Xiao Liu

Other people with similar names: Xiao Liu , Xiao Liu , Xiao Liu


2025

pdf bib
AndroidLab: Training and Systematic Benchmarking of Android Autonomous Agents
Yifan Xu | Xiao Liu | Xueqiao Sun | Siyi Cheng | Hao Yu | Hanyu Lai | Shudan Zhang | Dan Zhang | Jie Tang | Yuxiao Dong
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Autonomous agents have become increasingly important for interacting with the real world. Android agents, in particular, have been a frequently-mentioned interaction method. However, existing studies for training and evaluating Android agents lack systematic research on both open-source and closed-source models. In this work, we propose AndroidLab as a systematic Android agent framework. It includes an operation environment with different modalities, action space, and a reproducible benchmark. It supports both large language models (LLMs) and multimodal models (LMMs) in the same action space. AndroidLab benchmark includes predefined Android virtual devices and 138 tasks across nine apps built on these devices. By using the AndroidLab environment, we develop an Android Instruction dataset and train six open-source LLMs and LMMs, lifting the average success rates from 4.59% to 21.50% for LLMs and from 1.93% to 13.28% for LMMs. AndroidLab is open-sourced and publicly available at https://github.com/THUDM/Android-Lab.

pdf bib
AndroidGen: Building an Android Language Agent under Data Scarcity
Hanyu Lai | Junjie Gao | Xiao Liu | Yifan Xu | Shudan Zhang | Yuxiao Dong | Jie Tang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models have opened up a world of possibilities for various NLP tasks, sparking optimism for the future. Despite their potential, LLMs have yet to be widely used as agents on real mobile devices. The main challenge is the need for high-quality data sources. Time constraints and labor intensity often hinder human annotation. On the other hand, existing LLMs exhibit inadequate completion rates and need a robust data filtration strategy. Given these challenges, we develop a framework called AndroidGen to enhance the capabilities of LLM-based agents under data scarcity. In addition, we leverage AndroidGen to collect trajectories given human tasks and train open-source LLMs on these trajectories to develop an open-source mobile agent without manually labeled trajectories. We extensively evaluate AndroidGen with AndroidWorld, AitW, and various popular applications, demonstrating its improvements and revealing potential areas for future improvement. Code, model, and data are available at https://github.com/THUDM/AndroidGen.

pdf bib
A Survey of Post-Training Scaling in Large Language Models
Hanyu Lai | Xiao Liu | Junjie Gao | Jiale Cheng | Zehan Qi | Yifan Xu | Shuntian Yao | Dan Zhang | Jinhua Du | Zhenyu Hou | Xin Lv | Minlie Huang | Yuxiao Dong | Jie Tang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have achieved remarkable proficiency in understanding and generating human natural languages, mainly owing to the “scaling law” that optimizes relationships among language modeling loss, model parameters, and pre-trained tokens. However, with the exhaustion of high-quality internet corpora and increasing computational demands, the sustainability of pre-training scaling needs to be addressed. This paper presents a comprehensive survey of post-training scaling, an emergent paradigm aiming to relieve the limitations of traditional pre-training by focusing on the alignment phase, which traditionally accounts for a minor fraction of the total training computation. Our survey categorizes post-training scaling into three key methodologies: Supervised Fine-tuning (SFT), Reinforcement Learning from Feedback (RLxF), and Test-time Compute (TTC). We provide an in-depth analysis of the motivation behind post-training scaling, the scalable variants of these methodologies, and a comparative discussion against traditional approaches. By examining the latest advancements, identifying promising application scenarios, and highlighting unresolved issues, we seek a coherent understanding and map future research trajectories in the landscape of post-training scaling for LLMs.

pdf bib
LogicGame: Benchmarking Rule-Based Reasoning Abilities of Large Language Models
Jiayi Gui | Yiming Liu | Jiale Cheng | Xiaotao Gu | Xiao Liu | Hongning Wang | Yuxiao Dong | Jie Tang | Minlie Huang
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have demonstrated notable capabilities across various tasks, showcasing complex problem-solving abilities. Understanding and executing complex rules, along with multi-step planning, are fundamental to logical reasoning and critical for practical LLM agents and decision-making systems. However, evaluating LLMs as effective rule-based executors and planners remains underexplored. In this paper, we introduce LogicGame, a novel benchmark designed to evaluate the comprehensive rule understanding, execution, and planning capabilities of LLMs. Unlike traditional benchmarks, LogicGame provides diverse games that contain a series of rules with an initial state, requiring models to comprehend and apply predefined regulations to solve problems. We create simulated scenarios in which models execute or plan operations to achieve specific outcomes. These game scenarios are specifically designed to distinguish logical reasoning from mere knowledge by relying exclusively on predefined rules. This separation allows for a pure assessment of rule-based reasoning capabilities. The evaluation considers not only final outcomes but also intermediate steps, providing a comprehensive assessment of model performance. Moreover, these intermediate steps are deterministic and can be automatically verified. LogicGame defines game scenarios with varying difficulty levels, from simple rule applications to complex reasoning chains, in order to offer a precise evaluation of model performance on rule understanding and multi-step execution. Utilizing LogicGame, we test various LLMs and identify notable shortcomings in their rule-based logical reasoning abilities.

