EMNLP 2022

The 2022 Conference on Empirical Methods in Natural
Language Processing

Proceedings of the Demonstrations Session

December 7-11, 2022

(©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-959429-41-8

Program Committee

Program Committee
Akos Kddér
Aarne Talman
Amanda Cercas Curry
Adina Williams
Adam Pauls
Adria De Gispert
Allan Jabri
Akash Srivastava
Aldo Gangemi
Anders Johannsen
Asli Celikyilmaz
Aurélien Max
Andrew Bennett
Barry Devereux
Beata Beigman Klebanov
Gayatri Bhat
Johannes Bjerva
Benjamin Snyder
Giuseppe Carenini
Carina Silberer
Carmen Banea
Cagr1 Coltekin
Courtney Napoles
Khalid Choukri
Chuan Wang
Christopher Pinon
Cristian Danescu-niculescu-mizil
Caroline Sporleder
Dominikus Wetzel
Joachim Daiber
David Alvarez-melis
Daoud Clarke
Diego Marcheggiani
Dimitris Alikaniotis
Dipanjan Das
Daniela Gerz
Erwin Marsi
Zhou Yu
Effi Levi
Ellen Breitholtz
Emily Ohman
Edoardo Maria Ponti
Eric Holgate
Arash Eshghi
Feiyu Xu
Adam Fisch

ii

Chris Fox

Linfeng Song
Georgiana Dinu
Daniel Gildea
Giovanni Da San Martino
Graham Neubig
Gonzalo Iglesias
Hans Kamp

Heather Burnett
Helen Yannakoudakis
Ruihong Huang
Ioannis Papaioannou
Ivelina Nikolova-koleva
Jiaming Luo

Julian Hough
Jennifer Sikos

Junyi Jessy Li
Jonathan Mallinson
Julie Weeds

John Wieting

Katja Jasinskaja
Katrin Kirchhoff
Yunsu Kim

Kiril Simov
Maximilian Koper
Laura Tolosi

I-ta Lee

Leo Leppénen

Chang Li

Lisa Anne Hendricks
Sujian Li

Loic Barrault

Laura Perez-beltrachini
Malvina Nissim
Maciej Piasecki
Maja Popovié
Christopher Manning
Margaret Mitchell
Marianna Apidianaki
Mark Granroth-wilding
Shigeki Matsubara
Stephen Mayhew
Mohit Bansal
Wolfgang Menzel
Marjorie Freedman
Michael Wojatzki
Mike Lewis

Junhua Mao

Man Lan

Myriam Munezero
Mohammad Taher Pilehvar

iii

Mona Diab
Natalie Schluter
Nicholas Asher
Nikola Mrksié
Nitish Gupta
Noura Farra
Nasrin Mostafazadeh
Oren Melamud
Pascale Fung
Philipp Cimiano
Sameer Pradhan
Preslav Nakov
Patricia Thaine
Pierre Zweigenbaum
Rocco Tripodi
Rodrigo Nogueira
Stephen Roller
Rashmi Prasad
Rachel Rudinger
Joana Ribeiro
Shimi Salant

Alon Talmor
Salvatore Romeo
Shay B. Cohen
Eva Sharma
Shubham Agarwal
Shyam Upadhyay
Sian Gooding
Sida I. Wang
Simon Clematide
Sara Rosenthal
Anders Sggaard
Marina Sokolova
Shafiq Joty

Sanja Stajner
Stefan Thater
Suresh Manandhar
Tanja Schultz
Taylor Berg-kirkpatrick
Tim Fernando
Tiancheng Zhao
Ivan Titov

Tom Kwiatkowski
Lea Frermann
Jason Utt

Verena Rieser
Valentina Presutti
Esther Van Den Berg
Vicente Ordonez
Dingquan Wang
Weiwei Guo

v

Wei Xu

Yang Liu

Yi Yang

Yishu Miao

Yi Tay

Yujie Qian
Behrang Qasemizadeh
Zhifei Li

Zhongyu Wei
Anima Anandkumar
Jacob Andreas
Gabor Angeli
Joachim Bingel

Su Lin Blodgett
Antoine Bosselut
Lisa Brunetti
Pawet Budzianowski
Mingwei Chang
Benson Chen
Alexis Conneau
Silvio Cordeiro
Ryan Cotterell
Jacob Devlin

Chris Dyer
Desmond Elliott
Yimai Fang

Sanja Fidler
Nicholas Fitzgerald
Lucie Flekova
Kathleen C. Fraser
Matthew Gerber
Sayan Ghosh

Yoav Goldberg
Edouard Grave
Yulan He

Felix Hill

Tobias Horsmann
Mohit Iyyer

Heng Ji
Christopher Kedzie
Svetlana Kiritchenko
Jamie Kiros

Julia Kiseleva
Jayant Krishnamurthy
Gourab Kundu
Angeliki Lazaridou
Omer Levy

Percy Liang
Victoria Lin

Fei Liu

Chikiu Lo

Detmar Meurers
Mark Neumann
Brendan O’connor
Raghavendra Pappagari
Nikolaos Pappas
Jeffrey Pennington
Nghia The Pham
Vinodkumar Prabhakaran
Sampo Pyysalo
Victor Quach

Ines Rehbein
Sebastian Riedel
Arndt Riester
Miguel Rios

Derek Ruths

Merel Scholman
Hinrich Schutze
Tianxiao Shen

Wei Shi

Stefanie Sirenheikel
Yiannos Stathopoulos
Veselin Stoyanov
Ben Swanson
Swabha Swayamdipta
Ian Tenney

Sam Thomson
Kristina Toutanova
Ashish Vaswani
Tony Veale

Wentau Yih

Marcos Zampieri
Simon Suster

Alda Mari
Aleksandr Drozd
Alexis Palmer
Angel Chang
Roberto Basili
Farah Benamara
Chris Biemann
Constantin Orasan
Casey Kennington
Chris Callison-burch
Christopher Davis
Christoph Tillmann
Christos Christodoulopoulos
Christo Kirov

Claus Zinn

Trevor Cohen
Chen-tse Tsai
Debora Nozza

Dan Goldwasser

vi

Dan Garrette

Luigi Di Caro
Diego Frassinelli
Mauro Dragoni

E. Dario Gutierrez
Eduardo Blanco
Edward Grefenstette
Ekaterina Kochmar
Elena Cabrio

Elena Karagjosova
Ella Rabinovich

Els Lefever

Esma Balkir

Valia Kordoni
Ekaterina Vylomova
Federico Fancellu

Fabio Massimo Zanzotto

Farah Benamara
Fatiha Sadat

Anna Feldman
Francesco Barbieri
Gerard De Melo
Georgeta Bordea
Roxana Girju
Gaurav Pandey
Graham Katz
Heriberto Cuayahuitl
Heike Adel

Hai Ye

Iris Hendrickx
Toannis Konstas
Ignacio Iacobacci
Irina Temnikova
Chien-sheng Wu
John P. Mccrae
Jorg Tiedemann
Julia Rayz

Julie Hunter

Rik Koncel-kedziorski
Kevin Duh

Halil Kilicoglu
Mamoru Komachi
Kyusong Lee

Lan Du

Lasha Abzianidze
Laurette Pretorius
Phong Le

Jing Li

Liviu P. Dinu
Lluis Marquez
Lonneke Van Der Plas

vii

Luis Espinosa Anke
Massimo Poesio
Marc Franco-salvador
Marc Verhagen
David Marecek
Mark Sammons
Mathias Creutz
Mathieu Roche
Meriem Beloucif
Michel Galley
Michael Firber
Meng Fang

Maoxi Li

Nina Dethlefs

Niket Tandon

Nikos Papasarantopoulos
Octavian Popescu
Jessica Ouyang
Alexander Panchenko
Tommaso Pasini
Paul Buitelaar

Piek Vossen
Pierpaolo Basile
Parisa Kordjamshidi
Prasanth Kolachina
Radu Tudor Ionescu
Richard Johansson
Alan Ritter

Rob Van Der Goot
Rudolf Rosa

Roser Morante
Rotem Dror
Ruochen Xu

Siva Reddy Gangireddy
Alla Rozovskaya
Spandana Gella
Samira Shaikh
Mark Steedman
Stefan Evert
Stefano Faralli
Swapna Somasundaran
Stan Szpakowicz
Timothy Baldwin
Todor Mihaylov
Tim Van De Cruys
Torsten Zesch

Udo Hahn

Vlad Niculae
Pidong Wang

Wei Wang

Lifu Huang

viii

Xinya Du

Xinyu Hua

Yixin Nie

Yogarshi Vyas
Hiyon Yoo
Yoshihide Kato
Yova Kementchedjhieva
Yannick Versley
Zheng Yuan

Sanda Harabagiu
Samuel R. Bowman
David Jurgens

Frank Rudzicz
Gustavo Henrique Paetzold
Carlo Strapparava
Alexander Rush
Julia Hockenmaier
Pradeep Dasigi

Jinho Choi

Kentaro Torisawa
Denilson Barbosa
Arianna Bisazza
Antonio Toral
Antonios Anastasopoulos
Anne Cocos

Allyson Ettinger
André F. T. Martins
Agnieszka Falenska
Ari Holtzman
Alberto Barrén-cedefio
Alessandro Lenci
Alessandro Raganato
Aline Villavicencio
Adam Lopez

Annie Louis

Andrea Madotto
Alessandro Moschitti
Anna Currey

Amy Isard

Andrew Caines
Anna Rogers
Anténio Branco
Antske Fokkens
Adam Pease

Ari Rappoport

Ron Artstein
Beatrice Alex
Valerio Basile
Sebastian Krause

Iz Beltagy

Luciana Benotti

iX

Yevgeni Berzak
Francis Bond
Bonnie Webber
Barbara Plank
Razvan Bunescu
Jose Camacho-collados
Carlos Ramisch
Cécile Fabre
Christopher Potts
Christopher Hidey
Chloé Braud
Christian Hardmeier
Christopher Bryant
Claire Gardent
Diana Maynard
Denis Paperno

Ido Dagan

Daniel Beck

Daniel Hershcovich
Dan Lassiter

Dan Roth
Danushka Bollegala
Darja Fiser

David Schlangen
Marie-catherine De Marneffe
Derrick Higgins
Daniel Hardt

Diana Inkpen

Diana Mccarthy
Diyi Yang
Diarmuid O Séaghdha
Douwe Kiela

Eneko Agirre

Ehsan Shareghi

Ted Briscoe

Eleni Gregoromichelaki
Elia Bruni

Elior Sulem

Emar Maier

Ellie Pavlick

Erik Velldal

Enrico Santus

Eva Maria Vecchi
Emily Sheng

Anette Frank
Grzegorz Chrupata
Gianluca Lebani
Gabriel Stanovsky
Gabriella Lapesa
Gemma Boleda
German Kruszewski

Guy Emerson
Nicoletta Calzolari
Yvette Graham
Grégoire Winterstein
Guillaume Wisniewski
Iryna Gurevych
Haim Dubossarsky
Hannaneh Hajishirzi
Héctor Martinez Alonso
Hugo Gongalo Oliveira
Hila Gonen

Hiram Calvo

Inés Crespo

Ingrid Falk

Ivan Vulié

Jorge Carrillo-de-albornoz
Jackie Chi Kit Cheung
Jean Maillard
Jeremy Barnes

Jey Han Lau

Joakim Nivre
Jonathan Berant
Jorge Gracia

Jasmijn Bastings
Julian Brooke
Kalina Bontcheva
Laura Kallmeyer
Katrin Erk

Kevin Gimpel
Manfred Klenner
Alexander Koller
Kuzman Ganchev
Lucia Specia

Laura Rimell
Leshem Choshen
Louise Mcnally
Lucy Vanderwende
Luheng He

Lu Wang

Wei Lu

Matthew Purver
Magnus Sahlgren
Dirk Hovy

Marco Rospocher
Marek Rei

Mariano Felice
Marine Carpuat
Mark Finlayson

Ilia Markov

Martha Palmer
Martin Riedl

Matt Huenerfauth
Marco Baroni
Manaal Faruqui
Michael Strube
Miguel Ballesteros
Mikel Artetxe
Tristan Miller

Milos§ Stanojevié
Mirella Lapata
Muhammad Abdul-mageed
Michael White
Nathan Schneider
Roberto Navigli
Matteo Negri
Aurélie Névéol
Nikola Ljubesi¢
Niranjan Balasubramanian
Najoung Kim
Nanyun Peng

Ondrej Dusek

Omri Abend
Sebastian Padé
Patrik Lambert
Viviana Patti

Paul Cook

Peter Turney

Peter Clark

Petya Osenova
Manfred Pinkal
Panupong Pasupat
Rachel Bawden
Raffaella Bernardi
Ramakanth Pasunuru
Raquel Fernandez
Regina Barzilay
Reinald Kim Amplayo
Rico Sennrich
Stefan Riezler

Roi Reichart

Roman Klinger
Roser Sauri

Michael Roth

Roy Schwartz
Prodromos Malakasiotis
Josef Ruppenhofer
Ruth Kempson

Saif Mohammad
Sara Tonelli

Steven Schockaert
Sabine Schulte Im Walde
Shachar Mirkin

Xii

Shashi Narayan
Shuly Wintner

Simone Paolo Ponzetto

Siva Reddy

Sujay Kumar Jauhar
Slav Petrov
Smaranda Muresan
Stephanie M. Lukin
Manfred Stede
Stefan Kaufmann
Stella Frank
Stephen Clark
Subhro Roy

Mihai Surdeanu
Vivek Srikumar
Idan Szpektor
Tommaso Caselli
Tal Linzen

Tamara Polajnar
Benjamin Van Durme
Paola Velardi

Vera Demberg
Vered Shwartz
Veronique Hoste
Vincent Ng

Wilker Aziz

Daniel Weld

Wei Gao

Xavier Carreras
Nianwen Xue
Yangfeng Ji

Yannis Korkontzelos
Yonatan Bisk

Yejin Choi

Youmna Farag
Yftah Ziser
Yizhong Wang
Jonathan Ginzburg
Yangqiu Song
Yuval Pinter
Zden&k Zabokrtsky
Zornitsa Kozareva
Nikolaos Aletras
Yoav Artzi

Isabelle Augenstein
Luisa Bentivogli
Claire Bonial

Felipe Bravomarquez
Nathanael Chambers
Kaiwei Chang
Dangi Chen

Xiii

Greg Durrett
Jacob Eisenstein
Daniel Fried
Alona Fyshe
Zhe Gain
Graeme Hirst
Eduard Hovy
Dieuwke Hupkes
Dan Jurafsky
Greg Kondrak
Diane Litman
Kathy Mckeown
Vivi Nastase
Hwee Tou Ng
Devi Parikh
Veronica Perez
Emily Pitler
Hoifung Poon
Pushpendre Rastogi
Tim Rocktéschel
Michael Roth
Sebastian Ruder
Joel Tetreault
Simone Teufel
Yulia Tsvetkov
Lyle Ungar
Karin Verspoor
Andreas Vlachos
Leo Wanner
Ingmar Weber
Mark Yatskar
Amir Zeldes
Luke Zettlemoyer
Ziqing Yang
Yunlong Feng
Lu Hou

Ningyu Zhang
Jiarong Xu
Wenpeng Lu
Pushkar Mishra
Ivo Verhoeven
Lixin Su

Lea Krause
Sanyuan Chen
Kaiwen Wei
Yang Wu
Jianhua Yin
Baoxin Wang
Longxuan Ma

X1V

Table of Contents

CogKTR: A Knowledge-Enhanced Text Representation Toolkit for Natural Language Understanding
Zhuoran Jin, Tianyi Men, Hongbang Yuan, Yuyang Zhou, Pengfei Cao, Yubo Chen, Zhipeng Xue,
Kang Liuand Jun Zhaoo e 1

LM-Debugger: An Interactive Tool for Inspection and Intervention in Transformer-Based Language
Models

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval Sadde, Micah Shlain, Bar Tamir and Yoav
GOlADETg . . o oo e 12

EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing
Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting Liu, Lei Li, Jianing Wang, Ming Wang,
Jun Huang and Wei Lin 22

An Explainable Toolbox for Evaluating Pre-trained Vision-Language Models
Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu and
JIaNWET YN . oo e 30

TweetNLP: Cutting-Edge Natural Language Processing for Social Media

Jose Camacho-collados, Kiamehr Rezaee, Talayeh Riahi, Asahi Ushio, Daniel Loureiro, Dimo-
sthenis Antypas, Joanne Boisson, Luis Espinosa Anke, Fangyu Liu and Eugenio Martinez C4dmara
38

JoeyS2T: Minimalistic Speech-to-Text Modeling with JoeyNMT
Mayumi Ohta, Julia Kreutzer and Stefan Riezler ool 50

FairLib: A Unified Framework for Assessing and Improving Fairness
Xudong Han, Aili Shen, Yitong Li, Lea Frermann, Timothy Baldwin and Trevor Cohn....... 60

ELEVANT: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool
Hannah Bast, Matthias Hertel and Natalie Prange..................coiiiiiiiiineinnina... 72

A Pipeline for Generating, Annotating and Employing Synthetic Data for Real World Question Answe-
ring
Matt Maufe, James Ravenscroft, Rob Procter and Maria Liakata 80

DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
Ningyu Zhang, Xin Xu, Liankuan Tao, Haiyang Yu, Hongbin Ye, Shuofei Qiao, Xin Xie, Xiang
Chen, Zhoubo Liand Lei Li. e e 98

AnEMIC: A Framework for Benchmarking ICD Coding Models
Juyong Kim, Abheesht Sharma, Suhas Shanbhogue, Jeremy Weiss and Pradeep Ravikumar. . 109

SPEAR : Semi-supervised Data Programming in Python
Guttu Abhishek, Harshad Ingole, Parth Laturia, Vineeth Dorna, Ayush Maheshwari, Ganesh
Ramakrishnan and Rishabh Iyer e 121

Evaluate & Evaluation on the Hub: Better Best Practices for Data and Model Measurements
Leandro Von Werra, Lewis Tunstall, Abhishek Thakur, Sasha Luccioni, Tristan Thrush, Aleksan-
dra Piktus, Felix Marty, Nazneen Rajani, Victor Mustar and Helen Ngo......................... 128

KeywordScape: Visual Document Exploration using Contextualized Keyword Embeddings
Henrik Voigt, Monique Meuschke, Sina Zarrief and Kai Lawonn 137

XV

MedConQA: Medical Conversational Question Answering System based on Knowledge Graphs
Fei Xia, Bin Li, Yixuan Weng, Shizhu He, Kang Liu, Bin Sun, Shutao Li and Jun Zhao 148

Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis, Leshem Choshen,
Martin Santillan Cooper, Dina Epelboim, Zheng Zhang and Dakuo Wang....................... 159

AGReE: A system for generating Automated Grammar Reading Exercises
Sophia Chan, Swapna Somasundaran, Debanjan Ghosh and Mengxuan Zhao............... 169

BotSIM: An End-to-End Bot Simulation Framework for Commercial Task-Oriented Dialog Systems
Guangsen Wang, Samson Tan, Shafiq Joty, Gang Wu, Jimmy Au and Steven C.h. Hoi 178

DeepGen: Diverse Search Ad Generation and Real-Time Customization
Konstantin Golobokov, Junyi Chai, Victor Ye Dong, Mandy Gu, Bingyu Chi, Jie Cao, Yulan Yan
and Yi Liu. . e 191

ACCoRD: A Multi-Document Approach to Generating Diverse Descriptions of Scientific Concepts
Sonia Murthy, Kyle Lo, Daniel King, Chandra Bhagavatula, Bailey Kuehl, Sophie Johnson,
Jonathan Borchardt, Daniel Weld, Tom Hope and Doug Downeyoooiaat. 200

Automatic Comment Generation for Chinese Student Narrative Essays
Zhexin Zhang, Jian Guan, Guowei Xu, Yixiang Tian and Minlie Huang.................... 214

MIC: A Multi-task Interactive Curation Tool
Shi Yu, Mingfeng Yang, Jerrod Parker and Stephen Brock................................ 224

SUMMARY WORKBENCH: Unifying Application and Evaluation of Text Summarization Models
Shahbaz Syed, Dominik Schwabe and Martin Potthast.............. 232

Arabic Word-level Readability Visualization for Assisted Text Simplification
Reem Hazim, Hind Saddiki, Bashar Alhafni, Muhamed Al Khalil and Nizar Habash........ 242

LogiTorch: A PyTorch-based library for logical reasoning on natural language
Chadi Helwe, Chloé Clavel and Fabian Suchanek 250

stopes - Modular Machine Translation Pipelines
Pierre Andrews, Guillaume Wenzek, Kevin Heffernan, Onur Celebi, Anna Sun, Ammar Kamran,
Yingzhe Guo, Alexandre Mourachko, Holger Schwenk and AngelaFan......................... 258

GEMv2: Multilingual NLG Benchmarking in a Single Line of Code

Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papan-
gelis, Aman Madaan, Angelina Mcmillan-major, Anna Shvets, Ashish Upadhyay and Bernd Bohnet
266

KGI: An Integrated Framework for Knowledge Intensive Language Tasks
Md Faisal Mahbub Chowdhury, Michael Glass, Gaetano Rossiello, Alfio Gliozzo and Nandana
MihinduKulasooriyaout i e e 282

Twitter-Demographer: A Flow-based Tool to Enrich Twitter Data
Federico Bianchi, Vincenzo Cutrona and Dirk Hovy 289

Azimuth: Systematic Error Analysis for Text Classification
Gabrielle Gauthier-melancon, Orlando Marquez Ayala, Lindsay Brin, Chris Tyler, Frederic Branchaud-
charron, Joseph Marinier, Karine Grande and DiLe................. 298

SynKB: Semantic Search for Synthetic Procedures
Fan Bai, Alan Ritter, Peter Madrid, Dayne Freitag and John Niekrasz 311

XVi

Camelira: An Arabic Multi-Dialect Morphological Disambiguator
Ossama Obeid, Go Inoue and Nizar Habash.......... i 319

POTATO: The Portable Text Annotation Tool
Jiaxin Pei, Aparna Ananthasubramaniam, Xingyao Wang, Naitian Zhou, Apostolos Dedeloudis,
Jackson Sargent and David JUrgenst e 327

KGxBoard: Explainable and Interactive Leaderboard for Evaluation of Knowledge Graph Completion
Models

Haris Widjaja, Kiril Gashteovski, Wiem Ben Rim, Pengfei Liu, Christopher Malon, Daniel Ruffi-
nelli, Carolin Lawrence and Graham Neubig........... ... i 338

FALTE: A Toolkit for Fine-grained Annotation for Long Text Evaluation
Tanya Goyal, Junyi Jessy Liand Greg Durrett. o i, 351

SEAL: Interactive Tool for Systematic Error Analysis and Labeling
Nazneen Rajani, Weixin Liang, Lingjiao Chen, Margaret Mitchell and James Zou 359

Hands-On Interactive Neuro-Symbolic NLP with DRaiL
Maria Leonor Pacheco, Shamik Roy and Dan Goldwasser.................covvveeeannn... 371

Paraphrastic Representations at Scale
John Wieting, Kevin Gimpel, Graham Neubig and Taylor Berg-kirkpatrick................. 379

Snoopy: An Online Interface for Exploring the Effect of Pretraining Term Frequencies on Few-Shot LM
Performance

Yasaman Razeghi, Raja Sekhar Reddy Mekala, Robert L Logan Iv, Matt Gardner and Sameer
I g . . 389

BMCook: A Task-agnostic Compression Toolkit for Big Models
Zhengyan Zhang, Baitao Gong, Yingfa Chen, Xu Han, Guoyang Zeng, Weilin Zhao, Yanxu Chen,
Zhiyuan Liu and Maosong SUn e 396

ALToolbox: A Set of Tools for Active Learning Annotation of Natural Language Texts
Akim Tsvigun, Leonid Sanochkin, Daniil Larionov, Gleb Kuzmin, Artem Vazhentsev, Ivan Lazi-
chny, Nikita Khromov, Danil Kireev, Aleksandr Rubashevskii and Olga Shahmatova............. 406

TextBox 2.0: A Text Generation Library with Pre-trained Language Models
Tianyi Tang, Junyi Li, Zhipeng Chen, Yiwen Hu, Zhuohao Yu, Wenxun Dai, Wayne Xin Zhao,
Jian-yun Nie and Ji-rong Went 435

Xvil

anCagrrr: A Knowledge-Enhanced Text Representation Toolkit
for Natural Language Understanding

Zhuoran Jin*?, Tianyi Men*'2, Hongbang Yuan*!?, Yuyang Zhou?,
Pengfei Cao'?, Yubo Chen'?, Zhipeng Xue?, Kang Liu'?3, Jun Zhao'

1 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
2 National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China
3 Beijing Academy of Artificial Intelligence, Beijing, China
{zhuoran.jin, tianyi.men, hongbang.yuan}@nlpr.ia.ac.cn, zhouyuyangl17@163.com
{pengfei.cao, yubo.chen, zhipeng.xue, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

As the first step of modern natural language pro-
cessing, text representation encodes discrete
texts as continuous embeddings. Pre-trained
language models (PLMs) have demonstrated
strong ability in text representation and signif-
icantly promoted the development of natural
language understanding (NLU). However, ex-
isting PLMs represent a text solely by its con-
text, which is not enough to support knowledge-
intensive NLU tasks. Knowledge is power, and
fusing external knowledge explicitly into PLMs
can provide knowledgeable text representa-
tions. Since previous knowledge-enhanced
methods differ in many aspects, making it
difficult for us to reproduce previous meth-
ods, implement new methods, and transfer be-
tween different methods. It is highly desirable
to have a unified paradigm to encompass all
kinds of methods in one framework. In this
paper, we propose awC3gxirr, a knowledge-
enhanced text representation toolkit for nat-
ural language understanding. According to
our proposed Unified Knowledge-Enhanced
Paradigm (UniKEP), CogKTR consists of four
key stages, including knowledge acquisition,
knowledge representation, knowledge injection,
and knowledge application. CogKTR currently
supports easy-to-use knowledge acquisition in-
terfaces, multi-source knowledge embeddings,
diverse knowledge-enhanced models, and vari-
ous knowledge-intensive NLU tasks. Our uni-
fied, knowledgeable and modular toolkit is pub-
licly available at GitHub !, with an online sys-
tem 2 and a short instruction video °.

1 Introduction

In modern natural language processing (NLP), texts
need to be represented into a machine-readable
form. Many work has shown that pre-trained lan-

"These authors contribute equally to this work.
"https://github.com/CogNLP/CogKTR/
2http: //cognlp.com/cogktr/
3https://youtu.be/SrvXrXdDivy

1

guage models (PLMs) (Qiu et al., 2020) can pro-
vide powerful distributed representations for natu-
ral language texts, leading to great successes on var-
ious natural language understanding (NLU) (Wang
et al., 2018a) tasks.

Recently, some studies (Manning et al., 2020;
Roberts et al., 2020; Penha and Hauff, 2020) have
shown that specific knowledge is implicitly stored
in the parameters of PLMs. This implicit knowl-
edge is vague so that it is hard to dynamically up-
date this knowledge to satisfy the needs of real-
world applications (Yin et al., 2022). Existing
PLMs (Peters et al., 2018; Devlin et al., 2019) rep-
resent and understand a text solely by its context,
which is insufficient to solve knowledge-intensive
NLU tasks. These tasks are highly dependent on
background knowledge. It is necessary to leverage
external knowledge to enhance the text represen-
tations explicitly. For word sense disambiguation,
synonyms, sense definitions, and other linguistic
knowledge play an essential role in identifying
the meaning of ambiguous words. For common-
sense question answering, commonsense knowl-
edge like structured knowledge graph (KG) triples
can enhance the models’ reasoning capacity.

As illustrated above, knowledge-enhanced text
representations are essential for NLU tasks, mean-
while, many methods (Wei et al., 2021; Ding et al.,
2022; Zhu et al., 2022) have been proposed. How-
ever, previous methods differ in many aspects, espe-
cially in knowledge acquisition procedure, knowl-
edge representation form, and knowledge fusion
approach. These differences make it challenging to
reproduce previous methods, implement new meth-
ods, and transfer between different methods. So
we need a unified paradigm to implement various
knowledge-enhanced methods in the same frame-
work. Therefore, designing the framework should
consider the following key principles.

First, the process of knowledge acquisition is
laborious and complex, including knowledge tag-

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 1 - 11

December 7-11, 2022 (©)2022 Association for Computational Linguistics

https://github.com/CogNLP/CogKTR/
http://cognlp.com/cogktr/
https://youtu.be/SrvXrXdDiVY

ging (e.g., named entity recognition and semantic
role labeling), knowledge grounding (e.g., entity
linking) and knowledge retrieving (e.g., regular ex-
pression matching and SPARQL query). A good
framework should let users pay more attention to
the details in the models rather than tedious data
processing. Second, different knowledge embed-
dings vary in knowledge sources (e.g., Wikidata
(Vrandeci¢ and Krotzsch, 2014) and ConceptNet
(Speer et al., 2017)) and knowledge representation
algorithms (e.g., TransE (Bordes et al., 2013) and
Wikipedia2Vec (Yamada et al., 2020a)). To make
rigorous comparisons between them, it is highly
desirable to have a toolkit that provides built-in
knowledge embeddings. Third, although a lot of
knowledge fusion approaches have been proposed,
there is still a lack of a comprehensive framework
to encompass them. Such a framework should pro-
vide knowledgeable text representations which can
be directly used in numerous downstream tasks.

To this end, we propose &C&ZKTR, a
Knowledge-enhanced Text Representation toolkit
for natural language understanding. CogKTR
is built on the Unified Knowledge-Enhanced
Paradigm (UniKEP), which can be formalized
in four stages, including knowledge acquisition,
knowledge representation, knowledge injection,
and knowledge application. First, knowledge ac-
quisition aims to identify structured information
from unstructured texts, then ground them in knowl-
edge sources. Then, knowledge representation
can transform knowledge from discrete form to
continuous form. Next, knowledge injection, as
the most critical stage, combines raw texts and ex-
ternal knowledge for knowledgeable text represen-
tation. In the end, knowledge application verifies
the effectiveness of knowledge-enhanced methods
in downstream tasks.

In detail, CogK'TR has the following functions.
First, our toolkit provides user-friendly knowledge
acquisition interfaces. Users can use our toolkit to
enhance the given texts with one click. And we also
implement plenty of knowledge-enhanced methods
so researchers can quickly reproduce these models.
Moreover, CogKTR supports many built-in NLU
tasks to evaluate the effectiveness of knowledge-
enhanced methods. In our paradigm, users can
easily conduct their research via a pipeline. Be-
sides the toolkit, we also release an online CogKTR
demo to show the process of knowledge acquisition
and the effect of knowledge enhancement.

In summary, the main features and contributions
are as follows:

* Unified. CogKTR is designed and built on
our Unified Knowledge-Enhanced Paradigm,
which consists of four stages: knowledge ac-
quisition, knowledge representation, knowl-
edge injection, and knowledge application.

* Knowledgeable. CogKTR integrates multi-
ple knowledge sources, including Wikidata,
Wikipedia, ConceptNet, WordNet (Miller,
1995) and CogNet (Wang et al., 2021a), and
implements a series of knowledge-enhanced
methods, such as K-BERT (Liu et al., 2020),
SemBERT (Zhang et al., 2020a), QAGNN
(Yasunaga et al., 2021), etc.

* Modular. CogKTR modularizes our proposed
paradigm and consists of Enhancer, Model,
Core and Data modules, each of which is
highly extensible so that researchers can im-
plement new components easily.

2 Unified Knowledge-Enhanced
Paradigm

As mentioned above, it is vital to propose
a paradigm that can formalize the knowledge-
enhanced process. As shown in Figure 1, our
proposed Unified Knowledge-Enhanced Paradigm
(UniKEP) consists of four key stages: knowledge
acquisition, knowledge representation, knowl-
edge injection and knowledge application. Below
are the detailed descriptions of the four stages.

2.1 Knowledge Acquisition

Knowledge acquisition, the first step towards our
knowledge-enhanced paradigm, aims at detecting
knowledge concealed beneath the raw texts. Details
of our implementation of the acquisition process
can be found in Section 3.1. The obtained knowl-
edge can be divided into three categories according
to the different sources they belong to.

World Knowledge. It contains general facts
about some particular entities or events. For ex-
ample, given a sentence “Elmo and Bert read
books in the Sesame street library.”, “Elmo”, “Bert”
and “Sesame street” can be spotted as entities via
named entity recognition. Then, “Bert” can be
linked to the target entity “Bert (Sesame Street)” in
Wikipedia via entity linking. World knowledge is
helpful in many entity-related tasks, such as entity
typing, relation extraction and fact verification.

Knowledge Acquisition

Input Text e Discrete Representation

Elmo and Bert read books in the Sesar

World Knowledge

Text . A
with a falsetto voice.

and read books in the Triple <Elmo, is best friend, Bert>
Bert (Sesame Street) = i
Description Bert is a yellow Muppet Subgraph Elne =2
character on the long running PBS and HBO
children's television show Sesame Street. ng;jf
Bert was originally performed by Frank Oz.
Birthday July 26 Emie
Gender Male Bert
Species Human Muppet
Symbol o

Linguistic Knowledge

ROOT

read Elmo and Bert books

ARGO ARGL

Elmo books. the

Bert in Sesame street library
- .

