Zihao Wang

Other people with similar names: Zihao Wang , Zihao Wang


2025

pdf bib
Enhancing Transformers for Generalizable First-Order Logical Entailment
Tianshi Zheng | Jiazheng Wang | Zihao Wang | Jiaxin Bai | Hang Yin | Zheye Deng | Yangqiu Song | Jianxin Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transformers, as the fundamental deep learning architecture, have demonstrated great capability in reasoning. This paper studies the generalizable first-order logical reasoning ability of transformers with their *parameterized* knowledge and how to improve it. Transformers’ capability of first-order reasoning is further captured by whether they can conduct first-order logical entailment, which is quantitatively measured by their performance in answering knowledge graph queries. We establish the connections between (1) two types of distribution shifts studied in out-of-distribution generalization and (2) unseen knowledge and query settings discussed in the task of knowledge graph query answering, which makes it possible to characterize the fine-grained generalizability. Results on our comprehensive dataset showed that transformers **outperform** previous methods designed particularly for this task and provided detailed empirical evidence about the impact of the input query syntax, token embedding, and transformer architectures on the reasoning capability of transformers. Interestingly, our results revealed the mismatch of positional encoding and other design choices of transformer architectures in previous practices. Motivated by this, we propose **TEGA**, a logic-aware architecture that significantly improves the performance in generalizable first-order logical entailment.

pdf bib
Extending Complex Logical Queries on Uncertain Knowledge Graphs
Weizhi Fei | Zihao Wang | Hang Yin | Yang Duan | Yangqiu Song
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The study of machine learning-based logical query-answering enables reasoning with large-scale and incomplete knowledge graphs. This paper further advances this line of research by considering the uncertainty in the knowledge. The uncertain nature of knowledge is widely observed in the real world, but does not align seamlessly with the first-order logic underpinning existing studies. To bridge this gap, we study the setting of soft queries on uncertain knowledge, which is motivated by the establishment of soft constraint programming. We further propose an ML-based approach with both forward inference and backward calibration to answer soft queries on large-scale, incomplete, and uncertain knowledge graphs. Theoretical discussions reveal that our method ensures there are no catastrophic cascading errors in our forward inference algorithm while maintaining the same complexity as state-of-the-art inference algorithms for first-order queries. Empirical results justify the superior performance of our approach against previous ML-based methods with number embedding extensions.

pdf bib
From Automation to Autonomy: A Survey on Large Language Models in Scientific Discovery
Tianshi Zheng | Zheye Deng | Hong Ting Tsang | Weiqi Wang | Jiaxin Bai | Zihao Wang | Yangqiu Song
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) are catalyzing a paradigm shift in scientific discovery, evolving from task-specific automation tools into increasingly autonomous agents and fundamentally redefining research processes and human-AI collaboration. This survey systematically charts this burgeoning field, placing a central focus on the changing roles and escalating capabilities of LLMs in science. Through the lens of the scientific method, we introduce a foundational three-level taxonomy—Tool, Analyst, and Scientist—to delineate their escalating autonomy and evolving responsibilities within the research lifecycle. We further identify pivotal challenges and future research trajectories such as robotic automation, self-improvement, and ethical governance. Overall, this survey provides a conceptual architecture and strategic foresight to navigate and shape the future of AI-driven scientific discovery, fostering both rapid innovation and responsible advancement.

pdf bib
LogiDynamics: Unraveling the Dynamics of Inductive, Abductive and Deductive Logical Inferences in LLM Reasoning
Tianshi Zheng | Cheng Jiayang | Chunyang Li | Haochen Shi | Zihao Wang | Jiaxin Bai | Yangqiu Song | Ginny Wong | Simon See
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Modern large language models (LLMs) employ diverse logical inference mechanisms for reasoning, making the strategic optimization of these approaches critical for advancing their capabilities. This paper systematically investigate the **comparative dynamics** of inductive (System 1) versus abductive/deductive (System 2) inference in LLMs. We utilize a controlled analogical reasoning environment, varying modality (textual, visual, symbolic), difficulty, and task format (MCQ / free-text). Our analysis reveals System 2 pipelines generally excel, particularly in visual/symbolic modalities and harder tasks, while System 1 is competitive for textual and easier problems. Crucially, task format significantly influences their relative advantage, with System 1 sometimes outperforming System 2 in free-text rule-execution. These core findings generalize to broader in-context learning. Furthermore, we demonstrate that advanced System 2 strategies like hypothesis selection and iterative refinement can substantially scale LLM reasoning. This study offers foundational insights and actionable guidelines for strategically deploying logical inference to enhance LLM reasoning.

