Bo Wang

Other people with similar names: Bo Wang , Bo Wang , Bo Wang


2025

pdf bib
DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering
Rong Cheng | Jinyi Liu | Yan Zheng | Fei Ni | Jiazhen Du | Hangyu Mao | Fuzheng Zhang | Bo Wang | Jianye Hao
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-Hop Question Answering (MHQA) tasks permeate real-world applications, posing challenges in orchestrating multi-step reasoning across diverse knowledge domains. While existing approaches have been improved with iterative retrieval, they still struggle to identify and organize dynamic knowledge. To address this, we propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval. DualRAG operates through two tightly coupled processes: Reasoning-augmented Querying (RaQ) and progressive Knowledge Aggregation (pKA). They work in concert: as RaQ navigates the reasoning path and generates targeted queries, pKA ensures that newly acquired knowledge is systematically integrated to support coherent reasoning. This creates a virtuous cycle of knowledge enrichment and reasoning refinement. Through targeted fine-tuning, DualRAG preserves its sophisticated reasoning and retrieval capabilities even in smaller-scale models, demonstrating its versatility and core advantages across different scales. Extensive experiments demonstrate that this dual-process approach substantially improves answer accuracy and coherence, approaching, and in some cases surpassing, the performance achieved with oracle knowledge access. These results establish DualRAG as a robust and efficient solution for complex multi-hop reasoning tasks.

pdf bib
Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection
Yachao Zhao | Bo Wang | Yan Wang | Dongming Zhao | Ruifang He | Yuexian Hou
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have been shown to exhibit various biases and stereotypes in their generated content. While extensive research has investigated biases in LLMs, prior work has predominantly focused on explicit bias, with minimal attention to implicit bias and the relation between these two forms of bias. This paper presents a systematic framework grounded in social psychology theories to investigate and compare explicit and implicit biases in LLMs.We propose a novel self-reflection-based evaluation framework that operates in two phases: first measuring implicit bias through simulated psychological assessment methods, then evaluating explicit bias by prompting LLMs to analyze their own generated content. Through extensive experiments on advanced LLMs across multiple social dimensions, we demonstrate that LLMs exhibit a substantial inconsistency between explicit and implicit biases: while explicit bias manifests as mild stereotypes, implicit bias exhibits strong stereotypes.We further investigate the underlying factors contributing to this explicit-implicit bias inconsistency, examining the effects of training data scale, model size, and alignment techniques. Experimental results indicate that while explicit bias declines with increased training data and model size, implicit bias exhibits a contrasting upward trend. Moreover, contemporary alignment methods effectively suppress explicit bias but show limited efficacy in mitigating implicit bias.

pdf bib
The Rise of Darkness: Safety-Utility Trade-Offs in Role-Playing Dialogue Agents
Yihong Tang | Kehai Chen | Xuefeng Bai | Zheng-Yu Niu | Bo Wang | Jie Liu | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2025

Large Language Models (LLMs) have made remarkable advances in role-playing dialogue agents, demonstrating their utility in character simulations. However, it remains challenging for these agents to balance character portrayal utility with content safety because this essential character simulation often comes with the risk of generating unsafe content. To address this issue, we first conduct a systematic exploration of the safety-utility trade-off across multiple LLMs. Our analysis reveals that risk scenarios created by villain characters and user queries (referred to as risk coupling) contribute to this trade-off. Building on this, we propose a novel Adaptive Dynamic Multi-Preference (ADMP) method, which dynamically adjusts safety-utility preferences based on the degree of risk coupling and guides the model to generate responses biased toward utility or safety. We further introduce Coupling Margin Sampling (CMS) into coupling detection to enhance the model’s ability to handle high-risk scenarios. Experimental results demonstrate that our approach improves safety metrics while maintaining utility.

pdf bib
Dynamic Personality in LLM Agents: A Framework for Evolutionary Modeling and Behavioral Analysis in the Prisoner’s Dilemma
Weiqi Zeng | Bo Wang | Dongming Zhao | Zongfeng Qu | Ruifang He | Yuexian Hou | Qinghua Hu
Findings of the Association for Computational Linguistics: ACL 2025

Using Large Language Model agents to simulate human game behaviors offers valuable insights for human social psychology in anthropomorphic AI research. While current models rely on static personality traits, real-world evidence shows personality evolves through environmental feedback. Recent work introduced dynamic personality traits but lacked natural selection processes and direct psychological metrics, failing to accurately capture authentic dynamic personality variations. To address these limitations, we propose an enhanced framework within the Prisoner’s Dilemma, a socially significant scenario. By using game payoffs as environmental feedback, we drive adaptive personality evolution and analyze correlations between personality metrics and behavior. Our framework reveals new behavioral patterns of agents and evaluates personality-behavior relationships, advancing agent-based social simulations and human-AI symbiosis research.

