2025
pdf
bib
abs
Planning with Multi-Constraints via Collaborative Language Agents
Cong Zhang
|
Xin Deik Goh
|
Dexun Li
|
Hao Zhang
|
Yong Liu
Proceedings of the 31st International Conference on Computational Linguistics
The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.
2024
pdf
bib
abs
A Survey on Model Compression for Large Language Models
Xunyu Zhu
|
Jian Li
|
Yong Liu
|
Can Ma
|
Weiping Wang
Transactions of the Association for Computational Linguistics, Volume 12
Large Language Models (LLMs) have transformed natural language processing tasks successfully. Yet, their large size and high computational needs pose challenges for practical use, especially in resource-limited settings. Model compression has emerged as a key research area to address these challenges. This paper presents a survey of model compression techniques for LLMs. We cover methods like quantization, pruning, and knowledge distillation, highlighting recent advancements. We also discuss benchmarking strategies and evaluation metrics crucial for assessing compressed LLMs. This survey offers valuable insights for researchers and practitioners, aiming to enhance efficiency and real-world applicability of LLMs while laying a foundation for future advancements.
2022
pdf
bib
abs
History-Aware Hierarchical Transformer for Multi-session Open-domain Dialogue System
Tong Zhang
|
Yong Liu
|
Boyang Li
|
Zhiwei Zeng
|
Pengwei Wang
|
Yuan You
|
Chunyan Miao
|
Lizhen Cui
Findings of the Association for Computational Linguistics: EMNLP 2022
With the evolution of pre-trained language models, current open-domain dialogue systems have achieved great progress in conducting one-session conversations. In contrast, Multi-Session Conversation (MSC), which consists of multiple sessions over a long term with the same user, is under-investigated. In this paper, we propose History-Aware Hierarchical Transformer (HAHT) for multi-session open-domain dialogue. HAHT maintains a long-term memory of history conversations and utilizes history information to understand current conversation context and generate well-informed and context-relevant responses. Specifically, HAHT first encodes history conversation sessions hierarchically into a history memory. Then, HAHT leverages historical information to facilitate the understanding of the current conversation context by encoding the history memory together with the current context with attention-based mechanisms. Finally, to explicitly utilize historical information, HAHT uses a history-aware response generator that switches between a generic vocabulary and a history-aware vocabulary. Experimental results on a large-scale MSC dataset suggest that the proposed HAHT model consistently outperforms baseline models. Human evaluation results support that HAHT generates more human-like, context-relevant, and history-relevant responses than baseline models.
pdf
bib
abs
Toward Knowledge-Enriched Conversational Recommendation Systems
Tong Zhang
|
Yong Liu
|
Boyang Li
|
Peixiang Zhong
|
Chen Zhang
|
Hao Wang
|
Chunyan Miao
Proceedings of the 4th Workshop on NLP for Conversational AI
Conversational Recommendation Systems recommend items through language based interactions with users. In order to generate naturalistic conversations and effectively utilize knowledge graphs (KGs) containing background information, we propose a novel Bag-of-Entities loss, which encourages the generated utterances to mention concepts related to the item being recommended, such as the genre or director of a movie. We also propose an alignment loss to further integrate KG entities into the response generation network. Experiments on the large-scale REDIAL dataset demonstrate that the proposed system consistently outperforms state-of-the-art baselines.
2021
pdf
bib
abs
EARL: Informative Knowledge-Grounded Conversation Generation with Entity-Agnostic Representation Learning
Hao Zhou
|
Minlie Huang
|
Yong Liu
|
Wei Chen
|
Xiaoyan Zhu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge that infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
pdf
bib
CoMAE: A Multi-factor Hierarchical Framework for Empathetic Response Generation
Chujie Zheng
|
Yong Liu
|
Wei Chen
|
Yongcai Leng
|
Minlie Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
2020
pdf
bib
abs
Towards Persona-Based Empathetic Conversational Models
Peixiang Zhong
|
Chen Zhang
|
Hao Wang
|
Yong Liu
|
Chunyan Miao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Empathetic conversational models have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic conversations. To this end, we propose a new task towards persona-based empathetic conversations and present the first empirical study on the impact of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for persona-based empathetic conversations. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impact of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic conversations than non-empathetic ones, establishing an empirical link between persona and empathy in human conversations.