Alba Curry

Also published as: Alba Cercas Curry


2025

pdf bib
Seeing Race, Feeling Bias: Emotion Stereotyping in Multimodal Language Models
Mahammed Kamruzzaman | Amanda Cercas Curry | Alba Cercas Curry | Flor Miriam Plaza-del-Arco
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) are increasingly used to predict human emotions, but previous studies show that these models reproduce gendered emotion stereotypes. Emotion stereotypes are also tightly tied to race and skin tone (consider for example the trope of the angry black woman), but previous work has thus far overlooked this dimension. In this paper, we address this gap by introducing the first large-scale multimodal study of racial, gender, and skin-tone bias in emotion attribution, revealing how modality (text, images) and their combination shape emotion stereotypes in Multimodal LLMs (MLLMs). We evaluate four open-source MLLMs using 2.1K emotion-related events paired with 400 neutral face images across three different prompt strategies. Our findings reveal varying biases in MLLMs representations of different racial groups: models reproduce racial stereotypes across modalities, with textual cues being particularly noticeable. Models also reproduce colourist trends, with darker skin tones showing more skew. Our research highlights the need for future rigorous evaluation and mitigation strategies that account for race, colorism, and gender in MLLMs.

2024

pdf bib
Angry Men, Sad Women: Large Language Models Reflect Gendered Stereotypes in Emotion Attribution
Flor Miriam Plaza-del-Arco | Amanda Cercas Curry | Alba Curry | Gavin Abercrombie | Dirk Hovy
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) reflect societal norms and biases, especially about gender. While societal biases and stereotypes have been extensively researched in various NLP applications, there is a surprising gap for emotion analysis. However, emotion and gender are closely linked in societal discourse. E.g., women are often thought of as more empathetic, while men’s anger is more socially accepted. To fill this gap, we present the first comprehensive study of gendered emotion attribution in five state-of-the-art LLMs (open- and closed-source). We investigate whether emotions are gendered, and whether these variations are based on societal stereotypes. We prompt the models to adopt a gendered persona and attribute emotions to an event like ‘When I had a serious argument with a dear person’. We then analyze the emotions generated by the models in relation to the gender-event pairs. We find that all models consistently exhibit gendered emotions, influenced by gender stereotypes. These findings are in line with established research in psychology and gender studies. Our study sheds light on the complex societal interplay between language, gender, and emotion. The reproduction of emotion stereotypes in LLMs allows us to use those models to study the topic in detail, but raises questions about the predictive use of those same LLMs for emotion applications.

pdf bib
Divine LLaMAs: Bias, Stereotypes, Stigmatization, and Emotion Representation of Religion in Large Language Models
Flor Miriam Plaza-del-Arco | Amanda Cercas Curry | Susanna Paoli | Alba Cercas Curry | Dirk Hovy
Findings of the Association for Computational Linguistics: EMNLP 2024

Emotions play important epistemological and cognitive roles in our lives, revealing our values and guiding our actions. Previous work has shown that LLMs display biases in emotion attribution along gender lines. However, unlike gender, which says little about our values, religion, as a socio-cultural system, prescribes a set of beliefs and values for its followers. Religions, therefore, cultivate certain emotions. Moreover, these rules are explicitly laid out and interpreted by religious leaders. Using emotion attribution, we explore how different religions are represented in LLMs. We find that:Major religions in the US and European countries are represented with more nuance, displaying a more shaded model of their beliefs.Eastern religions like Hinduism and Buddhism are strongly stereotyped.Judaism and Islam are stigmatized – the models’ refusal skyrocket. We ascribe these to cultural bias in LLMs and the scarcity of NLP literature on religion. In the rare instances where religion is discussed, it is often in the context of toxic language, perpetuating the perception of these religions as inherently toxic. This finding underscores the urgent need to address and rectify these biases. Our research emphasizes the crucial role emotions play in shaping our lives and how our values influence them.

2023

pdf bib
Computer says “No”: The Case Against Empathetic Conversational AI
Alba Curry | Amanda Cercas Curry
Findings of the Association for Computational Linguistics: ACL 2023

Emotions are an integral part of human cognition and they guide not only our understanding of the world but also our actions within it. As such, whether we soothe or flame an emotion is not inconsequential. Recent work in conversational AI has focused on responding empathetically to users, validating and soothing their emotions without a real basis. This AI-aided emotional regulation can have negative consequences for users and society, tending towards a one-noted happiness defined as only the absence of “negative” emotions. We argue that we must carefully consider whether and how to respond to users’ emotions.