2025
pdf
bib
abs
UCL-Bench: A Chinese User-Centric Legal Benchmark for Large Language Models
Ruoli Gan
|
Duanyu Feng
|
Chen Zhang
|
Zhihang Lin
|
Haochen Jia
|
Hao Wang
|
Zhenyang Cai
|
Lei Cui
|
Qianqian Xie
|
Jimin Huang
|
Benyou Wang
Findings of the Association for Computational Linguistics: NAACL 2025
Existing legal benchmarks focusing on knowledge and logic effectively evaluate LLMs on various tasks in legal domain. However, few have explored the practical application of LLMs by actual users. To further assess whether LLMs meet the specific needs of legal practitioners in real-world scenarios, we introduce UCL-Bench, a Chinese User-Centric Legal Benchmark, comprising 22 tasks across 5 distinct legal scenarios.To build the UCL-Bench, we conduct a user survey targeting legal professionals to understand their needs and challenges. Based on the survey results, we craft tasks, verified by legal professionals, and categorized them according to Bloom’s taxonomy. Each task in UCL-Bench mirrors real-world legal scenarios, and instead of relying on pre-defined answers, legal experts provide detailed answer guidance for each task, incorporating both “information” and “needs” elements to mimic the complexities of legal practice. With the guidance, we use GPT-4 as the user simulator and evaluator, enabling multi-turn dialogues as a answer guidance based evaluation framework. Our findings reveal that many recent open-source general models achieve the highest performance, suggesting that they are well-suited to address the needs of legal practitioners. However, these legal LLMs do not outperform ChatGPT, indicating a need for training strategies aligned with users’ needs. Furthermore, we find that the most effective models are able to address legal issues within fewer dialogue turns, highlighting the importance of concise and accurate responses in achieving high performance. The code and dataset are available at https://github.com/wittenberg11/UCL-bench.
2024
pdf
bib
abs
DynaThink: Fast or Slow? A Dynamic Decision-Making Framework for Large Language Models
Jiabao Pan
|
Yan Zhang
|
Chen Zhang
|
Zuozhu Liu
|
Hongwei Wang
|
Haizhou Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have demonstrated emergent capabilities across diverse reasoning tasks via popular Chains-of-Thought (COT) prompting. However, such a simple and fast COT approach often encounters limitations in dealing with complicated problems, while a thorough method, which considers multiple reasoning pathways and verifies each step carefully, results in slower inference. This paper addresses the challenge of enabling LLMs to autonomously select between fast and slow inference methods, thereby optimizing both efficiency and effectiveness. We introduce a dynamic decision-making framework that categorizes tasks into two distinct pathways: ‘Fast,’ designated for tasks where the LLM quickly identifies a high-confidence solution, and ‘Slow,’ allocated for tasks that the LLM perceives as complex and for which it has low confidence in immediate solutions as well as requiring more reasoning paths to verify. Experiments on five popular reasoning benchmarks demonstrated the superiority of the DynaThink over baselines. For example, when we compared it to strong COT with self-consistency baseline on the complicated MATH dataset, DynaThink achieved more than 3% increase in accuracy with lower cost. The code will be made available upon publication.
pdf
bib
abs
Unveiling the Achilles’ Heel of NLG Evaluators: A Unified Adversarial Framework Driven by Large Language Models
Yiming Chen
|
Chen Zhang
|
Danqing Luo
|
Luis Fernando D’Haro
|
Robby Tan
|
Haizhou Li
Findings of the Association for Computational Linguistics: ACL 2024
The automatic evaluation of natural language generation (NLG) systems presents a long-lasting challenge. Recent studies have highlighted various neural metrics that align well with human evaluations. Yet, the robustness of these evaluators against adversarial perturbations remains largely under-explored due to the unique challenges in obtaining adversarial data for different NLG evaluation tasks. To address the problem, we introduce AdvEval, a novel black-box adversarial framework against NLG evaluators. AdvEval is specially tailored to generate data that yield strong disagreements between human and victim evaluators. Specifically, inspired by the recent success of large language models (LLMs) in text generation and evaluation, we adopt strong LLMs as both the data generator and gold evaluator. Adversarial data are automatically optimized with feedback from the gold and victim evaluator. We conduct experiments on 12 victim evaluators and 11 NLG datasets, spanning tasks including dialogue, summarization, and question evaluation. The results show that AdvEval can lead to significant performance degradation of various victim metrics, thereby validating its efficacy.
