2025
pdf
bib
abs
Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger
Wenjun Li
|
Dexun Li
|
Kuicai Dong
|
Cong Zhang
|
Hao Zhang
|
Weiwen Liu
|
Yasheng Wang
|
Ruiming Tang
|
Yong Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or up-to-date data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, calculators), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues: increased latency due to unnecessary tool calls, and potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, reflecting the model’s awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Experiments across multiple backbone models and benchmarks show that MeCo reliably detects LLMs’ internal cognitive signals and significantly improves tool-use decision-making.
pdf
bib
abs
MMDocIR: Benchmarking Multimodal Retrieval for Long Documents
Kuicai Dong
|
Yujing Chang
|
Derrick Goh Xin Deik
|
Dexun Li
|
Ruiming Tang
|
Yong Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text.
pdf
bib
abs
CtrlA: Adaptive Retrieval-Augmented Generation via Inherent Control
Liu Huanshuo
|
Hao Zhang
|
Zhijiang Guo
|
Jing Wang
|
Kuicai Dong
|
Xiangyang Li
|
Yi Quan Lee
|
Cong Zhang
|
Yong Liu
Findings of the Association for Computational Linguistics: ACL 2025
Retrieval-augmented generation (RAG) has emerged as a promising solution for mitigating hallucinations of large language models (LLMs) with retrieved external knowledge. Adaptive RAG enhances this approach by enabling dynamic retrieval during generation, activating retrieval only when the query exceeds LLM’s internal knowledge. Existing methods primarily focus on detecting LLM’s confidence via statistical uncertainty. Instead, we present the first attempts to solve adaptive RAG from a representation perspective and develop an inherent control-based framework, termed CtrlA. Specifically, we extract the features that represent the honesty and confidence directions of LLM and adopt them to control LLM behavior and guide retrieval timing decisions. We also design a simple yet effective query formulation strategy to support adaptive retrieval. Experiments show that CtrlA is superior to existing adaptive RAG methods on a diverse set of tasks. Honesty steering can effectively make LLMs more honest and confidence monitoring is a promising indicator of retrieval trigger.
pdf
bib
abs
RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery
Hongchao Gu
|
Dexun Li
|
Kuicai Dong
|
Hao Zhang
|
Hang Lv
|
Hao Wang
|
Defu Lian
|
Yong Liu
|
Enhong Chen
Findings of the Association for Computational Linguistics: ACL 2025
Generating knowledge-intensive and comprehensive long texts, such as encyclopedia articles, remains significant challenges for Large Language Models. It requires not only the precise integration of facts but also the maintenance of thematic coherence throughout the article. Existing methods, such as multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency. To address these challenges, we propose RAPID, an efficient **R**etrieval-**A**ugmented long text generation framework with writing **P**lanning and **I**nformation **D**iscovery. RAPID consists of three main modules: (1) Retrieval-augmented preliminary outline generation to reduce hallucinations, (2) Attribute-constrained search for efficient information discovery, (3) Plan-guided article generation for enhanced coherence. Extensive experiments on our newly compiled benchmark dataset, FreshWiki-2024, demonstrate that RAPID significantly outperforms state-of-the-art methods across a wide range of evaluation metrics (long-text generation, outline quality, latency, etc). Our work provides a robust and efficient solution to the challenges of automated long-text generation.
pdf
bib
abs
Adaptive Schema-aware Event Extraction with Retrieval-Augmented Generation
Sheng Liang
|
Hang Lv
|
Zhihao Wen
|
Yaxiong Wu
|
Yongyue Zhang
|
Hao Wang
|
Yong Liu
Findings of the Association for Computational Linguistics: EMNLP 2025
Event extraction (EE) is a fundamental task in natural language processing (NLP) that involves identifying and extracting event information from unstructured text. Effective EE in real-world scenarios requires two key steps: selecting appropriate schemas from hundreds of candidates and executing the extraction process.Existing research exhibits two critical gaps: (1) the rigid schema fixation in existing pipeline systems, and (2) the absence of benchmarks for evaluating joint schema matching and extraction.Although large language models (LLMs) offer potential solutions, their schema hallucination tendencies and context window limitations pose challenges for practical deployment. In response, we propose Adaptive Schema-aware Event Extraction (ASEE), a novel paradigm combining schema paraphrasing with schema retrieval-augmented generation. ASEE adeptly retrieves paraphrased schemas and accurately generates targeted structures.To facilitate rigorous evaluation, we construct the Multi-Dimensional Schema-aware Event Extraction (MD-SEE) benchmark, which systematically consolidates 12 datasets across diverse domains, complexity levels, and language settings.Extensive evaluations on MD-SEE show that our proposed ASEE demonstrates strong adaptability across various scenarios, significantly improving the accuracy of event extraction. Our codes and datasets are available at https://github.com/USTC-StarTeam/ASEE.git
2024
pdf
bib
abs
Parameter-Efficient Conversational Recommender System as a Language Processing Task
Mathieu Ravaut
|
Hao Zhang
|
Lu Xu
|
Aixin Sun
|
Yong Liu
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items’ semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumber-some training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: https://github.com/Ravoxsg/efficient_unified_crs.
pdf
bib
abs
MC-indexing: Effective Long Document Retrieval via Multi-view Content-aware Indexing
Kuicai Dong
|
Derrick Goh Xin Deik
|
Yi Quan Lee
|
Hao Zhang
|
Xiangyang Li
|
Cong Zhang
|
Yong Liu
Findings of the Association for Computational Linguistics: EMNLP 2024
Long document question answering (DocQA) aims to answer questions from long documents over 10k words. They usually contain content structures such as sections, sub-sections, and paragraph demarcations. However, the indexing methods of long documents remain under-explored, while existing systems generally employ fixed-length chunking. As they do not consider content structures, the resultant chunks can exclude vital information or include irrelevant content. Motivated by this, we propose the **M**ulti-view **C**ontent-aware indexing (**MC-indexing**) for more effective long DocQA via (i) segment structured document into content chunks, and (ii) represent each content chunk in raw-text, keywords, and summary views. We highlight that MC-indexing requires neither training nor fine-tuning. Having plug-and-play capability, it can be seamlessly integrated with any retrievers to boost their performance. Besides, we propose a long DocQA dataset that includes not only question-answer pair, but also document structure and answer scope. When compared to state-of-art chunking schemes, MC-indexing has significantly increased the recall by **42.8%**, **30.0%**, **23.9%**, and **16.3%** via top k = 1.5, 3, 5, and 10 respectively. These improved scores are the average of 8 widely used retrievers (2 sparse and 6 dense) via extensive experiments.