2023
pdf
bib
abs
CASN:Class-Aware Score Network for Textual Adversarial Detection
Rong Bao
|
Rui Zheng
|
Liang Ding
|
Qi Zhang
|
Dacheng Tao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Adversarial detection aims to detect adversarial samples that threaten the security of deep neural networks, which is an essential step toward building robust AI systems. Density-based estimation is widely considered as an effective technique by explicitly modeling the distribution of normal data and identifying adversarial ones as outliers. However, these methods suffer from significant performance degradation when the adversarial samples lie close to the non-adversarial data manifold. To address this limitation, we propose a score-based generative method to implicitly model the data distribution. Our approach utilizes the gradient of the log-density data distribution and calculates the distribution gap between adversarial and normal samples through multi-step iterations using Langevin dynamics. In addition, we use supervised contrastive learning to guide the gradient estimation using label information, which avoids collapsing to a single data manifold and better preserves the anisotropy of the different labeled data distributions. Experimental results on three text classification tasks upon four advanced attack algorithms show that our approach is a significant improvement (average +15.2 F1 score against previous SOTA) over previous detection methods.
pdf
bib
abs
Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization
Ting Wu
|
Rui Zheng
|
Tao Gui
|
Qi Zhang
|
Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2023
Models trained with empirical risk minimization (ERM) are revealed to easily rely on spurious correlations, resulting in poor generalization. Group distributionally robust optimization (group DRO) can alleviate this problem by minimizing the worst-case loss over pre-defined groups. While promising, in practice factors like expensive annotations and privacy preclude the availability of group labels. More crucially, when taking a closer look at the failure modes of out-of-distribution generalization, the typical procedure of reweighting in group DRO loses efficiency. Hinged on the limitations, in this work, we reformulate the group DRO framework by proposing Q-Diversity. Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization. Furthermore, a novel mixing strategy across groups is presented to diversify the under-represented groups. In a series of experiments on both synthetic and real-world text classification tasks, results demonstrate that Q-Diversity can consistently improve worst-case accuracy under different distributional shifts, outperforming state-of-the-art alternatives.
pdf
bib
abs
Characterizing the Impacts of Instances on Robustness
Rui Zheng
|
Zhiheng Xi
|
Qin Liu
|
Wenbin Lai
|
Tao Gui
|
Qi Zhang
|
Xuanjing Huang
|
Jin Ma
|
Ying Shan
|
Weifeng Ge
Findings of the Association for Computational Linguistics: ACL 2023
Building robust deep neural networks (DNNs) against adversarial attacks is an important but challenging task. Previous defense approaches mainly focus on developing new model structures or training algorithms, but they do little to tap the potential of training instances, especially instances with robust patterns carring innate robustness. In this paper, we show that robust and non-robust instances in the training dataset, though are both important for test performance, have contrary impacts on robustness, which makes it possible to build a highly robust model by leveraging the training dataset in a more effective way. We propose a new method that can distinguish between robust instances from non-robust ones according to the model’s sensitivity to perturbations on individual instances during training. Surprisingly, we find that the model under standard training easily overfits the robust instances by relying on their simple patterns before the model completely learns their robust features. Finally, we propose a new mitigation algorithm to further release the potential of robust instances. Experimental results show that proper use of robust instances in the original dataset is a new line to achieve highly robust models.
pdf
bib
abs
Detecting Adversarial Samples through Sharpness of Loss Landscape
Rui Zheng
|
Shihan Dou
|
Yuhao Zhou
|
Qin Liu
|
Tao Gui
|
Qi Zhang
|
Zhongyu Wei
|
Xuanjing Huang
|
Menghan Zhang
Findings of the Association for Computational Linguistics: ACL 2023
Deep neural networks (DNNs) have been proven to be sensitive towards perturbations on input samples, and previous works highlight that adversarial samples are even more vulnerable than normal ones. In this work, this phenomenon is illustrated frWe first show that adversarial samples locate in steep and narrow local minima of the loss landscape (high sharpness) while normal samples, which differs distinctly from adversarial ones, reside in the loss surface that is more flatter (low sharpness).om the perspective of sharpness via visualizing the input loss landscape of models. Based on this, we propose a simple and effective sharpness-based detector to distinct adversarial samples by maximizing the loss increment within the region where the inference sample is located. Considering that the notion of sharpness of a loss landscape is relative, we further propose an adaptive optimization strategy in an attempt to fairly compare the relative sharpness among different samples. Experimental results show that our approach can outperform previous detection methods by large margins (average +6.6 F1 score) for four advanced attack strategies considered in this paper across three text classification tasks.
pdf
bib
abs
Connectivity Patterns are Task Embeddings
Zhiheng Xi
|
Rui Zheng
|
Yuansen Zhang
|
Xuanjing Huang
|
Zhongyu Wei
|
Minlong Peng
|
Mingming Sun
|
Qi Zhang
|
Tao Gui
Findings of the Association for Computational Linguistics: ACL 2023
Task embeddings are task-specific vectors designed to construct a semantic space of tasks, which can be used to predict the most transferable source task for a given target task via the similarity between task embeddings. However, existing methods use optimized parameters and representations as task embeddings, resulting in substantial computational complexity and storage requirements. In this work, we draw inspiration from the operating mechanism of deep neural networks (DNNs) and biological brains, where neuronal activations are sparse and task-specific, and we use the connectivity patterns of neurons as a unique identifier associated with the task. The proposed method learns to assign importance masks for sub-structures of DNNs, and accordingly indicate the task-specific connectivity patterns. In addition to the storage advantages brought by the binary masking mechanism and structured sparsity, the early-bird nature of the sparse optimization process can deliver an efficient computation advantage. Experiments show that our method consistently outperforms other baselines in predicting inter-task transferability across data regimes and transfer settings, while keeping high efficiency in computation and storage.