Liang Wang

Other people with similar names: Liang Wang , Liang Wang


2024

pdf bib
EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification
Huanhuan Ma | Weizhi Xu | Yifan Wei | Liuji Chen | Liang Wang | Qiang Liu | Shu Wu | Liang Wang
Findings of the Association for Computational Linguistics: ACL 2024

Fact verification aims to automatically probe the veracity of a claim based on several pieces of evidence. Existing works are always engaging in accuracy improvement, let alone explainability, a critical capability of fact verification systems.Constructing an explainable fact verification system in a complex multi-hop scenario is consistently impeded by the absence of a relevant, high-quality dataset. Previous datasets either suffer from excessive simplification or fail to incorporate essential considerations for explainability. To address this, we present EX-FEVER, a pioneering dataset for multi-hop explainable fact verification. With over 60,000 claims involving 2-hop and 3-hop reasoning, each is created by summarizing and modifying information from hyperlinked Wikipedia documents. Each instance is accompanied by a veracity label and an explanation that outlines the reasoning path supporting the veracity classification. Additionally, we demonstrate a novel baseline system on our EX-FEVER dataset, showcasing document retrieval, explanation generation, and claim verification, and validate the significance of our dataset. Furthermore, we highlight the potential of utilizing Large Language Models in the fact verification task. We hope our dataset could make a significant contribution by providing ample opportunities to explore the integration of natural language explanations in the domain of fact verification.

pdf bib
Chain-of-History Reasoning for Temporal Knowledge Graph Forecasting
Yuwei Xia | Ding Wang | Qiang Liu | Liang Wang | Shu Wu | Xiao-Yu Zhang
Findings of the Association for Computational Linguistics: ACL 2024

Temporal Knowledge Graph (TKG) forecasting aims to predict future facts based on given histories. Most recent graph-based models excel at capturing structural information within TKGs but lack semantic comprehension abilities. Nowadays, with the surge of LLMs, the LLM-based TKG prediction model has emerged. However, the existing LLM-based model exhibits three shortcomings: (1) It only focuses on the first-order history for prediction while ignoring high-order historical information, resulting in the provided information for LLMs being extremely limited. (2) LLMs struggle with optimal reasoning performance under heavy historical information loads. (3) For TKG prediction, the temporal reasoning capability of LLM alone is limited. To address the first two challenges, we propose Chain-of-History (CoH) reasoning which explores high-order histories step-by-step, achieving effective utilization of high-order historical information for LLMs on TKG prediction. To address the third issue, we design CoH as a plug-and-play module to enhance the performance of graph-based models for TKG prediction. Extensive experiments on three datasets and backbones demonstrate the effectiveness of CoH.