Shay B Cohen


2025

pdf bib
What can Large Language Models Capture about Code Functional Equivalence?
Nickil Maveli | Antonio Vergari | Shay B Cohen
Findings of the Association for Computational Linguistics: NAACL 2025

Code-LLMs, LLMs pre-trained on large code corpora, have shown great progress in learning rich representations of the structure and syntax of code, successfully using it to generate or classify code fragments. At the same time, understanding if they are able to do so because they capture code semantics, and how well, is still an open question. In this paper, we tackle this problem by introducing SeqCoBench, a benchmark for systematically assessing how Code-LLMs can capture code functional equivalence. SeqCoBench contains over 20 code transformations that either preserve or alter the semantics of Python programs. We conduct extensive evaluations in different settings, including zero-shot and parameter-efficient finetuning methods on state-of-the-art (Code)-LLMs to see if they can discern semantically equivalent or different pairs of programs in SeqCoBench. We find that the performance gap between these LLMs and classical match-based retrieval scores is minimal, with both approaches showing a concerning lack of depth in understanding code semantics.

2024

pdf bib
Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models
Zheng Zhao | Yftah Ziser | Shay B Cohen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models that can solve various natural language processing (NLP) tasks. However, where and to what extent these models retain task-specific knowledge remains largely unexplored. This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations across a diverse set of over 60 NLP tasks. We use a set of matrix analysis tools to examine the differences between the way pre-trained and instruction-tuned LLMs store task-specific information. Our findings reveal that while some tasks are already encoded within the pre-trained LLMs, others greatly benefit from instruction tuning. Additionally, we pinpointed the layers in which the model transitions from high-level general representations to more task-oriented representations. This finding extends our understanding of the governing mechanisms of LLMs and facilitates future research in the fields of parameter-efficient transfer learning and multi-task learning. Our code is available at: https://github.com/zsquaredz/layer_by_layer/

pdf bib
Interpreting Context Look-ups in Transformers: Investigating Attention-MLP Interactions
Clement Neo | Shay B Cohen | Fazl Barez
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Understanding the inner workings of large language models (LLMs) is crucial for advancing their theoretical foundations and real-world applications. While the attention mechanism and multi-layer perceptrons (MLPs) have been studied independently, their interactions remain largely unexplored. This study investigates how attention heads and next-token neurons interact in LLMs to predict new words. We propose a methodology to identify next-token neurons, find prompts that highly activate them, and determine the upstream attention heads responsible. We then generate and evaluate explanations for the activity of these attention heads in an automated manner. Our findings reveal that some attention heads recognize specific contexts relevant to predicting a token and activate a downstream token-predicting neuron accordingly. This mechanism provides a deeper understanding of how attention heads work with MLP neurons to perform next-token prediction. Our approach offers a foundation for further research into the intricate workings of LLMs and their impact on text generation and understanding.

pdf bib
Evaluating Automatic Metrics with Incremental Machine Translation Systems
Guojun Wu | Shay B Cohen | Rico Sennrich
Findings of the Association for Computational Linguistics: EMNLP 2024

We introduce a dataset comprising commercial machine translations, gathered weekly over six years across 12 translation directions. Since human A/B testing is commonly used, we assume commercial systems improve over time, which enables us to evaluate machine translation (MT) metrics based on their preference for more recent translations. Our study not only confirms several prior findings, such as the advantage of neural metrics over non-neural ones, but also explores the debated issue of how MT quality affects metric reliability—an investigation that smaller datasets in previous research could not sufficiently explore. Overall, our research demonstrates the dataset’s value as a testbed for metric evaluation. We release our code.

pdf bib
Modeling News Interactions and Influence for Financial Market Prediction
Mengyu Wang | Shay B Cohen | Tiejun Ma
Findings of the Association for Computational Linguistics: EMNLP 2024

The diffusion of financial news into market prices is a complex process, making it challenging to evaluate the connections between news events and market movements. This paper introduces FININ (Financial Interconnected News Influence Network), a novel market prediction model that captures not only the links between news and prices but also the interactions among news items themselves. FININ effectively integrates multi-modal information from both market data and news articles. We conduct extensive experiments on two datasets, encompassing the S&P 500 and NASDAQ 100 indices over a 15-year period and over 2.7 million news articles. The results demonstrate FININ’s effectiveness, outperforming advanced market prediction models with an improvement of 0.429 and 0.341 in the daily Sharpe ratio for the two markets respectively. Moreover, our results reveal insights into the financial news, including the delayed market pricing of news, the long memory effect of news, and the limitations of financial sentiment analysis in fully extracting predictive power from news data.