Yang Liu

Other people with similar names: Yang Liu , Yang Liu (Wilfrid Laurier University), Yang Liu (刘扬) (刘扬; Ph.D Purdue; ICSI, Dallas, Facebook, Liulishuo, Amazon), Yang Liu , Yang Liu (刘洋) (刘洋; ICT, Tsinghua, Beijing Academy of Artificial Intelligence), Yang Liu (Edinburgh Ph.D., Microsoft), Yang Liu (University of Helsinki), Yang Liu (Samsung Research Center Beijing), Yang Liu (Tianjin University, China), Yang Liu , Yang Liu (Microsoft Cognitive Services Research), Yang Liu (Univ. of Michigan, UC Santa Cruz), Yang Liu , Yang Liu (National University of Defense Technology), Yang Liu , Yang Liu , Yang Janet Liu (Georgetown University; 刘洋), Yang Liu (刘扬) (Peking University), Yang Liu (The Chinese University of Hong Kong (Shenzhen)), Yang Liu , Yang Liu , Yang Liu (3M Health Information Systems), Yang Liu (Beijing Language and Culture University)


2025

pdf bib
ActiView: Evaluating Active Perception Ability for Multimodal Large Language Models
Ziyue Wang | Chi Chen | Fuwen Luo | Yurui Dong | Yuanchi Zhang | Yuzhuang Xu | Xiaolong Wang | Peng Li | Yang Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Active perception, a crucial human capability, involves setting a goal based on the current understanding of the environment and performing actions to achieve that goal. Despite significant efforts in evaluating Multimodal Large Language Models (MLLMs), active perception has been largely overlooked. To address this gap, we propose a novel benchmark named ActiView to evaluate active perception in MLLMs. We focus on a specialized form of Visual Question Answering (VQA) that eases and quantifies the evaluation yet challenging for existing MLLMs. Meanwhile, intermediate reasoning behaviors of models are also discussed. Given an image, we restrict the perceptual field of a model, requiring it to actively zoom or shift its perceptual field based on reasoning to answer the question successfully. We conduct extensive evaluation over 30 models, including proprietary and open-source models, and observe that restricted perceptual fields play a significant role in enabling active perception. Results reveal a significant gap in the active perception capability of MLLMs, indicating that this area deserves more attention. We hope that ActiView could help develop methods for MLLMs to understand multimodal inputs in more natural and holistic ways.

pdf bib
G2: Guided Generation for Enhanced Output Diversity in LLMs
Zhiwen Ruan | Yixia Li | Yefeng Liu | Yun Chen | Weihua Luo | Peng Li | Yang Liu | Guanhua Chen
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have demonstrated exceptional performance across diverse natural language processing tasks. However, these models exhibit a critical limitation in output diversity, often generating highly similar content across multiple attempts. This limitation significantly affects tasks requiring diverse outputs, from creative writing to reasoning. Existing solutions, like temperature scaling, enhance diversity by modifying probability distributions but compromise output quality. We propose Guide-to-Generation (G2), a training-free plug-and-play method that enhances output diversity while preserving generation quality. G2 employs a base generator alongside dual Guides, which guide the generation process through decoding-based interventions to encourage more diverse outputs conditioned on the original query. Comprehensive experiments demonstrate that G2 effectively improves output diversity while maintaining an optimal balance between diversity and quality.

pdf bib
MUCAR: Benchmarking Multilingual Cross-Modal Ambiguity Resolution for Multimodal Large Language Models
Xiaolong Wang | Zhaolu Kang | Wangyuxuan Zhai | Xinyue Lou | Yunghwei Lai | Ziyue Wang | Yawen Wang | Kaiyu Huang | Yile Wang | Peng Li | Yang Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal Large Language Models (MLLMs) have demonstrated significant advances across numerous vision-language tasks. Due to their strong performance in image-text alignment, MLLMs can effectively understand image-text pairs with clear meanings. However, effectively resolving the inherent ambiguities in natural language and visual contexts remains challenging. Existing multimodal benchmarks typically overlook linguistic and visual ambiguities, relying mainly on unimodal context for disambiguation and thus failing to exploit the mutual clarification potential between modalities. To bridge this gap, we introduce MUCAR, a novel and challenging benchmark designed explicitly for evaluating multimodal ambiguity resolution across multilingual and cross-modal scenarios. MUCAR includes: (1) a multilingual dataset where ambiguous textual expressions are uniquely resolved by corresponding visual contexts, and (2) a dual-ambiguity dataset that systematically pairs ambiguous images with ambiguous textual contexts, with each combination carefully constructed to yield a single, clear interpretation through mutual disambiguation. Extensive evaluations involving 19 state-of-the-art multimodal models—encompassing both open-source and proprietary architectures—reveal substantial gaps compared to human-level performance, highlighting the need for future research into more sophisticated cross-modal ambiguity comprehension methods, further pushing the boundaries of multimodal reasoning.

