Abraham Owodunni

Also published as: Abraham Toluwase Owodunni


2025

pdf bib
AfriMed-QA: A Pan-African, Multi-Specialty, Medical Question-Answering Benchmark Dataset
Charles Nimo | Tobi Olatunji | Abraham Toluwase Owodunni | Tassallah Abdullahi | Emmanuel Ayodele | Mardhiyah Sanni | Ezinwanne C. Aka | Folafunmi Omofoye | Foutse Yuehgoh | Timothy Faniran | Bonaventure F. P. Dossou | Moshood O. Yekini | Jonas Kemp | Katherine A Heller | Jude Chidubem Omeke | Chidi Asuzu Md | Naome A Etori | Aïmérou Ndiaye | Ifeoma Okoh | Evans Doe Ocansey | Wendy Kinara | Michael L. Best | Irfan Essa | Stephen Edward Moore | Chris Fourie | Mercy Nyamewaa Asiedu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language model (LLM) performance on medical multiplechoice question (MCQ) benchmarks have stimulated interest from healthcare providers and patients globally. Particularly in low-andmiddle-income countries (LMICs) facing acute physician shortages and lack of specialists, LLMs offer a potentially scalable pathway to enhance healthcare access and reduce costs. However, their effectiveness in the Global South, especially across the African continent, remains to be established. In this work, we introduce AfriMed-QA , the first largescale Pan-African English multi-specialty medical Question-Answering (QA) dataset, 15,000 questions (open and closed-ended) sourced from over 60 medical schools across 16 countries, covering 32 medical specialties. We further evaluate 30 LLMs across multiple axes including correctness and demographic bias. Our findings show significant performance variation across specialties and geographies, MCQ performance clearly lags USMLE (MedQA). We find that biomedical LLMs underperform general models and smaller edge-friendly LLMs struggle to achieve a passing score. Interestingly, human evaluations show a consistent consumer preference for LLM answers and explanations when compared with clinician answers.

2024

pdf bib
AccentFold: A Journey through African Accents for Zero-Shot ASR Adaptation to Target Accents
Abraham Owodunni | Aditya Yadavalli | Chris Emezue | Tobi Olatunji | Clinton Mbataku
Findings of the Association for Computational Linguistics: EACL 2024

Despite advancements in speech recognition, accented speech remains challenging. While previous approaches have focused on modeling techniques or creating accented speech datasets, gathering sufficient data for the multitude of accents, particularly in the African context, remains impractical due to their sheer diversity and associated budget constraints. To address these challenges, we propose AccentFold, a method that exploits spatial relationships between learned accent embeddings to improve downstream Automatic Speech Recognition (ASR). Our exploratory analysis of speech embeddings representing 100+ African accents reveals interesting spatial accent relationships highlighting geographic and genealogical similarities, capturing consistent phonological, and morphological regularities, all learned empirically from speech. Furthermore, we discover accent relationships previously uncharacterized by the Ethnologue. Through empirical evaluation, we demonstrate the effectiveness of AccentFold by showing that, for out-of-distribution (OOD) accents, sampling accent subsets for training based on AccentFold information outperforms strong baselines a relative WER improvement of 4.6%. AccentFold presents a promising approach for improving ASR performance on accented speech, particularly in the context of African accents, where data scarcity and budget constraints pose significant challenges. Our findings emphasize the potential of leveraging linguistic relationships to improve zero-shot ASR adaptation to target accents.

pdf bib
A Decade of Scholarly Research on Open Knowledge Graphs
Houcemeddine Turki | Abraham Toluwase Owodunni | Mohamed Ali Hadj Taieb | René Fabrice Bile | Mohamed Ben Aouicha
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The proliferation of open knowledge graphs has led to a surge in scholarly research on the topic over the past decade. This paper presents a bibliometric analysis of the scholarly literature on open knowledge graphs published between 2013 and 2023. The study aims to identify the trends, patterns, and impact of research in this field, as well as the key topics and research questions that have emerged. The work uses bibliometric techniques to analyze a sample of 4445 scholarly articles retrieved from Scopus. The findings reveal an ever-increasing number of publications on open knowledge graphs published every year, particularly in developed countries (+50 per year). These outputs are published in highly-referred scholarly journals and conferences. The study identifies three main research themes: (1) knowledge graph construction and enrichment, (2) evaluation and reuse, and (3) fusion of knowledge graphs into NLP systems. Within these themes, the study identifies specific tasks that have received considerable attention, including entity linking, knowledge graph embedding, and graph neural networks.

pdf bib
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
Jonne Sälevä | Abraham Owodunni
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)

