Kai Wang

Other people with similar names: Kai Wang , Kai Wang


2025

pdf bib
MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification
xu Zhao Pan | Pengfei Zhou | Jiaxin Ai | Wangbo Zhao | Kai Wang | Xiaojiang Peng | Wenqi Shao | Hongxun Yao | Kaipeng Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, whereas the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answers Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.

pdf bib
ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Rana Shahroz | Dongwen Tang | Pingzhi Li | Kai Wang | Tianlong Chen
Findings of the Association for Computational Linguistics: EMNLP 2025

Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving (i.e, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce ORAL, a novel conditional recurrent diffusion framework that addresses these challenges. ORAL incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that ORAL generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.