Xin Wang

Other people with similar names: Xin Wang , Xin Wang , Xin Wang , Xin Wang , Xin Wang


2025

pdf bib
Understanding the Information Propagation Effects of Communication Topologies in LLM-based Multi-Agent Systems
Xu Shen | Yixin Liu | Yiwei Dai | Yili Wang | Rui Miao | Yue Tan | Shirui Pan | Xin Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

The communication topology in large language model-based multi-agent systems fundamentally governs inter-agent collaboration patterns, critically shaping both the efficiency and effectiveness of collective decision-making. While recent studies for communication topology automated design tend to construct sparse structures for efficiency, they often overlook why and when sparse and dense topologies help or hinder collaboration. In this paper, we present a causal framework to analyze how agent outputs, whether correct or erroneous, propagate under topologies with varying sparsity. Our empirical studies reveal that moderately sparse topologies, which effectively suppress error propagation while preserving beneficial information diffusion, typically achieve optimal task performance. Guided by this insight, we propose a novel topology design approach, EIB-Learner, that balances error suppression and beneficial information propagation by fusing connectivity patterns from both dense and sparse graphs. Extensive experiments show the superior effectiveness, communication cost, and robustness of EIB-Learner.

pdf bib
CrystalICL: Enabling In-Context Learning for Crystal Generation
Ruobing Wang | Qiaoyu Tan | Yili Wang | Ying Wang | Xin Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Designing crystal materials with desired physicochemical properties remains a fundamental challenge in materials science. While large language models (LLMs) have demonstrated strong in-context learning (ICL) capabilities, existing LLM-based crystal generation approaches are limited to zero-shot scenarios and are unable to benefit from few-shot scenarios. In contrast, human experts typically design new materials by modifying relevant known structures which aligns closely with the few-shot ICL paradigm. Motivated by this, we propose CrystalICL, a novel model designed for few-shot crystal generation. Specifically, we introduce a space-group based crystal tokenization method, which effectively reduces the complexity of modeling crystal symmetry in LLMs. We further introduce a condition-structure aware hybrid instruction tuning framework and a multi-task instruction tuning strategy, enabling the model to better exploit ICL by capturing structure-property relationships from limited data. Extensive experiments on four crystal generation benchmarks demonstrate the superiority of CrystalICL over the leading baseline methods on conditional and unconditional generation tasks.

2024

pdf bib
Mitigate Extrinsic Social Bias in Pre-trained Language Models via Continuous Prompts Adjustment
Yiwei Dai | Hengrui Gu | Ying Wang | Xin Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Although pre-trained language models (PLMs) have been widely used in natural language understandings (NLU), they are still exposed to fairness issues. Most existing extrinsic debiasing methods rely on manually curated word lists for each sensitive groups to modify training data or to add regular constraints. However, these word lists are often limited by length and scope, resulting in the degradation performance of extrinsic bias mitigation. To address the aforementioned issues, we propose a **C**ontinuous **P**rompts **A**djustment **D**ebiasing method (CPAD), which generates continuous token lists from the entire vocabulary space and uses them to bridge the gap between outputs and targets in fairness learning process. Specifically, CPAD encapsulates fine-tuning objective and debiasing objectives into several independent prompts. To avoid the limitation of manual word lists, in fairness learning phase, we extract outputs from the entire vocabulary space via fine-tuned PLM. Then, we aggregate the outputs from the same sensitive group as continuous token lists to map the outputs into protected attribute labels. Finally, after we learn the debiasing prompts in the perspective of adversarial learning, we improve fairness by adjusting continuous prompts at model inference time. Through extensive experiments on three NLU tasks, we evaluate the debiasing performance from the perspectives of group fairness and fairness through unawareness. The experimental results show that CPAD outperforms all baselines in term of single and two-attributes debiasing performance.

pdf bib
Data-Centric Explainable Debiasing for Improving Fairness in Pre-trained Language Models
Yingji Li | Mengnan Du | Rui Song | Xin Wang | Ying Wang
Findings of the Association for Computational Linguistics: ACL 2024

Human-like social bias of pre-trained language models (PLMs) on downstream tasks have attracted increasing attention. The potential flaws in the training data are the main factor that causes unfairness in PLMs. Existing data-centric debiasing strategies mainly leverage explicit bias words (defined as sensitive attribute words specific to demographic groups) for counterfactual data augmentation to balance the training data. However, they lack consideration of implicit bias words potentially associated with explicit bias words in complex distribution data, which indirectly harms the fairness of PLMs. To this end, we propose a **Data**-Centric **Debias**ing method (named Data-Debias), which uses an explainability method to search for implicit bias words to assist in debiasing PLMs. Specifically, we compute the feature attributions of all tokens using the Integrated Gradients method, and then treat the tokens that have a large impact on the model’s decision as implicit bias words. To make the search results more precise, we iteratively train a biased model to amplify the bias with each iteration. Finally, we use the implicit bias words searched in the last iteration to assist in debiasing PLMs. Extensive experimental results on multiple PLMs debiasing on three different classification tasks demonstrate that Data-Debias achieves state-of-the-art debiasing performance and strong generalization while maintaining predictive abilities.

pdf bib
Pioneering Reliable Assessment in Text-to-Image Knowledge Editing: Leveraging a Fine-Grained Dataset and an Innovative Criterion
Hengrui Gu | Kaixiong Zhou | Yili Wang | Ruobing Wang | Xin Wang
Findings of the Association for Computational Linguistics: EMNLP 2024

During pre-training, the Text-to-Image (T2I) diffusion models encode factual knowledge into their parameters. These parameterized facts enable realistic image generation, but they may become obsolete over time, thereby misrepresenting the current state of the world. Knowledge editing techniques aim to update model knowledge in a targeted way. However, facing the dual challenges posed by inadequate editing datasets and unreliable evaluation criterion, the development of T2I knowledge editing encounter difficulties in effectively generalizing injected knowledge. In this work, we design a T2I knowledge editing framework by comprehensively spanning on three phases: First, we curate a dataset CAKE, comprising paraphrase and multi-object test, to enable more fine-grained assessment on knowledge generalization. Second, we propose a novel criterion, adaptive CLIP threshold, to effectively filter out false successful images under the current criterion and achieve reliable editing evaluation. Finally, we introduce MPE, a simple but effective approach for T2I knowledge editing. Instead of tuning parameters, MPE precisely recognizes and edits the outdated part of the conditioning text-prompt to accommodate the up-to-date knowledge. A straightforward implementation of MPE (Based on in-context learning) exhibits better overall performance than previous model editors. We hope these efforts can further promote faithful evaluation of T2I knowledge editing methods.