2025
pdf
bib
abs
Collaborative Document Simplification Using Multi-Agent Systems
Dengzhao Fang
|
Jipeng Qiang
|
Xiaoye Ouyang
|
Yi Zhu
|
Yunhao Yuan
|
Yun Li
Proceedings of the 31st International Conference on Computational Linguistics
Research on text simplification has been ongoing for many years. However, the task of document simplification (DS) remains a significant challenge due to the need to consider complex factors such as technical terminology, metaphors, and overall coherence. In this work, we introduce a novel multi-agent framework for document simplification (AgentSimp) based on large language models (LLMs). This framework emulates the collaborative process of a human expert team through the roles played by multiple agents, addressing the intricate demands of document simplification. We explore two communication strategies among agents (pipeline-style and synchronous) and two document reconstruction strategies (Direct and Iterative ). According to both automatic evaluation metrics and human evaluation results, the documents simplified by AgentSimp are deemed to be more thoroughly simplified and more coherent on a variety of articles across different types and styles.
pdf
bib
abs
Post-Hoc Watermarking for Robust Detection in Text Generated by Large Language Models
Jifei Hao
|
Jipeng Qiang
|
Yi Zhu
|
Yun Li
|
Yunhao Yuan
|
Xiaoye Ouyang
Proceedings of the 31st International Conference on Computational Linguistics
Research on text simplification has been ongoing for many years, yet document simplification remains a significant challenge due to the need to address complex factors such as technical terminology, metaphors, and overall coherence. In this work, we introduce a novel multi-agent framework AgentSimp for document simplification, based on large language models. This framework simulates the collaborative efforts of a team of human experts through the roles played by multiple agents, effectively meeting the intricate demands of document simplification. We investigate two communication strategies among agents (pipeline-style and synchronous) and two document reconstruction strategies (Direct and Iterative). According to both automatic evaluation metrics and human evaluation results, AgentSimp produces simplified documents that are more thoroughly simplified and more coherent across various articles and styles.
2023
pdf
bib
abs
Chinese Lexical Substitution: Dataset and Method
Jipeng Qiang
|
Kang Liu
|
Ying Li
|
Yun Li
|
Yi Zhu
|
Yun-Hao Yuan
|
Xiaocheng Hu
|
Xiaoye Ouyang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Existing lexical substitution (LS) benchmarks were collected by asking human annotators to think of substitutes from memory, resulting in benchmarks with limited coverage and relatively small scales. To overcome this problem, we propose a novel annotation method to construct an LS dataset based on human and machine collaboration. Based on our annotation method, we construct the first Chinese LS dataset CHNLS which consists of 33,695 instances and 144,708 substitutes, covering three text genres (News, Novel, and Wikipedia). Specifically, we first combine four unsupervised LS methods as an ensemble method to generate the candidate substitutes, and then let human annotators judge these candidates or add new ones. This collaborative process combines the diversity of machine-generated substitutes with the expertise of human annotators. Experimental results that the ensemble method outperforms other LS methods. To our best knowledge, this is the first study for the Chinese LS task.
pdf
bib
abs
Chinese Idiom Paraphrasing
Jipeng Qiang
|
Yang Li
|
Chaowei Zhang
|
Yun Li
|
Yi Zhu
|
Yunhao Yuan
|
Xindong Wu
Transactions of the Association for Computational Linguistics, Volume 11
Idioms are a kind of idiomatic expression in Chinese, most of which consist of four Chinese characters. Due to the properties of non-compositionality and metaphorical meaning, Chinese idioms are hard to be understood by children and non-native speakers. This study proposes a novel task, denoted as Chinese Idiom Paraphrasing (CIP). CIP aims to rephrase idiom-containing sentences to non-idiomatic ones under the premise of preserving the original sentence’s meaning. Since the sentences without idioms are more easily handled by Chinese NLP systems, CIP can be used to pre-process Chinese datasets, thereby facilitating and improving the performance of Chinese NLP tasks, e.g., machine translation systems, Chinese idiom cloze, and Chinese idiom embeddings. In this study, we can treat the CIP task as a special paraphrase generation task. To circumvent difficulties in acquiring annotations, we first establish a large-scale CIP dataset based on human and machine collaboration, which consists of 115,529 sentence pairs. In addition to three sequence-to-sequence methods as the baselines, we further propose a novel infill-based approach based on text infilling. The results show that the proposed method has better performance than the baselines based on the established CIP dataset.
2021
pdf
bib
abs
An Unsupervised Method for Building Sentence Simplification Corpora in Multiple Languages
Xinyu Lu
|
Jipeng Qiang
|
Yun Li
|
Yunhao Yuan
|
Yi Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021
The availability of parallel sentence simplification (SS) is scarce for neural SS modelings. We propose an unsupervised method to build SS corpora from large-scale bilingual translation corpora, alleviating the need for SS supervised corpora. Our method is motivated by the following two findings: neural machine translation model usually tends to generate more high-frequency tokens and the difference of text complexity levels exists between the source and target language of a translation corpus. By taking the pair of the source sentences of translation corpus and the translations of their references in a bridge language, we can construct large-scale pseudo parallel SS data. Then, we keep these sentence pairs with a higher complexity difference as SS sentence pairs. The building SS corpora with an unsupervised approach can satisfy the expectations that the aligned sentences preserve the same meanings and have difference in text complexity levels. Experimental results show that SS methods trained by our corpora achieve the state-of-the-art results and significantly outperform the results on English benchmark WikiLarge.