Yu Zhao

Other people with similar names: Yu Zhao , Yu Zhao


2025

pdf bib
T2R-BENCH: A Benchmark for Real World Table-to-Report Task
Jie Zhang | Changzai Pan | Sishi Xiong | Kaiwen Wei | Yu Zhao | Xiangyu Li | Jiaxin Peng | Xiaoyan Gu | Jian Yang | Wenhan Chang | Zhenhe Wu | Jiang Zhong | Shuangyong Song | Xuelong Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as four types of industrial tables. Furthermore, we propose a novel evaluation criteria to fairly measure the quality of report generation. Expeimental results show that Deepseek-R1 only achieves the best performance with 62.71% overall score, indicating that LLMs still have room for improvement on T2R-bench.

pdf bib
UCS-SQL: Uniting Content and Structure for Enhanced Semantic Bridging In Text-to-SQL
Zhenhe Wu | Zhongqiu Li | JieZhangChinaTele JieZhangChinaTele | Zhongjiang He | Jian Yang | Yu Zhao | Ruiyu Fang | Bing Wang | Hongyan Xie | Shuangyong Song | Zhoujun Li
Findings of the Association for Computational Linguistics: ACL 2025

With the rapid advancement of large language models (LLMs), recent researchers have increasingly focused on the superior capabilities of LLMs in text/code understanding and generation to tackle text-to-SQL tasks. Traditional approaches adopt schema linking to first eliminate redundant tables and columns and prompt LLMs for SQL generation. However, they often struggle with accurately identifying corresponding tables and columns, due to discrepancies in naming conventions between natural language questions (NL) and database schemas. Besides, existing methods overlook the challenge of effectively transforming structure information from NL into SQL. To address these limitations, we introduce UCS-SQL, a novel text-to-SQL framework, uniting both content and structure pipes to bridge the gap between NL and SQL. Specifically, the content pipe focuses on identifying key content within the original content, while the structure pipe is dedicated to transforming the linguistic structure from NL to SQL. Additionally, we strategically selects few-shot examples by considering both the SQL Skeleton and Question Expression (SS-QE selection method), thus providing targeted examples for SQL generation. Experimental results on BIRD and Spider demonstrate the effectiveness of our UCS-SQL framework.

2024

pdf bib
Dual Prompt Tuning based Contrastive Learning for Hierarchical Text Classification
Sishi Xiong | Yu Zhao | Jie Zhang | Li Mengxiang | Zhongjiang He | Xuelong Li | Shuangyong Song
Findings of the Association for Computational Linguistics: ACL 2024

Hierarchical text classification aims at categorizing texts into a multi-tiered tree-structured hierarchy of labels. Existing methods pay more attention to capture hierarchy-aware text feature by exploiting explicit parent-child relationships, while interactions between peer labels are rarely taken into account, resulting in severe label confusion within each layer. In this work, we propose a novel Dual Prompt Tuning (DPT) method, which emphasizes identifying discrimination among peer labels by performing contrastive learning on each hierarchical layer. We design an innovative hand-crafted prompt containing slots for both positive and negative label predictions to cooperate with contrastive learning. In addition, we introduce a label hierarchy self-sensing auxiliary task to ensure cross-layer label consistency. Extensive experiments demonstrate that DPT achieves significant improvements and outperforms the current state-of-the-art methods on BGC and RCV1-V2 benchmark datasets.