Commonsense Knowledge \‘ g v /: I g
Bert is a type of fictional character R ! .7
Sesame street is in the genre of animation
Elmo is part of Sesame street
library is used for reading

Knowledge Representation

Elmo is a furry red monster

I the Sesame street library

ARGM-LOC

Continuous Representation

Knowledge Injection Knowledge Application

Knowledge-enriched Input Text Classification
ert read books
t library.

Elmo and Bert read books in

he Sesam library
Neutral =

Text Matching

Text A: EImo and Bert read
books in the Sesame street library.

Elmo: Elmo is a furry red
monster with a falsetto voice.

Knowledge-aware Architecture
Text B: EImo studies in the
Sesame street library with Bert

0.95

I

I

I

I

]

I

I

]

I

I

]

I

I

I

I

]

I

I

]

I

I

]

I

I .
| Sequence Labeling
: Elmo B-Per
I
I
]
I
I
]
I
I
I
I
]
I
I
]
I
I
]
I
I
I
I
]
I

and o
Bert B-Per
read (¢}
books [e}
n o]
the [e]
Sesame B-Loc
GNN Transformer Memory street I-Loc
library I-Loc

Machine Reading Comprehension

Knowledge-assisted Training Q: Who does Elmo read with?

. . . C: Elmo and Bert read books in
MLM Autoregressive Entity Prediction the Sesame street library.

Relation Prediction Supersense Prediction

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Bert
I

Figure 1: The Unified Knowledge-Enhanced Paradigm of CogKTR.

Linguistic Knowledge. It refers to the internal
syntactic structure and the meaning of words and
phrases in the texts. As shown in Figure 1, the de-
pendency tree describes the directed grammatical
relations between words and semantic role labeling
extracts the predicate-argument structure. Incorpo-
rating linguistic knowledge can bring better text
representations in downstream tasks like informa-
tion retrieval and machine reading comprehension.

Commonsense Knowledge. It tries to catch im-
plicit facts in our daily life. For example, (Bert, is
a type of, fictional character) and (library, is used
for, reading) are the commonsense triples extracted
from ConceptNet. Current models usually have
a poor commonsense awareness, thus leveraging
commonsense knowledge can help models gain
stronger capability on commonsense reasoning.

2.2 Knowledge Representation

The aforementioned knowledge can be represented
in two forms, including discrete representation and
continuous representation.

Discrete Representation. Discrete knowledge is
usually represented as texts, triples, subgraphs and
symbols. Texts are the most commonly used repre-
sentation forms, such as descriptions of nodes and
relations in KGs or definitions of words in lexicons.
Triples describe a particular connection between
two nodes in KGs. A subgraph’s topology con-

tributes a lot to the comprehension of the central
node. However, discrete knowledge cannot be di-
rectly used in deep learning systems and need to be
further represented.

Continuous Representation. It usually refers to
the dense vectors in a unified continuous repre-
sentation space. The traditional skip-gram model
can be used to compute the embeddings of words
(Yamada et al., 2020a). Entities and relations in
triples can be viewed as translational operations
and points from the perspective of conventional
knowledge embedding models (Bordes et al., 2013).
The continuous representation can be easily fused
to models as prior knowledge.

2.3 Knowledge Injection

Injecting knowledge into original models is vital to
the whole paradigm. The injection strategy varies
depending on when knowledge is fused into origi-
nal models. We divide them into three categories:
knowledge-enriched input, knowledge-aware archi-
tecture and knowledge-assistant training.

Knowledge-enriched Input. A typical case of
knowledge injection is to combine the input text
with the extracted knowledge. Entity descriptions,
concepts, brief interpretations and synonyms of
the words can all be concatenated together with
original texts to form input samples of the model.
However, too much knowledge may be noisy. Thus

some attention masks are constructed for the self-
attention process in the model. Besides, pretrained
knowledge embeddings can be fused to the text
representations by direct arithmetic operations.

Knowledge-aware Architecture. In some cases,
a certain architecture is designed to encode the
extracted knowledge. Graph neural network (GNN)
is often used to encode the structured knowledge
(Yu et al., 2022). Transformer-like architectures
is usually used to deal with textual descriptions
(Zhang et al., 2019). Memory network is used to
restore learned knowledge embeddings and can be
applied to any sequence output (Févry et al., 2020).

Knowledge-assisted Training. Knowledge can
also be used to design knowledge-driven training
objectives. Entity-level masking masks the enti-
ties in a sentence to guide the text representation
learning (Sun et al., 2019). Relation prediction re-
quires models to identify the relation between two
given entities in order to inject world knowledge
(Wang et al., 2021b). Supersense prediction trains
the model to classify the masked word’s sense into
45 supersense categories (Levine et al., 2020).

2.4 Knowledge Application

Various downstream NLU tasks can benefit from
the knowledge-enhanced models. This subsection
presents the definition, application and necessity of
the existence of external knowledge of each down-
stream NLU task.

Text Classification. It is a task to assign labels
to language entries like sentences or documents.
Sentiment analysis, fact verification, and fake news
detection all fall into this category. Fake news
detection needs additional knowledge to serve as
evidence for better detection (Hu et al., 2021).

Text Matching. It is a task determining whether
one sentence is related to another based on seman-
tic meanings and plays a significant role in text
entailment and entity disambiguation. For text en-
tailment, knowledge in the two statements can help
information flow between them (Jo et al., 2021).

Sequence Labeling. This task is to label each
token of the given sentence. Named entity recog-
nition (NER), part-of-speech tagging and semantic
role labeling can be viewed as a sequence label-
ing problem. For example, a preconstructed en-
tity dictionary contributes to recognizing the entity
boundary in NER tasks (Zhang and Yang, 2018).

Machine Reading Comprehension. This task is
to comprehend a given passage and then answer
questions based on it. It can be approximately
divided into four different kinds of forms: cloze-
style, multi-choice, span extraction and free-form.
In open domain QA, knowledge can be beneficial
in identifying answers which are not likely lying
inside the given context (Yamada et al., 2020b).

3 System Design and Architecture

According to the paradigm mentioned above, we
divide CogKTR architecture into four modules.
For knowledge acquisition and representation,
CogKTR modularizes them as the Enhancer mod-
ule. To implement knowledge injection and ap-
plication, we build the Model module to integrate
knowledge into models. Considering that the devel-
opment process is time-consuming, we also design
two basic modules, namely Data module and Core
module, to accelerate the data processing procedure
and improve training efficiency. An overview of
CogKTR architecture is shown in Figure 2. In the
following, we will introduce these four modules.

3.1 Enhancer

This module is designed for knowledge acquisi-
tion and representation to leverage relevant knowl-
edge to enhance raw texts. It can be divided
into four steps. Firstly, parse sentences and de-
tect candidate mentions by Tagger. Then, link
these mentions to KGs by Linker. Next, search
the relevant information in KGs and textual cor-
pus by Searcher. Finally, convert discrete knowl-
edge to dense embeddings in continuous space
by Embedder. The specific classes of Enhancer,
Tagger, Linker, Searcher and Embedder are rep-
resented in Table 1.

Tagger. Itis a text annotator to convert unstruc-
tured texts into structured knowledge. It can be
categorized into two streams according to the exis-
tence of external KGs. If corresponding KGs exist,
we focus on identifying the locations of knowledge-
related text mentions, including words, entities,
phrases, etc. They can be linked to KGs, enriching
raw sentences with external information. Other-
wise, we parse the given sentences to obtain in-
ternal syntactic and semantic knowledge, such as
part-of-speech tags, dependency trees and seman-
tic role labels. CogKTR contains three external
knowledge taggers and three internal knowledge
taggers.

Enhancer ' Tagger E ' Linker E ' Searcher E : Embedder E
1 1 1 Y - 1
1 0g T frerard e 00 WikipediaSearcher ' g !
| WorldEnhancer | ! | NerTagger |E ! | WikipediaLinker |E :| WikidataSearcher | E :| WikidataEmbedder | E
D 1 D 1 D 1 D 1
| CommonsenseEnhancer E| ConceptNetTagger |:E| ConceptNetLinker |: E| ConceptNetSearcher |, E| ConceptNetEmbedder |
1 0g 0g 0g g
1 1 1 1
LiguisticsEnhancer : N i : WordNetLinker i : WordNetSearcher i : WordNetEmbedder i
1 |_SrlTagger/SyntaxTagger ' H ' H ' H '
| TextClassification | | TextMatching | | Sequencelabeling | ——
askedLanguage
Modelin,
| QuestionAnswering | | ReadingComprehension | Disambigution | Y

Input-Enhanced

Architecture-Enhanced

'
1 1! 1
! ! 1
' '
! | KG-Emb/KT-Attn | | E-BERT |: ' | HLG SemBERT |:
1 1
! 1! 1
1 1! 1
H | K-BERT | | ESR |: : | QAGNN | | SAFE |:
e YV e_—_— . be———— 1
| Reader | | Datable | | Processor | | Datableset |
| Trainer | | Predictor | | Analyzer | | Evaluator |

Figure 2: The system architecture of CogKTR.

Linker. It aims to link the candidate mentions
detected by the Tagger modules to external KGs.
It is an essential bridge between unstructured texts
and structured knowledge, where linking methods
include entity linking and string matching. Entity
linking is based on measuring the similarity be-
tween mentions in the texts and entities in KGs and
string matching is to find the corresponding nodes
in KGs through strict comparison or fuzzy query.
We implement three linkers in CogKTR.

Searcher. It is to retrieve detailed information
about target mentions in KGs (such as Wikipedia,
ConceptNet and WordNet), and textual corpus. In
this paper, we divide KG-related knowledge into
unstructured textual information and structured in-
formation. Unstructured textual information in-
cludes entity titles, entity descriptions and example
sentences, while structured information includes
triples, subgraphs and relation paths. As for textual
corpus, we use retrieval methods to obtain related
texts of the queries. We implement four searchers.

Embedder. It is used to embed discrete knowl-
edge into continuous space. We encode KGs as
low-dimensional and dense vectors by TransE,
Wikipedia2Vec and PLMs, which can be directly
injected into deep learning models.

3.2 Model

To implement knowledge injection and applica-
tion, we design the Model module to fuse texts and
knowledge acquired from the Enhancer module.
For extensibility, we decouple the Model module
into T-Model and K-Model. T-Model denotes task-

specific models, designed for various downstream
tasks. K-Model denotes knowledge-enhanced mod-
els, aiming to inject knowledge into PLMs to repre-
sent texts. K-Model and T-Model can be combined
to realize the application of different knowledge-
enhanced models on different downstream tasks.

T-Model. This module is used to achieve down-
stream tasks. It can be classified into seven types:
ReadingComprehension, TextClassification,
MLM, QuestionAnswering, Sequencelabeling,
TextMatching, Disambiguation class.

K-Model. This module is responsible for knowl-
edge injection and built on huggingface transform-
ers library (Poerner et al., 2020). It can be divided
into two categories: (1) Input-enhanced models
aim to enrich input texts and constrain attention
masks. In terms of input texts, we divide injec-
tion into two types, discrete injection and continu-
ous injection. Discrete injection means concatenat-
ing raw texts and additional knowledge texts like
ESR (Song et al., 2021), K-BERT (Liu et al., 2020),
and then feeding into PLMs. Continuous injection
refers to converting texts or entities into vectors,
such as KT-Emb and KG-Emb (Xu et al., 2021). For
attention masks, symbolic knowledge like depen-
dency trees with directed graphs is used to con-
strain attention masks based on SG-Net (Zhang
et al., 2020b). (2) Architecture-enhanced mod-
els use additional network architecture to encode
knowledge and incorporate knowledge represen-
tation into language models. In CogKTR, SAFE
(Jiang et al., 2022) is used to encode relation paths
by MLP, while RNN is used to capture semantic

role labeling knowledge like SemBERT (Zhang et al.,
2020a). For graph structure knowledge, we imple-
ment QAGNN (Yasunaga et al., 2021) and HLG (Li
et al., 2022) models with GNN to encode common-
sense knowledge and linguistic knowledge.

3.3 Data

This module is responsible for data loading and
processing procedures. It is composed of Reader
and Processor classes. To unify input, we design
Reader class to load raw datasets, which inherits
from BaseReader class. The Processor class is a
data processing component in CogKTR. It is used
to build the bridge among models, raw data and
enhanced data, which can process raw data and
enhanced data into the form required by the models.

3.4 Core

It focuses on accelerating the efficiency of model
training and evaluation. It contains Trainer,
Evaluator, Predictor and Analyzer classes.
Trainer class is designed for model training, sup-
porting multi-GPU distributed parallel training
and experimental results recording. Evaluator
class contains classification metric, regression met-
ric, reading comprehension metric and so on.
Predictor class supports various downstream in-
ference tasks with additional knowledge.

4 System Usage

In this section, we will give detailed guidelines on
how to use CogKTR toolkit and online demo.

4.1 Code Usage

We separate the source code to three main parts: en-
hancing the given texts with knowledge, construct-
ing a knowledge-aware model and training the
model. In Appendix A, Figure 3 shows an example
for the usage of our code. We formalize a pipeline
for these three steps so users can achieve our Uni-
fied Knowledge-Enhanced Paradigm easily. Be-
fore processing the input text, users should prepare
the corresponding knowledge sources, which will
be downloaded automatically. Then, the Reader,
Enhancer and Processor class should be initial-
ized to generate the knowledge-enhanced input of
the models. Moreover, the T-Model, Metric, Loss
and Optimizer class should be initialized before
added to Trainer class. Users should initialize the
K-Model class as the knowledge-enhanced encoder
of the T-Model class.

4.2 Demo Usage

Besides this toolkit, we also release an online demo
as shown in Figure 4, 5 and 6. The online demo
consists of two parts: knowledge-enhanced text
and knowledge-enhanced task. The knowledge-
enhanced text part will acquire different types of
knowledge in the given sentence, including world,
linguistic, and commonsense knowledge. And the
knowledge-enhanced task part performs different
downstream tasks, including sentiment analysis,
text entailment and commonsense reasoning.

5 Evaluation

CogKTR aims to support various NLU tasks un-
der a unified paradigm. To demonstrate the ef-
fectiveness of knowledge-enhanced methods, we
implement several baselines and evaluate them on
the corresponding tasks. The evaluation tasks in-
clude CommonsenseQA (Talmor et al., 2018) and
OpenBookQA (Mihaylov et al., 2018) for com-
monsense reasoning; LAMA (Petroni et al., 2019)
for knowledge probing; SQuAD2.0 (Rajpurkar
et al., 2018) for reading comprehension; QNLI
and SST-B (Wang et al., 2018b) for text entailment;
CoNLL2003 (Sang and De Meulder, 2003) for se-
quence labeling; SST-2 and SST-5 (Socher et al.,
2013) for sentiment analysis; SemCor (Miller et al.,
1994) and SemEval (Pradhan et al., 2007) for word
sense disambiguation. Reader and Processor
classes of these datasets have already been inte-
grated into CogKTR. The experimental results are
available at our GitHub *.

6 Conclusion and Future Work

In this paper, we propose CogKTR, a knowledge-
enhanced text representation toolkit for natural lan-
guage understanding. CogKTR is built on our
Unified Knowledge-Enhanced Paradigm, which
is composed of four stages: knowledge acquisi-
tion, knowledge representation, knowledge injec-
tion, and knowledge application. In CogKTR, we
provide easy-to-use knowledge acquisition inter-
face, off-the-shelf knowledge embeddings, built-
in knowledge-enhanced models, and knowledge-
intensive NLU tasks. Besides the toolkit, we also
release an online demo system. In the future, more
knowledge sources, benchmark datasets, and mod-
els will be incorporated into CogKTR.

4https ://github.com/CogNLP/CogKTR/

https://github.com/CogNLP/CogKTR/

Limitations

In this paper, we propose Unified Knowledge-
Enhanced Paradigm to formalize the knowledge-
enhanced process. However, there are still some
limitations in the existing knowledge-enhanced pro-
cess. We discuss these in detail below.

First, in the knowledge acquisition stage, we
should discover knowledge from raw texts via
name entity recognition, entity linking, semantic
role labeling and other methods. These methods are
usually provided by off-the-shelf toolkits, causing
inevitable errors. Such noise will affect the perfor-
mance on downstream tasks. In the future work, we
should further study how to eliminate the influence
of noise caused by knowledge acquisition.

Second, a vast number of knowledge embedding
methods are designed to address knowledge graph
completion (KGC), which aims to predict miss-
ing links for KGs. These methods only consider
the structured information and ignore the valuable
textual and logic knowledge in KGs. How to pro-
vide more informative knowledge embeddings for
knowledge-enhanced methods is worth studying.

Finally, we utilize a broad set of downstream
tasks to evaluate the knowledge-enhanced mod-
els. But better performance does not mean that
the model has really learned the knowledge. We
should find a better way to probe the knowledge in
models and improve the interpretability.

Acknowledgements

We thank all the anonymous reviewers. This
work is supported by the National Key Re-
search and Development Program of China (No.
2020AAA0106400), the National Natural Science
Foundation of China (No. 61922085, 61976211,
62176257). This work is also supported by the
Youth Innovation Promotion Association CAS.

References

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly
Media, Inc.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
OpenPrompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations. Association for Computa-
tional Linguistics.

Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng
Wang, Jun Yan, and Xiang Ren. 2020. Scalable multi-
hop relational reasoning for knowledge-aware ques-
tion answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Linmei Hu, Tianchi Yang, Luhao Zhang, Wanjun Zhong,
Duyu Tang, Chuan Shi, Nan Duan, and Ming Zhou.
2021. Compare to the knowledge: Graph neural
fake news detection with external knowledge. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for
Computational Linguistics.

Jinhao Jiang, Kun Zhou, Ji-Rong Wen, and Xin Zhao.
2022. great truths are always simple : a rather
simple knowledge encoder for enhancing the com-
monsense reasoning capacity of pre-trained models.
In Findings of the Association for Computational
Linguistics: NAACL 2022. Association for Computa-
tional Linguistics.

Zhuoran Jin, Yubo Chen, Dianbo Sui, Chenhao Wang,
Zhipeng Xue, and Jun Zhao. 2021. CoglE: An in-
formation extraction toolkit for bridging texts and
CogNet. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations.
Association for Computational Linguistics.

https://dl.acm.org/doi/abs/10.5555/1717171
https://dl.acm.org/doi/abs/10.5555/1717171
https://dl.acm.org/doi/abs/10.5555/1717171
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.400
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2021.acl-long.62
https://doi.org/10.18653/v1/2021.acl-long.62
https://aclanthology.org/2022.findings-naacl.131
https://aclanthology.org/2022.findings-naacl.131
https://aclanthology.org/2022.findings-naacl.131
https://doi.org/10.18653/v1/2021.acl-demo.11
https://doi.org/10.18653/v1/2021.acl-demo.11
https://doi.org/10.18653/v1/2021.acl-demo.11

Zhuoran Jin, Tianyi Men, Hongbang Yuan, Zhitao He,
Dianbo Sui, Chenhao Wang, Zhipeng Xue, Yubo
Chen, and Jun Zhao. 2022. CogKGE: A knowledge
graph embedding toolkit and benchmark for repre-
senting multi-source and heterogeneous knowledge.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations. Association for Computational Lin-
guistics.

Yohan Jo, Haneul Yoo, JinYeong Bak, Alice Oh, Chris
Reed, and Eduard Hovy. 2021. Knowledge-enhanced
evidence retrieval for counterargument generation.
In Findings of the Association for Computational
Linguistics: EMNLP 2021. Association for Computa-
tional Linguistics.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT: Driv-
ing some sense into BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Yanzeng Li, Jiangxia Cao, Xin Cong, Zhenyu Zhang,
Bowen Yu, Hongsong Zhu, and Tingwen Liu. 2022.
Enhancing Chinese pre-trained language model via
heterogeneous linguistics graph. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-bert: En-
abling language representation with knowledge graph.
Proceedings of the AAAI Conference on Artificial In-
telligence.

Christopher D Manning, Kevin Clark, John Hewitt, Ur-
vashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM.

George A. Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G. Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Human Language Technology: Proceedings of
a Workshop held at Plainsboro, New Jersey, March
8-11, 1994.

Gustavo Penha and Claudia Hauff. 2020. What does
bert know about books, movies and music? probing
bert for conversational recommendation. In Four-
teenth ACM Conference on Recommender Systems.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers). Association for
Computational Linguistics.

Fabio Petroni, Tim Rocktidschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Nina Poerner, Ulli Waltinger, and Hinrich Schiitze. 2020.
E-BERT: Efficient-yet-effective entity embeddings
for BERT. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020. Association for
Computational Linguistics.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. Semeval-2007 task-17: En-
glish lexical sample, srl and all words. In Proceed-
ings of the fourth international workshop on semantic
evaluations (SemEval-2007).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Yang Song, Xin Cai Ong, Hwee Tou Ng, and Qian Lin.
2021. Improved word sense disambiguation with
enhanced sense representations. In Findings of the
Association for Computational Linguistics: EMNLP
2021. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2022.acl-demo.16
https://doi.org/10.18653/v1/2022.acl-demo.16
https://doi.org/10.18653/v1/2022.acl-demo.16
https://doi.org/10.18653/v1/2021.findings-emnlp.264
https://doi.org/10.18653/v1/2021.findings-emnlp.264
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2022.acl-long.140
https://doi.org/10.18653/v1/2022.acl-long.140
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://www.pnas.org/doi/10.1073/pnas.1907367117
https://www.pnas.org/doi/10.1073/pnas.1907367117
https://www.pnas.org/doi/10.1073/pnas.1907367117
https://www.aclweb.org/anthology/D18-1260
https://www.aclweb.org/anthology/D18-1260
https://www.aclweb.org/anthology/D18-1260
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://aclanthology.org/H94-1046
https://aclanthology.org/H94-1046
https://dl.acm.org/doi/10.1145/3383313.3412249
https://dl.acm.org/doi/10.1145/3383313.3412249
https://dl.acm.org/doi/10.1145/3383313.3412249
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://aclanthology.org/S07-1016/
https://aclanthology.org/S07-1016/
https://aclanthology.org/2020.acl-demos.14/
https://aclanthology.org/2020.acl-demos.14/
https://aclanthology.org/2020.acl-demos.14/
https://arxiv.org/abs/2003.08271
https://arxiv.org/abs/2003.08271
https://aclanthology.org/P18-2124/
https://aclanthology.org/P18-2124/
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/2021.findings-emnlp.365
https://doi.org/10.18653/v1/2021.findings-emnlp.365

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-
tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP.
Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP.
Association for Computational Linguistics.

Chenhao Wang, Yubo Chen, Zhipeng Xue, Yang Zhou,
and Jun Zhao. 2021a. Cognet: Bridging linguis-
tic knowledge, world knowledge and commonsense
knowledge. Proceedings of the AAAI Conference on
Artificial Intelligence.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021b. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021. Association for Com-
putational Linguistics.

Xiaokai Wei, Shen Wang, Dejiao Zhang, Parminder Bha-
tia, and Andrew Arnold. 2021. Knowledge enhanced
pretrained language models: A compreshensive sur-
vey. arXiv preprint arXiv:2110.08455.

Ruochen Xu, Yuwei Fang, Chenguang Zhu, and Michael
Zeng. 2021. Does knowledge help general nlu? an
empirical study. arXiv preprint arXiv:2109.00563.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki
Shindo, Hideaki Takeda, Yoshiyasu Takefuji, and
Yuji Matsumoto. 2020a. Wikipedia2Vec: An ef-
ficient toolkit for learning and visualizing the em-
beddings of words and entities from Wikipedia. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

Demonstrations. Association for Computational Lin-
guistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020b. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for
Computational Linguistics.

Da Yin, Li Dong, Hao Cheng, Xiaodong Liu, Kai-Wei
Chang, Furu Wei, and Jianfeng Gao. 2022. A survey
of knowledge-intensive nlp with pre-trained language
models. arXiv preprint arXiv:2202.08772.

Donghan Yu, Chenguang Zhu, Yiming Yang, and
Michael Zeng. 2022. Jaket: Joint pre-training of
knowledge graph and language understanding. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence.

Yue Zhang and Jie Yang. 2018. Chinese NER using
lattice LSTM. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. Asso-
ciation for Computational Linguistics.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020a.
Semantics-aware BERT for language understanding.
In the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-2020).

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng
Duan, Hai Zhao, and Rui Wang. 2020b. SG-Net:
Syntax-guided machine reading comprehension. In
Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence.

Chenguang Zhu, Yichong Xu, Xiang Ren, Bill Yuchen
Lin, Meng Jiang, and Wenhao Yu. 2022. Knowledge-
augmented methods for natural language processing.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics: Tutorial
Abstracts. Association for Computational Linguis-
tics.

A Appendix

https://dl.acm.org/doi/10.5555/3298023.3298212
https://dl.acm.org/doi/10.5555/3298023.3298212
https://arxiv.org/abs/1904.09223
https://arxiv.org/abs/1904.09223
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://ojs.aaai.org/index.php/AAAI/article/view/18029
https://ojs.aaai.org/index.php/AAAI/article/view/18029
https://ojs.aaai.org/index.php/AAAI/article/view/18029
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://arxiv.org/abs/2110.08455
https://arxiv.org/abs/2110.08455
https://arxiv.org/abs/2110.08455
https://arxiv.org/abs/2109.00563
https://arxiv.org/abs/2109.00563
https://doi.org/10.18653/v1/2020.emnlp-demos.4
https://doi.org/10.18653/v1/2020.emnlp-demos.4
https://doi.org/10.18653/v1/2020.emnlp-demos.4
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://arxiv.org/abs/2202.08772
https://arxiv.org/abs/2202.08772
https://arxiv.org/abs/2202.08772
https://ojs.aaai.org/index.php/AAAI/article/view/21417
https://ojs.aaai.org/index.php/AAAI/article/view/21417
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://ojs.aaai.org/index.php/AAAI/article/view/6510
https://ojs.aaai.org/index.php/AAAI/article/view/6511
https://ojs.aaai.org/index.php/AAAI/article/view/6511
https://aclanthology.org/2022.acl-tutorials.3
https://aclanthology.org/2022.acl-tutorials.3

Components Classes Functions Tools

NerTagger identify entity mention spans CoglE (Jin et al., 2021)
ConceptNetTagger identify concept mention spans spaCy (Honnibal et al., 2020)
Tagger WordNetTagger identify candidate texts spans NLTK (Bird et al., 2009)
SrlTagger tag sentences and get semantics labeling Stanza (Qi et al., 2020)
SyntaxTagger parse sentences and get dependency trees AllenNLP (Gardner et al., 2017)
WordSegmentationTagger chinese word segmentation jieba
WikipedialLinker link entities to Wikipedia CoglE (Jin et al., 2021)
Linker ConceptNetLinker link concepts to ConceptNet spaCy (Honnibal et al., 2020)
WordNetLinker link candidate texts to WordNet CoglE (Jin et al., 2021)
WikipediaSearcher query entity titles and text descriptions in Wikipedia KILT (Bird et al., 2009)
Searcher WikidataSearcher look up triples and subgraphs in Wikidata qwikidata
ConceptNetSearcher search subgraphs and relation paths in ConceptNet spaCy (Honnibal et al., 2020)
WordNetSearcher synonyms, example sentences, definitions and hypernyms NLTK (Bird et al., 2009)
WikidataEmbedder convert Wikidata into continuous knowledge CogKGE (Jin et al., 2022)
Embedder ConceptNetEmbedder convert ConceptNet into continuous knowledge MHGRN (Feng et al., 2020)
WordNetEmbedder convert WordNet into continuous knowledge CogKGE (Jin et al., 2022)

Table 1: Specific classes of Enhancer module, contains Tagger, Linker, Searcher and Embedder components.

import cogktr
import torch

the d - +h

reader = cogktr.Reader (data_path)
train_data, dev_data, test_data = reader.read_all ()
vocab = reader.read_vocab ()

e the dat

enhancer = cogktr.Enhancer (knowledge_graph_path, cache_path, cache_file)

enhanced_train_dict = enhancer.enhance_train(datable=train_data, return_entity_desc=True)
enhanced_dev_dict = enhancer.enhance_dev (datable=dev_data, return_entity_desc=True)
enhanced_test_dict = enhancer.enhance_test (datable=test_data, return_entity_desc=True)

Process th lata with external

processor = cogktr.Processor (max_token_len=128, vocab=vocab)

train_dataset = processor.process_train(data=train_data, enhanced_dict=enhanced_train_dict)
dev_dataset = processor.process_dev (data=dev_data, enhanced_dict=enhanced_dev_dict)

test_dataset = processor.process_test (data=test_data, enhanced_dict=enhanced_test_dict)

k_model = cogktr.KModel (pretrained_model="bert-base-cased")
t_model = cogktr.TModel (k_model, wvocab)

metrics = cogktr.Metrics (mode="multi")

loss = torch.nn.CrossEntropyLoss ()

optimizer = torch.optim.Adam(t_model.parameters())

Train the knowl

trainer = cogktr.Trainer (t_model, train_dataset, dev_dataset, n_epochs=1000,
batch_size=128, loss=loss, optimizer=optimizer, metrics=metrics)

trainer.train ()

Figure 3: A code example of model training.

10

https://github.com/fxsjy/jieba
https://github.com/kensho-technologies/qwikidata

Entity Title:
Ostrogoths

Entity Description:
The Ostrogoths () were the eastern branch of the older Goths (the other major branch being the Visigoths). The Ostrogoths traced their
origins to the Greutungi -
a branch of the Goths who had migrated southward from the Baltic Sea and established a kingdom north of the Black Seq, during the 3r
d and 4th centuries. They built an empire stretching from the Black Sea to the Baltic. The Ostrogoths were probably literate in the 3rd cen
tury, and their trade with the Romans was highly developed. Their Danubian kingdom reached its zenith under King Ermanaric, who is sai
d to have committed suicide at an old age when the Huns attacked his people and subjugated them in about 370. After their annexatio
n by the Huns, little was heard of the Ostrogoths for about 80 years, after which they reappeared in Pannonia on the middle Danube Rive
r as federates of the Romans. After the collapse of the Hun empire after the Battle of Nedao (453), Ostrogoths migrated westwards towar
ds lllyria and the borders of Italy, while some remained in the Crimea (where the Crimean Ostrogoths existed as a distinct people until at
least the 16th century). During the late 5th and 6th centuries, under Theodoric the Great most of the Ostrogoths moved first to Moesia (c.

475-

488) and later (493) established the Ostrogothic Kingdom of Italy, when Theodoric defeated the Germanic warrior Odoacer’s forces and
killed his rival Germanic chieftain at a banquet. A period of instability then ensued, tempting the Eastern Roman Emperor Justinian to

Head Entity
Ostrogoths
Ostrogoths
Ostrogoths

Ostrogoths

Relation/Prop

Tail Entity

topic's main categor... Category:Ostrogoths

described by source
described by source

subclass of

Brockhaus and Efron ...

The Nuttall Encyclop...

tribe

Entity Graph

Brockh...

Figure 4: A demo example of world knowledge acquisition.

Sentence Role Labeling

Frames for added:

0]

1| Similarly , the rate of new jobs added to the city 's economy lagged behind the national job growth .

Frames for lagged:

&R&0)

R RS0 B .
1| Similarly , the rate of new jobs added to the city s economy lagged behind the national job growth .

Named Entity Recognition

1| similarly , the rate of new jobs added to the city 's economy lagged behind the national job growth

Syntax Tree

\

| J

!

2

et nsub]-

Wordnet Lexical Knowledge

|
o .n
St

_ [Vl @ONGIT [NODN 'VERS] YADP/ [DE NOO NCT/DET) [2DP
1| Similarly , the rate of new jobs added to the city 's economy lagged behind the

' VERBLADP
national job growth .

Similarly , the rate of new jobs added to the city 's economy lagged behind the national job growth .

Figure 5: A demo example of linguistic knowledge acquisition.

Oak tree seeds are planted and a sidewalk is paved right next to that spot, until eventually, the tree is tall and the roots must extend past the sidewalk, which

means:

(A) roots may be split
(B) roots may begin to die
(C) parts may break the concrete

Question 3

SUBMIT

Model with Knowledge

A

c

v Knowledge Enhanced Model A

Figure 6: A demo example of commonsense reasoning task.

11

LM-Debugger: An Interactive Tool for
Inspection and Intervention in Transformer-Based Language Models

Mor Geva' Avi Caciularu®>* Guy Dar® Paul Roit> Shoval Sadde'

Micah Shlain! Yoav Goldberg'?

! Allen Institute for AI 2Bar-Ilan University
3Tel Aviv University 4The Hebrew University of Jerusalem

Bar Tamir*

morp@allenai.org

Abstract

O
o

A /O inspection
The opaque nature and unexplained behavior I Ui mtgverﬁmn
of transformer-based language models (LMs) . projections
have spurred a wide interest in interpreting DJ @S- FFN
their predictions. However, current interpre- singer f 000
tation methods mostly focus on probing mod- lawyer 4 4
els from outside, executing behavioral tests, rapper T /Ca album, D,
and analyzing salience input features, while —— 4 :sg 5 Ii’f ngzg
the internal prediction construction process is lawyer P AN vocals, punk,
largely not understood. In this work, we in- nurse r @ % disco, rock, ...
troduce LM-Debugger, an interactive debug- dentist L
ger tool for transformer-based LMs, which [nanny r /(a kindergarten,@
provides a fine-grained interpretation of the T A school, kids,
model’s internal prediction process, as well as $---i FFN e/fg;i;t:y
a powerful framework for intervening in LM :'., classroom

behavior. For its backbone, LM-Debugger re-
lies on a recent method that interprets the inner
token representations and their updates by the
feed-forward layers in the vocabulary space.
We demonstrate the utility of LM-Debugger for
single-prediction debugging, by inspecting the
internal disambiguation process done by GPT2.
Moreover, we show how easily LM-Debugger
allows to shift model behavior in a direction
of the user’s choice, by identifying a few vec-
tors in the network and inducing effective in-
terventions to the prediction process. We re-
lease LM-Debugger as an open-source tool and
a demo over GPT2 models.

