Yan Zhang

Other people with similar names: Yan Zhang


2023

pdf bib
History Semantic Graph Enhanced Conversational KBQA with Temporal Information Modeling
Hao Sun | Yang Li | Liwei Deng | Bowen Li | Binyuan Hui | Binhua Li | Yunshi Lan | Yan Zhang | Yongbin Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Context information modeling is an important task in conversational KBQA. However, existing methods usually assume the independence of utterances and model them in isolation. In this paper, we propose a History Semantic Graph Enhanced KBQA model (HSGE) that is able to effectively model long-range semantic dependencies in conversation history while maintaining low computational cost. The framework incorporates a context-aware encoder, which employs a dynamic memory decay mechanism and models context at different levels of granularity. We evaluate HSGE on a widely used benchmark dataset for complex sequential question answering. Experimental results demonstrate that it outperforms existing baselines averaged on all question types.

pdf bib
CHEER: Centrality-aware High-order Event Reasoning Network for Document-level Event Causality Identification
Meiqi Chen | Yixin Cao | Yan Zhang | Zhiwei Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Document-level Event Causality Identification (DECI) aims to recognize causal relations between events within a document. Recent studies focus on building a document-level graph for cross-sentence reasoning, but ignore important causal structures — there are one or two “central” events that prevail throughout the document, with most other events serving as either their cause or consequence. In this paper, we manually annotate central events for a systematical investigation and propose a novel DECI model, CHEER, which performs high-order reasoning while considering event centrality. First, we summarize a general GNN-based DECI model and provide a unified view for better understanding. Second, we design an Event Interaction Graph (EIG) involving the interactions among events (e.g., coreference) and event pairs, e.g., causal transitivity, cause(A, B) AND cause(B, C) → cause(A, C). Finally, we incorporate event centrality information into the EIG reasoning network via well-designed features and multi-task learning. We have conducted extensive experiments on two benchmark datasets. The results present great improvements (5.9% F1 gains on average) and demonstrate the effectiveness of each main component.