Hang Li

Other people with similar names: Hang Li


2025

pdf bib
PaSa: An LLM Agent for Comprehensive Academic Paper Search
Yichen He | Guanhua Huang | Peiyuan Feng | Yuan Lin | Yuchen Zhang | Hang Li | Weinan E
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholar queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4o for paraphrased queries, ChatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50, and exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision. Model, datasets, and code are available at https://github.com/bytedance/pasa.Demo: https://pasa-agent.ai

pdf bib
Toward Optimal LLM Alignments Using Two-Player Games
Rui Zheng | Hongyi Guo | Zhihan Liu | Xiaoying Zhang | Yuanshun Yao | Xiaojun Xu | Zhaoran Wang | Zhiheng Xi | Tao Gui | Qi Zhang | Xuanjing Huang | Yang Liu | Hang Li
Findings of the Association for Computational Linguistics: EMNLP 2025

Alignment of large language models (LLM) is a process that ensures the model’s responses to user prompts align with human intentions and social values. This optimization typically relies on pre-collected prompts. The collection of these prompts often either requires careful human interventions or proves to be difficult to have a good coverage over all scenarios an LLM can improve over . To address this issue, we propose an alignment method based on a two-agent game, consisting of an adversarial agent and a defensive agent. The adversarial agent’s task is to generate prompts that expose the deficiencies of the defensive agent. At the same time, the defensive agent improves its performance on the prompts generated by the adversary based on feedback from the reward model. This iterative process is repeated to enhance the model’s performance. We theoretically demonstrate that, under mild assumptions, this iterative alignment process converges to a Nash equilibrium by both agents. Learning in this competitive environment results in policies with better generalization capabilities. We demonstrate the advantage of our framework using extensive experiments.