1 Introduction

Transformer-based language models (LMs) are the
backbone of modern NLP models (Bommasani
et al., 2021), but their internal prediction construc-
tion process is opaque. This is problematic to end-
users that do not understand why the model makes
specific predictions, as well as for developers who
wish to debug or fix model behaviour.

Recent work (Elhage et al., 2021; Geva et al.,
2022) suggested that the construction process of
LM predictions can be viewed as a sequence of
updates to the token representation. Specifically,

*Work done during an internship at AI2.

A
+
i
She is working as a

Figure 1: Illustration of the main capabilities of
LM-Debugger. Our tool interprets dominant changes
in the output distribution induced by the feed-forward
layers across the network (self-attention layers are not
shown), and enables configuring interventions for shift-
ing the prediction in directions of the user’s choice.

Geva et al. (2022) showed that updates by the feed-
forward network (FFN) layers, one of the building
blocks of transformers (Vaswani et al., 2017), can
be decomposed into weighted collections of sub-
updates, each induced by a FFN parameter vector,
that can be interpreted in the vocabulary space.

In this work, we make a step towards LM trans-
parency by employing this interpretation approach
to create LM-Debugger, a powerful tool for inspec-
tion and intervention in transformer LM predic-
tions. LM-Debugger provides three main capabil-
ities for single-prediction debugging and model
analysis (illustrated in Figure 1). First, for a given
input (e.g. “My wife is working as a”), it interprets
the model’s prediction at each layer in the network,
and the major changes applied to it by FFN layers.
This is done by projecting the token representa-

12

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 12 - 21
December 7-11, 2022 (©)2022 Association for Computational Linguistics

tion before and after the FFN update as well as the
major FFN sub-updates at any layer to the output
vocabulary. Second, it allows intervening in the
prediction by changing the weights of specific sub-
updates, e.g. increasing (decreasing) a sub-update
that promotes music-related (teaching-related) con-
cepts, which results in a modified output. Last, for
a given LM, LM-Debugger interprets all the FFN
parameter vectors across the network and creates a
search index over the tokens they promote. This al-
lows an input-independent analysis of the concepts
encoded by the model’s FFN layers, and enables
configuring general and effective interventions.

We demonstrate the utility of LM-Debugger for
two general use-cases. In the context of predic-
tion debugging, we use the fine-grained tracing of
LM-Debugger to inspect the internal disambigua-
tion process performed by the model. Furthermore,
we demonstrate how our tool can be used to con-
figure a few powerful interventions that effectively
control different aspects in text generation.

We release LM-Debugger as an open-source tool
at https://github.com/mega002/1m-debugger
and host a demo of GPT2 (Brown et al., 2020)
at https://lm-debugger.apps.allenai.org.!
This to increase the transparency of transformer
LMs and facilitate research in analyzing and con-
trolling NLP models.

2 Underlying Interpretation Method

LM-Debugger establishes a framework for inter-
preting a token’s representation and updates ap-
plied to it at each layer in the network. This frame-
work builds upon recent findings by Geva et al.
(2022), who viewed the token representation as a
changing distribution over the output vocabulary,
and the output from each FFN layer as a collec-
tion of weighted sub-updates to that distribution,
which are often interpretable to humans. We next
elaborate on the findings we rely on at this work.

Consider a transformer LM with L layers and an
embedding matrix E € R4Vl of hidden dimen-
sion d, over a vocabulary V. Let w = wr, ..., w;
s.t. Vi =1,...,t: w; €V be an input sequence
of tokens, then at each layer ¢ = 1, ..., L, the hid-
den representation xf of the i-th token is being
processed and updated by a FFN layer through a
residual connection (He et al., 2016):?

4 V4 YA
!See a video at https://youtu.be/5D_GiJv70-M
2Layer normalization is omitted (Geva et al., 2022).

13

where xf is the output from the preceding multi-
head self-attention layer, and if is the updated to-
ken representation (Vaswani et al., 2017). Geva
et al. (2022) proposed an interpretation method for
these updates in terms of the vocabulary, which
we employ as the backbone of LM-Debugger and
describe in detail next.

Token Representation as a Distribution Over
the Output Vocabulary. The token representa-
tion before (xf) and after (if) the FFN update at
any layer / is interpreted by projecting it to the vo-
cabulary space and converting it to a distribution:

=~/

p! = softmax(Ex!) ; P! = softmax(Ex!)

The final model output is defined by y = f)iL.

The FFN Output as a Weighted Collection of
Sub-Updates. Each FFN layer is defined with
two parameter matrices K¢, V¢ € R¥m*4 where
d,, 1s the intermediate hidden dimension, and a
non-linearity function f (bias terms are omitted):
FFN'(x!) = f (K&‘) vt (1)
Geva et al. (2022) interpreted the FFN output by (a)
decomposing it into sub-updates, each induced by
a single FFN parameter vector, and (b) projecting

each sub-update to the vocabulary space. Formally,
Eq. 1 can be decomposed as:

dm dm
FFN'(x") = Z f(x*-KHvEi = mevf.
i=1 i=1

where k! is the i-th row of K*, v¥ is the i-th col-
umn of V¢, and m¢ := f(x* - k¢) is the activation
coefficient of vf for the given input. Each term in
this sum is interpreted as a sub-update to the output
distribution, by inspecting the top-scoring tokens
in its projection to the vocabulary, i.e. Evf .

In the rest of the paper, we follow Geva et al.
(2022) and refer to columns of V¢ as “value vec-
tors” and to their weighted input-dependent form
as “sub-updates”. Importantly, value vectors are
static parameter vectors that are independent on the
input sequence, while sub-updates are dynamic as
they are weighted by input-dependent coefficients.
For a model with L layers and a hidden dimension
dm, there are L * d,,, static value vectors, which
induce L * d,, corresponding sub-updates when
running an input through the model.

https://github.com/mega002/lm-debugger
https://lm-debugger.apps.allenai.org
https://youtu.be/5D_GiJv7O-M

ty LM-o
«* Debugger

Select Example ¥ the weather is going to be

input for the model

Layers

prediction trace, showing for each layer the top-10 tokens

Generate [4 5 Explore ® Value Vector Details

before and after the FFN, and the dominant FFN sub-updates.

Analyze
Layer Dim. m

Before:

T: (pretty] Tr okay Tr cool Tr very Tr tough Tr fine Tr cloudy

Dominant sub-updates:

3 L17D305] &3 L17D4005 [¥] £ L17D2940 [¥] & L17D3768

3 L17D1556 &3 L17D2524 [£ L17D1560 [& L17Dp1327

After:

Tr [cloudy| Tr pretty Tr tough Tr bad Tr okay Tr warmer Tr cool
Before:

Tr warmer Tr bad Tr cloudy Tr tough Tr pretty Tr awful Tr cool
Dominant sub-updates:

&3 L18D919 [& L18D2932 [l &3 L18D1606 [& Lisp2821

L1 £2 119n2ER 1 2 11an2720 71 £3 112n129n

3 11an1702

Interventions

interventions configuration

e g

£3 L17D2940

@

Tr

Tr

Token Logit

warmer Tr a Tr awful

cold 2284

[£ L17D2875 |
colder 2.244
[& L17D495 2]
precipitation 2.216
very Tr awful Tr cold
frost 2.169
clone 2.143
Tr colder Tr okay Tr cold
cember 2.141
[Y] & L18D2587]

cloudy 2.099

1 £3 11en2m7 ~

value vector projection,
showing the top-scoring tokens

Figure 2: The prediction view of LM-Debugger, showing the prediction trace for a given input (main panel), allowing
to configure interventions (lower panel) and interpret sub-updates to the output distribution (right panel).

3 LM-Debugger

LM-Debugger leverages both static and dynamic
analysis of transformer FFN layers and the updates
they induce to the output distribution for debugging
and intervention in LM predictions. These capa-
bilities are provided in two main views, which we
describe next.

3.1 Prediction View

This view, shown in Figure 2, is designed for
per-example debugging. It allows running inputs
through the model to generate text in an auto-
regressive manner, while tracing the dominant sub-
updates in every layer and applying interventions.

Prediction Trace (Figure 2, main panel). The
user enters an input for the model, for which a de-
tailed trace of the prediction across the network is
provided. For each layer, it shows the top-tokens in
the output distribution, before and after the FFN up-
date, and the 10 most dominant FEN sub-updates.
For every sub-update mivf we show an identifier
L[¢]D[i] of its corresponding value vector and the
coefficient for the given input (e.g. L17D4005 and
9.79).% The top distribution tokens and sub-updates
are sorted by the token probability/sub-update co-
efficient from left (highest) to right (lowest). A
small arrow next to each sub-update allows setting
an intervention on its corresponding value vector.

3The layer and dimension in the identifier use zero-index.

14

Interventions (Figure 2, lower panel). Beyond
tracing the output distribution, LM-Debugger also
allows intervening in the prediction process by set-
ting the coefficients of any vector values in the
network, thus, inducing sub-updates of the user’s
choice. To set an intervention for a specific value
vector, the user should enter its identifier to the
panel and choose whether to “turn it on or off”,
that is, setting its coefficient to the value of the
coefficient of the most dominant sub-update in that
layer, or to zero, respectively. When running an
input example, all interventions in the panel will
be effective, for the entire generation process.

Value Vector Information (Figure 2, right
panel). A natural question that arises is how to
choose meaningful interventions. LM-Debugger
provides two complementary approaches for this.
A bottom-up approach is to observe the dominant
sub-updates for specific examples, and apply inter-
ventions on them. A sub-update can be interpreted
by inspecting the top-tokens in the projection of
its corresponding value vector to the vocabulary
(Geva et al., 2022). For convenience, we let the
user assign names to value vectors. Another way to
find meaningful interventions is by a top-down ap-
proach of searching for value vectors that express
concepts of the user’s interest. We provide this
capability in the exploration view of LM-Debugger,
which is described next.

3.2 Exploration View

This view allows static exploration of value vec-
tors, primarily for analyzing which concepts are
encoded in the FFN layers, how concepts are spread
over different layers, and identifying groups of re-
lated value vectors.

Keyword Search (Figure 3). Value vectors are
interpreted by the top tokens they promote. By
considering these sets of tokens as textual docu-
ments, LM-Debugger allows searching for concepts
encoded in value vectors across the layers. This is
enabled by a search index that LM-Debugger holds
in the background, which stores the projections
of all value vectors to the vocabulary, and allows
executing simple queries against them using the
BM25 (Robertson et al., 1995) algorithm.

Cluster Visualization (Figure 4). Assuming the
user is interested in locating a specific concept in
the network and that she has found a relevant value
vector, either from debugging an example in the
prediction view or by the keyword search. A nat-
ural next step is to find similar value vectors that
promote related tokens. To this end, LM-Debugger
provides a clustering of all value vectors in the
network, which allows mapping any value vector
to a cluster of similar vectors in the hidden space
(Geva et al., 2022). The interface displays a ran-
dom sample of vectors from the cluster, as well as
an aggregation of their top tokens as a word cloud,
showing the concepts promoted by the cluster.

4 Debugging LM Predictions by Tracing
FFN Updates

In this section, we demonstrate the utility of
LM-Debugger for interpreting model behaviour
upon a given example. As an instructive example,
we will consider the case of sense disambiguation.

When generating text, LMs often need to per-
form sense disambiguation and decide on one plau-
sible continuation. For example, the word “for”
in the input “The book is for” has two plausible
senses of purpose (e.g. “reading’) and person
(e.g. “him”) (Karidi et al., 2021). We will now in-
spect the prediction by GPT2 (Brown et al., 2020)
and track the internal sense disambiguation pro-
cess for this example. To this end, we enter the
input in the prediction view and click Trace, which
provides a full trace of the prediction across layers.

Table 1 displays a part of this trace from selected
layers, showing a gradual transition from purpose

Layer: 4 Sense: purpose
Before: example, the, instance, purposes
After: example, the, instance, all

Layer: 10 Sense: purpose
Before: the, sale, example, a
After: the, sale, a, example

Layer: 15 Sense: purposelperson
Before: sale, the, anyone, use
After: sale, anyone, the, ages

Layer: 20 Sense: person
Before: beginners, anyone, adults, sale
After: anyone, beginners, adults, readers

Table 1: Partial prediction trace of GPT2 for the input
“This book is for”, showing the internal disambiguation
process from purpose to person sense across layers.

to person sense. Until layer 11 (out of 24), the top-
tokens in the output distribution are mostly related
to sale/example purposes. Starting from layer 12,
the prediction slowly shifts to revolve about the
audience of the book, e.g. anyone and ages, until
layer 18 where sale is eliminated from the top
position. In the last layers, tokens become more
specific, e.g. beginners and adults.

To examine the major updates through which
the prediction has formed, we can click on spe-
cific sub-updates in the trace to inspect the top-
scoring tokens in their projections. We observe
that in early layers, tokens are often related to
purpose sense (e.g. instance in L2D1855 and
buyers in L12D659), in intermediate layers tokens
are a mix of both senses (readers in L16D3026
and preschool in L17D2454, and sale/free in
L16D1662), and mostly person sense in the last lay-
ers (users in L18D685, people in L20D3643, and
those in L21D2007).

5 Configuring Effective Interventions for
Controlled Text Generation

Beyond interpretability, LM-Debugger enables to
intervene in LM predictions. We show this by find-
ing value vectors that promote specific concepts
and applying simple and effective interventions.

Controlling Occupation Prediction. Consider
the input “My wife is working as a”. When run-
ning it through GPT2, the final prediction from
the last layer has the top tokens nurse, teacher,
waitress. We would like to intervene in the pre-
diction in order to change its focus to occupations
related to software engineering, which in general
are less associated with women (De-Arteaga et al.,
2019). To this end, we will use the exploration

15

$, LMo
«* Debugger

Value Search by Keyword

-

s
4

-

Number of values to load

5
—_—

1L 20

Values by Keywords

searching for "software, developer, engineer"

|L10D3141 @ &

developers, developer, hardware, software, Developer, interoper, ecosystem, enture,

Console, innov, Developers, Publisher, evangel, SOFTWARE, platforms, Software,

Hardware, marketplace, product, innovation, leased, products, ecosystems, testers,

Insert comma separated keywords

Hardware, hello, architectures, Software, chipset, implementations, bund, ware, integ,

software,developer,engineer

gamers, manufactures, platform, develop, programmers, Product, development,

Battlefield, FTWARE, implementing, proprietary, implement, innovations, seed, SDK,

Visualization

2
B

=
L

applications, provider

L17D115 &

developer, developers, accessory, components, manufacturer, hardware, design, VS,

| aver Nimension ~~ Value

ranciimare fave functianaliby vaten adinctahla madificatinne

tntend eafbuiava

Figure 3: Keyword search in the exploration view of LM-Debugger, which matches user queries against the tokens

promoted by value vectors of the model.

Number of values to load CIUSter 1122
5
- Boost
: 2 oweredcompat

Insert comma separated keywords

rpm

Search

Visualization

Layer Dimension oz Value

-
n

.
o

10 L10D3141

3141

igation
stored

JEET T o

l dev ~lv|1~ f

Hardware:

iam]
Apache

Wl £

rome

loader apt

nlh

firmware

accessl

_|
4

| L10D3762 L14D170

-
o

lete
Unmarke

Figure 4: Cluster visualization in the exploration view of LM-Debugger, which maps a given value vector to its

cluster of similar value vectors in the network.

view of LM-Debugger to search for value vectors
promoting software-related concepts.

Searching the keywords “software”, “devel-
oper”, and “engineer” brings up two value vectors
with coherent concepts: L10D3141 and L17D115
(Figure 3). Now, we will add these value vectors
to the intervention panel in the prediction view,
and run the example again. Our intervention, that
only involved two (0.002%) vectors in the network,
dramatically changed the prediction to software,
programmer, consultant, developer, effec-
tively shifting it in the direction we wanted. This
demonstrates the power of LM-Debugger to change
model behaviour and fix undesirable predictions.

Controlling the Sentiment of Generated Text.
The previous example focused on next-token pre-
diction. We now take this one step further and
configure powerful and general interventions that

16

influence various texts generated by the model. For
our experimental setting, we will attempt to control
the sentiment in generated reviews by GPT2, for
inputs taken from the Yelp dataset (Asghar, 2016).
We choose our interventions independently of
the inputs, with two easy steps. First, we use the
keyword search (Figure 3) to identify “seed” value
vectors that promote positive and negative adjec-
tives/adverbs, using the queries “terrible, mediocre,
boring” and “spacious, superb, delicious”. Then,
we take one value vector for each polarity and, us-
ing the cluster visualization (Figure 4), expand it
to a diverse set of vectors from its corresponding
cluster, that promote similar concepts. Overall, we
select 5-6 value vectors for each polarity (details in
Appendix A.1), to which we apply interventions.
Table 2 presents the texts generated by GPT2
(each limited to 10 tokens) for multiple inputs, with
and without applying interventions. Clearly, across

Input Interven. Continuation
- a bit of a mess. I’'m not sure
“Service in this place is” 1 Positive a good place to make the right efforts to make
Negative a waste of a bunch of crap that is too
g
“I have been to this - both times I was disappointed. The first time I
. ” Positive have been served excellent food and good service. The
restaurant twice and
1 Negative have been disappointed. The food is over processed and
“We went on a weeknicht. packed. We had to wait for the bus
- ght. Positive good, good food, good staff, good people
Place was
1 Negative too far for us to get lost. We were
« - had a great time. We had a great time
632%50%{@@%” on 1 Positive have a good team of people who are able to
’ Negative were too heavy for the wrong type of food that
g

Table 2: Continuations (limited to 10 tokens) generated by GPT2 for different inputs from the Yelp dataset, with
and without interventions for “turning on” sub-updates for positive and negative sentiment.

all the examples, our intervention in the prediction
successfully leads to the desired effect, turning the
sentiment of the generated text to be positive or
negative, according to the configured sub-updates.

6 Implementation Details

The prediction view is implemented as a React web
application with a backend Flask server that runs an
API for executing models from the Transformers
library by HuggingFace (Wolf et al., 2020). The
exploration view is a Streamlit web application,
which (a) sends user search queries to an Elas-
ticsearch index with the top tokens of all vector
value projections, and (b) visualize clusters of value
vectors created with the scikit-learn package (Pe-
dregosa et al., 2011). Our current implementation
supports any GPT2 model from HuggingFace, and
other auto-regressive models can be plugged-in
with only a few local modifications (e.g. translat-
ing the relevant layer names). More details and in-
structions for how to deploy and run LM-Debugger
are provided at https://github.com/mega002/
Im-debugger.

7 Related Work

Interpreting single-predictions and the general be-
havior of LMs is a growing research area that at-
tracted immense attention in recent years (Belinkov
et al., 2020; Choudhary et al., 2022). LM-Debugger
is a the first tool to interpret and intervene in the pre-
diction construction process of transformer-based
LMs based on FFN updates.

Existing interpretation and analysis frameworks
mostly rely on methods for behavioral analysis
(Ribeiro et al., 2020) by probing models with ad-
versarial (Wallace et al., 2019b) or counterfactual

17

examples (Tenney et al., 2020), input saliency meth-
ods that assign importance scores to input features
(Wallace et al., 2019b; Tenney et al., 2020), and
analysis of the attention layers (Hoover et al., 2020;
Vig and Belinkov, 2019).

More related to LM-Debugger, other tools ana-
lyze patterns in neuron activations (Rethmeier et al.,
2020; Dalvi et al., 2019; Alammar, 2021). Unlike
these methods, we focus on interpreting the model
parameters and on intervening in their contribution
to the model’s prediction.

The functionality of LM-Debugger is mostly re-
lated to tools that trace hidden representations
across layers. Similarly to LM-Debugger, Alammar
(2021); Nostalgebraist (2020) interpret the token
representation in terms of the output vocabulary.
We take this one step further and interpret the FFN
updates to the representation, allowing to observe
not only the evolution of the representation but also
the factors that induce changes in it.

Our intervention in FEN sub-updates relates to
recent methods for locating and editing knowledge
in the FFN layers of LMs (Meng et al., 2022;
Dai et al., 2022). Different from these methods,
LM-Debugger aims to provide a comprehensive
and fine-grained interpretation of the prediction
construction process across the layers.

8 Conclusion

We introduce LM-Debugger, a debugger tool for
transformer-based LMs, and the first tool to analyze
the FFN updates to the token representations across
layers. LM-Debugger provides a fine-grained inter-
pretation of single-predictions, as well as a power-
ful framework for intervention in LM predictions.

https://github.com/mega002/lm-debugger
https://github.com/mega002/lm-debugger

Ethical Statement

Our work aims to increase the transparency of
transformer-based LMs. It is well known that such
models often produce offensive, harmful language
(Bender et al., 2021; McGuffie and Newhouse,
2020; Gehman et al., 2020; Wallace et al., 2019a),
which might originate in toxic concepts encoded in
their parameters (Geva et al., 2022). LM-Debugger,
which traces and interprets LM predictions, could
expose such toxic concepts and therefore should be
used with caution.

LM-Debugger also provides a framework for
modifying LM behavior in particular directions.
While our intention is to provide developers tools
for fixing model errors, mitigating biases, and build-
ing trustworthy models, this capability also has the
potential for abuse. In this context, it should be
made clear that LM-Debugger does not modify the
information encoded in LMs, but only changes
the intensity in which this information is exposed
in the model’s predictions. At the same time,
LM-Debugger lets the user observe the intensity of
updates to the prediction, which could be used to
identify suspicious interventions. Nonetheless, be-
cause of these concerns, we stress that LMs should
not be integrated into critical systems without cau-
tion and monitoring.

Acknowledgements

We thank the REVIZ team at the Allen Institute for
Al, particularly Sam Skjonsberg and Sam Stuesser.
This project has received funding from the Com-
puter Science Scholarship granted by the Séphora
Berrebi Foundation, the PBC fellowship for out-
standing PhD candidates in Data Science, and the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme, grant agreement No. 802774
(AIEXTRACT).

References

J Alammar. 2021. Ecco: An open source library for the
explainability of transformer language models. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 249-257,
Online. Association for Computational Linguistics.

Nabiha Asghar. 2016. Yelp dataset challenge: Review
rating prediction. arXiv preprint arXiv:1605.05362.

18

Yonatan Belinkov, Sebastian Gehrmann, and Ellie
Pavlick. 2020. Interpretability and analysis in neural
NLP. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Tu-
torial Abstracts, pages 1-5, Online. Association for
Computational Linguistics.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the ACM Confer-
ence on Fairness, Accountability, and Transparency
(FAccT).

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S.
Chen, Kathleen Creel, Jared Davis, Dora Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh,
Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E.
Gillespie, Karan Goel, Noah D. Goodman, Shelby
Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong,
Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain,
Dan Jurafsky, Pratyusha Kalluri, Siddharth Karam-
cheti, Geoff Keeling, Fereshte Khani, O. Khattab,
Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Ro-
hith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xi-
ang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir P. Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika
Narayan, Deepak Narayanan, Benjamin Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadim-
itriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Robert Re-
ich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani,
Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy
Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramer,
Rose E. Wang, William Wang, Bohan Wu, Jiajun
Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Ya-
sunaga, Jiaxuan You, Matei A. Zaharia, Michael
Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang,
Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021.
On the opportunities and risks of foundation models.
ArXiv, abs/2108.07258.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In

https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2021.acl-demo.30
https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://doi.org/10.18653/v1/2020.acl-tutorials.1

Proceedings of Neural Information Processing Sys-
tems (NeurlPS).

Shivani Choudhary, Niladri Chatterjee, and Subir Ku-
mar Saha. 2022. Interpretation of black box nlp mod-
els: A survey. arXiv preprint arXiv:2203.17081.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Fahim Dalvi, Avery Nortonsmith, Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, and
James Glass. 2019. NeuroX: A toolkit for analyzing
individual neurons in neural networks. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):9851-9852.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In Proceedings of the Conference on Fair-
ness, Accountability, and Transparency, FAT* ’19,
page 120-128, New York, NY, USA. Association for
Computing Machinery.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356-3369, Online. Association for Computational
Linguistics.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of the conference on computer
vision and pattern recognition (CVPR).

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2020. exBERT: A Visual Analysis Tool
to Explore Learned Representations in Transformer

Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 187-196, Online. As-
sociation for Computational Linguistics.

Taelin Karidi, Yichu Zhou, Nathan Schneider, Omri
Abend, and Vivek Srikumar. 2021. Putting words
in BERT’s mouth: Navigating contextualized vector
spaces with pseudowords. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10300-10313, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Kris McGuffie and Alex Newhouse. 2020. The radical-
ization risks of gpt-3 and advanced neural language
models. arXiv preprint arXiv:2009.06807.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual knowl-
edge in gpt. arXiv preprint arXiv:2202.05262.

Nostalgebraist. 2020. interpreting GPT: the logit lens.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825-2830.

Nils Rethmeier, Vageesh Kumar Saxena, and Isabelle
Augenstein. 2020. Tx-ray: Quantifying and explain-
ing model-knowledge transfer in (un-)supervised nlp.
In Proceedings of the 36th Conference on Uncer-
tainty in Artificial Intelligence (UAI), volume 124 of
Proceedings of Machine Learning Research, pages
440-449. PMLR.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902—
4912, Online. Association for Computational Lin-
guistics.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, and Mike Gatford.
1995. et almbox. 1995. okapi at trec-3. Nist Special
Publication Sp, 109:109.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, and Ann Yuan. 2020. The language inter-
pretability tool: Extensible, interactive visualizations
and analysis for NLP models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 107-118, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2022.acl-long.581
https://doi.org/10.1609/aaai.v33i01.33019851
https://doi.org/10.1609/aaai.v33i01.33019851
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.1145/3287560.3287572
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2020.acl-demos.22
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://doi.org/10.18653/v1/2021.emnlp-main.806
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.mlr.press/v124/rethmeier20a.html
https://proceedings.mlr.press/v124/rethmeier20a.html
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15
https://doi.org/10.18653/v1/2020.emnlp-demos.15

you need. In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 5998—6008.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63-76, Florence, Italy. As-
sociation for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019a. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 2153-2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Subra-
manian, Matt Gardner, and Sameer Singh. 2019b.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP): System Demonstrations, pages
7-12, Hong Kong, China. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

20

A Appendix

A.1 Details on Interventions to Control
Generated Text Sentiment

Table 3 lists all the value vectors selected for our
interventions described in §5, and examples for
top-scoring tokens in their projections. These
vectors were found with the exploration view of
LM-Debugger (§3.2), using both keyword search
and clustering visualisation. All the interventions
were configured to “turn on” these vectors, namely,
setting their coefficients to be maximal for the cor-
responding layer. This is following the observation
by Geva et al. (2022) that FFN updates operate in
a token promotion mechanism (rather than elimina-
tion).

https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/D19-3002
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Sentiment Value Vector

Example Top-scoring Tokens

L13D1763 properly, appropriately, adequate, truthful, humane,
fulfil, inclusive, timely, patiently, sustainable

L13D2011 clean, Proper, secure, flawless, safest, graceful, smooth,
calmly

.. L14D944 peacefully, graceful, respectful, careful, generous,
Positive . ;

patiently, calm, tolerant, fair

L15D74 Excellence, superb, trustworthy, marvelous, terrific,
awesome, Amazing

L20D988 successful, optimal, perfect, satisfactory, welcome,
helpful, fulfilling, healthy

L11D4 outdated, inadequate, stale, lousy, dull, mediocre, boring,
wasteful

L14D2653 trivial, dismiss, rigid, unsupported, only, prejud, obfusc,
pretend, dispar, slander

L16D974 inappropriately, poorly, disrespect, unreliable,

Negative unhealthy, insecure, improperly, arrogance

L17D3790 inappropriate, improper, wrong, bad, harmful,
unreasonable, defective, disturbance, errors

L18D91 confused, bizarre, unfairly, horrible, reckless, neglect,
misplaced, strange, nasty, mistakenly

L18D3981 wrong, incorrect, insufficient, misleading, premature,

improperly, unrealistic, outdated, unfair

Table 3: Value vectors used for controlling sentiment in generated text, that promote positive and negative
adjectives/adverbs. For each vector, we show example top-scoring tokens from its projection to the vocabulary, as
presented in the exploration view of LM-Debugger.

21

EasyNLP: A Comprehensive and Easy-to-use Toolkit for
Natural Language Processing

Chengyu Wang', Minghui Qiu'; Taolin Zhang"?, Tingting Liu'?, Lei Li'?,
Jianing Wang!?, Ming Wang!', Jun Huang', Wei Lin'
! Platform of Al (PAI), Alibaba Group ? East China Normal University
{chengyu.wcy,minghui.gmh, huangjun.hj}@alibaba-inc.com

Abstract

Pre-Trained Models (PTMs) have reshaped the
development of Natural Language Processing
(NLP) and achieved significant improvement in
various benchmarks. Yet, it is not easy for in-
dustrial practitioners to obtain high-performing
PTM-based models without a large amount of
labeled training data and deploy them online
with fast inference speed. To bridge this gap,
EasyNLP is designed to make it easy to build
NLP applications, which supports a compre-
hensive suite of NLP algorithms. It further fea-
tures knowledge-enhanced pre-training, knowl-
edge distillation and few-shot learning func-
tionalities, and provides a unified framework of
model training, inference and deployment for
real-world applications. EasyNLP has powered
over ten business units within Alibaba Group
and is seamlessly integrated to the Platform
of AI (PAI) products on Alibaba Cloud. The
source code of EasyNLP is released at GitHub
(https://github.com/alibaba/EasyNLP).

1 Introduction

Pre-Trained Models (PTMs) such as BERT, GPT-
3 and PalLM have achieved remarkable results in
NLP. With the scale expansion of PTMs, the per-
formance of NLP tasks has been continuously im-
proved; thus, there is a growing trend of ultra-large-
scale pre-training, pushing the scale of PTMs from
millions, billions, to even trillions (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022).

However, the application of large PTMs in indus-
trial scenarios is still a non-trivial problem, with
reasons as follows. 1) Large PTMs are not always
smarter and can make commonsense mistakes due
to the lack of world knowledge (Petroni et al.,
2019). Hence, it is highly necessary to make PTMs
explicitly understand world facts by knowledge-
enhanced pre-training, especially for supporting
domain-specific applications. ii) Although large-
scale PTMs have achieved good results with few

* Corresponding Author.

22

training samples, the problem of insufficient data
and the huge size of models such as GPT-3 still
restrict the usage of these models. Thus, few-shot
fine-tuning BERT-style PTMs is more practical for
online applications (Gao et al., 2021). iii) Last but
not least, although large-scale PTMs have become
an important part of the NLP learning pipeline, the
slow training and inference speed seriously affects
online applications that require higher QPS (Query
Per Second) with limited computational resources.

To address these issues, we develop EasyNLP,
an NLP toolkit that is designed to make the ap-
plications of large PTMs to industrial scenarios
more efficiently and effectively. EasyNLP pro-
vides knowledge-enhanced pre-training function-
alities to improve the knowledge understanding
abilities of PTMs. Specifically, it integrates our
DKPLM framework (Zhang et al., 2022) that en-
ables the decomposition of knowledge-enhanced
pre-training and task-specific learning. Hence,
the resulting models can be tuned and deployed
in the same way as BERT (Devlin et al., 2019).
EasyNLP is equipped with a variety of popular
prompt-based few-shot learning algorithms such as
PET (Schick and Schiitze, 2021) and P-Tuning (Liu
et al., 2021b). Particularly, we propose a new few-
shot learning paradigm named Contrastive Prompt
Tuning (CP-Tuning) (Xu et al., 2022) that eases
the manual labor of verbalizer construction based
on contrastive learning. Finally, EasyNLP sup-
ports several knowledge distillation algorithms that
compress large PTMs into small and efficient ones.
Among them, the MetaKD algorithm (Pan et al.,
2021) can significantly improve the effectiveness
of the learned models with cross-domain datasets,
which is particular common in industry.

Overall, our EasyNLP toolkit can provide users
with large-scale and robust learning functionali-
ties, and is seamlessly connected to the Platform
of AI (PAI)! products. To demonstrate the useful

"https://www.alibabacloud.com/product/

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 22 - 29

December 7-11, 2022 (©)2022 Association for Computational Linguistics

https://github.com/alibaba/EasyNLP
https://www.alibabacloud.com/product/machine-learning

of EasyNLP, we also present the results of stan-
dard benchmarks and some real-world industrial
scenarios to show how EasyNLP brings substantial
improvements to these applications.

In a nutshell, the main features of the EasyNLP
toolkit include the following aspects:

¢ Easy-to-use and highly customizable. In ad-
dition to providing easy-to-use commands to
call cutting-edge NLP models, EasyNLP ab-
stracts customized modules such as AppZoo
and ModelZoo to make it easy to build NLP
applications. It also features DataHub that
provides users with a simple interface to load
and process various types of NLP datasets.

Compatible with open-source community.
EasyNLP has rich APIs to support the train-
ing of models from other open-source libraries
such as Huggingface/Transformers” with the
PAT’s distributed learning framework. It is
also compatible with the PTMs in EasyTrans-
fer ModelZoo (Qiu et al., 2021).

