Large Language Models (LLMs) have demonstrated a remarkable understanding of language nuances through instruction tuning, enabling them to effectively tackle various natural language processing tasks. Recent research has focused on the quality of instruction data rather than the quantity of instructions. However, existing high-quality instruction selection methods rely on external models or rules, overlooking the intrinsic association between pre-trained model and instruction data, making it difficult to select data that align with the preferences of pre-trained model. To address this challenge, we propose a strategy that utilizes noise injection to identify the quality of instruction data, without relying on external model. We also implement the strategy of combining inter-class diversity and intra-class diversity to improve model performance. The experimental results demonstrate that our method significantly outperforms the model trained on the entire dataset and established baselines. Our study provides a new perspective on noise injection in the field of instruction tuning, and also illustrates that the pre-trained model itself should be considered in defining high-quality. Additionally, we publish our selected high-quality instruction data.
Temporal evolution attribute graph prediction, a key task in graph machine learning, aims to forecast the dynamic evolution of node attributes over time. While recent advances in Large Language Models (LLMs) have enabled their use in enhancing node representations for integration with Graph Neural Networks (GNNs), their potential to directly perform GNN-like aggregation and interaction remains underexplored. Furthermore, traditional approaches to initializing attribute embeddings often disregard structural semantics, limiting the provision of rich prior knowledge to GNNs. Current methods also primarily focus on 1-hop neighborhood aggregation, lacking the capability to capture complex structural interactions. To address these limitations, we propose a novel prediction framework that integrates structural information into attribute embeddings through the introduction of an attribute embedding loss. We design specialized prompts to enable LLMs to perform GNN-like aggregation and incorporate a relation-aware Graph Convolutional Network to effectively capture long-range and complex structural dependencies. Extensive experiments on multiple real-world datasets validate the effectiveness of our approach, demonstrating significant improvements in predictive performance over existing methods.
Complex multi-hop questions often require comprehensive retrieval and reasoning. As a result, effectively parsing such questions and establishing an efficient interaction channel between large language models (LLMs) and knowledge graphs (KGs) is essential for ensuring reliable reasoning. In this paper, we present a novel semantic parsing framework Correcting on Graph (CoG), aiming to establish faithful logical queries that connect LLMs and KGs. We first propose a structured knowledge decoding that enables the LLM to generate fact-aware logical queries during inference, while leveraging its parametric knowledge to fill in the blank intermediate entities. Then, we introduce a knowledge path correction that combines the logical query with KGs to correct hallucination entities and path deficiencies in the generated content, ensuring the reliability and comprehensiveness of the retrieved knowledge. Extensive experiments demonstrate that CoG outperforms the state-of-the-art KGQA methods on two knowledge-intensive question answering benchmarks. CoG achieves a high answer hit rate and exhibits competitive F1 performance for complex multi-hop questions.
Knowledge graphs are dynamic structures that continuously evolve as new entities emerge, often accompanied by only a handful of associated triples. Current knowledge graph reasoning methods struggle in these few-shot scenarios due to their reliance on extensive structural information.To address this limitation, we introduce ENGRAM, a novel approach that enables inductive reasoning on few-shot KGs by innovatively enriching the semantics from both textual and structural perspectives. Our key innovation lies in designing a task-aware language model that activates the language model’s in-context learning ability for structured KG tasks, effectively bridging the gap between unstructured natural language and structured tasks. Unlike prior methods that inefficiently employ classification over exhaustive candidate sets, we recast knowledge graph reasoning from a generative perspective, allowing for direct computation of inference results without iterative enumeration. Additionally, we propose a distant neighborhood awareness strategy to enrich the sparse structural features of few-shot entities.Our experimental findings indicate that our method not only achieves state-of-the-art performance in few-shot scenarios. The tunable parameters of our model are approximately 1% of those in previous language model-based methods, and the inference time has been reduced to 1/10 of that required by previous methods.