pdf bib
StableToolBench-MirrorAPI: Modeling Tool Environments as Mirrors of 7,000+ Real-World APIs
Zhicheng Guo | Sijie Cheng | Yuchen Niu | Hao Wang | Sicheng Zhou | Wenbing Huang | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2025

The rapid advancement of large language models (LLMs) has spurred significant interest in tool learning, where LLMs are augmented with external tools to tackle complex tasks. However, existing tool environments face challenges in balancing stability, scale, and realism, particularly for benchmarking purposes. To address this, we propose MirrorAPI, a novel framework that trains specialized LLMs to accurately simulate real API responses, effectively acting as “mirrors” to tool environments. Using a comprehensive dataset of request-response pairs from 7,000+ APIs, we employ supervised fine-tuning and chain-of-thought reasoning to enhance simulation fidelity. MirrorAPI achieves superior accuracy and stability compared to state-of-the-art methods, as demonstrated by its performance on the newly constructed MirrorAPI-Bench and its integration into StableToolBench.

pdf bib
Perspective Transition of Large Language Models for Solving Subjective Tasks
Xiaolong Wang | Yuanchi Zhang | Ziyue Wang | Yuzhuang Xu | Fuwen Luo | Yile Wang | Peng Li | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.

pdf bib
DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Xiaojun Bi | Shuo Li | Junyao Xing | Ziyue Wang | Fuwen Luo | Weizheng Qiao | Lu Han | Ziwei Sun | Peng Li | Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2025

Dongba pictographic is the only pictographic script still in use in the world. Its pictorial ideographic features carry rich cultural and contextual information. However, due to the lack of relevant datasets, research on semantic understanding of Dongba hieroglyphs has progressed slowly. To this end, we constructed DongbaMIE - the first dataset focusing on multimodal information extraction of Dongba pictographs. The dataset consists of images of Dongba hieroglyphic characters and their corresponding semantic annotations in Chinese. It contains 23,530 sentence-level and 2,539 paragraph-level high-quality text-image pairs. The annotations cover four semantic dimensions: object, action, relation and attribute. Systematic evaluation of mainstream multimodal large language models shows that the models are difficult to perform information extraction of Dongba hieroglyphs efficiently under zero-shot and few-shot learning. Although supervised fine-tuning can improve the performance, accurate extraction of complex semantics is still a great challenge at present.

pdf bib
Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
Weitao Li | Xiangyu Zhang | Kaiming Liu | Xuanyu Lei | Weizhi Ma | Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years. However, due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content, which may cause error in the generation results. To address these limitations, we propose an **E**fficient **D**ynamic **C**lustering-based document **C**ompression framework (**EDC2-RAG**) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5-Turbo and GPT-4o-mini, on widely used knowledge-QA and Hallucination-Detection datasets. Experimental results show that our method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets are available at https://github.com/Tsinghua-dhy/EDC-2-RAG.

pdf bib
Vision-Language Models Can Self-Improve Reasoning via Reflection
Kanzhi Cheng | Li YanTao | Fangzhi Xu | Jianbing Zhang | Hao Zhou | Yang Liu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Chain-of-thought (CoT) has proven to improve the reasoning capability of large language models (LLMs). However, due to the complexity of multimodal scenarios and the difficulty in collecting high-quality CoT data, CoT reasoning in multimodal LLMs has been largely overlooked. To this end, we propose a simple yet effective self-training framework, R3V, which iteratively enhances the model’s Vision-language Reasoning by Reflecting on CoT Rationales. Our framework consists of two interleaved parts: (1) iteratively bootstrapping positive and negative solutions for reasoning datasets, and (2) reflection on rationale for learning from mistakes. Specifically, we introduce the self-refine and self-select losses, enabling the model to refine flawed rationale and derive the correct answer by comparing rationale candidates. Experiments on a wide range of vision-language tasks show that R3V consistently improves multimodal LLM reasoning, achieving a relative improvement of 23% to 60% over GPT-distilled baselines. Additionally, our approach supports self-reflection on generated solutions, further boosting performance through test-time computation. Our code is available at https://github.com/njucckevin/MM-Self-Improve.