Product-ready support. EasyNLP is seam-
lessly integrated to PAI products on Alibaba
Cloud to provide full model training and serv-
ing experience, including PAI-DSW for model
development, PAI-DLC for cloud-native train-
ing, PAI-EAS for online serving, and PAI-
Designer for zero-code model training.

Pre-training knowledge-enhanced PTMs.
EasyNLP also is equipped with knowledge-
enhanced PTMs of various domains. Its
pre-training APIs enable users to obtain cus-
tomized PTMs using their own knowledge
bases with just a few lines of codes.

Deploying large-scale PTMs. EasyNLP pro-
vides few-shot learning capabilities based on
prompts, allowing users to fine-tune large-
scale PTMs with only a few training samples
to achieve good results. Meanwhile, it pro-
vides knowledge distillation functionalities to
help quickly distill large models to small and
efficient models for online deployment.

2 Related Work

In this section, we summarize the related work on
PTMs, prompt learning and knowledge distillation.
machine-learning

Zhttps://github.com/huggingface/transformers
3https://github.com/alibaba/EasyTransfer

23

Pre-trained Language Models. PTMs have
achieved significant improvements on various tasks
by self-supervised pre-training (Qiu et al., 2020).
To name a few, BERT (Devlin et al., 2019) learns
bidirectional contextual representations by trans-
former encoders. Other transformer encoder-based
PTMs include Transformer-XL (Dai et al., 2019),
XLNet (Yang et al., 2019) and many others. The
encoder-decoder and auto-regressive decoder archi-
tectures are used in T5 (Raffel et al., 2020) and
GPT-3 (Brown et al., 2020). Knowledge-enhanced
PTMs (Zhang et al., 2019; Liu et al., 2020; Sun
et al., 2020) improve language understanding abil-
ities of PTMs via injecting relational triples ex-
tracted from knowledge bases.

Prompt Learning for PTMs. Prompt learning
models the probability of texts directly as the model
prediction results based on language models (Liu
et al., 2021a). In the literature, PET (Schick and
Schiitze, 2021) models NLP tasks as cloze prob-
lems and maps the results of the masked language
tokens to class labels. Gao et al. (2021) generates
discrete prompts from T5 (Raffel et al., 2020) to
support prompt discovery. P-Tuning (Liu et al.,
2021b) learns continuous prompt embeddings with
differentiable parameters. Our CP-Tuning (Xu
et al., 2022) optimizes the output results based on
contrastive learning, without defining mappings
from outputs to class labels.

Knowledge Distillation. Knowledge distillation
aims at learning a smaller model from an ensem-
ble or a larger model (Hinton et al., 2015). For
large-scale PTMs, DistillBERT (Sanh et al., 2019)
and PKD (Sun et al., 2019) applies the distilla-
tion loss in the pre-training and fine-tuning stages,
separately. TinyBERT (Jiao et al., 2020a) further
distills BERT in both stages, considering various
types of signals. Due to space limitation, we do not
further elaborate other approaches. Our MetaKD
method (Pan et al., 2021) further improves the ac-
curacy of the student models by exploiting cross-
domain transferable knowledge, which is fully sup-
ported by EasyNLP.

3 The EasyNLP Toolkit

In this section, we introduce various aspects of our
EasyNLP toolkit in detail.
3.1 Overview

We begin with an overview of EasyNLP in Figure 1.
EasyNLP is built upon PyTorch and supports rich

https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://www.alibabacloud.com/product/machine-learning
https://github.com/huggingface/transformers
https://github.com/alibaba/EasyTransfer

s 7
Environments [Local Environment] [Cloud Environment (PAI Products)
. J J
(0
Solutions ‘ Text Tagging ’ ‘ Spam Detection ‘ Text Retrieval ’ ‘ User-defined Solutions
. J
e AppZoo) Few-shot Learning Knowledge Distillation
Text Text Sequence Tun CP- :
[Classification] [Matching][Labeling] [PET] {P Tunmg} { Tuning] {Vanllla KD} { MetaKD]
Basic Language Feature Other Apps 4 ModelZoo Y4 10 Modules)
Modules L Modeling ||Vectorization) Table oDPS
[BERT] [ALBERT] [DKPLM [Reader][Reader]
DataHub
Text- Other csv
{ Datasets } {Pre-training Corpora} [GPT] [CNN] [Models [Reader}[webDataset
- J 2 ZN- =/
[Backend } ‘ PyTorch

Figure 1: An overview of the EasyNLP toolkit.

data readers to process data from multiple sources.
Users can load any PTMs from ModelZoo and
datasets from DataHub, build their applications
from AppZoo, or explore its advanced function-
alities such as knowledge-enhanced pre-training,
knowledge distillation and few-shot learning. The
codes can run either in local environments or PAI’s
products on the cloud. Users can also explore vari-
ous solutions on our platform to support real-world
applications. In addition, all EasyNLP’s APIs are
also released to make it easy for users to customize
any kinds of NLP applications.

3.2 DataHub, ModelZoo and AppZoo

DataHub. DataHub provides users with an in-
terface to load and process various kinds of data.
It is compatible with Huggingface datasets* as a
built-in library that supports unified interface calls
and contains datasets of a variety of tasks. Some
examples are listed in Table 1. Users can load
the required data by specifying the dataset name
through the 1oad_dataset interface, and then
use the GeneralDataset interface to automat-
ically process the data into model input. An ex-
ample of loading and pre-processing the TNEWS
dataset, together with its subsequent steps, is shown
in Code 1. For user-defined datasets, it is also
straightforward to inherit the GeneralDataset
class to customize the data format.

ModelZoo. PTMs such as BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and T5 (Raffel
et al., 2020) greatly improve the performance of
NLP tasks. To facilitate user deployment of mod-
els, ModelZoo provides general pre-trained models

*https://github.com/huggingface/datasets

24

Task Type \ Example of Datasets

TNEWS?, SogouCA®
THUCNews’, SogouCS®
BUSTM®, CHID'®
OntoNotes'!, SanWen'?

Sequence Classification

Text Generation

Few-shot / Zero-shot Learning
Knowledge-based NLU

Table 1: A partial list of datasets in EasyNLP DataHub.

from easynlp.dataset import load_dataset,
GeneralDataset

load dataset

dataset = load_dataset (’'clue’, ’'tnews’) ["train"]

parse data into classification model input

encoded = GeneralDataset (dataset, ’'chinese-bert-base’
load model

model SequenceClassification (’chinese-bert-base’)
trainer Trainer (model, encoded)

start to train

trainer.train ()

Code 1: Load the TNEWS training set and build a text
classification application using EasyNLP.

as well as our own models for users to use, such as
DKPLM (Zhang et al., 2022) of various domains.
A few widely-used non-PTM models are also sup-
ported, such as Text-CNN (Kim, 2014).

AppZoo. To help users build NLP applications
more easily with our framework, we further pro-
vide a comprehensive NLP application tool named
AppZoo. It supports running applications with a
few command-line arguments and provides a vari-

Shttps://github.com/CLUEbenchmark/CLUE
®http://www.sogou.com/labs/resource/ca.php
"http://thuctc.thunlp.org/
8https://www.sogou.com/labs/resource/cs.php
*https://github.com/xiaobu-coai/BUSTM
https://github.com/chujiezheng/ChID-Dataset
"https://catalog.ldc.upenn.edu/LDC2013T19
Phttps://github.com/lancopku/
Chinese-Literature-NER-RE-Dataset

https://github.com/huggingface/datasets
https://github.com/CLUEbenchmark/CLUE
http://www.sogou.com/labs/resource/ca.php
http://thuctc.thunlp.org/
https://www.sogou.com/labs/resource/cs.php
https://github.com/xiaobu-coai/BUSTM
https://github.com/chujiezheng/ChID-Dataset
https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/lancopku/Chinese-Literature-NER-RE-Dataset
https://github.com/lancopku/Chinese-Literature-NER-RE-Dataset

easynlp \
--mode=train \
-—worker_gpu=1 \
——tables=train.tsv,dev.tsv \
—-—input_schema=sent:str:1,label:str:1 \
--first_sequence=sent \
——label_name=label \
—-label_enumerate_values=0,1 \
——checkpoint_dir=./classification_model \
—-—epoch_num=1 \
--sequence_length=128 \
——app_name=text_classify \
—-user_defined_parameters=

'pretrain_model_name_or_path=bert-small-uncased’

Code 2: AppZoo for training a BERT-based text classifier

using EasyNLP.

ety of mainstream or innovative NLP applications
for users. AppZoo provides rich modules for users
to build different application pipelines, including
language modeling, feature vectorization, sequence
classification, text matching, sequence labeling and
many others. An example of training a text classi-
fier using AppZoo is shown in Code 2.

3.3 In-house Developed Algorithms

In this section, we introduce in-house developed
algorithms in EasyNLP. All these algorithms have
been tested in real-world applications.

3.3.1 Knowledge-enhanced Pre-training

Knowledge-enhanced pre-training improves the
performance of PTMs by injecting the relational
facts from knowledge bases. Yet, a lot of existing
works require additional knowledge encoders dur-
ing pre-training, fine-tuning and inference (Zhang
et al., 2019; Liu et al., 2020; Sun et al., 2020).
The proposed DKPLM paradigm (Zhang et al.,
2022) decomposes the knowledge injection pro-
cess. For DKPLM, knowledge injection is only
applied during pre-training, without introducing
extra parameters as knowledge encoders, allevi-
ating the significant computational burdens for
users. Meanwhile, during fine-tuning and inference
stages, our model can be utilized in the same way as
that of BERT (Devlin et al., 2019) and other plain
PTMs, which facilitates the model fine-tuning and
deployment in EasyNLP and other environments.
Specifically, the DKPLM framework introduces
three novel techniques for knowledge-enhanced
pre-training. It recognizes long-tail entities from
text corpora for knowledge injection only, avoiding
learning too much redundant and irrelevant infor-
mation from knowledge bases (Zhang et al., 2021).
Next, the representations of entities are replaced
by “pseudo token representations” derived from

25

knowledge bases, without introducing any extra
parameters to DKPLM. Finally, a relational knowl-
edge decoding task is introduced to force the model
to understand what knowledge is injected.

In EasyNLP, we provide the entire pre-training
pipeline of DKPLM for users. In addition, a collec-
tion of pre-trained DKPLM:s for specific domains
have been registered in ModelZoo for supporting
domain-specific applications.

3.3.2 Few-shot Learning for PTMs

For low-resource scenarios, prompt-based learning
leverages prompts as task guidance for effective
few-shot fine-tuning. In EasyNLP, to facilitate easy
few-shot learning, we integrate PET (Schick and
Schiitze, 2021) and P-Tuning (Liu et al., 2021b)
into AppZoo that allow users call the algorithms in
the similar way compared to standard fine-tuning.

It should be further noted that either PET or P-
Tuning require the explicit handcraft of verbalizers,
which is a tedious process and may lead to unsta-
ble results. Our CP-Tuning approach (Xu et al.,
2022) enables few-shot fine-tuning PTMs without
the manual engineering of task-specific prompts
and verbalizers. A pair-wise cost-sensitive con-
trastive learning is introduced to achieve verbalizer-
free class mapping by learning to distinguish differ-
ent classes. Users can also explore CP-Tuning in
AppZoo for any tasks that classical prompt-based
methods support.

3.3.3 Knowledge Distillation for PTMs

The large model size and the long inference time
hinder the deployment of large-scale PTMs to
resource-constrained applications. In EasyNLP,
we provide a complete learning pipeline for knowl-
edge distillation, including data augmentation for
training sets, logits extraction from teacher models
and distilled training of student models.

In addition, we notice that a majority of existing
approaches focus on a single domain only. The
proposed MetaKD algorithm (Pan et al., 2021)
explicitly leverages the cross-domain transferable
knowledge to improve the accuracy of student mod-
els. It first obtain a meta-teacher model to capture
transferable knowledge at both instance-level and
feature-level from multiple domains. Next, a meta-
distillation algorithm is employed to learn single-
domain student models with selective signals from
the meta-teacher. In EasyNLP, the MetaKD pro-
cess is implemented as a general feature for any
types of BERT-style PTMs.

PTM AFQMC CMNLI CSL IFLYTEK OCNLI TNEWS WSC Average
BERT-base 72.17 75.74 80.93 60.22 78.31 57.52 75.33 71.46
BERT-large 72.89 77.62 81.14 60.70 78.95 57.77 78.18 72.46
RoBERTa-base 73.10 80.75 80.07 60.98 80.75 57.93 86.84 74.35
RoBERTa-large 74.81 80.52 82.60 61.37 82.49 58.54 87.50 75.40
MacBERT-base 74.23 80.65 81.70 61.14 80.65 57.65 80.26 73.75
MacBERT-large 74.37 81.19 83.70 62.05 81.65 58.45 86.84 75.46

Table 2: CLUE performance of BERT, RoBERTa and MacBERT fine-tuned with EasyNLP (%).

PTM MNLI QNLI QQP RTE SST-2 MRPC CoLA STSB Average
BERT-base 848 914 911 683 925 88.1 553 89.6 82.6
BERT-large 86.6 924 912 708 934 82 61.1 90.1 84.2
RoBERTa-base ~ 87.3 925 921 773 949 902 639 911 86.2
RoBERTa-large 90.1 945 923 871 964 910 678 923 88.9

Table 3: GLUE performance of BERT and RoBERTa fine-tuned with EasyNLP (%).

4 System Evaluations and Applications

In this section, we empirically examine the effec-
tiveness and efficiency of the EasyNLP toolkit on
both public datasets and industrial applications.

4.1 CLUE and GLUE Benchmarks

In order to validate the effectiveness of EasyNLP
on model fine-tuning, we fine-tune PTMs on the
CLUE and GLUE benchmarks (Wang et al., 2019;
Xu et al., 2020). For all tasks, we use a limited
hyper-parameter search space, with batch sizes in
{8, 16,32, 48}, sequence length in {128,256} and
learning rates in {le—5,2e—5,3e—5,4e—5, be—
5}. The underlying PTMs include BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019). We
also evaluate MacBERT (Cui et al., 2020) for the
Chinese benchmark CLUE. We report the results
over the development sets of each task in the two
benchmarks, shown in Tables 2 and 3, respectively.
The obtained comparable performance has shown
the reliability of EasyNLP, which achieves similar
performance compared to other open-source frame-
works and their original implementations.

4.2 Evaluation of Knowledge-enhanced
Pre-training

We report the performance of DKPLM over zero-
shot knowledge probing tasks, including LAMA
(Petroni et al., 2019) and LAMA-UHN (P&rner
et al., 2019), with the results summarized in Ta-
ble 4. Compared to strong baselines (i.e., Co-
LAKE (Sun et al., 2020) K-Adapter (Wang et al.,
2021a) and KEPLER (Wang et al., 2021b)), we
see that DKPLM achieves state-of-the-art results
over three datasets (+1.57% on average). The re-

sult of DKPLM is only 0.1% lower than K-Adapter,
without using any T-REXx training data and larger
backbones. We can see that our pre-training pro-
cess based on DKPLM can effectively store and
understand factual relations from knowledge bases.

Industrial Applications. Based on the proposed
DKPLM framework (Zhang et al., 2022), we have
pre-trained a series of domain-specific PTMs to
provide model service inside Alibaba Group, such
as medical and finance domains, and observed con-
sistent improvement in downstream NLP tasks. For
example, the medical-domain DKPLM improves
the accuracy of a medical named entity recognition
task by over 3%, compared to the standard BERT
model (Devlin et al., 2019). The pre-trained model
(named pai-dkplm-medical-base—-zh) has
also been released in our EasyNLP ModelZoo.

4.3 Evaluations of Few-shot Learning

We compare CP-Tuning (Xu et al., 2022) against
several prompt-based fine-tuning approaches in-
cluding PET (Schick and Schiitze, 2021), LM-
BFF (Gao et al., 2021) (in three settings where
“Auto T”, “Auto L’ and “Auto T+L” refer to the
prompt-tuned PTM with automatically generated
templates, label words and both, respectively) and
P-Tuning (Liu et al., 2021b). The experiments are
conducted over several text classification datasets
in a 16-shot learning setting. The underlying PTM
is RoBERTa (Liu et al., 2019). Readers can refer
to Xu et al. (2022) for more details. From the re-
sults in Table 5, we can see that the performance
gains of CP-Tuning over all the tasks are consistent,
compared to state-of-the-art methods.

Industrial Applications. For business customer

26

Dataset | ELMo BERT RoBERTa | CoLAKE K-Adapter® KEPLER | DKPLM
Google-RE 22% 11.4% 5.3% 9.5% 7.0% 7.3% 10.8%
UHN-Google-RE | 2.3% 5.7% 2.2% 4.9% 3.7% 4.1% 5.4%

T-REx 02% 32.5% 24.7% 28.8% 29.1% 24.6% 32.0%
UHN-T-REx 02% 23.3% 17.0% 20.4% 23.0% 17.1% 22.9%

Table 4: The performance on LAMA knowledge probing datasets. Note that K-Adapter is trained based on a
large-scale model and uses a subset of T-REx as its training data.

Method | SST-2 MR CR MRPC QQP OQNLI RTE SUBJ Avg.
Standard Fine-tuning | 78.62 76.17 7248 6440 63.01 6232 5228 86.82 69.51
PET 92.06 87.13 87.13 6623 7034 6438 65.56 91.28 78.01
LM-BFF (Auto T) 90.60 87.57 90.76 66.72 65.25 68.87 6599 91.61 7842
LM-BFF (Auto L) 90.55 8551 O91.11 67.75 7092 66.22 66.35 9048 78.61
LM-BFF (Auto T+L) | 9142 86.84 9040 66.81 61.61 61.89 66.79 90.72 77.06
P-tuning 9142 87.41 9090 7123 66.77 6342 67.15 89.10 7843
CP-Tuning | 93.35 89.43 9157 7260 73.56 6922 67.22 9227 8124

Table 5: Comparison between CP-Tuning and baselines over the testing sets in terms of accuracy (%).

Method Amazon MNLI
BERT-s 87.9 81.9
BERT-mix 89.5 84.4
BERT-mtl 89.8 84.2
BERT-s — TinyBERT 86.7 79.3
BERT-mix — TinyBERT 87.3 79.6
BERT-mtl — TinyBERT 87.7 79.7
MetaKD 89.4 80.4

Table 6: Evaluation of MetaKD over Amazon reviews
and MNLI in terms of averaged accuracy (%).

service, it is necessary to extract the fine-grained at-
tributes and entities from texts, which may involve
a large number of classess with few training data
available. By applying our algorithm in EasyNLP,
the accuracy scores of entity and attribute extrac-
tion are improved by 2% and 5%. In addition, our
few-shot toolkit produces the best performance on
the FewCLUE benchmark (Xu et al., 2021).

4.4 Evaluations of Knowledge Distillation

We further report the performance of MetaKD (Pan
et al., 2021) on Amazon reviews (Blitzer et al.,
2007) and MNLI (Williams et al., 2018), where the
two datasets contain four and five domain instances,
respectively. In the experiments, we train the meta-
teacher over multi-domain training sets, and distill
the meta-teacher to each of all the domains. The
teacher model is BERT-base (with 110M parame-
ters), while the student model is BERT-tiny (with
14.5M parameters). Table 6 shows the performance
of baselines and MetaKD, in terms of averaged ac-

27

curacy across domains. BERT-s refers to a single
BERT teacher trained on each domain. BERT-mix
is one BERT teacher trained on the mixture of all
domain data. BERT-mtl is one teacher trained by
multi-task learning over all domains. For distilla-
tion, “— TinyBERT” means using the KD method
described in Jiao et al. (2020b) to distill the cor-
responding teacher model. The results show that
MetaKD significantly reduces the model size while
preserving a similar performance. For more details,
we refer the readers to Pan et al. (2021).

Industrial Applications. Distilled PTMs have
been widely used inside Alibaba Group due to the
high QPS requirements of online e-commerce ap-
plications. For example, in the AliMe chatbot (Qiu
et al., 2017), we distill the BERT-based query in-
tent detection model from the base version to the
tiny version, resulting in 7.2x inference speedup
while the accuracy is only decreased by 1%.

5 Conclusion

In this paper, we introduced EasyNLP, a toolkit that
is designed to make it easy to develop and deploy
deep NLP applications based on PTMs. It supports
a comprehensive suite of NLP algorithms and fea-
tures knowledge-enhanced pre-training, knowledge
distillation and few-shot learning functionalities for
large-scale PTMs. Currently, EasyNLP has pow-
ered a number of business units inside Alibaba
Cloud and provided NLP service on the cloud. The
toolkit has been open-sourced to promote research
and development for NLP applications.

Broader Impact

EasyNLP is a comprehensive toolkit for building
various NLP applications to support industrial sce-
narios. It has been seamlessly integrated into the
PAI products, and has been released to the open-
source community. EasyNLP is also highly bene-
ficial for academia, as it integrates state-of-the-art
methods and models to make it easy for researchers
to benchmark and develop their own algorithms.

Acknowledgments

The authors would like to thank Haojie Pan, Peng
Li, Boyu Hou, Xiaoqing Chen, Xiaodan Wang, Xi-
angru Zhu and many other members of the Alibaba
PAI team for their contribution and suggestions on
building the EasyNLP toolkit. This work is also
partially supported by Alibaba Group through Al-
ibaba Innovative Research Program and Alibaba
Research Intern Program.

References

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
ACL.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurlPS.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,

28

Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for chinese natural language processing. In
EMNLP (Findings), pages 657-668.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xI: Attentive language models
beyond a fixed-length context. In ACL, pages 2978—
2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171-4186.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL/IJCNLP, pages 3816-3830.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020a.
Tinybert: Distilling BERT for natural language under-
standing. In EMNLP (Findings), pages 4163-4174.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020b.
Tinybert: Distilling BERT for natural language under-
standing. In EMNLP (Findings), pages 4163-4174.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP, pages 1746—
1751.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT: en-
abling language representation with knowledge graph.
In AAAI pages 2901-2908.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. GPT
understands, too. CoRR, abs/2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang
Zhang, Yaliang Li, and Jun Huang. 2021. Meta-kd: A
meta knowledge distillation framework for language
model compression across domains. In ACL/IJCNLP,
pages 3026-3036.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models
as knowledge bases? In EMNLP-IJCNLP, pages
2463-2473.

Nina Porner, Ulli Waltinger, and Hinrich Schiitze. 2019.
BERT is not a knowledge base (yet): Factual knowl-
edge vs. name-based reasoning in unsupervised QA.
CoRR, abs/1911.03681.

Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan
Chen, Weipeng Zhao, Haiqing Chen, Jun Huang, and
Wei Chu. 2017. Alime chat: A sequence to sequence
and rerank based chatbot engine. In ACL, pages 498—
503.

Minghui Qiu, Peng Li, Chengyu Wang, Haojie Pan,
Ang Wang, Cen Chen, Xianyan Jia, Yaliang Li, Jun
Huang, Deng Cai, and Wei Lin. 2021. Easytransfer:
A simple and scalable deep transfer learning platform
for NLP applications. In CIKM, pages 4075-4084.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
CoRR, abs/2003.08271.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In EACL, pages 255-269.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In EMNLP-IJCNLP, pages 4322-4331.

Tianxiang Sun, Yunfan Shao, Xipeng Qiu, Qipeng Guo,
Yaru Hu, Xuanjing Huang, and Zheng Zhang. 2020.
Colake: Contextualized language and knowledge em-
bedding. In COLING, pages 3660-3670.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In /CLR.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021a. K-adapter: Infusing

29

knowledge into pre-trained models with adapters. In
ACL, pages 1405-1418.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan
Liu, Juanzi Li, and Jian Tang. 2021b. KEPLER: A
unified model for knowledge embedding and pre-
trained language representation. Trans. Assoc. Com-
put. Linguistics, 9:176—194.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT, pages 1112-1122.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao,
Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong
Yu, Yin Tian, Qiangian Dong, Weitang Liu, Bo Shi,
Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang,
Weijian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao,
Qipeng Zhao, Cong Yue, Xinrui Zhang, Zhengliang
Yang, Kyle Richardson, and Zhenzhong Lan. 2020.
CLUE: A chinese language understanding evaluation
benchmark. In COLING, pages 4762-4772.

Ziyun Xu, Chengyu Wang, Peng Li, Yang Li, Ming
Wang, Boyu Hou, Minghui Qiu, Chengguang Tang,
and Jun Huang. 2021. When few-shot learning meets
large-scale knowledge-enhanced pre-training: Al-
ibaba at fewclue. In NLPCC, pages 422-433.

Ziyun Xu, Chengyu Wang, Minghui Qiu, Fuli Luo,
Runxin Xu, Songfang Huang, and Jun Huang. 2022.
Making pre-trained language models end-to-end few-
shot learners with contrastive prompt tuning. CoRR,
abs/2204.00166.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS, pages 5754-5764.

Ningyu Zhang, Shumin Deng, Xu Cheng, Xi Chen,
Yichi Zhang, Wei Zhang, and Huajun Chen. 2021.
Drop redundant, shrink irrelevant: Selective knowl-
edge injection for language pretraining. In IJCAI,
pages 4007-4014.

Taolin Zhang, Chengyu Wang, Nan Hu, Minghui Qiu,
Chengguang Tang, Xiaofeng He, and Jun Huang.
2022. DKPLM: decomposable knowledge-enhanced
pre-trained language model for natural language un-
derstanding. In AAAL

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: enhanced
language representation with informative entities. In
ACL, pages 1441-1451.

An Explainable Toolbox for Evaluating Pre-trained
Vision-Language Models

Tiancheng Zhao'?, Tianqi Zhang?, Mingwei Zhu®, Haozhan Shen?,
Kyusong Lee'?, Xiaopeng Lu'!?, Jianwei Yin?
Om Research Lab, Binjiang Institute of Zhejiang University!
Linker Technology Research Co. Ltd?
College of Computer Science and Technology, Zhejiang University®
{tianchez, kyusongll}@zju-bj.com, lu_xiaopeng@hzlh.com
{zhang_tq, zhumw, cnfighting, zjuyjw}@zju.edu.cn

Abstract

We introduce VL-CheckList, a toolbox
for evaluating Vision-Language Pretrain-
ing (VLP) models, along with a benchmark
dataset for fine-grained VLP model anal-
ysis. Most existing VLP models evaluate
their performance by comparing the fine-
tuned downstream task performance. How-
ever, only average downstream task accu-
racy provides little information about the
pros and cons of each VLP method. In this
paper, we demonstrate how minor input
changes in language and vision will affect
the prediction outputs. We also provide a
guideline for the research community to uti-
lizes and contributes to this toolbox. Lastly,
a case study based on VL-CheckList is con-
ducted to analyze one of the representa-
tive VLP models. Data and code are avail-
able at https://github.com/om-ai-1lab/
VL-CheckList

1 Introduction

The ability to quickly iterate various methods
and obtain insightful feedback is crucial for
successful research. For production machine
learning (ML) system, comprehensive testing
before deployment is crucial for reliable user
experience. Therefore, explainable ML evalu-
ation has emerged to complement benchmark
evaluation (Bolya et al., 2020; Ribeiro et al.,
2020; Du et al., 2022), which strives to provide
an interpretable evaluation of a ML systems
and analyze the system from a number of dis-
entangled aspects (Bolya et al., 2020).

The advantages of explainable evaluation
vs. typical benchmark evaluation include: (1)
downstream task performance only provides
a black box score and it is difficult to obtain
insights for improving a system. (2) typical
dataset is not designed to test models’ robust-
ness against extreme corner cases, which are

30

however crucial for many real-world tasks, e.g.
autonomous driving.

Given the importance of explainable ML
evaluation, this paper concerns about Vision-
Language Pretraining (VLP) models. VLP
models have rapidly improved (Li et al., 2020;
Radford et al., 2021; Li et al., 2021; Zhao
et al., 2022), thanks to the emergence of mul-
timodal transformers (Vaswani et al., 2017)
and the availability of large paired image-text
dataset (Sharma et al., 2018; Changpinyo et al.,
2021). Many proposed VLP models have aided
in achieving the state-of-the-art performance
of a variety of downstream multimodal tasks,
ranging from visual QA (Lu et al., 2019), mul-
timodal retrieval (Lu et al., 2021) to visual
grounding (Kamath et al., 2021) and many
others. On the other hand, the current defacto
method to evaluate a VLP model is based on
the fine-tuned downstream tasks performance,
which is insufficient due to the limitations of
benchmark evaluation.

To address this challenge, this paper intro-
duces VL-CheckList, an explainable framework
that comprehensively evaluates VLP models,
facilitates deeper understanding, and inspires
new ideas for improvement. The core princi-
ple of VL-CheckList are: (1) evaluate a VLP
model’s fundamental capabilities instead of its
performance on applications (2) disentangle
capabilities into relatively independent vari-
ables that are easier to analyze. Specifically,
we choose Image-Text-Matching (ITM) as the
main target of evaluation since it is perhaps
the most universal pretraining objective that
appear in all VLP methods (Li et al., 2019a,
2020; Radford et al., 2021; Li et al., 2021).
We then propose a taxonomy that divides the
capabilities of VLP systems into three cate-
gories: object, attribute and relation. Each
aspect is then further divided into more fine-

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 30 - 37

December 7-11, 2022 (©)2022 Association for Computational Linguistics

https://github.com/om-ai-lab/VL-CheckList
https://github.com/om-ai-lab/VL-CheckList

grained variables, e.g. attribute is composed of
color, material, and size, etc. Then, a linguistic-
aware negative sample sampling strategy is pro-
posed to create "hard negative” that challenges
a VLP model’s discriminative power against
small changes in the input space. Lastly, VL-
CheckList is implemented as a toolbox that
allows the research community to plug into
their evaluation pipeline.

2 Related Work

Benchmark evaluation is a common method to
compare different ML models in previous re-
search (Rajpurkar et al., 2016; Bowman et al.,
2015; Wang et al., 2018). However, researchers
have reported several limitations of the existing
VLP benchmark. 1) the objects of interest have
a biased distribution of size and location, i.e.,
tend to be large objects that appeared in the
center region. 2) benchmark evaluation returns
only a plain score instead of fine-grained details
on the taxonomy. Therefore, it is difficult to
understand the strengths and weaknesses of a
model without a comprehensive analysis. Re-
cent studies show even the state-of-the-art sys-
tems that achieved better scores than humans,
may still be insufficient in real-world applica-
tions (Ribeiro et al., 2020). Thus, researchers
have attempted to evaluate ML models with
more fine-grained details and avoid bias on the
test set.

One of the successful tools for the qualitative
analysis of natural language processing (NLP)
is CheckList (Ribeiro et al., 2020) which evalu-
ates general linguistic capabilities and revealed
weaknesses in several state-of-the-art NLP mod-
els and commercial applications. In computer
vision, the Vision CheckList was proposed to
help system designers to understand model ca-
pabilities (Du et al., 2022). They offered a
set of transformation operations to generate
diverse test samples of different test types, such
as rotation, replacing image patches, blur, and
shuffle. However, target objects in the trans-
formed images are unchanged, still center and
large.

The idea of the CheckList has also been ap-
plied other fields, e.g. evaluating Reinforce-
ment Learning (RL) agents (Lam et al., 2022),
Dynabench (Kiela et al., 2021) was proposed to
generate dynamic benchmark datasets. It over-

31

comes the problem that the existing benchmark
fails to cover fundamental linguistic challenges.
TIDE (Bolya et al., 2020) is a tool to analyze
the errors of object detection. It defines crit-
ical error types and shows a comprehensive
analysis.

3 VL-CheckList

An intuitive approach to evaluate multi-modal
systems is to check if a model correctly predicts
alignment between different modalities. We
choose image-text matching (ITM) to check the
alignment between vision and language for the
following reasons. Specifically, ITM is defined
as the function that outputs the probability of
an image ¢ is matched to a sentence t.

The ITM task is used as an effective and
universal pretraining objective in almost all
VLP models (Li et al., 2020). The ITM task
is also model agnostic and applies to all multi-
modal fusion architectures. Thus, we exploit
the ITM to fairly compare the VLP models
without finetuning them on downstream tasks.

The basic principle of the VL-CheckList is
to probe the model’s robustness on the nega-
tive examples. A robust VLP model should be
able to return a higher I'TM score for the posi-
tive image-text pair than the negative example
on the I'TM head. We perturb the one-side
modality to manipulate them and compare the
score with original samples. LV-CheckList of-
fers both language-side and vision-side varia-
tions.

3.1 Language Variation

To provide a fine-grained analysis of the ro-
bustness of the text-side, we build evaluation
taxonomies that are selected based on common
mistakes or frequent usage. Based on the com-
mon issues in VLP models, the proposed frame-
work places the three input properties (object,
attribute, and relation) as the top layer of the
evaluation taxonomy.

Object: A strong VLP model is supposed
to recognize whether or not the objects men-
tioned in a text exist in the image. There-
fore, if we replace objects in the correct text
with some other random noun phrases, a VLP
model should give it a lower ITM score than
the original sentence. Furthermore, a strong
VLP model should be able to recognize the ex-

istence of objects, regardless of its location and
sizes. Thus, we further evaluate the robustness
Object ITM by testing location variance (e.g.,
center, middle, and margin) and size variance
(e.g., small, large, medium), specifically:
e <)

mid ifg<¥<2
margin otherwise

where, z is the half-length of the diagonal
of the full image = = 7”"22”# and y is the dis-
tance between its central point and the central
point of the full image.

