Xiangrong Zhu


2025

pdf bib
RETAIL: Towards Real-world Travel Planning for Large Language Models
Bin Deng | Yizhe Feng | Zeming Liu | Qing Wei | Xiangrong Zhu | Shuai Chen | Yuanfang Guo | Yunhong Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Although large language models have enhanced automated travel planning abilities, current systems remain misaligned with real-world scenarios. First, they assume users provide explicit queries, while in reality requirements are often implicit. Second, existing solutions ignore diverse environmental factors and user preferences, limiting the feasibility of plans. Third, systems can only generate plans with basic POI arrangements, failing to provide all-in-one plans with rich details. To mitigate these challenges, we construct a novel dataset RETAIL, which supports decision-making for implicit queries while covering explicit queries, both with and without revision needs. It also enables environmental awareness to ensure plan feasibility under real-world scenarios, while incorporating detailed POI information for all-in-one travel plans. Furthermore, we propose a topic-guided multi-agent framework, termed TGMA. Our experiments reveal that even the strongest existing model achieves merely a 1.0% pass rate, indicating real-world travel planning remains extremely challenging. In contrast, TGMA demonstrates substantially improved performance 2.72%, offering promising directions for real-world travel planning.

pdf bib
RepoDebug: Repository-Level Multi-Task and Multi-Language Debugging Evaluation of Large Language Models
Jingjing Liu | Zeming Liu | Zihao Cheng | Mengliang He | Xiaoming Shi | Yuhang Guo | Xiangrong Zhu | Yuanfang Guo | Yunhong Wang | Haifeng Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

Large Language Models (LLMs) have exhibited significant proficiency in code debugging, especially in automatic program repair, which may substantially reduce the time consumption of developers and enhance their efficiency. Significant advancements in debugging datasets have been made to promote the development of code debugging. However, these datasets primarily focus on assessing the LLM’s function-level code repair capabilities, neglecting the more complex and realistic repository-level scenarios, which leads to an incomplete understanding of the LLM’s challenges in repository-level debugging. While several repository-level datasets have been proposed, they often suffer from limitations such as limited diversity of tasks, languages, and error types. To mitigate this challenge, this paper introduces RepoDebug, a multi-task and multi-language repository-level code debugging dataset with 22 subtypes of errors that supports 8 commonly used programming languages and 3 debugging tasks. Furthermore, we conduct evaluation experiments on 10 LLMs, where Claude 3.5 Sonnect, the best-performing model, still cannot perform well in repository-level debugging.

2024

pdf bib
Multi-Aspect Controllable Text Generation with Disentangled Counterfactual Augmentation
Yi Liu | Xiangyu Liu | Xiangrong Zhu | Wei Hu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-aspect controllable text generation aims to control the generated texts in attributes from multiple aspects (e.g., “positive” from sentiment and “sport” from topic). Existing works neglect attribute correlations formed by the intertwining of different attributes. Particularly, the stereotype formed by imbalanced attribute correlations significantly affects multi-aspect control. In this paper, we propose MAGIC, a new multi-aspect controllable text generation method with disentangled counterfactual augmentation. We alleviate the issue of imbalanced attribute correlations during training using counterfactual feature vectors in the attribute latent space by disentanglement. During inference, we enhance attribute correlations by target-guided counterfactual augmentation to further improve multi-aspect control. Experiments show that MAGIC outperforms state-of-the-art baselines in both imbalanced and balanced attribute correlation scenarios.