pdf
bib
abs
Beyond Single-Event Extraction: Towards Efficient Document-Level Multi-Event Argument Extraction
Wanlong Liu
|
Li Zhou
|
DingYi Zeng
|
Yichen Xiao
|
Shaohuan Cheng
|
Chen Zhang
|
Grandee Lee
|
Malu Zhang
|
Wenyu Chen
Findings of the Association for Computational Linguistics: ACL 2024
Recent mainstream event argument extraction methods process each event in isolation, resulting in inefficient inference and ignoring the correlations among multiple events. To address these limitations, here we propose a multiple-event argument extraction model DEEIA (Dependency-guided Encoding and Event-specific Information Aggregation), capable of extracting arguments from all events within a document simultaneously. The proposed DEEIA model employs a multi-event prompt mechanism, comprising DE and EIA modules. The DE module is designed to improve the correlation between prompts and their corresponding event contexts, whereas the EIA module provides event-specific information to improve contextual understanding. Extensive experiments show that our method achieves new state-of-the-art performance on four public datasets (RAMS, WikiEvents, MLEE, and ACE05), while significantly saving the inference time compared to the baselines. Further analyses demonstrate the effectiveness of the proposed modules.
pdf
bib
abs
TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models
Chen Zhang
|
Chengguang Tang
|
Dading Chong
|
Ke Shi
|
Guohua Tang
|
Feng Jiang
|
Haizhou Li
Findings of the Association for Computational Linguistics: EMNLP 2024
Mainstream approaches to aligning large language models (LLMs) heavily rely on human preference data, particularly when models require periodic updates. The standard process for iterative alignment of LLMs involves collecting new human feedback for each update. However, the data collection process is costly and challenging to scale. To address this issue, we introduce the “TS-Align” framework, which fine-tunes a policy model using pairwise feedback data automatically mined from its outputs. This automatic mining process is efficiently accomplished through the collaboration between a large-scale teacher model and a small-scale student model. The policy fine-tuning process can be iteratively repeated using on-policy generations within our proposed teacher-student collaborative framework. Through extensive experiments, we demonstrate that our final aligned policy outperforms the base policy model with an average win rate of 69.7% across seven conversational or instruction-following datasets. Furthermore, we show that the ranking capability of the teacher is effectively distilled into the student through our pipeline, resulting in a small-scale yet effective reward model for policy model alignment.
pdf
bib
abs
Beyond Single-Audio: Advancing Multi-Audio Processing in Audio Large Language Models
Yiming Chen
|
Xianghu Yue
|
Xiaoxue Gao
|
Chen Zhang
|
Luis Fernando D’Haro
|
Robby T. Tan
|
Haizhou Li
Findings of the Association for Computational Linguistics: EMNLP 2024
Various audio-LLMs (ALLMs) have been explored recently for tackling different audio tasks simultaneously using a single, unified model. While existing evaluations of ALLMs primarily focus on single-audio tasks, real-world applications often involve processing multiple audio streams simultaneously. To bridge this gap, we propose the first multi-audio evaluation (MAE) benchmark that consists of 20 datasets from 11 multi-audio tasks encompassing both speech and sound scenarios. Comprehensive experiments on MAE demonstrate that the existing ALLMs, while being powerful in comprehending primary audio elements in individual audio inputs, struggling to handle multi-audio scenarios. To this end, we propose a novel multi-audio-LLM (MALLM) to capture audio context among multiple similar audios using discriminative learning on our proposed synthetic data. The results demonstrate that the proposed MALLM outperforms all baselines and achieves high data efficiency using synthetic data without requiring human annotations. The proposed MALLM opens the door for ALLMs towards multi-audio processing era and brings us closer to replicating human auditory capabilities in machines.