To get the size of an object, we use the object
area information (i.e., the bounding box of
height multiplies the width).

center
loc(x, y)=

small if area < S
size(x)= ¢ medium if S <area <M
large otherwise

where, area = wxh, S denotes small size and
M is the medium size. We set S = 1024, M =
9216 in this paper.

Attribute: Determining specific attributes
for any object is very challenging. The at-
tribute generally contains color, material, size,
state, and action.

o Size: replace the size expression like small,
big, and medium with another (e.g., There

is a big apple vs. there is a small apple)

Material: replace a material word in the
sentence (e.g., a metal box vs. a wood
box)

State: replace the state expression, such
as cleanliness and newness (e.g., a man
with dry hair vs. a man with wet hair).

Action: replace the action-related word
in the text (e.g., a standing person vs. a
sitting person).

Color: replace the color word in the text
(e.g., A red apple is on the table vs. A
green apple is on the table)

Relation: Relation cares about the inter-
action between two objects. It covers replacing
the predicate in a triple (e.g., subject, predi-
cate, object), where the subject and object are
both objects in the image. A strong VLP ITM
head should assign a higher score to text match-
ing the pair-wise object interaction. Further,
we divide prediction into spatial and action. If

32

a predicate is one of the spatial prepositions
(e.g., in, on, at, etc), it is sub-categorized as
‘spatial’; otherwise, it is labeled ’action.

e Spatial: If a model can predict spatial
relation between two objects (e.g, <cat,
on, table> vs. <cat, under, table>).

Action: If a model can predict other rela-
tion than a spatial preposition, usually ac-
tion verbs like run, jump, kick, eat, break,
cry, or smile (e.g., <cat, catch, fish> vs.
<cat, eat, fish>)

3.2 Vision Variation

A strong VLP model should be able to return
consistent scores when an image is transformed
with augmentation techniques such as rotation,
shift, flip, random brightness, etc. However,
previous augmentations are applied on the en-
tire image-level. We provide the object-level
data augmentation by combining cropped ob-
jects and image background. The generated
images are utilized to investigate the robustness
of the model outputs in various locations and
sizes of the target object. Strong VLP mod-
els should be able to return consistent scores
regardless of the location and size of target ob-
jects unless the language description is related
to location and size (e.g., an apple is the left
side of the tree, an apple is small). We allow to
input cropped objects and background images
and randomly place the target objects from
margin to center with various sizes to probe
the robustness. The goal of the LV-CheckList
on the vision-variations is to show how sim-
ple input changes such as object location and
size will affect the prediction outputs in the
VL-CheckList Demo.

4 Detailed User Guideline

This section describes a guideline for re-
searchers to use and contribute to the VL-
CheckList project.

First, users can install from GitHub! or
from pip install vl-checklist. We further
provide a HuggingFace demo for people to try
out different VLP models?. Then the following
is a step-by-step guideline to use VL-CheckList.

1github .com/om-ai-lab/VL-CheckList
2huggi ngface.co/spaces/omlab/VL_checklist_demo

man riding on top of a skateboard.

. Jf—)lacatitm 3
o -L_)size -

color
material

Attr —>» size
j_) state
-L—) action
-J,—) action
Rel
-L_) spatial

(a) Language Variation

man riding on top of a pilot.

shape is white.

shape is golden brown.

child brushing teeth.
child photographing teeth.

Background

(b) Vision Variation

Figure 1: Language Variation: negative samples are based on object, attribute and relation. Vision
Variation: a user inputs target objects and backgrounds and evaluates the various synthesized images

1) Define Corpus: a user defines a cor-
pus in the yaml config file. We provide four
initial pre-processed corpora using the semi-
structured dataset such as VG (Krishna et al.,
2017), SWiG (Pratt et al., 2020), VAW (Pham
et al., 2021) and HAKE (Li et al., 2019b). We
build a benchmark dataset for each capability
test in the proposed framework. We provide
the pre-processed datasets in the corpus folder
of our Github page. An example of the corpus
config yaml file is as follows:

ANNO_PATH
IMG_ ROOT:
TYPE:

"Attr/action.
va/”
"TUPLE_JSON"

json”

ANNO_ PATH is the specific Json file path
that includes positive and negative captions
and the specific image path.

The data type is TUPLE__JSON. We
converted the corpus into list of image path
and captions(positive and negative), in the
format of a list of [[{image_path:str,
"POS" :pos_captions:list, "NEG" :
neg_captions:list}] .. .]

2) Define evaluation configuration:
Users can specify the evaluation settings in
another yaml to define evaluation in detail as
the following example:

MAX NUM 2000
MODEL NAME "CLIP"
BATCH_SIZE: 4

TASK: "itc”
DATA:
TYPES: ["Object/Location/mid"

TEST DATA: ["vg_obj"]
OUTPUT:
DIR: "output/clip”

The "MAX NUM" is the maximum number
of data points and the "MODEL_NAME"
needs to be specified. Appropriate
"BATCH_SIZE" should be input based
on the GPU resources. The "TASK" can
be either "ITC" or "ITM". The "ITC" score
compares models’ scores on both positive and
negative captions. It counts as a true positive
when the score on the original is higher than
the negatively transformed one. The "ITM"
is predicting each image and a caption. It
is called the true positive when a softmax
score on a positive example on the image is
higher than the threshold of 0.5. The Data tag
consists of TYPES and TEST_ DATA. The
TYPES is the storage paths of the "ymal_files".
In the top-level directory, we can divide it
into three categories: Object, Relation, and
Attribute. For Swig, Vg, etc., there are
multiple data subsets, so the data subset
type should be filled in the TEST_DATA.
We can specify the evaluation data, output
directory, and format as the example above.
After defining a config file, users can simply
start the evaluation as follows:.

from engine import Model
from vl_checklist import Evaluate
if __name__ == '__main__":
model = Model('model.ckpt')
eval = Evaluate("sample.yaml”,
model=model)

eval.start ()

3) Define Model: Users can import
VL-CheckList to their projects (e.g., import
vl_checklist) and need to implement one
model class that includes the essential func-
tions, "predict". The predict function should
return probabilities on each pair of images and
texts. We included several representative mod-
els for quick comparisons, such as VIiLT (Kim
et al., 2021), ALBEF (Li et al., 2021), OS-
CAR (Li et al., 2020), etc as example projects.

5 Experimental Settings

In this section, we profile one of the most rep-
resentative VLP models, CLIP (Radford et al.,
2021) by testing its ability to understand an
object, attribute, and relationship between a
text prompt and a given image for language
variations.

Metric: We return the model output scores
between the text description and the generated
negative samples. If the model score on the
original text description is higher than the score
on the generated negative samples, we regard
it as positive output. We obtain the accuracy
with the following equation.

p

<n
! i

=0 (‘T

N

i)

(1)

acc =
where, f(zl,2?) = 1 if p(af|L;) > p(aP| L),
otherwise 0. z¥ denotes a positive sample of
ith data. x}' means a positive sample of ith
data. The N is the total number of pairs of
positive and negative samples. I; is i*" image
data.

Data: The proposed VL-CheckList focuses
on a directional expectation test, in which the
label is expected to change in a certain way.
For example, when there is a black bear in the
photo and the text description is "A black bear
is holding a stick". We can transform several
variations (e.g., <a black bear — a red bear>,
<a stick — an apple>, <holding — throw-
ing>, etc). The negative sampling strategy
is the essential step for unbiased evaluations.
To generate hard negative examples, we use
the structured text description datasets such
as Visual Genome (VG) (Krishna et al., 2017),
SWiG (Pratt et al., 2020), and Human Activity
Knowledge Engine (HAKE) (Li et al., 2019b).
The VG provides attributes, relationships, and
region graphs which can make a hard negative

34

sample by replacing one attribute in the rela-
tion in the image. The SWiG dataset provides
structured semantic summaries of images with
roles such as agent and tool. We generate hard
negative samples by replacing one of the roles
in the text description to mismatch with the
image. HAKE dataset provides the relation-
ship between instance activity and body part
states (e.g., "head" inspect rear view, "right
hand" hold wheel, "hip" sit on chair seat).

For the VG dataset, we first assign each at-
tribute, object, and relation to the closet type
by cosine similarity from sentence transform-
ers. For objects and relationships, we randomly
sample a corresponding instance with a co-
sine similarity threshold of 0.5. For attribute,
we randomly sample a corresponding instance
from the same attribute class with a cosine
similarity threshold of 0.5. We further conduct
manual correction on the generated to data to
fix inappropriate data.

For vision variations, we only conduct quali-
tative analysis by visualizing the output scores
via the GUI demo. (Figure 2).

6 Results and Analysis

In general, the ability of CLIP to understand
object changes is promising when the object is
center and large (see the prefix-O at Figure 3).
We hypothesize that the CLIP model pays more
attention to the central region and focus on
salient objects, similar to the perspective of
human observation. On the other hand, CLIP’s
ability on recognizing attribute and relation-
related variants is surprisingly low, especially
for Relation-spatial variations (Figure 3).
Then, We investigate whether performance
can be improved by cropping the regions of
interest (ROI) first and then encoding the
cropped ROIs via CLIP. We extract text
descriptions on each bounding box on the
VG dataset to form a new image-text pair
(Image;,cq,text), and construct new datasets
for VG: Localsj, Localgj. Results on
Localgyp; and Localyy; show that Region CLIP
outperforms the original CLIP (whole image en-
coding) by 3.9% and 5.7% respectively (Table
1). This confirms our hypothesis that the origi-
nal CLIP was trained to match the entire image
to a text description, without capturing the
fine-grained alignment between image regions

[Text prompt: [POS]: an apple on the grass. [NEG]: a dog on the grass.]

Output score: 0.99997 / 0.00003

I

Output score: 0.12742 / 0.87258

Figure 2: A comparison of CLIP’s performances of the image with a big object in the center and image

with the same small object in the corner

O-Large
R-spatial

AColor

A-Material

Figure 3: A radar chart for text variance on the
CLIP model. (The prefix O, A, and R is Object,
Attribute, and Relation respectively)

and text spans. Thus the understanding of mi-
nor objects in the image for CLIP is still chal-
lenging and explore more fine-grained region-
to-text multimodal alignment is a promising
direction (Zhong et al., 2022).

For vision variations, we synthesize images
by changing an object’s size and location. In
Figure 2, the image on the left is a big apple
in the center, while the image on the right is a
small apple in the corner. The text prompt we
input is "an apple on the grass" and "a dog on
the grass". The accuracy of the left image with
a big and center apple is nearly 1.00, while the
right image with a small and corner apple only
obtains 0.127 of accuracy. The location and

35

size of the object in the image can significantly
affect the judgment of the model.

Thus Experimental results indicate that the
current benchmark evaluation reveals a gap of
performance for real applications. CLIP mostly
focus on objects that appeared in the center of
the image and the size of the objects should be
large. This limits its performance if the target
objects are minor in the marginal regions for
real-world applications.

Model \ VGata type | Subj | Obj
CLIP_ Global 80.7 86
CLIP Local 84.6 | 91.7

Table 1: Subj and Obj are two attribute subsets
extracted from VG dataset. A new dataset is con-
structed using the bounding box tag of VG to merge
and extract the region image pointed by subj and
obj fields. The text remains the same as previous
content (Image;yeqi,text). It only does the expan-
sion experiment for CLIP.

7 Conclusion

This paper introduces VL-CheckList to analyze
VLP models from language and vision varia-
tions. For language variance, we evaluated
from three aspects: object, attribute and rela-
tion. For vision variance, we generated synthe-
sized images using cropped target objects and
background. We found limitations of the CLIP
model: 1) limited understanding for small ob-
jects in the corner 2) incompetence for recogniz-
ing relations and attributes. In the future, we
plan to include more fine-grained taxonomies

and synthesizing strategies into VL-CheckList
and also improve existing VLP methods under
the guidance of VL-CheckList report.

8 Acknowledgement

This study is supported by National Natural
Science Foundation of China under Grant (No.
61825205).

References

Daniel Bolya, Sean Foley, James Hays, and Judy
Hoffman. 2020. Tide: A general toolbox for
identifying object detection errors. In European
Conference on Computer Vision, pages 558-573.
Springer.

Samuel Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large an-
notated corpus for learning natural language in-
ference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 632—642.

Soravit Changpinyo, Piyush Sharma, Nan Ding,
and Radu Soricut. 2021. Conceptual 12m: Push-
ing web-scale image-text pre-training to recog-
nize long-tail visual concepts. In Proceedings of
the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3558-3568.

Xin Du, Benedicte Legastelois, Bhargavi Ganesh,
Ajitha Rajan, Hana Chockler, Vaishak Belle, Stu-
art Anderson, and Subramanian Ramamoorthy.
2022. Vision checklist: Towards testable error
analysis of image models to help system design-
ers interrogate model capabilities. arXiv preprint
arXiw:2201.11674.

Aishwarya Kamath, Mannat Singh, Yann LeCun,
Gabriel Synnaeve, Ishan Misra, and Nicolas Car-
ion. 2021. Mdetr-modulated detection for end-to-
end multi-modal understanding. In Proceedings
of the IEEE/CVF International Conference on
Computer Vision, pages 1780-1790.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh,
Pratik Ringshia, et al. 2021. Dynabench: Re-
thinking benchmarking in nlp. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics: Human Language Technologies, pages
4110-4124.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021.
Vilt: Vision-and-language transformer without
convolution or region supervision. In Interna-
tional Conference on Machine Learning, pages

5583-5594. PMLR.

36

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin
Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, et al. 2017. Visual genome: Connecting
language and vision using crowdsourced dense
image annotations. International journal of com-
puter vision, 123(1):32-73.

Kin-Ho Lam, Delyar Tabatabai, Jed Irvine, Donald
Bertucci, Anita Ruangrotsakun, Minsuk Kahng,
Alan Fern, Jeongyeon Kim, Yubin Choi, Juho
Kim, et al. 2022. Beyond value: Checklist for
testing inferences in planning-based rl. ACM
Transactions on Interactive Intelligent Systems,
12(1).

Junnan Li, Ramprasaath Selvaraju, Akhilesh Got-
mare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. 2021. Align before fuse: Vi-
sion and language representation learning with
momentum distillation. Advances in Neural In-
formation Processing Systems, 34.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019a. Visualbert:
A simple and performant baseline for vision and
language. ArXiv, abs/1908.03557.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. 2020. Oscar:
Object-semantics aligned pre-training for vision-
language tasks. In European Conference on Com-
puter Vision, pages 121-137. Springer.

Yong-Lu Li, Liang Xu, Xijie Huang, Xinpeng Liu,
Ze Ma, Mingyang Chen, Shiyi Wang, Haoshu
Fang, and Cewu Lu. 2019b. Hake: Human activ-
ity knowledge engine. ArXiv, abs/1904.06539.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Ste-
fan Lee. 2019. Vilbert: Pretraining task-
agnostic visiolinguistic representations for vision-
and-language tasks. Advances in neural infor-
mation processing systems, 32.

Xiaopeng Lu, Tiancheng Zhao, and Kyusong Lee.
2021. Visualsparta: An embarrassingly simple
approach to large-scale text-to-image search with
weighted bag-of-words. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 5020-5029.

Khoi Pham, Kushal Kafle, Zhe Lin, Zhi Ding,
Scott D. Cohen, Quan Tran, and Abhinav Shri-
vastava. 2021. Learning to predict visual at-
tributes in the wild. 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recogni-

tion (CVPR), pages 13013-13023.

Sarah Pratt, Mark Yatskar, Luca Weihs, Ali
Farhadi, and Aniruddha Kembhavi. 2020.
Grounded situation recognition. In FEuropean

Conference on Computer Vision, pages 314-332.
Springer.

Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, et al. 2021. Learning transferable
visual models from natural language supervision.
In International Conference on Machine Learn-
ing, pages 8748-8763. PMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopy-
rev, and Percy Liang. 2016. Squad: 100,000+
questions for machine comprehension of text. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2383-2392.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos
Guestrin, and Sameer Singh. 2020. Beyond ac-
curacy: Behavioral testing of nlp models with
checklist. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 4902-4912.

Piyush Sharma, Nan Ding, Sebastian Goodman,
and Radu Soricut. 2018. Conceptual captions:
A cleaned, hypernymed, image alt-text dataset
for automatic image captioning. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 2556-2565.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
FLukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural in-
formation processing systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353—-355.

Tiancheng Zhao, Peng Liu, Xiaopeng Lu, and Kyu-
song Lee. 2022. Omdet: Language-aware ob-
ject detection with large-scale vision-language
multi-dataset pre-training. arXiv preprint
arXiv:2209.05946.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang,
Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al.
2022. Regionclip: Region-based language-image
pretraining. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pages 16793-16803.

37

TweetNLP: Cutting-Edge Natural Language Processing for Social Media

Jose Camacho-Collados' Kiamehr Rezaee! Talayeh Riahi' Asahi Ushio'
Daniel Loureiro! Dimosthenis Antypas' Joanne Boisson'® Luis Espinosa-Anke'°
Fangyu Liu?> Eugenio Martinez-Camara® Gonzalo Medina®
Thomas Buhrmann* Leonardo Neves® Francesco Barbieri®
!Cardiff NLP, Cardiff University, UK 2LTL, University of Cambridge, UK
3DaSCl, University of Granada, Spain *Graphext, Spain °Snap Inc., USA ®AMPLYFI, UK
cardiffnlp.contactl@gmail.com

Abstract

In this paper we present TweetNLP, an inte-
grated platform for Natural Language Process-
ing (NLP) in social media. TweetNLP sup-
ports a diverse set of NLP tasks, including
generic focus areas such as sentiment analysis
and named entity recognition, as well as social
media-specific tasks such as emoji prediction
and offensive language identification. Task-
specific systems are powered by reasonably-
sized Transformer-based language models spe-
cialized on social media text (in particular, Twit-
ter) which can be run without the need for ded-
icated hardware or cloud services. The main
contributions of TweetNLP are: (1) an inte-
grated Python library for a modern toolkit sup-
porting social media analysis using our various
task-specific models adapted to the social do-
main; (2) an interactive online demo for code-
less experimentation using our models; and (3)
a tutorial covering a wide variety of typical
social media applications.

1 Introduction

Today’s society cannot be understood without the
role of social media. Online users connect more
and more via platforms that enable content sharing,
either generic or around specific topics, and do this
by means of text-only messages, or augmenting
them with multimedia content such as pictures, au-
dio or video. As such, these platforms have been
used to understand user, group and organization-
wide behaviours (Yang et al., 2021; Hu et al., 2021).
In particular, Twitter, which is the main platform
studied in this paper, has long been an important
resource for understanding society at large (Weller
et al., 2013). Twitter is interesting for NLP be-
cause it embodies many features that are natural in
spontaneous and ever-evolving fast-paced commu-
nication. However, the majority of NLP research
focuses on optimizing model development against
training data and evaluation benchmarks which are,
at worst, reasonably clean (e.g., news articles, blog

38

posts or Wikipedia). Consequently, when deployed
in the wild, features such as noisiness, multilin-
guality, immediacy, slang, technical jargon, lack of
context, platform-specific restrictions on message
length, emoji and other modalities, etc. become
core communicative variables that need to be fac-
tored in. Indeed, even traditional NLP tasks such as
normalization (Han and Baldwin, 2011; Baldwin
et al., 2015), POS tagging (Derczynski et al., 2013),
sentiment analysis (Poria et al., 2020) or named en-
tity recognition (Ritter et al., 2011; Baldwin et al.,
2013) have been shown to produce suboptimal re-
sults in the context of social media.

Given the above, we put forward TweetNLP
(tweetnlp.org), which offers a full-fledged
NLP platform specialized in Twitter. The back-
bone of TweetNLP consists of Transformer-based
language models that have been trained on Twitter
(Barbieri et al., 2020, 2022; Loureiro et al., 2022).
Then, these specialized language models have been
further fine-tuned for specific NLP tasks on Twitter
data. These models have already proved highly
popular, with thousands of downloads from the
Hugging Face model hub every month (Wolf et al.,
2020)." TweetNLP integrates all these resources
into a single platform. With a simple Python API,
TweetNLP offers an easy-to-use way to leverage
cutting-edge NLP models in a variety of social me-
dia tasks. Despite the trend of ever-larger language
models (Shoeybi et al., 2019; Brown et al., 2020),
TweetNLP is more focused on the general user and
applicability, and therefore integrates base models
which are easily run in standard computers or on
free cloud services. Finally, all models can be ac-
cessed from an interactive online demo, offering
anyone the possibility to test models and perform

"Most notably, the sentiment analysis model has been the
most downloaded model in the Hugging Face model hub in
January 2022, with over 15M downloads. Similarly, the Tweet-
Eval benchmark, in which most task-specific Twitter models
are fine-tuned, has been the second most downloaded dataset
in April 2022, with over 150K downloads.

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38 - 49

December 7-11, 2022 (©)2022 Association for Computational Linguistics

tweetnlp.org

real-time analysis on Twitter.

2 Related Work

General-purpose NLP libraries have been avail-
able for many years. Starting from the Java-based
CoreNLP (Manning et al., 2014) to the more re-
cent Python-based library Stanza (Qi et al., 2020).
More recently, libraries such as spaCy?> have been
ubiquitous in NLP, both in research and industry.
Finally, in the language models and Transformers
era, the Hugging Face Transformer hub has be-
come indispensable for state-of-the-art NLP (Wolf
et al., 2020), which is also leveraged for our li-
brary TweetNLP. However, none of these libraries
is specialized in social media or Twitter.

As for libraries developed specifically for social
media, these are more limited and mostly asso-
ciated with low-level tasks such as tokenization,
part-of-speech (Owoputi et al., 2013) tagging or
dependency parsing (Kong et al., 2014), and ini-
tially available for Java. The most recent Twitter-
specific Python library is TweebankNLP (Jiang
et al., 2022) based on Stanza. This library provides
state-of-the-art models on tokenization and lemma-
tization, besides competitive models on NER, part-
of-speech tagging and dependency parsing. In con-
trast, TweetNLP focuses on specialized Twitter-
specific language models for downstream tasks
such as sentiment analysis and offensive language
identification.

3 Models and Functionalities

TweetNLP is versatile in that it covers a wide
range of tasks and applications. The backbone of
TweetNLP are transformer-based language models,
which are covered in Section 3.1. The concrete
NLP tasks integrated in TweetNLP are presented
in Section 3.2. Finally, in Section 3.3 we present
embeddings used to represent words and tweets.
All TweetNLP model checkpoints are available in
the appendix.

3.1 Language models

Language models are at the core of TweetNLP. In-
stead of relying on general-purpose models (De-
vlin et al., 2019) or training a language model
from scratch (Nguyen et al., 2020), we start from
RoBERTa (Liu et al., 2019) and XLLM-R (Conneau
et al., 2020) checkpoints and continue pre-training
on Twitter-specific corpora. This was shown to be

https://spacy.io

39

generally more reliable for the amount of text anal-
ysed in Barbieri et al. (2020). Given our aim for
democratizing the usage of specialized language
models for social media, another important feature
of TweetNLP is the relatively small size of the lan-
guage models. To this end, all language models
rely on the equivalent of a RoBERTa-base or XLM-
R-base architecture. These models are efficient on
standard hardware and free-tiers of cloud comput-
ing services, with reasonable speed even without
GPU support.

TweetEval (Barbieri et al., 2020). This model
was initially released as part of the TweetEval
project. It is based on a RoOBERTa-base architec-
ture using the original model as an initial check
point (Liu et al., 2019). Later, this language model
was further pre-trained on a corpus of 60M tweets
from May 2018 to August 2019.

TimeLMs (Loureiro et al., 2022). This model is
initially trained on the same Twitter corpus used by
Barbieri et al. (2020). The main difference lies on
a few preprocessing improvements applied to the
underlying corpus, including measures to reduce
potential spam and near duplicates, and more recent
corpora used for continual pretraining. The overall
quantity of tweets is therefore larger, as the model
is regularly updated (every 3 months) with a fixed
number of additional tweets. The most recently
released TimeLMs model to date is pre-trained on
132M tweets until the end of June 2022.

XLM-T (Barbieri et al., 2022). This model was
trained on 198M tweets on over thirty languages
from May 2018 to March 2020, following a simi-
lar strategy to Barbieri et al. (2020). In this case,
the initial checkpoint was XLM-R-base (Conneau
et al., 2020).

3.2 Supported tasks

In the following we describe the tasks supported
by TweetNLP. For the tweet classification tasks
included in TweetEval, and for topic classification,
we simply fine-tune the models described above on
the corresponding datasets, as described in Barbieri
et al. (2020). For model fine-tuning on named
entity recognition, we rely on the T-NER library
(Ushio and Camacho-Collados, 2021), which is
also integrated into TweetNLP.

Sentiment Analysis. The sentiment analysis task
integrated in TweetNLP consists of predicting the

https://spacy.io

sentiment of a tweet with one of the three follow-
ing labels: positive, neutral or negative. The base
dataset for English is the unified TweetEval ver-
sion of the Semeval-2017 dataset from the task
on Sentiment Analysis in Twitter (Rosenthal et al.,
2017). Moreover, for the languages other than En-
glish we include the datasets integrated in UMSAB
(Barbieri et al., 2022), namely Arabic (Rosenthal
et al., 2017), French (Benamara et al., 2017), Ger-
man (Cieliebak et al., 2017), Hindi (Patra et al.,
2015), Italian (Barbieri et al., 2016), Portuguese
(Brum and Volpe Nunes, 2018), and Spanish (Diaz-
Galiano et al., 2018).

Emotion Recognition. Given a tweet, this task
consists of associating it with its most appropriate
emotion. As a reference dataset we use the Se-
mEval 2018 task on Affect in Tweets (Mohammad
et al., 2018), simplified to only the four emotions
used in TweetEval: anger, joy, sadness and opti-
mism.

Emoji Prediction. The goal of emoji prediction
is to predict the final emoji on a given tweet. The
dataset used to fine-tune our models is the Tweet-
Eval adaptation from the SemEval 2018 task on
Emoji Prediction (Barbieri et al., 2018), including
20 emoji as labels.

Irony Detection. This is a binary classification
task that aims at detecting whether a tweet is ironic
or not. It is based on the Irony Detection dataset
from the SemEval 2018 task (Van Hee et al., 2018).

Hate Speech Detection. The hate speech dataset
consists of detecting whether a tweet is hateful
towards women or immigrants. It is based on the
Detection of Hate Speech task at SemEval 2019
(Basile et al., 2019).

Offensive Language Identification. The task
consist of identifying any form of offensive lan-
guage in a tweet. The dataset is based on the
SemEval 2019 task on Identifying and Categoriz-
ing Offensive Language in Social Media (Zampieri
etal., 2019).

Stance Detection. Given a target topic and
a tweet, stance detection consists of assessing
whether the author of the tweet has a positive, neu-
tral or negative position towards the target. The
dataset considered was initially released for the Se-
mEval 2016 task on Detecting Stance in Tweets
(Mohammad et al., 2016).

40

Topic Classification. The aim of this task is,
given a tweet, assign topics related to its content.
The task is formulated as a supervised multi-label
classification problem where each tweet is assigned
one or more topics from a total of 19 available top-
ics. The topics were carefully curated based on
Twitter trends with the aim to be broad and general,
consisting of classes such as: arts and culture, mu-
sic, or sports. The underlying tweet topic classifi-
cation dataset contains over 10K manually-labeled
tweets (Antypas et al., 2022).

Named Entity Recognition. The goal of named
entity recognition (NER) is to find entities and iden-
tify their entity types in a given sentence. The un-
derlying Twitter NER dataset is composed of over
10K tweets which were annotated (internally) with
seven entity types.’

3.3 Embeddings

In addition to the language models and their sup-
ported tasks, we also release high-quality vec-
tor representation models for words and tweets,
i.e., embeddings (Pilehvar and Camacho-Collados,
2020). These relatively low-dimensional vector rep-
resentations can be exploited for a different range
of applications and analyses such as word/tweet
similarity or tweet retrieval, to name a few.

Word embeddings. TweetNLP word embed-
dings are based on fastText (Bojanowski et al.,
2017) and trained on the same corpora used to
train the language models described in Section 3.1.
In particular, we trained two sets of embeddings:
(1) a monolingual English model trained with the
TimeLMs Twitter corpus until the end of 2021; and
(2) a multilingual model trained with the Twitter
corpus used for XLM-T. Both models were trained
using the official fastText package with 300 dimen-
sions, minimum n-gram size 2, maximum n-gram
size 12, and remaining parameters set to defaults.

Tweet embeddings. For tweet embeddings, we
pulled tweet-reply pairs from the Twitter API and
trained contrastive embeddings with an InfoNCE
loss (Oord et al., 2018). For tweets with multiple
replies, we randomly sampled one reply. In train-
ing, one mini-batch is composed of a list of tweet-
reply pairs. The tweet-reply pairs are regarded as

*More details about the datasets for topic classification
and named entity recognition will be provided at a later stage.
Datasets were annotated internally in Snap and we are working
on releasing them to the public according to regulations.

positive samples; the enumeration of all other pos-
sible combination of tweet-reply, tweet-tweet, and
tweet-reply pairs are regarded as negative samples.
The contrastive InfoNCE loss then pulls positive
pair representations close while pushes negative
representations away from each other. Training
was performed on 1.1M tweet-reply pairs, and we
collected a separate tweet-reply set of 10k pairs for
selecting the model checkpoint.

4 TweetNLP Python library

The TweetNLP Python library has been integrated
into pypi* and therefore is easily accessible and
can be installed from pip ("pip install tweetnlp").
All the details on how to use TweetNLP are in
the associated Github repository, which is re-

leased fully open-source: https://github.

com/cardiffnlp/tweetnlp.
Once installed, loading and using a fine-tuned
model on any specific task can be done as follows.

from tweetnlp import load
tweet = "I love Paris!!"

Sentiment Analysis

model load (’ sentiment’)
model.sentiment (tweet)

Tweet Embeddings

model load (' sentence_embedding’)
model .embedding (tweet)

Masked Language Model

model = load(’language_model’)
tweet "I love <mask>!!"
model .mask_prediction (tweet)

With the load statement, the associated fine-tuned
language models are loaded in the background.
Users can then get the predictions for any given sen-
tence or tweet with a simple pre-defined function
(e.g., .sentiment or .predict). Custom loading of ex-
isting fine-tuned language models not included in
TweetNLP is also possible. The same functionali-
ties apply to all the other tasks described in Section
3.2.

5 Tutorials

In addition to the Python library presented in
the previous section, TweetNLP offers access
to the underlying Python code structured in in-
structive Google Colab notebooks with starter
code and examples
org/get—-started/). These notebooks are
aimed at users with varying degrees of experience
in NLP and social media processing. In the fol-

*nttps://pypi.org/project/tweetnlp/

(https://tweetnlp.

41

lowing we list the currently existing tutorials and a
brief description:

Introduction to TweetNLP. In this initial intro-
duction, users learn how to use the TweetNLP
Python library to make use of specialized mod-
els in social media for a wide variety of tasks from
sentiment analysis to named entity recognition.

Getting data from Twitter. This notebook helps
users understand the Twitter API° and how to in-
teract with it. More importantly, there are concrete
examples on how to retrieve data (i.e. tweets) from
Twitter, usually given a hashtag or a keyword.

Custom fine-tuning. In this notebook users can
learn to fine-tune any given language model on a
specific task (e.g. sentiment analysis). For this, we
will take advantage of the TweetEval task data and
unified format (Barbieri et al., 2020). Additionally,
users can learn how to easily evaluate language
models on TweetEval.

Word embeddings. With this notebook users can
learn how to train their own word embeddings on
custom data using Gensim® (Rehtifek and Sojka,
2010). The notebook also includes examples on
how to get similarity scores from Twitter-specific
word embeddings, or how to obtain the nearest
neighbour words from a given input word.

Language models over time. This notebook
leverages the TimeLMs library (Loureiro et al.,
2022). Users can learn how to make use of lan-
guage models that have been trained in short peri-
ods of time since 2019 until recently.

Tweet embeddings. This notebook contains ex-
amples on how to transform a tweet into a vector
(embedding) and how these enable important appli-
cations such as tweet similarity and retrieval.

6 Demo

In addition to the Python-based library and tuto-
rials, we developed a comprehensive web-based
demo integrating all our models, available at
https://tweetnlp.org/demo/. The goal
of the demo is for any user to be able to test our
models and get predictions. In particular, the model
includes the following five functionalities:

Shttps://developer.twitter.com/en/
docs/twitter—-api
®https://radimrehurek.com/gensim/

https://github.com/cardiffnlp/tweetnlp
https://github.com/cardiffnlp/tweetnlp
https://tweetnlp.org/get-started/
https://tweetnlp.org/get-started/
https://pypi.org/project/tweetnlp/
https://tweetnlp.org/demo/
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://radimrehurek.com/gensim/

Sentence/tweet classification (Figure 1). Users
can input a sentence or a tweet (including a tweet
URL) and the output is a plot display of the confi-
dence of the model with respect to its predictions.
This demo includes all tweet classification tasks
supported in English (see Section 3.2), as well as
a multilingual sentiment analysis model based on
XLM-T.

Type a sentence or a tweet to get insights (tweet URLs
are also accepted)

W negative NN neutral
m— positive

Predictions are based on an English or a multilingual model. Languages supported are: \/

{Tuday is a lovely day! & }

For Example: Today is a lovely day., | really don't like eating vegetables
: NLP/status/1485518987807137792

)

[Sentiment

Figure 1: TweetNLP tweet classification demo.

v][English

Hashtag analysis (Figure 2). This demo directly
interacts with the Twitter APL. Users can type a
hashtag (or any keyword), initial and end dates,
task and language. The system will then retrieve
tweets for the given time interval and compute an
aggregated analysis of the results. Languages sup-
ported for this demo are available in the appendix.

