Chien Van Nguyen


2025

pdf bib
A Survey on Small Language Models
Chien Van Nguyen | Xuan Shen | Ryan Aponte | Yu Xia | Samyadeep Basu | Zhengmian Hu | Jian Chen | Mihir Parmar | Sasidhar Kunapuli | Joe Barrow3 | Junda Wu | Ashish Singh | Yu Wang | Jiuxiang Gu | Nesreen K. Ahmed | Nedim Lipka | Ruiyi Zhang | Xiang Chen | Tong Yu | Sungchul Kim | Hanieh Deilamsalehy | Namyong Park | Michael Rimer | Zhehao Zhang | Huanrui Yang | Puneet Mathur | Gang Wu | Franck Dernoncourt | Ryan Rossi | Thien Huu Nguyen
Proceedings of the 15th International Conference on Recent Advances in Natural Language Processing - Natural Language Processing in the Generative AI Era

Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.

2024

pdf bib
CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages
Thuat Nguyen | Chien Van Nguyen | Viet Dac Lai | Hieu Man | Nghia Trung Ngo | Franck Dernoncourt | Ryan A. Rossi | Thien Huu Nguyen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Extensive training datasets represent one of the important factors for the impressive learning capabilities of large language models (LLMs). However, these training datasets for current LLMs, especially the recent state-of-the-art models, are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is released in Hugging Face facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.

pdf bib
Hierarchical Selection of Important Context for Generative Event Causality Identification with Optimal Transports
Hieu Man | Chien Van Nguyen | Nghia Trung Ngo | Linh Ngo | Franck Dernoncourt | Thien Huu Nguyen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We study the problem of Event Causality Identification (ECI) that seeks to predict causal relation between event mentions in the text. In contrast to previous classification-based models, a few recent ECI methods have explored generative models to deliver state-of-the-art performance. However, such generative models cannot handle document-level ECI where long context between event mentions must be encoded to secure correct predictions. In addition, previous generative ECI methods tend to rely on external toolkits or human annotation to obtain necessary training signals. To address these limitations, we propose a novel generative framework that leverages Optimal Transport (OT) to automatically select the most important sentences and words from full documents. Specifically, we introduce hierarchical OT alignments between event pairs and the document to extract pertinent contexts. The selected sentences and words are provided as input and output to a T5 encoder-decoder model which is trained to generate both the causal relation label and salient contexts. This allows richer supervision without external tools. We conduct extensive evaluations on different datasets with multiple languages to demonstrate the benefits and state-of-the-art performance of ECI.