.26 ± 0.23 10.17 ± 0.25 9.92 ± 0.22
IDDS 9.58 ± 0.41 10.66 ± 0.29 10.79 ± 0.32 10.78 ± 0.24 10.6 ± 0.27
Random 8.83 ± 0.71 9.55 ± 0.55 10.13 ± 0.18 10.1 ± 0.36 9.85 ± 0.39
NSP 8.68 ± 0.29 9.71 ± 0.37 9.64 ± 0.72 9.3 ± 3.1 9.52 ± 0.44
ENSP 8.66 ± 0.35 9.87 ± 0.47 10.21 ± 0.35 10.18 ± 0.41 9.89 ± 0.32

ROUGE-L
BLEUVar 16.19 ± 0.37 17.37 ± 0.4 17.53 ± 0.31 17.41 ± 0.34 17.26 ± 0.29
IDDS 17.34 ± 0.52 18.17 ± 0.39 18.24 ± 0.37 18.17 ± 0.31 18.11 ± 0.35
Random 16.44 ± 0.89 16.82 ± 0.69 17.38 ± 0.26 17.29 ± 0.26 17.16 ± 0.51
NSP 16.31 ± 0.41 17.11 ± 0.42 17.08 ± 0.82 16.52 ± 3.33 16.93 ± 0.54
ENSP 16.23 ± 0.46 17.27 ± 0.57 17.46 ± 0.45 17.39 ± 0.54 17.23 ± 0.38

Table 27: ROUGE scores of BART on PubMed with various AL strategies with query size = 10.

431

C Computationally Efficient AL

Hardware Configuration
We use the following hardware configuration for the experiments: 2 Intel Xeon Platinum 8168, 2.7 GHz,
24 cores CPU; NVIDIA Tesla v100 GPU, 32 Gb of VRAM. The results are averaged across 5 runs with
different seeds to ensure stability.

Experiment Hyperparameters
On each iteration, we select 1% of instances according to AL strategy for text classification datasets,
and 2% of instances for sequence tagging. For UPS, we use γ = 0.1, T = 0.01, and recalculate the
uncertainty estimates for the whole dataset on the 0-th, 1-st, 4-th, and 8-th iterations.

C.1 AG News

2 4 6 8 10 12 14

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Classic AL + UPS
Classic AL
PLASM + UPS
PLASM

Labeled Data, %

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) PLASM and UPS v Classic AL

2 4 6 8 10 12 14

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Acquisition-successor mismatch
Classic AL
PLASM + UPS

Labeled Data, %

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) ASM problem

Figure 19: AG News dataset: performance of PLASM and UPS algorithms compared to classic AL and acquisition-
successor mismatch (ASM) settings. For all the experiments, ELECTRA is used as a successor model (therefore, as
an acquisition model in “classic AL” as well), and DistilBERT – for acquisition in PLASM and ASM.

432

C.2 IMDB

2 4 6 8 10 12 14

0.89

0.9

0.91

0.92

0.93

0.94

Classic AL + UPS
Classic AL
PLASM + UPS
PLASM

Labeled Data, %

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) PLASM and UPS v Classic AL

2 4 6 8 10 12 14

0.89

0.9

0.91

0.92

0.93

0.94

Acquisition-successor mismatch
Classic AL
PLASM + UPS

Labeled Data, %

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) ASM problem

Figure 20: IMDB dataset: performance of PLASM and UPS algorithms compared to classic AL and acquisition-
successor mismatch (ASM) settings. For all the experiments, RoBERTa is used as a successor model (therefore, as
an acquisition model in “classic AL” as well), and DistilELECTRA – for acquisition in PLASM and ASM.

Classic AL PLASM Classic AL +
 UPS

PLASM +
 UPS

0

500

1000

1500

2000

2500

3000

3500 Overall train time
Overall inference time

AL setting

Ti
m

e
(s

ec
on

ds
)

Figure 21: Duration in seconds of all the training and inference phases of the simulated AL with different acquisition
settings on IMDB with query size = 1% and 15 AL iterations. RoBERTa is used as a successor model, and
DistilELECTRA – for acquisition in PLASM.

433

C.3 CoNLL-2003

5 10 15 20 25 30

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Classic AL + UPS
Classic AL
PLASM + UPS
PLASM

Labeled Data, %

P
er

fo
rm

an
ce

, F
1

a) PLASM and UPS v Classic AL

5 10 15 20 25 30

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Aquisition-successor mismatch
Classic AL + UPS
PLASM + UPS

Labeled Data, %

P
er

fo
rm

an
ce

, F
1

b) ASM problem

Figure 22: CoNLL dataset: performance of PLASM and UPS algorithms compared to classic AL and acquisition-
successor mismatch (ASM) settings. For all the experiments, ELECTRA is used as a successor model (therefore, as
an acquisition model in “classic AL” as well), and DistilBERT – for acquisition in PLASM and ASM.

Classic AL PLASM Classic AL +
 UPS

PLASM +
 UPS

0

200

400

600

800

1000

1200

1400

Overall train time
Overall inference time

AL setting

Ti
m

e
(s

ec
on

ds
)

Figure 23: Duration in seconds of all the training and inference phases of the simulated AL with different acquisition
settings on CoNLL-2003 with query size = 2% and 15 AL iterations. ELECTRA is used as a successor model, and
DistilBERT – for acquisition in PLASM.

434

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 435 - 444
December 7-11, 2022 c©2022 Association for Computational Linguistics

TextBox 2.0: A Text Generation Library with
Pre-trained Language Models

Tianyi Tang1,5†, Junyi Li1,3†, Zhipeng Chen2†, Yiwen Hu2, Zhuohao Yu2, Wenxun Dai4,
Wayne Xin Zhao1,5∗, Jian-Yun Nie3, and Ji-Rong Wen1,2,5

1Gaoling School of Artificial Intelligence, Renmin University of China
2School of Information, Renmin University of China
3DIRO, Université de Montréal 4Xidian University

5Engineering Research Center of Next-Generation Intelligent Search and Recommendation, MOE
steventianyitang@outlook.com lijunyi@ruc.edu.cn batmanfly@gmail.com

Abstract

To facilitate research on text generation, this
paper presents a comprehensive and unified
library, TextBox 2.0, focusing on the use of
pre-trained language models (PLMs). To be
comprehensive, our library covers 13 common
text generation tasks and their corresponding
83 datasets and further incorporates 45 PLMs
covering general, translation, Chinese, dia-
logue, controllable, distilled, prompting, and
lightweight PLMs. We also implement 4 ef-
ficient training strategies and provide 4 gen-
eration objectives for pre-training new PLMs
from scratch. To be unified, we design the in-
terfaces to support the entire research pipeline
(from data loading to training and evaluation),
ensuring that each step can be fulfilled in a
unified way. Despite the rich functionality, it
is easy to use our library, either through the
friendly Python API or command line. To val-
idate the effectiveness of our library, we con-
duct extensive experiments and exemplify four
types of research scenarios. The project is re-
leased at the link: https://github.com/
RUCAIBox/TextBox#2.0.