Type a keyword or a hashtag fo get an aggregated analysis of what is going on

in Twitter these days. ¥ Retrived Tweets

N dto

per day orly. ding this analysis o your owr,

#NLProc

For Example: #NLProc. Sitcoin, Wales

Start Date: End Date: Mode!: Language

Sentiment | English

nogatve NN noural N posite
2022.0624 22,0625

20

202206-22

B -—

“

: III
20220622

There are

s for these day(s; 2022:06-23

#NLProc After Corpora List moved

10 ELRA, | get more digest messages
p day than before. | tried Summary.
and MIME Digests under the
delivery mode but no help.

Previously digests had 5-10
messages, now 2-4. Any solution?
U fhsdsoexbinsmame)
I -

20220626

Figure 2: TweetNLP hashtag analysis demo. The output
is a bar plot that shows the sentiment of the retrieved
tweets over time for the input hashtag #NLProc.

Word prediction (Figure 3). Masked language
models utilized in TweetNLP are trained to predict
unknown (or masked) words within a sentence. For
this demo, users can input a sentence with a masked
word and the system will show the most likely
words as given by the masked language model, in
order of confidence.

42

Type a sentence or a tweet with a masked word (<mask>) to predict the most likely
word. There are models available every three months to select from.

Looking forward to watching <mask> Game tonight!

For Example: | keep forgetting to bring a <mask>., COVID is a <mask>., So glad I'm
<mask> vaccinated, Looking forward to watching <mask> Game tonight!

2021 - English v

Squid (34%)

the (23%)
The (15%)
End (2%)

this (1%)
Figure 3: TweetNLP word prediction demo.

Tweet similarity (Figure 4). Given two short
pieces of text (e.g., two sentences or two tweets),
this demo displays their cosine similarity score
on a 0-100 scale as provided by our default tweet
embedding model.

Type two sentences(or tweet links) to get their similarity.

)

[The weather is going to get cold.

For Example: The elections were won by the liberal candidate.
The weather is going to get cold.
https://twitter.com/CamachoCollados/status/1521827228853673985

[It's gonna be chilly today.

For Example: It's gonna be sunny today.
It's gonna be chilly today.
https://twitter.com/Cardiff NLP/status/1521825993752813569

Similarity: 80%

Figure 4: TweetNLP tweet similarity demo.

Named Entity Recognition (Figure 5). Given
a tweet or a sentence, this NER demo locates its
named entities and infers their types.

7 Evaluation

In this section, we provide experimental results of
the default models integrated into TweetNLP.

7.1 Experimental setting

Datasets. For the evaluation we utilized all the
train/validation/test splits described in Section 3.2.
In particular, we relied on the TweetEval-released
datasets for all tweet classification tasks except for
topic classification.

Type a sentence or tweet link to get named entities.

https://twitter.com/BBCWorld/status/1532399905217597440

For Example: My name is Wolfgang and L live in Berlin Paradise is a son
Coldplay ,https://twitter.com/BBCWorld/status/1532399905217597440

gby

Why Johnny Depp lost in the UK but

won in the US https://t.co/X5xheiDw2C

Tweet

=)

BBC News (World) @BBCWorld

Why Johnny Depp lost in the UK but won in the US https:/t.co/X5xheiDw2C

Figure 5: TweetNLP Named Entity Recognition demo.

Default TweetNLP language models. While in
TweetNLP all Twitter-specific language models are
included, we use as a default (1) TimeLLMs trained
until December 2021 for English and (2) XLM-T
for the languages other than English and multilin-
gual tasks. These models are then fine-tuned to the
corresponding tasks as described in Section 3.2.

Comparison systems. We report the perfor-
mance of all original TweetEval baselines (Barbieri
et al., 2020): a frequency-based SVM classifier,
fastText (Joulin et al., 2017), a Bidirectional LSTM,
RoBERTa-base (Liu et al., 2019), a RoBERTa-
base model trained on Twitter from scratch (RoB-
Twitter) and the original TweetEval RoOBERTa-base
model. As another baseline we include BERTweet
(Nguyen et al., 2020), trained on almost 1 billion
tweets from 2013 to 2019.

Language model fine-tuning. Fine-tuning is per-
formed on the training sets of each corresponding
dataset, using their corresponding development sets
for validation. We followed TweetEval training
protocols for tweet classification, where only the
learning rate and number of epochs are tuned (Bar-
bieri et al., 2020). All reported results for language
models are based on an average of three runs.

7.2 Results

Table 1 shows the main results of our TweetNLP
default language model and comparison systems on
nine Twitter-based tasks.” The default TimeLMs-
21 model achieves the overall results on most tasks,
especially comparing it with a comparable general-
purpose RoBERTa-based model. In the following
we also provide details of our experimental results

"The BERTweet result on Trony is marked with * as their
pre-training corpus overlapped with the Irony dataset, which
was constructed using distant supervision.

43

on languages other than English , and for the inte-
grated word and tweet embedding models.

Multilingual sentiment analysis results. In ad-
dition to the English evaluation, we report results
on multilingual sentiment analysis (Table 2). The
evaluation is performed on the UMSAB multin-
gual sentiment analysis benchmark (Barbieri et al.,
2022). For this evaluation we compare XLM-T
fine-tuned on all the language-specific training sets
of UMSAB with XLM-R (Conneau et al., 2020)
using the same fine-tuning strategy. As an ad-
ditional indicative baseline, we include fastText
trained on the language-specific training sets. As
can be observed, our domain-specific XLM-T lan-
guage model achieves the best overall results in all
languages, further reinforcing the importance of
in-domain language model training.

Word embedding results. As a sanity check
to verify the quality of the word embeddings,
we simply test them on standard word similar-
ity datasets: The WS-Sim similarity and WS-
Rel relatedness subsets (Agirre et al., 2009) from
WordSim-353 (Finkelstein et al., 2002), SemEval-
2017 (Camacho-Collados et al., 2017) and MEN
(Bruni et al., 2014). Then, we compared the re-
sults with the pre-trained fastText model trained
on the Common Crawl (Bojanowski et al., 2017),
and Wikipedia. According to Spearman correla-
tion, the results of our Twitter embeddings were
0.77 (WS-Sim), 0.72 (WS-Rel), 0.69 (SemEval),
and 0.79 (MEN).® In contrast, the pre-trained fast-
Text Common Crawl results were 0.84 (WS-Sim),
0.64 (WS-Rel), 0.67 (SemEval), and 0.81 (MEN).
We should note that these datasets are not specific
to social media and even so, our trained embed-
dings outperform the standard pre-trained fastText
in two datasets. In particular, there seems to be a
marked difference between similarity and related-
ness, where our Twitter embeddings appear to be
more suited to relatedness.

Tweet embedding results. For tweet embed-
dings we explore a tweet retrieval task setting
which consists of finding the reply to a given tweet
from the 10k replies in the search space. We ran-
domly sampled 3k tweet-reply pairs that do not

8While not directly comparable given the different sizes,
we also compared with our previously-released Twitter-
specific 100-dimensional fastText embeddings (Camacho-
Collados et al., 2020). The results for these embeddings were
consistently lower: 0.65 (WS-Sim), 0.43 (WS-Rel), 0.52 (Se-
mEval), and 0.76 (MEN).

Emoji | Emotion | Hate | Irony | Offensive | Sentiment | Stance | Topic | NER

SVM 29.3 64.7 36.7 | 61.7 523 62.9 67.3 30.5 -

fastText 25.8 65.2 50.6 | 63.1 73.4 62.9 65.4 24.0 -

BLSTM 24.7 66.0 526 | 62.8 71.7 583 594 27.0 -
RoB-Base 30.9 76.1 46.6 | 59.7 79.5 71.3 68.0 50.1 | 58.0

RoB-Twitter 29.3 72.0 469 | 654 77.1 69.1 66.7 - -
TweetEval 314 78.5 523 | 61.7 80.5 72.6 69.3 56.8 | 56.8
BERTweet 33.4 79.3 56.4 | 82.1% 79.5 73.4 71.2 527 | 587
TweetNLP (TimeLMs-21) | 34.0 80.2 55.1 64.5 82.2 73.7 72.9 58.8 | 59.7
Evaluation metric | M-FI | M-FI |[M-F1 | FO | MFl | M-Rec [AVG () |MFI |MFI

Table 1: Test results in the nine TweetNLP-supported tasks.

| Arabic | English | French | German | Hindi | Italian | Portuguese | Spanish | ALL

fastText 45.98 50.85 54.82 59.56 37.08 | 54.65 55.05 50.06 51.01
XLM-R 64.31 68.52 70.52 72.84 53.39 | 68.62 69.79 66.03 66.75
TweetNLP (XLM-T) | 66.89 70.63 71.18 77.35 56.35 | 69.06 75.42 68.52 67.91

Table 2: Sentiment analysis results (Macro-F1) on the UMSAB unified benchmark. XLM-R and TweetNLP models
are fine-tuned on the training sets of all languages.

overlap with training data and split them into 3 sets Model Retrieval ~ STS
of 1k pairs. We report accuracy@1 and average Sentence-BERT 6.1 77.0
models’ performance on the 3 sets. We also in- all-mpnet-base-v2 158 834

Mirror-RoBERTa 8.8 79.6

clude results on sentence similarity, using the STS-
benchmark (Cer et al., 2017) and reporting Spear-
man’s correlation. We list tweet-reply retrieval
accuracy and STS-benchmark Spearman’s correla- pypje 3: Results of sentence and tweet embedding mod-

tion in Table 3. We compare with recent supervised els on tweet-reply retrieval and the STS-benchmark.
(Reimers and Gurevych, 2019, Sentence-BERT;

all-mpnet-base-v2), and unsupervised (Liu et al.,

2021, Mirror-BERT), (Gao et al., 2021, SimCSE) (o sharing the models, TweetNLP provides an on-
sentence embedding models.” On the task of tweet- [ipe demo, a Python library, and a tutorial to make
reply retrieval, our tweet-embeddings model sig- the most of the models, regardless of the expertise
nificantly outperforms all-mpnet-base-v2 trained of the user. TweetNLP also enables easy inspection
with around 1B sentence pairs. This highlights the o the models by non-programmers, which can help

importance of in-domain training. On the STS- jdentify harmful biases or errors, that in turn would
Benchmark, all-mpnet-base-v2 achieves the best help improve the models in the future.

performance and our tweet-embeddings perform
the worst among baselines but they are generally in
a similar ballpark. To complement this evaluation,
we plan to test our tweet embeddings with a textual
similarity dataset in the tweet domain in the future.

SimCSE-RoBERTa 9.2 80.3
TweetNLP (Tweet-embeddings) 26.7 70.7

While this first release version of TweetNLP is
self-contained and complete, our goal is to keep
updating it with both new models and tasks. Since
social media data is at the core of TweetNLP, we are
planning to develop new datasets and models for so-
8 Conclusion and Future Work cial media tasks. In particular, our idea is to go be-
yond tweet classification tasks, which are currently
well covered in TweetNLP. For instance, low-level
tasks such as syntactic parsing and part-of-speech
tagging has been traditionally hard in noisy environ-
ments such as social media. Finally, in the future
we are also planning to extend TweetNLP to other
social media platforms such as Reddit, LinkedIn
or Instagram, and to provide support for languages
“Baseline checkpoint links are included in the Appendix. other than English in a wider variety of tasks.

44

In this demo paper we have presented TweetNLP,
an all-round platform for NLP specialized in so-
cial media. The platform is powered by relatively
lightweight language models trained on Twitter,
and adapted (fine-tuned) to various popular NLP
tasks on social media, such as sentiment analysis
and offensive language identification. In addition

9 Impact Statement

This paper deals with social media data, in par-
ticular with Twitter. All Twitter regulations were
followed and data was extracted through the offi-
cial Twitter API. To mitigate the potential effect of
working with this type of data, all dataset-related
tweets were anonymized, with URLs removed. In
most cases dataset creators made an effort to re-
move offensive or harmful content from the tweets.
Nonetheless, models trained on this data may am-
plify existing biases present in the social media
platform. While this is in many cases unavoidable,
we hope that by making this demo public with
model prototypes, experts will be able to more eas-
ily inspect these biases and we will be able to better
understand the potential biases of models trained
on this type of data.

Acknowledgements

We acknowledge the support of UKRI (in
particular the UKRI Future Leaders Fellow-
ship scheme), Snap Inc., the Cardiff Uni-
versity Innovation for All scheme and the
R&D&I grant PID2020-116118GA-I00 funded by
MCIN/AEI/10.13039/501100011033 for partially
funding this project.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pagca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
19-27, Boulder, Colorado. Association for Computa-
tional Linguistics.

Dimosthenis Antypas, Asahi Ushio, Jose Camacho-
Collados, Leonardo Neves, Vitor Silva, and
Francesco Barbieri. 2022. Twitter topic classifica-
tion. arXiv preprint arXiv:2209.09824.

Timothy Baldwin, Paul Cook, Marco Lui, Andrew
MacKinlay, and Li Wang. 2013. How noisy social
media text, how diffrnt social media sources? In Pro-
ceedings of the Sixth International Joint Conference
on Natural Language Processing, pages 356364,
Nagoya, Japan. Asian Federation of Natural Lan-
guage Processing.

Timothy Baldwin, Marie Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization

and named entity recognition. In Proceedings of the
Workshop on Noisy User-generated Text, pages 126—
135, Beijing, China. Association for Computational
Linguistics.

Francesco Barbieri, Valerio Basile, Danilo Croce, Malv-
ina Nissim, Nicole Novielli, and Viviana Patti. 2016.
Overview of the evalita 2016 sentiment polarity clas-
sification task. In Proceedings of third Italian con-
ference on computational linguistics (CLiC-it 2016)
& fifth evaluation campaign of natural language pro-
cessing and speech tools for Italian. Final Workshop
(EVALITA 2016).

Francesco Barbieri, Jose Camacho-Collados, Luis Es-
pinosa Anke, and Leonardo Neves. 2020. TweetEval:
Unified benchmark and comparative evaluation for
tweet classification. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1644—-1650, Online. Association for Computational
Linguistics.

Francesco Barbieri, Jose Camacho-Collados, Francesco
Ronzano, Luis Espinosa-Anke, Miguel Ballesteros,
Valerio Basile, Viviana Patti, and Horacio Saggion.
2018. SemEval 2018 task 2: Multilingual emoji
prediction. In Proceedings of The 12th International
Workshop on Semantic Evaluation, pages 24-33, New
Orleans, Louisiana. Association for Computational
Linguistics.

Francesco Barbieri, Luis Espinosa Anke, and Jose
Camacho-Collados. 2022. XIm-t: Multilingual lan-
guage models in twitter for sentiment analysis and be-
yond. In Proceedings of the Language Resources and
Evaluation Conference, pages 258-266, Marseille,
France. European Language Resources Association.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti.
2019. SemEval-2019 task 5: Multilingual detection
of hate speech against immigrants and women in
Twitter. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 54—63, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Farah Benamara, Cyril Grouin, Jihen Karoui, Véronique
Moriceau, and Isabelle Robba. 2017. Analyse
d’opinion et langage figuratif dans des tweets: présen-
tation et résultats du défi fouille de textes deft2017.
In Défi Fouille de Textes DEFT2017. Atelier TALN
2017. Association pour le Traitement Automatique
des Langues (ATALA).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot

https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/N09-1003
https://aclanthology.org/I13-1041
https://aclanthology.org/I13-1041
https://doi.org/10.18653/v1/W15-4319
https://doi.org/10.18653/v1/W15-4319
https://doi.org/10.18653/v1/W15-4319
https://hal.inria.fr/hal-01414731/document
https://hal.inria.fr/hal-01414731/document
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S18-1003
https://doi.org/10.18653/v1/S18-1003
https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/2022.lrec-1.27
https://aclanthology.org/2022.lrec-1.27
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://hal.archives-ouvertes.fr/hal-01912785/document
https://hal.archives-ouvertes.fr/hal-01912785/document
https://hal.archives-ouvertes.fr/hal-01912785/document
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

learners. Advances in neural information processing
systems, 33:1877-1901.

Henrico Brum and Maria das Gragas Volpe Nunes. 2018.
Building a sentiment corpus of tweets in Brazilian
Portuguese. In Proceedings of the Eleventh Inter-
national Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49(1-47).

Jose Camacho-Collados, Yerai Doval, Eugenio
Martinez-Camara, Luis Espinosa-Anke, Francesco
Barbieri, and Steven Schockaert. 2020. Learning
cross-lingual word embeddings from twitter via dis-
tant supervision. In Proceedings of the interna-
tional AAAI conference on web and social media,
volume 14, pages 72-82.

Jose Camacho-Collados, Mohammad Taher Pilehvar,
Nigel Collier, and Roberto Navigli. 2017. SemEval-
2017 task 2: Multilingual and cross-lingual semantic
word similarity. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 15-26, Vancouver, Canada. Association
for Computational Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14, Vancouver,
Canada. Association for Computational Linguistics.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A Twitter corpus and benchmark
resources for German sentiment analysis. In Proceed-
ings of the Fifth International Workshop on Natural
Language Processing for Social Media, pages 45—
51, Valencia, Spain. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter part-of-speech tagging for
all: Overcoming sparse and noisy data. In Proceed-
ings of the International Conference Recent Advances
in Natural Language Processing RANLP 2013, pages
198-206, Hissar, Bulgaria. INCOMA Ltd. Shoumen,
BULGARIA.

46

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Manuel C. Diaz-Galiano, Eugenio Martinez-Cémara,
M. Angel Garcia Cumbreras, Manuel Garcia Vega,
and Julio Villena Roman. 2018. The democratization
of deep learning in tass 2017. Procesamiento del
Lenguaje Natural, 60:37-44.

Lev Finkelstein, Gabrilovich Evgeniy, Matias Yossi,
Rivlin Ehud, Solan Zach, Wolfman Gadi, and Ruppin
Eytan. 2002. Placing search in context: The concept
revisited. ACM Transactions on Information Systems,

20(1):116-131.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894—6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Bo Han and Timothy Baldwin. 2011. Lexical normali-
sation of short text messages: Makn sens a #twitter.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 368-378, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Dangi Hu, Charles M Jones, Valerie Zhang, and Xi-
aoyan Zhang. 2021. The rise of reddit: How social
media affects retail investors and short-sellers’ roles
in price discovery. Available at SSRN 3807655.

Hang Jiang, Yining Hua, Doug Beeferman, and Deb
Roy. 2022. Annotating the tweebank corpus on
named entity recognition and building nlp models
for social media analysis. In Proceedings of the Lan-
guage Resources and Evaluation Conference, pages
7199-7208, Marseille, France. European Language
Resources Association.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427431, Valencia, Spain. Association
for Computational Linguistics.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1001-1012, Doha, Qatar.
Association for Computational Linguistics.

https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/L18-1658
https://aclanthology.org/L18-1658
https://www.jair.org/index.php/jair/article/view/10857
https://doi.org/10.18653/v1/S17-2002
https://doi.org/10.18653/v1/S17-2002
https://doi.org/10.18653/v1/S17-2002
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/W17-1106
https://doi.org/10.18653/v1/W17-1106
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/R13-1026
https://aclanthology.org/R13-1026
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5556
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5556
http://theory.stanford.edu/~matias/papers/context_search.pdf
http://theory.stanford.edu/~matias/papers/context_search.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://aclanthology.org/P11-1038
https://aclanthology.org/P11-1038
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807655
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807655
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3807655
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/2022.lrec-1.780
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://doi.org/10.3115/v1/D14-1108
https://doi.org/10.3115/v1/D14-1108

Fangyu Liu, Ivan Vuli¢, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1442—1459, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves,
Luis Espinosa Anke, and Jose Camacho-collados.
2022. TimeLMs: Diachronic language models from
Twitter. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 251-260, Dublin, Ire-
land. Association for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55-60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. SemEval-
2018 task 1: Affect in tweets. In Proceedings of The
12th International Workshop on Semantic Evaluation,
pages 1-17, New Orleans, Louisiana. Association for
Computational Linguistics.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31—
41, San Diego, California. Association for Computa-
tional Linguistics.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. BERTweet: A pre-trained language model
for English tweets. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 9-14, On-
line. Association for Computational Linguistics.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A. Smith.
2013. Improved part-of-speech tagging for online
conversational text with word clusters. In Proceed-
ings of the 2013 Conference of the North American

47

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 380—
390, Atlanta, Georgia. Association for Computational
Linguistics.

Braja Gopal Patra, Dipankar Das, Amitava Das, and Ra-
jendra Prasath. 2015. Shared task on sentiment anal-
ysis in indian languages (sail) tweets-an overview. In
International Conference on Mining Intelligence and
Knowledge Exploration, pages 650-655. Springer.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2020. Embeddings in natural language processing:
Theory and advances in vector representations of
meaning. Synthesis Lectures on Human Language
Technologies, 13(4):1-175.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, and Rada Mihalcea. 2020. Beneath the tip of
the iceberg: Current challenges and new directions in
sentiment analysis research. IEEE Transactions on
Affective Computing.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1524—1534, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
SemEval-2017 task 4: Sentiment analysis in Twitter.
In Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017), pages 502—
518, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-Im: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Asahi Ushio and Jose Camacho-Collados. 2021. T-
NER: An all-round python library for transformer-
based named entity recognition. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 53—62, Online. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/2022.acl-demo.25
https://aclanthology.org/2022.acl-demo.25
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S16-1003
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://aclanthology.org/N13-1039
https://aclanthology.org/N13-1039
https://link.springer.com/chapter/10.1007/978-3-319-26832-3_61
https://link.springer.com/chapter/10.1007/978-3-319-26832-3_61
https://arxiv.org/abs/2005.00357
https://arxiv.org/abs/2005.00357
https://arxiv.org/abs/2005.00357
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D11-1141
https://aclanthology.org/D11-1141
https://doi.org/10.18653/v1/S17-2088
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7
https://doi.org/10.18653/v1/2021.eacl-demos.7

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 task 3: Irony detection in En-
glish tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39—
50, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

Katrin Weller, Axel Bruns, Jean Burgess, Merja Mahrt,
and Cornelius Puschmann. 2013. Twitter and society.
Peter Lang New York.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Qi Yang, Weinan Wang, Lucas Pierce, Rajan Vaish,
Xiaolin Shi, and Neil Shah. 2021. Online communi-
cation shifts in the midst of the covid-19 pandemic:
A case study on snapchat. Proceedings of the Inter-
national AAAI Conference on Web and Social Media,
15(1):830-840.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 task 6: Identifying and cat-
egorizing offensive language in social media (Of-
fensEval). In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 75-86, Min-
neapolis, Minnesota, USA. Association for Compu-
tational Linguistics.

Radim Rehtifek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In
In Proceedings of the LREC 2010 workshop on
new challenges for NLP frameworks, pages 45-50,
Valetta, Malta.

A Languages supported

In addition to English, the sentiment analysis demo
(including hashtag analysis) is also available for
the following languages: Amharic, Arabic, Arme-
nian, Basque, Bengali, Bulgarian, Burmese, Cata-
lan, Chinese, Czech, Danish, Dhivehi, Dutch, Esto-
nian, Finnish, French, Georgian, German, Greek,
Haitian, Hebrew, Hindi, Hungarian, Icelandic, In-
donesian, Italian, Japanese, Kannada, Khmer, Ko-
rean, Kurdish, Lao, Latvian, Lithuanian, Malay-
alam, Marathi, Nepali, Norwegian, Oriya, Panjabi,
Persian, Polish, Pushto, Romanian, Russian, Ser-
bian, Sindhi, Sinhala, Slovenian, Spanish, Swedish,
Tagalog, Tamil, Telegu, Thai, Turkish, Uighur,

48

Ukranian, Urdu, Vietnamese, Welsh. These lan-
guages are supported both by a XLM-T multilin-
gual model and the Twitter API.

B Model Links

Table 4 lists all TweetNLP models and their corre-
sponding Hugging Face model hub links.

We release the word embeddings along
with Gensim-optimized versions: (1) English-
monolingual word embeddings are available at
https://tweetnlp.org/downloads/
twitter-2021-124m-300d.new.bin; (2)
Multilingual word embeddings are available at
https://tweetnlp.org/downloads/
twitter-multilingual-300d.new.
bin.

Table 5 lists the baselines used for the evaluation
(Section 7) and their corresponding Hugging Face
hub links.

https://doi.org/10.18653/v1/S18-1005
https://doi.org/10.18653/v1/S18-1005
https://www.peterlang.com/document/1109452
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://ojs.aaai.org/index.php/ICWSM/article/view/18107
https://ojs.aaai.org/index.php/ICWSM/article/view/18107
https://ojs.aaai.org/index.php/ICWSM/article/view/18107
https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.18653/v1/S19-2010
https://tweetnlp.org/downloads/twitter-2021-124m-300d.new.bin
https://tweetnlp.org/downloads/twitter-2021-124m-300d.new.bin
https://tweetnlp.org/downloads/twitter-multilingual-300d.new.bin
https://tweetnlp.org/downloads/twitter-multilingual-300d.new.bin
https://tweetnlp.org/downloads/twitter-multilingual-300d.new.bin

Model Link

TweetEval https://huggingface.co/cardiffnlp/twitter-roberta-base

TimeLMs-21 (default) https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m

XLM-T https://huggingface.co/cardiffnlp/twitter—-xlm-roberta-base

Sentiment Analysis https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
Multilingual Sentiment Analysis https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
Emotion Recognition https://huggingface.co/cardiffnlp/twitter—-roberta-base—emotion

Emoji Prediction https://huggingface.co/cardiffnlp/twitter—-roberta-base-emoji

Irony Detection https://huggingface.co/cardiffnlp/twitter-roberta-base-irony

Hate Speech Detection https://huggingface.co/cardiffnlp/twitter-roberta-base-hate

Offensive Language Identification https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive

Stance Detection (abortion) https://huggingface.co/cardiffnlp/twitter-roberta-base-stance-abortion
Topic Classification https://huggingface.co/cardiffnlp/tweet-topic—-21-multi

Named Entity Recognition https://huggingface.co/tner/twitter-roberta-base-dec2021l-tweetner7-all
Tweet Embeddings https://huggingface.co/cambridgeltl/tweet-roberta-base-embeddings-vl

Table 4: Hugging Face model links of all the NLP models included in TweetNLP (if available).

Model Link

RoBERTa-base https://huggingface.co/roberta-base

XLM-R https://huggingface.co/xlm-roberta-base

BERTweet https://huggingface.co/vinai/bertweet-base

Sentence-BERT https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
all-mpnet-base-v2 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
Mirror-RoBERTa https://huggingface.co/cambridgeltl/mirror-roberta-base-sentence-drophead
SimCSE-RoBERTa https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base

Table 5: Baseline models’ Hugging Face links (if available).

49

https://huggingface.co/cardiffnlp/twitter-roberta-base
https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m
https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion
https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji
https://huggingface.co/cardiffnlp/twitter-roberta-base-irony
https://huggingface.co/cardiffnlp/twitter-roberta-base-hate
https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive
https://huggingface.co/cardiffnlp/twitter-roberta-base-stance-abortion
https://huggingface.co/cardiffnlp/tweet-topic-21-multi
https://huggingface.co/tner/twitter-roberta-base-dec2021-tweetner7-all
https://huggingface.co/cambridgeltl/tweet-roberta-base-embeddings-v1
https://huggingface.co/roberta-base
https://huggingface.co/xlm-roberta-base
https://huggingface.co/vinai/bertweet-base
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/cambridgeltl/mirror-roberta-base-sentence-drophead
https://huggingface.co/princeton-nlp/unsup-simcse-roberta-base

JoeyS2T: Minimalistic Speech-to-Text Modeling with JoeyNMT

Mayumi Ohta
Computational Linguistics

Julia Kreutzer
Google Research

Stefan Riezler
Computational Linguistics & IWR

Heidelberg University, Germany jkreutzer@google.com Heidelberg University, Germany

ohta@cl.uni-heidelberg.de

Abstract

JoeyS2T is a JoeyNMT (Kreutzer et al., 2019)
extension for speech-to-text tasks such as au-
tomatic speech recognition and end-to-end
speech translation. It inherits the core philos-
ophy of JoeyNMT, a minimalist NMT toolkit
built on PyTorch, seeking simplicity and acces-
sibility. JoeyS2T’s workflow is self-contained,
starting from data pre-processing, over model
training and prediction to evaluation, and is
seamlessly integrated into JoeyNMT’s compact
and simple code base. On top of JoeyNMT’s
state-of-the-art Transformer-based encoder-
decoder architecture, JoeyS2T provides speech-
oriented components such as convolutional lay-
ers, SpecAugment, CTC-loss, and WER eval-
uation. Despite its simplicity compared to
prior implementations, JoeyS2T performs com-
petitively on English speech recognition and
English-to-German speech translation bench-
marks. The implementation is accompanied
by a walk-through tutorial and available on
https://github.com/may-/joeys2t.

1 Introduction

End-to-end models recently have been shown to
be able to outperform complex pipelines of indi-
vidually trained components in many NLP tasks.
For example, in the area of automatic speech recog-
nition (ASR) and speech translation (ST), the per-
formance gap between end-to-end models and cas-
caded pipelines, where an acoustic model is fol-
lowed by an HMM for ASR, or an ASR model is
followed by a machine translation (MT) model for
ST, seems to be closed (Sperber et al., 2019; Ben-
tivogli et al., 2021). An end-to-end approach has
several advantages over a pipeline approach: First,
it mitigates error propagation through the pipeline.
Second, its data requirements are simpler since in-
termediate data interfaces to bridge components
can be skipped. Furthermore, intermediate com-
ponents such as phoneme dictionaries in ASR or
transcriptions in ST need significant amounts of ad-

riezler@cl.uni-heidelberg.de

ditional human expertise to build. For end-to-end
models, the overall model architecture is simpler,
consisting of a unified end-to-end neural network.
Nonetheless, end-to-end components can be ini-
tialized from non end-to-end data, e.g., in audio
encoding layers (Xu et al., 2021) or text decoding
layers (Li et al., 2021).

ASR or ST tasks usually have a higher entry bar-
rier than MT, especially for novices who have little
experience in machine learning, but also for NLP
researchers who have previously only worked on
text and not speech processing. This can also be
seen in the population of the different tracks of NLP
conferences. For example, the “Speech and Multi-
modality” track of ACL 2022 had only a third of
the number of papers in the “Machine Translation
and Multilinguality” track.! However, thanks to
the end-to-end paradigm, those tasks are now more
accessible for students or entry-level practitioners
without huge resources, and without the experi-
ence of handling the different modules of a cas-
caded system or speech processing. The increased
adoption of Transformer architectures (Vaswani
et al., 2017) in both text (Kalyan et al., 2021) and
speech processing (Dong et al., 2018; Karita et al.,
2019a,b) has further eased the transfer of knowl-
edge between the two fields, in addition to making
joint modeling easier and more unified.

Reviewing existing code bases for end-to-end
ASR and ST—for example, DeepSpeech (Han-
nun et al., 2014), ESPnet (Inaguma et al., 2020;
Watanabe et al., 2020), fairseq S2T (Wang et al.,
2020), NeurST (Zhao et al., 2021) and Speech-
Brain (Ravanelli et al., 2021)—it becomes appar-
ent that the practical use of open-source toolkits
still requires significant experience in navigating
large-scale code, using complex data formats, pre-
processing, neural text modeling, and speech pro-
cessing in general. High code complexity and a

"https://public.tableau.com/views/ACL2022map/
Dashboard1?: showVizHome=no

50

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 50 - 59
December 7-11, 2022 (©)2022 Association for Computational Linguistics

https://github.com/may-/joeys2t
https://public.tableau.com/views/ACL2022map/Dashboard1?:showVizHome=no
https://public.tableau.com/views/ACL2022map/Dashboard1?:showVizHome=no

lack of documentation are frustrating hurdles for
novices. We propose JoeyS2T, a minimalist and
accessible framework, to help novices get started
with speech recognition and translation, to accel-
erate their learning process, and to make ASR and
ST more accessible and transparent, that is directly
targeting novices and their needs.

We hope that making more accessible imple-
mentations will also have trickle-down effects of
making the research built on top of it more ac-
cessible and more linguistically and geograph-
ically diverse (Joshi et al., 2020). This ef-
fect has already been observed for the adoption
of JoeyNMT for text MT for low-resource lan-
guages (V et al., 2020; Camgoz et al., 2020; Zhao
et al., 2020; Zacarias Marquez and Meza Ruiz,
2021; Ranathunga et al., 2021; Mirzakhalov et al.,
2021). Furthermore, speech technology has an even
higher potential for language inclusivity (Black,
2019; Abraham et al., 2020; Zhang et al., 2022; Liu
et al., 2022).