2023

pdf bib
AfriQA: Cross-lingual Open-Retrieval Question Answering for African Languages
Odunayo Ogundepo | Tajuddeen R. Gwadabe | Clara E. Rivera | Jonathan H. Clark | Sebastian Ruder | David Ifeoluwa Adelani | Bonaventure F. P. Dossou | Abdou Aziz Diop | Claytone Sikasote | Gilles Hacheme | Happy Buzaaba | Ignatius Ezeani | Rooweither Mabuya | Salomey Osei | Chris Emezue | Albert Njoroge Kahira | Shamsuddeen Hassan Muhammad | Akintunde Oladipo | Abraham Toluwase Owodunni | Atnafu Lambebo Tonja | Iyanuoluwa Shode | Akari Asai | Tunde Oluwaseyi Ajayi | Clemencia Siro | Steven Arthur | Mofetoluwa Adeyemi | Orevaoghene Ahia | Anuoluwapo Aremu | Oyinkansola Awosan | Chiamaka Chukwuneke | Bernard Opoku | Awokoya Ayodele | Verrah Otiende | Christine Mwase | Boyd Sinkala | Andre Niyongabo Rubungo | Daniel A. Ajisafe | Emeka Felix Onwuegbuzia | Habib Mbow | Emile Niyomutabazi | Eunice Mukonde | Falalu Ibrahim Lawan | Ibrahim Said Ahmad | Jesujoba O. Alabi | Martin Namukombo | Mbonu Chinedu | Mofya Phiri | Neo Putini | Ndumiso Mngoma | Priscilla A. Amouk | Ruqayya Nasir Iro | Sonia Adhiambo
Findings of the Association for Computational Linguistics: EMNLP 2023

African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems – those that retrieve answer content from other languages while serving people in their native language—offer a means of filling this gap. To this end, we create Our Dataset, the first cross-lingual QA dataset with a focus on African languages. Our Dataset includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, Our Dataset focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, Our Dataset proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.

pdf bib
MasakhaNEWS: News Topic Classification for African languages
David Ifeoluwa Adelani | Marek Masiak | Israel Abebe Azime | Jesujoba Alabi | Atnafu Lambebo Tonja | Christine Mwase | Odunayo Ogundepo | Bonaventure F. P. Dossou | Akintunde Oladipo | Doreen Nixdorf | Chris Chinenye Emezue | Sana Al-azzawi | Blessing Sibanda | Davis David | Lolwethu Ndolela | Jonathan Mukiibi | Tunde Ajayi | Tatiana Moteu | Brian Odhiambo | Abraham Owodunni | Nnaemeka Obiefuna | Muhidin Mohamed | Shamsuddeen Hassan Muhammad | Teshome Mulugeta Ababu | Saheed Abdullahi Salahudeen | Mesay Gemeda Yigezu | Tajuddeen Gwadabe | Idris Abdulmumin | Mahlet Taye | Oluwabusayo Awoyomi | Iyanuoluwa Shode | Tolulope Adelani | Habiba Abdulganiyu | Abdul-Hakeem Omotayo | Adetola Adeeko | Abeeb Afolabi | Anuoluwapo Aremu | Olanrewaju Samuel | Clemencia Siro | Wangari Kimotho | Onyekachi Ogbu | Chinedu Mbonu | Chiamaka Chukwuneke | Samuel Fanijo | Jessica Ojo | Oyinkansola Awosan | Tadesse Kebede | Toadoum Sari Sakayo | Pamela Nyatsine | Freedmore Sidume | Oreen Yousuf | Mardiyyah Oduwole | Kanda Tshinu | Ussen Kimanuka | Thina Diko | Siyanda Nxakama | Sinodos Nigusse | Abdulmejid Johar | Shafie Mohamed | Fuad Mire Hassan | Moges Ahmed Mehamed | Evrard Ngabire | Jules Jules | Ivan Ssenkungu | Pontus Stenetorp
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

2022

pdf bib
Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks
Colin Leong | Joshua Nemecek | Jacob Mansdorfer | Anna Filighera | Abraham Owodunni | Daniel Whitenack
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present Bloom Library, a linguistically diverse set of multimodal and multilingual datasets for language modeling, image captioning, visual storytelling, and speech synthesis/recognition. These datasets represent either the most, or among the most, multilingual datasets for each of the included downstream tasks. In total, the initial release of the Bloom Library datasets covers 363 languages across 32 language families. We train downstream task models for various languages represented in the data, showing the viability of the data for future work in low-resource, multimodal NLP and establishing the first known baselines for these downstream tasks in certain languages (e.g., Bisu [bzi], with an estimated population of 700 users). Some of these first-of-their-kind baselines are comparable to state-of-the-art performance for higher-resourced languages. The Bloom Library datasets are released under Creative Commons licenses on the Hugging Face datasets hub to catalyze more linguistically diverse research in the included downstream tasks.
Search
Co-authors
Fix author