Han Zhou

Other people with similar names: Han Zhou


2025

pdf bib
Large Language Models are Miscalibrated In-Context Learners
Chengzu Li | Han Zhou | Goran Glavaš | Anna Korhonen | Ivan Vulić
Findings of the Association for Computational Linguistics: ACL 2025

When adapting ICL with or without fine-tuning, we are curious about whether the instruction-tuned language model is able to achieve well-calibrated results without suffering from the problem of overconfidence (i.e., miscalibration) considering its strong instruction following ability, especially in such limited data setups. In this work, we deliver an in-depth analysis of the behavior across different choices of learning methods from the perspective of both performance and calibration. Through extensive controlled experiments, we observe that the miscalibration problem exists across all learning methods in low-resource setups. To achieve simultaneous gain for both in-task performance and calibration, we then study the potential of self-ensembling applied at different modeling stages (e.g., variations of in-context examples or variations in prompts or different ensembling strategies) to make the predictions more calibrated and have comparable or even better performance. We find that self-ensembling with max probability produces robust and calibrated predictions. Our work reveals the potential calibration problem of using ICL despite the improvements in task performance and sheds light on which learning paradigm to choose. We also provide practical guidelines for choosing learning paradigms depending on whether the data has been seen by the model before and a worthwhile solution via self-ensembling on how to enhance both task performance and calibration of LMs, which we hope could encourage further study.

2024

pdf bib
Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments
Han Zhou | Xingchen Wan | Yinhong Liu | Nigel Collier | Ivan Vulić | Anna Korhonen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generated texts and determine the preferred one, have been employed in a wide range of applications. However, LLMs exhibit preference biases and worrying sensitivity to prompt designs. In this work, we first reveal that the predictive preference of LLMs can be highly brittle and skewed, even with semantically equivalent instructions. We find that fairer predictive preferences from LLMs consistently lead to judgments that are better aligned with humans. Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO, which aims to produce fairer preference decisions and improve the alignment of LLM evaluators with human judgments. To this end, we propose a zero-shot learning objective based on the preference decision fairness. ZEPO demonstrates substantial performance improvements over state-of-the-art LLM evaluators, without requiring labeled data, on representative meta-evaluation benchmarks. Our findings underscore the critical correlation between preference fairness and human alignment, positioning ZEPO as an efficient prompt optimizer for bridging the gap between LLM evaluators and human judgments.

pdf bib
TopViewRS: Vision-Language Models as Top-View Spatial Reasoners
Chengzu Li | Caiqi Zhang | Han Zhou | Nigel Collier | Anna Korhonen | Ivan Vulić
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Top-view perspective denotes a typical way in which humans read and reason over different types of maps, and it is vital for localization and navigation of humans as well as of ‘non-human’ agents, such as the ones backed by large Vision-Language Models (VLMs). Nonetheless, spatial reasoning capabilities of modern VLMs in this setup remain unattested and underexplored. In this work, we study their capability to understand and reason over spatial relations from the top view. The focus on top view also enables controlled evaluations at different granularity of spatial reasoning; we clearly disentangle different abilities (e.g., recognizing particular objects versus understanding their relative positions). We introduce the TopViewRS (Top-View Reasoning in Space) dataset, consisting of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input. We then use it to study and evaluate VLMs across 4 perception and reasoning tasks with different levels of complexity. Evaluation of 10 representative open- and closed-source VLMs reveals the gap of more than 50% compared to average human performance, and it is even lower than the random baseline in some cases. Although additional experiments show that Chain-of-Thought reasoning can boost model capabilities by 5.82% on average, the overall performance of VLMs remains limited. Our findings underscore the critical need for enhanced model capability in top-view spatial reasoning and set a foundation for further research towards human-level proficiency of VLMs in real-world multimodal tasks.