You Zhang
Other people with similar names: You Zhang (Rochester)
2024
YNU-HPCC at SIGHAN-2024 dimABSA Task: Using PLMs with a Joint Learning Strategy for Dimensional Intensity Prediction
Zehui Wang
|
You Zhang
|
Jin Wang
|
Dan Xu
|
Xuejie Zhang
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)
The dimensional approach can represent more fine-grained emotional information than discrete affective states. In this paper, a pretrained language model (PLM) with a joint learning strategy is proposed for the SIGHAN-2024 shared task on Chinese dimensional aspect-based sentiment analysis (dimABSA), which requires submitted models to provide fine-grained multi-dimensional (Valance and Arousal) intensity predictions for given aspects of a review. The proposed model consists of three parts: an input layer that concatenates both given aspect terms and input sentences; a Chinese PLM encoder that generates aspect-specific review representation; and separate linear predictors that jointly predict Valence and Arousal sentiment intensities. Moreover, we merge simplified and traditional Chinese training data for data augmentation. Our systems ranked 2nd place out of 5 participants in subtask 1-intensity prediction. The code is publicly available at https://github.com/WZH5127/2024_subtask1_intensity_prediction.
2023
Domain Generalization via Switch Knowledge Distillation for Robust Review Representation
You Zhang
|
Jin Wang
|
Liang-Chih Yu
|
Dan Xu
|
Xuejie Zhang
Findings of the Association for Computational Linguistics: ACL 2023
Applying neural models injected with in-domain user and product information to learn review representations of unseen or anonymous users incurs an obvious obstacle in content-based recommender systems. For the generalization of the in-domain classifier, most existing models train an extra plain-text model for the unseen domain. Without incorporating historical user and product information, such a schema makes unseen and anonymous users dissociate from the recommender system. To simultaneously learn the review representation of both existing and unseen users, this study proposed a switch knowledge distillation for domain generalization. A generalization-switch (GSwitch) model was initially applied to inject user and product information by flexibly encoding both domain-invariant and domain-specific features. By turning the status ON or OFF, the model introduced a switch knowledge distillation to learn a robust review representation that performed well for either existing or anonymous unseen users. The empirical experiments were conducted on IMDB, Yelp-2013, and Yelp-2014 by masking out users in test data as unseen and anonymous users. The comparative results indicate that the proposed method enhances the generalization capability of several existing baseline models. For reproducibility, the code for this paper is available at: https://github.com/yoyo-yun/DG_RRR.