Gabriel Perin

Also published as: Gabriel Jacob Perin


2025

pdf bib
Extracting and Understanding the Superficial Knowledge in Alignment
Runjin Chen | Gabriel Jacob Perin | Xuxi Chen | Xilun Chen | Yan Han | Nina S. T. Hirata | Junyuan Hong | Bhavya Kailkhura
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Alignment of large language models (LLMs) with human values and preferences, often achieved through fine-tuning based on human feedback, is essential for ensuring safe and responsible AI behaviors. However, the process typically requires substantial data and computation resources. Recent studies have revealed that alignment might be attainable at lower costs through simpler methods, such as in-context learning. This leads to the question: Is alignment predominantly superficial? In this paper, we delve into this question and provide a quantitative analysis. We formalize the concept of superficial knowledge, defining it as knowledge that can be acquired through easily token restyling, without affecting the model’s ability to capture underlying causal relationships between tokens. We propose a method to extract and isolate those superficial knowledge from aligned models, focusing on the shallow modifications to the final token selection process. By comparing models augmented only with superficial knowledge to fully aligned models, we quantify the superficial portion of alignment. Our findings reveal that while superficial knowledge constitutes a significant portion of alignment, particularly in safety and detoxification tasks, it is not the whole story. Tasks requiring reasoning and contextual understanding still rely on deeper knowledge. Additionally, we demonstrate two practical advantages of isolated superficial knowledge: (1) it can be transferred between models, enabling efficient offsite alignment of larger models using extracted superficial knowledge from smaller models, and (2) it is recoverable, allowing for the restoration of alignment in compromised models without sacrificing performance.

2024

pdf bib
RankMean: Module-Level Importance Score for Merging Fine-tuned LLM Models
Gabriel Perin | Xuxi Chen | Shusen Liu | Bhavya Kailkhura | Zhangyang Wang | Brian Gallagher
Findings of the Association for Computational Linguistics: ACL 2024

Traditionally, developing new language models (LMs) capable of addressing multiple tasks involves fine-tuning pre-trained LMs using a wide collection of datasets, a process that often incurs significant computational expenses. Model merging emerges as a cost-effective alternative, allowing the integration of existing models fine-tuned on different tasks into a single model that performs well across all tasks, eliminating the need for additional training. In this paper, we propose RankMean, an algorithm for merging fine-tuned LMs without requiring any downstream data. RankMean determines merging coefficients based on the relative rankings of weight change magnitudes and applies these coefficients for module-wise integration of various fine-tuned models. Our experimental results demonstrate that RankMean outperforms existing baseline methods on multiple benchmarks. The code is available at https://github.com/VITA-Group/RankMean.