Cen Chen

Other people with similar names: Cen Chen


2025

pdf bib
LSSF: Safety Alignment for Large Language Models through Low-Rank Safety Subspace Fusion
Guanghao Zhou | Panjia Qiu | Cen Chen | Hongyu Li | Jason Chu | Xin Zhang | Jun Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The safety mechanisms of large language models (LLMs) exhibit notable fragility, as even fine-tuning on datasets without harmful content may still undermine their safety capabilities. Meanwhile, existing safety alignment methods predominantly rely on the fine-tuning process, which inadvertently leads to the increased complexity and computational resources required. To address these issues, we introduce LSSF, a novel safety re-alignment framework with Low-Rank Safety Subspace Fusison. Our proposed method exploits the low-rank characteristics of safety information in LLMs by constructing a low-rank projection matrix to extract the principal components of safety vectors. Notably, this projection matrix represents the low-rank safety subspace of the LLMs, which we have observed to remain stable during fine-tuning process and is isolated from the model’s general capabilities. These principal components are used to effectively restore safety alignment when combined with fine-tuned LLMs through linear arithmetic. Additionally, to account for the varying encoding densities of safety information across different layers of LLMs, we propose a novel metric called safety singular value entropy. This metric quantifies the encoding density and allows for the dynamic computation of the safety-critical rank for each safety vector. Extensive experiments demonstrate that our proposed post-hoc alignment method can effectively restore the safety alignment of fine-tuned models with minimal impact on their performance on downstream tasks.

2024

pdf bib
Privacy Evaluation Benchmarks for NLP Models
Wei Huang | Yinggui Wang | Cen Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

By inducing privacy attacks on NLP models, attackers can obtain sensitive information such as training data and model parameters, etc. Although researchers have studied, in-depth, several kinds of attacks in NLP models, they are non-systematic analyses. It lacks a comprehensive understanding of the impact caused by the attacks. For example, we must consider which scenarios can apply to which attacks, what the common factors are that affect the performance of different attacks, the nature of the relationships between different attacks, and the influence of various datasets and models on the effectiveness of the attacks, etc. Therefore, we need a benchmark to holistically assess the privacy risks faced by NLP models. In this paper, we present a privacy attack and defense evaluation benchmark in the field of NLP, which includes the conventional/small models and large language models (LLMs). This benchmark supports a variety of models, datasets, and protocols, along with standardized modules for comprehensive evaluation of attacks and defense strategies. Based on the above framework, we present a study on the association between auxiliary data from different domains and the strength of privacy attacks. And we provide an improved attack method in this scenario with the help of Knowledge Distillation (KD). Furthermore, we propose a chained framework for privacy attacks. Allowing a practitioner to chain multiple attacks to achieve a higher-level attack objective. Based on this, we provide some defense and enhanced attack strategies. The code for reproducing the results can be found at https://anonymous.4open.science/r/nlp_doctor-AF48

2023

pdf bib
A Customized Text Sanitization Mechanism with Differential Privacy
Sai Chen | Fengran Mo | Yanhao Wang | Cen Chen | Jian-Yun Nie | Chengyu Wang | Jamie Cui
Findings of the Association for Computational Linguistics: ACL 2023

As privacy issues are receiving increasing attention within the Natural Language Processing (NLP) community, numerous methods have been proposed to sanitize texts subject to differential privacy. However, the state-of-the-art text sanitization mechanisms based on a relaxed notion of metric local differential privacy (MLDP) do not apply to non-metric semantic similarity measures and cannot achieve good privacy-utility trade-offs. To address these limitations, we propose a novel Customized Text sanitization (CusText) mechanism based on the original 𝜖-differential privacy (DP) definition, which is compatible with any similarity measure.Moreover, CusText assigns each input token a customized output set to provide more advanced privacy protection at the token level.Extensive experiments on several benchmark datasets show that CusText achieves a better trade-off between privacy and utility than existing mechanisms.The code is available at https://github.com/sai4july/CusText.

pdf bib
XtremeCLIP: Extremely Parameter-efficient Tuning for Low-resource Vision Language Understanding
Moming Tang | Chengyu Wang | Jianing Wang | Chuanqi Tan | Songfang Huang | Cen Chen | Weining Qian
Findings of the Association for Computational Linguistics: ACL 2023

Recently, Contrastive Visual-Language Pre-training (CLIP) has demonstrated remarkable capability in various Visual Language Understanding (VLU) tasks. Yet, most CLIP-based methods require tasks-specific designs and sufficient training data. In this paper, we introduce a simple yet efficient paradigm for low-resource VLU named XtremeCLIP, which involves very few trainable parameters to improve the generalization ability of the trained models. In our XtremeCLIP framework, we reformulate a series of VLU tasks as a unified open-book affinity-matching problem. Furthermore, to handle the insufficient supervised signals in small datasets, we adopt contrastive learning to utilize the implicit sorting information of ground-truth labels to provide more supervised cues. Extensive experiments over multiple datasets on visual entailment, visual question answering, and image classification show that XtremeCLIP consistently outperforms existing baselines in low-resource settings.