2024

pdf bib
MORPHEUS: Modeling Role from Personalized Dialogue History by Exploring and Utilizing Latent Space
Yihong Tang | Bo Wang | Dongming Zhao | Jinxiaojia Jinxiaojia | Zhangjijun Zhangjijun | Ruifang He | Yuexian Hou
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Personalized Dialogue Generation (PDG) aims to create coherent responses according to roles or personas. Traditional PDG relies on external role data, which can be scarce and raise privacy concerns. Approaches address these issues by extracting role information from dialogue history, which often fail to generically model roles in continuous space. To overcome these limitations, we introduce a novel framework Models Roles from Personalized Dialogue History by Exploring and Utilizing Latent Space (MORPHEUS) through a three-stage training process. Specifically, we create a persona codebook to represent roles in latent space compactly, and this codebook is used to construct a posterior distribution of role information. This method enables the model to generalize across roles, allowing the generation of personalized dialogues even for unseen roles. Experiments on both Chinese and English datasets demonstrate that MORPHEUS enhances the extraction of role information, and improves response generation without external role data. Additionally, MORPHEUS can be considered an efficient fine-tuning for large language models.

2023

pdf bib
Facilitating Multi-turn Emotional Support Conversation with Positive Emotion Elicitation: A Reinforcement Learning Approach
Jinfeng Zhou | Zhuang Chen | Bo Wang | Minlie Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Emotional support conversation (ESC) aims to provide emotional support (ES) to improve one’s mental state. Existing works stay at fitting grounded responses and responding strategies (e.g., question), which ignore the effect on ES and lack explicit goals to guide emotional positive transition. To this end, we introduce a new paradigm to formalize multi-turn ESC as a process of positive emotion elicitation. Addressing this task requires finely adjusting the elicitation intensity in ES as the conversation progresses while maintaining conversational goals like coherence. In this paper, we propose Supporter, a mixture-of-expert-based reinforcement learning model, and well design ES and dialogue coherence rewards to guide policy’s learning for responding. Experiments verify the superiority of Supporter in achieving positive emotion elicitation during responding while maintaining conversational goals including coherence.

pdf bib
Enhancing Personalized Dialogue Generation with Contrastive Latent Variables: Combining Sparse and Dense Persona
Yihong Tang | Bo Wang | Miao Fang | Dongming Zhao | Kun Huang | Ruifang He | Yuexian Hou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The personalized dialogue explores the consistent relationship between dialogue generation and personality. Existing personalized dialogue agents model persona profiles from three resources: sparse or dense persona descriptions and dialogue histories. However, sparse structured persona attributes are explicit but uninformative, dense persona texts contain rich persona descriptions with much noise, and dialogue history query is both noisy and uninformative for persona modeling. In this work, we combine the advantages of the three resources to obtain a richer and more accurate persona. We design a Contrastive Latent Variable-based model (CLV) that clusters the dense persona descriptions into sparse categories, which are combined with the history query to generate personalized responses. Experimental results on Chinese and English datasets demonstrate our model’s superiority in personalization.

pdf bib
CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic Response Generation
Jinfeng Zhou | Chujie Zheng | Bo Wang | Zheng Zhang | Minlie Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Empathetic conversation is psychologically supposed to be the result of conscious alignment and interaction between the cognition and affection of empathy. However, existing empathetic dialogue models usually consider only the affective aspect or treat cognition and affection in isolation, which limits the capability of empathetic response generation. In this work, we propose the CASE model for empathetic dialogue generation. It first builds upon a commonsense cognition graph and an emotional concept graph and then aligns the user’s cognition and affection at both the coarse-grained and fine-grained levels. Through automatic and manual evaluation, we demonstrate that CASE outperforms state-of-the-art baselines of empathetic dialogues and can generate more empathetic and informative responses.

pdf bib
MTGP: Multi-turn Target-oriented Dialogue Guided by Generative Global Path with Flexible Turns
Anqi Liu | Bo Wang | Yue Tan | Dongming Zhao | Kun Huang | Ruifang He | Yuexian Hou
Findings of the Association for Computational Linguistics: ACL 2023

Target-oriented dialogue guides the dialogue to a target quickly and smoothly. The latest approaches focus on global planning, which plans toward the target before the conversation instead of adopting a greedy strategy during the conversation. However, the global plan in existing works is fixed to certain turns by generating paths with certain nodes, which limits the optimization of turns and coherence of the target-oriented process. Toward flexible global planning, we propose to generate a global path as a natural language sentence instead of a sequence of nodes. With this path, the dialog is guided to the target with flexible turns of dialog. For model training, we also extract targetoriented dialogues from the chit-chat corpus with a knowledge graph. We conduct experiments on three datasets and simulate scenarios with and without user participation. The results show that our method has fewer turns, more coherent semantics, and a higher success rate in reaching the target than baselines.

pdf bib
Guiding Dialogue Agents to Complex Semantic Targets by Dynamically Completing Knowledge Graph
Yue Tan | Bo Wang | Anqi Liu | Dongming Zhao | Kun Huang | Ruifang He | Yuexian Hou
Findings of the Association for Computational Linguistics: ACL 2023

In the target-oriented dialogue, the representation and achievement of targets are two interrelated essential issues. In current approaches, the target is typically supposed to be a single object represented as a word, which makes it relatively easy to achieve the target through dialogue with the help of a knowledge graph (KG). However, when the target has complex semantics, the existing knowledge graph is often incomplete in tracking complex semantic relations. This paper studies target-oriented dialog where the target is a topic sentence. We combine the methods of knowledge retrieval and relationship prediction to construct a context-related dynamic KG. On dynamic KG, we can track the implicit semantic paths in the speaker’s mind that may not exist in the existing KGs. In addition, we also designed a novel metric to evaluate the tracked path automatically. The experimental results show that our method can control the agent more logically and smoothly toward the complex target.