2024

pdf bib
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing
Jiangshu Du | Yibo Wang | Wenting Zhao | Zhongfen Deng | Shuaiqi Liu | Renze Lou | Henry Peng Zou | Pranav Narayanan Venkit | Nan Zhang | Mukund Srinath | Haoran Ranran Zhang | Vipul Gupta | Yinghui Li | Tao Li | Fei Wang | Qin Liu | Tianlin Liu | Pengzhi Gao | Congying Xia | Chen Xing | Cheng Jiayang | Zhaowei Wang | Ying Su | Raj Sanjay Shah | Ruohao Guo | Jing Gu | Haoran Li | Kangda Wei | Zihao Wang | Lu Cheng | Surangika Ranathunga | Meng Fang | Jie Fu | Fei Liu | Ruihong Huang | Eduardo Blanco | Yixin Cao | Rui Zhang | Philip S. Yu | Wenpeng Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Claim: This work is not advocating the use of LLMs for paper (meta-)reviewing. Instead, wepresent a comparative analysis to identify and distinguish LLM activities from human activities. Two research goals: i) Enable better recognition of instances when someone implicitly uses LLMs for reviewing activities; ii) Increase community awareness that LLMs, and AI in general, are currently inadequate for performing tasks that require a high level of expertise and nuanced judgment.This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload?This study focuses on the topic of LLMs as NLP Researchers, particularly examining the effectiveness of LLMs in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with “deficiency” labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) “LLMs as Reviewers”, how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) “LLMs as Metareviewers”, how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.

pdf bib
Generate-on-Graph: Treat LLM as both Agent and KG for Incomplete Knowledge Graph Question Answering
Yao Xu | Shizhu He | Jiabei Chen | Zihao Wang | Yangqiu Song | Hanghang Tong | Guang Liu | Jun Zhao | Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

To address the issues of insufficient knowledge and hallucination in Large Language Models (LLMs), numerous studies have explored integrating LLMs with Knowledge Graphs (KGs). However, these methods are typically evaluated on conventional Knowledge Graph Question Answering (KGQA) with complete KGs, where all factual triples required for each question are entirely covered by the given KG. In such cases, LLMs primarily act as an agent to find answer entities within the KG, rather than effectively integrating the internal knowledge of LLMs and external knowledge sources such as KGs. In fact, KGs are often incomplete to cover all the knowledge required to answer questions. To simulate these real-world scenarios and evaluate the ability of LLMs to integrate internal and external knowledge, we propose leveraging LLMs for QA under Incomplete Knowledge Graph (IKGQA), where the provided KG lacks some of the factual triples for each question, and construct corresponding datasets. To handle IKGQA, we propose a training-free method called Generate-on-Graph (GoG), which can generate new factual triples while exploring KGs. Specifically, GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA. Experimental results on two datasets demonstrate that our GoG outperforms all previous methods.

2023

pdf bib
Wasserstein-Fisher-Rao Embedding: Logical Query Embeddings with Local Comparison and Global Transport
Zihao Wang | Weizhi Fei | Hang Yin | Yangqiu Song | Ginny Wong | Simon See
Findings of the Association for Computational Linguistics: ACL 2023

Answering complex queries on knowledge graphs is important but particularly challenging because of the data incompleteness. Query embedding methods address this issue by learningbased models and simulating logical reasoning with set operators. Previous works focus on specific forms of embeddings, but scoring functions between embeddings are underexplored. In contrast to existing scorning functions motivated by local comparison or global transport, this work investigates the local and global trade-off with unbalanced optimal transport theory. Specifically, we embed sets as bounded measures in R endowed with a scoring function motivated by the Wasserstein-Fisher-Rao metric. Such a design also facilitates closed-form set operators in the embedding space. Moreover, we introduce a convolution-based algorithm for linear time computation and a block diagonal kernel to enforce the trade-off. Results show that WFRE is capable of outperforming existing query embedding methods on standard datasets, evaluation sets with combinatorially complex queries, and hierarchical knowledge graphs. Ablation study shows that finding a better local and global trade-off is essential for performance improvement.