Yichi Zhang
Other people with similar names: Yichi Zhang , Yichi Zhang
2025
Have We Designed Generalizable Structural Knowledge Promptings? Systematic Evaluation and Rethinking
Yichi Zhang
|
Zhuo Chen
|
Lingbing Guo
|
Yajing Xu
|
Shaokai Chen
|
Mengshu Sun
|
Binbin Hu
|
Zhiqiang Zhang
|
Lei Liang
|
Wen Zhang
|
Huajun Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have demonstrated exceptional performance in text generation within current NLP research. However, the lack of factual accuracy is still a dark cloud hanging over the LLM skyscraper. Structural knowledge prompting (SKP) is a prominent paradigm to integrate external knowledge into LLMs by incorporating structural representations, achieving state-of-the-art results in many knowledge-intensive tasks. However, existing methods often focus on specific problems, lacking a comprehensive exploration of the generalization and capability boundaries of SKP. This paper aims to evaluate and rethink the generalization capability of the SKP paradigm from four perspectives including Granularity, Transferability, Scalability, and Universality. To provide a thorough evaluation, we introduce a novel multi-granular, multi-level benchmark called SUBARU, consisting of 9 different tasks with varying levels of granularity and difficulty. Through extensive experiments, we draw key conclusions regarding the generalization of SKP, offering insights to guide the future development and extension of the SKP paradigm.
2024
Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Yichi Zhang
|
Zhuo Chen
|
Yin Fang
|
Yanxi Lu
|
Li Fangming
|
Wen Zhang
|
Huajun Chen
Findings of the Association for Computational Linguistics: ACL 2024
Deploying large language models (LLMs) to real scenarios for domain-specific question answering (QA) is a key thrust for LLM applications, which poses numerous challenges, especially in ensuring that responses are both accommodating to user requirements and appropriately leveraging domain-specific knowledge bases. They are the two major difficulties for LLM application as vanilla fine-tuning falls short of addressing. Combining these requirements, we conceive of them as the requirement for the model’s preference to be harmoniously aligned with humans’. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly, aiming to optimize LLM performance in real-world, domain-specific QA settings. Adequate experiments and comprehensive comparisons with 15 baseline methods illustrate that our KnowPAT is a superior pipeline for real-scenario domain-specific QA with LLMs.