1 Introduction

Text generation, aiming to generate human-like
texts on demand, has been a fundamental technique
in many text applications, such as machine trans-
lation (Dabre et al., 2020), text summarization (El-
Kassas et al., 2021), and dialogue system (Chen
et al., 2017). Recently, pre-trained language mod-
els (PLMs) such as BART (Lewis et al., 2020) have
been the mainstream approach to developing ef-
fective text generation models. With the great ad-
vances in text generation, it has become increas-
ingly important to reproduce, develop, and com-
pare various text generation models in a reliable,
flexible, and unified way.

†Equal contribution.
∗Corresponding author

Considering the rapid progress of PLMs on text
generation, in this paper, we present a significant
extension of a previously released text generation li-
brary, TextBox 1.0 (Li et al., 2021), called TextBox
2.0. Different from TextBox 1.0 and other text gen-
eration libraries (Miller et al., 2017; Klein et al.,
2018; Zhu et al., 2018) (mostly including classical
models based on recurrent neural networks or gen-
erative adversarial networks), this extension mainly
focuses on building a comprehensive and unified
framework for better supporting PLM-based text
generation models. Although some libraries (e.g.,
Fairseq (Ott et al., 2019) and Hugging Face (Wolf
et al., 2020)) also include PLMs, they are designed
for performing myriad NLP tasks (only consider-
ing a few text generation tasks). Moreover, they
don’t maintain a complete evaluation pipeline (e.g.,
data loading, training, inference, and evaluation)
specially designed for text generation. Thus, it is
not fully suited for developing and evaluating text
generation models in a unified way.

In order to better facilitate research on text gen-
eration, TextBox 2.0 introduces a series of new
features for supporting the use of PLMs, which can
be summarized into three major aspects:
• Generation Tasks: Our library supports 13

commonly studied text generation tasks (e.g., trans-
lation and story generation) and their correspond-
ing 83 datasets, including most of the existing main-
stream tasks and datasets for research. We reorga-
nize these datasets so that they are framed in a
unified text-to-text format. Users can simply set
the dataset via the command line or configuration
file without additional preprocessing efforts.
• Generation Models: As a key contribution, our

library incorporates 45 PLMs, covering the cate-
gories of general, translation, Chinese, dialogue,
controllable, distilled, prompting, and lightweight
PLMs. We unify the interface to use existing PLMs
and incorporate new PLMs, and it is convenient
to run different PLMs for a specified task in our

435

https://github.com/RUCAIBox/TextBox#2.0
https://github.com/RUCAIBox/TextBox#2.0

Aspects TextBox 1.0 TextBox 2.0

Tasks
6 v.s. 13

Summarization, translation, dialogue,
unconditional generation, attribute-
to-text generation, poem generation

Summarization, translation, dialogue, data-to-text, question genera-
tion, question answering, story generation, commonsense generation,
Chinese generation, paraphrase, style transfer and simplification

Models
6 v.s. 45

VAE: LSTMVAE, CNNVAE, CVAE,
HybridVAE
GAN: SeqGAN, TextGAN, RankGAN,
MaliGAN, LeakGAN, MaskGAN
PLM: GPT-2, XLNet, BERT2BERT, T5,
BART, ProphetNet
Seq2Seq: RNN, Transformer, Attr2Seq,
Context2Seq, HRED

General: GPT-2, BERT2BERT, BART, T5, ProphetNet, GPT, GPT-
Neo, OPT, UniLM, MASS, PEGASUS, MVP, Bigbird, LED
Translation: mBART, mT5, Marian, M2M 100, NLLB, XLM
Chinese: CPM, CPT, Chinese-BART, Chinese-T5, Chinese-GPT2
Dialogue: Blenderbot and DialoGPT
Controllable: CTRL and PPLM
Distilled: DistilGPT2 and DistilBART
Prompting: PTG and Context-Tuning
Lightweight: Adapter, Prefix-tuning, Prompt tuning, LoRA, BitFit,
P-Tuning v2

Training
Strategies Distributed data parallel Distributed data parallel, efficient decoding, hyper-parameter opti-

mization, repeated experiments, pre-training objectives

Table 1: Comparison of TextBox 1.0 and TextBox 2.0. We also present a comparison of the numbers of tasks and
pre-trained models between the two versions.

library. We also provide a standard way to compare
these models and analyze the generated results.
• Training Strategies: To support the optimiza-

tion of PLMs, we provide four efficient and ro-
bust training strategies (e.g., efficient decoding)
and four pre-training objectives (e.g., denoising
auto-encoding) for text generation. These strate-
gies make optimizing text generation models more
efficient and reliable. Users can either pre-train a
new model from scratch or fine-tune a pre-trained
model for research purposes.

As another merit, TextBox 2.0 has been largely
aligned with our previous survey on PLM-based
text generation (Li et al., 2022b) in terms of task,
model, and training. It will be meaningful for be-
ginners to explore and learn text generation models
with the survey and supporting libraries.

To summarize, TextBox 2.0 has contributed a
significant addition to the previous version (see Ta-
ble 1 for a detailed comparison) to better support
the use of PLMs for text generation. It implements
and maintains a unified way to conduct research on
text generation with 45 included models, covering
13 tasks, and 83 datasets. We also perform exten-
sive test experiments, and these results show that
TextBox 2.0 can produce very competitive perfor-
mance compared to the original implementations.

2 Library Design

In order to facilitate PLM-based text generation
research, TextBox 2.0 has introduced various new
features, mainly from three aspects: generation
tasks, generation models, and training strategies.

2.1 Generation Tasks
Since there are various text generation applications,
we include 13 widely studied tasks and collect the
corresponding 83 datasets.

Tasks. These 13 tasks in TextBox 2.0 include text
summarization, machine translation, open-ended
dialogue system, data-to-text generation, question
generation, question answering, story generation,
task-oriented dialogue system, commonsense gen-
eration, paraphrase generation, text style transfer,
and text simplification. Besides these English-
centric tasks, we also include Chinese generation
tasks. Existing PLM-based libraries such as Hug-
ging Face (Wolf et al., 2020) are focused on per-
forming extensive NLP tasks and only consider
a few text generation tasks (mainly text summa-
rization and machine translation), which are not
comprehensive for text generation research.