2024

pdf bib
OpenWebAgent: An Open Toolkit to Enable Web Agents on Large Language Models
Iat Long Iong | Xiao Liu | Yuxuan Chen | Hanyu Lai | Shuntian Yao | Pengbo Shen | Hao Yu | Yuxiao Dong | Jie Tang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We introduce OpenWebAgent, an open toolkit designed to optimize web automation by integrating both large language models (LLMs) and large multimodal models (LMMs). This toolkit focuses on enhancing human-computer interactions on the web, simplifying complex tasks through an advanced HTML parser, a rapid action generation module, and an intuitive user interface. At the core of OpenWebAgent is an innovative web agent framework that uses a modular design to allow developers to seamlessly integrate a variety of models and tools to process web information and automate tasks on the web. This enables the development of powerful, task-oriented web agents, significantly enhancing user experience and operational efficiency on the web. The OpenWebAgent framework, Chrome plugin, and demo video are available at https://github.com/THUDM/OpenWebAgent/.

pdf bib
Middleware for LLMs: Tools Are Instrumental for Language Agents in Complex Environments
Yu Gu | Yiheng Shu | Hao Yu | Xiao Liu | Yuxiao Dong | Jie Tang | Jayanth Srinivasa | Hugo Latapie | Yu Su
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The applications of large language models (LLMs) have expanded well beyond the confines of text processing, signaling a new era where LLMs are envisioned as generalist agents capable of operating within complex environments. These environments are often highly expansive, making it impossible for the LLM to process them within its short-term memory. Motivated by recent research on extending the capabilities of LLMs with tools, we seek to investigate the intriguing potential of tools to augment LLMs in handling such complexity by introducing a novel class of tools, termed *middleware*, to aid in the proactive exploration within these massive environments. Such specialized tools can serve as a middleware layer shielding the LLM from environmental complexity. In two representative complex environments—knowledge bases (KBs) and databases—we demonstrate the significant potential of augmenting language agents with tools in complex environments. Notably, equipped with the middleware, GPT-4 achieves **2.8**X the performance of the best baseline in tasks requiring access to database content and **2.2**X in KB tasks. Our findings illuminate the path for advancing language agents in real-world applications.

pdf bib
AgentTuning: Enabling Generalized Agent Abilities for LLMs
Aohan Zeng | Mingdao Liu | Rui Lu | Bowen Wang | Xiao Liu | Yuxiao Dong | Jie Tang
Findings of the Association for Computational Linguistics: ACL 2024

Open large language models (LLMs) with great performance in various tasks have significantly advanced the development of LLMs. However, they are far inferior to commercial models such as ChatGPT and GPT-4 when acting as agents to tackle complex tasks in the real world. These agent tasks employ LLMs as the central controller responsible for planning, memorization, and tool utilization, necessitating both fine-grained prompting methods and robust LLMs to achieve satisfactory performance. Though many prompting methods have been proposed to complete particular agent tasks, there is lack of research focusing on improving the agent capabilities of LLMs themselves without compromising their general abilities. In this work, we present AgentTuning, a simple and general method to enhance the agent abilities of LLMs while maintaining their general LLM capabilities. We construct AgentInstruct, a lightweight instruction-tuning dataset containing high-quality interaction trajectories. We employ a hybrid instruction-tuning strategy by combining AgentInstruct with open-source instructions from general domains. AgentTuning is used to instruction-tune the Llama 2 series, resulting in AgentLM. Our evaluations show that AgentTuning enables LLMs’ agent capabilities without compromising general abilities. The AgentLM-70B is comparable to GPT-3.5-turbo on unseen agent tasks, demonstrating generalized agent capabilities. We open source the AgentInstruct and AgentLM-7B, 13B, and 70B models at https://anonymous.4open.science/r/AgentTuning, serving open and powerful alternatives to commercial LLMs for agent tasks.

