This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ZouyingCao
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive. Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones. However, existing depth scaling-up methods rely on empirical heuristic rules for layer duplication, which result in poorer initialization and slower convergence during continual pre-training. We propose LESA, a novel learnable method for depth scaling-up. By concatenating parameters from each layer and applying Singular Value Decomposition, we uncover latent patterns between layers, suggesting that inter-layer parameters can be learned. LESA uses a neural network to predict the parameters inserted between adjacent layers, enabling better initialization and faster training. Experiments show that LESA outperforms existing baselines, achieving superior performance with less than half the computational cost during continual pre-training. Extensive analyses demonstrate its effectiveness across different model sizes and tasks.
Large Language Model (LLM) agents have demonstrated impressive capabilities in handling complex interactive problems. Existing LLM agents mainly generate natural language plans to guide reasoning, which is verbose and inefficient. NL plans are also tailored to specific tasks and restrict agents’ ability to generalize across similar tasks. To this end, we explore pseudocode-style plans (P-code Plan) to capture the structural logic of reasoning. We find that P-code Plan empowers LLM agents with stronger generalization ability and more efficiency. Inspired by this finding, we propose a pseudocode-style ̲Planning ̲Guided ̲Preference ̲Optimization method called PGPO for effective agent learning. With two planning-oriented rewards, PGPO further enhances LLM agents’ ability to generate high-quality P-code Plans and subsequent reasoning. Experiments show that PGPO achieves superior performance on representative agent benchmarks and outperforms the current leading baselines. Analyses reveal the advantage of PGPO in reducing action errors and omissions during reasoning.