2025
pdf
bib
abs
Quantized but Deceptive? A Multi-Dimensional Truthfulness Evaluation of Quantized LLMs
Yao Fu
|
Xianxuan Long
|
Runchao Li
|
Haotian Yu
|
Mu Sheng
|
Xiaotian Han
|
Yu Yin
|
Pan Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Quantization enables efficient deployment of large language models (LLMs) in resource-constrained environments by significantly reducing memory and computation costs. While quantized LLMs often maintain performance on perplexity and zero-shot tasks, their impact on truthfulness—whether generating truthful or deceptive responses—remains largely unexplored. In this work, we introduce TruthfulnessEval, a comprehensive evaluation framework for assessing the truthfulness of quantized LLMs across three dimensions: (1) Truthfulness on Logical Reasoning; (2) Truthfulness on Common Sense; and (3) Truthfulness on Imitative Falsehoods. Using this framework, we examine mainstream quantization techniques (ranging from 4-bit to extreme 2-bit) across several open-source LLMs. Surprisingly, we find that while quantized models retain internally truthful representations, they are more susceptible to producing false outputs under misleading prompts. To probe this vulnerability, we test 15 rephrased variants of “honest”, “neutral” and “deceptive” prompts and observe that “deceptive” prompts can override truth-consistent behavior, whereas “honest” and “neutral” prompts maintain stable outputs. Further, we reveal that quantized models “know” the truth internally yet still produce false outputs when guided by “deceptive” prompts via layer-wise probing and PCA visualizations. Our findings provide insights into future designs of quantization-aware alignment and truthfulness interventions.
pdf
bib
abs
Cautious Next Token Prediction
Yizhou Wang
|
Lingzhi Zhang
|
Yue Bai
|
Mang Tik Chiu
|
Zhengmian Hu
|
Mingyuan Zhang
|
Qihua Dong
|
Yu Yin
|
Sohrab Amirghodsi
|
Yun Fu
Findings of the Association for Computational Linguistics: ACL 2025
Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model’s capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings’ behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.
pdf
bib
abs
VIVA+: Human-Centered Situational Decision-Making
Zhe Hu
|
Yixiao Ren
|
Guanzhong Liu
|
Jing Li
|
Yu Yin
Findings of the Association for Computational Linguistics: EMNLP 2025
Multimodal Large Language Models (MLLMs) show promising results for embodied agents in operating meaningfully in complex, human-centered environments. Yet, evaluating their capacity for nuanced, human-like reasoning and decision-making remains challenging. In this work, we introduce VIVA+, a cognitively grounded benchmark for evaluating the reasoning and decision-making of MLLMs in human-centered situations. VIVA+ consists of 1,317 real-world situations paired with 6,373 multiple-choice questions, targeting three core abilities for decision-making: (1) Foundational Situation Comprehension, (2) Context-Driven Action Justification, and (3) Reflective Reasoning. Together, these dimensions provide a systematic framework for assessing a model’s ability to perceive, reason, and act in socially meaningful ways. We evaluate the latest commercial and open-source models on VIVA+, where we reveal distinct performance patterns and highlight significant challenges. We further explore targeted training and multi-step reasoning strategies, which yield consistent performance improvements. Finally, our in-depth analysis highlights current model limitations and provides actionable insights for advancing MLLMs toward more robust, context-aware, and socially adept decision-making in real-world settings.
pdf
bib
abs
Pruning Weights but Not Truth: Safeguarding Truthfulness While Pruning LLMs
Yao Fu
|
Runchao Li
|
Xianxuan Long
|
Haotian Yu
|
Xiaotian Han
|
Yu Yin
|
Pan Li
Findings of the Association for Computational Linguistics: EMNLP 2025
Neural network pruning has emerged as a promising approach for deploying LLMs in low-resource scenarios while preserving downstream task performance. However, for the first time, we reveal that such pruning disrupts LLMs’ internal activation features crucial for lie detection, where probing classifiers (typically small logistic regression models) trained on these features assess the truthfulness of LLM-generated statements. This discovery raises a crucial open question: how can we prune LLMs without sacrificing these critical lie detection capabilities? Our investigation further reveals that naively adjusting layer-wise pruning sparsity based on importance inadvertently removes crucial weights, failing to improve lie detection performance despite its reliance on the most crucial LLM layer. To address this issue, we propose Truthful Pruning aligned by Layer-wise Outliers (TPLO), which places greater emphasis on layers with more activation outliers and stronger discriminative features simultaneously. This preserves LLMs’ original performance while retaining critical features of inner states needed for robust lie detection. Moreover, we introduce a prompting rule to enrich the TruthfulQA benchmark for better calibrating LLM pruning. Empirical results show that our approach improves the hallucination detection for pruned LLMs (achieving 88% accuracy at 50% sparsity) and enhances their performance on TruthfulQA.
2024
pdf
bib
abs
VIVA: A Benchmark for Vision-Grounded Decision-Making with Human Values
Zhe Hu
|
Yixiao Ren
|
Jing Li
|
Yu Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
This paper introduces VIVA, a benchmark for VIsion-grounded decision-making driven by human VAlues. While most large vision-language models (VLMs) focus on physical-level skills, our work is the first to examine their multimodal capabilities in leveraging human values to make decisions under a vision-depicted situation. VIVA contains 1,062 images depicting diverse real-world situations and the manually annotated decisions grounded in them. Given an image there, the model should select the most appropriate action to address the situation and provide the relevant human values and reason underlying the decision. Extensive experiments based on VIVA show the limitation of VLMs in using human values to make multimodal decisions. Further analyses indicate the potential benefits of exploiting action consequences and predicted human values.