Datasets. For each task, we collect widely-used
datasets and reorganize them in a unified text-to-
text format. In total, we include 83 datasets, and re-
port their details on the page1, including the dataset
description, basic statistics, and training/valida-
tion/testing samples. In addition, we build a leader-
board for each dataset by collecting the automatic
results and generated texts of the latest research.
It is convenient for users to quickly learn about
the baselines and their results. We also encourage
community users to collaboratively maintain the
leaderboard and submit their model results.

1https://github.com/RUCAIBox/TextBox#
dataset

436

https://github.com/RUCAIBox/TextBox#dataset
https://github.com/RUCAIBox/TextBox#dataset

Metrics. To conduct evaluations with these tasks
and datasets, TextBox 2.0 supports four categories
of automatic metrics: (1) lexical metrics, such as
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004), to measure the n-gram overlap between gen-
erated texts and golden texts; (2) semantic met-
rics, such as BERTScore (Zhang et al., 2020b)
and style strength (Lai et al., 2021), to com-
pare the texts at sentence level; (3) diversity met-
rics, such as Distinct (Li et al., 2016) and Self-
BLEU (Zhu et al., 2018), to evaluate the lexical
diversity of generated texts; (4) accuracy metrics,
such as exact match (Rajpurkar et al., 2016) and in-
form (Budzianowski et al., 2018a), to calculate the
precision of important phrases. In total, we include
12 general metrics and 5 task-specific metrics2.

Besides the analysis using automatic metrics,
TextBox 2.0 provides several visualization tools to
explore and analyze the generated texts in various
dimensions (Liu et al., 2021b; Tuckute et al., 2022).
For instance, Figure 2 shows how it offers new
insights to improve summarization tasks (details
can be found in Section 4.3).

2.2 Generation Models

To support the rapid progress of PLMs on text gen-
eration, TextBox 2.0 incorporates 45 PLMs3 and
aims to build a unified and standardized framework
based on PLMs. We list some included models as
follows:
• General PLMs: GPT-2 (Radford et al., 2019)

and BART (Lewis et al., 2020);
• Translation PLMs: mBART (Liu et al., 2020)

and XLM (CONNEAU and Lample, 2019);
•Chinese PLMs: CPM (Zhang et al., 2021) and

CPT (Shao et al., 2021);
• Dialogue PLMs: DialoGPT (Zhang et al.,

2020c) and Blenderbot (Roller et al., 2021);
• Controllable PLMs: CTRL (Keskar et al.,

2019) and PPLM (Dathathri et al., 2020);
• Distilled PLMs: DistilGPT2 (Sanh et al.,

2019) and DistilBART (Shleifer and Rush, 2020).
• Prompting PLMs: PTG (Li et al., 2022a) and

Context-Tuning (Tang et al., 2022);
• Lightweight modules: Adapter (Houlsby

et al., 2019), Prefix-tuning (Li and Liang, 2021).
The wide coverage of PLMs makes it possible

to deal with different text generation tasks using
2https://github.com/RUCAIBox/TextBox#

evaluation
3https://github.com/RUCAIBox/TextBox#

model

TextBox 2.0. For example, to perform specific
tasks such as dialogue system, users can adopt
task-specific PLMs such as DialoGPT; to deal with
Chinese generation tasks, users can adopt CPT. In
resource-constrained situations, lightweight PLMs
such as prefix-tuning can be a good choice.

2.3 Training Strategies
TextBox 2.0 provides four pre-training objectives
to help users pre-train a model from scratch, in-
cluding language modeling (Radford et al., 2019),
masked sequence-to-sequence modeling (Song
et al., 2019), denoising auto-encoding (Lewis et al.,
2020), and masked span prediction (Raffel et al.,
2020). These pre-training tasks can also be utilized
for domain-adaptive pre-training and task-adaptive
pre-training (Gururangan et al., 2020) to tailor ex-
isting PLM to the domain of a target task.

Also, TextBox 2.0 provides four useful training
methods for improving the optimization of PLMs.
It supports distributed data parallel to implement
models on multiple GPUs and machines to improve
the efficiency of pre-training and fine-tuning. We
incorporate Accelerate4 to support distributed train-
ing with a simple API. To further accelerate the de-
coding efficiency, we integrate FastSeq (Yan et al.,
2021) to optimize the decoding process by atten-
tion cache optimization, repeated n-gram detection,
and asynchronous parallel I/O.

Moreover, TextBox 2.0 enables users to ad-
just and select hyper-parameters automatically.
Based on the library Hyperopt (Bergstra et al.,
2013), users just need to set the parameter range
and search methods, and then the optimal hyper-
parameters and corresponding results will return. It
is useful for PLMs to search for hyper-parameters
such as batch size and learning rate. Our library
also supports performing repeat experiments us-
ing different random seeds in one command line,
which is especially useful to alleviate randomness
especially under few-shot settings.

3 Library Usage

In this section, we introduce how to use our library
in four different kinds of research scenarios by
showing the example codes.

Reproducing existing models. TextBox 2.0 in-
cludes various PLMs and supports many text gen-
eration tasks and datasets. It is convenient for users

4https://github.com/huggingface/
accelerate

437

https://github.com/RUCAIBox/TextBox#evaluation
https://github.com/RUCAIBox/TextBox#evaluation
https://github.com/RUCAIBox/TextBox#model
https://github.com/RUCAIBox/TextBox#model
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

python run_textbox.py \
--dataset=xsum --model=pegasus \
--model_path=google/pegasus-large

class new_model(AbstractModel):
def __init__(self):

…
self.t5 = T5_MODEL
self.gnn = GNN_MODEL

def forward(self, input, label):
…
embeds = self.gnn(input)
output = self.t5(embeds)
return loss_func(output, label)

def generate(self, input):
…
embeds = self.gnn(input)
return self.t5.generate(embeds)

python run_textbox.py \
--dataset=wudao --model=bart \
--pretrain_task=denoising

hyper.test
Learning_rate choice [1e-5, 3e-5]
train_batch_size choice [64, 256]

command line instruction
python run_hyper.py \

--space=hyper.test \
--dataset=xsum --model=pegasus \
--model_path=google/pegasus-large

accelerate config
accelerate launch run_textbox.py \

--dataset=wudao --model=bart \
--pretrain_task=denoising

python run_analysis.py \
--dataset=cnndm \
BART_output.txt T5_output.txt

(a) Example for reproducing existing models

(b) Example for hyper-parameter optimization (c) Example for implementing a new model (f) Example for analyzing

(e) Example for multi-GPU pre-training

(d) Example for pre-training a Chinese BART

Figure 1: Example usage of our TextBox 2.0.

to quickly run existing PLMs and reproduce results
for each dataset. In particular, users only need to
specify the dataset and model by setting the config-
urations dataset, model, and model_path,
within a simple command line.

