Multilingual dense retrieval aims to retrieve relevant documents across different languages based on a unified retriever model. The challenge lies in aligning representations of different languages in a shared vector space. The common practice is to fine-tune the dense retriever via contrastive learning, whose effectiveness highly relies on the quality of the negative sample and the efficacy of mini-batch data. Different from the existing studies that focus on developing sophisticated model architecture, we propose a method to boost data utilization for multilingual dense retrieval by obtaining high-quality hard negative samples and effective mini-batch data. The extensive experimental results on a multilingual retrieval benchmark, MIRACL, with 16 languages demonstrate the effectiveness of our method by outperforming several existing strong baselines.
While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle with generating consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their capacity to model long-range spatial dependencies. In this paper, we introduce STRICT, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated and (2) the correctness and legibility of the generated text. We assess several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling.
Large language models (LLMs) often struggle with context fidelity, producing inconsistent answers when responding to questions based on provided information. Existing approaches either rely on expensive supervised fine-tuning to generate evidence post-answer or train models to perform web searches without necessarily improving utilization of the given context. We propose CARE, a novel native retrieval-augmented reasoning framework that teaches LLMs to explicitly integrate in-context evidence within their reasoning process with the model’s own retrieval capabilities. Our method requires limited labeled evidence data while significantly enhancing both retrieval accuracy and answer generation performance through strategically retrieved in-context tokens in the reasoning chain. Extensive experiments on multiple real-world and counterfactual QA benchmarks demonstrate that our approach substantially outperforms supervised fine-tuning, traditional retrieval-augmented generation methods, and external retrieval solutions. This work represents a fundamental advancement in making LLMs more accurate, reliable, and efficient for knowledge-intensive tasks.