2 Speech-to-Text Modeling

Automatic speech recognition and translation re-
quire mapping a speech feature sequence X =
{x; € R9} to a text token sequence Y = {y; € V}.
The continuous speech signal in its raw wave form
is pre-processed into a sequence of discrete frames
that are each represented as d-dimensional speech
feature vectors x;, e.g., log Mel filterbanks at the
i-th time frame. In contrast, a textual sequence is
naturally composed of discrete symbols that can
be broken down into units of different granularity,
e.g. characters, sub-words, or words. These units
then form a vocabulary, so in the above formulation
¢ is the t-th target token from the vocabulary V.
The goal of S2T modeling is then to find the most
probable target token sequence Y from all possible
vocabulary combinations Vs:

Y = argmax p(Y | X). (1)

Yevsx
2.1 Why End-to-End Modeling?
In conventional HMM modeling, the posterior
probability p(Y | X) from Eq. 1 is decomposed

into three components by introducing the HMM
state sequences S = {s;}:

p(Y | X)~ p(X|S) p(S|Y) p(Y).
———— N N
Acoustic Model Lexical Model LM

2

The components correspond to an acoustic model
p(X |), a lexical representation model p(S' |

51

Y’), and a language model p(Y"). For practitioners,
this means that three individual models need to be
implemented, trained and combined. This comes
with a large overhead, since each of them requires
dedicated linguistic resources and experience in
training and tuning. Attention-based deep neural
networks have reduced this burden significantly
since they implicitly model all three components
in a single neural network, mapping X directly to
Y (Chorowski et al., 2015; Chan et al., 2016).

2.2 Optimization

Most approaches to sequence-to-sequence learning
tasks like MT use the cross-entropy (Xent) loss for
optimization, and break the sequence prediction
task down to a token-level objective. The posterior
probability from above is modeled as the product
of output token probabilities conditioned on the
entire input sequence X and the target prefix y:

Hp v lya: X). (3

A popular alternative in ASR is to employ
Connectionist Temporal Classification (CTC) loss
(Graves and Jaitly, 2014). CTC uses a Markov as-
sumption to model the transition of states similar
to conventional HMM:

pxent Y ‘ X

pctc Y ‘ X (4)

=5 T 1)
where A denotes the set of Vahd alignments from
X toY, a; € Ais one possible alignment at the
t-th time step, and marginalizing the conditional
probability p(a; | X) over all valid possible align-
ments yields the sequence-level probability.

This CTC formulation is suitable to learn mono-
tonic alignments between audio and text, and it
also can handle very long sequences efficiently by
solving dynamic programming on the state tran-
sition graph. The assumption of conditional in-
dependence at different time steps is a potentially
harmful simplification which is compensated for
by a token-level objective and by jointly minimiz-
ing cross-entropy and CTC loss (Hori et al., 2017;
Watanabe et al., 2017). The final optimization ob-
jective in the JoeyS2T implementation is a loga-
rithmic linear combination of the label-smoothed
cross-entropy loss and the CTC loss defined above:

Liotal 3:(1 -)‘) logpxent(y | X)
+ A log pee (Y | X),)

where A € [0, 1] is an interpolation parameter.

3 Design Principles

Simplicity: We devoted considerable effort to
keep JoeyS2T’s module structure simple and flat. It
directly employs the PyTorch (Paszke et al., 2019)
backend and has a low level of abstraction (details
in Section 4.6). JoeyS2T has a minimal list of
external dependencies that can be easily installed
via the PyPI? tool. Even for pre-processing, ex-
ternal dependencies on tools such as Kaldi (Povey
et al., 2011) are avoided. For filterbank feature ex-
traction, we use TorchAudio® which is seamlessly
integrated into PyTorch. In contrast to other toolk-
its, speech modules extended in JoeyS2T are only
built for speech-to-text modeling. It does not imple-
ment speech enhancement, nor speaker detection
or speech generation. While this might appear like
a limitation, we believe that the reduction of func-
tionalities to a carefully identified minimum for ST
and ASR is the key for increased accessibility.*

Accessibility: We also have written extensive
documentation and walk-through tutorials to help
newcomers become more familiar with speech tech-
nologies. JoeyS2T also provides pretrained mod-
els including configuration files which lower the
barrier to get started. To guarantee the accessi-
bility of the code, we open-sourced JoeyS2T un-
der a very permissive license (Apache 2.0). The
JoeyS2T developer community actively supports
user questions and requests. We maintain an open
platform to discuss bug fixes, possible extensions
etc. All contributions are first automatically con-
trolled by the internal unit tests and will manually
be reviewed by our team.

Reproducibility: To ensure that the reported re-
sults are comparable and reproducible, we release
models trained on publicly available data. Our
evaluation metrics are described in detail (tokeniza-
tion, punctuation handling etc.). All pre- and post-
processing scripts are published with a data down-
load path and explicit hyperparameter configura-
tions. We track all code changes in our repository
and provide version information which is often a
critical factor for reproducibility as bug fixes can
affect evaluation scores.

2https ://pypi.org/

3https://github.com/pytorch/audio

A clean code base can always be extended by users once
they are more proficient. For example, JoeyNMT has been suc-
cessfully extended to other modalities and integrated into web
interfaces by advanced users. See https://github.com/
joeynmt/joeynmt#projects-and-extensions

52

4 Implementation and Usage

4.1 Hyperparameter Configuration

JoeyS2T sets up experiments based on a YAML-
style configuration file which declares the whole
pipeline, just like JoeyNMT. Processes are run in a
Python interface without relying on external Bash
or Perl scripts. In the configuration file, users can
choose between the tasks MT (Machine Translation)
or S2T (Speech-to-Text) in order to inform JoeyS2T
about the input data type: audio or text. The hy-
perparameters of speech-related modules such as
SpecAugment, 1d-Conv etc. can also be specified
in the same configuration file.

4.2 Data Loading and Pre-processing

Source Audios: We separated computationally
heavy pre-processing steps from model training,
e.g., the conversion from raw wave forms to spec-
trograms by Fourier transformation. We employ
the TorchAudio API to extract audio features in
the pre-processing scripts. JoeyS2T includes mod-
ules for Cepstral Mean Variance Normalization
(CMVN) (Viikki and Laurila, 1998) and SpecAug-
ment (Park et al., 2019) by default. These are ap-
plied minibatch-wise before the input data are fed
into the encoder.

Data Loading: As a precautionary measure to
avoid memory allocation errors (which can happen
for large audio inputs) we implemented on-the-fly
data loading: we only store the path to the data
in the iterator, and load the actual spectrogram
features into memory every time a minibatch is
constructed.

Target Texts: For target texts, we expect users
to prepare a tokenization model independently and
to specify the path to the trained tokenizer. Be-
sides rule-based character-level tokenization and
basic white space splitting, we currently support
subword-nmt tokenizers (Sennrich et al., 2016)
and SentencePiece tokenizers (Kudo and Richard-
son, 2018). Users can specify tokenizer options
in JoeyS2T’s configuration file. During training,
JoeyS2T applies text tokenization on the fly. Since
the text length can be calculated only after tokeniza-
tion, instance filtering by length is applied in this
step. Thanks to this flexible on-the-fly tokeniza-
tion, dynamic data augmentation methods i.e., BPE
Dropout (Provilkov et al., 2020), SwitchOut (Wang

>Sample configuration files for different datasets are avail-
able at https://github.com/may-/joeys2t/configs

https://pypi.org/
https://github.com/pytorch/audio
https://github.com/joeynmt/joeynmt#projects-and-extensions
https://github.com/joeynmt/joeynmt#projects-and-extensions
https://github.com/may-/joeys2t/configs

[Encoder H Decoder J—)(p

red. Tokens/‘—‘

1d-Conv
N
Xent Loss BLEU
_SpecAug) CTC Loss WER
(_ CMVWN) x
4 JoeyS2T
p vy
Src(Spectrogram) Trg @e Tokens)—
Figure 1: Architecture of JoeyS2T. We reuse

JoeyNMT’s basic building blocks and extended them by
essential audio-specific modules.

et al., 2018) or ADA (Lam et al., 2021) can be
easily integrated.

4.3 Architectures

JoeyS2T supports a Transformer-based encoder-
decoder architecture (see Figure 1). We reuse
the self-attention encoder and decoder layers of
JoeyNMT, and modify them in order to support
speech-specific components.

Input Representations: Instead of converting to-
ken embeddings from discrete one-hot encodings
to continuous vectors (as done for text input), we
directly feed the sequence of filterbank vectors to
the encoder. The embedding size in text-based
JoeyNMT thus corresponds to the filterbank fre-
quency size in JoeyS2T.

Encoder: The biggest difference to the origi-
nal text-to-text Transformer architecture is the 1-
dimensional convolution layer (1d-Conv) placed
before the self-attention encoder. It compresses
potentially redundant features along the time di-
mension in order to capture phonetic structures.
Each 1d-Conv layer has a stride of 2. This further
downsamples the sequence by a factor of 2!, where
[is the number of 1d-Conv layers. The reduction
of the input length is essential for computation
speed: Speech feature sequences are usually much
longer than text token sequences, and the compu-
tational complexity of one self-attention block is
O(u? - d) (Vaswani et al., 2017), where u is the
maximal input length (number of tokens in textual
input, or number of time frames in speech input),
and d is the embedding size.

Decoder: We reuse the decoder construction of
the original JoeyNMT code, but add one additional

53

linear layer for the CTC loss on top of the self-
attentive decoder layers.

Inference: We support greedy and beam search
based on the token probability distributions. All
inference enhancements introduced in JoeyNMT
v2.0 such as repetition penalty, n-gram blocker,
probability scoring, attention visualization of cross-
attention heads in transformer layers, etc. are sup-
ported by JoeyS2T as well.

4.4 Evaluation Metrics

JoeyS2T supports Character F-score
(ChrF) (Popovi¢, 2015), BLEU (Papineni
et al., 2002) and Word Error Rate (WER) based
on Levenshtein distance (Navarro, 2001) as
evaluation metrics for ASR and ST. We import
sacrebleu’ (Post, 2018) for ChrF and BLEU,
and editdistance® (Hyyro, 2001) for WER. In
addition, perplexity and accuracy can be monitored
during training on Tensorboard (Abadi et al.,
2015).

4.5 Documentation and Tutorial

We follow the documentation strategy of JoeyNMT,
which means that all extended functions have their
own docstring and in-line comments for tensor
shapes. Unit tests covering essential modules are
automatically triggered on every commit to the
repository.

In the hands-on tutorial, we present working ex-
amples for ASR and ST as Jupyter notebooks.’ The
walk-through tutorial is self-contained and explains
the whole pipeline: installation steps, data down-
loading, data pre-processing, configuration, model
training/fine-tuning, inference and evaluation. We
will keep the tutorial up to date with potential future
API changes.

4.6 Code complexity

JoeyNMT exhibits the spirit of minimalism by aim-
ing to achieve 80% of the output quality with 20%
of a common toolkit’s code size (80/20 principle;
(Pareto, 1896)). Table 3 gives statistics on code

®nrefs:1|case:mixed|eff:no|tok:13a| smooth:exp|version:2.1.0

"https://github.com/mjpost/sacrebleu

8https://github.com/roy-ht/editdistance

“Demo video: https://youtu.be/bpBtq2jLolQ

10https: //github.com/espnet/espnet/tree/master/
espnet2 (commit hash @39cc5d)

Uhttps://github.com/pytorch/fairseq/tree/main/
fairseq (commit hash ad3bec5)

Phttps://github.com/may-/joeys2t/tree/main/
joeynmt (commit hash a80802a)

https://github.com/mjpost/sacrebleu
https://github.com/roy-ht/editdistance
https://youtu.be/bpBtq2jLolQ
https://github.com/espnet/espnet/tree/master/espnet2
https://github.com/espnet/espnet/tree/master/espnet2
https://github.com/pytorch/fairseq/tree/main/fairseq
https://github.com/pytorch/fairseq/tree/main/fairseq
https://github.com/may-/joeys2t/tree/main/joeynmt
https://github.com/may-/joeys2t/tree/main/joeynmt

LibriSpeech 100h (WER)
System Architecture | dev-clean dev-other test-clean test-other
Kahn et al. (2020)T BiLSTM 14.00 37.02 14.85 39.95
Laptev et al. (2020)" | Transformer | 10.3 24.0 11.2 249
ESPnet! Transformer | 8.1 20.2 8.4 20.5
ESPnet! Conformer | 6.3 17.4 6.5 17.3
JoeyS2T Transformer | 10.66 + 0.36 23.82 +0.34 12.02 +0.32 24.75 +0.37
LibriSpeech 960h (WER)
System Architecture | dev-clean dev-other test-clean test-other
Gulati et al. (2020)f Conformer | 1.9 4.4 2.1 49
ESPnet? Conformer | 2.3 6.1 2.6 6.0
SpeechBrain” Conformer | 2.13 5.51 2.31 5.61
fairseq S2T" Transformer | 3.23 8.01 3.52 7.83
fairseq wav2vec2” Conformer | 3.17 8.86 3.39 8.57
JoeyS2T Transformer | 3.79 £0.27 884 +£039 4314+0.52 8.66+0.35

Table 1: Averaged results in WER on the English LibriSpeech dataset over three runs with standard deviations
(£). We compute the WER on lowercased transcriptions without punctuations using SacreBLEU’s 13a tokenizer.
1: results were reported in the papers linked above. i: results were taken from the repository linked above. *: we
downloaded their pretrained models from the repository, and ran the inference and the evaluation on the same test

data as we use in JoeyS2T.

MuST-C ver. ASR (WER |) MT (BLEU 1)
System train eval | tst-COMMON tst-HE tst-COMMON tst-HE
Gangi et al. (2019)f vl vl 27.0 - 25.3 -
Zhang et al. (2020)" | vl vl | - - 29.69 -
ESPnett vl vl | 1270 - 27.63 -
fairseq S2T" vl vl | 12.72 10.93 - -
JoeyS2T v2 vl 18.864+0.37 15.19+0.56 | 23.07£0.14 20.21£0.17
fairseq S2T" vl v2 11.88 10.43 - -
JoeyS2T v2 v2 12.95+£0.32 11.16+0.31 | 27.17£0.63 24.8540.68
MuST-C ver. Cascade ST (BLEU 1) End2End ST (BLEU 1)
System train eval | tst-COMMON tst-HE tst-COMMON tst-HE
Gangi et al. (2019)f vl vl 18.5 - 17.3 -
Zhang et al. (2020)7 | vl \4 22.52 - 20.67 -
ESPnett vl vl |- - 2291 -
fairseq S2T" vl vl | - - 22.70 21.70
JoeyS2T v2 vl 21.894+0.64 21.03+0.66 | 20.53+£0.29 21.13£0.46
fairseq S2T" vl v2 - - 23.20 22.23
JoeyS2T v2 v2 | 23.954£0.59 22.65+0.58 | 23.33£0.39 22.9040.69

Table 2: Averaged results on the MuST-C en-de dataset over three runs with standard deviations (4). We compute
the BLEU on truecased translations with punctuations using SacreBLEU’s 13a tokenizer.® {: results were reported
in the papers linked above. }: results were taken from the repository linked above. *: we downloaded their pretrained
models from the repository, and ran the inference and evaluation on the same test data as we use in JoeyS2T.

complexity. In terms of the numbers of Python files
and code lines, JoeyS2T is 10-11 times more com-
pact than ESPnet (Inaguma et al., 2020; Watanabe
et al., 2020) and fairseq (Wang et al., 2020). How-
ever, both ESPnet and fairseq are general-purpose
toolkits, covering a wide range of tasks beyond MT,

54

ASR or ST, such as language modeling or speech
synthesis, while JoeyS2T is designed for a speech-
to-text tasks only. Yet JoeyS2T’s comment-to-code
ratio is much higher than that of the competitors.

JoeyS2T offers a flat code structure in order
to make debugging along the stack trace easier

https://github.com/espnet/espnet/tree/master/egs2/librispeech_100/asr1
https://github.com/espnet/espnet/tree/master/egs2/librispeech_100/asr1
https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1#without-lm
https://huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech
https://huggingface.co/facebook/s2t-small-librispeech-asr
https://huggingface.co/facebook/wav2vec2-base-960h
https://github.com/espnet/espnet/tree/master/egs/must_c
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/espnet/espnet/tree/master/egs/must_c
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md
https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_text/docs/mustc_example.md

ESPnet2'® fairseq'' JoeyS2T'
Python files 287 407 24
Code lines 41427 65097 5450
Comment lines 10260 11042 2137
Comment/Code Ratio 0.25 0.17 0.39

Table 3: Code complexity measured using https://
github.com/AlDanial/cloc v1.94.

and to reduce the number of code files and nested
classes/functions to read through. In contrast,
fairseq’s codebase is organized hierarchically. This
deep hierarchy comes from the structured class
inheritance, which is an important component of
object-oriented programming for experienced de-
velopers. However, such hierarchical class in-
heritance is sometimes a big stumbling block for
novices (Wiedenbeck et al., 1999). We intention-
ally abandon deeply inherited class design and use
novice-friendly flat structure instead. As a result,
developers do not have to allocate their cognitive
resources to framework-specific software design
principles, but they can concentrate on the logic
they want to realize. JoeyS2T encourages novices
to dive into speech-to-text research before they ma-
ture in high-context system design such as hierar-
chical class inheritance or decorators.

5 Experimental Results on Benchmarks

Despite its simplicity, JoeyS2T achieves a perfor-
mance on standard benchmarks that is comparable
to other high-functional speech-to-text toolkits.

5.1 ASR on LibriSpeech

LibriSpeech (Panayotov et al., 2015) is the de-facto
standard English ASR benchmark that contains 960
hours of audiobooks in Project Gutenberg. The
corpus is publicly available under the CC BY 4.0
license and many works set their goal to achieve
state-of-the-art WER on its test splits.

Tables 1 present the results of models trained on
100h and 960h audio, respectively. JoeyS2T shows
comparable performance with current Transformer-
based models, which are generally outperformed
by Conformer (Gulati et al., 2020) models.

5.2 ST on MuST-C

MuST-C (Cattoni et al., 2021) is a publicly avail-
able speech translation corpus built from English
TED Talks. It consists of English transcriptions
and translations into 14 languages, contributed by

55

volunteers. We trained our model on the English-
German subset of version 2, and evaluated the
model both on version 1 and version 2 tst-COMMON,
and tst-HE splits.

MuST-C is a challenging dataset due to its spon-
taneous speech that contains hesitations, disfluent
utterances, etc. on the source side. Furthermore,
the ground-truth target texts derived from the sub-
titles are also noisy. There are some additional
descriptions of non-verbal information, i.e., “(ap-
plause)” “(laughter)”, or “& (music)”. Those are
not actually pronounced in the source, but provided
in the target, which makes learning more difficult.
We normalized such noisy expressions and spec-
ified them as special tokens during the subword
training, so that they are not tokenized into sub-
words but kept as single tokens. For the sake of
reproducibility, we provide a preprocessing script
for all normalization steps.

For ST tasks, we first pretrained ASR models
and MT models using the gold transcriptions. Then
we initialized the encoder layers of an end-to-end
ST model with the pretrained ASR encoders and
the decoder layers with the pretrained MT decoders,
and further trained it on the end-to-end ST task.

The ST results can be found in Table 2. JoeyS2T
shows competitive results, both in end-to-end sce-
narios and in a cascade using the same pre-trained
models. We also include the ASR and MT pretrain-
ing results for reference.

6 Conclusion & Future Work

We described JoeyS2T, an extension of the
JoeyNMT toolkit to the spoken language process-
ing tasks ASR and ST. JoeyS2T is characterized
by its minimalist design, prioritization of simplic-
ity, accessibility and reproducibility in its code and
documentation. The code is self-contained and
requires minimal prior experience with speech or
language processing. In benchmark evaluations,
JoeyS2T performed comparable or superior to other
ASR or ST code bases, while having much lower
code complexity.

While its functionality is kept minimal, support
for state-of-the-art architectures such as wav2vec
and Conformer might be desired for future exten-
sions.

Limitations

The limitations of our work mainly concern the
reproducibility of comparable state-of-the-art re-

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

sults. First, there are many different preprocessing
variants which are quite complex (length filtering,
speed shift, lowercasing, punctuation normaliza-
tion etc.) and not always clearly documented. Sec-
ond, the same problem appears in evaluation. There
is no commonly accepted evaluation scheme (in-
cluding lower-cased vs. true-cased results, with or
without punctuation, etc.). While the sacrebleu
library is a first step to addressing this problem in
MT, we believe that the speech processing commu-
nity also needs such efforts to standardize speech-
to-text evaluation.

Since the goal of our work is not to present a new
state-of-the-art in speech-to-text modeling, we did
not invest a large effort into hyperparameter tuning,
but only varied three different random seeds in our
setup, and used the default settings for competitor
systems.

Acknowledgements

We would like to thank the members of the StatNLP
group at Heidelberg University and the AIMS Sene-
gal students for their feedback on the tutorial. Fur-
thermore, we appreciate the discussions with the
Masakhane'® community in the early stages of the
toolkit development. We also thank Yaraku Inc.'*
for the opportunity to publish JoeyS2T tutorial arti-
cles.””

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Basil Abraham, Danish Goel, Divya Siddarth, Kalika
Bali, Manu Chopra, Monojit Choudhury, Pratik Joshi,
Preethi Jyoti, Sunayana Sitaram, and Vivek Seshadri.
2020. Crowdsourcing speech data for low-resource

13https ://www.masakhane.io/

14https ://www.yarakuzen.com/

Bhttps://atmarkit.itmedia.co.jp/ait/articles/
2208/17/news002.html

56

languages from low-income workers. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 2819-2826, Marseille, France. Eu-
ropean Language Resources Association.

Luisa Bentivogli, Mauro Cettolo, Marco Gaido, Alina
Karakanta, Alberto Martinelli, Matteo Negri, and
Marco Turchi. 2021. Cascade versus direct speech
translation: Do the differences still make a differ-
ence? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 28732887, Online. Association for Computa-
tional Linguistics.

Alan W Black. 2019. Cmu wilderness multilingual
speech dataset. In ICASSP 2019 - 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5971-5975.

Necati Cihan Camgoz, Oscar Koller, Simon Hadfield,
and Richard Bowden. 2020. Sign language trans-
formers: Joint end-to-end sign language recognition
and translation. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10023-10033.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Ben-
tivogli, Matteo Negri, and Marco Turchi. 2021. Must-
c¢: A multilingual corpus for end-to-end speech trans-
lation. Computer Speech & Language, 66:101155.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4960-4964.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume
1, NIPS’15, page 577-585, Cambridge, MA, USA.
MIT Press.

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-
transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5884-5888.

VY, Wilhelmina Nekoto, Vukosi Marivate, Tshi-
nondiwa Matsila, Timi Fasubaa, Taiwo Fagbo-
hungbe, Solomon Oluwole Akinola, Shamsuddeen
Muhammad, Salomon Kabongo Kabenamualu, Sa-
lomey Osei, Freshia Sackey, Rubungo Andre Niy-
ongabo, Ricky Macharm, Perez Ogayo, Orevaoghene
Ahia, Musie Meressa Berhe, Mofetoluwa Adeyemi,
Masabata Mokgesi-Selinga, Lawrence Okegbemi,
Laura Martinus, Kolawole Tajudeen, Kevin Degila,
Kelechi Ogueji, Kathleen Siminyu, Julia Kreutzer,
Jason Webster, Jamiil Toure Ali, Jade Abbott,

https://www.tensorflow.org/
https://www.tensorflow.org/
https://aclanthology.org/2020.lrec-1.343
https://aclanthology.org/2020.lrec-1.343
https://www.masakhane.io/
https://aclanthology.org/2020.lrec-1.343
https://www.yarakuzen.com/
https://aclanthology.org/2020.lrec-1.343
https://atmarkit.itmedia.co.jp/ait/articles/2208/17/news002.html
https://aclanthology.org/2020.lrec-1.343
https://atmarkit.itmedia.co.jp/ait/articles/2208/17/news002.html
https://aclanthology.org/2020.lrec-1.343
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.18653/v1/2021.acl-long.224
https://doi.org/10.1109/ICASSP.2019.8683536
https://doi.org/10.1109/ICASSP.2019.8683536
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.1109/ICASSP.2018.8462506

Iroro Orife, Ignatius Ezeani, Idris Abdulkadir Dan-
gana, Herman Kamper, Hady Elsahar, Goodness
Duru, Ghollah Kioko, Murhabazi Espoir, Elan van
Biljon, Daniel Whitenack, Christopher Onyefuluchi,
Chris Chinenye Emezue, Bonaventure F. P. Dossou,
Blessing Sibanda, Blessing Bassey, Ayodele Olabiyi,
Arshath Ramkilowan, Alp Oktem, Adewale Akin-
faderin, and Abdallah Bashir. 2020. Participatory re-
search for low-resourced machine translation: A case
study in African languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2144-2160, Online. Association for Computa-
tional Linguistics.

Mattia A. Di Gangi, Matteo Negri, and Marco Turchi.
2019. Adapting Transformer to End-to-End Spoken
Language Translation. In Proc. Interspeech 2019,
pages 1133-1137.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-

works. International conference on machine learn-
ing, pages 1764—-1772.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruom-
ing Pang. 2020. Conformer: Convolution-augmented
transformer for speech recognition. In Interspeech
2020, 21st Annual Conference of the International
Speech Communication Association, pages 5036—
5040, Shanghai, China. ISCA.

Awni Hannun, Carl Case, Jared Casper, Bryan Catan-
zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San-
jeev Satheesh, Shubho Sengupta, Adam Coates, et al.
2014. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567.

Takaaki Hori, Shinji Watanabe, and John Hershey. 2017.
Joint CTC/attention decoding for end-to-end speech
recognition. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 518-529, Vancouver,
Canada. Association for Computational Linguistics.

Heikki Hyyro. 2001. Explaining and extending the bit-
parallel approximate string matching algorithm of
myers. Technical report, Citeseer.

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki
Karita, Nelson Yalta, Tomoki Hayashi, and Shinji
Watanabe. 2020. ESPnet-ST: All-in-one speech
translation toolkit. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 302-311,
Online. Association for Computational Linguistics.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282-6293, Online. Association for Computational
Linguistics.

57

Jacob Kahn, Ann Lee, and Awni Hannun. 2020. Self-
training for end-to-end speech recognition. In 2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7084-7088.
IEEE.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan,
and Sivanesan Sangeetha. 2021. AMMUS : A survey
of transformer-based pretrained models in natural
language processing. CoRR, abs/2108.05542.

Shigeki Karita, N. Chen, Tomoki Hayashi, Takaaki Hori,
H. Inaguma, Ziyan Jiang, Masao Someki, Nelson
Yalta, Ryuichi Yamamoto, Xiao fei Wang, Shinji
Watanabe, Takenori Yoshimura, and Wangyou Zhang.
2019a. A comparative study on transformer vs rnn in
speech applications. 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 449-456.

Shigeki Karita, Nelson Yalta, Shinji Watanabe, Marc
Delcroix, Atsunori Ogawa, and Tomohiro Nakatani.
2019b. Improving transformer-based end-to-end
speech recognition with connectionist temporal clas-
sification and language model integration. In INTER-
SPEECH.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler.
2019. Joey NMT: A minimalist NMT toolkit for
novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP): System
Demonstrations, pages 109—114, Hong Kong, China.
Association for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Tsz Kin Lam, Mayumi Ohta, Shigehiko Schamoni,
and Stefan Riezler. 2021. On-the-fly aligned data
augmentation for sequence-to-sequence ASR. In
22nd Annual Conference of the International Speech
Communication Association, INTERSPEECH 2021,
pages 4261-4265. International Speech Communica-
tion Association.

Aleksandr Laptev, Roman Korostik, Aleksey Svischev,
Andrei Andrusenko, Ivan Medennikov, and Sergey
Rybin. 2020. You do not need more data: Improving
end-to-end speech recognition by text-to-speech data
augmentation. In 2020 13th International Congress
on Image and Signal Processing, BioMedical Engi-
neering and Informatics (CISP-BMEI), pages 439—
444. 1EEE.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.

https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.21437/Interspeech.2019-3045
https://doi.org/10.21437/Interspeech.2019-3045
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.18653/v1/P17-1048
https://doi.org/10.18653/v1/P17-1048
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
http://arxiv.org/abs/2108.05542
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D19-3019
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.acl-long.68

In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 827-838,
Online. Association for Computational Linguistics.

Zoey Liu, Crystal Richardson, Richard Hatcher, and
Emily Prud’hommeaux. 2022. Not always about
you: Prioritizing community needs when developing
endangered language technology. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3933-3944, Dublin, Ireland. Association for
Computational Linguistics.

Jamshidbek Mirzakhalov, Anoop Babu, Aigiz Ku-
nafin, Ahsan Wahab, Behzod Moydinboyev, Sardana
Ivanova, Mokhiyakhon Uzokova, Shaxnoza Pulatova,
Duygu Ataman, Julia Kreutzer, Francis Tyers, Orhan
Firat, John Licato, and Sriram Chellappan. 2021.
Evaluating multiway multilingual nmt in the turkic
languages. In Proceedings of the Sixth Conference
on Machine Translation, Punta Cana, Dominican Re-
public.

Gonzalo Navarro. 2001. A guided tour to approximate
string matching. ACM Comput. Surv., 33(1):31-88.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5206-5210.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Vilfredo Pareto. 1896. Cours d’économie politique:
professé a I’Universivté de Lausanne, volume 1. F.
Rouge.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. SpecAugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32:8026—
8037.

Maja Popovié. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392-395, Lisbon, Portugal. Association for
Computational Linguistics.

58

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The kaldi speech recognition
toolkit. In IEEE 2011 workshop on automatic speech
recognition and understanding, CONF. IEEE Signal
Processing Society.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882—1892, Online. Association for
Computational Linguistics.

Surangika Ranathunga, En-Shiun Annie Lee, Mar-
jana Prifti Skenduli, Ravi Shekhar, Mehreen Alam,
and Rishemjit Kaur. 2021. Neural machine transla-
tion for low-resource languages: A survey. CoRR,
abs/2106.15115.

Mirco Ravanelli, Titouan Parcollet, Peter Plantinga,
Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. 2021. SpeechBrain: A
general-purpose speech toolkit. arXiv preprint
arXiv:2106.04624.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2019. Attention-Passing Models for
Robust and Data-Efficient End-to-End Speech Trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 7:313-325.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Olli Viikki and Kari Laurila. 1998. Cepstral domain
segmental feature vector normalization for noise ro-

bust speech recognition. Speech Communication,
25(1-3):133-147.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference

https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.18653/v1/2022.acl-long.272
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
http://arxiv.org/abs/2106.15115
http://arxiv.org/abs/2106.15115
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1162/tacl_a_00270
https://doi.org/10.1162/tacl_a_00270
https://doi.org/10.1162/tacl_a_00270
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6

on Natural Language Processing: System Demon-
strations, pages 33-39, Suzhou, China. Association
for Computational Linguistics.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neu-
big. 2018. SwitchOut: an efficient data augmentation
algorithm for neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 856-861,
Brussels, Belgium. Association for Computational
Linguistics.

Shinji Watanabe, Florian Boyer, Xuankai Chang,
Pengcheng Guo, Tomoki Hayashi, Yosuke Higuchi,
Takaaki Hori, Wen-Chin Huang, Hirofumi Inaguma,
Naoyuki Kamo, et al. 2020. The 2020 ESPNet
update: New features, broadened applications, per-
formance improvements, and future plans. arXiv
preprint arXiv:2012.13006.

Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R.
Hershey, and Tomoki Hayashi. 2017. Hybrid
CTC/Attention Architecture for End-to-End Speech
Recognition. IEEE Journal of Selected Topics in
Signal Processing, 11(8):1240-1253.

Susan Wiedenbeck, Vennila Ramalingam, Suseela
Sarasamma, and Cynthia L Corritore. 1999. A com-
parison of the comprehension of object-oriented and
procedural programs by novice programmers. Inter-
acting with Computers, 11(3):255-282.

Chen Xu, Bojie Hu, Yanyang Li, Yuhao Zhang, Shen
Huang, Qi Ju, Tong Xiao, and Jingbo Zhu. 2021.
Stacked acoustic-and-textual encoding: Integrating
the pre-trained models into speech translation en-
coders. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2619-2630, Online. Association for Computa-
tional Linguistics.

Delfino Zacarias Marquez and Ivan Vladimir Meza Ruiz.
2021. Ayuuk-Spanish neural machine translator. In
Proceedings of the First Workshop on Natural Lan-
guage Processing for Indigenous Languages of the
Americas, pages 168—172, Online. Association for
Computational Linguistics.

Biao Zhang, Ivan Titov, Barry Haddow, and Rico Sen-
nrich. 2020. Adaptive feature selection for end-to-
end speech translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2533-2544, Online. Association for Computational
Linguistics.

Shiyue Zhang, Ben Frey, and Mohit Bansal. 2022. How
can NLP help revitalize endangered languages? a
case study and roadmap for the Cherokee language.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1529-1541, Dublin, Ireland.
Association for Computational Linguistics.

59

Chengqi Zhao, Mingxuan Wang, Qiangian Dong, Rong

Ye, and Lei Li. 2021. NeurST: Neural speech transla-
tion toolkit. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 55-62, Online. Association for Computational
Linguistics.