Figure 1(a) presents an example to fine-tune PE-
GASUS (Zhang et al., 2020a) on XSum (Narayan
et al., 2018) dataset. Moreover, TextBox 2.0 en-
ables users to conduct hyper-parameter optimiza-
tion by only providing a list of possible values.
Figure 1(b) shows an example that automatically
adjusts the hyper-parameters learning_rate
and batch_size from the ranges [1× 10−5, 3×
10−5] and [64, 256], respectively.

Implementing a new model. Since TextBox 2.0
builds a unified pipeline for text generation re-
search, users only need to define a new model class
without considering other procedures to implement
a new model. Specially, users should first inherit
from our base model class AbstractModel be-
fore specifying three specific model functions:
(1) __init__(): this function initializes the
architectures and parameters of the model; (2)
forward(): this function is used to calcu-
late the loss for optimization during training; (3)
generate(): this function generates texts based
on input during inference.

Figure 1(c) presents an example of implementing
a new model for the KG-to-text generation task . In
this example, the model adopts a graph neural net-
work (GNN) to encode KG and then uses T5 (Raf-
fel et al., 2020) to generate texts. We first define the
GNN and T5 models in the __init__() func-
tion. Then, we use GNN to encode KG to em-
beddings as the input of T5 and compute the loss
according to target labels in the forward() func-
tion. Finally, we use a similar process to generate
text in the generate() function.

Pre-training a new model. In TextBox 2.0, we
provide several pre-training objectives for users
to pre-train new models from scratch. Specifi-
cally, users just need to specify the pre-training
task, pre-training corpus, and architecture by set-
ting pretrain_task, dataset, and model.
Figure 1(d) shows an example that pre-trains a Chi-
nese BART on the WuDaoCorpora (Yuan et al.,
2021) using the denoising pre-training objective.

To improve the pre-training efficiency, TextBox
2.0 supports distributed data parallel and efficient
decoding (Section 2.3). Figure 1(e) shows an
illustrative example of how users can use the
accelerate command to set configurations of
multiple devices and launch the training code.

Analyzing generated results. Besides simply
obtaining the evaluation results, our library pro-
vides several visualization analysis mechanisms
to perform deep analysis on the generated results
of models. For example, we support the use of
the statistical chart to analyze the mean and stan-
dard deviation scores for different sentence lengths.
These methods can help users learn about the ad-
vantages and disadvantages of different models in a
detailed comparison. Figure 1(f) shows an example
of how to run the analysis using a simple command
line and the results can be found in Figure 2. This
example compares the generated texts of BART
and T5 on the CNN/DailyMail dataset.

4 Experiments

In this section, we conduct extensive experiments
to verify the generation abilities of TextBox 2.0.

4.1 Result Reproduction

As an open-source library, TextBox 2.0 should be
able to reproduce the results of existing work ef-
fectively. To verify this, we select a number of

438

Text Summarization Text Simplification Chinese Generation Translation

R-1 R-2 R-L B-4 ME R-2 LCSTS CSL ADGEN En→Ro Ro→En

BART 44.16a 21.28 40.90 88.30b 55.60 86.10 40.60c 64.20 10.00 37.70d 37.80
BART (ours) 44.470.10 21.500.14 41.350.08 90.810.24 57.580.19 83.360.07 42.960.18 64.340.63 10.200.15 37.200.17 37.480.31

Data-to-text Generation Commonsense Generation Question Generation QA

B-4 ME R-L B-4 CIDEr SPICE B-4 ME R-L F1 EM

BART 64.55e 46.51 75.13 27.50f 14.12 30.00 22.00g 26.40 50.30 91.56h 84.23
BART (ours) 67.330.06 47.780.07 76.830.04 28.180.45 12.980.13 33.000.40 25.080.13 26.730.18 52.550.07 93.040.08 86.440.21

Open-ended Dialogue System Task-oriented Dialogue System Story Generation

B-1 B-2 D-1 D-2 B-4 Success Inform Comb. B-1 B-2 D-4

BART 49.90g 40.00 1.30 8.00 17.89i 74.91 84.88 97.78 30.70j 13.30 69.90
BART (ours) 49.581.12 39.240.90 1.440.09 8.890.57 20.170.63 75.401.22 84.401.15 100.070.53 33.790.13 15.780.21 78.762.15

Paraphrase Generation Style Transfer (E&M) Style Transfer (F&R)

B-4 ME R-1 R-2 R-L B-4 Acc. HM B-4 Acc. HM

BART 47.30k 49.70 73.30 54.10 75.10 76.50l 92.90 83.90 79.30 92.00 85.20
BART (Ours) 48.350.70 50.600.49 74.160.47 55.250.74 75.840.42 76.930.55 94.370.87 84.740.05 80.110.29 92.290.37 85.770.10

Table 2: The results of BART on thirteen tasks from the original papers and our TextBox 2.0. QA is short for
question answering. B, R, D, ME, EM, HM, Acc., and Comb. denote BLEU, ROUGE, Distinct, METEOR, exact
match, harmonic mean, accuracy, and combined score, respectively. LCSTS, CSL, ADGEN, and En↔Ro are
evaluated using the R-L, R-L, B-4, and B-4 metrics, respectively. a(Lewis et al., 2020) b(Gehrmann et al.,
2021) c(Shao et al., 2021) d(Liu et al., 2020) e(Ke et al., 2021) f (Lin et al., 2020a) g(Liu et al., 2021a)
h(Xu et al., 2021) i(Lin et al., 2020b) j(Guan et al., 2021) k(Sun et al., 2021) l(Lai et al., 2021)

widely-used datasets for each task (introduced in
Section 2.1) and compare the results conducted
by TextBox 2.0 with those in the original papers.
We totally evaluate 13 tasks using 14 datasets, in-
cluding CNN/DailyMail (See et al., 2017), Wiki-
Auto + Turk (Liu et al., 2021a), LCSTS (Hu
et al., 2015), CSL5, ADGEN (Shao et al., 2019),
WMT 16 English-Romanian (En↔Ro) (Bojar et al.,
2016), WebNLG 2.1 (Gardent et al., 2017), Com-
monGen (Lin et al., 2020a), SQuAD (Rajpurkar
et al., 2016), PersonaChat (Zhang et al., 2018),
MultiWOZ 2.0 (Budzianowski et al., 2018b),
ROCStories (Mostafazadeh et al., 2016), GYAFC
(E&M and F&R) (Rao and Tetreault, 2018), and
Quora (Kumar et al., 2020).

