2025
pdf
bib
abs
Complex Numerical Reasoning with Numerical Semantic Pre-training Framework
Jun Zhang
|
Haihong E
|
Tianyi Hu
|
Yifan Zhu
|
Meina Song
|
Haoran Luo
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multi-hop complex reasoning over incomplete knowledge graphs (KGs) has been extensively studied, but research on numerical knowledge graphs (NKGs) remains relatively limited. Recent approaches focus on separately encoding entities and numerical values, using neural networks to process query encodings for reasoning. However, in complex multi-hop reasoning tasks, numerical values are not merely symbols, and they carry specific semantics and logical relationships that must be accurately represented. The CNR-NST framework can perform binary operations on numerical attributes in NKGs, enabling it to infer new numerical attributes from existing knowledge. Our approach effectively handles up to 102 types of complex numerical reasoning queries. On three public datasets, CNR-NST demonstrates SOTA performance in complex numerical queries, achieving an average improvement of over 40% compared to existing methods. Notably, this work expands the query types for complex multi-hop numerical reasoning and introduces a new evaluation metric for numerical answers, which has been validated through comprehensive experiments.
pdf
bib
abs
A Cognitive Writing Perspective for Constrained Long-Form Text Generation
Kaiyang Wan
|
Honglin Mu
|
Rui Hao
|
Haoran Luo
|
Tianle Gu
|
Xiuying Chen
Findings of the Association for Computational Linguistics: ACL 2025
Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: https://anonymous.4open.science/r/CogWriter-8DFE.
2024
pdf
bib
abs
ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models
Haoran Luo
|
Haihong E
|
Zichen Tang
|
Shiyao Peng
|
Yikai Guo
|
Wentai Zhang
|
Chenghao Ma
|
Guanting Dong
|
Meina Song
|
Wei Lin
|
Yifan Zhu
|
Anh Tuan Luu
Findings of the Association for Computational Linguistics: ACL 2024
Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.
2023
pdf
bib
abs
HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level
Haoran Luo
|
Haihong E
|
Yuhao Yang
|
Yikai Guo
|
Mingzhi Sun
|
Tianyu Yao
|
Zichen Tang
|
Kaiyang Wan
|
Meina Song
|
Wei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Link Prediction on Hyper-relational Knowledge Graphs (HKG) is a worthwhile endeavor. HKG consists of hyper-relational facts (H-Facts), composed of a main triple and several auxiliary attribute-value qualifiers, which can effectively represent factually comprehensive information. The internal structure of HKG can be represented as a hypergraph-based representation globally and a semantic sequence-based representation locally. However, existing research seldom simultaneously models the graphical and sequential structure of HKGs, limiting HKGs’ representation. To overcome this limitation, we propose a novel Hierarchical Attention model for HKG Embedding (HAHE), including global-level and local-level attention. The global-level attention can model the graphical structure of HKG using hypergraph dual-attention layers, while the local-level attention can learn the sequential structure inside H-Facts via heterogeneous self-attention layers. Experiment results indicate that HAHE achieves state-of-the-art performance in link prediction tasks on HKG standard datasets. In addition, HAHE addresses the issue of HKG multi-position prediction for the first time, increasing the applicability of the HKG link prediction task. Our code is publicly available.