Xingyuan Zhao, Satoru Ozaki, Antonios Anastasopou-

los, Graham Neubig, and Lori Levin. 2020. Auto-
matic interlinear glossing for under-resourced lan-
guages leveraging translations. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5397-5408, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.18653/v1/D18-1100
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.1109/JSTSP.2017.2763455
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.acl-long.204
https://doi.org/10.18653/v1/2021.americasnlp-1.19
https://doi.org/10.18653/v1/2020.findings-emnlp.230
https://doi.org/10.18653/v1/2020.findings-emnlp.230
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2022.acl-long.108
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2021.acl-demo.7
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471
https://doi.org/10.18653/v1/2020.coling-main.471

FairLib: A Unified Framework for Assessing and Improving Fairness

Xudong Han'! Aili Shen'?*

Timothy Baldwin'*
'The University of Melbourne
$Huawei Technologies Co., Ltd.

xudonghl@student.unimelb.edu.au

liyitong3Qhuawei.com

Abstract

This paper presents FairLib, an open-source
Python library for assessing and improving
model fairness. It provides a systematic frame-
work for quickly accessing benchmark datasets,
reproducing existing debiasing baseline mod-
els, developing new methods, evaluating mod-
els with different metrics, and visualizing their
results. Its modularity and extensibility enable
the framework to be used for diverse types of
inputs, including natural language, images, and
audio. It incorporates 14 debiasing methods,
including pre-processing, at-training-time, and
post-processing approaches. The built-in met-
rics cover the most commonly acknowledged
fairness criteria, and can be further generalized
and customized for fairness evaluation.'

1 Introduction

While neural methods have achieved great success,
it has been shown that naively-trained models often
learn spurious correlations with protected attributes
like user demographics or socio-economic factors,
leading to allocation harms, stereotyping, and other
representation harms (Badjatiya et al., 2019; Zhao
etal., 2018; Li et al., 2018; Diaz et al., 2018; Wang
etal., 2019). As a result, there is a surge of interest
in assessing and improving fairness.

Various bias evaluation metrics have been in-
troduced in previous studies to gauge different
types of biases. One common family of fairness
assessment is group fairness which measures per-
formance disparities across demographic groups.
Different instantiations of group fairness have been
proposed, including demographic parity (Feldman
et al., 2015), where the positive prediction rate
should be identical across groups (irrespective
of the gold label), or equal opportunity (Hardt
et al., 2016) where all groups should have an equal

*This work was done when Aili Shen was at The Univer-
sity of Melbourne.
"Please check out the demo notebook and the demo video.

Yitong Li? Lea Frermann'
Trevor Cohn'!
2Alexa Al, Amazon
‘MBZUAI

ailishen@amazon.com

{lfrermann,tbaldwin,t.cohn}@unimelb.edu.au

chance of false negative prediction (equalized odds
extends the notion to include equal true positive
rates). More recent work addressed disparities
within classes and demographic groups (Shen et al.,
2022b). While these approaches reflect the nature
of fairness increasingly faithfully, they have been
applied and evaluated inconsistently in previous
work, which impedes systematic analysis and com-
parison of proposed approaches.

In terms of bias mitigation, diverse debias-
ing methods have been proposed, including at-
training-time (Li et al., 2018; Elazar and Goldberg,
2018; Shen et al., 2022a), and pre- (Zhao et al.,
2017; Wang et al., 2019) and post-processing ap-
proaches (Han et al., 2022a; Ravfogel et al., 2020).
Although these methods have been proved effective
for bias mitigation, it is challenging to reproduce
results and compare methods because of inconsis-
tencies in training strategy and model selection
criteria, which demonstrably affect the results.

We present FairLib, a well-documented, open-
source framework for assessing and improving fair-
ness. FairLib implements a number of common
debiasing approaches in a unified framework to
facilitate reproducible and consistent evaluation,
and provides interfaces for developing new debi-
asing methods. Moreover, a dataset interface sup-
ports adoption of both built-in and newly developed
methods for new tasks and corpora. For better pre-
sentation, FairLib also provides utilities for result
summarization and visualization.

FairLib is implemented in Python using PyTorch
and is easy to use: it can be run from the command
line, or imported as a package into other projects.
To demonstrate its utility, we use FairLib to repro-
duce a battery of debiasing results from the recent
NLP literature, and show that improved and system-
atic hyperparameter tuning leads to demonstrable
improvements over the originally reported results.
FairLib is released under Apache License 2.0 and

60

Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 60 - 71
December 7-11, 2022 (©)2022 Association for Computational Linguistics

xudongh1@student.unimelb.edu.au
ailishen@amazon.com
liyitong3@huawei.com
{lfrermann,tbaldwin,t.cohn}@unimelb.edu.au
https://colab.research.google.com/github/HanXudong/fairlib/blob/main/tutorial/fairlib_demo.ipynb
https://youtu.be/yGubVfAhpuo

is available on GitHub.? Detailed documentation
and tutorials are available on FairLib’s website.?

2 Benchmark Datasets

In addition to evaluating bias wrt. a user group, we
require datasets where each input instance is anno-
tated with protected attributes (e.g., gender) and a
target class label (e.g., sentiment). However, for a
variety of reasons, only a small subset of datasets
contains protected attribute labels, and annotating
protected labels can be difficult.

To standardize fairness studies, FairLib provides
APIs to access various publicly available fairness
benchmark datasets, including: (1) text corpora for
occupation classification (B10S, De-Arteaga et al.
(2019)), sentiment analysis (M0OJI, Blodgett et al.
(2016)), and part-of-speech tagging (TRUSTPILOT,
Hovy (2015)); (2) structured data for the tasks
of recidivism prediction (COMPAS, Larson et al.
(2016)), and income prediction (ADULT, Kohavi
etal. (1996)); and (3) image data to address colored
handwritten digit recognition (COLOREDMNIST,
Arjovsky et al. (2019)), objective classification
(COCO, Zhao et al. (2017)), and event classifi-
cation (IMSITU, Zhao et al. (2017)).*

3 Fairness Criteria

FairLib includes a variety of widely-used fairness
evaluation metrics from the literature.

Representational Fairness: To evaluate
whether sensitive information (such as demograph-
ics) is encoded in the representations of a trained
model, previous work has proposed to estimate the
leakage using an attacker (Elazar and Goldberg,
2018; Wang et al., 2019). Specifically, an attacker
is trained to reverse-engineer protected attributes
of inputs based on learned representations or the
original inputs. FairLib provides flexible APIs
to estimate information leakage at any representa-
tional level, based on different attackers (including
linear and neural models).

Group Fairness: To evaluate whether model
predictions are fair towards the protected attributes,
Barocas et al. (2019) present formal definitions of
three types of group fairness criteria, which capture
different levels of (conditional) independence be-
tween the protected attribute g, the target variable

https://github.com/HanXudong/fairlib

*https://hanxudong.github.io/fairlib

4Check the FairLib website for a full list of built-in
datasets.

61

1, and the model prediction ¢. Table 1 summarizes
the statistical fairness criteria and maps them to
confusion-matrix-derived scores. The group fair-
ness criteria evaluate the disparity of these scores
across subgroups and classes.

Aggregation of subset performance metrics to
a single figure of merit typically consists of two
steps: (1) group-wise aggregation within each class,
which reflects performance disparities across pro-
tected groups for each class; and (2) class-wise ag-
gregation, to aggregate group-wise disparities for
all classes (i.e., the vector from step 1) into a single
number. The choice of aggregation function re-
flects different assumptions of fairness, and varies
in previous work. Table 2 lists existing aggregation
approaches which are built in to FairLib.’

4 Bias Mitigation

This section reviews the three primary types of
debiasing methods, followed by Section 4.1, a sum-
mary of bias mitigation methods implemented in
FairLib.

Pre-processing adjusts the training dataset to
be balanced across protected groups before train-
ing, such that the input feature space is expected to
be uncorrelated with the protected attributes. Typ-
ical approaches here adopt long-tail learning ap-
proaches for debiasing, such as resampling the
training set such that the number of instances
within each protected group is identical (Zhao et al.,
2018; Wang et al., 2019; Han et al., 2022a).

At training time introduces constraints into the
optimization process for model training. A pop-
ular method is adversarial training, which jointly
trains: (i) a discriminator to recover protected at-
tribute values; and (ii) the main model to correctly
predict the target classes while at the same time pre-
venting protected attributes from being correctly
predicted (Wadsworth et al., 2018; Elazar and Gold-
berg, 2018; Li et al., 2018; Wang et al., 2019; Zhao
and Gordon, 2019; Han et al., 2021).

Post-processing aims to adjust a trained clas-
sifier according to protected attributes, such that
the final predictions are fair to different protected
groups. For example, Ravfogel et al. (2020) it-
eratively project fixed text representations from a
trained model to a null-space of protected attributes.
Han et al. (2022a) adjust the predictions for each
protected group by searching for the best prior for

>In Section 6.3, we further introduce a framework for
generalized aggregation in FairLib.

https://github.com/HanXudong/fairlib
https://hanxudong.github.io/fairlib
https://hanxudong.github.io/fairlib/reference_component_benchmark_datasets.html

Type Main Idea

Metric (M)

Independence (§ L g)

Positive rate of each protected group is the same
(Demographic Parity; Feldman et al. (2015))

TP+FP ..
TrrmrNTEN (Positive Rate)

Separation (§ L g|y)

Acknowledges correlation between g and y
(Equalized Odds; Hardt et al. (2016))

Ty (Recall or TPR)

FP
BTN (Fall-out or FPR)

Sufficiency (y L g|9)

Predictions are calibrated for all groups
(Test Fairness; Chouldechova (2017))

TP ..
To4TP (Precision)

™N
TN+FN (NPV)

Table 1: Built-in fairness evaluation metrics in FairLib.

Reference
Shen et al. (2022b)

Formulation
Be=15 2, |Meg — M|

B. = ﬁ Zg |Mc,g;MC|2 Lum et al. (2022)

Be = maxg | Mg — M| Yang et al. (2020)

Be = ming M, ¢ Lahoti et al. (2020)
B = miny ek Zafar et al. (2017)

Be = maxg M. — ming M., Bird et al. (2020)

Be = maxe Moy Feldman et al. (2015)

ming Mc ¢

Romanov et al. (2019)
Li et al. (2018)

d=rJt X B

6:ézcﬁc

Table 2: A subset of aggregation approaches for fairness
evaluation from the literature that have are implemented
in FairLib. C and G refer to the number of distinct
classes and protected groups. M., is the evaluation
results of class ¢ and group g wrt. a particular evaluation
metric M, such as TPR. 3. denotes the aggregation
of group-wise disparities within class ¢, and following
class-wise aggregation results in §, which is the fairness
score.

each group-specific component.

4.1 Implemented Methods

Table 3 lists 14 debiasing methods that are imple-
mented in FairLib. It can be beneficial to employ
different debiasing methods simultaneously (e.g.,
combine pre-processing and training-time meth-
ods (Wang et al., 2019; Han et al., 2022a)), which
FairLib supports, and technically, every combina-
tion of these methods can be directly used without
any further modifications.

5 Model Comparison

Typically, debiasing methods suffer from
performance—fairness trade-offs, and no single
method achieves both the best performance and
fairness, making comparison between fairness
methods difficult. In this section, we first introduce
trade-off plots for model comparison, and then
discuss model selection criteria that can be used

62

1.000
0.8
0.975

071 0.950

m
0.925 §

£
061 0.900 5
051 0.875

0.850

0.4 4 0.825

T T T T
-2.5 -2.0 -15 -1.0

logioA

T T T
-4.0 -3.5 -3.0

Figure 1: Tuning the tradeoff hyperparameter of
FAIRSCL. Similar trade-offs can be obtained for other
debiasing methods.

for reporting numerical results.

Performance—fairness Trade-off is a com-
mon way of comparing different debiasing meth-
ods without the requirement for model selection.
Specifically, there is usually a trade-off hyperpa-
rameter for each debiasing method, which controls
to what extent the model will sacrifice performance
for better fairness, such as the number of iterations
for null-space projection in INLP,° or the strength
of the additional contrastive losses in FAIRSCL.
Figure 1 shows a trade-off plot over different val-
ues of the trade-off hyperparameter of FAIRSCL
for occupation classification, wherein we evaluate
performance with accuracy, and use equal oppor-
tunity as the fairness criterion (see Section 8.1 for
details).”

Instead of trade-offs wrt. different hyperparame-
ter values, it can be more instructive to compute the
maximum fairness that can be achieved by differ-
ent models at a fixed performance level, and vice
versa. Figure 2 shows an example of comparing the
Pareto frontiers of INLP with FAIRSCL, where
the results are obtained by varying the hyperpa-
rameters as illustrated in Figure 1. For a particular
method, a Pareto optimal point corresponds to a
model (i.e., a particular value of the trade-off hy-

8Cf., Table 3 for explanations of mentioned methods.
"Note that all figures and tables of results in this paper are
direct outputs of FairLib.

Type Model Main Idea
BD (Zhao et al., 2017) Equalize the size of protected groups.
Pre- CB (Wang et al., 2019) Down-sample the majority protected group within each class.
JB (Lahoti et al., 2020) Jointly balance the Protected attributes and classes.
BTEO (Han et al., 2022a) Balance protected attributes within advantage classes.
ADV (Liet al., 2018) Prevent protected attributes from being identified by the discriminator.
EADV (Elazar and Goldberg, 2018) Employ multiple discriminators for adversarial training.
DADV (Han et al., 2021) Employ multiple discriminators with orthogonality regularization.

At- AADV & ADADV (Han et al., 2022b) Enable discriminators to use target labels as inputs during training.
GATE (Han et al., 2022a) Address protected factors with an augmented representation.
FAIRBATCH (Roh et al., 2021) Minimize CE loss gap though minibatch resampling.

FAIRSCL (Shen et al., 2022a) Adopt supervised contrastive learning for bias mitigation.
EOct1a (Shen et al., 2022b) Minimize the CE loss gap within each target label by adjusting the loss.
Post- INLP (Ravfogel et al., 2020) Remove protected attributes through iterative null-space projection.

GATE " (Han et al., 2022a)

Adjust the prior for each group-specific component in GATE.

Table 3: Built-in methods for bias mitigation, which are grouped into three types: Pre-processing, At training time,

and Post-processing.

0.98 "",‘._
0.96
=35
0.94 \
"
a %
GEJ 0.92 \
F 0.90 N
L)
0.88 Models \
0.86 | —®— FairSCL '\..
INLP %o
0.84 °

0.3 0.4 0.5 0.6

Accuracy

0.7

Figure 2: Pareto frontier curves derived from Figure 1.

perparameter) such that performance and fairness
cannot be improved without causing a degradation
in the other criterion.

Model Selection refers to the process of select-
ing the combination of hyperparameters that leads
to best performance. In single-objective learning,
model selection is based on a single metric, such as
the loss on the dev set. In debiasing, however, both
performance and fairness need to be considered for
model selection, and a common method is Con-
strained Selection, which selects the best model
given thresholds of the performance and fairness:

Perf(f) > hpert

Fair(f) > hrair M

= arg max a(f)
where f denotes a candidate model, Perf(f) and
Fair(f) are the performance and fairness evaluation
results for f, respectively, q is a real valued score
function that maps the model f to a number, and
h denotes corresponding thresholds. For instance,
using ¢(f) = Fair(f) results in the selection of the

fairest candidate model.

Instead of measuring performance and fairness
separately, one can explicitly measure their trade-
off as the distance from a particular model f to the

63

optimal point® (DTO, Han et al. (2021)):
DTO(f) = /(1 — Perf(f))? + (1 — Fair(f))?,

which originates from the multi-objective optimiza-

tion literature (Marler and Arora, 2004). Lower is
better, with an optimal value of 0. Note that DTO
should be minimized in Equation (1).

DTO(f) is the default ¢ function in FairLib.
FairLib also supports the definition of customized
cues, such as Perf(f), Fair(f), and DTO(f). Given
the flexibility of FairLib, most selection criteria in
previous work can be reproduced, such as: (1) the
maximum performance (Lahoti et al., 2020; Roh
et al., 2021), which is based on a particular utility
metric, such as accuracy and F-measures; (2) con-
strained selection (Han et al., 2021; Subramanian
et al., 2021); and (3) minimising DTO (Han et al.,
2022b; Shen et al., 2022b).

6 FairLib Design and Architecture

Here, we describe the four modules of FairLib,
namely data, model, evaluation, and analysis.

6.1 Data Module

The data module manages inputs, target labels, and
protected attributes for model training and evalu-
ation. To enable different pre-processing debias-
ing methods in supporting any types of inputs, the
BaseDataset class is implemented for sampling
and weight calculation based on the distribution of
classes and protected attributes. Dataset classes in-
herit functionality from BaseDataset with an addi-
tional property for loading different types of inputs.

8The optimum point is assumed to be a model that achieves
1 performance and 1 fairness. See Appendix B for details.

Specifically, FairLib includes Dataset classes for
vector, matrix, and sequential inputs, to support
structural, image, and text inputs. Once inputs are
loaded by pataset, pre-processing debiasing meth-
ods are automatically applied.

6.2 Model Module

This is the core module of FairLib, which imple-
ments the At-training-time and Post-processing de-
biasing methods described in Section 4.1 and Ta-
ble 3. The methods can be applied to instances of
the BaseModel class. One built-in child class of
BaseModel is an MLP classifier for structural inputs,
which can be fully integrated with HuggingFace’s
transformers library.” Specifically, the MLP can
be used as the task-specific output layer, on top of
the backbone networks from transformers (e.g.
BERT (Devlin et al., 2019)), to handle a wide vari-
ety of inputs and tasks.

FairLib supports the combination of different
bias mitigation methods with thousands of pre-
trained models across classification tasks and data
types, including text, image, and audio modalities.

6.3 Evaluation Module

This module implements the fairness metrics de-
scribed in Section 3, and several performance mea-
sures. Performance measures are based on the
classification evaluation metrics implemented in
scikit-learn (Buitinck et al., 2013), including Ac-
curacy, F-score, and ROC AUC. However, no es-
tablished fairness evaluation suite exists. Noting
that the calculation of existing fairness metrics is
always based on confusion matrices, FairLib in-
cludes an Evaluator class which can: (1) calcu-
late any confusion-matrix based fairness metrics;
and (2) conduct group-wise and class-wise aggre-
gations as specified by users.

6.4 Analysis Module

This module provides utilities for model compar-
ison as introduced in Section 5, with the three
main functions of: (1) conducting post-hoc early-
stopping and model selection in parallel as intro-
duced in Section 5;'° (2) organizing the results as
a Pandas DataFrame (pandas development team,
2020), which can be used to create plots and IKRX

‘https://github.com/huggingface/trans
formers

""Multi-processing is supported through the joblib li-
brary.

64

tables;'! and (3) creating interactive plots, cover-
ing different comparison settings such as Figures 2
and 4.'2

7 Usage

In this section, we demonstrate the basic use of
FairLib. For further details, see the online inter-
active demos for examples of adding customized
models, datasets, and metrics.

The following command shows an example for
training and evaluating a STANDARD model:
python fairlib --dataset Bios_gender

——emb_size 768 —-—-num_classes 28
——encoder_architecture BERT

—
—

where the task dataset, the number of distinct
classes, the encoder architecture, and the dimension
of embeddings extracted from the corresponding
encoder need to be specified. The above case trains
a BERT classifer over the B10S dataset, where
there are 28 professions.

In order to apply built-in debiasing methods, ad-
ditional options for debiasing can be added to the
command-line to realise combinations of methods:

python fairlib --dataset Bios_gender
——emb_size 768 ——-num_classes 28
—-—encoder_architecture BERT —--BT
— Resampling --BTObj EO
—-—adv_debiasing —-—-INLP

—
—

—

The above example employs BTEO (Pre-), ADV
(At-), and INLP (Post-) at the same time for a
BERT classifer debiasing over the BIOS dataset.

FairLib can also be imported as a Python library;
see Appendix D for more examples.

8 Benchmark Experiments

To evaluate FairLib, we conduct extensive experi-
ments to compare models implemented in FairLib
with their original reported results over two bench-
mark datasets. In Appendix A, we provide more
experimental details.

8.1 Settings

We conduct experiments over two NLP classifica-
tion tasks — sentiment analysis (MOJI) and biogra-
phy classification (B10S) — using the same dataset
splits as previous work (Elazar and Goldberg, 2018;
Ravfogel et al., 2020; Han et al., 2021; Shen et al.,
2022a; Han et al., 2022a).

" All results are stored for later analysis, and are publicly
available here.
12See here for more examples.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://joblib.readthedocs.io/en/latest/
https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html
https://hanxudong.github.io/fairlib/tutorial_interactive_demos.html
https://github.com/HanXudong/Fair_NLP_Classification/tree/main/analysis/results
https://hanxudong.github.io/fairlib/tutorial_notebooks/tutorial_interactive_plots.html

MoJ1 B1os
Method Performance? Fairness{ DTO|, A1 Performancef Fairness? DTO], A1
STANDARD 72.30£0.46 61.194+0.44 47.68 0.56 82.25+0.24 85.114+0.81 23.17 0.69
BTEO 75.394+0.14 87.75+0.38 27.49 6.25 83.831+0.25 90.54+0.91 18.73 4.04
ADV 75.64+0.73 89.33+0.56 26.59 7.37 81.66+£0.22 90.744+0.77 20.54 2.23
DADV 75.55£0.41 90.404+0.12 26.27 5.23 81.85+0.19 90.64+0.48 20.42 2.29
ADADV 75.02£0.69 90.87+0.17 26.60 0.00 81.91+£0.34 88.96£0.59 21.19 0.00
FAIRBATCH 75.06 £ 0.60 90.55+0.50 26.67 1.99 82.24+0.13 89.50+1.25 20.63 0.51
FAIRSCL 75.73£0.34 87.824+0.43 27.15 0.73 82.06+£0.16 84.27+0.83 23.86 1.01
EOcra 75.28 £0.50 89.23+0.79 26.97 0.25 81.78+£0.27 88.87+0.94 21.35 1.13
INLP 73.34 85.60 30.30 15.90 82.30 88.62 21.04 9.21

Table 4: Evaluation results + standard deviation (%) on the test set of MOJI and BIOS tasks, averaged over 5 runs
with different random seeds. A: the DTO improvement of FairLib to the reported results in previous work. See

Appendix A.2 for dataset statistics.

Following Han et al. (2022a), we report the over-
all Accuracy as the performance, and the Equal Op-
portunity as the fairness criterion, calculated based
on the Recall gap across all protected groups.

8.2 Experimental Results

Table 4 summarizes the results produced by Fair-
Lib. Compared with previous work, STANDARD,
ADADV, FAIRSCL and EO¢y,a achieve similar
results to the original paper. In contrast, the re-
implemented BTEO, ADV, DADV, FAIRBATCH,
and INLP outperform the results reported in their
original paper due to the better-designed hyperpa-
rameter tuning and model selection.'3

9 Related Work

Several toolkits have been developed for learning
fair Al models (Bellamy et al., 2018; Saleiro et al.,
2018; Bird et al., 2020). We discuss the two most
closely-related frameworks.

The most related work to FairLib is Al Fairness
360 (AIF360), which is the first toolkit to bring to-
gether bias detection and mitigation (Bellamy et al.,
2018). Like FairLib, AIF360 supports a variety of
fairness criteria and debiasing methods, and is de-
signed to be extensible. The biggest difference over
FairLib is that AIF360 is closely tied to scikit-learn,
and does not support other ML frameworks such as
PyTorch. This not only limits the applicability of
AIF360 to NLP and CV tasks where neural model
architectures are now de rigeur, but also implies
a lack of GPU support. Moreover, AIF360 only
provides fundamental analysis features, such as
comparing debiasing wrt. a single evaluation met-
ric, while the analysis module of FairLib has richer

3We provide further details of hyperparameter tuning in an
online document.

features for model comparison, for example, select-
ing Pareto-models and interactive visualization.

The second closely-related library is Fair-
Learn (Bird et al., 2020), which is also targeted
at assessing and improving fairness for both classi-
fication and regression tasks. However, similar to
AIF360, FairLearn is mainly developed for scikit-
learn, meaning complex CV and NLP tasks are not
supported. Additionally, FairLearn currently only
supports four debiasing algorithms,'* as opposed
to the 14 methods supported in FairLib, providing
fuller coverage of different debiasing methods.

In summary, FairLib complements existing fair-
ness libraries by: (1) implementing a broad range
of competitive debiasing approaches, with a spe-
cific focus on debiasing neural architectures which
underlie many CV and NLP tasks; and (2) compre-
hensive tools for interactive model comparison to
help users explore the effects of different debiasing
approaches.

10 Conclusion

In this paper, we present FairLib, a new open-
source Python library and framework for measur-
ing and improving fairness, which implements a
wide range of fairness metrics and 14 debiasing
approaches. With better-designed hyperparameter
tuning and model selection, the reproduced mod-
els in FairLib outperform the results reported in
the original work. FairLib also has remarkable
flexibility and extensibility, such that new models,
debiasing methods, and datasets can be easily de-
veloped and evaluated.

Yhttps://fairlearn.org/main/user_guide
/mitigation.html

65

https://github.com/HanXudong/fairlib/blob/main/docs/hyperparameter_tuning.md
https://github.com/HanXudong/fairlib/blob/main/docs/hyperparameter_tuning.md
https://fairlearn.org/main/user_guide/mitigation.html
https://fairlearn.org/main/user_guide/mitigation.html

Acknowledgements

We thank the anonymous reviewers for their help-
ful feedback and suggestions. This work was
funded by the Australian Research Council, Dis-
covery grant DP200102519. This research was
undertaken using the LIEF HPC-GPGPU Facility
hosted at the University of Melbourne. This Fa-
cility was established with the assistance of LIEF
Grant LE170100200.

Ethical Considerations

This work provides an unified framework for mea-
suring and improving fairness. Although FairLib
assumes access to training datasets with protected
attributes, this is the same data assumption made
by all debiasing methods. To avoid harm and be
trustworthy, we only use attributes that have been
publicly disclosed or the user has self-identified,
or toy datasets. All data in this study is publicly
available and used under strict ethical guidelines.

References

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimization.
arXiv preprint arXiv:1907.02893.

Pinkesh Badjatiya, Manish Gupta, and Vasudeva Varma.
2019. Stereotypical bias removal for hate speech de-
tection task using knowledge-based generalizations.
In The World Wide Web Conference, pages 49-59.

Solon Barocas, Moritz Hardt, and Arvind Narayanan.
2019. Fairness and Machine Learning. http://ww
w.fairmlbook.org.

Rachel KE Bellamy, Kuntal Dey, Michael Hind,
Samuel C Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep
Mehta, Aleksandra Mojsilovic, et al. 2018. Ai fair-
ness 360: An extensible toolkit for detecting, under-
standing, and mitigating unwanted algorithmic bias.
arXiv preprint arXiv:1810.01943.

Sarah Bird, Miro Dudik, Richard Edgar, Brandon Horn,
Roman Lutz, Vanessa Milan, Mehrnoosh Sameki,
Hanna Wallach, and Kathleen Walker. 2020. Fair-
learn: A toolkit for assessing and improving fairness
in ai. Microsoft, Tech. Rep. MSR-TR-2020-32.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social
media: A case study of African-American English.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1119-1130.

66

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian
Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaél Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, pages 108—122.

Alexandra Chouldechova. 2017. Fair prediction with
disparate impact: A study of bias in recidivism pre-
diction instruments. Big data, 5(2):153-163.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A
case study of semantic representation bias in a high-
stakes setting. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, pages

120-128.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Mark Diaz, Isaac Johnson, Amanda Lazar, Anne Marie
Piper, and Darren Gergle. 2018. Addressing age-
related bias in sentiment analysis. In Proceedings
of the 2018 CHI Conference on Human Factors in
Computing Systems, pages 1-14.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 11—
21.

Michael Feldman, Sorelle A Friedler, John Moeller,
Carlos Scheidegger, and Suresh Venkatasubramanian.
2015. Certifying and removing disparate impact. In
proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining,

pages 259-268.

Xudong Han, Timothy Baldwin, and Trevor Cohn. 2021.
Diverse adversaries for mitigating bias in training.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 2760-2765.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2022a. Balancing out bias: Achieving fairness
through training reweighting. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2022). To appear.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2022b. Towards equal opportunity fairness

http://www.fairmlbook.org
http://www.fairmlbook.org
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://www.aclweb.org/anthology/2021.eacl-main.239

through adversarial learning.
arXiv:2203.06317.

arXiv preprint

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-
ity of opportunity in supervised learning. Advances
in Neural Information Processing Systems, 29:3315—
3323.

Dirk Hovy. 2015. Demographic factors improve clas-
sification performance. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 752—762.

Ron Kohavi et al. 1996. Scaling up the accuracy of
naive-bayes classifiers: A decision-tree hybrid. In
Kdd, volume 96, pages 202-207.

Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee,
Flavien Prost, Nithum Thain, Xuezhi Wang, and
Ed Chi. 2020. Fairness without demographics
through adversarially reweighted learning. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 728-740.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia
Angwin. 2016. How we analyzed the compas recidi-
vism algorithm.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 25-30.

Kristian Lum, Yunfeng Zhang, and Amanda Bower.
2022. De-biasing "bias" measurement. In 2022
ACM Conference on Fairness, Accountability, and
Transparency (FAccT ’22), Seoul, Republic of Korea.
ACM.

R Timothy Marler and Jasbir S Arora. 2004. Survey of
multi-objective optimization methods for engineer-
ing. Structural and multidisciplinary optimization,
26(6):369-395.

The pandas development team. 2020.
dev/pandas: Pandas. Zenodo.

pandas-

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237-7256.

Yuji Roh, Kangwook Lee, Steven Euijong Whang, and
Changho Suh. 2021. Fairbatch: Batch selection for
model fairness. In Proceedings of the 9th Interna-
tional Conference on Learning Representations.

Alexey Romanov, Maria De-Arteaga, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
Anna Rumshisky, and Adam Kalai. 2019. What’s

67

in a name? reducing bias in bios without access
to protected attributes. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4187-4195.

Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse
London, Abby Stevens, Ari Anisfeld, Kit T Rodolfa,
and Rayid Ghani. 2018. Aequitas: A bias and fair-
ness audit toolkit. arXiv preprint arXiv:1811.05577.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022a. Does representational
fairness imply empirical fairness? In Proceedings
of the 2nd Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and
the 12th International Joint Conference on Natural
Language Processing. Association for Computational
Linguistics. To appear.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022b. Optimising equal oppor-
tunity fairness in model training. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4073-4084,
Seattle, United States. Association for Computational
Linguistics.

Shivashankar Subramanian, Xudong Han, Timothy
Baldwin, Trevor Cohn, and Lea Frermann. 2021.
Evaluating debiasing techniques for intersectional
biases. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 2492-2498, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Christina Wadsworth, Francesca Vera, and Chris Piech.
2018. Achieving fairness through adversarial learn-
ing: an application to recidivism prediction. FAT/ML
Workshop.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei
Chang, and Vicente Ordonez. 2019. Balanced
datasets are not enough: Estimating and mitigating
gender bias in deep image representations. In Pro-
ceedings of the IEEE International Conference on
Computer Vision, pages 5310-5319.

Forest Yang, Mouhamadou Cisse, and Sanmi Koyejo.
2020. Fairness with overlapping groups; a proba-
bilistic perspective. Advances in neural information
processing systems, 33:4067-4078.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez
Rogriguez, and Krishna P Gummadi. 2017. Fairness
constraints: Mechanisms for fair classification. In
Artificial Intelligence and Statistics, pages 962-970.
PMLR.

Han Zhao and Geoff Gordon. 2019. Inherent trade-
offs in learning fair representations. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

https://doi.org/10.3115/v1/P15-1073
https://doi.org/10.3115/v1/P15-1073
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/07fc15c9d169ee48573edd749d25945d-Paper.pdf
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.18653/v1/P18-2005
https://doi.org/10.1145/3531146.3533105
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2022.naacl-main.299
https://doi.org/10.18653/v1/2022.naacl-main.299
https://aclanthology.org/2021.emnlp-main.193
https://aclanthology.org/2021.emnlp-main.193
https://proceedings.neurips.cc/paper/2019/file/b4189d9de0fb2b9cce090bd1a15e3420-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b4189d9de0fb2b9cce090bd1a15e3420-Paper.pdf

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification us-
ing corpus-level constraints. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2979-2989.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15-20.

A Experimental Details

A.1 Datasets

Moijt: This sentiment analysis dataset was col-
lected by Blodgett et al. (2016), and contains tweets
that are either African American English (AAE)-
like or Standard American English (SAE)-like.
Each tweet is annotated with a binary ‘race’ label
(based on language use: either AAE or SAE), and
a binary sentiment score determined by (redacted)
emoji contained in it.

B10s: The second task is biography classifica-
tion (De-Arteaga et al., 2019), where biographies
were scraped from the web, and annotated for bi-
nary gender and 28 classes of profession.

A.2 Results Statistics

For each hyperparameter combination, we repeat
experiments 5 time with different random seeds
drawn from a discrete uniform distribution. The
mean values and standard deviation are calculated
based on the 5 runs. Due to the fact that INLP
is a post-processing approach and its results with
respect a given number of iterations are highly af-
fected by the random seed, we only report results
for 1 run. One way of getting statistics of INLP is
selecting the trade-off hyperparameter of INLP for
each random seed, however, this may not be a fair
comparison with other methods as fixed hyperpa-
rameters have been used.

B Model Comparison

Figure 3 illustrates the key ideas of model compar-
ison.

C Experimental Results

Trade-off plots for the selected methods are shown
in Figure 4. Over the M0OJI dataset (Figure 4a), it
can be seen that almost all methods lead to similar
results, with a fairness score less than 0.9, except
for INLP, which is substantially worse than the
other methods. As increasing the values of each
model’s trade-off hyperparameter (i.e., achieving
better fairness at the cost of performance), ADADV
outperforms other methods.

The trade-off plot for BIOS is quite different to
Moi1: (1) INLP becomes a reasonable choice; (2)
FAIRSCL does not work well over this dataset,
consistent with the original paper; (3) BTEO is the
only method <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>