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Resumo. Este artigo apresenta os resultados parciais da investigacdo de uma
abordagem para o reconhecimento de miiltiplas emogdes em textos curtos em
portugués brasileiro. Para isso, propoe-se a construcdo de um corpus com
tweets coletados por Web Scraper e rotulados com base na teoria da roda de
emocgoes de Plutchik. Além disso, sdo apresentadas as etapas realizadas no
pré-processamento do corpus, no desenvolvimento e na andlise comparativa
entre os modelos SVM e BERT na detec¢do de emogoes em textos gerados por
um LLM. As avaliagdes demonstraram que o modelo SVM obteve quase 20% a
mais de precisdo do que o BERT.

Abstract. This article presents the partial results of the investigation of an ap-
proach for recognizing multiple emotions expressed in short texts in Brazilian
Portuguese. To this end, we propose the construction of a corpus with tweets
collected by Web Scraper and labeled based on Plutchik’s theory of the wheel of
emotions. Furthermore, the steps taken in pre-processing the corpus, develop-
ment and comparative analysis between the SVM and BERT models in detecting
emotions in texts generated by an LLM are presented. Evaluations demonstrated
that the SVM model achieved almost 20% more accuracy than BERT.

1. Introducao

A mineragao de emocgdes € o campo de estudo que analisa o aspecto emocional expresso
sobre uma diversidade de entidades e atividades humanas [Liu 2012]. Sendo as emocdes
fatores implicitos na tomada de decisao de qualquer individuo, pesquisas procuram en-
tender a proximidade entre decisoes cibernéticas e humanas [Pires 2023] e um estudo que
vem ganhando destaque nesse contexto é a IA emocional, onde maquinas sdo treinadas
para sentir, detectar, interpretar e analisar emog¢des. [Mantello et al. 2023].

No processo exploratério da pesquisa, observou-se que a grande quan-
tidade das publicacOes realizadas na drea se limitam em analisar sentimentos
classificando-os quando a sua polaridade, podendo ser positiva, negativa ou neutra
[Cardozo and Freitas 2021, Paes et al. 2022, Silva and Faria 2023, Seno et al. 2023]. To-
davia, sabe-se que as emocdes se comportam de forma bem mais complexa. Além
disso, apesar da literatura cientifica ter visto uma proliferacdo de estudos sobre detec¢ao
de emocdes em lingua inglesa, a quantidade de trabalhos que exploram a temética em
textos em portugués brasileiro (Pt-BR) € ainda escassa [de Oliveira and de Melo 2021,
Pereira 2021] e a mineragdo multilingue ainda enfrenta desafios em alcangar altas pre-
cisOes e confiabilidade [Santos et al. 2014, Moreira et al. 2024].

Outra abordagem possivel adotada por pesquisas utiliza recursos da aprendizagem
profunda, como [Hammes and Freitas 2021], que utilizaram os modelos BERTimbal-base
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e BERTimbal-large para classificar 27 emog¢des de sentengas do dataset multi-label Go-
Emotions traduzidos para o portugués. Nele, os autores comentam sobre a indisponibi-
lidade de datasets anotados para tarefa de classificacio de emogdes em portugués e da
perda de qualidade do dataset devida a tradugdo, que pode levar a perda do sentido ex-
presso pelas sentencas e interferéncia na classificacdo correta das emocgoes.

Nessa pespectiva, este trabalho propde a construcao de uma base de dados con-
tendo fweets em portugués rotulados de acordo com suas multiplas classes de emocgdes,
o treinamento e comparacdo de modelos para identificar essas emocgdes no texto.
Para alcancar esse objetivo, realizou-se a coleta automdtica de um grande volume de
informacdes da rede social X, empregando técnicas de processamento de linguagem na-
tural (PLN) e aprendizado de maquina. Além disso, foi realizada uma andalise compara-
tiva entre os modelos de maquinas de vetores de suporte (Support Vector Machine) e o
modelo de aprendizagem profunda BERT (Bidirectional Encoder Representations from
Transformers) na classificacio emocional dos textos da base de dados e em dados ndo
vistos gerados com auxilio de um Large Language Model (LLM).

