Yu Yin
Other people with similar names: Yu Yin
2025
LMOD: A Large Multimodal Ophthalmology Dataset and Benchmark for Large Vision-Language Models
Zhenyue Qin
|
Yu Yin
|
Dylan Campbell
|
Xuansheng Wu
|
Ke Zou
|
Ninghao Liu
|
Yih Chung Tham
|
Xiuzhen Zhang
|
Qingyu Chen
Findings of the Association for Computational Linguistics: NAACL 2025
The prevalence of vision-threatening eye diseases is a significant global burden, with many cases remaining undiagnosed or diagnosed too late for effective treatment. Large vision-language models (LVLMs) have the potential to assist in understanding anatomical information, diagnosing eye diseases, and drafting interpretations and follow-up plans, thereby reducing the burden on clinicians and improving access to eye care. However, limited benchmarks are available to assess LVLMs’ performance in ophthalmology-specific applications. In this study, we introduce LMOD, a large-scale multimodal ophthalmology benchmark consisting of 21,993 instances across (1) five ophthalmic imaging modalities: optical coherence tomography, color fundus photographs, scanning laser ophthalmoscopy, lens photographs, and surgical scenes; (2) free-text, demographic, and disease biomarker information; and (3) primary ophthalmology-specific applications such as anatomical information understanding, disease diagnosis, and subgroup analysis. In addition, we benchmarked 13 state-of-the-art LVLM representatives from closed-source, open-source, and medical domains. The results demonstrate a significant performance drop for LVLMs in ophthalmology compared to other domains. Systematic error analysis further identified six major failure modes: misclassification, failure to abstain, inconsistent reasoning, hallucination, assertions without justification, and lack of domain-specific knowledge. In contrast, supervised neural networks specifically trained on these tasks as baselines demonstrated high accuracy. These findings underscore the pressing need for benchmarks in the development and validation of ophthalmology-specific LVLMs.
2024
MedINST: Meta Dataset of Biomedical Instructions
Wenhan Han
|
Meng Fang
|
Zihan Zhang
|
Yu Yin
|
Zirui Song
|
Ling Chen
|
Mykola Pechenizkiy
|
Qingyu Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs’ generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
Search
Fix author
Co-authors
- Qingyu Chen 2
- Dylan Campbell 1
- Ling Chen 1
- Meng Fang 1
- Wenhan Han 1
- show all...