Qin Chen

Other people with similar names: Qin Chen


2025

pdf bib
Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering
Linhao Ye | Lang Yu | Zhikai Lei | Qin Chen | Jie Zhou | Liang He
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Retrieval-augmented generation (RAG) is usually integrated into large language models (LLMs) to mitigate hallucinations and knowledge obsolescence. Whereas, conventional one-step retrieve-and-read methods are insufficient for multi-hop question answering, facing challenges of retrieval semantic mismatching and the high cost in handling interdependent subquestions. In this paper, we propose Optimizing Question Semantic Space for Dynamic Retrieval-Augmented Multi-hop Question Answering (Q-DREAM). Q-DREAM consists of three key modules: (1) the Question Decomposition Module (QDM), which decomposes multi-hop questions into fine-grained subquestions; (2) the Subquestion Dependency Optimizer Module (SDOM), which models the interdependent relations of subquestions for better understanding; and (3) the Dynamic Passage Retrieval Module (DPRM), which aligns subquestions with relevant passages by optimizing the semantic embeddings.Experimental results across various benchmarks demonstrate that Q-DREAM significantly outperforms existing RAG methods, achieving state-of-the-art performance in both in-domain and out-of-domain settings. Notably, Q-DREAM also improves retrieval efficiency while maintaining high accuracy compared with recent baselines.

pdf bib
P-React: Synthesizing Topic-Adaptive Reactions of Personality Traits via Mixture of Specialized LoRA Experts
Yuhao Dan | Jie Zhou | Qin Chen | Junfeng Tian | Liang He
Findings of the Association for Computational Linguistics: ACL 2025

Personalized large language models (LLMs) have attracted great attention in many applications, such as emotional support and role-playing. However, existing works primarily focus on modeling explicit character profiles, while ignoring the underlying personality traits that truly shape behaviors and decision-making, hampering the development of more anthropomorphic and psychologically-grounded AI systems. In this paper, we explore the modeling of Big Five personality traits, which is the most widely used trait theory in psychology, and propose P-React, a mixture of experts (MoE)-based personalized LLM. Particularly, we integrate a Personality Specialization Loss (PSL) to better capture individual trait expressions, providing a more nuanced and psychologically grounded personality simulacrum. To facilitate research in this field, we curate OCEAN-Chat, a high-quality, human-verified dataset designed to train LLMs in expressing personality traits across diverse topics. Extensive experiments demonstrate the effectiveness of P-React in maintaining consistent and real personality.