2024

pdf bib
Budget-Constrained Tool Learning with Planning
Yuanhang Zheng | Peng Li | Ming Yan | Ji Zhang | Fei Huang | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2024

Despite intensive efforts devoted to tool learning, the problem of budget-constrained tool learning, which focuses on resolving user queries within a specific budget constraint, has been widely overlooked. This paper proposes a novel method for budget-constrained tool learning. Our approach involves creating a preferable plan under the budget constraint before utilizing the tools. This plan outlines the feasible tools and the maximum number of times they can be employed, offering a comprehensive overview of the tool learning process for large language models. This allows them to allocate the budget from a broader perspective. To devise the plan without incurring significant extra costs, we suggest initially estimating the usefulness of the candidate tools based on past experience. Subsequently, we employ dynamic programming to formulate the plan. Experimental results demonstrate that our method can be integrated with various tool learning methods, significantly enhancing their effectiveness under strict budget constraints.

pdf bib
PANDA: Preference Adaptation for Enhancing Domain-Specific Abilities of LLMs
An Liu | Zonghan Yang | Zhenhe Zhang | Qingyuan Hu | Peng Li | Ming Yan | Ji Zhang | Fei Huang | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2024

While Large language models (LLMs) have demonstrated considerable capabilities across various natural language tasks, they often fall short of the performance achieved by domain-specific state-of-the-art models. One potential approach to enhance domain-specific capabilities of LLMs involves fine-tuning them using corresponding datasets. However, this method can be both resource and time-intensive, and not applicable to closed-source commercial LLMs. In this paper, we propose Preference Adaptation for Enhancing Domain-specific Abilities of LLMs (PANDA), a method designed to augment the domain-specific capabilities of LLMs by leveraging insights from the response preference of expert models without requiring fine-tuning. Our experimental results reveal that PANDA significantly enhances the domain-specific ability of LLMs on text classification and interactive decision tasks. Moreover, LLM with PANDA even outperforms the expert model that being learned on 4 tasks of ScienceWorld. This finding highlights the potential of exploring tuning-free approaches to achieve weak-to-strong generalization.

pdf bib
StableToolBench: Towards Stable Large-Scale Benchmarking on Tool Learning of Large Language Models
Zhicheng Guo | Sijie Cheng | Hao Wang | Shihao Liang | Yujia Qin | Peng Li | Zhiyuan Liu | Maosong Sun | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.

2023

pdf bib
Continual Knowledge Distillation for Neural Machine Translation
Yuanchi Zhang | Peng Li | Maosong Sun | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While many parallel corpora are not publicly accessible for data copyright, data privacy and competitive differentiation reasons, trained translation models are increasingly available on open platforms. In this work, we propose a method called continual knowledge distillation to take advantage of existing translation models to improve one model of interest. The basic idea is to sequentially transfer knowledge from each trained model to the distilled model. Extensive experiments on Chinese-English and German-English datasets show that our method achieves significant and consistent improvements over strong baselines under both homogeneous and heterogeneous trained model settings and is robust to malicious models.

pdf bib
Weakly Supervised Vision-and-Language Pre-training with Relative Representations
Chi Chen | Peng Li | Maosong Sun | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Weakly supervised vision-and-language pre-training (WVLP), which learns cross-modal representations with limited cross-modal supervision, has been shown to effectively reduce the data cost of pre-training while maintaining decent performance on downstream tasks. However, current WVLP methods use only local descriptions of images, i.e., object tags, as cross-modal anchors to construct weakly-aligned image-text pairs for pre-training. This affects the data quality and thus the effectiveness of pre-training. In this paper, we propose to directly take a small number of aligned image-text pairs as anchors, and represent each unaligned image and text by its similarities to these anchors, i.e., relative representations. We build a WVLP framework based on the relative representations, namely RELIT, which collects high-quality weakly-aligned image-text pairs from large-scale image-only and text-only data for pre-training through relative representation-based retrieval and generation. Experiments on four downstream tasks show that RELIT achieves new state-of-the-art results under the weakly supervised setting.

pdf bib
Bridging the Gap between Decision and Logits in Decision-based Knowledge Distillation for Pre-trained Language Models
Qinhong Zhou | Zonghan Yang | Peng Li | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conventional knowledge distillation (KD) methods require access to the internal information of teachers, e.g., logits. However, such information may not always be accessible for large pre-trained language models (PLMs). In this work, we focus on decision-based KD for PLMs, where only teacher decisions (i.e., top-1 labels) are accessible. Considering the information gap between logits and decisions, we propose a novel method to estimate logits from the decision distributions. Specifically, decision distributions can be both derived as a function of logits theoretically and estimated with test-time data augmentation empirically. By combining the theoretical and empirical estimations of the decision distributions together, the estimation of logits can be successfully reduced to a simple root-finding problem. Extensive experiments show that our method significantly outperforms strong baselines on both natural language understanding and machine reading comprehension datasets.