Since BART is the prevalent PLM for text gen-
eration, we endeavor to reproduce existing works
with BARTLARGE

6. For all experiments, we em-
ploy the sequence-to-sequence cross-entropy loss
with a label smoothing factor of 0.1 as the ob-
jective function. We optimize the model using
AdamW (Loshchilov and Hutter, 2019) with a con-
stant learning rate of 3× 10−5. The accumulated
batch size is set to 192. During inference, we apply
beam search with a beam size of 5 and no-repeat

5https://github.com/CLUEbenchmark/CLGE
6For translation tasks, we utilize mBART-CC25 (Liu et al.,

2020). For Chinese generation tasks, we utilize Chinese
BARTLARGE (Shao et al., 2021).

Library Preparation Training Generation
(minutes) (minutes) (minutes)

Fairseq 2.930.02 410.058.86 79.241.50

Hugging Face 4.020.12 416.254.47 75.692.53

TextBox 2.0 3.810.14 393.995.09 27.051.03

Table 3: Efficiency comparison of three libraries for
BARTLARGE fine-tuned on CNN/DailyMail. The prepa-
ration stage consists of configuration loading, text to-
kenization, and necessary initialization options. The
training stage takes time for fine-tuning on the training
set in one epoch. The generation stage takes time to
generate on the test set with a beam size of 5.

n-gram size of 3. To reduce randomness, we re-
port the mean and standard deviation of our results
based on three random seeds: 2020, 2021, and
2022. All codes are implemented in PyTorch 1.11.0
on Ubuntu SMP 20.04.1 (Linux 5.15.0-46) with
one GPU (NVIDIA GeForce RTX 3090 24GB).

To conduct these experiments, we only need to
run the script shown in Figure 1 (a) with differ-
ent dataset names. As shown in Table 2, our
TextBox 2.0 can faithfully reproduce the results
reported in existing work. Remarkably, our library
achieves better performances than original works
on 37 of the 44 metrics evaluated. It might be
because we adopt optimization strategies such as
label smoothing and large batch sizes.

439

https://github.com/CLUEbenchmark/CLGE

(a) Leaderboard of CNN/DailyMail (b) ROUGE-L scores of BART and T5
for different input lengths

(c) N-gram overlap of target and gener-
ated texts with input document

Figure 2: The partial visualization analysis on CNN/DailyMail dataset. The whole one can be found at https:
//github.com/RUCAIBox/TextBox/blob/2.0.0/asset/example-analysis.html.

4.2 Efficiency Comparison

In addition to accurately reproducing results, we
have optimized TextBox 2.0 for computational ef-
ficiency. We streamline the training process and
support efficient decoding strategies. To compare
the efficiency, we choose the well-known PLM li-
braries Fairseq7 and Hugging Face8, and then test
the time consumption under identical settings de-
scribed in Section 4.1.

From the results in Table 3, we can see that our
TextBox 2.0 is more efficient than Fairseq and Hug-
ging Face. During training, TextBox 2.0 simplifies
the training process and reduces the time spent on
non-essential functions such as trainer management
and loss tracking. In the generation process, our
library is significantly faster than the other two
libraries due to the incorporation of efficient decod-
ing strategies introduced in Section 2.3.

4.3 Visualization Analysis

Besides reproducing a model, it is also important to
compare existing methods, analyze the generated
texts, and explore directions for improvement. Our
library sets a specific leaderboard for each dataset,
including basic metric results, author repositories,
and generated texts. Figure 2 (a) showcases the
leaderboard for the CNN/DailyMail dataset.

Users can also utilize TextBox 2.0 to conduct
visualization analysis for specified models. For
example, our library can automatically plot the
boxplot of the ROUGE-L score for different in-
put lengths and the n-gram overlap of target and
generated texts with the input document. From
the results in Figure 2 (b), we can find that T5 ex-

7We utilize the code from Fairseq 0.12.2.
8We utilize the code from Transformers 4.20.1.

cels at short document summarization while BART
excels at long document summarization. It is use-
ful to analyze and improve the deficiencies of text
generation models or obtain better performance
by combining their results. As another example,
Figure 2 (c) illustrates that BART and T5 have a sig-
nificantly higher n-gram overlap ratio than golden
sentences, indicating that they tend to “copy” the
input document rather than “summarize” it. From
such analysis results, users can apply the methods
proposed by Goyal et al. (2022) to alleviate it.

5 Conclusion

This paper presented TextBox 2.0, a comprehen-
sive and unified library for conducting research on
PLM-based text generation. Our library makes sig-
nificant extensions in three major aspects, namely
generation tasks (13 tasks and 83 datasets), genera-
tion models (45 PLMs), and training strategies (e.g.,
distributed data parallel and efficient decoding). Re-
sults from extensive test experiments demonstrate
that our library can accurately reproduce existing
models. Besides, we also provide a series of utility
tools to better analyze and explore the generated re-
sults. To summarize, our library can be very useful
to facilitate text generation research, and our team
will improve this library with regular updates.

Acknowledgement

This work was partially supported by Beijing Natu-
ral Science Foundation under Grant No. 4222027,
and Beijing Outstanding Young Scientist Program
under Grant No. BJJWZYJH012019100020098.
Xin Zhao is the corresponding author.

440

https://github.com/RUCAIBox/TextBox/blob/2.0.0/asset/example-analysis.html
https://github.com/RUCAIBox/TextBox/blob/2.0.0/asset/example-analysis.html

References
James Bergstra, Daniel Yamins, and David Cox. 2013.

Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision ar-
chitectures. In Proceedings of the 30th International
Conference on Machine Learning, volume 28, pages
115–123.

Ondřej Bojar, Christian Buck, Rajen Chatterjee, Chris-
tian Federmann, Liane Guillou, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Aurélie
Névéol, Mariana Neves, Pavel Pecina, Martin Popel,
Philipp Koehn, Christof Monz, Matteo Negri, Matt
Post, Lucia Specia, Karin Verspoor, Jörg Tiedemann,
and Marco Turchi, editors. 2016. Proceedings of the
First Conference on Machine Translation: Volume
1, Research Papers. Association for Computational
Linguistics, Berlin, Germany.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018a. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018b. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016–5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang
Tang. 2017. A survey on dialogue systems: Re-
cent advances and new frontiers. SIGKDD Explor.
Newsl., 19(2).

Alexis CONNEAU and Guillaume Lample. 2019.
Cross-lingual language model pretraining. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
2020. A survey of multilingual neural machine
translation. ACM Comput. Surv., 53(5).

