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Resumo. Este artigo apresenta os resultados parciais da investigação de uma
abordagem para o reconhecimento de múltiplas emoções em textos curtos em
português brasileiro. Para isso, propõe-se a construção de um corpus com
tweets coletados por Web Scraper e rotulados com base na teoria da roda de
emoções de Plutchik. Além disso, são apresentadas as etapas realizadas no
pré-processamento do corpus, no desenvolvimento e na análise comparativa
entre os modelos SVM e BERT na detecção de emoções em textos gerados por
um LLM. As avaliações demonstraram que o modelo SVM obteve quase 20% a
mais de precisão do que o BERT.

Abstract. This article presents the partial results of the investigation of an ap-
proach for recognizing multiple emotions expressed in short texts in Brazilian
Portuguese. To this end, we propose the construction of a corpus with tweets
collected by Web Scraper and labeled based on Plutchik’s theory of the wheel of
emotions. Furthermore, the steps taken in pre-processing the corpus, develop-
ment and comparative analysis between the SVM and BERT models in detecting
emotions in texts generated by an LLM are presented. Evaluations demonstrated
that the SVM model achieved almost 20% more accuracy than BERT.

1. Introdução
A mineração de emoções é o campo de estudo que analisa o aspecto emocional expresso
sobre uma diversidade de entidades e atividades humanas [Liu 2012]. Sendo as emoções
fatores implı́citos na tomada de decisão de qualquer indivı́duo, pesquisas procuram en-
tender a proximidade entre decisões cibernéticas e humanas [Pires 2023] e um estudo que
vem ganhando destaque nesse contexto é a IA emocional, onde máquinas são treinadas
para sentir, detectar, interpretar e analisar emoções. [Mantello et al. 2023].

No processo exploratório da pesquisa, observou-se que a grande quan-
tidade das publicações realizadas na área se limitam em analisar sentimentos
classificando-os quando à sua polaridade, podendo ser positiva, negativa ou neutra
[Cardozo and Freitas 2021, Paes et al. 2022, Silva and Faria 2023, Seno et al. 2023]. To-
davia, sabe-se que as emoções se comportam de forma bem mais complexa. Além
disso, apesar da literatura cientı́fica ter visto uma proliferação de estudos sobre detecção
de emoções em lı́ngua inglesa, a quantidade de trabalhos que exploram a temática em
textos em português brasileiro (Pt-BR) é ainda escassa [de Oliveira and de Melo 2021,
Pereira 2021] e a mineração multilı́ngue ainda enfrenta desafios em alcançar altas pre-
cisões e confiabilidade [Santos et al. 2014, Moreira et al. 2024].

Outra abordagem possı́vel adotada por pesquisas utiliza recursos da aprendizagem
profunda, como [Hammes and Freitas 2021], que utilizaram os modelos BERTimbal-base
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e BERTimbal-large para classificar 27 emoções de sentenças do dataset multi-label Go-
Emotions traduzidos para o português. Nele, os autores comentam sobre a indisponibi-
lidade de datasets anotados para tarefa de classificação de emoções em português e da
perda de qualidade do dataset devida a tradução, que pode levar a perda do sentido ex-
presso pelas sentenças e interferência na classificação correta das emoções.

Nessa pespectiva, este trabalho propõe a construção de uma base de dados con-
tendo tweets em português rotulados de acordo com suas múltiplas classes de emoções,
o treinamento e comparação de modelos para identificar essas emoções no texto.
Para alcançar esse objetivo, realizou-se a coleta automática de um grande volume de
informações da rede social X, empregando técnicas de processamento de linguagem na-
tural (PLN) e aprendizado de máquina. Além disso, foi realizada uma análise compara-
tiva entre os modelos de máquinas de vetores de suporte (Support Vector Machine) e o
modelo de aprendizagem profunda BERT (Bidirectional Encoder Representations from
Transformers) na classificação emocional dos textos da base de dados e em dados não
vistos gerados com auxı́lio de um Large Language Model (LLM).

A organização do artigo ocorre da seguinte maneira: na Seção 2, descreve-se a
metodologia, incluindo a preparação do corpus, a etapa de pré-processamento, o modelo
treinado para a classificação e as métricas de avaliação usadas; na Seção 3, apresenta-se os
resultados parciais da análise realizada e discute-se suas implicações; Por fim, na Seção
4, as considerações finais desta pesquisa são apresentadas.

2. Metodologia
No presente trabalho, as emoções foram identificadas de acordo com o modelo do
psicólogo norte-americano Robert Plutchik, elaborado em 1980. A roda das emoções
é um recurso gráfico em formato de flor de oito pétalas1. Ela se diferencia das demais te-
orias ao propor relações de tipologia, antagonismo e intensidade entre as emoções, além
de identificá-las. Quanto à tipologia, podem ser 8 emoções primárias (alegria, confiança,
medo, surpresa, tristeza, nojo, raiva e antecipação), ou emoções secundárias, que ficam
entre as pétalas, geradas pela combinação das emoções primárias adjacentes.

A preparação do corpus é essencial para o desenvolvimento do modelo de
classificação de emoções. O conjunto de dados, com 12.160 publicações da rede social
X, foi obtido via Web Scraper em Python, utilizando sinônimos de emoções primárias e
secundárias. As emoções secundárias caracterizaram o conjunto como multirrótulo.

A rotulação de cada tweet teve como base as palavras sinônimas utilizadas no
Web Scraper. Por exemplo, o texto ”Do nada bate um desânimo!” foi coletado por meio
do sinônimo ”Desânimo”e foi classificado como Tristeza. Já ”Não tenho provas, tenho
convicção” foi coletado por meio de ”Convicção” e foi classificado como confiança.