pdf bib
NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Queries
Shudan Zhang | Hanlin Zhao | Xiao Liu | Qinkai Zheng | Zehan Qi | Xiaotao Gu | Yuxiao Dong | Jie Tang
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) have manifested strong ability to generate codes for productive activities. However, current benchmarks for code synthesis, such as HumanEval, MBPP, and DS-1000, are predominantly oriented towards introductory tasks on algorithm and data science, insufficiently satisfying challenging requirements prevalent in real-world coding. To fill this gap, we propose NaturalCodeBench (NCB), a challenging code benchmark designed to mirror the complexity and variety of scenarios in real coding tasks. NCB comprises 402 high-quality problems in Python and Java, meticulously selected from natural user queries from online coding services, covering 6 different domains. Noting the extraordinary difficulty in creating testing cases for real-world queries, we also introduce a semi-automated pipeline to enhance the efficiency of test case construction. Comparing with manual solutions, it achieves an efficiency increase of more than 4 times. Our systematic experiments on 39 LLMs find that performance gaps on NCB between models with close HumanEval scores could still be significant, indicating a lack of focus on practical code synthesis scenarios or over-specified optimization on HumanEval. On the other hand, even the best-performing GPT-4 is still far from satisfying on NCB. The evaluation toolkit and development set are available at https://github.com/THUDM/NaturalCodeBench.

pdf bib
Revisiting Parallel Context Windows: A Frustratingly Simple Alternative and Chain-of-Thought Deterioration
Kejuan Yang | Xiao Liu | Kaiwen Men | Aohan Zeng | Yuxiao Dong | Jie Tang
Findings of the Association for Computational Linguistics: ACL 2024

We identify two crucial limitations in the evaluation of recent parallel-integrated method Parallel Context Windows (PCW), which extends the maximum context lengths of language models, e.g., 2048 for LLaMA, by harnessing window-wise attention and positional embedding techniques. We first show that a simple yet strong baseline, weighted sum ensemble, is missing for the in-context few-shot classification. Moreover, on more challenging Chain-of-Thought (CoT) reasoning (e.g., HotpotQA), PCW would present unexpected deterioration regarding question miscomprehension and false inference. Based on our findings, we suggest that the existing PCW design may not guarantee sufficient improvement and practicality in handling lengthy documents in real-world applications. More community efforts on enabling language models’ long context understanding ability should be paid.

pdf bib
AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models
Jiale Cheng | Yida Lu | Xiaotao Gu | Pei Ke | Xiao Liu | Yuxiao Dong | Hongning Wang | Jie Tang | Minlie Huang
Findings of the Association for Computational Linguistics: EMNLP 2024

Although Large Language Models (LLMs) are becoming increasingly powerful, they still exhibit significant but subtle weaknesses, such as mistakes in instruction-following or coding tasks.As these unexpected errors could lead to severe consequences in practical deployments, it is crucial to investigate the limitations within LLMs systematically.Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies, while manual inspections are costly and not scalable. In this paper, we introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks. Inspired by the educational assessment process that measures students’ learning outcomes, AutoDetect consists of three LLM-powered agents: Examiner, Questioner, and Assessor.The collaboration among these three agents is designed to realize comprehensive and in-depth weakness identification. Our framework demonstrates significant success in uncovering flaws, with an identification success rate exceeding 30% in prominent models such as ChatGPT and Claude.More importantly, these identified weaknesses can guide specific model improvements, proving more effective than untargeted data augmentation methods like Self-Instruct. Our approach has led to substantial enhancements in popular LLMs, including the Llama series and Mistral-7b, boosting their performance by over 10% across several benchmarks.Code and data are publicly available at https://github.com/thu-coai/AutoDetect.

pdf bib
ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline
Yifan Xu | Xiao Liu | Xinghan Liu | Zhenyu Hou | Yueyan Li | Xiaohan Zhang | Zihan Wang | Aohan Zeng | Zhengxiao Du | Zhao Wenyi | Jie Tang | Yuxiao Dong
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) have shown excellent mastering of human language but still struggle in real-world applications that require mathematical problem-solving. While many strategies and datasets to enhance LLMs’ mathematics are developed, it remains a challenge to simultaneously maintain and improve both language and mathematical capabilities in deployed LLM systems. In this work, we tailor the Self-Critique pipeline, which addresses the challenge in the feedback learning stage of LLM alignment. We first train a general Math-Critique model from the LLM itself to provide feedback signals. Then, we sequentially employ rejective fine-tuning and direct preference optimization over the LLM’s own generations for data collection. Based on ChatGLM3-32B, we conduct experiments on both academic and our newly created challenging dataset, MathUserEval. Results show that our pipeline significantly enhances the LLM’s mathematical problem-solving while still improving its language ability, outperforming LLMs that could be two times larger. Related techniques have been deployed to ChatGLM, an online serving LLM. Related evaluation datasets and scripts are released at https://github.com/THUDM/ChatGLM-Math.