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language mod-
els: A simple approach to controlled text generation.
In International Conference on Learning Represen-
tations.

Wafaa S. El-Kassas, Cherif R. Salama, Ahmed A.
Rafea, and Hoda K. Mohamed. 2021. Automatic
text summarization: A comprehensive survey. Ex-
pert Systems with Applications, 165:113679.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179–188, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Sebastian Gehrmann, Tosin Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khy-
athi Raghavi Chandu, Miruna-Adriana Clinciu,
Dipanjan Das, Kaustubh Dhole, Wanyu Du,
Esin Durmus, Ondřej Dušek, Chris Chinenye
Emezue, Varun Gangal, Cristina Garbacea, Tat-
sunori Hashimoto, Yufang Hou, Yacine Jernite,
Harsh Jhamtani, Yangfeng Ji, Shailza Jolly, Mi-
hir Kale, Dhruv Kumar, Faisal Ladhak, Aman
Madaan, Mounica Maddela, Khyati Mahajan,
Saad Mahamood, Bodhisattwa Prasad Majumder,
Pedro Henrique Martins, Angelina McMillan-
Major, Simon Mille, Emiel van Miltenburg, Moin
Nadeem, Shashi Narayan, Vitaly Nikolaev, Andre
Niyongabo Rubungo, Salomey Osei, Ankur Parikh,
Laura Perez-Beltrachini, Niranjan Ramesh Rao,
Vikas Raunak, Juan Diego Rodriguez, Sashank
Santhanam, João Sedoc, Thibault Sellam, Samira
Shaikh, Anastasia Shimorina, Marco Antonio
Sobrevilla Cabezudo, Hendrik Strobelt, Nishant
Subramani, Wei Xu, Diyi Yang, Akhila Yerukola,
and Jiawei Zhou. 2021. The GEM benchmark: Nat-
ural language generation, its evaluation and metrics.
In Proceedings of the 1st Workshop on Natural
Language Generation, Evaluation, and Metrics
(GEM 2021), pages 96–120, Online. Association for
Computational Linguistics.

Tanya Goyal, Jiacheng Xu, Junyi Jessy Li, and Greg
Durrett. 2022. Training dynamics for text summa-
rization models. In Findings of the Association
for Computational Linguistics: ACL 2022, pages
2061–2073, Dublin, Ireland. Association for Com-
putational Linguistics.

Jian Guan, Xiaoxi Mao, Changjie Fan, Zitao Liu, Wen-
biao Ding, and Minlie Huang. 2021. Long text gen-
eration by modeling sentence-level and discourse-
level coherence. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 6379–6393, Online. Association for
Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea

441

https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.1145/3166054.3166058
https://doi.org/10.1145/3166054.3166058
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://doi.org/10.1145/3406095
https://doi.org/10.1145/3406095
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://aclanthology.org/2022.findings-acl.163
https://aclanthology.org/2022.findings-acl.163
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2021.acl-long.499
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740

Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for NLP.
In ICML.

Baotian Hu, Qingcai Chen, and Fangze Zhu. 2015. LC-
STS: A large scale Chinese short text summarization
dataset. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1967–1972, Lisbon, Portugal. Association for
Computational Linguistics.

Pei Ke, Haozhe Ji, Yu Ran, Xin Cui, Liwei Wang, Lin-
feng Song, Xiaoyan Zhu, and Minlie Huang. 2021.
JointGT: Graph-text joint representation learning for
text generation from knowledge graphs. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 2526–2538, Online.
Association for Computational Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent
Nguyen, Jean Senellart, and Alexander Rush. 2018.
OpenNMT: Neural machine translation toolkit. In
Proceedings of the 13th Conference of the Associa-
tion for Machine Translation in the Americas (Vol-
ume 1: Research Track), pages 177–184, Boston,
MA. Association for Machine Translation in the
Americas.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha Talukdar. 2020. Syntax-guided con-
trolled generation of paraphrases. Transactions
of the Association for Computational Linguistics,
8:329–345.

Huiyuan Lai, Antonio Toral, and Malvina Nissim.
2021. Thank you BART! rewarding pre-trained
models improves formality style transfer. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 484–
494, Online. Association for Computational Linguis-
tics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 110–119, San Diego, California. Association
for Computational Linguistics.

Junyi Li, Tianyi Tang, Gaole He, Jinhao Jiang, Xiaox-
uan Hu, Puzhao Xie, Zhipeng Chen, Zhuohao Yu,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. TextBox:
A unified, modularized, and extensible framework
for text generation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Con-
ference on Natural Language Processing: System
Demonstrations, pages 30–39, Online. Association
for Computational Linguistics.

Junyi Li, Tianyi Tang, Jian-Yun Nie, Ji-Rong Wen, and
Xin Zhao. 2022a. Learning to transfer prompts for
text generation. In Proceedings of the 2022 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 3506–3518, Seattle,
United States. Association for Computational Lin-
guistics.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2022b. A survey of pretrained lan-
guage models based text generation. arXiv preprint
arXiv:2201.05273.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4582–4597, Online. Association for Computational
Linguistics.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020a. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata,
and Pascale Fung. 2020b. MinTL: Minimalist trans-
fer learning for task-oriented dialogue systems. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3391–3405, Online. Association for Computa-
tional Linguistics.

Dayiheng Liu, Yu Yan, Yeyun Gong, Weizhen Qi,
Hang Zhang, Jian Jiao, Weizhu Chen, Jie Fu, Linjun
Shou, Ming Gong, Pengcheng Wang, Jiusheng Chen,
Daxin Jiang, Jiancheng Lv, Ruofei Zhang, Winnie
Wu, Ming Zhou, and Nan Duan. 2021a. GLGE: A

442

https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/D15-1229
https://doi.org/10.18653/v1/2021.findings-acl.223
https://doi.org/10.18653/v1/2021.findings-acl.223
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://aclanthology.org/W18-1817
https://doi.org/10.1162/tacl_a_00318
https://doi.org/10.1162/tacl_a_00318
https://doi.org/10.18653/v1/2021.acl-short.62
https://doi.org/10.18653/v1/2021.acl-short.62
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2021.acl-demo.4
https://doi.org/10.18653/v1/2021.acl-demo.4
https://doi.org/10.18653/v1/2021.acl-demo.4
https://doi.org/10.18653/v1/2022.naacl-main.257
https://doi.org/10.18653/v1/2022.naacl-main.257
https://arxiv.org/abs/2201.05273
https://arxiv.org/abs/2201.05273
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2021.findings-acl.36

new general language generation evaluation bench-
mark. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 408–
420, Online. Association for Computational Linguis-
tics.

