Zhuo Li

Other people with similar names: Zhuo Li


2025

pdf bib
Self-Instructed Derived Prompt Generation Meets In-Context Learning: Unlocking New Potential of Black-Box LLMs
Zhuo Li | Yuhao Du | Jinpeng Hu | Xiang Wan | Anningzhe Gao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Improving prompt quality is crucial for enhancing the performance of large language models (LLMs), particularly for Black-Box models like GPT4. Existing prompt refinement methods, while effective, often suffer from semantic inconsistencies between refined and original prompts, and fail to maintain users’ real intent. To address these challenges, we propose a self-instructed in-context learning framework that generates reliable derived prompts, keeping semantic consistency with the original prompts. Specifically, our framework incorporates a reinforcement learning mechanism, enabling direct interaction with the response model during prompt generation to better align with human preferences. We then formulate the querying as an in-context learning task, combining responses from LLMs with derived prompts to create a contextual demonstration for the original prompt. This approach effectively enhances alignment, reduces semantic discrepancies, and activates the LLM’s in-context learning ability for generating more beneficial response. Extensive experiments demonstrate that the proposed method not only generates better derived prompts but also significantly enhances LLMs’ ability to deliver more effective responses, particularly for Black-Box models like GPT4.

pdf bib
Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm
Zhuo Li | Yuhao Du | Xiaoqi Jiao | Steven Y. Guo | Yuege Feng | Xiang Wan | Anningzhe Gao | Jinpeng Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Selecting high-quality and diverse training samples from extensive datasets plays a crucial role in reducing training overhead and enhancing the performance of Large Language Models (LLMs). However, existing studies fall short in assessing the overall value of selected data, focusing primarily on individual quality, and struggle to strike an effective balance between ensuring diversity and minimizing data point traversals. Therefore, this paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples when incorporated into the subset. Thanks to the advanced language understanding capabilities of LLMs, we utilize LLMs to evaluate the value of each option during the selection process. Furthermore, we design a greedy sampling process where samples are incrementally added to the subset, thereby improving efficiency by eliminating the need for exhaustive traversal of the entire dataset with the limited budget. Extensive experiments demonstrate that selected data from our method not only surpasses the performance of the full dataset but also achieves competitive results with recent powerful studies, while requiring fewer selections. Moreover, we validate our approach on a larger medical dataset, highlighting its practical applicability in real-world applications.

pdf bib
APLOT: Robust Reward Modeling via Adaptive Preference Learning with Optimal Transport
Zhuo Li | Yuege Feng | Dandan Guo | Jinpeng Hu | Anningzhe Gao | Xiang Wan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The reward model (RM) plays a crucial role in aligning Large Language Models (LLMs) with human preferences through Reinforcement Learning, where the Bradley-Terry (BT) objective has been recognized as simple yet powerful, specifically for pairwise preference learning. However, BT-based RMs often struggle to effectively distinguish between similar preference responses, leading to insufficient separation between preferred and non-preferred outputs. Consequently, they may easily overfit easy samples and cannot generalize well to Out-Of-Distribution (OOD) samples, resulting in suboptimal performance. To address these challenges, this paper introduces an effective enhancement to BT-based RMs through an adaptive margin mechanism. Specifically, we design to dynamically adjust the RM focus on more challenging samples through margins, based on both semantic similarity and model-predicted reward differences, which is approached from a distributional perspective solvable with Optimal Transport (OT). By incorporating these factors into a principled OT cost matrix design, our adaptive margin enables the RM to better capture distributional differences between chosen and rejected responses, yielding significant improvements in performance, convergence speed, and generalization capabilities. Experimental results across multiple benchmarks demonstrate that our method outperforms several existing RM techniques, showcasing enhanced performance in both In-Distribution (ID) and OOD settings. Moreover, RLHF experiments support our practical effectiveness in better aligning LLMs with human preferences.

pdf bib
Atoxia: Red-teaming Large Language Models with Target Toxic Answers
Yuhao Du | Zhuo Li | Pengyu Cheng | Xiang Wan | Anningzhe Gao
Findings of the Association for Computational Linguistics: NAACL 2025

Despite the substantial advancements in artificial intelligence, large language models (LLMs) remain being challenged by generation safety. With adversarial jailbreaking prompts, one can effortlessly induce LLMs to output harmful content, causing unexpected negative social impacts. This vulnerability highlights the necessity for robust LLM red-teaming strategies to identify and mitigate such risks before large-scale application. To detect specific types of risks, we propose a novel red-teaming method that **A**ttacks LLMs with **T**arget **Toxi**c **A**nswers (**Atoxia**). Given a particular harmful answer, Atoxia generates a corresponding user query and a misleading answer opening to examine the internal defects of a given LLM. The proposed attacker is trained within a reinforcement learning scheme with the LLM outputting probability of the target answer as the reward. We verify the effectiveness of our method on various red-teaming benchmarks, such as AdvBench and HH-Harmless. The empirical results demonstrate that Atoxia can successfully detect safety risks in not only open-source models but also state-of-the-art black-box models such as GPT-4o.