A organizacdo do artigo ocorre da seguinte maneira: na Se¢do 2, descreve-se a
metodologia, incluindo a preparacdo do corpus, a etapa de pré-processamento, o modelo
treinado para a classificacao e as métricas de avaliacdo usadas; na Se¢do 3, apresenta-se 0s
resultados parciais da anélise realizada e discute-se suas implica¢des; Por fim, na Secao
4, as consideracdes finais desta pesquisa sao apresentadas.

2. Metodologia

No presente trabalho, as emog¢des foram identificadas de acordo com o modelo do
psicologo norte-americano Robert Plutchik, elaborado em 1980. A roda das emogdes
é um recurso grafico em formato de flor de oito pétalas'. Ela se diferencia das demais te-
orias ao propor relacdes de tipologia, antagonismo e intensidade entre as emocoes, além
de identifica-las. Quanto a tipologia, podem ser 8 emog¢des primadrias (alegria, confianga,
medo, surpresa, tristeza, nojo, raiva e antecipa¢do), ou emog¢des secunddrias, que ficam
entre as pétalas, geradas pela combinagdo das emocdes primdrias adjacentes.

A preparacdao do corpus € essencial para o desenvolvimento do modelo de
classificacao de emocdes. O conjunto de dados, com 12.160 publica¢cdes da rede social
X, foi obtido via Web Scraper em Python, utilizando sindnimos de emog¢des primarias e
secunddrias. As emogdes secunddrias caracterizaram o conjunto como multirrétulo.

A rotulacdo de cada rweet teve como base as palavras sindnimas utilizadas no
Web Scraper. Por exemplo, o texto “Do nada bate um desanimo!” foi coletado por meio
do sindnimo ”"Desanimo”e foi classificado como Tristeza. Ja ”Nao tenho provas, tenho
convic¢ao” foi coletado por meio de "Convicgao” e foi classificado como confianga.

O pré-processamento do texto € essencial na andlise de emocdes, pois prepara e
limpa os dados para um processamento mais eficiente. Primeiramente, sdo removidos
caracteres especiais e acentos, especialmente em idiomas como o portugués. Depois,
ocorre a tokenizacao, onde o texto € dividido em palavras (fokens), descartando caracteres
e numeros restantes. Em seguida, retiram-se as stopwords, palavras comuns que pouco

"https://github.com/MiningEmotion/EmotionsMiningPTBR/blob/main/
imagens/Roda_Das_Emocoes.png
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contribuem para o contexto. Por fim, utiliza-se o stemming para reduzir palavras ao seu
radical, normalizando variagdes verbais e nominais.

Ap6s a limpeza dos dados textuais descrita acima, aplicou-se a técnica de
vetorizagdo com a técnica TF-IDF (Term frequency - inverse document frequency), que
considera a frequéncia e importancia das palavras para que se possa aplicar um classifi-
cador e determinar a predi¢ao final do texto [LANDIM and TRESSO 2023].

3. Modelos de Aprendizagem de Maquina

Foram utilizados dois modelos de aprendizado de maquina para as fases de treino e teste,
ambos com as mesmas métricas para uma melhor compara¢do. Os modelos empregados
foram o Support Vector Machine (SVM) e o Bidirectional Encoder Representations for
Transformers (BERT).

O modelo SVM linear foi utilizado em conjunto com o MultiOutputClassifier? que
consiste em treinar um classificador separado por cada rétulo, adaptando o classificador
base que ndo suporta nativamente uma saida com mais de um rétulo, como o SVM, para
um modelo de classificacdo multirrétulo.

O BERT ¢ baseado na arquitetura transformer [Devlin et al. 2018], ao contrario
dos modelos direcionais, que l€em a entrada de texto sequencialmente, da esquerda para
a direita ou da direita para a esquerda, o codificador transformer 1€ toda a sequéncia de
palavras de uma vez, por isso € considerado bidirecional, também utilizado na sua versao
multirrétulo e treinado com 4 épocas .