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaichen Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye, and Graham Neubig. 2021b. ExplainaBoard:
An explainable leaderboard for NLP. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing: System Demonstrations, pages 280–289,
Online. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Alexander Miller, Will Feng, Dhruv Batra, Antoine
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and
Jason Weston. 2017. ParlAI: A dialog research soft-
ware platform. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 79–84,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Sudha Rao and Joel Tetreault. 2018. Dear sir or
madam, may I introduce the GYAFC dataset: Cor-
pus, benchmarks and metrics for formality style
transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 129–140,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai,
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu.
2021. Cpt: A pre-trained unbalanced transformer
for both chinese language understanding and gener-
ation. arXiv preprint arXiv:2109.05729.

443

https://doi.org/10.18653/v1/2021.findings-acl.36
https://doi.org/10.18653/v1/2021.findings-acl.36
https://doi.org/10.18653/v1/2021.acl-demo.34
https://doi.org/10.18653/v1/2021.acl-demo.34
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/N18-1012
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://arxiv.org/abs/2109.05729
http://arxiv.org/abs/2109.05729
http://arxiv.org/abs/2109.05729

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei
Xu, and Xiaoyan Zhu. 2019. Long and diverse text
generation with planning-based hierarchical varia-
tional model. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3257–3268, Hong Kong, China. As-
sociation for Computational Linguistics.

Sam Shleifer and Alexander M Rush. 2020. Pre-
trained summarization distillation. arXiv preprint
arXiv:2010.13002.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages
5926–5936. PMLR.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AE-
SOP: Paraphrase generation with adaptive syntactic
control. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5176–5189, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong
Wen. 2022. Context-tuning: Learning contextual-
ized prompts for natural language generation. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 6340–6354,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Greta Tuckute, Aalok Sathe, Mingye Wang, Harley
Yoder, Cory Shain, and Evelina Fedorenko. 2022.
SentSpace: Large-scale benchmarking and evalua-
tion of text using cognitively motivated lexical, syn-
tactic, and semantic features. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstra-
tions, pages 99–113, Hybrid: Seattle, Washington +
Online. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Peng Xu, Davis Liang, Zhiheng Huang, and Bing
Xiang. 2021. Attention-guided generative models

for extractive question answering. arXiv preprint
arXiv:2110.06393.

Yu Yan, Fei Hu, Jiusheng Chen, Nikhil Bhendawade,
Ting Ye, Yeyun Gong, Nan Duan, Desheng Cui,
Bingyu Chi, and Ruofei Zhang. 2021. FastSeq:
Make sequence generation faster. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing:
System Demonstrations, pages 218–226, Online. As-
sociation for Computational Linguistics.

Sha Yuan, Hanyu Zhao, Zhengxiao Du, Ming Ding,
Xiao Liu, Yukuo Cen, Xu Zou, Zhilin Yang, and Jie
Tang. 2021. Wudaocorpora: A super large-scale chi-
nese corpora for pre-training language models. AI
Open, 2:65–68.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, pages 11328–11339.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2204–
2213, Melbourne, Australia. Association for Com-
putational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with bert. In Interna-
tional Conference on Learning Representations.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020c. DIALOGPT : Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 270–
278, Online. Association for Computational Linguis-
tics.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian
Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji,
Jian Guan, et al. 2021. Cpm: A large-scale gener-
ative chinese pre-trained language model. AI Open,
2:93–99.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo,
Weinan Zhang, Jun Wang, and Yong Yu. 2018. Texy-
gen: A benchmarking platform for text generation
models. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-
12, 2018, pages 1097–1100. ACM.

444

https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
http://arxiv.org/abs/2010.13002
http://arxiv.org/abs/2010.13002
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://doi.org/10.18653/v1/2021.emnlp-main.420
https://aclanthology.org/2022.coling-1.552
https://aclanthology.org/2022.coling-1.552
https://aclanthology.org/2022.naacl-demo.11
https://aclanthology.org/2022.naacl-demo.11
https://aclanthology.org/2022.naacl-demo.11
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2110.06393
http://arxiv.org/abs/2110.06393
https://doi.org/10.18653/v1/2021.acl-demo.26
https://doi.org/10.18653/v1/2021.acl-demo.26
https://www.sciencedirect.com/science/article/pii/S2666651021000152
https://www.sciencedirect.com/science/article/pii/S2666651021000152
https://proceedings.mlr.press/v119/zhang20ae.html
https://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30

Author Index

Abhishek, Guttu, 121
Al Khalil, Muhamed, 242
Alhafni, Bashar, 242
Ananthasubramaniam, Aparna, 327
Andrews, Pierre, 258
Antypas, Dimosthenis, 38
Au, Jimmy, 178

Bai, Fan, 311
Baldwin, Timothy, 60
Bast, Hannah, 72
Ben Rim, Wiem, 338
Berg-kirkpatrick, Taylor, 379
Bhagavatula, Chandra, 200
Bhattacharjee, Abhik, 266
Bianchi, Federico, 289
Bohnet, Bernd, 266
Boisson, Joanne, 38
Borchardt, Jonathan, 200
Branchaud-charron, Frederic, 298
Brin, Lindsay, 298
Brock, Stephen, 224

Caciularu, Avi, 12
Camacho-collados, Jose, 38
Cao, Jie, 191
Cao, Pengfei, 1
Chai, Junyi, 191
Chan, Sophia, 169
Chen, Lingjiao, 359
Chen, Xiang, 98
Chen, Yanxu, 396
Chen, Yingfa, 396
Chen, Yubo, 1
Chen, Zhipeng, 435
Chi, Bingyu, 191
Choshen, Leshem, 159
Chowdhury, Md Faisal Mahbub, 282
Clavel, Chloé, 250
Cohn, Trevor, 60
Cutrona, Vincenzo, 289
Çelebi, Onur, 258

Dai, Wenxun, 435
Danilevsky, Marina, 159
Dar, Guy, 12
Dedeloudis, Apostolos, 327
Dong, Victor Ye, 191

Dorna, Vineeth, 121
Downey, Doug, 200
Durrett, Greg, 351

Epelboim, Dina, 159
Espinosa Anke, Luis, 38

Fan, Angela, 258
Freitag, Dayne, 311
Frermann, Lea, 60

Gardner, Matt, 389
Gashteovski, Kiril, 338
Gauthier-melancon, Gabrielle, 298
Gehrmann, Sebastian, 266
Gera, Ariel, 159
Geva, Mor, 12
Ghosh, Debanjan, 169
Gimpel, Kevin, 379
Glass, Michael, 282
Gliozzo, Alfio, 282
Goldberg, Yoav, 12
Goldwasser, Dan, 371
Golobokov, Konstantin, 191
Gong, Baitao, 396
Goyal, Tanya, 351
Grande, Karine, 298
Gu, Mandy, 191
Guan, Jian, 214
Guo, Yingzhe, 258

