Zhen Zhang
Other people with similar names: Zhen Zhang , Zhen Zhang , Zhen Zhang
2023
E-NER: Evidential Deep Learning for Trustworthy Named Entity Recognition
Zhen Zhang
|
Mengting Hu
|
Shiwan Zhao
|
Minlie Huang
|
Haotian Wang
|
Lemao Liu
|
Zhirui Zhang
|
Zhe Liu
|
Bingzhe Wu
Findings of the Association for Computational Linguistics: ACL 2023
Most named entity recognition (NER) systems focus on improving model performance, ignoring the need to quantify model uncertainty, which is critical to the reliability of NER systems in open environments. Evidential deep learning (EDL) has recently been proposed as a promising solution to explicitly model predictive uncertainty for classification tasks. However, directly applying EDL to NER applications faces two challenges, i.e., the problems of sparse entities and OOV/OOD entities in NER tasks. To address these challenges, we propose a trustworthy NER framework named E-NER by introducing two uncertainty-guided loss terms to the conventional EDL, along with a series of uncertainty-guided training strategies. Experiments show that E-NER can be applied to multiple NER paradigms to obtain accurate uncertainty estimation. Furthermore, compared to state-of-the-art baselines, the proposed method achieves a better OOV/OOD detection performance and better generalization ability on OOV entities.
Uncertainty-Aware Unlikelihood Learning Improves Generative Aspect Sentiment Quad Prediction
Mengting Hu
|
Yinhao Bai
|
Yike Wu
|
Zhen Zhang
|
Liqi Zhang
|
Hang Gao
|
Shiwan Zhao
|
Minlie Huang
Findings of the Association for Computational Linguistics: ACL 2023
Recently, aspect sentiment quad prediction has received widespread attention in the field of aspect-based sentiment analysis. Existing studies extract quadruplets via pre-trained generative language models to paraphrase the original sentence into a templated target sequence. However, previous works only focus on what to generate but ignore what not to generate. We argue that considering the negative samples also leads to potential benefits. In this work, we propose a template-agnostic method to control the token-level generation, which boosts original learning and reduces mistakes simultaneously. Specifically, we introduce Monte Carlo dropout to understand the built-in uncertainty of pre-trained language models, acquiring the noises and errors. We further propose marginalized unlikelihood learning to suppress the uncertainty-aware mistake tokens. Finally, we introduce minimization entropy to balance the effects of marginalized unlikelihood learning. Extensive experiments on four public datasets demonstrate the effectiveness of our approach on various generation templates.
Search
Fix author
Co-authors
- Mengting Hu 2
- Minlie Huang 2
- Shiwan Zhao 2
- Yinhao Bai 1
- Hang Gao 1
- show all...