Ambos os modelos foram treinados com o conjunto de dados coletados e testa-
dos com dados gerados por um LLM, onde foram geradas 10 frases de cada emocgdo
secunddria para testar o modelo treinado, categorizando um texto com multiplas classes
simultaneamente. O prompt utilizado na criacdo das frases foi ”"Gere 10 frases com as
emocOes primarias : “alegria’ e ’confianca’ e com a emogado secunddria amor’ que imite
a mesma linguagem informal de tweets”.

4. Resultados e Discussoes

Visando avaliar os resultados e o desempenho dos modelos, foram adotadas as seguintes
métricas para a analise da classificacdo multirrétulo: acuracia, precisdo, revocagdo e F1.
A selecdo das métricas se deu considerando a especificidade de cada uma delas.

De acordo com a Figura 1, o modelo SVM demonstrou uma precisao significativa
de 85,18%, indicando uma boa capacidade de classificacio. No entanto, o BERT ao
ser confrontado com as mesmas frases ndo vistas geradas pelo LLM, a acurécia caiu
drasticamente para 66,67%, sinalizando dificuldades na classificacdo desses dados. Além
disso, a acurécia, revocacdo e métrica F1 também diminuiram consideravelmente para as
frases geradas, indicando uma tendéncia do segundo modelo em cometer mais erros de
classificagdo e em perder instancias de emocoes.

A diminuicdo nas métricas pode ser atribuida a natureza dos modelos. O SVM
tenta encontrar um hiperplano com a maior margem de separagdo, assegurando que os da-
dos de cada classe sejam classificados corretamente com maior probabilidade. J4 o BERT

https://scikit-learn.org/stable/modules/generated/sklearn.
multioutput.MultiOutputClassifier.html
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Comparagao de Desempenho entre BERT e SVM

0.8518 W Testes no BERT
I Testes no SVM
0.7594

Resultado

Acuracia Precisao Revocacao
Métricas

Figura 1. Comparacao de Desempenho entre BERT e SVM. (Fonte: Autores).

utiliza o treinamento bidirecional do transformer, permitindo que o modelo aprenda o
contexto de uma palavra com base em seu entorno completo.

No modelo SVM, quanto menor o texto, menor sera o processamento exigido pela
maquina. Em contrapartida, o BERT, sendo um modelo de linguagem mais robusto, ne-
cessita de textos mais extensos para utilizar todo o seu potencial. Conforme demonstrado
por [Devlin et al. 2018], ao empregar caracteristicas semanticas dos revisores junto com
textos curtos, observou-se uma melhoria na acuracia da classificacio do modelo BERT,
enquanto o SVM ndo apresentou mudangas significativas nos valores das métricas.

S. Consideracoes Finais e Direcoes Futuras

Este trabalho contribuiu na investigacao referente a classificagcdo multirrétulo de emocgdes
em textos curtos com a disponibilizacdo de codigos, a base de dados tweetEmotionsPTBR
e as frases geradas por um LLM, ja classificados em portugués brasileiro, no repositorio
EmotionMiningPTBR® do Github.

Através dos resultados, o SVM obteve maior desempenho em relacio ao BERT
na maioria das métricas devido a natureza do modelo. Todavia, as métricas ndo desempe-
nharam conforme esperado pelo modo como os modelos foram treinados, exclusivamente
com conteudo da rede social X, carecendo de uma quantidade significativa de exemplos
que contenham uma linguagem mais elaborada e nuances figurativas. Sendo assim, fo-
ram realizados testes iniciais com conjuntos de dados maiores e balanceados, treinando
os modelos com as publicacdes de redes sociais e frases geradas por LLM. Notou-se uma
melhora significativa nas métricas do modelo BERT, superando o SVM.

Como dire¢des futuras, € necessario a construcdo de um conjunto de dados mais
diversificado linguisticamente, proveniente de uma variedade de fontes. Isso ajuda a evitar
que os modelos fiquem excessivamente adaptados a um unico estilo de linguagem. Além
disso, seria importante a elaboragdo de um Gold-Standard Corpus com a revisdo dos
rétulos feita por especialistas na teoria da roda das emocdes.

Shttps://github.com/MiningEmotion/EmotionsMiningPTBR
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