Habash, Nizar, 242, 319
Halfon, Alon, 159
Han, Xu, 396
Han, Xudong, 60
Hazim, Reem, 242
He, Shizhu, 148
Heffernan, Kevin, 258
Helwe, Chadi, 250
Hertel, Matthias, 72
Hoi, Steven C.h., 178
Hope, Tom, 200
Hovy, Dirk, 289
Hu, Yiwen, 435
Huang, Jun, 22
Huang, Minlie, 214

Ingole, Harshad, 121

445

Inoue, Go, 319
Iyer, Rishabh, 121

Jin, Zhuoran, 1
Johnson, Sophie, 200
Joty, Shafiq, 178
Jurgens, David, 327

Kamran, Ammar, 258
Katsis, Yannis, 159
Khromov, Nikita, 406
Kim, Juyong, 109
King, Daniel, 200
Kireev, Danil, 406
Kreutzer, Julia, 50
Kuehl, Bailey, 200
Kuzmin, Gleb, 406

Larionov, Daniil, 406
Laturia, Parth, 121
Lawonn, Kai, 137
Lawrence, Carolin, 338
Lazichny, Ivan, 406
Le, Di, 298
Lee, Kyusong, 30
Li, Bin, 148
Li, Junyi, 435
Li, Junyi Jessy, 351
Li, Lei, 22, 98
Li, Shutao, 148
Li, Yitong, 60
Li, Zhoubo, 98
Liakata, Maria, 80
Liang, Weixin, 359
Lin, Wei, 22
Liu, Fangyu, 38
Liu, Kang, 1, 148
Liu, Pengfei, 338
Liu, Tingting, 22
Liu, Yi, 191
Liu, Zhiyuan, 396
Lo, Kyle, 200
Logan Iv, Robert L, 389
Loureiro, Daniel, 38
Lu, Xiaopeng, 30
Luccioni, Sasha, 128

Madaan, Aman, 266
Madrid, Peter, 311
Mahendiran, Abinaya, 266
Maheshwari, Ayush, 121

Malon, Christopher, 338
Marinier, Joseph, 298
Marquez Ayala, Orlando, 298
Marty, Felix, 128
Martínez Cámara, Eugenio, 38
Maufe, Matt, 80
Mcmillan-major, Angelina, 266
Mekala, Raja Sekhar Reddy, 389
Men, Tianyi, 1
Meuschke, Monique, 137
Mihindukulasooriya, Nandana, 282
Mitchell, Margaret, 359
Mourachko, Alexandre, 258
Murthy, Sonia, 200
Mustar, Victor, 128

Neubig, Graham, 338, 379
Ngo, Helen, 128
Nie, Jian-yun, 435
Niekrasz, John, 311

Obeid, Ossama, 319
Ohta, Mayumi, 50

Pacheco, Maria Leonor, 371
Papangelis, Alexandros, 266
Parker, Jerrod, 224
Pei, Jiaxin, 327
Piktus, Aleksandra, 128
Potthast, Martin, 232
Prange, Natalie, 72
Procter, Rob, 80

Qiao, Shuofei, 98
Qiu, Minghui, 22

Rajani, Nazneen, 128, 359
Ramakrishnan, Ganesh, 121
Ravenscroft, James, 80
Ravikumar, Pradeep, 109
Razeghi, Yasaman, 389
Rezaee, Kiamehr, 38
Riahi, Talayeh, 38
Riezler, Stefan, 50
Ritter, Alan, 311
Roit, Paul, 12
Rossiello, Gaetano, 282
Roy, Shamik, 371
Rubashevskii, Aleksandr, 406
Ruffinelli, Daniel, 338

446

Sadde, Shoval, 12
Saddiki, Hind, 242
Sanochkin, Leonid, 406
Santillan Cooper, Martin, 159
Sargent, Jackson, 327
Schwabe, Dominik, 232
Schwenk, Holger, 258
Shahmatova, Olga, 406
Shanbhogue, Suhas, 109
Sharma, Abheesht, 109
Shen, Aili, 60
Shen, Haozhan, 30
Shlain, Micah, 12
Shnarch, Eyal, 159
Shvets, Anna, 266
Singh, Sameer, 389
Somasundaran, Swapna, 169
Suchanek, Fabian, 250
Sun, Anna, 258
Sun, Bin, 148
Sun, Maosong, 396
Syed, Shahbaz, 232

Tamir, Bar, 12
Tan, Samson, 178
Tang, Tianyi, 435
Tao, Liankuan, 98
Thakur, Abhishek, 128
Thrush, Tristan, 128
Tian, Yixiang, 214
Tsvigun, Akim, 406
Tunstall, Lewis, 128
Tyler, Chris, 298

Upadhyay, Ashish, 266
Ushio, Asahi, 38

Vazhentsev, Artem, 406
Voigt, Henrik, 137
Von Werra, Leandro, 128

Wang, Alex, 266
Wang, Chengyu, 22
Wang, Dakuo, 159
Wang, Guangsen, 178
Wang, Jianing, 22

Wang, Ming, 22
Wang, Xingyao, 327
Weiss, Jeremy, 109
Weld, Daniel, 200
Wen, Ji-rong, 435
Weng, Yixuan, 148
Wenzek, Guillaume, 258
Widjaja, Haris, 338
Wieting, John, 379
Wu, Gang, 178

Xia, Fei, 148
Xie, Xin, 98
Xu, Guowei, 214
Xu, Xin, 98
Xue, Zhipeng, 1

Yan, Yulan, 191
Yang, Mingfeng, 224
Ye, Hongbin, 98
Yin, Jianwei, 30
Yu, Haiyang, 98
Yu, Shi, 224
Yu, Zhuohao, 435
Yuan, Hongbang, 1

Zarrieß, Sina, 137
Zeng, Guoyang, 396
Zhang, Ningyu, 98
Zhang, Taolin, 22
Zhang, Tianqi, 30
Zhang, Zheng, 159
Zhang, Zhengyan, 396
Zhang, Zhexin, 214
Zhao, Jun, 1, 148
Zhao, Mengxuan, 169
Zhao, Tiancheng, 30
Zhao, Wayne Xin, 435
Zhao, Weilin, 396
Zhou, Naitian, 327
Zhou, Yuyang, 1
Zhu, Mingwei, 30
Zou, James, 359

447

	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE
	TEMPLATETITLE

