2025
pdf
bib
abs
Stepwise Reasoning Disruption Attack of LLMs
Jingyu Peng
|
Maolin Wang
|
Xiangyu Zhao
|
Kai Zhang
|
Wanyu Wang
|
Pengyue Jia
|
Qidong Liu
|
Ruocheng Guo
|
Qi Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain unexplored, particularly in third-party platforms that facilitate user interactions via APIs. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED’s effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/SEED-Attack
pdf
bib
abs
MindBridge: Scalable and Cross-Model Knowledge Editing via Memory-Augmented Modality
Shuaike Li
|
Kai Zhang
|
Qi Liu
|
Enhong Chen
Findings of the Association for Computational Linguistics: ACL 2025
Knowledge editing is a technique for efficiently and accurately updating the knowledge of large language models (LLMs) to alleviate obsolescence and correct errors. However, most existing methods overfit to specific models, causing edited knowledge to be discarded during each LLM update and requiring frequent re-editing, which is particularly burdensome in today’s rapidly evolving open-source community. To address this issue, we propose the problem of cross-model knowledge editing and introduce **MindBridge**, a scalable solution inspired by the low coupling between modality processing and LLMs in multi-modal models. MindBridge introduces the novel concept of **memory modality**, which encodes edited knowledge as an independent modality. It first performs LLM-agnostic pre-training of the memory modality and then integrates it with various LLMs. Extensive experiments on multiple LLMs and popular knowledge editing datasets demonstrate that MindBridge achieves superior performance even in editing tens of thousands of knowledge entries and can flexibly adapt to different LLMs. Our code is available at https://github.com/CrashBugger/MindBridge.
pdf
bib
abs
ReAL: How Can LLMs Simulate the Real Teacher? Retrieval-enhanced Agent for Adaptive Learning
Rui Lv
|
Qi Liu
|
Weibo Gao
|
Jiatong Li
|
Kai Zhang
|
Shiwei Tong
Findings of the Association for Computational Linguistics: EMNLP 2025
Adaptive learning focuses on recommending personalized materials (e.g., exercises, courses) to the unique needs of learners. Despite significant research, these methods still lag behind real teachers including two main limitations: (1) Prior methods model learner-item interactions based only on ID sequences, leading to insufficient use of both learner and item information, particularly the inability to leverage semantic content from item text; (2) The data-driven reinforcement learning frameworks struggle with stable performance in scenarios with sparse learning logs. To address these challenges, we introduce the Retrieval-enhanced Agent for Adaptive Learning (ReAL) powered by large language models (LLMs), to simulate teacher decision-making with extensive prior knowledge and teaching experience. Specifically, we approach the simulation from both internal and external perspectives. From the internal perspective, we utilize the superior natural language standing ability of LLMs to analyze item texts and learner profiles. This mechanism contributes to the generation of personalized and appropriate item candidates. From the external perspective, we simulate the teacher experience by retrieving similar learners, further ensuring the model’s performance on sparse interaction data. Furthermore, we design a reflector based on learners’ feedback to refine the recommendation process. Evaluation on three real-world datasets demonstrates the superiority of ReAL in both data utilization, recommendation accuracy and stability compared to various representative baselines.
2024
pdf
bib
abs
ARM: An Alignment-and-Replacement Module for Chinese Spelling Check Based on LLMs
Changchun Liu
|
Kai Zhang
|
Junzhe Jiang
|
Zirui Liu
|
Hanqing Tao
|
Min Gao
|
Enhong Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Chinese Spelling Check (CSC) aims to identify and correct spelling errors in Chinese texts, where enhanced semantic understanding of a sentence can significantly improve correction accuracy. Recently, Large Language Models (LLMs) have demonstrated exceptional mastery of world knowledge and semantic understanding, rendering them more robust against spelling errors. However, the application of LLMs in CSC is a double-edged sword, as they tend to unnecessarily alter sentence length and modify rare but correctly used phrases. In this paper, by leveraging the capabilities of LLMs while mitigating their limitations, we propose a novel plug-and-play Alignment-and-Replacement Module ARM that enhances the performance of existing CSC models and without the need for retraining or fine-tuning. Experiment results and analysis on three benchmark datasets demonstrate the effectiveness and competitiveness of the proposed module.
pdf
bib
abs
Dynamic Multi-granularity Attribution Network for Aspect-based Sentiment Analysis
Yanjiang Chen
|
Kai Zhang
|
Feng Hu
|
Xianquan Wang
|
Ruikang Li
|
Qi Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity of a specific aspect within a given sentence. Most existing methods predominantly leverage semantic or syntactic information based on attention scores, which are susceptible to interference caused by irrelevant contexts and often lack sentiment knowledge at a data-specific level. In this paper, we propose a novel Dynamic Multi-granularity Attribution Network (DMAN) from the perspective of attribution. Initially, we leverage Integrated Gradients to dynamically extract attribution scores for each token, which contain underlying reasoning knowledge for sentiment analysis. Subsequently, we aggregate attribution representations from multiple semantic granularities in natural language, enhancing a profound understanding of the semantics. Finally, we integrate attribution scores with syntactic information to capture the relationships between aspects and their relevant contexts more accurately during the sentence understanding process. Extensive experiments on five benchmark datasets demonstrate the effectiveness of our proposed method.
