Haoyu Wang

Other people with similar names: Haoyu Wang


2025

pdf bib
RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization
Tianci Liu | Haoxiang Jiang | Tianze Wang | Ran Xu | Yue Yu | Linjun Zhang | Tuo Zhao | Haoyu Wang
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) have achieved impressive performance but face high computational costs and latency, limiting their deployment in resource-constrained settings. In contrast, small-scale LLMs (SLMs) are more efficient yet struggle to capture evolving real-world knowledge. Retrieval-augmented generation (RAG) helps by integrating external knowledge, but imperfect retrieval can introduce distracting noise that misleads SLMs. We propose RoseRAG, a robust RAG framework for SLMs via Margin-aware Preference Optimization. RoseRAG employs multi-turn prompting for detailed reasoning, rejection sampling for high-quality explanations, and contrastive preference selection to refine responses by maximizing the likelihood gap between preferred and non-preferred outputs. By integrating these components into a margin-aware optimization process, RoseRAG robustly enhances the accuracy and reliability of SLMs for RAG applications. Extensive experiments on three open-domain question answering benchmarks indicate that our innovative RoseRAG surpasses state-of-the-art baselines significantly.

2024

pdf bib
RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning
Haoyu Wang | Tianci Liu | Ruirui Li | Monica Xiao Cheng | Tuo Zhao | Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models, trained on large-scale corpora, demonstrate strong generalizability across various NLP tasks. Fine-tuning these models for specific tasks typically involves updating all parameters, which is resource-intensive. Parameter-efficient fine-tuning (PEFT) methods, such as the popular LoRA family, introduce low-rank matrices to learn only a few parameters efficiently. However, during inference, the product of these matrices updates all pre-trained parameters, complicating tasks like knowledge editing that require selective updates. We propose a novel PEFT method, which conducts row and column-wise sparse low-rank adaptation (RoseLoRA), to address this challenge. RoseLoRA identifies and updates only the most important parameters for a specific task, maintaining efficiency while preserving other model knowledge. By adding a sparsity constraint on the product of low-rank matrices and converting it to row and column-wise sparsity, we ensure efficient and precise model updates. Our theoretical analysis guarantees the lower bound of the sparsity with respective to the matrix product. Extensive experiments on five benchmarks across twenty datasets demonstrate that RoseLoRA outperforms baselines in both general fine-tuning and knowledge editing tasks.

pdf bib
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
Haoyu Wang | Ruirui Li | Haoming Jiang | Jinjin Tian | Zhengyang Wang | Chen Luo | Xianfeng Tang | Monica Xiao Cheng | Tuo Zhao | Jing Gao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often struggle with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.