pdf bib
An Extensible Plug-and-Play Method for Multi-Aspect Controllable Text Generation
Xuancheng Huang | Zijun Liu | Peng Li | Tao Li | Maosong Sun | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, multi-aspect controllable text generation that controls the generated text in multiple aspects (e.g., sentiment, topic, and keywords) has attracted increasing attention. Although methods based on parameter efficient tuning like prefix-tuning could achieve multi-aspect controlling in a plug-and-play way, the mutual interference of multiple prefixes leads to significant degeneration of constraints and limits their extensibility to training-time unseen aspect combinations. In this work, we provide a theoretical lower bound for the interference and empirically found that the interference grows with the number of layers where prefixes are inserted. Based on these analyses, we propose using trainable gates to normalize the intervention of prefixes to restrain the growing interference. As a result, controlling training-time unseen combinations of aspects can be realized by simply concatenating corresponding plugins such that new constraints can be extended at a lower cost. In addition, we propose a unified way to process both categorical and free-form constraints. Experiments on text generation and machine translation demonstrate the superiority of our approach over baselines on constraint accuracy, text quality, and extensibility.

pdf bib
Knowledge Transfer in Incremental Learning for Multilingual Neural Machine Translation
Kaiyu Huang | Peng Li | Jin Ma | Ting Yao | Yang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the real-world scenario, a longstanding goal of multilingual neural machine translation (MNMT) is that a single model can incrementally adapt to new language pairs without accessing previous training data. In this scenario, previous studies concentrate on overcoming catastrophic forgetting while lacking encouragement to learn new knowledge from incremental language pairs, especially when the incremental language is not related to the set of original languages. To better acquire new knowledge, we propose a knowledge transfer method that can efficiently adapt original MNMT models to diverse incremental language pairs. The method flexibly introduces the knowledge from an external model into original models, which encourages the models to learn new language pairs, completing the procedure of knowledge transfer. Moreover, all original parameters are frozen to ensure that translation qualities on original language pairs are not degraded. Experimental results show that our method can learn new knowledge from diverse language pairs incrementally meanwhile maintaining performance on original language pairs, outperforming various strong baselines in incremental learning for MNMT.

pdf bib
Modeling Adversarial Attack on Pre-trained Language Models as Sequential Decision Making
Xuanjie Fang | Sijie Cheng | Yang Liu | Wei Wang
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained language models (PLMs) have been widely used to underpin various downstream tasks. However, the adversarial attack task has found that PLMs are vulnerable to small perturbations. Mainstream methods adopt a detached two-stage framework to attack without considering the subsequent influence of substitution at each step. In this paper, we formally model the adversarial attack task on PLMs as a sequential decision-making problem, where the whole attack process is sequential with two decision-making problems, i.e., word finder and word substitution. Considering the attack process can only receive the final state without any direct intermediate signals, we propose to use reinforcement learning to find an appropriate sequential attack path to generate adversaries, named SDM-ATTACK. Our experimental results show that SDM-ATTACK achieves the highest attack success rate with a comparable modification rate and semantic similarity to attack fine-tuned BERT. Furthermore, our analyses demonstrate the generalization and transferability of SDM-ATTACK.Resources of this work will be released after this paper’s publication.

pdf bib
Prompt-Guided Retrieval Augmentation for Non-Knowledge-Intensive Tasks
Zhicheng Guo | Sijie Cheng | Yile Wang | Peng Li | Yang Liu
Findings of the Association for Computational Linguistics: ACL 2023

Retrieval-augmented methods have received increasing attention to support downstream tasks by leveraging useful information from external resources. Recent studies mainly focus on exploring retrieval to solve knowledge-intensive (KI) tasks. However, the potential of retrieval for most non-knowledge-intensive (NKI) tasks remains under-explored. There are two main challenges to leveraging retrieval-augmented methods for NKI tasks: 1) the demand for diverse relevance score functions and 2) the dilemma between training cost and task performance. To address these challenges, we propose a two-stage framework for NKI tasks, named PGRA. In the first stage, we adopt a task-agnostic retriever to build a shared static index and select candidate evidence efficiently. In the second stage, we design a prompt-guided reranker to rerank the nearest evidence according to task-specific relevance for the reader. Experimental results show that PGRA outperforms other state-of-the-art retrieval-augmented methods. Our analyses further investigate the influence factors to model performance and demonstrate the generality of PGRA. The code and model will be released for further research.