“在互联网在线医疗领域,由于大多数患者缺乏医学培训,以及不同学科病理特征的复杂性,医患对话文本中的医学命名实体呈现出长且多词的句法特点,给命名实体识别算法提出了新的挑战。 为解决这一问题,本研究融合多个不同粒度的扩张卷积机制,构建了Flat-Lattice-CNN模型。 该模型不仅考虑字符和词语的语义信息以及它们的绝对和相对位置信息,还提取跨越不同距离的多个字符/词语的共现依存关系特征,以此提高医学长命名实体的识别精度。 实验结果表明,本文提出的模型在所评估数据集的命名实体识别任务上有普遍性的性能提升,尤其是在以长实体为主的中文医疗数据集CTDD上,该模型的F 1值提升了约2%,具有更优的表现。”
Existing models for diverse generative reasoning still struggle to generate multiple unique and plausible results. Through an in-depth examination, we argue that it is critical to leverage a mixture of experts as prefixes to enhance the diversity of generated results and make task-oriented adaptation in the latent space of the generation models to improve the quality of the responses. At this point, we propose EpLSA, an innovative model based on the synergy of expert-prefix mixtures and task-oriented latent space adaptation for diverse generative reasoning. Specifically, we use expert-prefixes mixtures to encourage the model to create multiple responses with different semantics and design a loss function to address the problem that the semantics is interfered by the expert-prefixes. Meanwhile, we design a task-oriented adaptation block to make the pre-trained encoder within the generation model more effectively adapted to the pre-trained decoder in the latent space, thus further improving the quality of the generated text. Extensive experiments on three different types of generative reasoning tasks demonstrate that EpLSA outperforms existing baseline models in terms of both the quality and diversity of the generated outputs. Our code is publicly available at https://github.com/IMU-MachineLearningSXD/EpLSA.
“针对现有中文因果关系抽取方法对因果事件边界难以识别和文本特征表示不充分的问题,提出了一种基于外部词汇信息和注意力机制的中文因果关系抽取模型BiLSTM-TWAM+CRF。该模型首次使用SoftLexicon方法引入外部词汇信息构建词集,解决了因果事件边界难以识别的问题。通过构建的双路关注模块TWAM(Two Way Attention Module),实现了从局部和全局两个角度充分刻画文本特征。实验结果表明,与当前中文因果关系抽取模型相比较,本文方法表现出更优的抽取效果。”