2025
pdf
bib
abs
Taxonomy-Guided Zero-Shot Recommendations with LLMs
Yueqing Liang
|
Liangwei Yang
|
Chen Wang
|
Xiongxiao Xu
|
Philip S. Yu
|
Kai Shu
Proceedings of the 31st International Conference on Computational Linguistics
With the emergence of large language models (LLMs) and their ability to perform a variety of tasks, their application in recommender systems (RecSys) has shown promise. However, we are facing significant challenges when deploying LLMs into RecSys, such as limited prompt length, unstructured item information, and un-constrained generation of recommendations, leading to sub-optimal performance. To address these issues, we propose a novel Taxonomy-guided Recommendation (TaxRec) framework to empower LLM with category information in a systematic approach. Specifically, TaxRec features a two-step process: one-time taxonomy categorization and LLM-based recommendation. In the one-time taxonomy categorization phase, we organize and categorize items, ensuring clarity and structure of item information. In the LLM-based recommendation phase, we feed the structured items into LLM prompts, achieving efficient token utilization and controlled feature generation. This enables more accurate, contextually relevant, and zero-shot recommendations without the need for domain-specific fine-tuning. Experimental results demonstrate that TaxRec significantly enhances recommendation quality compared to traditional zero-shot approaches, showcasing its efficacy as a personal recommender with LLMs. Code is available at: https://github.com/yueqingliang1/TaxRec.
pdf
bib
abs
Look Again, Think Slowly: Enhancing Visual Reflection in Vision-Language Models
Pu Jian
|
Junhong Wu
|
Wei Sun
|
Chen Wang
|
Shuo Ren
|
Jiajun Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Recent advances in text-only “slow-thinking” reasoning have prompted efforts to transfer this capability to vision-language models (VLMs), for training visual reasoning models (VRMs). However, such transfer faces critical challenges: Effective “slow thinking” in VRMs requires visual reflection, the ability to check the reasoning process based on visual information. Through quantitative analysis, we observe that current VRMs exhibit limited visual reflection, as their attention to visual information diminishes rapidly with longer generated responses. To address this challenge, we propose a new VRM Reflection-V, which enhances visual reflection based on reasoning data construction for cold-start and reward design for reinforcement learning (RL). Firstly, we construct vision-centered reasoning data by leveraging an agent that interacts between VLMs and reasoning LLMs, enabling cold-start learning of visual reflection patterns. Secondly, a visual attention based reward model is employed during RL to encourage reasoning based on visual information. Therefore, Reflection-V demonstrates significant improvements across multiple visual reasoning benchmarks. Furthermore, Reflection-V maintains a stronger and more consistent reliance on visual information during visual reasoning, indicating effective enhancement in visual reflection capabilities.
pdf
bib
abs
OpenS2S: Advancing Fully Open-Source End-to-End Empathetic Large Speech Language Model
Chen Wang
|
Tianyu Peng
|
Wen Yang
|
YiNan Bai
|
Guangfu Wang
|
Jun Lin
|
Lanpeng Jia
|
Lingxiang Wu
|
Jinqiao Wang
|
Chengqing Zong
|
Jiajun Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems.
pdf
bib
abs
See the World, Discover Knowledge: A Chinese Factuality Evaluation for Large Vision Language Models
Jihao Gu
|
Yingyao Wang
|
Pi Bu
|
Chen Wang
|
Ziming Wang
|
Tengtao Song
|
Donglai Wei
|
Jiale Yuan
|
Yingxiu Zhao
|
Yancheng He
|
Shilong Li
|
Jiaheng Liu
|
Meng Cao
|
Jun Song
|
Yingshui Tan
|
Xiang Li
|
Wenbo Su
|
Xiaoyong Zhu
|
Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2025
The evaluation of factual accuracy in large vision language models (LVLMs) has lagged behind their rapid development, making it challenging to fully reflect these models’ knowledge capacity and reliability. In this paper, we introduce the first factuality-based visual question-answering benchmark in Chinese, named ChineseSimpleVQA, aimed at assessing the visual factuality of LVLMs across 8 major topics and 56 subtopics. The key features of this benchmark include a focus on the Chinese language, diverse knowledge types, a multi-hop question construction, high-quality data, static consistency, and easy-to-evaluate through short answers. Moreover, we contribute a rigorous data construction pipeline and decouple the visual factuality into two parts: seeing the world (i.e., object recognition) and discovering knowledge. This decoupling allows us to analyze the capability boundaries and execution mechanisms of LVLMs. Subsequently, we evaluate 34 advanced open-source and closed-source models, revealing critical performance gaps within this field.
pdf
bib
abs
Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment
Wen Yang
|
Junhong Wu
|
Chen Wang
|
Chengqing Zong
|
Jiajun Zhang
Findings of the Association for Computational Linguistics: ACL 2025
Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that captures learned preferences from well-aligned English models by implicit rewards and transfers them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data.
2024
pdf
bib
abs
BLSP-Emo: Towards Empathetic Large Speech-Language Models
Chen Wang
|
Minpeng Liao
|
Zhongqiang Huang
|
Junhong Wu
|
Chengqing Zong
|
Jiajun Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The recent release of GPT-4o showcased the potential of end-to-end multimodal models, not just in terms of low latency but also in their ability to understand and generate expressive speech with rich emotions. While the details are unknown to the open research community, it likely involves significant amounts of curated data and compute, neither of which is readily accessible. In this paper, we present BLSP-Emo (Bootstrapped Language-Speech Pretraining with Emotion support), a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech and generate empathetic responses. BLSP-Emo utilizes existing speech recognition (ASR) and speech emotion recognition (SER) datasets through a two-stage process. The first stage focuses on semantic alignment, following recent work on pretraining speech-language models using ASR data. The second stage performs emotion alignment with the pretrained speech-language model on an emotion-aware continuation task constructed from SER data. Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses, both in instruction-following tasks and conversations.
2022
pdf
bib
abs
Discrete Cross-Modal Alignment Enables Zero-Shot Speech Translation
Chen Wang
|
Yuchen Liu
|
Boxing Chen
|
Jiajun Zhang
|
Wei Luo
|
Zhongqiang Huang
|
Chengqing Zong
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
End-to-end Speech Translation (ST) aims at translating the source language speech into target language text without generating the intermediate transcriptions. However, the training of end-to-end methods relies on parallel ST data, which are difficult and expensive to obtain. Fortunately, the supervised data for automatic speech recognition (ASR) and machine translation (MT) are usually more accessible, making zero-shot speech translation a potential direction. Existing zero-shot methods fail to align the two modalities of speech and text into a shared semantic space, resulting in much worse performance compared to the supervised ST methods. In order to enable zero-shot ST, we propose a novel Discrete Cross-Modal Alignment (DCMA) method that employs a shared discrete vocabulary space to accommodate and match both modalities of speech and text. Specifically, we introduce a vector quantization module to discretize the continuous representations of speech and text into a finite set of virtual tokens, and use ASR data to map corresponding speech and text to the same virtual token in a shared codebook. This way, source language speech can be embedded in the same semantic space as the source language text, which can be then transformed into target language text with an MT module. Experiments on multiple language pairs demonstrate that our zero-shot ST method significantly improves the SOTA, and even performers on par with the strong supervised ST baselines.