O pré-processamento do texto é essencial na análise de emoções, pois prepara e
limpa os dados para um processamento mais eficiente. Primeiramente, são removidos
caracteres especiais e acentos, especialmente em idiomas como o português. Depois,
ocorre a tokenização, onde o texto é dividido em palavras (tokens), descartando caracteres
e números restantes. Em seguida, retiram-se as stopwords, palavras comuns que pouco

1https://github.com/MiningEmotion/EmotionsMiningPTBR/blob/main/
imagens/Roda_Das_Emocoes.png
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contribuem para o contexto. Por fim, utiliza-se o stemming para reduzir palavras ao seu
radical, normalizando variações verbais e nominais.

Após a limpeza dos dados textuais descrita acima, aplicou-se a técnica de
vetorização com a técnica TF-IDF (Term frequency - inverse document frequency), que
considera a frequência e importância das palavras para que se possa aplicar um classifi-
cador e determinar a predição final do texto [LANDIM and TRESSO 2023].

3. Modelos de Aprendizagem de Máquina
Foram utilizados dois modelos de aprendizado de máquina para as fases de treino e teste,
ambos com as mesmas métricas para uma melhor comparação. Os modelos empregados
foram o Support Vector Machine (SVM) e o Bidirectional Encoder Representations for
Transformers (BERT).

O modelo SVM linear foi utilizado em conjunto com o MultiOutputClassifier2 que
consiste em treinar um classificador separado por cada rótulo, adaptando o classificador
base que não suporta nativamente uma saı́da com mais de um rótulo, como o SVM, para
um modelo de classificação multirrótulo.

O BERT é baseado na arquitetura transformer [Devlin et al. 2018], ao contrário
dos modelos direcionais, que lêem a entrada de texto sequencialmente, da esquerda para
a direita ou da direita para a esquerda, o codificador transformer lê toda a sequência de
palavras de uma vez, por isso é considerado bidirecional, também utilizado na sua versão
multirrótulo e treinado com 4 épocas .

Ambos os modelos foram treinados com o conjunto de dados coletados e testa-
dos com dados gerados por um LLM, onde foram geradas 10 frases de cada emoção
secundária para testar o modelo treinado, categorizando um texto com múltiplas classes
simultaneamente. O prompt utilizado na criação das frases foi ”Gere 10 frases com as
emoções primarias : ’alegria’ e ’confiança’ e com a emoção secundária ’amor’ que imite
a mesma linguagem informal de tweets”.

4. Resultados e Discussões
Visando avaliar os resultados e o desempenho dos modelos, foram adotadas as seguintes
métricas para a análise da classificação multirrótulo: acurácia, precisão, revocação e F1.
A seleção das métricas se deu considerando a especificidade de cada uma delas.

De acordo com a Figura 1, o modelo SVM demonstrou uma precisão significativa
de 85,18%, indicando uma boa capacidade de classificação. No entanto, o BERT ao
ser confrontado com as mesmas frases não vistas geradas pelo LLM, a acurácia caiu
drasticamente para 66,67%, sinalizando dificuldades na classificação desses dados. Além
disso, a acurácia, revocação e métrica F1 também diminuı́ram consideravelmente para as
frases geradas, indicando uma tendência do segundo modelo em cometer mais erros de
classificação e em perder instâncias de emoções.

A diminuição nas métricas pode ser atribuı́da à natureza dos modelos. O SVM
tenta encontrar um hiperplano com a maior margem de separação, assegurando que os da-
dos de cada classe sejam classificados corretamente com maior probabilidade. Já o BERT

2https://scikit-learn.org/stable/modules/generated/sklearn.
multioutput.MultiOutputClassifier.html
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Figura 1. Comparação de Desempenho entre BERT e SVM. (Fonte: Autores).

utiliza o treinamento bidirecional do transformer, permitindo que o modelo aprenda o
contexto de uma palavra com base em seu entorno completo.

No modelo SVM, quanto menor o texto, menor sera o processamento exigido pela
máquina. Em contrapartida, o BERT, sendo um modelo de linguagem mais robusto, ne-
cessita de textos mais extensos para utilizar todo o seu potencial. Conforme demonstrado
por [Devlin et al. 2018], ao empregar caracterı́sticas semânticas dos revisores junto com
textos curtos, observou-se uma melhoria na acuracia da classificação do modelo BERT,
enquanto o SVM não apresentou mudanças significativas nos valores das métricas.

5. Considerações Finais e Direções Futuras

Este trabalho contribuiu na investigação referente à classificação multirrótulo de emoções
em textos curtos com a disponibilização de códigos, a base de dados tweetEmotionsPTBR
e as frases geradas por um LLM, já classificados em português brasileiro, no repositório
EmotionMiningPTBR3 do Github.

Através dos resultados, o SVM obteve maior desempenho em relação ao BERT
na maioria das métricas devido à natureza do modelo. Todavia, as métricas não desempe-
nharam conforme esperado pelo modo como os modelos foram treinados, exclusivamente
com conteúdo da rede social X, carecendo de uma quantidade significativa de exemplos
que contenham uma linguagem mais elaborada e nuances figurativas. Sendo assim, fo-
ram realizados testes iniciais com conjuntos de dados maiores e balanceados, treinando
os modelos com as publicações de redes sociais e frases geradas por LLM. Notou-se uma
melhora significativa nas métricas do modelo BERT, superando o SVM.

Como direções futuras, é necessário a construção de um conjunto de dados mais
diversificado linguisticamente, proveniente de uma variedade de fontes. Isso ajuda a evitar
que os modelos fiquem excessivamente adaptados a um único estilo de linguagem. Além
disso, seria importante a elaboração de um Gold-Standard Corpus com a revisão dos
rótulos feita por especialistas na teoria da roda das emoções.

3https://github.com/MiningEmotion/EmotionsMiningPTBR
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