Large Language Models (LLMs) have shown impressive reasoning capabilities, yet existing prompting methods face a critical trade-off: simple approaches often struggle with complex tasks and reasoning stability, while more sophisticated methods require multiple inferences and substantial computational resources, limiting their practical deployment. To address this challenge, we propose Derailer-Rerailer, a novel framework that adaptively balances reasoning accuracy and computational efficiency. At its core, our framework employs a lightweight Derailer mechanism to assess reasoning stability and selectively triggers an advanced Rerailer verification process only when necessary, thereby optimizing computational resource usage. Extensive evaluation across both open and closed-source models on more than 20 categories of mathematical, symbolic, and commonsense reasoning tasks demonstrates our framework’s effectiveness: Derailer-Rerailer achieves significant accuracy improvements (8-11% across various reasoning tasks) while maintaining 2-3 times better efficiency than existing verification methods, with particularly strong performance in mathematical and symbolic reasoning, offering a practical solution for enhancing LLM reasoning reliability while significantly reducing computational overhead.
Retrieval-Augmented Generation (RAG) is widely adopted for its effectiveness and cost-efficiency in mitigating hallucinations and enhancing the domain-specific generation capabilities of large language models (LLMs). However, is this effectiveness and cost-efficiency truly a free lunch? In this study, we comprehensively investigate the fairness costs associated with RAG by proposing a practical three-level threat model from the perspective of user awareness of fairness. Specifically, varying levels of user fairness awareness result in different degrees of fairness censorship on external datasets. We examine the fairness implications of RAG using uncensored, partially censored, and fully censored datasets. Our experiments demonstrate that fairness alignment can be easily undermined through RAG without the need for fine-tuning or retraining. Even with fully censored and supposedly unbiased external datasets, RAG would still lead to biased outputs. Our findings underscore the limitations of current alignment methods in the context of RAG-based LLMs and highlight the urgent need for new strategies to ensure fairness. We propose potential mitigations and call for further research to develop robust fairness safeguards in RAG-based LLMs.
Self-consistency mitigates hallucinations in Large Language Models (LLMs) by sampling multiple reasoning paths, but it lacks a systematic approach to determine the optimal number of samples or select the most faithful rationale. To address this limitation, we introduce Reasoning-Aware Self-Consistency (RASC), a novel framework that enhances sampling efficiency and reasoning faithfulness by dynamically evaluating both outputs and rationales. RASC assesses the quality of reasoning and the consistency of answers for each generated sample, using these assessments to guide early stopping decisions and rationale selection. The framework employs criteria-based stopping and weighted majority voting, enabling more informed choices on when to halt sampling and which rationale to select. Our comprehensive experiments across diverse question-answering datasets demonstrate that RASC outperforms existing methods, reducing sample usage by approximately 70% while maintaining accuracy. Moreover, RASC facilitates the selection of high-fidelity rationales, thereby improving the faithfulness of LLM outputs. Our approach effectively addresses the efficiency-accuracy trade-off in LLM reasoning tasks, offering a new perspective for more nuanced, faithful, and effective utilization of LLMs in resource-constrained environments.
Despite recent advances in the general visual instruction-following ability of Multimodal Large Language Models (MLLMs), they still struggle with critical problems when required to provide a precise and detailed response to a visual instruction: (1) failure to identify novel objects or entities, (2) mention of non-existent objects, and (3) neglect of object’s attributed details. Intuitive solutions include improving the size and quality of data or using larger foundation models. They show effectiveness in mitigating these issues, but at an expensive cost of collecting a vast amount of new data and introducing a significantly larger model. Standing at the intersection of these approaches, we examine the three object-oriented problems from the perspective of the image-to-text mapping process by the multimodal connector. In this paper, we first identify the limitations of multimodal connectors stemming from insufficient training data. Driven by this, we propose to enhance the mapping with retrieval-augmented tag tokens, which contain rich object-aware information such as object names and attributes. With our Tag-grounded visual instruction tuning with retrieval Augmentation (TUNA), we outperform baselines that share the same language model and training data on 12 benchmarks. Furthermore, we show the zero-shot capability of TUNA when provided with specific datastores.