pdf
bib
abs
Do LLMs Overcome Shortcut Learning? An Evaluation of Shortcut Challenges in Large Language Models
Yu Yuan
|
Lili Zhao
|
Kai Zhang
|
Guangting Zheng
|
Qi Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have shown remarkable capabilities in various natural language processing tasks. However, LLMs may rely on dataset biases as shortcuts for prediction, which can significantly impair their robustness and generalization capabilities. This paper presents Shortcut Suite, a comprehensive test suite designed to evaluate the impact of shortcuts on LLMs’ performance, incorporating six shortcut types, five evaluation metrics, and four prompting strategies. Our extensive experiments yield several key findings: 1) LLMs demonstrate varying reliance on shortcuts for downstream tasks, which significantly impairs their performance. 2) Larger LLMs are more likely to utilize shortcuts under zero-shot and few-shot in-context learning prompts. 3) Chain-of-thought prompting notably reduces shortcut reliance and outperforms other prompting strategies, while few-shot prompts generally underperform compared to zero-shot prompts. 4) LLMs often exhibit overconfidence in their predictions, especially when dealing with datasets that contain shortcuts. 5) LLMs generally have a lower explanation quality in shortcut-laden datasets, with errors falling into three types: distraction, disguised comprehension, and logical fallacy. Our findings offer new insights for evaluating robustness and generalization in LLMs and suggest potential directions for mitigating the reliance on shortcuts.
pdf
bib
abs
OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting
Xukai Liu
|
Ye Liu
|
Kai Zhang
|
Kehang Wang
|
Qi Liu
|
Enhong Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Entity Linking (EL) is the process of associating ambiguous textual mentions to specific entities in a knowledge base.Traditional EL methods heavily rely on large datasets to enhance their performance, a dependency that becomes problematic in the context of few-shot entity linking, where only a limited number of examples are available for training. To address this challenge, we present OneNet, an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning. To the best of our knowledge, this marks a pioneering approach to applying LLMs to few-shot entity linking tasks. OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.Comprehensive evaluations across seven benchmark datasets reveal that OneNet outperforms current state-of-the-art entity linking methods.
pdf
bib
abs
Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization
Yanghai Zhang
|
Ye Liu
|
Shiwei Wu
|
Kai Zhang
|
Xukai Liu
|
Qi Liu
|
Enhong Chen
Findings of the Association for Computational Linguistics: ACL 2024
The rapid increase in multimedia data has spurred advancements in Multimodal Summarization with Multimodal Output (MSMO), which aims to produce a multimodal summary that integrates both text and relevant images. The inherent heterogeneity of content within multimodal inputs and outputs presents a significant challenge to the execution of MSMO. Traditional approaches typically adopt a holistic perspective on coarse image-text data or individual visual objects, overlooking the essential connections between objects and the entities they represent. To integrate the fine-grained entity knowledge, we propose an Entity-Guided Multimodal Summarization model (EGMS). Our model, building on BART, utilizes dual multimodal encoders with shared weights to process text-image and entity-image information concurrently. A gating mechanism then combines visual data for enhanced textual summary generation, while image selection is refined through knowledge distillation from a pre-trained vision-language model. Extensive experiments on public MSMO dataset validate the superiority of the EGMS method, which also prove the necessity to incorporate entity information into MSMO problem.
pdf
bib
abs
RePair: Automated Program Repair with Process-based Feedback
Yuze Zhao
|
Zhenya Huang
|
Yixiao Ma
|
Rui Li
|
Kai Zhang
|
Hao Jiang
|
Qi Liu
|
Linbo Zhu
|
Yu Su
Findings of the Association for Computational Linguistics: ACL 2024
The gap between the trepidation of program reliability and the expense of repairs underscore the indispensability for Automated Program Repair (APR). APR is instrumental in transforming vulnerable programs into more robust ones, bolstering program reliability while simultaneously diminishing the financial burden of manual repairs. Commercial-scale language models (LM) have taken APR to unprecedented levels. However, due to the limitations of model capabilities by parameters, a one-step substantial modification may not achieve the desired effect for models with parameters less than 100B. Moreover, humans interact with the LLM through explicit prompts, which hinders the LLM from receiving feedback from compiler and test cases to automatically optimize its repair policies. Explicit prompts from humans not only increase additional manpower costs, but also pose potential misunderstandings between human’s intent and LMs.Based on the above considerations, we are exploring how to ensure small-scale LM still outperform through process supervision and feedback. We start by constructing a dataset named CodeNet4Repair, replete with multiple repair records, which supervises the fine-tuning of a foundational mode. Building upon the encouraging outcomes of reinforcement learning, we develop a reward model that serves as a critic, providing feedback for the fine-tuned LM’s action, progressively optimizing its policy. During inference, we require the LM to generate solutions iteratively until the repair effect no longer improves or hits the maximum step limit. The experimental results show that this process-based feedback not only outperforms larger outcome-based generation methods, but also nearly matches the performance of closed-source commercial large-scale LMs.
2022
pdf
bib
abs
Incorporating Dynamic Semantics into Pre-Trained Language Model for Aspect-based Sentiment Analysis
Kai Zhang
|
Kun Zhang
|
Mengdi Zhang
|
Hongke Zhao
|
Qi Liu
|
Wei Wu
|
Enhong Chen
Findings of the Association for Computational Linguistics: ACL 2022
Aspect-based sentiment analysis (ABSA) predicts sentiment polarity towards a specific aspect in the given sentence. While pre-trained language models such as BERT have achieved great success, incorporating dynamic semantic changes into ABSA remains challenging. To this end, in this paper, we propose to address this problem by Dynamic Re-weighting BERT (DR-BERT), a novel method designed to learn dynamic aspect-oriented semantics for ABSA. Specifically, we first take the Stack-BERT layers as a primary encoder to grasp the overall semantic of the sentence and then fine-tune it by incorporating a lightweight Dynamic Re-weighting Adapter (DRA). Note that the DRA can pay close attention to a small region of the sentences at each step and re-weigh the vitally important words for better aspect-aware sentiment understanding. Finally, experimental results on three benchmark datasets demonstrate the effectiveness and the rationality of our proposed model and provide good interpretable insights for future semantic modeling.