Wei Liu

Other people with similar names: Wei Liu , Wei Liu , Wei Liu (KCL), Wei Liu , Wei Liu , Wei Liu


2023

pdf bib
Structured Mean-Field Variational Inference for Higher-Order Span-Based Semantic Role Labeling
Wei Liu | Songlin Yang | Kewei Tu
Findings of the Association for Computational Linguistics: ACL 2023

In this work, we enhance higher-order graph-based approaches for span-based semantic role labeling (SRL) by means of structured modeling. To decrease the complexity of higher-order modeling, we decompose the edge from predicate word to argument span into three different edges, predicate-to-head (P2H), predicate-to-tail (P2T), and head-to-tail (H2T), where head/tail means the first/last word of the semantic argument span. As such, we use a CRF-based higher-order dependency parser and leverage Mean-Field Variational Inference (MFVI) for higher-order inference. Moreover, since semantic arguments of predicates are often constituents within a constituency parse tree, we can leverage such nice structural property by defining a TreeCRF distribution over all H2T edges, using the idea of partial marginalization to define structural training loss. We further leverage structured MFVI to enhance inference. We experiment on span-based SRL benchmarks, showing the effectiveness of both higher-order and structured modeling and the combination thereof. In addition, we show superior performance of structured MFVI against vanilla MFVI.

2022

pdf bib
Dynamic Programming in Rank Space: Scaling Structured Inference with Low-Rank HMMs and PCFGs
Songlin Yang | Wei Liu | Kewei Tu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Hidden Markov Models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) are widely used structured models, both of which can be represented as factor graph grammars (FGGs), a powerful formalism capable of describing a wide range of models. Recent research found it beneficial to use large state spaces for HMMs and PCFGs. However, inference with large state spaces is computationally demanding, especially for PCFGs. To tackle this challenge, we leverage tensor rank decomposition (aka. CPD) to decrease inference computational complexities for a subset of FGGs subsuming HMMs and PCFGs. We apply CPD on the factors of an FGG and then construct a new FGG defined in the rank space. Inference with the new FGG produces the same result but has a lower time complexity when the rank size is smaller than the state size. We conduct experiments on HMM language modeling and unsupervised PCFG parsing, showing better performance than previous work. Our code is publicly available at https://github.com/VPeterV/RankSpace-Models.